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ABSTRACT

ANALYSIS OF 
REPEATED MEASURES DATA 

UNDER CIRCULAR COVARIANCE.

Andrew Montgomery Hartley 
Old Dominion University, 1997 
Director: Dr. Dayanand N. Naik

Circular covariance is important in modelling phenomena in epidemiological, communications and 

numerous physical contexts. We introduce and develop a variety of methods which make it a more versatile tool. 

First, we present two classes of estimators for use in the presence of missing observations. Using simulations, we 

show that the mean squared errors of the estimators of one of these classes are smaller than those of the Maximum 

Likelihood (ML) estimators under certain conditions. Next, we propose and discuss a parsimonious, autoregressive 

type of circular covariance structure which involves only two parameters. We specify ML and other types of 

estimators of these parameters, and present techniques for selection between various covariance structures related 

to circular covariance. Finally, we consider estimation assuming that observations on different individuals are 

correlated in various ways. This model is generalized for use when varying numbers of observations are taken on 

individuals. In all these contexts, we combine the measurements on individuals with covariates of varying 

dimensions, and consider estimation of the correlation between the observations and the covariates.
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1

I PRELIMINARIES AND INTRODUCTION

1 In many biological and physical situations in which measurements on individuals are taken 

at relatively uniform intervals in a circular fashion, it happens that each measurement is equally 

correlated with the two measurements next to it, equally correlated with the two measurements 

next removed from it, and so forth. For instance, the disease incidence rate in each (relatively 

homogeneous) geographical sector around the business district of a city may correlate equally with 

those of neighboring sectors. Alternatively, during an outbreak of a disease, the incidence rate in 

any sector around the initial etiological agent may correlate with those in neighboring sectors. As 

a third example, in oil exploration, an explosive charge is frequently placed and detonated at the 

earth’s surface at the center of a circle o f microphones. The microphones subsequently record the 

echoes they receive from the lower strata of soil and rock. Characteristics o f the echoes received 

by each microphone may be equally correlated with those of the two microphones next to it, 

equally correlated with those of the two next removed from it, and so on. In any of these three 

examples, the degree of correlation between any two points around the circle is a function of the 

number of points between them, moving along the shorter distance around the circumference. 

This type of covariance is known as circular covariance.

If the observations , j  =  L, 2 ,..., a  within individual i. i =  L, 2 ,..., n  are correlated accord

ing to a circular covariance structure, and these are assembled in a vector Xi, then we may write 

cov (Xi) =  C, where C has elements

a u - i '\  7 |I — l'\ <  a /2 ,
(C)u , =  cou(xn,xu>) = (1)

<7q-k_i'|, \l — F| >  a /2 .

The pattern of the middle terms of C depends on whether a is odd or even, as is shown below

1 The journal model for this thesis is C om m unica tions In  S ta tis tic s .

i
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for a =  4 and a =  5: if a is odd, then <X(0_ xyn appears twice in each row of C.

OQ 0 1 O  2 0 1

o \ o 0 0 1 0 2

0 2 O l OQ O l

O I O o 0 1 O q

Oq 0 \  O? ° 2  o  i

0 \  Oq Cf i (J*i O 2

0 2  0 \  O o O i 02

02  02  O i Oq O i

O  i 0 2  & 1 0Q

Applications of circular covariance matrices abound in public health contexts. In a study of 

the distribution of typhus fever in cities in the Southeastern United States, for instance, Maxcy 

(1926) concluded that the focal point of the spread of this disease in most cities was the heart 

of the business district, where the greatest number of contacts occur between infectious and 

susceptible persons. Maxcy’s findings confirmed the validity of the model proposed by Hamer 

(1906), which considered the potential for the spread in any community of any one of a broad 

class of infectious diseases to be the product of the number of contacts between susceptible and 

infectious individuals, and a “transmission constant” 3. Thus, it is plausible to  suggest (at least 

in most cities) that the incidence rates of any one of these diseases in the sectors around the 

city center correlate more or less equally with the rate of the city center, and that (as we have 

suggested at the outset of this section) the rates in the sectors are correlated with each other in 

a circular fashion.

Modelling the circular covariance structure of the disease rates in these sectors may offer 

significant advantages in studying the effectiveness of interventions performed to improve public 

health. For instance, a popular method of conducting a “community trial” (Lilienfeld and Stolley, 

1994, p .181) is to select two or more cities which are as similar as possible in pertinent baseline 

measurements and other, qualitative characteristics, and then intervene in one or more o f them. 

The intervention usually consists of disease control measures such as education or immunization 

programs, or renovation efforts in public housing. Differences between the cities in the distri

bution of a disease or of another public health measure are ultimately examined to assess the 

effectiveness of the intervention. However, the rates of transmission of many contagions, such

£
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as influenza, are affected to a large extent by external factors (weather, disease exposure, etc.), 

and therefore an important source of variation in th e differences between the incidence rates of 

the cities is the effect of these factors that bear upon the entire cities to different extents after 

the baseline measurements are taken. Furthermore, as noted by Anderson (1982) and described 

in detail for measles in New York City by York and London (1973), many of these disease rates 

exhibit strong (often negative) autoregressive patterns from year to year, and disease rates of 

entire cities commonly are at different points in their autoregressive cycles. A method which 

may reduce the effect of the variation between cities due to these factors, is to allocate control 

and treatment locales among sectors of the same city. If the (likely circular) covariance parame

ters (and, ideally, the means) of the incidence rates o f these sectors have been estimated with 

reasonable precision, then simple likelihood ratio tests, multivariate linear regression and other 

statistical tools may be implemented to quantify and test for the effects of the intervention in 

the treatment sectors.

Countless examples of the usefulness of circular covariance matrices appear in mechanical 

engineering contexts, as well. For instance, even a slight out-of-balance condition in certain ro

tating mechanical components can have a negative impact on the lifespans of both the component 

itself and its parent equipment. Currently, the most sensitive means of quickly detecting such 

a condition, as described by O’Connor (1993a), refracts laser beams, assessing the asymmetry 

of the profile of the component through the pattern o f misalignments measured by the beams. 

However, the tests must often be conducted outside o f a vacuum, and doing so introduces in

terferences due to wind currents, airborne particulates, and extraneous magnetic charges. Thus, 

it sometimes becomes necessary to account for randomness in the recording of the componen

t's profile. In an adequately balanced component, if one were to extract measurements from a 

number of evenly spaced points along the period of one rotation, the patterns of misalignment 

("false positives”) produced at these points by these purely environmental perturbations could 

be expected to follow a circular covariance structure with a uniform mean for the measurements 

around the circle.

€
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There is also a need to quickly detect out-of-balance conditions among the blades of the rotors 

in steam turbines, in distributions o f weights, temperatures and vibrations, in the presence of a 

myriad of varying environmental, load and velocity factors (O’Connor. 1993b). Under normal 

conditions, any of these types of measurements on the blades could be expected to follow a 

circular covariance pattern.

Lastly, whenever it is necessary to investigate the turbidity (or another characteristic) of a 

fluid in an enclosed, circular space (such as the interior of a pipe), and measurements are taken 

at relatively uniform intervals around the circumference of the space, these measurements could 

be modelled using circular covariance matrices.

Olkin and Press (1969) completed the first work combining understanding of the spectral de

composition of C with a statistical model. They examined a model involving normally distributed  

data with circular covariance wherein the first row of C is, applying ( I ) , with m =  int  ( a /2 ) ,

( a o , a 1, 02 ,. . . ,crm_ l ,o-m,<7m_ 1,.. . ,eri) • a =  2m,  (2 )

(a*o,°'i,or2 ,...,£7’m_ 1,<7m,a m,£Tm_ [ , . . . ,C i), a =  2m 1.

They assume (co,<7 i,C 2 ,...,o 'm) are unrelated parameters, subject only to the restriction C > 0, 

that is, that C  is positive definite. As illustrated in (1 ), the subsequent rows are all cir- 

culants of this first row. Olkin and Press showed the first m +  1 eigenvalues of C to be 

Sj =  (c o ,c i,C 2 , . . . ,c m) B j , where Bj  is the j f/lcolumn of B , j  =  l ,2 , . . . ,m +  I, and B  is the 

nonsingular (m +- 1) x  (m -I- I) matrix having elements2

2 Olkin and Press write th a t the subscript on the a j  in bji indicates the column in which it appears. T h a t this 
is an error becomes evident when one calculates the eigenvalues S i,i  = 1 ,2 ,..., a  of C  using a lemma in Basilevsky 
(19S3, p .223). When the first row of C  is specified by (2), the lemma gives

f 2rrt(l -  1)" A  1” 2iri(l -  1)1
Si =  % o-{_! cos j -------------- j +  y .  (T o^l-icos 1-------------- ; =

nr; 1 ° J i= t t2 t a j
V ^! f2ira(l -  IT2 ^  a ia i _ i oos | -------------- j  .
1=1 -  a  -

Hence the subscript on each Q j , j  =  1, 2 ,..., m  + 1 must correspond to the row, not the column, of B  in which a j
appears. Also, using the fact th a t cosfl =  cos(27re -  0), for any integer c and angle 9, their expression

'2 ir ( j  ~ l)(n  -  I + 1) ;
COS t “ ■ ■ !

a

in th* definition of bji simplifies slightly to the expression we give here.

i
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(

bji =  Qj cos
2"(j - ! ) ( / _  1)

(3)

1, a =  2m,
Note the first rowHere a t =  l . a 2 = 0 3  =  — =  a m =  2 and Qm- i  =

2 , a =  2m 4 - 1,
(but not the first column) of B  is V.  a (1 x (m 4- 1)) vector of unities. The last a — m  — 1 

eigenvalues of C are generated using 6j =  6a- j ^ 2 , j  — m + 2 ,m  +  3, The multiplicity of 6j is

c t j , j  =  1.2, ...,m 4- I. and th e positive definiteness of C implies > 0 .  That the elements of B do 

not depend on (0 0 , 0 1 , 0 2 , . . . ,0 m) is both remarkable and convenient; it implies that estimators of 

S' =  (6 1 , 62 , . ..,6m_ t) can easily be mapped to estimators o f (0 0 , 01 , 0 2 . — ,cTm). Olkin and Press 

(1969) took advantage of these properties of C to derive the Maximum Likelihood Estimator 

(MLE) of the 6j  and thus o f the . The developments in all the sections of this thesis make use 

of this MLE. Olkin and Press also derived Likelihood Ratio Tests for selecting between spherical, 

circular and general (unrestricted) covariance.

A more recent paper treating circular covariance matrices in the context of statistical models 

was that of Khattree and Naik ( 1994a), which extended the results of Olkin and Press by pairing 

a covariate (such as a ‘‘parent’s” score) p, having variance 0’pp with each Xi (scores on “siblings” 

(sibs)) having circular covariance. In the framework of multivariate normality, Khattree and Naik 

calculated the ML estimate of the interclass correlation coefficient pps =  cov(pi ,Xi j)  / v/0’pp0'0 , 

and identified its distribution under various sets of assumptions about the mean structure and 

about 0 pp.

Because such “parent-sibling” terminology is quite common in discussions o f repeated mea

sures models, we adopt it throughout most of this thesis. It is not envisioned, however, that many 

particular characteristics about sibling? will have circular covariance patterns, unless the sibs are 

born or hatched at roughly evenly spaced points in time throughout the year, and the charac

teristics depend on the season in which the sibs are born or hatched. Thus, this “parent-sibling” 

language is purely a conceptual aid, not intended to suggest a particular application.

This thesis extends the ideas of Olkin and Press (1969) and Khattree and Naik (1994a)

4)
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in a number of ways. Section 2 considers parameter estimation given non-normaiity or when 

elements may be missing from the x ,.  Two estimation procedures are developed; the first enjoys 

the benefit of unbiasedness, even when the (possibly incomplete) data arise from a non-normal 

distribution, and the second (drawing important ideas from the Expectation and Maximization 

(EM) Algorithm) is superior due to  the smaller mean squared errors o f its estimators, given 

data arising from normal or t-distributions, when na is small or when a small proportion of the 

observations are missing.

In Section 3, we extend Olkin and Press’ work by introducing a highly parsimonious, •‘au

toregressive” case of circular covariance in which the parameters u'  — (oq,(T\, are all

functions of just two parameters (er2, p ) . After describing the model and its advantages, we de

rive the ML estimate of (o2,p ), as well as an alternative, relatively nonparametric estimate of 

p whose performance is superior to  that of the MLE for small sample sizes. Then, we describe 

two methods of selecting between spherical covariance, “autoregressive” circular covariance and 

the general, relatively unrestricted circular covariance which Olkin and Press discuss. We also 

present estimation methods for use when the numbers of sibs vary between families, using the 

MLE when the sample size is large, and the relatively nonparametric, alternative estimator of p 

when the sample size is small or the data are non-normal.

In Section 4, we estimate the parameters when observations in different families may be 

correlated. That is to say, assume families may be grouped into “cousinships," and any two 

sibs in different families in the same cousinship are stochastically related through one or more 

“compound symmetry” covariance parameters. Estimators are developed under these conditions 

and various assumptions about numbers of families in each cousinship, numbers of sibs in each 

family and the inter-family covariance structure.

All sections extend the ideas of Khattree and Naik by adding a parent’s score to each vector 

Xi (and, in some cases, a grandparent’s score to each cousinship of families) for each case that 

has been cited above as an extension of Olkin and Press’ work. Estimation procedures have been 

outlined for every one of these cases.

J
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2 ESTIMATION'. DATA MISSING COMPLETELY AT RANDOM

2.1 Introduction. While the methods o f Olkin and Press (1969) can be used to find the MLE of 

the circular covariance parameters given a complete, roughly multivariate normal dataset, they 

cannot be immediately implemented when data are missing, or when the assumption o f normality 

is severely violated. In this section we develop two distinct methods for estimation when data 

are incomplete or non-normal. The first method estimates all the covariance parameters without 

bias and the second, more efficient (for small datasets, assuming normality) method applies 

certain aspects (while employing commonsense substitutes of other aspects) of the Expectation  

and Maximization (EM) Algorithm (Little and Rubin, 1987). With simulations, mean squared 

errors o f the estimators produced by these methods are compared assuming various multivariate 

normal distributions and several of the t  distributions. We also develop parameter estimation 

when the observations (the scores on “siblings”) following circular covariance are combined with 

a covariate ( “parent’s” measurement) on each family.

In a case related to the present, missing data case, families are available with different 

numbers of sibs in each family, and the covariance between any two sibs is a function of the  

number of sibs between them, moving along the shorter arc between them. More formally, this 

is to assume that two or more distinct family sizes ai < <  ... <  ac are observed, and in any

family having a* sibs,

I < “ fc/2,
COV^Xij^ij.) =  <

<Ta k - \ j - j ' \ , \ j  — j  I ^  a fc/2,

Xij being the score of the j th sib in the i th family of the group. One may refer to this setup as

“unbalanced,” to distinguish it from the “missing data” case of this section, in which all families

have the same number of sibs but some o f the sibs’ scores are unavailable. The “unbalanced”

case requires different estimators than the ones introduced in this present section; Section 4 of

this thesis discusses a version of the “unbalanced” case, deriving an overall estimator of each <T/

by grouping families according to the ak, estimating all the ct/ possible within each group, and

combining the resulting within group estimators.

i l
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8

(C)jfc =

2.2 Unbiased Estimation of Circular Covariance Parameters. No Missing Data. To shorten cal

culations in later subsections, we first consider the case in which no data are missing. Assume the 

data consist of n families’ measurements x ,, i =  1, 2 , n, each o f which is a (a x l)-variate (pos

sibly non-normal) vector having mean pil and covariance C , where the elements of C, following 

Section 1, are
/

-  *1 ^  “A

f f . - j - n .b '  -  *| >  a / 2 .

Many situations, including some listed in Section 1, will necessitate different mean structures 

from that given by \x 1. In these cases, the methods o f the present section will not apply.

Let m  =  int ( a / 2 ) . Note that whereas <T; =  E [(x y  — /r) (xtJ_i — //)] if j  -I-1 <  a, it may be 

shown that

E [(x tJ - r t) (x tiJ_, - x , ) ]  =  ai - a ~ l

Here, x , is the sample mean of the i th family, and the sum is over the first row3 of C, which is 

(ero,£7l ,....CTm-l,O-m,0’m -l,.~.O -l) if U — 2 TTl and (&Q, (T i ,..., (J ttx _ x , n'm • n'm, G-m — 1, ) if a =

2m -+- 1. Hence it seems that, whether or not data are missing, any estimator of a { composed of 

sums of the form (xij — Xi) (x ,j_ ( — x^) is biased unless ^  Oj =  0 .

Estimators involving sums of terms of the form ( — X(ij) (x ,tJ-_j — X(,)), j  -+-1 <  a, where 

x (>) =  [(n — 1) a] ” 1 H J = ix s> is sample mean of all measurements excluding those of 

the i th family, are biased as well, despite the independence of x,_, and x^j, and that of Xi,j~i and 

i ( t). Specifically,

E  [ (xtj -  x (i)) (xt>J_, -  x (t))] =  a t 4 - (7î fri>) --

However, terms of the forms x lJ(xlJ^i —x ^ ) , j +1  <  a, and x l} (xXt}̂ a î —x ^ ) , j  +  a — l <  a, 

are unbiased for <7;:

E [x.jCx^j., -  x (l))] =  E  [x0 (x i,j.a_f -  x(i))] = o t  + n2 -  [j,2 = cri-

3 Equivalently, any row; the rows of C  are all circulants of th e  first row, moving the elements of the first row 

to the right and wrapping the last element back to the left.

i
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In what follows, we estimate a ; by taking an average <7; of terms of this form. This estimator is 

generalized in the next subsection to the case in which data may be missing.

For Z =  0, let Ai = { ( i , j , k )  : j  <  k,cov{xl}, x lk) =  <7;}. Also let c; be the cardinality'

of A;. Then, upon proposing

Xij(Xik — ^(i))

as an estimator of 07, we have E (d /) =  07.

Let us describe the elements of A;, and find an expression for q . When a is even and I =  a /2 ,  

upon distributing the x tJ among the terms x,* and X(:) of the second factor of each term in 07 , 

the first set of terms of qo i  is

n I

^ 2 Xii Xik =  (4)
A( i=l ]=1

and c; =  na/2. Next, for any a and any I <  a /2 ,  the first set of terms of cidi is

~a-l i

^2 x 'JXik ~  5Z
A( t=l

^  ] x,jX, ^  ' xjjXj j.*g - i
j = 1 j= l

(5)

and q =  na. For instance, take a =  6 and 1 =  3 =  a/2. Fixing i, the only pairs ( x ^ x ^ )  such 

that cov(xtJ,x,k) =  oi are

i 11 *t’i4) i («^t21^ 15) and (X j3,X j6) ,

so that ci = 3  n. However.ifZ =  2 <  a /2 , the number of pairs (x^. x,*) such that cou(xt], x lk) =  Oi 

doubles. These pairs are

(-^11 ? 13 ) t (*l'i2 t *̂14) j 'I'to ) ? (^14, ^ tS  ) 1 (•£ 11 j -^io ) and (x l2,x i6),

keeping the second subscript of the second coordinate in each pair greater than that of the first,

to conform with the specifications of the elements of A j. Here, C; =  6n =  an. In any case, 

an, Z <  a/2.
C| =

an/2, Z =  a/2.
\

Expressing each 07 as a quadratic form will aid in the calculation of its variance. We first 

express each Y ‘̂j = [ x i]x i,j~i as a quadratic form. For any Z =  0, 1 ,2 ,... ,a, let S( be obtained by 

shifting all the elements of an a x a identity’ matrix upwards by Z positions. Note that S[ has
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a — I nonzero elements and rank a — I, that So is an identity matrix and S tt is a zero matrix, and 

that premultiplying x, by S; shifts the elements o f x t upwards I positions, leaving zeros in its 

last I positions. Therefore,

a-/
x 'S iX i =  X a x t>1_ / 4-Xi2X^2~i 4- ... 4 -x i,a_/Xia =  a n d

>=i
i

X^Sa —/Xi — XjiX1(̂ *a_( “1- XioXi 2—a —/ 4* ... 4* Xj/X,a — ^
3 =  1

So, in the ith family (noting again that for 1 =  0,  we have Sa-i  =  0 ),

x ijx lk = x '  (S , 4- I;j<a/ 2}Sa- i)  Xi, (6)
(A,,fix(i))

where, for any event .4, I  a is the indicator function of A. Setting X '  =  (x p X ^ .-x J ,)  yields

'y ~x tjX,fc =  X  [/n ® (Si -+- /{/<a/2j-S0-i)] X.

The second sum of terms of d\ is x . j i ^ i j , ) , inserting x°fc so as to  retain the dependence 

of the summation4 on k. To write this sum as a quadratic form, as in (6 ), considering two cases 

I =  a /2  and I <  a /2 , noting how the sum in (4) and (5) were expressed, we have

l a-l

A  i t = L

E x ,  4- f{l<a/2V
>=I

Now, whether or not I <  a /2 , we can write

x(l) = i - 1i ; D (i)x  =  s - 1r D ; i)i 1,

where s  =  (n — I)a and D(i) is a modified na x na  identity matrix, obtained by deleting the rows 

of identity which correspond to the measurements in X  on the i th family (D (t) has dimensions 

(n — l)a  x na,  and is of full row rank). Then for this i,

* < , ) X >  —  ̂ ^  and
j= i
a -  /

z (0 y = s  D ( ,j l0Sa_iXi
3 =  1

For the case x , k = 0. define 0° = 0.

L
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so that the second set of terms in <77 expressed as quadratic form is

Ai

=  s  1X'  jD(1) ,D (2j , . . . .D (n)j ® ^l5l a ( s ,  + /{ /< a/ 2>Sa_i^j |  X.

Assembling the two sets of terms in 07 gives

Cj(7; =  X '  [/„ ® (Si 4- / {,<«/2>Sa-l)] X  — (7)

S  l X'  ^D(ij .D (2), . . . ,D (n)j |/n ® (Sj +  /{/<a/2.vSa_;^J | X.

Simple analytic expressions for the variances of these 07 do not seem to be available, as 

will be discussed below in Subsection 2.5. We will refer to the 07 and, later, the corresponding 

estimator d psl of ups, as “leave one out” (LOO) estimators, due to their dependence on the 

“leave one out” sample means

2.3 Unbiased Estimation of Circular Covariance Parameters. Missing Data. It is logical, when 

data are missing, to first assume normality and attempt ML estimation of the <77. However, 

maximization of the likelihood seems problematic. As noted in Section I, Olkin and Press (1969) 

accomplished ML estimation in the full data case by finding the MLE of the eigenvalues Sj of C  

(the eigenvectors r ;- of C being functions of trigonometric functions only, unrelated to the 07}- 

The covariance matrix C t* of the observed part o f the itfl family is obtained by deleting from C  

the rows and columns corresponding to the unavailable measurements in this family. One might 

endeavor to adapt the methods of Olkin and Press, therefore, by specifying the relation between 

the (6j , Tj) and the spectral decomposition ( 6 ^, r*; ) of C ’ .

However, no relation between the spectral decomposition of a matrix and that o f one of 

its submatrices has been found in the literature, except in special, trivial cases. In fact, Hadi 

(1988), working in the context of linear regression, showed that in the general case no closed 

form equations can relate the eigenvalues of a matrix to those of one of its submatrices obtained 

in this way.

Developing such an adaptation of Olkin and Press' work may be worthwhile if a relation.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



i

12

closed form or otherwise, can be established between the 6 'tJ and the and if the T’j , like the T . 

can be expressed without reference to the <r>. We leave this adaptation (and ML estimation given 

missing data in general) to a future paper, and continue by generalizing the LOO estimators 

introduced in the last subsection to the missing data case.

When data are missing, elements of A; are removed and q  decreases commensurately. Define 

the random variables Zij and yi j , i  =  1 , 2 and j  =  1 ,2 ,.... int (3a/2)x as5

Xij, Xij available,
~rj -  { and t/ij =  <

0 , otherwise,

with the stipulation that zXJ =  yxj =  0 if j  >  a. Also define

1, x tj available, 

0 , otherwise.

3 1 =  {(i,j,k) : j  <  k,cov(zij,znc) = o t , y ijyik = l } . z ,  =  (ziL,^2,-,-<a)-  

and Z'  =  (z [,Z2 ,...,z'n).

Let ^  be the number of available measurements in the i th family, and =  a, — ax be the 

number of available measurements in the entire dataset excluding those in this family. Here, in 

contrast to the last subsection, we estimate erj by

=  c( ^  1 zx ~  - ( i ) ) ’
3,

where i(,) =  l 'D ^ jZ  and c; =  card(3i).

