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ABSTRACT

STATISTICAL ANALYSIS OF LONGITUDINAL AND  
MULTIVARIATE DISCRETE DATA

Deepak Mav 

Old Dominion University, 2005 

Director: Dr. N. Rao Chaganty

Correlated multivariate Poisson and binary variables occur naturally in medical, 

biological and epidemiological longitudinal studies. Modeling and simulating such 

variables is difficult because the correlations are restricted by the marginal means 

via Frechet bounds in a complicated way. In this dissertation we will first discuss 

partially specified models and methods for estim ating the regression and correlation 

parameters. We derive the asymptotic distributions of these param eter estimates. 

Using simulations based on extensions of the algorithm due to  Sim (1993, Journal of 

Statistical Com putation and Simulation, 47, pp. 1-10), we study the performance of 

these estimates using infeasibility, coverage probabilities of the confidence ellipsoids, 

and asymptotic relative efficiencies as the criteria.

The second part of this dissertation is devoted to  the study of fully specified models 

constructed using copulas, with special emphasis on the normal copula. Finding the 

maximum likelihood estim ates and the Fisher information m atrix for these models 

requires computation of multivariate normal probabilities. We also discuss several ef

ficient algorithms for calculating multivariate normal integrals. For the multivariate 

probit and multivariate Poisson log-normal models, we implement maximum like

lihood, derive the necessary equations, and illustrate it on two real life da ta  sets. 

Next we study over and under dispersed models including quasi-multinomial and La

grange families of distributions. We implement the maximum likelihood m ethod for 

the quasi-multinomial model and illustrate the application of this model for market 

analysis of household preferences for saltine crackers.
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CHAPTER I 

INTRODUCTION

Statistical methods for analyzing longitudinal and m ultivariate da ta  are im portant 

tools in da ta  analysis. They are used on da ta  consisting of several measurements 

made on each individual or an experimental unit. Such da ta  occur commonly in sci

entific disciplines including biology, medicine, psychology, business and many other 

fields. Historically, the m ajority of applications have been on multivariate measure

ments th a t are continuous and often normally distributed. However, in recent years, 

many researchers have taken up the challenging task of modifying and tailoring these 

methods for the analysis of repeated measurements or longitudinal data. The term  

“repeated or longitudinal da ta” refers to da ta  consisting of responses taken on sub

jects or experimental units a t different tim e points or on multiple occasions or under 

multiple conditions.

While the longitudinal data  can be viewed as multivariate data, there are some 

key differences between the two. M ultivariate da ta  normally consists of a snapshot 

of different variables taken a t a single time point, whereas longitudinal da ta  consists 

of snapshots of the same variable taken a t multiple time points. Therefore, the 

correlation structure in longitudinal data  is different from the structure th a t arises 

in multivariate data. Thus, even though there are some similarities between the 

two types of data, each pose different challenges and require different approaches 

for statistical analysis. Much research has already been done on multivariate and 

longitudinal da ta  when the response variables are continuous. Unlike the Gaussian 

distribution th a t is widely used to model continuous variables, there is not a single 

multivariate discrete distribution th a t is as prominent as the Gaussian distribution 

to  model discrete random variables.

The goal of this thesis is to  study partially specified and fully specified models 

for multivariate and longitudinal data  when the response variables are discrete, such 

as Poisson counts, binary, and more generally multinomial or categorical variables. 

For the fully specified models, we could use the maximum likelihood m ethod since 

it is the optim al m ethod of estimation. For partially specified models, we develop

This dissertation follows the style of Journal of the American Statistical Association.
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statistical methods for param eter estimation. Simulating partially specified discrete 

models is computationally a challenging problem. In this thesis we also study some 

simulation methods for partially specified models for m ultivariate Poisson counts and 

multivariate binary variables. We use those simulating techniques to  compare the 

relative performance of the statistical methods for partially specified models.

1.1 O verview o f Thesis

A part from the introductory chapter, this dissertation consists of four chapters. In 

Chapter II, we first discuss the classical generalized linear models, which serves as the 

basis for modelling multivariate and longitudinal continuous and discrete responses. 

The multivariate Gaussian distribution is used extensively when analyzing continu

ous data. Unfortunately, to  analyze discrete data, we have numerous multivariate 

distributions to  model a wide variety of dependence structures and concepts. Most 

of these distributions are intractable in the sense th a t implementing maximum like

lihood estim ation could be difficult and computationally could be very intensive. As 

an alternative, in recent years several moment based methods have been put forward 

to  analyze multivariate and longitudinal discrete data. The foundation for these 

methods is Godambe (1960)’s optim al theory of estim ating equations. In particu

lar the generalized estim ating equations (GEE) have become a popular m ethod for 

analyzing discrete longitudinal data. Despite its popularity the GEE m ethod has 

significant problems particularly with the estim ation of the correlation parameters. 

In Chapter II we give a description of GEE, its shortcomings, and other moment 

based methods including Gaussian estimation, modified Gaussian (MG) estimation, 

and quasi-least squares (QLS). A real life example is given to  dem onstrate the appli

cability of these methods.

In Chapter III, we derive the asymptotic distributions of MG and the QLS es

tim ation methods. In order to  compare the relative performance of these methods 

we will need to  assume some multivariate distribution and a m ethod of simulating 

from th a t distribution. In Chapter III, we discuss the algorithm due to  Sim (1993) 

for simulating a multivariate Poisson distribution with given means and correlations. 

We study the asymptotic performance of MG and QLS methods via this simulation 

algorithm, using the joint coverage probabilities of simultaneous confidence regions,

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



3

asymptotic relative efficiencies and probability of infeasible or divergent solutions.

In Chapter IV we present fully specified discrete distributions constructed using 

copulas. We also give some insights into the infeasibility issues of moments based 

methods with the help of Frechet bounds. The bulk of this chapter is devoted to 

several fully specified discrete models including models based on normal copulas, pro

bit models, mixture models, probit-normal models, Poisson log-normal models, and 

discrete choice models, in particular multinominal logit and probit models. Calcula

tion of the maximum likelihood and the Fisher information for these models requires 

computation of the multivariate normal probabilities. In this chapter we also discuss 

several efficient algorithms for calculating multivariate normal probabilities. For the 

multivariate probit and multivariate probit-normal models, we implement maximum 

likelihood estim ation deriving the necessary equations and illustrate it on two real 

life data sets.

In applications where the populations are subject to post-sampling effects there 

could be a non-ignorable over and under dispersion parameter. In Chapter V we 

introduce the quasi-multinomial and generalized Lagrange families of distributions, 

which account for the over and under dispersions. These distributions can be used to 

draw meaningful inferences on the strength of population dynamics. We implement 

the maximum likelihood for the quasi-multinomial distribution and illustrate it on the 

optical scanner panel data  concerning the multiple purchase decisions and marketing 

predictors for the households in Rome, Georgia.

In Chapter VI we present a brief summary of results obtained in this dissertation. 

Finally, the Appendix contains im portant SAS programs th a t we developed for this 

dissertation.
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CHAPTER II 

LONGITUDINAL DATA ANALYSIS USING GLM

Generalized linear models (GLM) are one of the most popular and widely studied 

statistical models in statistical methodology. These statistical models th a t relate the 

random outcomes or responses to  the covariates are extremely useful to understand 

variation in responses as a function of the covariates. They are also useful to  make 

predictions based on the past behavior of the responses. In this chapter we present 

the background on these models and discuss various methods of estim ating the model 

parameters. We also discuss criteria to  check the adequacy and goodness of fit for 

the models.

The organization of this chapter is as follows. In Section II. 1 we present gener

alized linear models in the univariate setup. Maximum likelihood which is the most 

efficient m ethod of estim ation of the param eters for generalized linear models will be 

discussed in Section II.1.1. Tests for model adequacy are presented in Section II .1.2. 

We present extensions of generalized linear models to  longitudinal da ta  analysis in 

Section II.2. The most popular m ethod for estim ating the param eters in longitudi

nal data analysis in the framework of the generalized linear models is the generalized 

estimating equations (GEE) proposed by Liang and Zeger (1986). In Section II.3 we 

present a summary of the m ethod of generalized estim ating equations. Despite its 

popularity, the GEE m ethod has some pitfalls, and we discuss those in Section II.3.1. 

Several authors have proposed alternatives to  the GEE method. Most im portant are 

the Gaussian, modified Gaussian and the Quasi-least squares estim ating procedures. 

These methods are discussed in Sections II.4, II.4.1, and II.5 respectively. In Sec

tion II .6  we present simplifications of the estim ating equations for the correlation 

param eter for commonly used correlation structures. Finally, a real life da ta  exam

ple is presented to  illustrate the various methods in Section II.7.

II. 1 Generalized Linear M odels for Univariate R esponses

Suppose th a t we have a collection of n  observations or responses of a dependent 

variable taken on n  subjects, and suppose th a t we also have observations on some
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covariates or explanatory variables. Let yi denote the ith  response or observation, and 

Xj be the corresponding vector of measurements taken on the explanatory variables. 

The simple linear model th a t relates the response variables with the explanatory 

variables is given by

where /3 is the vector of unknown regression coefficients. The e fs  are assumed to be 

independent, normal random variables with zero mean and constant variance. This 

traditional simple linear model (2 .1 .1 ) which has been extensively used in statistical 

data  analysis has several limitations. First, the response variables yi could be binary 

or counts and need not be continuous so th a t the assumption of normality for e; is 

invalid. Second, the response variable yt could be continuous with restrictive range. 

In this case the traditional linear model may be inadequate since x /̂3 is free to  vary. 

For example, yi could be a proportion and falls between 0 and 1, but the linear 

predictor x(/3 of yi may not fall within this range. Third, it may not be realistic to 

assume th a t the variance of yt is a constant. For example, if y.t represent Poisson 

counts then the variance depends on the mean of the yi s.

To overcome the aforementioned limitations, Nelder and W edderburn (1972) pro

posed a class of generalized linear models. These models are an extension of the 

traditional linear models in the sense th a t the mean of the responses depends on the 

regression param eter and the covariates through a nonlinear link function. Further, 

the variance is allowed to  be a function of the mean. More im portantly the proba

bility distributions are within the exponential family of distributions and therefore 

possess some nice properties. These models have numerous applications. Below we 

briefly summarize the salient features of the generalized linear models.

Definition 2.1 Exponential Dispersion Family. A probability mass function or a 

probability density function of a random variable yi is said to be a member of the 

exponential dispersion fam ily i f  it can be written in the form

Hi =  x' 0  + e, (2.1.1)

t l  O A\ y$ i b{6i) ,f(yf ,  Oi, <p) =  exp -------— —  +  c(yh <p) (2 .1 .2 )

where 6i is called the canonical form  of the location parameter and <f is called the 

scale parameter.
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Table 2.1: Canonical Link Functions

Distribution Canonical link function Variance function
Poisson

Binomial
Normal
Gamma
Inverse Gaussian

Log
Logit

Identity
Reciprocal
Reciprocal2

rji =  lo g (^ ) 

=  loS
Vi — fa
fa — —1 Vi
rh = A

fa

fa [ l -  — 1 

1

i t
i t

For the probability density function (2.1.2) there exists a relationship between mean 

and variance. Indeed, we can verify th a t the mean E(y i ) = fa = b'(9i) and Var(yi) =

b"{9i) fa((j)). The function r(fa)  =  =  b"(9i) is known as the variance function. In
dOi

many examples, aAqi>) =  — , and the variance of y* reduces to  -, where Wi's are
Wi Wi

known constants, and they are called the prior weights.

In the generalized linear model we assume th a t the distribution of the ith  sample 

outcome yi is a member of the exponential dispersion family. Further, the relationship 

between the mean fa and the linear predictor rji =  x'/3 is given by fa =  g~l {rji), where 

the function g is known as the link function. The link function is a monotonic and 

differentiable function. If 9i =  rji, then the generalized linear model is called the 

canonical model, and the corresponding link function is called the canonical link 

function. Table 2.1 has the canonical link and variance functions for some of the 

standard distributions.

II. 1.1 Param eter E stim ation in GLM

The popular m ethod of estim ating the unknown regression param eter /? and the scale 

param eter (j> in the generalized linear model is the m ethod of maximum likelihood. 

The idea behind the maximum likelihood is simple. We would like to  choose an 

estim ate of the param eter value in the feasible region which makes the observed 
data most probable. This estim ate need not be unique in general in the generalized 

linear model setting. However, for the models with the canonical link functions the 

maximum likelihood estim ators for the location param eters are unique. To obtain
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the maximum likelihood estimates, we need to  maximize the log likelihood function

[ViOi -  b ( 9 i ) \
log[L(0it 0; yi)} =

i = 1

(2.1.3)

Recall th a t /q =  &'(0j) and g(/q) = rji — x(/3. A common procedure to  get the 

maximum likelihood estim ate of j3 is to use the Newton-Raphson iterative algorithm. 

Starting w ith a trial value /30 for ft, a t the r th  step of the iterative algorithm we 

compute

f t  =  ft_ i - H ~ l S.

The vector S  is known as the gradient vector. The j  th  component Sj of S  is

%ij i
Vi -  Vi

Vi -  Vi

. ai{9) .i= 1 r ( V i )  dr)i

where Xij is the j t h  component of the vector x,t. The Hessian m atrix H  consists of 

the second order partial derivatives of (2.1.3) with respect to  f t  The (j, fc)th element 

of H  is

h j k  —
^  log[L(ei}<fr,yi)\

df3jd(3k

n ,

i= 1 k

yi -  m  
. a i(4>) .

d29i V'(9i) (89,
8f3jd/3k ai{4>) \d/3j J  \8/3k

89i

Equation (2.1.4) can also be w ritten as

d j k —
2—1

Vi ~  V i 8 %
d r f  a t(0 )r( /i4) \8r),

dVi

(2.1.4)

(2.1.5)

In m atrix notation we have

H  =  X'WX,

where X  =  ( x i . . . ,  xn)' and W  is the diagonal m atrix with zth diagonal

W i  =
Vi ~  Vi

. a*(^) .

8Hi 1 8y.j \ '

drjf Oi(0 ) r (^ i)  \ 8 r j i )

The asymptotic covariance m atrix of the maximum likelihood estim ate of /3 is the 

inverse of the information m atrix  I  where

- E ( H )
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=  X '[ - £ ( W ) ] X .  (2.1.6)

It is easy to  verify th a t the ?th diagonal element of —E ( W ) ,  the expected value of

~ W ’ equals (S ) •

II. 1.2 Tests for M odel A dequacy

It is well known th a t the maximum likelihood estimates are the most efficient es

tim ates when the model is correctly specified. However, since the true model is 

unknown it is not possible to check whether we have correctly specified the model 

or not. We should a t least make sure the model is adequately specified. A standard 

procedure to  check the model adequacy is to  compare the fitted model with the full 

model. The saturated or the full model is the model th a t contains the maximal 

number of parameters. Here the fy’s are treated as the param eters, and therefore 

the to ta l number of param eters is equal to  the number of observations in the sample. 

Note th a t the saturated model fits the da ta  exactly and hence it is of little use for 

any inference. The model adequacy is determined by comparing the estim ated value 

L c, of the likelihood for the model under consideration and the estim ated value of 

the likelihood Lf ,  of the saturated model. Two statistics, the scaled deviance and 

scaled Pearson’s chi-square are used to  compare L c with Lf .  The scaled deviance or 

simply the deviance is defined as

D{c, f )  =  - 2 1 o g 0 ^ .

For exponential dispersion family,

d (c, f )  =  2 Y } y i {ei - e i ) +  b{ei ) - b m / a i {(t>),
i

where 9i and 9i are the estimates of 6i under current and saturated  models respec

tively. Table 2.2 contains the deviance function D(c , / )  for standard distributions. 

The Pearson’s chi-square statistic is defined as

X 2 ( V i - f a ) 2,
i

and the scaled Pearson’s chi-square is x 2/</>. Both the Pearson chi-square and D(c, f ) 

statistics are asymptotically distributed as chi-square and small values of these statis

tics are indicators of model adequacy.
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Table 2.2: Deviance Functions

Distribution D(c, f )
Normal

Poisson

Binomial

Gamma

j t U i y i - m  
E  [Vi !og ( | )  -  Vi + fiil

TXvi  log ( | )  +  Vi) log ( £ _ £ ) ]

2 ^ E [ i o g ( £ )  +  % r ]

II.2 O verview o f Longitudinal D ata

Our discussion so far has been focused on da ta  th a t consists of one response or one 

observation on each subject. In this section we tu rn  our attention to  the analysis of 

data th a t consists of several measurements taken on each subject. Such da ta  occur 

in longitudinal studies where individuals are measured repeatedly through tim e or in 

a cross-sectional study where measurements are taken on each subject under several 

treatm ent plans. While it is often possible to  address the same scientific questions in 

both longitudinal and cross-sectional studies, there are some key differences between 

the two. Many cross-sectional studies arise from cross over trials and the covariates 

tend to be fixed and not tim e varying. For example, Jones and Kenward (1987) 

report a cross trial. Three levels (control, low, and high) of an analgesic drug for 

relieving pain from prim ary m enstrual cramps were given to 8 6  women in three time 

periods. The data  consists of the number of women in each of the eight possible 

outcome categories of 0 ’s and l ’s (0  =  no pain, 1 =  pain), with the six orderings of 

the three levels of the analgesic drug. These da ta  can be viewed as a cross-sectional 

study with the different treatm ent groups as the covariates.

Unlike cross-sectional studies, in longitudinal studies the covariates tend to  change 

over tim e within individuals. The prim ary interest is to distinguish changes over 

time within individuals, and the differences among individuals in their cohort levels 

is of secondary importance. Longitudinal da ta  can be collected either prospectively, 

following subjects forward in time, or retrospectively, by examining multiple mea

surements on each person from historical records. However, much longitudinal data  

are collected prospectively since the quality of repeated measurements collected from 

the past records may be inferior.

An example of a prospective longitudinal study is the da ta  collected by Sommer
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et al. (1984). The study by Alfred Sommer and colleagues was conducted in west 

Java, Indonesia to  determine the causes of vitam in A deficiency in pre-school children. 

Over 3000 children were medically examined quarterly for up to  six visits to  assess 

whether they suffered from respiratory or diarrheal infection, an ocular manifestation 

of vitamin A deficiency. Several time varying covariates including age, weight of 

the children are also observed. The problem is to  estim ate the increase in risk of 

respiratory infection for children who are vitam in A deficient while controlling for 

other demographic factors, and to  estim ate the degree of heterogeneity in the risk of 

the disease among children.

In the examples described above, the outcome variable is binary, and therefore 

standard methods developed for the analysis of Gaussian data  are not applicable. 

Statistical analysis of binary, and in general non-Gaussian longitudinal data  is diffi

cult. This is partly  due to  the fact multivariate extensions of the generalized linear 

models for modelling the joint distribution of the repeated observations, do not enjoy 

the nice properties th a t the multivariate normal distribution possesses.

During the last two decades several methods based on univariate generalized 

linear models were developed for the analysis of longitudinal measurements. These 

methods were useful to model both  discrete and continuous response variables such as 

normal, binary, Poisson, and gamma responses. Furthermore, some of these methods 

were shown to accommodate time-independent as well as time dependent covariates. 

Some of these methods were also flexible enough to  handle missing data  provide the 

missing-ness mechanism is completely random.

The extensions of generalized linear models can be classified into three classes: 

marginal models, random effects models and transition models. In marginal models 

the marginal expectation is modelled as a function of explanatory variables; see for 

example Liang and Zeger (1986), Zeger and Liang (1992). The associations between 

within subject measurements are modelled separately from the marginal means and 

variance of the outcomes. Marginal models are effective when the scientific objectives 

are to characterize and contrast the populations of subjects.

In random effects models between subject variation due to  unmeasured covariates 

is explained by inclusion of subject-specific random effects in the model. The random 

effects models also referred to  as “subject-specific models” , are often used when
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the prime objective is to study individual’s responses. Random effects models were 

studied by several authors including Laird and Ware (1982); Gilmour et al. (1985); 

Breslow and Clayton (1993) and Lin and Breslow (1996).

In transition models the conditional means of the outcomes are modelled as func

tions of the covariates and past responses. Hence the transition models have the 

interpretations similar to  tim e series models. The application of transition models 

are limited, since it may not be reasonable to  assume th a t responses follow a sub

ject dependent stochastic process, th a t changes only with the covariates. Kora and 

W hittm ore (1979), Zeger and Qaqish (1988) and Ware et al. (1988) discuss specific 

examples of transition models for binary and count data.

In this chapter we will study moment based models for analyzing longitudinal 

data. These models do not specify the full probability model, but assume only a 

functional form for the marginal distributions for the repeated measurements and 

specify a covariance structure for the within subject measurements. However, the 

covariance structure across tim e is treated as a nuisance param eter in many situa

tions. The estimation methods exploit the independence across subjects to  obtain 

consistent estimates of the param eters and their asymptotic standard errors. The 

earliest and the most popular method for analyzing longitudinal da ta  is the gener

alized estim ating equations method. In the next section we present details of this 

method.

II.3 G eneralized Estim ating Equations (GEE)

Suppose th a t we have a vector Yi = ( y n , . . .  ^yui)' consisting of repeated measure

ments taken on the ith  subject and associated with each measurement we also 

have a vector of covariates Xij =  ( a ^ i , . . .  ,Xijp)', 1 <  j  < U, 1 <  i < n. We will 

assume th a t the 17s are independent. The distribution of Yi is unknown in most 

situations. Because the repeated measurements on each subject are correlated, the 

correlation of the vector I j  is not the identity. And any efficient statistical procedure 

should adjust for the within subject correlation.

In a seminal paper Liang and Zeger (1986) proposed a m ethod based on minimal 

assumptions on the distribution of Y7 Their method, now popularly known as the
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GEE method, can be regarded as the extension of the quasi-likelihood method. As 

we have seen in Section 2.1, for many non-Gaussian distributions the variance is a 

function of the mean. This mean-variance relationship is the starting  point of the 

GEE method.

The framework of the GEE m ethod is the following. Here we assume th a t 

E(yij) =  Hi j and Var (y,tj) =  0r(/i,-j), where <f> > 0 may be a known constant or 

an unknown scale param eter. The param eter 4> is also known as the over-dispersion 

param eter. The variance function r (  •) th a t relates the variance to  the mean of yij , 

is assumed to be a known function. We also assume th a t the link function g is in

vertible and Hij = g~l (x'ijP ) ,  where j3 =  (/A, . . . ,  fip)' is a p-dimensional vector of 

regression coefficients. Next we make some assumptions concerning the within sub

ject correlation. To allow parsimonious modelling of the correlation, we assume th a t 

the correlation of Yi is given by a structured correlation m atrix Ri(a).  In general the 

param eter a  =  (cti , . . .  , a q)' is a vector of dimension q. It is treated  as a nuisance 

param eter, but is crucial to  efficient estim ation of the regression param eter.

We thus have E(Yj) — fii(f3) and Cov(Yj) =  </>Ej(/3, a),  where Hi(f3) =  

( / in , . . .  ,/J-iti)'- To encompass several continuous and discrete marginal models, the 

covariance m atrix Yi(j3,a) is assumed to  be a function of a  as well as [3 and it is
I  I

equal to  A? (p) Ri(a)A?  (£), where Ai(/3) =  diag ( r f a i ) ,  r ^ ) ,  • • •, t ( / ^ . )) is the di

agonal m atrix of variances of the s. In the GEE method the regression and the 

correlation param eters j3 and a  are obtained by an iterative procedure as described 

below.

Estim ation procedure:

Step 1: S tart with a trial value /?o-

Step 2 : Compute the residuals Zi =  A ( Y i  — y,i(j3o)).

Step 3: Estim ate a  by m ethod of moments using Zi, 1 <  i < n.

Step 4: O btain /A solving the generalized estim ating equations
n

E r ‘(A  <*)w  -  ftOs)) =  o, i  < j  < p-
2— 1

Step 5: Stop when /A {30, otherwise repeat steps 2 , 3, 4.
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In the above Di(fij) =  dHi(j3)/d f$j, and equations in Step 4 are known as the GEEs. 

The estimates (3 and a  obtained by the above iterative procedure are known as the 

GEE estimates of {3 and a. This estimation procedure is now implemented in popular 

commercial statistical software packages like SAS, Splus and STATA.

Since the introduction of the GEE method by Liang and Zeger (1986), numerous 

authors have extended and suggested different versions of the method. All of these 

methods use the same estimation equation (2.3.1) but differ in how the correlation 

param eter is estim ated in Step 3 of the above algorithm. Noteworthy to  mention is 

the m ethod by Prentice (1988) for analyzing correlated binary data. Prentice (1988) 

has suggested to  replace the moment estimates of a  used in Step 3, by another es

tim ating equation, which is known as GEE1. Prentice and Zhao (1991) have given 

a single GEE type estim ating equation treating both /3 and a  as a single param eter. 

