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Abstract

Motivation: As the mean age of parenthood grows, the effect of parental age on genetic disease

and child health becomes ever more important. A number of autosomal dominant disorders show

a dramatic paternal age effect due to selfish mutations: substitutions that grant spermatogonial

stem cells (SSCs) a selective advantage in the testes of the father, but have a deleterious effect in

offspring. In this paper we present a computational technique to model the SSC niche in order to

examine the phenomenon and draw conclusions across different genes and disorders.

Results: We used a Markov chain to model the probabilities of mutation and positive selection with

cell divisions. The model was fitted to available data on disease incidence and also mutation

assays of sperm donors. Strength of selective advantage is presented for a range of disorders

including Apert’s syndrome and achondroplasia. Incidence of the diseases was predicted closely

for most disorders and was heavily influenced by the site-specific mutation rate and the number of

mutable alleles. The model also successfully predicted a stronger selective advantage for more

strongly activating gain-of-function mutations within the same gene. Both positive selection and

the rate of copy-error mutations are important in adequately explaining the paternal age effect.

Availability and Implementation: Cþþ/R source codes and documentation including compilation

instructions are available under GNU license at https://github.com/anwala/NicheSimulation.

Contact: ewhel001@odu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

As the average age of parenthood becomes more delayed, understand-

ing the effect of parental age on child health becomes more important

(Bray et al., 2006). The effect of maternal age has long been acknowl-

edged (Hook, 1981), but in recent years the effect of paternal age has

been the subject of a great deal of study. Paternal age has been linked

to a wide range of traits and diseases, such as spontaneous occurrences

of mutations that cause dominant disorders and X-linked diseases

(Glaser and Jabs, 2004; Risch et al., 1987; Vogel and Rathenberg,

1975). Congenital defects, cancer predisposition disorders, schizophre-

nia, bipolar disorder, autism and Alzheimer’s disease have also been

linked to father’s age (reviewed in Paul and Robaire, 2013).

Due to the larger number of male germline cell divisions compared

with the female germline, males produce 3–6 times as many mutations

than females throughout evolution (Li et al., 1996). Sperm are pro-

duced by a continually dividing population of stem cells and each div-

ision represents a chance for replication errors to happen. Penrose

(1955) first proposed that replication errors provided an explanation

for the observed incidence of genetic diseases with paternal age. In

many cases the influence of paternal age is relatively subtle compared

with the large scale chromosomal abnormalities characteristic of

maternal age effect because point mutations typically have small or no

effect on phenotype. However certain substitutions can have devastat-

ing effect on those who carry the allele.
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Diseases that show a strong paternal age effect, however, are not

explained purely by Penrose’s copy-error hypothesis and show an

exponential increase in incidence with father’s age. The mutations

responsible typically display a very specific spectrum of missense

substitutions, accumulating faster than the raw mutation rate can

account for. Substitutions associated with these disorders present in

clumps, indicating a positive selective mechanism of mutation accu-

mulation, as opposed to a high mutation rate or ‘hot spot’ model.

Such evidence has so far presented for achondroplasia (Shinde et al.,

2013), Apert’s syndrome (Choi et al., 2008; Qin et al., 2007),

Costello syndrome (Ginnoulatou et al., 2013) and Noonan

Syndrome (Yoon et al., 2013). There is a parallel with the intestinal

crypt where mutant cells colonize their niche through selective ad-

vantage conferred by their new phenotype (Bozic and Nowak,

2013). It is also relevant to cancer etiology as paternal age effect mu-

tations are typically found in tumors (Maher et al., 2014).

1.1 The spermatogonial stem cell niche

Spermatogonial stem cells (SSCs) reside on the basal lamina on the outer

edge of the seminiferous tubules within the testes. Spermatogonia are

surrounded by much larger Sertoli cells that form the microenvironment

for the cells. The spermatogonia divide in cyclical waves and progeny of

the stem cells migrate as they divide and differentiate towards the hol-

low center of the seminiferous tubule (de Rooij and Russell, 2000). In

humans the active SSCs are comprised of type Apale spermatogonia.

