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ABSTRACT 

SEMI-PARAMETRIC LIKELIHOOD FUNCTIONS FOR 

BIVARIATE SURVIVAL DATA 

S. H. Sathish Indika 

Old Dominion University, 2010 

Director: Dr. Norou Diawara 

Because of the numerous applications, characterization of multivariate survival dis

tributions is still a growing area of research. The aim of this thesis is to investigate 

a joint probability distribution that can be derived for modeling nonnegative related 

random variables. We restrict the marginals to a specified lifetime distribution, while 

proposing a linear relationship between them with an unknown (error) random vari

able that we completely characterize. The distributions are all of positive supports, 

but one class has a positive probability of simultaneous occurrence. In that sense, we 

capture the absolutely continuous case, and the Marshall-Olkin type with a positive 

probability of simultaneous event on a set of measure zero. In particular, the form of 

the joint distribution when the marginals are of gamma distributions are provided, 

combining in a simple parametric form the dependence between the two random 

variables and a nonparametric likelihood function for the unknown random variable. 

Associated properties are studied and investigated and applications with simulated 

and real data are given. 
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CHAPTER I 

INTRODUCTION 

1.1 PROBLEM DESCRIPTION 

It is in the nature of many processes that are linked that a number of predictors 

must be considered simultaneously in modeling. Assumptions made in the structural 

analysis also effect the quality of the procedure and outcome result. The exponential 

family of distributions is very useful and is often used for modeling phenomena in 

life testing, reliability, and other types of engineering applications. Bivariate expo

nential distributions, with exponential marginal densities have been known in the 

literature for some time. However, the majority of these models have been theo

retically motivated rather than emphasizing applicability. A notable exception was 

the "fatal shock model" of Marshall and Olkin [32], where the model links two non 

negative random variables (rv's) with an unobservable latent random variable (rv) 

via the proportional hazard model. It is also important to note that the modeling 

and analysis based on the classical bivariate normal distribution is well established 

and widely used. However, the bivariate normal theory is inadequate for modeling 

positive support distributions. Hougaard [19] discusses the theoretical advantages of 

normal distribution theory as well as the situations where positive support distribu

tions are of relevance. Therefore, many bivariate distributions such as exponential, 

Weibull and gamma, have been proposed in the literature to study many diseases or 

behavioral problems, with associated non negative rv's. Traditionally, the two vari

ables in a system or model have been assumed to be independent therefore ignoring 

the dependence between these variables. This is termed as the "working indepen

dence" assumption in Lawless [29]. We will show, using Mean Square Errors, Bias, 

and other objective criteria, that the independence assumption comes at a greater 

cost than the proposed procedure in estimation of the parameters and in the model 

validity as the estimates lose asymptotic properties. 

The problem that describes the association in disease occurrences has been dif

ficult to explain. Many diseases and events are linked, and interrelated in their 

action/reaction. If one considers pairs of organs, there are analytic difficulties in 

describing the joint distribution of the two disease events. One reason is that the 
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distribution has a discrete and continuous part. The discrete part is motivated by the 

fact that the two diseases can occur exactly at the same time, (i.e. simultaneous) or 

proportional to each other. The continuous part described the association between 

the two rv's with positive continuous common dependence on an unobserved rv. The 

analysis of bivariate data then presents difficulties when one has to incorporate the 

discrete and continuous parts, and find estimates. Various models of associations be

tween occurrence of events are motivated (Iyer and Manjunath [22]). In the medical 

field, such phenomena is known as co-morbidity condition, where many diseases can 

occur together. For example, diabetes, that affects millions of people in the world, 

can lead to blindness, kidney failure, stroke, amputations and an increased risk of 

cardiovascular disease. It occurs when the body does not produce enough insulin or 

cannot properly utilize it. This makes it difficult for blood sugar to enter the body 

cells, and it is the seventh leading cause of death in the United States. Other fa

mous example is that of asthma and HIV/AIDS which can occur together with other 

diseases. Recent studies have confirmed that asthma-related mortality is increasing. 

Patients with asthma represent a considerable challenge for physicians because of 

high risks of asthma related morbidity and mortality as reported in Holgate et al. 

[17], and in Crane et al. [9] for examples. It is then of interest to develop a model dis

tribution that can be used to study the growth and interrelationships between many 

diseases and phenomena. In that sense, such analysis has also potential applications 

in HIV/AIDS and other diseases as well. Attention Deficit Hyperactivity Disorder 

(ADHD) is another example of disease that does not travel alone. Usually depression, 

anxiety, unconducive behavior, are other conditions found during or after diagnosis 

of ADHD. Our methods will have applications in this field also. In the past, anal

ysis of co-morbidity has been done using the multivariate normal distribution, and 

assuming independence between the simultaneous occurring events. Each of those 

events can be described in terms of lifetime distribution. However, because in such 

problems, the response variables and the error models have only positive support 

and non-normal behavior (such as asymmetry), the multivariate normal theory fails. 

Hougaard [19] discusses the cases where the multivariate normal model is not ap

propriate. The approximation to normal theory is also not reliable since there is no 

primarily large data. Optimal parameters need to be developed, and the diabetes ex

ample is one case that shows the importance of detailed description, characterization 

of the inter-relationship between events. Data transformation to better approximate 
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with normal distribution is not appropriate if a more suitable theoretical model can 

be found, and/or the sample sizes are not large enough. Accordingly, our goal is 

to establish a large and flexible class of bivariate gamma distribution models that 

contain both absolutely continuous and discontinuous distributions on the positive 

hypercube. We consider the class of bivariate distribution functions for two observed 

dependent events, linked through an unobserved rv. A linear relationship is con

sidered between the two events first with a nonzero probability of simultaneous or 

proportional occurrence. The discontinuous part provides a great advantage as there 

are situations where two events occur at the same time or where one event is propor

tionally related to the other event. All these models will have applications in survival 

and reliability analysis, and they will allow us to study the growth and the relation

ship between diseases. The study of interrelationship between various diseases will 

involve developing a linear model among positive rv's with a random effect. The es

timation of the parameters associated with the rv's will be given. The estimation is 

computationally intensive, and we propose to develop computational methods using 

algorithm to handle this problem. Thus, developed bivariate probability models and 

innovative computing tools will enable us to understand the growth and interrela

tionships between events that can occur simultaneously or linearly. Through these 

models and their analysis, we will be able to compute more accurately the probability 

of survival of an individual when suffering from related disease events. 

1.2 LITERATURE R E V I E W 

Many authors have considered the univariate exponential distribution in model

ing phenomena in life testing, reliability, and other types of engineering applications. 

The exponential rv is nonnegative and has desirable properties such as memoryless-

ness and constant hazard function. The need for bivariate/multivariate models arise, 

whenever there is the need to model two or more variables in a system. But in many 

analysis, these variables were assumed to be independent. For example in queueing 

theory applications the inter arrival times and the service times were traditionally 

assumed to be independent. This is not a realistic assumption particularly in packet 

communication networks. Also in reliability analysis, the failure of one component 

in a multi component system influences the lifetime of the other component(s). 

Marshall and Olkin [32] introduced their classical bivariate exponential model, 
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with exponential marginal densities, in which they considered the case where one 

component of a two component system fails after receiving a fatal shock. They termed 

this as the "fatal shock model". It is assumed that the occurrence of shocks to these 

two components are governed by three independent Poisson processes. The Poisson 

processes Zi(t;X\), Z2{t; A2) and Z\i{t\\\2) governs the shocks to the first compo

nent, shocks to the second component and the simultaneous shocks to both compo

nents. Subsequently, many authors have developed bivariate/multivariate models to 

account the dependencies in a system model. Steel and Roux [46] have considered 

the lifetimes of the two components C\ and C2 operating in a system. These two 

components C\ and C2 are subjected to shocks and it is assumed that C\ fails after 

receiving h shocks and C2 fails after receiving I shocks. The occurrence of the shocks 

in the two components, C\ and C2, are governed by a Poisson process with parame

ters 1/ai and l /a2, respectively. If C\ fails in the first instance, then it is assumed 

that the occurrence of the subsequent shocks in C2 is governed by a Poisson process 

with parameters A2/a2, whereas, if C2 fails in the first instance, then it is assumed 

that the occurrence of the shocks in C\ is governed by a Poisson process with pa

rameters Ai/ai. Mathai and Moschopoulos [35] discussed two cases of applications 

of their multivariate gamma. The first case is where a fc-variate system (Zi,..., Zk) 

is subjected to disturbances such that the new system is (Z\ +e\,..., Zk + £k), where 

Zj's and e/s are mutually independent gamma rvs. The second case is where the 

rv's (Zi,..., Zk) represent the runoffs to a dam from k different streams and the new 

random components, {Z\ + S\X,..., Zk + 6kX), where 5j's are constants and X is 

a new gamma rv which is independent of {Z\,..., Zk) and represents the variation 

in the dam from rainfall from the catchment areas. Mathai and Moschopoulos [36] 

also introduced a new form of multivariate gamma that can be applied in reliabil

ity and stochastic processes where partial sums of independent positive rv's are of 

importance. Csorgo and Welsh [10] reiterated the need of bivariate distributions 

that can be used to model the failure of paired components such as aircraft engines, 

paired organs such as eyes, kidneys while developing a test for the Marshal-Olkin 

distribution. 

1.3 SOLUTION METHODOLOGY 

Using likelihood methods, our aim is to develop multivariate probability mod

els and find tools to quantify the interrelationships between various events that can 
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occur simultaneously in human beings during development or across the span of a 

related diseases and events process. Through these models and the related statistical 

analysis, more accurate computation of the probability of survival of an individual 

will be given when suffering from many interrelated diseases or developing significant 

events in individuals. The model parameters will be estimated and their improve

ment from the working independence models will be assessed. Old approach based 

on the working independence leads to unreliable estimates, which may have particu

larly grave consequences in the case of assessing co-morbidity. The alternative is to 

adopt a general class of distributions which is flexible and analytically tractable in 

describing the related types of events. The new approach we propose offers consid

erable insight in understanding the relationship between these related events. The 

interaction between related events is taken into account, hence including the stochas

tic processes highly non-Gaussian and computationally challenging. Another focus 

is on getting efficient estimation in model parameters with an emphasis on non-

and semi-parametric regression models, on bivariate models with partial knowledge 

about the marginals. In that sense, fully imputed estimators will be studied. We 

show that our methodology suggests that the joint estimatior procedure is typically 

better than the available estimator which only assumes independent events. We also 

show that fully implemented model related estimators will be more efficient than the 

proposed ones from independence assumption. The work on bivariate models will 

deal with fine-tuning results for known and equal marginals obtained so far, and on 

extending such results to more general models including those in which the marginal 

distributions are linked through a parameter. 

1.4 ORGANIZATION OF THE DISSERTATION 

In this dissertation we consider two rv's X\ and X2 which have specified marginal 

distributions. A linear relationship is defined between them with the aide of an 

unknown latent rv, Z. We next investigate the bivariate density with a non-zero 

probability of simultaneous occurrence. More precisely, we set 

X2 = aX\ + Z, where a > 0, is a fixed constant. (1) 

In that sense, there is a non zero probability of simultaneous or proportional oc

currence on a set of measure zero. Carpenter and Diawara [6] described the forms of 

the parameters associated with X\ and X2 when these latter are of the exponential 
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type distributions. In this dissertation, we extend the result for the gamma type 

distributions. 

In Chapter III, the mean of Z is obtained by taking the difference of X2 and 

aX\ The sum of independent distribution is used to describe the bivariate model. 

To that end, Chapter IV describes such sums including the case where distributions 

are discrete and continuous. Properties of the random sum are presented and will be 

relevant in subsequent chapters. Chapter V describes the bivariate model when the 

marginal distributions are gamma, Weibull and exponential. Having a direct known 

density allows one to develop simulated results where parameters can be verified. 

Applications with simulated and real data are then presented. 
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CHAPTER II 

BACKGROUND AND PRELIMINARIES 

In this chapter, we review the mathematical concepts and the notations that 

will be used in the rest of the thesis. We review the univariate gamma and Weibull 

distributions (See Johnson and Kotz [23] and Casella and Berger [7] , the multivariate 

extensions of those distributions, the notion of Laplace transforms (See Feller [14]). 

Also the application of the Dirac delta function in Statistics (See Au and Tarn [3], 

and Khuri [26]) is reviewed. 

II. 1 UNIVARIATE GAMMA AND WEIBULL DISTRIBUTIONS 

Positive skewed distributions with nonnegative support occur quite often in prac

tical applications such as in reliability and survival analysis. The gamma family of 

distributions is one such with a heavy right tail. It is flexible and widely used in 

reliability and survival analysis. The univariate three parameter gamma distribution 

denoted here as Ga(/j., A, a), also known as Type III of distributions in the Pearson's 

system of distributions. It's probability density function (pdf) is denned as: 

fx(x;n,\<*) = ~ ( * - ^ r - V A ( x - M ) / [ ^ o o ) ( x ) , (2) 

where 

• fi G R, A > 0, and a > 0 are the location, scale and shape parameters, 

respectively. 
/ •oo 

• r (a ) = / ta~1e~tdt is called the gamma function. 
Jo 

• when a = 1 and /x = 0, the gamma reduces to the simple exponential dis

tribution with parameter A. 

• when a is an integer value, the gamma distribution is also called the Erlang 

distribution. Barlow and Proschan [4] present interesting applications of the 

Erlang distributions. 

