
Old Dominion University
ODU Digital Commons

Computer Science Theses & Dissertations Computer Science

Spring 2019

Expanding the Usage of Web Archives by
Recommending Archived Webpages Using Only
the URI
Lulwah M. Alkwai
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/computerscience_etds

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Computer Science at ODU Digital Commons. It has been accepted for inclusion in
Computer Science Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact
digitalcommons@odu.edu.

Recommended Citation
Alkwai, Lulwah M.. "Expanding the Usage of Web Archives by Recommending Archived Webpages Using Only the URI" (2019).
Doctor of Philosophy (PhD), dissertation, Computer Science, Old Dominion University, DOI: 10.25777/yk35-dd38
https://digitalcommons.odu.edu/computerscience_etds/90

https://digitalcommons.odu.edu?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F90&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F90&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F90&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F90&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F90&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds/90?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F90&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

EXPANDING THE USAGE OF WEB ARCHIVES BY

RECOMMENDING ARCHIVED WEBPAGES USING

ONLY THE URI

by

Lulwah M. Alkwai
B.S. July 2007, King Saud University, Saudi Arabia

M.S. August 2013, Old Dominion University

A Dissertation Submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

COMPUTER SCIENCE

OLD DOMINION UNIVERSITY
May 2019

Approved by:

Michele C. Weigle (Director)

Michael L. Nelson (Member)

Jian Wu (Member)

Sampath Jayarathna (Member)

Christian Zemlin (Member)

ABSTRACT

EXPANDING THE USAGE OF WEB ARCHIVES BY
RECOMMENDING ARCHIVED WEBPAGES USING ONLY THE

URI

Lulwah M. Alkwai
Old Dominion University, 2019
Director: Dr. Michele C. Weigle

Web archives are a window to view past versions of webpages. When a user
requests a webpage on the live Web, such as http://tripadvisor.com/where_to_t

ravel/, the webpage may not be found, which results in an HyperText Transfer
Protocol (HTTP) 404 response. The user then may search for the webpage in a
Web archive, such as the Internet Archive. Unfortunately, if this page had never
been archived, the user will not be able to view the page, nor will the user gain any
information on other webpages that have similar content in the archive, such as the
archived webpage http://classy-travel.net. Similarly, if the user requests the
webpage http://hokiesports.com/football/ from the Internet Archive, the user
will only find the requested webpage, and the user will not gain any information on
other webpages that have similar content in the archive, such as the archived webpage
http://techsideline.com. In this research, we will build a model for selecting and
ranking possible recommended webpages at a Web archive. This is to enhance both
HTTP 404 responses and HTTP 200 responses by surfacing webpages in the archive
that the user may not know existed. First, we detect semantics in the requested
Uniform Resource Identifier (URI). Next, we classify the URI using an ontology,
such as DMOZ or any website directory. Finally, we filter and rank candidates
based on several features, such as archival quality, webpage popularity, temporal
similarity, and content similarity. We measure the performance of each step using
different techniques, including calculating the F1 to measure of different tokenization
methods and the classification. We tested the model using human evaluation to
determine if we could classify and find recommendations for a sample of requests
from the Internet Archive’s Wayback Machine access log. Overall, when selecting
the full categorization, reviewers agreed with 80.3% of the recommendations, which
is much higher than “do not agree” and “I do not know”. This indicates the reviewer is
more likely to agree on the recommendations when selecting the full categorization.

http://tripadvisor.com/where_to_travel/
http://tripadvisor.com/where_to_travel/
http://classy-travel.net
http://hokiesports.com/football/
http://techsideline.com

But when selecting the first level only, reviewers only agreed with 25.5% of the
recommendations. This indicates that having deep level categorization improves the
performance of finding relevant recommendations.

iv

Copyright, 2019, by Lulwah M. Alkwai, All Rights Reserved.

v

I dedicate this dissertation to my father who had always supported and encouraged
me to move forward, and to my mother for her everlasting love and support. I also
dedicate my work to my beloved husband and my amazing daughters who have been

my motivation and inspiration. I am grateful to have them in my life.

vi

ACKNOWLEDGEMENTS

First, I am thankful to Almighty Allah for all the blessings he bestowed on me,
Alhamdulillah. I am thankful for the completion of this academic journey. I am
thankful for the support and guidance from the people around me.

I am deeply thankful to my great advisor Dr. Weigle for her guidance, support,
valuable feedback, and encouragement. I cannot thank her enough for her patience
and role in my PhD journey. I would also like to thank my great co-advisor Dr.
Nelson for his guidance and support. I am grateful for both Dr. Weigle and Dr.
Nelson, they provided me with academic mentoring and research guidance through
the years.

I would also want to express my appreciation for the members of the committee
Dr. Wu, Dr. Jayarathna, and Dr. Zemlin for their support and input to enhance
the dissertation. I am grateful for Dr. Hussein Abdel-Wahab who passed away in
2016, God bless his soul. For his help and support from the first day I joined the
department. His words and kindness will never be forgotten.

I would like thank my colleagues at the web science and digital library group, for
their support and insightful discussions, to Sawood, Mat, Alex, Mohammed, Shawn,
and the reset of the wsdl group. To all former wsdl PhD graduates and friends,
especially to my best friend Yasmin AlNoamany who always believed in me and
encouraged me to move forward. I would also want to thank Lamia Alkwai, Hend
Aldabagh, Abrar Alali, Alexander Nwala, Sawood Alam, and Mat Kelly, for taking
their time by helping me in evaluating my work and providing feedback.

I would like to thank the ODU Computer Science department for providing me
with opportunities and support during my masters and PhD. In addition, I am
thankful to University of Hail for their scholarship, and to my country for funding
my education.

I am thankful to my family for their love and support. My parents, Mohammed,
and Zahwah, for their endless support, encouragement, their prayers, and words of
wisdom. They were there for me in every step of my journey, they felt my stress and
emotions, without me saying anything. To my sisters Dr. Hend and Dr. Hala, who
were alway there for me and who helped me throughout the years when I needed
some medical advise, especially when my kids were sick. To my computer science
sister Lamia, who is always ready to share thoughts and talk computer. To my sister

vii

Sarah and my brother Khaled, for their kindness, support, and encouragement. To
my uncle Fahad who passed away in 2014, God bless his soul. He always put a smile
on my face, he called me daily during the start of my academic journey to help me
feel at home. He was a second father to me. I will never forget the stories he told
me and his words of wisdom.

Most importantly, to my dear husband, Khaled Aljannakh, for his love, selfless
support, encouraging me to reach my dreams, and always being there for me. I am
blessed to have him in my life. To my daughters, Judy (9) and Jenna (5), who I am
very proud of, they made this journey very special.

To everyone, thank you again!

viii

TABLE OF CONTENTS

Page

LIST OF TABLES . xii

LIST OF FIGURES . xv

Chapter

1. INTRODUCTION . 1
1.1 MOTIVATION . 1
1.2 RESEARCH GOALS . 4
1.3 EXAMPLE RECOMMENDATIONS . 6
1.4 RESEARCH QUESTIONS. 14
1.5 DISSERTATION ROADMAP . 15

2. BACKGROUND . 17
2.1 WEB ARCHIVES . 17
2.2 URI AND THE HTTP STATUS CODE . 31
2.3 CLASSIFICATION . 34
2.4 ONTOLOGIES . 38
2.5 RECOMMENDATIONS . 42
2.6 SUMMARY . 49

3. RELATED WORK. 50
3.1 SPLITTING COMPOUND WORDS . 50
3.2 CLUSTERING VS. CLASSIFICATION . 56
3.3 ARCHIVING . 63
3.4 SOFT 404s . 71
3.5 RANKING FEATURES . 71
3.6 SUMMARY . 73

4. DATASETS . 75
4.1 DMOZ . 75
4.2 WIKIPEDIA . 80
4.3 WAYBACK MACHINE ACCESS LOG DATASET 83
4.4 HOW EACH DATASET IS USED . 88
4.5 COMPARING DATASETS . 88
4.6 SUMMARY . 90

5. IMPLEMENTATION . 91
5.1 ESTABLISHING BASELINES . 92
5.2 DETECT URI SEMANTICS . 95
5.3 MAP TOKENS TO AN ONTOLOGY . 107

ix

5.4 GATHERING CANDIDATES . 111
5.5 FILTER CANDIDATES . 112
5.6 RANK CANDIDATES . 113
5.7 SUMMARY . 116

6. EVALUATION AND RESULTS. 117
6.1 TESTING DEEP LEVEL CLASSIFICATION . 117
6.2 TESTING AND EVALUATING THE MODEL . 121
6.3 SUMMARY . 131

7. CONTRIBUTIONS, CONCLUSIONS, AND FUTURE WORK. 133
7.1 RESEARCH QUESTIONS REVISITED . 133
7.2 CONTRIBUTIONS . 134
7.3 FUTURE WORK . 136
7.4 CONCLUSIONS . 136

REFERENCES. 153

APPENDICES
A. WEB ARCHIVE FILE FORMATS . 154
B. LIST OF ABBREVIATIONS . 170

VITA. 172

x

LIST OF TABLES

Table Page

1 An overview of the examples . 6

2 URIs in the same classification as http://www.hokiesports.com/foot
ball/ found in DMOZ . 9

3 Ranked recommended URIs . 10

4 Summary of analyzing the Virginia Tech sports webpage 10

5 Summary of analyzing the local news webpage . 12

6 Summary of analyzing the history of heart transplantation Webpage 13

7 Summary of analyzing the travel webpage . 14

8 An example of a URI and its category . 39

9 An example of an external link and its category . 42

10 Macroaveraged F1 Values of Various Features with Naïve Bayes [1] (Table
II) . 53

11 Comparison of Various Approaches for Language Identification on ODP
+ SER Test Set [2] (Table XIV) . 54

12 Performance when Binary ME Classifiers are Trained on the ODP Dataset
Using All-Grams, and are Tested on the Other Four Datasets [1] (Figure
37) . 61

13 Archived DMOZ dataset over the years . 76

14 The number of instances for each category and the number of sub-categories
in the DMOZ dataset . 77

15 Top level domain analysis for DMOZ dataset . 78

16 Depth analysis for DMOZ dataset . 78

17 URI patterns present in DMOZ. 80

18 Top level domain analysis for Wikipedia’s external links dataset 83

http://www.hokiesports.com/football/
http://www.hokiesports.com/football/

xi

19 Depth analysis for Wikipedia’s external links dataset 83

20 URI patterns present in Wikipedia’s external links . 84

21 Top level domain analysis for Wayback Machine access log sample 87

22 Depth analysis for Wayback Machine access log sample 87

23 URI patterns present in the Wayback Machine access log sample 88

24 Comparing the three datasets . 89

25 Tokenizing the URI https://odu.edu/compsci using different methods [1]100

26 Classifying at the first level, comparing F1 score, Micro average, and
Macro average for DMOZ dataset using different methods 104

27 The number of categories that a hostname appeared in and the number
of hostnames . 105

28 The number of hostnames occurrences in each category 108

29 URI depth and percentage of correctly classified URIs 119

30 Percentage from the correctly classified URIs for each category 120

31 Distribution of our dataset . 121

32 The number of candidates, the number of archived candidates, and the
total number of mementos in the direct match dataset 123

33 The number of candidates, the number of archived candidates, and the
total number of mementos in the depth zero dataset 124

34 The number of candidates, the number of archived candidates, and the
total number of mementos in the deep dataset . 125

35 Significance of κ [3] . 127

36 Agreement rate in each dataset and the overall agreement rate of the
categorization results . 127

37 Bogus categorization questions . 128

38 Reviewers selection of full categorization level . 128

39 Performance of each classification level in each dataset 129

https://odu.edu/compsci

xii

40 Agreement rate in each dataset and the overall agreement rate of the
recommendation results . 129

41 Bogus recommendation questions . 130

42 Performance of each recommendation agreement selection 130

43 Percentage of at least one marked recommendation as “agree”, “do not
agree”, and “I do not know” . 131

44 Evaluating different cases for both the categorization and the recommen-
dations . 132

xiii

LIST OF FIGURES

Figure Page

1 Webpage not found in the live Web http://www.tripadvisor.com/wher
e_to_travel/ . 2

2 Webpage not found in the archive http://www.tripadvisor.com/wher
e_to_travel/ . 2

3 Potential recommendation for the unarchived page from Figure 2, http
s://web.archive.org/web/20070409024219/http://classy-travel.n
et . 3

4 Another potential recommendation for the unarchived page from Figure
2, https://web.archive.org/web/19961130090356/http://travelas
sist.com/mag/mag_home.html . 3

5 General approach for recommending archived webpages 4

6 The Webpage http://www.hokiesports.com/football/ found in the
live Web, accessed on Thursday, 21 Sep 2017 18:34:29 GMT 8

7 Internet Archive response to the archived webpage https://web.archiv
e.org/web/20090105102551/www.hokiesports.com/football/ 9

8 Recommendations for the requested URI https://web.archive.org/we
b/20090105102551/www.hokiesports.com/football/ 11

9 Webpage that we generated CDX, WARC, and WAT files for (Appendix,
Listings 11-13), Source: http://www.cs.odu.edu/\protect\unhbox\v
oidb@x\penalty\@M\{}lalkwai/publication.html 20

10 An architectural overview of how the Memento framework allows accessing
a prior version of a resource, Source: http://mementoweb.org/guide/
quick-intro/ . 22

11 Internet Archive URI-based interface . 24

12 ODU CS webpage on the Internet Archive the past and the present 25

13 Archive-It collection-based interface . 26

14 UK Web Archive full-text search based interface . 28

15 Wayback Beta full-text search interface . 29

http://www.tripadvisor.com/where_to_travel/
http://www.tripadvisor.com/where_to_travel/
http://www.tripadvisor.com/where_to_travel/
http://www.tripadvisor.com/where_to_travel/
https://web.archive.org/web/20070409024219/http://classy-travel.net
https://web.archive.org/web/20070409024219/http://classy-travel.net
https://web.archive.org/web/20070409024219/http://classy-travel.net
https://web.archive.org/web/19961130090356/http://travelassist.com/mag/mag_home.html
https://web.archive.org/web/19961130090356/http://travelassist.com/mag/mag_home.html
http://www.hokiesports.com/football/
https://web.archive.org/web/20090105102551/www.hokiesports.com/football/
https://web.archive.org/web/20090105102551/www.hokiesports.com/football/
https://web.archive.org/web/20090105102551/www.hokiesports.com/football/
https://web.archive.org/web/20090105102551/www.hokiesports.com/football/
http://www.cs.odu.edu/\protect \unhbox \voidb@x \penalty \@M \ {}lalkwai/publication.html
http://www.cs.odu.edu/\protect \unhbox \voidb@x \penalty \@M \ {}lalkwai/publication.html
http://mementoweb.org/guide/quick-intro/
http://mementoweb.org/guide/quick-intro/

xiv

16 A Virginia Tech football webpage found on the archive, https://web.ar
chive.org/web/20081216011510/http://www.techsideline.com:80/ho
me . 30

17 How cold spots occur over time . 31

18 The relationship between identifier, resource, and representation: URI
identify resources and when dereferenced, the resources representation is
returned [4] . 32

19 Classification Structures . 36

20 DMOZ is no longer available, Source: http://www.dmoz.org 40

21 DMOZ mirror website, Source: http://dmoztools.net 40

22 DMOZ webpage from the Internet Archive, Source: https://web.arch
ive.org/web/20080105042131/http://www.dmoz.org:80/ 41

23 Searching for the request http://odu.edu in Wikipedia resulted in find-
ing the Wikipedia webpage https://en.wikipedia.org/wiki/Old_Dom
inion_University . 43

23 Amazons recommendation examples . 48

24 Netflix recommendation based on previous watched movies 49

25 Four kinds of neighboring pages of p [5] (Figure 1) . 60

26 Deep Classification algorithm steps [6] (Figure 1) . 62

27 Classification of URIs [7] (Figure 1) . 69

28 The timeline of a shared resource and the proposed process of carbon
dating [8] (Figure 1) . 74

29 Searching for the request http://odu.edu in Wikipedia resulted in find-
ing the Wikipedia webpage https://en.wikipedia.org/wiki/Old_Dom
inion_University that contains the requested URI as the official page in
the External links section. We use other webpages in the same categories
(at the end of the page) as candidate webpages. 82

30 Size of each day’s datafile in the Wayback Machine Access Log (graphic
generated by Mat Kelly) . 84

31 A top level diagram showing how each dataset is used 88

https://web.archive.org/web/20081216011510/http://www.techsideline.com:80/home
https://web.archive.org/web/20081216011510/http://www.techsideline.com:80/home
https://web.archive.org/web/20081216011510/http://www.techsideline.com:80/home
http://www.dmoz.org
http://dmoztools.net
https://web.archive.org/web/20080105042131/http://www.dmoz.org:80/
https://web.archive.org/web/20080105042131/http://www.dmoz.org:80/
http://odu.edu
https://en.wikipedia.org/wiki/Old_Dominion_University
https://en.wikipedia.org/wiki/Old_Dominion_University
http://odu.edu
https://en.wikipedia.org/wiki/Old_Dominion_University
https://en.wikipedia.org/wiki/Old_Dominion_University

xv

32 Main steps performed to find recommendations of requested URIs 91

33 Flowchart overview of the main steps to find recommendations of re-
quested URIs, color coded by research questions, where (RQ1: dark blue,
RQ2: light blue, RQ3: green, and RQ4: yellow) . 93

34 The number of categories that a hostname appeared in and the number
of hostnames . 106

35 The process of pruning a hierarchical tree using ancestor assistance strat-
egy [6] . 111

36 Performance on classifying to different levels using 3-gram and all-gram . . 118

37 A sample question to be evaluated by the evaluators 122

1

CHAPTER 1

INTRODUCTION

1.1 MOTIVATION

Web archives provide valuable services in allowing users to view past versions of
webpages, even those that are no longer on the live Web. But not all webpages have
been archived, so requests to an archive may return an HyperText Transfer Protocol
(HTTP) 404 Page Not Found status. Because the majority of Web archives offer
only query by a Uniform Resource Identifier (URI) [9], users cannot search archives
by page content to look for alternate archived pages.

Consider a user who had previously bookmarked the travel webpage http://

www.tripadvisor.com/where_to_travel/. When the user tries to view the page
on the live Web, they find it is no longer available (Figure 1), the webpage results
in a customized error page (Section 2.2.4). Then, because they are aware of Web
archiving, the user queries a Web archive, such as the Internet Archive, for the URI.
Unfortunately, this page had never been archived, so the archive will return a “not
found” page (Figure 2).

What if, instead, the archive could provide recommendations for other archived
pages that might be related to the requested tripadvisor.com page? Pages such
as http://www.classy-travel.net (Figure 3) or http://www.travelassist.com/

mag/mag_home.html (Figure 4) might be acceptable substitutes.
In addition to providing recommendations for pages that have not been archived,

the archive could also make recommendations for related pages even when the re-
quested page is found. These related pages could potentially be hidden gems, pages
that may not have been popular but are still quality pages. This is one way to reveal
“cold spots” in the archive and introduce previously undiscovered, or under-utilized,
archived pages to new users.

http://www.tripadvisor.com/where_to_travel/
http://www.tripadvisor.com/where_to_travel/
tripadvisor.com
http://www.classy-travel.net
http://www.travelassist.com/mag/mag_home.html
http://www.travelassist.com/mag/mag_home.html

2

Fig. 1 Webpage not found in the live Web
http://www.tripadvisor.com/where_to_travel/

Fig. 2 Webpage not found in the archive
http://www.tripadvisor.com/where_to_travel/

http://www.tripadvisor.com/where_to_travel/
http://www.tripadvisor.com/where_to_travel/

3

Fig. 3 Potential recommendation for the unarchived page from Figure 2,
https://web.archive.org/web/20070409024219/http://classy-
travel.net

Fig. 4 Another potential recommendation for the unarchived page from Figure
2, https://web.archive.org/web/19961130090356/http://
travelassist.com/mag/mag_home.html

https://web.archive.org/web/20070409024219/http://classy-travel.net
https://web.archive.org/web/20070409024219/http://classy-travel.net
https://web.archive.org/web/19961130090356/http://travelassist.com/mag/mag_home.html
https://web.archive.org/web/19961130090356/http://travelassist.com/mag/mag_home.html

4

Fig. 5 General approach for recommending archived webpages

1.2 RESEARCH GOALS

The goal of this research is to develop a method to allow Web archives to pro-
vide recommendations for user queries, potentially surfacing high-quality, but under-
utilized webpages. Ideally, we want to find webpages that are not on the live Web and
may not have been requested frequently from the archive. We focus on techniques
that use only the text of the provided URI and hints from ontologies of webpages
(e.g., webpage directories).

Our main research question is: Given a URI, how can we build a model
for selecting and ranking possible recommendation webpages at a Web
archive?

Our general approach is shown in Figure 5, where each box corresponds to one
research question proposed here.

RQ1: Given a URI, how much information can we learn about the
referenced webpage without examining the content of the page?

Learning about the referenced webpage without examining the content of the page
can be challenging due to little context and content available. We use the URI, which
is a string of characters used to identify a resource. There are several advantages
to using the URI over using the content of the webpage. First, in some cases the
content of the URI is not available on the live Web or in the archive. Second, the
URI may contain hints about the resource it identifies. Third, it is more efficient
both in time and space to use only the URI text than to extract its content. Fourth,

5

some webpages have little or no textual content, such as containing only an image
or a video, so extracting the content will be not useful. Finally, some webpages have
privacy settings that do not permit them to be archived.

We investigated different URI tokenization methods that aim to collect meaning-
ful terms, so that we have enough information to know what the webpage is about.
This led to the detection of common URI stop words that should be removed from a
URI keyword list, such as “pages” and “index”.

RQ2: Given a set of terms that describes a webpage, how do we map
the terms to an ontology of webpages?

An ontology is a set of categories that contain a group of related instances (doc-
uments). In our work, we will focus on categorized webpages. Common webpage on-
tologies are DMOZ and Wikipedia. Mapping terms to an ontology can result in chal-
lenges that we have to address. One challenge is selecting the proper ontology for our
work. We use existing ontologies and build on them as we move forward. Keywords
extracted from the URI may have matching terms in the ontology. In this case, we
used URIs that have matching tokens as candidates. An example is extracting tokens
from the URI http://www.tripadvisor.com/where_to_travel/ to {trip, advisor,
where to travel}, and matching them to DMOZ tokens, which will lead to classify-
ing the URI to the category Recreation/Travel/Guides_and_Directories/. This
will result in finding related webpages in that directory such as http://classy-

travel.net and http://travelassist.com/mag/mag_home.html. We can also use
machine learning techniques to predict the category of the requested URI, then use
the URIs that are in the same category as the requested URI as candidates for recom-
mendation. This requires an evaluation of different machine learning techniques and
choosing the proper one for our work. Also, some ontologies could contain different
parts, such as a categorization, URI, title, and description, and we need to decide if
we want to match tokens from one part, all parts, or favor one part over the other.

RQ3: Given a set of webpages discovered through the ontology, what
metrics do we use to filter the best candidates for recommendation?

The goal of filtering is to keep the desired dataset based on specific feature selec-
tions. As an initial step to filter candidates, we removed any candidates that are not
archived, since we want to recommend archived webpages only.

RQ4: Given a set of candidate webpages for recommendation, how do
we rank the candidates?

http://www.tripadvisor.com/where_to_travel/
Recreation/Travel/Guides_and_Directories/
http://classy-travel.net
http://classy-travel.net
http://travelassist.com/mag/mag_home.html

6

The goal of ranking is to sort related candidates in ascending or descending order
based on some preset features. There are many features we could consider when
selecting the best candidates. The weights of these features must be adjusted to
rank them. Some features we consider include archival quality, webpage popularity,
temporal similarity, and URI similarity.

Archival quality refers to measuring memento damage [10] by evaluating the num-
ber of missing resources in a webpage, which will be discussed further in Section 3.5.1.

Webpage popularity considers how often the webpage has been archived, its pop-
ularity on the live Web. A special case of popularity are webpages in “cold spots”,
which are pages that are not on the live Web, are not currently popular, but are
archived. Cold spots will be discussed further in Section 2.1.4.

Temporal similarity can refer to how close the candidate webpage’s Memento-
Datetime is to the requested URI.

URI similarity assesses the similarity of candidate URI tokens to the requested
URI tokens.

1.3 EXAMPLE RECOMMENDATIONS

Here we show four scenarios based on the amount of information that can be
obtained solely from the URI itself and the existence of the webpage in both the live
Web and the archive. An overview of the examples mentioned is shown in Table 1.

Table 1 An overview of the examples

On the
Live Web

In the
Archive

URI
Match
in an

Ontology

Domain
Match
in an

Ontology
Example 1-
Virginia Tech Sports Webpage
(Section 1.3.1)

3 3 3 3

Example 2 -
Local News Webpage
(Section 1.3.2)

3 7 7 3

Example 3 -
History of Heart Transplantation
Webpage (Section 1.3.3)

7 3 7 7

Example 4 -
Travel Webpage
(Section 1.3.4)

7 7 7 3

7

1.3.1 EXAMPLE OF REQUESTING AVIRGINIA TECH SPORTSWEB-
PAGE

Consider that a user requests the following URI-M from the Internet Archive (Sec-
tion 2.1.1): https://web.archive.org/web/20090105102551/www.hokiesports.

com/football/

The request is for the archived version of https://www.hokiesports.com/foot

ball/, a webpage about football at Virginia Tech.
The format of the request means the following:

• The archive choice is the Internet Archive, https://web.archive.org/

• The requested URI-R is www.hokiesports.com/football/

• The datetime is 20090105102551. It is in the format YYYYMMDDHHMMSS, so it is
for January 5, 2009, at the time 10:25:51.

We used the curl command to discover if the requested webpage is on the live
Web. In this example, the response was a 200 OK, meaning that the webpage is
currently live (Listing 1 and Figure 7). We also used curl to check if the webpage is
in the archive, and we got a 200 OK response code meaning that the Internet Archive
has the webpage (Listing 2 and Figure 6). In this example, although the webpage is
live and in the archive, we want to find other archived webpages that have similar
content.

Listing 1 Command line result of checking if the webpage is on the live Web
$ curl -I -L "http :// www. hokiesports .com/ football /"

HTTP /1.1 200 OK

Date: Thu , 21 Sep 2017 18:46:23 GMT

Server : Apache

X-Frame - Options : SAMEORIGIN

Accept - Ranges : bytes

Vary: Accept - Encoding

X-XSS - Protection : 1; mode=block

Content -Type: text/html

https://web.archive.org/web/20090105102551/www.hokiesports.com/football/
https://web.archive.org/web/20090105102551/www.hokiesports.com/football/
https://www.hokiesports.com/football/
https://www.hokiesports.com/football/
https://web.archive.org/
www.hokiesports.com/football/
20090105102551
YYYYMMDDHHMMSS

8

Listing 2 Command line result of checking if the webpage is in the archive
$ curl -I -L "https :// web. archive .org/web

/20090105102551/ www. hokiesports .com/ football /"

HTTP /1.1 200 OK

Server : Tengine /2.1.0

Date: Thu , 21 Sep 2017 18:34:29 GMT

Content -Type: text/html; charset =UTF -8

Content - Length : 47309

Connection : keep -alive

X-Archive -Orig -date: Mon , 05 Jan 2009 10:25:51 GMT

X-Archive -Orig -accept - ranges : bytes

X-Archive -Orig - connection : close

X-Archive -Orig - server : Apache /2.2.3 (CentOS)

X-Archive -Guessed - Charset : utf -8

Memento - Datetime : Mon , 05 Jan 2009 10:25:51 GMT

Fig. 6 The Webpage http://www.hokiesports.com/football/ found in the
live Web, accessed on Thursday, 21 Sep 2017 18:34:29 GMT

http://www.hokiesports.com/football/

9

Fig. 7 Internet Archive response to the archived webpage https://
web.archive.org/web/20090105102551/www.hokiesports.com/football/

From the requested URI, we can generate only the tokens {hokie, sports, football},
which may not be enough to describe the requested webpage. To expand our idea of
what the webpage is about, we search the DMOZ directory for the requested URI.
The URI is found in the category Sports/Football/American/College_and_Unive

rsity/NCAA_Division_I-A/ACC/Virginia_Tech.
Next, we can gather as candidates the list of other webpages in this same category.

For each of these candidates, because we are only interested in recommending pages
from the archive, we will discard any that have not been archived. The resulting list of
candidates is shown in Table 2. From this set of archived candidate recommendations,

Table 2 URIs in the same classification as
http://www.hokiesports.com/football/ found in DMOZ

http://www.hokiesports.com/football/
http://www.TailgateFever.com
http://www.sportsline.com/collegefootball/teams/page/VATECH
http://www.roanoke.com/sports/vtfootball/
http://www.usatoday.com/sports/college/football/acc/vatech.htm
http://www.topix.com/ncaa/virginia-tech-football
http://www.sportingnews.com
http://www.techsideline.com

https://web.archive.org/web/20090105102551/www.hokiesports.com/football/
https://web.archive.org/web/20090105102551/www.hokiesports.com/football/
Sports/Football/American/College_and_University/NCAA_Division_I-A/ACC/Virginia_Tech
Sports/Football/American/College_and_University/NCAA_Division_I-A/ACC/Virginia_Tech
http://www.hokiesports.com/football/
http://www.hokiesports.com/football/
http://www.TailgateFever.com
http://www.sportsline.com/collegefootball/teams/page/VATECH
http://www.roanoke.com/sports/vtfootball/
http://www.usatoday.com/sports/college/football/acc/vatech.htm
http://www.topix.com/ncaa/virginia-tech-football
http://www.sportingnews.com
http://www.techsideline.com

10

we then would apply our proposed ranking algorithm by adjusting the weights of the
features we will measure. The ranking algorithm will be discussed further in Section
5.6. In this example, we favor the top three webpages that are high quality, in a cold
spot, have similar content, and are in the same time frame as the requested URI. The
resulting list of recommendations is shown in Table 3, and the archived webpages are
shown in Figures 8(a), 8(b), and 8(c).

A summary of analyzing the requested URI is shown in Table 4.

Table 3 Ranked recommended URIs

1 https://web.archive.org/web/20081216011510/http://www.techsideli
ne.com:80/home

2 https://web.archive.org/web/20080705203833/http://tailgatefever.
com/

3 https://web.archive.org/web/20031004235141/http://sportingnews.c
om:80/

Table 4 Summary of analyzing the Virginia Tech sports webpage

Requested URI https://web.archive.org/web/20090105102551/www.hokiesports.com/football/

Status In the Live Web: Yes
In the Archive: Yes

URI Tokens
Domain: hokie, sports
TLD: com
Path: football

Classification DMOZ:
Sports/Football/American/College_and_University/NCAA_I-A/ACC/Virginia_Tech

Candidate
Recommendations

- https://web.archive.org/web/20090105102551/www.hokiesports.com/football/
- https://web.archive.org/web/20080705203833/http://tailgatefever.com
- https://web.archive.org/web/20090105225712/http://cbssports.com/collegefootball/
teams/page/VATECH
- https://web.archive.org/web/20150226105515/http://ww2.roanoke.com/sports/
vtfootball/
- https://web.archive.org/web/20090106055721/http://www.usatoday.com/sports/
college/football/acc/vatech.htm
- https://web.archive.org/web/20081118131227/http://www.topix.com/ncaa/
virginia-tech-football
- https://web.archive.org/web/20031004235141/http://sportingnews.com:80
- https://web.archive.org/web/20081216011510/http://www.techsideline.com:80/home

Ranked
Recommendations

1. https://web.archive.org/web/20081216011510/http://www.techsideline.com:80/home
2. https://web.archive.org/web/20080705203833/http://tailgatefever.com
3. https://web.archive.org/web/20031004235141/http://sportingnews.com:80

https://web.archive.org/web/20081216011510/http://www.techsideline.com:80/home
https://web.archive.org/web/20081216011510/http://www.techsideline.com:80/home
https://web.archive.org/web/20080705203833/http://tailgatefever.com/
https://web.archive.org/web/20080705203833/http://tailgatefever.com/
https://web.archive.org/web/20031004235141/http://sportingnews.com:80/
https://web.archive.org/web/20031004235141/http://sportingnews.com:80/

11

(a) A candidate webpage in the Internet Archive
that has been detected due to being in the
same classification in DMOZ as the requested
URI, https://web.archive.org/web/2008121601
1510/http://www.techsideline.com:80/home

(b) A candidate webpage in the Internet Archive
that has been detected due to being in the
same classification in DMOZ as the requested
URI, https://web.archive.org/web/2008070520
3833/http://tailgatefever.com/

(c) A candidate webpage in the Internet Archive
that has been detected by matching tokens
from the URI and from an archived list of
URIs, https://web.archive.org/web/20031004
235141/http://sportingnews.com:80/

Fig. 8 Recommendations for the requested URI https://web.archive.org/
web/20090105102551/www.hokiesports.com/football/

https://web.archive.org/web/20081216011510/http://www.techsideline.com:80/home
https://web.archive.org/web/20081216011510/http://www.techsideline.com:80/home
https://web.archive.org/web/20080705203833/http://tailgatefever.com/
https://web.archive.org/web/20080705203833/http://tailgatefever.com/
https://web.archive.org/web/20031004235141/http://sportingnews.com:80/
https://web.archive.org/web/20031004235141/http://sportingnews.com:80/
https://web.archive.org/web/20090105102551/www.hokiesports.com/football/
https://web.archive.org/web/20090105102551/www.hokiesports.com/football/

12

1.3.2 EXAMPLE OF REQUESTING A LOCAL NEWS WEBPAGE

Consider that a user requests the following webpage from the Internet Archive: ht

tps://web.archive.org/web/20170405104555/https://pilotonline.com/news/

local/transportation/more-people-are-using-the-portsmouth-norfolk-ferr

y-and-now/article_8f48e841-0c60-5ad6-b352-576b0eb80b78.html

The request is for the archived version of a local news article about using the ferry
between Portsmouth and Norfolk, Virginia. The requested URI contained meaning-
ful tokens, {transportation, ferry, Portsmouth, Norfolk}. However, it also contained
meaningless tokens such as the article number. In this case, the requested URI is
not archived but exists on the live Web. The exact URI was not found in DMOZ,
but the top-level webpage https://pilotonline.com/ was. We can use the title
and classification of the classified top-level webpage as additional tokens. For find-
ing candidate recommendations, we can match the requested URI tokens. In this
example, we favor the top three webpages that are high quality, in a cold spot, have
similar content, and are in the same time frame as the requested URI. The summary
of analyzing the requested URI including the resulting list of recommendations is
shown in Table 5.

Table 5 Summary of analyzing the local news webpage

Requested URI
https://web.archive.org/web/20170405104555/https://pilotonline.com/news/local/
transportation/more-people-are-using-the-portsmouth-norfolk-ferry-and-now/article_
8f48e8410c605ad6b352576b0eb80b78.html

Status In the Live Web: Yes
In the Archive: No

URI Tokens

Domain: pilot, online
TLD: com
Path: news, local, transportation, more people are using the portsmouth norfolk
ferry and now,article 8f48e841-0c60-5ad6-b352-576b0eb80b78

Classification
DMOZ: top-level webpage: http://www.pilotonline.com/
Regional/North_America/United_States/Virginia/Metro_Areas/Hampton_Roads/
News_and_Media/Newspapers

Candidate
Recommendations

- https://web.archive.org/web/20170709083750/https://gohrt.com/services/ferry/
- https://web.archive.org/web/20160818230621/https://www.virginia.org/listings/
outdoorsandsports/elizabethriverferry
- https://web.archive.org/web/20150913155913/http://www.norfolk-va.worldweb.com/
Transportation/Ferries/
- https://web.archive.org/web/20170613205542/https://www.dfdsseaways.co.uk/
- https://web.archive.org/web/20170706102019/www.virginiaplaces.org/transportation/
ferries.html

Ranked
Recommendations

1. https://web.archive.org/web/20150913155913/http://www.norfolk-va.worldweb.com/
Transportation/Ferries/
2. https://web.archive.org/web/20160818230621/https://www.virginia.org/listings/
outdoorsandsports/elizabethriverferry
3. https://web.archive.org/web/20170706102019/www.virginiaplaces.org/transportation/
ferries.html

https://web.archive.org/web/20170405104555/https://pilotonline.com/news/local/transportation/more-people-are-using-the-portsmouth-norfolk-ferry-and-now/article_8f48e841-0c60-5ad6-b352-576b0eb80b78.html
https://web.archive.org/web/20170405104555/https://pilotonline.com/news/local/transportation/more-people-are-using-the-portsmouth-norfolk-ferry-and-now/article_8f48e841-0c60-5ad6-b352-576b0eb80b78.html
https://web.archive.org/web/20170405104555/https://pilotonline.com/news/local/transportation/more-people-are-using-the-portsmouth-norfolk-ferry-and-now/article_8f48e841-0c60-5ad6-b352-576b0eb80b78.html
https://web.archive.org/web/20170405104555/https://pilotonline.com/news/local/transportation/more-people-are-using-the-portsmouth-norfolk-ferry-and-now/article_8f48e841-0c60-5ad6-b352-576b0eb80b78.html
https://pilotonline.com/

13

1.3.3 EXAMPLE OF REQUESTING A HISTORY OF HEART TRANS-
PLANTATION WEBPAGE

Consider that a user requests the following webpage from the Internet Archive: ht

tps://web.archive.org/web/20170405104555/http://www.heart-transplant.o

rg/history/

The request is for the archived version of a webpage about the history of heart
transplantation. In this case, the requested URI is not live but is archived. Neither
the domain nor the URI exists in DMOZ. For finding candidate recommendations,
we can match the requested URI tokens to tokens extracted from DMOZ. Assume
we only found four URIs that contain matching tokens {heart, transplant}. In this
example, we favor the top three webpages that are high quality, in a cold spot, have
similar content, and are in the same time frame as requested URI. See Table 6 for
the summarized analysis of the requested webpage.