The first sum of terms is expressed as a quadratic form in exactly the same

manner in which J2 a., x x]x xk was expressed when no data were missing, replacing all x x] there by 

ztj .  This is true because if x XJ or x,* is not available, then zX]zxk =  0 contributes nothing to d/. 

This sum is therefore

^   ̂z i j z ik =  Z  [ in  ®  ( S I +  I { (< a /2 >Sa _f )j Z .
3<

The second sum of terms in cjd/ is z tj y xkZ(x).  inserting y xk  to retain the dependence of the 

summation in d/ on k. Let the ktfl element of the a x  1 column vector e/< be yitk~i,l  =  0 , 1, 2, ...,a  

and k =  1 ,2,..., a so that, recalling y xk =  0 if k >  a. the last I elements of e^ each are zero. Also

5 Defining z t} and  yxj for j  = a  +■ l . a  f  2 ...., m £(3a/2 ) is necessary to properly define the vectors en  below.
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let e' =  (e^i. e^2. .... e ^ ) .  We may then encompass both of the cases I =  a / 2  and I <  a / 2  as in 

( I) and (5), by writing

3,

Z' [ D U> D (2) D (n)l block
(e !t + ^ :« a /2}e a - l , l) ’ (e /2 +  ‘̂li<a./2Veo- 1,2)’

o(1) ’ 0(2) ’ ’ a (n)
— >(e /n +  1  { l < a / 2 \ e a - l , n )

z ,

— >(e /n +  I { K a / 2 } e 'a - l ,n )

where the block function joins matrices diagonally.

It remains to find c/ for the case involving missing data. Recall that e/, has elements 
/

1, available,
(e<i)fcl =  =  <

0 , otherwise.
V

Therefore (noting, for the case 1 = 0 ,  that ea_oti is a zero vector),

eu +

, , , e '2 +  I U c a / 2 } e a - l , 2

e / n +  I { l < a / 2 } e a - t , n

We can now express <7/ for the case involving missing data as a quadratic form:

— (^ l*  e027 — >®0n)

ea

e /2

\  L e ,n  J

+  f{l<a/2>

e a-' , i

e a-/,2

&a — l.n J / J

> x

Z'<

In  ©  (S (  +  / a < a / 2 v S a - / )

—block
(e/i  4 - /{/<a/2>eQ_/,i) (e/2 +  I { / < a / 2 Ve a - / , 2) 1 ,̂

•••7 (e /n  +  I { « o / 2 } e 0 - / , n )  l i

°(n)^(n)

which reduces to (7) if no data are missing. Recalling e' =  ( e ^ . e ^ , e(,n) simplifies the

expression corresponding to c( slightly: then, since e(i =  S/eoi, we have

x(i)

0(2) D (2)

[e;i .e;2 , ....e ;n]' =  (In o S , ) e .

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Using this and a similar expression for e Q_/ t yields c; =  e' [l„ © (S / 4- /;t<o/2 -Sa -t)] e -

To simplify the matrix producing C(d|, we recall that D fl) is a modification of a na x na 

identity matrix, removing the rows of identity corresponding to the i tfl family, so that the elements 

of and e (l are

(aw Dw)it =
0 , otherwise,

and (eo,)9l =  yiq.

j  =  =  l , 2, . . . ,n a ;<7 =  I , ‘2, . . . ,a and i =  l , 2 , . . . ,n . Thus

a(-0 etil , D (0 =  a (t)e (li ;
I ( i - l ) a  ^ ( t - l ) o x a  ^ ( i - [ ] a x ( n - i ) o

^ ( n - i ) o x ( i - l ) a  0 ( n - t ) a x a  I ( n - t ) a

[ ® i i , Oq, 0a, . . . ,0a, e/j, e ij, . . . , e;,]

with vectors of zeroes appearing in the (i — l)a  4- l,( i — l)a  4- 2,...,ia columns, or

a(.)e '-1»I->(*) =  a(i) [e i<^(i-l)o>^a)<“>e ( i l (n - i)a

®(i) [^ (> -I)o ’ ®I x a ’ ^-(n-  t)a •

Extending this expansion, in the matrix producing c/d;, we therefore have

a (0 (eh +  f . ;« a /2ie<x-;,x) Ijl-^i) =  a(i) (e /i +  fy < a /2)-e a-f,t) | l ( i - l ) a ' ® I x a ! l ( n -|)a  

Concatenating the a~J (etl 4- I;i<a/ 2}ea-i,t) 1 =  1,2, ...,n  vertically gives

block
Q(l) (en  +  ^{(<o/2fea-(,l) ,a (2) (e (2 +  ^{/<a/2Ve a-(,2) .

[ (J -  -  In)

where l 0a has one row and no columns. Hence, dj reduces to

d, _  {e' [ln © (S; 4- /.;/<a/2>SQ_j)] e} x (8)

L
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Z' -block Z.

In  ® (Si +- /{ i< 0/2;-S0- i)

“ (I) ( e ' l  +  ( e i 2  +  I { K a / 2 } e a - l , 2 )

-**• a {n)  ( e <‘V +  I{i<a/2i-e a - i,n )

^(■In — I n )  ®  l a j

which greatly simplifies calculating va r  (d ;) . Note also that do >  0 with probability one for 

continuous distributions, i.e.(noting S tt =  0 and eQ =  0)

^Ino block i ̂ eoi» Û 2)®02,  (̂n)®^n j £(*^n ® ^aj ^

is nonnegative definite, with do =  0 if and only if all the nonzero components of Z  are identical.

2.4 Unbiased Estimation of Interclass Covariance. Missing Data. With each x t, a parent’s mea

surement pi may be taken, having mean p p. such that a p,  =  cov(pi,Xij),  j  =  1 ,2 ,...,a. In any 

family with no missing data, the covariance structure is therefore

7 VP a p s  1 B

& ps l a

Assuming that some of the Xij but none of the p, may be missing, we seek to estimate ops. Let 

p ,  = E (x tJ) , i =  1 ,2 ,...,n  and j  =  1 ,2 , . . . ,a. For these parameters, p, s, ps  and pp are not 

indices, but only subscripts. Noting E  (ptx XJ) =  crp3 4- p pp , .  the independence of pi and x (l) 

implies E  [pi(xij — X(,))] =  op,.  Therefore, we might develop

Opal — cp3 — -(>))
3 ps

as an unbiased estimator of ap3, where

3pa =  { ( * J )  ’■ l/ij =  l , i  =  1 ,2,..., n and j  =  l,2 ,...,in £ (3 a /2 )}

and card(3p3) =  a,  =  E ,  a, is the number of available measurements equicorrelatcd with the 

p,. When all data are present, a. =  na. Estimator dp3l may be considered to be the interclass 

analog to d;. However, if we define c =  zXJ/ a , ,  then

£ 3p. p .(* j -  ^
p*5 a. -  £ ,  a? /a«

i
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is another unbiased estimator of erpJ, and (as will be discussed in the next section) var (a ps) <  

uar(ap3 i ) , with strict inequality (remarkably) if and only if data is missing. When no data is 

missing,

< V =  ( — [ ) * ! » .

where d ps is the (biased) MLE (assuming normality) of a p,  derived by Khattree and Naik ( 1994a). 

If each of the pairs (Pi ,Xi j) are bivariate normal, the MLE of the variance Opp of pi is simply 

n~l 2̂ (Pi — p)2, as the Xij, j  =  1, 2 , ...,a provide no information about this parameter.

To express a psi and <xps as quadratic forms, let Z' =  (p j,z'), i =  1,2, ...,n  and Z' =  

( Z[ , Z 2, .... Z'n) (recall Z  is not the same as Z, as it does not include the parents’ scores). If w  is 

obtained by concatenating a zero at the top of a a x 1 vector of unities and a' =  (aj, a<i, .... an), 

then

Ops I =  a .  Z '  {

/
0“(l) 0

>

< In (Jn In)
0 J2- •.“(2)

0
© [W, 0(a-l)xa]

I 1
o o g„

J

> Z and

' p s =  ^ a . - a .  Z' | ^ I „ - ^ ^ © [ w , 0 (o. I)xa] J z , (9)

mentioning a ps\ only because it is the interclass analog to the LOO estimators a /.

We have now proposed unbiased estimators of a i , l  =  0 ,1 ,2 , ...,m , and of a ps when p, 

is available for each o f the families. The initial definitions of these estimators are far more 

practicable than the corresponding quadratic form expressions when actually calculating the 

estimators, due to the large matrices involved in the quadratic forms. However, the latter make 

possible the calculation of their variances, to which we turn in the next subsection.

2.5 Variances of the Unbiased Estimators . Let the nonzero elements of the diagonal n(a +- l )x  

n(a +  I) matrix D avg be unities corresponding to the observed (rather than imputed, zero) 

elements of Z, so that D aag (I„ (g) C aug) D aug. and D aug ( l n 0  [pp, p s V\'^ =  D augfM are the 

covariance and mean of the (possibly) incomplete dataset Z including the parents' measurements

I
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p t , conditional on D a u g l n (a - i )  (note e  =  D aug l n ( a - t ) ) -  I f  F p3 is the symmetric matrix such that 

dp, =  Z'Fp3Z. from linear models theory, the cumulants of (<7pl | e )  are

« p j .r =  2r  l ( r  -  L)! < } . r e s
t r  { [F paD aug  ( I n ®  D qu?] }

H-r/x D aUjFp3 [Dauj (In ^ a u g ) D a u g F p a ] ^ a u g M

Likewise, let the nonzero elements of the diagonal na x  na matrix D  be diagonal unities corre

sponding to the observed elements of Z. Making F/ the symmetric matrix so that &i =  Z'FtZ,  

I =  0 . 1, 2, the cumulants of (^z|e) are

ir {P F |D (In (g )C )D r }  

+ p /iJ e 'F ,[D (IIl® C ) D F l]r- l e  

noting E (Z |e) =  p3e  and cov (Z |e) =  D  (In ®  C) D . In particular,

Ki,r =  2r_I (r — L)!

Kps,i =  E (dpS) =  E (d p3 |e) =  a ps and x/,i =  E(ct/) =  E((7;|e) =  cr(,

as was shown in the last subsection. Also

Kps,2 =  V ar (<jps|e) =  2
t T  { [ E p s D a u g  ( In  0  ^ a u g )  D aug]  ^

-f'2[A D augFp5D atlg (In ^aug) D augFpaD au^/i

and

k.12 =  Var(<7 /|e) =  2 > . ( 10)
ir { [F ,D (I„ < g )C )D ]2}

+ 2 M2e'F ,D  (I„ (8 > C) D F ,e
\

Even when no data are missing, simplification of each Kt^ does not seem possible, and missing 

data make the expressions even less tractable, due to the series of unities and zeros appearing 

in the F(,cou(Z|e) =  D aUff (I„ © C aug) D aug and c o v ( Z |e) =  D ( I „ ® C ) D .  To illustrate, the 

symmetric F; may be expressed as A'^A| . where A; is the matrix in (8 ) producing <7;. The matrix 

2c|Fz is then

In  ®  ( S ;  +  S_z  +  I ; j <a / 2}  ( S 0 -Z +  S f _ a ))

Q(l) ( e ' l  +  I <J<a/ 2}e a - l , l )  > ®(2) ( e '2 h j < a / 2 } e a - l , 2 )  ,

—»a (n) ( e(T> +  f{ i< a /2 v e a - ( , n )

° ( 1) ( e ‘l + ^ < ® /2fe a - l , l)  ’“(2) ( e I2 +  f';«a/2>ea_, 2)  ,

*"* a {n) ( e in +  I ; K a / 2 r e a - l , n )

—b l o c k

-  [(Jn -  I„) © l a] block

[ ( J n - I n ) ® l l ]

i
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generalizing the definition of Sj so that if -a <  I <  0 , the unities of Ia are shifted down I positions, 

and S/ =  S'_, for all I £ N .

Hence it is seen that no means is evident of simplifying q F i in the most general case (for 

arbitrary e. a, n and C) to form a manageable expression for F / which can be analytically pre- and 

post-multiplied by D  (I„ (g) C) D  (or D OU3 ( I n ®  Cau9) D au9 ) and then squared, cubed, etc. The 

expressions for qF i are complicated even if no data is missing, in which case all yXJ =  1. a, =  a 

and e;, =  S jl. It may be shown that

x » V p p U v j + a O p .va r  (apSi) =  uar (crpa) = --------------- — =-
a [ n  — 1J

when no data is missing. When data is missing, though, convenient expressions for v a r ( d p31 |e) 

and var(erps |e) do not exist due to the difficulty of writing the e^C eo, without the use of 

matrices. Only the variances o f (<7pal|e ) , (ap,\e)  and (d;|e) may be calculated, by machine, for 

whatever C aug. a and n are postulated and for whatever particular e is observed.

In the sections that follow, we will wish to compare the LOO estimators with the estimators 

we will form by extending the principles of Expectation and Maximization. It is preferable to 

compare the unconditional (on e) variances of these estimators, under reasonable assumptions 

about the missing data mechanism, rather than their variances conditional on, say, a small 

number of selected missing data patterns. Since

va r (a i )  =  var (E (d ;|e)) +  E (u a r  (d;|e))

=  0 +  E(uar(<7;|e)) ,

estimation of E(uar ((T;|e)) constitutes that of uar(d;). Estimating E (u a r(d ||e )) may be ac

complished by calculating var  (d ;|e) for a large number o f different e, chosen at random from the 

2na possible missing data patterns, with plausible distributional assumptions for e. Analogous 

statements can be made about the estimation of the unconditional var (a ps) and var  (dpai ) .  Be

cause simulations seemed to show that var (dpa |e) <  var  (dpal |e) uniformly in the missing data 

case, at this point we discontinue mention of d psl .

One reasonable assumption is that the ex] are iid Bernoulli (1 — pm) random variables, so

J
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that P(e,j  =  0) =  pm is the probability that x t] is missing. Since pm does not depend on xXJ. 

the process represents a Missing Completely at Random (MCAR) mechanism, as discussed by 

Little and Rubin (1987). For each of several combinations of n. a, pm and setting the covariance 

parameters to (oo>°'1t0'2, 0 3 ) =  (4 ,2 .5 ,2 ,1.5), one hundred missing data patterns were chosen 

at random (with replacement, except that any pattern for which any a(i) =  0 was discarded), 

and the means and standard errors of the resulting one hundred variances of each of (apa |e) and 

(<7/|e) were calculated. These means of variances estimate the unconditional (on e) variances of 

the dpS and d /, since we have randomized over all possible values o f e. Table I displays the means 

and standard errors of var  (dj) only; those o f var  (dpJ) are very similar.

j
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Table I: Estimated Means and Standard Errors of 

Conditional Variances of LOO Estimators.

Pm n,a 1 = 0 I =  1 1 =  2 I =  3

10,4 mean(var(ai)) 1.8682 1.8878 1.9888

StdErr{var{di )) .0465 .1363 .1077

•1 10.7 mean(var(ai)) 1.3404 1.3379 1.2902 1.3675

-1 StdErr(var(&i)) .0342 .0814 .0704 .0782

50,4 mean(var(di)) .3508 .3597 .3814

StdErr(var(di )) .0034 .0093 .0111

-I 50.7 mean{var{a{)) .2495 .2492 .2386 .2525

StdErr(var(di )) .0023 .0046 .0047 .0053

.5 10,4 mean{var{di)) 2.6045 3.8330 4.7459

.5 StdErr(var(di )) .4903 1.1884 1.4121

.5 10.7 mean(var(d[)) 1.7378 2.6382 2.4413 2.2241

.5 StdErr(var(di )) .1159 .6063 .5521 .3405

.5 50,4 mean(var(a i)) .4987 .8326 .8894

.5 StdErr(var(&i)) .0274 .1448 .1070

.5 50,7 mean(var(dt)) .3347 .4996 .4543 .4807

.5 StdErr(var{di )) .0129 .0467 .0393 .0445

It is seen from the tabulated values that for most of the combinations of C aug, a and n, the sample 

coefficients of variance (the quotient of sample mean and sample variance) of the conditional 

sample cumulants of a ps and each o / are quite large, especially as n increases and when pm 

is small. Hence we may assume that, for the vast majority of missing data patterns e, the 

conditional (on e) cumulants do not vary too much from the unconditional cumulants. This 

implies that, as will be desired, the above estimates of the unconditional variances may be used
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in their places without introducing a significant source of error.

Of interest is a comparison of the performance of d ps and each di with that of the corre

sponding MLEs a ps and di  derived by Khattree and Naik (1994a) and Olkin and Press (1969), 

respectively, in the case of normal, complete data (no missing observations). Khattree and Naik 

described the modifications to Olkin and Press’ MLE of a  given the assumption E (x ,) =  fil.  

It may be shown that for each I =  0 , 1 ,..., m, di,  like di,  is unbiased for cq, and together the d; 

have covariance

cov

er o

d  i

0 0 0

0

0 0 n

o o 0

0

ctm~ \n

so that comparing the mean squared errors of the d t with those of the d t is equivalent to comparing 

their variances. Also, it may be shown that (in the full data case with normally distributed data)

E (d pj) =  n̂- n l) Op, and var {dp, )  =  ( a P p Y , ar +  aal ’ )  ’

so that

.VISE (dps) =  var {dPs) +  [foas (dps )]2 =  —---- 1

and hence MSE(dps) — MSE(dpj) =  • ~~ z ()- ~ ap‘ is negative, provided that YLai >

gp~(af ^ ) - Alternatively,

MSE {dPs) _  ( n -  1) ( y - g p p l > j  
VISE {dp,) n {(jpp £  oj  +  a a j , )

can be viewed as a kind o f relative efficiency of these estimators and is, for most reasonable 

parameter values, less than unity. The advantages of d ps over d ps, therefore, are its unbiasedness 

(even without the assumption of normality) and its immediate definition when data is missing.

In Table II are compared the variances (which are mean squared errors, due to unbiased

ness) of the d[ with those of the d[ for various combinations of n and a with no missing data.

J
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for the normal population having the particular combination o f circular covariance parameters 

((Tpp,(Tpi ,cto,(Ji,(To,(72 , cr^,as,crs,(̂ 7) =  (4,2,4,2.5,2,1.5,1.3,1-15,1) (though some of these para

meters may not appear in the density, depending on a). The MLE d; are guaranteed to achieve 

asymptotic efficiency, whereas the information contained in the data about ct; ignored by the d; 

(due to the “leave-one-out” sample means z(l) they implement) is bound to increase the vari

ances of the latter above efficiency for all sample sizes. However, for moderate na it is seen in 

the tabulated values of var(&i) /var(&[)  that the majority of the d ( have lower variances than 

do the d 1 and that, where dj has lower variance than d;, the difference in variances is slight. The 

variances of the d; are seen to decrease below those of the d/ as n a  becomes large. The theoretical 

variances of the d; were derived from ( 10), substituting a vector of unities for e  (corresponding 

to a no missing data pattern).

Table II: Comparison of Mean Squared Errors of LOO 

Estimators with MSEs of ML Estimators given No Missing Data.

n.a 1 =  0 I =  1 I =  2 1 =  3 1 =  4 1 =  0 1 =  6

2,7 .9460 .9828 1.0128 1.0027

2.10 .9267 .9581 .9950 1.0102 .9967 .9753

2,13 .9114 .9391 .9733 1.0000 1.0062 .9957 .9736

5,7 .9783 .9931 1.0051 1.0010

5,10 .9707 .9833 .9980 1.0041 .9986 .9901

5,13 .9646 .9756 .9893 1.0008 1.0025 .9982 .9894

10,7 1.0110 1.0035 1.0026 1.0006

10,10 1.0156 1.0085 1.0010 1.0020 1.0007 1.0049

10.13 1.018 1.0123 1.0053 1.0052 1.0012 1.0008 1.0053

15.7 1.0072 1.0023 1.0016 1.0004
. . .

Exact variances were not calculated for d ( for na >  130. because of the enormous matrices

i!
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involved in these quadratic forms.

Given the low MSEs of the d; relative to those of the di for moderate sample sizes, we might

hope that an estimator pp3 =  o p, f  yj&pp&o could be constructed of the interclass correlation 

pp,  =  crps/y/Oppdo, utilizing some suitable estimator dpp of dpp, which would perform as well

as or better than the MLE pp3 =  d p3/ \JdppdQ of pps for small or moderate na. The uniform 

minimum variance unbiased estimator (UMVUE)

 ̂ _  £ .(?<  - P ) 2 
a p p ~  n -  1

would probably be expected to  serve as the best “suitable estimator” of dpp, given the unbiased

ness of d p,  and do-

In fact, however, for normal data, the MSEs of pp,  (constructed in this way) and pps seem 

almost identical across a wide range of (n.a), with a very slight advantage evident in the use of 

pp,. It appears that the biases inherent in the dpp,dp3 and do in large part mitigate each other, 

combining to produce a relatively efficient MLE having small bias, even for small na. Simulations 

involving t-distributions did not seem to change these comparisons significantly. It seems that 

the advantages of d p3 and d/ are their unbiasedness, relatively small MSEs (in the case of the 

d/) for moderate na, usefulness when normality cannot be assumed (since the behaviors of the 

ML estimates, and the “EM” estimates described in the following subsection, have not been 

identified), and (not least) their immediate extensions to any missing data pattern e  for which 

the missing data mechanism can be ignored. In the estimation of interclass correlation, dps and 

d; do not appear to offer an advantage over the maximum likelihood approach except when data 

is missing, or when normality cannot be assumed.

2.6 Development of EM Algorithm Estimators and Evaluation of their Performance. The meth

ods of this subsection draw on important ideas of the popular Expectation and Maximization 

(EM) Algorithm; nonetheless, important differences exist between EM and what we outline. The 

estimates given in this subsection therefore bear the name “EM” in quotation marks.

Following the formulation of EM given by Little and Rubin (1987). the E step, if it were

J
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possible, in the case of circular covariance with missing data and uniform sib mean, would begin 

by assuming a particular multivariate distribution for the hypothetical, complete (no missing 

data) dataset, and choosing appropriate sufficient statistics for the covariance parameters to be 

estimated in the resulting likelihood. The expectations of these statistics would be calculated, 

conditional on both the observed data and the current approximations of the parameters. The 

\ I  step would follow by maximizing the likelihood with respect to the parameters, using the 

estimated sufficient statistics in the place of the actual values (had they been observed). Iterations 

then would continue between the E and M steps.

The obvious choices for the sufficient statistics to be estimated would be the sums of squares 

of the canonical variables y f j , j  =  1, 2 ,..., a (these are not the y^ introduced in the last subsec

tion) which Olkin and Press (1969) implement to maximize the likelihood, assuming normality 

throughout. Unfortunately, methods for estimating these sums are not obvious. We respond 

to this difficulty by estimating instead the sums P*x ii an<̂  5Ztx «jx **’

j ,  I =  1,2, While these sums do not seem to allow ML estimation, they are sufficient sta

tistics for iL3, o ps and the cr; in the likelihood of the hypothetical complete dataset, and can be 

estimated when data is missing.

When possible in any multivariate situation with missing data, estimating x , .  is accom

plished using the ML regression of each missing data point Xij on the observed part of the i tk 

family. At the t th iteration, we denote the current estimator of xXJ by x - j \  which is simply x,j  if 

x tJ is available.

If the missing data followed a monotone pattern, the procedure for estimating the missing 

data points x tJ for a given j  and all i, would be to calculate the augmented sample covariance 

matrix (Little and Rubin, 1987) o f {xn,Xi2 , . . . ,Xij) using the data from the families i on which 

all the components of (x ii ,x ,2, ...,X ij) are observed. The sweep and reverse sweep operators 

would then conveniently provide estimates of the regression of the x tJ on (x , i , x ,2 , . . . .x 1J_ l ) , i =

1 ,2 ,..., n. However, since a nonmonotone missing data pattern is a far more realistic development 

of the model now at hand, we seek alternate methods of imputing values to the missing data.

i
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Another way of estimating the missing data x ,i of the i ctl family using the observed sibs' 

scores x ,2 from the same family and the current estimates of the parameters assumes that 

E  (x ,i|x ,2 ,p (£), C (t)) is linear in Xi2 , so that

E ( x ti |x l2 ,C<£>) = /tW i +  c g i (C ^ , , ) " 1 ( x i2 -M (0 l )  , (U )

where t and C ^ j, are the appropriate submatrices of . When a parent’s score is available

from each family, (11) could easily be modified appropriately. However, it is felt that calculating

(^ 22  ,)  for each iteration, for each family, would consume excessive computer resources, espe

cially when the dimension a of each circle (family) is large (increasing the potential dimensions 

of the C ^ ,) .