Sometimes (2) is parameterized as a function of 1/A instead of A. In this disserta

tion, we will use the parametrization Ga{p,, A, a). In the next section, the properties 
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of this distribution will be described. Johnson and Kotz [23] gives a comprehensive 

account of this distribution, including its characterization and estimation of its pa

rameters. The two-parameter gamma distribution with location parameter, ^ = 0, 

scale parameter A and shape parameter a, is a particular form of (2). Here also we 

denote this as Ga(X, a). It's pdf is denned as: 

fx(x- A, a) = -^-x^e-^Ip^x), A > 0, and a > 0. (3) 
1(a) 

FIG. 1: The graph of the gamma pdf with fi — 0: diamond A = 0.5, a = 0.5; asterisk: 
A = 0.5, a = 1.5; line: A = 0.25, a = 2.0. 

The shape parameter a explains when the hazard function is increasing (a — 1 > 

0), decreasing (a = 1), or constant (a = 1). The kth moment of (2) is: 

/•oo 

E{Xk) = / xkfx(x;n,\,a)dx, 
J'n 

Xa 

T(a) 
/ x^x-fi^e-^-^dx. 

J u 
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By change of variables, we get 

= A4)SC) (A" )T( t+a- ! )-
In particular, the first and the second moments are: 

E{X) = ^ + M&nd 
A 

2 q ( q + l ) 2/iQ 2 

M-^J = — ^ — + — + //. 

The A;*'1 moment of (2) can also be written as: 

Therefore, when fi = 0, 

£(Xfc) = 

? . 

fc, _ T(k + a) 
XkT(a) ' 

Therefore, the expected value and the variance of the three parameter gamma dis

tribution in (2) are: 

E(X) = ^ + n, and Var(X) = ~, 

respectively. 

The cumulative distribution function (cdf) and the survival function are as follows: 

FX(X) = r at) 
J u, 

dt = y(a,\(x-fj)) 
T(a) ' 

Sx(x) = 1-Fx(x), 

where ^(a,x) = / ta~1e~tdt is the incomplete gamma function as in Casella and 
Jo 

Berger [7]. 

With respect to the model denned in (1), equating the moment of Z as the 
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difference of the moments of X2 and aX\ will illuminate the unknown parameters of 

Z. 

The gamma pdf is closed under convolution provided the scale parameter A is 

common to each of the independent gamma rvs. It is also closed under scalar mul

tiplication. Specifically, if X ~ Ga(/j,, A, a), then Y = cX ~ Ga(cfx,-,a), for all 

c > 0. In particular, consider the rv X with [i = 0 and a = 1. It's pdf is: 

fx(x;X) = Xxe-XxI[0!Oo)(x). (4) 

The pdf in (4) is called the exponential pdf. Now consider the transformation 

Y = X~e, j3 > 0. Y is called Weibull rv and its pdf is: 

fY(y; A,/3) = A e " ^ V " 1 = W V0~l e " V , V > 0. (5) 

The Weibull distribution is also another example of a commonly used lifetime 

distribution. A rv is called stable (Feller [14]) if it can be written as a sum of 

independent copies of that same family distribution. Figure 2 describes the Weibull 

pdf for different parameter values. 

i 

0.8-

0.6 

density 

0.4 

0.2 

0 
0 2 4 6 8 10 

y 

FIG. 2: The graph of the Weibull pdf diamond Ai = 1.25, A = 1.5; asterisk: A2 = 1.5, 
/?2 = 0.5; line: A3 = 1.75, /33 = 0.5. 
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The kth moment of (4) is: 

/•OO 

E(Yk) = / ykfY(y;\P)dy, 
JO 

OO 

= A/3/ yP+^e-^dy. 
/o 

By change of variables we get 

E(Yk) = ^ j T > " - V ' dt, 

Srda 
Afe/£ ^ p 

In particular, the first and the second moments are: 

E ( y ) = A W r ( 1 + ^ ) ' ' m d 

E '̂ = ^ r H > 
Therefore expected value and the variance of the two parameter Weibull distribution 

in (5) are: 

E{Y)=WAI+-^ and 

respectively. 

r [ i + | ] - < | r [ i + *)}' 

II.2 T H E MULTIVARIATE G A M M A 

The random vector components corresponding to a multivariate lifetime distri

bution have positive support distributions. There is a difficulty in generalizing the 

univariate gamma distributions to the multivariate case. There should be a mecha

nism to derive a distribution that can be categorized as multivariate gamma. In other 

words, the dependence structure of the rv's have to be specifically defined. Different 

approaches and models have been suggested for developing bivariate/multivariate 
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gamma distributions. Kotz et al. [27] have extended the standard gamma distribu

tion to the multivariate case. In their construction, they have considered [m + 1) 

mutually independent standard gamma rv's, Xj,j = 0, ...,m and considered the 

linear relationship Yj = X0 + Xj,j = 1 , . . . , m. The joint distribution of Yi , . . . , Ym 

is defined to be multivariate gamma. Its joint pdf for m = 2 is: 
£-(2/1+2/2) ry 

where y = mira (2/1,3/2)-

The multivariate gamma distribution of Krishnaiah and Rao [28] is defined as 

the joint distribution of the diagonal elements of a Wishart matrix. They have 

defined it as the multivariate chi-square distribution. They first considered a p-

variate normally distributed random vector, Xu = (X\u,..., Xpu), u = 1 , . . . , n, with 

mean vector zero and variance-covariance matrix M, where M = (o"y). Defining 
n 

Zi = / J ^ 2 „ , i = 1, • • • ,p, the marginal distribution of Z* is gamma with scale pa-
u = l 

rameter 2<TU and shape parameter n/2. Moran [40] utilized the three parameter 

gamma distribution in discussing the need for multivariate models in rainmaking 

experiments. Steel and Roux [46] have introduced bivariate gamma models in relia

bility analysis, where the components of operating systems are subjected to shocks. 

They considered Xi and X2 to be the lifetimes of the two components C\ and C2 op

erating in a system. These two components C\ and C2 are subjected to shocks and it 

is assumed that C\ fails after receiving h shocks and C2 fails after receiving I shocks. 

The occurrence of the shocks in the two components, C\ and C2, are governed by a 

Poisson process with parameters l /« i and \ja-2. respectively. If C\ fails in the first 

instance, then it is assumed that the occurrence of the subsequent shocks in C2 is 

governed by a Poisson process with parameters M/^-, whereas, if C2 fails in the first 

instance, then it is assumed that the occurrence of the shocks in C\ is governed by a 

Poisson process with parameters Xi/ai. The joint pdf of X\ and X2 is: 

A 2 ^ - i ( A a ( g 2 - I l ) + a i ) . - i [ - ( ^ + ^ - ^ ) g l - ^ a 2 ] - f 0 

, / x _ J r(h)r(i)a?<4 e 2 , 11 u < xi < x2, 

r(h)r(0afa2
 e , it u < x2 < xi. 

file:///ja-2
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In their multivariate gamma model Mathai and Moschopoulos [35] considered a 

linear combination of independent gamma rvs. In their model, they defined Vi ~ 

Ga("fi,Pi,ai),i = 0,...,k, to be mutually independent and considered the linear 

relationship Zj = -£-VQ + Vi,i = 1, - • -, k. The random vector (Z\,..., Zk) is then 
Po 

defined to be the multivariate gamma distribution. They have discussed two cases 

that can be used to model their multivariate gamma. The first case is where a k-

variate system (Z\,..., Zk) is subjected to disturbances such that the new system 

is (Z\ + £ i , . . . , Zfc + £*;), where Z/s and e/s are mutually independent gamma rvs. 

The second case is where the rv's (Z 1 ; . . . , Zk) represent the runoffs to a dam from k 

different streams and the new random components, (Z\ + 5\X,..., Z/. + SkX), where 

<5j's are constants and X is a new gamma rv which is independent of (Z i , . . . , Zk) and 

represents the variation in the dam from rainfall from the catchment areas. Mathai 

and Moschopoulos [36] also introduced a new form of multivariate gamma that can 

be applied in reliability and stochastic processes where partial sums of independent 

positive rv's are of importance. Here also they considered Vi ~ Ga(7i,/3, c^),z = 

1 , . . . , k, to be mutually independent and considered their partial sums, Zj = Zj_i + 

Vi, i = 1 , . . . , k with Z0 = 0, to construct the multivariate gamma distribution. Their 

joint pdf for k = 2 is: 

, , x (*1 - ll)ai~1{z2 - Z l - 7 2 ) " 2 " 1 -(^-(• '1+T8» 

/*.*(*>*) = ^1+Q2r(a1)r(a2) e 

By considering a Negative Binomial randomizing procedure, Gaver [16] construc

tively generated a bivariate gamma with gamma marginal distributions. He con

sidered the rv's X\ and X%, with the following relationship: X\ = Xin + X\k, 

X2 = X2n+X2k, where Xln, X\k, X2n, X2k are mutually independent gamma rv's with 

shape parameters n, k, n, k and unit scale parameters. The joint Laplace-Stieltjes 

transform (JLST) of this bivariate gamma density is: 

Tpk(s1,s2) 

where 

a 

(1 + Q)(1 + SI ) (1 + S 2 - 2 ) - 1 

-ifc 

, Vfc > 0, 

1 + a — z 
Gk(z) = Y,bn(k)zn = 

n=0 

is the generating function of the Negative Binomial pdf. 

a 
k 

, Vk > 0. 
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11.3 THE MULTIVARIATE WEIBULL 

By utilizing the positive stable distribution as a mixture on the hazard func

tion of a Weibull distribution with shape parameter 7, Hougaard [18] derived a 

univariate Weibull distribution with a smaller shpae parameter. Hougaard [19] de

rived his multivariate Weibull using this same approach, specifically, he defined 

Yj = Z~1/1Wj, j = 1 , . . . , p, where Z is distributed as s positive stable distribution 

and W\,..., Wp is iid Weibull with shape 7. The joint survival function for p = 2 is: 

S(yi,y2) = e -^+fcy?]" . 

11.4 THE EXPONENTIAL FAMILY TYPE 

We consider the class of exponential family type probability distributions on the 

real line from McCullagh and Nelder [38]. The class is defined by the family of 

densities Q with respect to the Lebesgue measure as follows 

/ (* ; 6, y) = exp^ ^ ~ m + c(x, y ) } , (6) 

where 

• feG. 

• if is a constant scale parameter typically called nuisance parameter. 

• 8 is a location parameter. 

• a(tp) and c(x, tp) are specific functions of the scale parameter. 

• b(6) and T(x) are functions of the location parameter and variable x, respec

tively. 

In fact, this exponential family density in (6) is a reformulation of the form given 

in McCullagh and Nelder [38] as they simplify T(x) in (6) to simply x. Also, the 

expression (6) generalizes the exponential family type of distributions as described 

in Terbeche et al. [47] in the sense that: 

• if ip is known, then (6) is the linear exponential family with canonical parameter 

0. 
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• if ip is unknown, then (6) may be used as a 2-parameter exponential family 

type. 

As described in McCullagh and Nelder [38], this family includes the normal, 

exponential, gamma, Poisson types of distributions. In this setting, 

diogL(e,x) df(x,e)/d9 
U = UW= 96 = f(x,9) ( 7 ) 

is the score function. Note that: 

• E{U) = 0 

• Var(U) = E(U2) = -E(dU/dd) = 1(6) also known as Fisher's information. 

In the exponential family case as in (6), 

l(0,<p,x) = \ogL{6,^x) = 6T{x) fe(g)+c(x,y), 
a-VP) 

n _ dl_ _ T(x) - db(6)/d6 
~~W~ a(ip) 

and E(U) = 0 =» E(T(x)) = ^ = 6'(0). 

II.5 LAPLACE TRANSFORM 

The Laplace transform (the equivalent concept of moment generating function) 

provides a great deal of insight about the nature of a distribution. We first recall the 

definition. 

Definition II.5.1. If X is a r.v. defined on R+ with cdf Fx, satisfying P(X — 0) < 

1, then its Laplace-Stieltjes transform (LST) is the function valued in R defined in 

Abramowitz and Stegun [1] as: 

Lx(s) = Ee~sX = / e-'dFxix). (8) 
Jo 

Here are some properties associated with the LST: 

• Existence: the integral in (8) is with respect to the Lebesgue-Stieltjes integra

tion in discrete and continuous case. In our cases of positive support distribu

tions, (8) always exists. In fact 0 < L>x(s) < 1. 
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dnL x Lx(s) is infinitely differentiable, and • (s) exist for all 
dsr- n. 

• F o r m e N, the mth moment of X is given by EXm = (-l)m D™'(0). 

• Additivity: the LST of the sum of independent rv's is obtained by taking the 

product of the LST of the individual r.v. For X\,..., Xn independent rv's, 

then X = ]T]"=i Xi has LST: 
n n n 

Lx(s) = Ee~sX = E]lesX =H EesX' = [ ] LXi(s). 
i—l i—1 i=l 

• Uniqueness: if Xx and X2 are two rv's such that LXl (s) = Lx2{s) then 

fxAx) = fx2(
x), f°r a n x except on a set of measure 0. 

• The LST completely characterizes the distribution. 

These transforms help in the computations and in the linear combinations of rv's 

associated with some distributions. 

Example II .5 .1. 

For a gamma distribution X ~ Ga(fi, A, a) with pdf (2), its LST is given as: 

Lx(s) = ^ / e-'ix-vr-h-^-ridx, 
r ( a ) Jn 

= e - ^ - 7 — / (x - /z)°-ie-(A+«)(*-/'> dx. 
"(<*) J? 

By change of variables we get 

Lx{s) = e-"—-r / f^e-^dt, 
"(a) Jo 

(\ + s)°J0 r(a) 
A 

>* + *, 

The gamma distribution, shifted at the origin, with unit mean has LST 

Lx{t) = e~^( ^ — ^ —> e-^e-* = e~^+1)t as a -> 00. 
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Example II.5.2. 

