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ABSTRACT

DIFFUSION PROBLEMS IN WOUND HEALING
ANDA SCATTERING APPROACH TO
IMMUNE SYSTEM INTERACTIONS

Julia Suzanne Arnold

Old Dominion University, 2000
Director: Dr. John A. Adam

A theoretical model for the existence of a Critical Size Defect (CSD) in certain
animals is the focus of the majority of this dissertation. Adam [1] recently developed a
one-dimensional model of this phenomenon, and chapters I - V address the existence of
the CSD in a two-dimensional model and a three-dimensional model. The two-
dimensional (or 1-d circular) model is the more appropriate for a study of CSD’s. In
that model we assume a circular wound of uniform depth and develop a time-
independent form of the diffusion equation relevant to the study of the CSD
phenomenon. It transpires that the range of CSD sizes for a reasonable estimate of
parameter values is Imm-1cm. More realistic estimates await the appropriate
experimental data.

The remainder of this dissertation is devoted to two phenomenological models
describing the spread of cancer and the effects of the immune system on that spread. In
chapter VI, Tumor Immunity, a PDE similar to Fisher’s equation is analyzed in terms of
the equilibrium points and their linear stability and similarities are noted with the Spruce-
Budworm problem of Ludwig et al (and summarized by Strogatz). This chapter

concludes with a standard phase plane analysis of a traveling wave solution.
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Chapter VII, Tunneling, introduces a novel and hopefully useful way of looking at
cancer growth and the immune system. In the governing differential equation, the
cancer cell number represents the independent variable, while the dependent variable is
related to the probability of achieving that size cell number. (The square of the
dependent variable is the probability). By analogy with quantum mechanics, the idea is
introduced that the immune system (represented by a rectangular barrier of height V)
may not in all cases prevent the cancer from “penetrating” the barrier i.e. tunneling
through. The governing differential equation and boundary conditions represent a
classical eigenvalue problem which may be thought of here as a “semi-classical” version
of the time-independent Schrédinger equation. Examples are provided which show
considerable variation in the effectiveness of the “immune barrier” towards limiting the

numerical growth of cancer cells.
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CHAPTER I

INTRODUCTION

Lecomte DuNoiiy [6] in his book Biological Time , written in 1936, wrote
these words,

“The difference between the biological method of approach and
the mathematical method borrowed from the physical sciences is ...the
multiplicity of the factors and ... the complexity of the problem. The
solution had not yet been found, because those who had studied it were
too familiar with the details of the phenomenon. Knowing a great many
physiological factors but ignoring their relative influence, they did not dare
eliminate them, and did not know how to take them into account. They
were paralysed by their knowledge.

Like the botanist who could not see the forest because of the trees,
they could only consider the facts as a function of microscopic biological
elements with which they were familiar. My ignorance of these elements
freed me from the chains which fettered them. Not knowing how to
distinguish the different species, I examined the forest from a distance, as
a whole and quantitatively as I had been taught to do for a physical
phenomenon.”

DuNoiiy is saying that sometimes it is necessary to strip the physical situation and
consider a mathematically manageable set of parameters and begin the investigation from
a distance. The following information gleaned from books and papers represents the

basic information from which the following mathematical model was formulated.

THE CRITICAL SIZE DEFECT
Part of the care a neurosurgeon or dental surgeon might give a patient is the

treatment of bone wounds. For example, a neurosurgeon removes a portion of the skull

The model journal used is Mathematical And Computer Modelling.
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to expose the brain. When his operation on the brain is finished, he must decide to cover
the cavity with a plate or reposition the excised bone, suture it in the hope that it grows
back together. An oral surgeon removes a portion of bone while excising a cancerous
tumor in the mandible or jaw bone. Is the cavity too large for the bone to regenerate
itself? Will he need to provide an alternative treatment to ensure that the bone will heal
properly? When teeth are removed from the jaw bone, will the socket fill in with new
bone? These are questions that surgeons must ask themselves routinely. Bone wounds,
such as breaks, or gouges may at times heal naturally and at other times may not heal
without medical treatment. In Winet [30], a critical size defect is defined as the wound
size for which the diameter is too large for ossification (the formation of rigid bone),
(although the wound is not necessarily circular). This means that the calcification of
new bone ceases before reaching the opposite side of the wound, thus leaving spongy
bone called cancellous bone in the center of the wound. The objective of this paper is to
provide a mathematical basis for the existence of this critical size defect or CSD in bone.

