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ABSTRACT 

A SOLUTION OF THE HEAT EQUATION WITH THE 

DISCONTINUOUS GALERKIN METHOD USING A 

MULTILEVEL CALCULATION METHOD THAT 

UTILIZES A MULTIRESOLUTION WAVELET BASIS 

Robert Gregory Brown 

Old Dominion University, 2010 

Director: Dr. Richard Noren 

A numerical method to solve the parabolic problem is developed that utilizes the Dis

continuous Galerkin Method for space and time discretization. A multilevel method 

is employed in the space variable. It is shown that use of this process yields the 

same level of accuracy as the standard Discontinuous Galerkin Method for the heat 

equation, but with cheaper computational cost. The results are demonstrated using 

a standard one-dimensional homogeneous heat problem. 
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CHAPTER I 

INTRODUCTION 

Many excellent discrete schemes for the parabolic problem, such as the standard 

Galerkin method, are derived by first discretizing in the spatial variable using the 

finite element method, which produces a system of ordinary differential equations 

with respect to the time variable, and then applying one of the many finite difference 

time stepping methods to this system, resulting in a fully discrete system and the 

resulting solution. One characteristic of these schemes is that it can be cumbersome 

to alter the size of the time steps in the middle of the process; also there may be 

stability issues as well, depending on the choice of finite difference method used for 

the time discretization. A method to circumvent these difficulties is to apply the 

Galerkin finite element method in both spatial and time variables, and one such 

scheme that utilizes this strategy is known as the Discontinuous Galerkin Method. 

This method treats the space and time variables in a similar way, and allows the 

spatial grid mesh as well as the time steps to be varied as necessary. Such a scheme 

is advantageous for parabolic problems as it allows small time steps in transients 

and then larger time steps as the exact solution becomes smoother. This will allow 

more efficient computation. The approximate solution sought will be a piecewise 

polynomial in the space variable which will not be required to be continuous at the 

nodes of the time partition. 

The Discontinuous Galerkin Method was introduced in 1981 for ordinary differ

ential equations by M. Delfour, W. Hager, and F. Trochu [8]. Application to partial 

differential equations appeared in works such as [9] by P. Jamet. Major contributors 

in the area of parabolic problems are Kenneth Eriksson and Claes Johnson, whose 

works are too numerous to mention; see [7] as a good example of their work. Eriks

son and Johnson are especially noteworthy as one of the error estimates found in [7] 

served as motivation for the essential error estimates of this thesis. Another major 

contributor is Vidar Thomee, see [4] and references therein. This source provides not 

only an extremely comprehensive analysis of the Discontinuous Galerkin Method, 

but a very complete description of parabolic problem solutions by Galerkin finite 

element methods. It provided much of the background material for this thesis. Two 

additional works that also deserve mention are [11] by Beatrice Riviare and [12] by 

Jan S. Hesthaven and Tim Warburton. 
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Since the Discontinuous Galerkin Method requires solution of large scale linear 

systems, a multilevel augmentation method will provide a way to ease the computa

tional cost. This method is based on direct sum decompositions of the range space 

of the operator and the solution space of the operator equation, along with a ma

trix splitting scheme. The net effect will be to reduce the task of solving a large 

linear system to that of solving several linear systems of smaller sizes, thus cutting 

computation costs, and it is demonstrated in this thesis. The papers [1], [2], and [3] 

by Zhongying Chen, Bin Wu, Yuesheng Xu, and Charles Micchelli were essential in 

this area, providing much of the framework for the multilevel method utilized in this 

thesis. 

However, for the multilevel method to function correctly, we need a good, mul-

tiresolutional basis, and that is the role of the multiscale orthonormal wavelet bases 

in Sobolev spaces. Further, these bases will produce sparse matrices in the imple

mentations. Again, the various papers such as [2], and [3] by Zhongying Chen, Bin 

Wu, and Yuesheng Xu, provide excellent analysis as well as efficient notation for the 

kind of wavelet bases used in this work. 

This thesis provides a numerical scheme for approximating the solution of the 

parabolic problem using a coarse grid, rather than a fine grid, at a lower computa

tional cost, while at the same time preserving the accuracy of the traditional fine 

grid, higher cost Discontinuous Galerkin Method. It does this by combining the Dis

continuous Galerkin Method with Multilevel Augmentation Method to produce what 

in effect is an approximate solution to the approximate solution of the problem. We 

prove the convergence rate of the multilevel Discontinuous Galerkin Method solution 

is exactly the same as the conventional Discontinuous Galerkin Method solution. 

We also prove the computational costs are considerably less with this method. Fi

nally, we demonstrate these features with several numerical examples. While these 

demonstrations are performed using simple one-dimensional problems, the methods 

introduced in this paper should be able to be generalized in the future to higher 

dimensions through the use of higher dimensional wavelet bases, and thus become 

applicable to regions that are thin bodies, such as the wing panels of an airplane, or 

the hull panels of a spacecraft. 

As many actual applications present solutions with weak singularities, special 

time and spatial discretization schemes are needed to obtain good numerical solu

tions, and various contributors to this area of study include [6] by Hideaki Kaneko, 
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Kim S. Bey, and Gene J. W. Hou, [7] by Kenneth Eriksson, and Claes Johnson, and 

[10] by Dominik Schotzau and Christoph Schwab. The capacity of the Discontinu

ous Galerkin Method to alter time and space grid resolutions in midstream is quite 

beneficial here, allowing us to use fine grids during transients, and coarse grids when 

the solutions have smoothed, altering them as needed from time step to time step. 

We introduce a new error estimate which is essentially a multilevel version of the 

time step and grid mesh sizing error estimate detailed by Kaneko, Bey, and Hou in 

[6]. It shows the accuracy of the error estimate of [6] remains the same when the 

multilevel method is used to enhance the computational efficiency. As before, we 

provide numerical demonstrations of these results. 

This paper is organized into seven parts, including Chapter I, the introduction. 

In Chapter II, the parabolic problem and the Discontinuous Galerkin Method are 

developed, along with a multilevel augmentation method. In conjunction with the 

multilevel method, a multiscale orthonomal wavelet basis is discussed, and the specific 

basis used in the implementations is constructed. In Chapter III, these various 

notions are then blended together as one method, and applied to the basic parabolic 

problem. New convergence results and error estimates, refined and enhanced from 

existing multilevel convergence and error results, are then developed in Chapter IV. 

Further, the main result of Chapter IV, Theorem 4.2, is shown to apply under two 

different sets of hypotheses. One set, based on the results of [3] by Chen, Wu, and 

Xu, requires the operator equation to have a uniformly bounded inverse. The other 

set of hypotheses, introduced in this thesis, allows the norm of the same inverse to 

go to infinity, which is an intractable situation for the requirements of [3]. Thus, to 

provide versatility to the method developed here as well as extend the result of [3], we 

prove both versions of the theorem. Special time and spatial discretizations from [6], 

designed to treat difficult initial conditions, are described in Chapter V, along with 

a new error estimate in the form of Theorem 5.5. As before, we show this new result 

applies under the same two different sets of hypotheses used to prove Theorem 4.2. 

These concepts are implemented in Chapter VI, where various numerical experiments 

are outlined and the results tabulated. Finally, some concluding remarks, potential 

generalizations and possible future projects are discussed in Chapter VII. 
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CHAPTER II 

PRELIMINARIES 

II. 1 THE PARABOLIC PROBLEM 

We consider solving the standard parabolic problem of finding u such that 

ut(x,t) - Au(x,t) = f(x,t), x€Q, t>0, (1) 

u{x,t)=0, xedtt, t>0, 

u(x,0) — UQ(X), x £ Q, 

where f2 is a domain in R with smooth boundary dQ, ut denotes du/dt, A := 

5Zf=i d2/dx2 is the Laplacian, and the functions / and UQ are given data. For 

the spatial discretization of this problem with respect to the space variable x := 

(x\,X2, • • •, Xd), let S be the class of all finite element discretizations (h, T, S) satis

fying the following conditions: 

1. h is a positive function in C^fi) such that |V/i(x)| < A for all x £ £l and for 

some A > 0. 

2. T = {Q,K} is a set of closed triangular subdomains of Q defining a partition of 

fl into triangular elements QK of diameter hx such that 

cih2
K< f dx (2) 

for all Q;<- G T, and associated with the function h through 

c2hK < h{x) < hK (3) 

for all x 6 QK, &K £ T where c\ > 0, c2 > 0 are positive constants. 

3. 5 is the set of all continuous functions on Q, which are polynomials of order r 

in x for x € QK for each Q# £ T and vanish on 80,. 

We assume the triangulation is such that the intersection of any two closed tri

angular elements is either empty, a common face, or a common vertex of the two. 