Certain stem cell systems like the colonic crypt have specific ar-

rangements of cells with strictly limited numbers of stem cells

(Humphries and Wright, 2008). The SSC niche on the other hand

lacks obvious repeating structures. However, SSCs are observed to

localize to specific areas of the seminiferous epithelium (Yoshida,

2008). While spermatogonia can repopulate whole seminiferous tu-

bules that have been depleted by radiation (Shinohara et al., 2001),

studies of live imaging of stem cells indicate limited migrational

capabilities (Klein et al., 2010). Additionally, cells that migrate

away from the niche are likely to differentiate (de Rooij and van

Beek, 2013), likely because GDNF distribution is patch-like (Sato

et al., 2011), creating effective niche limits.

1.2 Motivation and predictions

The objective of this model was to simulate the accumulation of muta-

tions through positive selection. Several groups have made simulations

of mutation accumulation that can present in the signature arrange-

ment but have been limited to FGFR2 mutations causing Apert’s syn-

drome (Choi et al., 2008; Qin et al., 2007; Yoon et al., 2009).

Our primary aim was to estimate the r value for a range of disease

causing mutations. Currently the only estimate for an r value comes

from Yoon and colleagues, who estimated it to be 0.014 for Apert’s

syndrome-causing mutations (Yoon et al., 2009). We aim to provide

estimates for a range of different disease causing loci. We hypothesized

that diseases with a more exponential increase with paternal age

would have larger r values. We also aimed to determine if differences

in incidence rate between alleles of a single gene or between mutations

that cause different disorders is due to the underlying mutation rate or

to the selective advantage of the particular alleles. Additionally, where

different mutations affect the same gene, if there is a stronger activat-

ing mutation, we expected a higher r value.

The SSC niche has been the subject of some computer simula-

tions of the normal stem cell niche (de Rooij and van Beek, 2013;

Ray et al., 2014) which model the normal homeostasis of the SSC

niche in terms of spatial arrangement of cell and the cycling of the

seminiferous epithelium. Mutation accumulation by positive selec-

tion for Apert syndrome has also been simulated looking purely at

sequence data. Yoon and colleagues were able to simulate mutation

accumulation within the niche to match their mutational data quite

closely. In contrast to the simulation presented in the previous work

for a single syndrome, in this paper we present a mathematical

model that can be used to provide a deeper understanding of muta-

tion accumulation across different genes and disorders.

2 Materials and methods

2.1 Model
We assume that the stem cell niche represents a closed system, with

n cells contained within. Of the n cells, each can be in one of two

states; mutant or wildtype. With each cell division, a stem cell ac-

quires the mutation with probability p. Stem cells are assumed to

divide asymmetrically, one daughter differentiating and ultimately

being lost and the other remaining in the niche. With normal div-

isions, therefore, the number of stem cells will not change regardless

of divisions. Mutant cells are different from wildtype in that they

have a positive selective probability of r with every cell division, much

higher than the probability of mutation. Should a selection event hap-

pen, a mutant cell will divide symmetrically to produce two mutant

cells. This will increase the niche size above the maximum. To correct

this, a random cell is ejected from the niche and lost (all cells are

eligible for ejection, including the newly-formed mutant cell).

The niche, represented by circles, starts with 0 mutant cells out of

n. After a stem cell divides in the niche, the probability p0 indicates

the chance that a mutation occurs and brings the system into state 1

(i.e. one mutant cell in the niche) and q0 that after the cell division

the niche remains in state 0. Once in state 1, the probability of

advancing to state 2 has changed to p1 as the chance of mutation re-

mains but the mutant cells may expand with a selective event.

Correspondingly, the chance that a cell division occurs that maintains

the niche in state 1 is now q1. This continues until, ultimately, all of

the n cells are mutant, at which point the system remains in state n.

We have modeled the system as a Markov chain (Fig. 1). The

chain has nþ1 states, where state 0 represents the niche comprised

entirely of wildtype cells and in the final state, n, the cells are en-

tirely mutant. Each niche consists entirely of wildtype cells to begin

with and positive selection (r) can only occur once a mutation has

first happened to one of the cells. Cells are selected at random from

the niche to divide sequentially. State i represents the niche with i

mutant cells and n�i wildtype cells. In state i there is within the

niche a probability pi that after a cell division the number of mutant

cells will increase by one, and a probability qi that they will remain

Fig. 1. Representation of the probabilities associated with a niche of n stem

cells. The niche, represented by circles, starts with 0 mutant cells out of n.

