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Abstract

Mathematical Models of Chemotherapy 

John Caxl Panetta 

Old Dominion University, 1995 

Director: Dr. John A. Adam

Several mathematical models axe developed to describe the effects of chemother­

apy on both cancerous and normal tissue. Each model is defined by either a single 

homogeneous equation or a system of heterogeneous equations which describe the 

states of the normal and/or cancer cells. Periodic terms are added to model the 

effects of the chemotherapy. W hat we obtain are regions, in parameter space (dose 

and period), of acceptable drug regimens.

The models take into account various aspects of chemotherapy. These include, 

interactions between the cancer and normal tissue, cell specific chemotherapeutic 

drug, the use of non-constant parameters to aid in modeling specific chemother­

apeutic processes, and drug resistance. By studying the models we can obtain a 

better understanding of the dynamics of the chemotherapeutic drugs and how better 

to implement them.

The mathematical methods used axe mostly in the area of dynamical systems in 

particular Floquet Theory. These methods are used on either a single equation or a 

system of periodic ordinary differential equations which model the chemotherapeutic 

process. These are reduced to difference equations that describe the state of the 

cancer at the beginning of each period. By studying the characteristic multipliers, we
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axe able to determine the bifurcation between successful and unsuccessful regimens, 

if existing drug regimens seem reasonable from a mathematical model standpoint, 

and suggest ways to better implement the existing chemotherapeutic drugs.
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Chapter 1

Introduction

Mathematics gives a good basis for discussing the various effects of cytotoxic drugs 

on both cancer and normal tissue. By developing more sophisticated mathematical 

models that more accurately fit known chemotherapeutic responses, we can better 

understand how to control the proliferation of cancerous cells. The purpose of this 

dissertation is to discuss a variety of mathematical models of cancer chemotherapy 

and how they may help clinicians better design drug regimens to effectively control 

cancer. There are a variety of factors that must be taken into account in this process, 

including cell kinetics (how different cells grow), chemotherapeutic kinetics (how the 

cytotoxic drugs kill cells), chemotherapeutic resistance (how cancer cells develop 

resistance to cytotoxic drugs), and effects of chemotherapy on normal tissue such as 

bone marrow. The various models that will be described take into account one or 

more of these factors and show some of the mathematical ideas tha t can be used to 

help understand how they function.

The need for these mathematical models is becoming more widely appreciated.

1
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As stated by Birkhead and Gregory [9]:

While certain agreed treatment principles seem to have emerged from 

empirical experimentation, for some diseases these have failed to produce 

any significant improvements in the rate of clinical response, survival, or 

cure, and for others, initial progress has not been consolidated. There is 

a need, in such cases, to provide insights to help the clinician understand 

the reasons for failure and to help him make a rational choice of his next 

strategy.

The models described in this dissertation show specific regions of acceptable drug 

regimens that are related to the period in which drugs are delivered and strength of 

the dose. This q u a lita tiv e  knowledge may help clinicians make choices on how to 

better design chemotherapeutic regimens.

1.1 Literature R eview

The literature on mathematical modeling of cancer chemotherapy is an informative 

basis for the present study. To begin with, there are a  variety of books and pa­

pers that give an insightful overview of the topic. One of the earliest papers is by 

Aroesty et al. [5], They investigate quantitative ways of estimating cell kinetic pa­

rameters, such as the growth rate, along with descriptions of the cell cycle which 

help in understanding the idea of cycle-specific chemotherapy. In his book, Swan 

[61] discusses various models of tumor growth curves including diffusion, stochastic, 

and age-structured models (many of these ideas are not covered in this dissertation),

2
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along with topics on cell ecology models and immune response models which will 

be a part of this study. Works by Eisen [23], Swan [63, 64], and Knolle [38] also 

give descriptions of various models of the cell-cycle and chemotherapy. Skipper [60] 

investigates some of the critical variables in combination chemotherapy regimens. 

In particular, he studies the average relative dose intensity of drugs administered 

in combination, and matching of doses for the largest decay in tumor mass. He 

shows many graphs from various experiments with these drug regimens which give 

considerable insight as to the effects of combination chemotherapy.

One area in which much research has been carried out is that of tumor-normal 

cell interaction. Much of the work done has involved investigation of the interaction 

between the tumor and the immune system. Earlier work by Swan [62] investigates 

a  mathematical model of tumor-lymphocyte interaction, and Albert et al. [4], who 

present a  simple predator-prey model of the tumor-immune system interaction. A 

later study by Bellomo and Forni [6] also develops a model of the tumor-immune 

system interaction in the form of a predator-prey model. They also include some 

simulations and experimental results. A more immunologically-based view of the 

interaction can be seen in De Boer et al. [20, 21], and a  more recent work by 

Kuznetsov et al. [41] studies the immune response to a tumor using some interesting 

nonlineax dynamics. An interesting model by Adam [1] (based on work of Prigogine 

and Lefever [59]) studies the one-dimensional spatio-temporal dynamics of cancer 

growth with an immune response. Traveling wave solutions are investigated and 

lower bounds on wave speeds for wavefronts linking stable tumoral states to unstable 

cancer-free states were found.

3
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There also has been a variety of recent literature on more general tumor-host 

interaction models. Some early clinical studies by Paschkis et al. [58] and Fisher 

and Fisher [25] describe the interaction between hepatic tissue (liver) and tumor 

metastases. Both studies indicate that after a partial hepatectomy not only does the 

hepatic tissue start to grow back (because of growth factors produced), but hepatic 

metastases also show more rapid growth, thus leading them to believe there is some 

positive interaction between the regenerating liver and the cancer cells. More recent 

work in the tumor-host interaction has been done by Gatenby [27, 28], who studies 

how population ecology models can be applied to tumor-host interaction. Also, 

Cornil et al. [16] study the interaction of normal dermal fibroblasts with human 

melanoma cells.

Another area of emphasis in the research on chemotherapy modeling is in de­

scribing the cell-cycle and the use of cycle-specific chemotherapeutic drugs to take 

advantage of the differences in the cancer and normal tissue’s cell-cycle. Some gen­

eral references that discuss the cell-cycle and its importance in chemotherapy are 

Eisen [24, 23] and Knolle [38]. More specific models on cycle-specific chemotherapy 

are given in Webb [66] which describes a  linear two compartment model (both pro­

liferating and quiescent cells present) of the chemotherapeutic effects, and in Webb 

[67] and Gyllenberg and Webb [33] which describe a non-linear two compartment 

model. The basis for these models is developed by Gyllenberg and Webb [32]. Two 

other papers which also discuss the toxicity effects of drugs on normal tissue (such 

as bone marrow) are Agur et al. [3] and Cojocaru and Agur [13]. Their models ex­

amine the reduction in damage to bone marrow by examining the relation between

4
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the period over which drugs are delivered and the cell-cycle times for the tumor and 

bone marrow cells.

Other methods used to help reduce the effects of cytotoxic drugs include the 

administration of various types of growth factors, in particular, Hemopoietic growth 

factors (HGF’s). Examples of these methods are described in Bhalla et al. [8] and 

Demetri [22].

One major disadvantage of many chemotherapeutic regimens is the development 

of tumor resistance to the cytotoxic drugs. Some of the original mathematical re­

search done in this area was carried out by Goldie and Coldman [29] who use a 

probabilistic model to show how, as the number of tumor cells increases, the proba­

bility of eradicating them before resistant cells take over radically drops. Goldie et 

al. [30], also discuss strategies of delivering non-cross-resistant chemotherapy that 

reduce the risk of developing totally resistant tumor cells. Swan [63] investigates 

a model of radiotherapeutic resistance with resistant and sensitive cell populations 

modeled by first order (linear) kinetics, and compares the advantages and disadvan­

tages of periodic and continuous irradiation. Birkhead and Gregory [9] develop a 

difference equation model of chemotherapy with drug resistance. They study the 

ratio of sensitive tumor cells to total number of tumor cells, which can be found 

clinically, and use it to predict tumor size and to estimate model parameters. They 

also show the point at which a drug becomes ineffective against a resistant tumor. In 

the case of non-cross-resistant therapy, they discuss patterns of administration and 

give conditions for administration strategies. Birkhead et al. [10, 11] and Gregory 

et al. [31], also relate the foregoing model to various clinical trials. In addition,

5
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Birkhead et al. [12] develop a linear four compartment differential equation model 

which also includes resistance to chemotherapy. Here they model each compartment 

of the cell-cycle (sensitive resting and proliferating along with resistant resting and 

proliferating) with a  linear differential equation instead of a difference equation to 

describe more directly the effects of resistance. Another interesting approach to 

modeling drug resistance is given by Michelson and Slate [54], who discuss a multi­

drug resistance as an efflux pump which basically pumps the drugs out of the cell. 

Also, Martin et al. [43, 44] study both single and non-cross-resistant chemotherapy 

from an optimization theory standpoint.

Heterogeneous tumor models (i.e. with both sensitive and resistant compart­

ments) are another approach to investigating drug resistance. Michelson and Leith 

[50] summarize this approach by discussing the various types of tumor heterogene­

ity and including much of the theoretical background. A more mathematical view 

of this area can start with Jansson and Revesz [37] whose model is further devel­

oped by Michelson et al. [53]. These models describe the competitive interactions 

between two different types of tumor cell masses (usually one mutating from the 

other). Variations on these topics are continued in Michelson and Leith [46], who 

study the effects of varying the growth rates of the subpopulations; Michelson et 

al. [45], who examine stochastic models of subpopulation emergence; and Michelson 

and Leith [47], wherein composition of the heterogeneous tumor in the presence of 

Mitomycin C (a chemotherapeutic drug) is investigated.

Non-constant parameters are used to increase the generality of the earlier mod­

els. Several preliminary mathematical papers which include periodic non-constant

6
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parameters (particularly in logistic and competition environments) are provided by 

Cushing [19, 17, 18], Coleman [14], Coleman et al. [15], Hallam and Clark [36], and 

Zhien and Hallam [68]. In these papers, the authors start with constant coefficient 

systems and incorporate periodically-varying parameters. They also discuss exis­

tence of periodic solutions along with conditions needed for these solutions. In works 

more related to tumor growth and chemotherapy, Michelson and Leith [46, 48, 49] 

and Gyori and Michelson [34] discuss how varying different parameters of existing 

models may result in a better fit to tumor growth and chemotherapeutic kinetics. 

Recently Michelson and Leith [52] discuss the need for non-constant parameters to 

describe the interaction between liver tumors and the liver.

1.2 Topics

This dissertation covers four areas of chemotherapy: (i) tumor-host interaction in the 

presence of chemotherapeutic drugs, (ii) cell-specific chemotherapy, (iii) non-constant 

parameters, and (iv) drug resistance and heterogeneous tumors. Through the models 

developed in these areas, it is hoped to gain a  q u a lita tiv e ly  better understanding as 

to how chemotherapeutic drugs affect the growth dynamics of cancer cells (usually in 

terms of the dose and period) and how we may take advantage of this knowledge to 

better design chemotherapeutic regimens. In each case the tumor growth is described 

by a single or system of differential equations. Added to these equations are the 

effects of the chemotherapeutic drug. These are modeled either by a periodic pulsing 

function (instant removal of cells) or a piecewise-periodic function (removal over a

7
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period of time) which, is more realistic. In all cases the constraining effects of the 

drugs on normal tissue are discussed.

1.2.1 Tumor-Host Interaction

This chapter investigates the tumor-normal cell interaction with the added effects 

of periodically-pulsed chemotherapy. The model used in this case is the standard 

competition model from population dynamics in which the competition or interaction 

in the cancer model occurs between the tumor and normal tissue. Some examples 

of this interaction can be, competition for resources, immune response, or growth 

factor signals from either the tumor or normal tissue. The model describes parameter 

conditions needed to prevent relapse following attempts to remove the tumor or 

tumor metastasis (remote small secondary tumor growth).

1.2.2 Cell-Specific Chemotherapy

In this chapter a linear system of ordinary differential equations is used to discuss 

the effects of cell-specific chemotherapy. Cell-specific drugs act primarily on prolif­

erating cells. Since tumor tissue has a higher percentage of cells in the proliferating 

compartment as compared to most normal tissue, the cell-specific drugs can be an 

advantageous method for reducing the tumor mass without overly destroying normal 

tissue. Thus this model studies the cell-cycle of the tumor mass, but also includes 

a constraint equation describing the effects of the drugs on sensitive normal tissue 

(such as bone marrow). This model, as the one in chapter 2, uses periodically-pulsed 

chemotherapeutic effects to calculate the parameter regions of acceptable dose and

8
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period. It also identifies the optimal period needed for maximal tumor reduction. 

Examples are included concerning the use of growth factors and how they may en­

hance the cell kill of the chemotherapeutic drugs.

In trying to improve the success of a drug regimen, the clinician can attem pt 

to give a larger dose, but because of its effects on the bone marrow, the clinician 

may not be able to administer the drug at its optimal period, that is, the period 

which obtains the highest reduction in tumor mass per dose. There axe various 

methods to alleviate this problem. For example, bone marrow transplants are given 

to patients with various types of cancers including Acute Myeloid Leukemia (AML) 

after high doses of chemotherapeutic drugs. Another approach is to increase the rate 

at which bone marrow reproduces (makes leukocytes, white blood cells). This is done 

with various Hemopoietic Growth Factors (HGF). This model shows how, when the 

growth rate of bone marrow is increased, we can give the drug at a higher dose at 

its optimal period, thus, leading to an overall larger reduction in cancerous tissue. 

These methods may seem counter-intuitive, but as we will show, they dramatically 

increase the effectiveness of the chemotherapy.

1.2.3 Non-Constant Parameters

The need for non-constant parameters in the previous models is discussed in this 

chapter. This includes both effects such as the tumors ability to manipulate its 

environment with growth factors, the residual effects of drugs, and the use of periodic 

chemotherapeutic drugs. For example, as a drug is given, over time there will be 

toxic buildup in the body, waste from the dead cells, etc. This can be modeled by a

9
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declining carrying capacity for both the normal and tumor cells. Also, a phenomenon 

known as the tumor bed effect (TBE) may occur, wherein the tumor, via growth 

factors, can increase its carrying capacity. Other examples of the need for non­

constant parameters is with the interaction of the liver tumor with the liver, each 

has the ability to manipulate the other. The actual dynamics of these interactions 

may be observed by letting either the growth rate or carrying capacity vary.