Let Xi,X2,--- ,Xn, n > 1, be independent rv's distributed as Ga(/7,j, A,Qj) for 

1 < i < n. Then, using LST, it is easy to show that X = X\ + X2 + • • • Xn has density 
n n 

of Ga(2_]fM, ^,*5~]ai)- The result can also be found in Dudewicz and Mishra [13] 
i=\ i=l 

page 277, and in Billingsley [5]. Notice that the simplicity of the result is due to the 

fact that the scale parameter is the same for all these gamma distributions. 

In the remaining cases, we consider situations where the scale parameters are 

different. When two or more of the distributions have the same parameter A, we can 

add them first to obtain another gamma distribution with the same parameter A. 

Notice that the distribution of the sum of mutually independent gamma rv's with 

different scale parameters, is not gamma, even if they are mutually independent. 

Rather, it is described as a mixed gamma with mixing shape parameter. See Mathai 

and Moschopoulos [35] and Mathai and Saxena [37] for more details. 

Example II.5.3. 

Suppose X and Y are independent discrete and positive support continuous dis

tributions with probability mass function (pmf) and pdf p(x) and f(y), respectively. 

Then 

/•OO 

LXY(s) = Ee~sXY= 5>—V(yM^y 
Jo 

?u 
o 

OO 

e-sxyf(y)dy )p(x) 

= ^2LY(SX)P(X). 
x 

We later use Example II.5.3 in the case when X is a Bernoulli rv with probability 

p, and Y is a positive support distribution. In that case, we have that: 

LXY(s) = p + (l -p)Ly(s). 

The sum of rv's will be of interest specially to verify the answers we will provide. 
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For two rv's X\ ~ f\ and X2 ~ f2, their sum, X = X\ + X2, has density obtained 

from the joint pdf as: 

/

oo rx—x\ 

/ f(xi,x2)dx1dx2. 
•OO J —OO 

The convolution of two functions / , g : R —> R is the function 

/

CO 

/( t)s(z - i)d*. 
•oo 

If the rv's are independent, the density of their sum is the convolution of their 

densities, and can be represented as below. 

Theorem II.5.4. Assume that Xi and X2 are independent rv's defined on R+ with 

pmf/pdf fi and f2, respectively. Then X = X\ + X2 has density 

fx(x)=(/i */2)(x) = r h(t)f2(x - t)dt. 
Jo 

Proof: Proved in Hunter and Nachtergaele [20]. • 

However, a lot of work can be alleviated as the LST of X in Theorem II.5.4 is 

given by: Lx{t) = Lx, (t)Lx2(t), and is recognized in some distributional form. 

Example II.5.5. 

Consider X to be the sum of two independent and identically distributed(iid) 

exponential type rv's with same scale parameter A. Then fx(x) = / fi(t)f2(x — 
Jo 

t)dt= f \e-xt\e-x{x-t)dt = \2xe-Xx,whichisaGa(0}\,2). 
Jo 

Theorem II.5.6. For X\ ~ Ga{[i\, Ai, a.\) and X2 ~ Ga(fi2, X2, a2), the r.v. X = 

X\ + X2 has a gamma distribution Ga(fi, A, a) iff Ai = A2. 

Proof: The LST of X is given by Lx{s) = e~^1+^)s 1—^ 
(Aj + s)°" (A2 + s)a*' 

If Xi ^ X2, then the LST is not representative of a gamma distribution. 

Considering the case where Ai = A2 = A, then the LST and the density of the 

sum X = Xi + X2 become: 
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Lx{s) = e-^1 X 

X + s 

T(a) 

where a = ot\ + a2 and \x = [i\ + \ii- D 

For Xi ~ Ga(/j,i, Xi,ai) for i = 0,1, • • • ,p, based on the LST given in (8) and 

using the binomial theorem, we have the following: 

dmLXi(s) , Q ^ fm\(dk{Xl + s)-a\(dm-ke-fliS 

= \a v f™*) [ dk^K + s^a 1 f <f""fce"wa 1 
^ W l ^Sfc J I ^m"fc J' *:=0 

for TO G N. 

Setting s = 0, we have that 

m / \ 

fe=0 ^ ' 

where (a)k = a(a + 1) • • • (a + k — 1) 

m—kf 
(0ii)k, 

fe=0 

In particular, Cov(Xi, Xj) = a ^ - V a r ^ o ) , i, j = 1, 2 , . . . ,p, where 

Xi = diX0 + Zi, i = 1,2,... ,p, as in model in equation (1). 

The LST has many helpful properties as discussed earlier. In particular, we use 

it for many of the derivations of the distributions of the latent variables. Other 

important concepts that will be helpful are the concept of infinitely divisibility and 

complete monotonicity. They have many applications in the theory of limit distribu

tions for the sum of independent rv's. In general it is difficult to determine whether 

a given distribution is infinite divisible or not. We would like to consider what con

ditions are required for the pdf of the gamma distributions to be infinitely divisible. 

We first give a notation and some definitions drawing from Feller [14] or Billingsley 

[5]. Let the symbol = denote "equality in distribution". 

Definition II.5.2. Consider a random vector X. Its distribution is said to be in

finitely divisible if for every n 6 N there exist iid random vectors X„i, X„2, • • • , Xnn 

with ^2k Xnk = X. In other words, an infinitely divisible r.v. X has pdf f{x) that can 
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be represented as the sum of an arbitrary number of lid rv's X\, X2, • • • , Xn, with cdf 

Fn , that is: 

X±X1 + X2 + --- + Xn 

hence the term infinitely divisible. Borrowing from Bilhngsley [5] pp. 383-384, the 

distribution F of X is the n-fold convolution Fn* Fn* • • • * Fn where Fn is the dis

tribution function of Xi, 1 < i < n. 

Two simple examples of infinitely divisible distributions are the Poisson distribu

tion and the negative Binomial distribution. The Poisson r.v. X which takes only 

nonnegative integer values with density function expressed as: 

/(x) = e " A ^ , x = 0 ,1 ,2 , - . . , , A > 0 . 
x! 

Here the parameter A, is the mean value of X. One may express f{x) as: 

°° \x 

/(x) = 5>-A-<5(x - n). 
71=0 

Its Laplace transform is then given by: Lx(s) = eA<-e s~*\ 

Definition II.5.3. : A function <f> on the interval I = [0, oo) is completely mono

tone if it possesses derivatives </>(") at all orders which alternate in sign, i.e. if 

(—l)n(f)ljl\s) > 0, for all s in the interior of I, and n = 0 ,1,2, . . . 

Theorem II.5.7. 4> ^s completely monotone iff <j> is the Laplace transform of some 

measure. 

Proof: See Feller [14]. • 

For two real valued functions fa and fa that are completely monotone, so is 

their product and their compositions, when appropriately chosen. 

It is important to note that any completely monotone probability density func

tion is infinitely divisible. See Feller [14]. Moreover, if <p is completely monotone on 

[0, oo) and 0(c) = 0 for some c > 0, then </> must be identically zero on [0, oo). 
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II.6 THE DIRAC DELTA FUNCTION 

The Dirac delta function at the point c G i , is a point mass distribution denoted 

6C. As in Abramowitz and Stegun [1], a r.v. X has point mass 5C distribution at c if 

its probability mass function (pmf) is given by: 

/

oo 

f(x\c)dx = 1. (9) 
•oo 

There have been several references on this function. The expressions in (9) can 

be thought as Lebesgue-Stieltjes integral and they have been studied by a number of 

authors such as Folland [15] and Rudin [44]. Such integrals are well developed topic 

in analysis, with applications in probability. For example, consider a real valued r.v. 

/

+oo 

g(x)F'(x)dx. 
•oo 

However, if F has discontinuities, or it is not differentiable at certain points, 

the above integral may not be valid. One way to avoid that situation is to consider 

/

+oo 

g(x)dF(x)dx, which always holds 
•oo 

as long as F is a proper cdf. 

Despite its name, the Dirac's delta function is not a function in the classical 

sense. One reason for this is that because the function f(x) = S(x), and g(x) = 0, 

are equal almost everywhere, yet their (Lebesgue) integrals are different. Another 

reason is that it is too singular. Instead, it is said to be a distribution. It is a 

generalized idea of functions, and can be used inside integrals. The well known 

mathematician Laurent Schwartz gave it in 1947 a rigorous mathematical definition 

as a linear functional on the space of test functions D, the set of all real valued 

infinitely differentiable functions with compact support on (—oo, oo) such that for a 

given f(x) € D, the value of the functional is given by formula (2) in Khuri [26], 

Kallenberg [25], or Hunter and Nachtergaele [20]. Such linear functionals are called 

generalized functions or distributions. For this reason, the delta function is more 

appropriately called Dirac's delta distribution. Thus the value of the Dirac delta 

function 5X is defined by its action of a function f(x) £ D when used in integral as 

in formula (2) in Khuri [26]. Thus one should (never) not consider its value at x, 

i.e. the domain of S is D and its values are given by formula (2) in Khuri [26]. As 

such, the theory of distributions in mathematics has been highly developed, and as 
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a result, the Dirac delta function is well established and accepted in mathematics as 

a generalized function or distribution. Note also that it has been modified from the 

original version defined by Dirac in 1902. 

So the Dirac delta function should be regarded as a distribution. As distribu

tion, the Heaviside step function is an antiderivative of the Dirac distribution. The 

Heaviside step function, also called unit step function, see for example Abromowitz 

and Stegun [1], is a discontinuous function defined as 

r <-, x ( 0, if X < 0 ; 
H(x)= / 6(t)dt={ ' ' (10) 

J-oo [ 1, if X > 0. 

The value of the Heaviside function at 0 is sometimes taken to be 0, or | (most 

popular for symmetry purposes) or 1. Here, we will take it to be 0. 

Both Dirac and Heaviside functions have been used in a variety of fields of science 

and engineering. Their use in statistics is relatively new. Pazman and Pronzato [43] 

used such function in their nonlinear settings. The Dirac delta function is a very use

ful tool in approximating tall narrow spike functions (also called impulse functions), 

and the following integral: 

/ ; 
f(x)6(x)dx = 5[f] = /(0) 

for any (test) function f(x), is more a notation for convenience, and not a true inte

gral. It can be regarded as an "operator" or a linear functional on the space of test 

functions which gives the value of the function at 0, as in Rudin [44]. It is important 

to see that the integral is simply a notational convenience, and not a true integral. 

We should not confuse this above with the Dirac as a measure defined based on 

a fixed element s of the space of interest, say R. More precisely, the Dirac measure 

6 is given for any measurable set E € B(M) by 

«(£) = [ ' S £ E 

\ 0 ,s£E 

/

CO 

f(x)d6(x) = f(s) for all continuous function / . 
• o o 
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Here, differently from the Lebesgue measure which is translation invariant, it 

is not true that two intervals with the same endpoints necessarily have the same 

measure. 5{[0,1]) = 1 whereas d((0,1)) = 0. This is because S is not absolutely con

tinuous with respect to the Lebesgue measure. More details are given in Kallenberg 

[25], Williamson [48] or Shilov and Gurevich [45] to mention a few. 

So as a distribution, the Dirac delta function 8{x — s) is a pdf with mean median 

and mode s, cdf H{x — s), variance and skewness 0 satisfying the following: 

• 

f°° Z*0 0 du 1 
/ 5(ax)dx = / S(u)-.—r = -—r, Va ^ 0. 

J-oo J-oo \a\ \a\ 

8{x) 
5{ax) = -—p, Va ^ 0. 

a 

5{x) = lim.5a(x) where 5a{x) = —j=e x 'a as limit of a normal distribu-

tion. 

To end this review, we note the following results: H{x — a) = 1 — H{—x + a) = 

1 — H{a — x) and / H{x — a)dx = {x — a)H{x — a). The Dirac delta distribution 

can be thought as the limit case of a distribution whose density must be concentrated 

at the origin point. More details and applications of the 5-function can be found in 

Au and Tam [3]. So for a rv X with Dirac density 5{x — c), c > 0, the LST is given 

by Lx{t) = e~ct. 

The moments for the Dirac delta function 6C are given by: EXk = cfc, Var{X) = 

0 and its characteristic function is given by <j>{t) = eltc. The Dirac function provides 

a very helpful tool in mathematical statistics as it provided a unifying approach in 

the treatment of discrete and continuous distributions. We review two examples in 

each case below. 

Example II .6 .1. 

Let X\ ~ Ga{2,a), X2 ~ Ga{2,/3) and X\,X2 are independent. Find the joint 

pdf of (y, Z), where Y = „ X \ and Z = Xx + X2 (Khuri [26]). 
A i + X2 
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Let / ( x i , x2) be the joint pdf of (Xi, X2)- Then joint pdf of (Y, Z) is: 

X i 

_Xi + X2 
pOO /'OO 

- y 5(x\ + X2 — z) dx\dx2 

fa; 2) 

/

OO rCG 

I f(xux2)5 
- 0 0 ^/ — 0 0 

1 r ° / ° ° a-1 0-1 (x' + 

" r(a)r(/?)2^ 70 70
 Xl X2 e 

- fWW^l 4 dX2l x' e s 

1 f°° 

= fww^l x^z~x^5 

xi 
Xi + X 2 

- 2 / 5[xi — (z — X2)] dx\dx2 

xi 

2 - X 2 

Xi + X 2 

e~2 <£c2 

<5[xi — (z — x2)] dxi 

1 
r(a)r( /5)2«+/3 

E x a m p l e I I .6 .2 . 

y a - l ( 1 _ 3 / ^ - l z Q + 0 - l e - f _ 

Let X ~ x 2 ( m ) i ^ ~ X2(n) a n d X, ^ are independent. Find the pdf of Z, where 

Z = - ^ (Au and Tarn [3]). 
m i 

Let / ( x , y) be the joint pdf of (X, Y). Then joint pdf of (X, Y) is: 

f(*,y) = 
1 

2^r(f)r(f) 

m -I ri i x y 

x2 y2 e 2 e 2 

Then the pdf of Z is: 

-| /»00 /"OO 

0(2) = ——r- / / x ?~ 1 w§~ 1 e _ ^e _ 2^ nx 

my 

1 / my = - 1 _« , / m_1 _* 
/ v 2 e 2 ay x2 e 2o 

:?)m)7o « Jo 2̂ r(f)r(f) 
1 r ^ 

dxdy 

myz 
dx 

m -I 
ray 7.1 _ 2 _myz fmyz\ 2 

— V 2 e 2 e 2n rfy. 

