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ABSTRACT 

STUDIES OF MIXING PROCESSES IN GASES AND 

EFFECTS ON COMBUSTION AND STABILITY 

Frank P. Kozusko, Jr.

Old Dominion University, 1995

Director: Dr. D. Glenn Lasseigne

Three physical models of laminar m ixing of in itia lly  separated gases are studied. 

Two models study the effects of the m ixing dynamics on the chemical reactions 

between the gases. The th ird  model studies the structure and stab ility  of a laminar 

m ixing layer in a binary gas. The three models are:

1. Two ideal and incompressible gases representing fuel and oxidizer are in itia lly  

at rest and separated across an infin ite  linear interface in a two dimensional 

system. Combustion, expected as the gases m ix. w ill lead to a rapid rise in 

temperature in a localized area, i.e. ignition. The mixing of the gases is 

enhanced bv two counter-rotating vortices w ith  centers located on the in itia l 

interface. The ignition process is studied by an asymptotic analysis.
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Ignition times for the double vortex lay between the no vortex and the single 

vortex times. As the distance between the two counter-rotating vortices gets 

smaller, ignition times approach the no vortex case, for increasing distance the 

ignition times approach the single vortex case.

2. Lam inar m ixing of compressible gases representing two reduced chemical 

systems is studied. The gases are in itia lly  separated in to two sem i-infinite 

planes and have different freestream flow velocities. Combustion is followed 

through ignition to the post-ignition steady flame.

The ignition distance is an inverse logarithmic function of the in itia lly  required 

loading of a non-fuel, non-oxidizer radical. The post-ignition flame tempera­

ture is not effected by the in itia l radical concentration.

3. Lam inar compressible non-reacting m ixing of two real gases of different free­

stream temperatures and flow velocities is studied. Realistic values of trans­

port properties are obtained from various tables or calculated from theory. The 

transport properties are dynamically calculated as functions of the changing 

temperature and gas concentrations across the m ixing layer. A steady state 

mixed solution is found. Items of interest are the stab ility  characteristics, 

the profiles of temperature and gas concentrations and the variations o f the 

Prandtl and Lewis numbers.

The Lewis number and Prandtl numbers may vary significantly through the 

m ixing layer. Neutral phase speeds and growth rates for spatial s tab ility  are 

also shown to be effected by the molecular weights and physical properties.
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Chapter 1

INTRO DUCTIO N

In this thesis, three different physical models o f lam inar m ixing of in itia lly  separated 

gases are studied. The firs t two models study the effects of the m ixing dynamics 

on the chemical reactions between the gases. Reduced kinetics is used, where a 

reduced number of chemical reactions, reactants and products are used to  model 

a more complex system. The th ird  model studies the structure and stab ility  of a 

laminar m ixing layer in a binary gas. Presented below is a more detailed overview of 

the three models. Also presented is a brief introduction of the governing equations 

used in lam inar m ixing layers, which w ill be further developed as applicable in the 

subsequent chapters. A ll of the systems studied here are assumed to depend on 

two spatial variables, and are either steady or unsteady according to the appropriate 

physical model. The three models are:

1. Two ideal and incompressible gases representing fuel and oxidizer are in it ia lly  

separated across an in fin ite  linear interface in a two dimensional system. The 

gases are in itia lly  at rest w ith  respect to each other. The system temperature

1
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is near tha t where combustion, expected as the gases m ix, w ill lead to a rapid 

rise in temperature in a localized area, an ign ition  point. The m ixing of the 

gases, which would normally proceed by diffusion, is enhanced by two counter- 

rotating vortices whose centers are located on the in itia l interface. The ign ition 

process is studied by asymptotic analysis and compared to  previous work of 

s im iliar systems w ithout vortex m ixing and one w ith  m ixing provided by a 

single vortex.

2. Laminar m ixing, ignition and s tab ility  of compressible gases representing a re­

duced chemical system is studied. Gases in it ia lly  separated into two semi­

in fin ite  plans are mixed by diffusion and differing freestream flow velocities. 

Combustion is followed through and post ignition. Parameters of interest are 

the ign ition distance from the in it ia l stream m ixing point, the post ign ition tem ­

perature and s tab ility  as determined by the Lees/ L in condition. Two different 

reduced chemical systems are analyzed.

3. Laminar compressible non-reacting m ixing of two real gases of different free­

stream temperatures and flow velocities is studied. Realistic values of transport 

properties are obtained from  various tables or calculated from theory. The 

transport properties are dynam ically calculated as functions of the changing 

temperature and gas concentrations across the m ixing layer. A steady state 

mixed solution is found. Items of interest are the s tab ility  characteristics and 

the profiles of temperature and gas concentrations as well as the Prandtl and 

Lewis numbers.

2
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1.1 Chemical R eduction System s

The simplest combustion process m ight look like

F U E L  +  O X Y G E N  - *  P R O D U C T  +  H E A T  ( 1.1.1)

and involves only two reactants and produces one product and therm al energy as 

indicated. Combustion processes are, of course, more complicated and involve many 

reactions, reactants and products. To make the combustion models more manageable, 

reduced numbers of component gases are used. This is accomplished by fia t (Birkan 

and Law [1]) or a reduction theory. Some reduction theories indeed produce the simple 

model above while others lim it  the number of components to  only a few (Peters [2]).

1.2 Physical and Transport Properties

The physical properties of the gases affecting the m ixing include molecular weight, 

specific heat and heat release o f the reaction. Thermodynamic properties which must 

be considered in the m ixing are the coefficients of thermal conductivity (A), viscosity 

(fj,) and species diffusion (D ). Models are simplified by assuming equal weights, as 

in Chapters Two and Three. O ther simplifications are the assumptions of constant 

and nominal values for the above properties. In Chapter Two the most sim plifying 

assumptions are used while the investigation of Chapter Four attempts to  calculate 

the most realistic values possible.

3
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1.3 Ignition Dynamics in the Field of a Vortex 

Pair

In Chapter Two, the ignition dynamics of the in it ia lly  separated fuel and oxidant 

are investigated using a simple model. In this model, fuel and oxidizer in  an in­

fin ite  plane are in it ia lly  separated by the x-axis and are at rest. A t tim e t =  0, 

two counter-rotating vortices w ith  centers at ( —d, 0 ) (clockwise rotating) and (d, 0 ) 

(counter-clockwise rotating) are in itia ted. The individual vortices are equally de­

scribed, except for the rotation direction, by a radial velocity of zero and angular 

velocity of

Vid =
r±

R  is the vortex Reynolds number and r  is the distance to the applicable vortex center. 

The system is simplified by assuming constant density, equal molecular weights and 

constant transport properties. A t time t >  0, the fuel and the oxidizer m ix by diffusion 

and the convective force o f the combined vortices. Combustion is modeled as a one- 

step irreversible Arrhenius reaction. Rapid ignition is expected, so the system is 

studied on an asymptotic time scale. The ignition tim e and the ignition location are 

determined for various sets of in itia l parameters. Results are compared to previous 

work o f Marble [3] who studied a sim ilar system where m ixing was by diffusion only 

and tha t conducted by Macaraeg, Jackson, and Hussaini [4] where m ixing was by 

diffusion and a single vortex.

4
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1.4 Reduced M echanism Combustion

In Chapter Three, two reduced kinetic models are studied in a steady state, spatially 

varying laminar m ixing layer. The first kinetic model was proposed by Birkan and 

Law [1]. In this system, equal molecular weights and constant transport properties 

were assumed. The second kinetic model was proposed by Peters [2], which mod­

els methane-air combustion. In  this system equal molecular weights and constant 

transport properties were also used. However, the reaction rates and the heat release 

values were realistically calculated from available data tables. The physical system 

is tha t o f two gases in it ia lly  separated by a sp litter. Each gas has a flow velocity 

parallel to the plate. A t x =  0, the plate ends and the gases begin to m ix  by con­

vection and diffusion. The combustion process is tracked in the x-direction through 

ignition to post-ignition steady flame structure. O f interest is the comparison of the 

ignition and post-ignition characteristics of the two reduction systems and the effect 

on the post-ignition structure of the in itia l conditions. As w ill be discussed further, 

Birkan and Law studied only the post-ignition flame structure and not the approach 

to ignition.

1.5 Structure and Stability o f a Compressible M ix­

ing Layer in a Binary Gas

In Chapters Four and Five, the physical system is the same as the previous one. 

However, only m ixing and not combustion is assumed, and actual gas combinations

5
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are used. The gases included in  this study are hydrogen ( # 2), helium (//e ), neon {Ne), 

nitrogen (A^), oxygen (O 2 ) and argon (A r). The true molecular weights are used and 

the transport properties are calculated using the best data available. Calculations 

and results are compared to previous work by Jackson and Grosch [5] [7] and Grosch 

[6].

1.6 Governing Equations

In this and subsequent sections, the governing equations for the three models o f m ixing 

described above are presented. The two-dimensional boundary layer equations for a 

reacting compressible flow m ixture are given by Anderson [8]: 

continuity,

dp* d{p*vT) d {p*v ')

+  +  ’ ( 6 )

conservation o f momentum in the z-direction,

, du* mdu* „ . du* d (  t d u * \ d P *

p W  + p u d ?  + l , v W ~ W - [ ,‘ e i ' )  = ^ ' '  ( 6'3)

conservation of momentum in the y-direction,

dP
dy*

energy,

=  0; (1.6.4)

+  + W ,d r  r p dx* r p dy

A_ ( x- d T \  ( d y \ 2 d r  » _ v'&for. n «
dy* \  d y * )  dx* §  PiP ' dy* dy* §  ' ‘

6
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and conservation of species,

" W + ?v §  =  w  ( P' D :S  + £ / i n i- ( l M )

The asterisk indicates the dimensional form of the quantities: p* the system mass 

density, C* the specific heat capacity o f the system, T*  the temperature, t* the time, 

u* the velocity in the x* direction (parallel to the boundary), v* the velocity in the 

y * direction (normal to the boundary), p" the coefficient of viscosity of the system, 

P* the pressure, C*. the heat capacity o f the i th gas, D* the diffusion coefficient of 

the i th gas w ith respect to the to ta l system, A* the thermal diffusion coefficient of the 

system, F* the mass density of the i th gas, Clj the rate of the j th reaction ( i f  any), i/,J 

the stoichiometric number representing the production or absorption of the i th gas in 

the j th reaction, and h* is the enthalpy change of the i ih reaction.

1.6.1 Non-dimensional Equations

The standard method used to provide universal reference for differing system values 

is to non-dimensionalize all values. The choices of the study are

u = u u l ,  X* =  AA^,

x* =  x L ‘ , y ‘  =  -^f==, and t* =  — .
yfRz u*oo

A ll other values are non-dimensionalized sim ilarly by their respective dimensional

value at infinity. The non-dimensional equations are then

continuity,

dp d(pu) d(pv)

(L 6 -7>

7
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conservation of m om entum  in the x-direction,

du du du d f  du \  dP
p d t + p u r x + lw ^ - r y { % )  =  - ^ ’ (L 6 -8)

conservation o f momentum in the y-direction,

dP
dy =  0’ C '6'9)

conservation of energy,

dT dT „  dT
m + p u C ^ + p v C ^

1 d / ,  d T \  . f d u Y  ( dP
Pro0d y \ X d y ) +Moo{'y°0 1) p \ d y )  +“U*J +

1 (lJM 0)Sc<x> 1

and

conservation o f species,

dF i dF{ dF i 9 /  d F i\  A  i jn

Hit ^Tk ^liy = 1% (pDiJ + g " ^ (1 '6'111
The following non-dimensional quantities are defined:

Re =  Lm-£ ? U°° , p roo =  ^ > £ ,  Leoo=  A°°
’  \ *  ’  n* n *  C *  ’P  oo oo Poo oo poo

5c — Po° and M — —oc° ° — „« n* ’ loo — r  , ana ivioo —
Poo OO ^Voo 'OO

Here Moo is the Mach number at in fin ity  and C„ is the specific heat at constant 

volume.

1.6.2 Equation of State: Ideal Gas Law

The ideal gas law for a gas m ixture in its  non-dimensional form is

E n 1 Fj.oo \ ’ 
*=1v W i )

P  =  ( 1.6. 12)

8
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where Wi is the molecular weight of the i th gas.