In Adam [1], a one dimensional model was used to show this existence. This paper
extends his work into both a two-dimensional and three-dimensional setting.

The time development of the wound is not addressed here; only the conditions
under which tissue regeneration occurs. The primary objective is to find in each case a
critical radius beyond which no healing occurs-the definition of a CSD.
In the two-dimensional and three-dimensional setting, Model I corresponds to a circular
cylinder, and a sphere respectively in which bone has been removed and no bone remains

in the vacated area. In the two-dimensional problem, Model II examines the case where
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a central core of bone remains in the excavated area. (This cannot occur in the three-
dimensional setting.)

In each model we assume a thin ring of width § which influences the mitotic
activity up to the wound edge. In the models, C(r,t) represents the concentration of a
generic growth stimulator, R being the radius of the wound and t being time, both in

appropriate units. For Model I, R< r<, and for Model I 0< r<w.

THE NORMAL GROWTH PROCESS IN BONE

From Bloom & Fawcett [3] we find that bone is composed of many different
types of cells. In order for a bone to grow from “infant size” to “adult size” a process of
growth and resorption must occur. The exterior of a bone is covered with a connective
tissue membrane called the periosteum. The interior of the bone is made up of a cellular
membrane called the endosteum. In the deep layer of periosteum cells are cells called
osteogenic cells. During growth it is these osteogenic cells which proliferate giving rise
to cells called osteoblasts. A key factor in the bone cell development are the growth
factors secreted by these osteoblasts. Some of the growth factors secreted are named
bone morphogenetic protein or BMP. ( There exist also BMP 2, and BMP 7). In
addition there is a transforming growth factor beta called TGF-f, a fibroblastic growth
factor beta FGF-f3, and others. According to Bennett et al [4], growth factors may act
on the producer cell, adjacent cells, or distant cells. When activated these growth factors
can stimulate a number of processes including wound healing. The osteoblast cells

secrete the intercellular substance of bone, thus adding new bone to the surface and thus
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increasing the size or width of the bone. In the endosteum the osteogenic cells produce
cells called osteoclasts which have the job of bone resorption. This in turn enlarges the
inner shaft creating a larger bone marrow cavity. Since this procedure is part of the
growth procedure for new born animals until they reach adulthood where this process
then ceases, it is easy to understand why wound healing in bone in young animals may be
more successful than in full sized adult animals. Most of the experimental research on
the critical size defect was performed on the skull or calvaria of animals. We will now

examine how bone wounds heal.

THE NORMAL WOUND HEALING PROCESS

When a bone wound occurs a temporary blood clot seals off damaged blood
vessels. A fibrous protein (BMP or other growth factors) develops within the bone near
the wound edge. This fibrous substance is referred to as collagen. As the collagen ages
the osteoblasts start to build a spongy bone (cancellous bone) on the wound edge until it
links the gap. Gradually denser, harder bone replaces the cancellous bone; hard bone is
called cortical bone. In some cases the gap is too large and remains filled with a fibrous

connective tissue which fails to calcify [3].

THE TIME FACTOR FOR HEALING
EBI Medical Systems and the Mayo Clinic Health Letter describe the time
interval for bone healing [7,10] as follows. While the healing process begins

immediately, the complete healing of bone may take from two months to two years.
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(Although according to Hollinger and Kleinschmidt [16] if a bone defect is not
regenerated within one year it is unlikely that it will occur.) During the first few days
after a wound has occurred, the spongy bone forms on the wound edge. Within seven to
ten days, the gap between the new bone is invaded by embryonic tissue which forms a
bridge of connective tissue, called fibrocartilage. This begins at the wound edge and
moves toward the center. This generally occurs three to four weeks after the initial
wound. In the sixth to eighth week, the process of bone resorption occurs, where the
vascular system penetrates the fibrocartilage, breaks it down and absorbs it while
replacing the area with fiber bone. The last phase is the change from fiber bone to a
rigid bone.