2^r(f)r(f)y0 « V ™ / By change of variables 

m 

2zn±2r(f)r(f)V™ 

m m + n 

yl»-.(,_*_,)"r" r«-p-,-
J \n + mzj J0 

du 

z 2 r ( ^ ) 
r(f)r(f) („ + m 2 ) ^ 

-m2 n2 
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CHAPTER III 

SUM OF IID RANDOM VARIABLES 

Sum of independently normally distributed models are of interest in many set

tings and are described by many authors such as Dudewick and Mishra [13], and 

Casella and Berger [7]. Normal distributions are very valuable, but they have lim

itations, specially if the sample sizes are small, and/or the data do not take values 

in the negative range. As suggested by Hougaard [19], transformations to achieve 

normality should not be used unless other alternatives have been explored. For pos

itive support data, other lifetime distributions, such as the Binomial, the gamma, 

the Weibull, have been suggested. The finite sum of non-normal independent distri

butions has been studied by many authors such as Moschopoulos [41], Mathai and 

Saxena [37] and Nadarajah and Kotz [42]. Applications for such distributional sum 

can be found in many areas. Mathai [34] gives example in storage capabilities. It 

is well recognized that the sum of independent gamma type distributions, the scale 

parameter being same for the individual distributions, again has a gamma distribu

tion. Approximations are also suggested as the exact distribution of the sum is not 

always possible to get in a closed form, as suggested in Luke [31] or in Krisnaiah 

and Rao [28]. In such cases,the nonparametric approach is clearly preferred because 

of the difficulty in estimation of associated parameters. Recently, the product of 

Bernoulli and exponential distributions have received great attention. In fact, Iyer 

and Manjunath [22] considered such product in a reliability system. Marshall and 

Olkin [32] and Marshall and Olkin [33] used such a distribution for the modeling of 

events that can occur simultaneously. The idea of simultaneous occurrence of events 

has been shown to be very useful in many areas of science and it is famously known 

as the Marshall and Olkin property as in Carpenter et al. [6]. However, the sum 

of such independent distributions has not been fully described and in many cases, 

estimations and tests depend on the true distributional form of the data. In this 

chapter, we address the sum of independent products of Bernoulli and exponential 

distributions as a mixture of two types of distribution functions: the Dirac delta and 

gamma types. In the next section, we describe the product of Bernoulli and expo

nential type of distributions. Section 2 presents the exact distribution of the sum of 

independent such products. In section 3, we present the properties associated with 

the sum, and in section 4 we summarize the results in this chapter. 
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III.l PRODUCT OF BERNOULLI AND EXPONENTIAL DISTRIBU

TIONS 

In this section, we give the definition of the product of Bernoulli and exponential 

distributions. We show the relationship between these distributions through a latent 

rv (rv) Y whose cdf and pdf is represented in Figure 3 and which is independent 

to the independent variable. More precisely, let X\ and X2 be two exponential rv's 

with parameters Ai and A2, respectively, and under a linear relationship defined as: 

X2 = aXi + y, where a is a fixed positive constant. That means that: 

{ aX\, with some probability p, 

aX\ + Y, with probability 1 — p, 
where Y has pdf and cdf described based on the LST as in example II.5.3. 

0.7-

0.6-

0.5-

0.4-

0.3-

0.2-

0.1-

0- , . , - r .... , . , . , 
0 2 4 6 8 10 0 2 4 6 8 10 

v y 

(a) The Probability Density Function. (b) The Cumulative Distribution Function. 

FIG. 3: Graphs of pdf and cdf of Y when a = 1, Ai = 4, and A2 = 1. 

This model gives independent coordinates when a = 0, and does not permit 

negative association as described in Iyer et al. [21]. The idea for such distribution 

is not new. The characterization described in which the marginal distributions are 

exponential was introduced by Marshall and Olkin [32], and has been studied by 

many authors such as Johnson et al. [24]. In that setting, the rv Y is a product of a 

Bernoulli rv with parameter p and an exponential rv with parameter A2. Its pdf and 
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cdf are given by: 

Ay) = p6(y) + (i - p)fxMHy > o), (n) 
F(y) = pH(y) + (1 - p)Fx,(y)I(y > 0). (12) 

where 

p = p(X2 = aXi) = P(Y = 0) = ^ , aA2 < Ax is the probability of 
Ai 

proportional occurrence between Xi and X2-

5(t) refers to the Dirac delta function, i.e. 

/

+oo 
6(t)dt = 1. 

•CO 

/x2(t) = A2e-A2t, t > 0, and Fx2{y) = f fx,(t) 
Jo 

dt. 

• H(y) is the Heaviside function, the generalized anti-derivative of 5(y), i.e. 

ay 

As described in Marshall and Olkin [32], the rv's X\ and X2 could represent the 

times to failures of two components in a parallel system. Instead of simultaneous 

failures, we adopt the case of proportional failures. A medical application is the 

analysis of two related types of diseases whose occurrence could be suggested to be 

simultaneous or proportional to each other, or the first and second period responses 

to a treatment order in the different clusters. The mean and the variance of (11) are 
. 1-p ( l - p ) ( l + p ) ,. , T f . 

given by: —-— and -^ , respectively. In tact: 
A2 A2 

r+00 

E(Y) = / yf(y)dy, 
Jo 

/•+OO / • + £ » 

= p y6(y)dy + (l-p)X2 ye~X2V dy 
Jo Jo 
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r+oo 

E(Y2) = / y2f(y)dy, 
Jo 

r+oo r+oo ofl — n\ 

= p / y25(y) dy + (l- p)\2 / y2e~^ dy = - \ ^ 
J0 Jo ^2 

V(Y) = E(Y2)-{E(Y)}2, 
( l - p ) ( l + p ) 

LY(s) = 

My(t) = 

2 , and 

A2 ( 1 - P ) + P (A2 + 5) 
A2 ( l - p ) + p 

is its Laplace Stieltjes Transform(LST), (13) 

is its Moment generating function(MGF). (14) 
_ A 2 - i 

We next derive the form of the distribution of the finite sum of such models. 

III.2 EXACT DENSITY OF T H E SUM 

The sum of independent rv's is described by discrete or n-fold convolution. It is 

possible to calculate the density of the sum in certain cases. Sum of independent 

Binomial with same probability of success is again a Binomial rv. Similar conclusion 

are available for Uniform, Poisson, and exponential distributions. The convolution of 

geometric distributions with same probability of success is a negative binomial distri

bution. We look at the combinations of the Bernoulli and exponential distributions. 

As stated earlier, the sum of independent and identically distributed products 

of Bernoulli and exponential models are of interest in many settings. We present 

such sums, and present a practical way to estimate its parameters. 

Theorem III.2.1. Let Y\,... ,Yn be independent and identically distributed rvs with 

the pdf as in (11). Define Sn = Y\ + . . . + Yn. Then the distribution of Sn can be 

written as a mixture of gamma and Dirac delta distributions with Binomial weights, 

i.e. 

fsM = E ( n " •)pn_J'(1 - P)3U(y), y > o, (15) 

n. where fgo{t) = S(t), and fg.(t) = ^-iP^e-
x'\t > 0, for 1 < j < 

Proof. The result is shown by induction. When n = 1, then Si = Y\, and the result 
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is obvious. Consider two iid products of Bernoulli and exponential, Yx and Y2: 

Yi-fY^y) = P<%) + ( l - p ) / x 2 ( 2 / ) / ( y > 0 ) a n d 

^2~/y 2 (y) = pS(y) + (l-p)fx3{y)ny>0)-

r+oo 

Then S2 = Yi + V2, has its pdf given by: fs2(y) = / fYl(
w)fY2(y - w) ehu, with 

Jo 
fYl{w) = p5(w) + (1 - p)fx2(w)I(w > 0), 

/y2(y - 10) = p<% - iu) + (1 -p)fx2(y ~ w)I(y -w>0). 

That is, S2 is the convolution of fYl and /y2, and 

fYl{w)fY2{y-w) = p 2<K^)<%-u;)+p(l -p)6(w)fx2(y-w)I(y-w > 0) 

+ P ( I - P ) < % - w)/x2(y) % > 0) 

+(1 - p)2fx2Hfx2(y - w)I{w > 0)I(y ~w>0). 

Then, 
r+oo r+oo 

/s2(y) = P2 6(w)S(y-w)dw+p(l-p) 5(w)fx2(y - w)I{y - w > 0) dw 
Jo Jo 

r+oo 

+p(i - P) / <Ky - ™)fx2(™)I(w > 0) r f w 

/•+00 

+ ( 1 - P ) 2 / / Y 2 H / x 2 ( j / - ^ ) / ( ^ > 0 ) / ( y - « ; > 0 ) , 
Jo 

r+oo 

Jehu 
'o 

= y4: + A2 + A3 + A4, where 

/•+00 

Ai = p2 / 5(w)5(y — w)dw = p28(y), 
Jo 

r+oo 
A2 = p ( l - p ) / 8(w)fx2(y-w)I(y-w >0)dw 

Jo 
rv 

= P ( l - p ) / fx2{y-w)6(w)dw=p(l-p)fx2(y), 
Jo 

r+oo 

A3 = p ( l - p ) / <%-w)/x2(u;) /(u>>0)du; 
Jo 

/•+00 

= p ( l - p ) / fx,('>u)S(y-w)dw = p(l-p)fx2(y) = A2 , 
Jo 

/•+00 

^4 = ( I - P ) 2 / / * 2 M / ; t 2 ( 2 / - u ; ) / ( u > > 0 ) / ( y - i i ; > 0 ) d u ; 
Jo 

= (l-p)2Aie"A« [V dw=(l-p)2\2
2 

Jo 
\2

2ye-^. 
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Hence, 

fsM = p26(y) + 2p(l-p)fX2(y) + (l-p)2^ye-X2V 

= p25(y) + 2p(l - p)\2e-x*y + (1 - p)2^ye~X3V 

= p2"°(l - p)°S(y) + 2p2"1(l - P)1^/-1^2" + P2~2(l - ^ ) 2 f | ) ^ " l e " A 2 ! / 

= P2-°(i-p)°fgo(y) + 2p2-1(i-p)1fgi(y)+p2-2(i-p)2f9M 

J=0 

Therefore the result is true for n = 2. Assume the result is true for some n G N. We 

prove the result is valid for n + 1. Let 5n+i = 5 n + Vn+i, where: Fn+i ~ /yn+1(y) = 

p*(y) + ( l -p ) / X 2 (2 / ) / ( j />0) . Then, 
r+oo 

/s„+1 (y) = / /&, M/y„ + 1 (y - ™) dw, and 

Since /yn+1(y — tu) = p<5(y — to) + (1 — p)fx2(y ~ w)I{y — w > 0), we have that 

fSnHfyn+1(y-w) = E ( V ) P " + 1 - J ( I - P ) V 9 , H % - ^ ) 

+ E (n" j)pn"^1 ~p)J+14H/^2(y - «0'0/ - ™ > o), 

and /SB+1(I/) = ^ f " ^P^-^-PY f+00fgiH^y-w)dw 

j=0 \ n J/ JO 

j=0 

Parti + Part2, 

with 

Parti = Y,( n_)pn+l~J^-pY fgj(w)5(y-w)dw 
7=0 

= E( n ^. )p" + W ( l -^4 (y ) ,and 



Part2 = J2[n
n_^pn->(l-v)3+l j " f93{™)fxAy-™)dw 

= £ 
3=0 

71 )pn-3{1_py+l ^ ,-+l-le-A2y 

n E(n:j^'(i-^+i4+1(y). 
So, 

j=o V A l J / 

+ E ( n ! J ) ^ ( 1 - ^ ' + 1 4 + 1 ( y ) 

+ E („ " ,-V"''*1 - ^+14+1(y) + (i - P)n+1f9,+1(y)-

j=0 

Using change of variables in the third term of above equation, we get: 

fSn+1(y) = Pn+1f90(y) + E ( " V ^ 1 - ^ ^ ) 
3=1 V JJ 

+ E L +\ _ i V ^ 1 - P)'/«(I/)+a - p)n+i/s„+1(y) 

= P"+1/90(2/) + Ep"+ w( i-p)J4(y)f(n! 
3 J \n-j + lj] 

+ (±-p)n+lf9n+M 

= Pn+1f90(y) + E ( n " t - j ) p W + W ( 1 - p ) i / * ( l ' ) + (1-")"+1^ 

= E(n:;i>"+i-a-^4(,). 
j=0 

Therefore the result is true for n + 1. 
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The pdf of the sum can be thought of as a hyper gamma rv. Figure 4 gives a 

graphical display of the hyper gamma for Ai = 4, A2 = 1, a = 1, and n = 10. 

This finite sum result is a simple and explicit expression not using infinite sums or 

0.08 

density 

FIG. 4: The pdf of Sn. 

hypergeometric functions or approximations, as proposed by many authors such as 

Mathai and Saxena [37]. Since there are other characterizations of distribution, our 

result can be confirmed in other ways (such as the Laplace transform). 