After a stem cell divides in the niche, the probability p0 indicates the chance

that a mutation occurs and brings the system into state 1 (i.e. one mutant cell

in the niche) and q0 that after the cell division the niche remains in state 0.

Once in state 1, the probability of advancing to state 2 has changed to p1 as

the chance of mutation remains but the mutant cells may expand with a

selective event. Correspondingly, the chance that a cell division occurs that

maintains the niche in state 1 is now q1. This continues until, ultimately, all of

the n cells are mutant, at which point the system remains in state n
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the same. The probability of a mutation and a subsequent reversal at

the same site is sufficiently small as to be ignored.

Let us imagine that the niche is in state i and a random cell is se-

lected to divide. If the cell selected is wildtype, then with probability

p it is transformed into a mutant and returned to the niche, other-

wise it is returned as a wildtype. If a mutant cell is selected, it is sim-

ply returned to the niche unless a selection event happens with

probability r, in which case two mutant cells are returned and subse-

quently one random cell is lost (all cells including the returned cells

are eligible to be lost).

In order to calculate qi, the probability that after a cell division

the system remains in state i, there are therefore three mutually ex-

clusive possibilities with the following probabilities:

1. A wildtype cell is selected for division, but no mutation occurs:

n� i

n
1� pð Þ (2.1)

2. A mutant cell is selected for division and no selection event

happens:

i

n
1� rð Þ (2.2)

3. A mutant cell divides, a selection event happens and a mutant

cell is lost from the niche.

i

n
r

iþ 1

nþ 1
(2.3)

The combined probability qi is therefore:

qi ¼
n� i

n
1� pð Þ þ i

n
1� rð Þ þ i

n
r

iþ 1

nþ 1
(2.4)

With some rearrangement:

qi ¼ 1� pþ i

n
p� rðn� iÞ

nþ 1

� �
(2.5)

Since pi¼1 � qi, this can be rewritten as:

pi ¼
n� i

n
pþ ir

nþ 1

� �
(2.6)

The Markov chain produces a matrix, T, with dimensions of

(nþ1)� (nþ1), where rows indicate the starting state and column

denote the final state (i.e. the initial and final number of mutant cells).

T ¼

q0 p0 0 0 � � � 0 0

0 q1 p1 0 � � � 0 0

0 0 q2 p2 � � � 0 0

0 0 0 q3 � � � 0 0

..

. ..
. ..

. ..
. . .

. ..
. ..

.

0 0 0 0 � � � qn�1 pn�1

0 0 0 0 � � � 0 1

2
6666666666666664

3
7777777777777775

(2.7)

This matrix gives the probability of moving from one state to

another in one step i.e. one cell division within the stem cell niche.

The element Tij gives the probability of starting in state i (i.e. a

niche containing i mutant cells) and after one cell division in the

niche ending in state j with j mutant cells. In order to model the

progression of multiple cell divisions within the niche, the matrix

can simply be raised to the power of the number of cell divisions.

T2 will give a matrix that provides probabilities for two steps (i.e.

two cell divisions within the niche) and TK will provide probabil-

ities for traversing in K steps. In the final matrix, therefore, the

element TK
ij represents the probability that a niche starting with i

mutant stem cells will end with j mutant stem cells after K cell div-

isions. Note that K is total cell divisions occurring amongst any of

the cells in the niche, not the average number of divisions per cell,

which would be K/n.

For an individual, the number of steps required, K, is a factor of

the rate of cell division d (divisions per year per cell), the age of the

individual a in years and the number of cells per niche n.

K ¼ nda (2.8)

The matrix TK was for any given age solved computationally, by

generating a matrix T and calculating values for each cell and then

raising the matrix to the power K. Since the model assumes every in-

dividual starts with 0 mutant cells, the only relevant part of the final

solved matrix is the top row.

State 0 1 2 3 . . . n� 1 n

PS ½ P0 P1 P2 P3 . . . Pn�1 Pn �

(2.9)

For a given state s, the value Ps denotes the probability that start-

ing with 0 mutant cells, after K cell divisions, the niche will have s

mutant cells. The average number of mutants per niche (assuming suf-

ficient number of replications), M, can be calculated by summing all

of the final state values multiplied by the corresponding probabilities.