The time-development of the healing process is not taken into consideration in
the mathematical models that follow because the timescales justify the assumption of

diffusive equilibrium in these models (which is discussed in Chapter II).
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CHAPTER I

THE MATHEMATICAL MODELS

THE ONE-DIMENSIONAL MODEL
Adam {1] investigated the CSD phenonenon in a one-dimensional setting. The
first model corresponded to bone removed from an infinite plane, in which only a thin

band of tissue at the wound edges takes part in bone regeneration. The edges are

represented by x = i% . The region [0, %] represents the right half of the wound

where no tissue or bone remains, and [—g—, §+6] represents the layer generating growth

factor (GF). In a second model in [1], it is assumed some bone remains in the center but
is not a source of GF, it merely serves as a passive vehicle through which GF freely
diffuses. Simple though these models were, they did provide some upper bounds for the

size (width) of the CSD.

THE TWO-DIMENSIONAL MODEL

According to the work of Arnold and Adam [2] model 1 assumes a circular
wound of uniform depth in which no bone remains in the wound interior. Model IT
assumes some bone remains in the wound center but is not a source of growth factors,

as indicated above, and in [1]; it is essentially bone in which the GF diffuses.
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BASIC CONFIGURATIONS: MODEL I

We position the center of the circular wound at the origin; a disk of radius R
being removed . As indicated earlier we suppose that a generic "growth factor”" (GF) is
produced as a result of the trauma to the system, and it is the distribution of this growth
factor that determines whether or not wound healing occurs in this model.

The differential equation describing the space and time distribution of the growth

factor concentration C(r,t) is

a—c—Ri(r-qg)+kC=PS(r) (1)

ot rdr\ or
where D, A and P are respectively the diffusion coefficient for the GF in the tissue, the
decay or depletion rate of the GF, and the production rate of GF by the enhanced
mitotically active cells in the vicinity of the wound’s edge. These are assumed to be
constant in both models. Furthermore, S(r) is the source term describing the distribution
of GF production throughout the active tissue. In both models this is assumed to be
uniform; thus
St)=1forR<r<R+9§
S(r) =0 elsewhere
0 being the width of the active layer producing GF.
In equation (1), the first term represents the time rate of change of GF
concentration, the second term describes the spatial change due to diffusion of GF, and

the third term is the depletion or decay rate of change of GF as it interacts with the
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system as a whole, and is changed or removed. One important assumption made is that
of diffusive equilibrium. Basically, this means that the process of readjustment of the GF
concentration as the wound heals is so fast (when compared with the typical wound-
healing time) that, to a first approximation, the distribution of GF may be considered

independent of time [1] . A typical diffusion time, from dimensional analysis is

Tzr—
D

where r is a typical wound radius. The value D depends on the particular GF (the higher
the molecular weight, the smaller is D). Sherratt and Murray [19,20] carried out a best

fit analysis from data on epidermal wound healing and estimated that for epidermal GF,
D=31x107cm?sec™ . Diffusion processes alone will not suffice in bone to

provide nourishment for the osteocytes, but capillaries are never far away: the
osteocytes are arranged around central capillaries in concentric layers, which form
spindle-shaped units known as osteons. Thus pure diffusion is facilitated by the efficient
capillary transport system, and we might expect that the effective diffusion coefficient is
enhanced compared with the standard value used in [1] (at least for growth factors of
the same molecular weight). It is difficult to be more precise at this stage, but again, for
the purposes of illustration, we suppose that, compared with the values used in [1], D is
increased by a factor of ten. Thus we take D =3.1 x10°cm?sec”. Using the first value
for D and r values of 1ym (10**cm), 10um, Imm, and 1cm we find typical diffusion
times of .03 sec, 3.2 sec, 8.9 hrs, and approximately 37 days. Clearly the approximation

is less well justified for GF in wound sizes of order one centimeter. Using the second
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value for D and r values of 1um (10*cm), 10um, 1mm, and 1cm we find typical
diffusion times of .003 sec, .32 sec, .9 hrs, and approximately 3.7 days. Over this

timescale, the diffusive approximation is certainly a very good one for GF distributions.