Their m ethod is known as the GEE2 method, and it includes GEE and GEE1 as 

special cases. Finally, Hall and Severini (1998) suggested a unified approach for si

multaneously estim ating all the three param eters /3, a  and (j). Their approach, which 

uses ideas from extended quasi-likelihood, is known as the Extended Generalized Es

tim ating Equation m ethod (EGEE). However, Hall (2001) has shown th a t the EGEE 

approach is a special case of GEE1. In particular, EGEE amounts to  estim ating of 

the correlation param eter by maximizing the Gaussian likelihood function. We will 

study the Gaussian m ethod of estimation in detail in Section II.4.

II.3.1 Shortcom ings o f the GEE M ethod

The GEE method has been very popular for analyzing longitudinal da ta  because of 

its ability to estim ate the regression param eter consistently requiring only correct 

specification of the marginal mean and variance. The GEE m ethod is also compu

tationally less demanding than  the fully specified models. But despite its popularity 

the GEE m ethod has some shortcomings. It falls short of the purpose it was intro

duced - th a t is, to handle correlated da ta  efficiently. The GEE m ethod has pitfalls 

in theoretical and in software implementations, particularly in the estim ation of the 

correlation parameters.

Crowder (1995) was the first to  point out these pitfalls in the GEE method. He 

argued with simple examples the working correlation, when it is misspecified, lacks
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a proper definition and thus causes a break down of the asymptotic properties of 

the estimation procedure. Furthermore, even if the working correlation is correctly 

specified there is no guarantee th a t the moment estimate of a  will fall within the set 

of feasible values, th a t is, a  may not fall in the range where the correlation m atrix 

is positive definite.

To overcome some of these pitfalls of the GEE method, Qu et al. (2000) presented 

a method th a t bypasses the estimation of the correlation param eter. Their method, 

based on quadratic inference functions, obtains an unbiased equation by combining 

basic score functions optimally. Vonesh et al. (2002) proposed a second order condi

tional generalized estim ating equations (CGEE2) th a t also bypasses the estimation 

of the correlation param eter. The CGEE2 can also be used to  estim ate random- 

effect param eters in nonlinear mixed models setup. However, these extensions and 

several other extensions of the GEE m ethod do not generalize easily for unbalanced 

and unequally timed longitudinal da ta  th a t need to  be analyzed using more complex 

correlation structures.

One of m ajor problems with the GEE m ethod is the absence of an objective 

function th a t is being minimized (maximized). Such an objective function, if exists 

will be useful to  test adequacy or goodness of fit. A solution to  this problem was 

given by Crowder (2001). He suggested the use of the Gaussian likelihood function as 

an objective function to  estim ate the correlation parameters. This m ethod is known 

as the Gaussian estimation. We will discuss this m ethod in the next section.

II.4 G aussian Estim ation

The Gaussian m ethod of estimation was originally introduced by W hittle (1961) as 

a general m ethod for estim ating the param eters in time series data. It was brought 

into the limelight by Crowder (1995) for the analysis of correlated binomial data, 

and more recently by Crowder (2001) as a general and an alternative to the GEE 

method. Here the param eters are estim ated by maximizing the Gaussian (normal) 

log likelihood. For the da ta  setup described in Section 1, this amounts to  minimizing 

with respect to  j3, a  and </>, the objective function

{log I* S i(P, a)I +  \  (Yi -  v M Y  Sr'C8, a) (Yt -  /*(;»)) J . (2.4.1)
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We can rewrite equation (2.4.1) as
n n n

Y  lo g \Ri{a) | +  Y  log \Ai(p) | +  log(0) Y  U
i= 1 i= 1 i= 1

1 71 l
+  2  E W  “  A ‘ w  R ‘ 1{a) A ‘ 1 (/5) (y‘ “  t“ m  (2'42 )^  i=1

Taking partial derivative of (2.4.2) with respect to  j3j and equating to zero we get

n 

2 = 1

+  E t r ( ^ p V ( « i i r 1( a ) ( i Z i ^ - - B W ) )  = 0 ,  for j =  1........ .

2= 1

V  ( d A 7 x(ff) . _  , ( I  „  A \  _ - . .
.P>

(2.4.3)

where A(/3?) =  dHi((3)/d(3j and Z* =  ^  2 (/3)(T; — /q(/3)). Similarly, the estim ating 

equations for the correlation param eter o; can be derived as

!>P =  0  for j  =

(2.4.4)

Differentiating equation (2.4.2) with respect to  0 and equating to  zero yields following 

closed form estimate
n

E  R ; \ a )  4 % )  w  -
0 =  — -----------------------------5-------------------------------------- • (2.4.5)

S >
2 = 1

Thus the Gaussian m ethod of estim ation involves solving equations (2.4.3), (2.4.4) 

and (2.4.5). Note th a t the equations (2.4.3) are the sums of two equations unbiased 

equations; a linear unbiased equation which is the GEE, and a quadratic unbiased 

equation. This is expected since not only the means but the variances of the y4J’s are 

functions of the param eter j3. Even though equations (2.4.3) are unbiased estimating 

equations, these are not the optimal linear unbiased estim ating equations for estim at

ing /? in the sense of Godambe (1960). Furthermore, in some situations the presence 

of the quadratic part in the equations (2.4.3) could lead to  an inconsistent estimate 

of /?. This observation is the motivation for considering the following modification 

Gaussian estimation.
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II.4.1 M odified Gaussian Estim ation

Recently, Crowder (2001) suggested a modification of the Gaussian method, by 

decoupling the regression param eter /? with the covariance param eters a  and (f>. 

The modified Gaussian m ethod uses the same estim ating functions as the Gaussian 

m ethod for estim ating a  and (j), but differs in the estim ating the regression parame

ters j3. The estim ating equation for the regression param eter is obtained by dropping 

the quadratic part in the equations (2.4.3). The resulting estim ating equation is the 

GEE given by
n

£  D ' m  a 3 ( P )  R ~ l {a) Zt =  0, (2.4.6)
i=1

where A (/3) =  dni((3)/d[3' and Zi =  A { 2{f3) (Yi — //*(/?)), 1 < i < m. Thus the 

modified Gaussian m ethod estimates the unknown param eters /?, a  and (j) solving 

the equations (2.4.6), (2.4.4) and (2.4.5) iteratively.

II.5 Q uasi-least Squares Estim ation

The quasi-least squares m ethod was introduced by Chaganty (1997) and further 

developed by Shults and Chaganty (1998) and Chaganty and Shults (1999). This 

provides an alternative m ethod of estim ating the correlation param eters in the GEE 

m ethod and has been shown to  overcome some of the pitfalls th a t occur with the 

moment estimates of the correlation parameters. Here we outline the quasi-least 

squares m ethod of estimation of the unknown param eters /3, a  and (j). It is a two 

step procedure. The first step, motivated by the principle of (generalized) least 

squares, consists of partially minimizing with respect to  j3 and a  the generalized 

error sum of squares
n

Q ( / 3 , a ) =
i=1

=  ’E m - m y  - * ( ? ) ) ■  (2-5.i)
i—1

Straightforward differentiation of the above function with respect to (3 will result in an 

estim ating equation th a t is the sum of GEE and an equation th a t is not unbiased. It is 

well known th a t unbiased estim ating equations will yield consistent estimates. Since
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consistency is a desirable property for an estimate, to obtain an unbiased estimating 

equation we first decouple the param eters (3 and a  by introducing a variable [3* and 

modify (2.5.1) as

=  Y ' W - i n W ) ) '
i = 1

(2.5.2)

Taking the partial derivatives of (2.5.2) with respect to  ft and a  and replacing (3* — (3 

as in Chaganty (1997), we get the first stage estim ating equations as

n

Y, D'M « .■ > )  zi =  0 (2-5.3)
i=1

and

1 < i  < 9. (2-5.4)
0  OLjt=l J

where Di(/3) and Z* are defined before. The first step estimates [3 and a  are obtained 

starting w ith a trial value for [3 or a , and solving the estim ating equations (2.5.3) 

and (2.5.4) recursively for [3 and a. We can show th a t the estim ate /? is a consistent 

estimate of [3, whereas a  is not, since (2.5.3) is an unbiased estim ating equation and

(2.5.4) is not. The second step in the quasi-least squares procedure consists of solving 

the equation
n

^ b i ( a , a )  =  0 (2.5.5)
i=1

for a. Here bi(a, a) =  (bn(a, a ) , . . . ,  biq(a, a))' and

bi:j(a, a) =  t r  R i ( a ) )  = 0  for j  = l , . . . , q .
\  3 q.=ol J

(2.5.6)

We can show th a t the solution a  of the equation (2.5.5) is a consistent estim ate of 

a;. A consistent and more efficient estim ate of is obtained solving equation (2.5.3)

replacing a  by a. Finally, the quasi-least squares estimate of (f> is given by

^  _  1  Z ' i R j1(<x)Zi _  ]_ ^  5 7 )

Z=1 Z=1

where Zi =  A~*(f3) (Yt -  m 0 ) ) .
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I I .6 Correlation Param eter Estim ates for Com m on Structures

As we have seen in the previous sections, the three methods of estimation, GEE, 

MGE, and QLS use the same estim ating equation for the regression param eter but 

differ in the choice of the estim ating equation for the correlation param eter a. In 

this section we do further simplifications of the estim ating equations for common 

correlation structures.

I I .6.1 Exchangeable Correlation Structure

For repeated measurements th a t are not time dependent and are perm utation invari

ant it is reasonable to  assume th a t the correlation between any two measurements 

is constant. An example of this type of da ta  is a health study in which the subjects 

are the clinics and the repeated measurements are patients within the clinics. The 

exchangeable correlation structure is also useful to  model the correlation in da ta  th a t 

is collected in clusters. Formally, the exchangeable correlation is a correlation m atrix 

of the form

Riipt) — (1 — +  a ^ti

where I t is an identity m atrix of order t  and J t is t x t  m atrix with all elements equal 1.

respectively. The feasible region, th a t is, the range of a  where Riipt) is positive

The determ inant and the inverse of this m atrix are |-Ri(a!)| =  (1 — a)^  1(l +  (ti —l)o;) 

and

(2.6 .1)

definite, is a subset of the interval [—l/(m ax (tj) — 1),1]. Differentiating equation 

(2 .6 .1 ) with respect to a  we get

where
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Using (2.6.1) and (2.6.2), we can check th a t estim ating equation (2.4.4) of the mod

ified gaussian m ethod simplifies to

n I U-» i n / \ I
£ 4 - c , ( « ) ( £ % )  ) - £

ti(ti -  1 )a
1 +  (ti -  1 )a

= 0. (2.6.3)

Explicit solution for the above equation is not possible, and it has to  be solved 

numerically.

The first step quasi-least square estim ating equation (2.5.4) reduces to  following

n t;

J 2 J 2 4  ) = o.
i = 1 j = 1 i = 1 \ j= l

(2.6.4)

Equation (2.6.4) can be rewritten as quadratic expression in a  and the feasible solu

tion is given by
a

a
2 c 

b )  ~ b(!) (2.6.5)

where

a = £ ( * < - ! ) £ ■
i =  1 3 = 1

i=1 

ra I ti
1=1 0 = 1

■'ijc =  H 4 - & - 1) 1 ^ 2  ■

i=1 [ i= i \ i= i

The quasi-least squares second step estim ating equation (2.5.5) has a closed form 

solution given by

a =  -< ? * ( « ) ] }  i ^ t ^ U  -  1 ) ^ ( 0 ; ) !  (2.6.6)
i=l i=l

II.6.2 A utoregressive Structure of Order One

The correlation in longitudinal data, typically decreases as the separation between the 

observations increases. The simplest correlation structure to model this correlation
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pattern  is the autoregressive structure of order one (AR(1)). In m atrix form it is 

given by

Ri(a) = [ a ^ ]  .

The feasible region for a  is (—1, 1). The determ inant is |JF2j(o;) | =  (1 — and

the inverse of this m atrix  is

f i - 'M  = y y A y  [I* -  2aCltl + a 2C21i] (2.6.7)

where

Cl< =  2 j ^ ej'e0 '+1) +  eb +1)ej ] |  ’

t- 1

C2t = y > e ’
3 = 2

and ej is j th  unit vector in R*. Differentiating equation (2.6.7) with respect to  a  we 

get

— d a ~ ~  =  (i _  a 2j 2 K 1** +  C ^ )  ~ ( 1 +  “ 2)C i d  (2-6-8) 

d^r l( a ) o / ^ \  51og|i2i(a)|
da

2 {ti -  1 )a

( dRi ( a )  . A

2 ( t i  — l ) o ;  . „

-  <2-6-9>

Using (2.6.8) and (2.6.9)) we can verify th a t the modified gaussian estim ating equa

tion (2.4.4) reduces to

(IZ7PJ* E  { “  ( £  4 + E  4 )  -  u + < 4  E  }  -  X >  - 1 ) « = 0.

(2 .6 .10)

This can be rewritten as the following cubic equation

a 3 +  aa 2 + ba + a = 0

where
 ̂ ( 71 1

0 =
z i j z i ( j + 1) |  1 )

1 f _2_ /_h_ ti_1 \  ) ( "
6 = ^ | E ( E 4 + E 4 j | | E ( ti - 1)  ̂ - 1-
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For the AR(1) structure, the first step quasi-least square estim ating equation 

reduces to the quadratic equation

a 2 — a* a  +  1 =  0  (2 .6 .1 1 )

where
{ n /  U i ; - l  \  W  n ti — 1  ̂—1

J 2  ( J 2  4  +  4 ) [ { J 2  %^+d \ ■ (2-6-12)
*=1 \ j = l  j=2 /  J [ i=l j=1 J

Feasible solution of (2.6.11) is given by

_ 1 a* -  y/(a* + 2) (a* — 2) . (2.6.13)

The solution to  the second step quasi-least squares estim ating equation is

2 d  2
a  = - ^ -  = - .  (2.6.14)

1 + a 2 a* K !

A third commonly employed correlation structure for the analysis of longitudinal 

data  is the moving average of order one correlation structure. Here the outcomes are 

assumed to  be correlated with closest neighbors only. The (j, /c)th element of R i(a ) 

is a  if |j  — k\ =  1, 1 if |j  — k\ =  0, and 0 elsewhere. The determ inant of Ri(a)  is not 

in a closed form bu t can be computed easily using the following recurrence relation:

dti(a) =  |-Rj(a:)| =  dti^ { a )  -  a 2dti- 2{ot) (2.6.15)

where d0(a) = 1 and di(a)  =  1. The inverse of R i(a ) is not in simple form. Hence 

the estim ating equations for the MGE and QLS have to be solved numerically.

I I .7 I l lu s tr a t io n  o f th e  M e th o d s

In this section we present an example to illustrate data  analysis using the methods 

discussed in this chapter. We consider the da ta  studied in Preisser and Qaqish (1999) 

and made available publicly by the authors. The da ta  is from a randomized clinical 

trial directed a t assessing the Guidelines for Urinary Incontinence Discussion and 

Evaluation (GUIDE) as adopted by prim ary care providers. D ata analysis goal is to 

identify factors among urinary incontinent men and women age 76 and older th a t 

are predictive of their response to  the question: “Do you consider this accidental 

loss of urine a problem th a t interferes with your day to  day activities or bothers you
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in other ways?” A to tal of 137 patients from 38 practices were asked this question. 

In this example, the practices are independent and treated as subjects or clusters. 

The observations within practices are treated as equicorrelated measurements. The 

response yij of the j th  patient from the Ah practice, is a binary variable and equals 

1 if the patient is bothered and 0 if not. There are five covariates: (i) age (ii) gender 

(male or female), (iii) the number of leaking accidents in a day (dayacc), (iv) severity 

of the leak, takes l= i f  the leak creates a moisture, 2=  wet their underwear, 3=  trickle 

down the thigh, 4=w et the floor, (severe) and finally (v) number of times they go to 

the toilet to  urinate (toilet). For the analysis, we introduced an indicator variable 

for female and the age variable is centered a t 76 and scaled down by 0.1.

Table 2.3: GUIDE Data: Parameter Estimates

GEE MGE QLS
Covariate Estim ate S.E. Estim ate S.E. Estim ate S.E.
IN TERCEPT -3.054 0.959 -2.929 0.959 -2.996 0.959
FEMALE -0.745 0.600 -0.782 0.591 -0.762 0.596
AGE -0.676 0.561 -0.694 0.556 -0.684 0.558
DAYACC 0.392 0.093 0.381 0.092 0.386 0.092
SEVERE 0.812 0.359 0.802 0.357 0.808 0.358
TO ILET 0.108 0.099 0.106 0.098 0.107 0.098
a 0.093 - 0.153 0.074 0 .1 2 0 0.076

Table 2.3 contains the param eter estimates for the three methods of estimation, 

GEE, Modified Gaussian (MGE) and quasi-least squares (QLS). We have used PROC 

GENMOD to obtain the estimates for the GEE method, which does not give the 

standard error for the estim ate of a. Note th a t the estimates of the regression 

param eter obtained by the three methods are similar.
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CHAPTER III

ASYMPTOTIC BEHAVIOR OF ESTIMATION METHODS

In this chapter we will first derive the asymptotic distributions of the moment based 

methods th a t we discussed in Chapter II. Next we will compare these methods 

via asymptotic relative efficiencies and coverage probabilities for Poisson counts and 

binary responses using simulations. However, simulating da ta  from multivariate dis

crete distributions with given marginals and correlations is a challenging problem. 

Indeed a m ultivariate distribution with given marginals and correlations may not 

even exist and it need not be unique if it exists. There is a great deal of litera

ture concerning generating bivariate discrete random vectors with given marginals 

beginning with McKendrick (1916) and Wicksell (1916). Unfortunately there is no 

straightforward generalization of these methods from bivariate case to  higher dimen

sions. Due to complex nature of the generalized Poisson distributions, Tsionas (2001) 

and several authors proposed Bayesian multivariate Poisson regression.

In recent years a promising m ethod for simulating a multivariate Poisson distri

bution with given correlations, due to  Sim (1993), has gained popularity. In this 

chapter we will discuss a slight generalization of Sim (1993)’s algorithm. This al

gorithm, when successful, leads to  a complicated multivariate Poisson distribution. 

Maximum likelihood estimation is intractable for this complex multivariate distribu

tion, and there is a need to  use moment based methods, like modified Gaussian and 

the quasi-least squares estimation. Therefore, it is of interest to know the relative 

performance of these two methods. In this chapter we will use simulated da ta  gener

ated using Sim’s algorithm to  compare performance of the two estim ating methods; 

modified Gaussian and quasi-least squares.

The organizing of this chapter is as follows. In Section III .l we derive the asymp

totic distributions of the MGE and QLS methods. The simulation results comparing 

these methods for multivariate Poisson counts under exchangeable, autoregressive 

and moving average correlation assumptions are presented in Section III.2. In Sec

tion III.3 we use a real life data  consisting of correlated binary responses to  compare 

the two methods. A summary and conclusions of our results are presented a t the 

end of chapter.
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I I I . l  A sy m p to tic  D is tr ib u tio n s

In this section we will obtain the asymptotic distribution of the modified Gaussian 

and the quasi-least squares estimates, as n  —> oo. The following theorem due to 

Yuan and Jennrich (1998), plays a fundamental role in establishing the asymptotic 

distributions.

T h e o re m  3.1 Let Zi, 1 <  i < n, be independent random vectors of dimensions ti 

generated from distribution fi(Z i, Oo), 1 < i < n. Assume that U < t for  all i and 

Oo € 0 ,  which is a subset o f  R fc. Let the multivariate functions hfiZi, 0), 1 <  i < n, 

taking values in R fc, be such that

1. For each i, E (hi(Zi, Oq)) =  0 and Var(hfiZi, Oq)) =  MfiOo); and let

Mi(00) —y M{9o), as n  —>■ oo. Assume that M (9q) is positive definite.

2. For all A e  M.h of length one there exists a positive numbers B  and 5 such that

for all i
[ ( A f t W l I+i
_ 1 + A; Mj(#o)A

3. For each i, hfiZi, 0) is twice differentiable almost surely on 0 .

1 ~ d h  ( Z  O')-
f .  For each 9 G 0 ,  — —  —>• 1(0) as n  —¥ oo. Assume that L(0o)

n  i o9'
is non-singular.

5. Suppose that < T  for all i and for all X E M.k of length one.

Here I • I denotes the determinant.

Under the above regularity conditions, i f  0 is the solution of the unbiased estimating 

equation

then we have

( i0 - 0 o) is A M V N [ 0 ,
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Theorem 3.1 is proved by appealing to the Cramer-Wold device. The main steps 

of the proof are as follows. First, we reduce the multivariate estim ating functions 

hi(Z i,9 ) to  univariate random variables using the linear transform ation X' hi(Zi, 9). 

Next under the five regularity conditions, the asymptotic normality of the univariate 

random variables is established as an application of the Lindeberg-Feller theorem, 

see Serfling (1980). In practice the matrices I(90) and M(9o) in the asymptotic 

covariance m atrix are unknown, and we can estim ate them  as

/(§ ) =  - ! >
i—1

dhi (Zil 9) 
89'

(3.1.3)

and

m (9) =  i  £  m S -/ t
8 = 1

(3.1.4)

To establish the asymptotic normality of the modified Gaussian estimates, we first 

note th a t the three estim ating equations (2.4.6), (2.4.4) and (2.4.5) used in th a t 

method can be rewritten as Y17=i hmi{Zi, 9) =  0 where hmi(Z i: 9) =  K'mi(9) £i(9) and

Kmi(9) =
os) o

0  bn(a) bi2(a) . . .  biq(a) v ec(fir1 (a)) _

bi:j(a) =  vec ( —  ) , 1 <  j  < q,
dotj

m  =
Z i

vec {Zi Z[ -  (f)Ri(a))

The asym ptotic distribution of the modified Gaussian estimates follows as a conse

quence of Theorem 3.1 and it is given below.

T h e o re m  3.2 Let 9 = (/?, a, </>) and 9m =  (/3m,S m,^ m) be the MG estimates. 

I f  hmi(Z i ,9 ) ’s satisfy the regularity conditions 1-5 of Theorem 3.1 then we have
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V n(9m — 9) is asymptotically multivariate normal with mean 0 and covariance ma

trix £ m(0) =  I ~ l {9)Mm{9)I~l {9) where

Im(9)
1

n

M m(9)
1

n

v*(0 ) =  E

Cij (a) vec

2 = 1  

2 = 1

99

0  <f>cn(a) <f>ci2(a)

9R i{a ) '

0

(f>ciq(a) vec(Ri(a)) _

daj , 1 < 3  <q-

and i(9) =  Cov(£j(0)).

Similarly, to  derive the asymptotic distribution of the quasi-least squares esti

mates we first note th a t the estim ating equations (2.4.6), (2.5.4), (2.5.5) and (2.5.7) 

can be rewritten as hqi(Zi , 9) =  0 where hqi(Zi, 9) =  K ’qi(9)£i(9) and

R f \ a ) A ^ ^ ) D i{fl) 0

0  bu(a) b2i{a) . . .  bqi(a) vec (.fir1 (a))
K q i ( 9 )

Theorem 3.3 establishes the asymptotic distribution of the quasi-least squares 

estimates.

T h e o re m  3.3 Let 9 = (/?, a, (j>) and let 9q =  (/3q, a q, 4>q) be the QLS estimates. 

Assume that for  each a , there exists a  such that

9 R f l {a)
5>
2= 1

da
Ri(a)  =  0.

I f  hqi (Z i ,9 ) ’s satisfy the regularity conditions 1-5 of Theorem 3.1 then we have 

\ /n (9q — 9) is asymptotically multivariate normal with mean 0 and covariance matrix 

£ , ( 0 ) =  I f 1(0)Mq( 9 ) I f1{9) where

i= 1

M,m =
2 = 1
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Since both the quasi-least squares and modified Gaussian methods do not make 

any assumptions on the joint distribution of Y , the covariance m atrix fiq of G, which 

depends on moments of order up to four, is unknown. However, for continuous 

outcomes several authors have used a robust and consistent estim ate of the covariance 

m atrix given by =  & (0)&(#)'• We could use with 9 replaced by 6m and 9q 

to estimate the asymptotic covariance matrices E m{9) and E q{9) respectively.

Our main goal in this chapter is to study the asymptotic performance of the 

QLS estimates with respect to  the MG estimates for discrete outcomes, in particular 

for m ultivariate Poisson and multivariate binary outcomes. To achieve this goal, 

in the next section we will study some multivariate Poisson distributions th a t are 

characterized by given marginals and correlations. We will also study methods for 

simulating those distributions.

