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ABSTRACT

MODELLING LOCALLY CHANGING VARIANCE STRUCTURED 
TIME SERIES DATA BY USING BREAKPOINTS BOOTSTRAP 

FILTERING

Raj an Lamichhane 
Old Dominion University, 2013 
Director: Dr. Norou Diawara

Stochastic processes have applications in many areas such as oceanography and 
engineering. Special classes of such processes deal with time series of sparse data. 
Studies in such cases focus in the analysis, construction and prediction in parametric 
models. Here, we assume several non-linear time series with additive noise compo­
nents, and the model fitting is proposed in two stages. The first stage identifies the 
density using all the clusters information, w ithout specifying any prior knowledge 

of the underlying distribution function of the time series. The effect of covariates 
is controlled by fitting the linear regression model with serially correlated errors. 
In the second stage, we partition the tim e series into consecutive non-overlapping 

intervals of quasi stationary increments where the coefficients shift from one stable 
regression relationship to a different one using a breakpoints detection algorithm. 
These breakpoints are estimated by minimizing the likelihood from the residuals. 

We approach time series prediction through the mixture distribution of combined 
error components. Parameter estimation of mixture distribution is done by using 

the EM algorithm. We apply the m ethod to  fish otolith data influenced by various 
environmental conditions and get estimation of parameters for the model.
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CHAPTER 1

l

INTRODUCTION

Stochastic processes for longitudinal d a ta  are fundamental in probability and 
statistics and have applications in many areas such as oceanography and engineering. 

Special classes of such processes deal with tim e series of sparse data. Studies in such 
cases focus on the analysis, construction and prediction in parametric models.

In this dissertation, the prediction of tim e series is revisited and an application 
based on real data is given. The density uses all the clusters information, without 
specifying any prior knowledge of the underlying distribution function of time se­
ries. The effect of covariates is controlled by fitting the linear regression model with 

serially correlated errors. The change in stability of regression coefficients during 
the time course can be accounted by creating different breakpoints. Theories suggest 
that the modeling of the time series should contain the information about the change 

intervals, and they should be considered as relevant in many predictions. When high 
frequency data  is available, the prediction can be built on the last recorded values . 
However, in case of mismatch in recorded data, change in behaviors in tem poral prob­

lems, one faces challenges as how to summarize the mixture of sample data, and how 
to make predictions. We partition the time course into consecutive non-overlapping 
intervals where the coefficients shift from one stable regression relationship to a differ­
ent one. These breakpoints are estimated by minimizing the residual sum of squares 
(RSS) using the algorithm described by Bai and Peron (2003). The foundation for 
estimating breaks in time series regression models was given by Bai (1994) and was 

extended to multiple breaks by Bai (1997a, 1997b) and Bai and Perron (1998, 2003). 
The algorithm in selecting the number of change points is based on a  simple iterative 

step in which the maximum difference is less than a critical value of the difference 
of two consecutive values and is less than  an optimal threshold chosen in a Bayesian 

framework. The partition algorithm fits a different probability model maximizing 

likelihood within each block interval. In fact, the breakpoints allow us to  find the 

range restriction as a frontier of the blocks.
Since different parts of data fit different models, forecasting depends not just on 

one model, but on all the relevant models. We develop a method based on mixture of
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different distributions to forecast this type of models. The mixture model provides 
a convenient method to capture the da ta  from different sources. However, such da ta  
is incompletely described since the source of the d a ta  is not known. The inference is 
valid only if there is a computationally tractable model to  find where each observation 
originates. We propose a  regression based approach in which the da ta  for different 

blocks are fitted by using different models based on maximum likelihood method, 
therefore allowing us to focus on the independent errors of the model th a t we fit 

with an extended form of the full mixture model. In case, when there are very few 
observations in some intervals, we improve the param eter estimation by using block 

bootstrapping. The block bootstrap is the most general method to  improve the 
accuracy of algorithm for the time series da ta  of small scale. We use block bootstrap 

to generate bootstrap replicates of a statistic applied to time series.
By dividing the data into several blocks, original time series structure as well as 

the properties of original data generating process are preserved within a block. The 
Expectation-Maximization (EM) algorithm, with initial values obtained from the 
empirical estimates, give the estimates of the mixture distribution. Further improve­
ment in the parameter estimation has been observed by using bootstrap re-sampling 

combined with EM algorithm. For simplicity, we name this method as BreakPoint 
Bootstrap Filtering (BPBF) method. As discussed earlier, using bootstrapping, we 

estimate the parameters of the model. Ghysels et al. (2006) show th a t estimates be­
come inefficient when the mixed nature of the da ta  is ignored, hence the advantage 
of using BPBF in improving model and forecasting.

This dissertation is an extension of the ideas developed akin to the cited references 
and related work. It presents a novel concept in time series prediction and some 
supporting empirical evidence in terms of real data. The concept of using multiple 

breakpoints based on minimum RSS or Bayesian Information Criteria (BIC) does not 
always create desirable partitioning of intervals. There could be very few observations 
in some intervals and the estimates based on those observations may be suspicious. 

In such cases, the estimation of parameters are improved by using block bootstrap. 

By dividing the data into different blocks, it can preserve the original time series 

structure within a block. However, the accuracy of the block bootstrap is sensitive 
to the choice of block length, and the optimal block length depends on the sample 

size, the data  generating process and the statistic considered. In our examples, we 

are using the approach proposed by Patton et al. (2009) to  identify the optimal block
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size. Varying block lengths th a t follow the geometric distribution are considered, and 

thus we avoid the problem of non-stationary by its construction (Politis et al. 1994).
The dissertation shows th a t the dynamical model from different time series models 

with forecasting is stable and outpreforms classical inference. Over the last decade, 
there has been much interest in developing breakpoints on time series da ta  in a 

small sample scale, but one must accomodate the prediction component. There is an 

ambiguity in the selection of the spliting of the time series and the coefficients used 
in the prediction are unstable if sub-intervals are not created. Herein we show the 
results from a combination of time series models, including the non-linearity of the 

data. We show through numerical simulation th a t our proposed model accomodates 
the true distribution closely better than  the classical time series model.

The dissertation is organized as follows. Chapter 2 presents the guidelines and 
theory of the different procedures in model fitting. The distributions of the models 
are specified, and our new method is provided in Chapter 3. In Chapter 4, we apply 
our method to simulated and real d a ta  and get estimation of parameters as well as 
model forecasting. Conclusion is presented in Chapter 5.
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CHAPTER 2 

TIME SERIES AND OTHER LITERATURE REVIEWS

Partially observed time series models are studied under various conditions, e.g. 
state space models (Durbin and Koopman 2001), dynamic models (West and Harrison 

1997), and hidden Markov models (Cappe et al. 2005). All of these methods work if 
we have regular time series da ta  where the model structure does not change locally. 

In other words, if the variance changes locally, then it is hard to build the model 
based on regular time series approach. In many cases, structural changes or breaks 

appear to  affect models. As for example some models related to the evolution in key 
economic and financial time series such as output growth, inflation, exchange rates, 
interest rates and stock returns .1 If d a ta  are collected over a long period of time, we 
are more likely to observe the structural change. Such changes, also called breaks, 
could be the result of many possible factors such as institutional or technological 
changes, environmental changes, shifts in economic policy, or could even be due to 

large macroeconomic shocks such as the doubling or quadrupling of commodity prices 
experienced over the past decades.

Our main goal is to create reliable models and to  incorporate these different model 
structures to  estimate the overall model parameters and forecasting. We assume th a t 
if breaks have occurred in the past, surely they are also likely to happen in the future. 
Approaches th a t view breaks as being generated deterministically are not applicable 

when forecasting future events unless, of course, future break dates as well as the 
size of such breaks are known in advance. In most applications, modelling of the 

stochastic process underlying the breaks is needed. One of our goals is to create a 
mixture model for forecasting conditional on the past values. We use a restricted form 

where the weights are specified from the sizes of the blocks which axe constructed 
using appropriate empirical distribution and smoothness of the data. In this work, 

we provide a general framework for forecasting time series under structural breaks 

that is capable of handling the different above scenarios.

1A small subset of the many papers that have reported evidence of breaks in economic and 
financial time series includes Alogouskofis and Smith (1991), Garcia and Perron (1996), Koop and 
Potter (2001), and Pastor and Stambaugh (2001).
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2.1 T IM E  SER IES A N A L Y SIS

A time series is a sequence of observations over a tim e interval T  =  [0, t ) , t  > 0 

taken sequentially in time denoted as {Yt}UT. An intrinsic feature of time series 
is that, typically, adjacent observations are dependent. Time series analysis is con­
cerned with techniques for the analysis of this dependence. There are many tech­

niques used to analyze the time series data. In this section, we present the time series 
data and the modelling techniques. Our main concern is in discrete time series in 

which the set of times at which the observations are made is a discrete set.
A time series linear model of responses {Yj} based on predictor X t can be defined

as

Yt = Po + P \X t +  teT

where fi0 and Pi are the regression coefficients and C are the error components. The 
residuals £ ’s are not independent and assume stationarity of the process. (Ct)ter could 
be white noise (WN) or the Gaussian noise. WN are assumed to be a sequence of 
independent random variables with uniform probability distribution while Gaussian 
noises are generated from Gaussian distribution. Most of the time, we assume th a t 

(Cf)teT are from a Gaussian distribution.
A time series {Yj} is said to  be weakly stationary (also known as second order 

stationary or covariance stationary) if and only if
(1) the mean exists, is finite, and does not depend on time t
(2) the covariance Cov(Yiy Yj) depend on the absolute value of the lag 

h =  \ i - j \ , i . e .
CoviYi, Yj) =  7 (h) =  Cov(Yj, Yj).

This implies th a t 7 (i, i) = a 2 exists for all teT.
A stronger property is that all higher order moments exist and are constant. A 

time series process {Yj} is strictly stationary if the joint distribution of (Y j,. . ., Yn) 
and (Yh+1,. . . ,Yh+ri) are same for all integers h and n > 0. We can also show th a t 

for finite second moment, the strictly stationary process is also weakly stationary.

T heorem  1. I f  {Yt} is strictly stationary and E ( Y 2) < 0 0  for all t, then is 

also weakly stationary.

Proof Let {Y(} be strictly stationary process. Then,
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(Yi, ...,Yn) A  {Yi+h, ...,Yn+h) for all integers h and n  >  0.

For n  =  1, we have Y\ -4- Y1+h for all h.
So, the random variables Yt are identically distributed for all t.
Hence, E(Yt) is constant and independent of time t.
Again, E (Y ’2) < oo so all covariances exist.
Also for n  =  2, (Yi, Y2) -4 {Yx+h, Y2+h) for all integers h.

So the pairs of random variables (Yt , Yt+h) are identically distributed for all t  and h. 
Hence, cov(Yt ,Y t+h) =  cov(Yi,Yi+h) and it is independent of t. So the process {Yi} 
is weakly stationary.

□
In our case, we are dealing with discrete time series with finite second moment. So 

whenever we use the term stationary, we shall mean weakly stationary. The class of 
linear time series models, which includes the class of autoregressive moving-average 
(ARMA) models, provides a general framework for studying stationary processes. In 
fact, Wold decomposition shows th a t every second order stationary process is either a 

linear process or can be transformed to  a linear process by subtracting deterministic 

component (Casella et al. 2002).
Let {!}} be a stationary time series process then 

an A R (  1) model can be represented as:

Yt -  (f>iYt- i  =  Zt, Z t -  W N ( 0, a 2).

where W N  represents the white noise.

AR (p ) can be represented as

Yt — 4>iYt- i  — . . .  — (j)pYt-p — Zt\ Z t ~  W N ( 0, a2).

A M A (  1) can be written as

Yt = Zt -  Q\Zt- \ ,  Z t ~  W N ( 0, a 2).

and a MA(q)  is

Yt = Zt -  d1Z t - 1 - e qZt- q\ Z t ~ W N { Q , a 2).
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In general A R (p ) and M A(q ) can be combined thru  an autoregressive moving 
average(ARMA) process for the tim e series {Yt} of order (p, q), ARMA(p, q), can be 

represented as

Yt -  faYt-! -  fcYt - 2  ~  -  -  4>PYt- P = Z t -  9XZ t-x ~  -  -  9qZt- q, (1)

with {Z t} being the white noise of the process and <f>\,..., (f)p and Oi, ..., 9q are AR and 

MA components, respectively.

From 1
<f>(B)Yt =  6 (B )Z t , (2)

where <p(B) =  1 — ^  4>jBj ; 9(B) =  1 — and B  is the back shift operator
j = i  j = i

such th a t B Yt =  Yt~\ and B^Yt = Yt- j \ j  > 0.
Hence, from equation 2

* = m 6(B)Zt •

p
I
j = i

Using the power series expansion of

bo

bo "b b \x  +  . ■ ■ +  b m%T

, bi 2̂ bmwhere an =  an_i -  — an_2 -  . . .  -  —  an_m, n > 1, 
b0 b0 b0

We can write,

Hence,

1 00

Yt =  X(B)9(B )Z t 

= 1>(B)Zt ,

j —0
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For example, le t’s consider an AR(1) process

Yt =  (f>iYt- \  +  Z t

=  0 l(^ l^ t -2  +  Z t - 1) +  Zt

oo
=  y  f t z t - i

3= 0
oo

=  ipjZt-j. 
j= o

where ipj =  0 i-
An ARMA(p, g) process {Yt} is said to  be causal, if we can express the values Yt 

in terms of white noises Z t only. From equation 3, if there exist constants ^  such
OO

tha t Yh IV'jI <  oo then the process {Yt} is causal.
j =  o

Throughout our discussions, we assume th a t an ARMA(p, q) process {Yt} is causal 

and it has an unique stationary solution.
Also, we can further extend the model to nonstationary tim e series. A more 

general linear model for such process is autoregressive integrated moving average, 

ARIMA (p ,d ,q ), where Yt satisfies a difference equation of the form

-  B )dYt = 6 {B)ZU {Z t } ~  W N (0 ,a 2),

with </>(z) and 0 (z) are polynomials of degrees p and q, respectively,
4>(z) 7̂  0 for \z\ < 1, cl is the difference indicator and B  is the backshift operator. 
For d =  0, an ARIMA(p, d, q) reduces to  an ARMA(p, q) process.

2.1.1 FO R E C A ST IN G  U SIN G  A R M A  M O D EL

The simplest and most elegant approach of forecasting stationary time series is 

based on minimum mean square error (Box et al. 1994). Minimum mean square error 

may be generated directly from the difference equation form of the model. Our goal 

is to find the linear combination of 1, Y^, • • •; Yi, th a t forecasts Yn+h with minimum 
mean squared error. The best linear predictor in terms of 1, Yn, ..., Yi, will be denoted 

by PnYn+h and clearly has the form

PnYn+h. — oo +  Yn + ... +  anY\. (4)
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The coefficients ao, - an can be determined by finding the values th a t minimize

S(ao , a n) E ( a0 &1 Yn ... anYi) .

Since, S' is a quadratic function of ao, an and is bounded below by zero, it is clear 

th a t there is a t least one value of (ao, ••., an) th a t minimizes S  and th a t the minimum 

(ao,..., an) satisfies the equations

This gives the difference equations

E  | Yn+h ^   ̂ i J ^n+1— j 0) 3 (6)

(5)

From Equation 5

For any stationary process with E(Yt) = /!,
n

i= 1
n

and from equation 6 , substituting value of ao from 5

n n

E  I Yn+h ^(1 ^   ̂O-j) ^   ̂^jYn-yl—i | Yn+\^j 0, j  l,...,7 l.
i- 1
n

E  I (Yn+h ff) 'y  ̂ai(Yn+i—i ff) J Yn+\—j 0
i=1

E(Yn+h f-i, j) [ai£/(F^ n ,Y n+\^j)-\-

a-2E(Yn- i  — ji, +  ... +  anE(Yi — fi, Yn+i^j)] = 0.

Here
E[(Yn+h -  ^Y n + ^ j]  =  7 (h + j  -  l ) , j  = 1,2,..., to.
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Substituting j  =  1,2, we get

E \ { Y n + h  a O ^ t i + 1 —  j ]  7 n ( h )

7 W  N
7 (h 4-1)

^  7(/i +  n  -  1) y

where 'y(h) = cov(Yn, Yn+h) . 

Also,

n.
2 = 1 Z—1

This can be expressed as

7(0) 7(1) •. .  7 ( ^ - 1 )

r na :=
7(1) 7(0) . .  7 ( ^ - 2 )

7(71 -  1) 7 (n -  2) . 7(0)

/  . \
a i

a 2

y j

Hence, we have a system of n  linear equations in the form

rVi® 771(h)- (7)

However, the direct approach requires the  determination of a solution of these n  
linear equations, which for large n may be difficult and time consuming. For general 
stationary processes it would be helpful if the one-step predictor PnYn+i based on 
n  previous observations could be used to simplify the calculation of Pn+1Yn+2, the 
one-step predictor based o n n  +  1 previous observations. Prediction algorithms th a t 
utilize this idea are said to  be recursive. The most common recursive algorithm use 

in time series analysis is the Durbin-Levinson algorithm and innovations algorithm 
(Brockwell et al. 2002). Durbin-Levinson algorithm expresses one-step predictor 

in terms of previous observations Yi, Y2, ..., Yn while innovations algorithm expresses 
one-step predictor in terms of previous innovations, Yi — Yi, Y2 — Y2, ..., Yn — Yn, th a t 

are uncorrelated.
From 16, we have

PnYn+h — M ^   ̂&i(Yn+l—i AO -
1
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Hence, the expected value of prediction error

n

E(Yn+h -  PnYn+h) = E(Yn+h) -  (j. -  ^  aiE(Yn+i^i -  /i)
i=l

=  0 .