Table 6 Summary of analyzing the history of heart transplantation Webpage

Requested URI https://web.archive.org/web/20170405104555/http://www.heart-transplant.org/history/

Status In the Live Web: No
In the Archive: Yes

URI Tokens
Domain: heart, transplant
TLD: org
Path: history

Classification DMOZ: None

Candidate
Recommendations

- https://web.archive.org/web/20151011034215/https://www.newscientist.com/article/
mg20227114.600-hybrid-hearts-could-solve-transplant-shortage
- https://web.archive.org/web/20170126172909/http://www.heart-transplant.co.uk/
- http://web.archive.org/web/20120615191355/http://mayoclinic.org/heart-transplant/
index.html
- http://web.archive.org/web/20111006094921/http://newshawksreview.com/
arizona-heart-transplant-patient-helped-by-dental-angels/42455/

Ranked
Recommendations

1. http://web.archive.org/web/20120615191355/http://mayoclinic.org/heart-transplant/index.html
2. http://web.archive.org/web/20111006094921/http://newshawksreview.com/
arizona-heart-transplant-patient-helped-by-dental-angels/42455/
3. https://web.archive.org/web/20170126172909/http://www.heart-transplant.co.uk/

1.3.4 EXAMPLE OF REQUESTING A TRAVEL WEBPAGE

For the final example, consider that a user requests the following webpage from the
Internet Archive: https://web.archive.org/web/19971010080303/http://http

s://www.tripadvisor.com/where_to_travel

The request is for the archived version of a webpage that provides travel sug-
gestions. In this case, the requested URI is not live and not archived. The exact

https://web.archive.org/web/20170405104555/http://www.heart-transplant.org/history/
https://web.archive.org/web/20170405104555/http://www.heart-transplant.org/history/
https://web.archive.org/web/20170405104555/http://www.heart-transplant.org/history/
https://web.archive.org/web/19971010080303/http://https://www.tripadvisor.com/where_to_travel
https://web.archive.org/web/19971010080303/http://https://www.tripadvisor.com/where_to_travel

14

URI was not found in DMOZ, but the top-level webpage www.tripadvisor.com was.
We use the title and classification of the classified domain as additional tokens. For
finding candidate recommendations, we can match the requested URI tokens. In this
example, we favor the top three webpages that are high quality, in a cold spot, have
similar content, and are in the same time frame as requested URI. See Table 7 for
the summarized analysis of the requested webpage.

Table 7 Summary of analyzing the travel webpage

Requested URI https://web.archive.org/web/19971010080303/http://https://www.tripadvisor.com/
where_to_travel

Status In the Live Web: No
In the Archive: No

URI Tokens
Domain: trip, advisor
TLD: com
Path: where to travel

Classification DMOZ: top-level webpage: http://www.tripadvisor.com/
Recreation/Travel/Guides_and_Directories

Candidate
Recommendations

- https://web.archive.org/web/19961130090356/http://travelassist.com/mag/
mag_home.html
- https://web.archive.org/web/19990128193256/http://cnn.com:80/TRAVEL/
DESTINATIONS/
- https://web.archive.org/web/20070409024219/http://classy-travel.net
- https://web.archive.org/web/20080726022035/http://travel-trips.org/

Ranked
Recommendations

1. https://web.archive.org/web/20070409024219/http://classy-travel.net
2. https://web.archive.org/web/20080726022035/http://travel-trips.org/
3. https://web.archive.org/web/19961130090356/http://travelassist.com/mag/mag_home.html

1.4 RESEARCH QUESTIONS

After providing these motivating examples, we recap our research questions.
RQ1: Given a URI, how much information can we learn about the referenced web-
page without examining the content of the page?
RQ2: Given a set of terms that describes a webpage, how do we map the terms to
an ontology of webpages?
RQ3: Given a set of webpages discovered through the ontology, what metrics do we
use to filter the best candidates for recommendation?
RQ4: Given a set of candidate webpages for recommendation, how do we rank the
candidates?

www.tripadvisor.com

15

1.5 DISSERTATION ROADMAP

Below is the organization for the remainder of the dissertation.
Chapter 2: Background

To answer the research questions in this chapter we review some basic concepts and
terminology used throughout the dissertation. We present Web archiving and explain
why it is important. We also explain the Memento framework and the Internet
Archive Wayback Machine interface. This addresses RQ3. To gain information from
the URI and address RQ1, we discuss the URI structure, semantics in URIs, and
the HTTP status code. Next, to address RQ2 we define webpage classification and
present its different types. In addition, we give an overview of ontologies and describe
some common ontologies. Finally, to address RQ4 we describe recommendations and
list its popular usage.

Chapter 3: Related Work
In this chapter, we present the contextualization of our work and prior work. To gain
information from the URI and address RQ1, we discuss splitting compound words.
Next, we present clustering vs. classification. This addresses RQ2. After that, we
present Web archiving related work. We discuss related work regarding archiving
API tools, expected lifetime of a webpage, user intention of searching the archive,
measuring the archived Web resources, searching the archive without indexing it,
recovering missing web resources, soft 404s. This addresses RQ3. Finally, to address
RQ4 we describe different features that will help us rank the recommendations. We
will discuss temporal similarity, webpage popularity, URI similarity, and archival
quality.

Chapter 4: Datasets
This chapter present the datasets we are going to use as our primary steps toward
prototyping our framework by exploring and understanding the datasets we use. The
datasets described are DMOZ, Wikipedia, and the Wayback Machine access log.

Chapter 5: Implementation
This chapter contains the steps of the framework, where we address the research
questions and evaluate the methods for each question. We will focus on four steps.
First, we detect URI semantics. Next, we map tokens to an ontology by determining
if the requested URI is already present and categorized in a known ontology, DMOZ
or Wikipedia. After that, we classify the URI based on the first level category. In
the case where a request did not appear in an ontology, we will classify it using only

16

the tokens from the URI. We test three different methods of tokenization: tokens,
all-grams from tokens, and all-grams from URI. We determine the best method by
comparing the result of the F1 score using machine learning. Next, we perform
deep-level classification by indexing the dataset, calculating the cosine similarity,
collecting N candidates, creating and pruning the tree, and finally classifying it using
machine learning. Finally, we filter, rank, and recommend candidates. We filter the
candidates to ensure that all recommendations come from a web archive. Then we
rank and recommend the remaining candidates based on temporal similarity, webpage
popularity, URI similarity, and archival quality.

Chapter 6: Evaluation
This chapter discusses the evaluation of the deep level classification and the effect
of different features in the URI such as depth, presence of dictionary words, long
strings, and the category that it belongs to. We also evaluate the entire model and
present human evaluators with three different datasets all from the Wayback access
log. The first dataset are requests that are found in an ontology. The second dataset
are requests that are not found in an ontology and have depth zero, i.e., top-level
webpages. The third dataset are requests that are not found in an ontology and have
a path. We measure the agreement between the evaluators and analyze the results.
We present the scores and the results for this model.

Chapter 7: Contributions, conclusions, and future work
In this chapter, we revisit the research questions and summarize how we addressed
each question. We also mention other future work opportunities. In addition, we
conclude the research results with a summary of our findings.

17

CHAPTER 2

BACKGROUND

Here we introduce some basic concepts related to our work. First, we present Web
archiving and explain why it is important. We also describe the Memento framework
and the Internet Archive interfaces. Next, we define cold spots. After that, we discuss
URIs, their structure, status codes, and define “cool URIs”. Then, we introduce both
classification and standard machine learning algorithms. We also give an overview of
ontologies and describe DMOZ, a common, well-known ontology. Finally, we describe
recommendation systems and list their widespread usage.

2.1 WEB ARCHIVES

It is likely that a live webpage will change or be removed [11, 12]. This will result
in a missing resource from the live Web that cannot be recovered. Web archiving is
the process of collecting portions of the World Wide Web, preserving the collections
in an archival format, and then managing the access of the archival material. The
most common Web archiving method is using Web crawlers to automate the process
of collecting webpages. Some of the popular Web crawlers are Heritrix [13], Wget1,
WARCreate2 [14], Webrecorder3 and HTTrack [15]. There are a variety of organi-
zations that archive websites, including non-profits, the U.S. Government, libraries,
and archives. Some existing Web archives include the Internet Archive4, the UK Web
Archive5, and many others6 [16, 17, 18, 19, 20, 21]. The Internet Archive [22] is the
largest and oldest Web archive in the world dating back to 1996. The archived con-
tent is made available and can be accessed and viewed. The archived webpages are
considered as snapshots, also known as mementos, of the information at particular
points in time. Mementos refer to an archived representation of a resource [23].

The Internet Archive uses the Web ARChive (WARC) file format [24] to store
Web crawls. The WARC file contains the webpage content in addition to some other

1https://gnu.org/software/wget/
2http://warcreate.com
3https://webrecorder.io
4https://archive.org/web/
5http://webarchive.org.uk/ukwa/
6https://en.wikipedia.org/wiki/List_of_Web_archiving_initiatives

https://gnu.org/software/wget/
http://warcreate.com
https://webrecorder.io
https://archive.org/web/
http://webarchive.org.uk/ukwa/
https://en.wikipedia.org/wiki/List_of_Web_archiving_initiatives

18

details, such as the WARC header information, WARC header metadata, and other
information. Each resource has a header containing metadata about how the resource
was requested followed by the HTTP header and the response.

A CDX file [25] is an index into a WARC file given a URI-M. Each line of the
CDX file represents a single Web document. An example of a CDX entry is the
following:

odu.edu/ compsci 20170101203142 https :// www.odu.edu/

compsci text/html 200

E6T72C2R6BRRKSI3IZPMRJDXTFJIRC7P - - 123000 ODU

-000001. warc.gz

The fields in the above example are the following:

• Canonicalized URL: odu.edu/compsci

• Timestamp: the time when the URI was captured: 20170101203142

• Original URI: https://www.odu.edu/compsci

• MIME type of original document: text/html

• HTTP response code: 200

• Checksum: E6T72C2R6BRRKSI3IZPMRJDXTFJIRC7P

• Redirect: -

• Meta tags: -

• Compressed ARC file offset: mark the beginning of file, 123000

• WARC File name: ODU-000001.warc.gz

When searching a Web archive such as the Internet Archive’s Wayback Machine,
the process includes looking for the requested URI in a CDX file to determine the
appropriate WARC files. Then the Wayback Machine accesses the designated WARC
file with the specified offset to read the webpage content.

The Internet Archive has developed a metadata file called Web Archive Metadata
(WAT)7 [26], that contains metadata from a WARC file. Usually, a WAT file is used

7https://webarchive.jira.com/wiki/display/Iresearch/Web+Archive+Metadata+File+
Specification

odu.edu/compsci
https://www.odu.edu/compsci
https://webarchive.jira.com/wiki/display/Iresearch/Web+Archive+Metadata+File+Specification
https://webarchive.jira.com/wiki/display/Iresearch/Web+Archive+Metadata+File+Specification

19

for data analysis. A WAT provides a list of links in the page and the type of the
link, which might be useful for determining what the page is about.

To extend our work, one of the methods to collect archived candidate recommen-
dations is to use a list of archived webpages that could be in the format of WARC,
WAT, CDX, or any other format available. Depending on the information needed we
can use the proper archival file format. In some cases, we can use the URI without
the need to dereference the webpage. In this case, we can use a CDX file for collect-
ing a list of archived URIs. We can also use some information available such as the
timestamp to determine the time of capture, MIME [27] to determine the document
type, and HTTP [28] response code to determine if the webpage existed. We can
also use the redirect link if the information is available. In other cases, the URI is
not informative and we need to use the content to determine what the webpage is
about to classify it. In this case, we can access the WARC file because it contains
the content of the webpage. Also, we can use the WARC file in testing and evaluat-
ing some methods when we need the dereferenced URI. However, in other cases we
just need the title of the webpage or the list of links that the URI contains and its
anchor text. In this case, we can access the WAT file and get the information we
need without dereferencing the webpage.

To give an example of a CDX, WARC, and WAT file, we generated those files for
http://www.cs.odu.edu/~lalkwai/publication.html. The webpage is my per-
sonal publications, shown in Figure 9. It contains the ODU logo, links to my personal
publication list, two other links, to my homepage and to the WSDL group.

In the CDX file shown in the Appendix (Listing 11), the first line is the file
specification. This is followed by the requests for the two style sheets, the image,
and the webpage. This information can be used if we want minimal information
such as the archived URI, MIME type, status code, timestamp, or other details.
This archival format is useful if minimal computational complexity and storage is
required.

In the WARC file shown in the Appendix (Listing 12), we have the header, the
metadata, a list of all the out links, the HTML code, and other additional infor-
mation. This information can be used if we want more information such as the out
link list and the HTML code. This archival format requires more computational
complexity and storage.

In the WAT file shown in the Appendix (Listing 13), we have the header, the

http://www.cs.odu.edu/~lalkwai/publication.html

20

metadata, and the links along with their anchor text, and other additional informa-
tion. This information can be used if we want more information on the out links,
such as the anchor text and the title of the webpage but we do not need the HTML
code. This archival format requires less computational complexity and storage than
the WARC file, but it contains more information than a CDX file.

Fig. 9 Webpage that we generated CDX, WARC, and WAT files for
(Appendix, Listings 11-13), Source:

http://www.cs.odu.edu/~lalkwai/publication.html

2.1.1 MEMENTO FRAMEWORK

The Memento Framework [29] defines four types of resources: Original Resource,
Memento, TimeGate, and TimeMap.

• An original Resource (URI-R) is a resource as it used to appear on the live Web.
This resource may have 0 or more mementos. An example of a URI-R of an
original resource is http://www.cs.odu.edu/~lalkwai/publication.html.

• A memento (URI-M) is an archived snapshot of the URI-R at a specific date-
time, which is called the Memento-Datetime, e.g., URI-Mi= URI-R@ti. An
example of a URI-M is https://web.archive.org/web/20190405151649/ht

tps://www.cs.odu.edu/~lalkwai/publication.html.

• A TimeGate (URI-G) allows HTTP content negotiation in the time dimen-
sion. An example of a URI-G is https://memgator.cs.odu.edu/timegate/

http://www.cs.odu.edu/~lalkwai/publication.html
http://www.cs.odu.edu/~lalkwai/publication.html
https://web.archive.org/web/20190405151649/https://www.cs.odu.edu/~lalkwai/publication.html
https://web.archive.org/web/20190405151649/https://www.cs.odu.edu/~lalkwai/publication.html
https://memgator.cs.odu.edu/timegate/http://www.cs.odu.edu/~lalkwai/publication.html

21

http://www.cs.odu.edu/~lalkwai/publication.html.

• A TimeMap (URI-T) is a resource that is a machine readable list of mementos
(URI-Ms) for a URI-R with their respective Memento-Datetimes, An example
of a URI-T is:

<http :// www.cs.odu.edu /~ lalkwai / publication .html >; rel=

" original ",

<https :// memgator .cs.odu.edu/ timemap /link/http :// www.cs

.odu.edu /~ lalkwai / publication .html >; rel="self";

type=" application /link - format ",

<http :// web. archive .org/web /20190405151649/ https :// www.

cs.odu.edu /~ lalkwai / publication .html >; rel="first

memento "; datetime ="Fri , 05 Apr 2019 15:16:49 GMT",

<http :// web. archive .org/web /20190405151649/ http :// www.

cs.odu.edu /~ lalkwai / publication .html >; rel="last

memento "; datetime ="Fri , 05 Apr 2019 15:16:49 GMT",

<https :// memgator .cs.odu.edu/ timemap /link/http :// www.cs

.odu.edu /~ lalkwai / publication .html >; rel=" timemap ";

type=" application /link - format ",

<https :// memgator .cs.odu.edu/ timemap /json/http :// www.cs

.odu.edu /~ lalkwai / publication .html >; rel=" timemap ";

type=" application /json",

<https :// memgator .cs.odu.edu/ timemap /cdxj/http :// www.cs

.odu.edu /~ lalkwai / publication .html >; rel=" timemap ";

type=" application /cdxj+ors",

<https :// memgator .cs.odu.edu/ timegate /http :// www.cs.odu

.edu /~ lalkwai / publication .html >; rel=" timegate "

Figure 10 shows the relationship between the resources. When a request is made
to get an archived version of the URI-R, the URI provides an HTTP link of type
TimeGate pointing to the URI-G, which could be on the same or different server
as the URI-R. The user requests a specific datetime of the URI-R and the URI-G
responds with the proper URI-M, which also could be on the same or different server
as the URI-R. The URI-G makes decisions and redirects based on the arguments.
URI-Ms can point to each other to allow access of other mementos. Note that both
the URI-M and the URI-G point back to the URI-R to allow retracing of steps.

https://memgator.cs.odu.edu/timegate/http://www.cs.odu.edu/~lalkwai/publication.html
https://memgator.cs.odu.edu/timegate/http://www.cs.odu.edu/~lalkwai/publication.html
https://memgator.cs.odu.edu/timegate/http://www.cs.odu.edu/~lalkwai/publication.html

22

Fig. 10 An architectural overview of how the Memento framework allows
accessing a prior version of a resource, Source:

http://mementoweb.org/guide/quick-intro/

2.1.2 DATETIME OF WEBPAGES

Any webpage created could have some notion of time. Nelson [30] mentioned that
each webpage could have:

• Creation-Datetime (CD): The datetime the resource was created

• Last-Modified (LM): The datetime the resource last changed

• Memento-Datetime (MD): The datetime the resource was crawled

• Aboutness Time (AT): The datetime of an event that the page contains.

2.1.3 ARCHIVE ACCESS INTERFACES

There are three common user access interfaces for Web archives: URI-based,
collection-based, and full-text search. Currently, there is no interface where we can
request a webpage and obtain a recommended list of webpages with similar content.

URI-based

The Internet Archive is implemented with URI-based access through the Wayback
Machine. The user enters a URI in the text box and then gets a list of mementos

http://mementoweb.org/guide/quick-intro/

23

for that URI (Figure 11(a)). For example, if the user requests an archived version of
the Department of Computer Science at ODU http://cs.odu.edu (Figure 11(b)),
since the webpage is archived, the user will view the following: the number of times
it is archived, when it was first and last archived, a histogram showing the number of
times the webpage was archived each month, and a calendar that highlights the days
the webpage was archived for the selected year. The user can select the memento to
view from the calendar.

For example, the user can select the first memento available for the webpage (Fig-
ure 12(a)) or the last memento available (Figure 12(b)). Note that in this example
the URI-Rs are not the same http://www.cs.odu.edu vs. http://www.odu.edu:

80/compsci, but they have been combined into a single TimeMap.

Collection-based

Web archives can also be queried based on specific events or topics. Archive-It can be
queried by URI or by full-text (Figure 13(a)). For example, if the user requested to
explore collections that are about “museum”, the user enters the query in the search
bar (Figure 13(b)). Then, the result would show the number of collecting organiza-
tions, the number of collections, and the number of sites. Also, the list of collections
with its details would appear below. When the user selects a collection such as the
“Arab American National Museum”, its detailed information would appear, in this
case, a list of five different websites (Figure 13(c)).

Full-text search

With full-text search, archived webpages are queried using a text query. The UK
Web Archive provides a URI search, and a word or phrase search. After entering a
query, a side bar with filtering options appear. The filtering options are accessing
content, domain, document type, suffix, data collection, and topics and themes.

For example, we can search for the terms “Arab Spring” and filter the search by
the following: restrict the date to between January 1, 2015 and January 1, 2018,
the topics and themes to “News Sites”, and select the domain “gov.uk”. This search
produced 2,730,315 results, each showing the title, the URI, the part of the text
where the searched text appeared and the date collected (Figure 14(b)).

In 2016, the Internet Archive added the Beta Wayback Machine [31], where the
user can search by entering a URI or words related to a site’s top-level webpages

http://cs.odu.edu
http://www.cs.odu.edu
http://www.odu.edu:80/compsci
http://www.odu.edu:80/compsci

24

(a) Internet Archive interface

(b) Internet Archive Wayback Machine search for ODU CS webpage, http://
cs.odu.edu

Fig. 11 Internet Archive URI-based interface

http://cs.odu.edu
http://cs.odu.edu

25

(a) Selecting the first memento for ODU CS webpage, https://web.archive.or
g/web/19970102130137/cs.odu.edu

(b) Selecting the last memento for ODU CS webpage, https://web.archive.or
g/web/20180723163102/http://odu.edu:80/compsci

Fig. 12 ODU CS webpage on the Internet Archive the past and the present

https://web.archive.org/web/19970102130137/cs.odu.edu
https://web.archive.org/web/19970102130137/cs.odu.edu
https://web.archive.org/web/20180723163102/http://odu.edu:80/compsci
https://web.archive.org/web/20180723163102/http://odu.edu:80/compsci

26

(a) Archive-It interface

(b) Exploring Archive-It collections after searching for
the text ‘museum’

(c) Archive-It collection-listing the ‘Arab American Na-
tional Museum’ collection information

Fig. 13 Archive-It collection-based interface

27

(Figure 15(a)). The search index was built by processing over 250 billion archived
webpages [31]. The index contains more than a billion terms collected from over
400 billion hyperlinks to the top-level webpages. The results are ranked based on
relevance. However, this is not a real full text index, because it links to the site’s
home page instead of linking to the exact page containing the searched keyword. In
addition, the results of a query is based on matching the query to the words people
have used to describe those sites. This requires a webpage description of each site in
order to perform the recommendation.

For example, when the user enters a query such as “King Saud University”, the
user will view a list of top-level webpages where either its URI contains the phrase
“King Saud University” or a webpage that had an anchor text that contains the
phrase “King Saud University” (Figure 15(b)). The limitation to top-level webpages
and not the full Web search is due to computation and storage requirements of the
Internet Archive.

In our work, we will use the URI-based query method when checking if the can-
didate webpage is archived.

2.1.4 COLD SPOTS

In our work, we want to find and recommend webpages in the archives that are
important but are not surfaced in an archival search result, usually this is because
links to them on the live Web have been removed. AlNoamany et al. [32] found that
63.6% of users’ successful requests to the archive are made when the request is not
found on the live Web. In addition, they found that 75.6% of users’ unsuccessful
requests to the archive are made when the request is not found on the live Web. If
the webpage that links to the missing resource is removed, the user would not know
the existence of the archived webpage.

An example is when a user requests a Virginia Tech football webpage from
the archive. The user knows about the popular Virginia Tech football webpage
http://hokiesports.com/football/ and will request that webpage. This web-
page is currently on the live Web and archived. However, the user does not know
that the webpage http://techsideline.com exists in the archive, shown in Fig-
ure 16. In 2013, when requesting the webpage from the live Web it redirects to
https://virginiatech.sportswar.com. If the user did not have a link to that
webpage on the live Web, the user will never know it existed. We consider the

http://hokiesports.com/football/
http://techsideline.com
https://virginiatech.sportswar.com

28

(a) UK Web Archive interface

(b) UK Web Archive result of full-text search for the term “Arab
Spring”, and setting some filtering options such as restrict the date
to between January 1, 2015 and January 1, 2018, the topics and themes
to “News Sites”, and select the domain “gov.uk”.

Fig. 14 UK Web Archive full-text search based interface

29

(a) Wayback Beta words related to a site’s home page search based
interface

(b) Wayback Beta result after entering the query ‘King Saud University’

Fig. 15 Wayback Beta full-text search interface

30

webpage http://techsideline.com to be a cold spot webpage.

Fig. 16 A Virginia Tech football webpage found on the archive,
https://web.archive.org/web/20081216011510/http://

www.techsideline.com:80/home

Cold spot webpages are pages that are not live, are currently not popular, but
are archived. We show how cold spots occur in Figure 17 where, at time t1 URI1
links to both URI2 and URI3, URI2 links to URI4, and URI3 links to URI5. Also,
all URIs are archived and are on the live Web. Then at time t2 both URI2 and URI4
are removed from the live Web. However, URI1 still links to URI2. At time t3 URI1
updates its links and removes the link from the webpages that are no longer live.
This means that now it is hard to find both URI2 and URI4, and they are considered
to now be in a cold spot of the archive.

An example of this case is assuming at time t1, a DMOZ Directory (URI1) in 2005
lists different webpages and links to www.techsideline.com (URI2), which links to
www.techsideline.com/news (URI4). At time t2, URI2 and URI4 disappear from
the live Web, although URI2 is still linked to URI1. At time t3 in 2013, the DMOZ
Directory (URI1) updated its links and eventually removed the offline links. As we
see in later versions of the listings, URI2 www.techsideline.com was removed, so
we would consider URI2 and URI4 to be cold spots in the archive.

http://techsideline.com
https://web.archive.org/web/20081216011510/http://www.techsideline.com:80/home
https://web.archive.org/web/20081216011510/http://www.techsideline.com:80/home
www.techsideline.com
www.techsideline.com/news
www.techsideline.com

31

Fig. 17 How cold spots occur over time

2.2 URI AND THE HTTP STATUS CODE

To answer RQ1, “Given a URI, how much information can we learn about the
referenced webpage without examining the content of the page?”, we first need to
discuss the structure, define cool URIs, and HTTP status codes.

2.2.1 URI STRUCTURE

A Uniform Resource Identifier (URI) is a string of characters, such as numbers,
letters, and symbols, used to identify a resource [4, 9] (Figure 18). By entering a URI
into the browser, the browser retrieves the resource representation and displays it to
the user. For example, in Figure 18, the browser sends an HTTP GET request to
the server at weather.example.com via TCP/IP port 80, and the server sends back
a message containing a representation of the resource at the time of dereferencing.

weather.example.com

32

Fig. 18 The relationship between identifier, resource, and representation: URI
identify resources and when dereferenced, the resources representation is
returned [4]

A valid URI can identify a unique HTML page, a CSS document, an image, PDF
document, or another format. In some cases, the URI can identify a resource that no
longer exists or that has moved. A URI has two common components, the scheme
and the hostname. For the URI http://example.com/, the scheme is http, and
the hostname is example.com. The hostname includes the top level domain (TLD)
or an effective TLD, which is located at the last part of the domain, such as com

in the hostname example.com and ac.uk in the hostname ox.ac.uk. Other parts
of the URI that may exist in the URI are the path, such as page1/page2 from the
URI http://example.com/page1/page2, the fragment such as bar from the URI
http://example.org/foo.html#bar, and the query such as key1=value1&key2=va

lue2 from the URI http://example.com/word?key1=value1&key2=value2.
In general, a URI is an identifier consisting of a sequence of characters with the

following syntax scheme:hostname/path?query#fragment. A URI can be a locator,
a name, or both. A Uniform Resource Locator (URL) is a subset of a URI [33].

2.2.2 SORT-FRIENDLY URI REORDERING TRANSFORM

For sorting a list of URIs and detecting duplicates Sort-friendly URI Reordering

http://example.com/
http
example.com
example.com
ox.ac.uk
page1/page2
http://example.com/page1/page2
bar
http://example.org/foo.html#bar
key1=value1&key2=value2
key1=value1&key2=value2
http://example.com/word?key1=value1&key2=value2
scheme:hostname/path?query#fragment

33

Transform (SURT)8 is used. SURT is the process of transforming the URI to a
natural hierarchy of domain names. It also includes changing the “https” scheme to
“http” and making all characters lowercase. For example, the URI <scheme://do

main.tld/path?query> is transformed using SURT to <scheme://(tld,domain,)/

path?query>.

2.2.3 SEMANTICS IN URIS

In 1998, Berners-Lee [34] introduced the term “Cool URIs” to describe URIs
that could last for a long time. A URI should be designed to be short and easy
to remember, such as https://www.odu.edu/compsci. Also, the URI should be
designed so it will remain constant as long as possible by not including terminology
that may change later, such as .php. An example of a cool URI is https://en.w

ikipedia.org/wiki/List_of_Presidents_of_the_United_States. In addition, it
may be helpful to add the creation date of the article or news page. The date the
URI is issued is one thing which will not change. An example of this is http://

www.cnn.com/2009/US/10/06/helen.keller.statue/. In some cases, it is helpful
to not to add some words that are considered to be stop-words, such as “latest”
or “today” in http://www.pathfinder.com/money/moneydaily/latest/, because
this does not help identify when it was published. Any information that might change
over time should not be added to the URI, such as the author’s name, status such as
“old” or “new”, file name extensions such as cgi or html, or software mechanisms,
such as using pl when using Perl.

A URI may be composed of words that could indicate what the webpage is about.
This improves its usability by immediately indicating what the webpage is about
without containing details of the underlying Web application, such as homepage.txt

or example.asp. This property is known as “Semantic URIs”, as well as “Clean
URLs” [35] or “User-friendly URLs” [36]. For example, with https://en.wikip

edia.org/wiki/United_States_presidential_election_2016 you can know that
the webpage is about the 2016 US Presidential election. However, with http://

www.firstmonday.org/article/view/7090/5653 you would not understand what
the webpage contains without dereferencing it.

There are different types of semantics that might be encountered. We might
have semantic information in the whole URI including both host and path (e.g.,

8https://github.com/internetarchive/surt,https://pypi.org/project/surt/

<scheme://domain.tld/path?query>
<scheme://domain.tld/path?query>
<scheme://(tld,domain,)/path?query>
<scheme://(tld,domain,)/path?query>
https://www.odu.edu/compsci
https://en.wikipedia.org/wiki/List_of_Presidents_of_the_United_States
https://en.wikipedia.org/wiki/List_of_Presidents_of_the_United_States
http://www.cnn.com/2009/US/10/06/helen.keller.statue/
http://www.cnn.com/2009/US/10/06/helen.keller.statue/
http://www.pathfinder.com/money/moneydaily/latest/
homepage.txt
example.asp
https://en.wikipedia.org/wiki/United_States_presidential_election_2016
https://en.wikipedia.org/wiki/United_States_presidential_election_2016
http://www.firstmonday.org/article/view/7090/5653
http://www.firstmonday.org/article/view/7090/5653
https://github.com/internetarchive/surt
https://pypi.org/project/surt/

34

https://www.bankofamerica.com/smallbusiness/business-financing/), in the
hostname only (e.g., http://americaslibrary.gov/jb/index.php) or in the path
only (e.g., https://en.wikipedia.org/wiki/Old_Dominion_University).

Also, some hostnames, such as https://www.thebestschools.org, might have
more semantic information than others, such as http://www.dhk.com, by containing
text in the URI that give hints of its content.

On the other hand, some URIs may contain only stop-words, such as the URI
http://www.them.com, or contain tokens that have no semantics and do not match
an existing ontology, such as the URI https://www.pltw.org, where “pltw” has no
semantics for those who are unfamiliar with the acronym and may not be present in
certain ontologies.

2.2.4 HTTP STATUS CODES

We can get different responses when requesting a webpage. An HTTP response
status code [28] is part of the response a client receives from the server when making
a request. It consists of three digits that specify a certain response status. The
common responses are:

• 2xx - Successful responses. This class indicates that the client’s request was
successfully accepted.

• 3xx - Redirection messages. This class indicates that the client’s request was
redirected to another resource.

• 4xx - Client error responses. This class indicates that the client is requesting
something the server cannot or will not provide. When a response to a webpage
request is a 200 Ok (Section 2.2.4), but the resulting webpage is a customized
error page, this is called a “soft 404”.

2.3 CLASSIFICATION

To answer RQ2, “Given a set of terms that describes a webpage, how do we map
the terms to an ontology of webpages?”, we need to discuss classification and the
ontology that we will use to classify the requested URI. We first discuss the different
webpage classification types and structure.

https://www.bankofamerica.com/smallbusiness/business-financing/
http://americaslibrary.gov/jb/index.php
https://en.wikipedia.org/wiki/Old_Dominion_University
https://www.thebestschools.org
http://www.dhk.com
http://www.them.com
https://www.pltw.org

35

Webpage classification is the process of assigning a webpage to a predefined cat-
egory. There are different types of webpage classification [37], such as subject clas-
sification, sentiment classification, genre classification, functional classification, and
others:

• Subject classification: the process of assigning a topic to a webpage, such as
sports or art.

• Sentiment classification: the process of determining the webpage author’s opin-
ion about a topic, such as a positive or a negative opinion.

• Genre classification: the process of determining the means of a webpage’s form,
style, or targeted audience, such as blog, commercial, or error.

• Functional classification: the process of determining the roles that the webpage
plays, such as personal webpage or admissions webpage.

In this work, we will focus on subject classification, since we want to determine what
the requested webpage is about in order to recommend other webpages in the same
category.

In general, there are different types of classifications, such as binary classification
or multi-class classification. Binary classification is to categorize instances to one
of two categories, for example, to categorize a webpage to art or non-art. Multi-
class classification is to categorize instances to one of many different categories, for
example, to categorize a webpage to sports, art, news, or any other category.

The structure of the categories could be flat classification, where categories are
parallel, as in Figure 19(a), or hierarchical, where categories are in a tree-like struc-
ture, as in Figure 19(b).

2.3.1 MACHINE LEARNING ALGORITHMS FOR CLASSIFICATION

In our work, we will use a machine learning (ML) algorithm to classify a requested
webpage in order to find the most similar candidates. When choosing a ML algorithm,
we will have to consider working on categorized ontologies that are large in size and
contain a considerable number of categories and sub-categories. In addition, we will
have to consider the structure of the data, which is an hierarchical classification.
Also, when the user requests the webpage we need to provide recommendations with

36

(a) Flat Classification

(b) Hierarchical Classification

Fig. 19 Classification Structures

minimal time and storage used. Finally, we will consider algorithms that have been
used in related work, which we will use to compare with our results.

Based on the ontology type and size we can use different type of algorithms. If
we are working with a large dataset that contains independent features and we prefer
simplicity, then for example, we can use the Naïve Bayes (NB) algorithm.

Depending on the ontology structure, different type of algorithms have been used.
For flat classification, many machine learning algorithms have been used such as NB,
Support Vector Machines (SVM), and other algorithms. For hierarchical structure,
different approaches have been used, such as the big-bang approach, the top-down
approach [38], and the deep classification algorithm [6]. These methods will be
discussed in Section 3.2.2.

Both classification and clustering are techniques used in machine learning. In
a categorized dataset, classification is the process of predicting which category an
object belongs to, based on common attributes. In a non-categorized dataset, clus-
tering is the process of placing the dataset into groups, based on determining if there
is a common attribute. Both clustering and classification are two efficient methods
of grouping a massive volume of data. In general, there are two common different
learning styles in machine learning algorithms [39]:

• Supervised Learning: All instances are labeled, such as the classification of a

37

dataset. In this method, there is initially a categorized dataset and a function
that maps a new input to one of the classifications.

• Unsupervised Learning: Instances are not labeled, such as the clustering of a
dataset. In this method, the function will look for similarities to separate the
instance into groups.

The most common machine learning algorithms are Naïve Bayes, Support Vector
Machines, and Maximum Entropy. These algorithms were used in related work [1, 6]
that we will use to evaluate our results.

Naïve Bayes (NB)

Naïve Bayes is considered the most straightforward machine learning algorithm [40].
It assumes that if a category is created given the existence of several features, the
features themselves are independent from each other, this is why it is called “Naive”.
NB is commonly used when speed is required and when the dataset is relatively large.
The Naïve Bayes equation is as follows:

p(Ck | x) = p(Ck) p(x | Ck)
p(x) (1)

where

• p(Ck | x) is the posterior, which is the probability that the attribute x is in
class Ck

• p(Ck) is the prior, which is the probability of the class Ck

• p(x | Ck) is the likelihood, which is the probability of the attribute x given the
class Ck

• p(x) is the evidence, which is the probability of the attribute x

The same equation can be written as

Posterior = Prior× Likelihood
Evidence (2)

38

Support Vector Machines (SVM)

SVM is binary classification algorithm [41, 42]. Given labeled training data, the
algorithm outputs the dataset on a space and divides the dataset into two clusters
with the maximum margins between them, then tries to classify an input to one
of the two categories. SVM is typically used when accuracy is the priority when
categorizing a dataset.

Maximum Entropy (ME)

Maximum Entropy (ME) is a probabilistic classifier that performs an estimation
method based on a uniform distribution by making as few assumptions as possible
[43, 44]. ME requires more time to train compared to NB.

2.4 ONTOLOGIES

An ontology is a set of categories that contain a group of related instances. There
are different types of ontologies [45], such as:

• Terminological ontologies: a set of words senses that contain a group of related
words, such as WordNet [46].

• Topic ontologies: a set of topics that contain a group of documents, such as
DMOZ.

• Data-model ontologies: a set of tables that contain a group of data records,
such as a database schema.

In our work, we need to map terms extracted from a URI to a topic ontology.
In related work, different ontologies have been used to classify webpages. Some
ontologies that are commonly used for classification are DMOZ and Wikipedia. In
this section, we describe DMOZ and Wikipedia.

2.4.1 DMOZ

DMOZ is also known as the Open Directory Project (ODP), which is the largest
human-edited directory of the Web. It is considered a hierarchical classification in
which each category may have sub-categories. DMOZ was based on user contributed
submissions and maintained by a community of volunteer editors [47].