I I I .2 M u lt iv a r ia te  P o isso n  S im u la tio n s

Unlike m ultivariate Gaussian distribution which is uniquely determined by the 

marginal means and covariance matrix, there could be none or several multivari

ate distributions w ith a specified covariance m atrix and specified marginals such as 

Poisson with given means. In the bivariate case McKendrick (1916) constructed a 

bivariate distribution with Poisson marginals as follows. Suppose th a t Ui, C/ 2 and C/3 

are independent Poisson with means k2 and k 3 respectively. Then Y\ =  U\ +  C/3 

and Y2 = U2 +  C/3 are distributed as bivariate Poisson with joint density function 

given by

min(j/i,j/2)
g(yi,y2m,Ki,K2,K3)=  / ( y i - y 3 ; « i - « 3 ) / ( j f e - y 3 ; « 2 - K 3) / ( y 3;K3) (3-2.1)

3 /3 = 1

where f ( y ,n )  is probability mass function of a Poisson random variable with 

mean k. It is easy to  see th a t the random variables Y\ and Y2 marginally are 

Poisson w ith means Ai =  +  k 3 and A2 =  ^ 2  + k 3 and positive correlation

a  =  k 3/[ ^ (k , i  + k 3)(k 2  + K3)]. This m ethod works if for a given Ai, A2, the cor

relation is in the range 0 <  a  < min \/A i/A 2, -*/A2/Ai . In general, given Ai and 

A2 the correlation a  is restricted above by the Frechet upper bound pu{Ai, A2) as 

defined in (4.1.8). And there is no bivariate distribution with marginals as Poisson 

if a  > pu(Ai, A2) .
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Using an alternative approach, Wicksell (1916) has independently derived an 

expression for the bivariate Poisson distribution (3.2.1) taking the limit of sums of 

bivariate Bernoulli distributions. For higher dimensions, Bernoulli random variables 

play an im portant role in the construction of multivariate Poisson distributions with 

given means and correlations. In particular, the binomial thinning operator, which 

has been extensively used in modelling reliability da ta  involving imperfect repairs (see 

Barlow and Proschan (1975)), provides the foundation for simulating m ultivariate 

Poisson distributions.

D e fin itio n  3.1 Let X  be a non-negative integer valued random variable and 0 <  

6 < 1 be fixed. The binomial thinning of X  with 9, is a random variable denoted by 

9 -k X  that equals in distribution to X)* 0 h  where I q =  0 and I i , i  =  1 ,2 . . .  , X  are 

i.i.d. Bernoulli (9) random variables independent of X .

The binomial thinning is closed within the class of Poisson distributions as shown 

in the next lemma. Joe (1997) developed a unified approach to  construct non- 

stationary Poisson time series models by exploiting this closure property of the bi

nomial thinning operator.

L em m a  3.1 Let X  be a Poisson random variable with mean A. Then

1. 9 k X  is distributed as Poisson random variable with mean 9 A.

2. Cov(0! k X , 9 2 k X )  = 9x92A. 

for  all 9 ,9X and 92 G (0,1).

P ro o f: Let Y  =  9 k X .  Then Y  given X  = x  has Binomial(x, 9) distribution. The 

moment generating function of Y  conditional on X  — x  is

Hence the moment generating function of the unconditional distribution of Y  is

E[etY\X  = x] = [(I -  9) + 9el]x .

E[etY] = E[E[etY \X  = x}\
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which is the moment generating function of a Poisson random variable with mean 

9 X. To see the second part of the lemma, let Y\ =  9\ * X  and Y2 = 02 -k X .  The 

random variables Y\ and Y2 are conditionally independent given X  =  x. Hence

e [y 1y 2\ x  = x ] = e ^ x  = x ] e \y 2\ x  = x]

=  $i 02 x 2 and thus 

E[yy2] =  9192E ( X 2) = 9192{X2 + X).

Therefore

Cov(yl5y2) = E(y1y2) -E(y1)E(y2)
=  9i 62(X2 +  A) — 0\62 X2 =  9\02 X.

This completes the proof.

Using the binomial thinning operator, we now introduce a constructive definition 

for the multivariate Poisson distribution.

D e fin itio n  3 .2  Let Z \, Z 2 . . . ,  Z q be independently distributed random variables such

constants, 0 <  Qjk < 1. Define

g
Yj  =  ^ ^ Q j k * Z k j  =  l , 2 , . . . , p ,  (3.2.2)

k=i

then Y  =  (Yi, Y2 . . . ,  Yp) is distributed as multivariate poisson with mean vector

— (/il, p 2, • • • , Pp) •

It is clear from the definition, the conditional probability mass function of Yj 

given (z1, . . . , z q) is

that Z k is Poisson with mean Xk, 1 <  k < q. Let 0  =  [9jk\ be a (p x q) matrix of

(3.2.3)

g
where A z (y) = =  (w1: w2, . . . ,  wq) : wk e  N, wk < zk and ^  wk =  y | . There

fore the unconditional joint probability mass function of Y  is
k=1

(3.2.4)
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Using Lemma 3.1, we can check th a t the moment generating function of Y  is given 

by
v

M {  t) E etjYjn
j =i

V 9nn )

_j=1 k=1
9 P

.fc=l j= l

Zh

Further, the moment generating function (3.2.5) can be w ritten as

M ( t)  =  JJex p { A fc(es*:(t) -  1)}
k=i

(3.2.5)

(3.2.6)

where Sk(t )  =  ^ ^ l o g [0jketj + (1 — 9jk)\- The representation (3.2.6) shows th a t the 
i =i

moment generating function of Y  is equal to  the joint moment generating function of 

q independently distributed Poisson random variables centered a t ( 5 j ( t ) , . . . ,  S q(t)). 

Also Sk(t)  can be viewed as the joint cumulant generating function of p  independently 

distributed Bernoulli random variables.

The central moment generating function of Y  is given by

K ( t)  =  E  [exp(t'(Y  -  ft))]
9

=  JJex p { A fe(£4(t) -  1)} 
k=i

(3.2.7)

where Uk{t)  =  esk( t)

3=1

The moments up to  order four of the multivariate Poisson mass function (3.2.4) 

needed for calculating the asymptotic relative efficiencies of the estim ating methods 

MGE and QLS, can be obtained by differentiating the central moment generating 

function (3.2.7). We will need the following derivatives to  derive simplified expres

sions for the higher order moments.

Note th a t £4(t) can also be w ritten as following power-series

u t ( t )  =  E - - - E I I
di=0 dp=0j=l d r

V I  Ojktj
3= i

(3.2.8)
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where

(d) i 1 if of =  0
'Kjk

1 6jk otherwise.

Therefore, for all dj =  0 , 1 , . . . ;  j  = 1 ,2 , . . .  ,p  such th a t X ^=i dj >  1 we have 

j j ( d )  ( )  di  TL  f+.l

d t f 1 . . .  d t dp

- 4 d)(t) (3-2.9)
OO OO P

e - e i i
r i = 0  rp =0 j = l

t j  ( r j+ d j)

r .l J*3 ’

where

< 0 * 0  =
_ J d3 k if dj =  1 and dj, = 0 for all /  ^  j

0 otherwise. 

Differentiating (3.2.7) with respect to  t jx we get

dfsT(t)
d t  (3.2.10)

“ » ( * ) = E f/ld ,)(t )A*-
fc=i

where

and dx =  ej1 ( j i th  unit vector in

The covariance m atrix of Y  can be obtained by differentiating (3.2.10) with re

spect to  t j2 and substituting t  with 0 as

d t^ fa j  =  +  K (t ) (3.2.11)

where

‘4 3 , ( ‘ ) =  X X ’, « a*
k=1

and d 2  =  (ej1 + ej2). Therefore the elements of Cov(Y) =  E  are given by

ajlj2 = Cov(Yj l ,Y j2)

=

=  for a11 1 -  -?1’ & -  p ■ (3.2.12)
k = 1 1=1

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



32

Differentiating equation (3.2.11) with respect to  t j 3 we get

313 233

where

- & , ( * )  =  £ £' i d,)(t )A*
k=1

is defined using (3.2.9) and d 3 =  (ej x +  ej2 +  ej3). Let (  = vec((Y  — fx )(Y  — fx)'). A 

typical element of Cov(£, (Y  — / j , ) )  =  T  is given by:

Th h h  =  C o v ( ( Y j i  — fXj1 ) ( Y j 2 — /Xj2 ) ,  ( Y j s  — H j 3 ) )

= 4 L ( o )

=  (3.2.14)
k = 1 i=l

Similarly, differentiating equation (3.2.13) with respect to  tj4 we get

=  £ ^ d ,,( *)A*
fc=i

is defined using (3.2.9) and d 4 =  (e^ + ej2 + ej3 + ej4). A typical element of the 

m atrix Cov(£) = K  is given by the following equations:

Kj\32 j3 j i  ~  C'ov ((^/ji — /An) ( Y j i  ~  lJjj-2) i O ^js ~  /bsXXb ~  IJjh ))

q p

— <7j i h (J32ji ~b (Jj i j i (7j ‘2 j s  +  n  ̂ Ik (3.2.1
fc=1 i=l

Finally the covariance m atrix of first and second order standardized deviations is

d4AT( t)

323334 313334 313234 313233

JU2J3J4

d t h  . . .  d t u

where

31323334

\fr =  Cov(£) =  D  2 (<x) V  D  2 (<r) (3.2.16)
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where

£ =  l H ( < r ) C ,

r  =  i ( Y _ M )
C -  vec(E)

v  ■ E  r '
T  K

D(cr) =  diag(<7n,. . .  app, a n a22 , ■■■, appa(p-i)(p-i) , a2p). Note th a t V  is the co- 

variance m atrix of £*.

III.2.1 Sim ulation Procedure

We could use the constructive definition 3.2 to  simulate multivariate Poisson vectors 

with fixed variance covariance m atrix E. The first step in this approach is to  find 

a vector q dimensional vector A and (p  x q) m atrix 0  as a function of E satisfying 

equation (3.2.12).

Sim (1993) proposed an algorithm th a t uses one-to-one transform ation by re

stricting p  =  q and 0  to  lower triangular m atrix with unit diagonals. Given A and 

0 ,  we can find E using (3.2.12). Conversely, given E, we can calculate A and © 

uniquely, using the recursive formulas
j - i

A? =  an  ~  6jk^k (3.2.17)
k=i

j -1

9tkj
\  1 = 1 (3.2.18)

1 if j  =  k

0  otherwise.

The algorithm for generating multivariate Poisson distribution using equations

(3.2.17) and (3.2.18) fails if A /s are not positive or Qjk lie outside [0,1]. In this

case the E may not consistent, in the sense th a t there may not be a multivariate 

Poisson distribution with variance covariance m atrix E. In general there could be 

more than  one pair solution to equation (3.2.12). This is often the case when the 

covariance m atrix E is structured or the targeted value of q is greater than  p. For ex

ample, when E =  a 2R ( a ) w ith a 2 > 0 is and R (a)  =  (1 — a ) lp +  a J p is exchangeable 

correlation m atrix, we can check th a t both formulations
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{ A i  =  <r2[(l -  a ) l 'p a}' , 0 i  =  [lp l p] } ,

and

{ A 2  =  cr2l ( p + i)  , 0 2  =  [(1 — ^ / a ) I p  \ f a l p ]  }

satisfy equations (3.2.12). In the above l p is the identity m atrix of order p, and 

l p is a column vector of ones of order p. The selection of pair (A, 0 )  introduces 

additional constraints on the feasibility of the E matrix. The study of the mappings 

of E to (A, 0 )  is an im portant problem, whose solution is beyond the scope of this 

dissertation. However it is intuitive when E is proper covariance m atrix of positively 

correlated random variables there exist at least one pair of (A, 0 )  which satisfies 

equations (3.2.12).

III.2.2 Epileptic Seizure D ata

In this section we will study the performance of the MG and QLS estimation methods 

for the multivariate Poisson model given in Definition 3.2, using simulations based 

on the algorithm described in Section III.2.1. For the simulations we will use a model 

fitted for a real life data  using some well established methods. Leppik et. al. (1985) 

conducted a 2 x 2  randomized double-blinded crossover clinical trial to  study the 

effectiveness of anti-epileptic progabide drug on 59 patients suffering from simple 

or complex seizures. At each of the four successive post-randomization visits the 

number of seizures occurring during past two weeks were reported. The four pre

crossover responses were made available in a seminal paper by Thall and Vail (1990) 

and are reproduced in Table 3.1.

An eyeball of the data  clearly indicates th a t the patient with id #207 is an outlier, 

since the baseline and the first visit seizure count is more than  1 0 0 . As a preliminary 

analysis we have fitted the log-linear model th a t was given by Thall and Vail (1990) 

for the mean responses:

lo g ( ^ )  =  f t  +  BASE* f t  +  TRTj f t  +  (BASEx TRT)i f t  +  AGE, f t  +  VISIT4,- f t .

(3.2.19)

where BASE =  log(0.25x baseline seizure count), TRT is a binary indicator for 

inclusion in treatm ent group, AGE =  log(Age of patient) and VISIT4 is a binary 

indicator for the fourth visit. The modified Gaussian and the quasi-least squares
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Table 3.1: Successive two-week seizure counts for 59 epileptics

Placebo group Progabide group
Id Visit Base Age Id Visit Base Age

1 2 3 4 1 2 3 4
104 5 3 3 3 11 31 101 11 14 9 8 76 18
106 3 5 3 3 11 30 1 0 2 8 7 9 4 38 32
107 2 4 0 5 6 25 103 0 4 3 0 19 2 0

114 4 4 1 4 8 36 108 3 6 1 3 10 30
116 7 18 9 21 6 6 2 2 1 1 0 2 6 7 4 19 18
118 5 2 8 7 27 29 111 4 3 1 3 24 24
123 6 4 0 2 12 31 1 1 2 2 2 17 19 16 31 30
126 40 2 0 23 12 52 42 113 5 4 7 4 14 35
130 5 6 6 5 23 37 117 2 4 0 4 11 27
135 14 13 6 0 10 28 12 1 3 7 7 7 67 2 0

141 26 12 6 2 2 52 36 1 2 2 4 18 2 5 41 2 2

145 12 6 8 4 33 24 124 2 1 1 0 7 28
20 1 4 4 6 2 18 23 128 0 2 4 0 2 2 23
2 0 2 7 9 12 14 42 36 129 5 4 0 3 13 40
205 16 24 10 9 87 26 137 11 14 25 15 46 33
206 11 0 0 5 50 26 139 1 0 5 3 8 36 21

2 1 0 0 0 3 3 18 28 143 19 7 6 7 38 35
213 37 29 28 29 111 31 147 1 1 2 3 7 25
215 3 5 2 5 18 32 203 6 10 8 8 36 26
217 3 0 6 7 2 0 21 204 2 1 0 0 11 25
219 3 4 3 4 12 29 207 1 0 2 65 72 63 151 2 2

2 2 0 3 4 3 4 9 21 208 4 3 2 4 2 2 32
2 2 2 2 3 3 5 17 32 209 8 6 5 7 41 25
226 8 12 2 8 28 25 2 1 1 1 3 1 5 32 35
227 18 24 76 25 55 30 214 18 11 28 13 56 21

230 2 1 2 1 9 40 218 6 3 4 0 24 41
234 3 1 4 2 10 19 2 2 1 3 5 4 3 16 32
238 13 15 13 12 47 2 2 225 1 23 19 8 2 2 26

228 2 3 0 1 25 21

232 0 0 0 0 13 36
236 1 4 3 2 12 37
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Table 3.2: Seizure Data: MG Estimates

Covariate W ith Patient #  207 W ithout Patient #  207
Estim ate S.E. p-value Estim ate S.E. p-value

Intercept -2.7729 0.9489 0.0035 -2.3407 0.8766 0.0076
BASE 0.9499 0.0974 0 .0 0 0 0 0.9505 0.0973 0 .0 0 0 0
TRT -1.3401 0.4272 0.0017 -0.5206 0.4164 0 .2 1 1 2

BASEx TRT 0.5627 0.1742 0 .0 0 1 2 0.1383 0.1941 0.4763
AGE 0.9011 0.2756 0 .0 0 1 1 0.7722 0.2550 0.0025
VISIT4 -0.1611 0.0656 0.0140 -0.1479 0.0763 0.0527
a 0.1906 0.2731 0.4853 0.1819 0.2765 0.5106

Table 3.3: Seizure Data: QLS Estimates

Covariate W ith Patient #  207 W ithout Patient #  207
Estim ate S.E. p-value Estim ate S.E. p-value

Intercept -2.7939 0.9561 0.0035 -2.3579 0.8838 0.0076
BASE 0.9504 0.0987 0 .0 0 0 0 0.9509 0.0983 0 .0 0 0 0

TRT -1.3386 0.4296 0.0018 -0.5196 0.4185 0.2145
BASEx TRT 0.5633 0.1749 0.0013 0.1388 0.1947 0.4758
AGE 0.9066 0.2772 0 .0 0 1 1 0.7768 0.2567 0.0025
VISIT4 -0.1611 0.0656 0.0140 -0.1479 0.0763 0.0527
a 0.3582 0.2547 0.1596 0.3393 0.2621 0.1955

estimates with and and w ithout patient #207 are given in Tables 3.2 and 3.3. The 

results with patient #207  included are different from the results w ithout th a t patient. 

For example, we can see from the table, the treatm ent and the baseline-treatment 

interaction become insignificant if we exclude patient #207.

For our simulations we have used the above model (3.2.19). for the mean of the 

responses. To avoid additional variability of estimates, patient #207  was excluded 

from our simulations. Details of the simulations are described in the following steps:

Description of the simulation steps:

1. We fixed the true param eter /3 =  /30, where

/30 =  (-2.3574,0.9509, -0.5196,0.1388,0.7767, -0 .1479)'

is the GEE estim ate for the epileptic seizure data  given in Table 3.1 obtained 

using an exchangeable correlation structure and excluding patient with id #207.
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2. For the true correlation m atrix we used the exchangeable structure and later 

repeated the whole simulation procedure for the autoregressive and then for 

the moving average of order one correlation structures.

3. We varied the true correlation param eter a  from 0 to  Q!max in increments of 

0.0125, where a max is the upper extreme of feasible region.

4. For each value of a , N  — 5000 datasets consisting of 59 multivariate Poisson 

random vectors were simulated using Sim (1993)’s lower triangular mapping.

5. For the ith  simulated da ta  set we calculated 9mi and 9qi, the MG and 

QLS estimates of 9, respectively. We also computed the covariance m atri

ces Cov(9mi) =  E m(9mi) and Cov(0gi.) =  E g(9qi). In calculating these matrices 

we have used formulas given by (3.2.16) for the matrix.

6 . The infeasibility or divergent solution probability is estim ated for each of the 

estimates 9m and 9q as the proportion of times the estim ate did not converge or 

the estim ate is deemed to be inconsistent according to  Sim’s mapping (3.2.18). 

The infeasible/divergent cases were discarded from further analysis.

7. The joint asymptotic relative efficiency of 9q with respect to 9rn is computed 

using trace as well as the determ inant of the matrix

r ‘ = { i y E s ' W > }  | ^ E E ”W - ) }  (3.2.20)

where N c is the number of simulated da ta  sets th a t yielded convergent estimates 

for both MG and the QLS methods.

8 . We calculated the coverage probability for simultaneous confidence region of 

the MG m ethod as

-i •* *c

E  7  ( ( $ *  -  W '2 -  ^  X w - o s )  . (3.2.21)
C 4 = 1

where I  is the indicator function. The coverage probability for QLS m ethod is 

calculated similarly.
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III.2.3 D iscussion o f Sim ulation R esults

In this section we report the findings of our simulations. Consider first the case 

where the true correlation structure is exchangeable. Figure 3.1 contains the plots of 

estim ated probabilities (proportions of simulated da ta  sets) as a function of a, where 

the MG and QLS estimates of 9 =  (/3, a, <j>) did not converge or the final values of 

the estimates are deemed to  be invalid according the mappings (3.2.17) and (3.2.18). 

It is clear from the plots, both the MG and QLS methods have similar infeasibility 

problems. The estim ated probabilities are low when a  is in the interior of the feasible 

range. On the other hand, the proportions of invalid estimates are high when a  is 

close to  zero; the reason being the estimate of a  could be negative in this case and 

Sim’s algorithm is valid only for positively correlated Poisson variables and negative 

estimates of a  are autom atically discarded.

Figure 3.2 contains plot of simultaneous coverage probability of the 95% confi

dence ellipsoids as defined in (3.2.21) for both  the MG and QLS estimates. The 

coverage probabilities for the QLS m ethod are closer to the nominal level compared 

to  the coverage probabilities of the MG method, over the entire range of a. Thus 

when the true structure is exchangeable, confidence ellipsoids constructed using QLS 

are preferable than  those constructed using the MG method. Table 3.4 contains the 

asymptotic relative efficiencies of QLS estimates w ith respect to  the MG estimates. 

We have presented efficiencies for two regression coefficients; /30 is the coefficient of a 

time independent covariate, and /?5 is the coefficient of a tim e dependent covariate. 

Table 3.4 shows th a t QLS estim ate of the regression coefficient for tim e independent 

covariate is more efficient, whereas the opposite is true for the regression coefficient 

of time dependent covariate.

Our simulations also show th a t the QLS estim ate of a  is less efficient than  the 

MG estimate, and furthermore, the efficiency is decreasing as a  increases. However, 

for the regression param eter as a whole, the overall efficiency of the QLS m ethod as 

measured by the determ inant (AQ or the trace (z^) criteria of the subm atrix of F* 

defined in (3.2.20), is more than  the MG estimate, over the entire feasible range of 

the correlation param eter a. Plots of these efficiencies are in Figure 3.3. Note th a t 

the efficiencies are increasing functions of a. Hence, when the regression param eter 

is of prim ary interest, and if the covariates are time independent or mixed, and if the
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correlation is exchangeable but the param eter a  is treated as a nuisance param eter, 

then QLS is preferable over the MG method.

Table 3.4 also shows th a t the overall efficiency of the QLS estimates of the regres

sion and correlation param eter with respect to the MG estimates, as measured by 

the determ inant (A2) or the trace criteria (u2) of the m atrix V* defined in (3.2.20). 

For small values of a, the overall performance of the QLS is better than  the MG 

estimates. But when there is a strong correlation, MG estimates tend to be more 

efficient than  the QLS estimates.

Simulation results concerning infeasibility, coverage probabilities of the confidence 

ellipsoids, and the asymptotic relative efficiencies of the regression param eter, when 

the true correlation structure is autoregressive of order 1 (AR(1)) are presented 

in Figures 3.4, 3.5 and 3.6, respectively. Table 3.5 contains asymptotic relative 

efficiencies for the AR(1) structure, similar to  the ones th a t we presented for the 

exchangeable case in Table 3.4. An examination of the figures and the table of 

efficiencies shows th a t the behavior of the QLS method with respect to  MG method 

is very similar to  th a t when the true correlation is exchangeable. However, when the 

true correlation is moving average of order one (MA(1)), the behavior of the efficiency 

of the QLS estim ate of the regression param eter is different from the other structures 

as shown in Figure 3.9. The efficiency as a function of a  is approximately concave 

with a maximum in a neighborhood of a  =  0.3. But note th a t the efficiency is more 

than  over the entire range of a. The infeasible probabilities and coverage probabilities 

for the MA(1) structure are plotted in Figures 3.7 and 3.8 respectively. Table 3.6 

contains various efficiencies for the MA(1) structure. W hen the true structure is 

MA(1), the coverage probabilities of the MG estimates are closer to  the nominal 

level than  the coverage probabilities of the QLS estimates.

