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ABSTRACT 

AN EXTENSIBLE MATHEMATICAL MODEL OF 
GLUCOSE METABOLISM 

Caleb L. Adams 

Old Dominion University, 2011 

Director: Dr. John A. Adam 

The American Diabetes Association reports that diabetes is the fifth leading cause 

of death by disease in the United States. An estimated 23.6 million individuals, or 

seven percent of the population, have diabetes. Nearly one-third are unaware that 

they have the disease. The total of the direct and indirect medical costs associated 

with diabetes in 2007 was projected to be $174 billion, or approximately one out of 

every ten health care dollars. 

One must understand the glucose regulatory system of the healthy body to under­

stand diabetes, blood glucose concentration returns to a constant level after eating 

and is maintained during exercise. With thousands of chemical reactions involved in 

the process, a complete mathematical model is not yet realistic. Proposed here is the 

evolution of a model beginning with a three-variable model of glucose, insulin, and 

glucagon and ending with its extension to the four-variable model incorporating the 

additional interdependent mechanics of hepatic glycogen. The three-variable model 

mimics the return of blood glucose levels to a constant, or basal, state; however, this 

model is consistent only with short-term dynamics since it excludes consideration 

of finite energy stores. Thus, the extension includes the effects of a finite store of 

hepatic glycogen. The solution of the four-variable model demonstrates the short-

term return of glucose concentration to near basal levels despite the constant energy 

usage which draws upon the glycogen stores. Long-term glucose homeostasis is ex­

plained by investigating the storage of a glucose load in the postprandial period and 

dispersion of stored glucose during the extended postprandial period. 

Increased hepatic glucose production in people with diabetes is thought to be 

the driving mechanism for increased basal glucose levels. Analysis of this model 

indicates the genesis of this phenomenon. Elevated prandial glucose and insulin levels 

associated with insulin resistance increase the glycogen-storage levels above normal 

which then increase hepatic glucose production in the postprandial period. Increased 

energy input exasperates this problem, but only in insulin resistant individuals. This 

simple model suggests that Type II diabetes results from insulin resistance more than 

from overeating. 
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CHAPTER I 

INTRODUCTION 

The impact of diabetes in the United States is immense. In 2007 the American 

Diabetes Association reports there are 23.6 million children and adults in the United 

States, or seven percent of the population, who have diabetes. Nearly one-third of 

the 23.6 million are unaware that they have the disease (CDC, 2007). The total of the 

direct and indirect medical costs associated with diabetes in 2007 was estimated to 

be $174 billion. It is estimated that the average medical expenditures among people 

diagnosed with diabetes is 2.3 times higher than what expenditures would be in the 

absence of the disease. Direct medical costs have risen from a 2002 estimate of $92 

billion (CDC, 2005) to an estimate of $116 billion in 2007. Even more staggering, 

at least one out of every ten dollars spent on health care services is attributable to 

diabetes. 

Diabetes is a metabolic disease in which the body does not produce and/or does 

not properly use insulin - a primary regulatory hormone necessary for the body's 

control of glucose. Insulin enables the absorption of glucose by the body's cells, the 

conversion of glucose to other needed molecules, and the storage of glucose as glyco­

gen. Type 1 diabetes, also known as insulin-dependent diabetes mellitus (IDDM) 

or juvenile-onset diabetes, accounts for five to ten percent of all diagnosed cases of 

diabetes. In people with Type 1 diabetes, the body's immune system destroys pan­

creatic beta cells, the only cells of the body which produce insulin. The remaining 

90%-95% of diagnosed cases of diabetes are Type 2 diabetes, also known as non-

insulin-dependent diabetes mellitus (NIDDM). In general, Type 2 diabetes begins 

with a process called insulin resistance where cells in the body do not properly use 

insulin to regulate changes in blood glucose. As the resistance strengthens, a greater 

quantity of insulin is required to maintain control. The problem is exasperated by 

the pancreas' gradual loss of the ability to produce insulin. 

On par with insulin's importance in controlling the body's blood glucose level is 

glucagon - a regulatory hormone whose actions counter those of insulin and is re­

quired to achieve homeostasis in the glucose regulatory system. Glucagon is secreted 

at a greater rate in response to low blood glucose levels (hypoglycemia) and triggers 

glycogenolysis and gluconeogenesis within the system. Between meals, glycogenoly­

sis, or the degradation of stored glycogen into glucose, occurs in the liver in order to 

counter the body's continual use of glucose and helps maintain the blood glucose con­

centration. Gluconeogenesis is the biosynthesis of new glucose from non-carbohydrate 

This dissertation follows the style of The Journal of Theoretical Biology 
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precursors. This process occurs during periods of fasting, starvation, or intense exer­

cise. As these periods progress, glucose is high in demand by the body, but hepatic 

glycogen stores are quantifiably low. Thus, the the body synthesizes new glucose 

from pyruvate, lactate, glycerol, and glucogenic amino acids in order to supply the 

central nervous system's requirement of approximately 150 grams per day of glucose. 

If hepatic glycogen stores are depleted, gluconeogenesis becomes the sole source of 

blood glucose (Smith et al., 2005). 

The counter-regulatory hormones, insulin and glucagon, return the blood glucose 

concentration to a constant level after large inputs associated with eating, and they 

also maintain the concentration despite large usage rates associated with exercise. 

The term basal state refers to the near-constant levels of blood glucose, insulin, and 

glucagon the resting body demonstrates for an extended period after absorption of 

a meal. As food intake increases the readily available glucose supply in the blood 

stream, the beta cells of the pancreas increase the secretion of insulin while the alpha 

cells decrease the secretion of glucagon. With an increase in the insulin concentration 

above basal, the body uses and stores the excess glucose. As the glucose concentration 

returns to basal, the production of insulin returns to its basal rate. Similarly, in the 

event glucose concentration dips below basal (as occurs during exercise), the alpha 

cells of the pancreas increase the secretion of glucagon while the beta cells decrease 

the secretion of insulin. The increased glucagon concentration draws upon the stores 

of glucose to accommodate the body's increased requirement of glucose. As with 

insulin, the body decreases the production rate of glucagon as glucose returns to 

basal. 

Non-zero basal levels of insulin and glucagon in the presence of non-zero dis­

appearance rates of the hormones clearly indicate that these hormones are contin­

uously secreted. Thus, hormone secretion and removal rates determine the basal 

blood glucose concentration which, in turn, determines the basal secretion rates of 

the hormones in a continuous feedback process. Many mathematical models use the 

basal state as a given quantity and suppose that the body only responds when a 

difference from this basal state exists. Such analysis is appropriate if the resulting 

model is linear and represents the correction of small excursions from the basal state. 

However, most of the models are nonlinear, tuned about the basal state for each in­

dividual, and applied to large deviations from the basal state. Comparing parameter 

values derived by fitting the nonlinear model to data gathered from individuals with 

different basal states leads to misinterpretations of the processes occurring in each 

individual. 
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The basal levels of blood glucose, insulin, and glucagon should represent deriv­

able quantities in an appropriate nonlinear model and should not appear as explicit 

parameters. Furthermore, the dependencies of basal values on other parameters (for 

example, the insulin sensitivity and the glucose threshold for glucagon secretion) 

provide important clues regarding the health of the individual. This has been done 

in Lasseigne and Adams (2011). In this thesis, the next step is taken which shows 

that these basal levels can be nearly maintained even though the system may not be 

in a steady state. This is achieved by considering the storage and release of glucose 

as liver glycogen. 
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CHAPTER II 

BACKGROUND 

II. 1 PURPOSES OF MATHEMATICAL MODELING 

A mathematical model is a set of equations expressing a relationship between cer­

tain physical quantities and a process or a system. Many mathematical models are 

derived in order to mimic and understand nature. For a biological/medical system 

such as glucose metabolism, some experiments have undesirable side effects and are 

not ethically viable. Instead, creating a mathematical model that simulates the ex­

periment and then analyzing the solutions of the model leads to similar conclusions 

as would completion of the experiment. From another standpoint, most biological 

systems are complex and each experiment uses many assumptions and approxima­

tions. Investigating the solution of a basic mathematical model may help guide the 

interpretation of the experimental results. 

A number of mathematical models have been developed to illustrate the inter­

actions inherent in the glucose regulatory system. Four such models are described 

below, each having its strengths, but each also having limitations to the extent of 

their modeling of glucose metabolism. 

II. 1.1 Data Fitting - Minimal Model 

In the Minimal Model (Bergman et al., 1979), the differential equations governing 

plasma-glucose concentration, G, and the concentration of insulin in a compartment 

"remote" from the plasma, X, are 

— = ( p i - X ) G + p4, 

— = P2X + p3I(t). 

Each pi (for i = 1 — 4) is a chosen independent constant parameter and I(t) represents 

the measured plasma insulin concentration at a given time t. The Minimal Model was 

created to compare with clinical results, and the determination of parameter values 

for an individual indicates the health of that individual. The Minimal Model assumes 

the following: a) the net hepatic glucose production rate is a linear (decreasing) 

function of the blood glucose concentration, b) glucose disappears from the blood 

at a rate proportional to the blood glucose concentration, c) the proportionality 

factor includes both an insulin-independent term and a term proportional to the 

insulin in a compartment remote from the plasma (i.e., insulin in the interstitial 
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fluids), d) the insulin in the interstitial fluids disappears at a rate proportional to 

itself, and e) insulin enters the remote compartment at a rate proportional to the 

insulin concentration in the plasma, I(t). As used in a clinical setting, the measured 

plasma insulin concentration I(t) is treated as an input to the system, and the four 

independent constants of the model are chosen to fit the measured blood glucose 

concentration. The fit of the model's solution to experimentally observed glucose 

profiles in the intravenous glucose tolerance test (IVGTT) is quite good; however, 

the ability of the model's solution to fit experimental data only proves the solution's 

generality but does not prove the validity of the model's assumptions. In fact, the 

results are subject to alternative interpretations. 

II.1.2 Simulation - Comprehensive Model 

Cobelli and Mari (1983) expand a comprehensive model proposed by Cobelli et al. 

(1982) which describes human short-term glucose metabolism regulation. A valida­

tion study using the oral glucose tolerance test (OGTT) data base is included. The 

comprehensive model consists of seven differential equations, fourteen hyperbolic-

tangent functions, and forty-nine parameters. One equation describes the glucose 

utilization in the plasma and extracellular fluids, two equations account for the stor­

age and release of insulin, three equations model the movement of insulin through 

three compartments, and one equation details the quantity of glucagon in the plasma 

and interstitial fluids. Even at this moderate level of complexity, the validation of the 

model suffers from inherent difficulties such as determining values for the forty-nine 

parameters corresponding to normal healthy individuals and then determining the 

values corresponding to individuals in a diseased state. 

II. 1.3 Explanatory - Illustrative Model 

Saunders et al. (1998) proposed a principle of blood glucose control called integral 

rein control where regulation of blood glucose is under the direct effects of both 

insulin and glucagon. The model proposed is 

~ = I + a(A,G)-p(B,G)-7(R,G), (II.l) 

dA 
— = A(cf>(G)h1(A,B)-D{A)), (II.2) 
dR 
— = B^(G)h2(A,B)-D(B)), (11.3) 
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where the concentrations of glucose, glucagon, and insulin are denoted as G, A, and 

B, respectively. The effects of glucagon and insulin on the blood glucose concen­

tration are represented by a(A,G) and (3(B,G), respectively. The function ^y(R,G) 

represents the uptake of glucose by muscles and other tissues. This uptake is pri­

marily determined by the activity of the organism, represented by the externally 

determined quantity R. The function 4>(G) represents the dependence of the insulin 

secretion rate on the blood glucose concentration and is a decreasing function of 

G. The function '0(G) represents the dependence of the glucagon secretion rate on 

the blood glucose concentration and is an increasing function of G. The functions 

hi(A, B) (for i = 1,2) represent the mutual and self inhibitions of the secretion rates 

on the insulin and glucagon levels. The model is of a general nature and is best 

used for illustrative purposes - not for simulation. This illustrative model is the first 

model proposed where the basal concentrations are treated as derivable quantities 

rather than explicitly included as fundamental parameters. 

II. 1.4 Explanatory to Simulation - Extensible Model 

The introductory extensible model proposed in Lasseigne and Adams (2011) begins 

with an update of the model of Saunders et al. (1998) to mimic the basic glucose-

insulin-glucagon counter-regulatory system. The initial three-by-three dynamical 

system is 

M(B) + HP(g, B, I) - HV(I, B, g) - PV(I, B) - E(t) 

+F(t) + Bex(t), (II.4) 

SII + QI(B,I,g) + iex(t), (11.5) 

5gg + Qg(B,I,g)+gex(t), (II.6) 

where B (the blood glucose concentration), / (the insulin concentration), and g (the 

glucagon concentration) are the unknowns of the model. The overdot represents that 

the quantity is a rate of change with respect to time. A single pool of extracellular 

fluid (volume Vp) is assumed, and the concentrations are the total quantity divided 

by this volume. The exogenous input rates per volume - Bex(t), Iex(t), and gex(t) -

are prescribed during an experiment. The rates per volume that glucose leaves or en­

ters the blood owing to exercise or food, E(t) and F(t), are also prescribed functions 

in the model. The rate per volume that glucose enters the blood owing to hepatic 

glucose production is defined as Hp; whereas, Hy is the rate per volume that glucose 

dB 
~dt 

d£ 
~dl 
dg_ 
dt 
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leaves the blood owing to hepatic glucose uptake. The function Pu is the rate per 

volume of insulin-dependent periphery glucose uptake, and M is rate per volume of 

insulin-independent glucose uptake. The secretion rates per volume of insulin and 

glucagon, Qi and Qg, are predominantly functions of the blood glucose concentra­

tion, but depend on the insulin concentration and glucagon concentration if self and 

mutual inhibitions of secretion exist. The ordering of the arguments of each function 

implies the major dependencies of each term; for example, Qg(B,I,g) implies that 

the glucagon secretion rate is mostly determined by the blood glucose concentration 

with some dependency on the insulin concentration and even less dependency on the 

glucagon concentration. 

II.2 FUTURE OF THE EXTENSIBLE MODEL 

The importance of insulin as a regulatory hormone was established in early models 

of glucose dynamics. More recent models recognize the importance of glucagon as a 

powerful counter-regulatory hormone of glucose homeostasis with small doses induc­

ing significant glucose elevations. For example, the illustrative model of Saunders et 

al. (1998), the comprehensive model of Cobelli et al. (1983), and the introductory 

explanatory model of Lasseigne and Adams (2011) include the effects of glucagon, 

but at the same time, the models imply that the liver is an infinite source of energy. 

Extension of these models to account for a finite amount of energy stored within the 

body is necessary. At a minimum, a model should eventually include the stores of 

glycogen in the liver, the stores of glycogen in the muscle, the stores of substrates 

required for gluconeogenesis, and the stores of fat. Of the four storage compartments 

mentioned, liver glycogen is the fastest acting, has the greatest effect on the blood 

glucose concentration during the post-absorptive period, and is the first storage com­

partment to be depleted of energy. Thus, it seems appropriate that the first extension 

of the model should account for these effects. In particular, the storage of a glucose 

load in the postprandial period and dispersion of stored glucose during the extended 

postprandial period must be explained in order to understand how long-term glucose 

homeostasis is achieved in the presence of continual glucose usage, especially the 

usage by the central nervous system. 
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CHAPTER III 

THE MATHEMATICAL MODEL 

III.l STATEMENT OF THE PROBLEM 

The many models of glucose metabolism are mostly data centric and focus on the 

fitting of data resulting from the fasting glucose tolerance test or other similar tests. 

The tests are limited to the short-term dynamics of the hormonal control of the 

blood glucose level. The tests start with measuring the basal level of blood glucose 

and the basal level of insulin after the subject has fasted for a significant amount of 

time. A bolus of glucose is introduced either intravenously or orally. Then, the blood 

glucose and insulin levels are measured at discrete times for up to two hours. The 

mathematical model's parameter values are chosen such that the model's solution fits 

the observed data. If the parameter values for an individual lie outside of a normal 

range, the individual is deemed to be in ill health and in need of medical intervention. 