And the mean square prediction error is therefore 

E(Yn+h -  PnYn+hf  =  E{Yn+hf  -  2E  [(Yn+hPnYn+h\ +  E(PnYn+hf
n /  n

=  7 (0) — 2 aiE(Yn+flYn+i^i) +  E  I Oi
i= l \ i = l

n  n  n

=  7(0) -  2 ^ a i 7 (h +  i -  1) +  a i7 ^  _
i=1 i= l j'=l

=  7 (0) -  2 a ^ n{h) + o ' r no

=  7 (0) -  2 a j n(h) +  0 7 n (/i) [ Prom 7]

=  7(0) -  a'yri(h).

Each predictor variables =  1,2, ...,n  is uncorrelated with prediction error

(Yn+h—Yn+h) where Yn+h is the prediction based on past Yn+h- 1 values, so Yj uniquely 
determines PnYn+h- As discussed earlier, the most common recursive prediction algo­
rithm  that utilize the one-step prediction ideas are Durbin-Levinson algorithm and 
innovations algorithm. In our discussion we use innovations algorithm since it is 
applicable to all series with finite second moments, regardless of whether they are 
stationary or not. Also, innovations algorithm works for mixed models with both 
autoregressive and moving components while Durbin-Levinson algorithm works for 
purely autoregressive process. Also, for the state space model Kalman filter equations 

or simply Kalman filtering is used to  define the finite sample optimal (minimum mean 
square error matrix) estimate of the state vector based on the observations over the 

finite past time period. Since, model building based on sta te  space model or ARMA 
are equivalent, ARMA model can be expressed in the state space form and state  

space model can be transferred to ARMA model. So, in our discussion we focus on 

the model based on ARMA whose parameters are estimated by using the recursive 

method called innovations algorithm.

2.1.2 IN N O V A TIO N S A L G O R IT H M
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Suppose th a t {Yt} is a  zero mean time series with finite second moment, E\Yt2\ < 

oo, for each t and let
EiXiYj) =  K ( i , j )

Let the best one step predictor,

^  =  f 0 , if n = l ,
\  Pn- iY n, ifn = 2 ,3 ,... ,

and the mean squared error

vn = E(Yn+i — PnYn+i ) 2

Let Un =  Yn — Yn be the one step prediction error or innovations. Then,

Un =  Yn -  Pn-lYn

= Yn -  (axYn_i +  . . .  +  FromA]

If Un -  {Ux, U2, . . . ,  Un)' and Y n = (Yi, Y2, . . . ,  Yn)' then

Un =  A nY n, (8 )

where

A n =

’ 1 0 0 . .  o '

an 1 0 . .  0

&22 ®21 1 . .  0

• •  0

l , n —1 ® n —l , n —2 ^ tz— l , n —3 . .  1

Since we are using one step prediction, =  —a-/ as discussed in equation 4 for lag 

h = 1. Also, A n is non-singular so i t ’s inverse exists.

Define,

=  A ' 1

’ 1 0 0

1o

011 1 0 . .  0

022 021 1 . .  0

•• 0

0-n—l , n —1 0n - l , n - 2 0n —l , n —3 . .  1
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where Oij are the i j  th' components of A. 
Hence, From equation 8

Again,

Y n = CnUn.

Y  = Y  — U■*■71 —  ■* n

=  CnUn Un,

=  (Cn -  In)Un,

= (Cn ~  In)(Yn -  Y n), 

Y n =  @ n(Yn ~  Y n).

From 9

In is the identity m atrix

(9)

(10)

( 11)

where

0 0 0 . 0  "

O n 0 0 . 0

6 2 2 #21 0 . 0

. 0

9 n —l , n —l 9 n —l , n —2 9 n —l , n —3 • ° .

So, equation 11 can be written as

0 ,
Yn+1 =

E  ( k
3=1 '

n-j-l—j -‘ n + l — jVn

if n  =  0 ,

, if n =  1, 2 , . . . ,

Once the coefficients 9t] have been determined, the one step predictors Y i,Y 2, . . .  ,Y n 
can be computed, recursively. The following steps show how the coefficients 

6ni , ■ • •, 9nn are computed recursively:
S tep  I: Estimate the initial value of mean squared error,

uo =  ac(1, 1) =  Var(Yi) = a2.

S tep  II: Calculate

9n,n—k — Ufa I K’i f l  T 1, k  T  l)  ^   ̂ j9n,n—j V j  I , 0 ^  k <! 72, (272C?

7 = 0

n —1

VT =  K ( n  +  1 , 72 +  1 )  -  ^  e l , n - j V 3- 

j =0
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So, we solve first for u0, then successively for Bu , v\\ 6 2 2 , #21, ^2; 6 3 3 , #32, #31, 113; —  
For the causal ARMA process

<t>(B)Yt = 6 (B )Z t , {Z t} ~  W N ( 0, a2).

it is possible to simplify the application of the innovations algorithm . The idea is to 

not. apply it to the process {Y^} itself but to some transferred process {W t} (Ansley 

1979).
Let

Wt — \  , (12)
|  a 1cj)(B)Yt, t > m,.

where m =max(p, q).
Applying the innovations algorithm to  the process {Wt} we obtain

n

Qnj^Wn+l—j  j), 1 — ̂
Wn+1 = {  j t  „ (13)

5-v ^njO^n+l—j l^n+1—j)> ^
1=1

Also,

Yt - Y t = <r(Wt -  Wt) for all t > 1. [v From I I .  1.11]

Replacing Wt — Wt by a~l (Yt — Yt) and simplifying further, we get

n

y ~ )  @ n j ( Y n + l —j  F n + 1 — j ) t  1  — H  < -

K +i =  { j= 1  q „ (14)
$ 1  Yn ~t~. . .  T  <frpYn+i-.p +  dnj(\Vn^-i—j \Vn+i —j), n, >  m,

1=1

and the mean squared errors

E(Yn+1 -  Yn+1)2 =  a 2£(W n+1 -  Wn+1)2 =  n2r n. (15)

2.2 B R E A K P O IN T S

If the structure of data is such th a t there is heterogeneous variance structure 

among different intervals, then param eter estimates based on a regular time series
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model is very unrealistic. It is then param ount to assess threshold (or breakpoints) 

where the effect of the covariates changes. So we divide the data into different parts 
using multiple breakpoints. The foundation for estimating breaks in time series 
regression models was given by Bai (1994) and was extended to multiple breaks by 

Bai (1997a, 1997b) and Bai and Perron (1998). The distribution function used for 

the confidence intervals for the breakpoints is given in Bai (1997b). The ideas behind 
this implementation are described in Zeileis et al. (2002). We use the strucchange 

package in R developed by the above mentioned authors to  find the breakpoints via 
a grid search algorithm.

The breakpoints are obtained by testing or assessing deviations from stability in 
the classical linear regression model. Following idea from Tiwari et al. (2005), we 

use BIC under MCMC simulation instead of just MCMC simulation, incorporating 
time factor. Linear regression of covariates is written as:

Vj = t f P  +  Uj,

where at time j ,  yj is the observation of the dependent variable, Xj = (1, Xji, ..., xjk )T 
is a (k + 1) x 1 vector of observations of the independent variables, and u3 are iid with 

0 mean and variance cr2, and (3 is the (k + 1) x 1 vector of regression coefficients. In 
many applications, it is reasonable to assume th a t there are m  breakpoints, where the 
coefficients shift from one stable regression relationship to  a different one. Thus, there 

are m  + 1 segments, / i ,  • • ■ , Im+i in which the regression coefficients are constant, 
and the model can be rewritten as:

Vj = xJPi + uj, (16)

where = 1, 2 , • • • , m  +  1 is the vector of regression coefficients within each seg­

ment, i denotes the segment index and j  =  j i - i +  l , ..., j i . In practice, the breakpoints 
are rarely given exogenously, but have to be estimated. They are estimated by min­

imizing the residual sum of squares (RSS) from equation (16). The algorithm for 
computing the optimal breakpoints given the number of breaks is based on a dy­

namic programming approach based on the Bellman principle (Bellman 1952). The 
main computational effort is to compute a triangular RSS matrix, which gives the 

RSS for a segment starting at observation indexed j  and ending a t indexed j '  with 

j  < j ' . Also, the adjacent intervals separated by breakpoints are significantly dif­

ferent. When identifying the breakpoints, we look for both minimum RSS and BIC
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associated with the number of breakpoints. A careful consideration should be taken 

when identifying the breakpoints, since we do not want to  divide the da ta  into several 
small intervals. That it creates a problem of overfitting and over par ametrization.

2.3 BLO C K  B O O T ST R A P

The bootstrap is a  simulation approach to  estimate the distribution of test statis­

tics. The original method of bootstrap which was first proposed by Efron (1979) is 
to create bootstrap samples by resampling the da ta  randomly, and then constructs 
the associated empirical distribution function. Often, the  original bootstrap m eth­

ods provides improvements to the poor asymptotic approximations when da ta  are 
independently and identically distributed. However, the performance of the original 
procedure can be far from satisfactory for tim e series data  with serial correlation and 
heteroscedsticity of unknown form. The block bootstrap is the most general method 
to improve the accuracy of bootstrap for the time series data  of small scale. We use 
block bootstrap to generate bootstrap replicates of a statistic applied to  time series. 
By dividing the data  into several blocks, original time series structure as well as the 

properties of original data generating process are preserved within a block.
Let {Yt : t = 1, ...,n} be time series data  then we construct bootstrap sample in 

the following steps:

1. S tart by ‘wrapping’ the data {Y \ , ..., Yn} around a circle.

2. Let be drawn i.i.d. with uniform distribution on the set {1,2, ...,n}; 
these are the starting points of the new blocks.

3. Pick the optimal block size, I. The accuracy of the block bootstrap is sensitive 
to the choice of block length, and the optimal block length depends on the 
sample size, the data generating process, and the statistic considered. Patton 

et al. (2009) suggested the estimators of optimal block size for block bootstrap 
methods. These estimators are based on the notion of spectral estimation and 

are characterized by the fastest possible rate of convergence which is adaptive 

on the strength of the correlation of the time series. A simple criterion for 

selecting block size is th a t it should be at least equal to a cube root of total 

sample size.

4. Resample the blocks randomly with replacement and generate the bootstrap
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sample. The blocks may be overlapping or non-overlappping. According to 
Lahiri (1999) and Andrews (2002), there is little difference in performance 
for these two methods. For the overlapping method, we divide the data  

into n  — I +  1 blocks, which first block being {Yi,Y2, ..., Yi}, second block 
being {Y2, Y3, ..., Y+i}, •••, etc. For the  non-overlapping method , we divide 
the da ta  into n / l  blocks, which block 1 being {Yi, Y2, ..., YJ}, block 2 being 

{Y+i, Yi+2, ..., Y2i}, ..., etc. In our analysis we use overlaping blocks with varying 
block lengths. Rather than assuming the fixed block length, we assume th a t the 
block lengths are the random variables from geometric distribution such th a t 
the optimal block size I is the mean of geometric distribution used to  generate 
the block length. This avoids the problem of non-stationarity by construction 
(Politis and Romano 1994). The resampled blocks are glued together in the 
order th a t they were sampled to generate bootstrap sample {Yt* : t =  1, • • • , n}.

5. Calculate the estimator §(b\ b  =  1,2,... ,  B  for all B  bootstrap samples. Notice 
that the bootstrap distribution of 9b — 6  approximates the sampling distribu­

tion of 9 — 6  fairly well.
The bootstrap estimate of standard error of an estimator 0 is the sample stan­

dard deviation of the bootstrap replicates 0 ^ \  ... , 6 ^  .

In our analysis, we perform block bootstrapping over different groups of time series

together with bootstrapping as breakpoints Bootstrap Filtering (BPBF) method.

2.4 TH E EM  A L G O R ITH M

An expectation-maximization (EM) algorithm is an iterative method for finding 

maximum likelihood or maximum a posteriori (MAP) estimates of parameters in 

statistical models, where the model depends on unobserved latent variables. The 
EM iteration alternates between performing an expectation (E) step, which creates a

1 B

where
1 B

6=1

data which are separated by breakpoints. We call this combination of breakpoints
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function for the expectation of the log-likelihood evaluated using the current estim ate 
for the parameters, and a maximization (M) step, which computes param eters max­

imizing the expected log-likelihood found on the E step. These parameter-estimates 
are then used to determine the distribution of the latent variables in the next E 
step. The EM algorithm has the ability to deal with missing data  and unidentified 

variables, so it is becoming useful in a variety of incomplete-data problems. EM 
algorithm was explained and given its name in a  classic paper by Dempster et al. 

(1977).

The EM algorithm has two main applications. The first case occurs when the 
data  has missing values due to limitations or problems with the observation process. 

The second case occurs when the likelihood function can be obtained and simplied 
by assuming th a t there is an additional bu t missing parameters.

W ith missing values or parameters in the data which is generated by some distri­
bution under assumption, we call the data, X ,  the incomplete data. And, we assume 
th a t the complete data, Z  = (A; Y )  exists with Y  being, missing data  and th a t a 

joint density function also exists as follows:

p(z\9) =  p{x, y\0) =  p(y\x, 9) * p(x\9)

where 9 is a  set of unknown parameters from a distribution including a  missing 

parameter.
W ith the density function, we now define the complete-data likelihood as:

L(e\Z) = L ( e \X ,Y ) = p ( X ,Y \ 0 ) .

And, the original likelihood L{9\X)  is called the incomplete-data likelihood function. 
Since the missing data  Y  is unknown under a certain distribution by assumption, we 

can think of L(8 \X, F )  as a function of a random variable, Y  , with constant values, 

X  and 6 , i.e
m  X , Y )  = f txm(Y).

Using the complete-data log-likelihood function with respect to the missing da ta  Y  

given the observed data X ,  the EM algorithm finds its expected value as well as the 

current parameter estimates a t the E  Step and maximizes the expectation at the M  

step. By repeating the E  and M  step, the algorithm is guaranteed to converge to
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a local maximum of the likelihood function with each iteration increasing the log- 

likelihood.
As mentioned before, EM algorithm involves two steps E  and M  steps.

2.4.1 E X PE C T A T IO N  (E) ST E P

The complete data  sufficient statistics at k cycle is given by the expectation 

function a t k th cycle. The expectation function of the complete d a ta  log-likelihood 
can be defined as

Q(0 ; 0(*-D) =  E [logp(X ,Y \6 ) \ X , e ^ - %

where is a set of current param eter estimates after (k — 1) cycles th a t we

use to  evaluate the expectation and to  increase Q with the  new 6  for optimization. 
Here, X  and 0 (k~lS> are known constants and 6  is a variable to be adjusted. Since 

Y  is a missing random variable under an assumed distribution, f  ( y \X , 6 k̂~ ^ ) , the 
expectation function can be written as:

E[logp{Xt Y \ 9 ) \ X , d ^ ]  =  [  logp(X ,y \6 ) * f ( y \X ,  6 ^ ) d y .
J  y t  n

where 0  is the space of values where y can take values on and f ( y \X ,  6 k̂~^)  is the 
marginal distribution of the missing data Y depending on observed data  and current 
parameters a t (k — 1) cycle.

2.4.2 M A X IM IZ A T IO N  (M ) ST E P

At the M step, we maximize the expectation we obtain in the E  step.

6^  = argmax0Q{d\6^k~^).

Maximization step becomes either easy or hard depending on the form of p(X , y\9). 
When the underlying complete data  come from an exponential family whose 

maximum-likelihood estimates are easily computed, then each maximum step of an 

EM algorithm is likewise easily computed (Dempster et al. 1977).

2.4.3 B O O T S T R A P P IN G  IN  EM

Since the likelihood of the segmented d a ta  may not be concave (i.e. it may not 
converge to an unique value) bootstrapping technique offers one option to consider.
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The idea is that the data  obtained within th a t interval can be regenerated to get a 
larger sample size.

2.5 M IX T U R E  D IS T R IB U T IO N

The idea of the mixture distribution arises when we draw the random variables 
from more than one parent population. M ixture distributions represent a  useful 

way of describing heterogeneity in the distribution. It arises frequently in practice, 
particularly in cases where we are observing a composite response from multiple 

distinct sources. The response x  th a t we observe is modeled as a random variable th a t 
has some probability p\ of being drawn from distribution f i , probability p2 of being 
drawn from distribution / 2, and so forth, with probability pr of being drawn from 
distribution f r , where r  is the number of components in our mixture distribution. 