In the case of the chemotherapeutic drugs, a  logistic differential equation is uti­

lized along with both a linear and non-linear system of differential equations with 

time-varying periodic parameters. The chemotherapeutic effects are modeled by a 

periodic parameter that modifies the growth rate of the cell tissue. A negative growth 

rate  represents the detrimental effects of the drugs. Simple criteria are obtained for 

the effects of the chemotherapy.

1.2.4 Resistance and Heterogeneous Tumors

Resistance to various chemotherapeutic drugs is a  major cause for failure of chemo­

therapeutic regimens. One type of resistance is discussed in chapter 3 where resting 

cells are not affected by the cytotoxic drugs. In this chapter, we will study a differ­

ent form of resistance, cells become resistant to a drug not because of the phase of 

the  cell-cycle that they are in, but because of physical changes (mutations) caused 

by chemotherapeutic drugs to the makeup of the surviving cells. They may also 

be inherent a priori and be selected without mutation. There are various types of 

resistance and here we will discuss induced or acquired resistance, i.e. resistance 

th a t arises as a result of cell mutations induced by the drug. We investigate both

10
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homogeneous and heterogeneous models of resistance. In the case of the homoge­

neous model, the cell population is modeled as a whole, not taking into account the 

various types of sensitive and resistance cells in the tumor. The heterogeneous tumor 

model w ill take these into account. Conditions are developed for either eliminating 

the tumor or, in the case where the tumor cannot be eliminated with the specified 

regimen, specifying the number of acceptable doses (nadir) that can be administered 

before tumor regrowth due to resistance occurs.

11
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Chapter 2

Tum or-Host Interaction

2.1 Introduction

Mathematical models of cancer chemotherapy can indicate how micro-environmental 

interactions between tumor and normal cells can affect the outcome of the chemother­

apy and the ability of a tumor to recur or metastasize. As stated by Knolle [38], 

knowing how model parameters affect both the tumor and the normal cells can help 

take advantage of kinetic differences between the cells and how they may react to 

chemotherapy. Eisen [23] also notes tha t the mathematics can help “discover ways to 

use existing drugs more efficiently,” pointing out tha t even a  good drug can appear 

useless if administered inappropriately.

One of the earlier steps in developing dose-response curves of the effects of chemo­

therapeutic drugs on tumor and normal tissue is discussed by Berenbaum [7]. He 

takes a straightforward approach to modeling these effects. He derives basic criteria 

for reducing tumor size without overly destroying the normal tissue. These criteria

12
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include administration of the proper dosage and the timing of the dosage. Another 

common approach to investigating chemotherapy and its effects on normal tissue is 

via optimization theory. Murray [55] models the cell populations with Gompertz 

growth and continuous cell-kill and minimizes the tumor population while keeping 

normal cells above and toxicity below acceptable levels.

Unfortunately, none of these studies takes into account the possible interaction 

between tumor and normal cells (tumors do not grow in an environment isolated 

from normal cells; they compete for the available resources and they both develop 

growth factors that can affect each other). Adding this feature to the model will 

make it more realistic.

This type of interaction does not occur with all forms of cancer. For example, 

both brain and lung tumors show little or no interaction with their local environment. 

Chemotherapeutic drugs used to eliminate these cancers are in many cases cell- 

specific (they only kill cells in their growing phase). The tissue local to the tumor 

is differentiated (not growing), and as such, it shows little negative effects to the 

treatment. But, there axe some cases where this type of local interaction is occurring. 

This includes tumors in the liver as discussed by Fisher and Fisher [25], Paschkis 

et al. [58], and Michelson and Leith [52], along with a variety of other forms of 

interactions. For example, Gatenby [27, 28] investigates this tumor-host relationship 

considering the interaction to be both the effects of the immune system (for small 

tumor mass) and interaction for resources by epithelial (cells lining the internal 

and external surfaces) and mesenchymal cells (connective tissue). In particular, he 

considers the interaction with a  small number of cancer cells. Bellomo and Forni [6]

13

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



develop a model of the interactions between the tumor, host, and immune system. 

They show that for small tumor mass, the immune system can retard the growth of 

the tumor. It can also be noted that lung tumors do interact with the immune system 

response as opposed to other tissue in their local environment. Cornil et al. [16] 

address the question of the effects that adjacent normal tissue such as fibroblasts 

have on human melanoma cells. Furthermore, Liotta [42] discusses how various 

growth factors produced by both normal and tumor tissues may either suppress or 

stimulate cell growth.

Interestingly, none of these models takes into account the effects of the drug on the 

normal tissue. Therefore, we extend the basic models of homogeneous tumor growth 

to include chemotherapy and normal cell interaction. The following models examine 

the effects of cycle non-specific (a drug that kills tumor cells at all stages of the cell 

cycle) periodically-pulsed chemotherapy in a local tumor-normal cell environment. 

Works by Webb [67, 66], Agur et al.[3], Cojocaru and Agur [13], and Panetta  and 

Adam [57] axe directed to model various types of cycle-specific drug dynamics and 

are n o t covered in this chapter. Most importantly, the model in this chapter will 

investigate the use of chemotherapy to eliminate either (i) a sm all tumor burden left 

after attempts to remove the main tumor mass have been made, or (ii) a  metastasized 

tumor mass, and in so doing will provide parameter conditions for tumor relapse. 

From these conditions we show that the interaction term  along with the normal cell 

carrying capacity has a significant effect on the outcome of the therapy. Knowing 

these conditions can help in understanding and developing effective drug treatments.

14

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



2.2 The M odel

Competition models from population biology have sometimes been used to model cell 

interactions. Gatenby [27, 28] investigates models of tumor-normal cell interaction, 

while Jansson and Revesz [37], Michelson et al. [46, 49, 53], and Gyori et al. [34] 

examine interaction in heterogeneous tumor populations. Of particular interest is 

the review of heterogeneous tumor populations by Michelson and Leith [50], who 

cover a wide variety of topics including the biological implications of the models. 

These heterogeneous models will be investigated in §5.2 where we will deal with 

tumor resistance. For now, we will study the homogeneous case, i.e. just one tumor 

cell population. As Michelson et al. [48, 49] mention, logistic growth with con­

stant parameters is not the best approach in modeling tumor growth. They suggest 

tha t models with non-constant parameters that account for adaptational signals (au­

tocrine and paracrine in their models) may better describe these complex dynamics. 

However, as a first approximation, the constant case does allow some freedom since 

it is not as difficult as other models to analyze in closed form.

We will assume normal and tumor cells interact in the local environment as 

described by the competition model from population biology with constant param­

eters. As noted in the introduction, this interaction can be described in various 

ways given by Cornil et al. [16], Gatenby [28], and Liotta [42]. It is important to 

note that in some of these cases the parameters will not be constant, but depend on 

various other tumor factors. However, we will only deal with constant parameters, 

and let the competition term represent general interactions between tumor and nor-

15

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



mal cells. Periodically-pulsed survival conditions axe added to model the effects of 

chemotherapy on interacting populations. Kot and Funasaki [39] views a simplified 

predator-prey in a pulsed chemostat in a similar way.

We assume that (1) the drug is cycle non-specific, (2) there is instantaneous cell 

kill by the drug, (3) the parameters are constant, (4) there is no drug build-up in

the environment, and (5) there is no build-up of dead cells.

The basic set of equations that will be studied is:

~  = n X i l - X I K i - X i Y )  (2.2.1)

^  =  r2Y ( l - Y / K 2 - X 2X ) (2.2.2)

X ( n r +) =  F(D)X{nT~)  (2.2.3)

y ( n r +) =  F(D)Y{nT~),  (2.2.4)

The variables and parameters axe:

X:  Normal cell biomass.

Y : Tumor cell biomass.

r i , r2: Growth rates of the normal and tumor cells respectively.

K i , K 2: Carrying capacity of the normal and tumor cells respectively.

Ai, A2: Interactive parameter of normal and tumor cells respectively.

r :  Period of dose, r "  and r + denote the time just before and after a pulse respec­

tively.
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Figure 2.1: Exponential 

F(D),F(D):  Survival fraction of normal and tumor cells respectively for a given 

dose D. Note that 0 <  F(D),F(D) < 1.

Some forms of F(D) and F(D)  are given in Berenbaum [7], e.g.:

1. Exponential: F(D)  =  e~aD, figure (2.1).

2. Exponential with shoulder: F(D)  =  1 — (1 — e~aDy , 0 > 0, figure (2.2).

3. Hyperbolic: F ( D ) =  7, 7  > 0, figure (2.3).

See Knolle [38, pp. 89-90] for indications of how the exponential dose-response curve 

is formulated.

2.3 R ecurrence in the A bsence o f C hem otherapy

In the absence of chemotherapy, the two periodic conditions (2.2.3,2.2.4) are removed 

and the problem reduces to the ordinary competition model. We must ask this
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question: is the tumor-free case, ( i f i ,0), stable to small perturbations (compared to 

the normal cell mass)? In other words, can a  small amount of tumor mass (perhaps 

remaining after surgery) survive or will the patient remain in the disease-free state? 

Linearizing about this equilibrium ( X  =  K\  +  tu  and Y  =  0 +  ev where e is small 

compared to K\)  we obtain:

( \  
v!

/ \ ( \ 
u

{2.3.5)

\ v !

-r 1  —XiriKi 

0 ^ ( 1  — X2K\ )

From (2.3.5) it may be seen that the tumor population can  recur if K i \ 2 < 1 (the 

eigenvalue 1 — X2K i is positive). For more information on the relevant mathematical 

analysis see Waltman [65]. The term K i X2 will be referred to as competitive pressure. 

Note tha t a similar result, derived differently, can also be found in Gatenby [28]. It 

can be seen that damaged normal tissue environment (reduced K\)  will be more 

susceptible to tumor recurrence along with poor competition for resources among 

the normal cells (small A2). If the parameters are non-constant, controlled by the 

growth factor signaling as in Michelson et al. [48, 49], then recurrence can be more 

difficult to visualize, but is also more realistic.

2.4 Recurrence w ith  P ulsed  C hem otherapy

Once chemotherapy is incorporated, it is very important to examine the effects it 

has, not only on the tumor cells, but also on normal cells. Otherwise, the regimen to 

destroy the tumor might also overly destroy the normal cells, and thus the patient. 

A commonly acceptable reduction in total normal tissue mass is about 50% of its
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carrying capacity. So, first let us identify some basic conditions that must be placed 

on the therapy in the presence of normal cells only, and then examine the drugs 

effects on the tumor cells.

2.4.1 Normal Cell Growth

In the absence of any tumor cells, the system reduces to:

^  =  n X i l - X / K , )  (2.4.6)

X { n r +) =  F{D)X{nr~).  (2.4.7)

The solution which holds between pulses, which is the standard solution to the 

logistic differential equation, is:

X { t ]  =  +  ( - * )  ; nT  < * < ( ' * +  ^  (2 -4 '8>

where X nr =  X(nr) .  At the beginning of each successive pulse, the solution, using 

the pulsing condition (2.4.7), is:

x ^ f ^ x „ H k : X )  « -* • ( 2 - 4 - 9 )

Equation (2.4.9) has two equilibrium points:

X*  =  0 X*3 = K ^ ( D ) ~ e nT) . (2.4.10)
u s (1 -  e~TlT) v '

Note tha t for X*  to exist and to be stable, F{D ) > e~TlT. Otherwise X*  is the only

equilibrium that exists, and it is stable. Since F(D) > e-riT allows even 99% of the

normal cells to be killed and still have survival, then tha t condition in most cases

is not acceptable and must be made more rigid. According to Berenbaum [7], an
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acceptable level of cell kill for normal cells is about half the original state. This, in 

general, depends upon the type of normal cells that are being identified. Some can 

survive much larger cell kills than others. But to avoid specifying any particular 

type at this point, and to keep the model flexible, we will require X* > aK\,  where 

a is the percentage of acceptable reduction from the steady state for normal cells. 

Using the above information, it can be seen that the survival fraction must be:

F(D) > a +  e“riT(l -  a) (2.4.11)

for there to be at least a% of the normal cells left. Substituting X*  into (2.4.8) we 

get the steady-state periodic solution:

*•(*) = TF™ ----- 7*— T 5 nr < t  < (n + 1 )r. (2.4.12)F(D)  - e _riT-|-(l -  F(D))e-ri(t~nT)

2.4.2 Recurrence of the Tumor

Now, examine the recurrence of a small amount of tumor cells, Y  =  0 +  eu (v is 0(1), 

and represents the tumor mass). As suggested earlier, this can be an 0(e) amount of 

tumor mass left after surgery. The question to be asked is, can the tumor continue 

to grow, or is the chemotherapy strong enough to eradicate it while maintaining the 

normal tissue above some acceptable level? To answer this, we linearize the original 

system about (Xa(t),0), and study the stability of the tumor mass. If the linear 

system is unstable in u, then the tumor can recur; otherwise the (X,(f), 0) state is 

stable and the chemotherapy prevents tumor recurrence. Letting X  =  X s(t) +  eu,
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(2.4.13)

the linear system is:

'n ( l - 2 ^ 1 )  -riAA(i)

o ^2(1 — A2X 3(t)) j 

Thus, the stability of v can be determined by v' =  r 2(l — \ 2 X s(t))v. Since X s(t) is 

periodic with period r ,  integrate over one period to get:

/  \  (
u'

\ V /

\  /  \
u

\ v J

n+l)T =  F(D)vnreT2 f n r +1)T (2.4.14)

or in a more useful form:

P V m < > e r 2 r - r 2 A 2  f (n+1)T Xs(t)dtV(n+1 )T = VnTl< {JJ)e zJnr . (2.4.15)

Calculating the above integral and simplifying, we get:

l n { - e r 2 T
  r2A2iCi

« (» + i)r  =  a ( D ) e  ^  ri ' r 2 W - (2.4.16)

or:

^(71+1)7
F(D)e'TIT

1*2 A0 X 1

.F(D)  ri eT̂ 2KlT
(2.4.17)

If the characteristic multiplier of equation (2.4.17) (the term in brackets) is less then 

one, the tumor will regress. Thus, to prevent recurrence:

F(D) < F (D )a^ r Le~TT2̂ 1~X2Kl\ (2.4.18)

Note that A2.Ki <  1, since this is the condition for tumor survival without drug- 

therapy. In other words, if A2.£fi >  1 then there is no need for any chemotherapy 

since the tumor is killed by competition with other cells (see § 2.3). To make it 

difficult for the tumor to recur, the right hand side of (2.4.18) must be large, close to
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one. Therefore, either an increase in r2 (tumor regrowth rate) or r  (period between 

treatments) will increase the ability of the tumor to recur, and an increase in ri 

(normal cell regrowth rate) or X2 K 1  (competitive pressure) will decrease the ability 

of the tumor to recur.