The previously mentioned Minimal Model and its variants are the most widely used 

models in the clinical setting. The glucagon level is not measured during these 

clinical tests, and the Minimal Model does not include an explicit dependence on 

this important regulatory hormone. 

The comprehensive model of Cobelli et al. (1982) and the illustrative model of 

Saunders et al. (1998) include glucagon as a primary regulatory hormone. Cobelli 

et al. (1982) employ their comprehensive model to simulate experiments; therefore, 

the focus remains on fitting the data through determining values for the forty-nine 

explicit parameters of the system which include the basal concentration values. Con­

versely, Saunders et al. (1998) attempt to explain how the basal concentration values 

are determined and maintained by the body. Both models imply that the liver is an 

infinite source of energy through the assumption that a steady state exists in the 

absence of external energy input but in the presence of a constant utilization rate. 

Clearly, extending these models to account for the finite energy stores within the 

body is necessary to more accurately model long-term glucose metabolism. 

The primary goal of the research proposed in this thesis is to initiate the creation 

and validation of a mathematical model for glucose metabolism which is explanatory, 

but can eventually be used for simulation and data fitting. The pancreas, the liver, 

muscle tissue, fat tissue, the thyroid, and the kidneys are all major players within 

the body. However, with the interaction of many different compounds and thousands 

of chemical reactions, a complete mathematical model is not yet realistic. Therefore 

an extensible model is proposed which details the interactions of glucose, insulin, 
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glucagon, and glycogen by updating the illustrative model of Saunders et al. (1998) 

to more accurately follow the regulatory process. The first step is presented in 

Lasseigne and Adams (2011), and is summarized in the next section. The second 

step adds the dynamics of the storage and usage of hepatic glycogen. 

III .2 G L U C O S E - I N S U L I N - G L U C A G O N M O D E L 

111.2.1 3 x 3 M o d e l Construct ion 

The control of blood glucose in the body is dominated by the effects of two hormones: 

insulin and glucagon. Therefore, the most basic model must account for the presence 

and disappearance of these hormones in the body and their effect on the blood 

glucose level. Although inappropriate for a model of a complex organism, a one-

compartment model for insulin is assumed. It is assumed that the pancreas has a 

fixed capacity; therefore, the model assumes the existence of a maximum rate of 

insulin secretion regardless of the blood glucose level. The build up of insulin in the 

system is prevented by assuming a half-life for insulin, i.e., insulin levels decay at 

a rate proportional to the amount of insulin present. The insulin-dependent rate of 

glucose utilization is assumed to be directly proportional to the insulin concentration. 

The assumptions made for the inclusion of glucagon in the model are similar to 

the assumptions made in the insulin model. A maximum rate of glucagon is assumed 

to exist, the build up of glucagon in the system is prevented by assuming that the 

level of glucagon decays at a rate proportional to the amount of glucagon present, 

and liver glucose production is assumed to be directly proportional to the glucagon 

concentration. 

111.2.2 Basic S y s t e m 

To avoid controversy and to prevent the tendency to prematurely apply the model 

to fit experimental data, the following pedagogical device is invented: 

The model is an exact representation of glucose metabolism in a fictitious 

animal species. The first species considered has evolved to a simple state such 

that exactly two hormones control glucose metabolism: insulin and glucagon. 

Glucose uptake is expedited by the presence of insulin, but the insulin itself 

is not consumed by the cells. The release of glucose into the blood stream 

is catalyzed by the presence of glucagon, but glucagon is not consumed by 

the cells. Both insulin and glucagon have a natural decay rate independent of 

how the hormone is used in the glucose regulatory process providing for the 

disappearance of these hormones. Having created a fictional species, freedom 
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exists to choose specific mathematical forms for the unit processes and any 

parameter values. Different parameter values represent different individuals 

of the species or different states of health in a single individual. By changing 

the functional dependence of the rates of insulin and glucagon secretion or 

the functional dependence of the rates of glucose uptake and production, one 

describes a different fictional species. By extension - such as adding a variable 

to model liver glycogen stores or accounting for both the fast and slow release 

of insulin - the model "evolves" to mimic glucose metabolism in a complex 

animal species. 

Since uptake and release of glucose occur at the cellular level, the rates of increase 

and decrease of glucose are proportional to concentration levels rather than absolute 

levels. For this particular fictitious animal species, the blood glucose increases at 

a rate directly proportional to the concentration level of the glucagon in the blood. 

Likewise, the blood glucose decreases at a rate directly proportional to the concentra­

tion level of the insulin in the blood. Release of glucagon and insulin into the blood 

stream is dependent on the blood glucose concentration. One should also note that a 

maximum release rate exists for each hormone as it is plausible that the pancreas has 

a fixed capacity. The maximum release rate for glucagon exists when blood glucose 

concentration is zero; and, the maximum release rate for insulin exists for very large 

blood glucose concentration. The initial model investigated is a special case of the 

system defined in section II.1.4. The above assumptions lead to specifying Hp = ag 

and Hu + Pu — fiBI in the generalized system defined by equations (II.4)-(II.6). 

For simplicity of the first model, the secretion rates are assumed to depend only on 

the blood glucose concentration and are modeled using hyperbolic tangents. Hyper­

bolic tangents are often used to model phenomena that transition from one state to 

another. If a different functional representation is used to model the transition, the 

results do not change significantly. The resultant model for the first species is: 

d B 
— = F(t)-E(t)-M0 + ag-(3BI, (III.l) 

dI -fcZ + Q ^ i + I t a n h f ^ ) ) , (III.2) 
dt " {2 2 \ n 
dg_ 
dt 

S99 + Q9 { \ + \ tanh ( ^ - ^ ) } • (IH.3) 

Initially, diet and exercise are included as first-order effects. The effects of eating, 

modeled by prescribing F(t), are assumed to be a direct source of blood glucose, 

and the effects of exercise, modeled by E(t), are assumed to be a direct utilization of 

blood glucose. Eleven parameters relate to the internal workings of an individual. M0 
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is the (constant) insulin-independent rate per volume of glucose uptake. This uptake 

is primarily due to the central nervous system's constant usage of glucose. Variations 

of the value of MQ may exist over an extended time period due to changes in the 

body such as increasing muscle mass or through a changes in an individual's weight. 

Two parameters, Si and Sg, relate to the half-lives of the hormones and account for 

the disappearance of insulin and glucagon from the blood. 0 is the constant insulin 

sensitivity, and a is the glucagon's effectiveness at releasing the glycogen stores and 

converting proteins to glucose. The development of insulin resistance is reflected in a 

lowering of the value of /3. The size of the glycogen stores and availability of substrates 

for gluconeogenesis affect the value of a. The constants Qi, Bi, and 77 relate to the 

secretion of insulin, and their values also reflect the health of the individual. Damage 

to the pancreatic cells that secrete insulin lowers the value of Qi (the maximum rate 

of insulin release) or increases the values of Bj and 77, i.e., changes the pancreatic 

response to the blood glucose concentration. The constants Qg, Bg, and rg relate to 

the secretion of glucagon. Although not obviously as affected by the health of the 

individual, variations in this latter set of parameters might be responsible for the 

pre-diabetes condition of hyperinsulinemia in response to a slightly elevated basal 

glucose level. The parameters Bi and Bg are often referred to as "threshold values" 

for insulin and glucagon secretion. With this terminology comes the assumption that 

the secretion of these hormones is insignificant until the blood glucose concentration 

reaches these threshold values; however, the basal level depends on the continuous 

balance between the non-zero secretion of the hormones and their disappearance rate. 

In the healthy individual, the blood glucose concentration only passes the threshold 

values during severe hypoglycemia or after significant glucose input such as provided 

by a carbohydrate meal. 

Having created fictional species, freedom exists to choose the values of parameters 

and then investigate the effects of the various choices. For some choices, the model's 

solution mimics the time history of the blood glucose concentration in a functioning 

individual, whereas for other choices, the model's solution might predict impossibly 

low blood glucose concentrations or other improbable situations. An attempt is 

made to choose parameter values keeping the model's solution within the context 

of a human-like species. Thus, the following (rounded) constant values are used 

throughout the rest of this thesis: 

• Si = 0.14 min - 1 sets the half-life of insulin as a little less than five minutes, 

• Sg = 0.08 min - 1 sets the half-life of glucagon as a little less than eight minutes, 

• Vp — 130 deciliter, which is approximately the volume of the extra-cellular 
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fluid in a 70 kg individual, 

• VpMo = 100 mg/min representing approximately 6 g/hour, 

Initially, the remaining parameters are chosen such that the derived basal values 

will be 

• B* = 90 mg/dl is the basal blood glucose concentration in a healthy individual, 

• /* = 8 fiU/ml is the basal insulin concentration in a healthy individual, 

• g* = 120 pg/ml is the basal glucagon concentration in a healthy individual. 

Thus, changing parameter values (e.g., decreasing insulin sensitivity) would then 

produce a quantifiable change in the basal state. 

The model defined in section II. 1.4 contains two components of insulin-dependent 

glucose consumption Hu and Pu- Hence, the term from equation (III.l) associated 

with insulin, ftBI, is partitioned into two new terms: the conversion rate of glucose 

to glycogen in the liver, PLBI, and the usage rate of glucose by the muscles (and 

other tissues) of the body, PMBI. Choosing an accurate relationship between fiL and 

PM is impossible since the allocation of glucose between the compartments changes 

continuously dependent on the state of glycogen storage in the liver and muscles. 

For simplicity, the relationship PM = 2/?L is chosen. With the addition of another 

parameter the following baseline values have been included: 

• Vp (ag* — PLB*I*) = 170 mg min - 1 approximately equal to 10 g hour -1 is the 

net rate of hepatic output during basal conditions in a healthy individual, 

• VF (PMB*I*) = 70 mg min - 1 approximately equal to 4 g hour -1 is the insulin-

dependent rate of consumption of glucose external to the liver during basal 

conditions. 

III.2.3 3 x 3 System Results 

With no external source of glucose, the system defined in equations (III. 1)-(III.3) 

maintains homeostasis at the basal levels B* ~ 90, /* = 8, and g* = 120. The 

parameter values 77 and Bi for four baseline individuals are in Table 1. Though 

there exists a variety of values for these two parameters, integration of the differential 

equations using basal conditions as initial values show that each individual holds 

the basal state when there is no external glucose source, see Fig. 1. When insulin 

effectiveness is reduced by a factor of two (i.e., 0 = 0.5/3) a new homeostatic state is 

achieved. This new state exhibits a greater concentration of insulin in the system due 
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Table 1 
Baseline values of 77 and Bi for four individuals. 

Individual, k 
1 
2 
3 
4 

Tl 

15 
15 
15 
25 

Bi 

105 
115 
125 
125 

to its ineffectiveness. However, this elevated insulin concentration is not able to hold 

the system at the original "starred," or basal state, and the system exhibits both 

an elevated glucose concentration and a decreased glucagon concentration. These 

changes in the basal state are greater when the insulin effectiveness is reduced by a 

factor of ten (i.e., j3 = 0.1/3). 

Upon introducing an exogenous glucose source of finite duration, the secretion 

rates of insulin and glucagon adjust in order to return the blood glucose level to its 

basal state. Analysis in Lasseigne and Adams (2011) leads to considering baseline 

individual # 2 as the "normal" healthy individual. Fig. 2 illustrates the system's 

response to a meal-like external energy input and the return to the basal state during 

the postprandial period. Here, the meal-like input is the release of glucose into the 

system defined by the normalized input rate 

F(t) = F0 • 0.5d-h2e-t/d, (III.4) 

where d = 15 and F0 = 150. The parameter d is a measure of the time it takes for 

the glucose in the meal to enter in the blood stream. The constant Fo = /0°° F(t) dt 

represents the milligrams per deciliter of glucose carbohydrate consumed in a meal. 

As d —> 0, F(t) becomes the unit delta function multiplied by F0. 

If a constant glucose input rate in excess of or equal to the resting energy usage 

rate is prescribed, then a sustainable steady-state solution in the resting individual 

exists. 

Limitations of the 3 x 3 System 

Without an external source of glucose, the steady-state solutions corresponding to 

basal conditions are unsustainable since the body constantly uses energy. For this 

system, steady states under basal conditions exist since the model contains the im­

plicit assumption that an infinite internal source of energy exists, say from the liver. 
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Although the assumption is false for extended time solutions without external energy 

inputs, the model reasonably predicts the variation of the blood glucose concentra­

tion during short-term fasts and meals and predicts the corresponding changes in 

the insulin and glucagon concentrations. In this model, the term fiBI represents 

the removal of glucose from the blood for storage as fat or as glycogen in the liver 

and muscle as well as representing the immediate use of glucose in the muscle. The 

model does not account for the saturation or depletion of the storage sites, but the 

model should reasonably predict the variation of blood glucose concentration for time 

periods when saturation or depletion does not occur. Also to be noted, this model 

contains no feed-forward mechanism that affects the hormone concentrations imme­

diately after the ingestion of a meal. Thus, the hormonal response to a meal-like 

external energy input (hereafter referred to as a meal) is only determined through 

the increased blood glucose engendered by the input. 

The goal of this thesis is an extension of the original three-by-three model to 

determine the role of hepatic glycogen storage in maintaining homeostasis. This 

modification eliminates the assumption of an infinite internal energy source. 

III.3 GLUCOSE-INSULIN-GLUCAGON-GLYCOGEN MODEL 

Glucose is stored in the liver and muscle as glycogen. Liver glycogen acts as a 

reserve of glucose to maintain blood glucose between meals or during extreme need 

(e.g., exercise). The glucose broken down from muscle glycogen is reserved for and 

burned by muscle tissue and does not enter the blood stream to be used by other 

tissue. 

In response to the increase in blood glucose engendered by the ingestion of di­

etary carbohydrates, insulin secretion is increased by the pancreas, and the additional 

insulin promotes glucose uptake. The excess glucose provided by the meal is imme­

diately used or stored as glycogen in both liver and muscle through the process of 

glycogenesis. Until all excessive glucose is used by the body, glycogenesis continues at 

a rate faster than the basal rate. When dietary glucose is unavailable, the secretion 

of the counter-regulatory hormone glucagon increases, and the glucagon passes into 

the liver promoting conversion of glycogen to glucose via the process of glycogenol­

ysis. Glycogenolysis is necessary for the body to maintain the basal blood glucose 

concentration in the short term. Though beyond the scope of this thesis, another im­

portant mechanism of the regulation of the blood glucose concentration is glucagon 

stimulated gluconeogenesis. If adequate hepatic glycogen stores are unavailable, the 

body relies on the creation of glucose from non-carbohydrate substrates to maintain 

the basal blood glucose concentration. 
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III.3.1 Glycogenesis - First Modification 

The first modification of the basic system introduces dependency of glycogenesis on 

the quantity of glycogen stored in the liver (say L measured in milligrams) into the 

original three-by-three model. A fourth equation extends the previous system as 

f = >W-A-A.fl/-££. (in.5) 

t = -^+MH-h(^)}- (ni7) 

where Vp is the volume of interstitial fluids. When the argument of erfc(7/L) becomes 

large, i.e., 7/L —> oo, the value of the complimentary error function tends towards 

zero and models the suppression of further storage owing to the finite size of the liver. 

When the argument of erfc(7/L) becomes small, i.e., 7/L —> 0, the value of the com­

plimentary error function tends towards it's maximum value of unity and models the 

body's need to replenish its life preserving store of glycogen at the greatest possible 

rate. The parameter 7/ is a scaling factor to be chosen during the following analysis. 

The choice of the complimentary error function is not unique. Specifying a different 

functional relationship which similarly models the above asymptotic behavior would 

yield comparable results. 