M ¼
Xn

s¼0

sPS (2.10)

M/n gives us a single proportion of mutant to wildtype cells at a

given age a. Within an individual person many niches will deviate

dramatically from the average value, but since the number of niches

within a single individual can be assumed to be high (see Section

2.3), but all contribute sperm equally, we can assume that the over-

all proportion of mutant sperm to wildtype sperm as a whole will

tend towards to M/n.

This can be proven as follows. There are N niches each with n

stem cells. Each niche has a different number of mutant cells, u1, u2,

etc. Each stem cell contributes an equal number of sperm, for simpli-

city we assume one sperm per stem cell but the following is true for

any value of sperm produced per stem cell division as the proportion

will remain constant.

The total number of mutant cells U is:

U ¼
XN
i¼0

ui (2.11)

Dividing by the total number of stem cells over all the niches

(Nn) gives the proportion of mutant stem cells over total cells, which

is equivalent to the mean proportion of mutant cells per niche:

U

Nn
¼

�XU

n
(2.12)

where �XU is the mean number of mutant cells per niche for a

given number of niches N. Taken to the limit:

lim
N!1

�XU

n

� �
¼M

n
(2.13)

Therefore using the ideal average value M/n from a single niche

is an accurate measure of mutant sperm proportion for the entire indi-

vidual providing N is large and all niches contribute sperm equally.
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2.2 Confirmation of model design by simulation
To test the mathematical model, we designed a simulation alongside

it to emulate the progression of a single stem cell niche. Early ver-

sions of our simulation were much more complex and attempted to

simulate all the SSCs within an individual, but simulation of a single

niche is sufficient to test the model, particularly averaged over a

large number of repeats (see equation 2.13). Simulation of the stem

cell niche was designed in Cþþ. Script design simulated a stem cell

population at a niche level independent of the Markov chain model

(Supplementary Algorithm S1).

The simulation progressed by selecting a random cell. If the se-

lected cell was wildtype it became mutant with probability p and if

the selected cell was mutant it underwent a selective event with

probability r. Selective events represented a symmetric division and

added a mutant cell to the niche. As a consequence a random cell

was then ejected and lost from the niche. This process was repeated

and the simulation was allowed to run for a specific number of cell

divisions sufficient to represent a human reproductive lifespan

(n�d�80 years). The results from each run were then averaged

over a hundred thousand repeats of the simulation.

The simulation was tested against the mathematical expression

by applying equation 2.10 with the same parameters and age values

as the simulation. The simulation tended towards the values pro-

vided by the model and showed perfect agreement with sufficient

replication (Supplementary Fig. S1).

2.3 Parameters
2.3.1 Mutation probability, p

Rahbari et al. (2016) estimated the mutation frequency per nucleo-

tide per germline cell division at 4�10�11 calculated by sequencing

multi-sibling families. This mutation rate is close to that calculated

with phylogenetic data (Lynch, 2010) and point mutations on the Y-

chromosome (Helgason et al., 2015). Rahbari and colleagues also

noted little variation of mutation rate with paternal age, which

allowed us to assume p is a constant value regardless of age. This is

the baseline mutation probability per site, before accounting for ele-

vated mutational frequency due to CpG sites or multiple disease-

causing alleles within a single gene.

2.3.2 Stem cells per niche, n

SSCs are not organized in regular repeating structures with defined

cell numbers like the colonic crypt (Humphries and Wright, 2008)