III.3 PROPERTIES OF THE RANDOM SUM 

Lemma III.3.1. Suppose Sn is distributed as in (15). Then P(Sn = 0) = pn. 

Proof. 

P(Sn = 0) = P(Y1 + ...+Yn = 0), 

= p(y1 = o,...,y„ = o), 

= p(Y1 = o)...p(yn = o), 
'a\2' 

• 
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We next give the general form and properties associated with its moments and 

the survival function, the LST and the MGF. 

Lemma III.3.2. Suppose Sn is distributed as in (15). The cdf of Sn can be expressed 

as: 

FSn(y) = E ( " ,-)pn"j(1 ~^FM y>o-
j=0 \ J' 

Proof. From the theory of Heaviside functions in (10), we have that 

FsM = P(Sn<y) 

= [yfsn(t)dt 
Jo 

(16) 

pn [V6(t)dt + pnJ2 
Jo „•_, 

n \(i-Py ry 

—(\n- j J p> 
SsMdt 

(i-Py \i /•" , , 
t^e'^dt 

where 

Fgo(y) = H(y) is the Heaviside function, the generalized anti-derivative of 

5{y),i.e. 5{y) 
dH(y) 

dy 

Fgj(y)= f 4(*M = 
Jo 

7(j, A2y) 

TO") i - E 
— e-X2y(X2yy 

i=0 

n 

Lemma III.3.3. Suppose Sn is distributed as in (15). The survival function of Sn 

can be expressed as: 

c—' \n — 7 
3=1 V J 

j 1 '-^V(\n,\i 

P(Sn >y) = J2( " • )pn~J(l ~ P)J E e~X2ViX2yT - PnH(y) y > 0. (17) 
i=0 
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Proof. The result follows from the result in (16). Indeed, 

|7-70",A22/) 
FsM = VnH(y) + J2[ji

n_^Pn^^-p)3 

pnH(y)+j2\Kn_J)p
n~3^-py 

T(j) ' 

\_3ye-x'y(x2yy 
l\ 

i=0 

i= i \ Js j=o 

Hence, 

P(Sn>y) = i-FSn(y) 

j=i 
n - j 

j~1 --\2V( 

E( "l^d-py^f^W-^to). 
2=0 

Lemma III.3.4. Tfoe m"1 moment of the above mixture is: 

1 
E[S™ 

Proof We can see that: 

r+oo 

E[s?] = / ymfsn(y)dy 
Jo 

ru) 

P" ^+°° ym<%) dy + ^ + °° ym E ( n ! ; ) v n ~ j { i - P)3ft 

D 

(18) 

(2/)<*y 

yJ+m~le-X2y dy 

A™ - ^ I n -
n \ ( l - p p r ( i + m) 

~ \n - J7 P7' r(j) 

D 

Result 1: 

E[Sn] = 
n(l-p) 

A2 ' 



Proof. Take using (18) with m = 1. 

Then, 

p n A / n \ ( i - p ) i r ( j + l) 

j-( \n-jj P> 

npn ^ (n — 1\ (1 — p)j 
Up ^-~v / 7t — 1 

"AT f-' V 7 - 1 

npn s^ (n — 1\ _7- /ipnr ^ /'n — V 
T2 E G Z O ^ ^ E G . - ; ) - - . 
^(nir1, 
™(1 ~P) 

A2 ' 

with r = . 
V 

Result 2: 

i/r<? l - " ( I - P ) ( 1 + P) 
A 2 

Proof. Take the result in (18) with m = 2. Then, 

x2Jr[\n-jJ v3 r(j) 

= 72 E l . )J(J + 1)TJ> where r = . 

n{n _ i K ^ / w _ 2 \ r . | 2np" ^ / n - 1 \, _, 

Ai ^0-2/ + Ai ^ U - l . 
n ( n - l ) p " r » ( r + 1)B_2 + 2 ! ^ r ( r + 1 ) B _ 1 _ 

A2 A2 

file:///n-jj


E[Sfi 

and V[Sn] 

V[Sn] 

n(n — 1),., ,2 In 
A 2 A 2 

£[y2 ] - £[y]2 , 
n ( l - p ) ( l + p ) 

\ 2 

A 2 

Lemma III.3.5. The MGF is: 

MsM 
A 2-£ 

( l - p ) + p 

Proof. 

MsM 
r+oo 

/ e^fsMdy, 
Jo 

pn £°° ety6{y) dy + ^ + °° ety £ ^ « j " )?""^ 1 

+00 \J 

'̂"V* 

jr[\n-]J p> (A2 - ty 

^ \n- 3 
i=0 

A2 

A2 (1 - p) 

(A2 - *) 

L(A2 - i) p 

- n 

( I - P ) + P • 

Lemma III.3.6. The LST is: 

A2 + s 
( l - p ) + p 
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Proof. 

r+oo 

Lsn(t) = / e-^fSn{y)dy, 
Jo 

r+oo /.+00 ™ / \ 

= pn e-*»5(y)dy + e ~ s ^ . p ^ ( l - p ) % ( y ) dy, 
Jo Jo ,= 1 \ n — 3J 

n 
r+oo xi = ?" + £ ( „ " ,)?-'& - P)31 ^r-^e-^-^ dy, ror 

pn+pnt(n 
j=l v 

n 

pnj: 

n \(l-pY Xi 

j=o 

j 

n 

n-j 

j) Pj (A2 + s)i' 

A2 (1 - p) 
(A2 + s) p 

U 

(A2 + s) U - P ) + P 

• 
The result in (19) and (20) confirm the expression of the product of n identical 

distributions from (14) and (13). 

III.4 SUMMARY 

Relationships among distributions have long fascinated many authors. Leemis 

and McQueston [30] describe many univariate distributions and state that their sum 

is asymptotically normal. However normality assumption has limitations and non 

asymptotic results can take a long time to approach. We have proposed the sum of 

a particular type of survival distribution, and we have given its exact density and 

properties. 
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CHAPTER IV 

BIVARIATE MODELS 

Bivariate models are the natural extension of the univariate models. They can 

later be generalized to higher level multivariate models. Applications using mul

tivariate gamma can be found in Kotz et al. [27]. In this chapter, we introduce 

several bivariate models. If Xi,X2 are Erlang, then (Xi,X2) is called the bivariate 

Erlang-Erlang model. Since two distributions will be of specified marginals, we will 

use the name of the marginal distributions to denote such bivariate models. We 

define the Erlang-Erlang bivariate model to be a model where the marginal densi

ties are Erlang distributed and the two rv's are linearly related as in (1). First, the 

Erlang-Erlang bivariate model is introduced. Second, we introduce the Exponential-

Exponential bivariate model, its estimated parameters and the application of this 

model to simulated and real-life data. Starting with exponential rv's and with the 

aide of transformation technique, we derive the univariate Weibull and use the uni

variate Weibull to derive our Weibull-Weibull bivariate model. Next we discuss the 

Erlang-Gamma bivariate model. We also introduce the Gamma-Gamma model. The 

result in Theorem III.2.1 will be critical in explaining all the forms of subsequent 

densities. (Xi,X2) is called the bivariate model. 

IV. 1 ERLANG-ERLANG MODEL 

Theorem IV. 1.1. Let / j and f2 represent the marginal densities of two rv's X\ 

and X2 from (3) with the same scale parameter a with a € N. More specifically, 

let X\ ~ Erlang{\\,a>) and X2 ~ Erlang(X2,a) Then the joint probability density 

function of (X\,X2) is given by: 

g(xux2) = J2 ( a " ^P"'^1 -P)Vi(xi) / 9 , (x 2 - ax,) (21) 

where 

• the rv's X\ and X2 are related as X2 = aX\ + Z, with a a nonnegative fixed 

constant called the coefficient of linear relationship, and Z an unknown random 
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variable independent of X\ 

P = P(X2 = aX1) = ^ . 

n. 

• /so(0 = <K*) refers to the Dirac delta function, i.e. 5(t) = 0,if t ^ 0, and 

/

+oo 
5(t)dt = l. 

•oo 

Proof: First we consider the Laplace transform of X2l 

LX2(s) = E[e~'x>], 

= E[e-s{aXl+z)) 

= £[e_ s a X l]£[e - s Z] Using the independence of Xx and Z, 

So Lx2(s) = Lx1(as)Z/Z(s). 

Since we know the Laplace transforms of Xi and X2, we can now obtain the 

Laplace transform of Z. Therefore: 

Lx2(s) 
Lz(s) 

LXl (as)' 
A2 \i + as 
Ai A2 + s 

( 1 - P ) 
A2 

A2 + s 
+ P where p = 

a\2 

"A7 

Since the Laplace transform uniquely determines the pdf of a rv (Feller [14], 

the unknown rv Z, is the sum of a independent rv's, each being the product of 

two independent rvs: a Bernoulli rv with mean (1 — p) and an exponential rv with 

parameter X2, where, p = 9^1. The probability density function of Z is: 

Mz) = It, L I j)pa~3{1 ~ P ) J ' ^ W . z^ °> by Theorem III.2.1 
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Using the independence of Xi and Z, we have: 

fxuz(x\,z) = fi(xi)fz(z) 

= pafl(xl)5(z) 

+ E ( Q " V~ i ( i-p)j /« (z ) / i (x i )-

/

+oo 
fx1,z(x\,z)6(ax1 + z-x2) dz 

-oo 

/

+ 0 O 

pafi(xi)6(z)5(axi + z - x2) dz + 
• o o 

/ E L _ .)pQ_i(l-p)Vi(a:i)/flfc(2:)<J(ax1 + 2 - x 2 ) d z 
J-oo j=i \ a 3/ 

= Parti + Part2, 

with 

/

+oo 
Pafi(xi)5(z)5(axi + z — x2) dz 

•00 

/

+ 0 0 

5(z)6(ax 1 + z - x2) dz 
• 0 0 

= pafi(xi)5(x2 — axi),and 

/

+00 a / \ 

E ( _ K ' ^ 1 - ? ) V i ( z i ) . U ^ ( a z i + ^ - x2) dz 

= E ( Q " j ) ^ - ^ 1 ~ P)'/l(*l) /_+0° - U 2 ) ^ + * - *2) d 2 

= E ( Q " j ) ^ 1 ~ Pfh{xi)I9h{x2 - ax,). 

Putting together Parti and Part 2, we obtain, 

g(xux2) = ^2 la_ jP"'3il ~P)3h(xi)fgj(x2 - ax,). 

D 
The common shape parameter assumption is quite common in applications for 

practice Figure 5 describes the joint pdf in (21) for Ax = 4, X2 = 1, a = 1, and a = 2. 

The line of discontinuity can be seen and it describes the proportional occurrence 

case. 
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FIG. 5: T h e p d f o f (X1,X2). 

Theorem IV.1 .2 . Let the two rv's Xi and X2 be jointly distributed as (21). Then 

the JLST of Xi and X2 is given by: 

LXux2(si,s2) = 
Ai 

Ai + si + as2 

Proof: The JLST of Xx and X2 is, 

( 1 - P ) 
Ai 

A2 + s 
+ P 

LXl,x2(si,s2) = E[e-S^-S^\ 

_ £!e-siXi-s2(aXi+Z)-\ 

= E[e-{si+aS2)Xl]E[e-
S2Z} Using the independence of Xx and Z, 

Ai 

Ai + si + as2 
( 1 - P ) 

Ai 

\2 + s 
+ P 

D 
Xi 

Based on (21), the random vector X = I J is said to have a Erlang-Erlang 

bivariate distribution. Its pdf g(x \ 8) is given as in (21). Let 9 = (a,Ai,A2) be 

the unkonown parameter vector. The variables Xx and X2 originate from Erlang 

distributions with the same shape parameter a, and scale parameters Ai, and A2 
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respectively. Such pdf can be viewed as a finite mixture of (a + 1) component 

densities. It can also be written as: 

a 

g{x\6) = g(x1,x2 | 6) = ^wj9j{x \ 6). (22) 
j=0 

where 

• WJ = {^y-jix-py, and E ; = 0 ^ = 1, 

• 9j(x I Q) = 9j{x\,X2 | 0) = fi{x1)fg}(x2 - axi), j = 0,...,a, 

• g0(x | 6) = g0(xi,x2 \ 0) = f1(x1)5(x2 - ax{). 

Consider a random sample of size N € N, bivariate vectors as in (2), x = 

(xi,..., XN)T, where Xi = (xn,Xi2)
T. The probability density function of X, = 

( XH \ 

I i = 1 , . . . , N is given by: 
V X i 2 J 

g(xi | 6) = g(xn,xi2 \ 6) 

igj(xi2 -axa) , i = l,...,N. 
\ i r — i / 

3=0 
= E( a! J-)p° ' j(1-p) , ' /«(^i) / f t 

Therefore the likelihood function is given by: 

N a 

W\x) = Yll[v>?i9i(xi\8)'ii, (23) 

{ 1, if Xi comes from population j , 

0, otherwise. 

Taking the logarithm of (23) gives the following expression: 

N a 

W I x) = E E ^"logKsi^i I *)]• (24) 
i=l j=o 

First set 

JV a 

Q(0<*> = Ee=e{t)[1(0 | x)] = Y,E^logK^-fe | 0(t))], (25) 
2 = 1 j=0 
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where 

4? = ^ (^ ( t ) ) wjgj(xl | (9(t)) 
i = l,...,N, j = 0,...,a. 

The estimate of a^ — af = a,j(^ t ' ) is given by 

Changing the order of summation in (25), the goal is to maximize the following 

expression: 

TV 

^^(^ logte^ l^ t ) ) ] , (26) 
i = i 

for each fixed j = 0 , . . . , a, and get the new set of estimates of the parameters for 
0(t+i)_ 

Let LLj = Yli=i aij^°g[9j(xi I 0(*))]- The estimates are obtained by dividing 

the above expression into two components, for j = 0 and for j > 1. 