If F(D)  =  e~aiD and F(D) = e~a2D then the conditions which prevent the tumor 

from recurring are:

B  P '4-19) 

D < (—a i )-1 In (a +  e-riT(l — a)) (2.4.20)

where the first condition is derived from equation (2.4.18) and the second comes 

from (2.4.11). Note that both of these equations are affected by normal cell param­

eters ( if i, A2, r%, a i , a). For example, as the competitive pressure A2-K1 increases, 

less of a dose is needed to prevent recurrence. For there to exist a region of accept­

able dose and period, the graph of equation (2.4.20) must be above that of equa­

tion (2.4.19) for some region. For this to happen (noting that Dose=0 at r  =  0), the 

slope of equation (2.4.20) at r  =  0 must be larger then that of equation (2.4.19). To 

satisfy this, the following condition is needed:

>  (2 4 21)
r i ( l  - a )

From this condition, we can see (as might be expected) that for the treatm ent to 

be effective, the chemotherapeutic drug must have more of an effect on the tumor 

cells then on the normal cells, unless the normal cells are able to grow back faster 

(ri >  r 2).
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Figure 2.4: Dose-Response Curve: Dose vs. Period

Figure 2.5: Dose-Response Curve: Dose vs. Period vs. Host Survival (a)
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Figure 2.4 gives one example of a region of acceptable dose and period. A dose 

and period chosen above the line, “Tumor Condition”, and below the curve, “Normal 

Condition” will prevent the tumor from recurring and keep the normal cells above 

the specified level a. This also shows graphically the need for condition (2.4.21). 

Figure 2.5 gives a similar view with varying host survival (a). Here, we want to 

choose a  dose and period above the plane and below the curved surface. It can be 

seen that as the condition on host survival (a) is increased, the region for successful 

treatm ent is decreased. In fact, Figure 2.6 shows where the graphs in Figure 2.5 

cross. This forms the boundary between where a  successful region exists and does 

not. Figure 2.7 shows the effect of varying A2A i. As predicted, for small values of 

\ 2K i , it will take a larger dose to prevent tumor recurrence. This can be interpreted 

as when the competitive pressure (A2Ai) decreases, the drug therapy will need to be 

made more effective to continue to prevent recurrence. And if there is no competition 

at all, i.e. Ai)2 =  0 then the drug therapy must be able to eliminate the tumor alone.

2.5 D iscussion and Conclusions

Since tumor cells are n o t isolated from their micro-environment, but are constantly 

competing with the host for resources, the models discussed here, which include 

tumor-normal cell interaction, are a step toward better describing chemotherapeutic 

effects. However, few researchers who have modeled chemotherapy have studied the 

effects the drugs have on normal tissue, or the effects of the normal tissue on the 

tumor. Since this first effect is possibly the most important constraint on the use
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of chemotherapeutic drugs, it m u s t be a part of any model tha t will accurately 

describe the interplay of the system.

The models in this chapter indicate that there are definite parameter regions 

of acceptable and unacceptable chemotherapeutic regimens, giving us a qualitative 

idea of how each parameter affects tumor recurrence. In particular, we show how 

the competitive pressure (A2-A1) can control and even prevent tumor growth and 

recurrence. Also, we show how certain doses (D ) and periods (r) can lead to tumor 

regrowth.

Gatenby [27] points out that when therapy is withdrawn, the tum or will just 

grow back to its original size unless it is totally destroyed or the characteristics of 

the system have changed (by changing parameters through a critical point). As seen 

in this model, one of these changes can be an increase in A2A 1 through the critical 

value of one which will make it impossible for the tumor to recur. A relevant topic 

in this regard is that of growth factors as discussed by Michelson et al. [48, 49]. In 

particular, the paracrine path, which can be described mathematically as the varying 

of the carrying capacity Ki by tumor growth factors, can change the recurrence 

condition significantly. Additionally, Gatenby [27] discusses how damage to the 

local tissue (normal cells) and devascularization (the preventing of blood vessels 

from growing into the tumor) can help the tumor mass emerge. That is, the carrying 

capacity is reduced because of dead cell buildup or increased levels of toxic drugs, 

thus making it easier for the tumor to emerge. These ideas give rise to the need for 

models with non-constant parameters.

Even though further work will be required to address the simplifications in these
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models, they do provide a useful initial indication of the dynamics of tumor recur­

rence. The parameter conditions arising from these models define our expectations 

for the effective chemotherapeutic treatment of tumor recurrence, giving us more 

insight into how to administer the drugs more efficiently.
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Chapter 3

Cell-Specific Chem otherapy

3.1 Introduction

Many chemotherapeutic drugs axe cell-specific: they only destroy specific types of 

cells in specific phases of their cycle (usually proliferating cells). Some examples of 

these types of drugs axe Cytosine Arabinoside (Ara-C), 5-fluorouracil and Prednisone 

which work in the G\ and S  phase of the cell-cycle and Vincristine and Bleomycin 

which work in the M  phase of the cell-cycle. Most of the clinically-used methods 

of delivering chemotherapy have been developed empirically, and as stated by Birk- 

head et al. [12]: “In the absence of more effective new drugs there is an increasing 

need to define better treatment strategies with existing agents.” The object of the 

model in this chapter is to give some qualitative ideas on how to better administer 

cell-specific chemotherapy. This model is not meant to dictate to the clinician which 

regimens of therapy axe appropriate, for each individual patient is different and re­

quires quantitatively different treatments. In fact, in most cases even approximate
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ranges for parameters and drug effects are not known (R. Perry, private communi­

cation). But, it is hoped that this model will give some q u a lita tiv e  ideas on how 

to better implement cell-specific therapy.

Some of the more recent work done with mathematical models of cell-specific 

chemotherapy are by Webb [66, 67]. He develops both linear and non-linear models 

of cell-specific chemotherapy. In the case of the linear model, the advantages of 

periods of dose with shorter duration are investigated. Another work of interest is 

by Birkhead et al. [12] in which a four-compartment linear system is developed to 

model the cycling, resistant, and resting cells. Their results are limited to a  few 

numerical calculations on four specific types of treatments. Swan [64] also examines 

cell-specific chemotherapy in his review article. In particular he concentrates on age- 

structured models which take into account the age of the cells in each compartment 

of the cell cycle. He also studies an age-structured chemotherapeutic model of acute 

myeloid leukemia AML. Eisen and Schiller [24] study a two-compartment model 

of tumor growth with non-constant growth rate. In addition, Kuzma et al. [40] 

examine a model with exponential growth for the tumor and both immediate and 

delayed effects of drugs. In their model they study a variety of results including the 

number of doses needed for a specific tumor reduction, the minimum initial dose 

needed for tumor reduction, and some toxicity effects. The issue not discussed in 

any of these articles is the effects of the drugs on normal tissue. An interesting 

approach to the problem of toxicity to bone marrow and other sensitive tissues 

has been investigated by Agur et al. [3] and Cojocaru and Agur [13] (this adds age 

structure to the previous). They develop criteria to maximize the tumor cell kill while
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minimizing bone marrow damage. They accomplish this by examining the relation 

between the period in which the drugs are delivered and the cell-cycle time for the 

tum or and bone marrow cells. The idea is to administer the chemotherapeutic drug 

when the cancer cells are in a more vulnerable growth phase and the bone marrow is 

in a  less vulnerable stage. These two articles also differ from the other above articles 

in that they only consider cells in the growth phase of the cell cycle, i.e. they do not 

consider the resting stage ((?o).

The model in this chapter will extend the linear models described in Webb [66], 

Birkhead et al. [12] and Eisen and Schiller [24] by adding both pulsed and piecewise- 

continuous chemotherapy, and by examining the effects of the cell-specific drug on the 

normal tissue. The tissues that will concern us in particular are the fast proliferating 

tissues such as bone marrow or those comprising the gastrointestinal tract. From 

this model we will identify parameter ranges, in terms of dose and period, needed to 

prevent further growth of the tumor.

One chemotherapeutic regimen used, as stated by Birkhead et al. [12], is “the 

maximally-tolerated dose is given as frequently as the rate of bone marrow recov­

ery permits.” Using the model developed in this chapter, we will investigate this 

chemotherapeutic regimen. The model will show for a given dose what the optimal 

period is to have maximal tumor cell kill. We will show that in some cases the model 

confirms Birkhead’s regimen and in others this is not the “best” way to deliver the 

chemotherapeutic drugs.

Another method of increasing the ability of cell-specific drugs to destroy the 

tum or (while not overly destroying normal tissue) is to provide growth factors to
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the tumor and/or normal tissue. One such type of growth factor used in treating 

breast cancer is exogenous estrogen. This increases the tumor cell proliferation to 

make the tumor more susceptible to the chemotherapeutic drugs. Another class of 

growth factors used axe the hemopoietic growth factors HGF such as granulocyte 

colony-stimulating factor G-CSF, granulocyte-macrophage colony-stimulating factor 

GM-CSF, and interleukin-3 IL-3. These growth factors are used in AML to increase 

the percentage of cells in the S  phase (the phase which many chemotherapeutic 

drugs are most active) and in breast cancer to increase the levels of circulating 

leukocytes (white blood cells). Bhalla et al. [8] states that G-CSF, GM-CSF, and 

IL-3 increase about two to four times the number of AML blasts in the S  phase 

while Demetri [22] states that these HGF’s allow larger doses of chemotherapy to 

be safely given because of the increased circulating leukocytes. This model will 

take into account these growth factors, by varying appropriate parameters such as 

cell growth rates, and show how they increase the effectiveness of the cell-specific 

chemotherapeutic agents.

3.2 M odel

A two-dimensional linear differential equation with periodically pulsed chemotherapy 

is used to describe the effects of chemotherapy on a tumor. The basic model is similar 

to the two-compartment model described in Eisen and Schiller [24], and to the model 

given in Birkhead et al. [12] who include resistant compartments for both the cycling 

and non-cycling cells, thus increasing the dimension of their model to four. Both
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examine similax models to describe basic tumor growth. However, the model in this 

chapter not only identifies the chemotherapeutic effects more explicitly, but more 

importantly it models the effects of the drugs on normal tissue.

Some basic assumptions are made to keep the model tractable. Firstly, we only 

study a linear system (first-order kinetics) to describe tumor growth. This limits the 

model to either exponential growth or decay without any intermediate equilibrium. 

Nevertheless, this is an acceptable first approach since a successful chemotherapeutic 

regimen will prevent the tumor from growing near its carrying capacity, so that the 

non-linear effects of logistic or Gompertz growth will be minimal, allowing us to 

use the simpler model. Birkhead et al. [9, 12] and Kuzma et al. [40] also utilize 

exponential tumor growth between doses. Secondly, all the parameters are held 

constant (except for the case of growth factors). In their model Eisen and Schiller [24] 

incorporate non-constant growth, but we will avoid this and focus more on the 

chemotherapeutic aspects of the model. Thirdly, we ignore spatial or age effects. 

That is, the resources and chemotherapeutic drugs are assumed to reach all cells 

equally, and cells of all ages axe affected uniformly (however, this model does take 

into account natural cell decay). Fourthly, even though the cycling compartment 

actually has four sub-compaxtments or phases including the gap period (Gh), the 

synthetic period (S'), the second gap period (G2), and mitosis (M) (see figure (3.1)), 

our model combines these four sub-compaxtments of the cycling phase into one to 

yield a two-compartment model containing a cycling and a resting compartment. 

Finally, even though cell-specific drugs still have some effect on resting cells (though 

the faster proliferating cells will definitely be more affected), we assume that resting
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cells (Go) are not affected by the drugs. It is important to note that making the 

system more complex does not necessarily make it more useful. The simpler system 

allows us to view many interesting features of cell-specific chemotherapy without 

the undue mathematical complexity. Even with these assumptions, the model still 

shows many interesting dynamics and can address some of the major questions of 

chemotherapy such as: will the tumor grow or decay, how will the major parameters 

(dose and period) affect the outcome, and what is the optimal regimen to deliver the 

drugs.

3.2.1 Two-Compartment Model

The form of the linear two-compartment model as described in figure (3.2) is:

/  , \dx i
dt ___

dx•}.
\  dt J

a  — {1 — 7] /3

H - p -  7  
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Figure 3.2: Two-Compartment Diagram

where the parameters axe all constant, positive, and defined as follows: a , cycling 

cells growth rate; //, rate which cycling cells become non-cycling; 7 7, natural decay 

of cycling cells; /3, rate which non-cycling cells become cycling; 7 , natural decay of 

non-cycling cells (optional). The elements of the vector (xi,X 2 )t  = x  represents the 

cycling and non-cycling tumor cell mass respectively. We will assume that a  > rj 

(positive net growth rate), i.e. in the absence of chemotherapy, the tumor will grow 

without bound. We will also assume that a  — fi — rj < 0, i.e. a large number 

of cells move to the non-cycling or quiescent compartment. Birkhead et al. [12] 

suggest that only about 20% of the tumor cells axe cycling. To simplify the form, let 

a =  —(a  — /i — 7 7) and 7  =  0. Thus, the generalized lineax system is:

dx
dt

( \  
—a fd

x (3.2.2)
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where a,/3,fi> 0. Birkhead et al. [12] give one set of parameter values from breast 

cancer data that fit the above conditions, namely, a  =  0.5, /jl =  0.218, rj = 0.477, (3 — 

0.05.