39

DMOZ is a very popular dataset that has been used in previous research. In 2011,
Ainsworth et al. [48] and AlSum et al. [49] used DMOZ as one dataset and measured
how much of the Web is archived. In our previous work [50, 51] we used DMOZ as
one of the dataset resources and measured how much Arabic, English, Danish, and
Korean webpages are archived. Using DMOZ for classification has a long history
[52, 53]. It is one of the oldest resources available, which makes it a good source
for URIs that may no longer exist but have been crawled and archived. DMOZ was
also used as an ontology for research related to classifying webpages [54, 1]. Each
category has a list of URIs, the website titles, and descriptions.

DMOZ was closed down on March 14, 2017 (Figure 20) and currently, the webpage
dmoz.org, links to a mirror webpage (Figure 21). We downloaded the dataset locally
in Feb 2017. In our local dataset, there are 3,573,189 categorized URIs, with 2,539,029
of them being unique. The DMOZ listing has been archived in the Internet Archive
(Figure 22). However, some inner links may be missing or redirect to pages from
another archived date.

The dataset consists of four fields, the category, the URI, the webpage title, and
the description, (Table 8). In general, there are 16 main categories and 590,516
unique sub-categories. The main categories are “Arts”, “Business”, “Computers”,
“Games”, “Health”, “Home”, “Kids and Teens”, “News”, “Recreation”, “Reference”,
“Regional”, “Science”, “Shopping”, “Society”, “Sports”, and “World”. The “World”
category contains foreign-language webpages. These categories may differ slightly
because the directory is updated over time.

Table 8 An example of a URI and its category

Category Computers/Computer science/Academic departments/
North America/United States/Virginia

URI http://www.odu.edu
Title Old Dominion University
Description Norfolk, Virginia

dmoz.org
http://www.odu.edu

40

Fig. 20 DMOZ is no longer available, Source: http://www.dmoz.org

Fig. 21 DMOZ mirror website, Source: http://dmoztools.net

http://www.dmoz.org
http://dmoztools.net

41

Fig. 22 DMOZ webpage from the Internet Archive, Source:
https://web.archive.org/web/20080105042131/http://www.dmoz.org:80/

2.4.2 WIKIPEDIA

Wikipedia is a web-based encyclopedia, launched in 2001 and available in 301
languages. Wikipedia has been used as a corpus, for classifying and clustering, for
creating annotations, etc. [55]. In 2010, Glott et al. [56] estimated that 68.25% of
Wikipedia responders are readers, compared to 31.75% contributors.

In using Wikipedia to classify entities Gattani et al. [57] used texts from Twitter
as a dataset, then extracted its keywords and matched it to Wikipedias links to
classify and tag the tweet.

Wikipedia contains 38 main categories and 898 second level sub-categories. Each
sub-category contains other sub-categories. The main categories are: “Academic dis-
ciplines”, “Arts”, “Business”, “Concepts”, “Crime”, “Culture”, “Economy”, “Educa-
tion”, “Entertainment”, “Events”, “Food and drink”, “Geography”, “Government”,
“Health”, “History”, “Human behavior”, “Humanities”, “Knowledge”, “Language”,
“Law”, “Life”, “Mathematics”, “Military”, “Mind”, “Music”, “Nature”, “Objects”,
“Organizations”, “People”, “Philosophy”, “Politics”, “Religion”, “Science”, “Soci-
ety”, “Sports”, “Technology”, “Universe”, and “World”. These categories may differ
slightly because it is updated over time.

Articles in Wikipedia contain a summary about the topic, external links, ref-
erences, categorization of the article, and an information box. References are links
that appeared within the article, however external links are links to webpages outside

https://web.archive.org/web/20080105042131/http://www.dmoz.org:80/

42

Wikipedia, and usually do not appear in the article.
For instance, the Wikipedia webpage on Old Dominion University shown in Figure

23 contains a summary about the topic, external links, references, categorization of
the article, and an information box. Figure 23(b) shows the end of the Wikipedia
webpage where a list of 65 references are mentioned within the article. Next, we
see two external links: “Official website” that links to the Old Dominion University
webpage https://odu.edu, and the external link “Old Dominion Athletics website”
which links to http://odusports.com. Finally, we see the categorization section
where the article is characterized to multiple categories (Table 9).

Table 9 An example of an external link and its category

Official website as
an external link https://odu.edu

Categories

Old Dominion University
Universities and colleges in Virginia
Educational institutions established in 1930
and Public universities
...

2.5 RECOMMENDATIONS

Given a set of candidate webpages we need to recommend several alternatives to
rank the candidates and select the top N. In this section we discuss recommendation
systems and their methods.

Recently, recommendation lists have become popular in different areas such as
books, movies, articles, and in any search query in general. Many major companies’
websites provide recommendations for users including Google, Facebook, Twitter,
LinkedIn, Netflix, Amazon, Microsoft, Yahoo!, and many others. This allows the
user to look at the results of other similar search queries.

Recommender systems produce a list of recommendations in one of the following
ways: stereotyping, content-based filtering, collaborative filtering, co-occurrence, and
hybrid. Different recommendation systems were discussed and compared in several
surveys [58, 59, 60].

The type of recommendation system is based on the information available. Often,

https://odu.edu
http://odusports.com
https://odu.edu

43

(a) Wikipedia webpage https://en.wikipedia.org/wiki/Old_Dominion_Uni
versity resulted after searching for odu.edu

(b) The end of the Wikipedia webpage https://en.wikipedia.org/wiki/Ol
d_Dominion_University, showing part of the references, external links including
http://odu.edu as an “official website”, and the categories that this Wikipedia
webpage belongs to

Fig. 23 Searching for the request http://odu.edu in Wikipedia resulted in
finding the Wikipedia webpage
https://en.wikipedia.org/wiki/Old_Dominion_University

https://en.wikipedia.org/wiki/Old_Dominion_University
https://en.wikipedia.org/wiki/Old_Dominion_University
odu.edu
https://en.wikipedia.org/wiki/Old_Dominion_University
https://en.wikipedia.org/wiki/Old_Dominion_University
http://odu.edu
http://odu.edu
https://en.wikipedia.org/wiki/Old_Dominion_University

44

the available resources are user’s demographics (e.g., age, gender, location), the user-
item preference (e.g., ratings, purchases), and item features (e.g., keywords).

2.5.1 STEREOTYPING

In 1979, Rich [61] introduced the recommender system named Grundy, which
recommended novels to its users. They defined stereotypes as collections of charac-
teristics. For example they assume that men are interested in suspense novels and
not in romance novels. Therefore, they would recommend this type of novels to all
men. However, it is known that this is not true for all men and this recommendation
method will limit the number of books recommended to the user.

Other researchers [62] used this method for their research paper recommender
system, Docear9. Docear is a literature management software that allows manag-
ing PDF files, annotations, and references in mind maps. In this work, the author
assumed that all of their software users are researchers or students and would rec-
ommend research papers based on their interests.

2.5.2 CONTENT-BASED FILTERING

Pazzani et al. [63] discussed content-based filtering. Content-based filtering ap-
proaches use a range of features of an item to recommend items with similar proper-
ties. Items are usually textual such as webpages, news articles, television programs,
songs, buying items, or tagging an item. This method allows the creating of a profile
for each user that describes the types of items the user likes. Then, the method
compares the items to determine what to recommend.

Pandora Radio10 is an example of a content-based recommender system. It uses
the user’s first choice of song as a seed, and it then recommends similar playlists. The
advantage of using this method is that it allows user-based personalization. However,
all of the playlists have to be categorized in advance in order to recommend similar
playlists.

2.5.3 COLLABORATIVE FILTERING

The collaborative filtering approach is to build a model from a user’s past behav-
ior. It requires a large amount of data from users to make accurate recommendations.

9http://docear.org
10https://pandora.com/

http://docear.org
https://pandora.com/

45

In this case, the recommendations are not based on item similarity but user similarity.
In 1992, Goldberg et al. [64] introduced collaborative filtering. The system

they introduced was called Tapestry, which is an experimental mail system. The
motivation for Tapestry comes from the large volume of incoming e-mail. The system
requires people to record their reactions to documents they read. Then system would
recommend documents to users. This method is considered content-dependent.

YouTube uses collaborative filtering. Covington et al. [65] mention that the
system consists of two neural networks, candidate generation and ranking. Candidate
generation takes as input a user’s watch history and selects videos in the range of
hundreds. For ranking, they used a deep neural network with similar architecture as
candidate generation to assign an independent score to each video impression using
logistic regression. Davidson et al. [66] also described YouTube’s recommendation
system and some of the challenges that they addressed. Such challenges are poor
metadata, size, and the short life cycle going from upload to viral.

Collaborative filtering approaches often suffer from three main disadvantages:
cold start, scalability, and sparsity. Cold start is when the user first starts using the
system and the system does not have previous information about the user, so the
recommendations are not accurate. In order to make accurate recommendations it
requires a large amount of data from the users [59]. Scalability is a disadvantage
because a large number of candidates to choose from will require in a large amount
of computational power. Sparsity is when users rate a few number of items, so the
system can learn a little information about the items.

2.5.4 CO-OCCURRENCE

Co-occurrence recommendations are items that are recommended that frequently
co-occur with some source items. This method was proposed in 1973 by Small [67].
Amazon uses this method among other methods. When a customer browses a product
on Amazon, items frequently bought with that item are recommended: “customers
who bought item X also bought item Y”.

Pinterest also uses this type of recommendation system among other methods.
Liu et al. [68] showed that over 40% of user engagement on Pinterest are from
related Pins. They discussed the evolution of the system and the challenges that oc-
curred while building it. The major pieces of related Pins were candidate generation,
memorization, and learning to rank.

46

2.5.5 HYBRID

Hybrid recommender systems are the result of combined approaches to improve
performance [69]. Netflix, Amazon, and Pinterest are all examples of the use of hybrid
recommender systems. Netflix makes recommendations using collaborative filtering
by comparing the watching and searching methods of similar users, and content-
based filtering by offering movies that share characteristics with other movies that a
user has rated highly.

2.5.6 EXAMPLE CASES OF USING RECOMMENDATIONS

When searching for a book on Amazon, Amazon provides the search result as well
as other similar products. For example, when searching for the book Beautiful Data,
Amazon shows the book as the top result (Figure 24(a)) as well as my other recently
viewed items and featured recommendations that are similar (Figure 24(b)). When
I select one of the books, more recommendation selections appear, such as what
was frequently bought together (Figure 24(c)), what other customers who bought
this item also bought (Figure 24(d)), customers who viewed this item also viewed
(Figure 24(e)), and my recent viewed items and feature recommendations which also
appear on the similar books page (Figure 24(f)).

We notice that Amazon makes recommendations based on similar items, the user’s
search history, featured recommendations, the history of other users, and what others
viewed or bought. This means that Amazon has to preserve each item’s history and
user history.

Other popular services, such as Netflix, also make recommendations based on the
user’s history. When a user browses Netflix, the user will find a recommendation list
based on what is currently popular, what is trending now, and what was previously
watched (Figure 24), as well as others such as watch again, top picks, added recently,
different categories such as kids TV, children and family movies, and many more.
Netflix uses a combination of the user’s history and popular items.

In general, recommendation systems can be personalized by content-based filter-
ing (results are based on past ratings and purchases), collaborative-based filtering
(users are categorized by their demographic profiles or similar rating preferences),
knowledge-based filtering (knowledge about the price, quality), and non-personalized
filtering (results are identical to all users, based on popularity in terms of both ratings

47

(a) Amazon found requested book and recommend similar requests

(b) Amazon recommendation based on my recent viewed items and featured recommenda-
tions

(c) Amazon recommendation based on what was frequently bought together

48

(d) Amazon recommendation based on what other customers who bough this item also
bought

(e) Amazon recommendation based on what other customers viewed who viewed this item

(f) Amazon recommendation based on my recent viewed items and featured recommenda-
tions

Fig. 23 Amazons recommendation examples

49

and sales).

Fig. 24 Netflix recommendation based on previous watched movies

In our work, we will be building a recommendation system using content-based
filtering, which takes information from a URI and known ontologies of webpages and
recommends archived webpages to the user, while focusing on some features such as
hard to find webpages. In this work, we do not have access to user preference or past
queries of the archive.

2.6 SUMMARY

In this chapter, we introduced some basic concepts related to our work. First, we
presented Web archiving and explained why it is important. We also described the
Memento framework, the Internet Archive interfaces, and defined cold spots. This
relates to RQ3. After that, we discussed the basic terms related to RQ1, which fo-
cuses on obtaining information from the URI only. We discuss URIs, their structure,
status code, and defined cool URIs and empty URIs. Next, we introduced concepts
relating to RQ2, which is mapping terms to an ontology. We do that by introduc-
ing classification and some common machine learning algorithms. We also gave an
overview of ontologies and described DMOZ and Wikipedia. Finally, we defined
terms relating to RQ4, which focuses on recommending candidate webpage, where
we described recommendations and listed its popular usage. In the next chapter, we
will show previous work that is related to our work.

50

CHAPTER 3

RELATED WORK

In this chapter, we provide an overview of the research that has been established in
several fields related to the problems we investigate in this work. We present work
related to splitting compound words (Section 3.1), clustering (Section 3.2.1), and
classifying (Section 3.2.2). After that, we present work related to our methods to filter
candidate webpages, which includes existence in the archive (Section 3.3), aboutness
(Section 3.3.7), and soft 404s (Section 3.4). Finally, we present related work to our
method to rank the candidates, which includes memento damage (Section 3.5.1),
retrievability (Section 3.5.2), and detecting the creation time of webpages (Section
3.5.3).

3.1 SPLITTING COMPOUND WORDS

To address both RQ1, “Given a URI, how much information can we learn about
the referenced webpage without examining the content of the page?”, and RQ2,
“Given a set of terms that describes a webpage, how do we map the terms to an
ontology of webpages?”, we will evaluate different methods to split URIs into to-
kens and classify them and then to find other recommendations. In this section,
we present related work that uses the URI to gain information about the webpage
it holds. Using the information that the URI holds includes splitting compound
words, such as splitting the URI http://www.norfolkbotanicalgarden.org into
the tokens {norfolk, botanical, garden}.

Chi et al. [70] proposed methods to segment compound words and detect partial
words. This work introduced some basic terms that we can use in our work such as:

• Document framework of a webpage: a set of information that contains the
webpage title, the URL, hyperlink addresses, embedded object file names, and
their alternate texts.

• Word: a consecutive string of characters separated by delimiters.

• Dictionary word: a word that exists in a given dictionary.

http://www.norfolkbotanicalgarden.org

51

• Word set: all the words extracted from a document framework.

Two steps were performed to solve the problem of segmenting compound words,
using a combined forward and backward matching to split compound words. First,
they try to identify the components of the compound words. Second, they match
each part to a dictionary, including handling the cases of acronyms, abbreviations,
and meaningless words. To identify the prefix in a compound word, they search for
matching words starting from the first letter, which is called forward matching. For
identifying the suffix in a compound word, they searched for matching words starting
from the last letter, which is called backward matching. In both cases, the priority
is to search for the longest matching word. To solve the second issue of trying to
match each part to a dictionary, they created and maintained a table of acronyms
and abbreviations. Their results showed an accuracy of 90%.

Koehn et al. [71] considered splitting German compound words based on words
that exist in a training corpus. The corpus used was the European Parliament
Proceedings, consisting of 20 million words in German. They tested different methods
for splitting words such as how frequently the word appears in training set, translating
German compound words into English, then translating it back to German. They
restricted their work to words of three or more letters and excluded parts of words
based on their part-of-speech. Also, if more than one split option occurred, then they
would choose the highest score based on frequency. Their results showed an accuracy
of 99.1%.

Segaran et al. [72] described a word segmentation solution for compound words,
including these that may have multiple options such as chosespain.com where both
{choses, pain} and {chose, spain} are valid splits. They use some features to split
words such as using N-grams and term frequency.

Khaitan et al. [73] described an application for splitting domain names called
Domain Keyword Extraction, which uses compound splitting that allows selecting
relevant keywords from misspelled or non-existing domains. First, they performed
domain sanitization by removing prefixes and suffixes from domain type errors, such
as eliminating .com and www. from www.bankofamerica.cmo resulting in bankofam

erica and eliminating .cm and www. from www.sprintstore.cm resulting in sprint

store. Note that .com was misspelled in this case and was detected and removed.
Next, they split words based on features added, such as length of words, N-grams,
stop-words, and frequency. They used the Wikipedia corpus for training using only

chosespain.com
.com
www.
www.bankofamerica.cmo
bankofamerica
bankofamerica
.cm
www.
www.sprintstore.cm
sprintstore
sprintstore
.com

52

the titles of the pages. After scoring each component of the compound words, they
filtered any part that had a score less than 0.2. Using the hybrid method, which uses
all the features together, got the highest F1 score.

Baykan et al. [54, 1] investigated using the URI to classify a webpage and identify
its topic. Using different dictionaries including DMOZ, they split the URI using four
methods:

• Tokens: The URI is converted to lowercase, then split by any non-alphabetic
characters. Finally, they removed any tokens less than length 2. An example
is the URI http://www.allwatchers.com/Topics/Info_3922.asp, tokenized
to {allwatchers, com, topics, info, asp}.

• N-grams as features: This approach splits the URI into the same tokens as
the method above. Then it uses the letter N-grams, including 4-, 5-, 6-, 7- and
8-grams. An example of using a 5-gram as features is the URI http://www.

allwatchers.com/Topics/Info_3922.asp tokenized to {allwa, llwat, lwatc,
watch, atche, tcher, chers, com, topic, opics, info, asp}.

• N-grams from the URI: The word “HTTP”, punctuation, and numbers
are removed, and the case is changed to lowercase. Then the letter N-grams
are used, including 4-, 5-, 6-, 7- and 8-grams. An example of using a 5-gram
from the URI is http://www.allwatchers.com/Topics/Info_3922.asp being
transformed to {allwatcherscomtopicsinfoasp}, then tokenized to {allwa, llwat,
lwatc, watch, atche, tcher, chers, hersc, ersco, rscom, scomt, comto, omtop,
mtopi, topic, opics, picsi, icsin, csinf, sinfo, infoa, nfoas, foasp}

• Encoding positional information: In this approach, each token is dupli-
cated, and its position is added. An example of using a 3-gram is the URI
www.epfl.ch tokenized as {www, www_1, epf, epf_2, pfl, pf_2, ch_, ch_3}.
Using this approach, the machine learning algorithm will not see the number,
but will not treat the tokens that appeared in different positions the same, as
they will have different dimensions for each.

To evaluate the different tokenization methods, Baykan et al. used the DMOZ
dataset (ODP) with Naïve Bayes to classify the tokenized URIs. They found that
the all-gram, combination of 4-, 5-, 6-, 7-, and 8- grams, was the best approach. The
result of evaluating the different tokenizations used is shown in Table 10. They also

http://www.allwatchers.com/Topics/Info_ 3922.asp
http://www.allwatchers.com/Topics/Info_ 3922.asp
http://www.allwatchers.com/Topics/Info_ 3922.asp
http://www.allwatchers.com/Topics/Info_ 3922.asp
www.epfl.ch

53

found that the token-based method may not work well, due to the high percentage of
empty URIs, which are URIs that include only stop-words or have never been seen
in the training set, such as http://www.yuzutree.com or www.mlx.co.uk. In this
case, breaking the URI to small N-grams helps with some empty URIs.

Table 10 Macroaveraged F1 Values of Various Features with Naïve Bayes [1]
(Table II)

Feature F1
Tokens 76
3-grams 75
4-grams 80
6-grams 81
8-grams 79
4-5grams 81
4-5-6grams 81
4-5-6-7grams 81
4-5-6-7-8grams 82

In later work, Baykan et al. [74, 2] proposed a method to identify the language
of the website using the URI only. The language detection model is useful for our
work if we want to expand to include different languages. They used some features
such as words, various sized N-grams, and custom-made features. The classifiers
were built for English, German, French, Spanish, and Italian by applying machine
learning algorithms and features. The features used are words-as-features, various
sized N-grams, and custom-made features. Words-as-features is breaking the URI
into tokens then having a counter associated with each token to mark how many times
it has appeared as a token in this specific language. N-grams as features is creating N-
grams of the URI to tokens then having a counter in the same manner as the previous
method. Custom-made features are the combination of the use of a dictionary, top-
level domains, and IP addresses of the hosting Web servers. They compared their
approaches with two methods, classification by country code top-level domains and
classification by IP addresses of the hosting Web servers. Two datasets are used,
DMOZ containing 150k URIs for each of the five languages (English, French, German,
Spanish, and Italian), and by querying a commercial Search Engine Results (SER)
obtained from Microsoft’s Live Search1 containing 100k URIs for each language.
In their earlier work [74], they also had a third dataset which includes a random

1http://search.live.com

http://www.yuzutree.com
www.mlx.co.uk
 http://search.live.com

54

sample of 1,260 pages from a web crawl. A classifier was trained with a 10-fold
cross-validation on the dataset. In this work, they found that the best performing
classifier is for German with a score of 97.7 using Decision Trees (DT) with custom-
made method, shown in Table 11. On the other hand, the lowest score was for
English with a score of 94.2 using Support Vector Machines (SVM) with all-grams.

Table 11 Comparison of Various Approaches for Language Identification on
ODP + SER Test Set [2] (Table XIV)

Lang. Classifier P R p(-|-) F1

En.

ccTLD 96.6 22.8 99.2 36.9
IP 82.1 85.9 81.3 84.0
SVM with allgrams 92.2 96.2 91.9 94.2
DT with custom-made 92.3 95.9 92.0 94.1
RE with all grams 90.8 93.1 90.6 91.9
SVM with all grams + IP 80.2 98.2 75.7 88.3

Ge.

ccTLD 98.5 85.4 98.7 91.5
IP 92.8 92.7 92.8 92.7
SVM wit allgrams 98.5 95.8 98.5 97.2
DT with custom-made 97.3 98.1 97.3 97.7
RE with allgrams 97.0 92.8 97.2 94.9
SVM with all grams + IP 92.7 99.0 92.2 95.7

Fr.

ccTLD 99.8 36.8 99.9 53.7
IP 97.5 64.6 98.4 77.7
SVM wit allgrams 95.8 93.0 96.0 94.4
DT with custom-made 96.2 92.6 96.3 94.4
RE with allgrams 94.2 91.7 94.4 92.9
SVM with all grams + IP 94.6 96.6 94.5 95.6

Sp.

ccTLD 99.9 37.2 99.9 54.2
IP 99.7 50.0 99.8 66.6
SVM wit allgrams 95.8 94.2 95.9 95.0
DT with custom-made 90.2 94.0 89.8 92.1
RE with allgrams 94.7 91.8 94.8 93.2
SVM with all grams + IP 95.8 96.5 95.7 96.2

It.

ccTLD 99.8 61.3 99.9 75.9
IP 99.1 73.5 99.3 84.4
SVM wit allgrams 97.7 94.5 97.8 96.1
DT with custom-made 98.5 94.3 98.6 96.4
RE with allgrams 95.5 93.7 95.6 94.6
SVM with all grams + IP 97.3 98.0 97.2 97.6

Raju et al. [75] proposed algorithms called URL-KEX, which is extracting ad-
vertising keywords from the URL string alone, and Page-KEX, which is extracting

55

keywords from the webpage. URL-KEX operates in three stages: (a) removing key-
words from the URL string, (b) keyword synthesis to generate more keywords, and
(c) ranking by computing the relevance score for each keyword and ranking in de-
creasing order of relevance. In this work, keyword extraction is performed using the
following steps. First, the URL is split into hostname, path, and query. Next, each
delimiter that is a non-alphanumeric is split into individual units called segments,
while removing stop-words such as “html”. After that, compound words are split,
keeping in consideration to not split valid words further. This is accomplished by
using a dynamic program to split the word into valid terms while favoring the split
with the highest number of occurrences. Note that a list of common words such as
“homepage” is filtered out. In the keyword synthesis step, the keywords from differ-
ent segments are combined. Finally, in the ranking step, the score of the keyword
is based on the parent segment’s weight and keyword length. Usually, the query
segment is more informative than the path, and the path is more informative than
the hostname. In this work, they found that using Page-KEX, at least one keyword
is produced for 58% of the URLs and at least two keywords are produced for 37% of
the URLs. On the other hand, due to the limitation of text in the URL, URL-KEX
was able to produce one keyword for 44% of the URLs and two keywords for 26%.

Lin et al. [76] proposed a method for malicious URL filtering based only on
the URL string. In this work, they used two feature sets to separate benign URLs
from malicious ones. The first includes lexical features that describe the dynamic
information of URLs using the “words”. In this method to split the URI they used
different delimiters based on URL components. For the domain name, they used
dash (“-”) and slash (“/”) as delimiters. For the path, they used the dash (“-”), dot
(“.”), underscore (“_”), and backslash (“/”). Finally, for the argument, they used
the ampersand (“&”) and equal sign (“=”). They replaced the IP address with an
Autonomous System (AS) number and replaced the digits in words with a regular
expression. They kept only the words generated in the last 24 hours by giving every
word a timestamp as they occur, and others are considered expired. The second
feature set includes descriptive features that describe some statistical characteristics
of URLs. Here they split the path component into sub-directory, filename, and file
extension to obtain more detailed information. They removed “www”, “www” with
any number (such as www1), country code top-level domain (ccTLD), and generic
top-level domain (gTLD). Some features are added, including the following: length

56

of the URL, length ratio of different components, number of letter-digit-letter and
digit-letter-digit occurrences, delimiter count, and longest word length. To train
the data they used the Passive-Aggressive (PA) [77] algorithm and the Confidence
Weighted (CW) algorithm [78]. Using this approach resulted in misses in less than
9% of malicious instances.

Berardi et al. [79] split compound words in Twitter hashtags. They assigned
an indexing function for hashtags that automatically recognizes distinct words. The
indexing and retrieval system is called CipCipPy2. The method they used for splitting
the words is based on the Viterbi algorithm [80], which computes the most probable
path based on observed events. In this work, they also proposed an expansion of
tweets based on the title of any referred webpage. Also, they introduced a method
to rank tweets based on their quality. In this work, they used an English corpus3 as
their dataset.

Cui et al. [81] proposed using hashtags as an indicator of events. They split the
hashtags to extract keywords. The method used to split compound words in the
hashtag was using a dictionary containing more than 80,000 common English words
from 12Dicts [82] to obtain minimal words. Words not in the dictionary are split
into individual letters.

Zhang et al. [83] proposed a method to automate Twitter topic summarization.
This work includes splitting compound words in a hashtag. They identified two types
of hashtags. The first are those with mixed case characters such as “#CyberMonday”,
and this case is easy to split. The second case are those with all lowercase characters
like “#letsbehonest”. In this case they used the Chinese text segmentation method
for text retrieval proposed by Wu et al. [84]. They used both unigrams and bigrams
from all tweets. Next, they scored every possible split option by scoring it with an
N-gram. The accuracy of this method was 97%.

In our work, we need to extract all possible tokens in the URI not only focusing on
the keywords. We are going to present a method of extracting tokens that is similar
to some of the work mentioned above. Our method combines multiple methods
such as filtering the URI and then splitting the tokens by matching the tokens to a
dictionary and using N-grams. We will evaluate our method and compare the results
to the tokenization methods proposed by Baykan et al. [54, 1].

2http://tag.isti.cnr.it/cipcippy/
3http://norvig.com/big.txt

http://tag.isti.cnr.it/cipcippy/
http://norvig.com/big.txt

57

3.2 CLUSTERING VS. CLASSIFICATION

In our work, after gathering information from the URI, we will need to classify
the URI in a clustered list of URIs. This step is necessary to answer RQ2, “Given a
set of terms that describes a webpage, how do we map the terms to an ontology of
webpages?”. Clustering and classification are two different techniques (Section 2.3.1).

3.2.1 CLUSTERING

Clustering is the process of grouping unlabeled objects based on a certain sim-
ilarity. There has been much research done on clustering webpages. Arranging a
significant amount of data in related groups is essential but a hard task; however, it
helps us to classify them better.

Wen et al. [85] propose to cluster similar URI queries of Frequently Asked Queries
(FAQ) according to their contents as well as user logs, to recommend URIs to FAQ of
a search engine. They use four features of query distance: (a) based on keywords or
phrases of the query, (b) based on string matching of keywords, (c) based on common
clicked URIs, and (d) based on the distance of the clicked documents. They applied
this work on the Encarta encyclopedia4, which is organized in a hierarchy. Their
results show that the clusters provide useful information for the FAQ.

Baeza-Yates [86] presented an algorithm for clustering queries to a search engine.
Given a query submitted to a search engine, their method suggests a list of ranked
similar queries based on previously issued queries. The clustering process is based
on term-weight vector representation of the queries. The ranking is based on the
similarity of the queries to the input query and the support, which measures how
relevant the query in the cluster. In this work, they used existing query log from the
Chilean Web5 to create a list of ranked related recommendations.

3.2.2 CLASSIFICATION

Classification is the process of comparing representations of documents with rep-
resentations of labeled categories and computing similarity to find to which category
the documents belong. It is an essential process in our work because we need to
classify the URI to find similar topic webpages. In our work, we are proposing using

4http://encarta.msn.com/
5https://TodoCl.cl

http://encarta.msn.com/
https://TodoCl.cl

58

the classification technique to recommend similar webpages, using existing ontologies
such as DMOZ. We need to understand and group our existing list of URLs. After
that, we need to classify the requested URI by trying to map the URI to one of the
pre-classified lists of URIs to select similar recommendations from them.

There are different types of webpage classification (Section 2.3). In our proposed
work, we will focus on subject classification. We will also use different classification
methods and compare results. Some of the methods that we will evaluate are the
Baykan et al. [54, 1] method to classify the webpage using the URI and the Xue
et al. [6] method where they classified text documents. Although Xue et al. [6]
used text classification, not URI-based classification, the method proposed was on a
hierarchical structure, which is the same type of structure we are going to use. These
two related works and others are described below.

In 1997, Koller et al. [87] introduced a method where documents are classified
hierarchically using very few words because of computational cost and complexity.
This is accomplished by creating a classifier on each node in the classification tree.
Other work included classifying a webpage using its URI without the need to use
its content to improve the classification speed. In 1999, Attardi et al. [88] proposed
automatic webpage categorization by using the link and context analysis. They
proposed a method where they extract information about the webpage from the
content of the URL referring to it.

Kan [89] researched categorizing the webpage using the URI by first using seg-
mentation expansion then classifying. The first step is called information content
reduction. Using the URL, it examines all possible partitions of the chunk and cal-
culates the sum of the information content (IC) of each partitioning. The dataset
used was the WebBase project [90] which holds the frequency of tokens on over 39
million webpages. The second step is called title token based finite state transducer
(FST), where URIs are split and segments are expanded based on previously viewed
webpage titles. An example is expanding “cs” to “computer science” based on a set
of rules of scoring the title to match the segment. Next, the resulting tokens are
fed to a machine learning algorithm to classify after changing tokens to IDs to be
accepted to the SVM. The dataset tested had webpages in the following categories:
student, faculty, course, and project. The features that were added to evaluate this
work included URL text, anchor text, title text, and page text. Here they measured
performance using F1. Their findings include that proper use of URL alone is almost

59

as effective as using the page text itself, and it exceeds the performance of systems
using the title or the anchor words. Also, IC and FST improve the result in about
12.7% and 18.6% of the cases, respectively.

In later research, Kan and Thi [91] added more features from the resulting seg-
ments before using them in the classifier. Some of the features were the URL com-
ponent, URL length, sequential N-grams, and the precedence. Using the WebKB
corpus [92] the results indicate that these features improve the results over existing
URL features.

Kustanowitz et al. [93] proposed a three-component framework for search result
categorization techniques, which are lean vs. rich, full-feature vs. fast-feature, and
online vs. offline. The lean categories are simple categories with modest breadth
and depth. The rich categories are extensive classification. Online categorization
can be done for several reasons such as when searches are generated if the mapping
of the page to the hierarchy is not essential. Offline categorization is required if no
database exists to map search results to categories. The fast-feature requires only
information provided in search result set. The full-feature requires the full text of
the link destination. The online fast-feature method includes using the title, snippet,
URI, domain, size, DMOZ, and pre-existing database map, to categorize Web search
results. The offline fast-feature method is used for URL directory hierarchy parsing.
They found that online fast-feature techniques show promise for quick categorization
at query time. In this work, they try to improve categorization rates by making
suggestions about how websites designers should redesign their websites to support
fast categorization of search results.

Xiaoguang et al. [5] used neighboring websites to boost the classifying results
of a webpage, such as a parent, children, sibling, and spouses. As shown in Figure
25, the parent webpage links to a target webpage, children webpages are the pages
that the target links to, a sibling webpage is the webpage that had the same parent
as the target, and a spouse webpage is the webpage that has the same child as the
target. Each is divided into two subsets, labeled pages and unlabeled pages. They
found that the method proposed can boost the classification accuracy of common
textual classifiers by around 70%-90%. They also found the sibling pages are the
most important.

Qi et al. [37] reviewed Web classification research concerning its features and al-
gorithms. They described the different types of classification and how it is essential

60

Fig. 25 Four kinds of neighboring pages of p [5] (Figure 1)

to many tasks in Web information retrieval, such as focused crawling and maintain-
ing Web directories. They mentioned that since the Web is changing its content over
time, its classification is more challenging than text classification. Also, they sur-
veyed the published approaches to webpage classification from different viewpoints.
The different features that can be used for Web classifications are using on-page
classification such as textual content and tags and visual analysis, using features
of neighbors. They discussed the fact that features from neighboring pages pro-
vide significant supplementary information to the page being classified. In addition,
combining different methods can improve the classification as well.

Devi et al. [94] used the URI to classify the webpage and included some features,
such as the URI length, content, token sequence, and precedence. In this work, they
split the URI tokens and created a binary tree for the tokens. They classified URIs
as student, faculty, and project pages. They found that this approach shows better
performance than other methods.

Baykan et al. [54, 1] also investigated using the URI to classify the webpage
and identify its topic (Section 3.1). They found that there is a relationship between
classification and the length of the URI, where the longer URI, the better result. They
used the following machine learning algorithms: Support Vector Machine (SVM),
Naïve Bayes (NB), Maximum Entropy (ME), and Boosting by combining several
algorithms. The highest scores were achieved by ME. The results of performing

61

Binary ME classifiers that are trained on the DMOZ dataset using all-grams method
and are tested on Yahoo!, Wikipedia, Delicious, and Google are shown in Table 12,
where the dataset is also grouped by category in the directories. It shows that Google
got the highest F1, with a score of 87, followed by Wikipedia with 85, DMOZ with
83 (shown as ODP), and both Yahoo! and Delicious with 79.

Table 12 Performance when Binary ME Classifiers are Trained on the ODP
Dataset Using All-Grams, and are Tested on the Other Four Datasets [1]
(Figure 37)

ODP Yahoo! Wiki Delic. Google
Topic P R F P R F P R F P R F P R F
Adult 90 85 88 - - - - - - 73 71 72 - - -
Arts 81 83 82 77 80 78 84 90 87 79 82 81 87 88 87

Busin. (& Econ.) 80 84 82 80 84 82 78 87 82 80 77 78 89 85 87
Comp. (& Intern.) 82 80 81 79 78 79 90 93 91 81 82 81 87 87 87

Education - - - 74 77 75 - - - - - - - - -
Entertainment - - - 85 81 83 - - - - - - - - -

Games 89 88 88 - - - 93 90 91 80 76 78 91 86 88
Government - - - 81 79 80 - - - - - - - - -

Health 85 79 82 83 81 82 78 81 79 86 85 85 90 86 88
Home 86 80 83 - - - 87 85 86 77 76 76 89 86 88

Kids & Teens 82 79 80 - - - 78 78 78 69 74 71 86 81 84
News (& Media) 81 82 81 77 78 77 74 81 77 78 78 78 83 83 83

Recreation 80 82 81 83 80 81 86 86 86 78 78 78 89 83 86
Reference 87 83 85 75 80 77 84 83 84 79 78 79 88 84 86
Science 83 81 82 80 81 80 91 89 90 83 83 83 87 83 85
Shopping 79 82 81 - - - 86 91 88 83 85 84 88 82 85

Social Science - - - 74 75 74 - - - - - - - - -
Society (& Cult.) 81 81 81 76 77 76 - - - 80 81 80 87 85 86

Sports 87 84 85 - - - 92 88 90 86 84 85 91 91 91
Average 83 82 83 79 79 79 85 86 85 79 80 79 88 85 87

Xue et al. [6] used text classification on a hierarchical structure. They proposed a
deep classification method, where given a document, the entire categories are divided
into two kinds according to their similarity to the document, related categories and
unrelated categories. They had two steps, the search stage and the classification
stage. The method’s algorithm steps are shown in Figure 26. The figure shows
that after the search stage ends a small subset of candidate categories in a hierarchy
structure would be the result. Then the output of the first stage would be the input
of the second stage. For the first search stage, two strategies have been proposed.
The first strategy is to use term frequency (TF) and Cosine similarity and find the

62

Fig. 26 Deep Classification algorithm steps [6] (Figure 1)

top N documents and get their categorization. The second strategy is category-
based, where documents in each category are grouped, then they calculated the TF
and cosine similarity for each category and returned the closest category. For the
second stage, the resulting N category candidates are structured as a tree, then
the tree is pruned by removing the category if it has no candidate in it. Three
strategies are proposed to accomplish this step. The first is a flat strategy, where
they considered candidates as a flat structure, without the use of ancestors. The
second is pruned top-down strategy, where they used a classifier from the root to
the last level. The third is the ancestor-assistant strategy, where they grouped the
ancestors if there are no common ancestors with another candidate. This will help
provide more candidates if there is a small sample size. They also used Naïve Bayes
as a classifier because of the large sample and the speed desired. They used 3-gram
because of the close similarity between categories. As a dataset they used DMOZ
and ignored the regional and world categories. The remaining dataset was 1.3 million
URIs. They used 130,000 documents for testing, 200 randomly picked documents for
validation, and the remaining were used for training. For evaluation, they used the
Mi-F1 metric, which evaluates the performance for each level. An example is if
the URI is classified to “computers/programming/language”, they would check the
accuracy of the result in “computers” then “computers/programming” until all levels
are completed. In this work, they tested three methods of classification: the top-
down level-based using SVM, the category based strategy, and the deep classification
with the following options, the category based strategy, ancestor-assistant strategy,

63

and 3-gram NB. They found that the deep classification performs the best of the
three using the Mi-F1, where it resulted in 77% improvement over top-down based.