Assume the body starts with a baseline liver glycogen level of L(0) = L* — 

130,000 mg (130 g) and experiences three meal-like inputs of glucose. A graphical 

representation of the dependent variables over a 24-hour period, where t = 0 repre­

sents 7:59 a.m. with multiple values of 7/, is shown in Fig. 3 and Fig. 4. The three 

incorporated meals occur at 8:00 a.m., 12:00 p.m., and 6:00 p.m. The appropriate 

parameter range for 7/ in the healthy individual arises from two restrictions which 

keep the blood glucose in the physiological range: a) the maximum blood glucose in 

response to a meal should remain in the range ~ 120 — 200 mg dl - 1 , and b) the blood 

glucose concentration should not dip below hypoglycemic levels of less than 60 mg 

dl - 1 between meals or overnight. 

The effect of the choice of 7/ is discovered by examining the blood glucose con­

centration (Fig. 5 - top), absolute liver glycogen quantity (Fig. 5 - bottom), insulin 

concentration (Fig. 6 - top), and glucagon concentration (Fig. 6 - bottom) during 

the consumption, usage, and storage of the first meal. During the time period of the 

first meal, the glucose and insulin concentrations are high; whereas, the glucagon 
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F i g . 3 Glucose concentration (top) and liver glycogen quantity (bottom) for four values of 7/ over 
a 24-hr period. 

concentration is low. As a result, postprandial blood glucose is stored in the liver 

through the term proportional to )3L, stored and used in the muscle through the term 

proportional to /?M> and used by the central nervous system through the term M0- In 

the original three-by-three system, a balance between these mechanisms for glucose 

usage existed and was independent of the state of glycogen storage in the liver. As 

seen through Fig. 7, very small values of 7/ lead to little dependence on the current 

liver glycogen level, and the balance established by the original three-by-three sys­

tem is retained irrespective of the growing glycogen levels. The maximum glycogen 

level in the liver after the first meal under the original system is Lmax « 220, 000 

mg. As the value of 7/ increases, more dependence on the current liver glycogen level 
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during the first meal. 

is introduced. Since L > L* immediately following the meal, the glycogen storage 

rate is significantly decreased for large 7/ values (see Fig. 7), and prandial glucose 

usage tends toward storage in the muscles and direct usage by the body rather than 

storage in the liver. Since storage in the liver is limited and since other avenues of 

usage remain as previously prescribed, the glucose remains in the blood for a longer 

time period leading to increased postprandial blood glucose concentrations. 

Presently, the model does not limit the quantity of glucose which can be stored 

by the muscle nor does it adjust the rate of storage as a function of muscle glycogen 

content, thus the balance between storage as hepatic glycogen and storage in the 

muscle is solely determined by the value of 7/ and the instantaneous liver glycogen 

content L. As just noted, large values of 7/ lead to almost no storage of glucose in 

the liver when L > L* which increases the postprandial glucose in the blood. The 

excess glucose is eventually used by the central nervous system or the muscles of the 

individual. On the contrary, small values of 7/ lead to the maximum disposition of 

an external source of glucose through storage as liver glycogen rather than through 

the insulin-dependent usage in the rest of the body. 

The first post-absorptive period provides further information to determine the 
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effect of the parameter 7/. In this first extension of the model, the glycogenolysis 

rate remains independent of the glycogen level and provides the glucose necessary 

to maintain basal levels between meals. For the three cases when there is sufficient 

storage of hepatic glycogen, the blood glucose level, the insulin level, and the glucagon 

level return to the basal values established by the original three-by-three system. The 

hepatic glycogen depletes at a constant rate between meals, but the glycogen level 

remains above the original level of L* except possibly during the extended overnight 

post-absorptive period. 

On the contrary, the largest value investigated 7/ = 5 x 10 - 5 - represented by the 

dash-dot line in Fig. 5 (bottom)- leads to the lowest after-meal storage of glycogen, 

and in the immediate post-absorptive period the liver glycogen level dips below the 

initial level of L*. With this large value of 7/, the rate of glycogenesis is significantly 

increased; thus, glucose is removed from the blood at a very large rate in an attempt to 

return the glycogen level to L = L*. This is an indication of hepatic cycling, i.e., the 

processes of glycogenesis and glycogenolysis occur simultaneously, albeit at differing 

rates. Without considering a second source of glucose (such as gluconeogenesis) 

which would supply enough glucose for both usage in the central nervous system and 
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through glycogenesis, a short-term balance cannot be maintained and homeostasis 

is not achieved. During this period, the glucose concentration drops rapidly, and 

the body responds by increasing the glucagon level and decreasing the insulin level. 

Since the solution demonstrates severe bouts of hypoglycemia when 7/ = 5 x 10~5 , 

the desired value of 7/ must be less than this value. This extreme case demonstrates 

that the first modification corrects the deficiency of the original three-by-three model 

which considered the liver as an infinite source of glucose. 

By examining the quantity of liver glycogen over the 24-hour period and including 

three meals, it is discovered that there is sufficient glycogen stored to maintain L > L* 

and basal conditions even during the extended overnight post-absorptive period when 

using the smallest proposed value, 7/ = 1 x 10 -7 - displayed in Fig. 3 (bottom) 

as the dashed line. Using the other values of 7/ investigated, 7/ = 5 x 10 -6 and 

77 = 7.5 x 10 - 6 - dotted and solid lines, respectively - results in less hepatic glycogen 

storage, and the level dips below L* during the extended post-absorptive period which 

follows the final meal of the day. During this period, the blood glucose concentration 

decreases slightly but remains near basal as the increased rate of glycogenesis is not 

as significant as when 7/ = 5 x 10 -5 . 
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F i g . 8 Liver glycogen quantities over 72 hours for four values of 7/. 

By continuing the calculation through 72 hours with three meals daily (see Fig. 8 

for illustration), it is shown that hepatic stores would gradually increase beyond stor­

age capacity for the lowest value of 7/. For the two intermediate values investigated 

(7/ = 5 x 10 - 6 and 7/ = 7.5 x 10 -6), the blood glucose, insulin, and glucagon con­

centrations remain well controlled without excessive storage or depletion of glycogen. 

When 7/ = 5 x 10 -5 , the model predicts repeated unphysical hypoglycemic events oc­

curring between each meal. Thus, the appropriate range of 7/ values for the healthy 

individual has been determined. 

III.3.2 Glycogenolysis — Second Modification 

The second modification of the basic system introduces the dependency of glycogenol­

ysis on the concentrations of glucagon and the quantity of glycogen stored in the liver 

into the original three-by-three model. The first three equations of the model remain 

the same as in section III.3.1, and the fourth equation is replaced with 

dL 
~dt 

VF pLBI - ocg e
ff(7g£) 

erf(7gL*) 
(III.9) 
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F i g . 9 Glucose concentration (top) and liver glycogen quantity (bottom) for three values of j g . 

When the argument of erf(7sL) becomes large, i.e., ygL -» oo, the value of the 

error function tends towards unity and models the tendency of the liver to output 

glucose at the maximum rate when the liver is saturated with glycogen. When the 

argument of erf(79L) becomes small, i.e., ygL —> 0, the value of the error function 

tends towards zero and models the body's attempt to preserve its store of glycogen 

by greatly decreasing the rate of glycogenolysis. The parameter 75 is a scaling factor 

to be chosen during the following analysis. The choice of the error function is not 

unique. Specifying a different functional relationship which similarly models the 

above asymptotic behavior would yield comparable results. 

Assume the body starts with a baseline liver glycogen level of L(0) = L* = 

130,000 mg (130 g) and experiences three meal-like inputs of glucose. A graphical 

representation of the dependent variables over a 24-hour period, where t = 0 repre­

sents 7:59 a.m. with multiple values of j g , is shown in Fig. 9 and Fig. 10. The three 

incorporated meals occur at 8:00 a.m., 12:00 p.m., and 6:00 p.m. 

As discovered in the previous section, the original three-by-three system repre­

sented the conditions leading to the greatest hepatic glycogen storage of a meal. 

These conditions persist throughout this section. The effect of the choice of yg is 

discovered by examining the blood glucose concentration, absolute liver glycogen 

quantity, insulin concentration, and glucagon concentration after the consumption, 
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usage, and storage of the first meal. Fig. 9 shows the solution over a 24-hr period 

for three values of 79: 75 = 1 x 10~6, 79 = 1 x 10 -5 , and 79 = 1 x 10 -4 . Since 

glucagon levels drop immediately upon consumption of a meal, the second modifi­

cation has no effect on the increase in liver glycogen content occurring as a result 

of the meal. However, in the immediate postprandial period, the values of 79 affect 

the rate of glycogenolysis. As seen through Fig. 11, very large values of j g lead to 

little dependence of the glycogenolysis rate on the current liver glycogen level, and 

the rate established by the original three-by-three system is retained irrespective of 

the growing glycogen levels. The maximum glycogen level in the liver after the first 

meal under all values of j g is Lmax « 220,000 mg. Since L > L* immediately fol­

lowing the meal, the glycogen unloading rate is significantly increased for small ~fg 

values (see Fig. 11), and this results in blood glucose levels in excess of the basal 

levels of the original three-by-three system. In none of the cases does the glycogen 

level fall below L* before the next meal is consumed. Without the limiting behavior 

on glycogenesis present owing to saturation-induced insulin insensitivity, the liver 

"overloads" after each meal, and thus, glycogen levels increase over time. The in­

crease in glycogenolysis rates for small 7g when L > L* slows the overloading of 

glycogen levels as evidenced by examining the solution over 72 hours (see Fig. 12). 
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The increased post-absorptive unloading rates for small 7S with increasing L keeps 

the post-absorptive blood glucose levels significantly above the basal levels of the 

original three-by-three system. 

To examine the second modification's ability to preserve glycogen stores at ap­

propriate times, the level of glycogen was allowed to drop below L* by eliminating 

meals for an extended period of time (thus continuing the overnight fast observed in 

Fig. 9). For small 7g, the second modification slowed the rate of glycogenolysis and 

maintained glycogen levels at the expense of blood glucose levels, which fell below 

the basal levels of the original three-by-three system. Without the second modifi­

cation (or for large 79), basal blood glucose levels were maintained at the expense 

of depleting the glycogen store. If an additional internal source of glucose, such as 

gluconeogenesis, is included in the model, then the smaller value of 75 would allow 

for the preservation of glycogen while maintaining basal blood glucose levels as is 

demonstrated later (see section III.3.5). 
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F i g . 12 Liver glycogen over 72 hours for three values of j g . 

III.3.3 Combination of Modifications 

In the previous two sections, the basic three-by-three system was modified to account 

for the individual effects of hepatic glycogen storage and hepatic glycogen depletion. 

Now that the effects of the individual modifications are better understood, a model 

combining the two phenomena is examined. The initial goal of this section is to 

determine symbiotic values of the parameters 7/ and 75 which lead to homeostasis at 

or near the basal state without excessive saturation or depletion of glycogen stores. 

Combining the modification into one model yields the following system: 

f - FM-Kh-fivBl-1-%. (111.10) 

f =-'rf+o.{Ht"h(a^)}- (IIU2) 

ik = VJ^B,^^ a g ^ l ) . (ra.13) 
dt V erfc(7,L>) s<xi(i,L') j v ' 
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If L S> L*, equation (III.13) reduces to 

dt Fer{(jgL") 

and the system no longer stores glucose as hepatic glycogen due to saturation of 

the storage site. Increased values of g lead to an increased rate of glycogenolysis; 

whereas, decreased values of g lead to a decreased rate of glycogenolysis. On the 

contrary, if L <C L*, equation (III. 13) reduces to 

dl = pLBI 
dt Ferfc(7/L*)' 

Here, the system's hepatic store of energy is nearly depleted. As a response, the 

system attempts to recover its lacking stores. Increased insulin and glucose con­

centrations raise the rate of glycogenesis; whereas, decreased insulin and glucose 

concentrations diminish the rate of glycogenesis. 

As done in sections III.3.1 and III.3.2, a series of meal-like inputs are introduced 

over 24 or 72 hours. As a reminder, the meal-like inputs affect the hormonal response 

only through the increased blood glucose. Note again, this model contains no feed­

forward mechanism that affects the hormone concentrations immediately after the 

ingestion of a meal. The meal-like inputs are defined by the normalized input-rate 

function 

F(t) = 0.5F0d-3t2e-t/d, 

where d is a measure of the time it takes for the glucose in the meal to enter in 

the blood stream and Fo represent the milligrams of glucose carbohydrate consumed 

in a meal. For this section, let d = 15 minutes, F0 = 300 grams of glucose, and 

LQ — L* = 130,000 milligrams of glycogen. 

Initially, let 7/ — 1 x 10 - 7 and 79 = l x 10 -4 . Fig. 13 illustrates the dynamics of 

the system over a 24-hour time period. As expected, the small value of 7/ coupled 

with a large value of 7g leads to increased hepatic storage of a meal. Over the 

24-hour time period, the hepatic glycogen stores increase by approximately 88,000 

mg or 67.7%. This trend of increasing hepatic glycogen stores continue through the 

course of 72 hours. As seen in Fig. 14, glucose, insulin, and glucagon return to their 

respective basal levels between meals owing to an abundant supply and measured 

release of available glycogen; however, the glycogen store nearly doubles (2.5726 x 105 

mg) the initial store at the end of 72 hours. The solution with these parameter 

values differs little from the original three-by-three solutions until glycogen stores 

increase dramatically over long periods of time or until glycogen stores are depleted 
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F i g . 1 3 Combined modified system with 7/ = 1 x 10 7 and 79 = 1 x 10 4 over a 24-hour time 
period. 

by cessation of regular meals. 

The investigation continues with holding 7/ at 7/ = 1 x 10 - 7 and decreasing 75 

to 7p = 1 x 10 -6 (see Fig. 15). In section III.3.2, decreasing 7S led to a higher blood 

glucose concentration following the initial meal of the day, and more importantly, 

the inability of the system to return to it's basal state - even during the overnight 

period. For these values, the systemic response is almost identical to having only the 

second modification. As previously demonstrated, control of the system's glycogen is 

improved but is not fully achieved. In the first 24 hours, hepatic glycogen stores reach 

a maximum of approximately 306,000 mg and decline during the overnight period 

to 147,420 mg. Extending the time analysis to 72 hours produces a continuation 

of the loading-unloading cycle. The nadir in the quantity of glycogen in the liver 

during the third day is approximately 160,500 mg, representing an increase of 23.5% 

over the first day nadir. The increasing glycogenolysis rate with elevated glycogen 

levels leads to the system's inability to maintain homeostasis under the original basal 

parameters. At the end of the 72-hour time period and just before a meal-like input, 

the nadir in blood glucose concentration is 91.6937 mg dl - 1 , representing an increase 

by nearly 2% in the span of three days. This trend of slowly increasing basal levels 
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F i g . 16 Combined modified system with 7/ = 5 x 10 6 and 79 = 1 x 10 6 over a 24-hour time 
period. 

would continue as time passes. 

In this next investigation, assume 7S remains at 1 x 10 - 6 while increasing 7/ by 

a factor of 50 (i.e., decrease glycogen storage when L > L*). Comparing Fig. 16 

to Fig. 13, the maximum blood glucose concentration following meals is seen to in­

crease as the storage of hepatic glycogen lessens. In the period between the first 

two meals, the blood glucose concentration remains slightly elevated owing to the 

increased glycogenolysis rate when L > L*. During the extended post-absorptive pe­

riod following the last meal, the steady use of glucose by the central nervous system 

causes the glycogen store to fall below the value L*. At this point, the model predicts 

that the blood glucose begins a steady decrease as the glycogenolysis rate falls and 

as the glycogenesis rate increases. Both of these rate changes represent an attempt 

to preserve the hepatic glycogen store. At the end of the 24 hours, the blood glucose 

concentration is approximately 85 mg dl - 1 . Extending the analysis to 72 hours (see 

Fig. 17) reveals that hepatic glycogen remains balanced - neither excessive synthesis 

nor uptake of glycogen exists. The daily nadir of hepatic glycogen stores is slowly 

decreasing after each 24-hour period - after the first 24 hours, approximately 84,000 

mg is stored in the liver; after 48 hours approximately 82,000 mg is stored in the 
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F i g . 17 Combined modified system with 7/ = 5 x 10 6 and 79 = 1 x 10 6 over a 72-hour time 
period. 

liver; and, after 72 hours approximately 81,800 mg is stored in the liver. The decline 

is slow, but needs to be held in check, possibly by a slight increase in feeding. 