The key assumption here is one of statistical independence between the process of 
randomly selecting the component distribution f j , j  =  1, 2, . . . ,r to  be drawn and 

these distributions themselves. T hat is, we assume there is a  random selection process 
that first generates the numbers 1 through r with probabilities pi through pr. Then, 

once we have drawn some number j ,  we tu rn  to distribution f j  and draw the random 
variable x  from this distribution. So as long as the probabilities or mixing percentages 

Pj sum to 1 , and all of the distributions f j  are proper densities, the combination also 
defines a proper probability density function, which can be used as the basis for 
computing expectations, formulating maximum likelihood estimation problems, and 

so forth.
Let’s assume th a t a sample X i , X 2, ■ • •, X n comes from r mixture distributions with 

density function
r

f ( x \ p , e ) = ^ r ,P 3 f j ( x \0 j)>
3 = 1

where 0 j  be the vector of unknown param eters for each distribution f j  and the weights 

0 <  Pj <  1 are unknown and constitute ( r —1) dimensional vector p  =  (p i,p2, ...,pr - i)
r

such th a t Y lP j — 1- Since, we are dealing with the estimation of m ixture weights, 
j=i

one main interest lies in the estimation of weights p.
The mixture problem has several levels of difficulty: estimation of weights of (i ) 

a fixed number of fully known distributions, (i i) a fixed number of partially speci­

fied distributions, and (Hi) an unknown number of partially specfied distributions. 

For cases (ii) and (Hi) Gibbs sampling and Markov Chain Monte Carlo(MCMC)
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approaches can be implemented in finding expected log-likelihood (Wei and Tan­
ner 1990). But in our case, we are dealing with either iid white noises or normally 
distributed errors, so we fall in category (i ) and we implement the general EM algo­
rithm to estim ate the parameters. The likelihood function for independent random 
variables X  =  (X \ ,  X 2,■ ■■,Xn) can be written as

n n /  r  N

L(p;x)  = Y [ f ( x i \ p , 0 )  =  ( ^ P j f j i x i l d ) )
i = 1 i=l \ j= l

So, the log likelihood becomes

(17)logL(p, 0; x) = log
\i= l )  i=1 j =1

Since, we are dealing with the estimation of m ixture weights p, for convenience le t’s 
take the log-likelihood with pjs only where all other parameters are known.

( n \  n r

Y [ f { * i \p )  ) = 'Y^ log(^2 ,p i f j (xi)).

i= 1 /  i=l j =1
Even in this simplest case when the only param eters are weights p , the log-likelihood 
assumes quite complicated form. The derivatives with respect to  p3 lead to the 

system of equations, not solvable in a closed form.

/  \dlogL(p; x)
dpj =  £

f j f a )

J 2 P j f A x i)
\ j =1

Here,
dlogL{p\ x)

dPj
=  0 .

is not solvable in closed form. This problem can be overcome by using EM algorithm 

with the introduction of new variable.
We implement the EM algorithm by introducing the unobserved indicators with 

the goal of simplifying the likelihood. Let’s define an unobservable matrix,

w n  w 12 . . .  w i j

W n  w i2 . . .  Wij

1 W,i2 • ■ • U)nj

Wi r

Wi.

\

W 2

Wi

\  Wn /

(18)
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where Wi — (w n , wi2, - . . ,  wmr); i  =  1 ,2 , . . . ,  n. 
The values are the indicators such th a t

wi:j =
1, observation x* comes from the distribution f j  

0, else

The unobservable matrix, W  tells us where the i th observation x* comes from. Each 

row of W  contains only one 1 and (r  — 1) 0’s. The augmented da ta  = (xl: w f ) , i  = 
1,2, where Wi is an indicator vector of length r with a 1 in the position corre­
sponding to the component of the mixture which generated x*, makes the complete 

da ta  which has quite simple likelihood form.

We have

P{wi:j = 1|x ,0 )  = p j  ,

= > f ( w \ p , e ) = i \ p T  ■
j=l

and r
f ( x \ w , p ,  G) =  Y [ ( f j ( x \d ) )Wii . 

i =l
So, the likelihood function for complete data  is

n  r

L c ( p ,  G; x ,  w )  =  Y [ Y l ( P j f j ( x i \ G ) ) Wii .
i=l j=1

Hence, the complete log likelihood is

n r  n r
logLc(p, = wv l°9Pj +  Y I  S  WijlogfjixilG). (19)

i=l j=l i=1 j —1

Notice that the second term in the above equation is free of Pj so i t ’s easy to  find the 

conditional mean of given X .  Assume th a t the m th iteration of weights is p ^  is 
already obtained. The conditional expectation of given x  at m th step (15-step) is

■ E pim)( w i j \ x ,  6 ) =  P p (m) ( w i j  =  l \ x ,  G)  =  ,

where w ^  is the posterior probability of the i th observation coming from the j th 

mixture component, f j ,  in the iterative step m.  So, using Bayes rule
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wij
(m ) _  I6 )

f {X i ,p W \6 )  '

Replacing Wy by in the complete log-likelihod equation 19, we get the ex­

pectation function Q ( p \ p .
Hence,

Q(p\p(m)) = E E ^ - T ^ 0^  +  ' f 2 ^ 2 w ^ )l°gfj (x i\e).
i = 1 j — 1 i = l  j z=  1

Since, we are mainly interested in estimation of weights, p,  the expectation function 

becomes n r

■«(pi p h ) =  E E  w ^ l o g p j  + Constant. (20)
i = l  j = l

The equation in 20 is maximized with respect to p  to get (m +  l ) th step. Since, we
r

have a condition E P j  = 1> we use the method of Lagrange multiplier to  maximize

the Lagrange function based on equation 20.
Let A be a Lagrange multiplier. Then the Lagrange function is

n r  /  r \

A (p, A) =  E E  w ^ l o g p j  + Constant  +  A E »  - 1 ) ■ (21)
i - 1 j ~ l  \ j = 1 /

dA(p, A) _

: j - E 4 m) +  A =  °>
P ?  i = 1

(22)

Notice th a t the straight forward solution of A is not possible by differentiating 21,
. dA(p,  A) .
i,e; — ^ 1 =  0, so summing over j  lor 22

d \

E
j =1 

r

E
3 = 1

o ,

+  rA =  0

i2
i=l

P i
+ i=l

P 2

V '  (m )
E ™ i ri~l

Pr
+  rA =  0. (23)



Here, = Pp(m) (-1%  =  l |a :,6), is the conditional probability of i th observation 
coming from j th distribution. So,

Hence, from equation 23

(m )  
w ii 
—  =  1 ,

Pj
A  (m )
E  W i j
i=l------------=  n  .

Pj

rn  + r A =  0 , 

A =  — n .

Substituting the value of A in equation 22, we get
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CHAPTER 3

MODEL BUILDING

For the time series da ta  in which the d a ta  structure changes over different intervals 
of time,we suggest to use different time series models for different intervals rather than 

fitting a single time series model. The intervals are determined based on breakpoints 
as discussed earlier. Let’s assume th a t we have m  breakpoints which creates m  +  1 

intervals. Thus, we have m + 1 time series models, and each model is based only on the 
data  of corresponding interval. So our main challenge is to  combine all these models 
information to create a common model th a t can be used for forecasting. Several 
studies have been done in the past to combine the multiple time series regression 

models. Qin (1993), Qin and Lawless (1994), Qin and Zhang (1997), Gilbert (2000), 
Zhang (2000) and Fokianos et al. (2001) worked on some semi-parametric methods. 

Recently, Kedem and Gagnon (2010) further extended those ideas by showing the 
estimation of the probability distribution of a “reference” time series and using them 

in conditional prediction. All these aforementioned ideas use multiple time series 
regressions where different time series structures are related to different covariates 

but the ideas do not extend into the different time intervals. The method we propose 
deals with the multiple structured time series data. A jo int density function which 
is a mixture of densities is estimated by using the combined residual data. The 
parameters of the joint density function is estim ated by using EM algorithm. Further 
improvement in the parameter estimation is done by using bootstrap together with 
EM algorithm.

3.1 PA R A M E T E R  E ST IM A T IO N

Let’s assume th a t there are m  breakpoints, so there are m+1 time series inter­
vals. We assume that for each interval, different models fit the d a ta  so there are 

m +1 distinct models. Let ,2  =  1,2 ,..., m, (m +  1) ; j  =  1,2, — , be the j th 

observation in ith interval.

Let Oi) be the density function at i th interval. Notice th a t this density function 

is the function of past values and tim e series parameters 0*.



Let t i , i  =  1 ,2 , m  +  1 be the vector of discrete time components. 

Then,

Z/i,h — / i ( - z i , t i - i )  +  C*n*i — I? 2, •••, n \ ,

(24)

where tm+i = tm + l , t m+ 2 , . . .  , t m+ n m+i and contains past values of covariate 

time series possibly including even past values of ym+i,tm+1. Also, rii
is the number of observations in the ith interval. Throughout our discussion it will be 
assumed th a t data  have been “mean corrected” by subtraction of the sample mean, 
so that it is appropriate to  fit a zero-mean ARMA model to the adjusted data.
Since any ARMA model can be expressed in the linear form ofYt =  YI ipjZt-j where

j =o
Z  ~ W N ( 0 ,  a2).
We have

OO

If the ARMA process is driven by Gaussian white noise, we can take {Ct*} ~  Ar(0, of). 
So, the predicted values are

OO

7,(h) = COV{Y,,u ,Y,fl+h) ,

=  E(Yi f Y iM+k) , [Since E(Yitl) =  0]

OO OO
E E  'ipij ̂ Pik E  ( Q t i + h - j  Cti—k)
j =0 fc=0

oo oo

j =0 fe=0
Taking k = h — j ,  we get
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Since, the covariance structure is symmetric so the lag h coefficients fa ^ - j )  and 

4>i{h+j) are equal. Also, y^O) =  V a r ( C i )  =
Hence,

OO
l i { h )  =  a * ^ f a j f a ( j+ h ) . 

j=o
OO

= ^ V A R ( Y i, i ) = j i (0) = a ? Y , * l -
j =0

The parameters f a  are composed of both  autoregressive components, fa  and 
moving average components, 0*. The preliminary estimates of param eters 4>l and 
Oi are obtained by several methods such as Yule-Walker method, Burg procedure, 
innovations algorithm, Hannan-Rissanen algorithm and maximum likelihood method. 
Each method has its own advantages and limitations. Apart from the theoretical 
properties of the estimators such as consistency, efficiency etc., practical issues like 
the speed of computation and size of the d a ta  must also be taken into account in 

choosing an appropriate method for a given problem.
Yule-Walker and Burg procedures apply to  the fitting of pure autoregressive mod­

els but innovations algorithm and Hannan-Rissanen algorithm are used for mixed 
models. Innovations algorithm is applicable to  all series with finite second moments, 
regardless of whether they are stationary or not (Brockwell and Davis 2002). We 
also prefer innovation algorithm for the preliminary estimation of the parameters. 

Parameter estimation is improved by using innovations algorithm in conjunction 
with maximum likelihood method. The maximum likelihood method of estimating 
model parameters is often favored because it has the advantage among others th a t 
its estimators are more efficient (have smaller variance) and many laxge sample prop­

erties are known under rather general conditions. In our case, we do the parameter 

estimation as follows:
(I) We first identify the order (p, q) of ARMA model based on minimum value of 

corrected version of Akaike Information Criterion (AICc).
(II) Based on order (p, g) from previous step, we use one-step innovations algo­

rithms to get preliminary estimates of fa  and 8l .
(III) One step prediction errors obtained from innovations algorithm by using 

different values of fa and 6% are then used to numerically maximize the likelihood 

function based on Gaussian noise.



3.1.1 M A X IM U M  LIK ELIH O O D E ST IM A T IO N  OF TIM E SER IES P A ­
R A M E T E R S

We fit different time series models for different intervals. Parameters are estimated 
based on maximum likelihood method in which preliminary estimates are obtained 
through innovations algorithm. Even though the maximum likelihood method is 
based on the assumption of Gaussian noise, it still makes sense to use this method as a 

measure of goodness of fit of the model to the data and it has well defined asymptotic 
properties. A justification for using maximum Gaussian likelihood estimators of 

ARMA coefficients is th a t the large sample distribution of the estimators is the 
same for white noise {£*} ~  I I D ( 0, a 2), regardless of whether or not Z t is Gaussian 

(Brockwell and Davis 2002). For convenience, in our discussion we use a general case 
to derive the expressions for maximum likelihood rather than  defining it for different 
intervals.

Let {yt} be causal ARM A(p ,  q) process so

oo oo

Y, =  <P(B)C, =  ; <« ~  WW(0, <r2); J > i l  <  oo.
j = 0  j = 0

y    9{ B)
M B )

Also, from 2,

So,

n B )  -  m
=£■(1 — 4>\B — <p2B2 — . . .  — 0pi?p)(0 o +  ipiB +  . . . )  =  1 +  0\B  +  O2 B 2 +  ...-(- 9qBq. 

Equating the like coefficients of B ’s, we get 

1 =  fpo ,

0 O0! = > ^ 1 = 91 +  0o01 ,

92 =  02 -  0101 -  0002 = >  02 =  @2 +  0101 +  0002 ,

(25)
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and we define 0q =  1 and Qj =  0 for j  >  q. The innovations estimates 

@ni,0 n2 , • • •, @n,(p+q) obtained in section 2 .1.2 are used to estimate ip 1 , ^ 2 , . . .  ,ipp + q. 
Replacing ipj by 0nj in equation 25 we get

min.(j,p)

@nj ~  @j T  ^  ] ( p i j 3
i = l

From last q equations we first estimate <p as

1 ,2  . . . , p  + q, (26)

(a \
Vn,q+1

e . ,n ,q + 2

\9 n ,q + p  j

{
ynq 0n ,q—1

e . ,n,q+ 1 'n ,q

@ n,q+l—p 

@n,q+2—p 4> 2

^ra,g+p—1 ^n,g+p—2 ?n,g y

Then 0 can be estimated from equation 25 as

Q;T IJ

m in.(j ,p )

^   ̂ (pi0n,j—i i j  1)2,. 
i=l ,9-

After these preliminary estimation of <p and 0, we use these values as the initial 
values to get the maximum likelihood estimates. The maximization is nonlinear in 

the sense th a t the function to be maximized is not a  quadractic function of the 
unknown parameters, so the estimators cannot be found by solving a  system of 
linear equations. They are found instead by searching numerically for the maximum 
of the likelihood surface. When the order p  and q of ARMA model is known, good 

estimators of <p and 0  can be found by imagining the d a ta  to be observations of a 
stationary Gaussian time series and maximizing the likelihood with respect to the 

p + q + 1 parameters <pi,. . .  ,<pp, 9 i , . . .  ,6q and a2.
Suppose th a t {Yt} is a Gaussian time series with mean zero and autocovariance 

function «(i, j )  =  E{YiYj). Let Yn — (Yi, Y2, , Yn)' and let the one step predictors 

Yn = (Y , Y , ■ • •, Yn)' where Y\ =  0 and Yj = P j - \Y j , j  > 2. Let Tn denote the 
covariance m atrix Fn =  E (Y nY^), and it is non-singular.

Then the likelihood of Yn is

L(Fn; Y n) =  (2n) a |r„ | *exp — y j : 1̂2  n  n  f* (27)

The direct calculation of Tn is cumbersome and in many situation not possible and 

it is avoided by using the one step prediction errors Yn — Yn and mean squared error,
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E(Yn — Ynf  instead of Yn and Tn. Both of prediction error and mean squared errors 
are calculated recursively from the innovations algorithm already discussed.

From equation 11,

Y n  =  e n(Yn -  Y n )

=  C n ( Y n  ~  Y n )  -  I n ( Y n  ~  Y n )

= C n ( Y n - Y n ) - Y n  + Y n

> Y n  =  C n ( Y n  ~  Y n )

[ From 10]

(28)

Since the components Yn — Yn are uncorrelated, the covariance m atrix of Yn — Yn is

v0 0 . . .  0
0 v \  . . .  0

0 0 . . .  vn- l

From 28,

V ar(Yn) = Var[Cn {Yn -  Y n)\

» F n  —  C n Y t n C n .

So,

and

|r„| l^n] l^n| VtfUi . • . Vn—\i

Y n K ' Y n  = [Cn(Yn -  Yn) T - l C n ( Y n  -  Y n )  [FYom 28]

=  ( Y n  -  Y n ) ' C ' n T - l C n ( Y n  ~  Y n )  

= (Yn -  Yn ) 'Y ,n \Yn ~  Y n)

t i Y j - Y j f  
_  £=1_________

V j - 1

Hence, from equation 27 likelihood of vector Yn reduces to

L ( T n , Y n )  =
s j (27r)nu0u i . . .  vn—\

exp -1 J = \
Vj- 1
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The likelihood for data from A R M  A(p, q) process is easily computed from the inno­

vations form by replacing Yj by one-step predictor and Vj by a2rn from 15.
Hence, the Gaussian likelihood for an ARMA process can be w ritten as

So, maximum likelihood estim ator of a 2 is

- t i Y j - Y j ) 2
a 2 = I t i  .

n Tj-i

and 4> and 0 are the values of 4> and 0  th a t maximize the  likelihood in 29.
Also, we used minimum AICc (Akaike Information Criteria Corrected) value as a 

major criterion for the selection of the orders p and q. AICc criterion can be defined 

as

A IC c  = - 2 lnL(4>P, 0q-Yn) +  2(p +  <? +  1^  ,
n  — p — q — 2

where lnL(<pp,0 q,Yn) is the log of likelihood function defined in 29 using maximum 
likelihood estimators <pp and 0q. For any fixed p and q it is clear th a t the AICc is 

minimized when <pp and 6q are the maximum likelihood estimators. Final decisions 
with respect to order selection should therefore be made on the basis of maximum 

likelihood estimators.