1.6.3 Reaction Rates

The reaction rates used in this study are of the Arrhenius form. I f  two species w ith

densities Fi  and F2 are expected to react on contact, the model rate used is:

—Ze
f i  =  F iF 2D a e x p (-^ r -). (1.6.13)

Here, Da is the Damkohler number for the reaction, Ze is the Zeldovich number which 

is the nondimensional activation energy

=  (1-6-14)
l h  00

where E*  is the dimensional activation energy for the particular reaction and R° is 

the gas constant.

1.7 Coordinate Transformations

A standard technique in steady boundary layer theory is to perform two coordinate- 

system transformations to sim plify the governing equations for the case of a spatially 

dependent density. The first transformation eliminates the density p from the con­

tin u ity  equation. The second reduces the dependence of the flow variables on the 

^-coordinate and replaces the continuity equation w ith  a stream function. When the 

assumption of constant density is used, the first transformation is not needed.

9
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1.7.1 Howarth-Dorodnitsyn Transformation

As mentioned above, the Howarth-Dorodnitsyn transformation [8] is used to elim inate 

the density from the continuity equation and is given by

( x , y )  ( X , F ) ,

rv
Y  =  /  p d y ,  X  =  x ,

Jo
rv

and V  =  p v  +  u  p x d y .  (1.7.15)
Jo

where the notation ( )x =  has been adopted. The governing equations become

Px =  0,

ux  +  Vy =  0, 

p(uuX +  V uy ) =  (ppuy)v,

p C p ( u T x  +  V T y )  =  

( ■ J ~ ) ( A p T r ) r  +  « 7 o o  -  I M u r f  +  ( - J - ) p T , C r i D i T Y F i ,Y  -  £ > *  (1-7.16)
00 ^ C00 t_ l J = 1

and

p{uFi y  +  V F i y )  =  (pD iF iy )y  +  £  (1.7.17)

1.7.2 Similiarity Transformation

For certain boundary conditions and using certain s im ila rity  transformations, the 

flow is found to be independent of one of the new independent variables. A standard

10
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transformation is (Jackson and Grosch [7]):

( j ) - > ( * , * ) ,

-  _ L  -  v
7?“ 2v^ ’ X "

and

« =  /'(» /), (1.7.18)

where primes denote differentiation w ith  respect to  the sim ila rity variable tj. The 

above transformation yields V  =  ( r j f  — which satisfies the continuity equation

identically. The remaining equations are:

( p / i / 7 +  2 / / w =  0, (1.7.19)

(pXT'Y +  2 P r 00C p f T '  +  (7oo -  \ ) M l P r 00pli f '2 

+ P r O0 S c £ p * D X2 r ' E i CPtiF ,i =  i x P r ^ C r p f ' T *  -  (1.7.20)
i= i 1=1

{p2 D n F [y  +  2ScO0 f F [  =  A x ( f F i  +  £  u % ) ,  (1.7.21)
i= i

£ f l  =  l  (1.7.22)
i=i

and

C p  =  ' £ C P i iF i . (1.7.23)
i= l

1.8 Stability

Once the the solution to the governing equations is determined, a further analysis is to 

examine the stab ility  of that solution (called the mean flow). The analysis envisions

11
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each of the dependent variables; temperature, pressure and velocities being perturbed 

by an undetermined function in  the form of (example for velocity):

u  =  Umean +  $  exp [i(a :r -  wZ)], (1.8.24)

where uj is the frequency of the perturbation, c =  ^  is the wave speed and a  the 

wave number, assumed to be complex. For spatial s tab ility  which is analyzed here, 

i f  the imaginary part o f a  is non-zero the disturbance w ill grow at x  —* dhoo. These 

represent unstable perturbation modes. In analysis firs t proposed by Lees and Lin 

[9], stable perturbation modes are postulated to exist when a regularity factor is zero. 

In both the reduced chemical combustion section and the binary gas m ixtu re  studies, 

s tab ility  conditions w ill be considered.

1.9 Summary

Three lam inar m ixing problems are considered in this thesis:

•  In the double vortex problem, the simple combustion model (1.1.1) is used. The 

system density is assumed constant; therefore, the transformed Navier-Stokes 

equations are not required. The transport properties are chosen to  be constant 

w ith  nominal and sim plify ing values. The flow streams have equal velocity and 

a moving coordinate system is chosen so that the velocities in the free stream 

are zero. This system is assumed to exist in its separated state un til a pair 

of counter-rotating vortices are started. The vortex centers coincide w ith  the 

in itia l gas interface. The vortices w ill enhance the m ixing of the gases and effect

12
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the combustion rate. This study investigates the ign ition  processes and tim e to 

ignition for various combination of system parameters.

•  In the reduced chemical combustion study, the flow magnitudes are different 

on separate sides of the sp litte r plate. Again nominal and sim plifying values 

are assigned the transport properties. Two chemical reduction systems are 

studied, one only slightly more complex than the model (1.1.1) and one complex. 

The system is assumed to be independent of tim e but the density is spatially 

dependent; therefore, the transformed Navier-Stokes equations are used. The 

combustion process is studied as a function of the distance downstream of the 

end of the sp litte r plate. Ignition and post ign ition structure and s tab ility  are 

analyzed.

•  In the study of the effects o f differing molecular weights on the m ixing layer, 

only the process of the gases mixing is studied. I t  is assumed that there is no 

combustion. The system is variable density, w ith  different flow velocities. Only 

one real gas is in itia lly  in  each flow field. T h irty  combinations of six different 

gases are considered. The transport properties are calculated using available 

theory and data. This complete system is compared to model systems which 

use simpler approximations for the transport properties. The steady state of 

the m ixing layer is calculated, and the s tab ility  of this steady state is studied.

13
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Chapter 2 

IGNITION DYNAM ICS IN  THE  

FIELD OF A VORTEX PAIR

2.1 Introduction

An im portant problem in the general area of non-premixed combustion is the theo­

retical study of chemical reactions in turbulent reacting flows. However, such flows 

are difficult to analyze because the governing equations are highly nonlinear, tran­

sient and involve a large number of parameters as well as a wide range of length 

and time scales. The large scales are essentially inviscid and are related to the geo­

metric configuration of the flow. On the other hand, combustion takes place on the 

smaller scales associated w ith  the diffusion of fuel and oxidizer in to  each other. I t  is 

on these smaller scales that theoretical work can be established in hope of gaining 

insight into the more complex larger problems. Marble [3], developed a simple model 

problem that locally describes an established th in  flame wrapped up by a small scale

14
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eddy. However, certain important aspects, such as ignition and flame structure, were 

not included w ith in  the framework o f the Marble problem. A systematic analysis of 

the ignition process in vortex dominated flows using asymptotic methods and direct 

numerical simulation has been conducted by Macaraeg, Jackson, and Hussaini [4]. 

Additionally, Thevenin and Candel [10] conducted a sim ilar analysis but allowed for 

much larger difference in temperature between the in itia lly  unmixed gases. The above 

igniton studies have been restricted to  a single point vortex. Since counter-rotating 

vortex pairs are like ly to occur in turbu lent flow (and easily demonstrated by dragging 

a coffee stirrer through coffee), the effects of the vortex pair on the ignition processes 

should also be examined. Considered here is an ignition dynamics model w ith  con­

stant density, one-step Arrhenius reaction between in itia lly  unmixed species of fuel 

and oxidizer occupying adjacent half-planes. The fuel and oxidizer are allowed to 

m ix and react in the presence of a pair o f counter-rotating point vortices w ith  centers 

located on the in itia l interface. Using large activation energy asymptotics, particular 

attention is paid to the ignition regime as a function of the vortex Reynolds number 

and the spacing between the vortices and the in itia l density ratios of the fuel and 

oxidizer. Where applicable, results are compared to the previous work w ith a single 

point vortex [4] and also w ith  the s im ilia r ignition study where no vortex is present 

( Linan and Crespo [11]).

15
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2.2 Problem  Formulation

Two gases Fi  and F2 are in it ia lly  at rest. A t t  =  0, two counter-rotating vortices are 

in itia ted. The vortices each produce a radial and angular velocity component w ith  

respect to the ir own centers (± d , 0). Both radial velocities are zero. The individual 

angular velocities are:

V±d =  ¥ ¥ l . .  (2.2.1)
r±

The density o f the system is assumed constant, and the diffusion coefficients are taken 

as Di  =  1. The reaction mechanism used for this study is:

Fx +  F2 P R O D U C T  +  H E A T .  (2.2.2)

The simplified versions of equations (1.6.7) through (1.6.11) are w ritten  in cylindrical 

coordinates. The continu ity equation reduces to  an identity w ith the introduction 

of the stream function which is due to the combined flow of the two vortices. The 

velocities in terms of the streamfunction are

1 d y  d y
U =  ~  and V =  (2.2.3)

r  0 6  o r

with (t/, V)  being the radial and angular velocity components, respectively. The 

particular streamfunction for the vortices given by (2.2.1) and expressed in Cartesian 

coordinates (x ,y )  is

b p , r(l_ d ) 2 +  !,q (224)R P r ,
y  = -----—  In

2 (x +  d ) 2 +  y 2

The other equations sim plify to:

V
Tt +  UTr +  - T g  =  V T  +  (XI (2.2.5)

r

16
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and

Fj,t +  UFjtr +  - F jte =  - i - V 2^  - f t ,  j  =  1,2, (2.2.6)
r  Lej

where

n  =  DaF1 F2 e~Ze/T (2.2.7)

and V 2 is the two-dimensional Laplacian operator in cylindrical coordinates; T  is 

the temperature; and Fi  and F2 are the mass fractions of the fuel and oxidizer, 

respectively. The chemical reaction is modeled as a one-step irreversible Arrhenius 

reaction. The nondimensional parameters appearing above are

Ft =  T 1‘1'kv  vortex Reynolds number,

P r  — pCv/X  Prandtl number,

Ze =  E /(R 0Too) Zeldovich number,

Da  Damkohler number,

L t j  =  S c j / P r  Lewis number for species j ,

Scj =  v / D j  Schmidt number for species j

and

/3 Heat release per un it mass of Fi

w ith  T being the circulation of the vortex, v =  / i/p  is the kinematic viscosity, fi is 

the viscosity, p is the density that is assumed constant, A is the thermal conductivity, 

C p is the specific heat at constant pressure, E  is the dimensional activation energy, 

R °  is the universal gas constant and D j  is the species diffusion coefficient. The 

Damkohler number is defined as the ratio of the characteristic diffusion tim e scale

17
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to the characteristic chemical tim e scale. The temperature and mass fractions were 

nondimensionalized by the values and F f ^ ,  respectively. The velocities were 

nondimensionalized by U0, some characteristic speed. Lengths and times are referred 

to the relevant diffusion characteristic scales Id =  \ m/p*C*U*  and ld /U 0 of the flow, 

respectively. These equations are to be solved subject to appropriate in itia l and 

boundary conditions given in the appropriate sections below. A ll o f the calculations 

to be presented use unit Prandtl number.

2.3 Convection Analysis

Analysis of the convection-only flow that would be induced by the combined inter­

action of the two vortices can give insight to the fu ll convective-diffusive system. 

Circulation times associated w ith the convection can be used to evaluate the system 

ignition times. Convective streamlines and circu lation periods are developed below.

The tota l velocity in the x and y directions as a result of the interaction of the 

two vortices can be shown to be:

„  = _________ - 4 d R x y _________
[(x — d ) 2 +  y2][(x +  d ) 2 +  j/2]

and

2 i H t f - S - f i )

> [(*_ <0* + »*]!(* + i ) 2 +  y i]' '
Dividing equation (2.3.8) by equation (2.3.9) yields the differential equation

(2-3-10)

18
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which has a solution:

(x -  x d)2 +  y2 =  xd - d 2. (2.3.11)

Thus, the convection flow has c ircu la r streamlines. The streamline through the arbi­

tra ry  point (x , y ) lies on a circle w ith  center (xd, 0) and radius

r 2 =  x d — d2. (2.3.12)

Clearly there are an infinite number o f convection circles. The convective flow induced

by the double vortex can now be understood by calculating the angular and radial

velocity at a point (x ,y)  w ith respect to the point (xd, 0).