A faster method also supposes that if Xij is missing and x xk is available, then E  (xXJ |x,fc) is 

linear in x,*, so that the conditional mean and variance of xt] given x xk are fxs -t- ^  (x,* — p3) 

and (assuming normality) ctq ^1 — ^ =  <7q — ^ , where

I =
\j -  * 1>\j ~  fcI <  a /2 ,

a — \j — A:|, otherwise.

Similarly, assuming normality, the conditional mean and variance of x,j given p, are p 3 Jr^-EJ-{px —P̂P
a 2

p v) and (assuming normality) <Jq — Letting the current estimates of the <7 ; at the t th iterationH °PP

be cr^ . l  =  0 . 1, ..., m  and that of a ps be a p] , the following statistics have approximately the same 

expectations as the mean of the posterior distribution of x XJ given the available data:

cr(0
= 2  +  — (•=.* ~  z ) ; x*k available, k /  j , and 

<*0

(0
£{$.P =  5 +  (Pi "  P) ’o,(0o

where p is the sample mean of all the parents’ scores (all of which are available, by assumption) 

and z is the sample mean of all available x tJ. In fact, for q =  1 ,2 ,... ,a, if available, is the 

MLE of the posterior mean of x XJ given the respective predictive observation and the current 

parameter estimates. For each missing x t] . a, (a, +  1 if parents' scores are available) linear 

regressions of x XJ on the observed part of the scores on the i th family are available: at the t tlx E

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



26

step, combining these regressions can be expected to yield a satisfactorily efficient predictor

of x u , with an acceptably small bias. We combine them in each iteration using weights inversely

proportional to the estimates of their sampling variances cr^ —  ̂ (for x [^ .) and
ao aa

(for x-^p). That is to say, if Xy is not available, then at the t th iteration, we put

=  S - i  '+ * & ( ■ & ’) ‘

& . ■ * ,  (*?> )"+ W l ’

omitting x^|p (and its associated weight, in the denominator of x[j^) if no parents’ measurements 

are taken or if a p,  is known to be zero. The notation in (12) uses the following additional 

variables:

I, £ij,q available,

0 , otherwise

is an indicator; v\^ =  (Tq  ̂— , if wljq =  1, is the current estimate of the conditional variance

of Xy given x , ,  for q =  1, 2 ,..., a;

\ j  - q \  , \ J  -<?l ^  a /2,

a — \j — QI. otherwise;

VpJ =  p(̂ - -  is the current estimate of the conditional variance of x tJ given x [ ^ ; and

the index (t ) on all estimates indicates the current iteration. Because (12) includes information 

about Xij given by its parent’s measurement p,, the “EM” estimators, unlike the d;, can be 

expected to improve in efficiency in the presence of the pi (and, more generally, with increases 

in corr(pi,Xij)) since the d; do not use information from the Pi at all.

The expectations of x-*|fc and x-*jp are only approximately equal to the conditional expec-

<T(0 <T(t>tation of the missing Xy given the available data because the first moments of —f-j-y and -ffj are
aa aa

not known to be ^  and respectively, and the covariances of these random fractions with 

Zi j - i ,  Zi j -i ,  Z i j -a - i ,  z, Pi and p, are not zero. No theory exists to calculate the expecta

tions of these fractions, because the fractions derive from “EM” iterations. The highly appealing 

Laplace Approximations developed by Lieberman (1994) could be used to estimate the errors 

of the ratios of quadratic forms and However, the biases of the -(77 and -fA used inI  ff0 <T_p It) -(■)

i =  q) = >

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



estimating the posterior means of the missing Xij cannot be quantified: justification for their use 

in the (likelihood-based) E step rests on their status as the best substitutes for ML estimates.

The sum of the x ^  estimates x . .  in the likelihood of the complete data. The second part 

of the modified E step is to substitute suitable values in this likelihood for the sums of squares 

and cross products ^2i Xi jXu,j ,l  =  1 ,2 . . . . ,a. We calculate

E  £ x „ x , | Z , C «

where CicJg is the estimate of Caug at the t th iteration and

cw  =  
j p >

a i t]r V i j+ y ip  =  o, 

o , y a + y i p  >  0.

c a v ( x ^ j . x lp|Z, xjij  ~f~ y i p  — 0,

V i j  "b y i p  0,

The lag I is given by I =  \j — p\ if | j — p| <  a/2  and I =  a — \j — p\ otherwise in these expressions, 

as usual.

Having found suitable substitutes for the sufficient statistics we have chosen, we estimate 

the parameters a  directly, without reference to S. since the ML estimation procedures of Olkin 

and Press, and of Khattree and Naik, cannot be applied here because they use different suffi

cient statistics than we have estimated to calculate the ML estimates of the eigenvalues of C. 

Because ct0 =  v a r ( x n ) =  v a r ( x i 2 ) =  ... =  v a r ( x i a ) ,  =  c o v ( x u , X i 2 ) =  c o v ( X i 2 , x i 3 ) =  . . .  =  

«w(*«,a-i>x ia) =  cou(xia,X ii), etc., we put

. 2"

<7^ =

,- t
E a - l

j= l

1
.Vo

, l <  a / 2 ,

.  + S . , n . .  « ,)

. I =  a / 2 .
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as the estimate of cq and

<t£> =  (n a )  r b  ~  ^ L)
.=1 j=i

as that of a p3, all at iteration t. While other divisors within cr[  ̂ and a p3 could be devised 

which attempt to correct for the biases which result from the losses in the degrees of freedom 

in the observed part o f the data, the estimates we employ use the divisor na, as they are the 

substitutes for ML estimates in our adaptation of EM. No adjusting constants analogous to the 

in the cr\  ̂ are needed in a pJ since none o f the p; are missing. Here nap.3̂  =  is the

current estimate of napa, and is the proxy for the sufficient statistic x . .  in the likelihood of the 

hypothetical complete data. Note that (p p, d pp) , the ML estimate o f p p and the variance a pv of 

the parents’ measurements, is available without the use of either E or M steps since none of the 

parents' measurements are missing. Once the <r[̂  and a p, are calculated, a new iteration may 

begin. Upon convergence, the final estimators are denoted by a p3<. and die , l  =  0,1 ,...,m .

When no data are missing, all the c \̂\ are zero and the sufficient statistics noted above 

are available from the data, requiring no estimation of their own. Even in this case, analytic 

expressions for the variances of the du ,  like those of the LOO estimators, appear to be intractable. 

The expected values of the “EM” estimators, though, are easily found to be

E(<7pje) =  ( - — o p3 and E (a /e) =  cr; -  .
\  n J na

for the case in which no observations are missing, the sum involving j  being over any row of C .

For each of the one hundred missing data patterns e sampled above in estimating the cu

mulants of a p3 and the di for each of the choices of combinations of C aug, pm, n and a, an 

incomplete (having missing elements) dataset of n +  l ' e  observations, following the missing data 

pattern e, from a normal population having circular covariance matrix C aug and zero mean was 

simulated. “EM” estimates were obtained for each of these datasets, stopping the iterations in 

each case when the sum of the absolute differences

1=0

i
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was less than .001. or when the number of iterations had reached one hundred. The sample mean 

errors and variances of the resulting one thousand estimates d pae and 100(m 4- I) estimates 

were calculated for each combination of C atig, pm, n and a. Table III lists these sample mean 

errors (sample biases).

Table III: Estimation of Biases of EM Estimators.

Pm n. a 0 pse OQe

5,4 .0065 -.4482 -.6944 -.6004

5,7 -.0829 -.3144 -.6072 -.5380 -.4353

15,4 -.0601 -.1346 -.3468 -.1794

15,7 -.1313 -.0126 -.2965 -.2443 -.1739

25,4 -.0534 -.0876 -.3703 -.2405

25,7 -.0363 -.0169 -.3067 -.2393 -.1704

.5 15,4 .0058 -.3184 -1.3307 -1.055

.5 15.7 .0368 -.1570 -1.3471 -1.0804 -.7465

.5 25,4 .0531 -.0567 -1.2415 -.9859

.5 25,7 .0733 .1597 -1.2657 -.9412 -.6502

Table IV compares the variances (mean squared errors) of the “EM” estimators with the esti

mated (sample mean) unconditional (on e) variances of the (unbiased) a p,  and 07. The tabled 

values are r =M SE(dpje or <7;e)/MSE(d'p;, or 07). The mean MSEs of the a ps and 07, used in 

computing the values of r, can be considered to be close to the true variances of the a v,  and ctj, 

because of the uniformly small standard errors of the variances randomizing over all possible e.

I
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Table IV: Comparison of Mean Squared Errors 

of LOO Estimators with MSEs of EM Estimators.

Pm n ,a ps 1 =  0 1 = 1 1 =  2 1 =  3

5,4 .5535 .7942 .5789 .5776

5,7 .7812 .8422 .8165 .7674 .7378

15.4 1.4291 .8134 .7574 .6572

15,7 .9411 .8420 .8547 .8415 .892

25.4 1.0256 1.22 1.0944 .9646

25,7 .9984 1.1536 1.0351 1.0039 .9515

.5 15,4 .5938 .814 1.0871 .492

.5 15,7 .7941 .9522 1.2654 .9372 .5486

.5 25,4 .7943 .803 1.5003 .6910

.5 25,7 1.3432 1.295 1.8628 1.2624 .7269

Computer simulations showed that, for i-distributions of various degrees of freedom, the compar

isons between the (dpj(.,(T/e)and the (<7pj,<j() were substantially the same as those of Table IV. 

As a fixed point of reference for this table, in the normal, full data case with (n, a) =  (5,4) and 

with the above parameter values, we have MSE(dpj) /M SE (opj) =  .6827, which is fairly close to 

MSE((7pje) /M SE(dpJ) =  .5535 for (n ,a) =  (5,4) at pm =  .1 in Table IV.

Summarizing the comparisons of the dpje and <7;e with the d ps and d /, the variances of the d;e, 

but not the &i, can be expected to decrease with increases in corr(pi ,xxj ),  because the aie make 

use of the information about the missing data contained in p*. In fact, if \corr{pi,xx])\ is close to 1. 

then the availability of pi makes immaterial the potential missingness of the x XJ. Predictably, these 

improvements in efficiency are especially marked when the proportion of missing observations is 

large.
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The <7ps and <7; have the additional slight advantage over a pae and <7(e of being calculated in a 

noniterative fashion. While calculating the “EM" estimates above, on two occasions convergence 

was not reached in the LOO iterations allowed. Furthermore, if the data are severely non-normal, 

the expectations of the “EM” estimators are not known and may be highly undesirable in some 

cases; however, computer simulations showed that the ratios of the MSEs of the two sets of 

estimators do not change significantly over a wide range (in terms of degrees of freedom) of 

£-distributions. On the other hand, (dpj,<7() are unbiased for any distributional assumptions.

In the case of normally or £ distributed data, the MSEs of th e “EM” estimators are, on 

the whole, less than those of (dpa,a (), especially when na or pm is small. The advantage of 

unbiasedness in the latter apparently has been bought with a price in terms of efficiency.

If data is distributed normally or according to a £ distribution, the MSE of d pse seems to 

be smaller than that of arp3 for a wide range of parameter values, sample sizes and missing data 

patterns. Under these assumptions, c pse will be preferred in applications unless unbiasedness is 

of much greater value than efficiency. Simulations in a future paper may show that the MSE of 

<7pa may be reduced when the divisor of a ps is changed from a,  — JT a? /a» (-° a figure which 

more optimally balances bias with efficiency.

2.7 Analysis of Simulated Dataset. As an illustration, we apply the iterative ( “EM”) and non

iterative estimation procedures defined above to a dataset generated from a central multivariate 

£4 distribution. Assume any family having no missing data values is composed of a parent and

j
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six sib lin g  and has covariance

1 1 1 I I 1

6 4.6 4.2 3.8 4.2 4.6

4.6 6 4.6 4.2 3.8 4.2

4.2 4.6 6 4.6 4.2 3.8

3.8 4.2 4.6 6 4.6 4.2

4.2 3.8 4.2 4.6 6 4.6

4.6 4.2 3.8 4.2 4.6 6

and let any sibling’s score have probability .2 of being missing. The scores of ten such families were 

simulated, and certain siblings’ observations were subsequently replaced with zeros according to 

the outcome of a stream of iid Bernoulli(.8) random variables y XJ; below, each row is a family’s 

vector of observations, with the parent’s score appearing in its first position:

-3 .3 2 6.34 2.84 .86 2.56 4.22 3.88

-3 .1 0 -3 .2 0 -3 .9 2 -3 .9 6 -4 .89 -2 .9 6 -1 .5 1

2.26 .49 .03 .32 0 1.52 - .6 4

2.31 2.20 1.18 - .1 9 .62 1.98 - .7 2

-2 .2 4 -2 .9 6 -1 .0 9 -1 .0 6 0 0 -2 .8 4

2.10 .16 - .8 2 -.1 6 .15 1.64 .59

- 1 .11 - .7 4 0 - .1 9 -1 .43 0 -1 .6 0

— 1.55 —5.15 0 .05 0 -3 .2 0 0

- .0 3 .34 -1 .5 2 -.9 1 .66 1.45 0

-1 .8 3 .15 - .2 1 - .9 7 -1 .99 0 0

The resultant unbiased estimators are (treating nv and fj,s as unknown) 

(arp3, do,  a  u  a 2, a 2) =  (1.077,5.6315,4.7682,4.4111,4.0714). 

“EM” iterations, on the other hand, produced the following estimators:

(dpsz.Voe. die. d 2e. a 3e) =  (.9549.5.2885.3.3421.3.0135.2.9438).

j
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With the exception of a p3e, all the “EM” estimators have negative errors (reflecting their negative 

biases) which are larger, in absolute value, than those of the LOO estimators. Nonetheless, 

because of the moderate sample size, t  distribution, moderate pm and availability of covariates 

(parents’ scores), the (d pse,Oie) can in the long run be expected to perform better than the 

(dp,, df) in minimizing mean squared error, if more datasets are generated from this distribution.
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3 AUTOREGRESSIVE CIRCULAR COVARIANCE

Cov{xi],x il) =

3.1 Introduction. In this section we introduce and develop a highly parsimonious case of cir

cular covariance which, when its assumptions adequately characterize the data, has important 

advantages over general (unrestricted) circular covariance. All the covariance terms in this model 

depend on only two underlying parameters p  S (—1,1) and a 1 >  0. It possesses the following 

structure within the i th family:
'

cr2p'3~n , \ j - l \  <  a / 2 ,
(13)

a 2pa-ij-H , >  a/2.

We may refer to this phenomenon as “autoregressive"1 circular covariance, as it is the circular 

analog to the covariance o f the AR(1) time series models. As with all circular covariance struc

tures, the middle terms differ depending on whether a is even or odd. as displayed below for 

a =  4 and a =  5:

1 p p2 p2 p

P 1 P P2 P2

p2 p I p p2

p2 p2 p 1 p

P P2 P2 P 1

If the autoregresssive circular covariance assumption is a valid representation of the data in an 

application, the advantage of modelling only two parameters, instead of the many required given 

general circular covariance, can be significant. This advantage is especially great if n/a  is small, 

indicating many parameters are to be estimated by observations on only a  few families. In fact, 

wherever circular covariance is used to model data, we advocate that autoregressive circular 

covariance be considered as one possible structure.

As observed in Section 1, Olkin and Press (1969) examined a less restrictive model involving 

normally distributed data with circular covariance wherein the first row o f  C is

1 p p2 p

p I p p:

P2 p 1 p

p p2 p 1

CT2( l .P i ,p 2. - , P m - u P m , P m - i  Pi), a =  2m, or (14)

er2( l .p i .p 2 pm_ ,.p m.pm,pm_ , . - . .p 1). a =  2m +  l.

1

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



with {pl .p<2 , ■■■■ Pm) being independent parameters, subject only to the restriction C >0. In the

case we are now considering, Pj =  p1 , j  =  1, 2, so that

6j =  cr2 ( l , p , p 2 , . . . ,pm)Bj , j  =  l ,2 , . . . ,m  1 (15)

are the first m +  1 eigenvalues o f C , and the last a — m  — l  eigenvalues of C are (again) obtained

using Sj =  5a_ j_ 2 , J =  m  +  2 ,m  +  3, ...,a .

3.2 Maximum Likelihood Estimation: Equal Numbers of Measurements within Families. Let 

Xi =  (xu,Xi2 , . . . , x iay  ~  N a ( n l , C ) ,  i =  l ,2 ,.. .,n  and X' =  (x[,x'2, —.x^)  where 1, as in the 

previous section, is a vector of unities of the appropriate length, and C has elements defined by 

(13). Define T as the a x a symmetric orthogonal matrix having elements

( 16)

Then the rows (columns) of T are the eigenvectors of C, so that C =  rd m g(5 i, ...,£0) r  (Basilevsky, 

1983). Also, create the canonical variables

Yi = (y .i,y ,2 :- - ,' / io ) '=  Txj, i =  1, 2 , . . . , n: then 

Yi  ~  X a( p , d i a g ( 5 u ...,6a)) =  N a( p , a 2diag(d i ,  . . . .da )),

where the dj are functions of p only, not depending on a 2, that is, Sj =  a 2d j , and (noting all 

rows of T but the first are orthogonal to 1) pi  =  (y /ap,0,0 , ...,0). Here

diag(Si, ...,6a) =  <
diag (5\  , 62, .... &m~ 1, , <̂ m — 1 » ^2) j & — 2771,

d i a g ( 6 l , 6 2, . . . ,6mr.u 6m+ l , 6 m, 6 m- l , . . . , 5 2) ,  a =  2m +  I.

Let Y' = (yi,y2,- ,y( ,)-  Then Y  is an orthogonal (one-to-one) transformation of X, and conse

quently contains all the information in X about (p, S') and therefore about ( i t 2 , p). Furthermore, 

the MLE of these parameters expressed in Y is equivalent to that expressed in X.

Olkin and Press (1969) obtained the MLE of (S' ,a2 ,p'T) in terms o f Y for their (less restric

tive) model. We modify their approach first, as did Khattree and Naik (1994a), to accommodate 

our requirement that the mean vector be estimated from {p. = p l  :p €  3.} : that is. while they

d
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estimate the mean of the j th measurement in each family by its MLE =  xmj, we estimate 

the overall mean p by its MLE p. =  x , . .  Additionally, while they calculate the matrix of 

sums of squares and cross products as S = (s;/), with Sji =  (xtJ — fij)(xu — p t), we let 

Sj[ =  J3"_i(xij — U)(x u ~  A)- further modifications to the argument of Olkin and Press are 

necessary to obtain 6  in our situation. The MLE of a 2 is

1 "
&2 =  ™  ] C  (y ' ~  A )' ld ia9 (d ' ’  d“ )l 1 (yi -  A) ,na *t= i

(17)

solving the score equation in a 2 while making use of the fact that 5T“=l d2 =  a ~ 2tr  (C) =  a. Until 

estimates of thedj are available, from 6  and using the fact that p  =  ( l,p , p2 , . . . ,pm) ’ =  er~2 (B - I ) , 6 , 

an initial estimate of cr2 can be calculated as (d2) ^  =  b ld, where b 7 is the j th row of (B~ 1) /.

To find the MLE of the autoregressive parameter p  using the canonical variables Y , let 

tj, =  y, — p. have elements ptJ. j  =  1, 2 , ... .a and note that the first derivative with respect to p 

of the loglikelihood is

d ln p (y )  _  1 dS-, f  9% _  n \  
d p  2 2-* dp y  52 S j J '

Solving 3 =  0 iteratively can be accomplished using either the Newton Raphson (NR)

algorithm p^~1̂ =  p^  — (Hpp) ~ l S(p)  or the Fisher Scoring (FS) algorithm p^~l ) =  p t̂} +

(f(p)) 1 S(p) where Hpp is the second derivative 3-  'j* , I{p) =  —E (Hpp) is the information

about p. and S(p) =  3  ̂ is the score of p. To implement both of these methods, we calculate

d2 lnp (y) _  I  Y '
dp2 2 ^

(  H , 9% n \  ( d t i j \ 2 f  n_ _  2 p2 \
d p 2 ^ g2 Sj J \ d p  J  ^ 52 6* J

which has expected value equal to  the negative value of the information about p :

■g?l\  _ f / a x  \  2(£)V (18)

Recalling that Sj =  o 2 ( l , p . p 2 , p m) B2, and that B does not depend on p,

gc aJ r
=  ct2(0, l,2 p ,3 p 2 m p m ~l )Bj  and =  ct2(0,0, 2,6p, ...,m  (m -  1 ) p m~2)B2.

Substituting these first and second derivatives into Hpp, I(p) and S(p).  using the current estimate 

of p in place of p. together complete the elements of the equations required for the NR and FS

J
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iterations. For either of these methods, a new estimator of a 2 is calculated using (17) at each

iteration.

1

j

Simulating one hundred datasets from normal distributions with autoregressive circular co-

Although the o j ,  given Hc, must meet the restriction C >0, we may call Hc the hypothesis of 

unrestricted circular covariance, to distinguish it from Hp.

Olkin and Press (1969) give the likelihood ratio test (LRT) (Khattree and Naik, 1995) of 

Hi  versus Hc. Our acquisition of the MLE p in the last subsection permits the use of the LRTs 

of Hi  versus Hp and Hp versus Hc. Whether H i ,H p or Hc describes the covariance structure, if 

Sj are the eigenvalues of the appropriate covariance matrix, the loglikelihood is

variance, for each of the several combinations of n, a and the covariance parameters p and a 2

shown in the comparison of p with the alternate estimator p of p below, it was found that NR 

and FS produced essentially the sam e results for p, although FS usually converged (to the same 

convergence criterion) in fewer iterations. While multiple roots of =  0 may exist, both

NR and FS iterations seemed to converge, in simulations, to the true values (p,cr2) -

3.3 Selection of Appropriate Covariance Structure. Consider the following (nested) hypotheses:

Hi Cov{x-i) =  <t2I (sphericity),

Hp Cov{xlj .x, i )  =  <
° 2Pij 11, | i  -  l\ <  a /2 ,

(autoregressive circular covariance),
<72P“ 1 (i, \ j - l \ > a / 2 ,

Hc Cou(xtJ,x ,/) =  <
a  j-/!> I j  ~  *1 <  a /2 ,

\ j - l I >  a /2.
("unrestricted” circular covariance).

Under Hi,  Sj =  a 2 for all j , so that the covariance structure depends on a single parameter, 

and d 2 =  ^  (X —p i) '  (X —/21) completes ML estimation of all covariance parameters, in which 

case the MLE of InL simplifies to — 4 r  [in (d2) +  l] . Assuming Hp, the lx (m  +  I)-vector of 

distinct eigenvalues is given by 6 ' =  <72(L ,p,p2 ,...,p m)B and depends on two independent para

meters a 2 and p. In this case the MLE of In L simplifies to — ^  ln<5j 4- a . Next. Hc implies

JL
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that S' =  (ctq,O’! .<72.....crm)B depends on the m  4 - 1 independent parameters ctq.ct! . 0 -2. . . . ,0 m. 

and the MLE of In I, is again — 7? JT  ln5j + a j  with the sole difference from Hp that the 6 j are 

derived differently.

Again letting Bj  be the j th column o f B , the MLE of —2 In (Lp/ L c) . which has an approx

imate chi-squared distribution with (m -4-1 ) — (2) =  m  — I degrees of freedom when Hp is true, 

can be expressed as

111"* 1 * 2 / i  * * 2  “  T T X  \  r*>

- 21nApc= - 2  [ in L p -In L c l = n  V  Qj In % -  U . . ( tg)
L J P i  (cr0 , ° i , o 2,...,(Tm)Bj

The LRT statistic for Hi  versus Hp is similar; each of these statistics can be interpreted as the 

log o f the ratio of the sample generalized variances under the two hypotheses concerned.

For each of the two nestings Hi  versus Hp (which actually tests p  =  0) and Hp ver

sus H c, the sizes of the LRT under the combinations of a,n  and p listed below were esti

mated by generating one thousand normal datasets from distributions under the null hypoth

esis, and calculating —2 In A for each simulation. This test statistic fell in the critical region 

2 In A : —2 In A >  A^.os} (causing type I error; here d  is the difference in the number of para

meters estimated) on the proportions of occasions listed in Table V. In each case, the proportion 

estim ates the size of the test. The variance cr2 is everywhere fixed at 1:

J

Table V: Estimated Sizes (Rejection Proportions) 

of LRTs of Sphericity versus Autoregressive Circular Covariance, 

and Autoregressive versus Unrestricted Circular Covariance.