III.3.4 Adjustment of Combined Modifications 

Initially, this investigation started with a three-by-three system that demonstrated 

short-term control of the blood glucose concentration using glucagon and insulin; 

however, the model is ill suited as a long-term model of glucose control since it 

predicts that blood glucose is maintained at a constant basal rate forever in the 

absence of external energy input. The first two modifications and the combined 

model account for the loading and depletion of liver glycogen in an attempt to create 

a new model that demonstrates proper long-term behavior - i.e., regular meals are 

needed to maintain a non-zero blood glucose level. With 7/ < 1 x 10 - 6 and j g > 

1 x 10 -4, the new combined modified system shows the same blood glucose control 

as the original system under regular feeding; however, the glycogen stores increase to 

unphysical levels over long periods of time. Upon using the values of 7/ = 5 x 10 - 6 and 

7g = 1 x 10 -6 , the model solutions demonstrate systemic control of both the blood 

glucose concentration and the hepatic glycogen stores during regular feedings along 
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with demonstrating that the insulin and glucagon concentrations act appropriately. 

When feedings are stopped, the blood glucose is no longer inappropriately maintained 

at a non-zero level forever as in the original three-by-three system. 

When put into the context of the construction of a fictional species, the model 

has passed the tests that were laid out in advance: 

• to demonstrate a between meal "basal" level of blood glucose, insulin, and 

glucagon, 

• to demonstrate appropriate maximum blood glucose levels after each meal, 

• to demonstrate proper loading and unloading of liver glycogen. 

Although the model is a success as a fictional species under the prescribed conditions, 

the model represents just one possibility. In particular, this model was tuned using 

L* = 130,000 mg and the rates of glycogenolysis and glycogenesis responded as 

glycogen differed from this level. Perhaps most at odds with the conventional view 

of the basal levels of blood glucose, glucagon, and insulin being near constant is 

that the increased glycogenolysis when L > L* created a slight rise in after meal 

blood glucose levels. This section explores the effects of using a separate tuning of 

the glycogenolysis and glycogenesis rates. One may consider this adjustment of the 

modified system as creating a slightly more advanced fictional species. 

Let us now consider an adaptation to equation (III. 13) given by 

dL ^xr (a D r e r f c ( 7 / L ) „ „ e r f (7sL) -j? = Vp[ PLBI " - ag l9 . (111.14) 
dt \ erfc(7/L}) eri(^gL*g)J 

The system introduced in section III.3.3 held L} = L* = 130, 000 mg. An investiga­

tion follows examining the effects that changes in the values of L] and L* have on the 

system. As done previously, three meal-like inputs are prescribed over the course of 

24 hours, where t = 0 represents 7:59 a.m. Displayed in Fig. 18 are the blood glucose 

and hepatic-glycogen solutions of the adjusted system with L} — 90,000 mg and L* £ 

{90,000, 130,000, 170,000, 210,000} while holding 7/ = 5 x 10 - 6 and -yg = 1 x 10 - 6 . 

From Fig. 11 and Fig. 7, 

4 ^ # > 1 when L>L; erf(7sL;) 9 

demonstrating an increase in hepatic glycogen stores leads to a rise in the rate of 

glycogenolysis. Thus, if initial stores are set as L* = 130,000 mg, glycogenolysis 

occurs sooner and to a greater extent for smaller values of L* and slower for larger 

L* - see Fig. 18 (bottom) dashed-dot and dotted lines, respectively. Table 2 details 
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Table 2 
Glycogenolysis factor for varied L* 

K 
90,000 

130,000 

170,000 

210,000 

l/erf(7flL;) 
9.8736 

6.8556 

5.2634 

4.2823 

the numerical impact of this factor. Hepatic loading of the initial meal is nearly 

independent of the parameter L*, and the maximum blood glucose following the 

initial meal is nearly identical ( « 190 mg/dl) for all cases. This independence is 

due to the small values of g during this time interval. During the post-absorptive 

phase occurring after the first meal, the differences in the glycogenolysis rates start 

to become evident. As seen in Table 2, the glycogenolysis rate decreases greatly for 

increased L*, and by the end of the first post-absorptive phase, the glycogen levels 

are higher for the large L* cases. The increased glycogenolysis rate for smaller L* 

leads to an elevated postprandial glucose concentration, and by the end of the first 

post-absorptive phase, the glycogen levels are lower for the small L* cases. This 
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difference in glycogen levels leads to a differing response to the consumption of the 

second meal of the day. The storage through glycogenesis is suppressed by the higher 

glycogen levels at the time of the second meal consumption, and the maximum blood 

glucose level is higher for these cases since the glucose supplied by the meal is left 

in the blood to be used by the central nervous system and the muscles. Thus, a 

situation develops where the maximum blood glucose is lower when L* is small, but 

the post-absorptive blood glucose level is higher when L* is small. The nonlinearity 

of the system is the cause of this unpredictability. 

As time progresses, a pattern develops where the blood glucose maximum after the 

first meal of the day is lower than the blood glucose maximums after the second and 

third meals. This is a result of the faster loading of the glycogen in the liver. In fact, 

the dominant trait during the feeding process is the loading of liver. When glycogen 

stores are significantly above the prescribed value of L}, the glycogenesis rate is 

suppressed. Once glycogen falls below L], the glycogenesis rate quickly increases. 

The effects on the glucose levels has been noted. These traits are illustrated in 

Fig. 19 upon considering a different level for L}. When comparing the case of L} = 

210,000 mg to L} = 90,000 mg, one finds that loading of the liver during the meal is 
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Table 3 
Glycogenolysis rates during a prolonged fast 

Length of fast 
(hours) 

0 
2 
4 
24 
64 

Glycogen Content 
(fj,Mol/g liver) 

300 
260 
216 
42 
16 

Rate of Glycogenolysis 
(liMol/kg • min) 

-
4.3 
4.3 
1.7 
0.3 

significantly increased leading to lower blood glucose maximums. Unloading of the 

liver is higher when L* = 90,000 mg compared to L* = 210,000 mg which mostly 

affects the post-absorptive blood glucose levels. 

III.3.5 Gluconeogenesis - A First Look 

With the absence of continual feedings, the body relies on its liver glycogen stores to 

fuel essential functions such as the central nervous system. These stores are limited; 

therefore, as currently modeled, the individual is doomed within 24 hours if no addi­

tional external glucose sources are provided. Missing from the current model is the 

process of gluconeogenesis which stretches the dwindling stores of hepatic glycogen 

during a prolonged fast. During the prolonged fast, the rate of glycogenolysis de­

creases significantly. Table 3 (Smith et al., 2005) shows glycogen content declines to 

14% of its original content over the span of a 24-hour fast while the rate of glycogenol­

ysis falls to nearly 40% of the postprandial rate. Extension of the fast to 64 hours 

continues this decline, and the glycogen content falls to 5.33% of its original content. 

At this point the glycogenolysis rate slows to 7% of the postprandial rate. Con­

sidering that the central nervous system usage remains constant, glucose must be 

supplied to the body by an increasing rate of gluconeogenesis or other processes such 

as lipogenolysis. 

The model presented in this thesis is now lightly adapted in an attempt to mirror 

these results. Inclusion of gluconeogenesis as a endogenous source of glucose requires 

a dependency on the glucagon concentration. Gluconeogenesis is primarily gener­

ated from non- carbohydrate carbon substrates (e.g., pyruvate, lactate, glycerol, and 

amino acids); however, the dependence of the gluconeogenesis rate on the concentra­

tion of these quantities is not modeled. Rather, a simplistic form of gluconeogenesis 

is included in the glucose and liver equations. Here equations (III. 10) and (III. 13) 
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are replaced by 

^ = F(t)-M0-/3MBI + Gnag-^^-, (111.15) 
at Vp dt 

IT = ^ ( ^ / ^ - ( l - O ^ ) , (111.16) 
dt \ erfc(7/L}) erf(7flL;)y 

where the constant Gn represents the fraction of glucose provided through gluconeo­

genesis when L — L*. In the absence of the modifications introduced to account for 

the hepatic glycogen stores (i.e., the original three-by-three system), the results are 

independent of the value of Gn. The addition of this new term allows for glucose 

to temporarily remain at basal for an extended postprandial time period in spite of 

declining hepatic stores. The blood glucose and hepatic-glycogen solutions of the 

new system over the course of 36 hours are displayed in Fig. 20 with Gn € {0, 0.30}. 

Meals are introduced at 8 a.m., 12 p.m., and 6 p.m. then cease for the remaining 26 

hours. With the additional internal glucose source present, the between meal blood 

glucose concentrations are steadier than when no gluconeogenesis is present. 

In both cases where gluconeogenesis is present, the elevated blood glucose concen­

tration causes a slight decline in glycogenolysis, regardless of the amount of glycogen 

present in the liver - see solid and dotted lines. In the case where L] — L* = 210, 000 

mg, about 25% of glycogen remains at the end of the 24-hr fast when Gn = 0, and 

about 50% of glycogen remains when Gn — 0.30. Similar numbers apply for the other 

case. 

When Gn — 0, the maximum blood glucose concentration following the third 

meal is approximately 188 mg/dl at t « 660 min. Over the span of the next 25.5 

hours, the glucose concentration drops to an end concentration of approximately 74 

mg/dl. Hepatic glycogen content is 250,000 mg at t = 660 min and is approximately 

70, 000 mg at the end of the simulation, or a decline of 72% over the span the fast. 

By increasing Gn to Gn = 0.30, the maximum blood glucose concentration following 

the third meal rises to approximately 192 mg/dl at t « 660 min. Over the span 

of the next 25.5 hours, the glucose concentration drops to an end concentration of 

approximately 86 mg/dl. Hepatic glycogen content is 282,000 mg at t = 660 min 

and is approximately 113, 000 mg at the end of the simulation, or a drop of 60% over 

the span the fast. Most importantly, the blood glucose level remains within normal 

ranges when Gn = 0.30. 

Fig. 21 displays the per-minute change in glycogen, dL, with L} = L* = 210,000 

over an extended non-fed time period starting at the time of peak glucose concen­

tration following the third meal. Net glycogenolysis occurs when dL < 0 and net 

glycogenesis occurs when dL > 0. Storage in the liver appears to be unaffected 
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by the presence of the gluconeogenesis term. After approximately one hour from 

time of peak glucose, the system shifts from storage into the liver to the usage of 

glycogen. With gluconeogenesis present, the glycogenolysis rate is slightly decreased; 

however, this decrease is maintained throughout the fast which leads to significant 

conservation of glycogen stores. 

III.4 FURTHER ANALYSIS 

The parameter studies performed in the previous sections provide a start to the 

validation process. If the model is to approximate the glucose metabolism of a 

human, the chosen parameter values should provide a reasonable time history of the 

blood glucose level after a meal. Such time histories were demonstrated in Fig. 19. 

In addition to approximating the time history, the model is validated by examining 

the steady state solutions and the response of the body to small perturbations from 

this steady state. 
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III.4.1 Steady States versus Basal States 

The basic three-by-three system (equations (III.1)-(III.3)) admits a steady-state so­

lution even when glucose input is zero. It is common to refer to this steady state 

as the basal state. Since the body is constantly consuming energy in the form of 

glucose, achieving a steady state under zero-input conditions is a physical impossi­

bility. Thus, the existence of a steady state exposes a fundamental flaw in the basic 

three-by-three model, i.e., an infinite source of endogenous glucose exists within the 

model. The first and second modifications address this fundamental flaw. Examining 

the system, equations (III.10)-(IIL12) and (III.14), reveals that a steady state only 

exists if the glucose input F(t) is a constant that exactly meets the body's energy 

requirements. If the glucose input F(t) is less than this energy-balanced value, the 

body shows continued depletion of the glycogen stores in the liver. If the glucose in­

put F(t) is more than this energy-balanced value, the body shows continued growth 

of the glycogen stores in the liver. Thus, the basal state of the four-by-four system is 

not a steady-state for all four dependent variables, but does represent a temporary 

state in which three of the dependent variables (B, I, and g) are near constant and 

the rate of change of the fourth dependent variable (L) is also a near constant. 

Mathematically, steady-state solutions describe physical conditions that, once 

established, continue to exist forever; however, the exact conditions required by a 
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steady-state solution are rarely realized. Examining the stability of a steady-state 

solution, i.e., examining the response of the system to small deviations from the 

steady state, is often used to develop criteria delineating the controlled states (ex­

ponential decay of disturbances) from the uncontrolled states (exponential growth 

of disturbances). The structure of the glucose-insulin-glucagon system guarantees 

that the steady-state solutions are always stable in the classical sense, so a stability 

analysis does not provide a clear explanation of healthy vs. unhealthy states. An 

alternate view of the linear dynamics of the glucose system is that positive devia­

tions represent responses to necessary energy additions, and these deviations must 

decay sufficiently fast so that the additional glucose is processed before the next 

meal. Thus, proper control requires more stringent criteria than determining when 

the system is stable in the sense of exponential decay of disturbances. This aspect 

of control was studied in Lasseigne and Adams (2011) by using a series of forced 

initial value problems. Below, a series of forced initial value problems are analyzed 

to determine the effects of glycogen stores under a variety of conditions. Thus, a 

more complete understanding of the parameter space for this model is developed. 

III.4.2 Linearization 

The model is further investigated by examining the solution of the linear system 

produced by introducing small perturbations to a base state. Two base state cases 

are considered: the zero-food case F(t) = 0 and the energy-balanced case F(t) — F#. 

In the latter case, the input rate F# is chosen such that the net hepatic glucose 

production rate starts at zero, and the base state remains constant in time. In the 

former case, the net hepatic glucose production rate is near constant, and the base 

state is a function of time. The perturbations are modeled to represent the addition 

of glucose to the system in the form of a very small distributed meal. In the original 

three-by-three system, the blood glucose concentration in the zero-food case and the 

energy-balanced case was shown to be maintained by two different mechanisms (see 

Lasseigne and Adams, 2011). This analysis determines if the level of glycogen affects 

the results. 