When j = 0, 

N 

LL0 = ]Ta t 0 log [9o(*i \ 0{t))] 
i=l 

N 

= iogn[a>0*l*(t))F 
N 

= logll _ l L . / p ° 0 - l o - M 0 I i l 

r(ao) a 

N 
10 ^ . a o - l ^ - A i o i a 

i > 0 ) Jl ^2 ai0log 
i= l 

a0logA10 Y2 ai0 - logr(a0) ^2 ai() + (a0 - 1) ^ a i0logxu - Ai0 ^ ai0xa. 
2 = 1 i = l i = l 

Taking the derivative of LLQ with respect to ao gives 

- ^ - = l o g A 1 0 ^ a l 0 - I ^ — ^ a . o + ^ ^ o l o g x a . 
^ ' i= l i= l da0 i = i 
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Setting this equal to zero, we have: 

r ' (ao) - E i l i "iologZii 
logA 10 T(a0) <Li=l ai0 

Similarly taking the derivative of LLQ with respect to Aio gives 

dX\o Aio 

Setting this equal to zero, we have: 

N N 

j = l i=l 

^N 

When j > 0, 

N 

LL3 = Y^aiM[9i(xi\e{t)j] 
1 = 1 

1 = 1 

AT 

= 1 0 s l l 
i = l 

r ( a j ) r 0 ) 
AT 

= J^Oijlog 
1 = 1 

x"3 \J 

r(a,-)r(j) 
T i r ' f e - a x i i y " ^ " ^ " " ^ ' 0 ^ " - ^ 1 ' 2 

AT AT AT AT 

t = l 

ajlogAij ^2 aH + i logA2 J ^ oca - logr(aj) ^ ai:/ + (a, - 1) ^ a^logxn 
i=\ i—\ «=1 

AT N 

- (Ay - A2ja) 2_] xnotij - X2j 2 J a^a^ + K, 
i = l i = l 

where K" represents a constant independent of otj, Ay, and A2J, whose value may 

change at each occurrence. 

Taking the derivative of LLj with respect to a,- gives 

dLLj , ^ v-^ r"(a,-) v-^ v ^ 1 

^ 2=1 ^ •*' i=i 2 = 1 



45 

Setting this equal to zero, we have 

Taking the derivative of LLj with respect to A^ gives 

N N 

Setting this equal to zero, we have 

E N 
_ j= l aijxil 

Taking the derivative of LLj with respect to A2j gives 

. N N N 

5 ^ 2 j A2 j -— 
y~] 0ii:j + a^2aijxii-'^2 aijXi2. 
i= l i=\ i= l 

Setting this equal to zero, we have 

x _ 3 E t = l ai3 

2_,i=i OiijXi2 - a 2 ^ i = 1 QtyXji 

IV.2 EXPONENTIAL-EXPONENTIAL CASE 

When a = 1, the mixture distribution in (21) reduces to a mixture with weights p 

and (1—p). More specifically, when X\ ~ exponential(Xi) and X2 ~ exponential(A2), 

the joint probability density function of (Xi, X2) is given by: 

g(x1,x2) = p\1e-XlXl5(x2 - an) + (1 -p)AiA2e-A2l2e-<Al-oA2>Xl/(x2 > an) (27) 

where the rv's Xi and X2 are related as in X2 = aX\ + Z. 

Let r index of proportional occurrence between the two events. 

f 1, if x2 - axi = 0; 
r — l{x2 — axi) = < 

I 0, if x2 — axi > 0. 
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Then the bivariate exponential density in (27) can be written as: 

g{xux2) = [p\1e-x^}T{(l-p)\1\2e-x^e-^-aX^]1-r. (28) 

Figure 6 describes the joint pdf in (27) for Ai = 4, a = 1, and A2 = 1. 

FIG. 6: The joint pdf of {X1,X2). 

IV.3 WEIBULL-WEIBULL MODEL 

Consider two rv's Yj, Y2 from (5) with the same )3 and A1; X2. Let these two rvs be 

related as Y2 = aY± + Z\, with a a nonnegative fixed constant called the coefficient 

of linear relationship, and Z\ is independent of Y\. Then the joint density function 

of (Yi, Y2) is given as (Carpenter et al. [6]): 

Hyi,y2) = pXM^e-^Siyuyt) (29) 

+ ( l - p ) A 1 A 2 ^ V - 1 ^ - 1 e - A ^ e - ^ - o A ^ / ( j / 1 ) ^ ) ) 

where 

• S(yi,y2) = S(y2 - aJyi), 
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• I(yi,y2) = I(V2 > atyi). 

Figure 7 describes the joint pdf in (29) for Ai = 4, A2 = 1, a = 1, and /3 = 3. 

<fe«5rtp 

FIG. 7: The joint pdf of (Yi,Y2). 

Notation 

Let r denote the index of proportional occurrence between the two events. 

r = I(y2 - a " y i ) = 
1, if y2-aBy1 = 0; 

0, if j f c - a^ j / i > 0 . 

Then the joint probability density function of (Yi,Y2) can be written as: 

%i,y2) = bAi^f_1e-Al^Y[(l -p)AiA2/8
2yf-1yri

e-
A2^e-(Al-aA2)^]1-r . (30) 

T h e o r e m IV .3 .1 . Suppose (Yn, Y2i), i = 1 , . . . , n is a random sample of size n from 

(30). Then the joint maximum likelihood estimators (Ai, A2, /?) 0/ (Ai, A2, ft) are given 

by, 
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--- a n — k 
A l — =5T + 

A2 = 

Y2 nY1 ' 
J_ 
r 2 

arid /3 is the solution to 
n n r. 

X, J^YfilogYu + A2 ] T ( 1 - T r i l o g y * - a ^ l o g ^ ] = - | 
»=i i= i ^ 

~ ^ ^ + J2rilogYu + £ ( 1 - rI)log(y l jF2t), 
P i = l i = l 

r 1 _ n 

J 2 - „ > 

• fc^Er=ir«-

Proof: The log-likelihood function is: 

K^i.^2,/3) = log]^J/i(yii,j/2i) 

n 

= ^2^og[h(yu,y2i)] 
i = l 

ri n n 

= log(aA2£) £ n + (/? - 1) J2 TMYu - Ai E r ^ 
i = l i = l z = l 

n n 

+ log(A! - aA2) J2(l - n) + log(A2^
2) J ] ( l - rt) 

i= i i= i 

n n 

+(/3 - l) £ ( i - n) log(YuY2i) - A2 £ ( i - n)Y£ 
2 = 1 

n 

- ( A 1 - a A 2 ) ^ ( l - r , ) ^ . 
i= i 

t = i 
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Taking the partial derivative of l(Xi, A2,/3) with respect to X\ gives 

dl(XuX2,P) _ E r = i ( l ~ n 
dXi (Ai - aX2) -E^-

i = l 

Taking the partial derivative of l(Xi, A2, 0) with respect to A2 gives 

d«\i,x2,i3) = ELi^ °Er=i(i-n) , Er=i(i-rQ 
<9A2 A2 (Ai - aA 2 ) A2 

- ^ ( l - r ^ + a ^ l - r , ) ^ . 
1 = 1 4 = 1 

Taking the partial derivative of l(X\, A2, /?) with respect to /3 gives 

a/(Al
a

A2 '^ = ^f± + £ri}ogYli-\l±TiY{itoSYu 
i= l i=l 

+2Er=i(i-^) + J2(i - ri) iog(yMy») 
2 = 1 

n n 

- A 2 ] T ( 1 - r ^ l o g y * - (At - aA 2 ) ]T( l - rJYglogYu 
i= l i = l 

dl(Xu\2,P) 
betting — equal to zero, we have 

aAi 

X.-ah = £*= l ( 1 P } . (31) 
En vp 

i= l r H 

dl{\UX2,P) . . , 
betting — equal to zero, we have 

<9A2 

^2 i = i i = i j=i 

dl{Xx,X2J) 
betting — equal to zero, we have 

dp 

X^YllogYu + A 2 £ ( l - n)[Yi \ogY2t - aYfilogYli\ = 
i = i i = i 

^ - ^ ^ • + Yiri\ogYli + Yt(l-ri)loS(YliY2i). (33) 
P P t=i i= i 
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Solving for A2 in (32), we have 

1 

A2 

A2 = 

2-ii=\ x2i 

n 

1 h 
Y2 n 
1 

n~ 

1 n 

n ^ 
^TiPi-aY*), 

where 

•k1 = El1n(Yi-aYi) = 0. 

Solving for Ai in (31), and substituting the above value for A2 gives 

~ a n — k 

Y*2 nY\ 

IV.4 GAMMA-ERLANG MODEL 

Theorem IV.4.1. Let Xx ~ Ga(Ai,ai) and X2 ~ Ga(A2,a2) urai/i Q i e N , Q 2 £ R 

Aj,A2 € R, a i , a2, Ai, A2 > 0 and aA2 < Ai,ai < a2 and Xi,X2 are related as 

X2 = aXi + Z, with a a nonnegative fixed constant called the coefficient of linear 

relationship, and Z an unknown random variable independent of X\. Then the pdf 

of Z is: 

ai / N \j+az~a, 

fz(*) = Y,( ' )pai-J(l-p)JTri ,z>+as-a>e-^,z>0, (34) 

where 
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P 
a\2 

Proof: From the Laplace transforms we obtain, 

Lx2(s) 
Lz(s) = 

LXl(as)' 

r A 2 
_A2 + s j 

r A 2 i 
_A2 + 5_ 

[ A2 1 
_A2 + s_ 

OL2 
\ \ l + as 

. Ai J 
OL2—OLI 

Oil- - a i 

a i 

A2 (Ai + as) 

.Ai (A2 + s) . 

( 1 - i 

a i 

^ A2 a. 1 
A2 + s 

where p 
a\2 

Therefore, Z is the sum of two independent types of rv's: 

• The first one is the sum of ax independent rv's, each being the product of two 

independent rv's: a Bernoulli rv with mean (1 —p) and an exponential rv with 

parameter A2, where, p = ^ z , 

• and the second one is a gamma rv with scale A2 and shape a2 — a\. 

Let Z = D + G, where: 

hD{w) = J T ( a]_ Apai~3(l-p)jfgjM, w>0, by Theorem III.2.1, 
j = 0 

hG(g) 

Therefore: 

X°o 
T(a2 - aj) 

f*-ai-1e-*a9,g > 0. 

poo 

fz(z) = / hD(w)hG(z-w)dw, 
Jo 

= rpaH{w)hG{z - w) dw + I f^ ( ai_ . V 1 ^ ! - Pyfgj(w)hG(z - w) 

= Parti + Part2, 

with 
roo 

Parti = pai / 5{w)hG(z-w)dw. 
Jo 
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By change of variables, 

Parti = pai / 5{u — z)hc(y) du, 
J — oo 

= paihG(z), and 

Part2 = E ' .)pai-J(l-p)J f9](w)hG(z-w)dw, 
~i\ai-3J Jo 

A i + a 2 - a i e _ A 2 , 

/ u ^ ' - ^ z - u ; ) 0 2 - 0 1 1 - 1 ^ , 
Jo 

= zf i.V1-̂ -̂ - -— 
j = 1 xai - J / rti) r (Q2 - ai) 

j —1 / n i i \ Q 2 - a i - l 

dw. 

By change of variables, 

A J-rOt2~Oti 

Part2 = Z^y-Jfi-tfh 
J+otz-ai „-\oz 

3 = 1 V^l - 3 J r(j) r(a2 - <*l) 

zaa-ai+j-l t uJ-l(l_u)°2-oi-ldu, 

" 1 \ m - 7 / - , ..Ni" A 2 ^ = \ ^ ( a i )pai-j(l-py ^ ^a2-a1+j-l0-X2z 

j=1 v — J , Y{j + a2-al) 

Putting together Parti and Part2, we obtain, 

fz(z) = pa'hG(z) + 

T(i + a2 - ax) 

ai / n \ \j+or2-at\ 
Yl U^-Hl-pY^ . ^ - a i + i - l g ^ z 

\ a 2 - c x 1 
P01~^ z»2-a,-le-Mz + 

T(a2 - on) 
"1 / \ \J+CJ2-0: i 

jri\a-i-jj r(j + a2-ai) 

file:///a2-cx1
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where 

/*(*) 
\ j+02—0'1 

T(j + a2- ai) 
i , -+ a a_ a i_i e_A 2 t > Q for 1 < . < 

)" ^ u) J S ai-

f9a,-ai(t) = 
X a.2 — &\ 

T(a2 - a i ) 
±OC2~ OL\~ 1 — \2t e"A2t,t > 0 . 

a 
Figure 8 describes the joint pdf in (34) for Ai = 4, A2 = 1, a = 1, ot\ = 2 and a2 = 3. 

0.254 

density 

0.05H 

FIG. 8: The pdf of Z. 

T h e o r e m IV.4 .2 . Let Xx ~ Ga(Ai ,a i ) and X2 ~ Go(A2 ,a2) with ax 6 N, a 2 £ R 

Ai,A2 € R, a i , a2 , Ai, A2 > 0 one? aA2 < Ai,«i < a 2 and Xi,X2 are related as 

X2 = aXi + Z, with a a nonnegative fixed constant called the coefficient of linear 

relationship, and Z an unknown random variable independent of X\ . Then the joint 

pdfof(XuX2) is: 

TXI,XS(XI,X2) = Y^ (a 1 - j p a j _ J ( J ~ Pyfx,(xi)fgi+aa.at{xs - axj), x2-ax! > 0, 

(35) 
3=0 
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where 

• p = P(X2 = aXx) = ^ 

A j+a2-ai 

ax. 
• fa-it) = —^ tj+a2-ai-l -\2t t g fQr l < 3 < 

\a2-ai 

r(«i) 

The probability density function of Z is: 

/ Z ( * ) = E ( a i , - ) p a ' " J ' ( J - P ) J ' 4 + a , - a j W . ^ > 0 , (by theorem IV.4.1). 