In summary, the simulation results show th a t for all the three commonly occur

ring correlation structures, when the covariates are time independent or mixed the 

QLS estim ate of the regression param eter as a whole is more efficient than  the MG 

estimate. But if all the covariates are time varying or if the correlation param eter is 

not a nuisance param eter, MG is preferable compared to the QLS estim ation method.
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Figure 3.1: EXCH: Infeasibility/divergent solutions probabilities.
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Figure 3.2: EXCH: Coverage probability of simultaneous confidence region.
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Table 3 4 :  EXCH: A R E  of QLS vs. M GE

OtQ N c A) A a Ai V\ A2 V2
0.02 2294 1.0059 0.99765 0.99474 1.0277 6.0274 1.0226 7.0234
0.04 2929 1.0069 0.99716 0.99041 1.0323 6.0319 1.0228 7.0242
0.06 3470 1.0079 0.99668 0.98661 1.0365 6.0360 1.0231 7.0251
0.08 3909 1.0087 0.99616 0.97974 1.0402 6.0396 1.0195 7.0227
0.10 4256 1.0108 0.99499 0.97301 1.0501 6.0492 1.0221 7.0266
0.12 4516 1.0119 0.99421 0.96431 1.0548 6.0538 1.0173 7.0237
0.14 4644 1.0131 0.99324 0.95438 1.0603 6.0590 1.0118 7.0205
0.16 4722 1.0159 0.99137 0.94271 1.0729 6.0711 1.0107 7.0226
0.18 4826 1.0174 0.98997 0.93000 1.0794 6.0772 1.0023 7.0177
0.20 4836 1.0190 0.98835 0.91434 1.0862 6.0837 0.9905 7.0103
0.22 4826 1.0205 0.98673 0.89914 1.0922 6.0894 0.9782 7.0026
0.24 4844 1.0226 0.98457 0.88340 1.1009 6.0975 0.9672 6.9968
0.26 4834 1.0244 0.98231 0.86586 1.1084 6.1045 0.9525 6.9881
0.28 4789 1.0265 0.97970 0.84824 1.1167 6.1123 0.9381 6.9800
0.30 4781 1.0284 0.97690 0.82919 1.1240 6.1191 0.9208 6.9695
0.32 4801 1.0300 0.97402 0.80735 1.1295 6.1243 0.8981 6.9547
0.34 4729 1.0322 0.97057 0.78784 1.1376 6.1319 0.8800 6.9443
0.36 4743 1.0323 0.96867 0.76709 1.1358 6.1305 0.8527 6.9235
0.38 4631 1.0343 0.96482 0.74564 1.1420 6.1363 0.8303 6.9094
0.40 4556 1.0357 0.96127 0.72526 1.1456 6.1398 0.8073 6.8937
0.42 4488 1.0344 0.96027 0.70581 1.1375 6.1326 0.7771 6.8680
0.44 4388 1.0361 0.95564 0.68210 1.1414 6.1365 0.7503 6.8492
0.46 4318 1.0351 0.95428 0.66302 1.1340 6.1299 0.7217 6.8244
0.48 4175 1.0351 0.95124 0.64035 1.1302 6.1266 0.6915 6.7994
0.50 3960 1.0350 0.94873 0.62295 1.1267 6.1236 0.6681 6.7795
0.52 3842 1.0356 0.94502 0.60452 1.1258 6.1232 0.6453 6.7612
0.54 3510 1.0344 0.94392 0.5878 1.1181 6.1162 0.6209 6.7379
0.56 2991 1.0374 0.93672 0.57174 1.1258 6.1241 0.6063 6.7300
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Table 3.5: AR (1): A R E  of QLS vs. M GE

a 0 N c A)
------ _»«_------

As
/Sa Ai V\ A2 Vi

0.02 2328 1.0045 0.99881 0.98929 1.0213 6.0212 1.0107 7.0115
0.04 2784 1.0044 0.9988 0.9868 1.0209 6.0207 1.0078 7.0088
0.06 3256 1.0051 0.99855 0.98446 1.0243 6.0241 1.0088 7.0101
0.08 3669 1.0053 0.99843 0.98114 1.0251 6.0249 1.0063 7.008
0.10 3958 1.0062 0.99801 0.9757 1.0296 6.0292 1.0051 7.0075
0.12 4254 1.0068 0.9977 0.97061 1.0323 6.0319 1.0025 7.0057
0.14 4474 1.0077 0.99729 0.96438 1.0364 6.0359 1.0001 7.0042
0.16 4572 1.0083 0.9969 0.95625 1.0389 6.0383 0.994 6.9995
0.18 4707 1.0097 0.99611 0.94722 1.0454 6.0447 0.99067 6.9978
0.20 4801 1.0101 0.99579 0.93832 1.047 6.0462 0.9826 6.9915
0.22 4812 1.0122 0.99443 0.92653 1.0565 6.0554 0.97865 6.99
0.24 4875 1.0123 0.99396 0.91488 1.0567 6.0555 0.9659 6.9797
0.26 4869 1.0142 0.99255 0.90177 1.0653 6.0638 0.95906 6.976
0.28 4874 1.0155 0.99134 0.88755 1.0706 6.0688 0.9476 6.968
0.30 4885 1.0159 0.99067 0.87507 1.0719 6.0701 0.93437 6.9577
0.32 4867 1.0171 0.98917 0.85847 1.0765 6.0745 0.91908 6.9467
0.34 4864 1.0182 0.98764 0.84185 1.0812 6.0789 0.90341 6.9355
0.36 4873 1.0188 0.98653 0.8269 1.0826 6.0804 0.88682 6.9228
0.38 4852 1.0205 0.98427 0.80864 1.0896 6.087 0.87058 6.912
0.40 4852 1.0208 0.983 0.79114 1.0898 6.0872 0.84933 6.8954
0.42 4847 1.0221 0.98087 0.77332 1.0941 6.0913 0.83091 6.8822
0.44 4791 1.0228 0.97898 0.7559 1.0961 6.0933 0.81089 6.8672
0.46 4710 1.0248 0.97593 0.73788 1.103 6.0999 0.79363 6.8561
0.48 4546 1.0249 0.97456 0.72189 1.1019 6.0989 0.77272 6.8393
0.50 4312 1.0262 0.97185 0.7051 1.1062 6.1031 0.75469 6.8268
0.52 3948 1.0286 0.96797 0.68886 1.1145 6.111 0.74001 6.8185
0.54 3381 1.0313 0.96383 0.67498 1.1243 6.1202 0.72904 6.8138
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Table 3.6: M A(1): A R E  of QLS vs. M GE

Oi 0 N c
----- 7̂ -----

A) k a Ai V\ A-2 ^2
0.02 2240 1.0055 0.99851 0.98277 1.0263 6.026 1.0089 7.0098
0.04 2722 1.0055 0.99837 0.97905 1.0263 6.0261 1.0053 7.0064
0.06 3211 1.0055 0.99833 0.97535 1.0261 6.0258 1.0013 7.0027
0.08 3544 1.0061 0.99801 0.96947 1.0289 6.0286 0.99808 7.0001
0.10 3924 1.0069 0.99756 0.96254 1.0325 6.0321 0.99451 6.9972
0.12 4157 1.0077 0.99709 0.95388 1.0360 6.0355 0.98899 6.9926
0.14 4420 1.0086 0.99656 0.9429 1.0400 6.0394 0.98144 6.9863
0.16 4553 1.0091 0.99596 0.93282 1.0421 6.0415 0.97306 6.9791
0.18 4632 1.0104 0.99509 0.91897 1.0478 6.0470 0.96387 6.9717
0.20 4706 1.0109 0.99429 0.90369 1.0499 6.0490 0.94976 6.9595
0.22 4766 1.0113 0.99351 0.88659 1.0510 6.0501 0.93266 6.9445
0.24 4784 1.0119 0.99242 0.86683 1.0527 6.0517, 0.91317 6.9275
0.26 4786 1.0126 0.99122 0.84730 1.0553 6.0542 0.89456 6.9115
0.28 4769 1.0131 0.98963 0.82459 1.0562 6.0552 0.87098 6.8907
0.30 4773 1.0134 0.98801 0.79927 1.0559 6.0549 0.8435 6.8661
0.32 4761 1.0129 0.98728 0.77505 1.0525 6.0516 0.81476 6.8396
0.34 4756 1.0122 0.98580 0.74544 1.0473 6.0467 0.77898 6.8059
0.36 4787 1.0122 0.98385 0.71751 1.0455 6.0450 0.74775 6.7769
0.38 4819 1.0114 0.98221 0.68986 1.0396 6.0393 0.71395 6.744
0.40 4836 1.0113 0.97905 0.65648 1.0357 6.0356 0.67576 6.7071
0.42 4826 1.0109 0.97622 0.62663 1.0307 6.0309 0.64077 6.6725
0.44 4687 1.0105 0.97231 0.59418 1.0246 6.0250 0.60266 6.6340
0.46 4293 1.0112 0.96488 0.55572 1.0202 6.0210 0.55974 6.5910
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Figure 3.9: M A(1): A R E  o f j3q vs. f3m.

III.3 M ultivariate binary sim ulations

In this section we will compare performance of MG and the QLS methods for binary 

outcomes. As with the case of Poisson counts, we will first discuss a m ethod of sim

ulating correlated binary da ta  in an efficient manner. Numerous simulation methods 

for generating binary variables w ith given means and correlations have been pro

posed in the literature. Emrich and Piedmonte (1991) described a m ethod based 

on dichotomization of multivariate standard normal variables. Their m ethod allows 

unequal means and negative correlations but requires solving a system of complex 

non-linear equations, th a t are computationally intensive. Park et al. (1996) devel

oped a method which generates first correlated Poisson variables and those variables 

are truncated to  yield correlated binary variables. Another m ethod based on finite 

mixture of independent Bernoulli variables was discussed by Lunn and Davies (1998). 

Their m ethod is easy to  implement, but it is restricted to the case of equal means. 

Lee (1993) developed a m ethod th a t computes the full joint distribution of corre

lated binary random variables using linear programming approach. Recently, Gange 

(1995) described an iterative log-linear model formulation th a t enables computing
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the full joint distribution of the binary variables with given marginals and correla

tions. More recently, Qaqish (2003) presented a method of generating conditional 

linear family of multivariate Bernoulli distributions.

We introduce below a new family of multivariate binary distributions using the 

multivariate Poisson distributions discussed in the previous section. This family, 

which is easy to  simulate, contains positively correlated binary random variables 

with fixed marginal probabilities and a given correlation matrix.

D e fin itio n  3.1 Let Y  =  (Tj, Y2 , ■ ■■, Yp) be a random vector distributed as m ulti

variate Poisson, as defined in 3.2. Suppose that E , the covariance matrix o f Y ,  can 

be expressed as a function of a (p x q) weight matrix  © and A =  (Ai, A2 , . . . ,  Ag) as 

given by the equations (3.2.12). I f

W j = I(Y j = 0); j  = l , 2 . . . , p ,  

then W  =  (W i, W %,. . . ,  Wp) is a multivariate correlated binary random vector.

Note th a t neither the joint distribution nor the moment generating function of W  

is in a closed form. But the joint moments can be obtained replacing the quantities 

etj, j  =  1 ,2 . . .  ,p  w ith zero in the joint moment generating function of the random 

vector Y  given in (3.2.6)). Hence we have

E i m *
Lfc=i

j*: exp E  I T 1 - - 1 1**
Lj=i \fc=i

(3.3.1)

where j k — 1, 2 , . . .  ,p; rjk =  1, 2 , . . . ; ;  k =  1, 2 , . . . ,  c and c =  1,2,

After a long tedious derivations we obtain the following lemma consisting of higher 

order central moments needed to  perform asymptotic analysis of MG and the QLS 

estimation methods.
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L em m a  3.2 Let W  =  (W \, W 2, . . . ,  Wp) be a random vector as defined in 3.1. Then

wn  =  E ( w y  =  e-"M.

=  Cov((W')1 -7 r J1) , ( ^ 1 -7 r j J )  =  e - ' - . « - '« a(e' « .  -  1)

=  Cov « * n . -  ' i i f f i .  -  *•*) -  <>•;,*, w - ,  -  "•*»
=  (>~<Jh h ~ (7t e t e ~ <Th h  ^Q<Th i 2 ^~ah h ~ ^ ah 33~ Th i 2h  —  (S’h h  —  g ° n J 3 —  ( P i i i z  - ( -  2 j

=  e "«« ^ 2J2 Vm-m {exp(crJ1J2 +  (Jj1j3 + ah ji + ojrj3 +  ai2H +  aJ3H

~ (Jj \ j z (Jj 2H  ~  ~~ Th h h  ~  Th i 2i i  “  r h h n  ~  r j 2j s j i  T  K j i j 2j 3j 4 )

 f f ri l i 2 Jraj l i 3 Jr<73233~ Ti  13233__ _  g <7-, l  32 ̂ ~<7H  34 Jr<T3234 ~  T313234

—  f>cr3133~^Cr3l 34~l~CXj 334~T313334 —  g ° J 2.?3 + (T3234 + <7J 3J 4 —T323334 —  ( g ° J l i 2 —  l)(e <T;,3;'4 —  l)

- | - g ° J l i 2 - ) -  ( f h h  -\- ( f h u  - ( -  Qa3233 - ) -  (^3234  - ) -  (P H U  —  3 }

where <jjU-2,Tj3j2j3 and Kj1j2j 3j4 are defined in (3.2.12), (3.2.14) and (3.2.15).

Given a marginal mean vector 7r =  (ni, 7t2, ■ ■ ■, ttp) and a correlation m atrix R  = 

Irjk\, we can simulate binary random variables defined in 3.1 by first computing the 

inverse relation

-log f a ) ,  if j  =  j 1 = j 2;

log (1 + GuV
° h h  — \  , . I ( 7T,-, \  (  7T,„ \  \  ,, . (3.3.2)

f e )  f e ) ) .  otherwise

and using the Sim’s algorithm. We omit the details.

III.3.1 Coronary A rtery Risk D evelopm ent in Young A dults (C A R D IA )

Here we present real life example of a correlated binary data. The example is a study 

of coronary artery risk development in young adults (CARDIA). This is a collabo

rative, longitudinal study designed to increase understanding of the contributors to 

changes in cardiovascular disease risk factors during the critical years of transition 

from adolescence through young adulthood to  middle age. The study is sponsored 

by the National Heart, Lung and Blood Institu te  (NHLBI). It involved da ta  collec

tion a t approximately two to  three year intervals for 5115 participants aged 18 to 

30 years recruited a t four centers, Chicago,IL; Minneapolis, MN; Birmingham, AL;
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and Oakland, CA; during 1985-1986. The demographic da ta  such as race, gender, 

education level and age were also collected in addition to  standard measurements 

of blood pressure, anthropy, blood lipids, self reported smoking behavior, physical 

diet, pulpmonary function and many psychological factors. The participants were 

followed for 15 years and repeated measurements were collected at years 0, 2, 5, 7, 

10, and 15.

The da ta  consisting of the first four smoking status measures and demographic 

variables for 5078 participants, was studied by Preisser et al. (2000) and was made 

available online a t http://www.bios.unc.edu/~jpreisse. The objective of their analysis 

was to  identify patterns of smoking behavior with respect to  demographic variables. 

As is always the case with long-duration longitudinal studies CARDIA study also 

has some drop-outs and missing responses.

Table 3.7 contains a detailed description of missing data  categorized by the demo

graphic variables. One can see th a t the study cohort is evenly balanced with respect 

to  demographical measures such as gender, race, age and education. Table 3.7 sug

gests th a t participants with high school or less education are more difficult to follow 

up than  participants with some college experience, an alarming level of 33.6 % per

centage of participants were lost to  follow up. The likelihood of missing-ness for 

younger participants is greater than  th a t of adult participants. The white partici

pants are easier to  follow up than  black participants. The missing-ness patterns of 

female participants is similar to  th a t of male participants.

Preisser et al. (2000) conducted a test of covariate dependent missing-ness as

sumption using logistic regression analysis to  predict the probability of missing re

sponse treating race and sex as predictors. They concluded th a t the missing-ness 

patterns are covariate dependent also known as (MAR-X). As a result the standard 

GEE approach is not applicable. The four different models for each race and sex 

combinations is proposed using artificially created monotonically missing data  which 

treats all the responses observed after first missing occurrence as missing even if they 

are not. The regression param eters are computed using the weighted generalized 

estim ating equations (WGEE) approach of Robins et al. (1995) in conjunction with 

odd-ratio based modelling approach of Fitzmaurice and Laird (1993) by assigning 

reciprocals of missing-ness probabilities as weights.
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Table 3.7: CARDIA Data: Missing-ness Patterns

% of missing a t year
Variable Total 2 5 7
Age(yrs)

18-22 1421 13.30 19.42 25.62
23-26 1604 9.41 14.71 19.70
27-30 2052 8.48 12.43 17.35

Sex
Female 2722 9.81 14.47 19.81
Male 2405 10.50 15.58 21.13

Race
Black 2618 13.98 19.75 25.63
W hite 2459 6.02 10.17 14.85

Education
High School or less 1286 17.13 25.04 33.36
Some College 1934 10.55 14.89 19.75
College Degree 1857 4.42 8.45 12.12

Center
1 1171 8.63 20.41 24.25
2 1104 9.96 16.67 22.10
3 1381 8.40 12.89 18.83
4 1421 13.16 11.68 17.45

Baseline Smoker
No 3531 8.58 13.17 18.10
Yes 1546 13.65 19.53 25.68

As mentioned earlier the CARDIA not only exhibits covariate dependent missing- 

ness (MAR-X) but also response dependent missing-ness (MAR-Y) characteristics. 

Therefore the W GEE approach is not suitable. In this section we propose follow

ing marginal logistic regression model for analysis of subset da ta  arising from 3692 

participants with no missing data.

l°g (  )  =  A) +  (Age)* /3i +  /(Race=W hite)* /32 + /(Sex=M ale)* /33
\  I — i l i j  )

+ /(E d . =  Some college)* /?4 +  /(E d . =  College degree)* /?5 

+(Followup year).,- /?6 +  /(Center=2)* /?7 + /(Center=3)* /58 

+1 (Center=4) * /?9

where I  is the indicator function. The modified Gaussian and the quasi-least squares, 

as well as the GEE estimates are displayed in Table 3.8 under the assumption of 

exchangeable correlation structure. Since the da ta  set is large both  MG and QLS
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estimates are in agreement. The statistically significant positive estim ate 02 (0.0238) 

implies th a t likelihood of smoking increases with age. Table 3.8 also indicates th a t

Table 3.8: CARDIA Data: Parameter Estimates

GEE MG QLS
Est. S.E. p-value Est. S.E. p-value Est. S.E. p-value

0 -0.8121 0.2638 0.0021 -0.8099 0.2638 0.0021 -0.8098 0.2638 0.0021
0.0239 0.0100 0.0170 0.0238 0.0100 0.0174 0.0238 0.0100 0.0174

-0.1344 0.0772 0.0817 -0.1348 0.0772 0.0807 -0.1348 0.0772 0.0807
0.0709 0.0713 0.3201 0.0703 0.0713 0.3243 0.0703 0.0713 0.3242

-0.6249 0.0855 0.0000 -0.6241 0.0855 0.0000 -0.6241 0.0855 0.0000
-1.8747 0.1012 0.0000 -1.8745 0.1012 0.0000 -1.8746 0.1012 0.0000
-0.0126 0.0044 0.0040 -0.0126 0.0044 0.0040 -0.0126 0.0044 0.0040
0.1777 0.1106 0.1083 0.1777 0.1106 0.1083 0.1776 0.1106 0.1084
0.5618 0.1024 0.0000 0.5619 0.1024 0.0000 0.5619 0.1024 0.0000

-0.1408 0.1076 0.1907 -0.1393 0.1076 0.1956 -0.1393 0.1076 0.1956
a - - 0.7238 0.0113 0.0000 0.7230 0.0106 0.0000

the white participants are less likely to  smoke than  black participants. The p-value 

corresponding to  the regression param eter 03 is 0.324, and therefore it is inferred th a t 

the smoking is equally prevalent in female and male participants. The likelihood 

of participants with high-school or less education are more likely to  smoke than 

participants w ith some college education or college graduates. Overall the probability 

of smoking decreased in the follow-up period. Also the participants recruited a t study 

center 3 have statistically significant higher probability of smoking than  participants 

recruited a t study centers 1, 2 or 4. This could be explained by the demographic 

heterogeneity of the center locations.

Next we drew a  stratified sample of 105 participants from the complete CARDIA 

study da ta  using race, sex, education level and study centers as stratification vari

ables. Table 3.9 gives the MG and QLS param eter estimates for the sample da ta  for 

the following reduced model

l°g ( —^ — J =  0O +  (Age); 0i +  /(R ace=W hite); 02 +  /(E d . =  Some college); 03
\  1 — f^ij )

+ /(E d . =  College degree); 0± + (Followup year)j 05. (3.3.3)

The param eter estimates of reduced model computed using stratified sample have 

larger standard errors and are not comparable with the estimates of Table 3.8. In 

next section we present simulation results th a t compare the asymptotic performance 

of MG estim ates and QLS estimates for the reduced model.
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Table 3.9: CARDIA Sample: Parameter Estimates

GEE MGE QLS
Est. S.E. p-value Est. S.E. p-value Est. S.E. p-value

p -3.0195 1.5410 0.0501 -3.0259 1.5421 0.0497 -3.0271 1.5423 0.0497
0.1183 0.0638 0.0635 0.1186 0.0638 0.0630 0.1187 0.0638 0.0629
1.1869 0.5220 0.0230 1.1881 0.5220 0.0228 1.1883 0.5220 0.0228

-1.3272 0.5597 0.0177 -1.3292 0.5602 0.0177 -1.3295 0.5603 0.0176
-3.0755 0.7208 0.0001 -3.0780 0.7211 0.0000 -3.0785 0.7212 0.0000
-0.0368 0.0230 0.1088 -0.0369 0.0230 0.1089 -0.0369 0.0230 0.1090

a 0.8346 - - 0.8387 0.0425 0.0000 0.8394 0.0514 0.0000

III.3.2 Sim ulation R esults

To check the performance of the MG and QLS methods for binary data, we used 

the GEE estim ate f30 = (-3.0195, 0.1183, 1.1869, -1.3272, -3.0755, -0.0368) given 

in Table 3.9 as the true value for /?, and repeated the eight simulation steps in 

Section III.2.2 using the model (3.3.3), and the covariates in the sample CARDIA 

data. The Poisson variables generated in step 4 were dichotomized using the indicator 

of zero, to  obtain correlated binary variables.

When the true correlation is exchangeable, plots of estim ated infeasibil

ity/divergence probabilities for the MG and QLS methods are in Figure 3.10. The 

plots clearly show th a t both methods have the same pattern, the estim ated probabil

ity is generally below 20% over a wide range in the interior of the feasible range, but 

shoots up at the boundary. Clearly, infeasibility and divergence will be problematic 

if the data  has a small correlation or if the correlation is very high. Therefore, for 

weakly correlated binary data, we should use GEE with identity as the correlation 

matrix, and for strongly dependent data, we should use fully specified models th a t 

are described in the next chapter instead of MG or the QLS. Plots of the coverage 

probabilities of the 95% confidence ellipsoids are given in Figure 3.11. Clearly, the 

confidence ellipsoids constructed by the MG m ethod are superior than  those obtained 

using the QLS method. But note th a t the asym ptotic relative efficiency of the QLS 

estimate of the regression param eter with respect to  the MG estim ate is more than  

one on a wide interval as shown in Figure 3.12. As in the Poisson case, we can see 

from the fifth column of Table 3.10 the MG estim ate of a  is more efficient than  the 

QLS estimate. In general QLS estim ates regressions coefficients for the tim e inde

pendent covariates more efficiently than  the MG method. The opposite is true for
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Figure 3.10: EXCH: Infeasibility/divergent solutions probabilities.

the time dependent covariates.