Rajalakshmi et al. [95] proposed an approach where N-gram based features are
extracted from URIs alone, and the URI is classified using Support Vector Machines
and Maximum Entropy Classifiers. In this work, they used the 3-gram features from
the URL on two datasets, ODP with 2 million URLs and WebKB dataset with 4K
URLs. Using this method on WebKB dataset resulted in an increase of F1 by 20.5%
compared to the related work [89], [91], and [96]. Also, using this method on ODP
resulted in an increase of F1 by 4.7% compared to the related work [97], [91], and
[54].

Abdallah et al. [98, 99] introduced classifying the URI using N-gram language
models. The all-grams approach was more successful than the earlier approaches
but does not scale very well for large datasets. In this work, they found that the
N-gram approach can capture the morphological variations in words. They showed
that taking the lengths of the URIs into the consideration of the classification model
did not improve its performance. Their main finding was that N-gram URI-based
classification has high accuracy and performs well on large datasets.

3.3 ARCHIVING

To address RQ3, “Given a set of webpages discovered through the ontology, what
metrics do we use to filter the best candidates for recommendation?”, and since
archiving is one of the methods to filter candidates, we will discuss related work to
Web archiving and some of the evaluation methods that have been performed.

3.3.1 ARCHIVING API TOOLS

In recent years, there has been limited work in extending Web archive function-
ality. AlSum [49] created a Web archive service called ArcSys, which is a framework
for tighter integration between the past and present Web. It helps third-party de-
velopers, researchers, and others to gain knowledge from the Web archive. ArcSys is
a service framework that extracts, preserves, and exposes APIs for the Web archive
corpus. It is built into three levels. The first level is ArcContent, which exposes
the Web archive content processed through various filters. The second level is the
metadata level which is extracted from the archived Web data and made available to
users. The third level is to use the URI HTTP redirection status to enhance the user

64

query. They use Hadoop to process WARC files and provide metadata for webpages,
such as incoming anchor text, HTML title, and page rank.

Warcbase is an open-source platform for managing Web archives built on the
distributed datastore HBase [100, 101]. The system stores and manages raw content
as well as metadata and extracted knowledge. It also uses Hadoop to process WARC
files for extended service. This project is currently called the Archives Unleashed
Toolkit (AUT)6, formerly “Warcbase”.

In addition, a similar framework to Warcbase is ArchiveSpark. ArchiveSpark
was proposed by Holzmann et al. [102, 103, 104] and is a framework based on
Apache Spark that builds a research corpus from the Web archive. The input files
for ArchiveSpark are a WARC file with its corresponding CDX dataset. ArchiveSpark
is considered a fast tool compared to other approaches.

In the area of selecting a list of websites for creating recommendations, AlNoa-
many et al. [105] used storytelling to enrich the live Web experience using Web
archives. They identified, evaluated, and finally selected webpages from an archive
collection. They used some filtering techniques such as detecting off-topic webpages,
detecting near duplicates, detecting non-English webpages, and detecting damaged
webpages. Then they arranged the pages and visualized them with the Storify service
[106]. Some of the filtering methods will be discussed in Section 3.3.7 and Section
3.5 and used in our work.

3.3.2 EXPECTED LIFETIME OF A WEBPAGE

It is known that webpages disappear from the live Web, and there has been some
work on measuring how long is the expected lifetime of a webpage. In 1997, Brewster
Kahle [22] estimated that the expected lifetime of a webpage is 44 days. Lawrence
et al. [107] collected computer science journals in May 2000, and found that the
percentage of links to papers related to computer science that were invalid was 23%
for papers published the previous year in 1999 and 53% for papers published six
years earlier. Wallace Koehler [108] estimated that the half-life of random webpages
is approximately two years. Nelson and Allen [109] found that in digital libraries
3% of the URIs were unavailable after one year. Diomidis Spinellis [110] performed
a study on the papers published in Communications of the ACM and the IEEE
Computer Society. He found that 28% of all URIs were unavailable after five years.

6http://archivesunleashed.org

http://archivesunleashed.org

65

He also estimated the half-life of a URL to be four years. Klein et al. [111] found that
one in five Science, Technology, and Medicine (STM) articles have invalid references
to them. Using the same dataset, Jones et al. [112] found that three out of four URI
references lead to changed content. In this work, knowing that webpages disappear
from the live web and having those webpages appear only in the archive made it an
important to find and recommend webpages in the cold spots (Section 2.1.4).

3.3.3 USER INTENTION OF SEARCHING THE ARCHIVE

Webpages link one page to another and having them both in the live Web and in
the archive makes them easy to find. However, over time webpages and their inner
links may disappear from the live Web, making them hard to find.

AlNoamany et al. [32] analyzed who and what links to the Internet Archive
and detected that users access the archive when they do not find the webpage they
requested on the live Web. They found that about 65% of the requested archived
pages no longer exist on the live Web. Also, more than 82% of human sessions
connect to the Wayback Machine are via referrals from other websites. On the other
hand, only 15% of robots have referrers.

Since we are working on what the user requests from the archive, knowing what
the users are searching in the archive is helpful. Costa et al. [113] addressed the
issue of why, what, and how users search the Web archives. This research aimed to
understand the information needs of Web archive users. This work revealed that the
users’ intent could be navigation, in which users usually do not restrict archive search
by date, that 21% of queries had URIs only, and that half of the users’ searches are for
names, people, places, and things. In addition, users typically search for the oldest
document. This work also described the necessary information of what is looked for
and that recommending old webpages, such as the ones that are in cold spots, is
beneficial for the user.

3.3.4 MEASURING ARCHIVED WEB RESOURCES

Bias in the Internet Archive was addressed by Thelwall et al. [114]. They found
that there are indeed large national differences in the archive’s coverage of the Web.
However, they mentioned that the bias in coverage is not intentional but that re-
searchers need to be aware of this issue.

McCown et al. [115] addressed coverage as well but limited it to search engine

66

caches such as Ask, Google, MSN, and Yahoo. They also examined the overlap of
the various caches with the holdings of the Internet Archive.

Ainsworth et al. [48] and AlSum [49] measured how much of the Web is archived.
They used DMOZ, Delicious, Bitly, and search engine indexes to measure the number
of archived copies available in various public Web archives. They found that 35-90%
of URIs had at least one archived copy. Also, they found that 17-49% have two
to five copies, 1-8% have six to eight copies, and 8-63% have at least ten copies.
They also found that 14.6-31.3% of URIs are archived more than once per month.
The percentage of archived webpages ranged from 16-79% in 2010 and increased to
33-95% in 2013.

In previous work [50], we addressed how well Arabic language webpages are
archived. We used language detection tools to check if the webpage is in Arabic. We
found that 46% of the URIs are not archived, and 31% are not indexed by Google.
We also found that only 14.84% of the URIs had an Arabic country code top-level
domain (e.g., .sa). Later, we extended the work to include other languages such as
English, Danish, and Korean [51]. We found that English has a higher archiving rate
than Arabic, with 72.04% archived. However, Arabic has a higher archiving rate
than Danish and Korean, with 53.36% of Arabic URIs archived, followed by Danish
and Korean with 35.89% and 32.81% archived, respectively. Also, we found that the
presence of a webpage in a directory such as DMOZ positively impacts indexing and
archiving.

3.3.5 SEARCHING THE ARCHIVE WITHOUT INDEXING IT

Kanhabua et al. [116] proposed a search system to support retrieval and analytics
on the Internet Archive. They used the live Web, such as Bing, to search for the query
and match the result to the archive, using a user-friendly interface. The features
they added to the archive were (a) keyword search, (b) query auto-completion using
Wikipedia entity index, (c) query suggestion using Wikipedia articles and building
an entity graph to find related queries, (d) multilingualism supporting English and
German languages, and (e) a list of ranked results. They also measured the coverage
of the archived content retrieved by the current search engine and found that on page
one of Bing results, 94% are available in the Internet Archive. On the other hand,
on pages two to five, only 87-89% are archived. They also measured the amount of
the search result change over time for different entity categories over the period of

67

2, 5, and 7 months, and found that after two months, approximately 47% of the top
100 URLs are not returned anymore, and after seven months this increases to 60%.

In our proposed work, we will not consider recommendation results from the live
Web until there is no other option available, due to the cost of complexity, time, and
storage. Also, we will focus on webpages that are in the cold spots.

3.3.6 RECOVERING MISSING WEB RESOURCES

Link rot is when a link points to a Web resource that has become unavailable.
The HTTP response code for this is 404 Page Not Found (Section 2.2.4).

Francisco-Revila et al. [117] developed a tool called Walden’s Paths Path Manager
that allows users to construct trails using webpages which are usually authored by
others. They also addressed discovering relevant and significant changes to websites.

Martinez et al. [118, 119, 120] introduced a method to recover link rot based on
anchor text, the webpage containing the link, or a combination of both. Then the
selected information is processed and submitted to the search engine. They proposed
an algorithm based on information retrieval techniques to select the most relevant
information and ranked the candidate pages for the search engine to get the best
replacements. They found that expanding the query with the anchor text data can
improve the retrieval performance.

Harrison and Nelson [121, 122] developed a server-side system called OPAL which
uses search engines to locate a missing webpage. They used cached copies on the
Web and after that OPAL creates a lexical signature (LS) which is a small set of
terms extracted from a document that captures the aboutness of that document.
The resources used to find the cached copies were search engines such as Google,
the Internet Archive’s Wayback Machine, and research projects (e.g., CiteSeer and
NSDL). Then the LSs are used to search for similar versions on the Web.

Klein and Nelson [123] also used LSs to re-discover webpages at different URLs
as a replacement for missing webpages. First, they send the requested URL to the
live Web, and if the webpage is not live, they request it from the archive. Next, they
create the LS from the archived resources. Finally, they use the LS to issue a query
to one or more Internet search engines such as Google, and receive the correct URL
of the webpage that is considered missing by matching it to the archived URL. In
this work, they distinguish between two types of overlap in LSs, rooted and sliding.
Rooted overlap is the overlap between LSs of all the URL occurrences. Sliding overlap

68

is the overlap between LSs of two consecutive years of the URL occurrences. The
two different types of overlap showed that LSs decay over time, and that LSs should
be created recently since the content of a webpage might change over time. They
created LSs of websites from the last 12 years. The number of LS terms created
for each webpage was 2-10 terms. Their results showed that the best number of LS
terms to return the correct URL in the top ten of search engine results was with 5-,
6-, and 7-term LSs. They found that 50% of the URLs got the correct result in the
number one result. However, 30% of the URLs were not discovered. This work did
not recommend other webpages; however, this revealed that each URI-M may have
a different classification over time.

Klein et al. [12] recommended missing webpages from the live Web using four
retrieval methods: (1) LS, (2) webpages’ titles, (3) tags, and (4) link neighborhood
lexical signatures (LNLS). Using these four methods helped to get a replacement of
missing webpages. Various datasets were used, including DMOZ. By comparing the
different methods, they found that 70% of the webpages were recovered using the
title method. Titles were at least as well performing as lexical signatures and were
easier to obtain. They found that 7- and 5- term LSs performed best. The tag-based
method that was used from Delicious performed poorly when used by itself. The most
expensive to generate are LNLS, so it was used as a last resort for the rediscovering
of missing webpages. The result increased to 77% by increasing the complexity and
combining the other three methods. This shows that the webpages have moved to a
different location and need rediscovering. They introduced Ghost tags as “tags that
describe previous versions of webpages better than current ones”. In their work, the
user will get a single alternative when a page is not found on the live Web. However,
in our proposed work, we want to recommend several other similar webpages and we
might need to adopt some of the methods proposed when needed.

Popitsch et al. [124, 125, 126] introduced a tool called DSNotify to handle broken
links in linked data environments. The tool detects broken links and assists the
data source in fixing them, e.g., when they are moved to other Web locations. The
tool is used in several ways: (1) to function as a detection and correction module
in existing software, (2) as a standalone notification service that keeps subscribed
clients informed about changes in a data source, and (3) as an indirection service
that automatically forwards requests for moved resources to their new location.

Huurdeman et al. [7, 127, 128] detailed their approach to recover pages in the

69

unarchived Web based on the existence of links and anchors of crawled pages. The
data used was from the Dutch 2012 National Library of the Netherlands7 (KB). The
link extraction used Hadoop MapReduce and Apache Pig to process all archived
webpages and used JSoup to extract links from their content. Both external links
(inter-server links), which are links between different servers, and site internal links
(intra-server links), which occur within a server, were included in the dataset. The
Aura is defined as the set of webpages that are not in the archive but are known to
have existed based on references found in archived webpages. There are four main
classifications of URLs found in this dataset, shown in Figure 27:

• Intentionally archived URLs in the seed list. 92% of the dataset, and 10.1
million webpages.

• Unintentionally archived URLs due to crawler configuration. 8% of the dataset,
and 0.8 million webpages.

• Inner Aura, unarchived URLs where the parent domain is included in the seed
list. 5.5 million webpages, where 20% are pages of depth 4.

• Outer Aura, unarchived URLs where the parent domain is not on the seed list.
5.2 million webpages, where 29.7% are pages of depth 2.

Fig. 27 Classification of URIs [7] (Figure 1)

7https://kb.nl/en

https://kb.nl/en

70

Their findings included that the archived pages show evidence of a large number of
unarchived pages and websites. They also found that only a few homepage webpages
have rich representations. Finally, they found that even with a few words to describe
a missing webpage, they can be found within the first hit.

Since there are a large number of unarchived pages, we assume that there will be
many requests to the archive that may result in 404 Page Not Found status. In our
work, we want to recommend other similar webpages that are in the archive.

3.3.7 OFF-TOPIC MEMENTOS

In addition to filtering the candidate URIs based on archiving, we can also filter
the candidates based on the aboutness of the webpage, which is measuring how much
a text is about a certain topic. This method can also be used to address RQ4, “Given
a set of candidate webpages for recommendation, how do we rank the candidates?”.
The content similarity could be the similarity of URI tokens or the similarity of the
webpage content.

AlNoamany et al. [129] presented a method to detect off-topic pages within
TimeMaps in Web archives where in some cases the archived webpage topic changes
over time. In this work, they evaluated six different methods to detect when the
page has gone off-topic through subsequent captures. The methods are (a) cosine
similarity, (b) Jaccard similarity, (c) the intersection of the 20 most frequent terms,
(d) Web-based kernel function, and (e) the change in size using the number of words
and content length. They used three Archive-It collections to evaluate the proposed
methods at different thresholds. They found that combining cosine similarity at
threshold 0.10 and change in size using word count at a threshold of -0.85 performs
the best, with an accuracy of 0.987 and an F1 0.906. They found the average precision
of detecting the off-topic pages is 0.89. In later work, Jones et al. [130] created a
tool called Off-Topic Memento Toolkit (OTMT), which detects off-topic mementos
in a web archive collection. They used the following methods to detect off-topic
mementos: byte count, word count, cosine similarity, Jaccard distance, Sørensen-
Dice distance, Simhash using raw text content, Simhash using term frequency, and
Latent Semantic Indexing via the gensim library. Using a gold standard dataset
generated manually, they found that the word count has the best F1.

71

3.4 SOFT 404s

Bar-Yossef et al. [131] proposed a method to identify soft 404s. They listed three
reasons why a webpage may be not publicly available over the Web. The first reason
is the URI could be malformed. The second reason is that its host is down or does
not exist. The last reason is that it does not exist on the host. When fetching a page
that is not found, an error message should appear. However, soft 404s may appear,
which are hard to detect. To detect the soft 404s, they proposed sending a second
request to the site with a string of random characters appended the URI to compare
the content similarity of the two responses. Assuming that soft 404s responses are
similar regardless of the request, such sites could be isolated.

Lee et al. [132] proposed another approach to detect soft errors by analyzing
redirection logs collected during crawling operation. Three main observations were
made based on the logs. A soft error redirection from a webpage to a target is likely
to have a large number of redirections to the same target. A redirection from a host
with a substantial number of redirects to the same target is likely to be a soft error
redirection. A legitimate redirection to a server is likely to have a large number of
distinct target hosts reached by redirections from a host. Based on this observation,
a scoring system has been designed to determine soft errors. Using this method
not only determines soft errors redirections, but also determines 403 and 5xx errors
redirections effectively.

Meneses et al. [133] developed two methods that use a Naïve Bayes classifier
based on known valid responses and known 404 responses. The classifier was able to
predict soft 404 pages with a precision of 99% and a recall of 92%.

3.5 RANKING FEATURES

To also address RQ4, we need to rank the results based on several dimensions.
Some of the dimensions are presence in a cold spot, datetime of the webpage, and
memento damage.

3.5.1 MEMENTO DAMAGE

One of the features we can use to rank the candidate URIs is the archival quality.
Archival quality refers to measuring memento damage by evaluating the number and
importance of missing resources in a webpage. The missing resources could be text,

72

images, video, audio, style sheet, or any other type of resource on the webpage.
Brunelle et al. [10] proposed a damage rating algorithm to measure the relative

value of embedded resources and evaluate archival success. The algorithm is based
on a URI’s MIME type, size, and location of the embedded resources. Different
resources are more important than others depending on the webpage. They found
that almost 2.05 significant embedded resources per memento on average are missing
over time. In the Internet Archive the average memento damage reduced from 0.16
in 1998 to 0.13 in 2013. Related to this work, Siregar [134] created a Memento
Damage tool8 to estimate the damage of the memento or a live webpage using an
online service or a local service. This calculation is used in one of the features we
use to rank the candidates (Section 5.6.1).

3.5.2 RETRIEVABILITY

Another feature that we will use to rank the candidate URIs is webpage popular-
ity, which considers how often the webpage has been archived, its popularity on the
live Web, and frequency of requests in the archive. A particular case of popularity
are webpages in “cold spots”, which are pages that are not on the live Web and may
not have frequently been requested from the archive.

Related work has been proposed to measure the retrievability of the documents.
Azzopardi et al. [135] quantified the webpages that are hard to find or impossible
to retrieve. The retrievability score counts how often a document is retrieved as one
of the top K documents by a given set of queries. They showed how the retrieval
system affects the users’ ability to access information. They found that in a TREC-
style evaluation, 80% of the collection was not retrieved due to the bias it exhibits over
the collection of documents. They also found that the least retrievable documents
within the collection are significantly harder to find than the rest of the collection.

In a similar work, Traub et al. [136] investigated how well retrievability studies
represent the search behavior of real users and how they can be applied to an extensive
collection of digitized documents. Here they calculated retrievability score for every
document in the collection for three different IR models. This work was applied
to three datasets: National Library of the Netherlands (KB) (2,732,139 queries), a
real user query log collected between March and July 2015 (957,239 queries), and a
simulated dataset (4,000,000 queries). They used Gini coefficient and Lorenz curves,

8http://memento-damage.cs.odu.edu/

http://memento-damage.cs.odu.edu/

73

which are used to measure and visualize a degree of inequality in societies [137].
They found that simulated queries differ from real queries regarding term frequency,
the prevalence of named entities, and retrievability results. In both collections, they
found a substantial fraction of documents were never retrieved. However, there was
no reliable evidence of technical bias in retrievability.

3.5.3 CREATION TIME OF WEBPAGES

Another feature that we can use to rank the candidate URIs is temporal similar-
ity, which can refer to how close the candidate webpage’s creation date, memento-
datetime, or content date are to the requested URI (Section 2.1.2).

SalahEldeen et al. [8] created a tool called Carbon Date9 to estimate the creation
date of a Web resource. They illustrated a timeline of resources along with how
they estimated the age of the resource in Figure 28. They used a group of sources
of evidence and returned a machine-readable structure with their respective values.
The resources used to determine the creation time were:

• Bitly10: a URI shortening service, the tool uses the first time someone shortened
the URI.

• Topsy: a social analytics service, the tool uses the first time someone tweeted
the URI. This tool is no longer operational [138].

• Memento aggregator11: gathers information on mementos, the tool uses the
first time the URI appeared in a public Web archive.

• Google’s time of the last crawl.

• Last-Modified HTTP response header of the resource itself.

The method was able to automatically estimate a creation date for 75.90% of the
resources, where 32.78% of the dates were accurate. Since topsy is no longer working,
a recent follow-up on this tool was made by Atkins [139]. The new service added
additional detection methods, such as Bing searching, Twitter searching, and pubdate
parsing [140].

9http://carbondate.cs.odu.edu
10https://bitly.com
11http://timetravel.mementoweb.org

http://carbondate.cs.odu.edu
https://bitly.com
http://timetravel.mementoweb.org

74

Fig. 28 The timeline of a shared resource and the proposed process of carbon
dating [8] (Figure 1)

3.6 SUMMARY

In this chapter, we presented an overview of the research that is related to our
work. We presented work related to splitting compound words and how they split
URIs specifically. Then we presented related work on clustering and classifying docu-
ments. Next, we presented archiving and showed some archiving API tools. We also
presented archiving in different angles such as the expected lifetime of a webpage,
the user intention of searching the archive, measuring the archived Web resources,
searching the archive without indexing it, and recovering missing resources. After
that, we discussed off-topic mementos and defined soft 404s. Finally, we also pre-
sented the related research on memento damage, retrievability, and webpage creation
time. In the next chapter, we describe the datasets that we are going to use.

75

CHAPTER 4

DATASETS

In this chapter, we describe the three main datasets we use: DMOZ, Wikipedia,
and a Wayback Machine access log. DMOZ and Wikipedia are used as ontologies
that help classify the requested URIs and provide recommendations. The Wayback
Machine access log consists of real requests made to the archive that we used to
evaluate the framework. Some features of the datasets could affect the archiving
rates of the webpages, such as the language of the webpage (Section 3.3.4), so in this
work we will focus only on English webpages.

4.1 DMOZ

DMOZ, or the Open Directory Project (ODP), is a widely used dataset. We use
DMOZ as one of the ontologies to classify a requested webpage (Section 5.3). We have
archived 118 DMOZ files of the type Resource Description Framework (RDF) [141],
from 2001 to 2017 (Table 13). The dataset consists of four fields: the category, the
URI, the webpage title, and the description (Section 2.4.1, Table 8). Each URI and
its fields are called an instance. We collect all instances from DMOZ. Since we will
focus on English language webpages, we first filtered out the World category. Next,
starting from the latest archived dataset (March 12, 2017) to the earliest (January
22, 2001), we collected the instances that include a unique URI. After that, we
converted all the URIs to SURT format (Section 2.2.2). Table 14 shows the number
of collected instances and sub-categories for each of the 17 categories. There were
6,522,125 instances after filtering out instances that contain an empty field.

Since we are going to get recommendations from DMOZ, we wanted to analyze
the dataset. We checked the top level domains (TLDs), the depth of URIs, and if
URI patterns occur.

76

Table 13 Archived DMOZ dataset over the years

Year Number
of files

Archival Date
MM-DD

2017 2 03-12, 02-26
2016 4 03-06, 03-20, 04-17, 09-11
2015 3 08-30, 09-20
2014 4 04-06, 07-20, 09-14, 10-19
2013 4 01-26, 04-21, 08-18, 09-08
2012 5 01-29, 05-27, 07-15, 10-14, 10-21

2011 8 02-18, 03-08, 05-15, 06-05, 07-03,
07-17, 08-07, 09-25

2010 7 01-19, 03-04, 05-11, 06-22, 08-12, 09-02,
10-03

2009 11 01-06, 02-03, 03-03, 04-07, 06-01, 07-21,
08-17, 09-01, 10-06, 11-09, 12-02

2008 12 01-08, 02-05, 03-04, 04-01, 05-06, 06-03,
07-01, 08-05, 09-02, 10-07, 11-04, 12-02

2007 12 01-25, 02-12, 03-06, 04-03, 05-01, 06-05,
07-03, 08-07, 09-04, 10-02, 11-20, 12-04

2006 10 01-03, 02-07, 03-07, 04-04, 05-03, 06-06,
07-11, 08-01, 09-05, 10-03

2005 9 01-04, 02-01, 05-03, 06-07, 07-05, 09-06,
10-04, 11-01, 12-06

2004 12 01-05, 02-23, 03-01, 04-01, 05-04, 06-01,
07-06, 08-03, 09-07, 10-05, 11-09, 12-07

2003 8 02-10, 03-31, 06-09, 07-07, 08-04, 09-01,
11-03, 12-01

2002 5 02-14, 03-14, 04-25, 05-16, 09-19
2001 2 01-22, 10-20

4.1.1 DMOZ DIVERSITY MATRIX

Alexander Nwala created a diversity matrix to quantify URI diversity [142]. This
matrix is called WSDL diversity index. The process includes URI processing such as
scheme removal and parameters and fragment removal. Then the dataset is scored
based on diversity. In our case since we only have unique URIs, the URI diversity
score is 1.0. The diversity index also measures hostname diversity, and the score of
hostname diversity in DMOZ dataset is 0.55. In addition, it measures the domain
diversity, and the score of domain diversity in DMOZ dataset is 0.49.

77

Table 14 The number of instances for each category and the number of
sub-categories in the DMOZ dataset

Category Num. URIs Num. sub-categories
Regional 2,348,257 297,140
Arts 658,942 57,959
Society 487,834 36,259
Business 469,668 22,465
News 421,800 2,581
Computers 297,789 12,580
Sports 278,706 28,761
Recreation 261,005 15,467
Shopping 250,538 7,393
Science 217,071 17,212
Adult 197,141 10,683
Reference 160,652 13,077
Games 151,459 20,233
Health 149,648 10,292
Home 81,059 3,553
Kids_and_Teens 63,333 5,793
Netscape 27,223 2,581
Total 6,522,125 564,029

4.1.2 DMOZ TOP LEVEL DOMAIN

In this section we wanted to determine the diversity of the TLDs in DMOZ.
Shown in Table 15, we found that 61.85% URIs are commercial top level domain,
.com, followed by .org, .net, .edu. Other top level domains include .ca, .it, etc.
We found 2,824 unique TLDs in the others category that include effective TLDs,
such as co.uk.

4.1.3 DMOZ URI DEPTH

Here, we want to know if the URIs we are recommending are only URIs of depth 0.
The URIs are first canonicalized. Note that depth 0 includes URIs ending with /inde

x.html or /home.html. Some of the extensions in the path that were removed include
index.html, index.htm, index3.php, default.html, default.htm, default.asp,
homepage.html, homepage.htm, home.html, and home.html. For example, the URI
https://batteries4everything.com/index.html was considered depth zero. The

.com
.org
.net
.edu
.ca
.it
co.uk
/index.html
/index.html
/home.html
index.html
index.htm
index3.php
default.html
default.htm
default.asp
homepage.html
homepage.htm
home.html
home.html
https://batteries4everything.com/index.html

78

Table 15 Top level domain analysis for DMOZ dataset

TLD Num. URIs Percent
com 4,034,276 61.85%
org 586,152 8.99%
net 371,753 5.70%
edu 224,539 3.44%
gov 60,919 0.93%
us 11,382 0.17%
others 1,233,105 18.90%
Total 6,522,125 100%

depth is measured after URI canonicalization using SURT. Shown in Table 16, we
found that 50.57% of the URIs in DMOZ are depth 0, essentially top-level webpages.
We think this is because top level webpages are more often categorized and indexed
in directories, rather than deep level webpages. We also found that the longest depth
is 21.

Table 16 Depth analysis for DMOZ dataset

Depth Count Percent
0 3,298,369 50.57%
1 1,134,874 17.40%
2 905,849 13.89%
3+ 1,183,033 18.14%
Total 6,522,125 100%

4.1.4 DMOZ URI PATTERNS

In this section we calculate the different URI patterns that occur in DMOZ. Table
17 shows the percentage of occurrence of the pattern in the hostname and the path.
We analyze the following patterns:

• Long strings, not separated by non-alphanumeric character. Contains
10 or more contiguous letters. We chose 10 because it is likely that at least
two words are grouped together since the average English word is 5 letters long
[143, 144].

– Example in the host: http://radiotunis.com

http://radiotunis.com

79

– Example in the path: http://moviefreak.com/reviews/m/matrixrevo

lutions1a.htm

• Long strings in the domain, separated by non-alphanumeric charac-
ter. Contains 2 or more instances of 5 contiguous letters separated by non-
alphanumeric character in the domain.

– Example in the host: http://bruno-groening.org/afrikaans/defaul

t.htm

• Long slugs in the path. A slug is usually the title of the webpage included
in the end of the webpage’s path, commonly used in news media webpages. To
search for slugs we search for URI path that contains 2 or more instances of 5
contiguous letters separated by non-alphanumeric character in the path.

– Example in the path: http://www.arnosoftwaredev.blogspot.com/20

05/01/sorting-algorithms-visualized.html

• Numbers.

– Example in the host: http://911.com

– Example in the path: http://comic-art.com/biographies/kelly001

.htm

• Change in case.

– Example in the host: http://AmericaInArabic.com

– Example in the path: http://zeekoo.com/ZeeKooGids.php

• Query in the path. HTTP query string, beginning with a “?”.

– Example in the path: http://findagrave.com/cgi-bin/fg.cgi?page=

gr&GRid=1795

• Port number in the hostname.

– Example in the host: http://www3.gencat.cat:81/justicia/justiter

m/index.htm

• IP address instead of the hostname.

http://moviefreak.com/reviews/m/matrixrevolutions1a.htm
http://moviefreak.com/reviews/m/matrixrevolutions1a.htm
http://bruno-groening.org/afrikaans/default.htm
http://bruno-groening.org/afrikaans/default.htm
http://www.arnosoftwaredev.blogspot.com/2005/01/sorting-algorithms-visualized.html
http://www.arnosoftwaredev.blogspot.com/2005/01/sorting-algorithms-visualized.html
http://911.com
http://comic-art.com/biographies/kelly001.htm
http://comic-art.com/biographies/kelly001.htm
http://AmericaInArabic.com
http://zeekoo.com/ZeeKooGids.php
http://findagrave.com/cgi-bin/fg.cgi?page=gr&GRid=1795
http://findagrave.com/cgi-bin/fg.cgi?page=gr&GRid=1795
http://www3.gencat.cat:81/justicia/justiterm/index.htm
http://www3.gencat.cat:81/justicia/justiterm/index.htm

80

– Example in the host: http://63.135.118.69/

• Percent-encoding. Encoding to represent special characters in the URI.

– Example in the host: http://haus-wohnungsaufl%c3%b6sung.de

– Example in the path: http://tinet.cat/%7ekosina

• Date string.

– Example in the host: http://03-03-1952.homepage.t-online.de/un

iversum.html

– Example in the path: http://elmundo-eldia.com/1999/08/29/opinio

n/1001023218.html

We found 42.65% of the URIs contain long strings in the hostname, and 20.01%
of the URIs contain numbers in the path, as shown Table 17.

Table 17 URI patterns present in DMOZ

Pattern % in hostname % in path
Long strings, not separated 42.65% 13.21%
Long strings, separated 10.85% -
Long slugs - 7.82%
Numbers 4.37% 20.01%
Change in case 0.36% 8.18%
Query - 4.72%
Port number 0.11% -
IP address 0.07% -
Percent-encoding 0% 0.50%
Date 0% 0.43%

4.2 WIKIPEDIA

Articles in Wikipedia contain a summary about the topic, external links, refer-
ences, categorization of the article, and an information box. References are links
that appeared within the article, however external links are links to webpages out-
side Wikipedia, and usually do not appear in the article (Section 2.4.2). In our work,
we consider a match if the requested URI http://odu.edu is the “official webpage”
(Figure 29), and we will use the article’s category as the category we are going to use

http://63.135.118.69/
http://haus-wohnungsaufl%c3%b6sung.de
http://tinet.cat/%7ekosina
http://03-03-1952.homepage.t-online.de/universum.html
http://03-03-1952.homepage.t-online.de/universum.html
http://elmundo-eldia.com/1999/08/29/opinion/1001023218.html
http://elmundo-eldia.com/1999/08/29/opinion/1001023218.html
http://odu.edu

81

for the requested URI. For instance, the article shown in Figure 29 is categorized as
multiple categories, such as, Old Dominion University, Universities and colleges in
Virginia, Educational institutions established in 1930, and Public universities. If the
entity described in the article has an “official webpage”, we consider the requested
URI to be a match. We use “official webpage” as a keyword that we search for. We
use Python Wikipedia packages [145, 146] to extract the information needed. For
analyzing the dataset we used the external links found in the Wikipedia dump1 from
February 01, 2019, which contains 125,900,205 URIs. However, some URIs are links
to the Internet Archive, so we collected the URI-Rs of these requests. Note that
3,703,149 unique URIs are external links to the Internet Archive. By removing du-
plicate URIs in the links to the archive, the resulting number of URIs is 123,101,129.
Although some of the external links are not official links, we still want to analyze the
URIs.

4.2.1 WIKIPEDIA DIVERSITY MATRIX

We measure the Wikipedia external links set using WSDL diversity index (Section
4.1.1). The URI diversity score is 1.0, since we only have the unique URIs in our
dataset. The hostname diversity is 0.03, and the domain diversity is 0.02. The results
indicate that there are a large number of redundant hostnames and domains in the
Wikipedia external links dataset.

4.2.2 WIKIPEDIA TOP LEVEL DOMAIN

In this section we wanted to determine the diversity of the TLDs in Wikipedia’s
external links. Shown in Table 18, we found that 38.05% URIs are commercial top
level domain, .com, followed by .org with 34.95%. Other top level domains include
.ca, .it, etc.

4.2.3 WIKIPEDIA URI DEPTH

Here, we want to know if the URIs we are recommending are only URIs of depth
0. The depth is measured after URI canonicalization using SURT. Shown in Table
19, we found that only 3.40% of the URIs in Wikipedia’s external links are depth 0,
essentially top-level webpages, 30.21% of the URIs are depth 1, 34.19% of the URIs

1https://dumps.wikimedia.org/enwiki/20190201/

.com
.org
.ca
.it
https://dumps.wikimedia.org/enwiki/20190201/

82

(a) Wikipedia webpage https://en.wikipedia.org/wiki/Old_Dominion_Uni
versity resulted after searching for odu.edu

(b) The end of the Wikipedia webpage https://en.wikipedia.org/wiki/Old_D
ominion_University, showing an external link http://odu.edu as an “official
website”, and its corresponding categories

Fig. 29 Searching for the request http://odu.edu in Wikipedia resulted in
finding the Wikipedia webpage
https://en.wikipedia.org/wiki/Old_Dominion_University that contains
the requested URI as the official page in the External links section. We use
other webpages in the same categories (at the end of the page) as candidate
webpages.

https://en.wikipedia.org/wiki/Old_Dominion_University
https://en.wikipedia.org/wiki/Old_Dominion_University
odu.edu
https://en.wikipedia.org/wiki/Old_Dominion_University
https://en.wikipedia.org/wiki/Old_Dominion_University
http://odu.edu
http://odu.edu
https://en.wikipedia.org/wiki/Old_Dominion_University

83

Table 18 Top level domain analysis for Wikipedia’s external links dataset

TLD Num. URIs Percent
com 46,836,894 38.05%
org 43,022,108 34.95%
gov 6,117,306 4.97%
net 2,836,749 2.30%
edu 1,915,075 1.56%
us 75,775 0.06%
others 22,297,222 18.11%
Total 123,101,129 100%

are depth 2, and 32.07% are depth 3 or more. We also found that the longest depth is
20. We think that this is because most of the external links points to deep webpages,
as opposed to DMOZ that includes a higher level classification of the domain.

Table 19 Depth analysis for Wikipedia’s external links dataset

Depth Count Percent
0 4,190,333 3.40%
1 37,194,370 30.21%
2 42,082,218 34.19%
3+ 39,475,560 32.07%
Total 123,101,129 100%

4.2.4 WIKIPEDIA URI PATTERNS

Here, we calculate the different URI patterns that occur in Wikipedia’s external
links. Table 20 shows the percentage of occurrence of the pattern in the hostname
and the path. We found 33.92% of the URIs contain long strings in the path and
77.28% of the URIs contain numbers in the path.

4.3 WAYBACK MACHINE ACCESS LOG DATASET

The goal of our work is to use requests to an archive and recommend other
webpages. In our framework, we will use real requests made from users as inputs and
provide a list of ranked webpages as recommendations. We will use the Wayback
Machine access log dataset as it contains real requests to the Internet Archive’s
Wayback Machine. These requests could be a URI-M request or URI-T request

84

Table 20 URI patterns present in Wikipedia’s external links

Pattern % in hostname % in path
Long strings, not separated 19.97% 33.92%
Long strings, separated 13.48% -
Long slugs - 39.98%
Numbers 1.69% 77.28%
Change in case 0.12% 42.32%
Query - 44.39%
Port number 0.03% -
IP address 0.16% -
Percent-encoding 0.01% 15.78%
Date 0% 6.88%

(Section 2.1.1). This dataset has been used in other work such as in AlNoamany et
al. [147, 32, 105].