Next, we discuss the Discontinuous Galerkin Method, which will be used for the 

time discretization of (1). 
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II.2 THE DISCONTINUOUS GALERKIN METHOD 

To introduce the Discontinuous Galerkin Method we utilize much of the discussion 

in [4]. First, we will write the parabolic problem (1) in its weak form by multiplying 

both sides of (1) by a function w G HQ(Q,), that is, the functions w with Vu> = grad w 

in Z/2(fi)
 a n d which vanish on 9Q, and integrate over Q, to obtain 

(ut, w) - (Au, w) = (f, w), t>0, 

where 

(u,w) := / uw dx. 
Jn 

Using Green's Formula, given by 

/ (Au)w dx = (Vu)w • n ds — / (Vu • Vw) dx, 
Jo. Jan Jn 

with J9Q(VU)W • n ds = 0 due to the specified boundary conditions, we obtain the 

weak form 

(ut,iu) + (Vu,Viu) = (/,iu) forw€H^(tt), 

where 

i i ! ~[ OXj OXj 

Next we integrate both sides of the last equation with respect to time t over a 

fixed interval [0, t^] to obtain the equation 

[N{(uuw) + {Vu,Vw)}dt= fN(f,w)dt. 
Jo Jo 

Note that the exact solution of the parabolic problem satisfies this last equation as 

well. Now, integration of the first term of the last equation by parts gives us 

rtN r*N 
/ {-(u, u;t) + (Vu, Vw)} dt = («o, ty(0)) + / (/, w) dt, (4) 
Jo Jo 

where the assumption w(tpf) = 0 is made so the term (uN,w(t]y)) in the integration 

by parts will vanish, per the procedure in [4], due to the eventual decay of u(x, t) as 

t —> oo. We discretize in time by partitioning the time interval in a not necessarily 

uniform fashion as 

0 = t0 < h < t2 < • • • < tN 

and let 

Jn '— \J"n—1) "n]; <^n • ^n "n—\ 
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for n = 1, • • •, N. Further, let A; := max{A;i, k2,- • • •, k^}. For a given positive integer 

q, we will be looking for an approximate solution to the weak form (4) of the parabolic 

problem (1) which reduces to a polynomial of degree at most q in t on each subinterval 

/„ with coefficients in HQ(Q), or equivalently, a polynomial in the space 

Sk := {v : [0,oo) - H^(n);v\In E Pq(In), n = l,---,N} 

where 

Pq(In) := {v(t) = J2vJt3 • vo e ffoW. 3 = O,-" ,</}• 

Note that these functions are allowed to be discontinuous at the nodal points tn but 

will be taken to be continuous from the left there. Further, note that v(0) has to be 

specified separately for v G Sk since 0 is not in I\, and we write S% for the restrictions 

to /„ of the functions in Sk-

For notational convenience, we write 

wn := w(tn), wn'+ :— lim w(t), wn'~ := lim w(t) 

for any function w. 

Now, replace u in the weak formulation (4) by a function U € Sk and integrate 

by parts on each subinterval In to obtain for the first term of the left side of (4), with 

vn = v(tn) and vN = 0, 

- [tN(U,vt)dt = - ' E m v ) ^ - [ (Ut,v)dt} 
JO n=0 Jin 

rtN
 N~1 

= / (Ut,v)dt+^([U}n,v
n) + (U°'+,v°), v£Sk. (5) 

Here [U]n :— Un,+ — Un denotes the jump of U at tn and Ut is the piecewise polynomial 

of degree n — 1 which agrees with dU/dt on each subinterval In. In particular, for 

the case q = 0, we have Ut = 0, so the integrand vanishes. 

With the first term of the left side of the weak formulation thus modified, the 

Discontinuous Galerkin Method is defined as follows: Find U € Sk such that 

/ {(Uuv) + (Vuyv)} dt+^2({U}n,vn'+) + (U0-+,v°'+) = (u0,v°'+)+ / (f,v) dt 

(6) 

for all v E Sk-

Since a function v in Sk is not required to be continuous at tn we may choose 

its values on the the different time intervals independently, and so by choosing v to 
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vanish outside the the time interval /„ we reduce (6) to one equation for each time 

interval In, as in [4]. This results in the the following problem: For n = 1, 2, • • •, N, 

find Un G SI such that 

/ {{U?,v) + (VU,Vv)} dt + ([U]n~\vn-1'+) = [ U,v) dt (7) 
•* In Jin 

for all v G S%, where U° :— UQ since t0 is not in I\. This shows that the discrete 

solution is independent of the choice of the final nodal point t^. Further, it can be 

shown that the exact solution of (1) also satisfies (7). 

For the spatial discretization, that is, discretization in the space HQ(Q,), let M G 

{0,1,2, • • •} and xm, m = 0,1, • • •, 2M denote the spatial knots. We will use linear 

splines on Q, although splines of any order may be employed. At each time step we 

will approximate u(x,tn) by 

Un(x) = U(x,tn) = £ t f ( i ) & ( x ) , n = 1,2, -.-,N. 
i=0 

For simplicity of notation, we write Un :— Un(x) = U(x,tn). Next, let XM be the 

finite dimensional subspace of HQ(£1) spanned by these splines. Equation (7) may 

now be stated as follows: For n = 1,2, • • •, N, given Un~1'~, find Un G SMk where 

SMk:={v.[0,<x>)^XM;v\In&PMq(In), n = l,---,N} 

with 
i 

PMq{In) •= {v(t) = Y, V3t3 '• V3 ^ XM, j = 0, • • • , q} 
3=0 

such that 

/ {(Uu v) + (VC/, V^)} dt + (Un-1>+,vn-1'+) = j (/, v) dt + ( [ / " - 1 - , vn^+) (8) 

for all v G PMq(In),. where U°'~ = «o-

For the discretization of the space HQ(Q) with O = [0,1], denote by <f>m{x) the 

spline over Q,m = [xm_i, xm+i] for m = 1,2, • • •, 2M —1. Also, denote by (po(x), (f>2M{x) 

the splines over [xo,Xi] and [X2M-I,X2M], respectively. Let XM be the space of these 

piecewise linear splines on Q = (0,1) with breakpoints 0 = x0 < xx < • • • < X2M = 1 

and hm := max1<m<2« \xm-i — xm\. It follows that XM is a finite dimensional 

subspace of HQ(Q). 



From [7] we have the following a priori estimate for the Discontinuous Galerkin 

Method. Much of the following discussion is paraphrased from [6]. We will utilize 

this estimate in Chapter IV for the proof of Theorem 4.2. 

Theorem 2.1. (Eriksson and Johnson [7]). Let u be the solution of (1) and Um 

that of (8). Assume that Xm-\ C Xm for all positive integers m and kn < 7&„+i for 

all n and for some 7 > 0. Then there exists a constant C depending only on C\ and 

c2 from (2) and (3), respectively from above, such that for <? = 0,1, and N — 1,2, • • •, 

we have 

where 

\u - Um\\In < CLN max. Emm(u) 
\<n<N 

:N = ( l o g ( ^ ) + i ) i 
kN 

and 

,(!) - .. .,(2) 

Em,qn(u) = min kJ
n\\u

(
t
J)\\In + | |^ ) nD2u| | /„ 

3<q+l 

with u\ = ut, u\ = utt and \\u\\In = maxtG/n ||M(^)||2. 

The term 

.min.̂ lK^II/n 

describes the error associated with the time discretization. If \\v,t \\in is bounded for 

each n and j = 1,2, then the Discontinuous Galerkin Method is j th order accurate 

in time. 

The term 

\\h2
m,nD

2u\\in 

describes the spatial discretization error and has second order due to the use of linear 

splines denning the space ^ m . From before, we have hm '.— maxi<m<2M |;rm_i —£m|> 

but since the spatial grid mesh may be varied from time step to time step when the 

time steps are not uniformly spaced, we use of the double subscript on hm<n to denote 

this fact. 

Next we look at some specific forms of equation (8). We will use the notation 

[Q'ijlmx.n 

to indicate the matrix consisting of m rows and n columns with individual entries 

atj, for 1 < i < m, 1 < j < n. 
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For the case q = 0, where v(t) is piecewise constant in time, with 

PMO{IU) := {v{t) = DO : uo e XM}, 

we have j^U = 0 and [/" = [/"'" = [/"-!>+ s o (8) reduces to the modified backward 

Euler Method 

(Un,v) + kn(VUn,Vv) = f (f,v)dt + (Un-\v), v € PMO(IU), (9) 

or 

£/" - ifcnAt/" = Un~l + J f(t) dt 

as in [4], page 183. The fn = /(£„) occurring in the standard backward Euler 

Method, as detailed in [4], page 166, has been replaced by an average of / over 

the time interval In, resulting in the modified version. With £/» = £?=<,#& (x) for 

scalars £", i = 0 ,1 , 2, • • •, 2 M and ra = 1,2, • • •, N, equation (9) takes the form 

Eff[(^.^) + Mv^,v^)] - / (/,^)rft + E^ _ 1(^ .^) (10) 
i=0 n i=0 

for j = 0 ,1 , 2, • • •, 2 M , where £f - 1 is known. This system of equations may be written 

in matrix form as 
An -^n _ -f" 

where 

AM '•— [%J(2M+i)x(2M+i)) 

aZj •= (<f>i, <f>j) + kn(V<j)i, V 0 j ) , 

u M '•— [si J(2M+l)xl ' 

/ M'-~ UjJ(2M+l)xl ' 

2 M 

JI™ i=0 

For the case of q = 1, where u(<) is piecewise linear in time, with 

PMI(ITI) '•= {v(t) = vo + vrf : v0,vi €. XM}, 

we have 

u\In=r(x)+~^» 
Kn 
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on the interval In, and obtain the following system from (8): 

(F,v) + kn(V$l,\7v) + $n,v) + hn(VWl,Vv) = {Un~\v)+ f (f,v)dt, 
Z J In 

1 

^n Jin 

for v, w <E PMI(ITI)- With 

T{x) = E #•"&(*), ?*(x) = E^,n<M*)> 

for scalars £f •", gf'n, where i = 0 ,1 ,2 , • • •, 2 M , n = 1, 2, • • •, W, and 

1 , - r n - l 

the last system takes the form 

2 M 

i=0 i=0 ^ 

2=0 

.̂̂ A r j -1-

E£fn oMv&> v^) + Eefnb(&>&) + MWiMj 
i=0 

This may be written in matrix form as 

J- / (t-in_i)(/(t),^)d«, j = 0,l,---,2M . 

ip^n 
AM s M + ^ M s M — /AJ M 

t/>,n 
^ m S M + ^ M S M ~ 9M 

or 

where 

A M S M 

S M 

J M 

ynM. 