The linearization starts from the four-by-four model which is repeated here for 
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| . _W + Q , { ' ^ t m h ( £ ^ ) } , (III,s) 
| = - ^ + 4{i + i t a „ h ( i ^ ) } , (HI.19) 

§ = ^fftB/^aa-^if^Ly (,„.2o) 
dt V erfc(77L}) eri(^gL*g) J 

The general form of the above system may be written as 

^ = F1(B,I,g,L) + F(t), (111.21) 

^ = F2(B,I,g,L), (111.22) 

dj-t = F3(B,I,g,L), (111.23) 

^ = F,(B,I,g,L). (111.24) 

The base state for the zero-food case is defined to satisfy 

dR° 
a D - ' -jO r0 „0 r 0 d< F^J^g^L"), (111.25) 

^ = F2(BPtI°,g0,L0), (IIL26) 

^ = F3(B0 , /° ,5
0 ,L0) , (111.27) 

= F4(B
0,I°,g0,L0), (111.28) 

and the (constant) energy balanced state is defined through: 

F i (B # , / # , 5 # ,L # ) = - F # , (111.29) 

F2(B#,I*,g#,L#) = 0, (111.30) 

F3(B*,I#,g*,L*) = 0, (111.31) 

F4(B*J#,g#,L*) = 0. (111.32) 

The development of the linear system to be studied is demonstrated for the zero-food 
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case by introducing the perturbed variables 

B = B° + eB, (111.33) 

/ = 7° + e/, (111.34) 

9 = 9° +eg, (111.35) 

L = L° + eL, (111.36) 

F = eF, (111.37) 

into the governing equations (III.17)-(IIL20) and keeping only terms proportional to 

epsilon. Upon executing this linearization, one obtains 

d R 
— = F°BB + F ° / + F°gs + F°LL + F, (111.38) 

~ = FlB + Fll + Flg + FlL, (111.39) 

| = F!BB + Fli + F!gg + FlL, (111.40) 

f = FlB + Fll + Flg + FlL, (111.41) 

where F1°fl(t) = f§-|(B°(t), /°(t), 5°(t), L°(t))- The general linear system has 12 non-zero 

coefficients, either constant or time dependent. The assumptions of constant insulin 

sensitivity, no mutual- or self-inhibitions of hormonal secretion, and disappearance 

rates proportional to the hormone concentration lead to the values 

*2, = * 3 , = * 2 t = * £ = < > , (111.42) 

P 0 _ a r° R r O e r f c ( ^ L ° ) 
erfc(7/LJ j 

(111.43) 

i - - ^ § - <"-> 

^ - | « * " ( ^ ) . (m.47, 

F° - -<*,, (111.48) 

^ = -|r-ch2(^-^), (111.49) 

F3° = -«Sfll (111.50) 



42 

F4° = VppLT 
0erfc(7/L°) 

erfc(7/L}): 

Fl = VFPLB 
0erfc(7/L°) 

Fl = -VFa 

erfc(7/LJ)' 
erfc(7pL°) 

erf(79^) ' 

0 _ 2Vp7iPLB°I° HiL0)2 2Vpjgag° (^L0)7 

*L V/7rerfc(7/L}) v/7rerf(7gL*) 

(111.51) 

(111.52) 

(111.53) 

(111.54) 

Upon defining F°B EE g», F°B EE - # , F°L = *?, F°L ^ - l ^ ° , £L = fcg^, and 

a = <̂ erf( /,•)' ^n e s y s t e m reduces to 

where 

^ x = A°(t)x + F(t), (111.55) 

(111.56) 

A°(t) = 

"- (PM + fa) 1° 

9? 

" « 
L vw° 

- (pM + fa) B° 

-Si 
0 

VpfaB0 

a 

0 

-*« 
— Vpa 

"? 
0 

0 

-VFI/? 

and 

F(t) = 

F(t) 

0 

0 

0 

(111.57) 

(111.58) 

The above system is written in terms of the base-state delineated by using the naught 

superscript. A similar system governing the disturbance variables exists for the 

energy-balanced case using the pound superscript to represent the base quantities. 

It should be noted that for the energy-balanced case, the glucose input term is written 

as F = F* + eF instead of F = eF. 
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Under standard stability analysis, control is achieved if all eigenvalues of the coef­

ficient matrix A0 have negative real parts and the solution demonstrates exponential 

return to the steady-state. The eigenvalues under basal-state conditions and energy-

balanced conditions are examined; however, as shown for the three-by-three case (see 

Lasseigne and Adams, 2011), the stability analysis focused on the existence of ex­

ponentially decaying solutions is insufficient in determining the control to meal-like 

inputs. Therefore, in addition to determining the eigenvalues, the responses of glu­

cose, insulin, glucagon, and glycogen to the normalized input F(t) = 0.5d -3t2e - t / ,d 

are also examined. 

Zero-Food Input Case 

With no external source of energy, the system is reliant on its internal stores of 

hepatic glycogen to fuel the system. This being so, it is not possible to achieve 

steady glucose, insulin, and glucagon levels unless it is that which describes a system 

that is over saturated with glycogen. Further analysis is found in section IV.2.1 for 

this "well-fed state." The system sans external energy sources can also enter a "near-

starved state" where hepatic glycogen stores are near depletion. See section IV.2.2 

for additional analysis of a system in the near-starved state. Although a steady state 

is not achievable without an exogenous source of glucose, a linear analysis of the 

system can be completed under the assumption F(t) — 0. 

It is desired to examine the case where B°(Q) = B* = 90, J°(0) = I* = 8, 

g°(0) = g* = 120, and L°(0) — L* = L0. Parameter values in the original three-by-

three system were chosen such that these basal values could be maintained for all 

time. The four-by-four system uses these parameter values which leads to insulin 

and glucagon starting in homeostasis denoted as 

dP 
dt 
d£ 
dt 

= 0, 
t=o 

= 0. 
t=o 

Whether or not the blood glucose also starts out in homeostasis, ^§-(0) = 0, depends 

on the initial net glycogenolysis rate defined as 4L.(0) = — L0. The value LQ = 170 

produces a homeostatic start, and the results of the four-by-four system should be 

compared to the results of the original three-by-three system with the constant basal 

state. For each choice of L] and L* a homeostatic start only occurs for a specific 

value of the initial glycogen level, LQ- If the choices L} = L* = L* are made, then 

the specific value is L0 = L*. If values of L} =̂  L* ^ L* are chosen, then the value L0 

needs to be adjusted so that the system starts in homeostasis. The effects of changing 



44 

Table 4 
Initial net glycogenolysis rates for chosen L*t, L*, and LQ 

L*I 
90000 

90000 

90000 

90000 

90000 

90000 

90000 

90000 

130000 

130000 

130000 

210000 

210000 

210000 

210000 

K 
90000 

130000 

210000 

90000 

130000 

210000 

130000 

210000 

90000 

90000 

210000 

90000 

90000 

90000 

130000 

L0 

130000 

130000 

130000 

210000 

210000 

210000 

900000 

90000 

130000 

210000 

130000 

90000 

130000 

210000 

130000 

L0 

-271.360 

-181.134 

-104.165 

-463.480 

-319.001 

-195.8207 

-107.339 

-53.9104 

-260.247 

-459.217 

-93.051 

-71.548 

-204.169 

-437.667 

-113.923 

the parameters L}, L*, and LQ on the initial net glycogenolysis rate are summarized 

in Table 4. For the cases indicating a decrease in this rate (|Lo| < 170), the system 

does not have enough glycogen and the base state approaches hypoglycemia. These 

cases are possible after an overnight fast. For the cases resulting in an increase in this 

rate, the blood glucose concentration initially elevates; however, the hyperglycemia 

has a finite duration as hepatic glycogen stores are decreasing and limited. A stability 

analysis of the linear system is only appropriate for the cases of near homeostasis. 

In order to achieve homeostasis in the case of zero food input, a more appropriate 

value of LQ is required for each pair of specified values L] and L*. Define 

7/ = 
PLB*I* 

erfc(77L})' 

ft - ag* 
erf(7 sL;)' 

9(L) = -07erfc(7/L) + 0gerf(7gL), 

(111.59) 

(111.60) 

(111.61) 

where the choice of L} = 90, 000 mg and L* = 210, 000 mg is made based on the 

observations from section III.3.4. The value of L0 producing initial homeostasis 

satisfies VFQ(L0) — 170. As seen in Fig. 22, the intersection of VFQ(L) and 170 

occurs at LQ — 186,390 mg. Upon referring to the results from section III.3.4, the 
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value L0 = 186,390 is found to be within the range maintained throughout the day 

by continuous feeding. Thus, the net rate of glycogenolysis is near the value 170, and 

the body is near homeostasis during the zero-food post-absorptive period. 

The four eigenvalues of the initial coefficient matrix A°(0), subject to setting 

Bo = B*^ jo = j , ^ go = g*^ a n d Lo = LQ = 1 8 6 ) 3 90 ) are given in Table 5 and 

is hereafter referred to as Case I. For comparison, the eigenvalues from the original 

three-by-three system are also included in Table 5. The real part of each eigenvalue 

is negative, thus the zero-food case corresponding to basal conditions is considered 

linearly stable; however, as shown in Lasseigne and Adams (2011), the imaginary part 

of the complex eigenvalue pair is more important in controlling the blood glucose 

response to a distributed input. Note that this imaginary part for the four-by-

four system is slightly less than the imaginary part for the three-by-three system. 

As shown below, this slightly lessens the control of the blood glucose response to 

distributed input. 

As might be imagined after an extended overnight fast, the initial glycogen level 

in the morning could be Lo = 90,000. Using this value in the Jacobi matrix, the 

eigenvalues of the matrix, A°(0), are given in Table 5 and hereafter referred to as 

Case II. As compared to the Case I, the imaginary part of the complex eigenvalue 
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Table 5 
Eigenvalues of coefficient matrix A0 under varied conditions. 

Case 
3 x 3 

I 
II 
III 

Ai 

-0.0005545 
-0.0006755 
-0.0004559 

A2 

-0.1002 
-0.1032 

-0.09123 
-0.1212 

^3,4 

-0.0644 ±0.1274i 
-0.06220 ±0.1121t 
-0.06918 ±0.1134t 
-0.05102 ± 0.05225i 

pair is nearly the same, but the real parts slightly differ. It is impossible to know the 

effects of these differences until a specific initial value problem is solved. It should be 

noted that Case II is somewhat artificial as \L0\ < 170 and the system does not start 

near homeostasis. Alternatively, the base state is allowed to progress in time until 

near homeostatic conditions exist (say t = 80), and these values are then chosen as 

new initial conditions for the depleted glycogen case. The eigenvalues of A°(0) using 

the initial base-state values, B0 = 79.32, IQ = 1.99, g0 = 180.48, L0 = 81,625, are 

given in Table 5 and hereafter referred to as Case III. The real part of the eigenvalues 

indicates slightly slower decay of the responses; however, the imaginary part is half 

the value of the previous cases which leads to considerably slower control in response 

to distributed input. For reference, the time history of the base state subject to the 

above initial conditions is given in Fig. 23. Near homeostatic conditions are seen to 

exist in Case I and Case III, and the transient to near homeostatic conditions is seen 

in the Case II. 

The time history of the linear system subject to non-zero F(t) explores how the 

body responds to small inputs when the body is near homeostasis. First, the base 

state is held constant, and the solution to equation (III.55) with A°(t) is replaced by 

A°(0) is examined subject to both an impulsive load F(t) = S(t) and a distributed 

load F(t) = Q.5d~3t2e~t/d. Upon examining the response to the impulsive load, the 

original three-by-three system, Case I and Case II all show "overcorrection" of the 

disturbance in the blood glucose level occurring about 15 minutes after the impulsive 

load. On the contrary, Case III shows steady decay in the perturbed blood glucose 

level. In all cases, the disturbance has essentially vanished within 80 minutes. Math­

ematically, the difference in the responses is directly traceable to the imaginary part 

of the eigenvalues which is significantly less in Case III. Biologically, the difference in 

the responses is directly traceable to the difference in the secretion of insulin. Case III 

shows significantly less initial secretion leading to the initially slower correction of the 

blood glucose disturbance. Higher perturbed insulin levels in the other cases promote 
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faster uptake of perturbed blood glucose, including faster storage as glycogen evi­

denced by the difference in the L variable. The perturbed glucagon also responds to 

the impulsive load. Negative values of g indicate that glucagon has been suppressed. 

These negative values also lead to a positive response in the L variable which is in­

terpreted as a decrease in the rate of glycogenolysis relative to the base state. The 

initial suppression of the glucagon secretion rate is the same for all cases. In all 

but Case III, the perturbed blood glucose responds to the increased in perturbed 

insulin. The perturbed insulin and perturbed glucagon secretion rates subsequently 

adjust to the blood glucose response. This results in an oscillatory response of these 

three perturbed variables which decay at a rate highly dependent on the disappear­

ance rates of insulin and glucagon (see Lasseigne and Adams, 2011). The perturbed 

insulin and glucagon responses are out of phase in relation to the perturbed blood 

glucose response. As these variables approach zero, the perturbed value L nears a 

constant since there is no further glycogenesis or suppression of glycogenolysis. Thus, 

a net increase of stored glycogen due to the impulsive load occurs. On a time scale 

much greater than two hours, the excess stored glycogen is released, and L slowly 

approaches zero. The release rate for L is greater when the base state L0 is lower. 

Lasseigne and Adams (2011) showed that the response to the distributed input is 
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F i g . 24 System response to impulsive and distributed input under constant conditions. 

highly dependent on the imaginary part of the complex eigenvalue pair. Thus, Case 

III with a smaller imaginary part of the eigenvalue is expected to show the least 

blood glucose control to the distributed input, and Case I and Case II should show 

slightly less control than the original three-by-three system. These expectations are 

clearly realized in Fig. 24 using d = 15 for the distributed input. As in the impulsive 

response, the net increase in stored glycogen due to the distributed load is greater in 

Case III. As previously mentioned, the imaginary part of the eigenvalue in Case I and 

in Case II is slightly greater than in the original three-by-three system. This leads 

to slower control of the perturbed blood glucose response to the distributed input 

for these two cases in spite of a greater perturbed insulin and glucagon response. 

A close examination shows that the initial perturbed secretion rates of insulin and 

glucagon are identical for the original three-by-three system, Case I, and Case II. 

However, the insulin effectiveness F" is the same or smaller in Case I and Case II, 

and the glucagon effectiveness Fx
0 is smaller in both Case I and Case II. Thus, the 

initial blood glucose control is slower, and Case I and Case II need more insulin 

and less glucagon for long-time control. Overall, these results combined with the 

results from Lasseigne and Adams (2011) show that the processing of an external 

input depends mostly on the base blood glucose level at the time of input. Higher 

base blood glucose levels produce faster control in the linear system, mostly due to 
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faster insulin response at the higher base blood glucose levels. As expected, control 

is mostly determined through a combination of the effects of secretion rate responses 

and effectiveness of the two counter-regulatory hormones. 

To finish the analysis, recall that the system does not provide a steady-state so­

lution under the condition of zero-food input in the base state. Thus, the above 

analysis should be repeated by solving equation (111.55) subject to A°(t) rather than 

A°(0). For Case I and Case III, Fig. 23 shows that the base state is near homeostasis. 

Upon calculating the solution over a two-hour period, very little difference is found 

by using A°(t) rather than A°(0) for these cases (graph not shown). Thus, the re­

sponse to small external inputs discovered above are applicable to the post-absorptive 

states which are near homeostasis, and one needs the current blood glucose, insulin, 

glucagon and glycogen levels to determine the response to small perturbations on the 

time scale of absorbing a meal. 

The final calculation, shown in Fig. 25, demonstrates the differences in the 

perturbed glycogen response to a meal for the cases with initial glycogen loads 

L°(0) = .5L*,L*,2L*,5L* where L* = 130,000 mg. The initial rate of loading is 

greater for the smaller values of L°(0) and continues for a longer period of time. Af­

ter the absorption, the cases with a lower initial glycogen load call upon the perturbed 

stores much sooner than the cases with a higher initial glycogen load. 
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Energy-Balanced Input Case 

Presently, with the model not including a second endogenous source, such as the 

inclusion of gluconeogenesis briefly mentioned in section III.3.5, a steady state under 

the conditions of zero-food input is not possible. With the introduction of a constant-

rate exogenous source of glucose, it is possible for the system to achieve a steady-state 

solution. 