Hi  versus Hp Hp versus Hc

n a n a p =  - .4 p =  A

10 4 .064 10 4 .073 .062

10 7 .058 10 7 .056 .066

30 4 .057 30 4 .052 .064

.30 7 .052 30 7 .048 .061
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It seems the size of each test is a small amount larger, on average, than the desired 5%, as long 

as na is moderately large.

To examine the power of the LRT of Hi  versus Hp under various nonzero values of p. one 

thousand normal datasets having autoregressive circular covariance were simulated for each of 

several different combinations of n, a and p while fixing a 2 =  I. The proportions of rejections 

(estimating the power) were tabulated in each case in Table VI:

Table VI: Estimated Power (Rejection Proportion) of LRT 

of Sphericity versus Autogregressive Circular Covariance.

n a p =  - .4 P =  - -2 p = .  2 p =  .4

10 4 .784 .269 .171 .675

10 7 .923 .428 .335 .894

30 4 .997 .617 .582 .994

30 7 1.00 .843 .804 1.00

As is expected and desired, the LRT seems to have greatest power when ]p| is large.

To examine the power of the LRT of Hp versus Hc under various cases of Hc, it is necessary, 

when choosing a non-autoregressive structure, to develop some notion of the relation between 

the covariance parameters and the eigenvalues 6  =  B '<r of the covariance matrix C. Obviously, 

this relationship is important because there is a need to keep all Sj >  0. However, it is also 

important to have some idea of the somewhat surprising effects the choices of the parameters 

a ' =  (cro,er1,...,erm) have on the power of the LRT, as this power depends on the extent to which 

the eigenvalues differ from those of an autoregressive C.

As shown by (19), the distribution of the LRT statistic depends on tr through <5; hence, the 

power depends on the distributions of the MLEs of 6  calculated assuming the null and alternative

j
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hypotheses. Because the <5, appear in the denominator in the log in —2 In A. the variance of this 

statistic can be expected to increase dramatically when one or more of the expected values of 

the 6 j  approach zero. This will certainly occur when any of the true Sj approach zero, and it 

is plausible to suggest that, if the alternative hypothesis Ha is true, one or more of the E(<5; ), 

calculated under the null hypothesis Hq, will approach zero even when the true Sj do not do so. 

Because \n(Li/Lo) >  0 when Ho is nested within Ha, this increased variance implies an increased 

frequency of rejection of the LRT, and hence a higher power of this test.

As measured by the LRT, therefore, circular covariance structures are ■‘different” in terms 

of the differences between their eigenvalues, not so much in terms of differences between their 

covariance parameters tr. This fact is demonstrated empirically in the tables below, where it is 

seen that small deviations from autoregressive circular covariance derived by 0 2(L,p ±  £ i , p 2 ±  

£2 ,.. .),  where the s, are small numbers, often result in high power of the LRT.

The importance of the distinction between the effects of deviations imputed to the a } 

and those of deviations imputed to the Sj becomes evident upon consideration of some ex

amples. For instance, the C associated with the choice a =  4 and (0 0 , 0 1 , 02 ) =  (1,-75, .50) 

is singular. The C associated with (00 , 0 1 ,0 2 ) =  (1,.75,.675) and a =  4 is nearly so, as its 

smallest eigenvalue is 0.7, only 6% of the largest eigenvalue. These two facts are surprising 

because it would seem that both sets of covariance parameters are quite ‘‘close”, for exam

ple, to  the (0 0 , 0 1 , 0 2 ) =  (1, -75, .5625) which appears in autoregressive circular covariance with 

{cr2 ,p)  =  ( I , .75). For a =  7, the choice (00 , 0 i , 0 2 , 03 ) =  (1,.75,.675,.50) also produces an 

extremely small eigenvalue (when compared with the largest eigenvalue), and is thus shown to 

be very "different” from autoregressive circular covariance with (02,p) =  (4, .75), which pos

sesses covariance parameters (0 0 , 0 1 , 0 2 , 0 3 ) =  (1, .75, .5625, .4225). Furthermore, data arising 

from non-autoregressive circular covariance with these parameters are actually extremely differ

ent from that arising from autoregressive circular covariance, as is shown below by the high power 

of the LRT under these alternatives.

Consequent to the need for C to have S3 >  0 which are more or less evenly proportioned.
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we proceed as follows in constructing non-autoregressive circular covariance structures. To in

vestigate the power of the LRT when the circular covariance parameters a  are highly non- 

autoregressive, we assume that the covariance between any two observations increases with the 

lag between them, and choose (o'o>a i>0 '2>0 '3) =  (1,-25, .375. .50). which results in a circular co- 

variance matrix with relatively evenly spaced eigenvalues (61 , 62 , 6 3 ) — (1.875, .625, .875) if a  =  4 

and (61, 6 2 , 6 3 , 6 4 )  =  (3.25, .2439, .8366, .7947) if a =  7.

To construct non-autoregressive circular covariance matrices which generate data more 

closely resembling that which arise from autoregressivity, in each case we start by choosing a p 

which would seem reasonable as an autoregressive circular covariance parameter, find the eigen

values of the resultant covariance matrix, and adjust one or more of these eigenvalues slightly. 

Pre- and post-multiplying the eigenvalues, in diagonal form, by the eigenvectors contained in T 

produces a new, positive definite matrix if all the adjusted eigenvalues are positive. Assuring that 

the new matrix is not itself an autoregressive circular covariance matrix is then accomplished by 

examining the ratios between the elements of its first row.

Assuming autoregressivity and setting (cr2 ,p) =  (1, .4) implies

S' =  (1. .4, .16)B =  (1.96, .84, .36) when a =  4, and

6 ' =  (1, .4 ,. 16,.064)B =  (2.248,1.3123. .6135. .4502) when a =  7,

in each case using the B matrix applicable to the dimension a. VVe adjust one or more of the 

smallest of these eigenvalues upwards for each a, first by a small amount and then by a larger 

amount. For a =  4, adjusting 63 to .5 implies tr' =  (1.035, .365, .195), and adjusting it to .8 

implies tr' =  (1.11, .29,.27); neither of these tr  satisfy the autoregressive assumption, although 

\oi\ >  | for each I and each adjustment. Dividing each of these tr' by its ctq normalizes them

to (L .3527 ,.188-1) and (1, .2613, .2432). For a =  7,

adjusting 6 4  to .6 implies a '  =  (1.0428, .3615, .1867, .0545), 

and adjusting ( 6 3 , 6 4 )  to (.9 ,.8) implies a '  =  (1.1818,.2918,.1485,.0928);

both of these tr' approximate, though do not replicate. a 2 ( l .p ,  p2. p3) for appropriate (cr2. p). Di-

I
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vidingeach of these tr' by itsco  normalizes them to (1, .3467. .179..0523) and (1. .2469. .1257, .0785).

One thousand datasets were simulated for each of several combinations of (n ,a ) , all with 

normal, non-autoregressive circular covariance having the parameters a- listed below, which were 

derived using the adjustments described above. The LRT statistic —2lnA pc =  fell into

the critical region on the proportions o f instances listed in Table VII, in each case estimating the 

power of the LRT.

Table VII: Estimated Power (Rejection 

Proportion) of LRT of Autoregressive 

versus Unrestricted Circular Covariance.

(n,<z) o-' Rejection Proportion

(10,4) (1,-75, .675) .354

(10,7) (1,.75, .675, .50) .769

(30,4) (1,.75,.675) .675

(30,7) (1,.75, .675,.50) 1.00

(10,4) (1,.25,.375) .257

(10,7) (1,.25, .375, .50) .981

(30,4) (1,.25,.375) .749

(30,7) (1,-25, .375,-50) 1.00

(10,4) (1,-2613,-2432) .085

(10,7) (1,.2469,.1257,.0785) .066

(30,4) (1,-2613,-2432) .294

(30,7) (1,.2469,.1257, .0785) .098

(10,4) (1,-3527,-1884) .066

(10,7) (1,-3467,-179,-0523) .080

(30,4) (1,-3527,-1884) .077

(30.7) (1..3467.. 179..0523) .152
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As expected, the power of the test depends on the amount of perturbation away from autore

gressivity.

Another means of testing for covariance structure is that provided by Akaike (1973a, 1973b). 

See Jones (1994) for a description of this method. Akaike’s Information Criterion, A IC =—2 In L +  

2d, where d  is the number o f estimated parameters, is calculated for each proposed model. The 

decision rule then chooses the model yielding the lowest AJC. VVe here use the criterion to choose 

between the three alternatives for covariance considered above: spherical, autoregressive circular, 

and unrestricted circular. It is known (Jones, 1994) that AJC is not a consistent estimator of the 

order of an autoregression. Therefore, an argument could be made in the present context in favor 

of the modified AJC due to Schwarz (1978), SC =—2 In 1 .4-din n (where n is the total number of 

units) over the original AIC. However, since switching between decision rules based on —2 In L 

simply redistributes the probabilities of choosing among the possible structures, the election of 

one of these rules over another actually must depend on the cost of misclassification associated 

with each wrong decision. We present results using the original AIC, as the proportions of correct 

decisions using this criterion seem to be approximately equal for the three covariance structures. 

Given m  =  m (a), the AIC statistics for the three covariance structures under consideration

are

—2 In L 4- 2(m  4-1) Unrestricted Circular,

—2 In L 4- 2(2) Autoregressive Circular,

—2 In L 4- 2(1) Spherical,

ignoring for the moment the number of estimated mean parameters.

First, one thousand datasets were simulated for each of several combinations of (n, a, p), and 

the proportions of correct choices based on AIC among the three alternatives were tabulated in 

Table VIII. Note that if p =  0, a correct decision is one in favor of spherical covariance.

I'
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Table VIII: Estimated Accuracy Rate (Proportion 

of Correct Decisions) of AIC under 

Sphericity and Autoregressive Circular Covariance.

n a P — —-4 p =  0 p =  .4

10 4 .743 .776 .671

10 7 .819 .802 .799

30 4 .834 .784 .841

30 7 .833 .805 .872

Next, one thousand datasets were simulated for each of several combinations of (n, a ) , all with nor

mal. non-autoregressive circular covariance having parameters a'  =  (1,.25, .375, .50), (I, .2613, .2432) 

or (1, .2469, .1257, .0785), as applicable. The proportions of correct decisions based on AIC among 

the three alternatives for covariance structure are listed in Table IX:

Table IX: Estimated Accuracy Rate (Proportion of 

Correct Decisions) of AIC under Unrestricted Circular Covariance.

n a tr' Proportion

10 4 (1..25, .375) .380

10 7 (1,.25, .375..50) .976

30 4 (1,.25, .375) .835

30 7 (1,-25, .375, .50) LOO

10 4 (1,-2613, .2432) .208

10 7 (1,.2469,. 1257, .0785) .125

30 4 (1,.2613, .2432) .505

30 7 (1..2469,. 1257, .0785) .234

i)
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Again, correct decisions are less frequent when the unrestricted circular covariance closely resem

bles an autoregressive circular covariance structure (the last four cases in the table). The low 

accuracy displayed by this criterion for a =  4, even when the unrestricted circular covariance 

is highly non-autoregressive, is perhaps due in large part to  the fact that, with this dimension 

(as well as with a =  5), just one parameter estimate, <72, is useful in differentiating between 

autoregressive and unrestricted circular covariance. In fact, if a <  4, all possible circular covari

ance structures are also at the same time both autoregressive circular and compound symmetry 

structures. The lower power of the LRT seen above in differentiating between autoregressive and 

unrestricted circular covariance for a =  4 can probably be explained in this way, as well.

3.4 An Alternative Estimator of the Autoregressive Parameter. By the properties of efficient 

likelihood estimation assuming any of the regular families of distributions, the MLE p  is guaran

teed to be asymptotically efficient and consistent, having variance in the limit 1 / I  (p). However, 

for small Nap,  another estimator p  has very favorable qualities compared with p, which we 

develop in what follows.

Given the MLE 6 , estimators of m  powers of p are available as p1 =  d ~ 2b 3~ l 6, j  =  1 .2__ ,m,

where tF is the j th row of (B - I ) ,. Since for j  =  1,2...,m , b3~ l 6 / b J 6  =p,  we have m estimators 

of p  as p} =  b -^ d /b ^ d . j  =  1,2 ,..., m. The final estimate p will be found as a linear combination

of the p j .

Because of the efficient likelihood estimation properties of 6  (Lehmann, 1983), it is known

that

\ /n(S  — 6 ) —*iVm_ i(0 ,1 -  l (d)),

where

is the Fisher information matrix of S.

Suppose

e = ( 0 i , d 2.......0m- i ) '  =  ( b 1<5.b2<5.....bm~ I<5)' =  ( B _ I )'«

jL
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and

then,

yf t {0 - e )  =y / a  ((B~ l ) ' S -  ( B - l )'<5) — * .Vm_ t (o, (B _1) / I - l (^ )B ~ 1̂  . 

If we denote

am

a m

g(0)

e ( e )

=  3i =
Oi+i b " l6

= g i =
9i

Bi-ui b * '1̂
b‘«
—i;

=  p,

=  Pi,9 i b'6  

=  (g i ,92 ,—, 9 m y = S = p l m ,  and

g  (5l i 92, -•-? 9m) — [fti, P2 , ■■■■ Pm) ,

then by the Delta Theorem (Lehmann, 1983) we have

V^(g -  g) =  v ^ (g  -  lp ) -A m  (0, D 9 (B - 1)' I - 1 (5 )B - 1 d ; ),

where D s is the m x (m +  1) derivative of g  having elements
r

cr-2p 1- ' ,  j  =  i +  I,

- a " V " ‘ . j  =  1,

°» * +  1 7^ J  i= i-

Now it can easily be shown, using a version of the extended Cauchy-Schwartz inequality (Johnson 

and Wichern, 1992, p. 66), that the final estimate p of p which is optimal in the sense of having 

minimum asymptotic variance among all consistent linear estimators based on the elements of g,

(D 9)0 =

IS -  I
_ r ( p g ( B - 1) , i - 1(g ) B -1p ; ) '

9  l ' ( D s ( B - 1), I - 1(5 ) B -1D ^ ) 'I l g ’

p has asymptotic variance ^ 1 '^Ds ( B -1 ) ^ " ^ ^ -1 ^ )  1^ and the ( i , j ) th element of

D j (B _ l ) l - l (fi)B _ IDg is, after much simplification,

m —I

f=l
fD3 ( B - l ) ' r l (5) B - lD ; >) = 2 - V - Ia - V " ' J Y  ( b " u  -  pblt)^-  (IP '1-1 -  p V l ). (20)
V /  17 a i
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where b‘J is the (ij)  element o f (B -1 )'.

In practical situations, th e MLE is substituted for a 2 and 6  in the above expres

sions. Then, subsequent estim ates p^Kt  =  1 ,2 ,3 ,... are substituted into the expressions until 

convergence is reached.

One thousand datasets were simulated from each of the normally distributed populations 

with autoregressive circular covariance having the combinations of n, a and p  listed in Table X, 

with cr2 fixed at I. The sam ple mean squared errors of p are compared with those of the MLE 

p, where p is approximated using FS algorithm iterations. It is seen that MSE(p)<MSE(p) for 

small Nap.  Furthermore, while p is derived in an iterative fashion, as is p. the iterations leading 

to p always converged, whereas both the FS and NR algorithms were found not to  converge on 

several instances. However, th e  performance of p, when FS converges, quickly overtakes that of 

p as N a p  increases, implying p is to be preferred for datasets of appreciable size.

Table X: Comparison of Mean 

Squared Error of Linear Combination 

Estimator with MSE of MLE.

P n a MSE(p)/MSE(p)

-.6 2 4 .4310

-.6 2 7 .5325

-.2 2 4 .7555

. .2 2 7 .8974

0 2 4 .8649

0 2 7 .9645

.2 2 4 1.6214

.2 2 7 1.3819
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3.5 Estimation. Unequal Numbers of Measurements within Families. The immediately preced

ing subsections identified methods of estimating p  when all families have the same number of 

measurements. When numbers o f measurements vary between families, a modification of these 

methods is necessary. Although not dealing specifically with circular covariance models. Gleser 

(1992) and C.A.B. Smith (1957) have each approached the estimation of mean and covariance 

parameters in the case of unequal numbers of measurements on families (albeit with altogether 

different models). Gleser pooled families into g groups according to the numbers of measure

ments on each family, obtaining maximum likelihood estimators 9  (i ) =  { 9 \ { i ) , ...,Qp(i)) of 

the p parameters within the i tk group of families, i =  1,2, . . . .g,  and then solving for the overall 

estimates 9  =  (6 1 , 62 , —,9p) in the equation

]T i,(0 - 0 (i)) = o,
t=i

where I t(0) is the estimate of the information in any family in group i on 6 . To apply these 

methods in our estimation of (p, a 2), if an appreciable number of families are available in each 

group, we would combine the MLE (p( i ) , a 2(i)) from group i , i  =  1.2,.... <7, which were specified 

in the last subsection.

On the other hand, C.A.B. Smith discussed estimation o f the variance components in an un

balanced one way random effects general linear model. Smith in essence pooled blocks (families) 

into groups according to size, as did Gleser (1992). From the i th group, 1 =  1 ,2 ,..., g  he obtained 

a preliminary estimate vB(i) of the variance Vg of the random effect. Smith then estimated the 

variance of each within-group estimator as

tu, = —  +  v B(i),
11 i

where m  is number of observations on each block in the i th group and va  is the usual estimate 

of the error variance. The within-group estimators of Vg were then iteratively combined and 

improved, using weights inversely proportional to progressively improving estimates o f their vari

ances (proportional to the wt). It can be shown that this method minimizes the variance of 

the overall estimator, and produces a linear combination of the within-group estimators analo-

J
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gous to the minimum variance estimator of p found in the last subsection using the extended 

Cauchy-Schwartz inequality as a linear combination of the pt .

We adopt a modification of C.A.B. Smith’s method here. As he combined the within-group 

t’s(z), i =  1,2 we combine within-group estimators of (p ,o 2 ,p). Group families according to 

the number of measurements on each family, letting /  be the maximum number of measurements 

on any family. Also, for z =  1 ,2 ,..., / ,  let .V, be the number of families having z measurements. Let 

x l]k be the kth measurement on the j th family having z measurements, i : .V, >  0; j  =  1 ,2 ,..., .V, 

and k  =  l ,2 ,.. .,z . Define

X,j (^ijl j %ij2i ^  ^t)»

where the elements of C, are

{o V * - *'1, \k -  fc'| <  i/2 ,
(2 1 )

a 2p'~'k' k ', |Ar — A:'| >  i/2 .

C, has eigenvalues Si j , j  =  1,2, ...,i. which can be expressed in a manner similar to (15). Also, 

let m, =  int ( i/2 ) and X' =  (x 'l t x '2, ....x ' v ), i : >  0. The .VILE

-  _  Hi.iV.>0^»lLj>

of p  is easily found using the loglikelihood involving X '= (X ',, X 2, .... X ) ). Solving the score 

equation for p. is facilitated by expressing each C , as C, =  Tidiag (6 u , 5,2, —,&u) T,, where T, 

has rows and is the obvious adaptation of (16) to the dimension z.

At this point, the within-group VILEs of p can easily be combined to produce an asymptot

ically efficient estimate of this parameter. Equation (18) specified the information about p  when 

all families have the same size; adding the subscript z to denote the group (i.e., the dimension) 

for the present context, we have that

2 j

is the reciprocal of the asymptotic variance of the VILE of p within the group in which z mea

surements are taken on each family. Combining these VILEIs using weights proportional to the 

f,{p) produces the overall asymptotically efficient estimate of p.
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When all of the pi.\\. i =  2 ,3 ,.... /  are small, we can specify a better overall estimate p of p 

than the overall combination of the within-group MLEs p{i), as the latter are less efficient than 

the within-group combination estimators p(i). Discard all families having a single measurement 

each, as they provide no information about p. Group the other families according to the number 

of measurements available on each of them, as was done for the estimation of a 2 and p  above. 

Within the group having i measurements on each family, and following the development of the 

last subsection, create the matrix B , =  (bt:i) using an adaptation of the B  matrix described 

in Section 1, and calculate the MLEs Si of the vectors of eigenvalues Sx. Also let pt(i) be the 

“combination” estimate of p obtained by dividing the Ith and (I +  L)t/l linear transformations of 

6, induced by the rows of (B t-1 ) \  i.e.,

P l { i )  =  * * =  L 2  771;.
D\6i

Define M  =  m ax,{m ,} =  m/ and Lt =  min;{i : m, >  I}, I =  1 ,2 ,..., M. Because pt{i) is not 

available if I >  m x 4-1 (since (B ” 1)' has only mt +  1 rows), for a given I, Li can be viewed as the 

smallest i so that p[(i) exists. For I =  1,2,...,.Vf, let

r / =  (,Pi(Li),Pi(Li +  l),...,pj(/))

be the vector combining across groups of families the estimates of p  using the Ith and (I 4- 1)IA 

orthogonal transformations of Si. For i = Li, Li + 1, ..., I  — 1, the pt (i) is not present in r ; if no 

families in the sample have i measurements; let ki be the resultant row dimension of r/. The 

strategy we follow is to (i) combine the Pi(i), i =  2 ,3 , . . . , /  as pt =  ujn  for some vectors U( so 

that u,'l =1 , I =  L,2, ...,.Vf, (ii) set q' =  (pi,f>2< ■■■iP.u) and then (iii) find the best combination 

p =  w 'q  of the pt for some vector w  so that w ' l  =  1.

To find the elements of u;, we note that for a given I, the P[(i), i = L[,L[ -1- 1 M  are

mutually independent, as they are obtained from different groups of families. Therefore, the 

covariance of n  is cov(rt ) =  diag(v[i\ , u [ ^ l l . . .. ,1'Jj1) where, from (20), it is known that
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In pi, we wish to assign weights to the elements of rj inversely proportional to their estimated 

sampling variances. This is achieved by creating the I x i |  vector

To find the elements of w '=  ( u i \ , w ? , . . . .  te.vr), we find the terms in the asymptotic covariance 

of q '= (£ i» P 2 .- .£ Af).

(cov(q)):[ =  covip^pt)  =  cm /(u'rj, u,'r,) =  u' [ c o u ( r , ,r ,) ]  u,, 

and yet again use the extended Cauchy-Schwartz inequality to minimize the asymptotic variance

for m.j 7̂  m(, though possibly square even if j  I since different j  can map to the same mj).  

Matrix coi; (r rj) has nonzero diagonal elements proceeding leftward and up from its last [i.e.,

that cov(Tj,n)  is at least as high as it is wide, and the first nonzero element of cov(r_,,r/) is 

cot;[pJ(Z,(),pI(£,i)] and appears in its (k} — */ +  !, I) position. In this case,

(cov( q ))j7 =  UijCovlpjW^^i fiuu.
1>£.,:X,>0

On the other hand, if j  >  I, then cov(Tj,ri)  is at least as wide as it is high and

and letting pt =  u(rj, the sum being over all i : ,V, >  0 and i >  Li.

of p. We consequently find the elements of c o v ( r j , r i ) ,  which has dimension kj  x ki (nonsquare

its (kj x ki)th element cov [p, (7 ) ,^  (/)]]. If, for instance, j  <  /, then <  mi  and kj >  ki, so

( c o v (  q ) ) j i =  ^ 2

■ >£., :X,>0

Let Lji =  max{Lj, Li} =  min{z : m, >  j  and m t >  /}; then regardless of whether j  is as large as 

/, we can write the elements of cov{q) as

Here, for each i , i  =  2 ,3 ,..., / ,  cou[pj(i),p((i)] is the (j, Z)£/l element o fD si (B; l ) , I i ^ ^ B ;

defining the matrices of this product by applying the results of the last subsection to the dimension 

i. Consequently, using (20), the nonzero elements of cov(rj .ri )  can be specified as

£
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where b{a is the ( j,a)th element of (B, l )'. Our estim ate of p then becomes

l'(cn n (q))~ l q
l'(cou (q ))_ l l

having asymptotic expected value p  and variance ^ l'(« ra (q ))~ l l^

Now we proceed to find an overall estimate a 2 o f a 2. Even the families, if there are any, 

having only one measurement each will provide information about a 2, although they provide 

none about p. So, for i =  1, 2 , / ,  let b 2 be the j t h  row o f (B t~ l )', j  =  1,2 ,..., m* 4-1. If Ni >  0, 

then 6i =  (<5,i,<5,2 the MLEs of the eigenvalues d' =  (6n,6i2, of C, can be

found within group i of Ar, families (each having i measurements). This is accomplished following 

the methods of Olkin and Press (1969). Then an initial estimate of er2 from the families in the 

ith group can be found following the methods outlined in Subsection (3.2) as ct2( i) (1) =  b^d,. 