The analysis of the simulation results for the AR(1) structure regarding infea

sibility, coverage probabilities, and asym ptotic relative efficiencies are given in Fig

ures 3.13, 3.14 and 3.15 respectively. Since QLS estimate of a; is in a closed form for 

the AR(1) structure, the infeasibility probability is uniformly lower than  for the MG 

estimate over the entire feasible region for a. The confidence ellipsoids of both the 

MG and QLS methods have a higher coverage probability for weakly correlated bi

nary data, th a t is, for small values of a , and lower coverage probability for strongly 

correlated binary data, th a t is, for large values of a. Figure 3.15 shows th a t the 

asymptotic relative efficiency of QLS with respect to  the MG m ethod has a zig-zag 

behavior but it is more than  one almost everywhere. Unlike the previous cases, Ta

ble 3.11 shows th a t QLS estimates of the regression coefficients for tim e independent 

and time dependent covariates more efficiently than  the MG method. In summary, 

when the true correlation has AR(1) structure, QLS method is highly recommended 

over the MG method.
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Figure 3.11: EXCH: Coverage probability o f simultaneous confidence region.
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Table 3.10: EXCH: A R E  of QLS vs. M GE

a?o N c A)
----- --------

A> a Vl A2 ^2
0.04 642 1.0009 .99962 .98250 1.0044 6.0044 .99887 7.0147
0.08 859 1.0008 .99962 .96466 1.0037 6.0037 .99107 7.0240
0.12 911 1.0017 .99913 .94719 1.0079 6.0079 .99342 7.0555
0.16 941 1.0009 .99947 .92594 1.0040 6.0040 .98309 7.0777
0.20 936 1.0021 .99863 .91165 1.0098 6.0098 .98928 7.1221
0.24 955 1.0031 .99777 .89625 1.0134 6.0133 .98806 7.1539
0.28 918 1.0023 .99808 .87871 1.0097 6.0096 .97900 7.1909
0.32 894 1.0030 .99724 .86779 1.0126 6.0126 .97903 7.2255
0.36 867 1.0045 .99543 .85766 1.0189 6.0188 .98122 7.2625
0.40 818 1.0029 .99671 .84612 1.0106 6.0105 .96616 7.2741
0.44 815 1.0010 .99852 .83770 1.0035 6.0035 .95318 7.2880
0.48 817 1.0025 .99637 .82850 1.0081 6.0081 .94838 7.3022
0.52 805 1.0015 .99747 .82600 1.0047 6.0047 .94272 7.3197
0.56 808 1.0025 .99518 .82376 1.0066 6.0066 .93792 7.3288
0.60 821 1.0034 .99304 .81984 1.0095 6.0095 .93219 7.3295
0.64 814 1.0013 .99598 .82400 1.0011 6.0011 .92389 7.3228
0.68 813 1.0007 .99688 .82714 .99864 5.9986 .91772 7.3068
0.72 823 1.0018 .99280 .82652 .99869 5.9987 .90356 7.2743
0.76 840 .99903 1.0013 .83194 .99553 5.9955 .89287 7.2283
0.80 803 1.0025 .98715 .82033 .99632 5.9964 .86910 7.1977
0.84 698 1.0011 .99013 .84963 .99386 5.9939 .86896 7.1414
0.88 449 1.0022 .97891 .84659 .98895 5.9891 .84177 7.0912
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Figure 3.14: AR (1): Coverage probability o f simultaneous confidence region.
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Table 3.11: AR(1): A R E  of QLS vs. M GE

0-0 N c
-a.
A)

.....
k a Ai A2 V2

0.01 403 1.0006 1.0001 .99073 1.0029 6.0029 .99940 7.0067
0.02 469 1.0005 1.0001 .99098 1.0027 6.0027 .99918 7.0062
0.03 511 .99973 .99990 .98790 .99841 5.9984 .99292 7.0014
0.04 604 1.0004 1.0001 .98918 1.0021 6.0021 .99804 7.0068
0.05 625 1.0002 1.0000 .98746 1.0010 6.0010 .99601 7.0058
0.06 684 1.0005 1.0001 .98627 1.0028 6.0028 .99801 7.0099
0.07 685 1.0004 1.0000 .98504 1.0019 6.0019 .99665 7.0095
0.08 710 1.0004 1.0000 .98454 1.0019 6.0019 .99639 7.0097
0.09 726 1.0004 1.0001 .98279 1.0019 6.0019 .99603 7.0113
0.10 726 1.0002 1.0000 .98098 1.0010 6.0010 .99437 7.0113
0.11 723 1.0008 1.0001 .98116 1.0040 6.0040 .99819 7.0162
0.12 692 1.0008 1.0001 .97908 1.0041 6.0041 .99814 7.0190
0.13 664 1.0006 1.0001 .97762 1.0031 6.0031 .99652 7.0187
0.14 647 1.0006 1.0000 .97509 1.0033 6.0033 .99557 7.0201
0.15 597 1.0008 1.0001 .97434 1.0040 6.0040 .99658 7.0228
0.16 560 1.0007 1.0001 .97371 1.0034 6.0034 .99568 7.0224
0.17 534 1.0009 1.0001 .97263 1.0045 6.0045 .99678 7.0253

1.011 6.01

6.001.00

1.00 - 6.00

6.00.997 4
.000 .057 .113 .170

a

Figure 3.15: AR (1): A R E  of j3q vs. /3m.
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CHAPTER IV 

FULLY SPECIFIED MODELS FOR DISCRETE DATA

In previous chapters we have studied multivariate models which are partially speci

fied in the sense th a t the joint distributions are unknown but the functional forms of 

the marginals were given. Furthermore, we have assumed in the multivariate models
i  1

the covariance m atrix  £*(/?, a, <j>) can be decomposed as <f)A? (/3) R i(a )A ? (/3) (see Sec

tion 2.3). However, this assumption of decomposability of the covariance m atrix  has 

been the subject of debate especially when the response variables are non-Gaussian. 

For example, when the responses are binary or Poisson the correlations are functions 

of the marginal means and hence cannot be independent of the covariates. Ignoring 

this dependence of the correlations on the covariates may lead to  erroneous estimates 

and misleading conclusions. In this chapter we will study fully specified multivari

ate models which can be used for the analysis of discrete m ultivariate and discrete 

longitudinal data.

The organization of this chapter is as follows. In Section IV. 1 we provide back

ground on the copulas and present several examples of copulas. Section IV.2 we 

describe probability models based on normal copula, including multivariate probit 

models. We also discuss several methods for computing multivariate normal prob

abilities. Maximum likelihood and theory of estim ating equations methods were 

discussed in detail for the multivariate probit model. A real life da ta  example is 

presented to dem onstrate the practical use of these methods.

In Section IV.3 we discuss multivariate m ixture models. Im portant special cases 

are the multivariate probit-normal model and the multivariate Poisson log-normal 

model. These two models are discussed in depth, in particular we present algebraic 

details for implementation of the maximum likelihood for the multivariate probit- 

normal model. We dem onstrate the use of these models on the epileptic seizure da ta  

given in Thall and Vail (1990). Finally, we present multivariate discrete choice models 

in Section IV.4. These models include the multinomial logit and probit models have 

been widely used in the econometric literature.
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IV . 1 B a c k g ro u n d  on  C o p u la s  a n d  F re c h e t B o u n d s

The multivariate normal distribution is widely used to  model continuous da ta  because 

of its simplicity and the fact th a t it is completely specified by the first two moments. 

Even though multivariate discrete distributions are not as simply characterized as 

the multivariate Gaussian distribution, they do adm it a simple decomposition how

ever. Basically, a multivariate discrete joint distribution F  can be specified by the 

marginals and a function C, known as a copula th a t characterizes the structure of 

the dependence. The copula C  can be viewed as the joint distribution function of 

p  random variables U\ , . . . ,  Up, where marginally Ut is distributed as uniform on the 

interval (0, 1) for 1 <  i <  p.

D efin itio n  4.1 A function of p  variables C  : [0, l]p —> [0,1] is known as a copula i f  

it satisfies the following properties:

1. C( l ,  1, — ,1, 1, — ,1) =  Uj for all j  =  1 ,2, . .  , ,p

2. C (u \ , . . . ,  up) =  0 i f  min( t t i , . . . ,  up) = 0

3. For all, aix < ai2, i =  1 , 2 . . .  ,p ,

t t - t  (- iy i+ h + -+ irC (a l h , a2h, . . . ,  aPjp) > 0.
ii=ij2=i jp=i

The following fundamental theorem due to  Sklar (1959) gives the relation between 

the multivariate distribution function F  and the copula C.

T h e o re m  4.1 Let Yi, Y2, . . . ,  Yp be random variables with marginal distribution func

tions Fi ,F 2, . . . , F p and jo in t distribution function F . Then the following hold.

1. There exist a p-dimensional copula C  such that for all y2, . . .  yp € 3?,

F ( y i ,y 2 , - - - , y p) = C (F i(y i) ,F 2(?/2), • • • ,F p(yp))

2. I f  Y\, Y2, . . . ,  Yp are continuous random variables defined on real line, then C  

is unique. Otherwise, C  is uniquely determined on the p  dimensional rectangle 

Range(Fi) x Range(F2) x . . .  x Range(Fp) .
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IV. 1.1 Exam ples o f Copulas

We now present some popular and well known copulas.

Exam ple 4.1 (Independence Copula) The p-dimensional function given by

p

C ( u u u 2, . . . , Up )  =
j = i

Uj (4.1.1)

is known as the Independence copula.

Exam ple 4.2 (Morgenstern Copula) A simple version of the Morgenstern copula is 

given by

C {uu u2, ■■■,u p)
p  p

1 + Y 1  0jk(i -  Uj){i -  uk)
j = 1 k = j + 1

n %  (4.i.2)
3= 1

where the parameters djk ’s are chosen such that (4-1.2) is indeed a copula. Note that 

Ojk determines the dependence structure between Uj and Uk- The density function, 

which is the derivative o f (4-1.2), is given by

p  p

c{u\ , u2, ■ • • j Up) —  I -!- ^   ̂ ^   ̂ @jk(f 2itj) (1 2 uk).
j = 1 k = j + 1

A general version of the p-dimensional Morgenstern copula which includes some 

higher order terms is defined as

p  p  2 p  p  p

1 "k  ̂  ̂  ̂ Qjij'i — ujk) S  y  ̂  ̂ 1 QjihjzC (u i,u 2, . . .  ,u p)
i l  =  l  J 2 = il  +  1 J3=j2 +  1

X JJ(1  -  U j k )  +  . . . +  012...P j j ( l  -  U j )  

k = 1 j = 1

The above copula C  has following density function

p  p  2 p

n
3=1

U j .

c{u i,u 2, . . . , U p )  = i y i  ®hh 2u,jk) +
j l = l j 2 = j l  +  l  k = 1 i l  =  l  i 2 = j l + l  J3=i2  +  1

3 p

x  J J ( 1  -  2 u j k ) +  . . .  +  0 \2 . . .P J J ( 1  -  2 U j )

k = 1 i = l

TTie Morgenstern copula is also known as the Farlie-Gumbel-Morgenstern copula.
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E x a m p le  4 .3 (Archimedean Copula) Let M  be a univariate distribution function of 

a positive random variable. Note that M (0) =  0. Let

This multivariate copula is permutation-symmetric in the p  arguments so that it 

can be viewed as the distribution function of p exchangeable random variables, each 

distributed as uniform on the interval (0, 1).

E x a m p le  4 .4  (Multivariate Normal Copula) Let $ p(.; /x, E) be a probability distribu

tion function o fp  dimensional normal vector Z with mean pb and variance covariance 

matrix E defined as

The p-dimensional normal copula with latent correlation matrix  R  is given by

(or simply denoted by $ (.)). The copula C  reduces to the Independence copula (4-1.1), 

when E =  I .  In  Section IV .2, we will study in detail the application of the multivari

ate normal copula fo r modelling discrete outcomes.

It is easy to  establish bounds for a copula. These bounds, known as Frechet bounds, 

are given below.

L em m a  4.1 (Frechet bounds) Let C be a p-dimensional copula. Then for all Ui £ 

[0,1] i =  1,2, . . . , p ,

Cl {u i , u2, ■ ■ ■ ,u p) < C (u i,u 2, . . . , u p) < C u (u i ,u 2, . . . , u p)

where Frechet lower bound Cl and upper bound Cu are defined as

CL(u i,u 2, . . . , u p) =  m ax(0,ui + u2 +  . . .  +  up -  (p -  1)), 

C u (u i,u 2, . . . , u p) = m in(tti, u2, . . . ,  up).

be the Laplace transform o f M. The p-dimensional Archimedean copula is defined as

(4.1.3)

C ( u u  112, . . .  ,«I>;R) = $!>($ ^ " i) . . . . .  'I' '(ti,);0,R), (4.1.5)

where 4>-1(-) inverse function of univariate standard normal distribution $ i( .; 0,1) 
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The Frechet upper bound Cu is a copula, whereas the Frechet lower bound Cl is a 

copula only when p — 2.

As a special case, let us consider bivariate Poisson random variables. We are 

interested in studying the range of the correlation as a function of the marginal 

means, as determined by Cu and Cl , the Frechet upper and lower bound copulas. 

Let Yi and Y2 be two Poisson random  variables w ith means Ai and A2. Suppose 

th a t Fi(yi) denotes the marginal cumulative distribution function of Y% and the joint 

cumulative distribution function of (Yi, Y2) is denoted by F (y i, y2). Then

FL(yi, 2/2) <  F(yx, y2) < Fu (yl , y2) (4.1.6)

where FL{y\, y2) =  Cx(Fi(?/i), F2(y2)) = m ax(0 ,F 1(y1)+ F2(y2) - l )  andFV(?/i, y2) = 

C u{F i{yi),F 2{y2)) =  m in(Fi(yi), F2{y2)).

1.001

0.75

« 0.50

0.25

0.004
1 3 5 7- 3 -1- 7 - 5

l o g ( A 2 / x i )

Al • * * 0.0039 * * * 0.0156 • • • 0.0625 • • * 0.25
# # # m # 9-9 • <10 m m m 0^

Figure 4-1: Bivariate Poisson: Frechet upper bounds.
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The correlation coefficient corresponding to the joint distribution Fu(yi, y2) is 

given by
1 OO OO

air(Ai,A2) =  -7 = =  ^  min [F i(j/i)(l -  F2(y2 )) ,F 2(y2)( l  -  ^ 1(2/1))], (4.1.7)
VAiA2 w=lw=1

and the correlation coefficient corresponding to  the joint distribution Fl (v \, 2/2) is
-  O O O O

«l (Ai ,A2) =  - j = Y ^  - m i n [ ( l  -  F i(y i))( l -  F 2 (?/2)), F1(yl )F2(y2)} ■
VAiA2 yi=ly2=1

(4.1.8)

0.00 i

-0.25

» -0.50

-0.75

-1.00 1
1 3 5 7- 3 -1- 7 - 5

XI

l o g ( X 2 / x i )

* • • 0.0039 * * • 0.0156 • • • 0.0625 • * * 0.25
% % « -j # # ft ^ # # # ^0  ® it ® 64

Figure 4-2: Bivariate Poisson: Frechet lower bounds.

Thus the range of the correlation between Y\ and Y2 is given by the interval 

[o<l(A1,A2), o>u (Xi , A2)]. Figures (4.1) and (4.2) dem onstrate the complex behavior 

of at/(Ai,A2) and ck/,(Ai,A2) as a function of (Ax, A2). This complex behavior poses 

difficulty in incorporating the bounds on the correlation in moments based estima

tion methods th a t we studied in Chapters II and III. The next lemma gives some
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properties of the functions a u (^ i ,M )  and az,(Ai ,A2).

L em m a 4.2 Let Yx and Y2 be two Poisson random variables with means Ai and 

X2 respectively. Assume without loss o f generality Ai <  A2 . Let ctL(Xx,X 2) and 

cy.u (X-h  X2) be the correlations corresponding to the distribution functions F ^ y i ,  y2) 

and Fu(yi, yf) respectively. Then we have

(a )  a v ( M ,  A2) <  - L =  2 A 0  +  A ,)

(b) cxl(Ai,A2) =  — \fX 1 X2 , If A2 <  h>g(2 ).

P ro o f: If (Yi, Y2) is distributed as Fu(yx, y2) then

OO OO

b ( u  y2) = y . E  mini n(» i) ,  s w  ]
2/1=11/2=1

where F ^yf)  =  P (Y  >  yf) for i =  1 , 2 . Since X2 >  Ai, and the Poisson family 

possesses T P 2 property we have F2(y2)  > Fx(y2) > Fx(yx) for yx > y2. Now

00 2/1 0 0 0 0

E (Y X Y2) =  £  m in[ F l (^)> ] +  Y l  £  m int ^ 2 (2/2) ]
2/1=12/2 = 1  2/1=12/2=2/1 +1  

00 00 2/2—1

=  '^ 2 y iF i(y i)  + ' ^ 2 ^ 2 m m [ F 1(y1), F2(y2) \
2/1 = 1  ?/2 = 2  2/i=l

00 00
<  E  + y > 2  - 1 )  (4.1.9)

2/1=1 2/2=2

The first term on the right hand side of (4 .1 .9 ) is

OO OO

2/1= 1  2/1= 1
00 00

 12/1=1 V=2/i 
00 2/

=  E E w i p ( n  =  »)
2/=l 2/1=1

=

( g ( n 2) + g ( n ) >
2
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=  §  +  A,. (4.1.10)

Now the second term  on the right hand side of (4.1.9) is

OO OO OO

1/2 = 2  1/2 =  1 1/ 2 = 1

=  -y  +  ^2 -  A2 =  (4.1.11)

Substituting (4.1.10) and (4.1.11) in (4.1.9) we get

E (Y 1Y2) < ^ ~ i  + Ax. (4.1.12)

It is easy to verify inequality (a) using (4.1.12). The proof of (b) is simple. When 

0 <  Ai <  A2 <  log(2), we have P(Yi = 0) =  e~Xi >  0.5 for % =  1, 2. Hence 2 Fi(y) > 1 

or equivalently Fi(y) > (1 — Fi(y)) for all x  > 1 and i = 1,2. Therefore

F M F t i y t )  >  (1 -  F1{y1)){ 1 -  F2(y2))

and (4.1.8) simplifies to

— OO OO \  \

a L( \ u \2) = = =
v  i ’ 2

This completes the proof of the lemma.

There are situations where the range of the correlation between Yi and I 2 could be

very narrow. For example, when Ai =  A2 =  A converges to zero, the random variables

Yi and Y2 converge to  zero in probability and thus the range of the correlation between 

Y\ and Y2 converges to  the {0,1}. Also for fixed \ \  when A2 is too large or too small 

the range of the correlation becomes a singleton set containing zero. In next section 

we present the models which are primarily characterized by the copulas.

IV .2 P ro b a b i l i ty  M o d e ls  B ase d  o n  N o rm a l C o p u la

The multivariate copula models are preferable alternatives to  moment based methods 

of Chapter II. These models provide flexibility in the choice of marginal distributions 

such as Poisson, generalized Poisson, negative binomial and many more. Further, 

the marginal distributions need not be members of an exponential dispersion family.
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Also, the rich collection of copulas allows us to  model a wide variety of dependence 

structures.

In a multivariate copula model the cumulative distribution function of a random 

vector Y  =  (Yi, . . . ,  Y p ) is defined as

F ( y ) = C ( F 1( y i ) , . . . ,F r (Vp)), (4.2.1)

where C  is a p-dimensional copula and F; is cumulative distribution function of dis

crete random variable Y i .  Hence if Y  is a discrete random vector then its probability 

mass function can be w ritten as

p (y) =  E E ' " E ( - 1) (EE-  jk) C (a f  (yi), 4 2{y2) , <( %, ) )  (4-2-2)
j l = 0 j 2  =  l  jp = 0

where a ] (yj) =  Fj(yj)  and a°(yj) =  Whereas when Y  is continuous its

probability density function is

/ ( y )  =  n  hiv i )  4 F ( y  I), % ) ,  • • . .  F(y, ) )  (4-2.3)
i=l

where f i ( . )  is marginal probability density function of random variable Y i  and

, , dp C (u u  u2, . . . , u p)
=  d u f a - . d u ,  ( 4 ' 2 ' 4 )

is density of the copula C.

In practice several copulas could be used to  model the joint distribution of dis

crete responses, but the best choice is the copula th a t yields a wide range for the 

dependence measures. The m ultivariate normal copula given in (4.1.5) provides great 

flexibility in modelling various types of dependence. In this section we study the mul

tivariate probability models where the jo int distribution depends on the marginals 

through the multivariate normal copula. W hen C  is the m ultivariate normal copula, 

equations (4.2.2) and (4.2.3) simplify to

p (y) =  E E - - - E ( - 1)(EJ" i*) $ » K ‘to i )> < te ) , . . . ,d * (y p);0,R] (4.2.5)
J l = 0 j 2 = 0  j p = 0

and

/ ( y) f [ MVi )
i= 1
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respectively. Here d?(yt-) =  $  1(Fi(yi- ) ) , d i (yi) = d}(yi) =  $  1{Fi{yi)) \ i  = 

1 , 2  and d(y) =  (d i( j/i) ,. . . , dp(yp))'.

For arbitrary  marginal distributions Fj(-) and Fk(-), Joe (1997) has shown th a t 

the pairwise correlation coefficients oijk corresponding to  the mass function (4.2.5) 

approaches the Frechet upper bound as the latent correlation pjk —> 1 . And a jk 

equals the Frechet lower bound when pjk =  — 1. This result m otivated Emrich and 

Piedmonte (1991) to  advocate using multivariate normal copula as a tool to generate 

correlated binary random variables with widest possible range of associations. How

ever, their approach requires simultaneous solutions of complex non-linear equations 

and a detailed understanding of the relationship between the correlation a  and the 

latent correlation p is necessary. W hen p  =  2 and the marginal distributions of Yi 

and Y2 are Poisson w ith means Ai and A2 . The probability mass function (4.2.5) 

reduces to

P ( y ) = { $ 2 (d(pi),d2(y2),p) + $ 2 (d1( y i - l ) , d 2(p2 - l ) , p )

- & 2 (d(yi -  1 ), d2(y2), p) -  $ 2(^1  (2/1), d2(y2 -  1 ), p)} if yu  y2 =  0 , 1 , . . .

=  0  otherwise.

Figure 4.3 shows the relation between a  and p as a function of A2 when Ai is fixed 

at 5. It is clear from the figure, when A2 is large the correlation a  is approximately 

equal to  the latent correlation p. On the other hand, there is a weak dependence 

between a  and p when A2 is close to  0. As expected when the latent correlation p  is 

zero then a  =  0 .

For discrete outcomes, flexibility in dependence modelling comes a t cost of esti

m ating computationally challenging p  dimensional integrations. It is well known tha t 

when the mean param eters are large the Poisson random variables exhibit the behav

ior common to  continuous variables. Therefore we propose replacing the probability 

mass function by the bivariate normal copula density:

A?' 1 f  1
/* (y) =  j n { - 7 = ^ 7  exP

Vr j  [ V 1 ~  P2

pdi{yi)d{y2) p2(d1{y1) -  d2(y2) f
1 + p 2 (1  — p2)

(4.2.7)

Note th a t (4.2.7) is not a proper density function, since the summation over all 

possible values of y  does not equal 1. Figure 4.4 contains the plot of the bias

4(A„A2,p) = E [ /* ( Y ) - P ( Y ) 1 ,  (4.2.8)
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Figure 4-3: Bivariate Poisson: Latent correlation p vs. a  for  normal copulas.

of this continuity approximation.

Both Figures 4.3 and 4.4 are generated fixing the value of Ai =  5 and varying 

A2 =  Ai; p  =  0 .0 5 ,0 .1 ,..., 0.95; and p =  -0 .9 5 ,0 .9 0 ,. . . ,  0.95.

Clearly the bias is zero for large value of A2 (greater than 10). But for small values 

of A2 the approximation results in a large negative bias. Therefore the continuity 

approximation is not recommended for small marginal means. We describe in the 

next section methods for accurately estim ating the joint distribution function by 

computing numerical integration via simulations.

IV .2.1 M ultivariate Norm al Interval Probabilities

The problem of evaluating multivariate normal probabilities and their derivatives 

is im portant because such expressions appear in leading econometric and clinical 

models. F itting  these models for real d a ta  requires evaluation of such probabilities 

and their derivatives for each trial param eter vector and each observation in a sample.
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Iam bda2

Figure 4-4: Bivariate Poisson: Bias of continuity approximation for  normal copula.

There is a plethora of com putational techniques in numerical analysis and in the 

econometrics literature for evaluating the multiple integral

P ( a < Y < b )  =  [  ^ ( y - ^ E ) d y
J a

“ P

Y [ l ( ai < Y i <  bt)
.1 = 1

(4.2.9)

where Y  is a p-dimensional normal random vector w ith mean p  and covariance m atrix 

E. This problem is computationally difficult unless p < 4 or the covariance m atrix E 

has a special structure. In this section we describe the most frequently used methods 

for computing (4.2.9), see Hajivassiliou et al. (1996) for extensive details.

Crude frequency (M onte Carlo) sim ulator(C FS) : This is perhaps the most 

intuitive simulation method. We use the stochastic representation

Y  =  p  +  C Z

where Z is an independent standard normal vector and C  is a lower triangular m atrix 

derived from the Cholesky decomposition of E =  C C T. The m ethod simulates n
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independent and identically distributed Y ,, 1 <  i < n, vectors and approximates the 

m ultivariate interval probability (4.2.9) by

1 ”
P =  - V / ( a <  Y i < b ) .  (4.2.10)

n  r —'
2 = 1

K ernel-sm oothed frequency sim ulator(K FS): This m ethod was developed by 

McFadden (1989) and it is a modification of the crude frequency simulator. Here the 

indicator function in (4.2.10) is replaced with

where g{.) is smooth kernel function such th a t

lim g(x) =  0
x—>+oo

lim g(x) = 1  
£—>• — 00

and the constant w  is known as the window width param eter. This m ethod produces 

biased estim ate of (4.2.9) for positive w, but in statistical applications the bias can 

be reduced by shrinking w  as the sample size increases. A variety of kernel functions
p

g were suggested in literature such as polynomial kernel: g(x) = h(x,) where
2=1

h(x)

1 , for x  < —1 ;

(1  — x{2 + x)) /2 ,  for — 1 <  x  < 0 ;

(1  — x{2 — x)) /2 ,  for 0  <  x  < 1 ;

0 , for x  > 1 .

and normal kernel p(x) =  J J $ ( —Xj).
2 = 1

G eweke-H ajivassiliou-K eane (G H K ) simulator: This m ethod uses the fact 

th a t the multivariate normal distribution can be expressed as the product of sequen

tially conditioned univariate normal distributions, th a t is, equation (4.2.9) can be 

rewritten as

P(a  < Y  <  b) =
2 = 1

^(j) I (P i Mi) ^ 2 j = l c i j e j \  f  ( a i Mi) 1 c i j e j

(4.2.12)
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where t \  is standard normal variate with distribution function and e*+i is the 

truncated univariate standard normal variable with lower truncation point

(ai ~  Vi) ~  E ,= l Cijej \  , . . ( (hi — Vi) — E i= l Cijej
 --------   I and upper truncation point I ------------------------------

C"ii J \ ^ii
The distribution function of e;+i is denoted by

Basically, the GHK simulator amounts to estim ating each term  in the product 

on the right hand side of (4.2.12) by the crude frequency simulator. Hajivassiliou 

et al. (1996) compared CFS, KFS, and GHK methods with several other methods, 

using several generator seed values. They found th a t GHK m ethod has less bias and 

best convergence rate among all the methods. In the literature the GHK m ethod is 

treated as the benchmark.