The radial velocity is :

x — y 2 — d? — 2 x(x — x d)
UXd =  2 ydR -----------------------i ^ -------------- r . (2.3.13)

((a: -  d ) 2 -)- y2){ (x  +  d ) 2 +  y2)((x  -  x d ) 2 +  y2)*

Using equation (2.3.12), it  is seen th a t the numerator in equation (2.3.13) is equal to

zero, consistent w ith  circular flow. The angular velocity is given by

K ,  =  2 J U  j/2( *  +  x i )  +  ~  <P )(f_~ Xi )  r ( 2 x u )
((a: -  d )2 +  y2) ( (x  +  d ) 2 +  y2){{x -  x d ) 2 +  y2)3

Using equation (2.3.12) this reduces to

VXd =  — . (2.3.15)
x r

Since Vx . =  r 9 ,

x r 2 (rcos(0 ) +  xd) r 2

and the rotation tim e is given by

7 =  ( « • ! « )

i =  /  Odt. (2.3.17)
J 9o
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This gives a  period of ro tation  of

T  =  (2.3.18)

I f  the point (xo, 0) is defined as the x-intercept of the flow circle w ith  x 0 =  Xd — r, 

then substitution into (2.3.12) and (2.3.18) yields

r - ^ - xo x , - x ° +  d2 and r _  (2 3 1 9 )
2x0 ’ d ~  2x0 "  4 dR x l  • 1 9)

The convection flow can now be viewed as a series of nonintersecting eccentric circles 

w ith  periods and radii dependent only on the vortex spacing d and the location of the 

x-intercept nearest to x  =  0. Figure 2.1 shows the period as a function of the near zero 

x-intercept for R values 20, 15, 10 and 5 from left to righ t. Figure 2.2 shows various 

streamlines for d =  3 clearly demonstrating the eccentric nature. These streamlines 

are independent of R  which only effects the speed of the convection flow around the 

streamlines. In what follows, the fu ll convective-diffusion results w ill be compared 

w ith  the purely convective flow discussed above.

2.4 Ignition A sym ptotic Analysis

A t tim e t =  0, the reaction rate is exactly zero since the product F\F 2 has a value 

of zero everywhere. For t  >  0, the fuel and oxidizer m ix  by diffusion and by the 

convection induced by the vortex pair. Thus, the product Fi F2 and the reaction rate 

are no longer zero. For small time, it  is reasonable to assume that the effect of the 

reaction on the overall flow field is small. So, the solution for small tim e is near the 

inert or chemically frozen solution which is denoted by the superscript I .  In  what
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follows, the only case considered is the case w ith  the fuel and the oxidizer having near 

equal in itia l temperatures. This assumption leads to the inert temperature having 

the form T 1 =  1 +  0 ( Z e ~ 1), where the 0 (Z e ~ 1) term is included to allow for small 

in itia l temperature differences between the fuel and the oxidizer. As time increases, 

the combustibles continue to m ix and the reaction rate increases until, at some fin ite  

time, a thermal explosion occurs characterized by significant departure from the inert 

solution. To analyze this ignition process, the effect of the growing reaction rate is 

determined by expanding the dependent variables about the inert solution as

T  =  1 +  Ze~xTx +  0 (Z e ~ 2) (2.4.20)

and

Fj  =  F /  +  0 (Z e ~ x). (2.4.21)

Taking the asymptotic lim it Ze —> oo, the leading-order equations are given by

Tu  +  UT ltr +  - T i t  =  V 2T, +  F /F 2; eT' (2.4.22)
r

and

Fj,t +  UF- r +  —F j g =  V 2F /  j  ■= 1,2 (2.4.23)
r  Lej

where the Damkohler number Da has been chosen to be

Oa =  i f l .  (2.4.24)

This particular choice of the Damkohler number ensures tha t a distinguished lim it 

exists, tha t is, the reaction rate term is of the same order in a Zeldovich number ex­

pansion as the tim e derivative terms. The appropriate boundary and in itia l conditions
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are given by

F U E L  S I D E  : Tx =  0, F {  =  1, F /  =  0 (2.4.25)

and

O X I D I Z E R  S I D E :  Tx =  /?T, F /  =  0, F2; =  <j>~' (2.4.26)

where <j> is the equivalence ratio defined as the ratio  o f the mass fraction of the fuel 

(species 1) to the mass fraction of the oxidizer (species 2) divided by the ratio of 

their molecular weights times the ir stoichiometric coefficients. The parameter /?x 

allows for small in itia l temperature differences. I f  cj> =  1, the m ixture is said to be 

stoichiometric, i f  <j> >  1 it  is fuel rich, and i f  <j> <  1, i t  is fuel lean. Also, i f  /3j is less 

than zero, the oxidizer is re latively cold compared to  the fuel, and i f  f i r  is greater 

than zero, it  is relatively hot.

2.5 Numerical Techniques

The equations (2.4.22) and (2.4.23) are solved numerically for a range of R. Imple­

mentation of the boundary conditions is facilitated i f  the system is recast in Cartesian 

coordinates (x ,y ). The solution technique is a 2nd-order finite-difference scheme on 

a nonuniform mesh w ith a four-stage Runge-Kutta time-stepping scheme that is for­

m ally 2nd-order but has an extended stab ility  region making i t  accurate and robust 

for solving moderately s tiff problems [4]. Two coordinate stretching forms are used 

to resolve the structure near and between the vortex centers. The stretching in the y- 

direction is sim iliar to tha t employed by [4]. The stretching in the x-direction requires
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a form that has a fine grid size between and near the vortex centers, a coarse grid as 

x —► x max, and preserves the symm etry of the problem. The dx sizing is provided by 

choosing a m inim um  dx to be placed at the vortex center and then changing the dx 

as a function of x  according to:

1 +  z1 +  biz2 — 1 )(z2 — 2) exp (-§— ) 
dx(xi  +  dx) =  dx(x i )   — — — —  Im'11 , x i+ 1  =  xi +  dx (2.5.27)

1 +  C(Z* — L)z(Z* — l y

where z =  x /d  is the variable x  normalized by the vortex center and c is selected to 

lim it the ratio  of dx(x =  0) and dx(x  =  d). The solution to the system (equations 

2.4.22 and 2.4.23) is advanced in tim e from the in itia l conditions using the Runga- 

K u tta  scheme. Grid resolution studies tha t at least doubled the computational mesh 

were carried out to ensure that all of the structures were well resolved.

2.6 Results

As t increases, the solution for the temperature perturbation T\ becomes unbounded 

at some fin ite tim e (f,a) and location (xig,yig). This defines the ignition time. Ignition 

times are presented below as a function of the various parameters: (i) vortex spac­

ing, ( ii)  equivalence ratio, ( ii i)  temperature ratio  and (iv) Lewis number. Whenever 

appropriate, results are compared to the classical result o f Linan and Crespo [11] 

in which the reactants m ix by diffusion only in the absence of any vortex and w ith 

tha t o f a corresponding potential point vortex centered at the origin of the coordinate 

system having velocities

£/ =  0 and V =  -  (2.6.28)
r
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as discussed in  [4].

2.6.1 Comparison of Ignition Times of a Single vs a Double 

Vortex

Figure 2.3 shows the nondimensional ign ition tim e for the double vortex as a function 

of the vortex Reynolds number R  for <j) =  Lej  =  P r  =  1, /?r =  0 and for vortex centers 

at d =  3 (A )  and d =  4 (□ ). The nondimensional ign ition times corresponding to the 

vortex pair lay between tha t of no vortex (Linan and Crespo case) denoted by the 

solid line and tha t of the potential point vortex (O) described in [4]. That the ignition 

in the presence of a double vortex w ill proceed more slowly than in the presence of 

a single vortex when the vortex Reynolds number is the same in both cases is a 

somewhat unexpected result.

As was shown, the convective flow for the two cases is very different. The single 

vortex has streamline circles which are concentric and the angular velocity around 

a circle is constant. The interaction of the two vortices causes streamline circles 

which are eccentric w ith  an angular velocity tha t varies around the circle. It  is 

easily envisioned that the flow is faster between the vortices where the flow from the 

individual vortices is additive and likewise slower on the the outside (x <  —d and 

x >  d) where the flows are opposing each other. Where as the single vortex tends to 

produce a maximum of the product F\F^ in  the center of the vortex [4], the double 

vortex produces a maximum of the product F \F i at an eccentric location.

For these cases where f l r  =  0, the heat convection is not significant during the
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early stage of the m ixing. Also w ith  f a  =  0, the diffusion of heat w ill proceed 

differently than the diffusion of F i and F2 which are completely separated at the 

start of the analysis. The importance of temperature to the difference in single versus 

double ign ition times w ill be presented shortly. Additionally, figures w ill show tha t the 

elevated temperature surfaces w ill wrap around the double vortices centers; whereas, 

for the single vortex the maximum of the product F iF 2 and the high temperature 

point always occur at the center of the vortex. As w ill be shown, for low Reynolds 

numbers these two quantities are in  an eccentric location and for higher values of R, 

the temperature maximum is in the center while the F jF 2 high point is s till eccentric. 

The fact tha t ignition takes place where the F jF 2 product is low should be a ttributed 

to the exponential temperature dependence of the Arrhenius reaction rate. An in terim  

case w ill exist w ith  two hot spots; one at the high F iF 2 point and one at the center 

of the vortex.

2.6.2 Effects of Vortex Spacing

Figure 2.3 shows that the difference in ignition times between the single and double 

vortex is less for d =  4 than for d =  3. To further investigate the influence of the 

vortex spacing on ignition, Figure 2.4 shows a plot of the nondimensional ignition 

tim e as a function of vortex spacing for R =  20. The lim it d =  0 is the Linan and 

Crespo result since the counter-rotating vortices cancel as the spacing goes to zero. 

As the spacing increases, the nondimensional ignition tim e for the double vortex (□ ) 

approaches tha t of the potential point vortex since the velocity fields associated w ith 

each vortex of the vortex pair have a reduced effect on each other.
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2.6.3 Effects of Vortex Reynolds Number

In Figure 2.3, i t  appears that as the Reynolds number increases from zero there 

are three distinct regions which is clearly different than in the single vortex case. 

When the Reynolds number is small, the interaction between the pair of vortices is 

slight and the vortex strength is small. This region could be referred to as vortex 

assisted diffusion. As the Reynolds number increases there is a stronger interaction 

between the pair. The interaction is sufficient to prevent ignition at the vortex center 

before an asymmetric ignition takes place. For even larger Reynolds numbers, the 

interaction between the vortices is s till strong, but each vortex is strong enough to 

cause ignition at the center before an asymmetric ign ition is possible. The shift of 

the ignition point as Reynolds number increases is apparent from Figure 2.5 which 

shows the isotherms of the temperature perturbation at the tim e of ignition for R 

values 5, 10, 15 and 20. For R — 5 and R =  10, the ign ition  point is not at the center 

of the vortex, and the ignition point shows a slight counterclockwise movement for 

the larger Reynolds number. W ith  R  =  15, the ignition is s till away from the vortex 

center, but a second hot spot is beginning to be established at the center of the 

vortex. The two temperature peaks are shown in Figure 2.6 which is the temperature 

surface for R =  15 and d =  3. In the last frame in Figure 2.5, the ignition is occurs 

at the center of the vortex for R =  20 which is the final region in Figure 2.4. This 

is dramatically illustrated in Figure 2.7 where the temperature hot spot is clearly 

established at the center of the vortex. Also of note is the elevated temperature along 

the diffusion front tha t spirals about the vortex center. Figure 2.8 shows the contours
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of the mass fraction F /  at ign ition  for the double vortex w ith  d =  3, Pt  =  0, and 

<f> =  Lej =  P r  =  1. (The contours are enhanced to show the location of the F /  «  0.5 

levels). For R  =  5, the interface does not move far from the center of the vortex 

before ignition; for higher values of R, there is more of a wrap around effect.

2.6.4 Effect of Equivalence Ratio

Figure 2.9 is a plot of the nondimensional ignition times for the potential point vortex 

(□ ), for the double vortex (O ) w ith  centers (± 4 ,0 ), and for no vortex (A ) ,  as a 

function of the equivalence ra tio  <j> w ith R =  20, Lej =  P r  =  1 and Pt  =  0. In 

all three cases, the nondimensional ignition tim e is delayed significantly for fuel rich 

m ixtures (<f> >  1), while the nondimensional ignition tim e is enhanced for fuel lean 

mixtures (<f> <  1). The double vortex ignition times lie between the single vortex and 

no vortex ignition times as previously explained.

2.6.5 Effect of Temperature Ratio

Figure 2.10 shows the nondimensional ignition time for the potential point vortex, for 

the double vortex w ith centers (± 4 ,0 ), and for no vortex, as a function of the temper­

ature ratio f i r  w ith R =  20 and <j) =  Lej =  P r  =  1. Recall tha t the nondimensional 

ign ition times for the no vortex case are those obtained by Linan and Crespo [11]. 