. . 0C . .
Under these circumstances, we write i 0 in equation (1).

MODEL I: EQUATIONS AND SOLUTIONS

A
Ifa®= D then equation (1) can be written as:

dC(r) , 14C(r) _
dr* r dr

s -P
a“C(r)= —D—S(r) : (2)

The boundary conditions are:

dc(r)
dr

. C(r) and are both continuous at R + 0

. limC(r)=0

r-»wo

dC(r)
dr

=0 atr=R.

The first two conditions are obvious requirements. The third condition implies
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10

that there is no flux (number of molecules crossing unit area in unit time) at the wound
edge. The second model will modify this restriction as we will permit tissue in the
wound area capable of dispersing GF.

In terms of the dimensionless variable x = ar, equation (2) becomes

o dzch) \x dC(x) -P x? S( x)

A T ®)

The solutions to the homogeneous version of (3) are modified Bessel functions of order

zero. After some algebra, the solution to the nonhomogeneous equation can be written,

in terms of the original variables for R< r< R+ J as

_ -PK(a(R+ 3))
B ABs

-PK,(a(R+38)) I,(aR)
ABs K,(aR)

C(n) [(ar)+ K,(ar)+ % 4

and forr > R+ 9 as

-PK,(@(R+8)) I,@R) PI,(a(R+3))
B,  K@R)  ip,

C(r) = Ko(ar) &)

where B, = (IK, + K,I e (R+3)) .

For the generic parameter values P, A = 1, R = 2, and ad = .5 a typical graph of
C(r) is shown in Figure 1.

Using equation (4), we apply the criterion that
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11

CR)>0
where O represents a threshold value for which wound healing will occur for values of r

satisfying this condition. The resulting equation is:

P| K,(a(R+35)) I,(@R)K (aR)
- {1- 5, I.(@R)+ K (aR) >8 (6)
Using standard identities for the Wronskian [19], inequality 6 simplifies to
R+ad)K,(aR+ad AD
(aR+ad)K,(aR+a )sl——- o
aRK,(aR) P
If aR =y and ad = ¢, then inequality (7) can be written as
(y+e)K,(y+¢) A8 1
Qe,y)= LI My L ®)

yK,(y) B P n

P
where n = TR Holding y fixed, Q(e,y) can be thought of as a function of € = &8, from
which we can then find a lower bound &, (8 critical and also €, for € critical) for
the width 6 above which healing can occur. It is not possible to obtain an explicit
expression for €_ in general, but if € is small compared with y, then we may use first

order Taylor polynomials to simplify the Bessel functions. Thus to first order in €
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0.35 T T T

0.3

0.25

0.2
C(r)
Cl(rl)

0.15

0.1

0.05

Figure 1: The growth factor concentration C(r) for Model I. For illustrative purposes P
andA=1,aR=2and «ad=5. C(r)is the dotted graph representing the

8- region, and C1(r1), the solid graph, represents r >R + 8.
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Ki(y+¢) = K,(y)+eKi(y)

where K(y) = ~K,(y) - 23
whence
[K,(v)+ e(—Ko(v) '(Y)J £YK+(;))5 1-%
which simplifies to:
K, (Y)
E2¢, = 9
nKo(Y) ®
ie.
K, (Y)
§26_ =
anKo(y)

The graph of ad_ is given in Figure 2. (See Appendix A for more information.)