Our Wayback Machine server access log dataset contains requests from 295 non-
contiguous days between 2011-01-01 to 2012-03-26. Figure 30 shows a calendar
heatmap to indicate the number of requests in the log. Light green means few
requests, and dark green means more requests. The log does not include data from
March through the end of July 2011. The size of the complete dataset is approxi-
mately 820 GB. Each file in the log represents a day’s worth of records. The size of
those files varies, some as low as 40 B and some as large as 2.5 GB.

Each file in the log is a text file where each request (line) contains some informa-
tion, as shown in Listing 3. Listing 4 shows an example of a single record in the log,
where the client IP has been anonymized for privacy reasons.

Fig. 30 Size of each day’s datafile in the Wayback Machine Access Log
(graphic generated by Mat Kelly)

85

Listing 3 Log record fields
Client IP , Access Time , HTTP Request Method , URI ,

Protocol , HTTP Status Code , Bytes Sent , Referring

URI , User -Agent

Listing 4 A sample URI-M query log
0.206.107.149 web. archive .org - [31/ Jan /2011:00:00:15

+0000] "GET http :// web. archive .org/web

/20070217154221/ http :// www.cnn.com /2005/ SPORT /07/06/

singapore . olympics /index.html HTTP /1.1" 200 12954 "

http :// en. wikipedia .org/wiki/

Bids_for_the_2012_Summer_Olympics " " Mozilla /5.0 (

Windows ; U; Windows NT 6.0; en -GB; rv :1.9.2.13)

Gecko /20101203 Firefox /3.6.13 (.NET CLR 3.5.30729;

.NET4 .0C)" TCP_MISS : SOURCEHASH_PARENT /207.241.227.93

4583

In Listing 4 the fields are as follows:

• Client IP (anonymized) = 0.206.107.149

• Server = web.archive.org

• Access Time = 31/Jan/2011:00:00:15 +0000

• HTTP Request Method (GET or HEAD) = GET

• URI = http://web.archive.org/web/20070217154221/http://www.cnn.co

m/2005/SPORT/07/06/singapore.olympics/index.html

• Protocol (HTTP) = HTTP/1.1

• HTTP status code (200, 404, etc.) = 200

• Bytes Sent = 12954

• Referring URI = http://en.wikipedia.org/wiki/Bids_for_the_2012_Sum

mer_Olympics

• User-Agent = Mozilla/5.0 (Windows; U; Windows NT 6.0; en-GB; rv:1.9.2.13)
Gecko/20101203 Firefox/3.6.13

http://web.archive.org/web/20070217154221/http://www.cnn.com/2005/SPORT/07/06/singapore.olympics/index.html
http://web.archive.org/web/20070217154221/http://www.cnn.com/2005/SPORT/07/06/singapore.olympics/index.html
http://en.wikipedia.org/wiki/Bids_for_the_2012_Summer_Olympics
http://en.wikipedia.org/wiki/Bids_for_the_2012_Summer_Olympics

86

4.3.1 WAYBACK MACHINE ACCESS LOG FILTER

The Wayback Machine access log contains requests from both humans and robots.
We need to separate those requests to use only the human requests as input to our
framework. The purpose of filtering the requests is to have a list of URIs that are
requested by humans. We predict that human requests have meaningful URI tokens.
However, robot requests may be composed of random letters that are meaningless.
This list will not be useful in our case. In addition, we want to find recommendations
to requests made by users.

AlNoamany et al. [147] proposed a method to filter the Wayback Machine server
access log dataset and separate human vs. robot requests. The steps include data
cleaning, user identification, session identification, and robot detection. They found
that regarding sessions, robots outnumber humans 10:1. This work was performed
on a small dataset (week of Feb 8, 2012). To get the human requests only, we filtered
out the robot requests and adopted some steps used in AlNoamany et al. [147].

In our work, we will use a sample from the requests made on Feb 8, 2012, similar
to data selected in AlNoamany et al. [147]. There were 49,026,577 requests on that
day. Before collecting a sample to use, we filtered out requests with the following
characteristics and show the number of remaining URIs at each step:

1. did not result in an HTTP 200 status code (49,026,577 → 14,137,350)

2. with a non-HTML URI (14,137,350 → 9,637,218)

3. with a non-valid URI format (9,637,218 → 8,689,915)

4. with image extensions (8,689,915 → 3,875,245)

5. with a non-English TLD (3,875,245 → 2,624,527)

4.3.2 WAYBACK MACHINE ACCESS LOG DIVERSITY MATRIX

We measure the Wayback Machine access log set using WSDL diversity index
(Section 4.1.1). The URI diversity score is 1.0, since we only have the unique URIs
in our dataset. The hostname diversity is 0.92, and the domain diversity is 0.83.
This results indicates that our sample is diverse.

87

4.3.3 WAYBACK MACHINE ACCESS LOG TOP LEVEL DOMAIN

In this section we wanted to determine the diversity of the TLDs in the Wayback
Machine access log sample. Shown in Table 21, we found that 68.04% URIs are
a commercial top level domain, .com, followed by .org. Other top level domains
include .ca, .it, etc. We found 1,017 unique TLDs in the others category.

Table 21 Top level domain analysis for Wayback Machine access log sample

TLD Num. URIs Percent
com 1,785,827 68.04%
org 173,096 6.60%
net 152,026 5.79%
edu 24,425 0.93%
gov 10,743 0.41%
us 6,768 0.26%
others 471,642 17.97%
Total 2,624,527 100%

4.3.4 WAYBACK MACHINE ACCESS LOG URI DEPTH

Here, we want to know if the URIs we are recommending are only URIs of depth
0, similar to our analysis of the other datasets. The depth is measured after URI
canonicalization using SURT. Shown in Table 22 we found that 86.83% of the URIs in
the Wayback Machine access log sample are depth 0, essentially top-level webpages,
and 6.21% of the URIs are depth 1. We also found that the longest depth is 16.

Table 22 Depth analysis for Wayback Machine access log sample

Depth Count Percent
0 2,278,764 86.83%
1 163,017 6.21%
2 99,575 3.80%
3+ 79,420 3.03%
Total 2,624,527 100%

4.3.5 WAYBACK MACHINE ACCESS LOG URI PATTERNS

Here, we calculate the different URI patterns that occur in the Wayback Machine
access log sample. Table 23 shows the percentage of occurrence of the pattern in the

.com
.org
.ca
.it

88

hostname and the path. We found 40.10% of the URIs contain long strings that are
not separated in the hostname and 1.08% of the URIs contain long slugs.

Table 23 URI patterns present in the Wayback Machine access log sample

Pattern % in hostname % in path
Long strings, not separated 40.10% 2.32%
Long strings, separated 11.21% -
Long slugs - 1.08%
Numbers 6.86% 6.02%
Query - 2.19%
Port number 0% -
IP address 0.12% -
Percent-encoding 0% 0.22%
Date 0% 0.09%

4.4 HOW EACH DATASET IS USED

We are going to evaluate our model using a sample of requests from the Wayback
Machine access log. We will use both DMOZ and Wikipedia to classify the requested
URI and find recommendations, as shown in Figure 31.

Fig. 31 A top level diagram showing how each dataset is used

4.5 COMPARING DATASETS

Here, we compare the three ontologies DMOZ, Wikipedia, and the Wayback Ma-
chine access log. Table 24 shows some of the main characteristics we are going to
discuss. First, we compare the two ontologies used to classify the requested URIs.

89

Table 24 Comparing the three datasets

DMOZ Wikipedia Wayback Machine
access log

Hostname diversity 0.55 0.03 0.92
Domain diversity 0.49 0.02 0.83
.com 61.85% 37.14% 68.04%
Depth 0 50.57% 3.40% 86.83%
Depth 1 17.40% 30.21% 6.21%
Long strings in hostnames 42.65% 33.92% 40.10%
Numbers in path 20.01% 77.28% 6.02%

When comparing the hostname diversity we found that the score of hostname diver-
sity in DMOZ dataset is 0.55, and the score of domain diversity in DMOZ dataset
is 0.49. However, the score of hostname diversity in Wikipedia dataset is 0.03, and
the score of domain diversity in Wikipedia dataset is 0.02. The results indicate that
there are a large number of redundant hostnames and domains in the Wikipedia
external links dataset, and almost half of DMOZ dataset is redundant.

Also, we found that in DMOZ 61.85% of the URIs are commercial top level
domain (.com), however in Wikipedia we found that 37.14% URIs are commercial
top level domain (.com).

In addition, in DMOZ dataset we found that 50.57% of the URIs are depth 0, and
17.40% are depth 1. However, in Wikipedia we found that only 3.40% of the URIs
in Wikipedia’s external links are depth 0, 30.21% of the URIs are depth 1, and the
highest is 34.19% for URIs with depth 2. This indicates that DMOZ mostly covers
the domain level, however, Wikipedia covers deeper webpages. Overall our dataset
including both DMOZ and Wikipedia will be diverse, covering both domain level and
deep level webpages.

For pattern analysis, we found that DMOZ has 42.65% of the URIs that contain
long strings in the hostname, and 20.01% of the URIs that contain numbers in
the path. However, in Wikipedia’s external links we found that 33.92% of the URIs
contain long strings in the path and 77.28% of the URIs contain numbers in the path.
Although there is a high percent of numbers in the path, we found that 15.78% of
the URI contains percent encoding and 44.39% contains query.

As for the Wayback Machine access log sample we found that the hostname
diversity is 0.92, and the domain diversity is 0.83. This results indicates that our

.com
.com

90

sample is diverse. In addition, we found that 68.04% are commercial top level domain
(.com). Also, we found that 86.83% are depth 0, meaning that most of the dataset
used for analyzing the model is going to be of depth 0. In addition, we found 40.10%
of the URIs contain long strings in the hostname. Also, we found that 6.02% of the
URIs contain numbers in the path and 6.86% in the domain.

4.6 SUMMARY

In this chapter, we described and analyzed the datasets that we will use such as
DMOZ, Wikipedia, and the Wayback Machine access log. DMOZ and Wikipedia
datasets will be used as an ontology to classify incoming requests. The Wayback
Machine access log will be used as input to our framework as requests for evaluation.
We analyzed and compared the datasets, based on TLD, depth, and patterns.

.com

91

CHAPTER 5

IMPLEMENTATION

In the previous chapter, we discussed the datasets we are going to be working with:
DMOZ, Wikipedia, and the Wayback Machine access log. In this chapter, we present
the framework and the implementation of our work, which includes detecting the
URI aboutness by tokenizing the URI, classifying the URI, filtering candidates, and
adding dimensions to select and rank recommendations. For each step, we present the
different datasets we can use, the methods to accomplish the step, and the methods
we use to test and evaluate the quality of the outcome.

When a user requests a webpage from the archive, that page may or may not
be archived, and based on only the URI, we want the result to be a set of recom-
mendations of similar webpages. We want to use only the URI because the content
may not be available, to minimize the cost of dereferencing the webpage, and to
enhance speed. The recommendation list is affected by the resources available and
other features that we can add, but these may also affect the cost and time. There
are dimensions we can add to enhance the recommendations outcome such as the
archival quality, webpage popularity, temporal similarity, and URI similarity. In an
ideal situation, we want to recommend webpages that might be in a cold spot, which
are pages that are not live, are currently not popular, but are archived.

Fig. 32 Main steps performed to find recommendations for a requested URI

92

5.1 ESTABLISHING BASELINES

Here we describe the general method of addressing the main research question:
“Given a URI, how can we build a model for selecting and ranking possible
recommendation webpages at a Web archive?”. That includes addressing other
research questions, starting with a user requesting a URI to finally construct a ranked
list of K archived recommendations that are similar to the requested URI. The main
steps we will address are shown in Figure 32. After the user requests a URI, four
main steps are performed, which are detecting the URI semantics, mapping tokens
to an ontology, filtering candidates, and ranking candidates. Each of the four steps
addresses a research question. Finally, the user will be provided with a ranked list
of K recommendations.

The outline of the proposed steps is shown in Algorithm 1. The four main steps
in our work are the following functions: first-level classification (Line 1), deep level
classification (Line 4), filter candidates (Line 11), and score and rank candidates
(Line 16). Each step in Algorithm 1 corresponds to one or more research questions
proposed here.

• RQ1: Given a URI, how much information can we learn about the
referenced webpage without examining the content of the page? Here,
we determine the tokenizing method (Line 28). In addition, since the DMOZ
dataset contains a list of categorized URIs (Section 4.1), we notice that some
hostnames are categorized in multiple main categories and other hostnames
appear in a single category multiple times. For this reason, we check if the
requested URI is in the black list (Line 22), which is the list of hostnames that
are hard to classify due to existing in multiple categories. In addition, we check
if the URI is in the white list (Line 25), which is the list of hostnames that we
know what main category it belongs to.

• RQ2: Given a set of terms that describes a webpage, how do we map
the terms to an ontology of webpages? Here we select the ontology that we
are going to use to classify the URI, for both first-level classification and deep
level classification (Lines 1-9). The first-level classification is to determine the
main category that the requested URI belongs to (1-3). Deep level classification
is to determine the deep-level category that the requested URI belongs to (Lines
4-9). At the end of this section we will have a list of candidates.

93

• RQ3: Given a set of webpages discovered through the ontology, what
metrics do we use to filter the best candidates for recommendation?
Here we filter the candidates based on if the candidates are archived (Lines
11-14).

• RQ4: Given a set of candidate webpages for recommendation, how
do we rank the candidates? Here we score and rank the candidates (Lines
16-18) by scoring and ranking the candidates based on several features (Line
17). Finally, we select the top N ranked recommendations (Line 18). Note
that if the number of candidates is less then N , then we would collect, filter,
and score more candidates (Line 31-35).

Fig. 33 Flowchart overview of the main steps to find recommendations for a
requested URI, color coded by research questions, where (RQ1: dark blue, RQ2:
light blue, RQ3: green, and RQ4: yellow)

94

Algorithm 1 Main steps to find recommendations for a requested URI
. (RQ1, RQ2) Step 1

1: function First_Level_Classification(requested_URI)
2: ML (requested_URI)
3:
. (RQ2) Step 2

4: function Deep_Level_Classification(requested_URI)
5: Index_dataset_by_category ()
6: Cosine_similarity (requested_URI)
7: Get_top_N_candidates (Candidates)
8: Create_and_prune tree (Candidates)
9: ML (Candidates)
10:

. (RQ3) Step 3
11: function Filter_Candidates(Candidates)
12: for Candidates do
13: if Candidate is archived then
14: Archived_Candidates=Candidate
15:

. (RQ4) Step 4
16: function Score_and_Rank_Candidates(Archived_Candidates)
17: Score (Archived_Candidates)
18: Get_top_N_candidates (Archived_Candidates)
19:

. Main Function
20: function RecommendingArchivedWebpages(requested_URI)
21: if requested_URI not in a_classified_ontology then
22: if requested_URI in black_list then
23: Print ’Hard_to_Classify’
24: else
25: if requested_URI in white_list then
26: Deep_Level_Classification(requested_URI) . Step 2
27: else
28: Tokenize_URI(requested_URI)
29: First_Level_Classification(requested_URI) . Step 1
30: Deep_Level_Classification(requested_URI) . Step 2
31: repeat
32: Collect_All_Candidates(requested_URI)
33: Filter_Candidates(Candidates) . Step 3
34: Score_and_Rank_Candidates(Archived_Candidates) . Step 4
35: until Number of Candidates is N

95

Figure 33 shows a diagram overview of the framework. To accomplish the steps we
need some ontologies to classify the URI. In our work, we used DMOZ and Wikipedia
(Section 4.1 and 4.2). To test the entire model we used a sample of the Wayback
access log (Section 4.3).

5.2 DETECT URI SEMANTICS

Here we try to address RQ1. We want to determine the semantics of the URI
so we can classify the URI without dereferencing it. There are several methods to
determine the semantics of the URI. In this section, we present different tokenizing
methods of the URI and make some statistical analysis on the results. Next, we
present some challenges with the methods. After that, we will evaluate the methods
and compare the results to the related work.

In addition, we determine if the requested URI is not found in an existing ontology
by checking if the requested URI is included in the black list. This list contains
hostnames that belong to multiple categories in DMOZ and thus are hard to classify.
If determine the requested URI is not in the black list, then we check if it is in the
white list, which is a list of hostnames that belong to a single category and are easy
to classify. After determining the first-level category, then we perform deep level
classification.

Tokenize the URI

To classify the URI, we need to extract meaningful keywords, or tokens, from the
URI. We adopt the three methods proposed by Baykan et al. [1]:

• Tokens The URI is split into potentially meaningful tokens. The URI is con-
verted to lower-case and then split into tokens using any non-alphabetic charac-
ter as a delimiter. Finally, the “http” (or “https”) token is removed, along with
any resulting token of length 2 or less. The code to tokenize using Baykan’s
method is shown in Listing 5, where we also show the total number of tokens.
An example of using this method is shown in Listing 6. This method results in
words, combined words, or characters. This method results in a large number
of new tokens not seen in the training phase compared to other methods [1].

96

Listing 5 Creating Baykan et al. [54, 1] method to tokenize
the URI in Python

def tokenize (url):

#Step 1: lower case

url=url.lower ()

#Step 2: Split by any non - alphabetic characters

words=re.split("[^a-zA -Z]", url)

remove empty words from the list

words = filter (None , words)

#Step 3: Remove any tokens less than length 2, http ,

and https

result = [item for item in words if len(item) >2 and

item !="http" and item !="https"]

return result

def main(argv):

url=sys.argv [1]

words =[]

words= tokenize (url)

print (words)

print (" Number of tokens ="+str(len(url)))

Listing 6 Baykan et al. [54, 1] tokenization example
>python method1_tokens .py "http :// allwatchers .com/

Topics / Info_3922 .as"

[" allwatchers ", "com", " topics ", "info"]

Number of tokens = 4

• All-grams from tokens The URI tokens are converted to all-grams. We
perform the tokenization as above and then generate all-grams on the tokens
by combining 4-, 5-, 6-, 7-, and 8-grams of the combined tokens. Where n-
gram is the process of creating a sequence of n characters from the sample.
The code to tokenize using Baykan’s method to create all-grams from tokens
is shown in Listing 7, where we also show the total number of tokens. An
example of using this method is shown in Listing 8. This method results in
a fewer number of new tokens not seen in the training phase compared to the
tokenization method [1]. However, the resulting number of tokens is larger than

97

the tokenization method. Using the same example the number of tokens using
this method is 38 compared to 4 tokens using the tokenization method.

Listing 7 Creating Baykan et al. [54, 1] method to create all-grams
from tokens in Python

from nltk.util import ngrams

def word_grams (words , min =1, max =4):

s = []

if len(words)<min:

s. append (words)

else:

for n in range(min , max +1):

for ngram in ngrams (words , n):

s. append ("".join(str(i) for i in ngram))

return s

def main(argv):

url=sys.argv [1]

words =[]

words= tokenize (url)#using the tokenization method

all_gram_feature =[]

for r in words:

all_gram_feature . extend (word_grams (words ,4 ,8))

print (all_gram_feature)

print (" Number of tokens ="+str(len(url)))

Listing 8 Baykan et al. [54, 1] all-grams from tokens example
>python method2_features .py "http :// allwatchers .com/

Topics / Info_3922 .as"

["allw", "llwa", "lwat", "watc", "atch", "tche", "cher"

, "hers", "allwa", "llwat", "lwatc", "watch", "atche

", "tcher", "chers", " allwat ", " llwatc ", " lwatch ", "

watche ", " atcher ", " tchers ", " allwatc ", " llwatch ", "

lwatche ", " watcher ", " atchers ", " allwatch ", "

llwatche ", " lwatcher ", " watchers ", "com", "topi", "

opic", "pics", "topic", "opics", " topics ", "info"]

Number of tokens = 38

• All-grams from the URI The URI is converted to all-grams without tok-
enizing first. Any punctuation and numbers are removed from the URI, along

98

with “http” (or “https”). Then the result is converted to lowercase. Finally,
the all-grams are generated by combining the 4-, 5-, 6-, 7-, and 8-grams of the
remaining URI characters. The code to tokenize using Baykan’s method to cre-
ate all-grams from the URI is shown in Listing 9, where we also show the total
number of tokens. An example of using this method is shown in Listing 10.
This method results in a fewer number of new tokens not seen in the training
phase compared to the tokenization method and the all-grams from tokens [1].
However, the resulting number of tokens is larger than both the tokenization
method and the all-grams from tokens. Using the same example, the number
of tokens using this method is 105 compared to 4 tokens using the tokenization
method and 38 using the all-gram from tokens method.

Listing 9 Creating Baykan et al. [54, 1] method to create all-grams
from the URI in Python

def groupURI (url):

url=url.strip("http")

url=re.sub(r"[^a-zA -Z_]", "", url)

return url

def main(argv):

url=sys.argv [1]

words= groupURI (url)

all_gram_uri =[]

all_gram_uri . extend (word_grams (words ,4 ,8))#using the

word_grams method

print (all_gram_uri)

print (" Number of tokens ="+str(len(url))

99

Listing 10 Baykan et al. [54, 1] all-grams from tokens example
>python method3_URI .py "http :// allwatchers .com/ Topics /

Info_3922 .as"

["allw", "llwa", "lwat", "watc", "atch", "tche", "cher"

, "hers", "ersc", "rsco", "scom", "comT", "omTo", "

mTop", "Topi", "opic", "pics", "icsI", "csIn", "sInf

", "Info", "nfoa", "foas", "allwa", "llwat", "lwatc"

, "watch", "atche", "tcher", "chers", "hersc", "

ersco", "rscom", "scomT", "comTo", "omTop", "mTopi",

"Topic", "opics", "picsI", "icsIn", "csInf", "sInfo

", "Infoa", "nfoas", " allwat ", " llwatc ", " lwatch ", "

watche ", " atcher ", " tchers ", " chersc ", " hersco ", "

erscom ", " rscomT ", " scomTo ", " comTop ", " omTopi ", "

mTopic ", " Topics ", " opicsI ", " picsIn ", " icsInf ", "

csInfo ", " sInfoa ", " Infoas ", " allwatc ", " llwatch ", "

lwatche ", " watcher ", " atchers ", " tchersc ", " chersco "

, " herscom ", " erscomT ", " rscomTo ", " scomTop ", "

comTopi ", " omTopic ", " mTopics ", " TopicsI ", " opicsIn "

, " picsInf ", " icsInfo ", " csInfoa ", " sInfoas ", "

allwatch ", " llwatche ", " lwatcher ", " watchers ", "

atchersc ", " tchersco ", " cherscom ", " herscomT ", "

erscomTo ", " rscomTop ", " scomTopi ", " comTopic ", "

omTopics ", " mTopicsI ", " TopicsIn ", " opicsInf ", "

picsInfo ", " icsInfoa ", " csInfoas "]

Number of tokens =105

Note that the all-grams created from the tokens and from the URI contains grams
that are not words, however, we do not filter them out because keeping them will
increase finding a match using machine learning.

To show the effect of different tokenization methods on the number of resulting
tokens, Table 25 shows the result of tokenizing http://odu.edu/compsci. In addi-
tion to testing the tokenization methods we also examine removing the TLDs from
the URIs, removing numbers, and removing stop-words (Section 5.2.1).

Measuring Term Frequency

After splitting the dataset, tokens that appear in the test sample and not in the
training sample may result in wrongfully classified URIs. Here we want to measure
the amount of these “empty URIs”.

http://odu.edu/compsci

100

Table 25 Tokenizing the URI https://odu.edu/compsci using different
methods [1]

Method Result
Tokens odu, edu, compsci

All-grams from tokens odu, edu, comp, omps, mpsc, psci, comps, ompsc, mpsci, compsc,
ompsci, compsci

All-grams from URI

odue, dued, uedu, educ, duco, ucom, comp, omps, mpsc, psci, odued,
duedu, ueduc, educo, ducom, ucomp, comps, ompsc, mpsci, oduedu,
dueduc, ueduco, educom, ducomp, ucomps, compsc, ompsci, odueduc,
dueduco, ueducom, educomp, ducomps, ucompsc, compsci, odueduco,
dueducom, ueducomp, educomps, ducompsc, ucompsci

In Baykan et al. [1], the tokenization method has a low F1 due to the high
number of empty URLs (tokens not seen before) (32%). Examples of empty URIs
are http://xboxgames.com and http://yuzutree.com. If the tokens ‘xboxgames’
and ‘yuzutree’ did not appear as tokens in any other URI, then they are considered as
empty URIs. Here we check term frequency of the results of the different tokenization
methods in order to estimate the issue and to recommend a solution, such as the usage
of Wikipedia dataset as an additional ontology to cover as many URIs as possible.

• Tokenization: Using the DMOZ dataset (Section 4.1) with a total of 6,522,125
URIs, we converted the URIs to tokens (Listing 5). The number of tokens
created for all the URI is 24,559,916, and the number of unique tokens created
is 3,481,714. We checked the number of tokens that only appeared once, as
this is important when classifying the URI. The goal is to have more frequent
tokens so that they appear in both the training and testing dataset. If they
appear only in the testing, then they can be classified. In this case we found
2,727,504 tokens that appeared only once, which is 78.34% of the unique tokens.
However, we want to check if the URI only contains tokens that appear once.
Since we included the top level domain in this method, there were no resulting
URIs that contained only tokens which appeared only once. We found that
none of the unique URIs are empty URIs because the TLD was included and
redundant in the dataset.

• Tokenization, while removing the TLD and the URI extension: Using the
DMOZ dataset, we filtered out the TLD and the URI extensions and tok-
enize the URIs. The number of tokens created for all the URI is 16,456,706,

https://odu.edu/compsci
http://xboxgames.com
http://yuzutree.com

101

and the number of unique tokens created is 3,468,686. We checked the number
of tokens that appeared only once and found 2,725,413 tokens that appeared
only once, which is 78.57% of the unique tokens and 16.56% of all tokens. We
found that 40.90% of the unique URIs are empty URIs.

• All-grams from tokens, while removing the TLD and the URI extension: Using
the DMOZ dataset, the number of all-gram from tokens created for all the URI
is 258,171,414, and the number of unique tokens created is 18,988,783. We
checked the number of tokens that appeared only once. In this case we found
10,777,371 tokens that appeared only once, which is 56.76% of the unique tokens
and 4.17% of all tokens. We found that 0.2% of the unique URIs are empty
URIs.

• All-grams from URI, while removing the TLD and the extension: Using the
DMOZ dataset, the number of all-gram from URI created for all the URI
is 620,919,919, and the number of unique tokens created is 52,348,990. We
checked the number of tokens that appeared only once. In this case we found
32,873,677 tokens that appeared only once, which is 62.80% of the unique tokens
and 5.29% of all tokens. We found that 0.1% of the unique URIs are empty
URIs.

Resolve the Empty URIs using Wikipedia

Using a sample of the empty URIs using tokenization while removing the TLD and
the URI extension method, we want to determine if Wikipedia can suggest related
articles. We used the tokens and entered it in the Wikipedia search bar, then if there
is a match Wikipedia will suggest related articles. By going through those suggestions
we search for an article that contains the empty URI as an “official webpage” (Section
4.2). Finally, we will use the article’s category as the category we are going to use
for the requested URI. For example, the following URIs below are empty URIs and
we use Wikipedia to find related webpages:

• http://africover.org Wikipedia suggested the following related webpages:
Africover, Environmental issues in Africa.

http://africover.org

102

• http://00-buckshot.com/ Wikipedia suggested the following related web-
pages: Shotgun shell, Buckshot (rapper), Buckshot Jones, Taurus Judge, Buck-
shot Roberts, .410 bore, Black Moon (group), Buckshot LeFonque, The Buck
Shot Show, Boot Camp Clik

• http://1962valiants.com Wikipedia suggested the following related web-
pages: Valiant, The Valiants, Vince Vance & the Valiants, Valiants Memo-
rial, Vickers Valiant, Valiant tank, Johnny Valiant, The Valiants (firefighters),
Plymouth Valiant, Chrysler Valiant

However, in some cases Wikipedia does not find any related webpages. For exam-
ples, the following URIs are cases where Wikipedia could not suggest any webpages:

• http://2sweetkidz.com

• http://cableseal.com

• http://byzart.com

Using this method, we found Wikipedia articles for 1,867,284 the empty URIs,
which is almost 70%.

5.2.1 TESTING AND EVALUATING

To determine the best tokenization method, we classify the resulting tokens based
on an ontology and check its accuracy. One ontology dataset we can use for classi-
fying the URI is DMOZ. Here we use Naïve Bayes, and train the algorithm based
on part of the dataset and test it on the remaining part. We chose NB because of
its simplicity and nonindependent and overlapping features. In addition, NB per-
formance in tokenization was proven to have close results to other methods such as
ME and SVM [1]. We use F1 to determine the best classification method. F1 is
the harmonic mean of the precision and recall [148, 149] (Equation 5). Precision is
the positive predictive value (Equation 3). Recall is the sensitivity, which is calcu-
lated by determining the relevant instances retrieved and the total relevant instances
(Equation 4).

Precision = TP

TP + FP
(3)

Recall = TP

TP + FN
(4)

http://00-buckshot.com/
http://1962valiants.com
http://2sweetkidz.com
http://cableseal.com
http://byzart.com

103

F 1 = 2(Recall × Precision)
(Recall + Precision) (5)

where

• True Positives (TP) are when the correct category is predicted

• True Negatives (TN) are when the URI is correctly predicted as not belonging
to a category

• False Positives (FP) are when the URI does not belong to a category but is
predicted as belonging to the category

• False Negatives (FN) are when the URI belongs to a category but is predicted
as not belonging to category

We must consider that when we are doing the classification step, we compare our
result to Baykan et al. [1] (Section 3.2.2).

Best tokenization method

To determine the best tokenization method, we tested the classification of tokens
on the DMOZ dataset, using machine learning. We took the DMOZ dataset and
created a 10-fold cross-validation set, using 90% for training and 10% for testing. We
employed a Naïve Bayes classifier to take tokens and return the top-level category.
Naïve Bayes was selected because of its simplicity that assumes independence between
the features. In the testing dataset we filtered out URIs that contain tokens not seen
in the training set, as was also done in related work [1]. In the DMOZ dataset we
took the URIs and their top-level category. Then for testing, we use the tokens
from the test input to determine the likely category. We measured the F1 score
to evaluate the different tokenization methods. Table 26 shows the result of our
evaluation. In addition to the base tokenization methods described above, we also
tested the following alternatives for each method:

• remove TLD before tokenization

• remove TLD and numbers before tokenization

• remove TLD, numbers, and stop-words before tokenization

104

The stop-words were based on a set of stop-words in the Natural Language Toolkit
(NLTK) [150, 151, 152]. We found that using the all-grams from the URI after
removing the TLD and numbers had the highest F1 score, which was comparable
to results obtained in related work [95]. We use this method of tokenization going
forward.

Table 26 Classifying at the first level, comparing F1 score, Micro average, and
Macro average for DMOZ dataset using different methods

Method F1 score Micro
average

Macro
average

Tokens

All URI tokens 0.39 0.45 0.31
URI tokens,
without TLD 0.35 0.40 0.28

URI tokens,
without TLD
and numbers

0.40 0.45 0.32

URI tokens,
without TLD
and stop-words

0.39 0.43 0.30

All-gram
from
tokens

All URI tokens 0.51 0.53 0.45
URI tokens,
without TLD 0.51 0.53 0.46

URI tokens,
without TLD
and numbers

0.51 0.52 0.47

URI tokens,
without TLD
and stop-words

0.50 0.52 0.46

All-grams
from
URI

All URI tokens 0.56 0.55 0.48
URI tokens,
without TLD 0.55 0.59 0.46

URI tokens,
without TLD
and numbers

0.59 0.62 0.61

URI tokens,
without TLD
and stop-words

0.55 0.60 0.47

105

5.2.2 HOSTNAME BLACK LIST

In the DMOZ dataset, we found that are some hostnames that are so general
that they are in many categories. This may cause the prediction of the category
to be wrong. For this reason we determined the number of hostnames that are in
many categories and are hard to classify. In order to create a list of hostnames
that are hard to classify, we first extract the hostnames from the DMOZ URI list,
then for each hostname we determine the list of main categories that it belongs to.
Table 27 and Figure 34 shows the number of categories that a hostname appeared in
and the number of hostnames. We found that there are a total of 3,586,362 unique
hostnames in DMOZ. Of these, 3,254,322 appeared only once in one category, and
184,627 appeared more than once in one category. For example, the hostnames geoc

ities.com and members.aol.com appeared in all 17 categories in DMOZ. However,
the hostname accuweather.com appeared multiple times in the category Regional.

Table 27 The number of categories that a hostname appeared in and the
number of hostnames

of categories that the
hostname appeared in # of hostnames

1 184,627 (appeared more than once) and
3,254,322 (appeared once)

2 108,725
3 20,275
4 7,513
5 3,725
6 2,224
7 1,522
8 953
9 672
10 477
11 380
12 312
13 234
14 162
15 129
16 96
17 6

geocities.com
geocities.com
members.aol.com
accuweather.com

106

Fig. 34 The number of categories that a hostname appeared in and the
number of hostnames

In order to create the black list we need to analyze this information further. In
addition to a hostname appearing in multiple categories, we notice that the distri-
bution of its occurrence within the category is different. For example, the hostname
cnn.com appeared in 11 categories, however 99.87% of the occurrences were in the
News category. So cnn.com is not hard to classify. This makes us look into the
percentage of occurrences within the categories. Thus to create a black list we have
to consider two factors: the number of categories that a hostname belongs to and the
distribution of occurrences in each category. To find hostnames that are in the black
list in DMOZ, we searched for hostnames that appeared in more than 10 categories,

cnn.com
cnn.com

107

and the difference between the percentage of occurrences for the top 3 categories is
less than 15%. The total number of hostnames in this case is 954. If we encounter a
requested URI with a hostname on the black list, our algorithm will stop and will not
categorize or offer recommendations. The black list dataset is available for download
at https://github.com/oduwsdl/Recommending-Archived-Webpages.

5.2.3 HOSTNAME WHITE LIST

Here we create a list of hostnames that are easy to classify. We have found that
some hostnames exist multiple times in a single category. So instead of classifying
the URI we predicted the first level classification for those requests. To create the
white list we determine the hostnames that appear over 10 times in only a single
category. In this case, we found 9,146 hostnames. In Table 28, we show the number of
hostnames occurrences in each category. We found that 3,081 hostnames are from the
Regional category and 2,825 hostnames are from the Adult category. We found 311
hostnames that appeared over 100 times in a single category. Examples of hostnames
that are in the white list include: movies.tvguide.com categorized as Arts, we

atherunderground.com categorized as Regional, and cfpeople.org categorized as
Society. If we encounter a requested URI with a hostname on the white list, we will
consider it classified at the first level and move on to the deep level classification step.
The white list dataset is available for download at https://github.com/oduwsdl/

Recommending-Archived-Webpages.

5.3 MAP TOKENS TO AN ONTOLOGY

In this section, we want to address RQ2. We would need to select an ontology
to work with that satisfy our requirements. Next, we want to determine which
classification method to use. Finally, we would test and evaluate our methods.

5.3.1 SELECT ONTOLOGIES

We have some different datasets that we may consider, such as DMOZ, Wikipedia,
and search engine, such as Google or Yahoo! Directory. Note that search engines
directories may update their lists over time by removing webpages that are no longer
available, hence it will be impossible to find webpages that archived but not in the
live web. In our work, we prefer DMOZ since it may contain webpages that no longer

https://github.com/oduwsdl/Recommending-Archived-Webpages
movies.tvguide.com
weatherunderground.com
weatherunderground.com
cfpeople.org
https://github.com/oduwsdl/Recommending-Archived-Webpages
https://github.com/oduwsdl/Recommending-Archived-Webpages

108

Table 28 The number of hostnames occurrences in each category

Category Number of hostnames
occurrences

Regional 3,081
Adult 2,825
Arts 890
Sports 364
Games 355
Computers 355
Society 282
Science 233
Home 196
Health 167
Business 117
Reference 103
Recreation 94
Kids and Teens 70
News 7
Shopping 6
Netscape 1

exist on the live Web and since we have collected its dataset locally over the span of
17 years. In addition, external links in Wikipedia are considered classified and may
contain webpages not found in DMOZ and could help classify webpages that DMOZ
could not.

In our work, the first step is to determine if the requested URI is already present
and categorized in a known ontology, and we use DMOZ and Wikipedia. Using
DMOZ is straight forward; we check if the URI exists in DMOZ or not by matching
the requested URI to the classified URIs in DMOZ. However, in Wikipedia we check
if the requested URI is the official webpage and is categorized (Section 4.2).

To test how often this option might be available, we used the Wayback Machine
access logs (Section 4.3). From the filtered set, we found 13.17% URIs in DMOZ or
Wikipedia.