In the original three-by-three system, a set point exists for each individual where 

the input rate exactly matches the resting usage rate, F0 = Mo + PMB*I*. The 

external source of energy replaces the system's reliance on the hepatic stores to 

maintain a constant blood glucose level. Thus, the net hepatic output is zero, i.e., 

ag* — PLB#I# = 0. The generalized three-by-three system in steady state form is 

0 = ag*-pLB*I*, 

0 = -5il#+ Qi {I + I t*nh(^-^ 

• f 1 1 (B — B* 
0 = Sgg* + QA- + - tanh ' 9 )} 

(111.62) 

(111.63) 

(111.64) 

Solving for I* and g# from equations (III.63) and (III.64), respectively, and substi­

tuting into equation (III.62) yields 

CtQg 1 1 , (Bq-B* 
- + - tanh ' ~--s-

PLB*QI 

SI 

1 1 , (B*-Bi 
- + - tanh 
2 2 \ n 

. (111.65) 

Upon defining P* as 

equation (III.65) becomes 

P 
# _ PhQiSg 

aQgSi 
(111.66) 

1 1 
2 + 2 t a n h 

Ba-B# 
= P*B* 1 1 

2 + 2 t a n h 

B* - Bi 

ri 
(111.67) 

All four baseline individuals have the same normalized glucose-synthesis function 

(left-hand side of equation (III.67)); whereas, the normalized glucose-uptake function 

(right-hand side of equation (III.67)) depends on the values of Bi and 77 which change 

with each individual and are previously defined in Table 1. The intersection of the 

normalized glucose-synthesis function and the normalized glucose-uptake function for 

each of the four baseline individuals identifies the glucose energy-balanced set point 

B# as seen in Fig. 26 and Fig. 27. 
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Table 6 
Energy-balanced set points of glucose, insulin, and glucagon in three-by-three system for 

four base-line individuals 

Individual 
1 
2 
3 
4 

B* 
100.8703 
99.6249 
99.3033 
103.3348 

I* 
30.6804 
33.1109 
33.7977 
26.1978 

9* 
70.4597 
75.2617 
76.5398 
61.6446 

Substituting the glucose energy-balanced set point of each individual into equa­

tions (III.63) and (III.64) leads to the energy-balanced set points for insulin and 

glucagon, respectively. Table 6 lists the energy-balanced set point for glucose Bfi, 

insulin /* , and glucagon g* for the four baseline individuals. Further analysis in 

this section considers expanding the three-by-three system to cover the mechanics 

of the hepatic glycogen in individual #2 , the base-line individual of choice. The 

four-equation steady-state system is given by 

0 = F* -M0-pMB*I#, (111.68) 

0 = -Sil* + Qi i\ + \ tanh (B* ~ g / ) j , (111.69) 

0 = -Sgg* + Qg^- + \ t ^ < ^ ^ Y (111.70) 

0 = Vr(pLB*I*^^-ag*^^)t (IIL71) 

V erfc(7/^) erf(79L;)) 

and the system has five unknowns. The original system was a three-equation, steady-

state system in four unknowns, and an extra condition of zero net hepatic glucose 

production provided a fourth equation that led to a unique solution. Here, the 

fourth equation naturally represents the steady-state as a situation of zero net hepatic 

glucose production; however a fifth variable, the current glycogen level L* is present. 

Thus, a unique solution will not exist. As seen in the case presented in section III.4.2, 

a steady state is unachievable if F # = 0 and glycogen is in flux. A near homeostatic 

condition was achieved by determining initial conditions such that L° was initially 

zero; however, in all cases, L° did not remain zero as needed for a steady state. Thus, 

F # must attain a minimum value for steady state to exist. For each value of F# 

above this minimum, a unique set of values for the variables B#, I&', g#, and L* 

produce a steady state. It is possible that a maximum value of F* may also exist 

above which no steady state occurs. 
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Although biologically the metabolic variables follow the input rate, it is mathe­

matically easier to specify the glycogen level and then determine the input rate that 

leads to steady state. Thus, begin by choosing an L* which reduces equation (III.68) 

to 

erfc(7/LJ) erf(79L;) 

Substituting the equivalent expressions of I* and g~# from equations (III.69) and 

(III.70) into equation (III.72) and rearranging terms yields 

1 1 
- + - t a n h 

Bg-B* 
B*p* 1 1 

- + - t a n h 
Bn-B* 

E*, (111.73) 

where 

E* 
erfc(7/L

#) erf (7gL!) 

erfc(7/LJ) erf (%L#) 

and P* as previously defined (see equation (III.66)). Equation (III.73) is primarily a 

function of B*. Plotting the left-hand side versus the right-hand side, the intersection 

is the value of the glucose set point for the chosen L # . Once the glucose set point is 

determined, the corresponding insulin and glucagon set points are derived, and then 

the appropriate energy-balanced input, F # = M0 + PLB#I#, is calculated. Fig. 28 

displays the energy-balanced glucose set point, B*, associated with L* = 100,000, 

L* = 130,000, L* = 170,000, and L* = 200,000. Table 7 lists the corresponding 

values of B#, /* , g#, and F # for each chosen L # . Note that the lowest glycogen 

energy-balanced set point, L* = 10, 000, leads to the lowest glucose energy-balanced 

set point. In fact, as F # approaches the constant insulin-independent uptake rate 

Mo «=s .77 from above, the quantities L* and B* approach zero. Even with the 

glycogen level as low as L* = 10, 000, the energy-balanced glucose set point is still a 

reasonable B* « 80 and the corresponding input rate is F * « 0.8948. With L# = 

500, 000, the energy-balanced glucose set point is B* % 180 and the corresponding 

input rate is F* « 32.2286. 

The generalized Jacobi matrix defined in equation (III.57) is updated under 

energy-balanced conditions and is written as 

A(t) = 

"- (PM + fa) I* 

4 
- # 

Vpfal* 

-{PM + PL)B# 

-SI 

0 

VpfaB* 

a 

0 

-8, 
-VFa 

»t 
0 

0 

-VF 

(111.74) 

The four eigenvalues associated with each energy-balanced glycogen level of the coef­

ficient matrix defined in equation (III.74) are found in Table 8. In all cases, the real 
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Fig. 28 Energy-balanced glucose set point. The intersection of the right-hand and left-hand sides 
of equation (111.73) is the value of the energy balance glucose set point for Individual #2. 

Table 7 
energy-balanced set points for glucose, insulin, glucagon, and food input. 

L* 
10,000 
40,000 
70,000 
100,000 
130,000 
170,000 
200,000 
250,000 
300,000 
350,000 
400,000 
450,000 
500,000 

B* 
79.7869 
88.5183 
92.7823 
96.1164 
99.1435 
103.1201 
106.2392 
112.1016 
119.6106 
130.3374 
145.0219 
162.2358 
181.1467 

I* 
2.1036 
6.6066 
11.4165 
17.3304 
25.0193 
39.5368 
55.0898 
93.9629 
150.7375 
205.6461 
228.0876 
231.8265 
232.2187 

9* 
178.1203 
127.9522 
105.7581 
90.0458 
77.1807 
62.3766 
52.4006 
37.2332 
23.5456 
11.9224 
4.5755 
1.4652 
0.4165 

F* 
0.8948 
1.2066 
1.5614 
2.0150 
2.6243 
3.8183 
5.1462 
8.6468 
14.2531 
20.8145 
25.5068 
28.8968 
32.2286 
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Table 8 
Eigenvalues for four L# scenarios in energy balance. 

L# 
10,000 

40,000 

70,000 

100,000 

130,000 

170,000 

200,000 

250,000 

300,000 

350,000 

400,000 

450,000 

500,000 

Ai 
-0.0007238 

-0.000820 

-0.0007551 

-0.0008670 

-0.009963 

-0.001163 

-0.001255 

-0.001284 

-0.001096 

-0.0007081 

-0.0003368 

-0.0001323 

-0.00004491 

A2 
-0.1004 

-0.08621 

-0.08525 

-0.08458 

-0.08393 

-0.08308 

-0.08250 

-0.08175 

-0.08138 

-0.08162 

-0.08250 

-0.08193 

-0.08069 

A3,4 

-0.06169 ± 0.02349i 

-0.07153 ± 0.1035i 

-0.07447 ±0.1422i 

-0.07743 ±0.1732i 

-0.08082 ± 0.2020z 

-0.08666 ± 0.2404i 

-0.09258 ± 0.2692z 

-0.1069 ± 0.3093-i 
-0.1275 ±0.3052i 

-0.1471 ± 0.2111* 

-0.1544 ±0.09204i 

-0.1558 ±0.02732i 

-0.1429, -0.1701 

eigenvalue designated as Ai remains very small and the real eigenvalue designated 

as A2 remains nearly constant as the value of L # changes. The differences manifest 

in the complex eigenvalue pair designated as A3?4 where an exponentially-decaying, 

oscillatory response to an impulsive input is predictable from the non-zero imaginary 

part of the eigenvalues for all but the L# = 500, 000 case. The imaginary part in­

creases from a near-zero value when L* = 10, 000 to a maximum when L # = 250, 000 

and returns to zero between L* = 450, 000 and L* — 500,000. The decay rate de­

fined by the negative of the real part of eigenvalues A3]4 increases uniformly as L* 

increases. 

Although generalizations can be made upon examining the eigenvalues, it is im­

portant to study specific initial value problems. In Fig. 29, the solution to an impul­

sive forcing is shown for the original three-by-three system and five of the cases from 

Table 8. First, the modifications presented in this thesis were designed to mimic the 

results of the three-by-three system when the glycogen level is approximately 130,000 

mg. Clearly, this has been achieved. Second, the new model shows that a portion of 

the additional external glucose input is stored as extra glycogen as L\ is non-zero at 

the end of a one-hour period. The level of L\ eventually decays to zero on a time scale 

determined by the eigenvalue Ai - the eigenvalue that is missing in the original three-

by-three system. Third, Fig. 29 shows that significant storage as glycogen occurs for 

the cases L* — 40,000 and L# = 130,000 and that these are the only cases to show a 

significant decrease in glucagon (i.e., negative g\ resulting in reduced glycogenolysis) 
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in response to the increase in blood glucose. Of the cases presented in Fig. 29, the 

case L* = 300,000 stands out as having the quickest insulin response which leads to 

overcorrection of the blood glucose level. The rapid decay of the blood glucose level 

for L* = 400, 000 and L* = 500,000 is attributable to the very high base levels of 

insulin I* « 230 which is near the maximum level. In the case L* = 400, 000, a very 

weak response of the disturbance quantities I\ and g\ helps control the blood glucose 

level; whereas, there is almost no response of the disturbance quantities I\ and c?i 

for the case L* — 500,000. The blood glucose response of the latter case approaches 

zero near t = 30 and shows no overcorrection; whereas, the blood glucose response 

of the former case shows a very slight overcorrection. Note that L # = 500,000 is the 

only case to show no overcorrection and is the only case to have all real eigenvalues. 

The solution to distributed forcing for the original three-by-three system and five 

of the cases from Table 8 is shown in Fig. 30. The case with the smallest maximum 

glucose response (L* — 300,000) is the case with the largest imaginary part of the 

eigenvalues A3|4. This shows that to control the response to a smooth distributed 
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input, it is necessary to have overcorrection of the response to an impulsive input. 

When two cases have comparable imaginary parts of the eigenvalue, e.g., the cases 

L* = 40,000 and L* — 400,000,, then the decay rate governed by the real part of 

the eigenvalue determines the degree of control. There is slightly better control of 

the case L* = 400, 000 over the case L# = 500,000 even though the decay rates are 

comparable. Again, this is due to the slight overcorrection of the impulsive forcing 

in the case L* = 400,000 that is absent in the case L* = 500, 000. The value of L\ 

at the end of a two-hour period in response to the distributed input is comparable 

to the value of L\ at the end of a one-hour period in response to the impulsive input 

since the total additional glucose is the same for both scenarios. 
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CHAPTER IV 

FURTHER DISCUSSION 

This chapter will be divided into two parts: IV. 1 Variation of Model Parameters 

and IV.2 Mathematical Analysis of Fed States. In section IV. 1, a number of the 

parameters will be chosen and their respective values modified. An in depth look 

at how these changes effect the system modeled will follow. Following the change 

of parameters, various fed states are formally examined. The fed states of interest 

include the fasting state, an energy-balanced state, an excess-energy state, and the 

well-fed state. 

IV. 1 VARIATION OF MODEL PARAMETERS 

In chapter III, the responses of glucose, insulin, glucagon and glycogen in individuals 

subjected to a meal of constant glycemic index was examined. The meal was modeled 

as a time-dependent input of the form F(t) = 0.5Foc/~3t2e""t/'d and the values d = 15 

and F0 = 300 were chosen to represent a meal of moderate size and moderate glycemic 

index. Likewise, the investigation of system dynamics in chapter III was completed 

on individuals with a fixed insulin resistance, p. The following is an investigation 

into the effects generated by varying the model parameters d, p, and F0. 

IV. 1.1 Glycemic Index Effects 

The glycemic index of carbohydrate-based foods ranks each food according to its 

effect on the blood glucose level achieved in normal individuals after consumption of 

a standard amount. One definition of the glycemic index of a food is based on the 

area under the two-hour blood glucose response curve following its ingestion. This 

area is normalized by the area under the curve of the two-hour blood glucose response 

following the ingestion of a standard food, such as pure glucose or white bread 

(Jenkins et al., 1981, Foster-Powell et al., 2002). The glycemic index of the standard 

food is deemed to be 100. Foods with a low glycemic index produce relatively small 

increases in blood glucose and insulin levels. Foods with a high glycemic index 

produce relatively large increases in blood glucose and insulin levels. It is surmised 

that foods with a high glycemic index are rapidly broken down in the digestive tract 

allowing the glucose to quickly enter the blood. The following analysis shows that the 

speed in which the glucose enters the system upon ingestion of a meal does indeed 

effect the glycemic index. 

As defined in section III.2.3, a meal-like input is modeled as the measured release 
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of glucose into the system defined by the normalized input-rate function 

F(t) = 0.5Fod-H2e-t/d, 

where d is a measure of the time it takes for the glucose in the meal to enter in 

the blood stream and F0 represents the milligrams of glucose generated by a meal. 

As d —> 0, F(t) becomes the unit delta function multiplied by F0, and this scenario 

presumes to model a meal with the highest glycemic index. Increasing the value of d 

presumes to model the glucose input of meals with low glycemic indices. Displayed 

in Fig. 31 are the resulting differences in the model's response to repeated meals of 

differing values of d. Fig. 32 is an enlargement of the response to the second meal 

represented in Fig. 31. As surmised, the meal with the highest glycemic index (as 

measured by area under the curve) results from the smallest value of d (faster input), 

and the meal with the lowest glycemic index results from the largest value of d 

(slower input). This model predicts the return to the basal state is much faster for 
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high glycemic index foods, and thus, the insulin levels also return to basal state 

much faster for the high glycemic index foods. The model predicts that the area 

under the insulin curve is greater for lower glycemic index foods; however, it must be 

remembered that there is no feed-forward mechanism built into this model. Inclusion 

of such a feed-forward mechanism would greatly affect this result. The effect of the 

glycemic index on the overall glycogen level is determined to be negligible, but it 

is noted that the foods with low glycemic indices lead to slightly greater glycogen 

storage as the blood glucose remains above basal for a longer time period. 
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IV.1.2 Insulin Effectiveness 

One aspect of Type II diabetes is the body's inability to regulate the blood glucose 

concentration due to a decrease in insulin effectiveness through insulin resistance. 

The normal response of the pancreas to elevated glucose levels is to release insulin to 

stem the rising tide of glucose level by promoting the uptake and usage of glucose. If 

the body is insulin resistant, normal amounts of insulin are inadequate to produce a 
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normal insulin response by the muscle, fat and liver cells; thus, the pancreas produces 

additional insulin as a result of the continuing high glucose levels. Eventually, the 

pancreas cannot keep up with the body's requirement for insulin, and excess glucose 

builds up in the bloodstream resulting in high basal levels. Individuals with insulin 

resistance simultaneously have both elevated levels of blood glucose and elevated 

levels of insulin circulating in their blood. The cause of insulin resistance is not fully 

understood. It is thought to be due partly to genetic factors, including ethnicity, 

and partly to lifestyle, such as excessive caloric intake and inadequate exercise. This 

latter cause might be due to saturation of the glycogen storage sites in the liver 

and muscles. For most individuals, the body is able to keep pace with the need for 

extra insulin production, and the effects are subtle and complications are years in the 

making. Thus, individuals with insulin resistance often do not have any significant 

symptoms and do not realize that this process is taking place in their bodies. 

In this thesis, insulin resistance is modeled by decreasing the value of p. The 

model predicts that insulin resistance in liver cells reduces the rate of storage of 

glycogen at a fixed glucose, insulin, and glucagon level. However, insulin resistance 

leads to elevated levels of blood glucose and elevated levels of insulin circulating in 

the blood, which each increase the rate of storage of glycogen. Thus, the net effect 

of insulin resistance on the glycogen level is not obvious due to the nonlinear nature 

of the response. 