A1M := [au](2*f+l)x(2M+l)) % : = (4>i, 4>j) + K{^4>i, V^j ) , 
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B M : = [bij](2>«+i)x(.2M+i), hj : = (.4>u <t>j) + ^kn{V<t>i, V<t>j), 

DM : = [dij\(2M+l)xi2M+l), dij : = - ( < & , <^j) + -kn(V(f)i, V(/>j), 

M 
<^>,n 

( 2 M + l ) x l 

--?ip,n 
S M 

V'>ra 

7iW : = [/j](2M+i)xl . / j : = /r (/» &)<& + X) 
, / / '» i=0 

J ( 2 M + l ) x l 

i>,n—l . j.ifi,n—l 
' si (<i>i,4>j), 

!?M := [5j](2^+l)xl, 5j : = TT / (* - tn-l)(f,<Pj)dt. 

One advantage of the Discontinuous Galerkin Method is that the size of the time 

steps may be arbitrarily determined with no significant changes to the method, except 

possibly for a time-dependent change in the spatial mesh. This will be discussed later 

in Chapter V, when we look at parabolic problems with initial conditions that are 

incompatible with the prescribed homogeneous boundary conditions. 

Next we discuss the multilevel calculation method, which is another essential part 

of this thesis. Most of the following information is taken from [3]. 

II.3 THE MULTILEVEL METHOD 

II.3.1 Basics 

To describe the general setup of the multilevel calculation method, we consider the 

basic operator equation 

Au = f (11) 

where X and Y are Banach spaces, A : X —» Y is a bounded linear operator, f € Y 

is assumed, and u € X is the assumed unique solution that is to be determined. 

We need two sequences {Xm} and {Ym}, m € M$ = {0,1,2, •••} of nested, finite 

dimensional subspaces of X and Y, respectively, with 

Xm C Xm+i, m G M0, (J Xm — X, 
me MQ 

YmCYm+1, me M0, | J Ym = Y. 
me M0 
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The nesting of these spaces implies there exists subspaces Wm+\ of Xm+\ and Zm+i 

of Ym+i, respectively, such that 

Xm+i — Xm © Wm+i, Ym+\ = Ym © Zm+i, m G Mo-

Further, we need dm := dim(Xm ) — dim(Ym), m G {0,1 , 2, • • •} . Now, assume the 

equation (11) has the approximate operator equation 

AmUm — Jm ( l^ j 

where Am : Xm —> Ym is an approximate operator of A, um G Xm is the solution 

to (12) from Xm, and fm G Ym is an approximation of / . We identify the vector 

[go,gi]T G Xm <g> Wm+i with the sum go + gi G X m © W m + 1 . Likewise, we identify the 

vector [go, g\\T &Ym® Zm+\ with the sum g0 + g\ G Ym © Zm+\. With this notation, 

we describe the multilevel method for solving the operator equation (12) as a special 

case of the procedure detailed in [3]. With m = k + 1, the last equation takes the 

form 

Ak+iUk+i = /fc+i- (13) 

We write the solution Uk+i G X^+i to this equation as 

uk+i = ukfi + vk,i (14) 

for Uk,o € Xk and Vk,i G Wk+i- Note tha t uk+i is identified with ttfc(l) := [uk,o,Vk,i]T, 

per the notation of [3]. We refer to the solution of equation (13) as the (k + 1) level 

solution. The basic idea of the multilevel method is to obtain an approximation of 

the (k + 1) level solution from the kth level solution in Xk and a correction from 

WW-
Now, define the operators Fk^+i • Wk+i —> Yk, Gk+i,k • Xk —> Zk+1, and 

Hk+i,k+i '• Wk+i —> Zk+i, so the operator Ak+i is identified as the matrix of op

erators 
Ak Fk,k+i 

Gk+l,k Hk+l,k+l 
(15) Ak,i := 

Equation (13) is now equivalent to 

Ak,iuk(l) = fk+i. (16) 

Now we split the operator Ak,i into the sum of two operators Bki : Xk+\ —> Yk+i 

and Cfe,i : Xk+\ —>• Vfc+i, that is, 

4k,i = 5fc,i + Cfc,i (17) 
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where 

and 

such that 

Bk,i '•= 

Cfc,i := 

At Fk}k+\ 

0 i/fc+i,fc+i 

0 0 

Gk+i,k 0 

(18) 

(19) 

A fc,i 
Ak Fi k,k+l 

G k+l,k Hk+l,k+l 

Ak Fk,k+i 

0 Hk+i^k+i + 
0 0 

Gk+i,k 0 
Bk,i + Ck,i • 

Thus equation (16) becomes 

Bk,iuk(l) = fk+i ~ Ck,iuk(l). (20) 

Rather than solving equation (20) directly, we use the multilevel method detailed 

in the algorithm below to' approximate the solution of (20). Tha t is, we find an 

approximation Uk,i to the approximate solution uk+i-

Next we describe the algorithm for the multilevel method. 

Mult i leve l A l g o r i t h m 

Step 1 Solve the equation 

Akuk = fk 

exactly, obtaining the kth level solution Uk 6 Xk. 

Step 2 Augment uk by setting 

(21) 

Uk,l = 
Uk 

0 

and calculate the matrices Fktk+i, Gk+itk, a n d Hk+i,k+i-

Step 3 Solve Uk,i € Xk+\ where 

"fc,i := 
Mfc.O 

from the equation 

Bk,\Uk,i = fk+i ~ Ck,\Uk,i- (22) 
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To be more specific, given the known solution uk of AkUk = fk, we solve the 

matrix equation 

Ak Fktk+i 

0 Hk+i,k+i 
= 

fk 

. 9k _ 
-

0 0 

Gk+i,k 0 

uk 

0 

for [ukfl,Vk,i]T, where fk+i '•= [fk,9k]T- In practical terms, this means we first solve 

the system 

Hk+i,k+iVk,i = 9k — Gk+\,kUk (23) 

for Vkti, then use this solution to solve the system 

AkUkfl = fk — Fk,k+lVk,l (24) 

for Uk,o- Then we set uk,i := ukfi + Vk,i, so uk+i ~ uk,i-

The multilevel method is basically a one step predictor-correction method to 

calculate an approximation to Uk+i, using Uk,i = «fc,o + Vk,i as the approximation to 

Uk+l-

II.3.2 Error Estimate of the Multilevel Method 

In this section we examine an error estimate for the multilevel method from [3]. 

Most of this discussion is paraphrased from [3]. For m — 0,1,2, • • •, let Em denote 

the approximation error in the space Xm for u 6 X, namely, 

Em := in f{ | | u -v | | : v € Xm}. 

A sequence of nonnegative numbers j m , m = 0,1,2, •••, is called a majorization 

sequence of Em if j m > Em, m = 0,1, 2, • • •, and there exists a positive integer Mo 

and a positive constant a such that for m > MQ lm+1 
1m — 

> a. 

The following theorem from [3] gives an error estimate for the multilevel method. 

Theorem 2.2. (Chen, Wu and Xu [3]). Suppose 

1. There exists a positive integer MQ and a positive constant a such that for m > 

l l^ l l^a" 1 . 

2. The limit 

holds uniformly for m — 1,2, 

lim ||Cm,i| = 0 
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3. There exists a positive integer M0 and a positive constant p such that for m > 

MQ and for the solution um of equation (12), we have 

\\u-um\\ < pEm. 

Let u £ X be the solution of equation (11) and j m , m = 0,1, 2, • • • a majorization 

sequence of Em. Then there exists a positive integer M such that for m > M, 

\\U-Um}i\\ <{p+ l)7m+l 

where um^ is the solution of (22). 

Theorem 2.2 shows that under the assumptions listed, the multilevel solution um>i 

approximates the exact solution u at an order comparable to Em+\. 

II.3.3 Cost Advantages 

The advantage of the multilevel method is the cheaper computational cost incurred 

in solving several smaller size systems rather than a single system of a larger size. 

Specifically, to solve the system (13), we must solve a system of size dfc+i at an 

approximate cost of 0{d\+l). Rather than do this, the multilevel method solves the 

system (21) of size dk, obtaining the coarse level solution Uk- Then, using Uk, it 

solves the system (23) of size dk+i — dk, obtaining Vk,\- Finally, using Vk,i, it solves 

the system (24) of size dk, obtaining Uk,o- Then it uses Uk,i '•= Uk,o + Wfe.i as an 

approximation to the approximate solution Uk+i- The cost of solving these systems 

is approximately 0(dk
i) + 0((dk+\ — dk)3)- Even with more systems to solve, the 

smaller size of the systems will save computational time and effort, especially for 

high resolution level approximations. 

We will discuss the specific savings in more detail in the application section, 

and then demonstrate these savings with the various numerical experiments in the 

implementation section. 