Now we examine the periodic chemotherapeutic conditions. In this model of 

cell-specific chemotherapy, we assume the drugs only affect the cycling cells, x\.  We 

will model the chemotherapeutic effects with pulsed chemotherapy as in chapter 2. 

Again, this describes a constant instantaneous cell kill at each period of dose. The 

pulsing periodic condition is:

Znr+ =

( \  
m  o

(3.2.3)

where 0 <  f(D)  <  1 is the survival fraction (which is a decreasing function of dose 

D), and r  is the period between doses. r + refers to the instant after the drug is given 

and t ~ refers to the instant prior to the dose of the drug. Specific forms of f { D ) 

can be found in Panetta [56]. Also, Birkhead et al. [12] examine 0.05 <  f (D )  <  0.4.

3.2.2 Normal Cells

One of the major drawbacks of chemotherapy is that it also affects normal cell tissue. 

In the case of cell-specific chemotherapy, tissue like bone marrow which proliferates 

rapidly will be strongly affected by the drug and this will have to be taken into 

account when developing a chemotherapeutic regimen. There axe a  variety of ways 

to approach this problem. Panetta [56] examines the interaction between normal 

and tumor tissue and the effects of cell-non-specific drugs on them. In many cases, 

such as with bone marrow, there is probably no interaction with the tumor, but the
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drugs still affect it. This is the case that we will examine in the present model. If 

we assume that the normal tissue has limited growth between pulses of the drug 

as described in equation 3.2.4, then a suitable linear constraint equation for pulsed 

therapy is:

y = 8 ( K - y ) ,  ynT+ = f (D )ynT~, nr  < t < ( n  + l)r,  (3.2.4)

where 8 is the growth rate, K  is the carrying capacity, f (D )  is the survival fraction 

for the normal tissue and f (D )  > f(D) .  This inequality means tha t the drug affects 

the tumor cells more than the normal cells. Logistic growth can also be used to model 

the growth of the normal tissue though, in this case, the equation is non-linear. The 

form of the logistic constraint equation for pulsed therapy is:

y =  Sy(l -  -|r), ?/nT+ =  f (D )ywr-  nr  < t < ( n  + 1 )t. (3.2.5)

The logistic equation with pulsing is solved in section 2.4.1 and in Panetta [56]; the 

solution to equation (3.2.4) is similar in form and is given in the following section.

3.3 P u lsed  Case

The first step in analyzing model (3.2.2) with pulsing condition (3.2.3) and constraint 

equation (3.2.5) is to develop solutions for (3.2.2) and (3.2.5) over one period n r  < 

t  <  (n +  l ) r .  Once this is accomplished we can then apply the pulsing condition to 

arrive at a linear system of difference equations (sometimes referred to as the first 

return map or Poincare map, see Hale and Kogak [35]) that will describe the growth 

of the tumor a t each pulse.
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3.3.1 Normal Tissue

First, consider the linear case of limited normal tissue growth. Solving equation (3.2.4) 

yields the difference equation:

y(n+i)r =  f ( D ) { K  +  (ynT -  K)e~Sr}. (3.3.6)

This has a unique equilibrium:

*• -  • ( 3 - 3 - 7 )

As in section 2.4.1, we require y* >  u>K, where w (0 <  u> < 1) is the acceptable

fractional kill of the carrying capacity K .  Hence, the constraint for limited linear

growth on the chemotherapeutic regimen in terms of dose and period is:

u < f (D ) ( l - , r » )  (3 .3.8)
-  1 - f { D ) e - ‘r '

Now, in a similar manner, the logistic constraint is also solved. As in section 

2.4.1, solving equation (3.2.5) yields the difference equation:

!/(„«). =  + (3'3 J )

which has two equilibrium points:

„ * K ( f ( D )  — e~Sr)
y*u = 0 y : =  [\ _ Je. Sr ■ (3.3.10)

Thus, the constraint on the chemotherapeutic regimen in terms of dose and period

is:

" ̂  f V - X T- (3-3-n)
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In both cases, the cell-specific chemotherapeutic drugs have less effect on these 

tissues, primarily since a much higher percentage of normal tissue is in the resting 

phase, though this is not the case with bone marrow. Therefore /(D )  >  /(D )  since 

more normal than cancerous tissue survives each dose.

3.3.2 Effects on Tumor

First, examine equation (3.2.2). Hale and Kogak [35, chapter 8] provide a good 

account of the general solutions to linear systems such as this. The form of the 

solution given by many elementary ordinary differential equation texts is x(t) = 

+  c2̂ 2e>l2̂ _nT̂  where the Xi 's  axe the eigenvalues, and & 's are the cor­

responding eigenvectors to the coefficient matrix of (3.2.2). This solution is defined 

on the interval nr  < t < (n + l ) r .  By our choice of signs of the parameters in 

the coefficient matrix, one eigenvalue must be positive (e.g. Ai), with eigenvector H 

in the first quadrant. Thus, the tumor will grow in the absence of chemotherapy. 

The other eigenvalue must be negative. This can be observed by calculating the 

eigenvalues directly. They are:

_  (3 3 12)
4(a -  it)

Since a, > 0 and a  > 7 7 , then a — (j, < 0. So, equation (3.3.12) has one positive 

and one negative eigenvalue. It will be more convenient for us to write the solution 

in the form:

2(t) =  P

/  w  , \e  A i ( i - n r )  q

0 e*2 (i-n r)
P xnT, n r < t < ( n  + l)T, (3.3.13)
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where

P  = &  16) (3.3.14)

is the transformation, matrix of eigenvectors and xnT is the tumor mass at the begin­

ning of the nth  period.

Now, adding pulsing condition (3.2.3), the following difference equation describes

the tumor mass just after each pulse of drug:

®(n+l)r =  P

( \  
eAlT 0

\ 0 eAjT

- l
( \  

m  o

v 0 1
(3.3.15)

To determine whether the system is growing or decaying, the eigenvalues or charac­

teristic multipliers of the characteristic matrix

eAlT 0

0 eAaT

3 - 1

/  \  
m  o

0 1
(3.3.16)

of equation (3.3.15) need to be investigated. We will define the eigenvalues of ma­

trix (3.3.16) as A,; these can be found in terms of f (D ) ,  r ,  and A; (fixed). If

15ax(|A i(/(D ),r) |) <  1 (3.3.17)

then the chemotherapeutic regimen will destroy the tumor; otherwise the tumor will 

grow. Therefore, we axe interested in finding the bifurcation curve which separates 

growth from decay, i.e.

gax(|A i(/(T>),r)|) =  1, (3.3.18)

in terms of the survival fraction /(£>) (or dose) and period r .

Also, in region (3.3.17), there axe some regimens that axe more effective than 

others in destroying the tumor (e.g. by choosing the period which minimizes the
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maximum value of |Aj|for a  given dose). The most effective chemotherapeutic regi­

men is therefore defined as

mm
T
ri n (g a x ( |A i( /(D ),r) |) )  (3.3.19)

for each fixed f{D).  However, this does not take into account the effect of the drugs 

on the normal tissue. We must consider this expression along with inequalities (3.3.8) 

or (3.3.11) when developing effective chemotherapeutic regimens. This is carried out 

in the next section.

Now observe tha t the matrix (3.3.16) can be expressed in the form: 

(  (£ii£22eAlT -  fo fc ie ^ ) f ( D )  -£ n £ i2(eAlT -  eA*T) ^

det(P)
(3.3.20)

 ̂ £2i£22(eAlT — eA2T)/(D ) (£u£22eA2T — £i2£2ieAlT) t

Denoting this characteristic m atrix (3.3.20) CM,  its eigenvalues are:

_  trace(CM)  ±  J( trace(CM ))2 — det(CM)
A i ( f (D ) ,r )  = ------- -̂-----L - V i   \----- >1--------- -̂---- ' .  (3.3.21)

Calculating the det(CM)  and trace(CM),  we obtain:

det(CM)  =  f { D ) e ^ +x^ T > 0 (3.3.22)

and

trace(CM)  =  (gf{D) -  h)ex' r -  (h f{D ) -  g)ex*r > 0 (3.3.23)

where

9 =
£n£22 , and h = (3.3.24)
det(Py  ~  det{P)'

Because of the signs of the coefficient matrix of equation (3.2.2) £11, 6.2 >  0 and 

£21,62 have opposite signs. Thus, it can be observed that both trace(CM) and
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det(CM ) axe positive because of the signs of the elements of the eigenvectors. There­

fore max; (|A;(/(£>), r) |)  =  A i(/(D), r) . By the correct choice of the dose and period 

we axe able to force Ax(/(£>), r )  < 1, thus eliminating the tumor.

3.3.3 Results for Pulsed Therapy

First, we will examine the bifurcation diagram of the model with respect to survival 

fraction f { D ) and period r .  That is, we investigate the graph of the bifurcation 

equation (3.3.18) with i = 1 and the constraint equation (3.3.8) or (3.3.11). Using 

the parameters afi/3 listed in § 3.2.1, u> =  0.5, and 8 =  0.1 along with the logistic 

constraint equation (3.3.11), we obtain figure 3.3 for f (D )  =  2/(13) (normal tissue 

survives twice as well as tumor tissue) and figure 3.4 for f (D )  = 4/(13) (normal tissue 

survives four times as well as tumor tissue). The tumor condition curve represents 

the bifurcation from tumor reduction to tumor growth and the normal condition 

curve represents the bifurcation from overdestruction of normal tissue to acceptable 

normal cell loss. From these curves we can see the area, in parameter space, of 

acceptable dose and period that will eliminate the cancer cells while maintaining the 

normal cells at a level of at least half their carrying capacity.

As can be seen, this region is not small, so given that we have a prescribed 

dose to administer, what is the optimal period in which to deliver that dose? To 

answer this question we will minimize A i(/(13),r) with respect to r . One might 

assume that for a given survival fraction the optimal frequency to administer the 

drug (without considering normal tissue) would be continuously. But, investigating 

equation (3.3.19), it can be seen that the optimal period is actually greater than r  «  0
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Figure 3.3: Bifurcation Diagram: f ( D ) =  2f{D)
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Figure 3.4: Bifurcation Diagram: / (D) =  4 /(D )
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Figure 3.5: A i(/(D ),r) vs. r ,  f (D )  =  0.25

(continuously delivering drugs). This is because by allowing some time between each 

dose, more resting cells axe permitted to move to the cycling compartment, and so 

there are more cycling cells to be killed when the next dose is given. Also, it should 

be noted that giving the drugs at a very rapid rate will destroy the normal tissue 

too rapidly! Thus, a calculation of the optimal period is extremely practical. For 

example, with f ( D ) =  0.25, the optimal period to deliver the drug is r  8 (i.e. this 

is the minAi with respect to r: see figure 3.5), while an acceptable period (Ai <  1) 

ranges over the large interval 0 <  r  <  40. In general, the optimal period is shown in 

figure 3.6 for 0 <  f (D )  < 0.9. As can be seen, for more effective drugs (i.e. smaller 

/(£))) the optimal periods axe laxger than for less effective ones, thus allowing the 

normal tissue more time to recover.

Now, consider the chemotherapeutic regimen stated by Birkhead et al. [12]. That 

is, “the maximally-tolerated dose is given as frequently as the rate of bone maxrow
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Figure 3.6: Optimal Period vs. /(D )

recovery permits.” Before seeing if our model agrees with, this protocol we need 

to consider what is implied by this regimen. There axe two possibilities; either to 

administer the drug rapidly without using a strong dose, or to allow higher doses but 

administering them less frequently. By noting the bifurcation diagram for / ( D ) =  

2/(D ) (figure 3.3) and the optimal period graph (figure 3.6), we observe tha t the 

calculated optimal period is a  better regimen if a smaller dose (survival fraction 

/(D ) >  0.3) is given more frequently; Birkhead’s regimen is better if the opposite 

holds true. This can be observed in figure 3.7 by noting where the optimal period 

curve and the normal condition curve (S = 0.1) cross. If the survival fraction is to 

the right of this intersection then the optimal period is best, and if it is to the left 

then it is not. Of course the parameters chosen are just one possible acceptable set; 

thus, as stated above this is merely a qualitative examination of the problem.

In many cases the clinician would prefer to give a  larger dose than is acceptable

45

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



25

20

N o r m a l  C o n d i t i o n  
/ d e l t a « 0 . 1

T u m o r  C o n d i t i o n -1 5

1 0

O p t im a l  P e r i o d

0 . 6 0 . 7 0 . 8 0 . 90 . 1 0 . 2 0 . 3 0 . 4 0 . 50

Figure 3.7: Bifurcation with Optimal Period 

by conventional methods. The problem, as can be seen in figure 3.7, is tha t large 

doses (small f(D))  must be administered over a larger than optimal period to prevent 

overdestruction of the normal tissue. In the case of reduced leukocyte production 

because of damage to the bone marrow, HGF’s axe used to help counteract this prob­

lem by increasing leukocyte production. This process is modeled mathematically by 

increasing the growth rate, 6, of the normal tissue equation (either equation 3.2.4 

or 3.2.5). As can be seen from figure 3.7, a higher growth rate for the normal tis­

sue increases the region of acceptable drug regimens, thus allowing higher doses of 

chemotherapeutic drugs to be given at their optimal period. If r  =  20 (the best pe­

riod without growth factors, 6 = 0.1) and f (D )  =  0.275, then there is approximately 

a 65% reduction in tumor mass. But, if growth factors axe given (6 =  0.5) then the 

optimal period of r  =  7.25 can be used and there is approximately a  82% reduction 

in tumor mass, which is a 27% increase in tumor reduction over the non-optimal
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Figure 3.8: r  =  20, f (D )  =  0.275

period! Figures 3.8 and 3.9 show the phase planes (resting vs. proliferating) for each 

case. Observing figure 3.8 we can see why the non-optimal period does not have as 

large a  cell kill as the optimal case. The graph shows tha t the proliferating cancer 

cells are able to start regrowth before the next dose is given. Thus, this regimen is 

not optimal since the dose is too large.