Three cases are illustrated and analyzed for the course of a 72-hour period where 

three meals are incorporated every 24 hours. In the first case, the base state is es­

tablished maintaining the parameter P at its normal value. This case has been thor­

oughly analyzed throughout the thesis and illustrated in section IV. 1.1 (see Fig. 31). 

The effects on the system by a decrease in P to one-half its value (0.5/3) and 

one-tenth its value (0.1/?) is illustrated in Fig. 33 and Fig. 34, respectively. 

With such large decreases in /?, the insulin is considerably less effective in control­

ling the glucose concentration which leads to extremely elevated postprandial glucose 

concentrations in the most resistant case. The insulin resistant glucose responses to 

the second meal (see Fig. 35) are to be compared to the normal case (see Fig. 32). Al­

though reasonable control of the postprandial glucose level was achieved in response 

to all meal types when the insulin response is normal, control is only achieved for 

meals with a low glycemic index when insulin resistance is present. Even though the 

maximum glucose concentrations are very high in the insulin resistant cases, a return 

to basal does occur in all cases. The return to basal level takes a longer time as the 

insulin resistance increases. Thus, the time duration for which the insulin is released 

at a maximum rate is extended for the scenarios where /? is decreased. 
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To analyze the effect of insulin resistance on glycogen storage, consider that the 

postprandial glucagon concentration tends towards zero under the conditions 

Pnew *»• P > 

B ~^> Bbasai. 

Thus, 

dL 
dt 

a r> jr, 
Hnew • D 1 

; erfc(7/L) 
erfc(7/L})' 

(IV. 1) 

The decrease in /? suggests there should be a decrease in the hepatic storage rate; 

however, due to the excessive glucose and insulin in the system, glucose continues to 

be stored as hepatic glycogen at a greater rate. It is determined that the maximum 

postprandial glycogen level is increased in comparison to the base-state glycogen 

level as is seen by comparing Fig. 34 to both Fig. 33 and Fig. 31. The greater the 

insulin resistance, the higher the average glycogen level will be. A similar analysis 
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will be needed in order to determine the effects of insulin resistance on the storage 

of glucose as muscle glycogen and as adipose tissue. 

IV.1.3 Increased Energy Input 

The prior analysis has used a constant magnitude for the meal size. It is natural to 

wonder how the system reacts to a significant change in the energy input as would 

occur in nature. To that end, Fig. 36 shows the results of doubling the magnitude 

of the meal size. The system reacts much as expected. First, the immediate rise in 

glucose upon ingestion of a meal is much greater in response to a meal of double the 

size. Second, the basal states, which are the near-constant values of glucose, insulin, 

and glucagon between meals, show a slight increase in glucose and insulin levels while 

a more significant decrease in the basal glucagon level is observed. Third, the body 

responds to the increased energy input by significantly changing the level of stored 

glycogen. 

With the additional energy input, one might expect the glycogen level to continue 

rising day-after-day. However, the increase in stored glycogen drives a corresponding 

increase in the net hepatic production rate between meals. This increased production 
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rate produces the slight adjustments to the basal state seen in Fig. 36. Under the 

increased-energy input scenario, more glycogen is converted during between-meal pe­

riods (especially the overnight period) which establishes a new balance and prevents 

the glycogen level from continually increasing. This balance is established within the 

first 72 hours and is maintained indefinitely. 

This analysis brings to light new questions as to the nature of hepatic glucose 

metabolism in Type II diabetics. It is now commonly thought that net hepatic 

glucose production is significantly increased in people with diabetes, and that this 

increased production is the reason for the increased basal blood glucose levels. This 

analysis indicates elevated prandial blood glucose and insulin levels associated with 

insulin resistance increase the glycogen-storage levels. The larger glycogen-storage 

level, in turn, drives an increase in the net postprandial hepatic glucose production 

which leads to increased basal blood glucose levels (especially in insulin resistant 

individuals). Of course, the glycogen storage level is also effected by the level of 

energy input; however, in the absence of insulin resistance, the resulting increase in 

the net hepatic glucose production only causes a small elevation in the basal blood 

glucose and insulin levels. For the insulin-resistant individual, the increased energy 
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input would exasperate the problem of elevated basal blood glucose and insulin levels 

and elevated glycogen storage. This analysis gives some clue to the answer of the 

classic question -"Which came first, the chicken or the egg?"- as it relates to the 

development of Type II diabetes. This simple model indicates that Type II diabetes 

results from the development of insulin resistance more than from overeating. 

IV.2 MATHEMATICAL ANALYSIS OF FED STATES 

IV.2.1 Well-Fed State 

The analysis contained in the previous section leads to an interesting question con­

cerning whether the increase net hepatic glucose production seen in diabetics is a 

cause or effect. By mathematically analyzing the case of a "very" well-fed individ­

ual, this model is seen to predict that the increase in hepatic production is mostly 

an effect and not a cause. 

The system of nonlinear ordinary differentiable equations relating concentrations 

of blood glucose, insulin, glucagon, and the absolute level of liver glycogen is 
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f - F W - M o - Z M * / - ^ , (,V.2) 

| = - W + ft{i + | te„h(^)}, (IV.3) 

dg r _ , A f1 • J *__!. fB9~B 

dt = sgg + QA- + -taxih[^:-—)}, (iv.4) 
dL 
— = V > ( ^ S / e r f c ( 7 / L ) - Q 5 e r f ( 7 g J L ) ) , (IV.5) 

= & where Br, = * < P I and a = , ,a . „ > . 
^ ^ erfc(7jLJ) erf(7sLJ) 

Now, consider the system under the condition of being "very" well fed over an 

extended period of time such that the glycogen storage level is very large. Thus, the 

system is studied subject to the initial conditions J5(0) = Bo, 1(0) = I0, g(0) = go, 

and L(0) = L0 along with the additional assumption LQ ~> 1. This last condition 

implies that erfc(7/L0) —> 0, erf(7gL0) —> 1, and L ~ Lo — Vpag0t. Hence, the 

glycogenolysis rate is near constant, but the rate remains unknown until the value 

of go is determined. The value of g0 is determined by requiring that the body is in 

homeostasis. The homeostasis assumption requires that B, I, and g remain near the 

initial values Bo, lo, and go which must satisfy the three-by-three relationship: 

0 = -Mo-PMBoIo + ocgo, (IV.6) 

0 = _*,/„+ Q.JI + 1 tanh ( i ^ ^ ^ j , (IV.7) 

0 = - ^ 0 + Q g { i + ^ t a n h ( ^ - ^ ) | . (IV.8) 

Substitution of IQ and go from equations (IV.7) and (IV.8), respectively, into equation 

(IV.6) results in a single equation in terms of Bo'. 

The intersection of the left-hand side (glucose uptake) and right-hand side (glucose 

synthesis) is the value of B0 which satisfies the three-by-three system presented in 

this section. Fig. 37 (top) illustrates this for a "normal" or base case and two different 

factors of insulin resistance: 0.5/5 and 0.1/?. Table 9 lists the corresponding well-fed 

values of Bo, lo, and #o for each specification of /?. As expected, the well-fed base 

case has a higher homeostatic glucose point than the original three-by-three system 

(B* = 90) since there is zero conversion of glucose into liver glycogen. The higher 

glucose level leads to a higher insulin level and a lower glucagon level. Imposing 



68 

-. 

-

Synthesis 

- - - H M 

C 5 3 M 

- - 0 13M 

1 1 I 1 

1 I I 

^ ^ * 

1 1 1 

1185 
B (mg/dl) 

F i g . 3 7 The intersection of glucose uptake and glucose synthesis (top) in the well-fed three-by-
three system for multiple levels of insulin resistance. 0 M (bottom left), 0.50 (bottom center), and 
0.10 (bottom right). 

Table 9 
Set points for glucose, insulin, and glucagon for specifications of 0 in the three-by-three 
well-fed system. 

PM 
OPM 

TOPM 

Bo 
102.5611 
106.2164 
118.6433 

h 
37.1514 
64.9622 
52.4685 

9o 
64.3144 
143.7902 
25.0031 

insulin resistance within the system means that the glucose uptake rate (left side of 

equation IV.2.1) is greatly reduced which leads to even higher homeostatic glucose 

points. 

If hepatic glycogen remains as the only fuel source for the system, then the 

maintenance of homeostasis of the system relies on an increased rate of glycogenolysis 

- here approximately 470 mg/min. Being the basal level of glucagon in the well-fed 

state is significantly lower than that in a normal state, it may appear surprising 

that the net hepatic production rate is actually increased. Recall that under the 

assumption L » 1 the term containing /?/, is nonexistent, and the action of glycogen 

is that of usage versus storage. With no glycogen being stored, there is no delimiting 

factor on glycogen usage besides that of the current level of glucagon. Therefore 
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comparing the normal net hepatic production rate versus the well-fed net hepatic 

production rate one sees 

ag* - pLB*P < ago. 

Deviation of the system from homeostasis is found by analyzing the system in 

the limit r = yg(Lo — Vpagot) —> oo. Upon examining the asymptotic expansion of 

the error function, 

erf (jgL) ~ 1 -
,-(i9Lf ( i 1 

V^ V ^ L 2(79L)5 + 

one finds the appropriate perturbed variables are 

B = Bo + e^B^r), 

I = Io + e-T2h(r), 

9 = 9o + e~T gi(r), 

L = - r + e ^ L ^ r ) . 

(IV.9) 

(IV. 10) 

(IV.ll) 

(IV.12) 

First, the glycogen equation is analyzed. Begin with the substitution L = — r + 

e~T L\(T) into the left-hand side of equation (IV.5) which yields 

dL dL dr 
dt dr dt 

= (-IgVpago) 
dL 

JT 
(-VFago)[l+yg^[e~T2L1(r) 

-2rL,<r) + £ = (-VFag0){ l + 7g 

Next, substitute the perturbed variables into the right-hand side of equation (IV.5), 

VF fa (B0 + e-T 25x(r)) (/„ + e~^h(r)) erfc f7/ ( - + ^L1(T))'\ 

-a yg0 + e~T2gi(r)j erf \r + 7ge" r2L1(r) 

which is expanded to yield 

Vpago + Vpago ^yT ^ + © ( ^ I I - « « . - » ( r ) 

+0 e~ZT , e -4 2T2 rzh" (IV. 13) 
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Matching terms from the left-hand and right-hand sides proportional to e T and 

neglecting terms on the order of e"2T and exp(—72r2 /72) gives 

-VpdgoJg -2 rL 1 ( r ) + *j± 
dr 

= Vrago-^f^-^ + o l ^ 

-Vpagi(r). (IV. 14) 

The other equations are analyzed by substituting equations (IV.9)-(IV.ll) into the 

first three governing equations (IV.2)-(IV.4) using the relationships 

tanh 
Bo + e-^B^-Bi 

ri 
= tanh 

Bp — Bi 

ri 

+ rf(^Ll^^We^ 
rj ri 

+ O (e-2^2) (IV.15) 

and 

tanh 
Bg-Bo-e-^B^r) 

= t a n h f ' ^ — * 

.^(BLZ^MII^ 

+ 0{e~2^) (IV.16) 

By neglecting terms smaller than e r and by using the equations defining BQ, lo, 

and g0, the perturbed system becomes 

dr 
2TB1(T) = 

1 

lgVFag0 

ago 
+ 

PMVOB^T) + Boh(r)) 

(l--± + o[l 
y/ir \T 2 r 3 

- ag\{r) 

dh(r) 

dr 
-2rh(r) = 

1 

lgVFag0 

Sih(r) 

- ^ s e c h 2 

2ri 

Bp — Bi 

ri 
Bi(r) 

(IV. 17) 

(IV.18) 
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d9l{T) 2r9l(r) = ' 
dr IgVpago <WM 

Q: + 22. Sech^ 
2r 

B„ — Bc\ 
Mr) 

< " " W 2rlAr) = ' 
dr 

VFagi(r) 
IgVpago 

Vpago (I 1 
yfn \T 2r3 + o 

Upon defining 

2ri 2r, 
5 sech2 / B« - B o , and /u 

(IV.19) 

(IV.20) 

IgVpago' 

equations (IV.17)-(IV.19) are rewritten in the form of a four-by-four system of ordi­

nary differential equations as 

dr 
2T 

\ Bi(r) 1 

h(r) 
9i(r) 

[ ^i(r) J 

= H 

' PMU 

-A 

c 
0 

+M 

) PMBO - a 0 

Si 0 0 

0 Jff 0 

0 VFa 0 _ 

[ ^i(r) 
Mr) 
3i (T) 

L M O 

r $ (* -£+<>(*) ) i 
0 

0 

L-^(^-^+o(^))J 

.(IV.21) 

The system is solved by introducing the infinite power series forms, 

Bi(r) = X > r " * - 1 ' (IV.22) 

oo 

h(r) = J > f c r - f c - \ (IV.23) 
fc=i 
oo 

9i(r) = X V " * " 1 ' (IV.24) 
fc=i 

oo 

fc=i 
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into the equation. The constant values are determined to be: 

fiago 
bi 

b2 

20T 
li2PMhc\go 

4 ^ ' 

[iago 
2v^F [ 4 

V- (p2
Mi2 - ApMBoio -C)-\ 

ai = 0, 

a2 

tfAago 

4v^ ' 

H2Aag0 

8 ^ 

ci = 0, 

/x2Cago 

4 ^ ' 

_ ^ 3 C a g o 

80F 
//VirQgo 

0-3 

C2 = 

C3 = 

(nPMh + Si), 

(/3jtf J0 + Sg) , 

di = 
2 ^ 

d2 = 0, 

d3 = 
/j?VFa 

2v^ 
^ 3 y F a C 

(/?M^O + Sg) 

(IV.26) 

(IV.27) 

(IV.28) 

(IV.29) 

(IV.30) 

(IV.31) 

(IV.32) 

(IV.33) 

(IV.34) 

(IV.35) 

(IV.36) 

(IV.37) 

The base state of the well-fed scenario represents the maximum rate of glycogenol­

ysis owing to the saturation of the hepatic store of glycogen. When this maximum 

rate is occurring, the base blood glucose and insulin concentrations are at their max­

imum values, and the base glucagon concentration is at its minimum value. As time 

proceeds, the base glycogen store which is given by the time like parameter r de­

creases from its very large (almost infinite) value L0. As r decreases, the rate of 

glycogenolysis also decreases (d\ > 0) and this directly leads to a slight decrease in 

the blood glucose concentration (b\ < 0). This analysis indicates the insulin and 

glucagon level then follow the change in blood glucose concentration as second order 

effects, since both ai = 0 and c\ — 0. In response to the slight decrease in the rate 

of glycogenolysis, insulin decreases from its maximum value (02 < 0) and glucagon 

increases from its minimum value (c2 > 0). 

IV.2 .2 Near-s tarved Sta te 

For this section, consider a system in contrast to the well-fed state. In this scenario, 

assume that a sufficiently long time period has lapsed without an external source of 
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Table 10 
Base-state points in the near-starved state for corresponding values of Gn. 