Subsequent iterations then proceed between the <72 (i)(£) and the p(i)(t  ̂ in a manner similar to 

that described in that subsection, which will converge to  the MLE (<72(i),p (i)) within group i. 

To combine the d 2(t) into an overall estimator d2, we first calculate the information h {o 2) =  

—E Inp,(X ,)j (inserting the subscript i everywhere to indicate the dimension of each

family) that the i th  group of families contains about ct2 .

For the z so that ;V, > 0, create the canonical variables y  • • =  (f/i_,i, yU2 . ■■■■Utji)- where within 

the j th family having i measurements, ylJk =  r[kx lJ,k  =  1,2, ...i, Tik being the kth column of

T,. Then y u =  T i X i j J  =  1 ,2 ,..., AV Each y  y has mean /z< =  T .lp  =  ( v ^ O . O , 0)' and the

likelihood of the parameters in y ij is

Here Sp =  I — 2 ,3 ,. .. ,! .  If 6[ =  (5it , 5i 2 ,d i,m ,-i)  and p[ =  (1 , p ,p 2, . . . ,pm'), the

relation between Si and p l is given by

~  0^{pi&i  1 > PiBi2, p i B i tmx — l),

where Bp is the Ith column of Bj. Defining Bp  =  for I =  + 2 ,  4- 3 , .... i, gives

ln p ,(y ,,) =  const  -  ^ j S n f c 2B p Px) -  )- .
2 f i t  i l l  n P<B '1
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where p it =  <
\Tifj., 1 =  1

Thus,
0,1 =  2,3, ...,z.

-  Q(j2 lnP(y«>) -  2 i t  ( ff2 -  {V'^p>xBa )

and so

2 ^ ^  a 6 p '^  J

implies that the information about a 2 conveyed by a family in the i th group (i.e., a family having 

i measurements) is

'<<■*> ~ 5  £ ( £ - £ ) - 3 ? .

so that the information about a 2 within the i th group o f N,  families is proportional to i.V,. 

Consequently, in the overall estimate a 2 of a 2, the MLE d2(i) of a 2 within i th group should 

receive a weight proportional to iN x, so we let

-2 =  % . > 0 ^ 2(‘) . (22)

Because these 0"2(z) are mutually independent, their covariance matrix is diagonal. Consequently, 

this method of combining them is equivalent to using the extended Cauchy-Schwartz inequality 

to find their consistent minimum variance linear combination (<72(L),ct2(2), . . . , c t2 ( / ) ) v  for some 

vector v  subject to the restriction that v ' l  =1. Setting the derivative with respect to a 2 of 

the entire loglikelihood (involving X) equal to zero shows that the MLE a 2 of a 2 is also a 

linear combination of the within-group MLEs d 2(z). The MLE is asymptotically efficient for 

5I«:.v > o ^ '. 00 (increasing without bound at least one family’s number of measurements or

one group’s number of families, or the number of groups), but cannot b e  more asymptotically 

efficient than the consistent minimum variance linear combination a 2\ hence a 2 is asymptotically 

efficient as well.

3.6 Estimation of Interclass Correlation, Unequal Numbers of Measurements within Families. 

In applications in which the measurements on a family follow a circular covariance structure, 

these measurements can be equicorrelated with some other measurement. Citing once more our
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example involving measurements on disease incidence rates in sectors around a city center, these 

measurements may correlate uniformly with a measurement on another temporary or permanent 

characteristic o f the city, such as the amount of rainfall in some preceding period of time. The 

main interest here is to estimate the correlation between the rainfall and each incidence rate.

Utilizing the “parent-sib” language common in discussions of repeated measures models, the 

case in which all the families have a parent and the same number of sibs, and the covariance 

parameters {a2, p x,p 2, pm[) are all functionally independent, has in effect been examined by 

Khattree and Naik (1994a). Assuming a multivariate normal distribution with a uniform mean 

for the sibs’ scores, they specified the MLE for the mean and covariance parameters, as well as 

for the interclass correlation between each parent’s score Pij and any one of the sibs’ scores. We 

seek to extend their arguments by allowing for different numbers of sibs within families, while 

restricting the (circular) covariance structure between sibs’ scores by assuming that the elements 

of C, are all a 2 times powers of p, as described by (21).

With (x i j i ,Xi j2'...,Xiji) defined as in the last subsection and x tJ =  (p i j .X i j i ,x tJ2 , ---• x lJt)' 

as the family’s entire set of measurements, assume

f
&PP ^p5 1

V P s 1 G pal  Ci
/

i : Ni >  0 and j  =  l,2 ,...,iV ,, where C, is as defined in (21), and let pps =  a ps/  [oppO2] 1/2 be 

the interclass correlation.

The initial strategy here is to specify the MLE (dpp(i), d p3(i), d 2 (i)) for {opp,(Jp,,(T2) within 

each group of families. Subsequently, we calculate two consistent estimators o f pps and compare 

their variances. In finding the first estimate pp3, we combine the (CTpp(z),<Tp3( i ) ,d 2(z)) across the 

groups to obtain overall estimators dpp,dp3, and a 2 having minimum variances among all con

sistent linear combinations of the (dpp(i),dp3( i ) , d2(i)).  Then, another use of the Delta Theorem 

allows the calculation of the limiting distribution of

, r_ -21 l /2
Pps = Ops! [CTppCUJ

i
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The second estimator p p3 is the minimum variance consistent linear combination

Hi:.V,>0 PpA^)XL''-
Pps

>0 w i

where the tv, are appropriate weights and the pp3(i) are within-group sample correlation coeffi

cients (MLEs)

M i )  =  — ^ -----

Of the two estimates of ppa, it seems reasonable to choose the more efficient one, assuming their 

small-sample biases are comparable and given (as will be shown) they are both consistent.

Khattree and Naik (1994a) in effect found the MLE (dpp(i),d-pj(i)) within each group of 

families having the same number of sibs. Their estimator remains the MLE under our “autore

gressive” assumption; this assumption changes merely the estimation of the circular covariance 

parameters, which involve o 2 and the autoregressive parameter p. In the last subsection, we 

produced the minimum variance consistent linear combination <72 of the d 2{i) when no parents’ 

scores are available. However, the presence of the parents’ scores increases the information about 

a2 , as is shown below. Hence, our main task with respect to pp3 consists of finding the Fisher 

information, first in each group and then over all groups, of O' =  (01, 02, 03) =  (erpp.dpj.er2), 

specifying overall estimators o f  Opp.crps and a 1. With respect to pp3, in each group we must 

calculate the asymptotic variance of each pp3(i)- These derivations allow the calculation of the 

asymptotic variances of the two estimators of pp3, which we compare.

Let 0 (i) =  62(1) r^iOO) =  O^ppfaKopsW.^M). * Ni >  0  be the vectors of within-

group MLEs of 6.  Let the elements of the information matrix about 0 in any family in the i ih 

group, and in all the groups, be described by

Ix(k,l) =  - E ( ^ ^ )  an d /(fc ,Z )=  £  iVt/,(fc,f),

modifying slightly the commonly used notations so that L(0) =  ( / ,  (k , /)) and 1(0) = ( /  ( k , l ) ) . 

The matrix sum 1(0) will be used in the approximation of the distribution of pp3, and the 

1,(0) will be used in that of pp3. L’sing the efficient likelihood properties of the 0fc(i), we have 

(I , (k .k) ) l/2 v/A\(0k(i) -  0k ) — ,V(0. I) and 1,1/2(0)v/W'(0(i) -  0) — .V(O.I) as .V, -  00 . Let

I
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qjfc =  (0fc(l).0fc(2),...,<?*(/)) be the vector of MLEs of Ok from the groups of families having 

,V, >  0. The minimum variance consistent linear combination estimator of Ok is Ok =  lfcqfc, where

h =

- i
(Njiik, k),.v2i2{k, k),..., Niii(k, k))

Also let 9  =  (I1q i , l2q2 , l3q3 ); we wish to estimate cov ^0^ =  f1 and then find the limiting 

distribution of ppa =  g(9)  =  . For k , l  =  1,2,3, if the .V, are large, we may consider the

estimate of the (k, l)  element o f I ~ l (9), to be sufficiently close to cov(0k(i),0[(i)).

Then,

r '  iV,ii{k,k)

i:iV, >0 , 5Z/: ,V| >0 J  -V,

and, more generally, for j, A: =  1,2,3,

=  iJ-ow(qj,qifc)ifc (23)

=  1' diag
'  j U . k )  7 t>.*)

/ /
a .*)'

- 1

i:*V, >0

Because the elements of 9  are consistent minimum variance linear combinations of (efficient) 

maximum likelihood estimators, and because of the additivity of both variances and infor

mation across independent groups of families, the elements of 9  are efficient for estimating 

9.  Furthermore, as —* oo, (9 —9 )  —* :V(0,I) and (D s f iD g )~ 1/2 ( g(9)—pps  ̂ =

(D sn D g ) 1/2 {pps- p p, )  -*  iV(0,l), where D 3 is the (1x3) derivative of g with respect to 9. 

With respect to the approximation of the distribution of pp, , it remains to find I ^ ’k\  N,  >  0, 

j ,  k =  1 ,2 ,3 , to  which we next proceed.

To find each I , { j , j ) ,  we follow Khattree and Naik. for the ith group of families creating the

if
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nonsingular *$, =  (i l l.r,2,r,3,...,I \,)  using the 

_  i - V 2 { CTC( 2 2 L ^ ^ + s i n ( 2 ! ^ i i 0 )

cos ( 250- 0(i - 1})  4. sin 1))  |

defined in subsection (3.5). Then, we employ the canonical variables y\j =  (Pij ,y i j i ,yi j2< ■ 

1 0
x ,j. The covariance of y l; is

cou(ytJ) =

01 0 0

02 A, 0 0

0 0 03/C»2 0

0

0

0

0 0 0 03«i3 '• :

0 0

where A; =  var(y tJl)=d^Kn . The AC;* here are

0 03/c,i

Ktl =  t’“2l / C , l  =  i~ l

mx -  I
Ktk =  1 + 2  (

/=i

1 +  2 ^  p‘ +Qim,P' 
1=1

2?r(& - l)Z

,mt and

+  r*im,P ‘ >&— 2 ,3 ,.... i.

Also, defining di =  0 i 03/cti —02 in [cou(ytJ)j 1 , the loglikelihood involving each y tJ is

In Pt (y  i j ) =  const  -  -  In (0103Kt l - 0 i ) 0 ^ - l ) J];/c,,
1=2

(Pv ~  ^p)2^  -  2(Pij -  PpKyiji  - p j f ?  +  (yyi ~  Ps)2^

The information about fl in any family having i measurements is therefore

^2 ln_Pi(yij)l i ( 0 )  =  - E =  (0!Ai - 0 2) ' 2 x
dddd'

X*/2  - 0 2A, e l m  i / 2  

01 A; +02 —0102^«1

(  70?A2 +

 ̂ (i — 1) 02 (20iA, +  0j)
/ 202

j
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using the expectations

E [(pij -m p) 2] = 0\, E [(yl7l - p , f — Kilfor

=  Kikff3 and E [(p^ -  pp) (t/iji -  ^ j ]  =  02,

for k =  2 ,3 ,..., i. Combining this information across all families, the information in all the data 

about 0  is

r (0 ) =  M ( M i - 0 2 ) ' 2 x
x:;V, >0

At2/2  - 9 2 A, ^ « , i /2

9iXi~i~02 —0102^x1 

(
iO\x\-

o2 fo2
/2#3

Within the i£/l group of /V, families, i : .V, >  0, the methods of Khattree and Xaik and 

(for 03) those outlined in Subsection 3.5 can be adopted to find the within-group MLE 6  (i) 

=  (&i(i),0 2 ( i ) ,0 3 {i)J of 8.  Finally, minimizing the asymptotic variance of each 93 (and therefore 

of trace {Cl)) is accomplished by setting

\ - i

l i  =
Ni A?

>i^>o (0 \Xi -  8%)

-VtA? ■Vf A2 -V/A/

. (OlX! -  el)2' {Oy A2 -  0 |) 2 ’ (^ A , -  0l f

I2 = E
,t:WT>0 (^lA2 - ^ )  J 

iV i (0yXy -h 0 l) N% {0yX% +  $1) N[ (9yX[ 0q)

. { O l X y - e l f  ' { O y X i - O l f  {OyXl — 0%)2 .
/  \  -> - l

i0 \  x*+ )
Ni

 ̂ ( i - l ) 0 ! ( 0 | - 2 0 i A t) }
E

i:xV, >0 2 \ 2

i
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(  /  

•V,
10 i \ t +

32 / fl2

rj-

\  I

•V2
20'f A |+

32 //j2[ (2 - 1) 0 * (6* - 2 0 ^ 2)
(®i Ai — S|)

/
<V,

10* Xf-

02 (efl

\

\

[  ( /  — 1) 02 (02 — A/)

(9lA,-fll)5

and q̂ . =  (0fc( l ) ,0 fc(2 ),...,0 fc(/)) ,fc  =  1,2,3.

Because the elements of the involve 0,  the estimations must be performed iteratively, at each 

step substituting into the lj the current estimates of 9.

We now use the preceding arguments to derive the large-sample variances of pp3 =  02/  V 0i$3 

and p =  H— -  *’*( — . With respect to p Cramer's rule obtains
H E i ; .v,>oCu a r (p p, ( 0 ) )  p

A| At  ̂11

7T, -f- ^2 20203

201

(25)

setting 7T, =  i0 lXl — (i — 1) 0\.  This inverse is easily estimated, substituting ^0i, 02 , 03  ̂ for 0  and 

«ti =  (p) (as derived in the last subsection) for tin into the above. This result, with (23).

produces the distinct elements of O =cov0  as

v a r i ^ )  =  / (U ) =  | (  £  N ^ )  £  Ni Kh ~  (l ~  f) ^2)

C O V & M  =  I =
0 3

>0
d? i:W, >0 dH

0 \ \  1 ■+■ 0*
-1

E xr * i l 7rt +  0 2 )

‘ id4
x:,V,>0 ‘

cm{Bx,Bz) =  I{ l '3) = 20 l

(

-A

/0?a?+

( I -  1)02 ( 0 2 - 2 0 ! ^ )

\ -1

£  -v - A  +  ( « ' - ! )  *2 (02 -  20i At)) .

j
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df

cov(02, h )  =  I{2'3) =2O 20:
( E . . v , > o ^ - A?r(- - | (fl' r- glA,))

v  (^lAj +  [ffiA? +  (i -  1) flf (gj -  2flt A,)] j and 
id? r  an

( f

uar(9z) = /C3-3> =  20*

/

f0?A?+

q2 //j2

\

£  -v.

- 2

£  -v.
.:.V,>0

i0?A?-
\

^ (fl3 -2 0 !A ,)  y

id?

We remark that a large-sample confidence region for 0 ' =  (&i,02,02), the components of pp3, 

can be calculated on the basis of the consistency of each element of 6  and the expressions for the 

elements of Cl specified in (23).

Another use of the Delta Theorem now gives the large-sample distribution of pp3 as

(D 9f2Dg) ' l/2 (pp3 -  pp3) — N { 0 ,1 ), implying 

v a r (Pv>) =  D s n D s-

-B,
203 as the derivativetaking the elements of f2 as those identified in (23) and D s =  /̂g~f3 [~2§? > T 

of g  with respect to Q.

Now we focus on the distribution of pp3. Having let d ( i )  =  (di(i) ,d2(i),02(i)) using the 

methods of Khattree and Naik and those of Subsection 3.2, we start by finding the asymptotic

=  as a within-group estimator of g{d) =  p Thedistribution o f p  (i) =  g{9{i)) =  .     -  r
V ^ u W 1) *

g(0(i)).  i : iVi >  0 will be combined to produce an overall estimate pp3. It is known from the

Delta Theorem that

( D s i r » D ; )  ~ l /2  ^ ( < 7 ( 0 ( 0 ) - ^ )  -  -Vi(O.L).

J
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From the expression for It (Q) in (25), we therefore have, after considerable simplification. 

uar(s(0(i))) =  var{pp3{i)) =  N ~ 1D gI ~ l (e)D'g

i<£j [el (0 t + 0% -  4g p  +  a,] +  e\  (e\  -  M l  +  d j i )
~  2Nxi6\0zXt

Combining the ppa(i) —g(d{i))  across groups by assigning weights to them inversely proportional 

to their variances produces a consistent minimum variance linear combination estimator

P p *  ~  S d X ,  '
^ ■ N i > 0  M ?  [0* ( 9 ,  A, ̂ 9 §  -  4 0 t )  - r2 f lJ  A, ] - 0 *  (9 «  -  0 , 9§  r - d ,  9 , )

In practice, the consistent minimum variance linear combination estimators (<7pp,dpa,(72,/j) are 

used in place of the parameters in this expression for ppa. To find the approximate expected value 

and asymptotic variance of ppa, letting

Wi =  [var  (ppa( i ) ) ]_I

____________________ 2 N i ie \e zx x
i c ^ [ e l  ( Q ^ i + e l - A d i )  4-201 A,] 4- 9% (0$ -  4- d ,0 i)

gives

2 , „ - i ̂ - ^uM,>0 Wt w i
v a r  ( p p s )  =  - T = r --------------72

( 5 Zi:.V , > 0  W i)

I (  v -  .Vi iA,£2»;»5 V . i r J o  ■'<? ["5 W  +  % - 401)  +  +  « |  (ei -  e, el +  d,s,)  J '
We now compare the large-scale variances of ppa and pps which, ignoring the biases of both 

estimators, amounts to specifying the relation, for large iVi, of

to unity. In particular, pps is more (less) efficient than pps whenever r is less than (exceeds) 1.

Computer calculations of the theoretical variances (using the above expressions with the pa

rameters (0,p) themselves, not their estimates) across a wide range of sample sizes and parameter 

values show that r depends chiefly on pps and the the evenness of the spacing of the eigenvalues 

of

0t e2r
cav (x .j) =

02i  c,

i  .
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To be brief, we may say that generally, r >  1, indicating that pp3 is more efficient than pp3 for 

the majority of cases. The exceptions occur when pps =  0 (in which case r =  1) or when \0i\ is 

so large in relation to (6 1 , 6 3 ,p) that too much of trace (cov (x,j)) belongs to the largest of the 

eigenvalues (in which case r <  1). The value of r depends hardly at all on the .Vt or the number 

of groups.

Computer calculations showed r <  1 whenever |ppa| is close to 1: however, r  may be less than 

I even for relatively small values of |pp, | , provided that some of the eigenvalues of cov (Xjj) are 

close to zero in relation to the largest eigenvalues. As an example, the case (&',p) =  (2 ,1 .2 ,3 , .5), 

.V4 =  0 , iV? =  2 and all other Ni =  0  possesses a relatively small |pp3| (i.e., .4898); yet r =  .4997 <  

1, because the smallest of the eight eigenvalues of cov (xtJ) for i =  7 are quite small in relation 

to the first eigenvalue. In fact, the first eigenvalue is almost half of trace (cov (xtJ)) .

However, pp3 is more efficient than pp3 in most cases; it usually is to be preferred unless 

|ppa| is known to be very close to unity.
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4 COMPOUND SYMMETRY WITHIN COUSIXSKIPS

4.1 Introduction. In certain biological and physical settings, a disturbance may emanate from 

a single source to various nodes, from each of which other disturbances are transmitted to a 

number of receivers in a circular fashion. For instance, a communications satellite might send 

signals to central earth stations, from each of which the signals are relayed to points (such as 

end users of the information conveyed from the satellite) on a circle around it. Assuming that 

the strengths (or another characteristic) of the signals received by the points around any single 

station follow a circular covariance structure, it is of interest to estimate the circular covariance 

parameters, the correlation between the signal strength at the points and at the stations, and 

the correlation between the signal strength at the stations and at the satellite. Such patterns 

arise also in accelerometers used in certain automobiles to deploy air bags; these devices may be 

arranged in groups around the car to record disturbances experienced by the car, each device 

consisting of a circle of sensors whose measurements are analyzed by a microprocessor.

To adapt the '‘parent-sib-family” terminology of the previous sections, we may assume that 

degrees of a quantitative feature tend to be passed from grandparent to parent, and subsequently 

from parent to child, and the covariance of the feature among the siblings is circular. We will seek 

to estimate the correlations of the feature between generations. In other words, assume sibships, 

each of which is multivariate normally distributed having circular covariance, can be grouped into 

“cousinships” (csp’s) so that the measurements on the sibs in any two different families within 

the same csp are associated by a single “compound symmetry” parameter V.  Also, extend the 

terminology so that with each cousinship may be associated a “grandparent.” Then, under some 

sets of assumptions, we calculate the ML estimator of the intergenerational covariances, V  and 

the circular covariance parameters ((TQ,ai,...am). Under other, less restrictive assumptions, we 

present ANOVA-type estimators based on reductions of sums of squares which are easier than 

the MLE to develop and calculate.

£
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4.2 Uniform Family and Cousinship Sizes with no Scores of Parents or Grandparents . In this 

subsection, assume that nc  families, each with a sibs, are arranged in n csp’s having c families 

each, and that the covariance between any two sibs in the same family is

K — Z'| <  a /2 ,
(26)

£ja_ | Z  — l'\ >  a/2,

x tJi being the score on the Ith sib in the j th family in the ith csp. Without loss of generality, 

assume in this and the subsequent subsections, where estimation is by maximum likelihood, that 

all the sibs’ scores have mean zero6. Also let the covariance between any two sibs in different 

families in the same csp ( “cousins”) be

C O v ( X i j i , X tj ’i>) =  V,

j  r  j'- The covariance structure within csp i can thus be written succinctly as 

CUf(Xi) =  COV ([l,ll,X a2 ,-..Iu m I') =  Ic 0  (C-VM *) -(- VJac

where J*, k £ N is a square matrix of unities of dimension k.

We mention briefly that the data can also be represented using a random effects general linear 

models framework. If G,  are random effects having zero mean and variance V, representing the 

effects of the grandparents, then the data may be written as

Xijk — I* +  G,  4- £ijk,

i =  i ,2 ,.. ..n :  j  =  L,2,...,c; k  =  1 ,2 ,. .. ,a.

The (circular) specifications for the covariance structure of the errors e^*. would, in this case, be  

that

cov(ei j )  =  cov ([eni,e ij 2,. . .eij a]') =  C - V 3  and 

cov (eij =  0, i #  i' or j  #  j ' ,

6 Xo generality is lost because, if estim ation is by maximum likelihood, we may at any time adjust the d a ta  so 

th a t they are deviations from the ML estim ates for the mean param eters.

i !
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A =

making use of the C defined in (26). General linear models could be constructed, if desired, 

corresponding to the assumptions of the subsequent subsections of this section, as well. These 

models would be analogous to those employed by Khattree and Naik ( 1994b).

Reduction of the data of this subsection to the canonical variables y i, i =  1 ,2 ,..., n by the 

one to one transformation yi =  (Ic ® F) Xi is convenient because T reduces C to diagonal form

diag(6 i , 62 , - 6m- i , 6m, ...62 ), a =  2m,  

dio.g{51 , 6 2 , 1 , , —^ 2 ) ? O “  2.T71 1.

Noting all the rows (columns) of T but the first are orthogonal to 1, the covariance of each yi  is

cav(y,) =  (Ic ® r ) ( I c ® ( C - K J a) +  \ /Joc)(Ic ® r )

=  I® (A —aVfF') +  aV  (1  ® f) (l'® f')

where f' =  (1 ,0 ,..., 0) is I x a. The covariance of each family’s set of canonical variables, excluding 

the first, is thus
r

diag(S2 , 83 , -.&rr1—1, , •••̂ 2)? =  2m,

d i a g ( 82, 6z ,  . .8 m ~ i ,  6 m - i ,  8 m , . . .62 ) ,  a  =  2 m  -t- I ,  

and the (yij2 ,\JijZ, ■ ■■•IJija.) are independent of each other and of all the yiji- Assuming normality, 

the MLE of (62, 63, . . . ,8m~ i) can consequently be obtained using the methods of Olkin and 

Press (1969). On the other hand, the first canonical variables of the families of each csp have a 

compound symmetry structure:

c w ( [ y i i i , 2 / i 2 i , - - , ' / i c i ] ' )  =  0 l I c 4 - 0 2 J c

where 6 \ =  <5i — aV  and 02 =  O.V. Letting p =  and s  =  Y l i j  yfji'  an<̂  us*nS the

well known ML estimator of compound symmetry covariance parameters given balanced data, 

unbiased estimators (which will be MLE assuming normality) of (61 , 6 2 ) are (is)

<2 7 >

implying unbiased estimators (MLE, assuming normality) of (K 5[) are (is)

( l\« 5 i)  =  ( a ~ l d2 ,di  ^

COV ( [V i ]2 , y i j 3 ........y .j a ] ' )  =

anc(c — I) ncJ

£
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The expression for Si is especially noteworthy because it is the same as the MLE Olkin and Press 

identified. Thus it is shown, in this balanced case, that the possibility of correlation between 

cousins does not change ML estimation of 6 . The same cannot be asserted for the unbalanced 

cases below.