For this method to work and provide good convergence characteristics, we need 

bases for Xk, Yk, Zk, and Wk, with multiresolutional capability, and for this we 

employ what we call the wavelet basis, which will be described next. 
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II.4 THE MULTISCALE ORTHONORMAL WAVELET BASIS 

II.4.1 Generalities 

Most of this section is paraphrased from [2]. Here we assemble the basic facts and 

structure of multiscale orthonormal wavelet bases for the Sobolev space H$(0,1) of 

functions u that satisfy the homogeneous boundary conditions 

UW>(0) = «<>'> (1) = 0, jeZd, (25) 

where Zd := {0,1, 2, • • •, d — 1} for a fixed positive integer d. 

First, the given boundary conditions enable us to define the inner product as 

(u,v)d = f u{d\x)v{d\x) dx, u,v£ #o(0, l ) 
Jo 

and norm 

\v\d:=y/{v,v)d, v€Hd(0,l) 

as in [2]. Let k > 2d and ji > 1 be fixed positive integers. For m = 0,1, 2, • • •, denote 

by Xm the subspace of HQ(0, 1) whose elements are piecewise polynomials of order 

k with knots j/fJ,m, for j — 1 € Zilm_y. We have the property of nestedness of the 

subspaces, that is, 

Xm-i C Xm 

iorm—1,2,---. The dimension of Xm is 

dim Xm = {k- d)nm - d. 

Note that X0 is the subspace of polynomials of order k satisfying the homogeneous 

boundary conditions (25), and when k = 2d, we have Xo = {0}. When k > 2d, we 

have 

X0 = span{xd+J'(l - x)d : j e Zk.2d}. 

Next, we will look at the orthogonal decomposition of the space Xm in the sense 

of the inner product (•, -)d. For notation, we let S\ © S2 denote the direct sum of Si 

and S2 with the property that for any u G Si, v £ S2, we have (u,v)d = 0. Since 

Xm_i C Xm for each m, let Wm be the orthogonal complement of Xm_! in Xm, that 

is, 

Xm = Xm_! © Wm. 
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This leads to 

xm = x0 © wx © w2 ® wz © • • • © wm. 

The dimension of Wm is given by 

w(m) :— dim Wm — dim Xm — dim Xm_! = (k — d)(n — l)// : m—l 

Once Ĥx is determined, the spaces Wm can be constructed in a recursive fashion. To 

describe the construction, we use the family of afRne mappings $M := {(f)e : e G Z^} 

with 
i i \ x + e 
<pe(x) := , e G Zp. 

These mappings subdivide [0,1] into the necessary subintervals associated with each 

space Xm. Associated with these affine mappings we define the family of operators 

r e : L 2 [ 0 , l ] ^ L 2 [ 0 , l ] , e e Z M ) b y 

Tev := \£~dv o ^Xiptiotb e G Zr 

Next is the first of several lemmas from [2] which will help develop the structure of 

these bases. The first lemma shows the operators Te, e G Z^ to be isometric from 

tf0
d(0,l)totf0

d(0,l). 

Lemma 2.3. (Chen, Wu, and Xu [2]). 

(i) For e G ZM, Te maps H$(0,1) into H$(0,1). 

(ii) If e, e! G ZM, then for all u, v € HQ(0, 1), 

(Teu,Te>v)d = Se^(u,v)d. 

Repeated differentiation of Tef results in the first statement. For the second result, 

when e ^ e', the intersection of the support of Teu and that of Te>v has measure zero, 

so (Teu, Teiv)d — 0. For e = e', using the definition of the operator and the fact that 

0e is affine, we have, with a change of variable, 

(Teu,Tev)d = S~2d f (u o ft^ixXv o <j>-1){d\x)dx 
j0e[O,l] 

= [\{d)(x)v{d)(x)dx = (u,v)d. 
Jo 

The above lemma provides a useful tool which we will utilize later as we set up the 

stiffness matrix in the application. As it will be necessary to compose the mapping 
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4>e and the operator Te for e G Z^ repeatedly, we need the composition mapping 

which we define next. For if := (eo, e\, • • •, em_i) G Z™, we define the composite 

map (j)-g to be 

<$>-§ := <Pe0 ° ^e i ° 0e2 ° • • • ° ^ - x , 

and the composite operator T-g as 

T-g :=TeooTeio---oTem_1. 

One can show, using successive compositions of the operators Tei, i E Zm that for 

«ei2[o, i] , 

e e ^ e [0,1] 

It is the repeated composing of the operator Te that will produce the required res

olution for the problem at hand. 

Integration by parts and Hermite interpolatory polynomials result in the next 

lemma. 

Lemma 2.4. (Chen, Wu, and Xu [2]). If i and j are positive integers with i < j , 

w E W\, ~~£ G Zjj, and v E Xt, then (w, v o 4>-g)d = 0. 

By the definition of the operator T-g and the fact that 

(wo(f>Z^)W = M < V d ) o < ^ , 

we have, using a change of variable, the next lemma. 

Lemma 2.5. (Chen, Wu, and Xu [2]). If i is a positive integer, 1? G Zl, 

w G W\, and v G Xi, then (T~^w,v)d — 0. 

Now, it is absolutely critical that a precise yet simple notational system be used 

to denote these various wavelets on the various resolution levels, and [2] provides the 

perfect system for describing the multiscale orthonormal bases for the spaces Wi. To 

describe this process of recursive construction, we start with the basis w\ i , I E Zr, 

where W\ is given. For i > 1 and ~£ E Zl~l, we set 

H(~?) := f/~2e0 H h //ej_3 + ej_2. 
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Let r := w(l) = dim W\. For i > 1, j G Zw(i), there exists the unique factorization 

and we define 

Wi j : = T-g>w;i ;. 

To better understand this notational system, we will set up notation for the multiscale 

wavelet basis of the Sobolev space HQ(0, 1) with k = 4, and n = 2. We have Xo = {0}, 

w(i) — dim Wj = 2l, i > 0, and the orthonormal basis for W\ will be {w\ o,Wi i} 

from [2] where 

/ x f * V 2 ( 3 - 4x) when 0 < x < §, 

\ 2^.(1 - x)2(4x - 1) when ± < x < 1, 

. , f ix 2 ( l - 2x) when 0 < x < ± 

[ | (1 - x)2(l - 2x) when § < x < 1. 

T/ie specifics of just how such a basis is constructed will be detailed at the end of 

this section. Our purpose here is the familiarize the reader with the notation system 

being utilized. 

With this set of basis functions, the affine maps 

and the operator 

Tev := H^v^XMWh e = °> *> 

we can recursively construct an orthogonal basis for whatever resolution level m we 

desire, using the formula 

xm = x0 © Wi © w2 © wz © • • • © wm. 

Now for some specifics concerning the orthonormal basis {u>io, ^ n } , where k = 4, 

H = 2, r = 2. To construct the wavelets for W2, we need to use i = 2. We have 

^ 6 ^ ' = ^2 = {eo : eo € ^ } = {0,1}, 

and 

fj,(~£) = nl~2e0 = e0. 
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For notational convenience, let ifo = 0 and iti = 1 so //(Vo) = 0 and /x(^i) — 1-

We have 

j = »(-?)-2 + 1, I EZ2 = {0,1}, 

and 
wv = T-?k

wi i-

For "^o = 0, /x(lfo) = M(0) = 0, £ = 0, we have j = 0-2 + 0 = 0 which implies 

W2 0 — TQWI Q. 

For !?o = 0, it(!?o) = M(0) = 0, / = 1, we have j = 0-2 + 1 = 1 which implies 

w2 i = T0wx i. 

For V i = 1, / / ( " ^ I ) = /x(l) = 1, I = 0, we have j = 1-2 + 0 = 2 which implies 

w2 2 = 7\wi o-

For "e*i = 1, /i(~e*i) = n(l) = 1, Z = 1, we have j = 1-2 + 1 = 3 which implies 

w2 3 = Tiioi i-

To construct the wavelets for W3, we need to use i = 3. We have 

"? € Z;-1 = Z\ = {(eo, ej) : e0) e i € Z2} = {(0, 0), (0,1), (1, 0), (1,1)}. 

Let ~t0 = (0,0), ~ti = (0,1), ~e*2 = (1,0), and ~t3 = (1,1). We have 

fi(~t) = A*l_2eo + nl~3ei = jue0 + ei = 2e0 + ei 

so 

M("e>0) = 2-0 + 0 = 0, /i(-?i) = 2-0 + 1 = 1, 

/x(-e*2) = 2 • 1 + 0 = 2, fi(t3) = 2-1 + 1 = 3. 

Also, for j = 0,1, 2, we have 

j = /x("e"fe) • r + /, ~e*fe 6 Z\, i e Z2, r = 2, and ^ = T-^^wi /. 

This leads to the following subscript calculations: 

0 = 0-2 + 0, t « 3 o - 2Vou>i 0, 
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1 = 0-2 + 1, w3i=T-gown, 

2 = 1-2 + 0, w32 = T-gwi. o, 

3 = 1-2 + 1, w3 3 ^T-g^ioi i, 

4 = 2-2 + 0, w34 = ?Vau;i o, 

5 = 2 - 2 + 1, ^ 5 = ^ 1 1 , 

6 = 3-2 + 0, w3 6 = T-^3u;i 0, 

7 = 3-2 + 1, w37 = T-taw11. 