Gn 

0.20 

0.30 

0.40 

0.50 

Bo 
55.859 

73.541 

79.417 

82.723 

h 
0.0873 

0.9194 

2.0032 

3.0981 

3o 
294.772 

214.365 

180.301 

160.855 

glucose (i.e., F(t) = 0) such tha t the system approaches a near-starved state. Over 

an extended period of time in a real-world setting, death to the organism is likely 

without additional sources of glucose. A reintroduction of gluconeogenesis to the 

system is required to make the analysis plausible and worthy of note. Thus, the 

system with gluconeogenesis previously discussed in section III.3.5 is upgraded, and 

the result is given by 

d_B 

dt 

dl 

dt 

dg_ 

dt 

dL 

~dt 

= -M0- PMBI + Gnag - — — , 
Vp at 

_ _w + Q,{I + Ita»h(^)} 
= -Sgg + Qg I - + 2 t a n h 

= VF (pLBI erfc(7/L) - (1 - Gn) ag erf (7 f lL)) 

B 

Bg 

-Bi 

ri 
- B 

(IV.38) 

(IV.39) 

(IV.40) 

(IV.41) 

where 

PL = and a = a 
erfc(7/L}) erf (lgLg)' 

The parameter Gn nominally represents the percentage of total glucose production 

owing to gluconeogenesis in the basal state. Previous analysis indicated tha t liver 

glycogen slowly depletes during an extended fast and that the energy produced by 

gluconeogenesis goes, in part, to protecting the store of glycogen in the liver. Now, 

assume that the relatively low level of glycogen in the near-starved state has been 

quickly depleted, possibly by administration of a drug that blocks the conversion of 

glucose into glycogen in the liver. After removal of the drug, the conversion of glucose 

into glycogen in the liver would proceed at the maximum rate. Assuming that the 

concentrations of blood glucose, insulin and glucagon have quickly adjusted to this 

new state, it is feasible to study the initial value problem under the approximation 

that the initial glycogen level is Lo = 0 and that the leading order approximations 

erfc(7/L) « 1 and erf(7gL) « 0 are reasonable. The latter relation implies that the 
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body is totally reliant on gluconeogenesis to provide fuel for the system and fuel for 

the glycogen replacement. The former relation implies that the body is attempting 

to replenish the store of hepatic glycogen at the maximum rate. Under this scenario, 

the glycogen replenishes at the maximum possible rate, ^L = VFPLB0IO, while the 

system maintains a homeostatic state such that B, I, and g remain near the constant 

values Bo, lo, and g0. These values satisfy the three-by-three relationship: 

0 = -Mo-pMBoIo + Gnago-faBoI0, (IV.42) 

0 = -Sil0 + Qi{\ + 1 ta"h (B°rf1)}' (IV-43) 

0 = - ^ 0 + g 9 { ^ + ^ t a n h ( ^ - ^ ) } . (IV.44) 

Determination of the appropriate values of Bo, lo, and g0, begins by isolating I0 and 

go from equations (IV.43) and (IV.44) and substituting their respective results into 

equation (IV.42). The result is an equation whose sole variable is B0. Rewriting the 

equation to reflect the balance between glucose synthesis and glucose uptake yields 

aGnQg (1 , l_u(Bg-B0 

Sg \ 2 + 2 t a n h 

^ M 0 + ^ { I + l t a n h ( ^ ) } , (IV.45) 

where /? = PM + PL. An illustration of the effects of Gn on the base state level of 

glucose during this near-starved state is seen in Fig. 38 - a graph of the left-hand 

versus the right-hand sides of equation (IV.45). 

In the scenario presented, glucose generated by gluconeogenesis is both converted 

into hepatic glycogen in an attempt to replenish glycogen stores and added to the 

pool of circulating blood glucose in order to increase the concentration from the 

relatively low levels. Thus, an increase in Gn results in a larger value for glucose 

level. For further analysis of the recovery period, consider the initial value problem 

over a short time scale by introducing the following perturbation series 

B(t) = B0 + B2t
2 + ..., (IV.46) 

I(t) = /0 + /3t3 + . . . , (IV.47) 

9(t) = g0 + g3t
3 + ..., (IV.48) 

L(t) = 1^ + 1^ + ..., (IV.49) 

for t —> 0. By using the initial values from Table 10 where the derivatives of B, 

I and g have been initially set to zero, it is consistent to set B\ — 0, I\ = 0, and 
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g~i = 0 and to set the value of L\ to the maximum glycogen recovery rate. Additional 

examination of the system determines that I2 = 0 and g2 = 0. In order to find 

the leading correction terms (i.e. B2, I3, g3, and L2), the perturbation series is 

substituted into equation (IV.41) giving 

Lx + 2L2t + . . . 

= VF fa (Bo + B2t
2 + . . . ) (J0 + I3t

3 + ...) erfc (7 / (lxt + L2t
2 + . . . ) ) 

- (1 - Gn) a (g0 + g3t
3 + • ) erf (7g (Lit + L2t2 + . ) ) 1 . (IV.50) 
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By using the asymptotic expansion of the error function, the above equation is ex­

panded as 

Li + 2L2t + . . . 

-(l-Gn)a(g0 + ...)(^L1t + .., 

Matching like powers of t from the left-hand and right-hand sides yields 

U = VFpLBoh 

L2 — -= 
V7T 

faBohli + (1 - Gn)agoig Lv 

(IV.51) 

(IV.52) 

(IV.53) 

The process is repeated for equation (IV.38) producing the appropriate value of B2 

in the near-starved state as 

Bo = 
vAF 

faBohli + (1 - Gn)6tgolg u (IV.54) 

Likewise, substituting the perturbation series into equations (IV.39) and (IV.40), 

expanding appropriately, and matching like powers of t leads to the following expres­

sions for I3 and g3 : 

/3 = ^ I S ech 2 

677 
£Q - Bi 

ri 

Qg 1 2 1 Bi — B0 g3 = - - s e c h 

Bi, 

B2. 

(IV.55) 

(IV.56) 

Substituting the values of Bo, lo, go, and Lo found in Table 10 when Gn = 0.30 into 

the definitions of B2, I3, g3, L\, and L2 results in 

B2 

h 

93 

U 
u 

= 3.0705 x 10 -5, 

= 1.7496 x 10"7, 

= -5.1865 x 10 -6, 

= 6.2663, 

= -0.0040. 

The zero-order terms represent the body in the maximum recovery mode, and 
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the first non-zero terms represent a correction to this mode. Thus, L2 being negative 

means that glycogen is no longer being replenished at the maximum rate. Hence, a 

little more of the energy produced through gluconeogenesis is available to help the 

glucose concentration rebound from its initially low value. This results in B2 being 

positive. Although it appears that the value of B2 is very small, one must remember 

that time is measured in minutes, and that after one hour has passed, t2 = 3600. 

Thus, the model is predicting that the blood glucose remains nearly constant for 

an extended period (an hour or two) while the glycogen builds in the system at a 

near maximum rate. The values of I3 and g3 represent the correction of the insulin 

and glucagon concentrations to the maximum recovery mode. In maximum recovery, 

insulin is at its lowest level while glucagon is at its maximum level. Thus, as the 

recovery progresses, the insulin level is increasing (̂ 3 is positive), and the glucagon 

level is decreasing (g3 is negative). 

To further investigate, set Gn = 0.50 so that the body's internal glucose produc­

tion is increased relative to when Gn = 0.30. The corresponding values of B2, l3, g3, 

L\, and L2 are 

B2 = 7.2891 x lO -5, 

I3 = 1.3864 x 10"6, 

g3 = -1.2786 x 10~5, 

Li = 23.7518, 

L2 = -0.0095. 

With an increase in the value of Gn, the initial value of B0 is higher (see Table 10), 

and the system has more glucose available to be converted into hepatic glycogen. 

Hence, the increase in the maximum glycogen recovery rate as seen through the 

increase value of L\. Since the glycogen recovery is faster, the correction to the 

maximum rate is also larger. Thus, the value of L2 and B2 essentially double as a 

result of the increased rate of gluconeogenesis. 
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CHAPTER V 

CONCLUSION 

V . l THE MODEL 

The primary goal of this thesis is to create and validate a mathematical model for 

glucose metabolism that is explanatory but can eventually be used for simulation 

and data fitting. With the interaction of many different compounds and thousands 

of chemical reactions being of importance, a complete mathematical model is not yet 

realistic; therefore, an extensible model is proposed detailing the interaction of the 

major components: glucose, insulin, glucagon, and glycogen. 

The model proposed begins at the basic three-by-three dynamical system in­

troduced by Lasseigne and Adams which governs the interdependencies of glucose 

and the controlling counter-regulatory hormones insulin and glucagon. The model 

evolves to a four-by-four dynamical system that includes the system's dependency on 

the next most important component - glycogen. The various parts of the new model 

are analyzed and evaluated in detail. In contrast to past models presented in the 

scientific literature, the basal levels of blood glucose, insulin, and glucagon represent 

derivable quantities and do not appear as explicit parameters. The proposed model 

explains how these values are maintained in spite of the body's constant energy us­

age by drawing upon its stores of glycogen. The dependencies of basal values on 

other parameters (for example, the insulin sensitivity and the glucose threshold for 

glucagon secretion) provide important clues regarding the health of the individual. 

This model is the next step in the evolution of an extensible model. Currently, 

the model includes a mathematical description of the storage and release of hepatic 

glycogen but does not provide full details on the storage of glycogen in the muscle, 

the stores of substrates required for gluconeogenesis, and the stores of fat. Of the 

four storage compartments mentioned, liver glycogen is the fastest acting, has the 

greatest effect on the blood glucose concentration during the post-absorptive period, 

and is the first storage compartment to be depleted of energy. Thus, the first exten­

sion of the model accounts for these effects. In particular, the storage of a glucose 

load in the postprandial period and dispersion of stored glucose during the extended 

postprandial period is explained in order to understand how long-term glucose home­

ostasis is achieved in the presence of continual glucose usage, especially the usage by 

the central nervous system. 

Here, the model incorporates the interactions between the counter-regulatory 
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hormones insulin and glucagon, each dependent on the current blood glucose con­

centration, alongside the interdependency of these hormones on the regulation of 

the blood glucose concentration in the system coupled with and within the dynam­

ics of hepatic glycogen control. Parameter values are chosen to model a "healthy" 

individual. Though not demonstrated, these parameter values can also model an 

individual in a diabetic state. Initially, only the hepatic glycogen's availability to 

the system is modeled; however, to mimic the body's ability to produce glucose from 

other substrates, a constant rate term representing gluconeogenesis is introduced. 

The addition of this new term allows for glucose to temporarily remain at basal for 

an extended postprandial time period in spite of declining hepatic stores. The effect 

of this item is analyzed in section III.3.5. 

The model allows for investigating the effects of introducing food energy into the 

system without directly modeling the digestive process. The effects of varying the 

glycemic index of food are investigated in section IV. 1.1. This model predicts that 

the return to the basal state is much faster for high glycemic index foods, and thus, 

the insulin levels also return to basal state much faster for the high glycemic index 

foods. The effect of the glycemic index on the overall glycogen level is determined to 

be negligible, but it is noted that the foods with low glycemic indices lead to slightly 

greater glycogen storage as the blood glucose remains above basal for a longer time 

period. 

If the body is insulin resistant, normal amounts of insulin are inadequate to pro­

duce a normal insulin response by the muscle, fat and liver cells; thus, the pancreas 

produces additional insulin as a result of the continuing high glucose levels. Even­

tually, the pancreas cannot keep up with the body's requirement for insulin, and 

excess glucose builds up in the bloodstream resulting in high basal levels. Individu­

als with insulin resistance simultaneously have both elevated levels of blood glucose 

and elevated levels of insulin circulating in their blood. Insulin resistance is modeled 

by decreasing the value of the primary rate constant /? within the model. For the 

analysis presented here, this rate constant is decomposed into two components: one 

dependent mostly on the muscle's usage of glucose and another dependent on the 

conversion of the glucose to glycogen in the liver. The model predicts that insulin 

resistance in liver cells initially reduces the rate of storage of glycogen at a fixed glu­

cose, insulin, and glucagon level. However, insulin resistance leads to elevated levels 

of blood glucose and elevated levels of insulin circulating in the blood, which then 

increases the rate of storage of glycogen. Thus, the net effect of insulin resistance 

on the glycogen level is not obvious due to the nonlinear nature of the response. It 

is determined that the maximum postprandial glycogen level is increased in insulin 
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resistant individuals. 

Current thought is that net hepatic glucose production is significantly increased 

in people with diabetes, and that this increased production is the driving mech­

anism for the increased basal blood glucose levels. Analysis in section IV.1.3 in­

dicates elevated prandial blood glucose and insulin levels associated with insulin 

resistance increase the glycogen-storage levels. Larger glycogen-storage levels subse­

quently drive an increase in the net postprandial hepatic glucose production which 

then lead to increased basal blood glucose levels (especially in insulin resistant indi­

viduals). Long-term glycogen storage levels are also effected by the overall level of 

energy input; however, in the absence of insulin resistance, the resulting increase in 

the net hepatic glucose production only causes a small elevation in the basal blood 

glucose and insulin levels. For the insulin-resistant individual, the increased energy 

input exasperates the problem of elevated basal blood glucose and insulin levels and 

elevated glycogen storage. This simple model suggests that Type II diabetes results 

from the development of insulin resistance more than from overeating. 

Two extreme states related to food consumption are investigated in this thesis: a 

"well-fed" state, section IV.2.1, and a "near-starved" state, section IV.2.2. Base-state 

conditions of a well-fed state represent the maximum rate of glycogenolysis owing to 

the saturation of the hepatic store of glycogen. When the maximum rate is occurring, 

the base blood glucose and insulin concentrations are at their maximum values, and 

the base glucagon concentration is at its minimum value. As time proceeds, the 

abundant base glycogen store decreases, and thus, the rate of glycogenolysis also 

decreases directly leading to a slight decrease in the blood glucose concentration. 

This analysis indicates the insulin and glucagon level then follow the change in blood 

glucose concentration as second-order effects. Responses to the slight decrease in 

the rate of glycogenolysis include an insulin decrease from its maximum value and a 

glucagon increase from its minimum value. 

In contrast to well-fed state, conditions pertaining to the near-starved state as­

sume that a sufficiently long time period has lapsed without an external source of 

glucose, and then, the already low level of glycogen of this state is quickly depleted, 

perhaps by administration of a drug. These assumptions lead to an initial value 

problem where the initial blood glucose, insulin, and glucagon concentrations are 

determined by a balance assuming that gluconeogenesis is the only energy source. 

Gluconeogenesis provides fuel for the system and fuel for the glycogen replacement. 

The model predicts that the body attempts to replenish the store of hepatic glycogen 

at the maximum rate while maintaining an adequate blood glucose concentration. 



81 

The leading non-zero terms - from a perturbation analysis of the recovery period con­

ducted over a short time scale - represent the body in the maximum recovery mode, 

and the next non-zero terms represent a correction to this mode. For instance, the 

first correction in the series for the glycogen level shows that glycogen is no longer 

being replenished at the maximum rate and a little more of the energy produced 

through gluconeogenesis is available to help the glucose concentration rebound from 

its initial value. The solution indicates that the glycogen recovery remains near its 

maximum level for at least four to five hours. 

V.2 FUTURE WORK 

This chapter contains ideas for further research. The model presented in chapter 

III assumes that glucose only comes from two sources, the food input and glyco­

gen. As a fast progresses beyond a few hours, the body begins to produce glucose 

through other substrates through the process of gluconeogenesis an item briefly in­

troduced and discussed in section III.3.5 and then again used in section IV.2.2. The 

actions of gluconeogenesis beyond the constant rate presented in this thesis should, 

at a minimum, include a functional dependence on the current glucose, insulin, and 

glucagon concentrations. Furthermore, modeling quantifiable changes in the sub­

strates required for gluconeogenesis would better mimic the metabolic response to 

glucose incorporated by gluconeogenesis. Inclusion of these dependencies is the next 

logical step in the extension of the current model. 

Another topic of interest is what happens when the glycogen stores are at a max­

imum. Lipolysis, or the storage and usage of fats in the body, plays a significant role 

in the long-term metabolic process. The role that exercise has on glucose metabolism, 

both the short-term and long-term effects, can be investigated in the future. Finally, 

to make the system more closely mirror that of a human's system, one must consider 

modeling the system with multiple insulin compartments; for example, the insulin 

concentration differs in the liver, the plasma, the pancreas and the interstitial fluids. 

The multiple-compartment theory of insulin dynamics usually produces a time-delay 

between the changes in the concentration values of glucose, insulin, and glucagon. 

Obviously, the model proposed represents only the beginning steps in improving 

the understanding of blood glucose metabolism through mathematical modeling. It 

is my goal to continue to improve the system one step at a time. 
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