It can be shown (see Lehmann, 1983, p. 197) that, assuming normality, the values in

(27) represent the uniform minimum variance unbiased (UMVU) estimators of (# i, 62 ) ■ Using a 

theorem in Lehmann (1983, p. 77), it is seen that (28) consequently gives the UMVU estimators 

o ftU S t) .

If the mean structure is generalized so that the normally distributed sibs have a common, 

unknown mean, the UMVU estimators of (91, 82) become

( f )  h \ - (  c s ~ p  - - 1  [ P ~ n ~ l w ««
V 11 2)  \ n c ( c —L)T c ( n — 1) n c ( c — 1) /

implying the UMVU estimators of ( U ^ )  are

\  /  \ a c  [ c ( n — 1) n c ( c — I) <~n(7i— I) n c )

Most of the results of the subsequent subsections of this section can be viewed as gener

alizations of (28), with the addition in some cases of a parent’s score to each family's vector 

of observations, and a grandparent’s score to each csp’s vector of observations, under various 

assumptions about the covariances between members o f different families.

4.3 Unequal Family and Cousinship Sizes with no Scores of Parents or Grandparents . In this 

subsection, let the distinct family sizes be a,i <  a.2 <  ... <  ac, and let csp i have bij families of 

size i j , allowing the possibilitiy that some of the may be zero. We assume, placing the sibs in 

any family on a circle whose circumference is proportional to the family size, that the covariance 

between any two sibs is a function of the length of the shorter arc between them, and that this 

function does not change with family size. E.g., families with three and four sibs have covariance
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structures

(To (TI < 7 1

(To CT\ 

symm. . oq

and

(To (T i O  2 <71

O q O  i (72

(To (TI

symm. . oq

respectively, with the parameters o '  =  (0 0 , 0 1 , 0 2 ) constant for both family sizes. Retain the 

assumption that any two cousins have covariance V.

Let x tjki be the Ith observation, and Vijki be the Ith canonical variable, in the kth family 

having a.j sibs in csp i. The vector of canonical variables from this family is obtained by 

premultiplying the vector Xy* of sibs’ scores by T ,, an orthogonal matrix whose elements and 

dimensions are derived using an obvious generalization of the T matrix given in Subsection (3.2), 

depending on the family size .

Under these assumptions and generalizing the results of the last subsection, setting z(jk =  

(yi]k2,yijk3,—,yijka,)  implies

didg(6 j 2 , b j 3 , — 1, fijmj t •••&j2 )i Oj — <2tu.j , 

diag(6 j 2 , 6 j 3 , ..5jtm ,-ir5 jirnj_ i ,6 jm j, —̂ 2), &j — 2 mj  H- 1.

Here, mj  =  int (a3 /2) and Sji,l  =  1 ,2 ,3 ,..., mj  +  I is the Ith distinct eigenvalue of the covariance 

matrix Q, pertaining to the observations in a family having a2 sibs. Following the development 

of the last subsection, the z a r e  independent of each other and of

(V\l2 i •**■> t Wich W\c2 , '"lWicbtc) '

To express the covariance structure more specifically, 

cov(y,) =  block [I6tl ® (A t -  a x Uf, f ( ) ,..., I6ic ® (Ac -  acV{JI.)]

y/dl 1-6,1 ® ft

cov(z tjk) =  <

+ V

O fc

J
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where fj =  (1 .0 . ...,0) is a, x I and A; =  r , C , r ,  =  cov £(y,.;fci,z'j;fc)j is diagonal.

Put M  =  maXj(m; ). If j  t  j ' .  then 6jL and Syi> are different functions of the covariance 

parameters tr' =  (0 0 , 0 1 ,0 2 , — ,^.vr), and so their within-family-size estimators (VILE, given nor

mality) resulting from manipulating the z ijk in the usual way, cannot be immediately combined 

across groups o f families of different sizes to obtain overall estimators. The last part of this 

subsection describes a method of combining instead the within-family-size estimators of tr.

Given normality, the VILE of V  and of the first eigenvalues (611, 6 2 1 ,...8  c\) is obtained using 

the w ,, each of which has covariance defined by

COv(lVijk, Wij>k') =

Expressed in matrix form, this structure is

S j i , j  =  j '  and k =  k', 

V y / d j a y . j  j '  or k t  *'•

cou(wi) =  d i a g ( f l l l bxl, f 2 l l i , a / c ‘l ^ J

y/&l lfc,,

(29)

le tt in g /, =  (6j i  —a j V ) ' 1 . j  =  l ,2 , . . . ,c .  The loglikelihood given ^wt , w 2, ...,w n  ̂ is the sum of 

the loglikelihoods given each of the w ,, the latter of which for each i involves the determinant 

and inverse of cov(w ,). Setting t, =  bijCtjfj, the results

|A -!-u u '| =  |A | ( l  4 -u 'A " l u) and

V[A+VTiu'] =  A  1 — A  xuu'A  1
1 + V u 'A - lu

(Henderson and Searle, 1981) give

|aw (w t)| =
j = i

[1 4- Vti] and

l
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L4- Vti

f i \ / a i l b xX

f 2 x/& 2  lfc.j

fc-\/Qc -̂bic

so that in the likelihood involving w i,

w ' [con(Wi)J w,

=  ± f , £ < k - T
j= i t= i 

Assembling these elements, we have

4- V t t

-I 2

j= i

l, =  InL(wi)

I - C~v. 1
=  const -  -  bij ln(/j” 1) ~  j  ln [1 +  v t x\

2 U
b.j

2(1 +  U£t)
j = ij=l  k=l

We now prepare to obtain the score function and information of O' =  (V, , 2̂1, <̂ ci )• Iter

ations of the Fisher Scoring algorithm Q^ l) =  4 -1-1 S  030 t*ien begin w't 1̂

suitable initial estimates 6  ̂  ̂ and, assuming the uniqueness of the roots of the score equations, 

will converge with probability one to the MLE 6 . For shortness of notation, call the following 

random and nonrandom sums (conditional on the aj  and bij)

s t] =  w i j * ’ ^  =  Y 1  pz, =  t l +  v y i b i j a ^ f f ,  p4i =  Y 2 a) ' 2 w ' ] ' f h
t= i j  j  j

P5, =  Y 1  a j , 2 w i j » f j f  PSi =  Y 1  P 7i =  S  b' l a V h  P*i =  z L  b' l a V l -
3 3 3 j

P9i =  ^   ̂Qj S j j  f  j , t{ =  ^  '  bij CLj f j .
3 j

Using these sums, the first and second partial derivatives o f li can be specified as in Appendix 

A.

Before computing the expectation of the Hessian of csp z, let us find the expectations of the 

sums sXJ. and the required (random) squares and crossproducts among p u through pgt. We first

J
R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



ro

take advantage of the fact that the expected squares and cross products of p u , p±x and ps, are of 

the form

for the values d, e = 1 /2 , 3 /2  and 5 /2 . To find these expectations, notice that 

E  4- Vaj(bij  -  1)) and, for j  ^  k,

E ( w i j . w ik, )  =  Vbijbiky/ajak.

Therefore,

E E * > - r l / 2 ) (
- 1 / 2

E e - l /2 fe - 1/2.
ak f k  h k

fc= 1

4 ' l / 2f t l / 2(Ski +  Vak{bi k ~  I)) 

L/*Jfc a l ft

Using this general form, the expectations of the required squares and cross products of P2,, p.tl 

and psi are

P22i =  E ( p l )  =  Y a k f k b i k
fc= 1

C

P24i =  E(P2iP4i) =  akfkbik

f k t S k i  +  U afc(6i* — 1)) 4- V  aif ibn
l*k

k= 1
a*/|(tffci +  Vak(bik -  L)) +  v Y d a2lf f b ii

l*k

P44, =  E (pli) =  E  afc/fc*ifc
fc=l

ak fk i s ki +  Vak{blk -  1)) 4- V E ^ / f o u
i^k

P25i =  E(piiPsi) =  y a k f k b i k
k= 1

Next, E(wij,pkx)  for A: =  2,4 are of the form 

E (Wij.pki) =  bxj

implying

a l f l { 6 ki +  Va,k(bik -  1)) +  V  E  a? / ^

*i' f jn (sn +  ViitPa ~ i)) + vV°J'Ea?/2ft /2bii

Pi2ij — E ( w i j , p 2i) — bijy/aj

P 14ij =  E (ic,j.p-2,) =  btJy/d]

f j  (^ ji +  V aj(bi j  — 1)) +  V E akfkbjk
k^i

and
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Also,

E (s ij ) =  bijSji,  and p l6t =  E (p6t) =
j

Once initial estimates of the 6j i  and V  are obtained, all these sums allow estimation of the 

elements o f the expected values of the second partial derivatives that contribute to the information 

I (9 ) about 9.  The elements of —I (9) are given by the terms in Appendix A, summing over all i.

Now that I [ 9 )= E  j  and S ( 9 ) =Jg- have in effect been specified (since the entire

loglikelihood is I =  5Z"=l U) it remains to suggest suitable initial estimates 9 ^  of 9.  For a starting 

value of V,  let A , =  J btm — 1^,. Using the expression (29) of cov(w*) and the assumption that all 

sibs have mean zero, E  (w 'A .w ,) =  V  ~  E y  > which conveniently does

not involve any of the Sji.  So. a commonsense, unbiased initial estimate of V  is, combining the 

data from all csp’s,

yd) _  Ei W( (J 6.. -Ife .J W ,

E t  ^ ( E ;  =  1 ^% /Sj) ~  E y

A reasonable initial estimate of each 6j i  is Sjy =  E?= i E?=i yf ji i ’ since each yfjn is

unbiased for 5j t . We then start the FS iterations with 9 ^  =  (v^l\  ^21' • .Simulations

showed that the iterations converge to the actual values 9 , over a wide range of parameter values 

and sample sizes.

Grouping all families by size, the methods of Olkin and Press (1969) yield within-group (ML, 

given normality) estimates ^ 2, <5j3, i j .m j-ij  of the sets of family-size-specific , j  =  l , 2 , . . . ,c  

of the c distinct circular covariance matrices7. As already stated, for j  7̂  j ', 6jk and 5yk'  are 

different functions of the covariance parameters tr. Therefore, within-group estimates of 6jk and 

5j'k' cannot be directly combined to form overall estimates of the eigenvalues of any specific

C j . The method we propose below for obtaining overall estimates of tr is to calculate instead

• D e sp ite  th e  se g re g a tio n  h e re  o f fam ilies  a c c o rd in g  to  fam ily  size, a n d  th u s  th e  in c re a se  o f p a r a m e te r s  ( i.e ., 

e ig en v a lu es) to  b e  e s t im a te d ,  th e re  is n o  c h a n c e  th e  n u m b e r  o f p a ra m e te r s  w ill ex ceed  th e  n u m b e r  o f  o b se rv a tio n s . 

E v en  if a ll 6 ,y  a re  1, m e a n in g  th e  n u m b e r  o f fam ilies is e q u a l to  th e  n u m b e r  o f fam ily  sizes a n d  th e  n u m b e r  o f 

o b se rv a tio n s  is e q u a l to  ay , th e  n u m b e r  o f  p a r a m e te r s  is o n ly  1 +  m y +  1 ( th e  f irs t  1 a p p ly in g  to  v )  in th e  

j t>l g ro u p  a n d  1 +  £  • (m y +  1) overall. A lso , we m e n tio n  th a t  th e  m e th o d s  o f O lk in  a n d  P re ss  m ay  b e  a p p lie d  

to  each  g ro u p  of fam ilies b ec a u se  th e  c a n o n ic a l v a r ia b le s  in  z»yt a re  m u tu a lly  in d e p e n d e n t,  even  w ith in  th e  sa m e

cap.

i l
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within-group estimates of tr, and combine these last estimates across groups according to the 

estimated information about each within each group. This procedure minimizes the asymptotic 

variance of the estimate of each o-j; hence, it minimizes the trace of the asymptotic covariance 

of the (M  4- L)-variate estimate of tr, letting M  =  max_, rrij, where m.j =  m (a; ) =  m£(aJ/2 ), 

j  =  1,2

For the remainder of this subsection, assume normality and fix I G {0 ,1 ,2 ,..., .V/} , i.e., sup- 

press the subscript of <Tj. Let 6 J be the ML estimate o f 6 j ,  and e; =  be the (unbiased)

MLE of a  =  Ci from all families of size aj,  where BJ)1 is the Ith column of the inverse of the B  ma

trix (as identified in Section 1) corresponding to family size aj.  Put h =  min { j  : m_, >  Z,btJ >  0}, 

so that Oh is the smallest family size observed in the data large enough to provide any informa

tion about a.  VVe obtain the minimum asymptotic variance consistent estimator a  as a linear 

combination of the within-group estimators in e' =  {ek .^h~i , - - .ec) of a -

The t j  are within-group MLEs of a.  Minimizing the asymptotic variance of the linear com

bination v 'e  of them through the choice of v  while keeping v ' l = l ,  is achieved at v  =  .r  °  1 (cou(e)J ‘1

The diagonal elements of cov(e) are, for j  =  h.h +  I , .... c, 

var(ej ) =  ( b ' , 1)  [taw B ;,1

“  ( B ' ' ) ‘ d , a s &  5^ 7 ) b ; ,' ,

letting ctjk be the multiplicity of 6jk in |C_, | and continuing the use of the parameter 6 ' =  

(V ,5u, <521, ...,Sc l) , whose negative information was found in Appendix A.

If j  ^  k  and j ,  k  >  h. the ( j  — h 4-1, k — h -I- 1) element of cov(e) is

cov(e j ,ek) =  ta w ^ '-B j/.S fc B ii1)

=  ( B7/‘)  «w («,•,«*) B ^ 1

if
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where

cov ( S j , 6 k)  =
cov

COV

COV

(j>j I! 

(Sj2 ,Sk2 ĵ

C O v { S j , m i ^ i , 6 k l j  C O v { & j , m j - l , & k 2 ^  ■ ■ ■  C O v { l j , m ] ^ l , 6 k . m ^ l >j

However, cov Ŝ:g, Skg'J =  0, unless g  =  g' =  1 in which case cov (fijg,&kg'') =  (I - 1 (&))j^l i _ 1 • 

Therefore, if j  k ,

cov(ej t ek) =  ( B « l ) 1 ( l~ l ( 0 ) ) ^  * ^  •

Combining the cov (e} , ek) for all j ,  k >  h yields the elements of cov(e).  Concluding, we have 

that cr =  <7; =   ̂ =  0> T —i -Wi using the final estimate of cov(e), is both consistent

(though not unbiased, due to the biased estimators of the <5 )̂ and asymptotically efficient, being 

the minimum variance linear combination of (asymptotically efficient) within-group MLEs e.

4.4 Uniform Family and Cousinship Sizes with Scores of Parents. In this subsection, again 

invoke the restriction that each family has a sibs and each csp has c families, assuming normality 

throughout. To the ( i , j ) th family’s vector (x tJi , of sibs’ scores, append a parent’s score

Pij having mean zero and variance a.  Each csp's scores can now be represented by a cA (with 

A =  a 4-1) vector of observations

( P i l , 3 - i l I , *£t 1 2 1 **•! -Cil a  7 — , P i e t  * ^ ic l , «^ic2» ^C ica) *

Let 3  be the parent-sib covariance, and let V  be the covariance between any two observations 

from different families in the same csp. If

(C)>t =
I < a ,

7 I j  !| O,

then the covariance structure in each family is C atl9=  

therefore cot’(x,) =  Ic 0  (C aus—KJ.4) -I- I 'J ^ .

a  3 V  

31  C
, and that in any csp is
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7-1

Under these assumptions, if Y  =  Y ' =
1 0' 

0  r
where T is as specified in Subsection

(4.2), then transformation of the data to  canonical form y i =  [Ic ® Y] Xi reduces the within-csp 

covariance to

cov(y t) =  [Ic 0  Y] [Ic © (C aus- U J A) +  V J cA] [Ic © T]

Q 3yfa. 0 0 I y/a 0 •• 0

3y/a h 0 * \fa a 0 :

=  I c ® 0 0 62 i - V 0 0 0

. . . 0 . . . ;

0 . . . . . .  0 6a 0 . . . -- 0

I

-hV la © 0

0

1 y/a 0

making use of the fact that all rows (and columns) of Y  but the first and second are orthogonal 

to 1. Therefore, for all ( i , j ) ,  the third through Ath canonical variables (j/«>2 ,J/«>3 , .-.,i/jja) of 

the (i , j ) th family have diagonal covariance, and are independent of each other and of z'tJ =  

(zij 1,^0 2 ) =  (p .j ,u “ I/2yu i ) . On the other hand,

ot 3

3  7
cov(zij) =

with 7  =  <5i/a, whereas cou(cijfc, Ziyk') =  V  if j  ^  j'- Defining z\  =  (z 'l?z'2, —,zjc) , we have

+  ^J2e-

(30)

a  3
CO V  ( z i )  =  I c  ® - U J 2

3  7

Thus, the MLE of a.  3, V and 61 is found maximizing the likelihood involving z' — ( z y, z 2, . . . , z ^  

and, as in the last subsection, the MLE of the remaining 8j is found maximizing the likelihood
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involving the canonical variables in y  that were excluded from z. Turning first to the likelihood 

involving each Zi, the result (A-t-Vuu' ) -1 =  A -1 — ( l  4- u 'A _ Iu) 1 I 'A ^ u ii 'A ' 1 gives

■ y - V  V - 3
(cov(zi)) 1 =  d , ,1!,;®

V - 3  a - V

Vd:- 2
- J c ®

l  +  V c c £ l (a +  y - 2 3 )  

where =  (a — V)(-y — V) — (V — 3)2. We therefore have

7 _  V v - 3

(7  -  3)  (7 -  3)  (a  -  3)

(7  — 3)  (a  — 3)  (q — 13)2

z ' ( cot; ( z i )) l z , =  dv l z ' <

IcS

J c ®

V - 3  a - V

vd:
l - V c d Z l { a - '1-23)

(7  - 3 Y  (7  - 3 )  ( a - 3 )

(7 - 3 )  ( a - 3 )  ( a - 3 ) 2

z ,

=  <Cl (7 ~  V) £  z2}l +  (a -  V) £  z2 2 +  2 (U -  3) £  z t j l z lj2
j= i j= i j= i

~ ^ T V ^ d j  [ ( 7  "  3 ) 2  ™  +  ( a  ~  * ) 2  2 « 2  + 2 ( 7  "  J )  ( Q  ~  ^  * * ‘ * - 2 ]  •

Next, it can be shown by induction that |cou(zi)| =  (d-F (c — 1) VO) (d — V9)c~ l , where d  =  

0 7  — 3 2 and 9 =  a + 7  —23. Assembling the members of the loglikelihood involving ^zI?z2, -~ ,zn)  

gives

21 =  2 ln £  =

=  const — n In {(<4 +  cV9) djj- 1 }

(7 -  10 s . n  +  ( a - V )  s . 22 +  2 (1/ -  .5) s . l2 

[(7 ~  3 ) 2  m .u  +  (q -  3 )2 m .2 2  +  2 (7  -  3 )  (a -  3) m . l2

(31)

—d 1 4UV »

d v ~ V c 9

where, shortening the notation, we set

Stki — ^  ] Zijk t̂ji and ^ ] Zj»kZjmi ? kyl  — 1>2
*j <

and reiterate that, in terms of the original parameters, the present parameters are

d =  —  - 3 2. 9 =  a  +  — - 2 3 .  <U, =  —  -  3 2 -  V f a  +  — -  2 d )  ,a. a a \  a /

a . j  and 7 =  5\/a.
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(31) may be differentiated implicitly with respect to (a.S^ J, V)  to find the score and infor

mation of (a, Si'.3, V) required to perform Fisher iterations converging to the MLE of (a , 6 i 3. V).

However, the calculations are extremely detailed. Simplification is possible by transforming each 

1 1
Ztj to —

1 - 1
z ij. If u( =  (u 't , u,'2, u ' c) for each i, the covariance of u, is

cot;(ut) =  < I c 0

=  I c ©  <

“ij

1 I

1 - 1

r  a  

a  o

"I ' *
a  (3 I 1

► < Ic © ~ V J 2 +  VJ  2c ► < Ic ®

J * 3  7 *
1 - 1

t

— u)
1 0 

0 0
UjJc ©

I 0 

0 0

- * - ■
t  a 1 1 a 3

a  0 I - 1 3 7
putting 

formation of parameters is

I 1 

L - 1
and uj =  AV so that the reverse trans-

a 3 1 1 1 r  a 1 1

3 7
~  4

1 - I a  0 1 - 1
and V  =  y .

4

Thus, for each ( i . j )  and for k, k' =  1,2,
*

T , j  =  j ' . k  =  k' =  1, 

0 , j  =  j ' . k  =  k' =  2, 

<r,j = j ' , k ^  k'.

* , j  j£ j ' , k  =  fc' =  1, 

0 , j  ^ j ' , k  =  k1 =  2, 

0 , j ^ j ’, k y i k ' .  

Deriving the likelihood involving each Uj, we have that

c o v ( u i j k , u ^ j > k >) =  -

Icon (u ,)| =  tf1 1 (d 4- uic0 ) where d =
t  — uj a

a  o

again using the result |A+u;tt'| =  |A | ( l  + u ;t'A _It )  . Also,

=  (t  — u))ti> — a 2

(A-Kjtt') 1 =  A ' 1 - . j ( 1 + t ' A ' lt) l A ' lt t 'A ‘ l

(32)
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gives

(cov(Ui)) 1 =  i   ̂ Ic®

Therefore, in the exponent of the likelihood, 

u'(cm ;(U i))_l Ui

=  dr1 <

=  d r 1

“ 1 V

0  —a u) o 2 —0 a
- j ----------- - J c ® >d  4- jjco

r
1 d 1

•

—0 o  a 2

“ ' “ y

0  — a O2  —0 a
I c ® lli -  — ----- -u( J c ® U* fd 4 -  io c 0

i
i d H 1 t

•

—00 a 2

[oViji + ( r - u j )  uf}2 -  2 auij iu, j2]

f c V .I  + ° 2 u » 2  ~  20CTU,.lU<.2]

and hence twice the entire loglikelihood is

n
21 =  2 ^ 1 n L ( u ,)

1=1

=  const — n In [dc 1 (d  4- 1jco)] — d ~ 1
^9ii +  ( t  — ^) q22 — 2cr<7i2 

„2.S = t ^  [^2rn  + ° 2r -.22 ~  2<z>arl2] 

where qkl =  £ tJ uljkuxjl and rkt =  ui tkUi.i for k, l  =  1,2.

Differentiating I with respect to 9'  =  ( r , 0 ,a,uj)  gives the elements of the Hessian as in 

Appendix A. To calculate the information about 9 , we refer to the covariance structure identified 

in (32) and find the expectations of qki and rki :

E (q n ) =  E =ncrr, E ( 922) =  E = n c o ,

(n c \  n
5 Z 5 Z UiJlUu 2 j =  nca , E (r u ) =  E ^ u ? . !  =  n c (r  +  ( c - l ) u ; ) ,

i=i

E (r22) =  E I ^  uf,2 J =  nco  and E (r i2) =  nca.
k:=l

Substituting these expectations for their respective random sums in the second derivatives in the 

Hessian and simplifying gives the elements of the information as specified in Appendix A. 

Suitable unbiased initial estimators of 6 ' =  ( r , 0 ,a,uj) are

.id) _=  <?(1) =  (nc)
‘•7

2
*j2’

‘.J
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n c (c — L) £  Ui'*- 
<=j-i

Using the covariances specified in (32). it may be verified that each of the forgoing is unbiased for

r  0
its corresponding parameter. Under the assumption that V  =  0, the MLE of

f W  d (D f o> o-d)
be ; hence,

-CDO' ' 0 -CD •<*> <TK 1 0

a  o
would

seem to be especially appropriate starting values.