3 . 1 . 2  F O R E C A S T I N G

As we have seen, autoregressive moving average time series models can be re­
garded as means of transforming the data  to white noise, th a t is, to  an uncorrelated 
sequence of errors. If the appropriate model has been chosen, there will be zero 

autocorrelation in the errors. For large samples the residuals from a correctly fitted 

model resemble very closely the true errors of the process (Box and Pierce 1970). 
Since there are differences in trends, forecasting of multiple time series data  based 

on well behaved residuals and certain joint relationship between their probability 

density functions are explored by Kedem and Gagnon (2010). We are also exploiting 

the similar idea but by using the mixture distribution of residual densities as the ref­

erence distribution. The mixture parameters are estim ated through the distributions 

of combined noise.

L(Tn-Yn) = exp
v / ( 27ro-2 )nr 0 r 1 . .  , r n_! I 2 a 2
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Since, each part of the interval is fitted with different models, the residuals for 

each part are independent to each other and to the errors from other intervals. So,the 
error sequence {0 ,} is' the sequence of iid random variables.

Define,

Ct< ~  * (?).*  =  l , - , m , m  + l  ,

where <?j(c) is the density function of Qt for ith interval. We approach time series 
prediction through the mixture distribution of these error components. Noises from 

different intervals are combined to  form combined noise.

Let

C (Cl) C2) •••) Cm+l)

{ ( C l ) •••) Cni )) • (Ctj+1 > • • • ) Cu+rii)i •••> (Ctm+1) • ■ • ) Ctm+nm+ i )}>

The joint density of combined noise is the mixture of ‘m  +  1’ noise distributions. So, 
the joint density of finite mixture of combined noise is

m+1

3 ( 0  =  Y l pi9i^ -
i = 1

where pi be the mixing proportion with the constraints pz > 0 ,  i =  1 ,..., m, m  +  1,
m+1

and X) Pi = !•
i - 1

Hence, the cumulative distribution function of combined error is

m+1

f(C  < i)  =  GM =  X > G .M , (30)
i = 1

where Giiq) is the cumulative distribution function of Q , i =  1,..., m, m  +  1.

Our main objective is to predict the future reference values ym+2,tim+1)+i conditional 
on past values z m+i,im+1 • Future probability of events conditional in past values can
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be w ritten as

P(ym+2,t(m+1)+l <  ? / |Z ( m + 2) , W i )  =  P(frn+2 (Z(m+2),tm+i) + Ctm+i+l <  V) [FrOm 24]

■F>(C<m+i+l — y •/m+2(-2'(m+2),trn-|.i)

=  G[y fm+2 (■ Z (m + 2 ),tm + i)  )

m + 1

Y  Pi° i(y  -  / m + 2 ( z ( m + 2) , w i ) )  [From 30]
i- 1 

m + 1

= E
i=l

PiGi(y ^  <PijyTn+2,t(m+i) —j
3= 1

(31)+ E  ̂ ifeCm+2,t(m+1)—fc) |
fc=l

Since we are using a sample of observed values, the cumulative distribution function 
can be approximated by empirical distribution function.

Let Gi(g) be the empirical distribution function of error components in ith interval. 

Then

E HC* < 0
Gi{q) =   ,rii

where

/ ( & < < )  =  I 1,  i  =
 ̂ 0, Otherwise.

and Qj be the j th error component in ith interval. Also, strong law of large numbers 
indicates th a t empirical cumulative distribution function converges almost surely to 
cumulative distribution function.

Here, for a fixed point <7 the quantity n*Gj(<r) ~  Bin[rii, Gl(q)). Therefore

<*(0(1-G<(0)
£ ( G i ( 0 )  =  G i(0  and V a r ( G i ( 0 ) rii

By using Chebyshev’s inequality

P ( | G i ( 0  -  G i ( 0 1  >  0  <  Gl^ ^ -  ^Gl^ - for any e > 0 .
Tl{€

— > 0 as ni —> 00 .

Hence,

G < ( 0  G i ( 0 -
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So the future probability of events conditional in past values from 31 can be approx­

imated as

P { y m + 2 , t ( m+i')+ l  ^  y \ z (m+2),tm+i )
m + 1

E
i = l

PiGj,  |  y  'y  ^ (f>iJy rn+2,t{Tn+1)~ j  +  @ikCm+2,tim+1)- k
j = 1 k= 1

(32)

The parameters <p and 6  for each interval are estim ated by using the method of 
maximum likelihood in conjunction with innovations algorithm as discussed in section 

3.1.1. Estimation of future values in equation 32 also requires the estimation of pi 
which is discussed in the next section.

3.1.3 E ST IM A T IO N  OF M IX T U R E  PR O P O R T IO N S

In general time series, noises are either uncorrelated white noises or Gaussian 
noises. W hite noises are assumed to be a sequence of uncorrelated random variables 
generated from uniform probability distribution while Gaussian noises are generated 
from Gaussian distribution. The param eter estimation of mixture of Gaussian or 
other exponential family distribution can be done by using EM algorithm since the 

likelihood function of these kind of distribution is well defined (Dempster et al. 1977). 
A general method of parameter estimation for mixture of exponential family distri­

bution is already discussed in section 2.5. But when dealing with the mixture of any 
location family distribution or particularly white noises EM algorithm may not be 

the appropriate method to estimate the parameters. The problem of identifiability 
should also be handled.

In our discussion we will focus more on Gaussian noise since it has some well 
defined properties. The time series param eter estimation using maximum likelihood 
method we proposed is based on the assumption of Gaussian noise. Another justifi­
cation for using Gaussian noise is that, the large sample distribution of estimators is 

the same whether or not we use Gaussian (Brockwell and Davis 1991). Even though 
our primary focus is on Gaussian noise, we will also discuss the alternative way of 

parameter estimation for mixture distribution of white noises.

G aussian N oise and EM  algorithm

For each interval, without loss of generality, assume th a t Q ~  7/(0, of). Gaussian 

mixture model is a  simple linear superposition of Gaussian components. In section
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2.5, we discussed the general case of param eter estimation of mixture model. In this 

section we will extend the same idea for the special case of Gaussian probability 
distributions. Recall from section 2.5 th a t the Gaussian mixture distribution can be 
written as linear combination of Gaussians in the form

m + 1

=  5Z pi9i(q) ’
i=z 1

where 0 =  (pi,tH,of). So,

s(s |0 ) =

This gives us the incomplete likelihood as

m + 1  ^

Y , p <— “ p (33)

£ ( % ) 1 V\V2n J
and the log likelihood is

n / m + 1  1

n
j =i \*=i

exp , 71 T lx , • • • , 7 lm + 1)

/  m + 1

i=i \  *=i 2 a} fe  -  IH? (34)

Maximizing the log likelihood of 34 turns out to be a more complex problem than  for 

the case of a single Gaussian. The difficulty arises from the presence of summation 
over i tha t appears inside the logarithm, so th a t the logarithm function no longer 
acts directly on the Gaussian. If we set the derivatives of the log likelihood to 
zero, we will no longer obtain a closed form solution. Also, the maximum likelihood 
framework applied to the Gaussian mixture model has significant problem due to the 

presense of singularities. Whenever one of the Gaussian components collapses onto 
a specific d a ta  point, the log likelihood function will go to  infinity as Oi —> 0. This 
creates a singularity problem and inverse covariance matrix, which is often required 

in maximum likelihood framework, is unattainable. So we consider an alternative 
approach known as EM algorithm which is an elegant and powerful method for 

finding maximum likelihood solutions for models with latent variables (Dempster et 

al. 1977).
Let us introduce a m  + 1 dimensional binary random variable w  =  

(wi , W2 , ■ - ■, wm+i)' in which a particular element Wi is equal to 1 and all other ele­

ments are equal to 0. Matrix representation of W  is given in 18. The value of the
m + 1

latent indicator Wi therefore satisfies u>,e{0,1} and Wi =  1.
i = 1
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Also, the probability

p ( W i  =  1 ) =  P i ,

where the parameters {;pi} must satisfy

0 <  Pi < 1 and E  Pi =  1-

Hence, the marginal density

p (w ) =

7 T I + 1

i =  1

m + 1

i=1
Similarly, the conditional distribution of <; given a  particular value of w  is

p(s| Wi = 1,6) = —;==— exp
V^7T Oi

V l
2a?

So
m + 1

p ( < ; \ w , 0 )  =  JJ (—L
7=1 \V27T(7,; ex p { 2 ^ (<r" ^ ) 2}]

Using conditional probability, the joint density of c and w  is

p(q, w\6) = p(<;\w, 0)p(w\6)
m + 1  /  \  Wi

Pi

i = l x v
exp

Hence, the complete likelihood is

n m + 1  ,  \  H j r- f _ 1 'Im t,«)-nn ( j y  e x p -y
7 — J- 1—1

where n = ni + . . .  +  nm+1.

And complete log likelihood becomes

n  / m + 1  \  \  n  A w + l  '

=  Y I  ( Y I  wil°9Pi I -  2 5 Z  ( Y I  wil°9(2naf)
j =i \i=i /  j =i \i=i j

m + 1  n  

i=1 j=l
2 a? fe  » ) ‘ (35)
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Notice th a t this log likelihood can be solved easily in the closed form once we identify 
the conditional distribution of w  given

The conditional probability of w  given <; when Wi =  1 plays an im portant role to 
define expectation function. We shall view pi as the prior probability of Wi = 1, and 
the conditional distribution p(wi =  1|<;, 0) as the corresponding posterior probability 

once we have observed for some known param eter estimates 0 . We can use Bayes 
rule to estimate the conditional probability of w  given and 9  as follows:

p(wi =  1|*,0)
p(s\wi = 1,0).p(wi  =  1|0)

Hence,

p(c|0)

v  P(A \B)  =
P ( B \A ) P ( A )

P(B)

1 "if;1 pj
£  — exp

V/ 2tT i  (Tj 2^ 2 (9  n )2

p{wi =  1 |?,0)
| e x P { ^ (Q - ^ )2

m + 1  n .
E  — ^ p

3 = 1  ° 3

-1

Thus, the conditional expectation of w  given <; and 0 is

E ( w  0) =  p(wi = 1|<?, 0)

(36)

Let’s assume th a t we start with some initial values 0®  and cycle up to k th step. 

Let 0 W = (p[k, p\k\  o f-^ )  be the param eter values at k th step. Then, conditional 
expectation a t kth step can be written as

w {k) = E {w \q ,0 {k))
(fc)
(k) exp

- 1

2cr„2 (fc) (ft -  P i )
(*h 2

m + 1

£  — ( k ) 
3 = 1  cL

exp
2a?{fc) t o - / * ? ’)2

(37)
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Now, in E step we replace Wi with the conditional expectation of w  a t k th step from 
equation 37 into the complete log likelihood obtained in equation 35. Hence, the 
expectation function, Q ( 0 \ 0 ^ ) ,  becomes

In the M step, we determine the revised param eter estimate 0 (-k+1'> by maximizing 
equation 38 with respect to relative parameters, pi, Pi and of. The equation 38 can

m + 1
be maximized with-respect to pi under the condition th a t Y  Pi = 1- So we need

i=1
to maximize the Lagrange function as discussed in section 2.5. From 21, Lagrange 

function is

Maximizing with respect to Pi and A and substituting the value of A we get (from 

section 2.5) the estimate of Pi a t (k  +  l ) 4/l step as

n  / m + 1

5Z ( YI wik)l°9(2™ i)Q (6 |0 (fc)) =  ^ w ^ l o g p i

(38)

n  m + 1 ’m + 1

A (p, A) =  E E  w ^logp i  +  Constant + A E  Pi -  1
j=i i i=i

where is the conditional expectation as discussed in 37. Also,

dQ(0\0W) n
dpi

n



Similarly,

dQ(010<*>)
=  0

d o }

3 =  1 V '

w r / i
2 ( f c + l )  _  3=
1 (fc+l)np\

It can be shown th a t the sequence { 0 ^ ,  0®\  . . . ,  0 ^ }  converges to the maximum 
likelihood estimator of 0, i,e. 0  as k -* oo (Dempster et al. 1977).

In our applications, we are using the mixture of two Gaussian distributions in 

chapter 4. The mixture of two Gaussian population is given as:

p ( c | 0 )  =  p — <p ^  +  ( 1  -  p ) —  <P — - 2
Ol y  Oi  J  o 2 y  02

where <p is the cumulative distribution function of the standard normal distribu­

tion and 0 — (p, pi,  p 2 ,o}, o}) ; 0 < p < l .
Then, the indicator variable W  be treated as missing da ta  information such that:

. 1 ,  if 0  belongs to  first interval 
IT —  \

0, if Q belongs to  second interval, 

where Wi is Bernoulli distributed with param eter p.
Therefore, the likelihood expression for complete data  becomes:

n  /  \  w  /  x

And the corresponding log-likelihood function for the density becomes:

n  n  1  n

ln(6\q,w) =  ^2wlog(p)  + Y ^ ( ^ - - w ) l o g ( l - p ) - - ^ 2 w l o g { 2 T r a f )
■=i j  -

1 ^  ^
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The conditional distribution of W  given £ is: 

with

V{k)~ +  (1 ~  P{k))-fa<P(rList-)°1 al °2 a2
where p^  is a  set of known or estimated parameters a t k th step. The initial value 

can be obtained from the empirical distribution.
Hence, the conditional mean at kth step is:

The expectation function becomes
n n  1 n

Q(9\9^)  = w^kHog(p) +  — w ^ ) lo g (  1 — p) — -  w^log{2'Kal)
j -1 j =i j =i

“  \  ~  «>(fc))M27r<r2)
1 j=i i=i

~ 2 ?  X >  “
2 i = i

Now, we maximize the expectation function as discusssed above.
Hence, the parameter estimates a t the (k  +  l ) th step are:

p ( k + l >  _

71 J=1

,*«, E“_ i ^  <*+I) E“.,(i -  »“>)*
^ E".i"'(‘) ’ ^ E”.i(i-w (*>) ’

<*+,)* E”. , ^ - / ^ 1*)2 , (i+„2 E“=i(i - -  k‘2l+1))2
E “= imW ’ CT2 E E i ( i - » w )

The initial values of 0 =  ̂ , o\  °̂'1) are obtained from the empirical

distribution.
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Each update to  the parameters resulting from an E  step followed by M  step 

is guaranteed to increase the log likelihood function. In practice, the algorithm 
is deemed to have converged when the change in the log likelihood function, or 
alternatively in the parameters, falls below some threshold.

M ixture o f W h ite  N oises

In the previous section, we have discussed more general case of mixture of Gaus­

sian noises. As mentioned earlier, Gaussian noise have some well defined properties 
and they are easy to deal with. But i t ’s not uncommon to assume time series as 
a linear combination of white noises. W hite noises are the random variables from 
some uniform distribution defined in a particular interval. Teicher (1963) showed 
th a t univariate normal mixtures are identifiable, while in general mixture of uniform 
distributions are not. Identiability is a  necessary condition for the possibility to es­
tim ate the parameters of a  mixture model consistently. I t makes sure th a t no two 
essentially different mixture parameter vectors parameterize the same distribution. 
According to Casella and Berger (2002)

“A parameter 9 for a family of distributions { f (x \9)  : 9eQ} is identifiable if distinct 

values of 6 correspond to  distinct probability density or mass functions. T hat is, if 
9 9 \  then f (x \9)  is not the same function of a; as f (x \9 ' ) .”

Maximum likelihood method of param eter estimation for exponential family dis­
tribution give robust estimates. EM algorithm can also be thought as an adjusted 

maximum likelihood method. So the parameter estimates of mixture of Gaussian are 
robust and identifiable. Maximum likelihood estimates for a wide class of location- 

scale mixtures are not robust (Hennig 2004). So the parameter estimation based 
on E M  algorithm may not be the appropriate choice when we deal with mixture of 
white noises.

Parameter estimation of mixture of uniform distributions using the method of 

moments and method of maximum likelihood is discussed in Craigmile and T itter- 

ington (1997). In this section we briefly discuss the alternative way of estimating the 

parameters for mixture of white noises. Since our main interest lies in the Gaussian 
noise and parameter estimation through EM algorithm, in this section we just out­

line some of the parameter estimates based on method of moments for mixture of 
uniform distribution without giving detailed explanation.

As discussed earlier, the apparent simplicity of uniform mixtures conceals a hidden
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danger of non-identifiability.

For example, let us assume a two component mixture of uniform distribution

/(?b»0)  =pU {q ;O,0) 4- (1 -p)U{<;\9,1),

where U(s; a, b) denotes the uniform density on the interval [a, b).

Let us take p = 9. Then

/ ( ? b , p )  =  W , l ) .