Using the independence of Xi and Z, we have: 

/xx.zOci,*) = fi(xi)fz(z) , 

/

+oo 
fxl,z{xi, z)5(ax1 + z - x2) dz, 

OO 

= E( ai -V^'a-p^xCxi) 

/

+ o o 

•oo 

D 

Figure 9 describes the joint pdf in (35) for Ai = 4, A2 = 1, a = 1, ai = 2 and 

a2 = 3. 
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FIG. 9: The joint pdf of (Xi,X2).. 

IV.4.1 Gamma-Gamma Model 

Theorem IV.4.3. Let X\ ~ Ga(X\, a{) and X% ~ Ga(A2, a2) mi/i ai , a2, Ai, A2 € K 

c*i, a2, Ai, A2 > 0, aA2 < Ai,ai < a2, [<̂ i + 1] = N < a2 and Xi,X2 are related as 

X'i = aX\ + Z, with a a nonnegative fixed constant called the coefficient of linear 

relationship, and Z an unknown random variable independent of X\. Then the pdf 

of Z is: 

AW = E ( / _ > M I - P > > ' ( ^ ) V 

-(*l)z 1 
*e a 

iwr (0 2 + j) 
Jo 

• 0i = N - ai. 

• 02 = OL<i — N. 
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Proof: From the Laplace transforms we obtain, 

Lz(s) 
LXl(as) 

\ X2 1 
.A2 + s 

A2 

A2 + s 

[ A* 1 

Ai + as 

Ai 

Q2-[Q1+1] r A i + 
as 

Ax 

ai-[a i + l] 

A2 + s 

C*2-N 
a 

+ S 

A2 (Ax + as) 
Ai (A2 + s) 

JV 

[«i+l] 

A2 + s 

• 

• 

• 

• 

N 

e± 

02 

p = 

= [«i + 1] 

= N-

= a2 

- ai 

-N 

Therefore, Z is the sum of three types of independent rv's 

• N independent rv's, each being the product of two independent rv's: a Bernoulli 

rv with mean (1 — p) and an exponential rv with parameter A2. 

• Ga(A2,02) . 

* Ga(lTA)-
Let Z = D + Gi + G2, where: 

JV 

hD(w) 

ho, (g) 

ho2(v) 

j=0 

TV 
£ ) ( # ' - • )PN~J(1 - P)V9,», w ^ °> by Theorem III.2.1, 

X* ge^1e-^1g>0, 
T(02) 

a J r((9! 
- t ; ^ - 1 e - ^ u , i ; > 0 . 
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Now let Zi = D + Gi, and consider the convolution of the rv's D and G\. 

Therefore: 

___. /*oo 

fzAz) = / hD(w)hGl{z - w) dw 
Jo 

= f\N5{w)hGl{z -v)dv + J*it (yv - j)pN~J{1 ~ tffs»hG^z ~ ™) dw 

3-

= Parti + Part2, 

with 

A? 
Parti = P ^ ^ T ^ / S(w)(z - ^ " V ^ 2 ^ dw. r(^2J Jo 

By change of variables, 

A?2 

du 
\ 2 fz 

Parti = VN^HT\ / 5(u - ^)«e2_1e"A2U 

= PNvnr/2-lz-X2Z and 
1 \P2) 

N ' M \ xi+02 -\2z 

^ ( / J ) " ' " , ( 1 - ' ' , ; 
,.=1 v- .,, r o ) r ( e 2 ) 

j - l / N 62-1 

1 - ^ du,. 

By change of variables, 

N 

r(j)r(e2) 

N / N \ \j+02 -\2Z 

Part2 = ̂ / . . W - P f -3+fl2-1 

/ ^ ' ^ ( l - u ) 0 2 - 1 , 
Jo 

^2 ^ J + 6 ) 2 - i c - A 2 z 
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Putting together Parti and Part2, we obtain, 

r ( j + e2) 

. N / M \ \J+(>2 

Finally let Z = Zx + G2, and consider the convolution of the rvs Z\ and G2, where: 

Therefore 

dw 
/*oo 

/z(«) = / fzdw)(w)hGl{z - w) 
Jo 

ro' + fc) 
^2 „j+e2-i„-A2«) = f E ( / _ > - ' d - P > < = ^ — 

T)fcm)<*-"'>ft'"1«-*(",*° 
N / AT \ / \ \9l 

^2 

n 
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IV.5 ESTIMATION 

IV.5.1 Estimation in the exponential case 

Let (Xu, X2i),i = l..n represent a random sample from (28), the joint maximum 

likelihood estimators of (A1;A2) are given by (Carpenter et al. [6]): 

Z(A1;A2) = logJJ/(xH ,X2i) 

n 

1 = 1 

= 5z l o g {^ A l e f iu&\LF'vlt-
i= l 

[(1 - p)\l\2e-X2Vie-{Xl-aX2)xi]l-n}1 

l(\1,X2) = l og (aA 2 ) ^ r i - A i ^ r i X i l + log(A1 - a A 2 ) A 2 ^ ( l - r i ) 
i= l i=l 

n n 
1=1 2 = 1 2 = 1 

t = l 1 = 1 

and Ai = — H =—, (36) 
x2 nxi 

A2 = ^ , (37) 
^2 

where 

• k = XX1 ^(x2i - a^H = 0). 

. x2 = Sk*2i . 

The variance covariance matrix of X\ and A2 is: 

E = 1 / Ai(A! - aA2) + a2 A* aA2 \ g 

n \ a\\ A2 
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The traditional estimates are: 

X2~x2 

The main computational cost is incurred by the estimate of the parameter Ai, 

whose value depends on the that has been made on the mean of each sample data. 

The following example shows that 

• Ignoring the dependence comes at the cost of the parameter estimation for Ax 

as its mean square error (MSE) increases. 

• The proposed model estimation evidences their performance in simulated and 

real data. 

Example IV.5.1. 

Here the above mentioned estimators in the Exponential-Exponential case a simula

tion study is assessed. The data were generated from a BVE with Ai = 4, A2 = 1 

and a = 1. The sample size of n = 25 was considered. Using the simulated data the 

parameters are estimated. The estimated parameters and the estimated variance-

covariance matrix is given below. 

/ 4.1615 \ - / 0.5992 0.0471 \ 
A = and E = 

\ 1.0410 J \ 0.0471 0.0472 J 

As we can see, there is a close correspondence with its original parameters. Now a 

real data is considered. 

Example IV.5.2. 

In order to compare the Mean Squared Errors (MSEs) of Ax and AJ, we have 

conducted a simulation study. The data were generated from a Bivariate Exponential 

(BVE) with \i — 1,A2 = 1 and a — 1. The random sample size was n = 25. In 

this setting the correlation coefficient coefficient p is same as a. We defined the % 

improvement in the MSE (%-imp) as 

% - imp = K— = K-^- x 100 
MSE{\1) 
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TABLE 1: MSEs and the Percentage Improvement 

a 
0.01 
0.05 
0.10 
0.20 
0.30 
0.40 
0.50 
0.60 
0.70 
0.80 
0.90 
0.99 

MSE(Ai) 
0.048484 
0.045787 
0.045554 
0.045554 
0.039644 
0.038226 
0.036344 
0.036344 
0.038701 
0.041663 
0.041663 
0.048457 

MSE(A*) 
0.048904 
0.047861 
0.049456 
0.049456 
0.049456 
0.049456 
0.049456 
0.049456 
0.049456 
0.050368 
0.050368 
0.048796 

%-imp 
0.8588 
4.3334 
7.8898 
7.8898 

19.8399 
22.7071 
26.5125 
26.5125 
21.7466 
17.2828 
17.2828 
0.6947 

Table 1 shows that the perecent improvement increases up to a = 0.6 and then 

decreases. So ignoring the correlation of the data in the analysis has disadvantages 

when that correlation is between 0.10 and 0.90. When the correlation is close to 0 

we can ignore the new technique as X2 and X\ are then independent. When the 

correlation is close to 1 we can also assume X2 = Xx and then Z can be ignored. 

Example IV.5.3. 

We fit exponential-exponential bivariate model to the American Football League 

(AFL) data published by Csorgo and Welsh [10]. The joint MLE's, and the esti

mated asymptotic variance/covarince matrix of the MLE's (from 36, 37 and 38) are 

as follows: 

- / 0.1217 \ - / 2.7 x 10-4 1.3 x 10~4 \ 
A = and S = 

\ 0.0744 J \ 1 . 3 x 10-4 1.3 x 10~4 J 

The log-likelihood of the data is given in Figure 10. 

Example IV.5.4. 

We used data from a mammary cancer chemoprevention study (Carpenter et al. 

[6]) that was carried out to determine if a red wine extract suppresses the incidence 

file:///1.3x


62 

FIG. 10: The log-likelihood. 

of dimethylbenzo(a)anthracene induced tumors in transgenic mice. In that study, 

the mice were randomly assigned two groups: the control group and the treated 

group. For each group, the number of tumors and the time to appearance of the 

tumors were recorded. This data is from an Exponential-Exponential bivariate model 

that was described in (28). Assuming the data follows an Exponential-Exponential 

bivariate model, we demonstrate that the joint MLE's, and the estimated asymptotic 

variance/covarince matrix of the MLE's (from 36, 37 and 38) are as follows: 

Control group: 

/ 0.0739 \ - / 1.4 x 10-1 1.7 x 10~5 \ 
A = and E = 

\ 0.0227 J \ 1.7 x 10"5 1.7 x 10~5 J 

Treated group: 

- / 0.0379 \ , - / 3.8 x 10~5 3.1 x 10"6 \ 
A = and S = 

\ 0.0095 J \ 3 . 1 x 10~6 3.1 x 10"6 / 

The log-likelihood of the data is given in Figure 11. Notice that the log-likelihood 

of the treated group is below the log-likelihood of the control group. Such a difference 
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would not be easily seen if our proposed methodology was not used. In the next 

example, the methods as applied to another real data from kidney patients. 

(a) The log-likelihood for (b) The log-likelihood for the 
the control group. treated group. 

FIG. 11: Graphs of the log-likelihood functions 

Example IV.5.5. 

Here we consider the complete data from McGilchrist and Aisbett [39], assuming 

there is no censoring. The data set describes the recurrence times to infection at 

point of insertion of the catheter for kidney patients who are using portable dialysis 

equipment.We consider that the random sample data from bivariate Exponential-

Exponential distribution. Our suggested model is fitted and the specifications for 

the coefficient of linear relationship is chosen to be 1 and no censored data. Here we 

fit an Exponential-Exponential bivariate model that was described in (28). The joint 

MLE's, and the estimated asymptotic variance/covarince matrix of the MLE's(from 

36, 37 and 38) are as follows: 

- / 0.0139 \ , - / 3.9 x 10~6 6.4 x 10~7 \ 
A = and E = . 

\ 0.0049 J \ 6.4 x 10"7 6.4 x 10"7 J 

The log-likelihood of the data is given in Figure 12. 

Typically, an analysis of disease types can lead to debate of the differences be

tween associated mortalities, estimates of disease risks and variations. The data was 

further aggregated into disease types. To address such issues related to McGilchrist 

and Aisbett [39] kidney data, our model that allows estimates of risk parameters 

associated with the four types of diseases has been fitted. The four disease types are 
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FIG. 12: The log-likelihood. 

0 = GN, 1 = AN, 2 = PKD, and 3 = other. Using our construction, each disease 

type model was fitted separately. The results are presented below. We observed 

conjugate property that shows differences between those diseases. 

For disease type 0, the estimates and the variance-covariance are respectively: 

- / 0.0143 \ - / 1.7 x 10"5 3.4 x 10~6 \ 
A = and S = 

\ 0.0055 J \ 3.4 x 10~6 3.4 x 10"6 J 

For disease type 1, the estimates and the variance-covariance are respectively: 

/ 0.0283 \ - / 5.4 x 10"5 4.2 x 10"6 \ 
A = and E = 

\ 0.0071 J \ 4 . 2 x 10-6 4.2 x 10"6 J 

For disease type 2, the estimates and the variance-covariance are respectively: 

~ / 0.0145 \ - / 4.2 x 10"5 3.6 x lO"6 \ 
A = and E = 

\ 0.0038 J \ 3 . 6 x 10-6 3.6 x 10"6 J 

For disease type 3, the estimates and the variance-covariance are respectively: 

/ 0.0095 \ - / 5.3 x 10~6 1.1 x lO -6 \ 
A = and E = 

\ 0.0038 J \ 1.1 x 10"6 1.1 x 10~6 J 

file:///3.6x
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(a) The log-likelihood for the disease type (b) The log-likelihood for the disease 
0. type 1. 

0.000.02004 008 0 08 »0.02 o n 0.08 0 0, 

(c) The log-likelihood for the disease type (d) The log-likelihood for the disease 
2. type 3. 

FIG. 13: Graphs of the log-likelihood functions 



66 

The log-likelihoods for the different disease types are given in Figure 13. Such 

figures along with the parameter estimates show that going from disease type 0 to 3, 

the likelihood becomes flattened. The estimated variance from our suggested model 

are smaller than the one proposed by McGilchrist and Aisbett [39]. Without use 

of prior distribution, the relationship between recurrence time to infection at point 

of insertion shows that there is substantial differences found and since maximum 

likelihood estimation was used variance is stable. Indeed, the disease type 0 is easier 

to cure among them and disease type 4 has no clear remedy. 