Another use of HGF’s is with AML. They are used to increase the ratio of pro­

liferating to resting cells, thus increasing the cell-kill of a cell-specific drug. This is 

modeled by an increase in the parameter /3, which is the rate at which resting cells 

become proliferating. One question to be asked is: how does an increase in /3 affect 

the maximum eigenvalue of the characteristic polynomial? Examining the deriva­

tive of Ax with respect to /3, it can be seen that Ai(/3) is a decreasing function for 

/? >  0. Thus, by increasing the rate at which resting cells become proliferating, the 

characteristic multiplier Ai decreases, which means there is a larger cell-kill. This
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Figure 3.9: r  =  7.25, f ( D ) -  0.275

can be seen in figure 3.5. Further, we note that the optimal period decreases as /? 

is increased (see figure 3.6). This can be understood as the cells are moving into 

the cycling compartment faster so the optimal period is arrived at faster. The most 

im portant feature is tha t by introducing a growth factor the same number of doses 

can have a larger overall effect on the AML. This can be seen in figures 3.10 and 

3.11. W ith the previously stated parameters it is calculated tha t fifteen doses of a 

drug with AML survival fraction of f (D )  =  0.25, period of r  =  8 and /3 =  0.05 will 

reduce the amount of AML by approximately 86%, while reducing it by 97% with 

/3 =  0.1. In this case there is a 13% increase in tumor reduction.

3.4 D iscussion

For chemotherapeutic drugs to be useful they must be given to the patient at an 

appropriate interval with an effective dose. The clinician must also take into account
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the effects of the drugs on the normal tissue. Otherwise, a given drug regimen might 

eliminate the tumor but also destroy the normal tissue, or even have no detrimental 

effect at all upon the tumor. Thus fax, few of the mathematically constructed models 

have incorporated these features, and most drug protocols are developed empirically. 

It is our hope that this model gives some indication of how to better administer the 

drugs in order to more effectively destroy the cancerous cells.

The most basic question that can be asked about a chemotherapeutic regimen 

is, how much is enough and how much is to o  much? We have shown using the 

characteristic multipliers of the Poincare maps that there is a bifurcation or boundary 

(in terms of survival fraction and period), separating regimens tha t will and will not 

eliminate the tumor mass. As noted earlier, this is only intended to be an essentially 

qualitative study, and quantitative details will of course vary from patient to patient. 

Clearly a  bifurcation diagram is not sufficient to develop a good chemotherapeutic 

regimen because it includes modalities like continuously giving a very large dose of 

the drug. Obviously this will eliminate the tumor mass, b u t it will also kill the 

patient! Thus the use of the constraint equation that models the effects of the drugs 

on the normal tissues must be included.

However, with the constraint equation added, there is still a wide range of ac­

ceptable drug regimens. Thus we look for the optimal regimen. In doing this we 

have shown that the best drug protocol is not delivering the drug as often as possi­

ble and as strongly as possible, but rather there exists an optimal period and dose. 

Because of the constraint of normal tissue survival, this is not always possible with 

each dose (survival fraction). That is, for stronger doses, the period of delivery must
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be broadened at non-optimal periods to prevent overly destroying the normal tissue, 

or a weaker dose must be administered.

Growth factors increasingly are being used to help cell-specific chemotherapeutic 

drugs work more effectively. This is one area where much medical research has been 

done, so in principle the medical results and the mathematical models can be closely 

compared to improve our understanding of how the various growth factors may affect 

the use of chemotherapeutic drugs on cancerous tissue. The pulsed model clearly 

shows that incorporating growth factors in AML increases the cell kill by 13%—14%, 

and reduces the number of doses needed to accomplish the same results, while in 

breast cancer growth factors allow larger doses of chemotherapy to be administered at 

optimal periods to obtain maximal cell kill. In this case the growth factors increased 

the cell kill to about 27% — a significant improvement.

One of the limitations of this model is it does not take into account varying 

parameters. For example, it is known that over time the chemotherapeutic doses have 

more effect on the the normal tissue and less effect on the tumor mass (resistance 

etc.); also the drugs reduce the carrying capacity of the normal tissue over time. 

Future work will include modifying some of these assumptions, thereby formulating a 

more comprehensive model. Even accepting the simplifications, this model illustrates 

some of the more important dynamics of chemotherapy. It identifies, for example, 

parameter regions of acceptable chemotherapeutic regimens, some of which reinforce 

regimens already developed empirically, and also it indicates the effects of the drugs 

on normal tissue and how this affects the chemotherapeutic process. The model also 

identifies how the use of growth factors increases the effectiveness of the drugs, again
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reinforcing much of the clinical work done in the area of cancer chemotherapy.

52

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



Chapter 4

N on-C onstant Param eters

4.1 Introduction

Though the models in the past two chapters reveal some interesting and useful in­

sights into chemotherapy, many simplifying assumptions were made. In this chapter, 

by allowing various parameters to vary, we can remove some of those assumptions, 

thus creating, it is hoped, a more accurate model.

One of the most commonly known phenomena of tumor growth is the ability to 

manipulate the host environment. W ithout stressing the biological mechanics, let 

us try  and gain some basic mathematical insights into the problem. Michelson and 

Leith discuss the need for non-constant parameters to accurately model the growth 

of the tumor. In their papers, [48, 49, 51], they state that parameters such as “K” 

(the carrying capacity) or “r” (the growth rate) should vary with respect to time 

due to various tumor effects such as the tumor bed effect (TBE) and growth factor 

signal processing. Also, Michelson and Leith [52] discuss how non-constant “K” and
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“r” may be used to show the interplay between a liver tumor and the liver. In this 

case the parameters are functions of one or both of the cell masses.

A more realistic method (as opposed to pulsed therapy) to model the effects of a 

chemotherapeutic drug is to vary the growth rate of the cell population. This is done 

in a periodic fashion to represent periodic chemotherapy. The models developed give 

rise to systems of periodic differential equations and many of the existing methods 

of analyzing these solutions (such as Floquet theory and the averaging method) may 

be used here.

We will first investigate a homogeneous model, i.e. one that describes just one 

type of cell mass, using the logistic growth model. Once we have developed a good 

basis with the homogeneous logistic model, we can study the impact of piecewise- 

continuous periodic parameters on the heterogeneous cell-specific models. In this 

process we can develop a more sophisticated model and also discuss whether these 

modifications produce any new results or if they are qualitatively similar to the 

(mathematically simpler) model of pulsed therapy.

4.2 N on-C onstant “K ”

Because the tumor, through the use of growth factors etc., can manipulate its local 

environment, a constant carrying capacity, “K”, can n o t accurately model growth 

of the tumor mass. To better model the growth of the tumor we allow “K” to be a 

non-constant function of the tumor mass. First investigate the Logistic equation:

—  =  rV  ( l ------— 1. (4.2.1)
dt ^  K (V )J  K ]
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The basic assumptions on K (V )  axe:

1. K (V )  is monotone increasing

2. K{V)  is bounded by 0 <  K min < K (V )  < K sat

3. K { V ) =  V  has a solution. This can. be shown to be a consequence of (1.) and 

(20 -

First, note the existence of V*, where V* is a solution to K (V )  =  V. Because of 

the above conditions on K (V) ,  it can be shown that K ' ( V ) —> 0 as V  —> oo. This is 

true because K ( V ) is monotone increasing and bounded. Since ^  =  1 then K (V )  

must cross V  at least once because K (V )  > 0.

Now, look at the stability of V*. Linearize (4.2.1) about V* to get:

Vt = - r ( l  + K v (V*))Vi. (4.2.2)

It can be seen that (4.2.2) is stable provided Ky(V*) > —1. Since it is assumed that

K ( V ) is monotone increasing then this condition is always true.

Next, the steady state V* is shown to be in the interval 0 < K min < K* < K sat. 

This can be shown by differential inequalities. Note that:

=  r y (1 - S M ) < r V (1 - £ )  <4-2-3>

v ' = r V ( 1 - W ) ) ^ r V ( 1 - £ r) (4-2-4>

therefore K min <  V* < K aat.

Similar results can be shown for the competition system of equations.
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4.3 P iecew ise H om ogeneous M odel

The logistic growth model has been used in many cases as a basic model of both cell 

growth and more particularly tumor cell growth (Eisen [23], Swan [63], Michelson et 

al. [53] and Michelson and Leith [48, 51]). There are various methods of modeling the 

effects of chemotherapy within the logistic model. One of the easiest is to assume that 

the drug kills cells instantly, thus giving a pulsing type action. This type of model is 

investigated by Berenbaum [7], and in chapters 2 and 3. A more realistic method of 

modeling chemotherapy is to assume that the chemotherapeutic effects are modeled 

by continuous or piecewise-continuous periodic functions which affect the growth 

rate (i.e. non-constant parameters) in the logistic growth model (Michelson and 

Leith [51]). These periodic functions alternate the growth rate between a negative 

rate when the drug is present and a positive rate during the recovery stage. This 

is the method investigated in the present chapter. Because of the availability of 

closed form solutions to the logistic equation, this chemotherapeutic problem can 

be handled with analytical methods. Numerical solutions to this model have been 

used in Panetta and Adam [57] to model the effects of the chemotherapy on bone 

marrow. A similar model is discussed by Hallam and Clark [36] which describes a 

deteriorating environment through the use of decreasing growth rates and carrying 

capacities, and by Coleman et al. [15] who investigate positive periodic growth rates 

and carrying capacities. The model in this chapter investigates periodic forms of the 

growth rate parameter by allowing this growth rate to be negative to more effectively 

model periodic chemotherapy.
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4.3.1 The Model

The logistic growth model is modified to include a variable growth rate, thus mim­

icking the effects of chemotherapy. The general form is:

^  =  r , W ( [ l - W l - f )  (4.3.5)

where y(t) is the cell mass, r is the growth rate, K  is the carrying capacity, and b(t) 

is a periodic function representing the chemotherapeutic effects on the cell mass. If 

b(t) =  0 then there are no chemotherapeutic effects and the equilibrium is K ,  while 

if b(t) = b <  1 then the equilibrium is (1 — b)K. Conversely if b(t) =  b >  1 then 

the equilibrium is 0. If the term [1 — b(t)] is positive for all t then there is tumor 

growth with a reduced growth rate and there will be an equilibrium between zero 

and K.  Conversely, if [1 — b(t)] is negative for some range of t  then there are regions 

of negative growth or cell kill, and thus the possibility for a zero equilibrium. The 

object of this model is to determine conditions on b(t) such that the equilibrium of

equation (4.3.5) is zero. To reduce the problem to a simpler form, we scale equation

(4.3.5) by writing y(t) — Kx{t) .  The resulting equation is:

=  rx{t){[ 1 -  b{t)} -  x{t)). (4.3.6)

The function b(t) can take on various periodic forms (with period t ) ,  including the 

step type function of the form:

( b, nr < t  < a + n r
(4.3.7)

0, a +  nr < t < (n +  1 ) t  

the exponentially decaying piecewise periodic function:

b(t) =  bea(t~nr\  nr  < t  < ( n  + l ) r ,  (4.3.8)
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Figure 4.1: Step Function 

or the modified exponentially decaying piecewise periodic function:

b{t) =  b (ea<1- BT> -  , n r  <  i <  (n +  l) r .  (4.3.9)

See figures (4.1, 4.2, 4.3).

4.3.2 Solutions

There axe vaxious methods of solving equation (4.3.6) for specific cases of b(t), but 

in general the equation is of Bernoulli type and can be solved exactly. The solution 

is:

Xn er f ‘ ( 1 ~ i ^ d 3  

1 +  (4'3' 10) 

Using this solution and the fact that b(t) is periodic, we can set up a difference

equation (sometimes referred to as a first return map or Poincare map), tha t describes

the state of the cells at the beginning of each period. Equation (4.3.10) describes
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the growth of the tissue over each period, where xQ is the cell mass at the beginning 

of the period. The resulting difference equation is:

<r> oT (1—b(s))ds
-  n r  ( A  Q -l -| \

S^ +1)T 1 +  5 m .  J^+1)T er/*(1-6^))‘̂ ds'

Of interest is the stable equilibrium of this difference equation. Solving the equation

rC"+Dr( ( )
X . ae  Jnr '  >• >•

for x eq we find

X e q —

r Jnr

and hence we can determine the equilibria. They axe:

1 +  Ssl /Oj+iK erf ^ 1- i^ d s  ’ (4.3.12)

33 e g  =  0 (4.3.13)

r ^er /^r+1)r(1- 6W)ds-  1^

/(*+!)* er f 3 (i-b((Mds ' (4.3.14)23eg —

Next, we define:

(b(t)) = -  [ Tb(t)dt. (4.3.15)
r  Jo

as the mean value of b(t). Equation (4.3.14) is equal to zero for (b(t)) =  1, which 

is the bifurcation from a positive stable equilibrium to a  zero stable equilibrium. 