and this makes estimating the niche size difficult. While initial mod-

els of the SSC niche did not have discrete compartmentalization, re-

cent research has shown preferential clustering of SSCs to specific

regions of the seminiferous basal lamina (de Rooij and Griswold,

2012; Yoshida et al., 2007). To estimate the number of SSCs per

niche, we turned to studies in mice, where spermatogenesis has been

reconstituted in sterile mice by transplantation of SSCs bearing a re-

porter gene. From Shinohara et al. (2001), adult mice generated at

least 108 colonies per testis. Given 35 000 stem cells per mouse testis

(Tegelenbosch and de Rooij, 1993), this amounts to 324 stem cells

per niche. Scaling up to human testes by weight, assuming the same

number of stem cells per niche, gives us approximately 3 million in-

dividual niches, which fulfills the requirement of equation 2.13. The

model also assumes the number of SSCs remains constant through-

out life. In reality, the number of stem cells declines with age

(Paul & Robaire, 2013). Assuming attrition occurs evenly among

mutant and wildtype stem cells, this stochastic loss will not affect

the proportion of mutant to wildtype sperm over many niches. The

caveat to this is that it is possible that the mutant cells, rather than a

proliferative advantage, are granted some form of resistance to the

age-based attrition. Finally, as hypothesized by Yoon et al. (2009),

non-proliferating Adark spermatogonia may activate as reserve stem

cells and replace losses (including lost mutant cells) with wildtype

cells. This would cause a ‘dip’ in the mutation frequency, irrespect-

ive of gene as fresh wildtype cells are introduced into the system.

This would be informative to model across disorders but is beyond

the scope of this paper.

2.3.3 Stem cell divisions per year, d

Human spermatogenesis results in one stem cell divisions per sper-

matogenic cycle of the Apale spermatogonia, so once every 16 days

(de Rooij and Russell, 2000), although lower estimates exist

(Tomasetti and Vogelstein, 2015). The model selects cells to divide

randomly rather than in waves, however the odds of the same cell

being selected repeatedly is low and the results are averaged over a

large number of niches, the effect of this is negligible and allows us

to avoid tracking individual cells.

2.3.4 Selection pressure, r

This is the probability that when a pre-existing mutant cell divides it

will do so symmetrically and self-renew. The model fits a best-fit

curve for the optimal r value to fit the data. Note that in normal

steady-state division, SSCs may divide symmetrically into Apaired

spermatogonia where both daughter cells remain stem cells or both

differentiate (de Rooij and Griswold, 2012) for which there is some

evidence (Klein et al., 2010). For simplicity we have assumed, as ear-

lier models have done (Yoon et al., 2009), that each stem cell divides

asymmetrically in normal homeostatic cell division rather than a

balance of differentiating and self-renewing divisions.

2.4 Fitting the model to mutation data
In order to match our model to existing paternal age effect data, we

started with birth incidence of various genetic diseases. The larger

number of younger parents versus older ones is accounted for by

looking at Observed/Expected values, the number of births for a

given age category divided by the expected number of births assum-

ing the total number of disease-affected children were distributed to

each age category proportional to births in that population.

Using census data from 1966 USA birth data (Vital Statistics of

the United States, 1966, U.S. Department of Health, Education and

Welfare) to estimate a number of births per age category, Ca, (as per

Risch et al., 1987), we used the M/n fraction of mutant-to-wildtype

sperm for the given age category to produce a number of disease-

affected births for that category, simulated mutant births (S).

S ¼M

n
Ca (3.1)

By dividing the number of fathers in the age category by the total

population and then multiplying this proportion by the total number

of simulated mutant births, we can calculate the predicted mutant

births (P) assuming simulated mutant births are distributed propor-

tional to the paternal age distribution.

P ¼ Ca

Ct

X
S (3.2)

Simulated/Predicted is therefore directly comparable to the

Observed/Expected data. In order to fit the S/P data to the existing

O/E values, the strength of selection, r, had to be empirically deter-

mined. A script was generated in R (R Development Core Team,
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2008, URL http://www.R-project.org.) that would match the O/E

values according to the following algorithm:

1. For a given value of r, calculate a single S/P value for the median

age of the following age categories: 20–24, 25–29, 30–34, 35–

39, 40–44, 45–49, 50–54. In each case the average age for the

category was used to generate the S/P value.

2. Calculate the difference between each S/P value and the correspond-

ing O/E value. Take the sum of squares (SOS) of these differences.

3. The process was optimized for r using R’s optim function by

searching for the r value with the lowest SOS score.

O/E disease data from Risch et al. (1987), except for Costello

syndrome (O/E ratios calculated from Lurie, 1994), achondroplasia

and thanatophoric dysplasia from Orioli et al. (1995).

We also compared our model to high-throughput sequencing

data. In this case, proportional numbers of mutant sperm were com-

pared directly to the model’s predicted proportion of mutant stem

cells to wildtype cells. The same procedure as above was used, ex-

cept instead of SOS of O/E �S/P, the number of mutant cells per

106 cells was used directly and the SOS between experimental and

calculated number of mutants was generated.