Simulations showed these estimation procedures produce consistent estimates of all the covariance 

parameters.

4.5 Uniform Family and Cousinship Sizes with Scores of Parents and Grandparents. In this 

subsection, most generally, we desire a setup that would be appropriate in modelling data from 

cousinships whose sibs’ and parents’ scores between families are stochastically related due to both 

common lineage and common environment. Consequently, let the assumptions of Subsection (4.4) 

hold, with the additional condition that a normally distributed grandparent’s score gt with mean 

zero and variance 7  is appended to each csp’s cA-vector (with A =  a 4- 1) of observations. Assume

COV (X-ij ) — COV ( [ P i j  , V i j  l ,3 'i j2 ,* * * ,3 'i i;a ]  ) —  C!a u g  —
a  31'

31  C

as in the last subsection, and cov =  [32 , 3 y 1^], so that the covariance in any csp can be

represented by

cov (x ,) =  cov

f ■ \
9i

Xu 7

X,2 = 3 2
l c ®

$1  la

\ ^tc /

K ® [ 3 2

Ic ® (C au3- U J A) +  U JcA

Transformation of the x , to y , =  T x ,, where

Y  =
I O'

0 I e Q *

1 0' 

0  r

j
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results in canonical variables y* with a relatively simple covariance structure. Extending the 

results of Subsection (4.4), we have that the lower right and upper right submatrices of cou(y ,) 

are,

[Ic ® * ]  [Ic ® (Cavg- V J A) +  V J ca] [Ic ® * ]

a 3 y/a 0 0 1 v S 0 - 0

3 y/a Si 0 ; y/a a 0 :

Ic© 0 0 82 - V 0 0 0

:
* . . .  •. 0 ; . . .

0 . . . . . .  0 8a 0 . . . . . .  . •• 0

+ V

I

y/a

l c © 0

0

1 ' 1 y/a 0 and

3* 3 iy/ E  oi;_, (33)i j i c ©  32 j } [ i c ® * ]  =  i ; ®

Consequently, as in previous subsections, the third through Ath canonical variables within each 

family have a diagonal covariance diag(S2, S3 ,..., 8a) and are independent of all other statistics 

and of each other, so that the methods of Olkin and Press (1969) may be used with them to find 

the MLE of the second through (m +  l ) £h eigenvalues of C.

LetzE =  (p y ,a _1/2y,ji) andz' =  (y ^ z^ .z 'j, ...,z 'c) . By extending the results ofSubsection 

(4.4), it can be inferred that omitting the appropriate rows and columns from cov ( y j  and 

dividing the third, fifth, seventh,... rows and columns of the resulting, smaller matrix by yfa 

gives

cov (z ,) =
l c ©

&2

3 X

1 ' ®

Ic © <

0 2 3 l 

a  3

3  C
- V J 2 +  VJ 2c
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so

letting =  8 \ /a.

Further simplification of the covariance structure is possible through the transformations

O'

1 - 1  

0 I

u, =

1

0  I c

because

cov (u ,) =
l c ©

7

3 2 — 

3,
> Ic © <

{usU-a,
r  a

o  o
> 4- Je ®

0 0 

0 V

with •
r  a L -1

a  0 0 1

a - V  3  —V  

0 - V  S i / a - V

so that the inverse transformation of parameters is

a  3  

3  5 \ /a
=  VJ2 +

1 1 

0 1

T  (J

a  o

I 0 

- 1  1

1 0 

1 1

Considerable simplification of cov (u,) and therefore of the following calculations would be pos

sible if 3 1 =  32; however, this condition seems excessively restrictive, as grandparents could 

seldom be expected to be related to their children in the same way they are related to their 

grandchildren.

A  U
Using the result =  |D| [A — U  D ‘U  , and setting d = T 0  — o 2 gives

U ' D

|ctw(Ui)| =  d?~l (d +  Vcr) x

7 - G>{@2 —  3 \ ) 2  +  3 \  ( 2 a  { 3 y —  3 2 )  +  . ^ i r ) J

j -  3 y {0  +  r)]2

The variation

A  U
- 1

( A - U D ~ ‘U ' ) ' 1 — (A  — U D -1 U') 1 U D ~ 1

U' D —D “ l U' (A  — U D _ *U') 1 D 1 + D  ‘U ' (A  — U D ' lU ') 1 U D " 1

j
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8 1

of an identity given by Henderson and Searle (1981) allows the derivation

/
[cew(Ui)l 1 = d (d  +  V ct) (34)

d (d  ■+■ Vcrr)

- i c
e i

e2

e i e2
- *

0 —a
- p = ®

o 2 —TO

—o r —TO T 2
. _ _

+ d ( d ~ V c x ) ' l c  '

e? e te2

e te2

setting 

/ = d(d+ -  Ucr)

(d + V c r )
o(.32 - 3 i f

— V c (c 3 2 — 3 r ( 0  +  r ))2

< + 3 l (3i  ( t  4 - 2cr) -  3 2)
,

e. =

7<f ( d + V c r )  — c <

(,i?2 — ) [od 4- Uc (r© — ct2) ] —

e2 =  d[3j ( c r + r ) - c / 3 2] and d =  t o  — a 2.

In the unrestricted case under consideration now, iteratively maximizing the likelihood with 

respect to (7 ,T,&,eT,o,.3l , 0 2) requires the inversion, at each step, of a 7 x 7 information matrix, 

having =28 distinct terms, each of which is a complicated function of the estimates of

these parameters.

The dimension of the calculations, though not their complexity, can be reduced with the 

restrictions that grandparents and parents have equal variances, and that the covariance between 

sibs and parents is the same as that between parents and grandparents, so that 7  =  a  and 

32 =  3. However, assuming that sibs share this variance (i.e., cro = 7  =  0 ) actually complicates 

the estimation, for then the likelihood involving the Ui no longer suffices in estimating Si.

Under the conditions 7  =  a  and 3 2 =  3, assuming normality, five covariance parameters 

remain to be estimated by the information given by the u< (in addition to the last m  distinct 

eigenvalues of the circular covariance matrix C), and the information matrix contains 15 distinct

J
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l c ®

terms. In this case,

r  4- ‘l a  4- 0  -f- V  lc  0

cov (u t) =  0  +  v, +  c r - 5 1

Pi

with t  =  q  — 2 0 4 -S i/a , cr =  3 — 6 i /a ,  and 0  =  5 t /a  — V. Also,

O +  V +  a  — 3 \  3  \

T  O 0 0
Ic © < ► 4- J c ®

<
a  0

4
0 V

|cou(Ui)| =  dc l (d +  V c r ) x

t  +  2a +  0 +  V — ^
0 (0  +  K -f-CT-tfj)2 

4-#i (2*7 (/3j — 0-f-V +  c7) +  i3jT) 

+ - 3 5 & J  K ©  4 -  U  +  o )  -  ( *  +  r ) ] 2

and [cov (u,)] 1 is still given by (34), now setting

/ = d ( d + V c r )

—c

ei

e2

( r  +  2o 4- © 4- V) d(d4- Vcr)

( d +  Vcr) o ( 0  4- V -ha  — 3 l ) 2 4- 3 l {3X ( r  4- 2cr) — (© 4- V + o - ) ) j

—V c (o  ( 0  -!- V  4 - a) -  ■3l { 0  4 - r ) )2 

( 0  +  V + a  — 3 J  [©d4- V c ( t 0  — cr2)] — <3tCTd,

d  [/?t (o  4- r )  — <7 ( 0  4- V  + < r)] a n d  d  =  t o  — a 2.

Unfortunately, while the conditions 7  =  0  and 3 2 =  3  reduce the dimension of the parameter 

space, they increase the complexity of the calculations. In fact, whether or not 7  and a , and 32 

and 3  are distinct, the score and information of O' =  { t , 0 , c , 3 2 ,3\ ,~f ,V)  are too involved to be 

of practical use, and hence maximum likelihood estimation is not a functional means of obtaining 

estimates.

A realistic special case which simplifies maximizing the likelihood is that which assumes 

families are related through lineage but not through environment. This condition is equivalent 

to setting V  =  0, in which case (now with 7  and a , and 32 and 3  distinct)

Icov(u,)| =  ^ { 7 -  2  o ( 3 2 -  3 i ) 2  3- 3 l (2c { 3 l -  32) +  5,7-)] } ,

I
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S3

and

& - 1' ® e t e2

II

e i ,2 0  —a
- l c ® y l e ®

^2 —a  r
4- -jtJc ®

eie2

e l e2

where

/  

et

e2 =  d[/3l (<7 +  r) — at?2] - and d =  T0  — cr2.

7 d - c  joC ^  -  3 t )2 +  3 l (p x (r 4 -2cr) -  >32)] , 

[(02 ~  # t) <2> - -^cr] d,

Here.

Ut [cov (Uj)] LUi =  ^

< P9? ~  2 ( e i u t . i  +  e 2 U i .2 ) 4 - +  u 2

+ 2 ( - ^ 2  4- Sjf2 )  UxjiUxj 2

+  +  £ j = I u?j2

+ 5 *  [“ ? • !  “  H J = 1  u v ;i

+ 2 £Jfi  ^u,.iUi. 2 — 5Zj=1 U{jiUij2

+  £  [U?.2 -  E ;  = l «i>2

However, even the restriction that V =  0 does not make ML estimation practicable; the elements 

of the Hessian and the information of 6  are too complicated to be of any use. Some o f these 

elements have more than 200 terms each in certain sufficient statistics in the loglikelihood of 0 .

On the other hand, ANOVA-type estimators are available for the elements of 9  through 

simple manipulation of the sums of squares and cross products of the gx and uXJ. Let 7  and a, 

and d2 and 3  be distinct, allow V  to vary from 0, and generalize the mean structure of the data 

so that

E(bi,Pi>,x,_,fc]) =  [ng,n p,n a] .

The covariance parameters (excluding (<52, .... Sa)) may then be estimated without bias by

n — 1

j
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r  =
T n ( c - l )
.  _  Ei,- UijlUjj2  ~  C'* E ,  “t .1 ^ 2
^ n(c — I)

O =
E i j ^ - c - 1 E , “?.2

n(c — 1)

•  •2 n — L

S4

f  (nc -  L) E i «?.2 -  c (n -  I) £  ■. u£2 
^  =  { ----------------- » V ( c -  1)--------------------- “

5 E t  9iui»2 ~  ncgmu, , 2  ,5 , =  — -------    andc(n  — 1)
5 _  Etff» (U«»1 +  ui»2 ) -  ncg. (u. , 1  4- u . .2)
2 c (n — 1)

Advantage is taken here of the facts that the (as well as the u»ji) are iid, and the utJ2 have 

compound symmetry covariance structure within each csp.

4.6 Unequal Family and Cousinship Sizes with Scores of Parents and Grandparents. In this 

subsection, again assume that in csp i there are families having a_, sibs, j  =  1, 2 ,.. ..  c, a t <

• - • <  ac, i =  1, 2 n, and let Aj  =  a, -I- 1 so that £, =  £ .  6, A is the number of descendents

of the i th grandparent. Suspend the assumption of normality, except within sibships. In the kth 

family having a} sibs in csp i, let x l]ki be the score on sib I and Pijk be that on the parent. Also, 

adapt the less restrictive mean structure

of the last subsection. Denote by C j the (circular) covariance within any sibship having a2 sibs

so that, generalizing the covariance structure proposed in Subsection (4.5), the covariance of

a  0 1 '
the observations in any such family is cov (x^*) =  C augj  =  and the covariance

01 Cj
between the grandparent’s score and the scores in any family of this size is cov (gi.~x.xjk) =  

0 2 , 0 il'aj ■ If we were to retain V  as the universal within-csp covariance parameter for sibs and 

parents (as is helpful for ML estimation, to limit the number of parameters), then assembling 

these suppositions would yield a within-csp covariance structure for each i of

cov ( x ,) =  ecu? ([<?,, (35)

j
R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



So

i h . © • 1ft. © 32 3 t i ; c

16., ©

1&.2 ®

32

^ll<»l

32

3l  1 a2
block <

1&.C®

Ift.1 ®  [©aug.l ~  t

Ift, 2 ®  [©aug,2 ^ i

•--ilfcic © [^aug.c V J Ac] 

+ V 3 U
32  

3ylac

However, since in the present subsection we specify ANOVA-type estimators, it is both less com

putationally complex and. perhaps, more realistic in the majority of applications, to allow three 

separate parameters to represent the parent-parent, sib-sib and sib-parent covariances across 

families within csp's. We therefore set

^pp — COV [ p i j k i  P i i ' t c ' )  , — COV { X i j k t , X i j ' k ' l ' )  mid Vpj — COV ( P i j k i ^ i j ' k ' l ' )

for all j  j ' or k h', and define

n

1
» 1

---
---

1

p = to 1 M

0J 1

1 to i

That is to say, setting

Fjfc =
V VVPP v V * L a k

V I  V  1 V1'ps-l aJ

let the lower right submatrix of cov (x t) (excluding the row and column corresponding to the 

grandparent's score) be

(cou(x ,) )22 =

block [IfttI ® (C aUg i — F n  ) , Iftl2 ® ( Ca — F 22) , Ift.e ® (©oug.c — Fee)]
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+

J fc a S F u  ( l6 .,l6 ia) ® F »2 (10 ..1; .3 )® F >3 "■ (U ., l^ .J  0  F lc

Jb.2 ® F 22 ® F 23  •• 0 F 2c

J6 ,3® F 33 - • ( l6 lSi ; J ® F 3e

sym m . :

J b , c ®  Fee

Later in this subsection, we return to the case in which Vpp =  Vps =  V, 3 =  V.

O'
. and

I 0 ' 1 O'
Letting = and Yi =

1

UO
1 0  block(lbtl ® ^ i,I b ,2 0 ^ 2 ,...,Ib.e ® 4 rc)

making the transformations y, =  Y ,x , gives 

(cov (y .) ̂  =

block 4-
® (Hi — G u )  .I*,, ® (H 2 — G ^ ) , 

•••’Ifi,* ® (H c ~  Gee)

Ji,L ®  G u  ( l b , ,  l j  2 ) ®  G i 2 ( l b . ,  l 'bi3) 0  G l3 

J b ,2 ®  ^ 2 2  (^*>.2 ^ 6,3) ®  G 23

Jft,3 0  G33

sym m .

( l 6>Ii ; j ® G IC

( W L ) ® G *=

( I 6.3 I L )  ®  G 3c

® Gce

where

Gjk  —

p̂p V'pa( v/5 £ ,0 ,0 ,...,0 )

y/aJOk 0  0 ... 0

0 0  0

0 0 0

0 0 ... 0
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and

Hj =

a 3 ( ^ / 5 - 0 ,0 , - ,  0)

0

3  o Aj

0

again using A; =  diag (6j i , 6j 2 , —,Sjaj)- Consequently, once more the grandparents’ and par

ents’ scores and the yXJk\ are independent of the other canonical variables. The methods of Olkin 

and Press can thus be used with each group of sibships of uniform size a: to estimate the second 

through (nij -+- l ) c/l eigenvalues o f each C; without bias (these will be MLE given normality). 

Obtaining an estimate of the first eigenvalue 6} i of each C ,, as will be accomplished in what 

follows, allows within-group estimation of the circular covariance parameters (ao,cr1, . . . ,a m<. ) . 

However, because ML estimates (assuming normality) of these first eigenvalues are effectively in

tractable, and we instead propose ANOVA-type estimators, the standard errors and covariances 

of the within-group estimates of ((Tq.cTi * —. 0'mc) differ from those of the MLE of (o q ,o x, ...,crmc) 

presented in that subsection. This fact is important because it implies the within-group estima

tors of (<jQ,Oy, . . . ,o mc) are now combined across groups using weights that differ from those of 

Subsection (4.3). However, the adjustments are slight and not difficult to implement; we omit 

them here.

For each (i . j , k ) ,  put =  a] l 2̂yx]ki =  a ~ lXijkt. Unbiased ANOVA-type estimators of 

7 , 3 j and 32 can be given as

- _  E i 9 i ~ n  -q _  n ^ g i - n n . .  ~ n b . .g .
n -  1 ’ 1 6. .  (n -  I)

m .
and

  E ,  ffiPi««
b „  (n -  1)

The unbiasedness of these last expressions does not depend on any normality assumptions. Ma

nipulating the pljk and mxjk produces estimates of a, 3, all the 6} l , V^, Vps and V3S. The ptjk 

have a compound symmetry covariance structure within csp's. and the m t j k  have a compound
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symmetry covariance structure within family sizes within csp’s:

cov

f \
P ill

Pil2

\
Pici,c

=  P1*,. +  tppJfi.., and cov

f ' \
nxiji

m,j2

\
■■ 1
•O'*»E

1 /
where tj =  a  — Vpp and Oj =  6j i / a j  — for each family size aj.  Similarly, the pij* and 

together have a covariance structure resembling compound symmetry:

cov(pijk ,mij'k')  =
V +  Vps, j = j'  and k =  k’,

Vps, otherwise,

where p  =  3  — Vp3. Estimating a ,/? , all the Sji, Vpp, Vp3 and V33, then, can be accomplished by 

treating the present setup as 2 + c separate unbalanced compound symmetry arrangements (each 

of which can be modeled as a one-way random effects linear model) .

Optimal (in the sense of minimizing mean squared error) estimation of compound symmetry 

covariance parameters with unequal block sizes using reductions of sums of squares has been 

shown by C.A.B. Smith (1957) to require an iterative weighting scheme. In Sm ith’s model, the 

correlation between observations in the same block is the ratio between the within-individual 

and the between-individual covariances V& 4- Vg and Vg. Without knowledge of this correlation, 

the ideal weight to be assigned to each block when computing weighted sums of squares for 

estimating Vg (though not VA) cannot be determined exactly. If Vg is very small compared 

with V.4 , then the units in the itfl block should be treated as independent observations, so that 

the block receives a weight proportional to its number of units 7tj. On the other hand, when 

Vg is much larger than V^, then each block should be treated as a single observation, meaning 

that all blocks are weighted (almost) equally, without respect to their sizes. Obviously, in most 

applications, the true balance between VA and Vg is at some point between these two extremes. 

The usual one-way random effects linear model analysis of variance weights all blocks equally.

If V,\ and Vg were known, the ideal weight of the ith block in estimating Vg in any case

i )
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could be expressed as

wt =  4- Vb Ĵ , (36)

the reciprocal of the variance of its sample mean. The obvious procedure, then, is to estimate 

VA by the usual sum of squared deviations v A (which weights blocks according to their sizes) 

divided by the degrees of freedom, assign initial weights u;-L\  compute an initial estimate Vg^ of 

Vjg. and use v A and Vg  ̂ to compute new weights wj2  ̂ through (36). Iterations between the 

and v'g may continue in this way until convergence.

Adapting Smith’s methods to the estimation of 77, 0 J, j  = 1 ,2 ,. . . ,  c, Vpp and V,,. we estimate 

77 and Oj without bias (or iterations) by

- E,jfcP?,fc “  £,P?../*>i. j - £ ,*  m2ijk ~  £ ,77 =  —  J—  -------------and 0 . = ------------ i-------.
Tl ^j

setting rij =  ov- Here and henceforth, sums over i specific to a particular family size a j

are over i : > 0 .  Assuming the parents’ scores are normally distributed,8

2t?2 , f -  \  20 ] ——  n n H  17/7T* 1 . I •— — -----var(fj) =  -— - —  and var  ^—
b „  — 71 \  3)  b , j  -  rij

Next, set

S  wm P i.  ~  w v 1 ^  “'VP—j  and 9; =  ^  “  w *j ^  w* ] -

/

q ,  ( & i j + & • > ) / 2 ,  Ity >  0 ,
where tc,,, =  (6,. +  6. , )  / 2 , =  W,, =  wv> and =

0, b^  =  0,

p nt

=  E  “'” 2- * *  =  ^t *  ̂ t

*«■ =  E  (£ w ~  M d * « *  -  w «  -  w «  E  < ■

Initial estimates of Vpp and Vs,  from the parents’ and siblings’ scores are subsequently found as

„ ( „  =  i L z i n i l  a n d  , 0 1  =  n  . =  u 2>  ?c
*r)2 J *0j2

5 T he assumption of multivariate normality within sibships is global throughout the present subsection.
9 The best initial estim ates of the ideal weights actually  depend on professional knowledge of the approxim ate 

values of the parent-parent and sib-sib correlations; the in itia l weights here merely take a middle ground between

those th a t would be appropriate given no correlation, and  those th a t would be appropriate given total correlation.

£
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the subscripts of these estimates indicating that jointly estimate (17, Vpp) and (o^,

jointly estimate (c>j,Vss) . Updated weights are then computed as

= ( i +v*1})  a n d  w*'3 =  +  u ^ )  -

the appropriate adaptations of (36). From these new weights, updated estimates and are 

available, and so on, iterating in each of these two cases. At each step t, and v^J are unbiased 

for Vpp and VS1 and (assuming the parents’, like the sibs’ scores, are normally distributed) have 

variances

~  K 1) -  -  ( $ )  -  2- ~ ■ (3T)

In the same way, Vps and the intra-family parent-sib covariance 3  may be estimated using 

the crossproducts of the parents’ scores Pijk and the sib means and the within-csp means

of these statistics. VVe may set p  =  3  — Vps and then its estimate

^ _  Y2ijkPijkm ijk —
bmm -  n

has expected value v  and (assuming bivariate normality) variance b2̂ n - Letting

<7il> =  ^   ̂ ^  ' ^V’iPh*^ ^

with w ^  =  (bi. +  b. . )  /2 , W# =  =  H i and *^2 =  W& -  W ~ l w*i,

the initial estimate of Vps from the parent, sib-mean crossproducts is

( i )  _
* •

Iterations may then proceed between the weights w^x and the estimates At each step t after

the first, the updated weights are

w*,= (i+v*) ■
If all the p^k, Wijk ate together multivariate normal, the final estimate of Vps has variance

2n -2-fc .̂
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The model under consideration demands that within any csp, the covariances between sibs of 

different families be represented by the same parameter regardless o f the size of the sibships.

Thus, the estimates v0], j  — 1 , 2 , c, obtained above separately by convergence of the iterations 

with the Wfaj, must be combined to produce a final value v ,3. Setting f '  =  (u0 i, uo2. —, voc) , the 

optimum (unbiased minimum variance) linear combination is

v,s  =
l'(c o u (f) )  f
1 ’ (cov ( f ) ) - 1 1

(38)

The unbiasedness of the above estimates o f (7 , 77, 32) does not depend on any distri

butional assumptions beyond those of (35). However, providing an exact expression for cov (f) 

does require assumptions about the fourth moments and expected squared cross products, etc., 

of the data within csps. If no such assumptions can be justified, then the elements of f  may be 

combined into a single unbiased estimator of V, 3 by ignoring all cov (v^ , u ^ )  , j  r1 k, and simply 

weighting each v$j according to the reciprocal of some estim ate of its variance.

Henceforth, we retain the assumption of normality within sibships, and obtain cov (f). Each 

var (v#j) , j  =  l , 2 ,...,c , was given by (37). Computing cov (v^ , vak) , j  ¥= k, could be done by 

directly expanding the sums of squares involved. Because terms of the form E  (m 2Jtrh fk t) appear 

in the expansion, it would be helpful to note the fact that, for any bivariate

( O \
X P O -xP  y

~  N 0 ,

y \
( W x f f  y /

we have (Lehmann, 1983, p.64)

E (x2y 2) =  «r2cr2 -1- 2 (paxa y f (39)

However, the computations proceed more easily by expressing the q: and the <t>- as quadratic 

forms, and finding the covariances of the pairs of the four terms (as quadratic forms) in the 

expansion of v* jv#  =  ( *'■%£***) ’ Le’’

cov(qj,qi)  -  kt,n cov 

- k 0]Xcov (qi.Oj'j 4- kOJlkoilcov ( o j .O ^
cov(va j .v0 t ) =

1
koj2k$t2

I
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Assume t 3 are normal with zero means for j  =  1.2 (not necessarily of the same dimension), 

E (tito ) =  E 12, A t =  A't and A 2 =  Ao. Then the methods developed by Evans, as outlined by 

Searle (1971, p. 65), may be used to write the multivariate extension of (39) as

(40)

We first apply (40) to find cou(qj,qi) , j  ^  I. qj is a weighted average of squared deviations 

of the within csp, within group sample sib means rhij.  around a weighted mean of the mtJ. , 

and is therefore invariant with respect to  the theoretical sib mean y.a. VVe may simplify the 

calculations without loss of generality, therefore, by assuming =  E ( )  =  0. For each j ,  

set m' =  , w'- =  and ( b ' / ,  b2j\  ...x b~J) as (1 x n)

vectors of means of sib sample means, weights and within-csp reciprocals of numbers of sibships 

of size aj, each vector having zeros in the positions in which btJ =  0 , i =  1, 2 , ...,n , and let the

(i .i)ch element of the n x  n diagonal matrix D , be /;j >ov- With these conventions,

cov (m ,) 

cov (m ,, ni;)

Qi

Thus (for j  ^  I),

cov (QjiQi) =  2 V *tr  <

=  m

VasT>j +  0 jdiag (by/ ,  b2]l ,...,  bn} )  , 

VssD jD { and

[diagv/j -  W“7lWjW' m

\diagvtj -  W^/wj-w'- D jD /x  

\diagwt -  W - lw ,w (' D,D_,

2V* Wjiij  ̂ (y^j )
'*i W41J '

which, surprisingly, is independent of any of the Oj except insofar as the distributions of the 

estimates of the ideal weights w#ij depend on the 4>j and Vaa.