That is, for 0 <  (b(t)) <  1 equilibrium (4.3.14) is stable and equilibrium (4.3.13) 

is unstable. For (b(t)) >  1 the stability switches and equilibrium (4.3.13) becomes 

stable while equilibrium (4.3.14) switches to unstable. Therefore the cells have a 

zero equilibrium when

(&(<)) >  1. (4.3.16)

4.3.3 Step Function

We can examine the special case of the step function form of b(t) (equation (4.3.7))

directly by examining the solution over each piece of the period r . First we find the
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solution in the region nr  < t < a + nr,  and then match it to the solution in region 

a +  nr  <  t < (n +  l) r .  Thus we obtain:

(1 — b)xnT
U-a-Hrd-nr) TIT < t  < 0, + TIT

. (4.3.17)x(t) = Xnr +  [(1 -  b) -  Xnr\e~(1~h)T(t- nr) 
®(a+rar)---------------------------- —  a + n r  < t  < (n + l ) r

ato+ n r) +  [1 -  a (o+«r) ] e - r(t-ta+»«-)) “  V 1

Matching the two solutions at a +  n r  we find:

® (a+nr) —
(1 -  b)xT

Xnr +  [(1 -  b) -  x^je-C1- 6)0
(4.3.18)

Prom this solution a difference equation can be found that relates the size of x{t) at 

the beginning of one period (xnT) to tha t of the next period (x(n+1)T). The Poincare 

map for equations (4.3.17) is:

a (n + l)r  —

1 +
'xnr + [ ( 1  -  b) -  xnT]e ft i)gr _  ' 

(1 -  b)xnr

(4.3.19)
g -r ( r - a )

The equilibria for this difference equation are:

Xeq —
I  _  e r(a6-r)

1 -  j4+(e-“r(1_6) -  &)e-r(T-“)

(4.3.20)

(4.3.21)

This is just a special case of equations (4.3.13) and (4.3.14) where the bifurcation 

from equilibrium (4.3.21) being stable to equilibrium (4.3.20) being stable is ab = r . 

(Note that this is the same result as (b(t)) =  1.) Figure (4.4) shows the bifurcation 

diagram distinguishing between the stable and unstable equilibria.
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4.4 P iecew ise Cell-Specific M odel

For the piecewise continuous cell-specific case, model (3.2.2) will be modified as:

(4.4.22)
dx
dt

I  \
—a /3

( \  
g(t) o

x —

■0 o o
X .

The function g(t) is a piecewise continuous function describing the chemotherapeutic 

effects on the tumor. Webb studies a  similar model in his study [66], where he uses a 

step function to model the chemotherapeutic effects. We will investigate the model 

using the exponential decay function, (figure (4.2)):

g(t) =  he 'd*-riT)) n r  <  i < (n +  l) r , (4.4.23)

where h is the cell kill parameter and 7  is the decay of the drug. However as seen 

in Webb [67, 66] and in the previous sections, g(t) may take on many other forms 

as considered appropriate. In this section, we will compare the results of this more 

realistic model of chemotherapy with the more mathematically tractable pulsed- 

therapy model.

4.4.1 Normal Tissue

For the piecewise case the limited growth equation for normal tissue is:

y =  6 (K  — y) — he nT\  nr  < t  < (n + l)r .

Finally, the logistic form for the piecewise case is:

y =  Sy( 1 - ^ ) - h e  7(i nr)y, n r  <  t  < {n +  l)r .
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See section §4.3. In equations (4.4.24, 4.4.25) 8  is the growth rate of the normal 

tissue and K  is the carrying capacity.

4.4.2 Confluent Hypergeometric Solutions

The model that we investigate is based on equations (4.4.22, 4.4.23) and the normal 

tissue condition (4.4.25). Analytic solutions to the tumor equation can be found 

in terms of confluent hypergeometric functions. In particular, we are interested in 

comparing the results of the pulsed therapy with those of the piecewise therapy. This 

will help us understand, in a qualitative sense, if and when the more sophisticated 

model will be needed. Note that the parameter 7  in the piecewise case describes the 

decay rate of the chemotherapeutic drug. A large value of 7  (for fixed h) therefore, 

corresponds to the effects of the drug decaying away quickly. This is qualitatively 

equivalent to a high survival fraction, /(£>), in the pulsed case.

Analytic Solutions

Reformulating the system of differential equations (4.4.22, 4.4.23) as a Schrodinger 

equation in time, i.e.

%  + (A ■- V(i)) ,  = 0 (4.4.26)

we may investigate analytic solutions to the piecewise chemotherapeutic case. W ith 

the choice of an exponentially decaying function representing the effects of chemo­

therapy on proliferating tumor cells (see figure (4.2)), the potential function V(t)  

in equation 4.4.26 is a Morse-type potential, well-known in the quantum mechanical
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literature (see Flugge [26]); and the solutions are obtainable in terms of confluent hy­

pergeometric functions or the related Whittaker functions). Because the chemother­

apy is administered periodically, the potential V(t)  is periodic also. Therefore, using 

existing Floquet theory as applied to scattering by periodic potentials in the quan­

tum  theory of solids, we find corresponding results in our chemotherapeutic case. 

More specifically, corresponding to the existence of “forbidden energy bands” in 

quantum theory, it appears that there are “forbidden” or inappropriate chemothera­

peutic regimens also, in the sense that for some combinations of period, dosage, and 

cell parameters, no real solutions exist for the system of equations describing the time 

evolutions of cancer cells in each compartment. The mathematical details of these 

analytic ideas are contained in Adam and Panetta [2] and here we will concentrate 

on the numerical results of the next section.

N u m erica l R esu lts

Using the same parameter values as in the pulsed case with the new parameter 

h =  0.5 for both the normal and tumor equations, we compare the bifurcation 

diagrams of the two cases. Note the similarities between figures (4.5) and (3.4). 

Both show similar regions in parameter space for acceptable period and strength. 

The main difference between the two is that in the pulsed case (which models instant 

removal of cells) there is a much more dramatic change in the normal cell bifurcation 

curve then in the piecewise case. This is because in the piecewise case the drugs 

destroy cells over the complete period, thus there is not an instantaneous drop in 

normal cell mass. Thus in the piecewise case we are not concerned about the cell
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Figure 4.5: Bifurcation Curves

mass instantly dropping below its critical value; consequently this model allows for 

larger drug doses to be administered. Note next the similarities between figures (4.6) 

and (3.5). It should be recalled that the minimum eigenvalue means highest tumor 

reduction in figure (3.5). These two graphs compare very well, both showing that 

the optimal period is one that allows some time between doses. Finally, figure (4.7) 

shows the optimal period curve along with the bifurcation curves of both normal and 

cancerous tissue. A significant point to be made here is that the optimal period curve 

is completely in the acceptable region unlike the pulsed case. Therefore if we are to 

compare the optimal period in the piecewise case to the regimen stated by Birkhead 

et al. (“the maximally-tolerated dose is given as frequently as the rate of bone 

marrow recovery permits”), we may note that they are basically equivalent. Thus, 

if the clinician administers a strong dose (i.e. 7 small), then the optimal period, and 

the smallest period that allows bone marrow recovery, are almost identical.
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4.5 D iscussion

Some variations can be made to this model to model chemotherapy even more effec­

tively. A few possibilities include varying the carrying capacity K  (either increasing 

or decreasing it) to model either the tumor bed effect (see Michelson and Leith 

[48, 49]) or allow a decaying carrying capacity due to cytotoxic build-up (see Hallam 

and Clark [36]). A further possibility is to allow cytotoxic effects to decay over each 

successive period. This can arise as a result of drug resistance because the drugs 

have less affect on the cells over time.

This model gives a concise and general form for the bifurcation between reduced 

steady state cell survival and cell destruction. It can be the basis for studying the 

chemotherapeutic effects on both cancerous cell tissue and normal cell tissue such as 

bone marrow. If it is used with cancerous tissue, then condition (4.3.16) describes 

the type of regimen needed to destroy the cancer cells. If it is used to model the 

chemotherapeutic effects on bone marrow, we might instead look for the point where 

the equilibrium is about half the carrying capacity since this is the limit of acceptable 

bone marrow destruction.

The piecewise model of chemotherapy is the more realistic of the two studied 

in this dissertation, but mathematically it is much more difficult to investigate. As 

noted above, it can be solved analytically, but this is mathematically very intensive 

especially when compared to the pulsed therapy case. By comparing the various 

bifurcation diagrams and optimal period diagrams, we can observe that the results 

obtained numerically from the piecewise model are qualitatively very similar to those
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obtained from the pulsed case. Only a few differences are noted. Because of this, 

very similar q u a lita tiv e  results may be drawn from either model. Therefore in 

many situations it would be wise to choose the mathematically more appropriate 

model — the pulsed therapy model. However, if circumstances permit and a more 

realistic approach to the chemotherapeutic effects is desired, the piecewise model is 

the better choice.
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C hapter 5

Tumor R esistance

5.1 Introduction

Resistance to cytotoxic drugs is a major cause for failure of chemotherapy (Goldie and 

Coldman [29, 30] and Michelson and Leith [50]). Thus, for a more realistic approach, 

the chemotherapeutic models should also incorporate the effects of resistance. Two 

m ajor types of drug resistance to consider (though there are others) are: inherent 

and acquired. Inherent resistance refers to tumor cells that are resistant from the 

beginning of chemotherapy. Conversely, tumor cells which are initially susceptible to 

the drug, but develop resistance over time, are considered to have acquired resistance. 

(We will only work with acquired resistance effects here).

The first model we investigate is an extension of the tumor-normal cell interaction 

model in chapter 2. Instead of just having a tumor and normal cell compartment, 

we add a resistant compartment. We continue to use pulsed therapy in this case and 

define new parameter ranges of acceptable treatment.
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A second approach used here to model drug resistance is by means of a decaying 

periodic chemotherapeutic term  added to the logistic growth model (i.e. the non­

constant parameter approach as opposed to the pulsed therapy). Thus, over each 

period the drugs will have less and less of an effect on the cancer tissue. As can 

be clearly seen, unless the drug regimen can destroy every cancer cell after a  finite 

number of doses (which is not possible in these models given the nature of the 

differential equations being studied), no single drug will be able to control the growth 

of the cancer tissue. Consequently we axe more interested in finding the appropriate 

number of doses while still reducing the size of the cancer cell mass (this is known as 

the nadir). Knowing the nadir can help in ascertaining when to switch to a different 

drug and how to better design drug regimens.

Finally, we model resistance with a  heterogeneous two compartment model; one 

for sensitive cells, the other for resistant cells. Various forms for this model have been 

studied. Birkhead et al. [12] discuss a linear system of equations modeling sensitive 

and resistant cycling and quiescent cells. They carry out numerical experiments 

with various drug-delivery methods where the drugs are assumed to be effective 

instantly. Gyori et al. [34] investigate a non-linear two-compartment model where 

sensitive cells m utate to resistant cells, both as a result of the cytotoxic drugs and by 

spontaneous mutation. They study analytically the effects of one drug dose on the 

system and study numerically the full system. Panetta [56] studied a model similar 

to that of Gyori et al. but the chemotherapeutic effects are modeled by periodic 

instantaneous cell kill or pulsing. In this chapter we derive a  model similar to these 

and include piecewise-continuous and continuous instantaneous chemotherapeutic
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effects. Analytic results describing the bifurcation between tumor growth and decay 

axe developed.

The models in these sections are compared to some clinical results on chemother- 

apy given by Skipper [60].

5.2 Pulsed  M odels

If a resistant subpopulation occurs (i.e. 100% resistant), then the tumor can never be 

killed off unless the drugs axe altered to have an effect on the most resistant popula­

tion. This will entail the use of non-cross-resistant drugs. Models that assume 100% 

resistant cells axe discussed by Goldie and Coldman [29]. They show, by stochastic 

methods, that as the tumor burden is increased there is a higher probability of the 

tumor becoming resistant, and that there is a small critical time interval in which 

the probability of the tumor developing resistance goes from low to high.

Resistance may arise in various ways. One such way concerns resistance that 

is n o t induced by the applied drugs. Since tumor heterogeneity is common (see 

Michelson et al. [50]), this is a very common situation. This will be modeled by a 

continuous flow of cells, independent of the chemotherapy, from sensitive to resistant 

compartments. The other type of resistance is induced by the drugs; tha t is, as the 

drugs are administered, some sensitive cells become resistant. This could be caused 

for example by genetic mutations. This will be modeled by a discrete flow of cells, 

dependent on the chemotherapy, from sensitive to resistant.
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5.2.1 Acquired Resistance: Cell Mutations

Martin et al. [44] state that some types of drug resistant cells arise at a constant rate 

and are n o t induced by the chemotherapeutic drugs. This gives way to heteroge­

neous tumors. Michelson et al. [46, 53] have developed heterogeneous tumor models 

without normal cell interaction or chemotherapy, and Gyori et al. [34], using the 

model developed by Michelson et al., add the effects of a time-dependent cytotoxic 

agent. These models can be a modified in the following way to account for normal 

cell interaction and periodically-pulsed therapy: thus we write

dX_ 
dt 

dY\ 
dt 

dY2  

dt

r 1 X ( l - X / K 1 - X 1 (Y1 + Y2)) (5.2.1)

r 2 Yx( 1 -  (Y1 + Y2 ) / K 2  -  X2( X  + Y2)) -  mY 1 (5.2.2)

rzY2{ 1 -  (Yx +  Y2 ) / K 2  -  X3( X  + Yx)) +  mYx (5.2.3)

F(D)X(nT~) (5.2.4)

F(D)Yx(nT~) (5.2.5)

F(D)Y 2 (nr~) (5.2.6)y2(nr+) =

where X  is the normal cell biomass, Yx is the sensitive tumor cell biomass, Y2  is the 

resistant tumor cell biomass, and m  is the resistance parameter. Usually m  is very 

small since cancer cells mutate at a rate of about 1 in every 106 cells (see Michelson et 

al. [46]). Note that Ai could be zero in the non-interactive case, but for the sake of 

generalization, we will keep it in.

We assume that two drugs are administered, both affecting the sensitive cells 

with survival fraction F(D),  the resistant cells with survival fraction F{D)  and the 

normal cells with survival fraction F(D).  This leads to the reasonable assumption
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F(D) < F(D),  i.e. the drugs will have a stronger effect on the sensitive tumor cells 

than the resistant tumor cells.

5.2.2 No Therapy Case

Let us first investigate the case with no chemotherapy. Michelson et al. [50] note 

th a t for this model, in the constant coefficient case, there is no equilibrium where 

the resistant cells, Yz, are excluded and sensitive cells, Yi, survive. But, with the 

proper choice of parameters, the coexistent equilibrium can be driven as close to the 

I 2 =  0 case as possible. They note that in this limit, the deterministic model can 

break down ( i.e. the model does not take into account small random fluctuations 

tha t can have a large affect on a small cell population).