Next we construct the wavelets for W4, where % = 4. Note that we continue to 

use fi = 2 and r = 2, so this time we have 

Jw(i) — ^w(4) Z4 = {0,1,2,3} 

as well as Z^ — Z2 = {0,1}. We use Z\ = {(eo, e\, e2) : e^ £ Z2, /c = 0,1, 2}, which 

when written out, becomes 

Z\ = {(0,0,0), (0,0,1), (0,1,0), (0,1,1), (1,0,0), (1,0,1), (1,1,0), (1,1,1)}. 

For convenience of notations and subscripts, we define 

•^0 = (0,0,0), -e\ = (0,0,1), t 2 = (0,1,0), t 3 = (0,1,1), 

"^4 = (1,0,0), ^ 5 = (1,0,1), ^ 6 = (1,1,0), t 7 = (1,1,1). 

Since 

n{~t) = Hl~2e0 + //~3ei + nl~Ae2 = ^2e0 + \xe\ + e2 = 4e0 + 2ei + e2 

we have, by the careful choice of subscripts, 

(j.(~?o) = 0, ^ (^1) = 1, M("e*2) = 2, n(~t3) = 3, 

/x("e>
4) = 4, /x("e*5) = 5, MC^B) = 6, n(~t7) = 7. 

Now, for j = 0,1, 2, 3, n{~tk) — k, k = 0,1, • • •, 7, and r = 2, where 

j = ^("e*fc) • r + J, Vfc € ^ 1 , I € Z2,r = 2, and {«„ = T-g^wi ;, 

we have the following subscript calculations: 

0 = 0-2 + 0, wto^T-^Wio, 
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1 -

2 = 

3 = 

4 = 

5 = 

6 = 

7 = 

8 = 

9 = 

10 = 

11 = 

12 = 

13 = 

14 = 

15 = 

= 0 

= 1 

= 1 

= 2 

= 2 

= 3 

= 3 

= 4 

= 4 

= 5 

= 5 

= 6 

= 6 

= 7 

= 7 

2 + 1, 

2 + 0, 

2 + 1, 

2 + 0, 

2 + 1, 

2 + 0, 

2 + 1, 

2 + 0, 

2 + 1, 

2 + 0, 

2 + 1, 

2 + 0, 

2 + 1, 

2 + 0, 

2 + 1, 

W4 1 = 

W4 2 = 

W43 = 

W4 4 = 

^ 4 5 = 

^ 4 6 = 

u;4 7 = 

W4 8 = 

^ 4 9 = 

Wi 10 

w 4 i i 

Wi 12 

W4 13 

W4 14 

W4 15 

= :zV0wn. 

; T-?!™! o> 

= ^ 1 1 ' 

= 7V2wi o, 

:Tt2
f f in> 

= 7V3^i o, 

= T^W! i. 

= T-^wi o, 

= ^ 4 ^ 1 1 ' 

= ^ ^ 1 o, 

= 7V5Wi i, 

= ^ 6 ^ i o, 

= 2 V 6
u , i i-

- T-^wi o, 

= T-^wi i. 

One then may continue this process, progressively increasing the size of the index i, 

until the desired resolution level M is reached, and thus obtain the following spaces: 

Wi = span{u;i 0 ,w i i } , 

W2 = Span{u;2 0,^2 1,^2 2,^2 3}, 

W3 = spa,n{w30,w31,w32,w33,w3 4,w35,w36,w37}, 

W4 = Span{wi0,W4 1,W4 2,W43,W44,W4 5,WA6,W47,-- • ,W4i5}, 

W5 = span{w5 0,w5 i,u>5 2, • • • , ^ 5 31}-

and so on. In double subscripting system, the first subscript indicates the resolution 

level of that particular wavelet and the second subscript indicates which particular 

wavelet on tha t level. For instance, the double subscript 4 14 denotes the fifteenth 

wavelet on the fourth resolution level. 
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Hence we have 

X0 

* i 

x2 

x3 

X4 

x5 

= {o}, 
= x0®wu 

= X1(BW2, 

= X2@W3, 

= x3®w4, 

= x4®w5. 

Xm = Xm-i®Wm. 

Note in each case we have dim Xm — (k — p)iim — p, where k ~ 4, p = 2, and 

H = 2. 

The following theorem shows that the functions w^ as defined above form an 

orthonormal basis for the space Wi. The proof is detailed in [2]. 

Theorem 2.6. (Chen, Wu, and Xu [2]). Let w\j, j € Zr, be an orthonormal 

basis ofW\. Then for any i > 1, the functions Wij, j G Zw^ form an orthonormal 

basis for Wi and 

H$(0,1) = XQ®Wl@W2®---. 

We will now give describe an algorithm for the construction of an orthonormal 

basis for the space W\. Let life be the space of polynomials of order k on the interval 

[0,1]. We will need the following lemma from [2]. 

Lemma 2.7 (Chen, Wu, and Xu [2]). For any v € W\, v is orthogonal to the 

space Ilfc. 

The following theorem gives an algorithm for the generation of the basis of W\. 

Again, the proof is detailed in [2]. 

Theorem 2.8. (Chen, Wu, and Xu [2]). A function v 6 W\ if and only if 

(i) v is a piecewise polynomial of degree less than k with knots {^ : j — 1 € ^ - I } , 
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(ii) v^, i G Zd are continuous at the knots {^ : j — 1 G ^ - 1 } , 

(iii)t;«(0) = t;W(l) = 0) i G Zd, 

(iv) i ibrp^x) := x\ {vW,Pj)d = 0, j G Zfc_d\Zd. 

Theorem 2.8 gives us the following method for generating the basis of W\. By 

condition (i), any function v EWi has a representation of the form 

k~l i + 1 i 

Conditions (ii)-(iv) impose k + d(// — 1) restrictions on the coefficients atj, thus we 

obtain a homogeneous linear system of equations consisting of k + d([i — 1) equations 

with kfi unknowns a^, i G ZM, j G Z&. The dimension of the solution space is not 

less than (k — d)([i — l). Note that dim(VKi) = (k — d){[i — 1), thus the solution space 

has exact dimension (k — d)(fj, — l). Accordingly, an orthonormal basis of W\ can be 

obtained from a solution of the linear system by orthogonalization and normalization. 

Next we detail an important example of this process, which will be utilized later 

in this thesis. 

II.4.2 A Linear Spatial Basis 

In this section we discuss a linear basis of the space H%(0,1). We choose k = 2, and 

[i = 1. Here the space XQ = {0} because there is no nontrivial linear polynomial 

which vanishes at both 0 and 1. Further, dim Wi — 2 l _ 1 , for i > 0. The basis of W\ 

is given by 

wi 0(x) --
x when 0 < x < | , 

1 — x when \<x<\. 

We will call w\ o the mother wavelet. Figure 1 shows the plot of this mother wavelet. 

The mother wavelet then produces two wavelets w2 0,w2 i via the operators 

w2 o = T0wi o, w2 i = Tiwi o, 

where 

w2 o{x) = 

4j2x when 0 < x < \, 

^ - ( l - 2 x ) w h e n | < a ; < ± — 2 ' 

otherwise, 
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FIG. 1: The Mother Wavelet 

w2 i(x) 

~^(2x - 1) when \ < x < §, 

^ ( 2 - 2 x ) w h e n | < x < l , 

0 otherwise. 

The graphs of these two wavelets are shown together in Figure 2. For simplicity, only 

the nonzero parts of each wavelet are plotted. 

Thus we have 

W2 := span{w2 o,u>2 i}-

Next the mother wavelet produces four wavelets w3 0, W3 1, W3 2, ̂ 3 3 by calculat

ing 

W30 = T(;o,0)^l 0, U)3 1 = T(0,l)Wl 0, » 3 2 = T(ifi)Wi 0, ^ 3 3 = T(iti)W\ 0, 

where 
|4x when 0 < x < | , 

w3 o(x) — { | (1 - 4x) when \<x <\, 

0 otherwise, 

\{\x - 1) when | < x < §, 

^3 i 0 ) = { | (2 - 4x) when \<x<\, 

0 otherwise, 
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FIG. 2: Two Wavelets 

|(4x - 2) when \ < x < §, 

»3 2(1) = { | ( 3 - 4 x ) w h e n | < x < | , 

0 otherwise, 

\(Ax - 3) when | < x < | , 

^3 s{x) — { \(A - Ax) when \ < x < 1, 

0 otherwise. 

The graphs of these four wavelets are shown together in Figure 3. 

Thus we have 

W3 :=span{u;3 0,w3 i,io3 2,w3 3}. 