IV.5 .2 Es t imat ion in the Weibull-Weibull case 

The weibull model is another very useful case to consider and is a natural exten

sion of the exponential distribution. Let (Yn, Ya), i = 1 , . . . , n is a random sample 

of size n from (30). Then the joint maximum likelihood estimators (Ai,A2,/3) of 

(Ai,A2,/3) are given by, 

t- a n 
Y2 nYl 

1 

K' 

and P is the solution to 

ran „ 

A i ^ f logŷ  + A 2 £ ( I - r0[y|iogy2i - â f iogyu] = - | 
i= l i= l P 

sr-\n n n 
_ 2^i + j - ri log Yu + £ ( i - n) logiYiiYx), 

P i= i i= i 

where 

• n E n \rfi 
i=l I\i 

^ n 
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• k = E?=i r* 

The Hessian 

H(X1,X2,P) = 

( Axx A12 A13 ^ 

A2\ An A23 

\ A31 A32 A33 J 

where 

* ^ H — ( A ! - a A 2 ) 2 ' 

* A 1 2 - (A! -aA 2 )2 - ^ 2 1 , 

^i3 = - E r = i ^ i o g y l i = A31, 

• ^ 2 2 = 
-a2ELi(l-n) _ _n_ 

( A ! - a A 2 ) 2 A 2 ' 

^23 = - E r = i ( ! ~ ^ ) ^ l o g y 2 l + aEr= i ( l - ^)Y£logYu = A32: 

• -433 = ^ f f ^ - Ax YLi nYf^ogYuf - 2 ^ f ^ 

~ A2 Er=i( l - rjYiilogYx? - (Ax - aA2) £ ^ ( 1 - ^ ( l o g ^ ) 2 

Fisher's information 

/(Ai,A2,/3) = 
' ^ 1 1 # 1 2 # 1 3 

Z?21 # 2 2 # 2 3 

^ #31 B32 5 3 3 J 

where 

Bn = A i ( A i - a A 2 ) ' 

r> — na r? 
^ 1 2 - A 1 (A 1 - aA 2 ) ~ ^ 2 1 , 
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B 13 
n ( l — y - l o g Ai) 

iSAi 
B 3 1 , 

Bii — , n 

D _ "A 2 ( l -p) rl-T-log-^2 1 anAi(l-p) \\—y-logAii _ R 
£>23 - 02 [ "T2 J Q [ XT^J - - ° 3 2 ' 

-B33 = 

where 

a\2 n A 2 ( l -

Ai/32 6/32 

fCi+6(logA2)2+C2 logA 2 i 1 fnA2 n a A x A 2 ( l - p ) i f c i+6( log A i ) 2 + c 2 log Ai ] 
I A2 J"^L 3 2 6 3 2 JL A? J' 

- Ci = 7T2 + 6 7 2 - 1 2 7 , 

- C2 = 12(7-1). 

Example IV.5.6. 

In order to assess the the above mentioned estimators in the Weibull-Weibull 

case a simulation study was performed. The data were generated from a Bivariate 

Weibull (BVW) with Ai=4,A 2 = l,/3 = 3 and a = 1. The sample size of n = 25 was 

considered. The estimated parameters and the estimated variance-covariance matrix 

is given below. 

MLE's and the estimated variance/covariance matrix. 

/ 

V 

3.9485 

1.1642 

3.0838 

\ / 0.1191 0. 

and S 

0098 

0.0098 

0.0090 

0.0099 

-0.0001 

0.0090 \ 

-0.0001 

0.0114 J 

The estimated parameters and their variance/covariance imply that the imple

mented algorithm is very promising. So the likelihood based method is found to give 

substantial results compared to the independence assumption, reducing biased and 

applying to the model of interest. 
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CHAPTER V 

SEQUENTIAL ESTIMATION 

In section II.4, the exponential family type distribution is discussed and the es

timation of the mean difference based on the linear model is provided. A sequential 

estimation procedure is adopted. 

Consider some index set I, we now consider two classes of exponential families of rv's 

called X = (Xi)iei and Y = (Yi)i€i with densities 

/ (x i ; 9) = exp[6T(xi) - b{9) + S(Xi)], (39) 

and 

f(yi-, 9) = exP[9T(yi) - b{9) + S(yt)}. (40) 

in the classes Qx and QY with the following linear relationship: 

Y = aXi + Ziy (41) 

where i & I, a is a fixed positive constant, and Zj's are unknown rv's whose means 

are of interest. 

The set / is an index countable set that could be finite or infinite. The linear 

relation described in (41) of association of rv's is not new, but is still a challenging 

problem. In fact, many authors such as Carpenter et al. [6], Iyer et al. [21], Iyer and 

Manjunath [22] have suggested its use and importance in applications. 

Our goal is to estimate the parameter 

X = Ed[T(Y)]-aEe[T(X)], (42) 

with squared error loss. When a = 1, Equation (42) reduces to the difference between 

two dependent exponential family of distributions. The dependence concept is the 

innovation here as in many cases independence is assumed, even if it is known that 

there is great cost associated with that independence assumption. 

V . l SEQUENTIAL ANALYSIS 

We use the sequential estimation procedure to estimate the mean of the differ

ence of two exponential families distributions with conjugate priors of the gamma or 



70 

Bernoulli or Poisson types. This procedure helps address the problem in the small 

sample size case, maintaining a high power . The approach we use is Bayesian and 

we assume that 7Ti(0) and 7^(0) are the conjugate priors given by: 

7ri(0)cxexp[i(/i10-&(0))], and ir2(6) oc explsfaO-b(6))]. 

This is not a new idea as Diaconis and Ylvisaker [11] adopted this alternative to 

the maximum likelihood estimation regarding the parameter 8 as a rv with prior dis

tribution, and the inference was based on the posterior distribution. They used this 

setting in the exponential family with conjugate prior distribution of the parameter 

6 given as: 

{) f expire - <t>(0))}dd' { ' 

where 

• 0 € 6 . 

• t can be thought as prior sample size. 

• /z is the mean parameter (See also Annis [2]). 

In that regard, we obtain that /ii = i?^[&'(#)] and /z2 = En2[b'(9)] are prior 

estimators of Eg[T(X.)] and Eg[T(Y)], respectively. 

Hence following the idea by Terbeche et al. [47], the Bayes estimate of A, based 

on a r.s. of size n of Xx, X2,. • •, Xn of X, and Y\, Y2, • • • , Yn of Y is given by: 

A = A(X,Y) = A(X1 , . . . ,X„,Y1 , . . . ,Y„) 

= E[X\Xi,.. .,Xn,Yi,... ,Yn] 

- E[b'{d)\Yx,..., Yn) - aElVWlXu ...,Xn], 

where 

E[b'(6)\X1,...,Xn] = nT^t
t
fl1, (44) 
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and 

E[b'(9)\Y1,...,Yn} = ^ ^ , (45) 
n + s 

with T* . n * . ) + - + r P Q and TV - ^ » + - + r K » . 
n n 

Hence, 

n+s n + t 

The asymptotic estimate for the parameter as n —> oo is 

A = f„ Y - aT„ x . (47) 

A criteria for stopping the estimation of A is developed. 

When t = s, 

^ = n(fV-afX) + t{fi2-avi) , . 
n + t [ ' 

= ^ < ^ - < X ) + ^ ( « - " " , ) . (49) 

When t — s = n, 

~ = (T„Y - af*) + (M2 - Q/ut) 

In the sequential analysis, the sample size is not predetermined. Hence, a natural 

question is to ask is when is the sample size large enough to make conclusions. 

V.2 S T O P P I N G RULES 

The Bayes risk of the estimate A of A with respect to the prior ir(d) in (43) is 

given by: 

r(d,\) = E[R(8,\)], where 

R{9, A) = E[L(0, A)] and L(6, A) = (A - A)2 is the loss function. 

In this setting, the Bayes risk is given by: 
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r ( ^ 2 ) = r(A(X,Y)) 

= #(X,Y) 

= -^(X,Y) 

= E(x.,Y) 

E\\(x,Y) A(X, Y) - A 

Var A|(X,Y) 

2n 

= #. (X,Y) 

VarN/(0)-a6 ' (0) | (X,Y) 

Var lb'(9) ) +a2Var[ b'(6) ) -2ap\\Var[ b'{6) )\\Var (v(6) 

and the upper bound is achieved using idea of Equation (4) in Terbeche et al. [47] 

It is given by 

,6»(0) 
r(7Ti,7r2) = EY E~ \b"{6)\ 

e | Y ' n + sl 
+ a'Ex E, |X | 

n + t 
(51) 

with equality achieved in (51) when p = corr(b'(6),b'(9)) = corr(X, Y) is minimized. 

Considering the loss function 

L(A,A,n) = (A-A) 2 + cn, (52) 

where c can be looked at as the cost of sampling and the decision rule A = (r, 8) 

where r = rn(x, y) is the stopping rule and S = <5„(x, y) is the decision rule, we have 

that the Bayes risk to minimize from a suitable sample size n obtained sequentially, 

is given by: 

r(r, 7ri,7r2) = £(X,Y,T) 

= # ( Y , T ) 

un + vn 
n + t n + s 

2apyJvar{V{6))y/Var(V{6)) + en 

Un 

_n + t 

+E(X,Y,T) 

+ E (X,T) 
Vn 

n + s 

- 2ap^Var(l/(e))^Var(b'{d)) 

where Un = £Y,r[&" (0)] and Vn = £X>T[&"(0)]. 

+ en 

Using ideas in Terbeche et al. [47] to achieve the upper bound in (51), the 

stopping rule criteria can be expressed as follows: 



73 

If Un < c(n + t)2 or if Vn < c(n + s)2, then take another pair of observations. 

Otherwise, stop the collection process. That is the estimation of the difference of the 

two exponential family can be evaluated from the available informative sample. In 

other words, the stopping variable is defined by the quantity 

n > min W?--i/H- (53) 

In order to study the optimized stopping rule in (53) and its efficiency, a numerical 

simulation technique is provided in the next section. We consider two exponentially 

related distributions with gamma priors. 

V.3 SIMULATION 

We have described a methodology to compare the mean difference between two 

exponential distributions that are linearly related. In this section, we show an ex

ample of a simulation data of the related bivariate exponential distribution with the 

different values of the correlations p. 

FIG. 14: Graph of the bias from rho for c= 0. 

Since we consider two dependent rv's, we create one exponential rv, and create 

the other one with the desired correlation p. We generate sample data of size 50. 

We assume a coefficient of linear relationship a = 1 of simultaneous occurrence as 

described in Marshall and Olkin [32], and c = 0 and c = 0.25 in (52) over 5000 runs. 
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The simulation was carried out using SAS®. 

FIG. 15: Graph of the bias from p for c= 0.25. 

The results of the two figures show that data does not need to be large to achieve 

convergence. The pattern is the same regardless of the number of runs. Figures 14 

and 15 give the bias of the mean difference for c = 0 and c = 0.25, respectively. The 

convergence is justified by the maximal error allowed to reach based on the stopping 

rule. The algorithm performs very well even when the sample size is small, showing 

great robustness. 

The resulting plot of the bias is very helpful in explaining the effectiveness of the 

estimator. When the correlation is present, this new estimator should be considered. 

Furthermore, the choice of the cost of re-sampling c does not affect significantly in the 

error estimation. Setting c = 0.25 as in Figure 15 shows the same trend as for Figure 

14. The risk is then minimized considerably when the correlation is significant. 

V.4 SUMMARY 

The proposed sequential parametric procedure in the estimation of the difference 

of two exponential distributions is quite useful and relevant. This sequential esti

mation for the bivariate distributions of the exponential type families is used to get 

estimate of the mean difference. It is more efficient in terms of bias. 
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CHAPTER VI 

CONCLUSION 

In this dissertation, we have developed methods for the linearly related type events 

that have simultaneous/proportional occurrence. To this purpose, we have applied a 

family of methods known as the Marshall and Olkin procedure which was originally 

proposed by Marshall and Olkin [32] for tracking systems that can evolve simulta

neously in a linear relation. We demonstrate the usefulness of these methods for 

occurrence of events using a non-zero probability of simultaneous occurrence. Since 

the event dynamics are identical to other phenomena such as in action/reaction, we 

have applied these methods to McGilchrist and Aisbett [39] epidemiology case and 

found results that were not apparent in previously proposed models. Our results 

support the use of linear relationship in describing related events, due to its relative 

simplicity and comparative ease of implementation. 

Also the subject of this dissertation is to describe the dependencies. Depen

dencies which are then described in terms of mixing coefficients. We show that there 

exists a finite mixing sequence quantifying the (relationship) dependence between the 

two rv's. We investigate the nature of the algorithm and use such result to suggest a 

robust version for classification. We have proposed new results on fitting a bivariate 

gamma distribution that is easy to work with because of its analytic form and the 

one to one correspondence between its parameters. To assess significant risk effects 

in disease/event associations studies have used models with limited capabilities and 

no real justification in their usage. Consequently, those results are problematic. The 

use of joint density function in the linear form after including a latent rv may be a 

remedy. We then present a robust alternative that avoids multiple testing on model 

Parameter estimates based on the proposed bivariate model. Such distributions are 

useful. Our analysis will result in better decisions for various related events. 

There is scope for extension of the methods described in this dissertation for 

the sum independent such distributions. One choice is to consider the case where 

the probability of proportional occurrence is not the same or to derive the limiting 

distribution of the sum. Our approach is semi parametric, and is based on known in

dividual related distributions with an unknown component. The field of applications 
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of such models is wider than the failure 

approach is also valuable in investigating 

models. 

time described in the introduction. This 

the relation from bivariate to multivariate 

D 
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