3 Results

Figure 2 shows the matched model and disease data graphs for eight

disorders that show a strong paternal age effect. Excluding FOP as

an outlier (see Section 4), the remaining predicted incidence values

correlated significantly with the actual incidence values (Pearson’s

correlation coefficient¼0.91, p<0.05). With those disorders where

sequence data is available (Costello, Apert and thanatophoric dys-

plasia syndromes), r values can be compared directly between dis-

ease data and sperm mutation rates and show close agreement

(TOST equivalence test, e¼0.0053, p<0.05). The probabilities of

positive selection varied from 0.5 to 1.5% with a mean r value of

0.0083 for r values from birth data and 0.0094 from sequence data.

The predicted incidence rate is shown in Table 2. The raw inci-

dence assumes the baseline mutation rate p of 4�10�11. However,

mutation rate varies by location in the genome and the sequence in

question and of particular interest are CpG sites. These are particularly

mutable as cytosine in CpG sites is a methylation site and can spontan-

eously deaminate to thymine (Lynch, 2010). In order to account for

the increased mutation chance, the probability of CpG-specific alleles

Fig. 2. Simulation of observed/expected birth numbers. O/E disease data from

Risch et al. (1987), except for Costello syndrome (O/E ratios calculated from Lurie

1994), achondroplasia and thanatophoric dysplasia from Orioli et al. (1995)

Fig. 3. Rates of mutants per million sperm with age. Apert syndrome (Yoon

et al., 2009), Costello syndrome (Giannoulatou et al., 2013), Thanatophoric

dysplasia (TD) adapted from Goriely et al. (2009)
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mutating was multiplied by a factor of 15 for a transition or 5 for a

transversion (Nachman and Crowell, 2000). Additionally, a number

of paternal age effect disorders are caused by multiple mutations at a

variety of loci and by looking at disease incidence of the disorder as a

metric, we include all mutations that contribute to that disease pheno-

type. In order to simulate this in the model, the aggregate probability

of mutation, pa, is the probability of any of the mutations occurring

that give rise to the phenotype, with the formula:

pa ¼ 1� ðð1� pÞaÞ (3.3)

where p is the baseline mutation probability and a is the number of

potential mutation sites that can produce mutant alleles.

4 Discussion

We hypothesized that one of the two Apert’s syndrome-causing muta-

tions (C755G) has a higher incidence than the other (C758G) because

the former occurs at a CpG dinucleotide, which has a higher mutabil-

ity due to spontaneous deamination. Our results support this hypoth-

esis as both of the Apert mutations have a very similar r value with

0.0124 for C755G compared with 0.0126 for C758G (see Table 1).

These two distinct amino-acid substitutions (S252W and P253R) ap-

pear therefore to have the same selective effect on the cell and the

increased incidence of S252W is purely because of increased mutabil-

ity at this site. The projected incidence rate is very sensitive to the

model parameters and particularly the mutation rate. For example,

achondroplasia has a high incidence rate relative to the other diseases

(1 in 27 000, see Table 2). The computed r value on the other hand

was middle of the range (see Table 1), which failed to account for the

high incidence rate when the baseline value for p was used. Once the

value of p was increased to the level of a C!T transition, the pre-

dicted incidence agreed well. So the site-specific mutation rate ac-

counted for the relatively high incidence rate of this disease.

Apert syndrome (Yoon et al., 2009), Costello syndrome

(Giannoulatou et al., 2013) and Thanatophoric dysplasia (TD)

adapted from Goriely et al. (2009).

The predicted incidence rates, after accounting for the number of

alleles and the mutation rate, present close to the actual values, with

the exception of fibrodysplasia ossificans progressiva. This disease is

anomalous as it is a very rare disease (one in 2 million births) but it is

predicted to have a high incidence rate as it is caused by a transition

at a single CpG site (Shore et al., 2006). While the rates of substitu-

tion vary by location in the genome, including the rates at CpG sites

(Fryxell and Moon, 2005; Mugal and Ellegren, 2011), it is unlikely

the substitution rate could be low enough at this point, even if unme-

thylated. It might be explained by a very low selective advantage but

the projected r value is high (0.0135), producing an O/E curve simi-

lar to achondroplasia. The low birth prevalence is also not explained

by low survival to term of affected offspring as FOP does not show

severe symptoms until later in life or by any variation of expression

of the mutant allele as it shows complete penetrance (Petrie et al.,

2009) so the low incidence rate remains unexplained.