Next the mother wavelet produces eight wavelets, 

tt>4 0, WA 1, W4 2 , W4 3 , W4 4, W4 5 , W4 6 , W4 7 , 

by calculating 

w40 = T(o,o,o)^i 0, W 4 i = r(o,o,i)Wi o, w4 2 = T(0,i,o)Wi 0, w4 3 = 7(0,i,i)'u;i 0, 

W4 4 = ^l.O.OjWl 0, W4 5 = ^(1,0,1)^1 0, WA 6 = 7(1,1,0)^1 0, » 4 7 = 7 (1 ,1 ,1 )^ ! 0, 

where 
^8a; when 0 < x < ^ , 

W4 °(x) = i 27l(1 - 8 : c ) w h e n ll - x - i 
otherwise, 
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Graph of the wavelets w3 Q, w 3 1 , w3 2, w3 3 

FIG. 3: Four Wavelets 

Wi i(x) 

w4 i{x) 
2 7 5 ( ^ - 2 
^ ( 3 - 8 * 

0 

^ ( 8 x - 3 

wa{x) = { ^ - ( 4 -8x 

0 

WA A{X) 

\ 2 7 l ( 8 * - 4 

0 

275(8* - 5 

w45(z) = ^ ^ ( 6 - 8 x 

0 

WA 6\X) 

2 V l ( 8 * - 6 

2 7 2 ( 7 - 8 -

when | < x < ^ , 

when ^ < x < \, 
ID 

otherwise, 

when \ <x < ^ , 

when ^ < x < | , 
I D 

otherwise, 

when | < x < ^ , 

when ^ < x < | , 

otherwise, 

when | < x < y|, 

-§- < x < -
16 — X — 8' 

when JQ 

otherwise, 

when | < x < j | , 

when ^ < x < §, 

otherwise, 

when f < x < | | , 

when | | < x < | , 

otherwise, 
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Graph of the wavelets w, A, w,,,.... w„ ., 
r 40 4 1 47 0.5 
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^ — i , _̂ 
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FIG. 4: Eight Wavelets 

WA I{X) = { 

^ ( 8 x - 7) when \ < x < ±§, 

2 ^ ( 8 - 8 x ) w h e n ± f < x < l 

0 otherwise. 

The graphs of these eight wavelets are shown in Figure 4. 

Thus we have 

W4 := span{w4 0,w4 i,w4 2,w4 3,w4 4,w4 5,w4 6,w4 7 } . 

Next the mother wavelet produces sixteen, wavelets 

W5 o, W5 i,W5 2,W5 3 , W5 4 , W5 5,W5 6 , W5 7, 

tt>5 8,105 9 , W 5 1 0 , ^ 5 11, W5 1 2 , ^ 5 13,W5 U,W5 15, 

by calculating 

t«5 0 = T(o,o,0,0)^l 0, I"5 1 = 7(0,0,0,1)^1 0, U>5 2= 7(0,0,1,0)^1 0, W 5 3 = 7(o,o,l , l)Wi 0, 

w5 4 = 7(0,1,0,0)^1 0, w55 = 7(0,1,0,1)^1 0, w5 6 = 7(0,i,i,o)Wi 0, w5 7 = 7(0,i,i,i)U>i 0, 

^5 8 = 7(i,o,o,o)Wi o, ^5 9 = 7(i,o,o,i)Wi 0, w5 10 = 7(i,0,i,o)Wi 0, w5 n = 7(1,0,1,i)«>i o, 

W5 12 = 7(1,1,0,0)^1 0, W5 13 = 7(i,i,o,l)Wi 0, W5 14 = 7(U)i,0)Wi 0, ^5 15 = T^i^W! 0, 
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where 

w5 0(x) 

w5 i(x) = 

w5 2(x) 

W$ 2,{x) = 

Wh i{x) = < 

W5 5(x) 

w5 6(x) 

w5 7(x) 

w5 8(x) 

W5 9 ( x ) = 

| l 6 x when 0 < x < ^ , 

| ( 1 — 16a;) when ^ < x < ^ , 

0 otherwise, 

l ( 1 6 x - l 

| ( 2 - 1 6 x 

0 

| ( 1 6 x - 2 

| ( 3 - 1 6 x 

0 

± ( 1 6 x - 3 

i(4 - 16x 

0 

£ ( 1 6 * - 4 

. f ( 5 - 1 6 x 

0 

± ( 1 6 x - 5 

| ( 6 - 1 6 a ; 

0 

± ( 1 6 x - 6 

1(7 
0 

16a; 

| ( 1 6 x - 7 

i ( 8 - 1 6 x 

| ( 1 6 x - 8 

| ( 9 - 1 6 x 

0 

when JQ < x < Jj, 

when ^ < x < | , 

otherwise, 

when | < x < Jj, 

when 4 < x < ^ , 

otherwise, 

when ^ < x < ^ , 

when ^ < x < | , 

otherwise, 

when \ < x < Jj, 

when J | < x < ^ , 
JZ — 

otherwise, 

when -^ < x < | | , 

when | | < x < | , 

otherwise, 

when | < x < | | , 

when | < x < ^ , 

otherwise, 

when j£ < x < | | , 

i^ < x < i 
32 — — 2 ' 

when | | _ 

otherwise, 

when | < x < | | , 

when § < x < £ , 

ntViprwisp otherwise, 

| ( 1 6 x - 9 ) 

i ( 1 0 - 1 6 x ) 

0 

when ^ < x < | | , 

when | | < x < §, 

otherwise, 
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w5 10 (a;) 

w5 11 (x) = 

^ 5 12(2:) 

^5 130*0 

^5 14 fa) = 

^ 5 15(a;) 

±(16x-10 

1(11 - 16x 

0 

| ( 1 6 x - l l 

|(12 - 1 6 x 

0 

±(16x-12 

|(13 - 1 6 x 

0 

± (16x-13 

i ( 1 4 - 1 6 x 

0 

i ( 1 6 x - 1 4 

|(15 - 1 6 x 

0 

| ( 1 6 x - 1 5 

i ( 1 6 - 1 6 x 

0 

when § < x < | | , 

when M < x < | i , 32 

otherwise 
16' 

when i | < x < |§ , 

when | | < x < | , 

otherwise, 

when I < x < | | , 

when § < x < if, 

otherwise, 

when ^ < x < | | , 

when | | < x < | , 

otherwise, 

when I < x < | | , 

when — < r < — wnen 32 ^ x \ 1 6 , 

otherwise, 

when ±| < x < 31 

16 
when 31 

32 

otherwise. 

32' 

<X < 1, 

The graphs of these sixteen wavelets are shown in Figure 5. 

Thus we have 

W5 := span{u;5 0, w5 1, w5 2, w5 3,w5 4, w5 5, w5 6, w5 7, 

W5 8,W5 9,W5 10, W5 n,W5 u,W5 13, W5 u,W5 15}. 

Figure 6 shows the nonzero parts of all 31 of these wavelets plotted together. 

One may continue this procedure until the desired resolution level is obtained, 

and ultimately obtain, for any m G M, 

Xm = Xo®W1®W2®---® Wm_i © Wm. 

By Theorem 2.6, we have 

H${0,1) = X0 © Wx © W2 
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Graph of the wavelets wc „, wc wc H, 
3U 3 1 3 13 

0.51 1 1 1 1 1 1 ,— 

0.45 -

0.4 -

0.35 -

0.3-

0.25 -

FIG. 5: Sixteen Wavelets 
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Graph of the wavelets w, 0,w2 Q,w2 ,,w3 Q w3 3,w4 Q w„ 7,w5 0 w5 ,5 

fVVVVVVWVVVVVV^ 
0 0.1 0.2 0.3 0.4 0.S 0.6 0.7 0.8 0.9 1 

FIG. 6: Thirty-one Wavelets 
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CHAPTER III 

APPLICATION TO THE PROBLEM 

III.l SETUP OF THE CONSTANT IN TIME CASE 

In this section we detail the multilevel method and the wavelet basis functions as they 

apply to the constant in time case of the Discontinuous Galerkin Method. The linear 

in time case is considerably more complicated and involved, and it will be detailed 

later in the implementation section. For basis functions, we use the linear wavelet 

basis for HQ(0,1) from [2] as constructed in the previous section with XQ = {0} and 

W\ — span{tt>i 0 } . Further, we will use the notations 

f1 f1 d d 
(wij,Wi>j>) := Wij(x)wi>j'(x) dx, a(wij,Wi>j>) :— / —wij(x)—wi'jl(x)dx. 

Recall now that we are solving a system of the form 

A-M u M — J M 

where 

^ M : ~ [ a i j i ' j ' ] (2M- l)x(2M- l)) 

aiji'j' : = (wij,wi'f) + kna(Wij,Wi>j>), 

u M •— [ ? i ' j ' J ( 2 M - l ) x l , 

f M : = [fi'j'}{2M-l)xl, 

M ( 2 M " 1 - 1 ) 

fi'i' : = Y, C~1(wij>w^j')+ I (f,Wi'f)dt. 
ij=l 0 In 

for 

ij = 1 0,2 0,2 1,3 0, • • •, 3 3,4 0, • • •, 4 7, • • •, M 0, • • •, M (2M~1 - 1), 

i'f = 1 0,2 0,2 1,3 0, • • •, 3 3,4 0, • • •, 4 7, • • •, M 0, • • •, M (2M~1 - 1), 

and 

XM = span{wy : ij = 1 0,2 0,2 1,3 0, • • •, 3 3,4 0, • • •, 4 7, • • •, M 0, • • •, M (2 M " 1 -1 )} . 
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For M = 1 we have 

Xi = X0 ©! Wi = Wi= span{wi 0 } -

The system will have the form 

where 

-™1 = [a«ji'j'Jlxl) 

1?? := [^)]ixi, 

/ 1 : ~ [/i'j']lxl, 

for ij = 10, and i'j' = 10. There is no multilevel decomposition for this resolution 

level; decomposition begins on the second level. 

For M = 2 we have 

X2 = X0 ©! Wi ©i W2 — Wi ©i W2 = span{u;i 0, ^2 o, w2 1} 

and the system will have the form 

A2
 U 2 ~ / 2 

where 

^ 2 = [°yi'j']3x3, 

1?2 == [SVW, 

/2 : = [/«'j']3xl, 

for ij = 1 0,2 0,2 1, and i'f = 1 0,2 0,2 1. 