With respect to the cov (q2, , j  7̂  &, each m,jp is well known to be independent of (_L)

che deviations m XJi — rhij, for all l,p,  and hence q: J. Oj. Using matrix expressions for rnxjp and 

each m xki — rhik, it may be shown, too, that qj _L o k, so that cov (q j .O k j  =  0 .

i
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9:5

Lastly in the expansion of cov (vOj , v 0 i), if m' =  ( m i j i ,m i j 2 , . . . .m njbwll) (no longer filling 

with zeros where bi3 =  0) is (1 x  b,} ) , we have (for j  I)

c w K . n u )  =  and

Oj = - ------ — m ' [1 -block  , 62/ J j ^ , Jb„,)] m jt
Urn » /£,,

so that

cov 2K2rSJ
Tlj) (&*; rZ()

[ I—W « *  (6f / b;}JbJ]  x

block ( l 6lji ; u , l ^ l ^  1 ^ 0  x

[I—6/ocA: x

block (l* ,, Iftjj ’ 1 ^ 1 ^ , > •••» !{>„,)

t r  <

=  0

and therefore, for j  Z,

C0v (V 6j ,V 0 i) = (41)

2 V*
W6 ijW<t>il ( l  w'J, )

(£ ,  M'tf.jU'a.i)2 
Wol

Substituting and <pt and an initial estimate of V33 such as c~ 1 udJ , (41) for all combinations 

{(j, /) : j  r  1} , with (37), yields an estimate of the covariance of the minimum variance, sibship 

size specific, unbiased estimators f  of V33. This estimated covariance is refined iteratively through 

(38) to produce an overall minimum variance unbiased estimator v33 having approximate variance 

( l /  (cov ( f ) )_ 1 1 ) ” 1 •

It is important and at the same time enlightening to note the inadequacy of =

( c - 1 J2] and ( u®^) ’ * >  1» 33 initial and subsequent estimators of V92 in (41). Estimating 

covariance matrices through direct substitution of such quantities (as in Newton Raphson or 

Fisher Scoring iterations) is usually a functional technique. Nonetheless, in the present instance
2 r

the tendency of these (* 4 ^  to overestimate I'2 (due to the fact that E (14* ^ =  V2 +  w «.« 1

j
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var ( v' Ĵ )) has unfortunate consequences since the estimates of the diagonal elements

of cov (f) do not depend on in the same way as do the off-diagonal elements in (41). Further, 

the overestimation of each c>| by <£>* does not adequately mitigate the overestimation of V*s by 

these because of the tendency of the k0 j \  towards zero in the bl3. Thus, except when both

n and the 6t.  are quite large, direct substitution of ( v , tj ')  for often produces unacceptable

estimates of cov (f) (having correlations, in absolute value, too close to or greater than unity). 

The use of

is recommended, instead, as an estimate of V?s in (41) at the (t 4- l )£/l step.

When it should be assumed that =  Vp,  — Vss =  V , as was the case in previous subsec

tions of this section, then V  is estimated by combining vv and v0  with the v0J as

To identify cov (vv , v 0 ) . cov (v^, u0J) and cov (v&, v0]) for each j ,  we assume normality throughout 

the data except in connection with the grandparents’ scores and (for convenience and without 

loss of generality), as before, assume that fip =  fis =  0. It is helpful to take advantage of a 

generalization of (40) to bilinear forms (Searle, 1971), because and tp can be expressed as 

bilinear but not quadratic forms: If ti are multivariate normal with zero means and possibly 

unequal dimensions, E(t*t'-) =  E i j , i , j  =  1, 2 ,3 ,4 , A 12 =  A '12 and A 34 =  A 34, then

v  _  1' (cou [ ( ty u ^ f ' ) ' ] )  l (vv ,vt , ,f ') '  

1 ' (cov [(urpi/^.f')']) l l

cou ( t iA i2t2 ,t^ A 34t4) — £r[A i2 (E23A 34E4i 4-E24A34E3i)]. (42)

We turn first to the derivation of

cov(vv ,v0 ) =
(<7t,,<7m,) - k ^ ic o v

Set

P — (Pi**.......Pn«« ) • ^  — (T T l T T l n i i  ) .

L
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p' (? u i,P ii2 , —?Picbllc,-—Pncb„c) and

m' = (77lm, 771112,.... TTllcbbi Ic......*7lrjci„c) I

w ; = (wv i,...,Wr,n) and w'^ =  (u’0 i , . . . ,U ’0 T,).

are each (n x 1), and p  and m  are each (6 ,. x  I ) . Then v

Qv = p' [diagwv -  W ^ w ^ w '] p,

p' [I6..  -  block (6i.lJ 6l., J 6„ .)] P
n b „  - n

qxh = p' p iaffw 0 — W~  lw,i,w^J m  and

V
P' [I*.. ~  block (b~,l J bl„  ...,b~yJ 6t,.) ]  m

• 1 3

E (pp') = diag (b^rj  4- V ..... b j g  +  V ) ,

E (pm ') = diag (b^rp  4- V',..., b~}ip+  V) ,

E (pp') = block [(6-/7, +  v) rbit,..., (6^7? 4- v) i ; j .

E (pm') = block [ f r , lv  +  V) l'bl„ . . . , ( b - ml iP +  V)

E (pp') = block [i/is,. + V J blm,.. . ,q IbrX' 4- VM&,,.] and

E (p m ') = block [iplblm + V J bl, . . . . , v I bn, 4-V'J6fJ .

Consequently,

cov(qv ,q^,) =  2t r  <
(diagwn -  Wv 'w ,w ' )  diag (b^T] +  V, ..., b j g  4- V) x 

(diagv/^  -  diag (b~ml ip -4- V,...,b~}it; 4- V)

+ w ; ' w ; l Z U  » , . ■ » „  ( iT T  +  v )
In the adaptation of (42) for cau [q^, ip'j , we may take advantage of the fact that

2 Y ^ w viw^i ( j ~ +yS)

E (P P ') [16.. - W o c A ^ r . X . , - ^ ; . ^ . ) ]  = 0  

appears twice, so that cov (qv , ty'j =  0. cov (q ,̂, f}) =  0 for analogous reasons.

1
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cov (fj, ipj =  (b„  - n )  2 tr

Concluding the expansion of cov (vv , vv ) ,we have

(I6. .  -  block K lJ bl, , . . . ,b - . lJ bn. ) )  

block (rjlbl' + V J  bl, , . . . ,Tj Iblt +  V 'Jft,.) 

x (I6. .  -  block (b;.lJ blm,.~ ,b -.lJ bnm)) 

xblock (0I&X. +  V J6,.,-.,t!>l6I. -t-^ J6l.)  

+block(i)I6t. +  I6l, -t-KJ6lJ

x (I*-. -  block (b~'lJ bl. ,.... K , lJbn.))  

xblock(r)lbl. +  V J blm,... ,T]lbl, 4-K J6lJ

rjblock ( lbl, ~ b i , lJ bl. , - , l bn. - K i 3 bn. )  

xrl>block (I6t. -  b~ml3 bl. ,  . . . ,Ibtl, -  6'.1 J 6n.)0b. .  - n ) 2 

2 tjvj

t r  <

(b9m n) —
2tlip

{b.. - n ) 2 '”"  b „ - n '

noting the idempotency of block (I*,. — bf.1 Jfc,., —, I*,,. — b~*3b„ , ) . Summarizing and simplify

ing,

— 2£7)2l k ^  '
n r = i ( t ^  +

cov {vv ,v^,)

+ k v ' !iv ' ( £ + v )

The calculations of cov ( v v , v 0 j )  and cov ( v ^ ,  v ^ j )  are more difficult than those of cov ( v v , v & )  but 

for the most part follow the same types of steps, and complete the derivation of cov [(w,,, v ,̂, f ' ) ] . 

The added difficulty arises mainly from the possibility that some of the bij are zero, so that 

notation similar to that used in the derivation of cov {v^j ,v$i) is necessary. With respect to 

cov ( v v , v ^ j )  , we have

E (p m ') =  * 'ag(cii ,C2j , . . . ,c nj) and

E  (p m -) =  block '(£+i,K  ( £ + v ) ^

in E (p m ') setting c,j =   ̂ ’* and, in E  (p m ') if any 6tJ = 0 ,  making lo  a vector
0 ,bX] = 0
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having no rows and no columns. Also, we can write

E (p m ')  =  tfWocfc (hi 4- Vblock(lbl. , . . . , l bn.)

where each h,  ̂ =  ^0 ,0 ,..., 0,6^* 1 ^ , 0 , 0 ,...,0^ is (1 x 6 ,.) and has 6” 1 in the positions corre

sponding to the families (if any exist) in csp i having a3 sibs each, and a zero vector replaces 1*,. 

in block ,..., l i„ .)  wherever =  0. Lastly

E (p m ')  =  ipblock(\Xj, . . . , \ni) +  Vblock ( l * , .  l£ ,

where l'; =  ^0, Ifaj, 0^ is (&,_, x 6 ,.) and has I(,tj in the position corresponding to the families in 

csp i having a; sibs each. This notation allows the derivations

®t'(9„?j) =  2£r | (d iagw v -  W^w^wJi) [E (pm') (diagWj -  E(m_,p')]}

4-
WnW*j

COV ( b’r,. V0] ) =

cov (qv , =  cov (qj ,rj) = 0  and

\  2^2 
cov ( r),c>, 1 =    , so that

' / ~“ 71

S ' W C2 W (1 — W'J — 4- (— ■ Wr,‘C>J^l)Ẑ x WtJ wn ) +  Wnwaj

+ k v ik^ji h „ -n

The remaining elements of cov [(u,,, vw, f')] to be specified are cov , j  =  l ,2 , . . . ,c ,

which are found using

E (m m ') =  d iag{d lj,d.2j,...,dLnj) ,

E (m jp') =  diag (cu , c2j,..., cv ,) ,

E  (m ,n i')  =  block (d X]1 ^ ,  d2j 1 ^ , dnj 1 ^  )  and

E (m m ') =  block ( k ! 6i. 1 ^  4 - 0 , 1 , V l bn. l ‘bn] +

where dtJ =  <
4- V, bu >  0,

These expressions yield
0, bij =  0.

cov(q^.qj) = 2 £  XVvxWx^jd,, ( l  -  ^ (E . “ .'ttiC ij W j j ) (E , t r ,
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COU ? 1*0j ) —

\  ' JJ b „  - n ’

'  £ ,  tU^WijCijdii ( l  -  ^  _  ^ )  +

. r f V»d,

cou(uw,udj) completes the specification of the elements of ecu [(u,,, u^, f ')]. At each iteration t, 

the new estimate o f V  is

w(o _  i '  ( « » [ K . v * . f 1')]) ~ 1K , v * , f ')' 
l'(ccu[(ur,,u^ ,f')])_1 1

where the current estimate of ccu ^ u ^ u ^ f')] depends on the previous value u(£-l). A suitable 

starting value for the iterations is

(i) _  K , ^ , f ' ) i  
c + 2

the simple average of the elements of (u ^ u ^ f ') .  Because of random variation, any current 

estimate of cov [(u,,, u^.f')] can in some cases fail to be positive definite, giving undesirable u^:  

in practice, therefore, v ^  should be bounded using

min(u^,uw,f')  <  u(£) <  m a x ^ .u ^ f ' ) .

2
As noted above, (v tends to overestimate V2 by var  (u ^ ); where Vr2 appears in cov (v^v^i) , 

j  r  I- it should therefore be estimated by (u^))2 — ^1' (cov [(u,,, v&, f')])_l l j

1
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5 RESULTS AND CONCLUSIONS

5.1 Introduction. This thesis presents a number of techniques which make circular covariance 

a more efficient and versatile modelling tool, facilitating new, useful applications of circular co- 

variance. For instance, if we may assume that the correlations between disease rates in sectors of 

a city decay in an autoregressive fashion, then modelling the covariance structure using autore

gressive circular covariance may improve significantly the efficiency of estimation. Alternatively, 

if the disease rates in these sectors in different cities can be expected to be correlated according 

to a compound symmetry structure, then the covariances between observations in different cities, 

and those around the same city, may be estimated under various sets of assumptions about the 

availability of covariates or the correlations between sectors of different cities. We may summarize 

the results and conclusions of the three main sections of this thesis as follows.

5.2 Missing Data. We have developed two classes of estimators for the circular covariance para

meters and the parent-sib covariance for use when some observations are missing. Each of these 

classes has advantages under certain conditions, in terms of ease of calculation, unbiasedness and 

efficiency. We have shown that professional knowledge of the approximate expected sample sizes 

(na), the expected proportion of missing observations pm and the value of unbiasedness relative 

to that of efficiency, will play a potentially important role in opting for one class of estimators 

over the other. Briefly, these considerations amount to the following: The unbiased LOO esti

mators and d ps are usually more efficient than the (biased) “EM” estimators for large na or pm, 

and are calculated without assumptions about the relation between the available and unavailable 

measurements. However, simulations demonstrated that the “EM” estimators are more efficient 

for a wide range of reasonable sample sizes assuming normality or any one of the f-distributions. 

especially when the parents and sibs’ scores are highly correlated.

5.3 Autoregressive Circular Covariance. Only two parameters characterize the covariance struc

ture of the “autoregressive” type of circular covariance we propose. Therefore, when this kind 

of covariance adequately explains the observed patterns of variation in the data, the advantages.

i
I

£
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in terms of parsimony and efficiency of estimation, of fitting the model under the autoregressive 

assumption can be enormous, especially with a paucity of data or a large number of sibs in each 

family. VVe identified straightforward methods of finding the ML estimate of the autoregressive 

circular covariance parameters, adding to the utility of the model. We also showed that two 

methods (the Likelihood Ratio Test and Akaike’s Information Criterion) of selecting between 

alternative covariance structures are easily performed and, under reasonable assumptions, have 

desirable sizes and powers. The alternative estimator we derived of the autoregressive parameter 

p  is superior to the MLE when p  and the sample size are small. The autoregressive assumption 

is easily extended to the case in which families are observed having different numbers o f siblings; 

estimation of the circular covariance parameters and the parent-sib covariance can be accom

plished by grouping families according to size, obtaining within-group estimators, and combining 

the within-group estimators so as to minimize the variances of the overall estimators. On the 

other hand, computer calculations of variances showed that the parent-sib correlation is, in most 

cases, more efficiently estimated by combining within-group estimates of the correlation, than by 

calculating the appropriate function of the overall estimates of its components (the sibs’ variance, 

the parents' variance and the parent-sib covariance).

5.4 Compound Symmetry within Cousinships. Assuming members of different families may be 

correlated, we showed ML estimators of the circular covariance parameters, inter-generational co- 

variances and inter-family covariances to be available under various sets of assumptions about the 

inter-family covariance structure. In the balanced case (all cousinships having the same number 

of families and all families having the same number of sibs) in which no parents’ or grandparents’ 

scores are available, we calculated ML estimates of all parameters through a simple extension 

of the work of Olkin and Press (1969). In other, unbalanced situations (including that in which 

parents’ scores are available), iteratively maximizing the likelihood requires manipulating com

plicated information matrices and score functions, but does produce consistent estimates, as we 

have shown through simulations. However, when data from a third generation (grandparents) 

are added, the complexities of the resulting information matrices and score functions make ML

i J
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estimation impractical. Given balanced data involving these three generations, in lieu of \IL  

estimates, we calculated (without iterations) unbiased ANOVA types of estimators of the inter- 

generational and inter-family covariances. On the other hand, given unbalanced data involving 

all three generations, iterations, while not absolutely necessary, have been shown to improve 

the estimates of some of these covariance terms, through successively improved weightings for 

families and cousinships of different sizes. Different assumptions regarding the covariance struc

ture between families, require different methods o f combining parameter estimates into overall 

estimates. Computer simulations strengthened the claim that all the estimation procedures we 

describe (especially those based on ML, due to the possibilities of multiple roots to the likelihood 

equations) produce consistent estimators.

1
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A. SOME LENGTHY HESSIANS AND INFORMATION'S

The elements of the Hessian of Subsection (4.3) for the i tfl csp are

dU _  U p3i PQi P2i
dV  2 2(1 +  Vti)  2 2(1 +  Vti)

VpuPa  _  VpliPzi 
l  +  V t  2(1 -i-V ti)2 '

&U . P~i PTi + Vpsi , pli"1“ ‘
d V 2 2 1 +  Vti 2(1 +  V t i )2

4. 2P*P*i _  P2iP3i , VP\i
P6t 1 +  Vti (1 +  V ti )2 I +  Vti
2 Vp2 iP3iPa 2Vp2ipsi ^  VpliPzi 
(1  +  V T ,) 2 1 +  V t i  ' ( l  +  V T*)3

VpliiPn  +  Vpsi)
(1 +  V% )2 ’

& l,  _  b i ja jf f  b ija jfJ  +  2VbtJa * ff  Vp3lbi jaj f f
d V d 6]V 2 +  2(1 +  Vti) 2(1 + V t i )2

. B ,3 P 2 i ^ j ^ i } . f j  , P2iVbij*:fj  
3 ' 3 3 1 +  Kti 2 (1 +  Kf,)2

f ? V VaJw<]'Pu V 2p2iPtibija j f J
l + Vti +  (1 +  1/ti)2

2Vp2 ia /2xvij .f j  Vp 2 lpziy/ a j w ij. f f  
l + Vti ( l +  V ^)2

V ^ iP z i b i j U j f f  V p l ^ j U j f j  + 2Vbija] f f )
(1  +  V T ,)3 (1  4 -  V t i ) 2

dk  _  ~bjjf j  , j Q-j f f  s i j f f
d 6n  ~  2 2(1 +  Vti) 2

Vpvy /a jW i j . f f  V 2P2jbijajff 
l  +  ln  2(1 +  V t i )2 ’

=  6, ; / /  yft.jg ,-// V 2b%a]ff
dS2n  2 l+ V 't i  2(1 +  V ti )2

f 3 Vai w ij»fj 2V2p2ia)/2wtj ,bijf t j
13 Jj l +  Vti (1 +  W ,)2

2Vp2iy/ajWn.fj  V*$jtijja%fj _  v 2 P2,b,jaj f f  
(1 +  KtO3 (1 +  ^ ) 3  (1 +  K fi)2

dSjidSki l +  Kti

V b,,a ,b ,ka h , JaJu ijj.JaZ w  
2(1—ve.) l

v,P2.(v/57“ u .6 . t ‘»fc-v/Sfc“''k*l'.jQj )  . VJp?,61,6 ,fca , a t
1-Vt, T (1—V'e,)2

for A: ^  j .  The expectations of the elements of the Hessian for that subsection are

f  =  Eli. _  
V at'2 j  2

P7, +  Vpst pi,
1 +  W ,  2 ( 1  +  V ' £ , ) 2
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. 2P24. P22iP3, , Vp„,
~ P l6 . +

E

l +  Vti (1 +  W , ) 2 l + V t i  

W p Z iP l i x  2V>25i V 'P22.p|, _  Vp22i(P7i  +  V P 8 i )

{1 + vtiY i + vti (i + vt,)3 (i + vt,)2
f  d %  \  _  bi ja jJ f  bijaj f ? + 2 V b i ja*ff  Vpa.ft, ^ / 2
\ d V d 5 jX)  2 2(1 + Vti) 2(1 + V ti)2

, „ h c /*3 P l 2 i j y / S j f ?  P22xVbi]aJ f ?
-  - \ - + v u  +  Y (r ^ v t i )2

f f V J a j p u n  V2p24t6,j flj/j 2 V p l2l]a3/ 2f?  VpitijPH y/aJff
l +  Vt* ( l  +  V ti)2 L +  Vt, +  ( 1 + V ^ )2

V2P22.P3.6.jQj / j2 Vp22i(bi jaj f f  +  2Vbija j f f )
(1  +  V t , ) 3  2(1 + V ti)2

d 6 l  2 l +  Vt, 2(1 + Vti)2

---------------- n r c ^ -------------------------- ( 1 + y ,,)«

2 Vpi2ij y /o j/f  V3P22i^?jgj// V2P22ibjjaj f?
+  ( l  +  Vti)3 ' (1 +  Vt,)3 ( l  +  V ti)2 ’

E ( - * M  = l + V t ,
--2 0 - ^ :/ '  +  Va3akbX]blk

v{p\ixj x/aJb%kaic~pi2 ,k\/ak>>X]aJ') V 2PM ,6,,6 ,fca , a t
 --------------TTFT:----------------  H------(T^viTr

The Hessian of Subsection (4.4) is found using

a/ _  —n ( c — l)<? no i? * ^ ) 0  «22 +  î r
ar  d /  +  {d)2 d ’
at _  — n (c — I) (r  — uj) n ( r  — uj +  Cjj)
d o  d f

( g - ^ ) ( T - u j )  (q u  +  y w v ?- r ^  -  - ^ ri}—

+ (5? 5
az _  2n(c — l)cr 2ncr  ̂ (p a
acr d +  f  ( d f

2 (<712 +  +  i S l E ^ o a l )
+  _  ,

az _  n ( c —l)e> n d ( c — I) ) 0

du ~  d f  (d)2

-< ? 2 2 - )  +  ^W(f f i~ Ij
d

=  n (c ~  L) ° 2 n<̂ 2 o (g
(rf)2 (/)2 (d)3

(d) (d) ( / ) 3

a 2
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d 2l _  n (c — 1) (r
do*

+2

_ 2
~ d

(dp (/)*  " (d);
(qu +  _  M2niz£ri2l) (r  _
_  _

u; (/i) (r  4 -u; (c -  I))2 _ 2u> (<prn  -  a r 12) wru— " '■"■""■a - ■ — ■ ■ ~ -4- — — " - - , - — —
( / ) 3 +  ( / ) 2 /

£ L
d o 2 (dy

4 - 2 -  + 4/ (/r
( 9 - ^ ) 0 2 (? i2 + +  ^ 7 — ] )  ^

—8 -----------?--------4- 8 -----------------------5-------------------
(d)3 (d)2

09n 4- (r  — u>) 922 — 2er<7i2 —
“  (dp

^j{h)o2 ^  (crr22 — <ftrl2) <7 ^  &(h) ^  0^*22

- 2

2
+ d ( / ) ' (/r (/r

cPl
du}2

d 2 i

d r d d

n (c — I) 0 2 n p 2 (c — l ) 2 ^

- 2

(* r

( " ^  ~  7

0 T
j(h)<Hc.- I)

( g - T )
( d f

0

0 ^ - 1 ) ^  o ( ^ ( c - l )  g M(fc)0a(c- O a
u y ) 9  L ( />   ̂ (/)a

(d)‘
—n ( c — 1) n ( c — l ) o  (t  — uj) n
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4-
( / r  (d)J
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a2/
d r  da

<df
(®2 +  ^ ) ( T - u )

M 2
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d

—2n ( c — l)<t>o 2n<po  ̂ ( f  ^
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(d f

(/)3 1 (7?
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(d)2

(d)2 d
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g iv in g  th e  in fo rm a tio n  in  th e  c sp  for th e se  p aram eters. In th e s e  ex p ress io n s ,

/  =  d  4- <jj<x> =  (t  — j j ) 0  — a 2 -h ujc0 ,

g  =  0 q u  + ( r  — uj)q22 -  2erqi2 a n d

h =  <2>2r u  +  a 2r22 — 2©or12-
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