So, for any values of p, we get the same distribution function. The problem of non- 
identifiability axises and the estim ate is not consistent. But if p  or 9 is known, the 
mixture is identifiable even if the true values of p  and 9 are equal. So care should 
be taken when dealing with mixture of uniform distribution and we should avoid the 

condition of non-identifiability.
For convenience, let us assume th a t we have the m ixture of two white noises from 

each of the interval, so Q ~  W N (  0, of); i =  1,2. Notice th a t of is the variance of the 
uniform distribution in the i th interval. Since, uniform distribution is a location-scale 
family, we can consider two disjoint intervals for uniform mixture and can write the 

density function as

/(? |p , 9) = pU(<?; 0 ,9) +  (1 -  p)U{r, 6,1), (39)

As discussed earlier, this is non-identifiable when p — 9, so we take the cases when 

p ^  q. Equation 39 can be written as

/ M p . «) =  ! ' (  0 <  C < 0) +  S  c < 1).

where I  be the indicator function. Since, kth raw moment of uniform distribution 

t/(c; a, b) is
1 bk+1 -  ak+1

k + 1  b - 1
we can write the kth raw moment of the mixture density as

* k  +  1 (1 -  0)(k +  1)
i  - p ( i  - « * )

( i - « ) ( f c  +  i )  '

Also, kth sample moment can be represented as

(40)

=  (4 1 )
n 

j = i
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By equating kth raw moment with k th sample moment we estimate the param eters of 

mixture distribution. As discussed earlier, we choose the cases when p  ^  9 to avoid 
non-identifiability. There are three cases of parameter estimation:

(i) 9 known, p  unknown
(ii) p  known, 9 unknown and

(iii) both p and 9 are unknown
But in our situation, we don’t  have known p, so second case is irrelevant to our 

discussion.Here we’ll discuss case (i) and case (iii) briefly.
C ase  I: 9 known, p  unknown

When 9 is known, p is estimated by equating kth raw moment with kth sample 

moment as

M k = m k,

where M k is the kth sample moment defined in equation 41. For simplicity we can 

write
p =  ckM k +  dk.

The order k is determined based on the optimal variance of p.

uar(p) =  c\var ( -  ^  x* 
\ n  . ^

r r

o=i
n

i = l

cl(m2k - m 2k)
n

We choose k  and estimate of p in such a way th a t variance of p  will be minimum. 
G upta and Miyawaki (1978) suggested k = 1 for estimation of p.

C ase III: Both p  and 9 unknown
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Gupta and Miyawaki (1978) has suggested using first and second order moments
to estimate the parameters of 6 and p. Here, we will derive the expression based on 
first and second order moments. As suggested by method of moments,

Mi  =  m i

Caveat: M ixture o f w h ite  noises

The extension of more than 2 component mixture of uniform distribution and 
their parameter estimation is discussed briefly by Craigmile and Titterington (1997) 

giving an example for mixture of 3 component uniform distributions. Even for three 
component mixture distribution, there are several cases of non-identifiability and if 
we have higher component mixture distributions we will encounter multiple cases of 
non-identifiability. So the parameter estimation is restricted by several conditions. 

It is not possible to track all the restricted conditions so higher component mixture 
of uniform distribution is not suggested. The parameter estimation could be very 

inconsistent and in many cases not possible. Also, one should be very careful when 

assuming the mixture of uniform distribution, since mixture is defined as the com­

bination of non-overlapping uniform distribution. In the cases with large number of 

breakpoints, the number intervals m +  1 may not be equal to the number of clus­
ters for the mixture of uniform distributions. If this situation arises, the method of

2Mi =  1 +  9 — p. (42)

Again,

M22 =  m 2

3 M2 =  1 + 6 — p + Q2 — p9. (43)

From equation 42 and 43,

~ 3M2 -  2Mi
2Mi  -  1

and

_ , 4 M l  -  3 M2
p  =  1 ----------=--------------------------
F 2Afi -  1
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forecasting based o n m  +  1 mixtures th a t we have proposed will not be appropriate 
and some other methods with reduced dimension should be considered. But this is 
not the case for mixture of Gaussian noises. So, we consider the case of mixture of 

white noises as just an alternative approach and preference is given to the framework 
based on mixture of Gaussian noises.

3.2 C O N F ID E N C E  IN TER V A L E ST IM A T O N  A N D  LA R G E  
SA M PL E  PR O P E R T IE S

In sections 2.1.2 and 3.1.1, we discussed the time series param eter estimation 
using innovations algorithm together with the maximum likelihood method. We can 

use the asymptotic distribution of ARM A parameters ( 0 , 6) to derive approximate 
large sample confidence regions for the true coefficient vectors ((f>,6).

Let Yt be the stationary and invertible time series process. An ARMA model can 
be written as

y > ~ i z  =  << -  < ~  N (°■a2)
i — 1 j = 1

This is equivalent to

n < i - A ) y , = n ( i - M , ) c „  (44)
i — 1 j = 1

i = l  j = 1

For example, if we have A R M A { 2, 2) model

Yt ~  4>\Yt-i ~  02Fj—2 =  Ct — —

Then we can easily derive

01 =  Ai  +  A 2 02 =  —A 1A 2

Q\ =  M \  T  M 2 02 =  —M \M 2 -

ARMA model are the superposition of both AR and MA models, so we can write 
AR and MA components of equation 44 in terms of past errors as

=  - f |  =  (1 -

v t,i  =  =  - (1  -  (45)
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For the mixed A R M A  models, the information m atrix can be written as: 

l(4>,0) =

7uu(0) 7UU ( 1) luuiP l )  | luv (0) luv ( 1) • lu v il  -  q)

luu (1) 7uu(0) luuip  2) | 7ui;(l) 
1

luv (0) Tu«(2 q)

n 7uu(p -  1) luuiP 2)
1

• 7«u(0) | 7uvip 1) luvip ~~ 2) • luvip -  q)

0 * Tun (0) luv ( 1) • luviX 9) 1 7uu(0) 7uu(l) ■ luuip -  1)

7uu(l) luv (®) • 7u«(2 9) | 7u u (l) 7«u(0) luuip  2)

7uu(l q) 7 uu(2 q) • luuip -  q) ■ luviq -  1)1 luviq 2) • 7«u(0)

(46)

where 7uu{h)  =  E ( u t , u t+h)Huv(h)  — E(u t ,v t+h) and so on. u and v  are related to 
autoregressive and moving average components of equation 45. Using equation 46 
and 45, for the large sample we get the information m atrix in terms of Ai and Mj  as 

/ ( * ,» )  =

n

( l - A i r (1 —A1A2)-1

(1 — A i A p) 1pi  (1 _  A2Ap) 1

~ - ( i

(1 -  A ^ ) - 1

a  - A i r

-(1-AiMa)-1

(1"-m 2) -(1 -  M 1Mq) ~ l 

(1 -  M?)-1

(1 — ApMi)

(1 -  A p M q) ~ l ■ (1 -- ( 1  - A 1M q)~ 1 - ( l - ^ M , ) - 1 . . .

This marix can be partitioned after pth row and qth column. So

I a a  ' I a m

I  A M  1

Notice that m atrix I  1{<p, 0) is non-singular, so the covariance m atrix of estimators 

of 0  and 0 for ARMA model is

S ( 0 , 0 )  =  7 - 1(0,0) .

In case of pure AR and MA models, this covariance matrix can further split by 

removing cross covariance matrices of AR and MA comonents (i.e. I  am  =  0 ). This
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gives

e ( 0 )  =  r \ < p )

_ I  j - i  
“ n

E (0 ) =  / - 1(a)

-  -  r 1
~  n  MM  ’

Let (3 = (<£, G) be the vector of A R M A  model parameters.
The large sample distribution of maximum likelihood estimators of A R M A ( p , q) can 

be written as

P  ~  Np+q{p ,n ~ l E ( 0 , 0 )  ,

And for pure autoregressive(AR) and moving average (MA) models,

P v  ~  N p ( P p ,  ^ _ 1 S ( 0 ) )

and

$ q ~  N ^ n - ' E i e ) )  .

As we have seen that any ARMA(p, q) model can be obtained using the linear 
filter -0 from white noise or Gaussian noise, £ ~  N (0 ,a 2).

OO

j =0
Let be the h step predictor as discussed in sections 3.1.2 and 2.1.2. Then

h-i
Yt+ h  =   ̂  ̂',P j C t + h - j ■ 

j —0

Hence, the mean squared error is

h - 1

S 2 =  B(Y, -  Yt+kf  =  Var(C,+t -j)-
3= 0

(47)
3 = 0
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Here, i/>| is the function of estimators <f> and 6  such th a t

p

= ~  0J> j  =  °> 1> 2> • • •.
k=1

where 6q — 1, Oj =  0 if j  > q, =  1, and = 0 if j  <  0.
Other estimators 4>k,k  = 1 ,2 , . . .  ,p  and 0 j , j  = 1 ,2 , . . .  ,q are estim ated using inno­
vations algorithm together with maximum likelihood method as discussed in section

2.5. And the estimator a 2 is obtained from the empirical data.
If the ARMA(p, q) process {Y^} (for each interval separated by breakpoints) is

driven by Gaussian white noise, then the prediction error Yt+k — Yt+k is normally 
distributed with mean 0 and variance S 2 given by the equation 47. In our case we 
are using one-step prediction so k — 1. Hence, the  prediction interval of Yt+k is

Yt+k =  Yt+k i  ^>l-a/2*S'

Let us assume th a t there are m + 1  mixture components, then for the forecasting 

based on mixture distribution we can rewrite the h step prediction as

m+l h—1
Yn+h =  ^   ̂Pi ^   ̂IpijCn+h-j- 

i= 1 j=0

m+l
where Pi =  ̂ and 0 <  p* < 1 , n  = ni + ri2 + ■ ■ ■ + n m+1, rii be the number of

i=1
observations in each component of mixtures and ij>i is composed of ARMA parameters 
(4>i,0i) from each breakpoint groups. Hence, the mean squared error is

m+l h—1
Sli = bh+\ ’

i=l j =1

where <5̂ +1 be the white noise variance estim ator of (m +  l ) th component.
Assuming th a t the ARMA process {Yn} is driven by Gaussian white noise so if 

£t ~  N (0, a2), then for each h > 1 the prediction error is normally distributed with 

mean 0 and variance 5^ . It follows th a t Yn+h lies between the bounds

Yn+h ±  *̂1—a/2 5m- (48)

with probability (1 — a). In the above equation $ i _a/2 is the (1 — a/2)  quintile of 
standard normal distribution. We can call this bound as prediction bound for Yn+h.
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3.3 D IA G N O ST IC  C H E C K IN G

Once the model is identified and the param eters are estimated, diagnostic checks 
are then applied to the fitted model. It is an im portant step to  conduct various 
diagnostic tests in time series modeling. Most of the diagnostic tests are designed to 

examine the auto correlation structure of the time series da ta  itself and the residuals. 
So we perform diagnostic tests on both  the data before identifying the best model 

and the residuals after fitting the best model to the data. If a time series is serially 
uncorrelated, no linear function of the  lagged variables can account for the behavior 
of the current variable. For a serially independent time series, there is no relation­
ship between the current and past variables. Diagnostic testing on da ta  series thus 
provides information regarding how these d a ta  might be modeled. W hen a  model 
is estimated, diagnostic tests can be applied to evaluate model residuals, which also 

serve as tests of model adequacy. We implement diagnostic tests to  the data  and 
residuals in each interval separated by breakpoints and to  the overall data. The 
diagnosis of the model requires confirming th a t basic hypotheses made with respect 
to the residuals are true. We do diagnostic checking on the residuals to see whether 

the following assumptions are met or not.

(1) No correlation for any lag (Autocorrelation Test)
(2) Constant marginal variance and zero marginal mean.

(3) Gaussian distribution

Let {yt} be any ARMA process. Then it can be written as

(1 -  <f(B))Yt =  (1 -  0(B))C, .

The residuals are computed recursively as
p g

C. =  yt - E  +  5 Z  =  1 ,2 , . . . ,  n.
i =1 1

If the model is adequate, then

(t = Ct +  O ^  . (Box et al. 1994)

As the series length increases, the (V s become close to the white noise (Vs. There­

fore, one might expect th a t study of the (t’s could indicate the existence and nature
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of model inadequacy. In particular, recognizable patterns in the estim ated auto­
correlation function (ACF) of the Q could point to  appropriate modification in the 
model.

3.3.1 A U T O C O R R E L A T IO N  T E ST S

For an adequate model, the residuals should behave as white noise and should 

be iid. Portm anteau lack of fit test which was first proposed by Box and Pierce 
(1970) is the most common method to test the autocorrelation. However, Ljung and 

Box (1978) argued th a t the Q statistics provided by Box and Pierce tending to  be 
somewhat smaller than expected under the chi-squared distribution. O ther empirical 
evidences also reinforced their argument. Ljung and Box proposed a modified form 
of the Box and Pierce statistics which is more popular and assumed to  be the global 
test.

Let f j  be the residual autocorrelation function (ACF) of order h, then

Z ? ( C t  -  C ) ( C t + i  -  C )

C  =  t~ 1 w 1 -----------5 j  =

E (C < ~  C)2
t- i

where £ is the mean of n  residuals.

We wish to check simultaneously th a t first h residual ACFs are not significantly 
different from zero,

H 0 : Ti  =  r 2 =  . . .  =  r h =  0.

If the residuals are really white noise, then the estimated correlation coefficients 

are asymptotically normal, with zero mean and variance
n(n + 2)

Then, modified Ljung-Box test statistics is

f 23Q(h) = n (n  +  2)
3=1 n ~ J

Q(h) is asymptotically distributed as y 2 distribution with degrees of freedom 
h — p — q for ARMA(p, q) process.

The Ljung-Box Q(h) statistic is asymptotically equivalent to testing for an 
ARMA(p, q) model against ARMA(p, q + h) or ARMA(p +  h. q) model. So Ljung- 

Box test can also be considered as an alternative for testing model overfitting. The
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power of Ljung-Box depends on the choice of h. In the literature, simulation re­
sults by Davies and Newbold (1979) suggested th a t h  =  0 ( ln  n) is close to  an 
optimal choice. Other alternative of portm anteau test, Durbin-Watson test can also 

be performed but Ljung-Box test is preferred since Durbin-Watson test tests the 
null hypothesis of absence of autocorrelation against the  alternative hypothesis of 

first-order autocorrelation only, while real time series often present autocorrelation 
of higher order.

3.3.2 T E ST IN G  H O M O SC E D A ST IC IT Y  A N D  ZERO M E A N  O F E R ­
RO RS

Test of homoscedasticity and zero mean of residuals should be applied after check­
ing th a t the residuals are uncorrelated, to  ensure th a t a 2 is a reasonable estimator 
of the variance. Our interest is to test the hypothesis of

H q : fi£ =  0 .

where is the error mean in the actual population.

Also, i t ’s reasonable to  assume th a t £ follows normal distribution with mean /j,q

A ■ *and variance — .
n

Then the test statistic is

where Z  ~  N (0,1) and we reject null hypothesis for the large values of Z.
The homoscedasticity of the marginal variance of the residuals is confirmed by 

studying the graph of the residuals over time. If in the view of the estimated residuals 

there seems to be a change of variance from a point t =  nr on, we can divide the
sample interval into two parts and apply the test of equality of variances (variance

ratio test) based on the F  distribution. In the hypothesis under which both sections 
have the same variance,

T J  . J l  _  J lF q ■ — cr2

the test statistic ni ~
E  C / n r

p   ____<=i_________

E  e/(n -  nr )
i = n i + l
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will be distributed approximately as an F distribution w ith n i and (n — n j) 

of freedom.
In the same way, if we suspect there are m  changes in variance in the 

n i , . . . ,  nm then we want to  test

i t  2  2  2H 0 .: a  = a 1 =  . . .  =  a m . 

simultaneously. The test statistic is
m

A =  nloga2 — riilogsl
2—1

where a2 is the variance of the residuals in the entire sample and s2 is the variance 
in the section i of length n* observations.

Test statistics A is asymptotically a  chi-square distribution with m  — 1 degrees of 
freedom. To apply this test, it is advisable to  have at least 10 observations in each 
section.

3.3.3 C H E C K IN G  N O R M A L IT Y  OF R E SID U A L S

Since our model is based on the assumption of normality of residuals, it is im­
portant to check whether the residuals from each intervals are normal or not. We 

can examine the normalized residual plots or normal quintile plots to see the dis­
crepancy of the data  from Gaussian distribution assumption. Together with these 
graphical methods we also need to use some other statistical methods to confirm the 
nature of the residuals. Shapiro-Wilk test and Kolmogorov-Smirnov tests are two 
common tests to check the normality of the data. Two sample Kolmogorov-Smirnov 

test is also used to compare the cumulative distribution function of two different 
samples. Both Shapiro-Wilk and Kolmogorov-Smirnov tests for normality calculate 
the probability th a t the sample was drawn from a normal distribution.

The hypothesis of interest is

H 0 : C ~  G aussianD istribution.

The test statistic for Shapiro-Wilk test is

( E  a iC(i)

  2 >
E  ( C t  —  C )
2 = 1

degrees

periods
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where C(i) is the ith order statistic, and

£  _  C i  +  ■ • ■ +  C n  

n

The coefficients a^s are given by the mean and covariance matrix of i th order statistic.

m 'V ~ l
0 l’ ’ n (m/V’~1K'~1m )2

where m i , , m n are expectations and V  is the covariance matrix of ith order statis­

tic. For more details readers are suggested to  refer the paper by Shapiro and Wilks 
(1965). Small values of W  are significant and indicate non-normality. Critical values 
of rejection region for distribution of W  are given in their paper.