For M — 3 we have 

^3 = ^o ©i Wi ffii W2 ©! W3 = Wx ©! iy2 ffij W3 = span{iOy} 

and the system will have the form 

^ 3 U 3 = / 3 

where 

^ 3 — [aiji'j']7x7, 
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~^3 : = [C4"j']7xl, 

7 3 : = [fi'j'hxl, 

for ij = 1 0,2 0,2 1,3 0,3 1,3 2,3 3, and i'f = 1 0, 2 0,2 1, 3 0, 3 1, 3 2, 3 3. 

For M — 4 we have 

Xi = Xo ©i Wi ©i W2 ©i W3 0 i W4 = Wi ©i W2 0 i W3 ©! VK4 = span{t%} 

and the system will have the form 

S*4 u 4 — / 4 

where 

A2 = [ajjj'j'] i5xi5, 

u 4 : = [£i"j']l5xl, 

/ 4 : = [/i'j']l5xl> 

for 

ij = 1 0,2 0,2 1,3 0,3 1 , 3 2 , 3 3 , 4 0 , 4 1 , 4 2 , 4 3 , 4 4 , 4 5 , 4 6 , 4 7 , 

and 

i'f = 1 0,2 0,2 1,3 0,3 1,3 2,3 3,4 0,4 1,4 2,4 3,4 4,4 5,4 6,4 7. 

To generalize for the level M, we have 

XM = X0 ©1 Wx ©1 • • • ©1 W M = Wi ©! • • • ©1 W M = span{w? i} 

and the system will have the form 

^M u M = f M (26) 

where 

^ M — [ a i j i ' j ' ] (2M - l )x(2M - l ) , 

^ M : = [Ci"j'](2M-l)xl! 

f M '•= [ / i ' j ' ] ( 2 ^ - l ) x l ) 

for 

ij = 1 0,2 0,2 1,3 0, • • •, 3 3,4 0, • • •, 4 7,5 0, • • •, 5 15, • • • 
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and 

• • •, M 0, M 1, M 2, • • •, M (2M~1 - 1), 

i'j' = 1 0,2 0,2 1,3 0, • • •, 3 3,4 0, • • •, 4 7,5 0, • • •, 5 15, • • • 

• • •, M 0, M 1, M 2, • • •, M (2M~1 - 1). 

To generalize for the level M+l , we write 

XM+i = XQ@iWi®i--- ©i WM+i = Wi ©i • • • ©i WM+i = span{wy} 

and the system will have the form 

An -rf-n _ -? 
^M+l a M+l — J M+l 

where 

for 

and 

^ M + l = [aiji'f](2M+1-l)x(2M+i-i), 

^ M + l : = [Qj'](2M+i-l)xi, 

f M+l : = [/i ' j '](2M+1-l)xl) 

ij = l 0,2 0,2 1,3 0,---, 3 3,4 0, • • •, 4 7,5 0, • • •, 5 15, • • • 

• • •, (M + 1) 0, (M + 1) 1, (M + 1) 2, • • •, (M + 1) (2M - 1), 

i'j' = 1 0,2 0,2 1,3 0, • • •, 3 3,4 0, • • •, 4 7,5 0, • • •, 5 15, • • • 

• • •, (M + 1) 0, (M + 1) 1, (M + 1) 2, • • •, (M + 1) (2M - 1). 

For the multilevel decomposition on the M+l level we have 

XM = spuaiwij}, ij = 1 0, • • •, M 0, • • •, M (2M^ - 1), 

WM+1 = s p a n j ^ } , ij = (M + 1) 0, • • •, (M + 1) (2M - 1), 

with 

XM+I = XM © I WM+I-

We decompose the matrix A^ + 1 as 

An T?n rM,M+l 

Gn Tin 

M+1,M n M + l , M + l 
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where the matrices An
M, FM,M+\-> CM+I,M>

 an(^ HM+I,M+I
 a r e defined as 

A M = [fliji ' j '](2M-l)x(2M-l)! 

for ij = 10, • • •, M(2M"X - 1), i'f = 10, • • •, M(2M~l - 1), 

^M,M+1 = [aiji'j'] (2M-l)x(2M)> 

for i j = 10, • • •, M(2M~1 - 1), i'f = (M + 1)0, • • •, (M + 1)(2M - 1), 

^ M + l . M = [aiji ' j '](2M)x(2M-l)i 

for ij = (M + 1)0, • • •, (M + 1)(2M - 1), i ' / = 10, • • •, M(2M'1 - 1), and 

^M+1,M+1 = [aiji'j'](2M)x(2M)i 

for i j = (M + 1)0, • • •, (M + 1)(2M - 1), i ' j ' = (M + 1)0, • • •, (M + 1)(2M - 1 

Next we decompose 'vf^+i as 

M + l 
' M,0 

M,l 

where 

" Mfi 

—m 
V M,l 

Also we have / M+\ written as 

: = 

:= 

/ M+l 

&™j'](2M- l ) x l i 

Wj ' J2 M x l -

= 
/ M 

with 

f M '•— [fi'j'](2M-l)xl, 

9M : = [9i'j'hMxl> 

(M+l) (2M-1) 

£ 
ij=(M+l) 0 

M (2M-1-1) (M+l) (2M-1) 

/<'j' := £ C T ^ - ' ^ ' H £ riif1(u>ij,wi'j')+ Af,Wi>j')dt, 
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for i'f = 1 0, • • •, M (2M~X - 1), and 

M ( 2 M - ! - l ) (M+l ) ( 2 M - 1 ) 

9i'j':= J2 Zif1(wij,wi'f)+ I ] Vijrl(wij,u>i'j')+ (f,Wi'j>)dt, 
ij=W ij=(M+l) 0 In 

for i'f = (M + 1) 0, • • •, (M + 1) (2M - 1). 

With these various arrays now defined, the system 

An -rfn _ -? 
AM+1 a M+l — J M+l 

becomes the system 

An 
M 

J7"n 
rM,M+l 

Gn fjn 
M+1,M " M + l . M + l 

' M,0 

M,l 

7. 

which may be written as 

A n -f-n 
M u M ,0 + FM, M+l V M,l 

Gn ~T?n _L lJn T?n 

M + l . M u M,0 "•" " " M + l . M + l U M,l 

M 

tM 

J Mi 

1?M-

To obtain the multilevel approximation TtMl of the M+l level numerical solution 

l?M+i) w e first solve the coarse grid problem 

An -rj>n _ Y 
^ M u M — J M 

obtaining the Mth level solution ~TtM-

Next we solve the system 

nM+l,M+lVM,l — 9 M ^M+1,M U M 

obtaining 

v M,\ — ( - "Af+ l .M+l ) \9 M ~ GM+1,M U Ml-

With lfM j now known, we solve the system 

An -xf-n _ ~fn _ j?n -fn 
rt-M a Mfi — J M rM,M+l u M,l> 

obtaining 

~^M,0 = {AM)~ (IM~ FM,M+l^Mfi)-
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Finally, we set 

u M,l 
u Mfi 

m 
M,l 

Using T t ^ i as an approximation to !?M+I> that is, 

M + l • M,V 

where 

u MA ~ 
(^™j')(2M-l)xl 

we form the linear combination 

u M + l 

M (2 M - ! - l ) (M+l) (2M-1) 

(27) 
i'j'=10 i'j'=(M+l) 0 

III.2 COMPUTATIONAL COSTS 

III.2.1 Constant in Time Case 

Now some specifics as to the advantages of using the multilevel method to approxi

mate the solution of the linear system 

^ M + l ^ M + l I M+l, (28) 

when the approximating functions are constant in time. 

Direct calculation of this system would require us to solve a linear system con

sisting of 2 M + 1 — 1 equations and 2 M + 1 — 1 unknowns resulting of a computational 

cost of 0((23M+3). 

Approximating the solution of this system via the multilevel method requires 

solving two systems consisting of 2M — 1 equations with 2M — 1 unknowns, at a cost 

of 0(2 3 M) , and solving one system consisting of (2M + 1 — 1) — (2M — 1) equations 

with (2M + 1 - 1) - (2M - 1) unknowns at a cost of 0(23 M) . It will be shown in the 

implementation section that the multilevel method, despite having more systems to 

solve, provides a considerable gain in computational efficiencies. This is due to the 

fact that these systems are of smaller dimensions than the single system of larger 

dimension used for the computation of the direct method. This gain becomes much 

more pronounced as the grid resolution M is increased to higher levels. 
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III.2.2 Linear in Time Case 

For the the linear in time case, all of the systems have twice the size of the constant 

in time case so direct calculation of the system (28) results in a cost of approximately 

0(2 3 M + 4 ) . The cost of using the multilevel method to solve (28) will be approximately 

0(23 M + 1) which we will demonstrate to be substantially less in the implementation 

section. 

In the next chapter, we show that the Multilevel Method provides the same degree 

of accuracy as the standard Discontinuous Galerkin Method. Much of the following 

discussion, and many of the results are based on information which is taken from [3]. 
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CHAPTER IV 

ERROR ANALYSIS AND ESTIMATE 

In this section we will look at the the conditions which will allow the multilevel 

method to be accurate. We will need either the two hypotheses 

(I) 

Bm\ e x i s t s > 

(II) 

Bm\Cm,i is uniformly bounded, 

or the two hypotheses 

(III) There exists a positive integer M0 and a positive constant a such that for 

m > M0, 
\\A™\\ ^ Q _ 1 > 

(IV) 

lim ||Cm,i|| = 0. 