G e n z ’s s im u la to r : Genz (1992) proposed a two-stage transform ation of (4.2.9).

The first stage transform ation is based on the conditional probabilities as in the GHK 

simulator. In the second stage the uniform random variables rq =  $(ej), i =  2 . . .  ,p  

are used to  reduce equation (4.2.12) to  a p  — 1 dimensional integration as

r 1 p
P [a  <  Y  < b] =  /  J J [/ii(u )  -  i<(u)]du (4.2.13)

Jo i=l

where

hi( u) =  $  

li( u) =  4>

(k  -  Vi) ~  E L I  L ^ 'M u )  +  (1  -  Uj)lj{u))

(ai Vi) E ,= l  C0 $  1(ujhj(u) +  (1  Uj)lj(\l))

Finally the above integration is performed numerically using the randomized lattice 

rule techniques (see Cranley and Patterson (1976) and Keast (1973)).

In the next section we present widely used multivariate copula models.

IV .2 .2  M u lt iv a r ia te  P r o b i t  M o d els

The classical multivariate model for a binary response vector Y  =  (Y i,. . . ,  Yp) is the 

multivariate probit model. The mass function is given by equation (4.2.2) where C  is 

the multivariate normal copula with mean 0 and latent correlation m atrix R  =  [r^]
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and Fj(yj) is the distribution function of a Bernoulli random variable with mean 

p  ■ — <L(pj). Thus the probability mass function of Y  can be expressed as

p ( y ) =  [  . . .  [  ------ \  r  exp /  — — 1 dt  (4.2.14)
Jcp JCi (27t ) 2 |R |2 \  2 /

where

C  =  {  if %' =  1;

3 \  (/L> °°) if Vj  =  °-

for 1 <  j  < p. Note th a t equation (4.2.14) can also be w ritten as

P(y; p,, R) =  %  [ ( - I ) 1-*1/!!, ■ • •, ( ~ l ) l~yptip] 0, R] (4.2.15)

Although equation (4.2.15) defines a proper probability distribution function for any 

positive definite m atrix R, in order to  retain likelihood identifiability R  is restricted 

to  be a correlation matrix. Lesaffre and Kaufmann (1992) have studied (4.2.15) and 

gave some necessary and sufficient conditions for the existence of unique maximum 

likelihood estimates of pi and R  based on a random sample of n  observations. We 

establish some notation to  present some details of the maximum likelihood estima

tion.

We will denote by 53j1j2, the (pi x p2) dimensional sub-m atrix of E obtained by 

selecting elements corresponding to rows j i  =  ■ ■ ■, jipi)'  and columns j 2 =

C?2i > J 22j • • • , i 2p2)/- Similarly, /itj1 denotes the sub-vector of fx obtained by selecting 

elements corresponding to j i .

Let Z ^  jNj, (/r. E ). It is well known th a t the conditional distribution of Zj2 

given Zjj =  0 is also multivariate normal with mean /Xj2|j1 =  /xj2 — Ej2j 1E r] i /Ltji , 

and covariance m atrix E ^  =  Ej2j2 — E j^ jE r ^ E j^ .  Further, if c/>p(z; pi, E) is the p- 

dimensional multivariate normal density function with mean pi and covariance m atrix 

E =  [aij], then

d(f>P(z ; / i ,E )  =  d2(j)p(z, n ,  E) 
day dzjdzj

and d<f>p(z ; / i ,S )  =  i a % (z ; /x ,E )  ^
dan 2  d2Zi

Equations (4.2.16) and (4.2.17), known as the Plackett’s identities, are useful in the 

next lemma. The derivatives given in Lemma 4.3 are needed for computing the 

maximum likelihood estimates and the Fisher information.
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L em m a 4.3  Let Y  be

g iv e n  by  (4 -2 .1 4 )-  T h e n

dP(  y; /x, R )

r a n d o m  v e c to r  w ith  j o i n t  m a s s  f u n c t i o n  P (y ; /x, R )

Vji (fi, R ) —
dpn

v L > > R )

(_l)i+% i0(O ; Mji> R jljl)P (y jI ; j x ^ ,  R ^ j J  

c>2P (  y ;/x ,R )

ji

v L -2(p>r )

VL '2i3 (P ’R ) =

+ Rjj: ji ̂  (pji iji ’ Rtf |ji)
_  d P (y; ix, R ) _  d 2P (y ; /x, R )

drjij2 dhji d/-ir2
= (_!)%!+«« 0 2(O; /ij2, R j2j2)P (y j» , , Rj*|j2)

a 2P (y ;/x ,R )

v L 2(p>r )

3 1 3 2 ^ ^ 3  3

(_l)i+wi+wi2+w3^ 3 (0; /xj3, R j3j3)P (y j»; ^ * |j3, Rj*|j3)

d2P (y ; /x, R )

VL'27U2(P ’R )

^ j i h j i h ^ P ’R ) dr- ■ dr- ■u l  3 l32u l  3133

drn n dpn

=  ( _ 1  ) 1 + % i + % ^ 2 ( 0 ; M j 2 , R j 2j 2 ) e ' i 2 R r j 2 [/xi2P(yj*;/*JSli2, % | j 2 )

+ R j 2h  ̂  ( P i 2 1J2 ’ R J21h  )  

d2P (y ,  fi, R )  

dr 2 •3132

=  ( _ ! ) % ! + % ^ 2 ( 0 ;  ^ . 2 , R j a j 2 ) e i 2 R r } 2 [ ( / x j 2 / 4  +  R j 2j 2 )

X  P(yj*2  ’ P j 2 |j2 ’ R j 2 IJ2 )  +  R j ^ j 2 ( P j l  | j2 ’ R J2 |j2 ) R j 2j 2

02P (y ;/x ,R )

R j2j2e22

=  (-i)Wi+w«+w«03 (O;/xj3,R j3j3)e'l3R j3; 3 [/xj3P(yj*;/Xj*|j3,Rj*|j3)

+ R j5 j3 V ( / i j5 lj3 ’ R j 3lj3) 

d2P (y ;/x ,R )

j i 32 jz34

w/iere =  ( j i , . .  - , j k Y  a n d  j *k is  v e c to r  o f  in d e x e s  th a t  a re  c o m p l im e n ta r y  to  j*, e jk 

is  j t h  u n i t  v e c to r  in  Rfc. I n  th e  a bove  id e n t i t i e s  V(/x, R ) =  [V i(pt, R ) , . . . ,  V(/x, R ) f  

a n d  V 2 (/x, R ) =  [Vjfc(/x,R)].
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Lemma 4.3 is proved with routine differentiation and tedious algebra. We will 

need the following matrices in the next section:

^ 1 2 1  (Ab R ) V 3v  12 p

V 3 ( a* , R ) V 3
(p - l)p p

(fj,, R) 

(j*,R)

and

V 4 (MiR)  =
^1212  (Ab V ? 2 i > , R )

v l(p-l)pl2 (^ j •

Estim ation m ethods for m ultivariate probit model: Suppose th a t we have a

random sample Y i , . . . ,  Y n of observations from the distribution (4.2.15) and corre

sponding explanatory variables X 1;. . . ,  X„. Assume th a t the mean fx is linked to  the 

covariates via a link function and a regression param eter /3, as in Chapter II. In many 

application it is reasonable to  assume th a t the latent correlation m atrix R  is fully 

characterized by q dimensional param eter vector a .  Then the unknown param eters 

9 = (/3, cx) can be estim ated using the maximum likelihood estim ation procedure or 

by solving Godambe’s optim al estim ating equations. For a square m atrix  A  =  [a^] 

of order p, define A  as the vector (a i2, a i3, . . . ,  obtained taking the elements

of A  above the diagonal. For maximum likelihood estimation, the log-likelihood 

function is given by n
L (0 ) =  £ > g P ( y i ; e) (4.2.18)

i—1

and the likelihood estim ating equation is

V (0) =
a l  
ae

£ -Ji (9 ) 'v : ( 9 ) = 0 ,

where V J(9) =  [ v f o . R ) ,  V ^ . R ) ]  and the jacobian m atrix  Ji(9) is given by

M 9 )
(§& )*

0

0

(  9R(dd\
V d a  )  J
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The Hessian m atrix of L ( 9 ) is given by 

32L
H(0)

3039

1= 1

where

V f(0 )

P (  Y i ' , 0 )

V 2(^ ,R )  V 3(^ ,R )'  
V 3(Mi,R ) V4(^ ,R )

J i { 0 )

The maximum likelihood estim ate 9 can be obtained by the usual Newton-Raphson 

iterations:

9 k+1 = 0 k - H - \ 9 k)V {9 k).

It is well known th a t 9  is AM VN(0,X_1(0)) where

X(0) =  E[-Zf(0)] =  £ j ' ( f > ) E
i=1

is the Fisher information.

V*(0)V*(0)'
P ( y i ; 0 ) 2

J i { 9 ) (4.2.19)

The maximum likelihood estimation is very time consuming and computationally 

challenging, since it requires higher dimensional numerical integrations at each itera

tion. An alternative and simpler m ethod is to  estim ate 9  solving Godambe’s optimal 

estim ating equation given by

(4.2.20)
i=i

where & =  [Y*, Z?:Z'J, Zj = (Yj — E(Yj)), rj*;, V* are the mean and covariance of 

The m atrix Di =  {jfji. can comPut ed using the derivatives in Lemma 4.3.

Suppose th a t 9g is the solution of the equation (4.2.20), then it is well known th a t 

(Godambe (1991)), Og is AMVN(0, Q~l (Q)) where Q{9) is the Godambe information 

is given by

s ( » )  = Y i J ' M D '< vr l DiJi{e). (4.2.21)
i=1

A n  ex am p le : To illustrate the two methods of estimation for the m ultivariate probit 

model, we consider a subset of da ta  from the “Six Cities Study,” th a t was analyzed
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by Ware et al. (1984), Fitzmaurice and Laird (1993) and Chib and Greenberg (1996). 

The Six Cities study is a longitudinal investigation of indoor and outdoor air pol

lution on respiratory health of child. A subset of the original da ta  given in Table 

4.1, contains complete record of wheezing status at ages 7, 8 , 9 and 10, as well as 

information about m aternal smoking of 537 children from Stuebenville, Ohio. One of 

the objectives of this study was to  determine the effect of m aternal smoking on res

piratory health of a child over time. Fitzmaurice and Laird (1993) used the marginal 

logit model to analyze the probability of wheezing using alternating logistic regres

sion m ethod of Carey et al. (1993). This method involves modelling dependence via 

bivariate odds ratio instead of the bivariate correlations to  accommodate pair-wise 

restrictions on correlations. The m ethod then proposes GEE-like estim ating equation 

for odds-ratio estimation.

Table f . l :  Six Cities Data: Wheezing Status of 537 Children

No m aternal smoking No maternal smoking
Age Count Age Count

7 8 9 10 7 8 9 10

0 0 0 0 237 0 0 0 0 118
0 0 0 1 10 0 0 0 1 6

0 0 1 0 15 0 0 1 0 8

0 0 1 1 4 0 0 1 1 2

0 1 0 0 16 0 1 0 0 11

0 1 0 1 2 0 1 0 1 1

0 1 1 0 7 0 1 1 0 6

0 1 1 1 3 0 1 1 1 4
1 0 0 0 24 1 0 0 0 7
1 0 0 1 3 1 0 0 1 3
1 0 1 0 3 1 0 1 0 3
1 0 1 1 2 1 0 1 1 1

1 1 0 0 6 1 1 0 0 4
1 1 0 1 2 1 1 0 1 2

1 1 1 0 5 1 1 1 0 4
1 1 1 1 11 1 1 1 1 7

We use following multivariate probit model to  incorporate dependence between 

repeated measures.

tMj =  So +  (Age^) Si  +  (MS,) S 2 +  (Age,t x MSj) So
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where Ŷ - is the indicator of wheezing for child i a t j th  year of study, ‘AGE’ is age 

in years since the child’s 9th birthday and ‘MS’ is indicator of m aternal smoking.

We model the latent correlations between the four repeated responses using four 

correlation structures: Independence, Unstructured, Exchangeable and Autoregres

sive. Maximum likelihood estimates of (3 and a  and standard errors obtained from 

the diagonal elements of the Fisher information (oy) and Godambe information (<r2) 

methods are summarized in Table 4.2.

Table 4-2: Six Cities Data: Maximum Likelihood Estimates

Independence Unstructured
Est. S.E. (XI <72 ARE Est. S.E. <71 <72 ARE

/3 -1.1259 .0472 .0471 .0471 1 .0000 -1.1226 .0636 .0623 .0625 1.0040
-0.0768 .0376 .0375 .0375 1 .0000 -0.0784 .0315 .0313 .0313 1.0007
0.1709 .0762 .0761 .0761 1 .0000 0.1596 .1014 .1009 .1012 1.0071
0.0367 .0615 .0611 .0611 1 .0000 0.0374 .0511 .0506 .0506 1.0009

a - - - - - 0.5835 .0723 .0659 .0662 1.0090
- - - - - 0.5232 .0744 .0720 .0728 1.0207
- - - - - 0.6870 .0601 .0578 .0580 1.0070
- - - - - 0.5789 .0767 .0691 .0695 1.0116
- - - - - 0.5577 .0816 .0719 .0726 1.0221
- - - - - 0.6305 .0706 .0663 .0667 1.0128

L 909.7206 794.7184

Exchangeable Autoregressive
Est. S.E. <71 <72 ARE Est. S.E. <71 <72 ARE

/3 -1.1195 .0629 .0619 .0621 1.0046 -1.1368 .0601 .0605 .0606 1.0021
-0.0777 .0304 .0303 .0303 1.0010 -0.0816 .0362 .0363 .0364 1.0009
0.1611 .1007 .1003 .1006 1.0071 0.1598 .0972 .0982 .0983 1.0030
0.0384 .0492 .0491 .0491 1.0006 0.0438 .0589 .0592 .0592 1.0008

a 0.5984 .0415 .0405 .0411 1.0296 0.6447 .0275 .0318 .0320 1.0106
L 797.6538 804.1492

The estim ate of /?i in all the four models is negative indicating the decline in 

the probability of wheezing w ith age. All the four models indicate th a t children of 

mothers who smoke are more like to  be diagnosed for respiratory disease than  the 

children of mothers who do not. Note th a t all the four models present very similar 

estimates of (3. The log-likelihood statistic  for the model which assumes independence 

among the repeated measure is smallest indicating inadequate dependence modelling. 

Using log-likelihood ratio test we can conclude th a t the model with exchangeable
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latent correlation structure is an adequate model.

The observed asymptotic relative efficiency (ARE) of Godambe’s optimal estim at

ing functions versus maximum likelihood estim ation are also displayed in Table 4.2. 

Since the da ta  is large the ARE’s are close to  1 for all the four models indicat

ing both maximum likelihood estimation and Godambe optimal estim ating function 

present equally efficient estimates (3. This suggests th a t Godam be’s optimal estima

tion function could be used as an alternative to the maximum likelihood estimation. 

We have repeated the analysis using logit link function and found th a t estim ates of 

latent correlations and their standard deviations are invariant to  the choice of the 

link function. Also the log-likelihood statistic is also unaffected by the link function.

In next section we present probability models derived by compounding several 

known marginal distributions.

IV .3 M ultivariate M ixture M odels

In this section we will study m ultivariate m ixture models. The basic idea of mul

tivariate mixture models is similar to  modelling a cluster of outcomes with random 

effects for the subjects in a cluster and common fixed effects through distribution of 

random effects.

Let Y  =  (Yi, Y2, . . . ,  Yp) be a multivariate discrete response vector. We as

sume th a t for given A =  ( A i , . . . , A 9), the probability mass function of Y  is 

f ( y i ,  y2 , ■ ■ ■, yp) A). Suppose further th a t A is random vector, and the distribution of 

A is a multivariate distribution G(Ax, A2 , . . . ,  \ )  which can be expressed in term s of 

a copula function C (u i,i i2 , ■ ■ ■,uq) with univariate margins G j , j  =  1 ,2 , . . .  ,q. The 

marginal probability mass function of Y  is

q
f ( y; A) c f G^ A, ) , . . . ,  G , ( \ ) )  H a -O iJ d A , (4.3.1)

3=1

where c (u i , . . .  -,uq) is the density of the copula C(.).  A special case of (4.3.1) is 

obtained when given A, the random variables Yi are independent and Pi(yi), the 

marginal probability mass function of Yi depends on a param eter 7* =  7i(A). In this

P(y) = f
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case (4.3.1) reduces to

/
p 71 Q

- j  n / f e ^ ) c(G,i (A' ) . - . . , G « ( A » ) ) n f t W dA <4-3-2>i=1 j=1

In the next section we will study the popular multivariate mixture models for ana

lyzing binary and count responses.

IV .3.1 M ultivariate Probit-norm al M odel

The multivariate probit model is obtained by introducing latent variables A  =  

( A i , . . .  , A P) such th a t the variable Yi assumes value 1 if Aj  < Aj, and 0  other

wise, for j  — 1 , 2 . . . , p. Let us suppose th a t the latent variable A  is distributed as 

multivariate normal with mean 0 and variance covariance m atrix £ . Furthermore, 

the vector of threshold values A =  (Ai, . . . ,  Xp) is assumed to be multivariate normal 

vectors with mean po and variance covariance m atrix E0. For the model to  be iden

tifiable, the m atrix E is restricted to a non-singular correlation matrix. Covariates 

can be incorporated in model easily by assuming A j = x '/3, where /3 ~  iVfc( 0, £*). 

The distribution of Y  =  ( F i , . . . ,  Yp) is the multivariate probit-normal and it is given 

by

P (y) =  [  P(y;P,Z)<P*(P;V)d fl ,  (4.3.3)
JM.P

where P ( . ; .) is the multivariate probit mass function defined in (4.2.14). The mul

tivariate probit-normal reduces to the multivariate probit model when E =  O.

We can introduce another layer of randomness by assuming a prior distribution 

of E. Chib and Greenberg (1996) have analyzed the Six Cities data  described in 

section IV.2.2 using m ultivariate probit-normal distribution. They assumed multi

variate normal prior for p(p — l ) / 2  off-diagonals of E. Chib and Greenberg (1996) 

have used Markov Chain Monte Carlo m ethod along with G ibb’s simulator to esti

m ate the posterior distribution of the regression param eters (3 and latent correlation 

m atrix E. The marginal means of this posterior distribution were close to  the max

imum likelihood estimates reported in Table 4.2 but the variance of the posterior 

distribution was greater due to  the additional layer of randomness.
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IV .3.2 M ultivariate Poisson Log-normal M odels

The multivariate Poisson log-normal models are sub-class of general m ixture models 

defined by (4.3.1). Suppose th a t A is distributed as multivariate log-normal distri

bution with param eters (/i, crRcr) where <x =  diag(oi , . . . ,  ap) and R  is a correlation 

m atrix characterized by a q dimensional vector a .  Given A =  ( A i , . . . , A g), let 

Yj, 1 <  j  < p  be independent Poisson random variables with means A;, 1 <  i < p. 

The joint probability mass function of Y  =  (Y1; Y2, . . . ,  Yp) is given by

V j!

e x p [ - |( lo g A  -  n)'(o-R(r) ^ l o g A - ^ ) ]  

(2^ \<rR<rfi  n j =1 A,
d \

(4.3.4)

Let C  =  [c{j] be the lower triangular m atrix in the cholesky factorization of R.  If 

Z =  C'_1<r_ 1(log(A) — /i), then equation (4.3.4) can be rewritten as

p(y) = /  InJ rp { . x

exp[_ e« ^ « ; c  +  ! / .f e  +  ( r .e, c .z )q  f e - l - ' * * '  ( 4 3 5 )

Vr

where ej is j t h  unit vector in Rp. Also for dj =  0 , 1 , 2 , . . . ;  c — 1 , 2 , . . .  ,p, the joint 

factorial moments can be obtained as

^ ( y ) = E ( n
o=i

I 3■
I K  -  dj)!.

E  ̂ exp I E  dj {dj T  ° j ejC Z )
J =i

53 d j d ' j  +  „  f 53 d j a j e j  ) R  ( 53 d j a j e j
j = 1 \ j= l  /  \ j
p p p

53 djV j  +  2 53 53 djdk<Jj<Jkrjk

exp

=  exp

o= i

_j=l j =l k=i

According to  (Johnson et al., 1997, p.5) the jo int moments of Y  can be expressed as

#*d(Y) =  E
lj= l

d\ dp

E - E
ii=o jp=o .k—l
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where S ( . , .) is Sterling number of second kind defined by recurrence relation

S ( n , 1) =  1, S ( n , i ) =  S (n  — i , i  — 1) +  iS (n  — l , i )  

for i =  1 , . . .  , n — 1, and 5 (n , n) = 1.

Also the joint central moments can be derived using the relation

Note th a t Var(Yj) >  E(Yj-) and Corr(Y), Y k ) <  Corr(Aj, A f .  Hence the multivariate 

Poisson log normal model is suitable for over-dispersed count data.

Aitchison and Ho (1989) have used special of case of multivariate Poisson log-normal 

model with ui =  <72 . . .  ap =  a, to  model the growth of competing spices of bacteria 

which depend on certain type of plants for livelihood. Next we discuss maximum 

likelihood estimates of the unknown param eters based on a random sample from the 

multivariate Poisson log-normal model.

M axim um  likelihood estim ation: Let Yx, Y 2, . . . ,  Y n be a random sample of n  

independent observation from distribution (4.3.4). Then the log-likelihood of the 

observed d a ta  as a function of © =  (fx, a , a )  is given by

2=1

The next lemma gives expressions for the derivatives needed for the com putation of 

the maximum likelihood estimates and the Fisher information matrix.

E (n y *  Md-jOO

Therefore

/ i*  =  E ( Y j )

°jk =  cov(Yj, Y k )

H* +  / i f  [exp(erf -  l] if j  = k

li*H*k [cxp(rjk(7j<7k) — 1] otherwise 

n

log(£) = ^ 2 ^ o g P ( y i ) .
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L em m a  4.4 Let Y  be a p  dimensional random vector distributed as P (y ) given by 

(4-3.4)- Then the following hold:

d l o g P ( y )

=

Va,-

dp,

E [ ( y -  A)|y] 
d lo g P (y )  

der
E [<x_1D(log A -  p ) ( y  -  A)|y] 
d l o g P ( y )

d a

=  E

V o

(y -  A )' ( J j^ j C*(l°g A -  /x)|y 

1 d 2P ( y )

V  t*Otj

P (y ) d p d p '  
= E [ ( y -  A ) ( y -  A) ' -P>( A) | y]

1 d 2P ( y )

P (y ) 9/x9<t' 
=  E {<7 - 1P>(log A -  p) [(y -  A )(y  -  A)' -  D (A)] |y}

1 d 2P ( y )
P (y ) dadcr'

=  E {<T_ 1P (log  A -  fi) [(y -  A) (y -  A )' -  P(A)] a ^ D ( log A -  p ) \ y } 

1 d2P (y )

\7&otj

P (y ) d f ida j

E | [ ( y  -  A)(y  -  A )' -  £>(A)] ( J f^ )  C"(log A -  /x ) |y |

1 d 2P (y )
P (y ) dcrda'j

=  E | o ’_1P (log  A -  p) [(y -  A)(y -  A )' -  P (A )] ( ^ ~ ^ j  C*(log A -  p)

+  C V 'D p o g  A -  , .) (y  -  A ) | y |

1 8 2P ( y )

P (y ) d o t j d a k

=  E |  (log A -  ,x)'C-' [(y -  A )(y  -  A)' -  D(A)]

x ( 4 )  c *(iog a  ■  " > + ( y  ■  a)> ( 4 ^ )  c " (log A  ■ " ) |y }

where D ( x ) =  diag(xi . . .  , x p) and C* is Choleskey decomposition matrix of R ~ l .
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By Lemma 4.4 the likelihood estim ating equations for estimating © are

<91ogL

4=1do

where V ie =  (v*m Vim • • ■ > Via,)*- Next the variance covariance m atrix of max

imum likelihood estim ators is estim ated as [—F ( © ) ] _1 where F(&)  is observed Fisher 

information m atrix  given as

d2 log L
F(@) d®de'

n

=  X ^ V ie V i- e - - 1^ 0 )]

and

l i t © )  =

V f/f/ V^' V fiai • • V fiQg

v U ' VoV V <ra 1 • ■ V fQg
V p a  i V o-ai VaiQi V OtlCtq

V y .a q V <r a q Vai<*9 * * \ /  cxq otq

If the objective is to  model the mean of the observed counts on covariates then we 

can assume th a t E(Yi) — =  x^/3, where /? is the regression param eter. Also it is

possible to  study whether different set of covariates Zy contribute to additional vari

ability of outcomes by using the relation <jy =  exp(z^u). The maximum likelihood 

estimates of 0* =  (ft, u, a)'  can be computed solving the likelihood equation

9 log L
d0*

4=1

where the jacobian m atrix Ji is given by

J i

X i  0  0

0 D(a-i)Zi 0 
0  0  1

and the estim ated covariance of the maximum likelihood estimates is by
-l

Cov(r) = •{ $ > ' [Vi. v ;,-M ® )] 4 '
i=1
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Table 4-3: Seizure Data: MLE for  Multivariate Poisson Log-normal Model

Dispersion Type
Time Independent Time Dependent Covariate Dependent

Param eter Estim ate S.E. Estim ate S.E. Estim ate S.E.