In a ll three cases, the nondimensional ignition time is delayed significantly when the 

temperature of the oxidizer is less than that of the fuel (Pt  <  0), while the nondi­

mensional ignition tim e is enhanced when the temperature o f the oxidizer is greater
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than tha t of the fuel (Pt > 0 ) .  As Pt increases from zero, the nondimensional igni­

tion  times for all three cases become essentially indistinguishable. For a large Pt  the 

immediate result of the convective m ixing is homogenizing the temperature in the 

center of the vortex. This reduces the central temperature and asymetric ignitions 

take place as discussed in [4]

2.6.6 Effect of Lewis Number

To investigate the effect of the Lewis number on ignition, the nondimensional ignition 

tim e as a function of the Lewis number Lej =  Le for Pt =  —2 (O), Pt  =  0 (□ ), and 

Pt  =  2 (A )  w ith  R =  0 and (j) =  P r  =  1 is shown in Figure 2.11. These results 

correspond to the case where no vortex is present and m ixing is achieved by diffusion 

alone. Linan and Crespo [11] did not consider this non-unity Lewis number case 

in the ir analysis. The largest effect occurs for Pt  =  —2 since the nondimensional 

ign ition tim e is delayed thereby allowing diffusion to play a more dominant role. The 

combined effect of equivalence ra tio  and Lewis number is determined by examining 

Figure 2.9 together w ith Figure 2.11. Since fuel rich mixtures delay ignition, diffusion 

becomes more im portant and thus the effects of non-unity Lewis numbers become 

noticable. For fuel lean m ixtures, the nondimensional ign ition tim e is shortened, the 

reactants have not had much tim e  to diffuse, and thus non-unity Lewis numbers do 

not significantly alter the nondimensional ign ition time. These trends persist even 

when a potential point vortex or a double vortex is introduced at tim e t =  0 since the 

effect o f convection is to only somewhat reduce the overall nondimensional ignition 

time.
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2.6.7 Effects of Convection

The ignition tim e along w ith  the convective flow analysis allows insight into the 

m ixing of the species. From Figure 2.3, the ign ition tim e for d =  3 and Re =  20 is 

approximately 5.6. A t Re =  20, a convective circle w ith  center (xd, 0) =  (4.65,0), 

radius r  =  3.55, and intersecting the rc-axis at x  =  1.1 has a period equal to the 

ignition tim e  (see Figure 2.1). A  flu id  element starting at any point inside this 

circle has been recirculated at least once before ignition, conversely a flu id element 

starting outside this circle does not experience one cycle o f circulation before ignition. 

Figure 2.12 shows the effects of convection on equally spaced flu id  elements starting 

at y =  0 and 0 < x < 3 a t i  =  0 and the streamline circle defining the recirculation 

region, superimposed on the contours of F 2 at tim e of ignition. The vortex center 

is marked by a cross. I t  appears tha t the diffusion interface defined by F /  =  0.5 

follows the convection o f the flu id  elements closely i f  the original elements lay outside 

of the recirculation circle and on a convection circle w ith  radius much greater than 

the recirculation circle. However, inside the recirculation circle there would be many 

layers of fuel and oxidizer in  the absence of diffusion, each layer being thinner as 

the vortex center is approached. Diffusion w ill eliminate the interface between the 

layers near the vortex center, leaving behind an almost constant m ixture of fuel and 

oxidizer. I f  the product F 1F 2 is large enough at the vortex center, then ignition w ill 

take place there, as it  does for R =  20. For the region x »  d, the convective flow is 

much slower and only sligh tly effects the diffusion interface.
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2.7 Conclusion

Presented here is a study of the influence of the hydrodynamical and physiochemical 

parameters on the ignition tim e and flame structure assuming a one-step, irreversible 

Arrhenius reaction between in it ia lly  unmixed species occupying adjacent half-planes 

which are then allowed to m ix and react by convection and diffusion in the presence 

of a vortex pair. In particular, the nondimensional ignition tim e is enhanced when 

(i) the vortex Reynolds number is increased from zero, ( ii)  the m ixture is fuel lean, 

or ( iii)  the oxidizer is in itia lly  hotter than the fuel. The ignition time approaches 

that of a potentia l point-vortex as the vortex spacing increases. The effect of non­

unity Lewis numbers on ignition is greatest when the ignition times are delayed, since 

diffusion then plays a more dominant role. In all cases, the ignition time obtained for 

the double vortex is between the case when no vortex is present and the case when a 

potential po in t vortex is located at the origin.
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Figure 2.2: Eccentric streamline circles for d=3.
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Figure 2.3: Nondimensional ignition times as a function of the vortex Reynolds 
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d =  4 (□ ).
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Figure 2.5: Isotherms of the temperature perturbation at ign ition for the double 

vortex with center at d =  3 and for vortex Reynolds numbers of R=5, R—10, R =  15 

and R=20. w ith  /?j  =  0,and <j) =  Lej — P r  =  1.
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Figure 2.6: Temperature surface at ignition for d=3. R=15, =  0, and </> =  Le
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Figure 2.7: Temperat ure surface at ignition for cl=3, R=20, =  0, and <£ =  Lej =

P r =  1.
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Chapter 3 

IG NITIO N A N D  STRUCTURE  

U SIN G  REDUCED  

M ECH ANISM  COM BUSTION

3.1 Introduction

The previous analysis of the ign ition in the field of a double vortex used a reduced 

combustion system representing a single step irreversible process of the form:

F U E L  +  O X Y G E N  -> P R O D U C T  +  H E A T .  (3.1.1)

This is the simplest representation of reduced chemical combustion involving more 

than one species. In this chapter, the ignition and the post-ignition structure of m ixing 

layers involving more complex models of reduced chemical systems is considered. The
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first system was proposed by Birkan and Law [1] as:

O X Y G E N  - f Radical\ —► 2R ad ica l  +  H E A T , (3.1.2)

F U E L  +  Radical2 —► 2 Radical\ +  H E A T  (3.1.3)

and

R ad ica l +  R ad ica l  +  M  —*■ 2Product +  M  +  H E A T .  (3.1.4)

The second system, based on methane-air combustion (Peters [2]), is:

3 tf2 +  0 2 ^  2H  +  2H20  (3.1.5)

and

2H  +  M  ^  H 2 +  M. (3.1.6)

The radicals represent additional elements or compounds necessary for the reaction 

scheme and M  represents the composite of all inert compounds in the m ixing gases. 

Equation (3.1.5) and equation (3.1.6) are both exothermic to the right and endother- 

m ic to the left. These two reduction schemes are analyzed in the m ixing layer model of 

Jackson and Grosch [7]. The system is assumed to be at steady state. A ll component 

gases are assumed to have the same molecular weight and heat capacity.

3.2 M ixing Layer Equations

The physical geometry used by [7] envisions several gases in it ia lly  flowing parallel and 

separated by a sp litter plate. A t x  =  0 the plate ends and the gases begin to m ix 

by convection and diffusion. The steady state nondimensional equations governing
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the m ixing layer in this analysis are a subset of (1.6.7) through (1.6.11) along w ith  

( 1.6 .12) and are given by:

V + V - *  ( 3 - 2 ' 7 )

+ ' f  > “ Pr» ly  (Af ) + <*• -  ( | ) 2 + <3'2'9)

( 3 ' 2 ' 1 0 )

and

p T =  1, (3.2.11)

where

n,- =  H jD a i jF iF j  exp ( ~ ^ r )  (3.2.12)

and i/ ' 3 is the stoichiometric number for the j th species in  the i lh reaction. Following 

the Howarth-Dorodnitsyn and s im ila rity  transformations, setting P r =  Scjx  =  1, 

and using the Chapman form  for the viscosity, ft =  T ,  the governing equations become 

(see (1.7.19) through (1.7.22)):

/ ' "  - f 2 / / "  =  0, (3.2.13)

Ar
L ( T )  =  (7oo -  m l i f " ?  +  — EiA-n,-, (3.2.14)

P
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where

w ith

W d ( )
O ' di]

3.3 Birkan and Law R eduction System

W ith  the nondimensionalization performed using the dimensional values at in fin ity  

and adopting the notation

F j =  F U E L , F 2  =  O X Y G E N ,

F r2 =  R ad ica l and F r, =  Radical\, (3.3.17)

the in itia l and boundary conditions for the upper half-plane at the end of the sp litte r 

plate x  =  0 and at y —► oo are

T = l ,  F, =  l ,  F2 =  F r2 =  0, F R l = 0 l and u =  1. (3.3.18)

Sim ilarly, the in itia l and boundary conditions for the lower half-plane at the end of

the sp litte r plate x =  0 and at y  —► — oo are

T  =  f c ,  F, = 0 ,  F2 =  (f>, Fr , =  fa ,  = 0  and u =  /?„. (3.3.19)

The reaction mechanism is given by

I F2 +  R\  —► 2F 2 +  Fea t, (3.3.20)
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I I F \  -f- R 2 —> 2 R\  +  H e a t  (3.3.21)

and

I I I R i  +  R2 4" M  —► ‘I P  +  M  -(- Heat. (3.3.22)

Following [1], the heat release parameters and the activation energies are set to

/?/ =  /?// =  /?/// =  1, Z e j =  Z e j i  =  Ze and Z e ju  =  0. (3.3.23)

Under these assumptions, the reaction rates are

f 1/ =  DaF2R1F'2 R \e x p ( - Z e /T ) ,  (3.3.24)

f l u  =  DaF1R2 F \R 2 e xp (—Z e /T )  (3.3.25)

and

f t / / /  =  DaRlR2 R iR 2. (3.3.26)

The transformed equations take the form

r  +  2 / r  =  0, (3.3.27)

Ar
L (T )  =  (7oo -  1)M £ , ( / " ) 2 +  - S / f t / ,  (3.3.28)

P
A.x

L (F 1) =  - ( - S l I ), (3.3.29)

4x4.1*
I ( F 2) =  — ( - f t , / ) ,  (3.3.30)

and

L (R \)  =  — (2 f t / ;  — f t ,  — f t / / / )  (3.3.31)
P

4#
L (R 2) =  — (2 ft/ — f t / /  — f t / / / ) .  (3.3.32)

P
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To reduce the number of parameters, the Damkohler numbers are set as Dap,R2 =  

Dap2nx =  D ai  and D o r xr 2 is chosen as

DaRtR2 =  D a m  exp (Ze). (3.3.33)

3.3.1 Selection of Parameters

The following variables need to be selected for analysis o f the above system:

Pi, P2 , Ze,

/?„, @t , D a i  and D a m • (3.3.34)

Birkan and Law [1] solved their system at post-ignition equilibium  and did not require 

setting in itia l conditions of R\ and /?2- Here, the ignition is to be studied, and these 

in itia l conditions are im portant. In this system, no in it ia l reaction is possible unless at

least one of or #2 is non-zero. The parameter choice is simplified by setting /?2 =  0

and varying fi\. In all the analysis tha t follows, Ze was chosen as 30 representing a 

moderate activation energy. Also set are the values =  1.0 and /?„ =  0.5

3.4 M ethane-Air Reduction

The following system models combustion in a methane-air system as described by 

Peters [2]. The numerous reactions in the system are modeled by those representing 

the most heat production, the highest species concentration, and the slowest reaction 

rates. Eight reactions are chosen to be representative o f the methane-air system:

u>\ : H  +  O2 ^  O H  +  0 ,  (3.4.35)
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<*>2 : 0  +  H 2 ^  O H  +  H ,  (3.4.36)

L0 3  : H 2 "h O H  ^  H 2O -(- H , (3.4.37)

0J4 O H  +  OH  ^  0  -F H 2 O , (3.4.38)

w5 : H  +  0 2 +  M  -> H 0 2 +  M ,  (3.4.39)

w6 : H  +  H 0 2 2OH, (3.4.40)

W7 : H  +  H O 2 —* H 2 +  O 21 (3.4.41)

and

uig : O H  H O 2  —► H 2 O  +  O 2 • (3.4.42)

The species conservation equations are

L (/7 )  =  — u>i +  U 2  +  W3  — U 5  — ujq — u)j, (3.4.43)

L ( O H )  =  ui\ -f- UJ2  — UI3  — 2w4 "h 2w6  — uig =  0, (3.4.44)

T (O ) — u)\ — 0J2  +  w4 =  0, (3.4.45)

L ( H 2 ) =  —W2 — w3 4" w4) (3.4.46)