5.3.2 DETERMINE THE CLASSIFICATION METHODS

We need to determine the method to classify the webpage using the tokens we

109

extracted from the previous step. In related work, common machine learning algo-
rithms, such as Naïve Bayes and Maximum Entropy work well. This method works
for determining the first level classification. However, since we have a large dataset
and a hierarchical structure on the data, we adopted the method proposed by Xue et
al. [6] (Section 3.2.2) for deep classification. In summary, deep classification has two
steps. First, we compute the term frequency-inverse document frequency (TF-IDF)
[153] for each input, and then check the similarity using cosine similarity. Alterna-
tively, we can use the TF-IDF by grouping the instances by category, then check
the similarity using cosine similarity. Second, we select K candidates from the first
step and perform NB to select the best candidate category. Note that this work was
performed on documents, not URIs. In our case, we performed it on URI tokens.

First-Level Classification

For a request that did not appear in an ontology, we classify it using only the tokens
from the URI. Out of the three different methods of tokenization (tokenize, all-
grams from the tokens, and all-grams from the URI), Table 26 showed that the
best tokenization method was using all-grams from URI while removing TLD and
numbers.

Now that we have determined the best tokenization method, we will apply this for
future requests. We trained the Naïve Bayes classifier on the entire DMOZ dataset
and this will be used for classification at the first level. We take the requested URI,
remove the TLD and numbers, and then perform the all-gram from URI tokenization
described in the previous section. These resulting all-grams are used in the classifier
to produce a first level classification.

Deep Level Classification

In this step we want to classify the requested URI http://cs.odu.edu/compsci

to a hierarchical deep classification such as Computers/Computer_Science/Academ

ic_Departments/North_America_United_States/Virginia. Known methods to
determine hierarchical deep classification are the big-bang approach and the top-
down approach [154]. Neither method is ideal with a large number of hierarchies and
may result in error propagation. For this reason we adopt the method by Xue et al.
[6]. In our case we are limited to the URI only and do not have the documents or any
supporting details. The steps to perform deep level classification are the following:

http://cs.odu.edu/compsci
Computers/Computer_Science/Academic_Departments/ North_America_United_States/Virginia
Computers/Computer_Science/Academic_Departments/ North_America_United_States/Virginia

110

1. Index dataset. In preparation to compute similarity between the requested
URI and the category entries, we index DMOZ by category, creating a list of
all URIs in each of the DMOZ deep level categories.

2. Cosine similarity. We compute the cosine similarity between the tokenized
requested URI and the tokenized DMOZ URIs and their titles and description
in each category. In this step each category of the index will get a similarity
score to the requested URI, which is the average similarity to all entries in that
category.

3. Collect N candidates. Next we select the top 10 candidate categories with
the highest similarity score, similar to related work [6].

4. Prune tree. Each candidate category could be a leaf node or an internal node.
We create a hierarchical tree and then prune it to get the final list of candidates
that we can use machine learning to classify. First, we create a tree from the
candidates by starting from the first node and then going down until all 10
candidates are presented, as shown in Figure 35(a). Next, in order to enhance
the classification, the tree is pruned based on the ancestor assistance strategy.
The ancestor assistance strategy includes the ancestors of a node if there are
no common ancestors with another candidate, as shown in Figure 35(b).

5. Classify. To choose a single classification from the pruned tree we classify the
requested URI based on two methods, using 3-gram tokens and all-grams. The
3-gram method had the best result when comparing documents [6], however in
our work we compare URI tokens, so we expect the all-gram method to perform
better.

Testing classifying deep classification

To test and evaluate deep classification we will measure the performance of each level
of the hierarchical category. We also want to test the effect of pattern occurrences
and classification. In addition, we want to determine the characteristics of URIs that
are correctly classified, such as TLD, depth, and containing words that occur in a
dictionary. This will be discussed in Section 6.1.

111

(a) Create hierarchical tree from the 10 candidate categories (the candidate categories are
highlighted). The numbers represent the category ID

(b) Pruned tree using ancestor assistance strategy. The parents of nodes 88 and 100 are
included because they have no shared ancestor with other candidates

Fig. 35 The process of pruning a hierarchical tree using ancestor assistance
strategy [6]

5.4 GATHERING CANDIDATES

After performing deep classification the result will be the category that the URIs
belongs to. Based on the result, we gather all the URIs that belongs to this category.
Those URIs are the candidates for the requested URI. In the case that the number of
URIs is less than K we gather the candidates of the parent category. For example, if

112

we set K = 3, and we categorized a URI to the deep category Computers/Algorith

ms/Complexity/Conferences, we find that there is only one URI in this category, ht

tp://cs.utep.edu/longpre/complexity.html. In order to collect more candidates
we gather the URIs from the parent category, which is in this case Computers/

Algorithms/Complexity. The number of URIs is 5:

• http://haegar.informatik.uni-wuerzburg.de/person/mitarbeiter/voll

mer/tcs-bookmarks.html

• http://link.springer-ny.com/link/service/journals/00037/

• http://top.cis.syr.edu/people/royer/talks.html

• http://claymath.org/prize_problems/p_vs_np.htm

• http://cs.washington.edu/homes/kautz/blackbox/

In this example, our candidates will be these five URIs and in addition to the previous
single URI.

5.5 FILTER CANDIDATES

In this section, we address RQ3. We want to determine the filtering features that
we need to eliminate from the candidate results, so we do not consider them in later
analysis. Also, we will test and evaluate our method. We take the candidates from
Step 2 (Section 5.4) and remove any that are not archived. We use TimeMaps from
MemGator [155] to determine this.

In addition, when selecting a memento of an archived candidate, we have to
consider some cases, such as:

• Archived candidate URI is not found (404). For example, when selecting the
memento for http://web.archive.org/web/20110909111700/coatscrafts.

co.uk/crafts/crochet/projects/crochet+project+-+crochet+bag.htm it
returns a 404 response. In this case, we filter out the URIs that are 404s and
find other mementos that resolve to 200.

• Archived candidate URIs redirect to other URIs. For example, when selecting
the memento for http://norfolkline.com/ferry it redirects to https://we

b.archive.org/web/20170613205542/https://dfdsseaways.co.uk. This is

Computers/Algorithms/Complexity/Conferences
Computers/Algorithms/Complexity/Conferences
http://cs.utep.edu/longpre/complexity.html
http://cs.utep.edu/longpre/complexity.html
Computers/Algorithms/Complexity
Computers/Algorithms/Complexity
http://haegar.informatik.uni-wuerzburg.de/person/mitarbeiter/vollmer/tcs-bookmarks.html
http://haegar.informatik.uni-wuerzburg.de/person/mitarbeiter/vollmer/tcs-bookmarks.html
http://link.springer-ny.com/link/service/journals/00037/
http://top.cis.syr.edu/people/royer/talks.html
http://claymath.org/prize_problems/p_vs_np.htm
http://cs.washington.edu/homes/kautz/blackbox/
http://web.archive.org/web/20110909111700/coatscrafts.co.uk/crafts/crochet/projects/crochet+project+-+crochet+bag.htm
http://web.archive.org/web/20110909111700/coatscrafts.co.uk/crafts/crochet/projects/crochet+project+-+crochet+bag.htm
http://norfolkline.com/ferry
https://web.archive.org/web/20170613205542/https://dfdsseaways.co.uk
https://web.archive.org/web/20170613205542/https://dfdsseaways.co.uk

113

a challenge that we have to consider and decide if we want to re-evaluate the
candidate once it is redirected. This could mean that the URI hostname has
been updated or the topic of the URI has shifted. In this case, we score both
the redirected memento and find an other memento that resolve to a 200 and
score that memento as well.

5.6 RANK CANDIDATES

The final research question we address is RQ4. In this section, we want to deter-
mine the features we want to consider to rank the features, set the weights for each
feature, apply the weights on the candidates, rank the candidates, and finally test
and evaluate the results.

5.6.1 SET FEATURES

In this work, we use different features to rank the candidates. We rank and recom-
mend the remaining candidates based on temporal similarity (t), webpage popularity
(p), URI similarity (s), and archival quality (q). Our final list of recommended web-
pages will be ranked based on Equation 6, where wt+wp+ws+wq=1.0 and specify the
weights given to each of the features.

score = wtt+ wpp+ wss+ wqq (6)

Temporal similarity

Temporal similarity refers to how close the available candidate webpage’s Memento-
Datetime is to the requested URI (Section 3.5.3). If the difference between the two
Memento-Datetimes are large then it is not a good candidate. This means we have to
make sure that the recommended webpage is in the same time frame as the requested
time frame. For example, if the user requests a “Super Bowl” in year 2017 we would
not recommend results of “Super Bowl” in year 2000. This is shown in Equation
7, where rd is the request datetime, cd is the candidate datetime, ud is the current
datetime, and ed is the earliest datetime. The earliest datetime is considered 1996,
because that is when archiving the web started [114].

t = |rd − cd|
ud − ed

(7)

114

Webpage popularity

We use how often the webpage has been archived and the domain’s popularity as
determined by Alexa1 as an approximation for the webpage’s popularity (Section
3.5.2). Our popularity measure p is given in Equation 8, where a is the Alexa Global
Ranking of the requested domain, x is the lowest ranked domain in Alexa, n is the
number of times the URI has been archived, and m is the number of times Alexa’s
top-ranked website has been archived.

p =
(| loga

logx
− 1|+ log n

log m
)

2 (8)

We set x to 30,000,000 as it is the current lowest ranking in Alexa, and we set m
to 538,300, the number of times that http://google.com, the top-ranked Alexa
webpage, has been archived, as of November 2018.

URI similarity

We measure the similarity of requested URI tokens and candidate URI tokens using
Jaccard similarity coefficient (Equation 9).

s = |A ∩B|
|A|+ |B| − |A ∩B| (9)

Archival quality

Archival quality refers to how well the page is archived. It measures the damage rate
of the webpages (Section 3.5.1), meaning missing resources such as images, videos,
text, or any other resource. We use Memento-Damage [134] to calculate the impact
of missing resources in the webpage. We calculate archival quality in Equation 10,
where d is the damage score calculated from Memento-Damage.

q = 1− d (10)

5.6.2 SET FEATURES WEIGHTS

Here we want to set weights for each feature. The weights could be preset and

1https://alexa.com

http://google.com
https://alexa.com

115

could be altered by the user if the user wants to focus on one feature more than
the other. For example, we might assign the weights to the following features in
descending order: webpage popularity and in the cold spot, archival quality, content
similarity, and temporal similarity. Then the user could alter the weights of these
features based on his needs.

Apply weights to candidates

Using the feature weights, we apply them to the candidate webpages. Then each
candidate webpage will have a score associated with it. Using these score, we can
rank the candidates in descending order. Then we will present the user with K

candidates. If there are less than K candidates, then we collect more candidates
by gathering the URIs in the parent category, then score and rank the candidates
(Section 5.4).

5.6.3 EXAMPLE

Here we present an example of a request and the resulting recommendations.
We request http://odu.edu/compsci with the date of March 1, 2014. This URI
is not classified in DMOZ or in Wikipedia, so we use machine learning and clas-
sify it to Computers/Computer_Science/Academic_Departments/North_America/

United_States/Virginia. Then we collect all the candidates from DMOZ:

• http://cs.gmu.edu

• http://cs.odu.edu

• http://cs.virginia.edu

• http://cs.vt.edu

• http://wm.edu/as/computerscience/?svr=web

• http://radford.edu/content/csat/home/itec.html

• http://cs.jmu.edu

• https://php.radford.edu/~itec

• http://mathcs.richmond.edu

http://odu.edu/compsci
Computers/Computer_Science/Academic_Departments/North_America/United_States/Virginia
Computers/Computer_Science/Academic_Departments/North_America/United_States/Virginia
http://cs.gmu.edu
http://cs.odu.edu
http://cs.virginia.edu
http://cs.vt.edu
http://wm.edu/as/computerscience/?svr=web
http://radford.edu/content/csat/home/itec.html
http://cs.jmu.edu
https://php.radford.edu/~itec
http://mathcs.richmond.edu

116

• http://hollins.edu/academics/computersci

Using equal weights for our ranking equation, the top three ranked candidates are:

1. https://web.archive.org/web/20140226090846/http://cs.odu.edu:80/, score
= 0.87

2. https://web.archive.org/web/20140208043915/http://cs.virginia.edu/,
score = 0.75

3. https://web.archive.org/web/20140223213510/http://cs.jmu.edu/, score
= 0.73

5.6.4 TESTING AND EVALUATING

For testing and evaluating the entire model we will use a sample of requests from
the Wayback access log and try to categorize and recommend similar webpages. We
will evaluate our categorization and the ranking of the recommendations using human
evaluation. This will be discussed in Section 6.2.

5.7 SUMMARY

In this chapter, we presented the baseline of our work and showed the main
steps starting from requesting a URI to recommending a list of recommendations.
We reviewed each research question and presented a detailed overview of how to
answer them. The main steps include detecting URI semantics, mapping tokens to
an ontology, filtering candidates, and ranking candidates. We described each step
and detected some solutions to challenges that may occur. Finally, for each step we
determined the methods of testing and evaluating.

http://hollins.edu/academics/computersci
https://web.archive.org/web/20140226090846/http://cs.odu.edu:80/
https://web.archive.org/web/20140208043915/http://cs.virginia.edu/
https://web.archive.org/web/20140223213510/http://cs.jmu.edu/

117

CHAPTER 6

EVALUATION AND RESULTS

In this chapter, we present the evaluation of the deep level classification and the
effect of different features in the URI such as depth, presence of dictionary words,
long strings, and the category that it belongs to. We also evaluate the entire model
and present human evaluators with three different datasets: requests that are found
in an ontology, requests that are not found in an ontology and have depth zero, and
requests that are not found in an ontology and have a path (i.e., depth is higher than
1). We show the overall scores and the results of each dataset.

6.1 TESTING DEEP LEVEL CLASSIFICATION

We evaluate how well our deep classification method (Section 5.3.2) works. To
test this step we use 10% of the DMOZ dataset for testing and the rest for training.
We assume that level one categorization is already predicted in Step 1. We evaluate
the performance by determining if we classified each level correctly. For example,
if a URI is in the category c1/c2/c3, then for level two evaluation, we check if we
predicted c1/c2. For each level we calculate the Micro-average F1 (Mi-F1) score.
In Figure 36, we show the Mi-F1 score of each level using 3-gram cosine similarity.
Compared to the related work [6], we found that our scores are low. The highest
level in our results was 0.2 compared to 0.8 in Xue et al. [6], but that is due to using
only the requested URI as the testing data and the URI and title and category as
training, where Xue et al. had the entire document available for categorization. This
shows that using only the tokens from the URI is not enough for deep classification.
Because of limited information, we also show the result of testing the same method
using all-gram cosine similarity. We found that the results are better with the highest
score of 0.3, however this is still considered low compared to related work. This shows
that deep level classification is a difficult problem with only the URI tokens available.

c1/c2/c3
c1/c2

118

Fig. 36 Performance on classifying to different levels using 3-gram and all-gram

Features affecting Deep Level Classification Performance

Some features could affect the URI classification, such as the depth of the URI, URI
words appearing in a dictionary, URI containing long strings, and the category that
the URI belongs to. In this section, we will discuss each case and how it affects the
classification.

Depth of the URI and classification

We investigated the relationship between the depth of the URI and classification.
Table 29 shows the URI depth and the percentage of the correctly classified URIs.
We only considered URIs to be correctly classified if they were correct to the deepest
level. We found that 63.45% of the correctly classified URIs are of depth 0. Next,
we want to determine the depth of the requested URIs. Shown in Table 22 we found
that 86.83% of the URIs in the Wayback Machine access log are depth 0, essentially
top-level webpages. It means that users often request URIs of depth 0 from the
archive. Since 63.45% of the correctly classified URIs are of depth 0, having 86.83%
at depth 0 could enhance the classification results. However, this is greater than the
percentage of DMOZ URIs with depth 0 (50.57%).

119

Table 29 URI depth and percentage of correctly classified URIs

Depth Percent
0 63.45%
1 16.96%
2 13.48%
3 3.77%
4 1.47%
5+ 0.86%

Dictionary words in the URI and classification

We check if the words in the URIs are in a dictionary (after removing the TLD).
We use the Enchant English dictionary1 and wordninja2 to split compound words.
For example, the URI http://mickeymantlebaseballcards.net is split to (mickey,
mantle, baseball, and cards). We found that 36.92% of the correctly classified URIs
contain only words from a dictionary, and 44.89% of the correctly classified URIs
contain at least one word from a dictionary.

We saw that having terms found in a dictionary affects classification. We found
that 5.39% of the Wayback Machine access log URIs contain only words from a dic-
tionary, and 26.74% contain at least one word from a dictionary. These percentages
are low and affect the ability for the requested URI to be correctly classified.

Long strings in the URI and classification

An ideal structure of the URI for classification is that it contains long strings that
may potentially have more semantics. We are trying to identify URIs with a “slug”,
which is the part of a URI that contains keywords or the webpage title. An example
of a slug is the path in https://cnn.com/2017/07/31/health/climate-change-

two-degrees-studies/index.html. The slug in the URI is readable, and we can
identify what the webpage is about. We evaluate the existence of long strings in the
correctly classified URIs. We assume that the average length of an English word is
five letters [143, 144] and anything greater is considered a long string.

Overall, we found that 41.58% of the sampled URIs contain long strings in the
domain, for example, http://timesonline.co.uk/tol/sport/cricket/. Also, we

1https://pypi.org/project/pyenchant/
2https://pypi.org/project/wordninja/

http://mickeymantlebaseballcards.net
https://cnn.com/2017/07/31/health/climate-change-two-degrees-studies/index.html
https://cnn.com/2017/07/31/health/climate-change-two-degrees-studies/index.html
http://timesonline.co.uk/tol/sport/cricket/
https://pypi.org/project/pyenchant/
https://pypi.org/project/wordninja/

120

found that 89.47% of the sampled URIs contain long strings in the path, for example,
http://medlineplus.nlm.nih.gov/medlineplus/parkinsonsdisease.html. When
analyzing the correctly classified URIs, we found that 50.07% of the correctly clas-
sified URIs contain long strings in the domain. Also, we found that 13.45% of
the correctly classified URIs contain long strings in the path. Words can be sepa-
rated by delimiters in the domain or path. We found that 9.91% of the correctly
classified URIs contain words separated by delimiters in the domain, for example,
http://vintage-poster-art.com/. We also found that 6.97% of the correctly
classified URIs contain separated words by delimiters in the path, for example,
http://seaworldparks.com/en/buschgardens-williamsburg/.

In our DMOZ evaluation, we found that long strings in the domain helped with
classification. When analyzing the Wayback Machine access logs request patterns in
Table 23, we found that 40.10% contain long strings in the domain. We also found
that only 2.32% contain long strings in the path. In addition, we found that 11.21%
contain words separated by delimiters in the domain and only 1.08% contain slugs
in the path. This also reflects the large percentage of URIs from the access logs with
depth 0 (no path). For classifying most of these requests, we will have to largely rely
on domain information.

Table 30 Percentage from the correctly classified URIs for each category

Category count Percent
Society 459 15.32%
Arts 401 13.38%
Shopping 355 11.85%
Recreation 331 11.05%
Sports 291 9.71%
Home 288 9.61%
Reference 238 7.94%
Computers 228 7.61%
Health 190 6.34%
Science 130 4.34%
Games 50 1.67%
Business 35 1.17%
News 0 0%
Total 2,996 100%

http://medlineplus.nlm.nih.gov/medlineplus/parkinsonsdisease.html
http://vintage-poster-art.com/
http://seaworldparks.com/en/buschgardens-williamsburg/

121

Category and classification

Here we wanted to investigate the effect of the category on correct classification. As
shown in Table 30, we found that 15.32% of the correctly classified URIs were in
the Society first level category. We also found that none of the correctly classified
URIs were in News. We found that in the News category in DMOZ, there is a level
two subcategory Online_Archive that contains 95% of the News URIs and repeats
several subcategories inside News. This caused errors in our classification.

6.2 TESTING AND EVALUATING THE MODEL

For evaluating the entire model we use a sample of the Wayback Machine access
log requests (described in Section 4.3). We classify the requests, gather candidates,
filter candidates, score candidates, rank candidates, and recommend the top three
scored candidates. We tested our overall method on a sample of 75 requests, as shown
in Table 31. From requests that had exact matches in DMOZ or Wikipedia, which we
call “direct match”, 25 requests were chosen randomly. From requests that are not
found in an ontology and are of depth zero, which we call “depth zero”, 25 requests
were chosen randomly. From requests that are not found in an ontology and are of
depth greater than zero, which we call “deep”, 25 requests were chosen randomly.
We included in each of the three sets a single intentionally wrongfully categorized
request, called a bogus request [156], and a wrong set of recommendations. Finally,
we randomly shuffle the sample requests.

Table 31 Distribution of our dataset

Number of
requested URIs

Number of
bogus requested URIs Total

Direct match 24 1 25
Depth zero 24 1 25
Deep 24 1 25
Total 72 3 75

For the direct match dataset, we found a match in an ontology, thus it is correctly
classified. We determined the category it belongs to, gathered candidates, filtered,
scored, ranked, and selected the top three candidates. Table 32 shows the number of
candidates collected for the direct match dataset and the total number of mementos
for all candidates. For the other two sets, depth zero and deep, we do not have a

122

match in an ontology, thus we need to classify each requested URI. We classified
the request using first level classification, then using deep classification, gathered
candidates, filtered, scored, ranked, and selected the top three candidates. Table 33
and Table 34 show the number of candidates collected for the depth zero dataset
and the deep dataset, the total number of mementos for all candidates, and the
percentage of mementos that resolved with a status code 200 OK (Section 2.2.4). In
all three datasets, we ranked the candidates based on the overall score of temporal
similarity, URI similarity, popularity, and webpage quality (Section 5.6). After that,
we selected the top three candidates ordered by total score and recommended them
to the reviewers. In most cases, we have many more than three candidates available,
so our filtering and ranking algorithm helps to determine the best candidates to
recommend.

We use human evaluation to determine if a request is correctly classified in its
appropriate category and if we recommended the top three related candidates. We
asked five reviewers all with a masters degree in computers science, with some knowl-
edge on web archive, two were males and three were females. The reviewers were
provided with some instructions of how to answer the survey.

The reviewers were asked to determine if we classified the requested URI to the
corresponding category by moving the slider to the appropriate depth. Then we show
the top three recommended candidates and ask if the reviewer agrees, disagrees, or
does not know, regarding the ranking of these candidates as shown in Figure 37.

Fig. 37 A sample question to be evaluated by the evaluators

123

Table 32 The number of candidates, the number of archived candidates, and
the total number of mementos in the direct match dataset

Request
Number of
candidates

Number of
archived
candidates

Total
mementos

for all candidates
1 110 88 63,711
2 12 7 903
3 141 96 45,542
4 36 25 5,278
5 53 29 7,608
6 214 145 26,350
7 339 263 49,218
8 81 69 26,477
9 64 44 20,770
10 69 44 56,730
11 82 55 85,630
12 8 6 1,339
13 28 21 6,797
14 117 57 86,618
15 172 97 43,749
16 102 78 240,505
17 64 53 155,627
18 12 9 3,208
19 35 27 24,999
20 22 17 8,152
21 69 44 56,724
22 10 7 3,358
23 145 109 82,359
24 112 78 13,005
Total 2097 1,468 1,114,657

124

Table 33 The number of candidates, the number of archived candidates, and
the total number of mementos in the depth zero dataset

Request
Number of
candidates

Number of
archived
candidates

Total
mementos

for all candidates
1 7 7 2,300
2 7 5 321
3 37 28 10,162
4 3 3 196
5 17 14 15,023
6 8 8 402
7 6 6 2,733
8 252 229 10,626
9 19 11 5,361
10 55 42 4,986
11 6 6 2,213
12 9 6 1,925
13 3 3 2,291
14 8 5 9,563
15 103 82 11,124
16 17 14 15,027
17 12 10 1,266
18 32 24 1,363
19 9 5 675
20 3 3 702
21 63 40 10,156
22 252 173 15,610
23 12 9 2,916
24 8 4 9,787
Total 948 737 136,728

125

Table 34 The number of candidates, the number of archived candidates, and
the total number of mementos in the deep dataset

Request
Number of
candidates

Number of
archived
candidates

Total
mementos

for all candidates
1 58 40 1,103
2 22 17 4,505
3 9 6 1,002
4 12 9 13,375
5 6 4 569
6 45 29 12,497
7 7 6 214
8 17 10 5,166
9 13 7 915
10 5 3 329,033
11 6 4 332,047
12 42 29 3,294
13 14 8 1,555
14 44 33 2,458
15 19 10 4,739
16 63 41 9,878
17 34 15 1,736
18 5 3 332,038
19 5 3 419
20 4 3 1,691
21 19 10 4,739
22 5 5 2,101
23 26 21 2,384
24 34 22 3,147
Total 514 338 1,070,605

126

In each question, we show the requested URI, for example apartments.com, with
a screen shot that is linked to the requested webpage from the archive if available,
the datetime (shown as only the year for simplicity), for example 2000, the category
found shown by a slider to represent the depth of the hierarchy (the slider starts with
“none” if all the categories are considered wrong), for example None,Regional/Nort

hAmerica/UnitedStates/Businessandeconomy/Realestate/Rentals, and the top
three candidates for each request and their datetime ordered by the calculated score,
for example rent.com (2000) with a total score of 0.79, apartmentguid.com (2000)
with a total score of 0.79, vacancynet.com (2001) with a total score of 0.78.

In Figure 37, we also show screen shots of the recommendations that are linked
to the recommended archived webpage. The total score is shown to the reviewer to
show that the recommendations are ranked based on the temporal similarity, URI
similarity, popularity, and webpage quality.

Measuring the agreement between reviewers

To measure the agreement between the reviewers we use Fleiss’ kappa (κ) [157,
158], a statistical measure to determine the reliability of agreement between multiple
reviewers when classifying items. Equation 11 shows how we calculate κ:

κ = P̄ − P̄e

1− P̄e

(11)

Equations 12-15 show how each part of Equation 11 is calculated:

P̄ = 1
N

N∑
i=1

pi (12)

Pi = 1
n(n− 1)(

K∑
j=1

n2
i j − n) (13)

P̄e =
N∑

j=1
p2

j (14)

Pj = 1
N(n)

N∑
i=1

nij (15)

where n is the number of raters which is 5 in our case, N is the number of items
being rated which is 75 in our case, and K is the number of categories which varies

apartments.com
2000
None, Regional/North America/United States/Business and economy/Real estate/Rentals
None, Regional/North America/United States/Business and economy/Real estate/Rentals
rent.com
apartmentguid.com
vacancynet.com

127

depending on the part of question we are evaluating. When evaluating the category
depth, part one in each question (Figure 37), the deepest category is 9. Also, when
evaluating the recommendation ranking agreement, part two in each question (Figure
37), the number of selections are 3.

If κ = 1.0, this means that there is complete agreement between reviewers. Table
35 shows the significance interpretation of κ.

Table 35 Significance of κ [3]

κ Interpretation
<0 Poor agreement

0.01 - 0.20 Slight agreement
0.21 - 0.40 Fair agreement
0.41 - 0.60 Moderate agreement
0.61 - 0.80 Substantial agreement
0.81 - 1.00 Almost perfect agreement

6.2.1 EVALUATING THE CATEGORIZATION

In this section, we want to evaluate the performance of categorizing the requested
URIs, part one of each question (Figure 37). The evaluators select the depth of the
category, or selects “none” if none of the category depth is considered correct.

First, we measure the agreement rate between the reviewers on the categories,
as shown in Table 36. We find that for the overall datasets κ = 0.5293 which is
considered “moderate agreement”. We also measure κ for each of the three sets and
found all of them are considered “moderate agreement”.

Table 36 Agreement rate in each dataset and the overall agreement rate of the
categorization results

Dataset κ Interpretation
Direct match 0.6040 moderate agreement
Depth zero 0.5080 moderate agreement
Deep 0.4760 moderate agreement
Overall 0.5293 moderate agreement

For the case of bogus categorization questions for all three cases (Table 37), all the
reviewers answered it correctly. This helps us determine if the reviewers understood
the goal of the model and read each question carefully.

128

Table 37 Bogus categorization questions

Dataset Requested URI Category

Direct match kidshealth.org

regional/Europe/United Kingdom/
business and economy/
construction and maintenance
/do it yourself

Depth zero thewomenshome.org

regional/oceania/Australia/
New South Wales/localities/st. leonards/
business and economy
/computers and internet

Deep kidswb.warnerbros.com/kids/shows-tomandjerry
computers/internet/
web design and development/promotion/
search engine optimization firms

Next, we measure the number of questions where the reviewer selected the full
level, meaning the reviewer agreed on the full category that our model predicted. In
Table 38, we found on average 65.83% of the questions were selected as fully correctly
classified in direct match dataset, 26.6% for depth zero dataset, and 33.33% for deep
dataset. This means that the reviewers agreed on our performance in classifying
direct match dataset, then the deep dataset, and finally the depth zero dataset. We
note that for the direct match category, we have provided the full category where
the URI was found in DMOZ, so we expected this percentage to be high.

Table 38 Reviewers selection of full categorization level

Dataset Percent
Direct match 65.8%
Depth zero 26.6%
Deep 33.3%

After that, we want to measure the performance of each level of categorization for
the dataset. Table 39 shows the performance of classifying to different levels based
on reviewers selection of level for the three sets of samples. We found that the best
performance is level 1, where in all three sets the reviewers highest selection is the
first level. In general, we found that based on the first three levels the direct match
has the highest performance, followed by depth zero and deep dataset. As expected,
the higher the level, the lower the agreement.

6.2.2 EVALUATING THE RECOMMENDATIONS

In this section, we want to evaluate the performance of recommending URIs,

129

Table 39 Performance of each classification level in each dataset

Classification Direct match Depth zero Deep

Level
Number of

URIs

Average

selection
Percent

Number of

URIs

Average

selection
Percent

Number of

URIs

Average

selection
Percent

Level 1 24 23.4 97.5% 24 20.6 85.8% 24 17.2 71.7%

Level 2 24 22.2 92.5% 24 16.6 69.1% 24 13.0 54.2%

Level 3 22 18.2 82.7% 22 11.2 50.9% 18 9.0 50.0%

Level 4 17 13.0 76.5% 15 4.4 29.3% 14 5.6 40.0%

Level 5 11 8.8 80.0% 8 2.4 30.0% 8 2.0 25.0%

Level 6 9 6.0 66.7% 5 1.4 28.0% 3 1.0 33.3%

Level 7 4 1.8 45.0% 3 0.8 26.7% 0 - -

Level 8 4 1.6 40.0% 1 0.2 20.0% 0 - -

Level 9 0 - - 1 0.2 20.0% 0 - -

part two of each question (Figure 37). The evaluators select their agreement to the
selected recommendations by choosing: “agree”, “do not agree”, or “I do not know”
if it is not clear to the evaluators if the recommendations are related to the original
URI.

First, we measure the agreement rate between the reviewers for the ranked recom-
mendations, as shown in Table 40. We find that for the overall datasets κ = 0.5486,
which is considered “moderate agreement”. We also measure κ for each of the three
sets and found that the direct match dataset κ = 0.7240, which is considered “sub-
stantial agreement”. For depth zero dataset κ = 0.4583, which is considered “mod-
erate agreement”. Finally, for the deep dataset κ = 0.4600, which is considered
“moderate agreement”.

Table 40 Agreement rate in each dataset and the overall agreement rate of the
recommendation results

Dataset κ Interpretation
Direct match 0.7240 substantial agreement
Depth zero 0.4583 moderate agreement
Deep 0.4600 moderate agreement
Overall 0.5486 moderate agreement

For the case of bogus recommendations for all three cases (Table 41), all the
reviewers answered it correctly by selecting “Do not agree”. This helps us determine
if the reviewers understood the goal of the model and read each question carefully.

130

Table 41 Bogus recommendation questions

Dataset Requested URI Ranked recommendations

Direct match kidshealth.org
diyswimmingpools.co.uk
buildingadvice.co.uk
dustup.co.uk

Depth zero thewomenshome.org
zonecomputing.com.au
ewebdesign.com.au
ico.com.au

Deep kidswb.warnerbros.com/kids/shows-tomandjerry
mwi.com
metamend.com
mastermynde.com

After that, we want to measure how well the reviewers agreed with the recom-
mendations for each dataset. The results are shown in Table 42. For each dataset
and answer pair, we show the average number of recommendations chosen and the
percentage for that dataset. We found that the direct match dataset performed the
best, where 76.7% of the recommendations were marked as “agree”. This was fol-
lowed by depth zero dataset, where 45.0% of the recommendations were marked as
“agree”. The dataset with the least agreement is the deep dataset, where 40.0% of
the recommendations were marked as “agree”. Also, we found that the highest per-
centage of unclear recommendations was in the deep dataset where on average 4.4
recommendations per reviewer were selected as “I do not know”.

Table 42 Performance of each recommendation agreement selection

Agree Do not agree I do not know
Average
Selections Percent Average

Selections Percent Average
Selections Percent

Direct match 18.4 76.7% 3.2 13.3% 2.4 10.0%
Depth zero 10.8 45.0% 9.4 39.2% 3.8 15.8%
Deep 9.6 40.0% 10 41.7% 4.4 18.3%

Table 43 shows that for the direct match dataset, all recommendations were
marked as “agree” by at least one reviewer. For the depth zero and deep datasets,
that was reduced to 83.33%. We also found that reviewers chose “do not agree”
more often for the depth zero and deep datasets, with 83.33% of recommendations
receiving a “do not agree” rating from at least one reviewer. The percentage for the
direct match set was much lower at 33.33%.

131

Table 43 Percentage of at least one marked recommendation as “agree”, “do
not agree”, and “I do not know”

Dataset At least one
agree

At least one
do not agree

At least one
I do not know

Direct match 100% 33.33% 33.33%
Depth zero 83.33% 83.33% 58.33%
Deep 83.33% 83.33% 62.50%

6.2.3 EVALUATING BOTH THE CATEGORIZATION AND THE REC-
OMMENDATIONS

In Table 44 we show the percentages of different cases of the categorization and
the recommendations in the model. When selecting the full categorization, reviewers
agreed with 80.3% of the the recommendations, which is much higher than “do not
agree” and “I do not know”. This indicates the reviewer is more likely to agree on
the recommendations when selecting the full categorization. When selecting at least
level one categorization, reviewers agreed with 62.1% of the recommendations, which
is higher than “do not agree” and “I do not know”. This indicates the reviewer is
more likely to agree on the recommendations when the selecting at least level one of
the categorization. But when selecting the first level only, reviewers did not agree
with 57.5% of the recommendations, which is higher than “agree” with 25.5% and “I
do not know” with 17.0%. This indicates that performing deep level categorization
is worth the effort because it increases the agreement with the recommendations
greatly. Finally, when selecting “none” as the categorization, reviewers did not agree
with 77.8% of the recommendations, which is higher than “agree” and “I do not
know”. This indicates that when the reviewer does not agree with the categorization,
it is highly likely that they will not agree with the recommendation.

6.3 SUMMARY

In this chapter, we evaluated both the deep classification and the entire model.
For the deep level classification we measure the accuracy for each classification level.
We found that 63.45% of the URIs are correctly classified in the first level. We also
found that 44.89% of the correctly classified URIs contain a word that exists in a
dictionary. Also, 50.07% of the correctly classified URIs contain long strings in the

132

Table 44 Evaluating different cases for both the categorization and the
recommendations

Categorization Recommendation Total Percent

Selecting the full categorization
Agree 122 80.3%
Do not agree 11 7.2%
I do not know 19 12.5%

At least level one
Agree 190 62.1%
Do not agree 71 23.2%
I do not know 45 14.7%

First level only
Agree 12 25.5%
Do not agree 27 57.5%
I do not know 8 17.0%

Selecting none
Agree 4 7.4%
Do not agree 42 77.8%
I do not know 8 14.8%

domain.
We tested our overall method on a sample of 72 requests from the Wayback

Machine access log, each with its corresponding category and with the top three
candidates. The requests were from three different datasets: requests that are found
in an ontology (“direct match”), requests that are not found in an ontology and
have depth zero (“depth zero”), and requests that are not found in an ontology and
have a path (“deep”). For the direct match we determined its classification, gathered
candidates, scored, ranked, and selected the top three recommendation. For the other
two sets we used first level classification and deep classification, gathered candidates,
scored, ranked, and selected the top three recommendation. Overall, when selecting
the full categorization, reviewers agreed with 80.3% of the recommendations, which is
much higher than “do not agree” and “I do not know”. This indicates the reviewer is
more likely to agree on the recommendations when selecting the full categorization.
But when selecting the first level only, reviewers did not agree with 57.5% of the
recommendations, which is higher than “agree” with 25.5% and “I do not know” with
17.0%. This indicates that having deep level categorization improves the performance
of finding recommendations.

133

CHAPTER 7

CONTRIBUTIONS, CONCLUSIONS, AND FUTURE

WORK

In this chapter, we revisit the research questions and mention the methods performed
to solve them, the contributions, the future work, and the conclusions.

7.1 RESEARCH QUESTIONS REVISITED

Our main research question is “Given a URI, how can we build a model
for selecting and ranking possible recommendation webpages at a Web
archive?”
Our goal is to allow Web archives to provide recommendations for user queries,
potentially surfacing high-quality, but underutilized webpages. We start with a user
requesting a URI to finally constructing a ranked list of K archived recommendations
that are similar to the requested URI. After the user requests a URI, we detect the
URI semantics, map tokens to an ontology, gather candidates, filter candidates, score
candidates, and ranking candidates. Each of the steps addresses a research question.
Finally, the user will be provided with a ranked list of K recommendations.