As before, the stability of the tumor free case, (Ai, 0,0), is investigated and 

parameter ranges for tumor growth are given. Linearizing equations (5.2.1-5.2.3) 

about X  =  Ki  +  eu, Yi = 0 +  ev, and Y2  =  0 +  ew we obtain:

— r i  — r i A i A i  — r i A i A i

0 r2(l — A2A 1) — m  0

0 m  r 3(l -  A3A1) t

I  \  I
u'

\ W / \

/  \
u

V

, w  .

(5.2.7)

We investigate the stability by looking at the eigenvalues. In particular, we are 

interested in the second two equations of the system. Since they decouple from 

the first equation, we may focus on them alone. The condition on sensitive cell 

recurrence is A2A1 <  1 — m/rz.  This condition is more restrictive than that of the 

zero resistance case because of the presence of the m/rz  term. As m  increases it is 

harder for the sensitive cells to recur, and as r2 increases the sensitive cells can grow
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faster, thus making it easier for them to recur. Also, if m > r2 then the sensitive 

cells can n o t recur, although, typically m  «  r2. The condition on resistance cell 

recurrence is X3 K\  <  1, although, if the sensitive cells recur, then the resistant cells 

m u s t recur (see Michelson et al. [53]) even if X3 K\ > 1. This can be seen by looking 

at the third equation (w 1 = mv  +  r3(l — X3 Ki)w).  Since v is increasing then so must 

w. But if X3 K 1  < 1 and X2 K 1  >  1 — m / r 2 then the resistant cells will recur without 

the sensitive cells.

5.2.3 Resistant Recurrence

As before, we investigate the effect a small tumor burden has on the tumor free 

periodic solution given in § 2.3. Thus the system is linearized about (X ,(i),0 ,0 ) 

and the stability of the sensitive and resistant subpopulations is investigated. In the

same manner as before, we investigate the lineax system

(  \  
v!

\  w /

r x(l -  - n A —riXiX 3 (t)

0 r 2(l — A2 X a(t)) — m  0

0 m  r3(l -  X3 X a(t)) f  ̂ f

where X  =  X 3 (t) +  eu, Y\ =  0 +  ev, and I 2 =  0 +  ew. In this case the second two 

equations decouple and the second can be solved by integrating v' =  (r2( l—X2X 3(t))—

\

/  \
u

V

. w ,

(5.2.8)
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m)v  over nr  < t  < (n + l ) r .  This gives:

[ F(D)e^-m̂r } 
u (n + l)r  — v nr   ̂ f > ( 5 .2 .9 )

I F ( D ) * ^  e ^ K i r  )

The condition to prevent sensitive cell recurrence is:

F(D) <  F(D ) 'rtrn *9 * 1 e - ^ ( i - A 2^ i)  ( 5 .2 .1 0 )

(i.e. the survival fraction for the sensitive tumor mass is less than the survival 

fraction for the normal tissue.) Note that we assume r2 > >  m  and X2 K 1 <  1 (see 

the previous section). Since m is very small, it has very little effect on the outcome. 

Thus, this condition is almost identical to equation ( 2 .4 .1 8 ) .

As in the zero-drug case, resistant cells must recur if sensitive cells do, and 

there can be resistant cell survival even if the sensitive cells do not recur. To find 

the condition for this, we must integrate w1 =  r3(l — X3 X s(t))w over the interval 

nr  < t  < (n + l ) r  yielding:

{ F(D)eT3T 1
raVjK, f  • ( 5 .2 .1 1 )

F { D ) ' ^ e ^ K^  J
Thus the condition to prevent resistance recurrence is:

F(D) <  F i D y ^ e - ^ V - W i ) '  ( 5 .2 .1 2 )

It is important to note that if the resistant subpopulation goes undetected, and drugs

are administered which kill only the sensitive cells then, F(D) = 1. In this case the

resistant subpopulation will recur unless it is competitively excluded (K\X 3  > 1) 

since the right-hand side of equation (5 .2 .1 2 )  is less than one.

As before, the dose-response is chosen to be F(D) = e~aiD, F(D)  =  e~a2D, and 

F(D)  =  e~a3D respectively. Then the conditions to prevent both sensitive and
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resistant tumor recurrence while keeping the normal cells above the specified level 

0 <  a < 1 axe:

I " )   r r 2(l X2K \ ) __________ / k  n - i q \

a 2  — ctiX2 K i(r 2  — m )/r i

D  >  ( 5 . 2 . 1 4 )

a3 -  aiX3Kir3/ri

D  <  —  ln (a  +  e -riT( l - a ) )  (5.2.15)
a  i

For there to be a region of resistant recurrence without sensitive recurrence the graph 

of (5.2.13) (the equality) must be below that of (5.2.14), or the slope of (5.2.14) with

respect to  r  must be greater than that of (5.2.13). In general, this will depend on

the growth rates and competition parameters of the two populations along with the 

dose response parameters (a;). In the special case where r2  =  r3  and A2 =  A3 (a 

biologically reasonable one) the condition is 0:3 — 0:2 <  aiX 2 K im /r i .  If 0:3 >  a 2  

(F (D ) >  jF(D),which is unrealistic) then, since m  is very small, there will only 

be a  very small region where resistant cells can recur without sensitive cells. If 

a 2  <  a 2  (F (D ) < F(D ), typically true) then there will alw ays be a region of 

resistant recurrence without sensitive recurrence. Replacing o:2> r2, X2  with 0:3, r3, A3 

in equation (2.4.21), we can see

a ir 3(l -  aX3 K x) f \
“»>  ri(l - a ) —  P-2'16)

is the minimum condition needed for the treatment to be able to prevent resistant 

tumor recurrence.

Figure 5.1 gives an example of two regions of dose vs. period. One occurs 

where the tumor cannot recur and the other where only resistant tumor cells can
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Figure 5.1: Dose-Response Curves: Dose vs. Period

do so. The upper line refers to equation (5.2.14) (the equality); the lower line refers 

to equation (5.2.13), and the curve is equation (5.2.15). From this graph we can 

see how the two regions are close together, thus showing how sensitive the results 

are to small changes in dose or period. Additionally, if the resistant population is 

undetected, then we can easily choose a dose and period to eliminate the tumor 

which actually falls in the range of resistant recurrence. Thus the tumor can recur 

even though it appears that we are administering an acceptable dose regimen.

5.2.4 Induced Resistance

Birkhead and Gregory [9] and Martin et al. [44] note that tumor cells can m utate or 

transition to resistant subpopulations as a  result of exposure to chemotherapeutic 

drugs. W ith regard to this, a variation can be made to the above model to model
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induced resistance:

dX 
dt 

dY[ 
dt

m _
dt

X (n r +) 

F i(n r+) 

Y2 (nr+)

— = riX(l -  X /K i  -  X1 (Y1  +  Y2))

= r2Yx{i -  (yx + y2)/k2 -  x2(x + y2))

=  r3 Y2 ( l - { Y 1 + Y 2 ) /K 2 - X 3(X  + Y1)) 

=  F{D )X (nr~)

= (F(D) -  R(D))Yi(nT~)

= F{D)Y 2 {nT~) +  R{D)Yi(nT~)

(5.2.17)

(5.2.18)

(5.2.19)

(5.2.20)

(5.2.21)

(5.2.22)

where in equations (5.2.21, 5.2.22) R (D ) is the fraction of cells becoming resistant or 

induced due to the dose of the drug. Note that R(D) can be a function of drug dose 

and in some cases could be as large as 0.5 (i.e. 50% of the surviving cells become 

resistant).

Normal Growth

As in §2.3, we are interested in the stability of the tumor free case, (A i, 0,0). Lin­

earizing (5.2.17, 5.2.18, 5.2.19) about the tumor free state (X  =  K i +  eu, Y\ =  0 +  ev,

and Y2 =  0 +  ew) we obtain:

( \  
v!

w

{ \  (  \  
u

\ \  w 1

(5.2.23)

—ri — \ir\Ki —XiriKi

0 r 2(l — X2K \)  0

0 0 rs(l — X3K-\)

Note that this has similar conditions for recurrence as equation (2.3.5). That is, the 

sensitive cells will recur if X2K \  < 1 and the resistant cells will recur if X3K \ < 1. For 

this problem however, unlike the previous case, we can have sensitive cell recurrence
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without resistant recurrence and the recurrence of one does not affect the other. It 

merely depends upon the competition coefficient A,-. Thus prior to therapy, sensitive 

cell recurrence has no effect on the recurrence of resistant cells.

In d u ced  R esistance  w ith  C h em o th erap y

Continuing with the same approach as before we linearize the system about the 

tumor free periodic solution (X s(t), 0,0). In this case we will solve the two decoupled 

equations, v' =  r2(l — A2X,(t))u and w' — r3(l — A3 X 3 (t))w, by integrating over the 

period and applying the pulsing conditions (5.2.21) and (5.2.22). This gives us the 

system of difference equations:

\  (F(D) -  R(D))e™  1 
(n+l)T — nT 1 r2A2K, f (5.2.24)

{  F { D ) ^ ^ e r^ K ^  J
.. f R(D)e™  \  , I F (D )e'”  } , r „

w (n + l)r  — v nr  S ,-2 *2 * ! f d" w nr 1 ra ^ x , f (5.2.25)

Now we examine the stability of this system. Note that the sensitive tumor cells 

can n o t recur if:

F{D) < F {D ):*%rLe-TT2(1- X2Kl'> + R(D). (5.2.26)

Note also tha t R{D ) increases the size of the right-hand side, thus making it easier to 

prevent sensitive cell recurrence. Depending on the size of R(D), it will have varying 

affects on the outcome. Larger R(D) (near 0.5) will make it vary easy to prevent 

sensitive cell recurrence while smaller R(D) will have a minimal affect. Secondly, 

if the sensitive cells recur then the resistant cells will also recur because the second 

term  on the right-hand side of equation (5.2.25) will grow in spite of the first term. 

Thus resistant tumor population recurrence does not depend on competitive pressure
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if there is sensitive recurrence and continued dosing. But, sensitive cells recurring 

without continued dosing does not imply resistant recurrence. Finally the resistant 

tum or cells can recur even if the sensitive cells do not, provided that:

F(D) > F (D ):2^ e - TT̂ 1- X3Kl\  (5.2.27)

This result is derived assuming that there are sensitive cells initially, which is very 

likely. Note tha t this result is consistent with condition (5.2.12) for non-induced 

resistance.

5.3 P iecew ise-C ontinuous M odels

Now, we study various ways to model drug induced resistance with piecewise-con- 

tinuous chemotherapy.

5.3.1 Homogeneous Tumor

We model cancer cell growth with resistance by exponential growth instead of logistic 

growth. This is an acceptable simplifying assumption, since the carrying capacity 

for most cancerous tissue is much larger then the maximum tumor mass tha t the 

host can withstand. Thus exponential growth is an acceptable approximation to the 

growth between each period of treatment.

The model for decaying drug effects, most likely caused by the development of 

resistance to the drug, is:

=  r  (* ~  ^ T + l )  nT - f < (n +  1)T (5.3.28)
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where 7  is the resistance parameter and n is an integer which represents the number of 

the dose that is being delivered. Large 7  represents cells rapidly becoming resistant to 

the drug and small 7  represents cells switching to resistance more slowly. To find the 

nadir we need to determine when X(„+i)T >  x nr. This condition can be investigated 

by studying the the first return map of equation (5.3.28). This difference equation 

is:

z(n+i)r =  xnTerT(1- $ $ ) ,  (5.3.29)

or in terms of the initial value xq\

X(n+i)T =  x o e ^ ”  f t  erT(1-^ ) .  (5.3.30)
t= 0

Solving aj(n+i)r xnr the condition on the number of doses that may be given before 

the cell mass will start to regrow instead of decline is:

”■ > i ( W ) )  -  !)• (5.3.31)

(See figure (5.2).) A more direct way of establishing the nadir is to just view the 

characteristic exponent of the first return map (5.3.29). When this is greater than 

or equal to zero the same condition for the nadir as above is obtained.

For a  basic model of resistance, this fits very well to actual data given in Skipper

[60]. Compare figure (5.3) with graphs of data in Skipper.

5.3.2 Heterogeneous Tumor

The general heterogeneous tumor model used is similar to that of Gyori et el. [34]. 

It is of the form:

x' =  n x ( l  -  x /K i -  ciy) -  (b0 do(t) +  bidi(t))x  (5.3.32)
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Figure 5.2: NADIR, Homogeneous Case
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Figure 5.3: Tumor Mass vs. Time, Homogeneous Case
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y' =  b0 d0 (t)x +  r2 y( 1 — y /K 2  — c2 x) -  b2 d2 (t)y , (5.3.33)

where x  represents the sensitive cell mass and y represents the resistant cell mass. 

The various parameters are as follows: bo represents the induction rate of cell trans­

formation (i.e. the rate at which they move from the sensitive to resistant compart­

ments due to cytotoxic drugs), &i represents the effects of a cytotoxic drug that only 

affects the sensitive cells, b2  represents the effects of a cytotoxic drug tha t can also 

affect the resistant cells, do,i(t) are periodic functions of period T\, d2 (t) is a periodic 

function of period t 2  (these represent the periodic behavior of the chemotherapy), 

and the rest of the parameters are the regular parameters in a  competition model. 

The induction rate of sensitive cells can range from almost zero to nearly 50% of 

surviving sensitive cells becoming resistant per dose.