Shapiro-Wilks test does not work very well if several ties are present in the da ta  
and this test is very sensitive to the problems in the tail. So, Kolmogorov-Smirnov 
test is better option than  Shapiro-Wilks test. Kolmogorov-Smirnov test is more 
robust and works reasonably well for the small da ta  set also.

We use two sample Kolmogorov-Smirnov test to compare the empirical distri­

bution functions of estimated residuals and original mixture white noise. We are 
interested in testing whether or not two sample distributions are same.

H 0 :  A , m ( y )  =  F2,n2(y)

where F1>ni(t/) and F2.n2(y) are empirical cumulative distribution functions of two 
samples. The test statistic is

D = Sup.\F i(y) -  F2(y)|.

The null hypothesis is rejected if

where ri\ and n2 are sample sizes and ka is such th a t P (k  < ka) = 1 — a.

It is suggested that all the diagnostic tests should be performed simultaneously 
one after another. The test of autocorrelation of residuals is the most im portant test 

should be performed first and other tests such as homoscedasticity with zero mean
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and normality of residuals should be performed later.

We explained the key ideas for a  breakpoint tim e series model. In the next sec­

tion, we show how such model can be fitted to provide a reasonable approximation 
to the underlying time variation of error, and we also compare it with the classical 
approach where the measures of goodness of fit of data  using AICc and BIC will be 
given, and implemented in R and SAS.

«
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CHAPTER 4 

APPLICATION

In this section, we test our proposed methodology on two different types of sim­
ulation data  and also apply it to fit the actual data  related to  fish otoliths. The 
simulation will allow us to justify our methodology. As for simulated data, we simu­
late two different types of data. The first kind is a single ARMA model w ith mixture 

of Gaussian noise while the other type is the mixture of different ARMA models from 
different intervals. We implement our proposed method for forecasting and predic- 
tionn of both types of data  and compare the result with the classical time series 
approach. Also, we used the proposed method for forecasting and model fitting of 
real data  related to fish otoliths. Otoliths are the organs th a t detect sound and assist 
balance th a t are found in the inner ear. They are composed of calcium carbonate 

(CaCOs) and trace elements which reflect environmental conditions. Otoliths accrete 
daily bands for the first year of life and yearly bands thereafter (Jones 2002). Each 

band contains a fingerprint of the water chemistry to which the fish was exposed, 
and thus provides a chronology of changing habitat (Campana 1999 and Dorval et 
al. 2007). Our otolith data spans fish-birth years from 1967 to 2000. Otoliths were 
measured for S180  (the ratio of the stable isotopes 180 :160 ) ,  a measure of the oxygen 

isotopes contained in their CaCO z, th a t mirrors water temperatures and origin. In 
our example, we use fish-otolith data collected from Lake Tasiat in eastern Canada, 
near the Arctic Circle. This region has experienced varying tem peratures and pre­
cipitation th a t may reflect climate change.

4.1 SIM U LA TED  DATA

4.1.1 A R M A  M O DEL W IT H  M IX T U R E  OF G A U SSIA N  N O ISE

We simulate an ARMA model with mixture of Gaussian noise. An AR model 

with zero mean, AR component (</>) =  0.4 with mixture of two component Gaussian 
is simulated. The simulated mixture of Gaussian noise has the following parameters

p =  0.3, fj.i =  1, ox =  0.6, p 2 — 3, cr2 =  2.
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Figure 1. AR(0.4) model with noises from mixture of two Gaussians.

First, we fit the model based on classical approach, which fits an ARMA model 
for the entire data. Looking at figure 1 we can see that the data structure does not 

look same and it changes over two different time intervals. Also, there is no seasonal 

component associated with these data. So, we don’t  need to  worry about fitting an 

ARIMA model. Also, both augmented Dickey-Fuller test and Philips-Perron unit 

root tests suggest tha t data is stationary (p-value=0.01). Once stationarity is es­

tablished, now we want to see which model best fit the data. Based on maximum
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likelihood method and minimum Akaike Information Criterion (AICc), we choose 
MA(4) model. The estimated parameters for this model are given in the table below. 
The values in the parenthesis are the standard error estimates.

Table 1. Param eter estimates and se() of MA(4) model for simulated data

A 02 03 04 d 2 AIC BIC log-lik

3.97 0.28 0.13 0.14 -0.12 3.05 802.90 822.69 -395.45
(0.18) (0.07) (0.08) (0.08) (0.07)

Also, table 2 shows the AICs using maximum likelihood method for different 
combinations or AR(p) and MA(g) components. Notice tha t for MA(4) we achieve 
minimum AIC.

Table 2. Summary of AICs using different combinations of p and q for best model 
selection of simulated data

q->
P i

0 1 2 3 4 5

0 0.0 806.8 807.6 804.0 802.9 803.9
1 804.9 806.6 808.5 804.1 803.5 805.7
2 806.6 808.6 808.6 805.5 805.5 805.6
3 808.6 807.4 806.1 805.1 806.8 801.5
4 803.7 803.9 805.8 806.6 807.9 806.4

5 803.7 805.4 806.4 802.5 802.5 804.5

Also, predicted values and twenty future forecast values using MA(4) model to­
gether with the original data are plotted in figure 2. In the figure the yellow band 

after time 200 represents the prediction bound for forecasting.We can clearly see th a t 

model fitting is not very good and many cyclic variations are not captured. Forecast­
ing is even worse, it has large prediction bounds and forecast looks constant. Here, 

the model based on classical approach fails to incorporate the cyclic variation in the 

forecast and i t ’s not capturing the change of data  structure over different intervals
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of time. We overcome these problems by using breakpoints and m ixture distribution 
based forecasting discussed in previous chapters.

oo

CO

Original 
Fitted MA(4)

o

0 50 100 150 200

Time

Figure 2. Forecasting and model fitting of simulated da ta  .

In the next step, we use our proposed method to  the data. First, we identify the 
breakpoints in the data set and divide it into different intervals. Then we fit sepa­

rate models for the data in each interval. Breakpoints are identified according to the 

method discussed in the section 2.2. Using R package strucchange it is reasonable 

to use one breakpoint in the data set. Figure 3 shows different values of Bayesian
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Information Criterion (BIC) and Residual Sums of Squares (RSS) for different break­
points. Our goal is to  take the optimal solution and it is reasonable to  consider one 
breakpoint. Also, if we choose more than one breakpoint, we may encounter the 
problem of overfitting.

'  R S
CO

o
CO
CO

o
CD

o
CO

0.5 1.50.0 1.0 2.0 2.5 3.0

N um ber o f b reak p o in ts

Figure 3. Breakpoint identification of simulated data.

From figure 3 it is clear that at one breakpoint we get BIC= 840.4 and RSS=667.6. 

These values are close to the possible minimum values of BIC (=  833.4) and RSS 
(=  697.7). In the data  set, this breakpoint lies in the 12Ath observation, so we divide 

the data into two parts, 1-124 and 125-200. Now, we fit different ARMA models to 

these two parts and combine the error distributions.

In the data  of both parts no non-stationarity is evident. Phillips-Perron Unit 
root tests suggest the stationarity of the da ta  in both intervals. Also, there are no 

seasonal or periodic components in the da ta  set, so we use ARMA based models 
on both parts. Based on the method of maximum likelihood and minimum AIC, 

We choose MA(3) and ARMA(2, 2) models for first and second parts respectively.
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Tables 3 and 4 show the AIC values for different combinations of AR (p ) and MA(g) 
components.

Table 3. Summary of AICs using different combinations of p  and q for first part 
(1-124 observations) of simulated data

q->
p i

0 1 2 3 4 5

0 0.0 487.8 489.6 486.1 486.7 488.5
l 486.8 488.3 490.2 487.0 488.6 490.5
2 488.5 490.3 488.9 487.7 489.1 489.8
3 489.2 488.0 490.0 488.1 489.6 491.2
4 488.3 489.8 490.3 489.4 490.9 492.9
5 489.3 491.0 486.5 487.0 492.9 494.9

Table 4. Summary of AICs using different combinations of p and q for second part 
(125-200 observations) of simulated data

q->
P i

0 1 2 3 4 5

0 0.0 319.5 320.7 320.9 319.4 320.1
1 318.9 320.9 322.5 321.6 316.3 318.3
2 320.9 322.9 315.2 321.3 318.3 320.3
3 321.9 318.3 317.2 317.9 320.2 322.3
4 316.2 317.9 319.7 319.5 315.8 317.5

5 318.0 319.8 321.7 320.9 317.4 316.7
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Parameter estimates of best models are given in tables 5 and 6.

Table 5. Param eter estimates and se() of MA(3) model for part 1 of simulated da ta

0i 02 4  d 2 AIC BIC log-lik

3.76 0.35 0.14 0.24 2.72 486.06 500.16 -238.03

(0.25) (0.09) (0.11) (0.10)

Table 6. Param eter estimates and se() of ARMA(2,2) model for part 2 of simulated 

data

A 4>\ to 0i 02 a 2 AIC BIC log-lik

4.30 1.34 -0.94 -1.13 0.87 3.08 315.23 329.21 -151.61
(0.25) (0.07) (0.06) (0.12) (0.15)

Notice th a t all comparative measures such as AIC, BIC and Log-likelihood of 
the models obtained by using breakpoints (tables 5 and 6) are significantly improved 
compared to  the model obtained by using classical approach (table 1).

We also check the residuals from each of these fits to  see whether or not they 
meet the autocorrelation test and normality test with homoscedastic variance. Both 
Box-Pierce and Ljung-Box portm anteau tests suggest independence and white noise 

property of the data. P-values for Box-Pierce and Ljung-Box tests are 0.79 and 0.78, 
so we fail to  reject the null hypothesis th a t “da ta  are independently distributed” . 
Figures 4 and 5 show there is no serious autocorrelation between the residuals. Also, 

residuals from both intervals meet the criterion of normality separately. Also, for the 
model based on classical time series approach, the residuals are not normal. Several 
model selection methods based on AIC, BIC and minimum variance were tried and 

in all cases residuals were not normally distributed. This is reasonable, because we 
intentionally simulated the model with mixture Gaussian noise and classical time 

series approach fails to handle this situation.
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Figure 4. Autocorrelation function of residuals from p art 1 (1-124 observations).
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Figure 5. Autocorrelation function of residuals from part 2 (125-200 observations).

The process is invertible, so we can get the actual data from the errors. So for fore­

casting we combine the errors from both parts and estim ate the mixture parameters 
of mixture of two component Gaussian distributions using the EM algorithm. Fig­

ure 6 shows the histogram of combined noise which seems right skewed from normal 

distribution, infact it is the mixture of normal distribution. Also, for combined noise 

we don’t see significant autocorrelation (figure 7), we fail to reject both Box-Pierce



(p-value=0.74) and Box-Ljung(p-value=0.74).
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Figure 6. Histogram of combined residuals of simulated data.
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Figure 7. Autocorrelation of combined residuals of simulated data.

I t ’s a reasonable assumption to consider that the joint distribution is the mix­

ture of Gaussian distribution since the source of residuals are different. We use EM 

algorithm to estimate the model parameters of this mixture distribution. Param eter 

estimation of mixture of two component Gaussian using EM algorithm is presented
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in table 7. Also, figure 8 shows the estimated m ixture density to thether with indi­
vidual Gaussian component density for combined data.

Table 7. Param eter estimates of combined residuals using EM algorithm

P  A i  A  2 d i  <7i

0.32 -1.01 0.48 0.76 1.80

CM
o

- - - Part I density 
- - -  Part II density
- - - Mixed density

tnc
®O

-4  -2  0 2 4

Data

Figure 8. Density of the mixture distribution together with individual component 
distribution for combined residuals.

Now we forecast the next 20 future values using the theory already discussed in
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section 3.1.3.

S im u lated  data  

M ixture 
T im e s e r ie s  

M ixture Cl 

T im e s e r ie s  C S

I
5 0 100 1 5 0 200

T im e

Figure 9. Model fitting and forecasting of simulated d a ta  by using classical time 

series and mixture model approaches.

In figure 9 we can see th a t the model fitting has improved significantly by using the 

mixture model. Most importantly, forecasting of the data  has significantly improved. 
The mixture model forecasting also incorporates the cyclic factor of the d a ta  and the 

prediction intervals are narrower than those of classical approach.
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4.1.2 M IX T U R E  OF D IF F E R E N T  A R M A  M ODELS

We simulate a time series d a ta  with different covariance structures in two different 
intervals. Combination of AR(1), and MA(2) is simulated. For the first interval we 
assume an AR(1) model, and for the second interval, MA(2). The two models are 

generated with equal sample size, ni = — 100. For the AR(1) model, we use AR

component <pi =  0.7, zero mean with variance o \ «  1. For MA(2) model, we use 
the moving average components 6i = 0.5 and 02 =  0.4, mean value of 3 and variance 
o \ «  1.

co

CM —

0)
.2

3

CMI

50 100

time

150 200

Figure 10. Simulated data using AR(1) and MA(2) mixtures .

We fit the regular time series data  based on optimal values of AIC, BIC and 

variance. We used SAS to identify the best model to fit the data. Based on classical
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time series approach, AR(3) is the most reasonable model with minimum variance 
to fit the combined data. Param eter estimates based on AR(3) model is presented 
in table 8.

Table 8. Parameter estimates and se() of AR(3) model for simulated data

A 0i 02 03 a 1 AIC BIC log-lik

1.78 0.34 0.26 0.23 1.44 644.66 0.40 -318.33

(0.46) (0.07) (0.07) (0.07)

Figure 11 shows the actual simulated data  together with the fitted values and 
25 future forecast based on classical time series approach.
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Figure 11. Model fit and forecasting for simulated d a ta  using AR(3) model.

This simulation is chosen intentionally so th a t the model based on classical time 
series approach fits the data very well. Our goal is to show that even for such data, 
our proposed method outperforms the classical method.

We improved the forecasting by identifying the breakpoints where the data struc­

tures were different. Then, we fit different time series models for each intervals. 

Figure 12 shows that one breakpoint is reasonable. There is no significant difference 
in the BIC for choosing one or two breakpoints. Also, choosing more breakpoints 
may result in the over parametrization of the problem, so we choose one breakpoint. 

The breakpoint is observed at 98th observation which is very close to  our simulation 
grouping of 100-100 observations.
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Figure 12. Identification of breakpoints for simulated data.

Once the breakpoint is identified, we fit different tim e series models for each in­
tervals and the residuals from each intervals are combined and their joint density 
is estimated. Table 9 and 10 show the parameter estimates of the best models 

based on minimum AIC for the first 97 observations and last 103 observations of the 
simulated data. For the first interval (1-97 observations), AR(1) fits the da ta  very 

well and for the second interval (98-200 observations) , MA(2) fits the data.
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Table 9. Param eter estimates and se() of AR(1) model for first part (1-97 observa­
tions) of simulated data

fi 4>i a 2 AIC log-lik

0.53 0.67 0.81 264.61 -130.31
(0.27) (0.08)

Table 10. Param eter estimates and se() of MA(2) model for second part(98-200 
observations) of simulated data

A ei #2 d 2 AIC log-lik

3.0 0.51 0.31 1.03 290.14 -142.07
(0.02) (0.10) (0.10)

Assume th a t the residuals from two intervals are normally distributed. The pa­
rameters of mixture distribution are estimated by the EM algorithm. In our simu­

lated data, the initial values for EM algorithm for mixture of two normal densities 
are taken as sample mean and variance of two error components. In our case, the two 
error components have means close to zero and variances are 0.80 and 1.01 for the 
first and second intervals, respectively. The estimated weights (proportions) using 
EM algorithm for both groups is 0.50.

These estimates are used to generate the mixture distribution for forecasting. 
Model fit by using breakpoints and forecasting is shown in Figure 13. Figure 14 
shows the comparison between mixture model and classical time series m odel..
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Figure 13. Model fit for simulated da ta  using mixture model.
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Figure 14. Model fit for simulated data.

The Mixture model has significantly improved model fitting and forecasting. The 

overall variance of the combined residual is 0.90, and the confidence intervals gener­
ated by using mixture model is narrower than th a t generated by regular time series 
model, AR(3). We also compared the similarity of the theoretical and actual cu­
mulative distribution function (CDF) of the combined error. Kolmogorov-Smirnov 

test shows that theoretical CDF based on mixture model is not significantly different 

(p=0.167) from actual combined error at 5 percent level of significance. Figure 15 

compares the empirical CDF of actual error with theoretical CDFs based on classical 
time series model and proposed mixture model.



actual
fitted(mixture)
fitted(TS)

Figure 15. Comparison of empirical CDFs for simulated data.
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4 .1 .3  O TO LITH  DATA

We implement our methodology using to otolith data  obtained from Lake Tasiat, 

Canada. The study of 018 (Oxygen Isotope S180 )  from fish otoliths is useful in 
estimating historical water tem perature and weather. Lake Tasiat has information 

from years 1967 to 2000. Appendix A shows Tasiat data  with other covariates. Our 
main interest is to see the overall change of 018 over time and predict how it will be­

have in future. Average precipitation, average tem perature and average rain are the 
available covariates which may cause changes in 018. Table 11, shows the summary 
of data  from Lake Tasiat. The effects of these covariates axe not significant in the 
linear regression model. The regression coefficients of average precipitation, average 
tem perature and average rain are 0.0355, —0.00035 and 0.021, respectively.