Our research questions are:
RQ1: Given a URI, how much information can we learn about the refer-
enced webpage without examining the content of the page?
Here, we determine the tokenizing method. In addition, since DMOZ contains a list
categorized URI, we notice that some hostname are categorized in multiple main
categories and other hostnames appear in a single category multiple time. For this
reason, we check if the requested URI is in the black list, which is the list of host-
names that are hard to classify due to existing in multiple categories. In addition,
we check if the URI is in the white list, which is the list of hostnames that we know
what main category it belongs to.

RQ2: Given a set of terms that describes a webpage, how do we map
the terms to an ontology of webpages?
Here we select the ontology that we are going to use to classify the URI, for both

134

first-level classification and deep level classification. The first-level classification is
to determine the main category that the requested URI belongs to. Deep level
classification is to determine the deep-level category that the requested URI belongs
to. At the end of this section we will have a list of candidates.

RQ3: Given a set of webpages discovered through the ontology, what
metrics do we use to filter the best candidates for recommendation?
After categorizing the requested URI we will end-up with a list of candidates that
belong to the categorized URI. Here we removed any candidates that are not archived,
since we want to recommend archived webpages only.

RQ4: Given a set of candidate webpages for recommendation, how do
we rank the candidates?
Here we score and rank the candidates based on several features. The features are
temporal similarity, webpage popularity, URI similarity, and archival quality. Finally,
we select the top K ranked recommendations. Note that if the number of candidates
are less then K, then we would collect, filter, and score more candidates. Note that
we do not have a static weight for each feature, but the administrator can set the
weights based on users’ needs.

7.2 CONTRIBUTIONS

This dissertation contributes to the fields of creating recommendations of archived
webpages as follows:

• We proposed steps to find recommendations to a requested archived URI. The
steps include determining URI semantics, mapping tokens to an ontology, fil-
tering candidates, and ranking candidates (Section 5.1).

• We proposed a solution for empty URIs, where the tokens appear only once in
the dataset, by using Wikipedia to find an article that contains the requested
URI as an official website. This method resolved 70% of the URIs that contains
empty tokens (Section 5.2).

• We tested different tokenization methods, such as tokens, all-grams from to-
kens, all-grams from URI. For each tokenization method we include four cases:
where all URI tokens are included, URI tokens without top level domain (TLD),
URI tokens without TLD and numbers, and URI tokens without TLD and stop-
words. We found the highest F1 is for all-grams from URI without TLD and

135

numbers (Section 5.2.1).

• We created a black list of hostnames, which are hostnames that are hard to
classify because they appear in multiple categories (Section 5.2.2). Our black
list includes 954 hostnames, https://github.com/oduwsdl/Recommending-

Archived-Webpages.

• We created a white list of hostnames, which are hostnames that are easily
classified because they appear in a single category (Section 5.2.3). Our white
list includes 9,146 hostnames, https://github.com/oduwsdl/Recommending-

Archived-Webpages.

• We used both DMOZ and Wikipedia as ontologies to classify URIs. We found
that DMOZ hostname diversity is 0.55 and Wikipedia’s is 0.03. In addition, we
found that DMOZ contains 50.57% depth zero URIs and Wikipedia contains
3.40% depth zero URIs (Section 4.5).

• We used a deep classification method and found that 63.45% of the correctly
classified URIs in DMOZ are of depth zero (Section 6.1).

• We used a deep classification method and found that 44.89% of the correctly
classified URIs in DMOZ contain at least one word from a dictionary (Section
6.1).

• We used a deep classification method and found that 50.07% of the correctly
classified URIs in DMOZ contain long strings in the domain (Section 6.1).

• We analyzed the properties of a sample of URIs requested to the Wayback
Machine access log and found that the large majority were of depth 0, meaning
that our classification will rely largely on domain information (Section 4.3.4).

• We tested the model using human evaluation and found that when selecting the
full categorization, reviewers agreed with 80.3% of the the recommendations,
which is much higher than “do not agree” and “I do not know”. This indicates
the reviewer is more likely to agree on the recommendations when selecting the
full categorization. But when selecting the first level only, reviewers did not
agree with 57.5% of the recommendations, which is higher than “agree” with
25.5% and “I do not know” with 17.0%. This indicates that having deep level

https://github.com/oduwsdl/Recommending-Archived-Webpages
https://github.com/oduwsdl/Recommending-Archived-Webpages
https://github.com/oduwsdl/Recommending-Archived-Webpages
https://github.com/oduwsdl/Recommending-Archived-Webpages

136

categorization improves the performance of finding recommendations (Section
6.2.3).

7.3 FUTURE WORK

Future work includes adding other languages, which could be accomplished by
including ontologies that include other languages. For example, in DMOZ the cat-
egory World could be included. In addition, finding additional URIs in archived
documents can be retrieved from the archive efficiently, such as by using a CDX file
which includes an indexed list of the archived webpages and other information such
as the timestamp and the MIME type.

In the filtering step, in addition to filtering the dataset based on if it is archived
or not, we can include filtering spam webpages from the candidates.

In ranking the candidates, multiple features could be added such as ranking based
on how long the webpage has been not live. The closeness of the creation date of the
request and the candidate could be added as a feature to score and rank candidates.

Finally, when evaluating the model we can increase the number evaluators and
show why they do not agree with the recommendations provided.

7.4 CONCLUSIONS

In this work, we wanted to expand the usage of the archive by recommending
archived webpages. Our work proposes a method to enhance the current response
from web archives when a URI cannot be found. We used both DMOZ and Wikipedia
to classify the request and find candidates. First, we check if the requested URI
is classified in DMOZ or Wikipedia. If the requested URI is pre-classified, then
we gather candidates, filter, score, and recommend the top K results. Next, we
determine if the URI is in the black list, which are hostnames that are hard to
classify due to existing in multiple categories. After that, we determine if the URI
is in the white list, which are hostnames that are easily classified due to existing in
a single category. In this case we perform deep classification. If the requested URI
is not pre-classified we classify the URI using first level classification and then deep
classification. This step results in determining the category of the requested URI,
thus we gather the URIs that belong to the category as candidates. Then we filter
the candidates based on if the webpage is archived. Next, we score and rank the

137

candidates based on archival quality, webpage popularity, temporal similarity, and
URI similarity.

We found that the best method to classify the first level is using all-grams from
the URI while filtering the TLD and numbers from the URI. Using a Naïve Bayes
classifier resulted in a F1 = 0.61. For the second level classification we measure the
accuracy for each classification level. We found that 63.45% of the URIs are correctly
classified in the first level. We also found that 44.89% of the correctly classified URIs
contain a word that exists in a dictionary. Also, 50.07% of the correctly classified
URIs contain long strings in the domain.

We evaluated the model by randomly selecting 72 requests from the Wayback
access log, where 24 requests are direct matches to an ontology, 24 requests are not
found in an ontology and has depth zero, and 24 requests are not found in an ontology
and contains a path. The reviewers were asked to determine if the requested URIs
are classified correctly by allowing them to select the depth of the category, and
select the agreement on the top three candidates. Overall, when selecting the full
categorization, reviewers agreed with 80.3% of the the recommendations, which is
much higher than “do not agree” and “I do not know”. This indicates the reviewer is
more likely to agree on the recommendations when selecting the full categorization.
But when selecting the first level only, reviewers did not agree with 57.5% of the
recommendations, which is higher than “agree” with 25.5% and “I do not know” with
17.0%. This indicates that having deep level categorization improves the performance
of finding recommendations.

138

REFERENCES

[1] E. Baykan, M. Henzinger, L. Marian, and I. Weber, “A comprehensive study of
features and algorithms for URL-based topic classification,” ACM Transactions
on the Web (TWEB), vol. 5, no. 3, 2011.

[2] E. Baykan, M. Henzinger, and I. Weber, “A comprehensive study of techniques
for URL-based web page language classification,” ACM Transactions on the
Web (TWEB), vol. 7, no. 1, 2013.

[3] J. R. Landis and G. G. Koch, “The measurement of observer agreement for
categorical data,” biometrics, pp. 159–174, 1977.

[4] I. Jacobs and N. Walsh, “Architecture of the World Wide Web, volume one.”
https://w3.org/TR/webarch/, 2004.

[5] X. Qi and B. D. Davison, “Knowing a web page by the company it keeps,”
in Proceedings of the 15th ACM International Conference on Information and
Knowledge Management (CKIM), pp. 228–237, 2006.

[6] G.-R. Xue, D. Xing, Q. Yang, and Y. Yu, “Deep classification in large-scale
text hierarchies,” in Proceedings of the 31st Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, pp. 619–
626, 2008.

[7] H. C. Huurdeman, A. Ben-David, J. Kamps, T. Samar, and A. P. de Vries,
“Finding pages on the unarchived web,” in Proceedings of the 14th IEEE/ACM
Joint Conference on Digital Libraries (JCDL), pp. 331–340, 2014.

[8] H. M. SalahEldeen and M. L. Nelson, “Carbon dating the web: Estimating the
age of web resources,” in Proceedings of the Temporal Web Analytics Workshop
(TempWeb), pp. 1075–1082, 2013.

[9] T. Berners-Lee, R. Fielding, and L. Masinter, “Uniform Resource Identifiers
(URI): Generic syntax, Internet RFC 2396.” https://tools.ietf.org/html/

rfc2396, 1998.

https://w3.org/TR/webarch/
https://tools.ietf.org/html/rfc2396
https://tools.ietf.org/html/rfc2396

139

[10] J. F. Brunelle, M. Kelly, H. SalahEldeen, M. C. Weigle, and M. L. Nelson, “Not
all mementos are created equal: Measuring the impact of missing resources,”
International Journal on Digital Libraries (IJDL), vol. 16, no. 3-4, pp. 283–301,
2015.

[11] J. Niu, “An overview of web archiving,” D-Lib Magazine, vol. 18, no. 3/4, 2012.

[12] M. Klein and M. L. Nelson, “Moved but not gone: An evaluation of real-
time methods for discovering replacement web pages,” International Journal
on Digital Libraries (IJDL), vol. 14, no. 1-2, pp. 17–38, 2014.

[13] P. Opitz, “Internet Archive.” http://crawler.archive.org/index.html,
2012.

[14] M. Kelly and M. C. Weigle, “WARCreate: Create Wayback-Consumable
WARC files from any webpage,” in Proceedings of the 12th IEEE-CS/ACM
Joint Conference on Digital Libraries (JCDL), pp. 437–438, 2012.

[15] X. Roche, “HTTrack: Website copier.” https://httrack.com.

[16] D. Gomes, J. Miranda, and M. Costa, “A survey on web archiving initiatives,”
in Proceedings of the International Conference on Theory and Practice of Digi-
tal Libraries (TPDL): Research and Advanced Technology for Digital Libraries,
pp. 408–420, 2011.

[17] J. Bailey, A. Grotke, K. Hanna, C. Hartman, E. McCain, C. Moffatt, and
N. Taylor, “Web Archiving in the United States: A 2013 Survey - An NDSA
Report.” https://blogs.loc.gov/thesignal/2014/10/results-from-the-

2013-ndsa-u-s-web-archiving-survey/, 2014.

[18] J. Bailey, A. Grotke, E. McCain, C. Moffatt, and N. Taylor, “Web Archiving
in the United States: A 2016 Survey - An NDSA Report.” http://ndsa.org/

documents/WebArchivingintheUnitedStates_A2016Survey.pdf, 2017.

[19] M. Kelly, M. C. Weigle, and M. L. Nelson, “Archiving Your Facebook Pages
Using Archive Facebook.” NDIIPP/NDSA Partners Meeting Special Interest
Session, July 2011. http://www.cs.odu.edu/~mkelly/presentations/2011

_ndiipp_archivefacebook.pptx.

http://crawler.archive.org/index.html
https://httrack.com
https://blogs.loc.gov/thesignal/2014/10/results-from-the-2013-ndsa-u-s-web-archiving-survey/
https://blogs.loc.gov/thesignal/2014/10/results-from-the-2013-ndsa-u-s-web-archiving-survey/
http://ndsa.org/documents/WebArchivingintheUnitedStates_A2016Survey.pdf
http://ndsa.org/documents/WebArchivingintheUnitedStates_A2016Survey.pdf
http://www.cs.odu.edu/~mkelly/presentations/2011_ndiipp_archivefacebook.pptx
http://www.cs.odu.edu/~mkelly/presentations/2011_ndiipp_archivefacebook.pptx

140

[20] J. Bailey, A. Grotke, K. Hanna, C. Hartman, E. McCain, C. Moffatt, and
N. Taylor, “Web Archiving in the United States: A 2013 Survey.” http://

ndsa.org/documents/NDSA_USWebArchivingSurvey_2013.pdf.

[21] J. Bailey, A. Grotke, E. McCain, C. Moffatt, and N. Taylor, “Web Archiving
in the United States: A 2016 Survey.” http://ndsa.org/documents/WebArc

hivingintheUnitedStates_A2016Survey.pdf.

[22] B. Kahle, “Preserving The Internet,” Scientific American, vol. 276, no. 3,
pp. 82–83, 1997.

[23] H. Van de Sompel, M. L. Nelson, and R. Sanderson, “HTTP framework for
time-based access to resource states – Memento, Internet RFC 7089.” http://

tools.ietf.org/html/rfc7089, 2013.

[24] International Organization for Standardization (ISO), “28500: 2017 Informa-
tion and Documentation-WARC File Format,” 2017.

[25] Internet archive, “CDX file format.” http://archive.org/web/researcher/

cdx_file_format.php, 2003.

[26] V. Goel, “Web archive metadata file specifications.” https://

webarchive.jira.com/wiki/spaces/Iresearch/pages/13467719/

Web+Archive+Metadata+File+Specification, 2011.

[27] N. Freed, M. Baker, and B. Hoehrmann, “Media types,” tech. rep., Tech. Rep.,
2014, 2014.

[28] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee, “Hypertext Transfer Protocol–HTTP/1.1, Internet RFC 2616.”
https://w3.org/Protocols/rfc2616/rfc2616.html, 1999.

[29] H. Van de Sompel, “Memento guide - introduction to Memento.” http://meme

ntoweb.org/guide/quick-intro/, 2015.

[30] M. L. Nelson, “Memento-datetime is not last-modified.” http://ws-dl.blo

gspot.com/2010/11/2010-11-05-memento-datetime-is-not-last.html,
2010.

http://ndsa.org/documents/NDSA_USWebArchivingSurvey_2013.pdf
http://ndsa.org/documents/NDSA_USWebArchivingSurvey_2013.pdf
http://ndsa.org/documents/WebArchivingintheUnitedStates_A2016Survey.pdf
http://ndsa.org/documents/WebArchivingintheUnitedStates_A2016Survey.pdf
http://tools.ietf.org/html/rfc7089
http://tools.ietf.org/html/rfc7089
http://archive.org/web/researcher/cdx_file_format.php
http://archive.org/web/researcher/cdx_file_format.php
https://webarchive.jira.com/wiki/spaces/Iresearch/pages/13467719/Web+Archive+Metadata+File+Specification
https://webarchive.jira.com/wiki/spaces/Iresearch/pages/13467719/Web+Archive+Metadata+File+Specification
https://webarchive.jira.com/wiki/spaces/Iresearch/pages/13467719/Web+Archive+Metadata+File+Specification
https://w3.org/Protocols/rfc2616/rfc2616.html
http://mementoweb.org/guide/quick-intro/
http://mementoweb.org/guide/quick-intro/
http://ws-dl.blogspot.com/2010/11/2010-11-05-memento-datetime-is-not-last.html
http://ws-dl.blogspot.com/2010/11/2010-11-05-memento-datetime-is-not-last.html

141

[31] V. Goel, “Beta Wayback Machine - now with site search!.” https://blog.arc

hive.org/2016/10/24/beta-wayback-machine-now-with-site-search/,
2016.

[32] Y. AlNoamany, A. AlSum, M. C. Weigle, and M. L. Nelson, “Who and
what links to the Internet Archive,” International Journal on Digital Libraries
(IJDL), vol. 14, no. 3-4, pp. 101–115, 2014.

[33] T. Berners-Lee, R. Fielding, and L. Masinter, “Uniform resource identifier (uri):
Generic syntax,” tech. rep., 2004.

[34] T. Berners-Lee, “Cool URIs don’t change.” https://w3.org/Provider/Styl

e/URI, 1998.

[35] P. Opitz, “Clean URLs for better search engine ranking.” http://

contentwithstyle.co.uk/content/clean-urls-for-a-better-search-

engine-ranking/, 2006.

[36] A. M. Cohen, R. Mariani, S. K. Rajan, and B. Tabbara, “URL mapping meth-
ods and systems,” in Google Patents, US Patent 6,654,741, 2003.

[37] X. Qi and B. D. Davison, “Web page classification: Features and algorithms,”
ACM Computing Surveys (CSUR), vol. 41, no. 2, p. 12, 2009.

[38] Ying, Cao and Run-Ying, Duan, “Novel top-down methods for hierarchical text
classification,” Procedia Engineering, vol. 24, pp. 329–334, 2011.

[39] S. B. Kotsiantis, I. Zaharakis, and P. Pintelas, “Supervised machine learning:
A review of classification techniques,” Proceedings of the Emerging Artificial
Intelligence Applications in Computer Engineering, vol. 160, pp. 3–24, 2007.

[40] K. M. Leung, “Naive Bayesian classifier.” http://cis.poly.edu/~mleung/FR

E7851/f07/naiveBayesianClassifier.pdf, 2007.

[41] T. Joachims, “Text categorization with support vector machines: Learning
with many relevant features,” in Proceedings of the European Conference on
Machine Learning, pp. 137–142, 1998.

[42] V. Vapnik, The nature of statistical learning theory. Springer science and busi-
ness media, 2013.

https://blog.archive.org/2016/10/24/beta-wayback-machine-now-with-site-search/
https://blog.archive.org/2016/10/24/beta-wayback-machine-now-with-site-search/
https://w3.org/Provider/Style/URI
https://w3.org/Provider/Style/URI
http://contentwithstyle.co.uk/content/clean-urls-for-a-better-search-engine-ranking/
http://contentwithstyle.co.uk/content/clean-urls-for-a-better-search-engine-ranking/
http://contentwithstyle.co.uk/content/clean-urls-for-a-better-search-engine-ranking/
http://cis.poly.edu/~mleung/FRE7851/f07/naiveBayesianClassifier.pdf
http://cis.poly.edu/~mleung/FRE7851/f07/naiveBayesianClassifier.pdf

142

[43] K. Nigam, J. Lafferty, and A. McCallum, “Using Maximum Entropy for text
classification,” in Proceedings of the IJCAI-99 Workshop on Machine Learning
for Information Filtering, vol. 1, pp. 61–67, 1999.

[44] A. L. Berger, V. J. D. Pietra, and S. A. D. Pietra, “A Maximum Entropy
approach to natural language processing,” Computational Linguistics, vol. 22,
no. 1, pp. 39–71, 1996.

[45] J. Brank, D. Mladenic, and M. Grobelnik, “Gold standard based ontology eval-
uation using instance assignment,” in Proceedings of the Workshop on Evalua-
tion of Ontologies for the Web (EON), 2006.

[46] C. Fellbaum, “WordNet.” https://wordnet.princeton.edu, 1998.

[47] C. Sherman, “Humans do it better: Inside the open directory project.,” Online,
vol. 24, no. 4, 2000.

[48] S. G. Ainsworth, A. Alsum, H. M. SalahEldeen, M. C. Weigle, and M. L. Nel-
son, “How much of the web is archived?,” in Proceedings of the 11th IEEE/ACM
Joint Conference on Digital Libraries (JCDL), pp. 133–136, 2011.

[49] A. AlSum, Web Archive Services Framework for Tighter Integration Between
the Past and Present Web. PhD thesis, Old Dominion University, 2014.

[50] L. M. Alkwai, M. L. Nelson, and M. C. Weigle, “How well are Arabic websites
archived?,” in Proceedings of the 15th IEEE/ACM Joint Conference on Digital
Libraries (JCDL), pp. 223–232, 2015.

[51] L. M. Alkwai, M. L. Nelson, and M. C. Weigle, “Comparing the archival rate of
Arabic, English, Danish, and Korean language web pages,” ACM Transactions
on Information Systems (TOIS), vol. 36, no. 1, pp. 1:1–1:34, 2017.

[52] G. A. Monroe, J. C. French, and A. L. Powell, “Obtaining language models
of web collections using query-based sampling techniques,” in Proceedings of
the 35th annual Hawaii International Conference on System Sciences (HICSS),
pp. 1241–1247, 2002.

[53] A. Gulli and A. Signorini, “The indexable web is more than 11.5 billion pages,”
in Proceedings of the Special Interest Tracks and Posters of the 14th Interna-
tional Conference on World Wide Web (WWW), pp. 902–903, 2005.

https://wordnet.princeton.edu

143

[54] E. Baykan, M. Henzinger, L. Marian, and I. Weber, “Purely URL-based topic
classification,” in Proceedings of the 18th International Conference on World
Wide Web (WWW), pp. 1109–1110, 2009.

[55] L. M. Alkwai, “Using Wikipedia to build a corpus, classify text, and
more.” https://ws-dl.blogspot.com/2018/12/2018-12-03-using-wikipe

dia-to-build.html, 2018.

[56] R. Glott, P. Schmidt, and R. Ghosh, “Wikipedia survey–overview of results,”
United Nations University: Collaborative Creativity Group, pp. 1158–1178,
2010.

[57] A. Gattani, D. S. Lamba, N. Garera, M. Tiwari, X. Chai, S. Das, S. Sub-
ramaniam, A. Rajaraman, V. Harinarayan, and A. Doan, “Entity extraction,
linking, classification, and tagging for social media: a Wikipedia-based ap-
proach,” Proceedings of the VLDB Endowment, vol. 6, no. 11, pp. 1126–1137,
2013.

[58] P. Melville and V. Sindhwani, “Recommender systems,” in Encyclopedia of
Machine Learning, pp. 829–838, 2011.

[59] N. Rubens, D. Kaplan, and M. Sugiyama, “Active learning in recommender
systems,” in Recommender Systems Handbook, 2011.

[60] G. Adomavicius and A. Tuzhilin, “Toward the next generation of recommender
systems: A survey of the state-of-the-art and possible extensions,” IEEE Trans-
actions on Knowledge and Data Engineering, vol. 17, no. 6, pp. 734–749, 2005.

[61] E. Rich, “User modeling via stereotypes,” Cognitive Science, vol. 3, no. 4,
pp. 329–354, 1979.

[62] J. Beel, “Towards effective research-paper recommender systems and user mod-
eling based on mind maps,” Tech. Rep. arXiv:1703.09109, 2017.

[63] M. J. Pazzani and D. Billsus, “Content-based recommendation systems,” in
The Adaptive Web, pp. 325–341, 2007.

[64] D. Goldberg, D. Nichols, B. M. Oki, and D. Terry, “Using collaborative filter-
ing to weave an information tapestry,” Communications of the ACM, vol. 35,
no. 12, pp. 61–70, 1992.

https://ws-dl.blogspot.com/2018/12/2018-12-03-using-wikipedia-to-build.html
https://ws-dl.blogspot.com/2018/12/2018-12-03-using-wikipedia-to-build.html

144

[65] P. Covington, J. Adams, and E. Sargin, “Deep neural networks for YouTube
recommendations,” in Proceedings of the 10th ACM Conference on Recom-
mender Systems (RecSys), pp. 191–198, 2016.

[66] J. Davidson, B. Liebald, J. Liu, P. Nandy, T. Van Vleet, U. Gargi, S. Gupta,
Y. He, M. Lambert, B. Livingston, et al., “The YouTube video recommendation
system,” in Proceedings of the 4th ACM Conference on Recommender Systems
(RecSys), pp. 293–296, 2010.

[67] H. Small, “Co-citation in the scientific literature: A new measure of the rela-
tionship between two documents,” Journal of the Association for Information
Science, vol. 24, no. 4, pp. 265–269, 1973.

[68] D. C. Liu, S. Rogers, R. Shiau, D. Kislyuk, K. C. Ma, Z. Zhong, J. Liu, and
Y. Jing, “Related pins at Pinterest: The evolution of a real-world recommender
system,” in Proceedings of the 26th International Conference on World Wide
Web Companion, pp. 583–592, 2017.

[69] R. Burke, “Hybrid recommender systems: Survey and experiments,” User mod-
eling and user-adapted interaction, vol. 12, no. 4, pp. 331–370, 2002.

[70] C. Chi, C. Ding, and A. Lim, “Word segmentation and recognition for web
document framework,” in Proceedings of the 8th International Conference on
Information and Knowledge Management (CKIM), pp. 458–465, 1999.

[71] P. Koehn and K. Knight, “Empirical methods for compound splitting,” in Pro-
ceedings of the 10th Conference on European Chapter of the Association for
Computational Linguistics-Volume 1, pp. 187–193, 2003.

[72] T. Segaran and J. Hammerbacher, Beautiful data: the stories behind elegant
data solutions. O’Reilly Media, 2009.

[73] S. Khaitan, A. Das, S. Gain, and A. Sampath, “Data-driven compound split-
ting method for English compounds in domain names,” in Proceedings of the
18th ACM Conference on Information and Knowledge Management (CKIM),
pp. 207–214, 2009.

145

[74] E. Baykan, M. Henzinger, and I. Weber, “Web page language identification
based on URLs,” Proceedings of the VLDB Endowment, vol. 1, no. 1, pp. 176–
187, 2008.

[75] S. Raju and R. Udupa, “Extracting advertising keywords from URL strings,” in
Proceedings of the 21st International Conference on World Wide Web (WWW),
pp. 587–588, 2012.

[76] M.-S. Lin, C.-Y. Chiu, Y.-J. Lee, and H.-K. Pao, “Malicious URL filtering? a
big data application,” in Proceedings of the IEEE International Conference on
Big Data, pp. 589–596, 2013.

[77] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer, “On-
line passive-aggressive algorithms,” Journal of Machine Learning Research
(JMLR), vol. 7, pp. 551–585, 2006.

[78] M. Dredze, K. Crammer, and F. Pereira, “Confidence-weighted linear clas-
sification,” in Proceedings of the 25th International Conference on Machine
Learning, pp. 264–271, 2008.

[79] G. Berardi, A. Esuli, D. Marcheggiani, and F. Sebastiani, “ISTI@ TREC Mi-
croblog Track 2011: Exploring the use of hashtag segmentation and text quality
ranking,” in Proceedings of the Text Retrieval Conference (TREC), 2011.

[80] G. D. Forney, “The Viterbi algorithm,” Proceedings of the IEEE, vol. 61, no. 3,
pp. 268–278, 1973.

[81] A. Cui, M. Zhang, Y. Liu, S. Ma, and K. Zhang, “Discover breaking events with
popular hashtags in Twitter,” in Proceedings of the 21st ACM International
Conference on Information and Knowledge Management (CKIM), pp. 1794–
1798, 2012.

[82] A. Beale, “12dicts word lists.” http://wordlist.aspell.net/12dicts/, 2007.

[83] R. Zhang, W. Li, D. Gao, and Y. Ouyang, “Automatic Twitter topic summa-
rization with speech acts,” IEEE transactions on Audio, Speech, and Language
Processing, vol. 21, no. 3, pp. 649–658, 2013.

http://wordlist.aspell.net/12dicts/

146

[84] Z. Wu and G. Tseng, “Chinese text segmentation for text retrieval: Achieve-
ments and problems,” Journal of the American Society for Information Science,
vol. 44, no. 9, p. 532, 1993.

[85] J.-R. Wen, J.-Y. Nie, and H.-J. Zhang, “Clustering user queries of a search
engine,” in Proceedings of the 10th International Conference on World Wide
Web (WWW), pp. 162–168, 2001.

[86] R. Baeza-Yates, C. Hurtado, and M. Mendoza, “Query recommendation using
query logs in search engines,” in Proceedings of the International Conference
on Extending Database Technology (EDBT), pp. 588–596, 2004.

[87] D. Koller and M. Sahami, “Hierarchically classifying documents using very few
words,” Proceedings of the 14th International Conference on Machine Learning
(ICML), pp. 170–178, 1997.

[88] G. Attardi, A. Gulli, and F. Sebastiani, “Automatic web page categorization by
link and context analysis,” Proceedings of European Symposium on Telematics,
Hypermedia and Artificial Intelligence (THAI), vol. 99, no. 99, pp. 105–119,
1999.

[89] M.-Y. Kan, “Web page classification without the web page,” in Proceedings of
the 13th International World Wide Web Conference on Alternate Track Papers
and Posters, pp. 262–263, 2004.

[90] J. Cho and H. Garcia-Molina, “WebBase and the Stanford Interlib Project,”
in Proceedings of the International Conference on Digital Libraries: Research
and Practice, pp. 180–181, 2000.

[91] M.-Y. Kan and H. O. N. Thi, “Fast webpage classification using URL features,”
in Proceedings of the 14th ACM International Conference on Information and
Knowledge Management (CKIM), pp. 325–326, 2005.

[92] Carnegie Mellon University, “Universities WebKB data.” http://cs.cmu.edu/

~webkb/, 1997.

[93] J. Kustanowitz, B. Shneiderman, and B. Kules, “Categorizing web search re-
sults into meaningful and stable categories using fast-feature techniques,” in

http://cs.cmu.edu/~webkb/
http://cs.cmu.edu/~webkb/

147

Proceedings of the 6th IEEE-CS/ACM Joint Conference on Digital Libraries
(JCDL), pp. 210–219, 2006.

[94] M. I. Devi and K. Selvakuberan, “Fast web page categorization without the
web page,” in Proceedings of the International Conference on Semantic Web
and Digital Libraries (ICSD), 2007.

[95] R. Rajalakshmi and C. Aravindan, “Web page classification using N-gram
based URL features,” in Proceedings of the 5th International Conference on
Advanced Computing (ICoAC), pp. 15–21, 2013.

[96] M. I. Devi, R. Rajaram, and K. Selvakuberan, “Machine learning techniques
for automated web page classification using url features,” in Proceedings of
the International Conference on Computational Intelligence and Multimedia
Applications (ICCIMA), vol. 2, pp. 116–120, 2007.

[97] R. Rajalakshmi and C. Aravindan, “Naive bayes approach for website classifi-
cation,” in Proceedings of the Information Technology and Mobile Communica-
tion. Communications in Computer and Information Science, vol. 147, 2011.

[98] T. A. Abdallah, A New Method For URL-based Web Page Classification Using
N-gram Language Models. PhD thesis, The University of East Anglia, 2013.

[99] T. A. Abdallah and B. de La Iglesia, “URL-based web page classification: With
N-gram language models,” in Proceedings of the International Joint Conference
on Knowledge Discovery, Knowledge Engineering, and Knowledge Management
(IC3K), pp. 19–33, 2014.

[100] J. Lin, M. Gholami, and J. Rao, “Infrastructure for supporting exploration and
discovery in web archives,” in Proceedings of the 23rd International Conference
on World Wide Web (WWW), pp. 851–856, 2014.

[101] J. Lin, I. Milligan, J. Wiebe, and A. Zhou, “Warcbase: Scalable analytics
infrastructure for exploring web archives,” Journal on Computing and Cultural
Heritage (JOCCH), vol. 10, no. 4, p. 22, 2017.

[102] H. Holzmann, V. Goel, and A. Anand, “ArchiveSpark: Efficient web archive
access, extraction and derivation,” in Proceedings of the 16th IEEE-CS/ACM
Joint Conference on Digital Libraries (JCDL), pp. 83–92, 2016.

148

[103] H. Holzmann, V. Goel, and E. N. Gustainis, “Universal distant reading through
metadata proxies with ArchiveSpark,” in Proceedings of the IEEE International
Conference on Big Data, pp. 459–464, 2017.

[104] H. Holzmann, Concepts and tools for the effective and efficient use of web
archives. PhD thesis, 2019.

[105] Y. AlNoamany, Using Web Archives to Enrich the Live Web Experience
Through Storytelling. PhD thesis, Old Dominion University, 2016.

[106] S. M. Jones, “Storify will be gone soon, so how do we preserve the sto-
ries?.” https://ws-dl.blogspot.com/2017/12/2017-12-14-storify-will-

be-gone-soon-so.html, 2017.

[107] S. Lawrence, D. M. Pennock, G. W. Flake, R. Krovetz, F. Coetzee, E. Glover,
F. Nielsen, A. Kruger, and C. L. Giles, “Persistence of web references in scien-
tific research,” IEEE Computer, vol. 34, no. 2, pp. 26–31, 2001.

[108] W. Koehler, “Web page change and persistence? a four-year longitudinal
study,” Journal of the American Society for Information Science and Tech-
nology, vol. 53, no. 2, pp. 162–171, 2002.

[109] M. L. Nelson and B. D. Allen, “Object persistence and availability in digital
libraries,” D-Lib Magazine, vol. 8, no. 1, 2002.

[110] D. Spinellis, “The decay and failures of web references,” Communications of
the ACM, vol. 46, no. 1, pp. 71–77, 2003.

[111] M. Klein, H. Van de Sompel, R. Sanderson, H. Shankar, L. Balakireva, K. Zhou,
and R. Tobin, “Scholarly context not found: one in five articles suffers from
reference rot,” Public Library of Science (PLOS ONE), vol. 9, no. 12, pp. 1–39,
2014.

[112] S. M. Jones, H. Van de Sompel, H. Shankar, M. Klein, R. Tobin, and C. Grover,
“Scholarly context adrift: Three out of four URI references lead to changed
content,” Public Library of Science (PLOS ONE), vol. 11, no. 12, pp. 1–32,
2016.

https://ws-dl.blogspot.com/2017/12/2017-12-14-storify-will-be-gone-soon-so.html
https://ws-dl.blogspot.com/2017/12/2017-12-14-storify-will-be-gone-soon-so.html

149

[113] M. Costa and M. J. Silva, “Understanding the information needs of web
archive users,” in Proceedings of the 10th International Web Archiving Work-
shop (IWAW10), 2010.

[114] M. Thelwall and L. Vaughan, “A fair history of the web? examining country
balance in the Internet Archive,” Library and Information Science Research,
vol. 26, no. 2, pp. 162–176, 2004.

[115] F. McCown and M. L. Nelson, “Characterization of search engine caches,” in
Proceedings of the Archiving Conference, pp. 48–52, 2007.

[116] N. Kanhabua, P. Kemkes, W. Nejdl, T. N. Nguyen, F. Reis, and N. K. Tran,
“How to search the Internet Archive without indexing it,” in Proceedings of the
International Conference on Theory and Practice of Digital Libraries (TPDL),
pp. 147–160, 2016.

[117] L. Francisco-Revilla, F. Shipman, R. Furuta, U. Karadkar, and A. Arora,
“Managing change on the web,” in Proceedings of the 1st IEEE-CS/ACM Joint
Conference on Digital libraries (JCDL), pp. 67–76, 2001.

[118] J. Martinez-Romo and L. Araujo, “Recommendation system for automatic re-
covery of broken web links,” in Proceedings of the Ibero-American Conference
on Artificial Intelligence, pp. 302–311, 2008.

[119] J. Martinez-Romo and L. Araujo, “Retrieving broken web links using an ap-
proach based on contextual information,” in Proceedings of the 20th ACM Con-
ference on Hypertext and Hypermedia, pp. 351–352, 2009.

[120] J. Martinez-Romo and L. Araujo, “Analyzing information retrieval methods
to recover broken web links,” in Proceedings of the European Conference on
Information Retrieval (ECIR), pp. 26–37, 2010.

[121] T. L. Harrison and M. L. Nelson, “Just-in-time recovery of missing web pages,”
in Proceedings of the 17th Conference on Hypertext and Hypermedia, pp. 145–
156, 2006.

[122] T. L. Harrison, “Opal: In vivo based preservation framework for locating lost
web pages,” Master’s thesis, 2005.

150

[123] M. Klein and M. L. Nelson, “Revisiting lexical signatures to (re-) discover web
pages,” in Proceedings of the International Conference on Theory and Practice
of Digital Libraries (TPDL), pp. 371–382, 2008.

[124] B. Haslhofer and N. Popitsch, “DSNotify-detecting and fixing broken links
in linked data sets,” in Proceedings of the 20th International Workshop on
Database and Expert Systems Application (DEXA’09), pp. 89–93, 2009.

[125] N. P. Popitsch and B. Haslhofer, “DSNotify: handling broken links in the web
of data,” in Proceedings of the 19th International Conference on World Wide
Web (WWW), pp. 761–770, 2010.

[126] N. Popitsch and B. Haslhofer, “DSNotify–a solution for event detection and
link maintenance in dynamic datasets,” Web Semantics: Science, Services and
Agents on the World Wide Web, vol. 9, no. 3, pp. 266–283, 2011.

[127] H. C. Huurdeman, J. Kamps, T. Samar, A. P. de Vries, A. Ben-David, and
R. A. Rogers, “Lost but not forgotten: Finding pages on the unarchived web,”
International Journal on Digital Libraries (IJDL), vol. 16, no. 3-4, pp. 247–265,
2015.

[128] L. M. Alkwai, “Summary of Finding Pages on the Unarchived Web.”
http://ws-dl.blogspot.com/2016/10/2016-10-03-summary-of-finding-

pages-on.html, 2016.

[129] Y. AlNoamany, M. C. Weigle, and M. L. Nelson, “Detecting off-topic pages
within timemaps in web archives,” International Journal on Digital Libraries
(IJDL), vol. 17, no. 3, pp. 203–221, 2016.