The mutations causing thanatophoric dysplasia and achondro-

plasia both cause constitutive activation of the FGFR3 but TD mu-

tations activate the receptor more strongly, leading to a more severe

phenotype (Naski et al., 1996; Bonaventure et al., 2007). We can

therefore predict the r value for TD to be higher than that for achon-

droplasia, which is confirmed by our model (TD r¼0.0105, achon-

droplasia r¼0.00741). Note that both sets of data were taken from

one study (Orioli et al., 1995) in order to ensure that they are

comparable.

Our estimate for r from sequence data for Apert’s syndrome

(r¼0.0125) showed good agreement with that estimated by Yoon

and colleagues, who estimated r to be 0.014 (Yoon et al., 2009),

although the value from birth data was lower (r¼0.00888).

Table 1. Strength of positive selection (r) for eight diseases

Disease Gene r value

(sequencing data)a

r value

(birth data)b

Achondroplasia FGFR3 —c 0.00741

Apert’s syndrome FGFR2 (C755G) 0.0124 0.00888

(C758G) 0.0126

Costello syndrome HRAS (G34A) 0.00526 0.00606

Crouzon syndrome FGFR2 — 0.00997

FOP ACVR1 — 0.0135

Marfan syndrome FBN1 — 0.00517

Pfeiffer syndrome FGFR2 — 0.00668

Thanatophoric dysplasia FGFR3 (A1948G) 0.0105 0.00937

FOP, fibrodysplasia ossificans progressiva.
aCalculated by directly matching mutation incidence to that from sperm

DNA sequencing (see Fig. 3), specific mutation is shown in parentheses.
bCalculated from birth incidence rates by making the best fit of O/E curves,

with adjusted mutation rates (see Fig. 2).
cSeveral studies have estimated the mutation rate of achondroplasia in

sperm but have been omitted due to concerns of the methodology (Maher

et al., 2014).

Table 2. Incidence rates of eight diseases

Disease Raw predicted

incidence rate

Adjusted predicted

incidence rate

Literature

incidence rate

References and sources Alleles

ACH 1 in 400 000 1 in 27 000 1 in 26 000 Faruqi et al. (2014) 1

Apert 1 in 700 000 1 in 130 000 1 in 100 000 Blank (1960) 2

Costello 1 in 2 300 000 1 in 160 000 1 in 300 000 Lurie (1994) 14

Crouzon 1 in 600 000 1 in 37 000 1 in 60 000 Helman et al. (2014) 16

FOP 1 in 340 000 1 in 23 000 1 in 2 000 000 Hüning and Gillessen-Kaesbach (2014) 1

Marfan 1 in 3 400 000 1 in 68 000 1 in 70 000 Lynas (1958) 50

Pfeiffer 1 in 1 600 000 1 in 130 000 1 in 100 000 Vogels and Fryns (2006) 12

Thanatophoric dysplasia 1 in 720 000 1 in 60 000 1 in 40 000 Connor et al. (1985) 12

ACH, achondroplasia; FOP, fibrodysplasia ossificans progressiva.

Raw predicted incidence rates calculated with a baseline mutation rate of 4�10�11. Adjusted rates account for variation in mutation rate at CpG dinucleotides

and the number of mutable alleles that cause the disease phenotype. Alleles denote the number of most common genetic variants that comprise at least 95% of

cases of the disease (Online Mendelian Inheritance in Man, 2016). Incidence rates of ACH is a mean value between 0.36 and 0.6 per 10 000 after accounting for

20% of ACH cases being inherited from an affected parent.
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The model presented in this paper provides a mathematical

understanding of the accumulation of selfish disease-causing muta-

tions. We have successfully predicted the incidence rates of different

diseases based on O/E curves and information of the molecular na-

ture of the mutations and estimates for the strength of selection. The

selective advantage granted by these mutations is the most import-

ant factor in terms of the exponential increase over time but the site-

specific mutation rate and the number of mutable sites plays a key

role in how common the disease is at the population level.
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