P -1.3174 1.1339 -1.6818 1.2316 -1.0175 1.1611
0.8297 0.0993 0.9354 0.1173 0.7893 0 .1 2 0 2

-0.8275 0.3104 -0.8326 0.3432 -1.2369 0.5121
0.3278 0.1396 0.2499 0.1524 0.4979 0.2481
0.4725 0.3379 0.5624 0.3666 0.4070 0.3366

-0.0913 0.0824 -0.0473 0.0894 0.0024 0.0903
i/ -0.5317 0.0667 -0.6141 0.1367 -0.6406 1.7367

- - -0.4810 0.1213 0.1375 0.1675
- - -0.2592 0.1219 0.8047 0.6322
- - -0.9061 0 .2 1 0 0 -0.3302 0.3030
- - - - -0.0572 0.5043
- - - - -0.4015 0 .2 0 0 2

a 0.5710 - 0.6504 - 0.6233 -
log (L) -624.476 -619.5648 -620.3948

We now illustrate the application of the multivariate Poisson log-normal models using 

epileptic seizure da ta  described in Section III.2. Thall and Vail (1990) and various 

other authors have argued for a need to  incorporate heteroscedasticity of the observed 

bi-weekly seizure counts. This is valid concern as the first hand descriptive analysis 

show th a t variance of seizure counts reported on week 2 is significantly greater than 

th a t of seizure counts reported on week 4. One may be interested in testing whether 

this heteroscedasticity is due to any of covariates such as Progabide drug.

To address the concerns we present three different models. All three model possess 

the same log-linear relationship between marginal means and covariates (see (3.2.19)), 

along with the exchangeable correlation assumption for R.  In the first model the 

dispersion param eter is assumed to  be tim e independent or constant, th a t is, Oij =  

exp(zv). In the second model we assume the dispersion param eter is time varying, 

th a t is, <7ij =  exp(z'j). In the th ird  model, we allow the dispersion param eter to 

be covariate dependent via log-linear relation, th a t is, aij =  exp(xE^). We use 

Monte Carlo Markov Chain m ethod (using 5000 simulation points) for numerical 

com putation of the joint probability mass function.

The maximum likelihood estim ates for these models are reported in Table 4.3.
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Standard errors for the param eter a  were found to be unreliable due to  the lack of 

convergence and hence not reported. Note th a t the estimates of param eters /3, a  

in Table 4.3 are not comparable to  the quasi-least squares and modified Gaussian 

estimates as over-dispersion is not considered in moment based methods.

Since the second and th ird  models are generalizations of the first model, we have 

conducted goodness of fit for the second model relative to  the first model by testing 

the null hypothesis H 0 : v \  =  v 2 =  . . .  =  using the likelihood ratio test. The 

observed value of x 2 test statistic  is equal to  10.21 with p-value 0.016. Therefore we 

conclude th a t the second model is superior to the first model. Similarly the relative 

performance of the th ird  model w ith respect to the first model is checked testing the 

hypothesis H 0 : v 2 =  rq =  . . .  =  v§ — 0. The observed value of chi-squared likelihood 

ratio test statistic is 8.12 resulting in a p-value of 0.1495. Therefore the third model 

is not a significant improvement over the first. We conclude th a t the second model 

which incorporates tim e dependent over-dispersion is the best model for this data. 

Also the extra-variation in reported seizure counts is progressively decreasing which 

could mean th a t improved consistency of reported seizure counts.

In next section we present discrete choice models which are widely used in various 

applications especially in econometrics. These models are variants of the multivariate 

mixture and the multivariate copula models.

IV .4 M ultivariate D iscrete Choice M odels

The main objective in an economic analysis is to find cause-and-effect relationship 

between marketing-mix variables such as product features, advertisements, and m ar

keting performance variables such market share, to ta l sales etc.

If the outcomes are unordered representing a choice or a decision, we can use 

the following multinomial discrete choice model to analyze the data. The discrete 

choice approach attem pts to  model the choice probability via a utility function which 

is intended to capture the perceived attractiveness to  a decision maker. However, 

many users with identical attributes (covariates) vectors do not always make the 

decision. Hence, for each decision maker the random perceived utility as a function
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of attributes is defined as

U *  f e . i j , /3) V ij ( x j j , /?) -I- &ij (pi-ij, (3) (4.4.1)

where the subscript i is an index for the individual, the subscript j  is an index 

for the alternative, V/,(xj.,-,/?) is a deterministic or measured utility, and etj is a 

random error or un-deterministic utility, which captures unexplained characteristics 

of alternatives and /o r individuals. More general scenario can be envisioned when 

the effect of attributes varies across the alternatives. For example, the effect of price 

increase on utility of new brand will be severe than  th a t of the well established brand. 

In these circumstances one needs to  incorporate different sets /3 for each alternatives. 

The ideal models will have the perfect definition of the functions 14j(xjj,/3) and 

magnitudes of the error term s will be very small.

In practice the most often used multinomial discrete choice models is the deter

ministic utility, modelled as a linear function of choice characteristics or covariates, 

th a t is,

The individual i chooses alternative j  if and only if its perceived utility is greater 

than or equal to  th a t of any other alternative in his choice set. Hence the event of 

an individual i opting for alternative j ,  (Yi — j ) ,  can be expressed using a random 

utility function as follows:

For simplicity of notations we assume th a t the choice set C  is same for all the 

individual and consists of K  alternatives. W hen the variability of unobserved utility 

eij(xij,/3) is assumed to be very small compared to th a t of deterministic utilities

models have very limited scope of applications as they assume th a t the error terms 

are all equal to  zero.

0) =  x ' / i . (4.4.2)

Uij fa j ,  0)  =  max Uik (x * , 0) 
k G Cii

where Ci is the choice set of subject i. Hence the probability th a t individual i chooses 

alternative j  from his choice set Ci is

P(Yi  =  Xj, 0) = P  UijixijiP) =  max f7ifc(xifc, 0) .keCi
(4.4.3)

across the alternatives the rational models of Manheim (1979) can be used. These
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IV.4.1 M ultinom ial Logit M odels

McFadden (1973) proposed a special case of multivariate discrete choice models. His 

model is known as multinomial logit (MNL) model. Here the unmeasured utilities 

eij(xij,/3) are assumed to be independently and identically distributed as Gumbel 

(also known as type I extreme value distribution) with zero mean and independent 

of /3 and x ^ , th a t is, the cumulative distribution function of e^x^-, fi) is

F(eii-,Xij,P) =  exp [—e- * ^ ]  (4.4.4)

where (#i , . . .  9k ) are heteroscedastic parameters. It can easily be shown using (4.4.3) 

the above distribution reduces to

p(y, =r, * ,  p) =  . ( 4 .4 . 5 )

X } e x p [^ j(x ij ,0 ) / 0j]

i =i

This formulation of random utilities has its own advantages as well as disadvan

tages. The advantages being closed form formulation of choice probabilities leads 

to  ease of interpretation and readily available maximum likelihood estimators. But 

the problematic aspect of the multinomial logit models lies in the so called in d e p e n 

d e n c e  o f  th e  i r r e le v a n t  a l te r n a t iv e s  (IIA) property. T hat is the relative probability 

of choice between two alternatives is only affected by the utilities of corresponding 

choices because

P(Y i = j ]x i ,P)
P(Y i = l ^ P ) = e*P

Vu(xn,p) ' (4.4.6)
9j

In applications where the un-deterministic utilities associated with alternatives are 

correlated as they share some neglected attributes the use of multinomial logit model 

is appropriate as the IIA assumption is violated. Next we present multinomial probit 

model which alleviates such restrictions by incorporating the associations between 

error terms.

IV .4.2 M ultinom ial Probit M odels

The multinomial probit models is a random utility model in which the error term s e'^s 

are assumed to  have m ultivariate normal distribution with zero mean and arbitrary
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variance-covariance m atrix £  — {(7lJ]. Thus variances of un-observable or error terms 

can be different and error terms may be correlated. The a ttribu te  effect are assumed 

to be independent of alternatives. Using the notations of McFadden (1989) define

Z<_,. = (Xji Xjj, . . . , 'X.ij—i Xjj, Xjj, . . . , Xjx  -X-ij))

U,. — (Uil Uij, • • • , U{j_ i Uij, Uij-\-1 Ul3, . . . , UiK Ujj),

—  ( c j i  • • • j e j j ,  e j j - f - i  ~~  e j j , . . . ,  &ij)-

Then e*_. ~  N(0, £*). For model identifiability and to characterize £*, one of the 

diagonal element an of £  is assumed to be 1 along with assumption a3i — ai3 =  0 ; j  =  

1

Using equation (4.4.1), we can check th a t U* has a multivariate normal with 

mean Z!- 8  and variance covariance m atrix Z( £Z, .. The event th a t individuali-j i i-j *-}
alternative j  is utilized by individual i  can be w ritten as

P(Ti =  j|x;,/?,£) =  P[u;_. < 0 |Z i_ .,^ £ ]
=  &p[Zi_j 8; £*]. (4.4.7)

The multivariate interval probabilities and maximum likelihood estim ates of param 

eters can be obtained by using the techniques described before. A comprehensive 

review of the multinomial probit model can be found in Daganzo (1979) and McFad

den (1989).
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CHAPTER V 

MARGINAL DISPERSION MODELS

In the multivariate mixture models studied in Chapter IV, the random variables 

could be subject to  an extra-variability th a t is due to variation in the unobservable 

latent variables. Hence, no meaningful inference can be made on the causes and 

nature of the dispersion parameters. Also most multivariate mixture models are 

not applicable to  under-dispersed measurements. In this chapter we will introduce 

generalized versions of ordinary binomial and Poisson distributions which account 

for over and under dispersions.

This chapter is organized as follows. In Section V .l, we present a brief intro

duction showing the need to  accommodate over and under dispersion param eters 

in a meaningful way with the help of some examples. In Section V.2, we present 

generalizations of multinomial distributions which are variations of the urn mod

els of Mishra et al. (1992) and Consul (1974). These generalizations are known 

as quasi-multinomial distributions. In Section V.3 we outline the properties of the 

quasi-multinomial distributions and discuss maximum likelihood estimation of the 

parameters. We illustrate the estim ation procedure using optical scanner panel data  

of Paap and Franses (2000) in Section V.4. In Section V.5 we present generalized 

Lagrange family of distributions, which lead to a generalization of standard Pois

son and negative binomial distributions. Generalized Lagrange distributions could 

be used to generate m ultivariate over dispersed Poisson vectors using the thinning 

operator defined on quasi-binomial distributions.

V .l  Exam ples

The observed binary variables in many practical experiments do not fit a binomial 
model and exhibit either much greater or smaller variation than  the regular bino

mial models. This is more evident when the experiments involve human subjects. 

When the human subjects take some decisions a t different times in their lives, the 

consequences have a high impact on the person in charge or on the group as a whole.
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Feller (1968) asserted th a t “..the apparent aftereffect of sampling was a t first misin

terpreted as an effect of true contagion, and so statisticians now speak of contagion 

in a vague and misleading manner.” In the following scenarios the over dispersion 

param eter cannot be treated as nuisance since it is an essential component of the 

population characteristics.

1. System s m onitoring: Consider studies aimed at establishing efficient mon

itoring methods of a complex system comprising of n  components, such as power 

transmissions lines or computer networks consisting of multiple web servers. These 

components dynamically transit between several stages with certain probabilities. 

Each of these transition stages corresponds to a certain level of throughput to  to tal 

system performance. Further, due to  interconnectedness of system components the 

event of any component transiting from one stage to  another affects the transition 

probabilities of others. Therefore the multivariate counts of observed frequencies of 

components in several stages cannot be viewed as sum of independent multinomial 

vectors.

2. The survey data analysis: In several clinical studies the survey question

naire contains multiple questions th a t address identical a ttributes in the study. The 

recorded responses to  these questions are summarized as univariate outcomes, for ex

ample, P ittsburgh sleep quality index (PSQI), SF-25 quality of life index, and many 

more. In many scenarios these indices can be viewed as sum of identical but not 

independent ordinal variables. As a result the ordinary Poisson distributions cannot 

be used for analysis w ithout compromising the strength of inference. Note th a t a t

tentiveness or quality of questionnaire design can be assessed via observed dispersion 

when scale variables are modelled accurately.

3. R eliability analysis: In most m anufacturing applications the final product is 

assembly of various components and each component can be m anufactured using 

one of many multiple designs. The product reliability scores are computed after the 

finished product undergoes several reliability tests, and therefore are subject to  extra 

variability. Any param etric model must incorporate the over-dispersions.

4. Credit risk m odelling: In the analysis of payment default statistics over a

period of time, it was observed th a t the variance is a complex function of the mean. 

The liability of an individual defaulting on a payment is affected by various events.
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As each individual tends to  exhibit different spending habits, their financial strategies 

tend to  change with previous experiences.

The above examples and many more motivate the need to  search for models 

with over and under dispersions. In next section we present classes of multinomial 

distributions th a t accommodate post-sampling effects.

V .2  Q u a s i-M u ltin o m ia l D is tr ib u tio n

Urn Model ( ( p +  1)-Stage Game):

1. Suppose th a t we have (p + 1) urns, such th a t urn i  contains 0* chips labelled i  

for 1 <  i  < p. The (p +  l ) t h  urn contains 0; chips numbered i ,  and a to ta l of

0( ) =  ( E L i  ° i )  chiPs-

2. In stage 0 of the game, a player selects randomly a partition Y  =  y  =  

(?/i, 2/2 , ■ ■ ■ ,Vp)  of m  and adds for each i ,  1 <  i  <  p, j y i  chips labelled number 

0  to urn i ,  and adds the same number of chips labelled number i  to  urn ( p + 1 ). 

Here 7  is a positive integer.

3. In stage j  of the game the player draws -Sj chips with replacement from urn j .  

If any of the chips drawn is labelled 0 the player looses the game, otherwise 

he/she moves on to  stage (j  +  1 ).

4. In stage (p +  1), the player draws m  chips from urn (p +  1).

5. The player is declared winner if the m  chips drawn a t stage (p +  1) matches 

exactly the pre-determined partition y.

The probability of a player winning a game with a pre-selected partition y  is given

P [ W inning | Y  =  y  ] =  { g  ( ^ )  ' }

where 0(.) =  E j= i  Since the distribution of Y  is uniform, the conditional distri

bution of Y  given th a t the player has won is

P [ Y  = y \ W o n }  = — — \ ----- - J m ' - ■ • J T  (  + Vj l  V ' * \  (5.2.1)
B (m , 0, s, 7 ) \ ? / i ! - - -  VP'- V^() +  ^ 7 /  J
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where the normalizing constant B (n , 0, s ,7 ) is defined as

B(mAs,7) = £  { - r ^ n  ( P ^ L Y ~ ’‘

0 — (0i, 02, • • • j 0P) and s =  (si, s2, . . . ,  sp). The distribution (5.2.1) is known as the 

quasi-multinomial distribution. Note th a t equation (5.2.1) is a proper probability 

mass function even if 0 =  (0 1;. . . ,  0P) or 7  are not integers bu t they have to  satisfy 

the constraints

| ( 0 , 7 ) : 0  € and 7  >  m ax(—Bj/m)  j« .

The following re-parameterized version of the probability mass function (5.2.1) is 

convenient because it has fewer parameters.

where nj = Qj/O(.) and 7 * =  7 /0(.). Note th a t 7rl =  1- 

R e m ark s :

1. The function B ( •) reduces to  Abel’s general class of sums when p — 2, see Ri- 

ordan (1968).

2. The above distribution (5.2.2) is not closed under convolutions unless 7 * =  0.

3. The marginal variances of the quasi-multinomial distribution are greater ( less ) 

than  th a t of the traditional multinomial distribution when 7 * >  0 ( <  0). The 

quasi-multinomial distribution reduces to the traditional multinomial distribu

tion with param eters m  and 9  when s =  0  and 7 * =  0 .

S p ec ia l cases:

1. When p — 2, si =  1, s2 =  0, then B (m ,  0 , s , 7 ) =  0{'1(0(.) +  m y)  hence the 

probability mass function (5.2.2) reduces to

P r { Y  =  y ) = (  m] )  m  +  m y r l (<h + ( m - y h r ^  ̂ (5 2 3)
\ y \ { m - y ) \ )  (0 (.} +  m j ) m
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Applying transform ation 7r =  d\/(0(.) +  JT17) and 7 * =  7 /(0(.) +  m 7 ), (5.2.5) 

simplifies to

P r ( Y  = y) =  ^  ^  7r(7r +  y7 *)y-1( l  — 7r — yry*)m~v (5.2.4)

The above mass function was proposed by Consul (1974) and it is known as 

Type I quasi-binomial distribution.

2. W hen p  =  2, Si =  1, s2 =  1, the probability mass function (5.2.2) can be written 

as

P r ( Y = „) =  ( " > )  (5 .2 .5) 

\ v  J  e ' ' ( e ' i  '■

This is known as Type II quasi-binomial distribution, see Consul (1990).

3. Mishra et al. (1992) defined a class of quasi-binomial distributions of dimension 

p = 2 using an urn model scheme. The probability mass function is given by

P r ( Y  =  , )  =  I m  ) +  (5 2 6)

Also for dj =  0 , 1 , 2 , j  =  1 , 2 , . . . ,  (p — 1) and dp — 0 such th a t d( . )  =

Y7j= 1 dj <  m, the joint factorial moments of Y  can be obtained using the recurrence 

relations

a .,(y ) = E { g
l j= i

Y 13'

(Y j-d j) \_

f  m\ \  B  [ m - d (. ) , ( g  +  7 d ) , 7 , ( s - d ) ]

\  (m — d (.))! J B ( m ,0 , j ,  s)

Unfortunately, equations (5.2.7) do not always lead to  closed form solutions for mean 

and covariance of Y  for arbitrary integer vector s. The moment based methods fail 

to  provide quick estimates of 0  and 7 . But closed form representations do exists for 

special cases. For example when s =  1, we have

( p W 1
B ( m ,0 ,7 , 1 ) =  0 ( . ) (0( .) +  m7 ) m~ 1 <

0 = 1
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and the corresponding probability mass function is known as the type II quasi

multinomial distribution or QMD-II. This is given by

™  =  +  (5.2.8)

In next lemma we present the mean and variance covariance m atrix for the type II 

quasi-multinomial distribution.

L em m a  5.1 Let Y  ~  QMD-II(m, 7r , 7 ) and it be a probability mass function. Then

(1) fj, = E (Y ) =  m'K

(2) S  =  Cov(Y) =  7 )(Z)(7r) — 7T7t')

where D (ir) =  diag{-K\ , . . . ,  7rp_i) and

<f(m, 7 ) =  m  — (m  — 1 ) (1  +  my) 1
(m — 2 )!E v n ~
( m  —

k-2 (m — k)\ \ 1  +  m y
7

k-2

Proof: The proof is by induction. P art (1) of the lemma holds trivially if m =  1, 
since Y /s  reduce to  Bernoulli (7r^) random variables and <j> = 1. Next assume th a t 

the (1) holds for m — 1. T hat is for all 7r G [0, l]p and j  =  1 , . . .  ,p, we have

Pj{m  — 1 ,7r, y) =  E (Yj-,  m — 1, 0, y) =  m nj.

As special case of equation (5.2.7) we have the recurrence relation

(5.2.9)

P j ( m , 0 , y) =  E(Y;-;m,7r , 7 ) 
_  m irj(l + j )

(1  +  my) 1 + 7
7Ti +  A

P j{ m -  l,7 r +  ye j , y ) (5.2.10)

It can be easily verified th a t proposition 1. hold for m  by substituting identity (5.2.9). 

This completes proof of 1. Similarly the recurrence relation for second order factorial 

moment is of the form

Tj{m , 7r, A) =  E ( Y j ( Y j  -  1); m, 7r, y)
m (m  — 1 ) 7Ti

(1  +  my)
7 2 (1  +  2 y)

(7Xj +  2 y)
y(m  -  2) (71-j +  3y) 

(1  +  my)

(jTj +  2 y )( l +  ny) 

The solution of above recurrence relation is

r (m  — 2 ,7r +  2y ej, A)

Tj(m, 7 T , 7 )  =  7Tj
y -r  m! yfe 2 (7rfc +  A:y) 

(fn — k)\ (1 -I-ny) fc_1

(5.2.11)

(5.2.12)
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Therefore the diagonal elements of variance of covariance m atrix E is given by

This completes the proof of the lemma.

Lemma 5.1 shows th a t the moments of type-II quasi-multinomial distribution

they are subject to  similar interpretations.

V .3  M a x im u m  L ik e lih o o d  E s tim a tio n

Suppose th a t we have a random sample Y x, . . . ,  Y„ of observations from type-II 

quasi-multinomial distribution. The explanatory variables X i , . . .  , X n can be incor

porated in the model by the relation %  =  e x p (x jj^ ) . Note th a t this setting reduces 

to th a t of multinomial logit discrete choice model of Section IV.4.1 when 7  =  0 . 

The unknown param eters 0  =  (/31}.. .,(3 p, 7 ) can be estim ated by maximizing the 

log-likelihood function

=  Var (Yj)

= EMM ~ 1)) + £«)(! -  EM))
-- m n j( l  — TTj)(f>(m, 7 ) (5.2.13)

Finally the off-diagonals of E is obtained using conditional distributions.

c o v ^ n )

E [n(E «-iu )-ft)l
—m'Kj'Kj(j)(m, 7 ) (5.2.14)

have resemble the moments of the traditional multinomial distribution, and thus

n

L  =  ^ 2  {  [l o s ( m i 0  -  ( m i -  ! )  l o s ( 0 i( ) +  m i l )  -  l o s ( 0 ; ( - ) ) ]
2 = 1

(5.3.1)

which amounts to  solving the following estim ating equations

i  =  l , 2 . . . , p ;  (5.3.2)
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The covariance m atrix of maximum likelihood estimates 0  is where H(@)

is the Hessian matrix. The robust estim ate of covariance m atrix is obtained using 

Fisher information (or E[—H (&)]). The following lemma provides the negative in

complete moments needed for com putation of the Fisher information matrix.

L em m a  5.2 Let Y  ~  QMII(m, t v , 7) and 7r be a probability mass function then

E 13-

E Y j!
i(Y j — (k +  1))!

(7Tj +  Y jj)  

(7Tj + Y ji)

ml
(m  — k)\ 

m\

(7Tj + 777.7) k 7T,-
7Tj +  k j  
1 +  k j

-1

(m — (k +  1 ))! f c  + Y j j ) ' 7T,-

E[(Y) -  l ) ( 7Tj +  Y jj)  *] =  m (l +  7 ) ( 1  +  7777) 1 — 7T.- 1
j

E[(tTj T Yj'j) x] =  -7777(1 +  7)(7Tj + 7) 1 (1 -|- 7777) 1 + K j l

E\Y j (Y j  -  l))(7rj +  Y j 7 )_1] =  777(777 -  1)7Tj(1 + 7777)-1

E  [ ( F i - 1 ) ( ^ '  +  Y i 7 ) - 2 ] =  T777r7 1 ( l  +  7 ) ( 1  +  7T7 7 ) - 1 - 7T- 2

E[F?(F) — l ) ( 7Tj +  l j 7 )

E[Y2(Yj -l)(7Ti + Yi7)

—2l

—2i

—777(777 — 1)7(71̂  +  27)_1(1 +  7777)—2(1 + 27) 

=  777(777 — 1 ) 7T j(7Tj +  2 7 ) _ 1 (1  +  2 7 ) ( 1  +  T777)- 2

=  777(777 — 1 ) 7Tj (1  +  7777)“2

x [777 — 2 +  2(7Tj + 2 7 ) _ 1 (1  +  2 7 )] .

The proof of the lemma is straightforward and it is omitted.

V .4  P a n e l D a ta  A n a ly sis

We illustrate application of the quasi-multinomial distribution using the optical scan

ner panel da ta  on the purchases of saltine crackers by Rome (Georgia) households. 

The data  set consist of 3292 brand choice decisions made by 136 households over a 

two year period. The study included three m ajor national brands namely, Sunshine, 

Keebler and Nabisco. The local brands are collapsed into one category ‘Private ’. 