[130] S. M. Jones, M. C. Weigle, and M. L. Nelson, “The off-topic memento toolkit,”
tech. rep., 2018.

[131] Z. Bar-Yossef, A. Z. Broder, R. Kumar, and A. Tomkins, “Sic transit gloria
telae: Towards an understanding of the web’s decay,” in Proceedings of the 13th
International Conference on World Wide Web (WWW), pp. 328–337, 2004.

[132] T. Lee, J. Kim, J. W. Kim, S.-R. Kim, and K. Park, “Detecting soft errors by
redirection classification,” in Proceedings of the 18th International Conference
on World Wide Web (WWW), pp. 1119–1120, 2009.

http://ws-dl.blogspot.com/2016/10/2016-10-03-summary-of-finding-pages-on.html
http://ws-dl.blogspot.com/2016/10/2016-10-03-summary-of-finding-pages-on.html

151

[133] L. Meneses, R. Furuta, and F. Shipman, “Identifying “soft 404" error pages:
analyzing the lexical signatures of documents in distributed collections,” in
Proceedings of the International Conference on Theory and Practice of Digital
Libraries (TPDL), pp. 197–208, 2012.

[134] E. Siregar, “Deploying the memento-damage service.” https://ws-dl.blogs

pot.com/2017/11/2017-11-22-deploying-memento-damage.html, 2017.

[135] L. Azzopardi and V. Vinay, “Retrievability: An evaluation measure for higher
order information access tasks,” in Proceedings of the 17th ACM Conference
on Information and Knowledge Management (CKIM), pp. 561–570, 2008.

[136] M. C. Traub, T. Samar, J. van Ossenbruggen, J. He, A. de Vries, and L. Hard-
man, “Querylog-based assessment of retrievability bias in a large newspaper
corpus,” in Proceedings of the 16th IEEE-CS/ACM Joint Conference on Digi-
tal Libraries (JCDL), pp. 7–16, 2016.

[137] G. Garvy, “Inequality of income: Causes and measurement,” in Studies in
Income and Wealth, Volume 15, pp. 25–47, 1952.

[138] J. Russell, “Topsy, the popular social analytics service bought by Apple, closes
down.” https://techcrunch.com/2015/12/15/rip-topsy/, 2015.

[139] G. Atkins, “Carbon Dating the Web, version 4.0.” http://ws-dl.blogspot.

com/2017/09/2017-09-19-carbon-dating-web-version-40.html, 2017.

[140] R. Geva, “Article’s publication date extractor - an overview.”
http://blog.webhose.io/2015/12/13/articles-publication-date-

extractor-an-overview/, 2015.

[141] E. Miller, “An introduction to the resource description framework,” Bulletin of
the American Society for Information Science and Technology, vol. 25, no. 1,
pp. 15–19, 1998.

[142] A. Nwala, “An exploration of URL diversity measures.” https://ws-dl.blo

gspot.com/2018/05/2018-05-04-exploration-of-url-diversity.html,
2018.

[143] J. R. Pierce, An introduction to information theory: symbols, signals and noise.
Courier Corporation, 2012.

https://ws-dl.blogspot.com/2017/11/2017-11-22-deploying-memento-damage.html
https://ws-dl.blogspot.com/2017/11/2017-11-22-deploying-memento-damage.html
https://techcrunch.com/2015/12/15/rip-topsy/
http://ws-dl.blogspot.com/2017/09/2017-09-19-carbon-dating-web-version-40.html
http://ws-dl.blogspot.com/2017/09/2017-09-19-carbon-dating-web-version-40.html
http://blog.webhose.io/2015/12/13/articles-publication-date-extractor-an-overview/
http://blog.webhose.io/2015/12/13/articles-publication-date-extractor-an-overview/
https://ws-dl.blogspot.com/2018/05/2018-05-04-exploration-of-url-diversity.html
https://ws-dl.blogspot.com/2018/05/2018-05-04-exploration-of-url-diversity.html

152

[144] D. D. Palmer, “A trainable rule-based algorithm for word segmentation,” in
Proceedings of the 35th Annual Meeting of the Association for Computational
Linguistics and Eighth Conference of the European Chapter of the Association
for Computational Linguistics, pp. 321–328, Association for Computational
Linguistics, 1997.

[145] J. Goldsmith, “A Pythonic wrapper for the Wikipedia API .” https://gith

ub.com/goldsmith/Wikipedia, 2016.

[146] M. Majlis, “Python wrapper for Wikipedia.” https://github.com/martin-

majlis/Wikipedia-API, 2019.

[147] Y. AlNoamany, M. C. Weigle, and M. L. Nelson, “Access patterns for robots
and humans in web archives,” in Proceedings of the 13th IEEE/ACM Joint
Conference on Digital Libraries (JCDL), pp. 339–348, 2013.

[148] I. D. Melamed, R. Green, and J. P. Turian, “Precision and recall of machine
translation,” in Proceedings of the 2003 Conference of the North American
Chapter of the Association for Computational Linguistics on Human Language
Technology: companion volume of the Proceedings of HLT-NAACL 2003–short
papers-Volume 2, pp. 61–63, 2003.

[149] D. M. Powers, “Evaluation: from precision, recall and F-measure to ROC, in-
formedness, markedness and correlation,” Journal of Machine Learning Tech-
nologies, vol. 2, no. 1, pp. 37–63, 2011.

[150] S. Bird, E. Klein, E. Loper, and J. Baldridge, “Multidisciplinary instruction
with the natural language toolkit,” in Proceedings of the Third Workshop on
Issues in Teaching Computational Linguistics, pp. 62–70, Association for Com-
putational Linguistics, 2008.

[151] S. Bird, E. Klein, and E. Loper, Natural language processing with Python:
analyzing text with the natural language toolkit. " O’Reilly Media, Inc.", 2009.

[152] J. Perkins, Python text processing with NLTK 2.0 cookbook. No. 1, Packt Pub-
lishing Ltd, 2010.

[153] S. Robertson, “Understanding inverse document frequency: on theoretical ar-
guments for idf,” Journal of documentation, vol. 60, no. 5, pp. 503–520, 2004.

https://github.com/goldsmith/Wikipedia
https://github.com/goldsmith/Wikipedia
https://github.com/martin-majlis/Wikipedia-API
https://github.com/martin-majlis/Wikipedia-API

153

[154] A. Sun and E.-P. Lim, “Hierarchical text classification and evaluation,” in
Data Mining, 2001. ICDM 2001, Proceedings IEEE International Conference
on, pp. 521–528, IEEE, 2001.

[155] S. Alam and M. L. Nelson, “MemGator-A portable concurrent memento ag-
gregator: Cross-platform CLI and server binaries in Go,” in Proceedings of the
16th ACM/IEEE-CS on Joint Conference on Digital Libraries, pp. 243–244,
ACM, 2016.

[156] P. J. Lavrakas, Encyclopedia of survey research methods. Sage Publications,
2008.

[157] M. Banerjee, M. Capozzoli, L. McSweeney, and D. Sinha, “Beyond kappa:
A review of interrater agreement measures,” Canadian journal of statistics,
vol. 27, no. 1, pp. 3–23, 1999.

[158] T. R. Nichols, P. M. Wisner, G. Cripe, and L. Gulabchand, “Putting the kappa
statistic to use,” The Quality Assurance Journal, vol. 13, no. 3-4, pp. 57–61,
2010.

154

APPENDIX A

WEB ARCHIVE FILE FORMATS

Listing 11-13, show the CDX, WARC, and WAT files that can be generated from
crawling the URL http://cs.odu.edu/~lalkwai/publication.html. These are
referenced in Section 2.1.

Listing 11 CDX file resulting from crawling the URL
http://cs.odu.edu/~lalkwai/publication.html

{

CDX N b a m s k r V g

cs.odu.edu /~ lalkwai /css/style -print.css 20180413034055

http :// www.cs.odu.edu /~ lalkwai /css/style -print.css

text/css 200 TJI7NJEGJVDUHII2N35YDGSOM36IVESU -

7665403 20180413034055402. warc

cs.odu.edu /~ lalkwai /css/style.css 20180413034055 http

:// www.cs.odu.edu /~ lalkwai /css/style.css text/css

200 TJI7NJEGJVDUHII2N35YDGSOM36IVESU - 7664033

20180413034055402. warc

cs.odu.edu /~ lalkwai /odu.jpg 20180413034055 http :// www.

cs.odu.edu /~ lalkwai /ODU.jpg image/jpeg 200

NXQLI2FPP2G2EVULIHUXN4TFSW374QIA - 7676142

20180413034055402. warc

cs.odu.edu /~ lalkwai / publication .html 20180413034055

http :// www.cs.odu.edu /~ lalkwai / publication .html text

/html 200 LA4CFY57P7OIWQT47T7IMYNDPSDGY2IO - 2399

20180413034055402. warc

}

Listing 12 WARC file resulting from crawling the URL
http://cs.odu.edu/~lalkwai/publication.html

{

WARC /1.0

WARC -Type: warcinfo

WARC -Date: 2018 -04 -13 T03 :40:55 Z

WARC - Filename : 20180413034055402. warc

http://cs.odu.edu/~lalkwai/publication.html
http://cs.odu.edu/~lalkwai/publication.html
http://cs.odu.edu/~lalkwai/publication.html

155

WARC -Record -ID: <urn:uuid:ef7bbdc3 -beba -dc4e -c8f6 -

ade122dcf075 >

Content -Type: application /warc - fields

Content - Length : 447

software : WARCreate /0.2017.6.6 http :// warcreate .com

format : WARC File Format 1.0

conformsTo : http :// bibnum .bnf.fr/WARC/

WARC_ISO_28500_version1_latestdraft .pdf

isPartOf : basic

description : Crawl initiated from the WARCreate Google

Chrome extension

robots : ignore

http -header -user -agent: Mozilla /5.0 (X11; Linux x86_64

) AppleWebKit /537.36 (KHTML , like Gecko) Chrome

/63.0.3239.132 Safari /537.36

http -header -from: warcreate@matkelly .com

WARC /1.0

WARC -Type: request

WARC -Target -URI: http :// www.cs.odu.edu /~ lalkwai /

publication .html

WARC -Date: 2018 -04 -13 T03 :40:55 Z

WARC -Concurrent -To: <urn:uuid:a9be70a0 -a480 -bab1 -4676 -

b8dceb3c3365 >

WARC -Record -ID: <urn:uuid :1 cdb4b73 -32d3 -0191 -1 bb4 -1

fc40aa7a6f1 >

Content -Type: application /http; msgtype = request

Content - Length : 512

GET /~ lalkwai / publication .html HTTP /1.1

Accept : text/plain , */*; q=0.01

X-Requested -With: XMLHttpRequest

User -Agent: Mozilla /5.0 (X11; Linux x86_64) AppleWebKit

/537.36 (KHTML , like Gecko) Chrome /63.0.3239.132

Safari /537.36

Referer : http :// www.cs.odu.edu /~ lalkwai / publication .

html

Accept - Encoding : gzip , deflate

Accept - Language : en -US ,en;q=0.9

156

Cookie : __utma

=256360345.2034739502.1446824378.1473178021.1487193943.13;

_ga=GA1 .2.863692975.1446056072; _gid=GA1

.2.1651099024.1523590838; _gat_UA -2088428 -1=1

WARC /1.0

WARC -Type: metadata

WARC -Target -URI: http :// www.cs.odu.edu /~ lalkwai /

publication .html

WARC -Date: 2018 -04 -13 T03 :40:55 Z

WARC -Concurrent -To: <urn:uuid:dddc4ba2 -c1e1 -459b-8d0d -

a98a20b87e96 >

WARC -Record -ID: <urn:uuid :6 fef2a49 -a9ba -4b40 -9f4a -5

ca5db1fd5c6 >

Content -Type: application /warc - fields

Content - Length : 537

outlink : http :// www.cs.odu.edu /~ lalkwai / publication .

htmlODU .jpg E = EMBED_MISC

outlink : http :// www.cs.odu.edu /~ lalkwai / publication .

htmlnull E link/@href

outlink : http :// www.cs.odu.edu /~ mln/pubs/jcdl -2015/ jcdl

-2015 - arabic -sites.pdf L a/@href

outlink : https :// dx.doi.org /10.1145/3041656 L a/@href

outlink : https :// arxiv.org/abs /1703.03302 L a/@href

outlink : http :// www.cs.odu.edu /~ mkelly / papers /2017

_jcdl_countingMementos .pdf L a/@href

outlink : http :// www.cs.odu.edu /~ lalkwai / L a/@href

outlink : https ://ws -dl.cs.odu.edu/ L a/@href

WARC /1.0

WARC -Type: response

WARC -Target -URI: http :// www.cs.odu.edu /~ lalkwai /

publication .html

WARC -Date: 2018 -04 -13 T03 :40:55 Z

WARC -Record -ID: <urn:uuid :34 a0a293 -80b9 -ffdc -4f77 -3

d027a08bfbd >

Content -Type: application /http; msgtype = response

Content - Length : 2743

HTTP /1.1 200 OK

157

Server : nginx

Date: Fri , 13 Apr 2018 03:40:34 GMT

Content -Type: text/html

Transfer - Encoding : chunked

Connection : keep -alive

Vary: Accept - Encoding

<! DOCTYPE html ><html ><head >

<title > Lulwah Alkwais ’ Publication list </ title >

<meta charset ="utf -8">

<meta http -equiv="Content -type" content ="text/html;

charset =utf -8">

<meta name=" viewport " content ="width=device -width ,

initial -scale =1">

<style type="text/css">

body {

background -color: # f0f0f2 ;

margin : 0;

padding : 0;

font - family : sans -serif;

font -size: 14px;

}

div {

width: 800 px;

margin : 0em auto;

padding : 25px;

background -color: #fff;

border - radius : 1em;

}

a:link , a: visited {

color: #38488f;

}

@media (max -width: 700 px) {

body {

background -color: #fff;

}

}

</style >

</head >

<body ><left ><img alt="Old Dominion University " height ="

150" src="ODU.jpg" width="150" ></left >

158

<div >

<h1 > Lulwah Alkwais ’ Publication list </h1 >

<a href="http :// www.cs.odu.edu /~ mln/pubs/jcdl

-2015/ jcdl -2015 - arabic -sites.pdf">Lulwah M.

Alkwai , Michael L. Nelson and Michele C.

Weigle , "How Well Are Arabic Websites Archived

?", In Proceedings of the ACM/IEEE Joint

Conference on Digital Libraries (JCDL).

Knoxville , TN , June 2015 , Best Student

Paper Award .

<a href="https :// dx.doi.org /10.1145/3041656

">Lulwah M. Alkwai , Michael L. Nelson and

Michele C. Weigle , " Comparing the Archival

Rate of Arabic , English , Danish , and Korean

Language Web Pages", ACM Transactions on

Information Systems (TOIS), Vol. 36, No. 1,

July 2017 , pp. 1:1 -1:34.

Mat Kelly , Lulwah M. Alkwai , Michael L.

Nelson , Michele C. Weigle and Herbert Van de

Sompel , " Impact of URI Canonicalization on

Memento Count", Technical report arXiv

:1703.03302 , March 2017.

<a href="http :// www.cs.odu.edu /~ mkelly / papers

/2017 _jcdl_countingMementos .pdf">Mat Kelly , Lulwah

M. Alkwai , Sawood Alam , Michael L. Nelson ,

Michele C. Weigle and Herbert Van de Sompel , "

Impact of URI Canonicalization on Memento Count",

In Proceedings of the ACM/IEEE Joint Conference on

Digital Libraries (JCDL). Toronto , Ontario ,

Canada , June 2017 , pp. 303 -304 , Best Poster

Award .

</div >

159

<center >Back

to Lulwah Alkwais ’ Old Dominion University Computer

Science homepage <center >

<center >Web Science

and Digital Libraries Research Group in the

Department of Computer Science at Old Dominion

University </ center >

</center ></ center ></body ></html >

WARC /1.0

WARC -Type: request

WARC -Target -URI: http :// www.cs.odu.edu /~ lalkwai /ODU.jpg

WARC -Date: 2018 -04 -13 T03 :40:55 Z

WARC -Concurrent -To: <urn:uuid:a9be70a0 -a480 -bab1 -4676 -

b8dceb3c3365 >

WARC -Record -ID: <urn:uuid :3 c5d51d3 -11e6 -5161 - f800 -71463

fa4a8cc >

Content -Type: application /http; msgtype = request

Content - Length : 449

GET /~ lalkwai /ODU.jpg HTTP /1.1

User -Agent: Mozilla /5.0 (X11; Linux x86_64) AppleWebKit

/537.36 (KHTML , like Gecko) Chrome /63.0.3239.132

Safari /537.36

Accept : */*

Referer : http :// www.cs.odu.edu /~ lalkwai / publication .

html

Accept - Encoding : gzip , deflate

Accept - Language : en -US ,en;q=0.9

Cookie : __utma

=256360345.2034739502.1446824378.1473178021.1487193943.13;

_ga=GA1 .2.863692975.1446056072; _gid=GA1

.2.1651099024.1523590838; _gat_UA -2088428 -1=1

WARC /1.0

WARC -Type: request

WARC -Target -URI: http :// www.cs.odu.edu/ favicon .ico

WARC -Date: 2018 -04 -13 T03 :40:55 Z

WARC -Concurrent -To: <urn:uuid:a9be70a0 -a480 -bab1 -4676 -

b8dceb3c3365 >

160

WARC -Record -ID: <urn:uuid:cb7d3c7b -787c-9e3c -75b1 -1

f293c0b7e19 >

Content -Type: application /http; msgtype = request

Content - Length : 480

GET / favicon .ico HTTP /1.1

User -Agent: Mozilla /5.0 (X11; Linux x86_64) AppleWebKit

/537.36 (KHTML , like Gecko) Chrome /63.0.3239.132

Safari /537.36

Accept : image/webp ,image/apng ,image /* ,*/*;q=0.8

Referer : http :// www.cs.odu.edu /~ lalkwai / publication .

html

Accept - Encoding : gzip , deflate

Accept - Language : en -US ,en;q=0.9

Cookie : __utma

=256360345.2034739502.1446824378.1473178021.1487193943.13;

_ga=GA1 .2.863692975.1446056072; _gid=GA1

.2.1651099024.1523590838; _gat_UA -2088428 -1=1

}

Listing 13 WAT file resulting from crawling the URL
http://cs.odu.edu/~lalkwai/publication.html

{

WARC /1.0

WARC -Type: warcinfo

WARC -Date: 2018 -04 -13 T03 :43:33 Z

WARC - Filename : 20180413034055402. warc

WARC -Record -ID: <urn:uuid:eb04fc6b -1f11 -4675 -8915 -

a8df5bad2130 >

Content -Type: application /warc - fields

Content - Length : 120

Software -Info: archive -commons -0.0.1 - SNAPSHOT

-2011 -04 -30 10:23:13

Extracted -Date: Fri , 13 Apr 2018 03:43:33 GMT

WARC /1.0

WARC -Type: metadata

WARC -Target -URI: 20180413034055402. warc

WARC -Date: 2018 -04 -13 T03 :40:55 Z

http://cs.odu.edu/~lalkwai/publication.html

161

WARC -Record -ID: <urn:uuid :3 ee95b5b -a7e8 -4259 - b447 -4

a8b833d995f >

WARC -Refers -To: <urn:uuid:ef7bbdc3 -beba -dc4e -c8f6 -

ade122dcf075 >

Content -Type: application /json

Content - Length : 1087

{" Envelope ":

{

"" Format ":"WARC",

"WARC -Header - Length ":"230",

"Block - Digest ":"sha1: FJP3JGJB6UU3QXDNUWLLC2MEZ7TNZ5PU ",

"Actual -Content - Length ":"447",

"WARC -Header - Metadata ":

{

""WARC -Type":" warcinfo ",

"WARC - Filename ":" 20180413034055402. warc",

"WARC -Date":"2018 -04 -13 T03 :40:55 Z",

"Content - Length ":"447",

"WARC -Record -ID":"<urn:uuid:ef7bbdc3 -beba -dc4e -c8f6 -

ade122dcf075 >",

"Content -Type":" application /warc - fields "},

"Payload - Metadata ":

{

""Trailing -Slop - Length ":"0",

"Actual -Content -Type":" application /warc - fields ",

"Actual -Content - Length ":"447",

"WARC -Info - Metadata ":

{

"" robots ":" ignore ",

" software ":" WARCreate /0.2017.6.6 http :// warcreate .com",

"http -header -from":" warcreate@matkelly .com",

"http -header -user -agent":" Mozilla /5.0 (X11; Linux

x86_64) AppleWebKit /537.36 (KHTML , like Gecko)

Chrome /63.0.3239.132 Safari /537.36 ",

" conformsTo ":"http :// bibnum .bnf.fr/WARC/

WARC_ISO_28500_version1_latestdraft .pdf",

" description ":"Crawl initiated from the WARCreate

Google Chrome extension ",

" isPartOf ":"basic",

" format ":"WARC File Format 1.0"}}},

162

" Container ":

{

"" Compressed ":false ,

" Offset ":"0",

" Filename ":" 20180413034055402. warc"}}

WARC /1.0

WARC -Type: metadata

WARC -Target -URI: http :// www.cs.odu.edu /~ lalkwai /

publication .html

WARC -Date: 2018 -04 -13 T03 :40:55 Z

WARC -Record -ID: <urn:uuid:cc1b9313 -db6f -427b-ac52 -038

bfe3473f4 >

WARC -Refers -To: <urn:uuid :1 cdb4b73 -32d3 -0191 -1 bb4 -1

fc40aa7a6f1 >

Content -Type: application /json

Content - Length : 1441

{" Envelope ":

{

"" Format ":"WARC",

"WARC -Header - Length ":"335",

"Block - Digest ":"sha1 :2 HEW37YGOZ62YRCRTCJHD5ODWHBWZBMI ",

"Actual -Content - Length ":"512",

"WARC -Header - Metadata ":

{

""WARC -Type":" request ",

"WARC -Date":"2018 -04 -13 T03 :40:55 Z",

"Content - Length ":"512",

"WARC -Record -ID":"<urn:uuid :1 cdb4b73 -32d3 -0191 -1 bb4 -1

fc40aa7a6f1 >",

"WARC -Target -URI":"http :// www.cs.odu.edu /~ lalkwai /

publication .html",

"WARC -Concurrent -To":"<urn:uuid:a9be70a0 -a480 -bab1

-4676 - b8dceb3c3365 >",

"Content -Type":" application /http; msgtype = request "},

"Payload - Metadata ":

{

""Trailing -Slop - Length ":"4",

"HTTP -Request - Metadata ":

163

{" Headers ":

{

""Accept - Language ":"en -US ,en;q=0.9",

" Cookie ":" __utma

=256360345.2034739502.1446824378.1473178021.1487193943.13;

_ga=GA1 .2.863692975.1446056072; _gid=GA1

.2.1651099024.1523590838; _gat_UA -2088428 -1=1 ",

"X-Requested -With":" XMLHttpRequest ",

"Accept - Encoding ":"gzip , deflate ",

" Referer ":"http :// www.cs.odu.edu /~ lalkwai / publication .

html",

"User -Agent":" Mozilla /5.0 (X11; Linux x86_64)

AppleWebKit /537.36 (KHTML , like Gecko) Chrome

/63.0.3239.132 Safari /537.36 ",

" Accept ":"text/plain , */*; q=0.01"},

"Headers - Length ":"510",

"Entity - Length ":"0",

"Entity -Trailing -Slop -Bytes":"0",

"Request - Message ":

{

"" Method ":"GET",

" Version ":"HTTP /1.1",

"Path":"/~ lalkwai / publication .html"},

"Entity - Digest ":"sha1 :3 I42H3S6NNFQ2MSVX7XZKYAYSCX5QBYJ "

},

"Actual -Content -Type":" application /http; msgtype =

request "}},

" Container ":

{

"" Compressed ":false ,

" Offset ":"681",

" Filename ":" 20180413034055402. warc"}}

WARC /1.0

WARC -Type: metadata

WARC -Target -URI: http :// www.cs.odu.edu /~ lalkwai /

publication .html

WARC -Date: 2018 -04 -13 T03 :40:55 Z

WARC -Record -ID: <urn:uuid :6 a476834 -3c77 -4dcc -8862 -44

e42fe72280 >

164

WARC -Refers -To: <urn:uuid :6 fef2a49 -a9ba -4b40 -9f4a -5

ca5db1fd5c6 >

Content -Type: application /json

Content - Length : 1433

{" Envelope ":

{

"" Format ":"WARC",

"WARC -Header - Length ":"326",

"Block - Digest ":"sha1: XXDSCAMB3J5JKR6M72PCITGAZGO73CXW ",

"Actual -Content - Length ":"537",

"WARC -Header - Metadata ":

{

""WARC -Type":" metadata ",

"WARC -Date":"2018 -04 -13 T03 :40:55 Z",

"Content - Length ":"537",

"WARC -Record -ID":"<urn:uuid :6 fef2a49 -a9ba -4b40 -9f4a -5

ca5db1fd5c6 >",

"WARC -Target -URI":"http :// www.cs.odu.edu /~ lalkwai /

publication .html",

"WARC -Concurrent -To":"<urn:uuid:dddc4ba2 -c1e1 -459b-8d0d

- a98a20b87e96 >",

"Content -Type":" application /warc - fields "},

"Payload - Metadata ":

{

""Trailing -Slop - Length ":"4",

"WARC -Metadata - Metadata ":

{

"" FIELDS_CORRUPT ":true ,

"Trailing -Slop - Length ":"0",

"Metadata - Records ":[{"Name":" outlink ",

"Value":"http :// www.cs.odu.edu /~ lalkwai / publication .

htmlODU .jpg E = EMBED_MISC "},{"Name":" outlink ",

"Value":"http :// www.cs.odu.edu /~ lalkwai / publication .

htmlnull E link/@href"},{"Name":" outlink ",

"Value":"http :// www.cs.odu.edu /~ mln/pubs/jcdl -2015/ jcdl

-2015 - arabic -sites.pdf L a/@href"},{"Name":" outlink "

,

"Value":"https :// dx.doi.org /10.1145/3041656 L a/@href"

},{"Name":" outlink ",

165

"Value":"https :// arxiv.org/abs /1703.03302 L a/@href"},{

"Name":" outlink ",

"Value":"http :// www.cs.odu.edu /~ mkelly / papers /2017

_jcdl_countingMementos .pdf L a/@href"},{"Name":"

outlink ",

"Value":"http :// www.cs.odu.edu /~ lalkwai / L a/@href"}],

"Actual -Content - Length ":"537"},

"Actual -Content -Type":" application /metadata - fields "}},

" Container ":

{

"" Compressed ":false ,

" Offset ":"1532",

" Filename ":" 20180413034055402. warc"}}

WARC /1.0

WARC -Type: metadata

WARC -Target -URI: http :// www.cs.odu.edu /~ lalkwai /

publication .html

WARC -Date: 2018 -04 -13 T03 :40:55 Z

WARC -Record -ID: <urn:uuid :67 c5bc7f -044c-4d35 -b679 -

b1845e0c4561 >

WARC -Refers -To: <urn:uuid :34 a0a293 -80b9 -ffdc -4f77 -3

d027a08bfbd >

Content -Type: application /json

Content - Length : 2395

{" Envelope ":

{

"" Format ":"WARC",

"WARC -Header - Length ":"269",

"Block - Digest ":"sha1: JLGNN3SMFT7Z2PW7KINL47CIXG35OMOZ ",

"Actual -Content - Length ":"2743",

"WARC -Header - Metadata ":

{

""WARC -Type":" response ",

"WARC -Date":"2018 -04 -13 T03 :40:55 Z",

"Content - Length ":"2743",

"WARC -Record -ID":"<urn:uuid :34 a0a293 -80b9 -ffdc -4f77 -3

d027a08bfbd >",

166

"WARC -Target -URI":"http :// www.cs.odu.edu /~ lalkwai /

publication .html",

"Content -Type":" application /http; msgtype = response "},

"Payload - Metadata ":

{

""Trailing -Slop - Length ":"4",

"Actual -Content -Type":" application /http; msgtype =

response ",

"HTTP -Response - Metadata ":

{

"" Headers ":

{

""Vary":"Accept - Encoding ",

"Transfer - Encoding ":" chunked ",

"Date":"Fri , 13 Apr 2018 03:40:34 GMT",

" Connection ":"keep -alive",

"Content -Type":"text/html",

" Server ":"nginx"},

"Headers - Length ":"171",

"Entity - Length ":"2572",

"Entity -Trailing -Slop -Bytes":"0",

"Response - Message ":

{

"" Status ":"200",

" Version ":"HTTP /1.1",

" Reason ":"OK"},

"HTML - Metadata ":

{

""Links":[{"alt":"Old Dominion University ",

"path":"IMG@/src",

"url":"ODU.jpg"},

{"text":" Lulwah M. Alkwai , Michael L. Nelson and

Michele C. Weigle , \"How Well Are Arabic Websites

Archived ?\",",

"path":"A@/href",

"url":"http :// www.cs.odu.edu /~ mln/pubs/jcdl -2015/ jcdl

-2015 - arabic -sites.pdf"},{"text":" Lulwah M. Alkwai ,

Michael L. Nelson and Michele C. Weigle , \" Comparing

the Archival Rate of Arabic , E",

"path":"A@/href",

167

"url":"https :// dx.doi.org /10.1145/3041656 "},{"text":"

Mat Kelly , Lulwah M. Alkwai , Michael L. Nelson ,

Michele C. Weigle and Herbert Van de Sompel , \"

Impact ",

"path":"A@/href",

"url":"https :// arxiv.org/abs /1703.03302 "},{"text":"Mat

Kelly , Lulwah M. Alkwai , Sawood Alam , Michael L.

Nelson , Michele C. Weigle and Herbert Van de So",

"path":"A@/href",

"url":"http :// www.cs.odu.edu /~ mkelly / papers /2017

_jcdl_countingMementos .pdf"},{"text":"Back to Lulwah

Alkwais ’ Old Dominion University Computer Science

homepage ",

"path":"A@/href",

"url":"http :// www.cs.odu.edu /~ lalkwai /"},{"text":"Web

Science and Digital Libraries Research Group in the

Department of Computer Science at Old Domini ",

"path":"A@/href",

"url":"https ://ws -dl.cs.odu.edu/"}],

"Head":

{

""Metas":[{" content ":"text/html; charset =utf -8",

"http -equiv":"Content -type"},{" content ":"width=device -

width , initial -scale =1",

"name":" viewport "}],

"Title":" Lulwah Alkwais ’ Publication list"}},

"Entity - Digest ":"sha1: LA4CFY57P7OIWQT47T7IMYNDPSDGY2IO "

}}},

" Container ":

{

"" Compressed ":false ,

" Offset ":"2399",

" Filename ":" 20180413034055402. warc"}}

WARC /1.0

WARC -Type: metadata

WARC -Target -URI: http :// www.cs.odu.edu /~ lalkwai /ODU.jpg

WARC -Date: 2018 -04 -13 T03 :40:55 Z

168

WARC -Record -ID: <urn:uuid:ad998f15 -5176 -44dd -b9f6 -

bb8310ee4a99 >

WARC -Refers -To: <urn:uuid :3 c5d51d3 -11e6 -5161 - f800 -71463

fa4a8cc >

Content -Type: application /json

Content - Length : 1368

{" Envelope ":

{

"" Format ":"WARC",

"WARC -Header - Length ":"326",

"Block - Digest ":"sha1: UGBCYT3ALX627ST4JRN2DIOXVLL6NRJZ ",

"Actual -Content - Length ":"449",

"WARC -Header - Metadata ":

{

""WARC -Type":" request ",

"WARC -Date":"2018 -04 -13 T03 :40:55 Z",

"Content - Length ":"449",

"WARC -Record -ID":"<urn:uuid :3 c5d51d3 -11e6 -5161 - f800

-71463 fa4a8cc >",

"WARC -Target -URI":"http :// www.cs.odu.edu /~ lalkwai /ODU.

jpg",

"WARC -Concurrent -To":"<urn:uuid:a9be70a0 -a480 -bab1

-4676 - b8dceb3c3365 >",

"Content -Type":" application /http; msgtype = request "},

"Payload - Metadata ":

{

""Trailing -Slop - Length ":"4",

"HTTP -Request - Metadata ":

{

"" Headers ":

{

""Accept - Language ":"en -US ,en;q=0.9",

" Cookie ":" __utma

=256360345.2034739502.1446824378.1473178021.1487193943.13;

_ga=GA1 .2.863692975.1446056072; _gid=GA1

.2.1651099024.1523590838; _gat_UA -2088428 -1=1 ",

"Accept - Encoding ":"gzip , deflate ",

" Referer ":"http :// www.cs.odu.edu /~ lalkwai / publication .

html",

169

"User -Agent":" Mozilla /5.0 (X11; Linux x86_64)

AppleWebKit /537.36 (KHTML , like Gecko) Chrome

/63.0.3239.132 Safari /537.36 ",

" Accept ":"*/*"},

"Headers - Length ":"447",

"Entity - Length ":"0",

"Entity -Trailing -Slop -Bytes":"0",

"Request - Message ":

{

"" Method ":"GET",

" Version ":"HTTP /1.1",

"Path":"/~ lalkwai /ODU.jpg"},

"Entity - Digest ":"sha1 :3 I42H3S6NNFQ2MSVX7XZKYAYSCX5QBYJ "

},

"Actual -Content -Type":" application /http; msgtype =

request "}},

" Container ":

{

"" Compressed ":false ,

" Offset ":"5415",

" Filename ":" 20180413034055402. warc"}}

WARC /1.0

WARC -Type: metadata

WARC -Target -URI: http :// www.cs.odu.edu/ favicon .ico

WARC -Date: 2018 -04 -13 T03 :40:55 Z

WARC -Record -ID: <urn:uuid :98 f0d8e4 -18a0 -46f8 -bdc6 -813

c807805b4 >

WARC -Refers -To: <urn:uuid:cb7d3c7b -787c-9e3c -75b1 -1

f293c0b7e19 >

Content -Type: application /json

Content - Length : 1394

}

170

APPENDIX B

LIST OF ABBREVIATIONS

AT Aboutness Time
AUT Archives Unleashed Toolkit
CW Confidence Weighted
CD Creation datetime
DT Decision Trees
DMOZ Directory.mozilla.org
FN False Negatives
FP False Positives
FST Finite state transducer
κ Fleiss’ kappa
FAQ Frequently Asked Queries
gTLD generic top-level domain
HTTP HyperText Transfer Protocol
IC Information content
LM Last modified
LS Lexical signature
ML Machine learning
ME Maximum Entropy
URI-M Memento
MD Memento datetime
Mi-F1 Micro-average F1
MIME Multipurpose Internet Mail Extensions
NB Naïve Bayes
NLTK Natural Language Toolkit
OTMT Off-Topic Memento Toolkit
ODP Open directory project
URI-R Original Resource
ccTLD Country code top-level domain
PA Passive-Aggressive
RDF Resource description framework
STM Science Technology and Medicine
SER Search Engine Results
SURT Sort-friendly URI Reordering Transform
SVM Support Vector Machines

171

TF Term frequency
TF-IDF Term frequency-inverse document frequency
URI-G TimeGate
URI-T TimeMap
URL Uniform Resource Locator
TLD Top level domain
TN True Negatives
TP True Positives
URI Uniform Resource Identifier
WARC Web ARChive
WAT Web Archive Metadata

172

VITA

Lulwah M. Alkwai
Department of Computer Science
Old Dominion University
Norfolk, VA 23529

EDUCATION

Ph.D. Computer Science, Old Dominion University, 2019
M.S. Computer Science, Old Dominion University, 2013
B.S. Computer Science, King Saud University, Saudi Arabia, 2007

EMPLOYMENT

2007 - 2009 Teacher Assistant at University of Hail, Saudi Arabia

PUBLICATIONS

A complete list is available at https://scholar.google.com/citations?user=

EnQF73AAAAAJ&hl=en&oi=ao

Typeset using LATEX.

https://scholar.google.com/citations?user=EnQF73AAAAAJ&hl=en&oi=ao
https://scholar.google.com/citations?user=EnQF73AAAAAJ&hl=en&oi=ao

	Old Dominion University
	ODU Digital Commons
	Spring 2019

	Expanding the Usage of Web Archives by Recommending Archived Webpages Using Only the URI
	Lulwah M. Alkwai
	Recommended Citation

	List of Tables
	List of Figures
	Introduction
	Motivation
	Research Goals
	Example Recommendations
	Research Questions
	Dissertation Roadmap

	Background
	Web Archives
	URI and the HTTP status code
	Classification
	Ontologies
	Recommendations
	Summary

	Related Work
	Splitting Compound Words
	Clustering vs. Classification
	Archiving
	Soft 404s
	Ranking Features
	Summary

	Datasets
	DMOZ
	Wikipedia
	Wayback Machine Access Log Dataset
	How each dataset is used
	Comparing datasets
	Summary

	Implementation
	Establishing Baselines
	Detect URI semantics
	Map tokens to an ontology
	Gathering candidates
	Filter candidates
	Rank candidates
	Summary

	Evaluation and Results
	Testing Deep Level Classification
	Testing and evaluating the model
	Summary

	CONTRIBUTIONS, CONCLUSIONS, AND FUTURE WORK
	Research questions revisited
	Contributions
	FUTURE WORK
	Conclusions

	REFERENCES
	Web Archive file formats
	LIST OF ABBREVIATIONS

	VITA