L ( 0 2) =  —u}\ — uig +  U 7  +  ujg, (3.4.47)

L ( H 2 0 )  =  W3  +  W4  +  ^ 8  (3.4.48)

and

L^HO^) — W5 — W6 — W7  — ws =  0. (3.4.49)

An equilibrium  assumption has been made for the reactants O H , 0  and H O 2  based 

on the ir faster reaction rates. The reaction rates are provided in [2] as the product
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of the interacting species densities and the reaction ^-factor given by

k  =  A iT 0i exp ( - E i /R T ). (3.4.50)

As an example, the first reaction rate in the forward direction is given by

w i, =  [H ] [0 2) h r  (3.4.51)

The equilibrium  assumptions previously mentioned y ie ld  the equilibrium  values

,H n ]  m m m
1 ( k  +  h)[H} + k, lOH\'  (3-4-52)

,r m
[ ] " "  (3  M )

and

k A O H W H )
l° u  -  h , m  ■ (3-454)

The species conservation equations are reduced to

L [H )  =  2(u>i -Fu^) — 2u>5 — u>r, (3.4.55)

L (H 2) =  — 3(wi +  u^) +  W5, (3.4.56)

L { 0 2) =  - ( c j j+ w g )  (3.4.57)

and

L {H 2 0 )  =  2(u3 +  uj6). (3.4.58)

The chemical system equivalent to the above is

I :  W 2 +  0 2 ^  2H  +  2H20  (3.4.59)
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and

I I :  2H  +  M  ^  H 2 +  M. (3.4.60)

The global reaction rates are given by

w / =  u?i -t- u>6 (3.4.61)

and

w // =  (3.4.62)

The remaining governing equations for this system are

/ ' "  +  2 f f "  =  0 (3.4.63)

and

Ar
L (T )  =  (700 -  1 ) M l { f " ) 2 +  - ( 0 ; W/ +  0nu>n). (3.4.64)

P

The values of /?/ and /?// are calculated from  reference tables o f enthalpy (McBride 

[12]) based on formation of the compounds from the assigned reference elements.

3.4.1 Selection of Parameters

In the Birkan and Law system no in itia l reaction is possible i f  both R\ and R2 are not 

present for x <  0. A s im ilia r conclusion is found here by analyzing equations (3.4.35) 

through (3.4.42). I f  only H 2 and 0 2 are present for the in itia l condition x <  0, then 

the reactions w ill not start. Here, the in it ia l condition w ill provide for some loading 

of H  on the same side of the splitter plate as is H 2. The m inim um value of H  to be

expected is calculated by assuming equilibrium  disassociation o f H 2 according to

H 2 +  M  ^  2H  +  M .  (3.4.65)
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This gives an in itia l H  concentration o f 0(1O-11). Calculations were made using this 

m inim um value and several other values of in it ia l H  loading .

3.5 Num erical Techniques

Equation (3.4.63) for the streamfunction /  is independent of the remaining equations 

and is solved using the boundary value problem solver COLSYS. The remaining 

equations are formed in to  an im p lic it nonlinear system of equations using the Crank- 

Nicholson finite-differencing scheme. The system is in the form

Ah{x)  =  b(x) (3.5.66)

and is marched in the x-direction from x  =  0 past the ignition point to a post­

ignition steady state. The m atrix  A  is inverted using the Thomas algorithm. The

x dependence of the inhomogenous term b(x) is handled by an iteration process for 

each A x  step of the form:

Ah([x  - f  A x ] i)  =  b(x) (3.5.67)

and

Ah([x  +  A x ],+i)  =  6([x +  A x ];) . (3.5.68)

This iteration technique is more complicated for the methane-air system which re­

quires calculation o f equilbrium  values for 0 ,  O H  and H 0 2 at each iteration and each 

new value of x.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.6 Results

3.6.1 Ignition Distances

The Birkan-Law reduction system and the reduced methane-air system are analyzed 

to determine the point of ignition Xig as a function of fti or These parameters

are varied over several orders of magnitude. The ignition point is defined as the point 

when the maximum temperature reaches 90% of its post-ignition flame temperature. 

For the Birkan-Law system with D ai =-Da<i=50, £>a3=1000, 0 t  =  1-0 and <f> =  0.5 an 

almost linear relationship of the ignition distance as a function of the log(/?i) is found 

(see Figure 3.1 ). For the methane-air system w ith  /?x =  1.0 and <j> =  0.5, Figure 3.2 

shows a sim ilar near linear relationship o f the ignition distance as a function o f the 

\og(H i n i t i a l ) -  A comparison of the ign ition  distances of Figure 3.1 to those of Figure

3.2 reveals a difference by a factor of 10 to  20. This can be attribu ted to the different 

reaction mechanisms, the heat release factors and the form of the Arrhenius reaction 

as determined by the respective Damkohler numbers and activation energies.

3.6.2 Component Densities at Ignition

Since the in itia l loading of the radicals effects the ignition distance, the values of the 

radical mass fraction at the ignition po in t should be of interest. Figure 3.3 shows the 

concentration of radicals R\ and Ri at the  tim e of ignition for /?i =  10~5, (3\ =  10~4 

and Pi =  10-3 . The difference in magnitude between R\ and R 2 at the interface 

is due to the fuel-oxidizer difference represented by <̂ =  0.5. Figure 3.4 shows the 

nondimensional concentration of H 2 O and H  for methane-air system w ith in it ia l H
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loading varying from 10-11 to 10-4 . Although the in it ia l loading varies over several 

orders of magnitude, the mass fraction profiles at ign ition are nearly identical, thus 

it  appears from Figures 3.3 and 3.4 that ign ition is delayed (i.e. varies) un til the

radical concentration at the interface reaches some required level.

3.6.3 Flame Temperature

The temperature of the post-ignition flame is independent o f the in itia l radical load­

ing. Figure 3.5 shows the maximum temperature as a function of x for the methane-air 

reduction system for two different / f , : 10- n  and 10-4 . This Figure shows that 

ign ition is delayed for Hinitial =  10- n , but the post-ignition flame temperature is the 

same in both cases.

3.6.4 Flame Structure

Figures 3.6 and 3.7 show the mass fraction of the component gases, the temperature 

and the regularity factor (see Chapter 5) o f the post-ignition, steady flame as a 

function of rj for Hinitial =  10- n  and (j> =  0.5 and 1.0 respectively. W ith  the larger 

concentration of i / 2> the flame temperature is higher as are the concentrations of all 

o f the intermediate reactants and products. Figure 3.8 shows the maximum value 

o f temperature, H^O and H  for the methane-air system as a function of x w ith  

Hinitial =  10- n  and <j> =  0.5. The build up of H 20  and H  to ignition is evident as is 

the post-ignition approach to  an equilibrium  value.
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3.7 Conclusion

Ign ition and post-ignition o f a non-premixed flame in a lam inar m ixing layer has 

been studied. Two reduced chemical reaction systems were used. Both reduction 

systems gave sim ilia r results as to the effects of the input parameters on the ignition 

distances and the ignition structure. In each case some in it ia l loading of at least one 

of the radical components was required. The ignition distances varied inversely to 

the logarithm o f the in itia l loading. The concentration of the radicals and the post­

ign ition flame temperature are relatively unaffected by the in itia l radical loading.
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Figure 3.1: Nondimensional ignition distance as a function of (5\ loading using the 

Birkan-Law reduction with Z7(7i =  D fl2=50, Z)«3= 1000 , and <j> =  0.5.
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Figure 3.2: Nondimensional ignition distance as a function of a/ loading using 

the methane-air reduction w ith  <f> =  0.5.
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Figure 3.3: Nondimensional radical concentrations for different loading using

the Birkan-Law reduction.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



0.4

0.3

H initial inCreaSirlS0.2
Ocl

o.i

o
■3 •2 0 2 3

n

Figure 3.4: Nondimensional H  and I I 2 O concentrations for different loading

using the methane-air reduction.
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Figure 3.5: Maximum temperature vs x for methane-air reduction w ith <f> =  0.5 and 

Hinitial =10“ 11 and H initlai =10-4 .
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Figure 3.6: Post-ignition flame structure for methane-air reduction w ith  <f> =  0.5 

and Hinuiai = 10-11.
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Figure 3.7: Post-ignition flame structure for methane-air reduction w ith  ^  =  1.0 

and Hinitiai = 10-11.
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Figure 3.8: Maximum temperature, H 2 O and H  concentrations vs x  for methane-air 

reduction w ith (j> =  0.5 and =10-11.
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Chapter 4 

THE STRUCTURE OF A 

COM PRESSIBLE M IXING  

LAYER IN A BINA R Y  GAS

4.1 Introduction

As previously mentioned and practiced in  Chapters Two and Three, i t  is common in 

m ixing layer studies to  assign constant and nominal values to the parameters fi, A, Cp, 

D {, P r  and Sc or to calculate values according to simplified models. Additionally, it  

is common to assign equal molecular weights to  the gases considered, thus sim plifying 

the problem further. Here, the m ixing of two gases across a laminar m ixing layer w ill 

be studied using values for the transport properties calculated from detailed models 

or tabulated data and using the real molecular weights. Thus, this is an accurate 

representation of a m ixing layer using a combination o f real gases. The geometry
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is identical to the reduced chemistry combustion problem of the previous chapter. 

However, the gases w ill be assumed non-reacting. The m ixing w ill be lim ited to two 

gases, but could of course be extended to include more. The gases included in this 

study are hydrogen (H 2), helium (He), neon (Ne), nitrogen (N 2), oxygen ( 0 2) and 

argon (A t ). This choice of gases was not arbitrary. Papamoschou and Roshko [13] 

and Hall, D imotakis and Rosemann [14] used binary combinations of He, N 2 and A r  

in  the ir experiments. In  addition, hydrogen is the proposed fuel for scramjet engines.

4.2 Governing Equations

The nondimensional equations are given by

(pM/ " ) '  +  2 / / "  =  0, (4.2.1)

( p \T 'y  +  2P rooC p f r  +  (7oo -  1 )M l 0 P r ooPli f  +  P rx S c ^ p 2 D u T l ' t c p , l F '  =  0,
1

(4.2.2)

( P 2 D u F{)' +  2SCoof F l  =  0, (4.2.3)

1 =  Fr +  F2, (4.2.4)

1 =  p T (W F ,  +  F2), (4.2.5)

and

0  =  53 CP,iFi. (4.2.6)
1

The equations were nondimensionalized by the freestream quantities poo, Too, Uooi 

Poo =  PooR°Too/W2, poo, ^oo, D \2y00, Cpt00 for the density, temperature, velocities, 

pressure, viscosity, thermal conductivity, b inary diffusion coefficient and specific heat,
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respectively. Primes denote differentiation w ith  respect to the s im ilarity variable rj. 

The constants appearing above are the Schmidt number S c =  (ioo/PooDu,oo, the 

Prandtl number P r ^  =  fiooCp^/Xoo, the Mach number M =  Uoo/floo) the molecular 

weight Wi of species Fi w ith  W  =  W2/W 1 being the ir ratio, and the ratio of specific 

heats 7oo. The speed o f sound is a =  (700 — l )C p t0 0T<x,. A  fixed value of Too =  300°K  

is used for this study.

The appropriate boundary conditions are

T  =  f  =  F2 =  1 and F\ =  0 as 77 —» 0 0 , (4.2.7)

and

T  =  ftp, f '  =  ftu, F\ =  1 and F2 =  0 as 77 —► - 00 , (4.2.8)

( /*  T *
w ith  flu  =  t j t 2- € [0 , 1) and f i r - f r -  >  0 being the velocity and the temperature ratios,

respectively. For the momentum equation, the th ird  boundary condition /(0 )  =  0 is

imposed to fix  the streamline along the streamwise axis. I f  ftp is less than one, the

gas in the slow freestream is relatively cold compared w ith  tha t in the fast freestream,

and if  ftp is greater than one i t  is relatively hot. There are two cases depending on

the magnitude of W :

•  W  >  1- heavier gas resides in the fast freestream at 7? =  00 and the lighter 

gas in the slow freestream at 77 =  —0 0 ; or

•  W  <  1: lighter gas resides in the fast freestream at 7/ =  00 and the heavier 

gas in the slow freestream at 77 =  —0 0 .