With y fixed, Q(€,y) becomes a function of €. Call this function Q,(€). If €,

satisfies Q (e, ) < 1~&, then any € > ¢ satisfies Q,(¢) < 1- L
n
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Figure 2: The graph of the width function € (y) = @d.(y), defined by inequality (9). In

this graph n = 2.
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This follows despite the fact that K,(y + €) is monotone decreasing in €, while (y + €) is
monotone increasing in €. The derivative of (y + € )K((y + € ) is

-(y + € )Ky(y + €), hence (y + €)K,(y + €) is monotone decreasing in €. Thus

Q,(e) 2 Q,(€) since e, < e . Hence Q,(€) < Q,(€) < |- -:—1 :

Large values of n denote an active production rate which would certainly be
conducive to healing. Alternatively, small values of A or 6 relative to P also imply large
values of n. In Figure 3 the graph of Q,(€) from equation (8) is illustrated for the
parameter valuesy =2 and n = 2.

A comparison of the values from the graph of equation (8) referred to as (ad.),
(with no approximation except rounding) and the values from equation (9) referred to as
ad, are given in Table 1.

Using this value of 8, a representative for R_ - values can be sought. Using

equation (8), we can write

(y+e)K(yre) 1

= < 10
Q,(y) yK,(y) n (10)
by substituting nII<(l ((}3) for € in equation (10) and simplifying the result, Q,(y) becomes
_ [ nyKo () + Ki(y) K'(”} 1
Q)= ( yKo (YK, (¥) )K‘(y* K, < th
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Figure 3: The graph of the function Q,(€) defined by equation (8) withy =2. The
parameter value is n = 2. The intersection of the dotted line with the graph of
Q, defines the point which represents the minimum thickness of GF activity,

below which no healing can occur for € less than this amount.
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the graph of which is given in Figure 4. The parameter value used for Figure 4 is
n=15.

Solving for y from inequality (11) is not feasible, analytically, at least. However,
observe that the graph of Q,(y) in Figure 4 resembles that of a rational function. Thus
by finding a rational function which approximates Q,(y), it should be possible to
approximate R_ by an explicit formula. A rational function which approximates Q,(y)

for various parameter values is

F(y)=b-=
y

for suitable a, and b, both positive. Solving for y, the formula for aR_ =y, is

. 048
In Figure 5, forn=1.5 F(y)=523- —y—

and y =.253 while graphical methods give y =.252. Some additional comparisons are
given in Table 2.

An interesting observation is that using the minimum value for ad_ will always
produce a CSD because of the dependence on n in the equation. (See equation (11)).

For n very large, e.g. n = 200, the graph of equation (11) is shown in Figure 6.

K
If we choose an ad > ad_ such as Bl&for B >1, it is possible to create graphs

nK,(y)
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Table 1. For various values of n and ¢R, a comparison is made between the

approximation for the ¢d_ region and the values found on the graph of

Q,(ad)).

n 1-1/n oR ad, (@d), (@d,), - ad,
1.5 33333 1 95 1.39 44
1.5 33333 |3 77 1.22 45
1.5 33333 |5 73 I.15 42
1.5 33333 |7 71 1.16 45
1.5 .33333 10 .70 1.16 46
1.5 33333 |20 .68 1.13 45
5.0 8 1 .29 307 017
5.0 .8 3 23 253 023
5.0 8 5 22 244 .024
5.0 8 7 21 235 025
5.0 8 10 21 235 025
50 8 20 20 226 .026
8.0 875 1 .18 190 .01
8.0 875 3 14 154 014
8.0 875 5 14 145 .001
8.0 875 7 13 145 015
8.0 875 10 13 .140 .01
8.0 .875 20 13 137 .007
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Figure 4: The graph of Q,(y) where the approximation € (y) replaces € in Q(¢,y). For

this graphn=1.5.
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Figure 5: The graph of Figure 4 and its rational approximation F(y). For this graph

n=15 a=.048, and b= .523.
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Table 2. For various values of n, @R values are found.

n - 1 («R)), R, a
n
1.1 .091 13 155 .050 413
1.5 .333 252 253 .048 523
3.0 .667 40 480 .029 727
5.0 .800 45 487 014 829
8.0 .875 .54 572 010 .892
10 .900 .54 539 .008 915
20 .950 .59 670 .002 952
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which show no CSD is possible. For example;