The information on actual price of brand selected and shelf price of competing brands 

and whether there was display and /o r newspaper feature of brands under study at 

the time of purchase is also recorded. Jain et al. (1994) have analyzed the subset 

of this dataset using random effect multinomial logit model. Recently, Paap and 

Franses (2000) presented an alternative dynamic multinomial probit model which
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incorporates the long-term and short-term  effects of marketing variables differently, 

and assumes the m ultivariate autoregressive tim e series structure for error terms.

Since the household choices tend to  exhibit certain level of long term  brand loy

alties, they undermine the short term  effect of marketing variables. Also the non- 

measurable or error utilities arising from brand choices of single household cannot 

be assumed to be independent of each other. Figure 5.1 is a visual display of the 

number purchases made by households. It shows th a t most households have made 

15-35 purchases, and one household has made 77 purchases in the two years of study. 

Maximum likelihood estimation for the dynamic probit model of Paap and Franses 

(2 0 0 0 ) requires numerical com putation of joint error utilities and it is com putation

ally challenging and may not be reliable.

12 j

w2
osz<D
0)
3OJZ
"5
o.a
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3
Z

8 060 7030 4 0 5 010 20

Number of choices

Figure 5.1: Cracker data: Household frequency plots.

We first artificially create a compact da ta  set. For household i, this compressed 

dataset records purchase frequency of brand j  (yij), along with the frequency of 

display and the frequency of feature (xij2). The average shelf/purchase price 

(Xij3) is also recorded. Table 5.1 has the records of the first 10 households. Initial
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analysis of Table 5.1 suggests th a t Nabisco brand (j  — 3) is m arket leader in terms 

of to tal number of purchases and is more often on display than  its competitors. The 

Keebler brand (j  =  2) seems to  be the costliest. Private brands (j  =  4) are the cheap 

ones and hence account for the largest number of purchases. We can also notice th a t 

Nabisco brand is more consistently featured than  other brands. As some of the 

brands are dominant and more powerful, it would be interesting to  test whether the 

marketing strategies have distinct impact on utility of a brand.

Table 5.1: Cracker Data: Compressed Data of First 10 Household

i j Vij Xij, Xij9 xiis % j Vij Xiji %ij0 Xih
1 1 2 3 0 1.0044 6 1 0 2 0 0.9782

2 0 1 0 1.1125 2 0 1 0 1.1261
3 14 7 0 1.1406 3 5 7 0 1.0875
4 0 0 0 0.8106 4 23 0 0 0.5868

2 1 10 4 2 0.9313 7 1 1 1 0 1.0141
2 2 3 1 1.2150 2 4 5 3 1.1706
3 4 6 1 1.0719 3 12 6 1 0.9918
4 0 1 1 0.6675 4 0 2 1 0.7000

3 1 0 1 0 0.9614 8 1 0 1 0 0.9715
2 0 1 1 1.1243 2 0 1 1 1.1292
3 7 2 0 1.0586 3 26 8 0 1.1173
4 7 2 2 0.6600 4 0 3 0 0.7888

4 1 0 0 0 0.9841 9 1 13 5 1 0.9258
2 0 1 0 1.1479 2 1 1 0 1.1695
3 0 9 0 1.1155 3 4 5 2 1.1563
4 29 0 0 0.5790 4 1 0 0 0.8058

5 1 0 1 0 0.9736 10 1 0 12 1 0.9298
2 10 1 2 1.1079 2 0 0 0 1.1541
3 4 3 2 1.1086 3 39 12 3 1.0771
4 0 1 0 0.6936 4 2 3 1 0.7449

No short-term  cause-effect analysis can be performed using this artificial data  due 

to  loss of dynamic information of actual explanatory variables. However, elementary 

study of long-term im pact of marketing variables and brand utilities and consumer 

loyalty can be quickly performed using the quasi-multinomial distributions.

We present four different versions of the multinomial-logit brand choice models 

to  analyze compressed da ta  by expressing the distributional param eter 9 as function 

of the observed utilites, th a t is, 6ij — exp(x^/^-).
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Table 5.2: Cracker Data: Maximum Likelihood Estim ates

Brand dependent effects
QMD-II Multinomial

Est. SE. a Est. SE a
0 1 0.0196 0.0450 0.0429 -0.1142 0.0255 0 .0 1 2 0

-0.0077 0.1270 0.1367 0.3519 0.0588 0.0631
-3.1810 0 .2 1 1 2 0.2113 -5.9188 0.1234 0.1032

0 2 0.0406 0.0747 0.0676 -0.1086 0.0455 0.0381
0.1148 0.0869 0.0970 0.0865 0.0641 0.0656

-2.9866 0.2150 0.2015 -4.9092 0 .1 0 1 1 0.0938
03 -0.0568 0.0301 0.0287 -0.0984 0 .0 1 1 1 0.0091

0.3074 0.0635 0.0628 0.3017 0.0243 0.0229
-1.6253 0.2219 0.2134 -3.1419 0.0873 0.0737

04 -0.0015 0.0745 0.0729 0.0425 0.0192 0.0225
0.0556 0.0933 0.0873 -0.0713 0.0205 0.0258

-3.8285 0.2825 0.2879 -6 .2 0 0 1 0.0895 0.0974
7 0.0890 0.0107 0.0106 - - -
L -744.0209 -2127.889

Brand independent effects
QMD-II Multinomial

Est. SE. a Est. SE a
0 0.0680 0.0187 0.0168 0.0927 0.0079 0.0054

0.1541 0.0400 0.0387 0.2446 0.0125 0.0131
-0.4205 0 .1 2 0 0 0.1154 -1.6526 0.0466 0.0359

7 1.4852 0.1713 0.1720 -
L -785.7753 -2893.453

The first model allows brand dependent covariate effects and we assume the pur

chase counts T O  of household i, are distributed as QMII(m,i ,  0;, 7 ). The second 

model also allows brand dependent effect but assumes traditional multinomial dis

tribution for the counts.

The th ird  and fourth models assume the covariate effects are brand independent 

(;g i =  02 =  /33 = (34 =  /3). The th ird  model assumes type II quasi-multinomial dis

tribution for the purchase counts, whereas model four uses traditional multinomial 

distribution. Estim ates of the unknown param eters for each model are computed us

ing maximum-likelihood. Table 5.2 contains param eter estimates and their standard 

errors computed using observed and expected Fisher information matrices.

Maximum likelihood estimates for the first and second model suggest th a t the
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utilities of ‘Private’ brands are most sensitive to  price variation, whereas the adverse 

effects of price increase on utilities of Nabisco cracker are minimal. The log-likelihood 

statistics indicate th a t both  models 2 and 4 are adequate. Also the first model 

indicates th a t effect of display is statistically insignificant for Private brands. The 

positive estim ate of 7  can be attribu ted  to  brand loyalty. The question whether the 

effect of marketing variables is brand dependent can be addressed by testing the 

hypothesis H 0 : j31 =  /? 2 =  /33 =  /34 =  /3 using log-likelihood estimates of model 

1 and 3. The chi-squared value of likelihood ratio test is 83.5088 with p-value less 

than  0.00001. Hence, we conclude th a t the first model is the most adequate model 

for analysis of cracker data.

In the next section we introduce families of generalized Lagrange distributions 

(GLPD). These families include distributions th a t can be considered as extensions 

of standard Poisson and negative binomial distributions.

V .5 Lagrange D istributions

Definition 5.1 Let D be an open set in  R  and C  be a subset o f R. A complex 

function G : D —>• C is said to be analytic in D i f  for each point t0 £ D there exist 

an open subset D* o /D  such that fo r  each point t  6  D*, G (t) can be expressed as a 

power series in (t  — to).

The following theorem, known as the Lagrange inversion formula, is the basis for the 

generalized Lagrange probability distributions. See Dieudonne (1971).

Theorem  5.1 Let G be any analytic function in  D =  [—r, r]; (r >  0) such that 

M  =  sup |£?(t)| and C  =  (—r /M ,r /M ) .  Then for each point u  G C  there exist a
\ t \<r

unique analytic function G* : C  —> (—r, r) such that t  =  (?*(«) is a solution of the 

equation

t — u G{t) =  0 . (5.5.1)

Furthermore, for each analytic function H  in  D and for all u  € C  we have
OO

H ( G ' ( u ) )  =  H (  0 ) + £
k\

k = 1
_dtk~l \  dt

(5.5.2)
J t=o
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Generalized Lagrange families of distributions are defined using the well known fact 

th a t the probability generating functions of non-negative integer valued discrete ran

dom variables are analytic by definition and their convolutions are yield probability 

generating functions.

Therefore, for given probability generating functions G  and i f ,  ( i f  © G*)(u) =  

H(G *(u)) is also a probability generating function of random variable Y  with prob

ability mass function

P (Y  =  *) =  £,

where G*(u) =  u G(G*(u)).

A; =  0 , 1 , . . .  (5.5.3)
J t=o

Jain and Consul (1971) defined generalized negative binomial (GNB) distribution 

as a special case of a Lagrange distribution by compounding binomial random vari

ables. They have shown th a t the negative binomial and binomial distributions are 

special cases of GNB. Consul and Jain (1973) presented the following generalization 

of Poisson distributions.

D e fin itio n  5.2 The count random variable Y  is said to be distributed as generalized 

poisson distribution denoted as G P (A, 7 ), i f  the probability mass function is given by

P ( Y  = r ,g ,  A) = MA +  i 7 )J- 'e x p ( —(A +  j 7 )) i = Q 1 2  ( 5 5 4 )
3'-

The generalized Poisson distributions possess some of the most desired properties 

such as multiplicative additivity, unimodality and log-concavity and closed form rep

resentations of moments. A generalized Poisson variate (GP(A, 7 )) can also be viewed 

as sum of N  independent and identically distributed variables, where IV is a Pois

son random variable. This characterization makes generalized Poisson distribution 

an ideal candidate for modelling various queueing theory and actuarial science pro

cesses.

T h e o re m  5.2 Let X  be a generalized Poisson random variable with parameters 

(9, A) , 0 <  a  < 1. Let Y  be such that the conditional distribution of Y  given 

X  = n  is type I I  Quasi-binomial with parameters (n ,a 9 ,(  1 — a)9, A). Then the 

unconditional distribution o f Y  is GP (a9, A).
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Devroye (1989) has presented a modification of the acceptance-rejection algo

rithm  for generating random variables from generalized Poisson distributions. This 

break-through was followed by Devroye (1992), wherein the branching m ethod and 

uniform bound methods were tailored to generate random variables from several 

classes of Lagrange distributions. Using the derivations of higher moments of gener

alized distributions described in Consul and Shenton (1972) and generalized thinning 

operators based on Theorem 5.2, it is possible to replicate the asym ptotic analysis 

of Chapter III for over-dispersed count data. We could also construct multivariate 

generalized Poisson distributions using the copulas described in C hapter IV. These 

will be pursued elsewhere.
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CHAPTER VI 

SUMMARY

In this thesis we presented an in-depth study of the statistical analysis of longitudinal 

and clustered data. Traditionally, the multivariate Gaussian distribution has been 

adequate when the data  is continuous. But in recent years numerous applications 

have arisen where the longitudinal or clustered da ta  are discrete. Unfortunately, mul

tivariate discrete distributions are much more complex than  the multivariate Gaus

sian distribution. Furthermore, many of these discrete distributions are intractable 

in the sense th a t implementing maximum likelihood estim ation could be difficult 

and computationally very intensive. As an ad hoc solution several moment based 

methods, based on the optimal theory of estim ating equations, were suggested. In 

this thesis we have studied these methods including the Gaussian, modified Gaussian 

(MG) estimation, and quasi-least squares (QLS) estimation procedures. We derived 

the asymptotic distributions of the estimates, and compared relative performance of 

these methods using simulations, primarily for correlated Poisson count data.

Although moment based methods are useful for a quick analysis, they are not op

tim al and as efficient as the likelihood based methods. In this thesis we have studied 

fully specified discrete distributions constructed using copulas. These distributions 

include models based on normal copulas, probit models, m ixture models, probit- 

normal models, Poisson log-normal models, and discrete choice models, in particular 

multinominal logit and probit models. Calculation of maximum likelihood estimates 

and the Fisher information for these models requires com putation of the multivariate 

normal probabilities, and we discussed several efficient algorithms for those compu

tations. For the multivariate probit and probit-normal models, we have derived 

expressions for software implementation of the maximum likelihood estimates.

For modelling da ta  th a t is subject to over or under dispersions, we have introduced 

the quasi-multinomial and generalized Lagrange families of distributions. These dis

tributions can be used to  draw meaningful inferences on the strength of population 

dynamics. We have implemented maximum likelihood for the quasi-multinomial dis

tribution and tested it on a real life data  dealing with multiple purchase decisions 

and marketing predictors of some products.
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APPENDIX  

THE COLLECTION OF SAS PROGRAMS

A .l  Subroutines for M ultivariate Poisson Sim ulations

/ * ----------------------------------------------------------------------------------------------------------------* /

/* The following subroutine simulates nsims multivariate Poisson */ 
/* obs from given covariance matrix Sigma using Sim’s algorithm */ 
/*----------------------------------------------------------------------- * /

START SIMPOI(seed, Sigma, nsims);
RUN Decompose(Sigma, alpha, lambda, Error, m ) ; 
if (Error < 0) then do;

print "Simulations Failure"; 
return(Error); 

end;

Z = J(m, nsims, 0); 
do k = 1 to nsims;

X = J(m, 1, 0); 
do j = 1 to m;

do i = 1 to j-1;
if(X[i] & (alpha[j,i] > 0 ) )  then 

Z [j ,k] = Z [j ,k] +
RANBIN(seed, X[i], alpha[j ,i]);

end;
X [j] = RANP0I(seed, lambda[j]);
Z[j,k] = Z[j,k] + X[j] ; 

end; 
end;
return(Z);

Finish SIMP0I;
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Start Decompose(Sigma, alpha, lambda, Error, m ) ;
m = nrow(Sigma); alpha = I(m); lambda = J(m, 1, 0); Error=l; 
lambda[1] = Sigma[1,1]; 
do j = 2 to m;

alpha[j,l] = Sigma[l,j]/lambda[1];
if((0 > alpha[j,l]) I (alpha[j,l] > 1 ) )  then Error = -1; 
do i = 2 to (j-1); 

do k = 1 to (i-1);
alpha [j,i] = alpha [j,i] +

alpha[i ,k] *alpha[j ,k] *lambda[k] ;
end;
alpha[j,i] = (Sigma[i,j] - alpha[j,i])/lambda[i]; 
if((0 > alpha[j,i]) I (alpha[j,i] >1) )  then Error = -1; 

end;
do k = 1 to (j-1);

lambda[j] = lambda[j] + alpha [j ,k] *lambda[k] ; 
end;
lambda[j] = Sigma[j,j] - lambda [j] ; 
if(lambda[j] <= 0) then Error = -2; 

end;
Finish Decompose;

/ * -------------------------------------------------------------------------------------------------------------------* /

/* This subroutine computes first four central moments of Poisson */
/* random variables.The functional arguments are alpha and lambda */
/ * ------------------------------------------------------------------------------------------------------------------* /

Start Moments(alpha, lambda);
m = nrow(lambda); dim = m+m*(m+l)/2; V = J(dim, dim, .);
/* Second order moments */ 
do i = 1 to m; 

do j = 1 to i;
value = alpha[Unique(iI|j),]; value =value[#,]*lambda;
V[i,j] = value; V[j,i] = value; 

end;
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end;
/* Third order moments */ 
do i = 1 to m; 

do j = 1 to i;
indexl = m + i*(i-l)/2+j; 
do k = 1 to m;

value = alpha[Unique(iI IjI Ik),]; 
value = value[#,]*lambda;
V[indexl, k] = value; V[k, indexl] = value; 

end; 
end; 

end;
/* Fourth order moments */ 
do i = 1 to m; 

do j = 1 to i;
indexl = m + i*(i-l)/2+j; 
do k = 1 to m; 

do 1 = 1 to k;
index2 = m + k*(k-l)/2+l; 
if (indexl >= index2) then do;

value = alpha[Unique(i|Ij||k||1),]; 
value = value[#,]*lambda;
V[indexl,index2] = value + V[i,k]*V[j ,1] 

+ V[i,l]*V[j ,k] ;
V[index2,indexl] = V[indexl,index2] ; 

end; 
end; 

end; 
end; 

end;
return(V);

Finish Moments;
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A .2 To Generate Frechet Bounds Plots for Poisson Variables

/ * -----------------------------------------------------------------------------------------------------------------

Let Y1 and Y2 be a random variables with marginal Poisson 
distributions with means lambdal and lambda2. This program 
computes the correlation coefficient when joint distribution 
of (Y1,Y2) is Frechet upper and lower bounds copula.
Finally, this program produces Figures 4.1 and 4.2 of thesis.

 * /

°/0let Dutdir=%str (C:\Deepak\Paper 4);
°/0let xmin=8.0;
°/.let xmax=8.0;
"/.let xstepsize = 2;
°/0let dmin =-10.0;
'/.let dmax = 10.0;
70let dstepsize = 0.05;
'/.let beta = °/,sysfunc(log(2));
%let epsilon=0.le-9;
'/.let xpoints = '/.sysevalf (°/.sysfunc

(abs(°/0sysevalf((&xmin - &xmax) / &xstepsize) -1))); 
libname OutLib "&0utdir";

data OutLib.FrechetPoisson;
do xl = &xmin to fexmax by &xstepsize; 

lambdal = exp(xl*&beta); 
do d = &dmin to fedmax by ftdstepsize; 

x2 = d+xl;
logratio = (x2-xl)*&beta; 
lambda2 = exp(x2*&beta);
CovU = 0; CovL = 0;
yl = 0; SI = 1; logfl = -lambdal;
do while(SI > feepsilon);

SI = SI - exp(logfl);
y2 = 0; S2 = 1; logf2 = -lambda2;
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do while(S2 > feepsilon);
S2 = S2 - exp(logf2);
CovU = CovU + min((l-Sl)*S2,(1-S2)*S1);
CovL = CovL -  min((l-S2)*(l-Sl),Sl*S2); 
y2 = y2+l;
logf2 = logf2 + log(lambda2/y2);

end;
yl = yl+1;
logfl = logfl + log(lambdal/yl) ;

end;
CorrU = CovU/(sqrt(lambdal*lambda2));
CorrL = CovL/(sqrt(lambdal*lambda2)); 
output;

end;
end;
drop CovU CovL logfl logf2;

run;

data frechet;
set OutLib.FrechetPoisson;
format lambdal best6.5 lambda2 best6.5;

run;

goptions reset=all gaccess=gsasfile gunit=pct htitle=6
htext=3 vorigin=Oin horigin=Oin ftext=swiss ftitle=swissb
colors=(blue black red green yellow cyan violet pink brown orange 
cyan) cback=white hsize=7.5in vsize=6in device=pslepsfc autofeed;

'/.macro def ineSymbols (points);
‘/.do j = 1 ‘/.to ftpoints;

symbol&j interpol=none value=dot;
'/.end;
‘/.mend def ineSymbols;
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%defineSymbolsC&xpoints);

axisl color = black order=(-7 to 7 by 2)
label = (color=black h=3 font=swissb "log" font=cgreek "(12/11)"); 

axis2 color = black order=(0 to 1 by 0.25) 
label = (a=90 h=3 font=cgreek "a"); 

legendl label=(h=3 color=black font=cgreek "11") 
value=(h=3 color=black font=swissb); 

filename gsasfile "&0utdir\upper.ps"; 
proc gplot data=frechet;

plot CorrU*logratio=lambdal / haxis=axisl vaxis=axis2
legend=legendl;

run; 
quit;

filename gsasfile clear; filename gsasfile "&0utdir\lower.ps"; 
axis2 color=black order=(-l to 0 by 0.25) 

label = (a=90 h=3 font=greek "a"); 
proc gplot data=frechet;

plot CorrL*logratio=lambdal / haxis=axisl vaxis=axis2
legend=legendl;

run; 
quit;

A .3 To Study Latent Correlations U sing Bivariate Norm al Copula

/ * -------------------------------------------------------------------------------------------------------------------

Let Y1 and Y2 be a random variables with marginal Poisson 
distributions with means(lambdal) and (lambda2). Also let 
the joint pmf of (Y1,Y2) is defined using bivariate normal 
copula C(.;rho). For fixed value of lambdal=5 and variable 
values of lambda2 and rho, the following program computes 
the correlation coefficient and bias of pmf estimate 
under continuity approximation.
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Finally, this program produces Figures 4.3 and 4.4 of thesis.
 * /

%let outdir=°/0str (C:\Deepak\Paper 3\Count) ;

data Plotdata; 
do rho = -0.95 to 0.95 by 0.05; 

const = l/(l-rho**2); 
lambdal = 5.0;
do p = 0.05 to 0.95 by 0.05; 

lambda2 = p/(l-p)*lambdal; 
bias = 0; mse = 0; cov = 0;
yl = 0; G1 = 0; fl = exp(-lambdal); bl = .M;
do while(1-G1 > 0.1e-7);

al = bl; G1 = G1 + fl; bl = PROBIT(Gl); 
y2 = 0; G2 = 0; f2 = exp(-lambda2); b2 = .M; 
do while(1-G2 > 0.1e-7);

a2 = b2; G2 = G2 + f2; b2 = PR0BIT(G2); 
fl2Star = fl*f2*sqrt(const)*

exp(-0.5*const*((rho**2)*(bl**2 + b2**2)-2*rho*bl*b2)); 
if min(yl, y2) then

f12 = (PR0BBNRM(bl, b2, rho) + PR0BBNRM(al, a2, rho))
-(PR0BBNRM(al, b2, rho) + PR0BBNRM(bl, a2, rho));

else if (max(yl, y2) = 0) then fl2 = PR0BBNRM(bl, b2, rho); 
else if yl then

f12 = (PR0BBNRM(bl, b2, rho) - PR0BBNRM(al, b2, rho)); 
else f12 = (PR0BBNRM(bl, b2, rho) - PR0BBNRM(bl, a2, rho)); 
bias = bias + f12*(f12Star-f12); 
cov = cov + f12*(yl*y2); 
y2 = y2+l; f2 = f2*lambda2/y2; 

end;
yl = y1+1; fl = fl*lambdal/yl; 

end;
alpha = (Cov - Iambdal*lambda2)/sqrt(lambdal*lambda2);
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output; 
end; 

end;
drop const al a2 bl b2 G1 G2 fl f2 yl y2; 

run;

data Plotdata;
set Plotdata end=last; 
if (lambda2 < 40) then output; 
if last then do;

alpha=-l; rho=-l; lambda2=0; bias=-0.09; output; 
alpha=l; rho=l; lambda2=40; bias=0.01; output;

end;
run;

goptions reset=all gaccess=gsasfile gunit=pct htitle=6 htext=3 
vorigin=0in horigin=0in ftext=swiss ftitle=swissb cback=white 
hsize=7.5in vsize=6in device=pslepsfc autofeed;

filename gsasfile "&outdir\relation.ps"; 
proc g3d data=Plotdata;

plot rho*lambda2=alpha / grid rotate=90 xticknum=5 yticknum=5
zticknum=5 zmin=-l zmax=l 
cbottom=blue ctop=green;

run; 
quit;

filename gsasfile "&outdir\bias.ps"; 
proc g3d data=Plotdata;

plot rho*lambda2=bias/ grid xticknum=5 yticknum=5 zticknum=5
cbottom=blue ctop=green;

run; 
quit;

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



1 2 0

VITA

Deepak Mav

Departm ent of M athematics and Statistics 

Old Dominion University 

Norfolk, VA 23529

E d u c a tio n
Ph.D. Old Dominion University, Norfolk, VA. (May 2005)

Major: Com putational and Applied M athematics (Statistics)

MS Old Dominion University, Norfolk, VA. (May 2004)

Major: Com putational and Applied M athematics (Statistics),

MS Indian Institu te  of Technology, Mumbai, India. (August 1999)

Major: Applied Statistics and Informatics,

BS University of Mumbai, Mumbai, India. (June 1997)

Major: Statistics.

E x p e rie n c e

Biostatistics G raduate Assistant (05/2001 - 03/2003 & 12/2003 - 01/2005)

Eastern Virginia Medical School, Norfolk, VA

Teaching Assistant (08/1999 - 05/2001)

Old Dominion University, Norfolk, VA

P u b lic a tio n s

M av , D . and Chaganty, N. R., (2004) “Bivariate Models for Identifying  

Differentially Expressed Genes in Microarray Experim ents”, Journal of Statistical 

Theory and Applications, 3(2), 111-124.

Chaganty, N. R. and M av , D ., “A sym ptotic  behavior o f  statistical m ethods for the 

analysis o f correlated Poisson outcomes”, under preparation.

Typeset using DTgX.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.


	Statistical Analysis of Longitudinal and Multivariate Discrete Data
	Recommended Citation

	tmp.1559910395.pdf.iMcyu