Table 11. Mean and standard deviation of covariates

Avg. 018 Avg. Temp.(°C) Avg. Rain (mm) Avg. Prec. (m m )
Mean sd Mean sd Mean sd Mean sd
-12.62 0.33 -5.70 1.25 22.81 4.34 43.88 5.02

Since, none of the covariates are significant in the linear regression, we fit the

time series model only for average 018 and the effect of other covariates are ignored.
Classical time series approach based on minimum AIC identifies AR(1) as the best 
model to fit the data. Estimate of model parameters are listed in Table 12.

Table 12. Parameter estimates and se() of AR(1) model forTasiat data. 

ft (j>\ cr2 AIC BIC log-lik

-12.60 0.47 0.09 15.50 -2.76 -5.75
(0.09) (0.17)

Figure 16 shows the original otolith data  together with the fitted AR(1) model 

based on classical time series approach. We see th a t the model based on the classical 
time series approach does not fit the data  very well.
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Figure 16. Otolith da ta  and predicted values using AR(1) model.

In order to improve the parameter estimation and for better prediction, our pro­
posed model based on mixture distribution is used. Based on minimal RSS and BIC, 

one breakpoint is identified. Figure 17 shows the breakpoint identification with pos­
sible RSS and BIC. Breakpoint is identified on 23rd observation with corresponding 
break date 1989. The data  are divided into two groups: group 1 with first 1 — 22 

observations corresponding to years 1967 — 1988, and group 2 with observations cor­
responding to  years 1989 — 2000. These consecutive groups are significantly different 

in their regression parameters. The horizontal line specifies the RSS and BIC corre­

sponding to the break date 1989.
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Figure 17. Breakpoint identification of otolith da ta  using window width h =  0.2.

Different time series models based on maximum likelihood method are fitted to 
the intervals separated by the breakpoint. Using minimum AIC criterion ARMA(1,1) 
fits the first part of the otolith d a ta  while AR(1) fits the last part. Parameter es­
timation of fitted models are presented in Tables 13 and 14. The variance of the 

combined residual is 0.07. Since there are few observations in the last part (only 12 
observarions) of the otolith data, we investigate the sampling distribution of mean 

and AR(1) parameters using block bootstrap. Figure 18 shows the sampling distri­
bution of AR(1) parameters for Tasiat data  (1989-2000).



Table 13. Param eter estimates and se() of ARMA(1,1) model for the first part of 

otolith data

h  fa  a 2 AIC BIC log-lik

-12.59 0.24 0.42 0.07 5.36 -6.17 0.32

(0.07) (1.12) (1.05)

Table 14. Param eter estimates and se() of AR(1) model for the second part of otolith 

data

A 0i d 2 AIC BIC log-lik

-12.61 0.68 0.13 11.58 -5.57 -3.79

(0.02) (0.10) (0.10)

A R (1) coefficien t

Figure 18. Sampling distribution of AR(1) parameters for Tasiat 1989-2000 data 

using block bootstrapping with block length 6.

Also, Figure 19 shows the prediction based on proposed mixture model. Model 

comparison between proposed mixture model and classical time series ARMA model
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is shown in Figure 20. It is noticeable th a t the model based on our proposed mixture 

model has significantly improved the forecasting of the data. The confidence intervals 
based on mixture model is smaller than  those based on classical time series model. 

Also, Figure 21 compares the empirical CDFs of Tasiat d a ta  with classical time series 
model and proposed mixture model. The CDF of fitted model based on mixture 
distribution is significantly closer to  the true data.

Forecasting using mixture model
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i

o
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time

Figure 19. Actual data and fitted model using proposed mixture method, BPBF.
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Figure 20. Actual data and fitted model using classical tim e series model AR(1) and 
proposed mixture model, BPBF.
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classical time series model and the proposed mixture model.
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CHAPTER 5 

CONCLUSION

We have introduced a non-linear dynamical probability time series model which 

exploits the idea of breakpoints together with bootstrapping and mixture distribu­
tion. Breakpoints partition the time course into consecutive non-overlapping intervals 
where the coefficients shift from one stable regression relationship to a different one. 

Also, because there are limited observations in some intervals, we use block boot­
strapping to  improve the parameter estimates. The optimal size of the blocks needed 
is chosen such tha t the RSS will be minimum. Once we fit the model for different 
intervals, such information is combined and used in forecasting.

Forecasting partitioned data  which has different model structures at different 
partitions is a  challenging task. Over the last decade there has been much inter­

est in developing breakpoints to  tim e series da ta  in a small sample scale. To our 
knowledge, there are no existing methods th a t discuss the prediction of this type of 
data. We have shown numerically th a t the model accomodates d a ta  with different 
variance structures with the introduction of the breakpoints. The regression and 

the dependency of the parameters in the model have been included in an consistent 
and efficient manner. Regression models with unequal mixed sample frequencies and 
their advantages is still relatively the unexplored area (Andreou et al. 2002). Consis­
tency is guaranteed since we are using the maximum likelihood method, efficiency is 

guaranteed since the bootstrap method is used to resample the d a ta  once the blocks 
have been identified and the predictions lie within the smaller range intervals than 
the classical time series modelling.

Our proposed method is different from other existing methods th a t are based on 

time series data in which different covariates have different covariance structures. 
Typically, for the models th a t are built with the predictors without the breakpoint 

inclusion does not provide substantial forecasting (Stock 2008). We have developed a 
new approach which advances previous concepts with new ideas for forecasting time 

series data th a t are subject to the structural breaks and non-equidistant time. Our 
approach is based on the mixture distribution where the parameters are estimated 

by using EM algorithm combined with bootstrapping. Our approach together with
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block bootstrapping performs very well when faced with small and sparse data  sets 
as we have shown in our real example. Our approach is quite general and can be 
implemented in different ways other than  those documented. Pesaran et al. (2006) 

discussed similar type of data by using Bayesian approach by allowing the possibility 
of new breaks occurring over the forecast horizon. We assume th a t the existence of 

breakpoints in the forecast horizon is some how unrealistic. Our approach is based 
on past data within the intervals and we do not use the information of systematic 
breakpoints in the forecast horizon.

Further questions are being explored. One of the questions is related to  the 
identification of optimal block size for block bootstrapping as discussed in P atton  et 
al. (2009). Another concern is related to  finding a procedure of choosing initial value 
in EM algorithm for faster convergence.
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Year Average 018 Average Temp. Average Rain Average Precipitation
(°C) (mm.) (mm.)

1,967 -12.55 -6.62 22.18 42.39

1,968 -13.00 -4.77 27.19 47.73

1,969 -12.74 -4.98 18.18 45.35

1,970 -13.22 -5.95 17.37 42.57

1,971 -12.32 -5.84 24.05 41.60
1,972 -12.38 -9.08 20.70 39.90

1,973 -12.48 -4.58 24.49 50.02

1,974 -12.52 -6.35 17.22 39.06

1,975 -12.68 -5.74 23.89 42.96

1,976 -12.61 -6.78 20.53 38.48

1,977 -12.75 -4.34 24.42 41.93

1,978 -12.55 -6.98 28.06 49.53

1,979 -12.61 -5.28 27.15 51.91

1,980 -12.30 -5.06 16.74 38.08

1,981 -12.54 -3.21 23.46 44.63

1,982 -12.04 -6.43 22.37 42.68

1,983 -12.45 -6.23 18.41 31.84

1,984 -12.42 -5.73 23.32 40.91

1,985 -12.64 -5.22 21.85 45.32

1,986 -12.90 -6.63 17.56 43.23

1,987 -12.63 -5.75 20.60 43.04

1,988 -12.62 -5.88 22.32 38.97

1,989 -12.70 -6.90 15.22 40.13

1,990 -13.03 -6.68 16.66 38.66

1,991 -13.19 -6.50 20.33 37.39
1,992 -12.75 -7.88 27.63 48.42

1,993 -12.95 -6.75 26.99 50.33

1,994 -13.44 -5.75 19.66 39.78

1,995 -12.75 -4.94 27.69 44.65

1,996 -12.51 -4.19 24.60 48.73

1,997 -12.11 -5.20 33.67 53.08

1,998 -12.44 -4.04 30.02 46.58
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Year Average 018  Average Temp. Average Rain Average Precipitation
(°C) (mm.) (mm.)

1,999 -12.17 -3.44 26.43 50.60
2,000 -12.03 -4.10 24.51 51.58



APPENDIX B

R AND SAS CODES

#########################################

##EXAMPLE I
###Simulation of time series model with mixture distribut' 
##Mixture of Gaussians N(0,9) and N(0,25).
n <- 200 #sample size 
#true values
a <- c(0.3, 0.7) #proportions 
m <- c(l, 3.0) #m: mu
s <- c(0.6, 2) #s: sigma
gm2sim <- function(n, a, m, s) { 
set.seed(123)
x <- rnorm(n) #standard normal
y <- 2 - (runif(n) < a[l]) #1 for true, 2 for false
x <- x * s[y] + m[y] #pick the right mu and sigma
return(list(x=x, y=y))
>

w<-gm2sim(n,a,m,s)$x 
#########################

##AR(1) model with mixture noise; 
ar_mix<-function(n)
■C

set.seed(123) 
yl<-w
for (t in 2:n) 
yl [t]<-0.4*yl[t-1]+w[t] 
return(yl)
>
arl_mix<-ts(ar_mix(200))
### Testing stationarity of the data
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PP.test(arl_mix)
plot(arl_mix,xlab="Time", ylab="Value") 
decompose(arl_mix)
##Decomposition of the model, There are no or less than 2 periods, 
so no seasonal model, i.e. d=0, only ARMA model. 
###################################

###Finding the best model based on minimum AICc using ML method; 
aics <- matrix(0,11,11, dimnames=list(p=0:10, q=0:10)) 
for(q in 1:10) aics[l, 1+q] <- arima(arl_mix, 
c(0,0,q),method="ML")$aic 

for(p in 1:10)
for(q in 0:10) aics[l+p, 1+q] <- arima(arl_mix, 
c(p,0,q),method="ML")$aic 

aics
indicator<-which(aics !=0)
round(aics - min(aics[indicator])) ## See where the 0 is.
###AR(1) came out the best model;
##Fitting the best AR(1) model for the data; 
library(forecast)
sim_fit<-forecast.Arima(arima(arl_mix,order=c(0,0,4),method="ML"), 
h=20,level=95)
## for simulated fit based on AIC 

fitted.sim<-sim_fit$fitted 
residual.sim<-residuals(sim_f it) 
lower.sim<-sim_fit$lower 
upper.sim<-sim_fit$upper 
forcast.sim<-sim_fit$mean
summary(sim_fit) ##gives model fit statistics
####Plot the data 
########################################### 
plot(sim_fit,type="l" ,main="", ylab="value",xlab="Time"
,xlim=c(1,230))
lines(fitted.sim,type="l",col=2,lty=2) 
abline(v=200, lty=3,col="blue")



legend(0,0.7,c("0riginal","Fitted MA(4)"),lty=c(l,2)
,col=c("black","red"),box.lwd = 0,box.col = "white"
,bg = "white")
###################

## Residual diagnostic 
###########################################

###Introduction of breakpoints;
###Identification of breakpoints
##Create a matrix of time and simulated value;
arl_simat<-matrix(0,200,2)
arl_simat[1:200,1]<-c(l:200)
arl_simat[1:200,2]<-ar_mix(200)
colnames(arl_simat)<-c("time","value")
library(strucchange)
brkl <- breakpoints(arl_simat[1:200,2]~arl_simatCl:200,1],h=0.2) 
summary(brkl) 
plot(brkl,main="") 
lines(brkl)
#########Break point at observation 124; 
arl_mixl<-ts(arl_mix[l:124],start=l) 
arl_mix2<-ts(arl_mix[125:200] ,start=125)
##Identification of best models for each part;
#Part I
#Finding the best model based on minimum AICc using ML method; 
aics <- matrix(0,11,11, dimnames=list(p=0:10, q=0;10)) 
for(q in 1:10) aics[l, 1+q] <- arima(arl_mixl, c(0,0,q), 
method="ML")$ai c 
for(p in 1:10)
for(q in 0:10) aics[l+p, 1+q] <- arima(arl_mixl, c(p,0,q),
method="ML")$aic
aics
indicator<-which(aics !=0)
round(aics - min(aics[indicator])) ## See where the 0 is. 
#####################



## Fitting the best model MA(3)
sim_fitl<-forecast.Arima(arima(arl_mixl,order=c(0,0,3), 
method="ML")
,h=20,level=95) ## for simulated fit based on AIC
fitted.siml<-sim_fitl$fitted
residual.siml<-residuals(sim_fitl)
lower.siml<-sim_fitl$lower
upper.s iml<-s im_f itl$upper
forcast.siml<-sim_fitl$mean
summary(sim_fitl) ##gives model fit statistics
####DIagnostic tests
##Auto correlation tests
plot(acf(residual.siml),main="")
plot(acf(residual.sim2),main="")
Box.test(residual.siml,type=c("Box-Pierce","Ljung-Box")) 
##Ljung box autocorrelation tests
Box.test(residual.sim2,type=c("Box-Pierce","Ljung-Box"))
library(fBasics)
hist(residual.siml,breaks=15)
hist(residual.sim2,breaks=15)

ksnormTest(residual.siml) 
shapiroTest(residual.siml) 
ksnormTest(residual.sim2) 
shapiroTest(residual.sim2)
##homoscedasticity
####

###Part 2
aics <- matrix(0,ll,ll, dimnames=list(p=0:10, q=0:10)) 
for(q in 1:10) aics[l, 1+q] <- arima(arl_mix2, c(0,0,q), 
method="ML")$aic 
for(p in 1:10)
for(q in 0:10) aics[l+p, 1+q] <- arima(arl_mix2, c(p,0,q), 
method="ML")$aic
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aics
indicator<-which(aics !=0)
round(aics - minCaics[indicator])) ## See where the 0 is.
############################################

#####################

## Fitting the best model ARMA(2,2)
sim_fit2<-forecast.Arima(arima(arl_mix2,order=c(2,0,2),method="ML")
,h=20,level=95) ## for simulated fit based on AIC
f itted.sim2<-sim_f it2$f itted
residual.sim2<-residuals(sim_fit2)
lower.sim2<-sim_fit2$lower
upper.sim2<-sim_fit2$upper
forcast.sim2<-sim_fit2$mean
summary(sim_fit2) ##gives model fit statistics
##Combined error and parameter estimatiion for mixture distribution 
comb_error<-c(residual.siml,residual.sim2) 
hist(comb_error,breaks=15,main="") 
ksnormTest(comb_error)
Box.test(comb_error,type="Box-Pierce")
Box.test(comb_error,type="Lj ung-Box") 
plot(acf(comb_error),main="") 
library(mixtools)
mix_param<-normalmixEM(comb_error,k=2) 
mix_param
plot(mix_param,which=2,mainl="", main2="") 
lines(density(comb_error),lty=2,lwd=2,main="")
legend(2,0.25,c("Part I density","Part II density","Mixed density") 
,lty=c(2,2,2),col=c("red","green","black"))
# Empirical CDF comparison of breakpoint mixtures and true mixtures 
### Adequacy of mixture model 
############################################

## See how many mixture components are good 
#Evaluate various numbers of Gaussian components by 
#data-set splitting (i.e., very crude cross-validation)
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#Log likelihood function for a Gaussian mixture,
# potentially on new data
dnormalmix <- function(x,mixture,log=FALSE) -[ 

lambda <- mixture$lambda. 
k <- length(lambda)
# Calculate share of likelihood for all data for one component 
like.component <- function(x,component) {

lambda[component] *dnorm(x,mean=mixture$mu[component],
sd=mixture$sigma[component])

>

#Create array with likelihood shares from all components
# over all data

likes <- sapply(l:k,like.component,x=x)
# Add up contributions from components 
d <- rowSums(likes)
if (log) { 
d <- log(d)

>

return(d)
}
#Log likelihood function for a Gaussian mixture, potentially
# on new data
loglike.normalmix <- function(x,mixture) { 

loglike <- dnormalmix(x,mixture,log=TRUE) 
return(sum(loglike))

>

############################  

n <- length(comb_error) 
data.points <- l:n
data.points <- sample(data.points) # Permute randomly 
train <- data.points[l:floor(n/2)] # First random half is training 
test <- data.points[-(1:floor(n/2))] # 2nd random half is testing 
candidate.component.numbers <- 2:10
loglikes <- vector(length=l+length(candidate.component.numbers))
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# k=l needs special handling 
mu<-mean(comb_error[train]) # MLE of mean
sigma <- sd(comb_error[train])*sqrt((n-l)/n) # MLE of sd 
loglikes[l] <- sum(dnorm(comb_error[test] ,mu,sigma,log=TRUE)) 
for (k in candidate.component.numbers) {

mixture <- normalmixEM(comb_error[train],k=k,maxit=:400,epsilon=le-2) 
loglikes[k] <- loglike.normalmix(comb_error[test],mixture=mixture)