5.3.3 Linear Model

As in the previous section we will eliminate the non-linear terms from equations 

(5.3.32, 5.3.33) for the following reasons, (i), The carrying capacity (K i) of most 

tumors is much larger then the host can sustain; (ii) the drugs periodically destroy 

tumor mass keeping the tumor far from its carrying capacity (if the drugs do no do 

this the host will die); (iii) chemotherapy is often used in the adjuvant setting (post 

surgery) when the tumor burden is relatively low or to treat a m etastatic burden; 

(iv) the linear system is much easier to handle analytically. Therefore, eliminating 

the non-linear terms from equations (5.3.32, 5.3.33) we obtain:

x' =  (n  — (bo +  bi)d0 (t))x  (5.3.34)
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y' =  b0 d0 (t)x + (r2  — b2 d2 (t))y. (5.3.35)

Note tha t equation (5.3.34) is decoupled from equation (5.3.35), therefore we can just 

examine equation (5.3.34) and determine separately the dynamics of the resistant 

compartment (equation (5.3.35)). Because of the possibility of different periods for 

the two drugs, we define the mean value function to be:

( / « > *  =  - / " / « * .  i  =  1 .2 . (5 .3 .36)
T i  JO

Note that the following is a useful relationship between the two means:

mu = % «>*• (5.3.37)T2

By integrating equation (5.3.34) over period T\ we get the condition required to 

destroy the sensitive cells. This condition is:

(6° +  6 l)n (d o (t) )Tl >  1. (5.3.38)
r  i

If this condition holds (which it must if the therapy is to come even close to affecting 

the tumor), then the steady state effects of the resistant compartment can be studied 

by examining equation (5.3.35) with x = 0. Therefore the condition tha t will also

destroy the sensitive cells can be found by integrating equation (5.3.35) with x = 0. 

This results in the condition:

- r 2 (d2 (t ) ) T 2 >  1. (5.3.39)
r 2

Thus to have an effective drug regimen we need both condition (5.3.38) and (5.3.39)

to be valid. Note that these conditions hold for both the linear model and the full

non-linear model.
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Figure 5.4: Tumor Mass vs. Time, Heterogeneous Case, Step Function

The following graphs give a cleaxer indication of how conditions (5.3.38) and 

(5.3.39) affect the growth of the cancer cells. It is assumed that condition (5.3.38) 

holds in all cases; thus we axe interested in the bifurcation to resistant emergence. 

The most interesting feature of these graphs is that they qualitatively match actual 

studies of chemotherapeutic regimens listed in Skipper [60]. Although this model is 

only a lineax version of a  more realistic model, it nevertheless qualitatively fits the 

clinical results. Figure (5.4) shows an acceptable regimen of drugs, while figure (5.5) 

gives an unacceptable regimen. In both of these a step function (see figure (4.1)) 

is used to model the effects of the drug. In the case of the modified exponential 

function (see figure (4.3)), an unacceptable regimen has the form of figure (5.6).

In many cases (as noted above and by Skipper [60]), condition (5.3.39) will not 

hold, and hence the resistant cells will eventually take over, unless another drug
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Figure 5.5: Tumor Mass vs. Time, Heterogeneous Case, Step Function
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Figure 5.6: Tumor Mass vs. Time, Heterogeneous Case, Modified Exp. Function
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Figure 5.7: NADIR, linear model: r  =  18, &i =  1.475 (left graph) and b\ =  1.75 

(right graph)

regimen is used that is more effective on the resistant cells. It is therefore important 

to know how many doses will have a positive effect on reducing the tumor mass. In 

this model the nadir will occur when:

^  =  1. (5.3.40)

At this point the total cell mass (sensitive plus resistant) will start to increase. An 

example of the nadir for fixed b\ and varying Z>2 in equations (5.3.34, 5.3.35) is given 

in figure (5.7). Also, comparing what happens when the period is varied with fixed 

hi we get figure(5.8).

5.3.4 Non-Linear Model

To investigate the full model (equations (5.3.32, 5.3.33)), first let us study the 

constant parameter case, i.e. d{(t) =  1. This model has already been studied
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Figure 5.8: NADIR, linear model: 6i =  1.5, 62 =  0.65, vary r  

in detail by Michelson et al. [53, 46]. There are three equilibria; E 0  =  (0,0),

Ei =  (0, (r2 — b2 )K 2 / r 2), and E 2  =  (xe, ye), where E 2  is the positive solution to

(5.3.32,5.3.33) (see Michelson et al. [46]). Linearizing Eo, stability occurs provided:

r! <  60 +  61 (5.3.41)

and r2  < 62 (5.3.42)

are both true. Note that conditions (5.3.38) and (5.3.39) reduce to these in the 

constant parameter case. If Eo is unstable then either E i or E 2  will be stable. By 

linearizing about E\ the condition for stability is:

(n  -  (b0  +  6j)) <  V- ^ - ( r 2  -  b2), (5.3.43)
r 2

and if this is not satisfied and E 0  is unstable, then E 2  is stable. (See Michelson et 

al. [53] for further details.)
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Assuming tha t di(t) is a non-constant periodic function of period r ,  there exists 

a positive periodic solution of the equation for y,  namely:

y' =  r2y( 1 -  y /K 2) -  b2d2( t ) y  (5.3.44)

provided (d2 (t)) <  r2 /(rb2) (see §(4.3)). Call the solution Fi(t). Note tha t this solu­

tion can be found analytically since this equation is in the form of a Bernoulli equa­

tion (see equation (4.3.10). Therefore (0 ,ii( t) )  is a  periodic solution to equations 

(5.3.32, 5.3.33). The stability may be studied in a manner similar to the constant 

coefficient case by linearizing about the equilibrium. In this case, the equilibrium E\ 

is the periodic solution (0 ,ii( t)) , and the variational matrix is:

r i ( l  -  ciYi(i)) -  (b0  +  &i)d0(i) 0
(5.3.45)

 ̂ b0 d0 (t) -  r2 c2 Yi(t) r2(l -  2Yx(t)/ K 2) -  b2 d2 (t) j

Since this is an uncoupled linear system, only an integration is required to find the 

condition for stability of (0,ix(i)). These stability conditions are:

ri -  T(b0 (d0 (t)) +  &i(di(t))) <  ric ir(y i(t)) (5.3.46)

r 2 - b 2T( d2( t ) )  < (5.3.47)li2

Note tha t this reduces to the conditions in the constant parameter case when d;(f) 

are constant.

Finally, it can be shown that if E q and (0, Fi(i)) are unstable, then a periodic 

solution of the form (X c(t),Yc(t)) exist.

Let us again assume that condition (5.3.39) does n o t hold. Do the non-linear

effects modify the bifurcation significantly or is it qualitatively the same as in the

90

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



25

24

22

20

19

15
2 .4  2 .5I 1.2 1 .4  1 .6  1 .0b2

2 2 .20 .9

Figure 5.9: NADIR, non-linear model: bi =  1.475 (left graph), W =  1.75 (right 

graph), ci =  0.01 and C2 =  0.01

linear case? If condition (5.3.38) holds, then the equilibrium (0,F i(t)) is stable, 

otherwise, there is the possibility of a periodic coexistent solution. But, unlike 

the linear case, if condition (5.3.38) does n o t hold there is still the possibility of 

destroying the sensitive cells if the right hand side of condition (5.3.46) is large 

enough. In other words, either ci is larger (resistant cells more competitive) or 

T(Yi(t)) is larger. Thus there exists the possibility of reducing the sensitive cells 

without administering such a large dose of chemotherapy.

More importantly, how do the non-linear terms affect the nadir? Using the same 

parameter ranges as in the linear case, the nadir is plotted vs. various parameters (see 

figure (5.9)). As can be seen, comparing graphs (5.7) and (5.9) we get qualitatively 

the same shape, but the non-linear form allows for higher nadir. Now, varying 

the competition parameter ci and C2 in figure (5.10) shows how the competition 

parameters affects the nadir.
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Figure 5.10: NADIR, non-linear model: r  =  18, &i =  1.75, b2  = 0.65

5.4 Conclusions

These models give a concise and general form for the bifurcation between reduced 

steady state cell survival, unlimited growth and cell destruction. It is hoped tha t 

they will provide cancer researchers with better qualitative ideas on how to optimize 

various clinical trials.

The model is inappropriate if the tumor develops resistance tha t is untreatable 

(i.e. no drug affects it). But if non-cross-resistant drugs are administered then it is 

still possible to continue to prevent tumor recurrence. One simplistic way to model 

this problem is to define the drugs to be a non-cross-resistant conglomeration: tha t is 

they are administered having survival fractions F(D) and F(D). However, because 

this does not provide any insight into the mechanism of resistant recurrence, or how 

to control it, more sophisticated resistance models are needed.

Since most tumors are known to be heterogeneous and heterogeneity can result
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in resistant subpopulations, heterogeneous tumor models are appropriate systems in 

which to study drug resistance. Two different types of resistance axe investigated: 

drug induced and non-induced. One of the main differences between these situations 

arises in the zero therapy cases. That is, in the drug-induced no therapy case, growth 

of the sensitive cell population does not affect that of the resistant cell population 

while in the other case it does. When chemotherapy is added, both systems show 

a definite region of resistant recurrence with no sensitive recurrence. This region 

is important to identify in that it can be avoided when planning a  regimen, thus 

not causing the tumor to become totally resistant (and thus killing the host). In 

both cases, it is seen that the cell mutations have a very small effect on the sensitive 

cell recurrence conditions, changing them only minimally. Again in both of these 

cases, the parameter region in which recurrence is prevented is generally smaller 

than in the homogeneous case, since the resistant cells axe affected by fewer drugs. 

One of the most important points to note is that in all cases there axe definite 

regions where the therapy will either succeed or fail. This should emphasize the 

importance of correct administration of chemotherapeutic drugs. Also, as pointed 

out earlier, it is important to account for the resistant subpopulation since it can 

narrow the acceptable region of drug treatment significantly. The main mathematical 

difference between these two resistance models is that the induced model has discrete 

induction events and the non-induced model has continuous induction. As we have 

demonstrated, these mathematical differences lead to only minimal differences in 

results.
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Chapter 6

Conclusions

The need for mathematical models of chemotherapy is becoming more clear. As 

stated by Skipper [60],

Over 20 years of experimental and clinical experience has demonstrated 

tha t intuitive or triai-and-error manipulations of doses, schedules, and 

combination of drugs—without guidance as to the elfects of each man­

ipulation—are apt to provide little or no improvement in combination 

chemotherapy designs.

The models developed in this dissertation give an uniquely different approach to 

discussing chemotherapeutic drug regimens. All the models show, in parameter 

space, proper and improper chemotherapeutic drug regimens in terms of dose and 

period, along with the bifurcation between these regimens. Some of the models verify 

tha t existing clinical regimens are a “good” way to deliver drugs while other results 

suggest tha t there could be other methods that may work better. All these models
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are developed from the qualitative point of view. That is to say, we are not designing 

specific drug regimens, but rather defining general criteria to guide clinicians to more 

effective treatm ent schedules. In addition since one of the major limiting factors of a 

drug regimen is the negative effects on various normal tissues such as bone marrow, 

a constraint equation representing these effects is incorporated. This allows us to 

discuss delivery of proper regimens without them overly destroying normal tissue.

The first model described in Chapter 2 investigates the possible interaction be­

tween cancerous and normal tissue. Though this is not the case in all cancers, some 

examples of where this interaction may possibly occur were given, including the im­

mune system or the liver. By using the pulsed therapy on a small metastisized tumor 

mass, we were able to develop parameter ranges of acceptable dose and period while 

preventing the over-destruction of the normal tissue.

The model in Chapter 3 discusses cell-specific chemotherapy. The most interest­

ing result from this chapter is that fact that we actually want to have a gap between 

periods of drugs (which may seem counter-intuitive) to allow cells to “move” to the 

proliferating compartment. This model uses various known results from Floquet 

theory to help determine criteria such as the optimal period (i.e. the period which 

gives the largest cancer mass reduction per dose).

There have also been many medical advances in the use of HGF’s to enhance the 

effectiveness of the chemotherapeutic drugs. By varying the parameters which relate 

to the effects of the HGF’s, such as the growth rate of the bone marrow (rate of 

leukocyte production) or the transition rate from resting to cycling cells, the model 

in this chapter is extended to describe the dynamics of these HGF’s. In fact this
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particular model confirms what recent clinical results have shown, namely tha t the 

growth factors can increase the effectiveness of the chemotherapeutic drugs rather 

significantly.

Chapter 4 extends the idea of varying the parameters to better model the effects 

of chemotherapy. By means of a simple model of logistic growth with an increasing 

“K”, the carrying capacity of the host for the tumor, we can observe how the tumors’ 

ability to manipulate its environment can lead to uncontrolled growth. This can 

be related to the experiments with the tumor and the mouse, where the tumor is 

able to grow so large that it is as big as the mouse. This idea and the need for 

non-constant parameters is a continuing area of much research. This includes a 

recent publication by Michelson and Leith [52]. As described in this dissertation and 

in many publications, this area is extremely important in describing many of the 

interactions between various cells in cancer.

Other variations on the parameters were done by varying the growth rate of the 

cancer, which can also represent the effects of the chemotherapeutic drugs. Here 

bifurcation conditions were developed, again in terms of the dose and period, that 

identify regions of growth or decay. In the heterogeneous case, we were able to 

find analytic solutions of the equations to be in the form Confluent Hypergeomet­

ric functions. Also, using ideas from quantum mechanics we developed criteria for 

acceptable and unacceptable chemotherapeutic regions.

Chapter 5 covered one of the most important issues in developing chemotherapeu­

tic regimens, namely drug resistance. The models developed in this chapter describe 

various ways of mathematically explaining drug resistance. Each of these models
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fits well qualitatively with results discussed in Skipper [60]. These models identify 

important results such as how many doses may be given before resistance “takes 

over” and acceptable methods of delivering combination chemotherapy tha t control 

resistance. From this type of information, clinicians will better know how to deliver 

combinations of drugs more effectively to combat the effects of drug resistance.

There axe many ways these models can be extended to more accurately model the 

chemotherapeutic effects. Some are for example: more accurate models of the im­

mune system can be developed (i.e. take into better account their specific biological 

processes), more descriptive models of the cell-cycle can be used, more information 

on the mechanics of the (HGF’s) can be discussed, more extensive analysis of the 

piecewise-continuous model can be investigated, and drug resistance may be added 

to all the models. It is the hope that the models in this dissertation along with some 

future development of these ideas will provide both mathematicians and clinicians 

a better view of how chemotherapeutic drug regimens work in theory and how to 

develop more effective drug regimens in the light of these results.
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