For the inert gases A r  and He  (typical gases used in experiments), we see tha t W  can 

vary between 0.1 for the A r-H e  case, and 9.9 for the H e-A r  case. The convention is
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used that the first gas listed corresponds to  F j which resides in the slow freestream 

at 1} =  —0 0 , while the second gas listed corresponds to  F2 which resides in  the fast 

freestream at 77 =  0 0 ; e.g., the case A r-H e  implies tha t the gas in  the slow freestream 

is argon, while the gas in the fast freestream is helium. The ratio o f molecular weights, 

W, for the different gases considered in this study is given in Table 1.

4.3 Calculation of Transport and Thermal Prop­

erties

The following transport and therm al properties are variables of the dynamic system 

and are thus dependent on the values of T  and F : thermal conductivity(A), coefficient 

of v isco s ity^ ), binary diffusion coefficient(D \2) and thermal heat capacity(Cp). The 

values o f each must be calculated at each new value of 7/ as equations (4.2.1) to (4.2.6) 

are solved from —00 to 0 0 . The methods used to determine each follows.

4.3.1 Heat Capacity

The heat capacities o f the ind iv idua l gases as a function of temperature is obtained in 

tabulated form from reference tables (M cBride [12]) and stored. Linear interpolation 

is used to obtain the specific heat at any temperature. A ll specific heat values are 

nondimensionalized by the specific heat of the individual gas at 77 =  00 and T “ =  

T^o =  300° K. The nondimensional m ixture Cp is calculated by :

Cp =  F iC Pl +  F i CV2. (4.3.9)
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4.3.2 Coefficient of Viscosity

Viscosities are calculated using cross section and collision integral theory ( Ander­

son [8] and M aitland [15]). The theory provides for calculation of the individual gas 

viscosity coefficients and the calculation of a m ixture  viscosity as a function o f tem­

perature and the concentrations, Fi and F2 . This again calls for tabular storage and 

interpolation. The collision and integral theory provides forms for calculating viscosi­

ties for monatomic and polyatomic gases. The polyatomic form is not used because 

o f its complexity. However, numerous spot checks were run comparing the individual 

and m ixture viscosities calculated using the monatomic form against coefficients of 

viscosity found in Touloudian et al [16]. Satisfactory agreement was obtained in all 

cases for monatomic and polyatomic gases, so the monatomic form of the viscosity 

is used. The viscosity values are nondimensionalized by the value of the viscosity of 

the individual gas at at 7/ =  00 and T* =  T ^  =  300°K.

4.3.3 Thermal Conductivity

An attem pt was made to use the monatomic forms of the cross section and collision in ­

tegral theory to  calculate thermal conductivities for both monatomic and polyatomic 

gases. Thermal conductivities for polyatomic gases (N2, Hz and N2) calculated this 

way compared poorly against reference tables (Touloudian et al [17]. This lead to 

using tabular data [17] to calculate the thermal conductiv ity for the individual gases. 

The m ixture conductiv ity is calculated using the method of Mason and Saxena rec­

ommended by [17]. Since this theory provides one form  for monatomic gases and one
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for polyatomic gases, the polyatomic form is used i f  at least one of the two gases is 

polyatomic. The thermal conductivity values are nondimensionalized by the value of 

the thermal conductivity of the individual gas at 77 =  00 and T* =  T£0 =  300°K.

4.3.4 Binary Diffusion Coefficient

The scattering cross section and collision integral theory is used to calculate £>12. 

The monatomic form was used for all cases. The use of the monatomic form to 

calculate D u  for m ixtures involving polyatomic gases is justified since satisfactory 

checks were made against the experimental data of Bzowski [18] and Hirschfelder 

[19]. Additionally, Hirschfelder [19] states that the agreement between experimental 

data and the monatomic theory predictions is generally quite satisfactory for both 

monatomic and polyatomic gases.

4.4 Numerical Techniques

The system of equations is solved by a “shooting” method. The system requires four 

shooting parameters related to the asymptotic values in the freestream.

4.4.1 Asymptotic Analysis of Equations

In the lim it as 77 —► —00 the transport properties can be consider constant and 

equations (1.7.19) take the form:

lJLP fm +  2 / / "  =  0, (4.4.10)
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p2D UcaF ! , +  2Scoof F !  =  0 (4.4.11)

and

Ap T "  +  P r ^ M l ^  -  l ) p p ( f ' ) 2 +  ^ P 2 D 12ao(CPlF[ +  CP2 F ^ T ' +  2CpP r ^ f T  =  0.
OC0o

(4.4.12)

The system is simplified by setting F  =  F i =  1 — F2. From Kennedy and Gatski [20], 

the following approximations are made:

/ «  d i + /? [/» ;+  /  Qu{r}*)drl *> (4.4.13)
«/—00

fv  &  Pu +  Qu(v), fv r ,~ Q 'u (v ) ,  (4.4.14)

F & 1 + Q f (ji), F ' «  Q'f {t}), (4.4.15)

T & { 3 t  +  Qt (v) and T ' «  Q'riv)- (4.4.16)

Upon substitution, the leading order equations take the form ( / '  =  U ):

Q 'l) +  2a\ ) +  j j j  Q'( }  =  0, (4.4.17)

where ( ) stands for U, T  or F. The a ’s are defined as

(  V  - ( Sc°°PuY j  fPcPProoPuY tA „ loX
=  ’ “ F =  ( w J  and “ T =  ™ H  ’ <4'418)

where

=  f>D =  y f ^ ,  &  =  %  “ <* &  =  % * •  (4.4.19)
00 ^ 12oo /^oo ^0'oo

As 7/ —> —00 , Q( ) -4  0 for all three cases, and the solution of equation 4.4.17 is 

asymptotic to

2aq ) e x p ( - a f )(-p- +  t/)2)
<3( ) =  —  -  L  ■ (4.4.20)

where C( ) is the remaining constant of integration.
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4.4.2 Shooting Scheme

W ith  the above asymptotic equations and the boundary conditions of the original 

system, values for / ,  / ' ,  / " ,  / ' " ,  F , F ',  T  and T  are known at tj =  —oo in terms 

of the four unknown constants [i.e. the shooting parameters) d\, cu, cp and cp. An 

iterative method involving a four step Runga-Kutta in it ia l value problem solver is 

used to  integrate the system from rj =  —oo to i] =  oo. The shooting parameters 

are chosen to satisfy the appropriate conditions at the interface and at the upper 

freestream. The system is extremely s tiff and requires a stepped convergence. The 

parameter d\ is used to satisfy / (0 )  =  0, c\j and cp are used to step U  and T  toward 

an in terim  boundary condition un til the changes in each are less than some chosen 

tolerance. Holding the values of d\ , cy and cp constant, cp is used to step F  toward an 

in terim  boundary condition. This stepping o f F  may unbalance the system, causing 

many more cycles to be necessary to re-satisfy the conditions on / ,  f  and T  before 

the next cycle on F  is attempted. The iterations are continued until the to ta l relative 

change in the shooting parameters w ith  the fu ll boundary conditions is less than a 

selected tolerance (10-4 ).

4.5 R esults

The system of equations (4.2.1) through (4.2.6) is solved for all 30 possible combina­

tions o f the six gases. The cases of a gas m ixing w ith  itself is not considered. The 

values of M a0 =  0, /3T =  1.5 and 0u =  0.5 are maintained throughout. The struc­

ture of the m ixing layer parameters are shown in Figures (4.1) through (4.6). These
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Figures present the following nondimensional parameters as a function of 77: Lewis 

number(Le), heat capacity (Cv), density (p), Prandtl number (P r ), flow velocity par­

allel to  the x  axis (u), temperature and mass fractions (F i and F2) for the two gases 

involved. Only a few of the th ir ty  graphs showing the m ix tu re  structure are presented 

in this chapter, the rest are shown in Appendices A  and B.

4.5.1 Effect on Lewis Number

The Lewis number is defined as Sc/Pr. As mentioned above i t  is common to assume 

a constant value for the Lewis number. Figure (4.1) is an 0 2- / / 2 m ixture while Figure

(4.2) is an H 2 -O2 m ixture. The value of W  for these systems is respectively 0.063 

and 15.873. In both figures the Lewis number has different values at ± 0 0  and varies 

through the m ixing layer, thus indicating tha t i t  is not correct to assume a constant 

value of the Lewis number.

Figure (4.3) represents an / /e - / / 2 m ixture and Figure (4.4) is for the A r-N e  m ix ­

ture. These two cases have W  values of 0.504 and 0.505. W hile  the weight ratio is 

nearly the same, the Lewis number variation is much larger for the A r-N e  case. This 

shows that the weight ratio is not the sole factor effecting Lewis number. The Lewis 

number is determined by other thermal properties which differ between the A r-N e  

case and the H e-H 2 case. As an example, Figures (4.3) and (4.4) show the difference 

in the nondimensional heat capacity between the two cases.

For this study, the W  values closest to 1.0 are for O2-N 2 and N 2 -O2 w ith  W  values 

of 0.876 and 1.142. These m ixing cases, shown in Figures (4.5) and (4.6), have a near 

constant value of Lewis number through the m ixing layer.
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4.5.2 Effect on Prandlt Number

The Prandlt number also varies through the m ixing layer but in a different way 

than the Lewis number. In Figures (4.1) and (4.2), the Prandlt number at ±oo are

very nearly equal, w h ile  P r  varies signifigantly through the mixing layer. For the

near equal W  value cases, Figures (4.3) and (4.4) show a near constant value of Pr.  

For the W  nearest to  1.0 cases of Figures (4.5) and (4.6), the value of P r  is nearly 

constant.

4.5.3 Effect on Density

The density p should be expected to vary w ith  W  since the density is given by:

p =  (T [W F 1 +  F 2 ] ) ~ 1 (4.5.21)

Clearly, mass fractions and temperature are dependent on the transport properties; 

therefore, in a secondary way, so is density. This is demonstrated most readily by 

Figures (4.2) through (4.6) which show cases o f density being nearly constant to cases 

of density changing by a factor of two. In Figures (4.5) and (4.6), W  is nearly one, 

but the density profiles o f the two cases are very different.

4.5.4 Effect of Heat Capacity

The heat capacity H 2, N 2 and 0 2 are tem perature dependent. The heat capacity of 

monatomic gases in th is  study (He, Ne and A r )  does not depend on temperature. 

The mixture heat capacity is determined by

Cp =  CPlF i  +  C P2 F2 (4.5.22)
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Figures (4.2) through (4.6) show the m ixture heat capacities varying sharply through

the mixing layer.

4.6 Conclusion

The characteristics of the m ixing of two real gases in  a laminar m ixing layer were 

investigated using theoretical and tabulated data to calculate the values of thermal 

conductivity(A), coefficient of viscosity(/i), binary diffusion coefficient(£>12) and ther­

mal heat capacity(Cp). The true molecular weights were used. The gases considered 

in the study were hydrogen ( # 2), helium (He), neon (Ne), nitrogen (N 2 ), oxygen 

(O2) and argon (A r) .  Since the freestream velocity and temperature were different 

at —00 and 0 0 , and self m ixing was not considered, 30 different m ixing combinations 

are included in the study.

In general, Le, P r  and Cp were not constants. The ratio of the gas molecular weights 

alone is not a gauge of the variation o f these parameters. The combinations of iV2 - 

0 2 and O2 -N 2 w ith  the weight ra tio  nearest 1.0 did show a near constant Prandtl and 

Lewis numbers. However, the combinations o f and A r-N e  w ith  weight ratios

of 0.504 and 0.505 respectively had very different profiles for the Prandtl and Lewis 

numbers in the m ixing layer because o f the different values of thermal parameters of 

the individual gases mixed. The P randtl and Lewis numbers could vary across the 

m ixing layer by factors of approximately 3 and 7, respectively.

Consequently, setting P r  and Le to constant values for the laminar problem is a poor 

approximation except in a few cases. Assuming equal molecular weights for the two
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gases to be mixed will also provide a  poor model for the m ixing layer.
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Table 4.1: The ra tio  of molecular weights IT , defined as the molecular weight of 

the gas at 7/ =  oo divided by the molecular weight of the gas at 77 =  —0 0 , for the 

different gases considered in this study. The top row corresponds to the gases in 

the freestream at 7/ =  0 0 , while the firs t column corresponds to the gases in the 

freestream at 77 =  —0 0 .

h 2 He Ne n 2 o 2 A r

h 2 1.000 1.986 10.011 13.897 15.873 19.813

He 0.504 1.000 5.042 6.999 7.994 9.979

Ne 0.100 0.198 1.000 1.388 1.585 1.979

n 2 0.072 0.143 0.720 1.000 1.142 1.426

0 2 0.063 0.125 0.631 0.876 1.000 1.248

A r 0.050 0.100 0.505 0.701 0.801 1.000
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Chapter 5 

THE STABILITY OF A  

COM PRESSIBLE M IXING  

LAYER IN A BIN AR Y  GAS

5.1 Introduction

In investigating the stability of m ixing layers, i t  is typical to assume tha t there ex­

ists a local parallel flow about which the governing equations are linearized w ith 

respect to spatially and tem porally varying disturbances. From this linearization, it  

is straightforward to calculate either temporal growth rates (assuming fixed spatial 

wavenumbers) or to calculate spatial growth rates (assuming a fixed temporal fre­

quency). I f  an instab ility  exists, there is usually a band or bands of wavenumbers 

(or frequencies) for which there are positive growth rates. These bands are bounded 

by the neutral modes, whose existence and phase speeds can be determined through
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the Lees and L in  regularity condition assuming tha t the phase speeds are subsonic. 