>

### Figure of identification of mixture components 
plot(x=l:10, y=loglikes,xlab="Number of mixture components", 

ylab="Log-likelihood on testing data") 
############################################

# Comparison of ECDF of mixture of Gaussian and combined Residuals
# Function to calculate the cumulative distribution function of a 
#Gaussian mixture model
# Presumes the mixture object has the structure used by mixtools
# Doesn’t implement some of the usual options for CDF functions in R,
# like returning the log probability, or the upper tail probability 
pnormmix <- function(x,mixture) {

lambda <- mixture$lambda 
k <- length(lambda)
pnorm.from.mix <- function(x,component) {

lambda[component] *pnorm(x,mean=mixture$mu[component],
sd=mixture$sigma[component])

>

pnorms <- sapplyd :k,pnorm.from.mix,x=x) 
return(rowSums(pnorms))

>

######## Comparison of Mixture cdf(Theoretical) and empirical cdf
distinct.val <- sort(unique(comb_error))
tcdfs <- pnormmix(distinct.val,mixture=mix_param)
ecdfs <- ecdf(comb_error)(distinct.val)
plot (tcdfs,ecdfs,xlab="Theoretical CDF",ylab="Empirical CDF"
,xlim=c(0,1),ylim=c(0,1))
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abline(0,1)
########################

plot(mix_param,which=2,mainl="", main2="") 
lines(density(comb_error),lty=2,lwd=2,main="") 
curve(dnormalmix(x,mix_param),add=TRUE,lty=4,col="purple") 
legend(2,0.25,c("N(-1.00,0.58) density","N(0.48,3.22) density"
,"Mixture density",
"Combined error density"),lty=c(l,1,4,2),col=c("red","green"
,"purple","black")
,box.lwd = 0,box.col = "white",bg = "white")
##Kolmogorov-Smirnov test for two sample density test 
ks.test(comb_error,w) 
ks.test(residuals.sim,w)
###########################################

### Forecasting
forecast_matrix<-matrix(0,220,9) 
forecast_matrix[l:200,1] <-c(l:220) 
forecast_matrix[1:200,2]<-arl_mix
forecast_matrix[1:124,3]<-fitted.siml ##Mixture fitted
forecast_matrix[125:200,3] <-fitted.sim2 
### Forecasting
forecastjmatrix[201,3]<-0.32*(3.7639+0.3484*residual.sim2[76]+
0.1411*residual.sim2[75] +0.2350*residual.sim2[74])+0.68*(4.3021 
-1.3395*4.3021+4.3021*0.9434+1.3395*arl_mix[200]-0.9434 
*arl_mix[199]-1.1308*residual.sim2[76]+0.8701*residual.sim2[75]) 
forecast_matrix[202,3]<-0.32*(3.7639+0.141l*residual.sim2[76]
+0.2350*residual.sim2[75] )+ 0.68*(4.3021-1.3395*4.3021+4.3021*0.9434 
+1.3395*forecast.matrix[201,3]-0.9434*arl_mix[200]+0.8701 
*residual. sim2 [76] ) f orecast ..matrix [203,3] <-0.32* (3.7639+0.2350 
♦residual.sim2[76])+0.68*(4.3021-1.3395*4.3021+4.3021*0.9434 
+1.3395*forecast_matrix[202,3] -0.9434*forecast_matrix[201,3]) 
for (i in 204:220){
forecastjmatrix[i,3]<-0.32*3.7639+0.68*(4.3021-1.3395*4.3021 
+4.3021*0.9434+1.3395*forecast_matrix[i-1,3]-0.9434



*forecast_matrix[i-2,3])}
forecast.matrix[201:220,4]<-sqrt(0.32'2*0.03124*3.083+0.68~2*3.083) 
## 0.03124 is the variance of thetal+var_theta2+var_theta3 
for(i in 201:220)
{
forecast_matrix[i,5]<-forecast.matrix[i,3]-1.96*forecast.matrix[i,4] 
forecast.matrix[i,6] <-forecast.matrix[i,3]+1.96*forecast.matrix[i,4] 
>

forecast.matrix[1:200,7] <-fitted.sim ##Regular time series fit 
forecast.matrix[201:220,7]<-forcast.sim 
forecast.matrix[201:220,8]<-lower.sim 
forecast.matrix[201:220,9]<-upper.sim
colnames(forecast_matrix)<-c("time","actual","forecast.mix","se.mix" 
"mix.ll","mix.ul","ts.fit","ts.ll","ts.ul") 
dim(forecast.matrix)
############################

is ,na(forecast.matrix)<-(forecast.matrix==0) ##convert 0's to NA. 
####Plot the graph
plot(arl_mix,type="l",main="", ylab="value",xlab="Time"
,xlim=c(l,230))
lines(forecast.matrix[,3],col="red",lty=2) 
lines(forecast_matrix[,7],col="green",lty=4) 
lines(forecast.matrix[,5] ,col="brown",lty=3) 
lines(forecast_matrix[,6] ,col="brown",lty=3) 
lines(forecast_matrix[,8],col="blue",lty=5) 
lines(forecast.matrix[,9] ,col="blue",lty=5) 
abline(v=200, lty=3)
legend(8,9.5,c("Simulated data","Mixture", "Time series","Mixture Cl 
,"Time series CS"),lty=c(l,2,7,3,5),col=c("black","red","green"
,"brown","blue"),box.lwd = 0,box.col = "white",bg = "white")



#####################################

## Example 2, (SAS Codes)
###Mixture of AR(1) and MA(2) models 
##############################################

/*AR(1) with model phi=0.7 and mean=0;
* /

libname diss "G:\Research\Rajan AISC paper\data"; 
run;
* *

data diss.arl;
title Simulated AR(1) Series; 
ul = 0;
do i = -50 to 100; 
time=i;
u = 0.7*ul + rannor( 32565 ) ;
if i > 0 then output;
ul=u;
end;
run;
proc arima data=diss.arl; 
identify var=u minic nlag=15; 
run;
estimate p=l ;
forecast lead=25 id=time out=plforecast printall; 

run;
**Simulating MA (2) with parameters thetal=0.5 and theta2=0.4, 
mean=3;
data diss.MA2;
title ’Simulated MA(2) model’;
al=0;
a2=0;
do i=-50 to 100; 
time=i+100; 
e=rannor(1234);
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u=3+e-0.5*al-0.4*a2;
if i>0 then output; **First 50 observations are removed;
a2=al;
al=e;
end;
run;
proc axima data=diss.ma2; 
identify var=u minic nlag=15; 
run;
estimate q=2 ;
forecast lead=25 id=time out=p2forecast printall;
run;
quit;
** Combined data; 
data diss.combined; 
set diss.arl diss.ma2; 
keep time u; 
run;
***Plot the data;
AXIS1 LABEL= (ANGLE=90 'value’) ;
AXIS2 LABEL=('Time’) order=(0 to 250 by 20)minor=none ;
SYMBOL1 V=D0T C=black I=J0IN H=0.1 W=0.5;
PROC GPLOT DATA=diss.combined; 
where time<=200; 
title 'simulated data’;
PLOT uptime/ VAXIS=AXIS1 HAXIS=AXIS2 href=100 ;
RUN; QUIT;

**Fit the best model for combined data using regular time series 
modeling;
* we fit the model for first 200 observations and remaining 30 
observations are forecasted;
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ;  

proc arima data=diss.combined;
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identify var=u minic scan esacf; 
run;
estimate p=3; 
run;
forecast lead=25 id=time out=reg_results printall;
run;
quit;
data diss.all_withforecast_ts; 
merge reg_results diss.combined; 
by time; 
run;

***Plot the data with original values;

Legendl label=(height=l position=Top justify=center ’’) 
value=("Actual" "Forecast" "95% Cl" "" ) 
across=l down=4
position = (bottom center inside) 
mode=protect;
AXIS1 LABEL=( "Time") order=(0 to 250 by 20)minor=none;
AXIS2 LABEL=(ANGLE=90 "Value") ;
SYMBOL1 V=D0T I=J0IN H=0.1 W=0.5;
symbol2 V=D0T C=blue I=J0IN H=0.1 W=0.5 line=3;

SYMB0L3 V=none I=j C=red line=2;
symbol4 V=none C=red I=j line=2;

* *

Proc gplot data=all_withforecast_ts; 
title ’Simulated data’;
plot (u forecast 195 u95)*time/overlay href=(100,200) haxis=axisl 

vaxis=axis2 legend=legendl; 
run; 
quit;
** Residual plot;
proc gplot data=all_withforecast_ts;
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title "Residual Plot"; 
plot residual*time; 
run; 
quit;

**Chow test to see the significant difference at the break points; 
proc autoreg data=part; 
model u=time/chow=(100); 
run;
/* For forecasting , we need to get STD from part 2 by fitting 
both models;*/ 

data parti; 
set plforecast; 
if time>100; 
rename std=stdl; 
timel=time+100; 
drop time; 
rename timel=time; 
drop forecast u L95 U95 residual; 
run;
data part2; 
set p2forecast; 
if time>200; 
rename std=std2;
drop forecast u L95 U95 residual; 
run;
data new;
merge parti part2;
/* the variance of forecast values depends on the variance 

of last part times weighted sum of parameter estimests phi_i so*/ 
std=(0.5)*(stdl*l.200599/0.899629)+(0.5)*std2; **1.200=std of 

part 2 , and 0.899=std of part 1; 
drop stdl std2; 
run;



**** combined forecast for each segment data; 
data part2forecast; 
set p2forecast; 

if time<=200; 
run;
data partlforecast; 
set plforecast; 

if time<=100; 
run;
♦♦Concatenating all results from two parts; 
data diss.all_part_forecast; 
set partlforecast part2forecast new; 

run;
******************************************

♦♦♦Forecasting ********************************

Proc IML;
use diss.all_part.forecast; 
show names; 
show datasets; 
show contents; 
read all;
all_pred=timeI|u|I forecast I IstdI|L95|IU95II residual; 
print all.pred;
/♦nr= nrow(forecast); 
nco=ncol(forecast); 
las=forecast[782] ;*/ 
forecastO=j(225,7,0);
/♦ j(a,b,c) creates the matrix of a rows, 
b cols with c values, 52 forecast weeks^/ 
print forecastO;
do i=l to 200; ♦Replacing 1-783 with previous predictions; 
forecastO[i,1]=forecast[i]; 
forecastO[i,2]=L95 [i];



forecastO[i,3]=U95[i]; 
forecastO[i,4]=u[i]; 
forecastO[i,5]=time[i]; 
forecastO[i,6]=std[i]; 
forecastO[i,7]=residual[i]; 
end;*/
print forecast;
/* estimates from two parts of weekly data*/
mul=0.53140;
mu2=2.99696 ;
phi=0.67236 ;
thetal=0.51074 ;
theta2=0.30737 ;
pl=0.5; /^Proportion of first part*/
p2=0.5; /* Proportion of second part*/
/♦♦Forecasting based on weighted estimates*/ 
forecastO[201,1]=pl*(mul+phi*(u[200]-mul))+p2*(mu2 
-(thetal*residual[200])-(theta2*residual[199])); 
forecastO[202,1]=pl*(mul+phi*(forecastO[201,1]-mul))
+p2*(mu2-(theta2*residual[200] ));

do i=203 to 225;
forecastO[i,1]=pl*(mul+phi*(forecastO[i-1,1]-mul))+p2*(mu2); 
end;
do i=201 to 225;
forecastO[i,2]=forecastO[i,1] -1.96*std[i] ; 
forecastO[i,3]=forecastO[i,1]+1.96*std[i]; 
forecastO[i,5] =i; 
forecastO[i,6]=std[i]; 
end;
print forecastO; 
show contents;
create mydatal from forecastO;
Append from forecastO ;* VAR{forecast L95 U95 avg week};
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quit;
data diss.mixtureforecast; 
set mydatal;
rename coll=mixfrcst col2=mix_L95 col3=mix_U95 col4=u col5=time
col6=mix_std col7=mix_residual;
run;

** Combining all results from ARMA and Mixture model into one data;
data armamodel;
set diss.all_withforecast_ts;
run;

data diss.all_forecast_mix_simulation; 
merge armamodel diss.mixtureforecast; 
by time;
if time=0 then u=.; 
if u=0 then u=.;
if mix_residual=0 then mix_residual=.; 
run;
**Testing the autocorrelatio of combined residuals of mixture model; 
proc autoreg data=diss.all_forecast_mix_simulation; 

model mix_residual = time / dw=6 dwprob; 
run;
***Variace estimation of combined residual of mixture model; 
proc means data=diss.all_forecast_mix_simulation; 
var mix_residual; 
run;
#####################################

##Example 3 (Otolith Data), Block Bootstrap and EM algorithms only 
#####################################

###Identification of break points ;
tasiat<-read.table("E:/Research/Rajan AISC paper/data/tasiat.txt"
,header=TRUE,blank.lines.skip = FALSE); 
library(strucchange)
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### We want to see the empirical fluctation; 
efp(avg_ol8 ~ avg_temp + avg_precip + avg_rain, data =tasiat) 
fluctl<-efp(avg_ol8 ~ YRJFORM, data =tasiat) 
plot(fluctl,main="Fluctuation for lake Tasiat")
## Identification of breaking points;
brkl <- breakpoints(avg_ol8~YR_F0RM, data =tasiat,h=0.2) 
summary(brkl)
plot(brkl,main="Breaking points for lake Tasiat by taking h=0.2") 
lines(brkl)
#################################

# AR(1) fits the part 2 data, but there are only 12 observations,
# so we use Block bootstrap to improve the parameter
# estimation
#Parameter estimation using Bootstrap; 
##################################;

### First we estimate the optimal block size within each partition; 
##Second Part of the data;
tasiat2<-ts(tasiat[23:34,3],frequency=l, start=1989)#0nly Average ol8; 
library(np)
b.star(tasiat2,round=TRUE)
##Gives optimal block length=2, but it's less than 1/3 of the size,
#so we take block length=6 for better estimate;
#First we create a function that output the parameters for AR(1) model; 
boot.func<-function(y){
{
store<-rep(0,61) ## we store output in this vector, 6:12 are related 
to residuals of fitted model; 
set.seed(1234)
aics <- arima(y, c(l,0,0),method="ML")
## Forecast standard errors; 
library(forecast)
siml.pred<-forecast.Arima(aics,level=95) 
est<-as.vector(siml.pred$mean) ##10 forecasts
actual<-as.vector(tasiat2) ## Actual values
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fit<-as.vector(siml.pred$fitted) 
resi<-as.vector(siml.pred$residuals) 
stdl<-(siml.pred$lower-siml.pred$mean)/(-l.96)
##Lower limit-est/-l.96 gives st. error for 95 % Cl.

###### Parameter estimates based on Minimum AIC and ML method; 
##Storing all values in a vector;
store[1]<-aics$aic ## It stores Minimum AIC value; 
store[2]<-aics$sigma2 ## It stores samplign variance; 
store [3]<-aics$loglik ## it stores log likelihood ; 
store[4:5]<-aics$coef
#it stores coefficients in the order of AR and intercept; 
store[6:17]<-actual ## Actual values 
store[18:29]<-fit ##it stores the residuals 
based on the model with min. variance.; 
store[30:39]<-est ## forecast values
store[40:49]<-stdl ##Standard errors 
store[50:61]<-resi ### Residuals 
>

store 
> .

######################; 

library(boot)
#### block bootstrappping estimating AR1 parameters only; 
block.arlboot <-tsboot(tasiat2, boot.func, R=5000, 1=6, sim = "geom") 
##mean block length 1=6; 

block.arlboot
block.arlresult<-block.arlboot$t 
################### 
boot.thetal<-block.arlresult[,4] 
boot.mean<-block.arlresult[,5] 
density.thetal<-density(boot.thetal) 
density.mean<-density(boot.mean)
##Parameter estimateion using EM on combined errors; 
error<-as.vector(c(error1,error2))
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hist(error) 
hist(errorl) 
hist(error2)
####EM function;
W = error
s = c(0.65,mean(errorl),mean(error2), var(errorl),0.012522239 )

##Initial value of p=22/34. 
em = function(W,s) {
Ep = s [1]*dnorm(W, s[2], sqrt(s[4] ))/(s[l]*dnorm(W, s[2], sqrt(s[4])) 
+ (l-s[1] )*dnorm(W, s[3], sqrt(s[5]))) 
s[l] = mean(Ep) 

s[2] = sum(Ep*W) / sum(Ep) 
s[3] = sum((l-Ep)*W) / sum(l-Ep) 

s[4] = sum(Ep*(W-s[2])*2) / sum(Ep) 
s[5] = sum((l-Ep)*(W-s[3] )~2) / sum(l-Ep)

s
>

iter = function(W, s) { 
si = em(W,s) 
for (i in 1:5) { 
if (abs(s[i]-si[i]) > 0.0001) { 
s=sl
iter(W,s)
>

else si 
}
si

>

iter(W,s)
options(expressions=100000) ## Improves memory to run the program
result<-iter(W,s)
result
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