Another neutral mode can be found in the lim it  of the wavenumber going to zero. 

Additionally, the growth rates of the unstable modes w ith  wave numbers between 

zero and the Lees/Lin mode can be determined.

The purpose of this chapter is to analyze how the s tab ility  characteristics of the 

m ixing layer are effected by the more detailed determ ination of the mean flow condi­

tions presented in  the previous chapter. The mean flow and the stability conditions for 

two simple models w ill be determined to  compare the results of the s tab ility  analysis.

5.2 M ean Flow

Three laminar m ixing models w ill be studied here to determine the mean flow struc­

ture and then the s tab ility  characteristics. The mean flow of a system of two gases 

in itia lly  separated by a sp litte r plate then allowed to m ix  by diffusion and convec­

tion has the same geometry, governing equations, in itia l and boundary conditions 

presented in the last chapter. The models differ in how the transport properties, 

thermal conductivity (A), coefficient of viscosity (ft), binary diffusion coefficient (D u )  

and thermal heat capacity (Cp), are determined. The models are described below:

•  Model I: This model assumes Chapman’s viscosity law, pp =  p2D u  =  pA =  1, 

and allows for different but constant Cpj. Owing to the nondimensionalization, 

Cpp =  1 and Cpti is the ratio  of the specific heat of the gas at 77 =  —00 divided 

by the specific heat o f the gas at 77 =  0 0 . The mean flow equations (4.2.1
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through 4.2.6) are given by

r  + 2 //"  = 0, 1 = F, + F2, Cp =  CpaF1 +  F2, (5.2.1)

r + 2 P r 00C'P/ T ,+ (7 00- l ) ^ P r 00/ w2+ P r 005 c -1 [CP,XF [  +  F ' ] T  =  0 (5.2.2) 

and

F "  +  2Sc00f F [  =  0. (5.2.3)

The temperature and mass fraction equations are coupled. The values of P r ^

and Scoo are determined by considering a particular binary system. In this

model, the density does not appear exp lic itly  in  the mean flow, and its influence 

is only fe lt in the stab ility  calculations.

•  Model II: The second model assumes tha t the viscosity is given by the Suther­

land viscosity law

<zT3/ 2
fj. =  -— —, a =  \ +  b and b = 1 1 0 .4 K /T * .

o + 1

T*  is some reference temperature. The value of a is chosen to be consistent w ith  

/Zoo =  1 at Too =  1. Additional assumptions are p D u  =  A =  /z and Cp^ =  1. 

The values of P roo, Sc0Q, and Cpti  are determined by considering a particular 

b inary system. In this model, the density is determined from the gas law.

•  Model I I I :  The last model considered has been presented in  the previous chap­

ter. This model w ill be called the Exact Model.
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5.3 Stability Formulation

As is standard in linear stability theory, the flow field is perturbed by introducing 

wave disturbances of the form e,(“x-u,i) in the velocity, pressure, temperature, density 

and mass fractions with amplitudes that are functions of 77. Here, u> is the frequency 

and a  is the streamwise wavenumber of the disturbance. For spatial theory, u> is 

required to be real and solutions are sought for which a  is complex. For temporal 

theory, a  is assumed to be real and solutions are sought for which u> is complex. The 

amplification rates of the disturbances are then —a,- or a;,-, respectively. Substitution 

into the inviscid compressible equations for a binary gas and linearizing yields the 

compressible Rayleigh’s equation for the normal velocity perturbation ((f>)

where

' £

p2

2 1 
a 2 +

u - c \ t
<f> =  0, (5.3.4)

1 -  M l ( U  -  c ) > ^  
7

(5.3.5)

and

1— ipC pT  =  ^ 2 — L. (5.3.6)
7 7oo

Here, 7  is the ratio of specific heats and c is the complex phase speed c =  u /a .  Primes 

indicate differentiation with respect to the similarity variable 77. If  the molecular 

weights are taken to be equal and the thermodynamic quantities are assumed constant 

(7  =  7oo, pT =  1), then equation (5.3.4) reduces to the classical Rayleigh equation for 

a single component gas. The boundary conditions for <j> are obtained by considering
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the lim iting form as 77 —> ± 00. The solutions are of the  form

<j> —> exp(±fi±77), (5.3.7)

where

S22 = a 2 [ l - M j , ( l - c ) 2] and n l  =  j i 1 -  M U f a  -  c)2 A

/3p and /?7 are defined by

(5.3.8)

(3p(3t W  =  1 and 0 , =  — .
7oo

The values of the ra tio  /37 for the different gases considered in this study are given 

in Table 5.1. Although, the case of a gas m ixing w ith  itse lf is not applicable to 

this study, i t  is interesting to observe tha t /?7 is not un ity  for those gases w ith  a 

temperature dependent heat capacity (H 2 , N 2 and O2). I f  is positive, then the 

disturbances decay exponentially as 77 —*• 0 0 . If, on the other hand, is negative, 

then the disturbance oscillates, indicating tha t acoustic waves are radiating away 

from the m ixing layer. S im ilar statements can be made for Cl2_. c+ and c_ are defined 

as the values o f the phase speed for which and n 't vanish, respectively. Thus

c+ =  1 -
1

and c_ =  flu  +
1

(5.3.9)
~  ' M o o y ^ '

c+ is the phase speed of a sonic disturbance in the fast stream and c_ is the phase

speed of a sonic disturbance in the slow stream. A t

Mac =  M „ =
_  1 +  \JK iW p

1 -P u
(5.3.10)
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c+ and c_ are equal. A “ convective”  Mach number can now be defined for a two- 

dimensional b inary gas as

W ith  this definition, a ll disturbances are supersonic for M c >  1. This definition of the

speed of the most unstable wave. The values o f M» for the W  values considered here 

are shown in Figure (5.1). Figure (5.1) also shows the expanded view for 0 <  W  <  2. 

The dashed line shows the value of M* for a system w ith  the W  =  1 and f}^ =  1.

The nature of the disturbances can now be illustrated by Figure (5.2), which 

shows c± versus M c for the particular case o f Ar-He.  Figure (5.3) is a similar p lo t 

for the H e-A r  case. These curves divide the cr - M c plane into four regions, where 

Cr is the real part of c. Also shown, as dashed lines, are the bounds for namely, 

Cr £ [/?(/, 1] =  [0.5,1]. I f  a disturbance exists w ith  a M c and rv in region 1, then 

and f l i  are both positive and the disturbance is subsonic at both boundaries; i t  is 

classified as a subsonic mode. In region 3, bo th  and are negative and hence 

the disturbance is supersonic at both boundaries, and is classified as a supersonic- 

supersonic mode. In region 2, is positive and f t 2_ is negative, and the disturbance 

which is subsonic at in fin ity  and supersonic a t negative in fin ity  is classified as a fast 

supersonic mode. Finally, in region 4, is negative and f l 2_ is positive so the 

disturbance is supersonic at in fin ity and subsonic at negative in fin ity, and is classified

M  _ Moo _ Afoo(l -/?[/)
(5.3.11)

where M , is the Mach number at which the sonic speeds of the two streams are equal.

convective Mach number is based on the freestream Mach number at T) =  oo in the

laboratory frame and is independent o f the speed of the large-scale structures and the
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as a slow supersonic mode.

To complete the s tab ility  problem, the appropriate boundary conditions of either 

spatial or temporal s tab ility , for either damped or outgoing waves in the fast and slow 

freestreams are, respectively,

<f> —> e~Q+v i f  Cr >  c+ , $ —» e- ” ?v/-n + i f  (^ <  c+ , (5.3.12)

(j) —> eQ~v i f  <  c_, and <j> —► e~,T1V ~ n-  i f  c, >  c_. (5.3.13)

5.4 N eutral M odes

To illustrate how a binary gas may alter the s tab ility  characteristics, the neutral phase 

speeds for various values o f W  are presented below.

5.4.1 Lees-Lin Regularity Factor

The Lees-Lin regularity factor is obtained from equation (5.3.4). Assuming a real 

phase speed (c, =  0), the denominator (U — c) w ill reach zero at some value of 77 

making equation (5.3.4) singular. Since this is nonphysical, it  must be that

' i r
ii

=  0. (5.4.14)
U=c

Evaluating equation (5.3.5) at U  =  c gives,

P

The Lees-Lin regularity factor is reduced to

[£li/=c ~  .2 ' (5.4.15)

S ( , ) = ( / > 2t / ' ) ' .  (5.4.16)
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I f  a neutral mode exists in region 1 o f Figures (5.2) or (5.3), then the neutral phase 

speed c/v is given by =  U(i)c) provided a  ^  0. Here, tjc is the zero of the Lees-Lin 

regularity factor

S{ v) =  P2 U', where G  =  W F\  +  F2. (5.4.17)

That is, S ( t] c ) =  0 corresponds to  the neutral subsonic phase speed ca t =  U ( t)c ) .  The 

corresponding neutral wavenumber and frequency must be determined numerically. 

These modes are called regular subsonic neutral modes. If, on the other hand, a 

neutral mode exists in  regions 2, 3 or 4, the Lees-Lin regularity condition can not 

be used and thus the phase speed of the neutral modes must, in general, be found 

numerically. These modes are called singular neutral modes.

Typical plots of S(t)) from the Exact Model are shown in Figure (5.4) for the of 

argon-helium system and the nitrogen-hydrogen system. In each case, there is only 

one zero o f S, although the location differs. The difference in location implies that the 

neutral phase speed cyv must also be different. The locations, r}c, of the zero of S for 

the different binary systems are given in Table (5.2), and the corresponding neutral 

phase speeds given in Table (5.3). In Figures (5.5) and (5.6),the neutral phase speeds 

are p lotted as a function of the molecular weight ratio  W. Figure (5.5) shows the 

results for Model I and the Exact Model . Figure (5.6) shows the Exact Model and 

Model II. Each figure includes an expanded view of 0 <  W  <  2 for clarity. Model I 

under predicts for the higher values o f W  when compared to the Exact Model and 

the difference gets larger for larger values of W. Model I I  is a better overall f it  to the 

Exact Model for low values of W ;  at higher values i t  first over predicts then under
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predicts.

The Exact Model indicates that the neutral phases speed cn  essentially increases 

w ith  the molecular weight ratio  W, or, equivalently, decreases as /3P increases. For 

Model I and Model I I ,  the monotonic relationship holds for W  less than 5. Above 

W  =  5, Model I and Model I I  show a decrease w ith  increasing W. The exceptions 

to all trends are the near equal W  pairs. In Chapter 4, the different structures for 

the gas combinations of He-H? and A r-N e  w ith  W  values of 0.504 and 0.505 were 

examined. The difference for this pair, as well as others can be seen in Figures (5.5) 

and (5.6). A ll three models produce different phase speeds for the pair. This is to be 

expected since the mean flows are different.

5.4.2 Zero Wave Number Modes

In addition to the neutral modes w ith  aw ^  0 there may exist neutral modes having 

zero wavenumber. The phase speed of such modes do not satisfy the Lees-Lin reg­

u larity  condition but can be found by an asymptotic analysis of equation(5.3.4) in 

the lim it a  —> 0 (Grosch [6]). In this case, an expansion of the solution in powers of 

a, along the lines previously used by Drazin and Howard [21] and Blumen, Drazin 

and Billings [22] in related studies, yields an eigenvalue relation which is analytically 

tractable. Described below is the extension of these results for binary gases.

The leading order term in  an a-expansion is independent of the detailed form of 

the mean profile, and only depends on the basic flow characteristics at in fin ity. This 

is to be expected from physical arguments because the wavelength o f the instab ility  in 

the lim it a  —» 0 is much larger than the length scale over which the undisturbed flow
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is non-uniform. For the supersonic-supersonic case, setting the leading-order term in 

the expansion to zero yields an equation for c^:

I M lW u  ~  C N f M ; '  -  1](1 -  <w)4 =  % { M l (  1 -  cNf  -  1](f a  -  « ) 4. (5.4.18)

I f  the molecular weights are taken to be equal and the thermodynamic quantities are 

assumed constant (7  =  700 and pT  = 1 ) ,  then this equation reduces to (5.3a) of Miles 

[23], i f  his result is expressed in  the notation used here. In general, this sixth-order 

polynomial must be solved numerically to determine cjy as a function of M . For the 

special case o f (3̂  =  1 (i.e., both gases are monatomic), the following can be found:

•  A single real root of equation (5.4.18) exists for

Moo >  M . =  (1 +  /? ;1/2) / (  1 -  P u \  (5.4.19)

w ith  phase speed

cN =  (Pu +  /? ;1/2) / ( l  +  0P- 1/2). (5.4.20)

This is classified as a constant speed supersonic-supersonic neutral mode lying in 

region 3 o f the cr - M  plane. I t  is independent of Mach number and corresponds 

to the phase speed at which the sonic speeds in the two streams are equal.

•  A double root firs t appears at

M cr =  ( 1 +  1 -  M ,  (5.4.21)

w ith  phase speed

cN =  ( f a  +  (3;l/3) / { l  +  (5.4.22)
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There are three d istinct real roots for >  M c r • One of these is the phase 

speed of the constant speed supersonic-supersonic neutral mode while the other 

two roots must be found numerically from  equation (5.4.18). For the special 

case o f /?p =  1, these roots are given by

Ov =  ±  - L - [ « l  _ ft,)» +  4 - 4 « ( l  - f t , )>  +  l ) 1' a], ' J. (5.4.23)

The root which corresponds to  the ( + / —) sign is classified as a fast/slow 

supersonic-supersonic neutral mode. A ll three of these neutral modes lie in 

region 3.

5.5 Growth Rates

Equation (5.3.4) is solved numerically for the growth rates a,- <  0 corresponding to 

a particu la r value of w. Tables (5.4) and (5.5) present the maximum growth rates 

for various gas combinations for Model I, Model I I  and the Exact Model for W  <  1 

and W  >  1 respectively. A ll growth rates are for Moo =  0 except where otherwise 

indicated. The gas combinations are presented in  order of increasing value of W . In 

general, the Exact Model yields a lower maximum growth rate than tha t predicted 

for Models I and I I  when W  <  1. As the value of W  increases, the maximum growth 

rate decreases to the point where numerical error, due to the presence of the critica l 

layer near the singular point at U  — c =  0, is of the same order as the growth rates. 

Thus the numerical procedure can not be continued for the largest values o f W .

Figures (5.7) and (5.8) show the growth rate curves for various combinations of 

gases for the Exact Model. In  Figure (5.7), the two dashed lines are the near equal W
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pair A r-N e  and H e-H2. The growth rate curves are different as would be expected 

from, previous analysis which showed different mean flow structures. Figure (5.8) 

shows growth rates for the higher W  value combinations listed in  Tables (5.4) and 

(5.5), the general trend of the decrease in growth rate for higher W  is evident. Figure 

(5.9) compares the growth rate curve of Model I and the Exact Model for the O2-H 2 

case. Not only is the maximum growth rate higher for the Exact Model but the range 

of <jj is smaller. Figures (5.10) and (5.11) are the growth rate curves for the A r-N 2 

and N 2-A r  cases for convective Mach numbers M c= 0, 0.2, 0.4, 0.6, 0.8 and 1.0. These 

figures show a decrease of the growth rates as the convective Mach number increases, 

as well as a large decrease in the range of frequencies for which the flow is unstable.

5.6 Conclusion

From the figures and tables presented it  is seen that differing molecular weights have 

a significant effect on the phase speeds and growth rates of the disturbances. Using 

more precise calculations of the transport properties yields s tab ility  characteristics of a 

lam inar m ixing layer that are different than those obtained w ith  the simplified models. 

Thus, weight ratios and methods o f calculating the transport properties should be 

taken in to account when computing s tab ility  characteristics of compressible m ixing 

layers in binary gases.
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Table 5.1: The ratio defined as the ratio of specific heats at ?/ =  —oo divided by 

the ratio of specific heats at r; =  oo, for the different gases considered in this study. 

The top row corresponds to the gases in the freest ream at ij =  oo. while the first 

column corresponds to the gases in the freestream at rj =  —oo.

H i He Ne N i o 2 A r

h 2 0.995 0.839 0.839 0.999 1.002 0.839

He 1.186 1.000 1.000 1.191 1.195 1.000

Ne 1.186 1.000 1.000 1.191 1.195 1.000

n 2 0.992 0.836 0.836 0.996 1.000 0.836

0 2 0.977 0.824 0.824 0.981 0.985 0.824

A r 1.186 1.000 1.000 1.191 1.195 1.000
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Table 5.2: The location S(i]c) =  0 at Mr0 =  0, fly  =  0.5 and f a  =  1.5 for the 

different gases considered in this study. The top row corresponds to the gases in 

the freestream at ?/ =  oo. while the first column corresponds to  the gases in the 

freestream at r/ =  —oo. The notation N A  means not applicable for a binary gas.

h 2 He Ne n 2 o 2 A r

h 2 NA 0.096 0.124 0.228 0.208 0.186

He 0.219 NA 0.246 0.373 0.346 0.317

Ne -0.313 -0.255 NA 0.379 0.364 0.368

n 2 -0.795 -0.583 -0.057 NA 0.168 0.178

o 2 -0.814 -0.617 -0.052 0.200 NA 0.200

A r -1.013 -0.769 -0.110 0.153 0.145 NA
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Table 5.3: The neutral phase speeds c/v at =  0, flu =  0.5 and f l j  =  1.5 for 

the different gases considered in this study. The top row corresponds to  the gases 

in the freestream at i] =  oo, while the first column corresponds to the gases in the 

freestream at i/ =  —oo. The notation N A  means not applicable for a b inary gas.

h 2 He Ne n 2 o 2 A r

H , NA 0.829 0.896 0.922 0.924 0.926

He 0.780 NA 0.892 0.914 0.916 0.919

Ne 0.668 0.690 NA 0.851 0.856 0.868

n 2 0.628 0.649 0.757 NA 0.817 0.829

o 2 0.627 0.646 0.753 0.808 NA 0.826

A r 0.614 0.631 0.735 0.789 0.794 NA
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Table 5.4: The maximum spatial growth rates for various binary systems and for 

the three models used in the study. The gases are listed in order of increasing W  

(W  <  1).

Fi /'2 Model I Model I I Model I I I

A r H2 -0.2672 -0.0558 -0.0652

02 H2 -0.2332 -0.0562 -0.0670

N2 H2 -0.2317 -0.0587 -0.0704

A r He -0.2225 -0.0697 -0.0818

Ne H2 -0.1448 -0.0593 -0.0619

02 He -0.1876 -0.0687 -0.0809

N2 He -0.1799 -0.0697 -0.0846

Ne He -0.1229 -0.0676 -0.0700

He H2 -0.0744 -0.0612 -0.0550

A r Ne -0.0754 -0.0599 -0.0709

02 Ne -0.0626 -0.0540 -0.0647

Ar N2 -0.0626 -0.0561 -0.0557

N2 Ne -0.0578 -0.0519 -0.0652

Ar 02 -0.0521 -0.0538 -0.0550

02 N2 -0.0521 -0.0498 -0.0500
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Table 5.5: The maximum spatial growth rates for various binary systems and for 

the three models used in the study. The gases are listed in  order of increasing W  

{W  > 1 ) . N A  implies not avaliable.

Fi f 2 Model I Model I I Model I I I

N2 02 -0.0437 -0.0448 -0.0486

02 Ar -0.0390 -0.0409 -0.0437

Ne N2 -0.0396 -0.0430 -0.0395

N2 Ar -0.0355 -0.0385 -0.0430

Ne 02 -0.0357 -0.0403 -0.0381

Ne Ar -0.0279 -0.0337 -0.0333

H2 He -0.0274 -0.0321 -0.0434

He Ne -0.0100 -0.0173 -0.0238

He N2 NA -0.0140 -0.0178
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Figure 5.3: Disturbance speed phase diagram Cr vs M c for H e-A r.
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Figure 5.5: Phase speed Cn  v s  W  for Model I  (□ ) and the Exact Model (O).
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Chapter 6

SUM M ARY

Three different laminar m ixing problems have been studied and the results presented. 

Each study represents an expansion and more detailed look into research previously 

conducted. Comparison of the results from  the work herein w ith  previous work 

presents new insight in to the physical systems modeled.

6.1 Double Vortex Ignition

The double vortex ignition analysis examined the ign ition  of a constant density fuel- 

oxidizer non-premixed system w ith  m ixing provided by diffusion and two counter- 

rotating point-vortices. A  simplified chemical model was used, as were simplifying 

values o f the transport properties. Results were compared to the classic results of 

Linan and Crespo [11] which assumed diffusion only and recent work (Macaraeg et al

[4] w ith diffusion and convection provided by a single vortex.

I f  the fuel-oxidizer ratio is 1.0 and there is no in itia l temperature difference between
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fuel and oxidizer, the ignition times for the double vortex are shorter than the diffusion 

only case but longer than the single vortex case. The tim e  differences vary w ith  both 

the vortex strength and the distance between the vortex centers. As the distance 

between the two vortices gets smaller, ign ition times approach the no vortex ignition 

time, as the distance gets larger the double vortex ign ition  time approaches the single 

vortex time. Further comparisons show the different behavior o f the ignition times as 

the relative in itia l temperature, fuel/oxid izer ratio and Lewis number are varied. The 

analysis provides a view of the convective effects on the entire convection-diffusion 

process.

6.2 Reduced Chemical Combustion in a Laminar 

M ixing Layer

The reduced combustion chemistry of Birkan-Law [1] and a methane-air reduced 

system of Peters [2] was studied in a laminar m ixing layer configuration proposed 

by Grosch [6]. I t  was found that the model reduction system (Birkan-Law) and 

the methane-air reduction system (Peters) gave quantita tive ly sim ilar results. Both 

systems needed an in itia l loading of a reactant besides the fuel and oxidizer. In 

each case the value of the in itia l load of this radical affected the ignition distance 

inversely. However, the levels of the radicals at the point of ignition were unaffected 

by the in itia l radical concentration and neither was the post ignition steady flame 

temperature.
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6.3 Structure of a Laminar M ixing Layer in a B i­

nary Gas

The structure and mean flow o f two gases m ixing in  a lam inar m ixing layer as pro­

posed by [6] was studied for 30 different combinations of six different gases. The 

therm al transport properties were dynamically calculated using theory and experi­

mental values. The actual molecular weights were used.

The values of Lewis number, P rand tl number and other physical system values were 

shown to vary greatly from gas combination to gas combination. Different values of 

the molecular weight ratio produced different profiles. However, cases appeared w ith  

nearly identical weight ratios b u t very different profiles. Numerous supporting graphs 

were presented.

6.4 Stability of a Laminar M ixing Layer in a Bi­

nary Gas

The mean flow of the previous gas m ixing system was analyzed for various stabil­

ity  conditions and compared w ith  two simplified systems, each w ith  a much simplier 

method of determining the transport properties.

In general, the system w ith  the more precisely calculated transport properties had 

different stability characteristics than did the two simplified models. The variations 

involved more than just the weight ra tio  of the gases considered. Tables are provided 

for the spatially neutral phase speeds and and the maximum growth rates for the
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model derived in  this study. Growth rate curves are shown for various gas combina­

tions for all three models. The study concludes that stability calculations w ith  the 

more precise models of the transport properties is recommended when posssible.
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Appendix A

ADDITIO NAL FIGURES FOR  

BIN A RY  GAS M IXTURES

{ w  <  1 )

T h irty  different combinations of gas m ixtures were studied. The structure of the 

m ixing layer is presented here for those combinations not covered in Chapter 4 and 

with W  <  1.
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Appendix B 

ADDITIO NAL FIGURES FOR  

BIN A R Y  GAS M IXTURES

(W > 1)

T h irty  different combinations of gas m ixtures were studied. The structure of the 

m ixing layer is presented here for those combinations not covered in Chapter Four 

and w ith  W  >  1.
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