The reason for each pair of hypotheses is that the main result of this section, 

Theorem 4.2, can be proven using either hypotheses (I) and (II), or hypotheses (III) 

and (IV). The advantage to using hypotheses (I) and (II) is that, unlike hypotheses 

(III) and (IV), the operator A^ is not required to be uniformly bounded, and in 

fact, may even have a norm that approaches infinity. This in fact occurs in Section 

VI.4. Further, for the version of the proof that utilizes hypotheses (III) and (IV), we 

need the following lemma from [3], which we state and prove next with additional 

details provided. 

Lemma 4.1. (Chen, Wu, and Xu [3]). Suppose that hypotheses (III) and (IV) 

are satisfied. Then there exists a positive integer M > MQ such that for m> M, the 



equation 

has a unique solution um<i € Xm+\. 

Proof. By (17), we have 

SO 

Using hypothesis (III), if m > M0, then for a; € X m + i , 

H#m,lZ|| = ||(Ar>,l -C m , i )x | | 

> a||x|| - ||Cm,i||||x|| 

= (a- | |C r a i l | | ) | |x | | . 

Thus, for y € Ym+i, we have 

IMI>(a-||CTOll||)||B->||, 

so 

l l ^ y l l < ——jj-||y||. 

Therefore 

But by hypothesis (IV), there exists a positive integer M > Mo such that for m 

we have || Cmji || < a/2. Combining this inequality with the inequality 

ll-Bro,iz|| > (a- ||Cm,i||)||^|| 

from above, we find that for m > M we have 

In II / a M I II a i l I 

\Bm,ix\\ > (a--)\\x\\ = -\\x\ 

so 

f IMI < 11̂ .1̂ 1 
for x 6 Xm+i, which implies 
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Thus for all m > M, the equation 

^m,lUm}i = Jm+l — C m ] i ' U m i i 

has a unique solution. • 

The next theorem, Theorem 4.2, is our main result. It shows that our method 

provides the same degree of accuracy as the conventional Discontinuous Galerkin 

Method. Although there are many similarities to Theorem 2.2, there are also several 

key differences. One of the most apparent is that, unlike Theorem 2.2, our result 

holds under two somewhat different sets of hypotheses. Further, the error bound of 

our result is based on the error bound provided by Theorem 2.1 for the Discontinuous 

Galerkin Method, rather than on the approximation error Em in the space Xm that 

is used for Theorem 2.2. Throughout the calculations we use C to denote generic 

constants whose values change as they appear. Further, as stated, we prove both 

versions of the theorem, each written in an independent manner that does not rely 

on the other version for any steps or details. 

Theorem 4.2. Suppose that hypotheses (I) and (II) or (III) and (IV) are sat

isfied. Let u G X be the solution of equation (1), and «TO)1 € Xm be the solution 

of equation (22) with Xm = span{wij} where {w^} is the wavelet basis described 

in Section II. 4- Then there exists a positive integer M such that for m > M and 

n = 1, 2, • • •, N, we have 

where 

\u - Um,i||/n < CLn max. Em+hqn(u) 
Kn<N 

LN = ( l o g ( ^ ) + 1)5, 
kN 

Emm{u) = min ^ | | 4 j ) | | / A f + \\h2
 D2U\\IN 

for u[x) = ut, i42) = utt, \\u\\iN = maxte/j, ||w(t)||2, and hm,n := maxx<m<2M |xm_i 

xm\ with 
>2 _ - 2 L 2 
nm+l,n ~ P1 "'m^n 

due to the use of the wavelet basis. 
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P r o o f (Version One) . Assume hypothesis (I) and (II) are satisfied. We prove 

this theorem by establishing an estimate on ||um)i — Um+i\\in. For this purpose, we 

subtract (20), 

(1) = / m + i - CmtiUm(l) 

from (22), 

to obtain 

fim,l(«m,l — Um+l) ~ Cm,l(Um+l ~ ^ m , l ) 

where Um+\ is identified with um(l) := [umio, wm,i]T, per the notation of [3], tfm>i is 

the solution of (22), and 
r um 

0 

as in Section II.3. Since hypotheses (I) is assumed, we have 

um,i 

(uTO,i — f/m+i) — BmlCm^(Um+\ — um>i). 

Hypotheses (II) now implies 

\\um,\ - Um+1\\in < C\\Um+i - um>1\\In. (30) 

Since umfl '•= Um, we have 

\\umfi - Um+o\\in = 0. 

Now using the definition of um^, Theorem 2.1, and the triangle inequality, we obtain 

\\Um+1 - Um,l\\ln < \\Um+l-u\\In + \\u-Um+o\\ln + \\Um+o-Umfl\\ln 

< CLn max Em+X>qn{u) + CLn m a x . E m q n ( u ) + 0 
l<n.<jv \<n<N 

= CLn max Em+i„n{u) + CLn max Em„n(u) 
l<n<N l<n<N 

< CLn max• Em+1<qn(u). (31) 
\<n<N 

Note that since we are using the wavelet bases for the subspaces Xrn and Xm+i, we 

have M2/im+i,n — h"L,n> which implies 

Ln max Em>qn(u) <CLn max Em+lqn(u) 
Kn<N Kn<N 
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for some constant C. Substituting the estimate (31) into the right hand side of equa

tion (30), we get 

\\um,i - Um+1\\in < CLn max Em+it(in(u). 
l<n<N 

Now using Theorem 2.1 and the last inequality, there exists a positive integer M 

such that for m > M, and n — 1, 2, • • •, N, we have 

| | t t - « m , l l k < \W ~ Um+1\\In + \\Um+1 - Umtl\\In 

< CLn max Em+hqn{u) + CLn max Em+hqn(u) 
l<n<N l<n<N 

< CLn max Em+1<qn(u) 
l<n<N 

which completes the proof of this version of the theorem . 

Proof (Version T w o ) . Assume hypotheses (III) and (IV) are satisfied. This 

version, like the first, is done by establishing an estimate on \\um^ — C/m+i||/„. For 

this purpose, we subtract (20), 

from (22), 

to obtain 

Bm>\Um{\) — fm+l — CmyiUm{l) 

Bm,i(umti — Um+i) — Cm>i(C/m+i — um>i) 

as we did in the proof of Version One above. Since hypotheses (III) and (IV) are 

assumed, Lemma 4.1 applies, so 

(um,i — Um+i) — Bm>1Cmti(Um+i — umti). 

Thus from the previous equation and the inequality (29), 

llfl-Hl < 1 

a - | |Om)i | | /n 

from the proof of Lemma 4.1, we have 

II TT II ^- I I^Tl , l |U n ||7-r - || /Qn\ 
« m , l — Um+l\\In S f?Fi U~ \\Um+l ~ « m , l | | j „ - \6Z) 

Since umfl := Um, we have 
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\\Umfi ~ Um+o\\ln = 0. 

Now using the definition of Mm,i, Theorem 2.1, and the triangle inequality, we obtain 

| | ^ m + l — ^ m , l | | / n < | | f /m+l ~ u\\]n + \\u ~ Um+o\\ln + \\Um+o ~ ^m,o | | / „ 

< CLn max Em+hqn(u) + CLn max Em,qn(u) + 0 
\<n<N \<n<N 

= CLn ^ax^Em + i ,q n(u) + CLn ^ a x ^ Emtqn(u) 

< CLn max Em+itqn(u). (33) 
l<n<N 

Note that since we are using the wavelet bases for the subspaces Xm and Xm+i, we 

have n2h2
m+hn = h2

mn, which implies 

Ln max Emqn(u) < CLn max Em+iqn(u) 
l<n<N l<n<N 

for some constant C. Substituting the estimate (33) into the right hand side of equa

tion (32), we get 

\\C II 
II TT II ^ 11^771,1 / n /^ j- 7-t / \ 
\\um,i - t/m+i /„ < ijT^—77—CLnmaj<.Em+lqn(u). 

a-\\Cm,i\\in i<n<N 

Now, employing hypothesis (IV), there exists a positive integer M such that for 

TO > M, we have 

l | C m , i | | < | . 

Thus for m > M, we have 

| | C m , l | | / n < 2 _ 1 

a-| |Cm,i | | /n a - f 

so 
||«m,i ~ ^m+i||/„ < CL^ max. Em+itqn(u). 

l<n<N 

Now using Theorem 2.1 and the last inequality, there exists a positive integer M 

such that for m > M, and n — 1, 2, • • •, N, we have 

| | « - 7̂71,1 | | / n < II"" - Um+l\\In + | |C/m + l - t t m > l | | / n 

< CLn max j5 r a + l f f(u) + CL„ max Em+lqn(u) 
\<n<N l<n<N 

< CL 
n max Em-i-i qn(uj 

l<n<N 

which completes the proof. 

In the next chapter, we examine special time and space discretizations to treat 

problems with difficult initial conditions. 

file:////Umfi
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C H A P T E R V 

I N C O M P A T I B L E I N I T I A L C O N D I T I O N S 

V.l THE DIFFICULTY 

In this chapter, most of which is from [6], we consider the case where the initial 

condition of the parabolic problem is incompatible with the prescribed boundary 

conditions. For convenience, we follow [6] and use the same notation. 

As an example of the above mentioned problem, consider finding u such that 

ut(x, t) — uxx(x, t) = 0, x € Q, t > 0, 

u(0,t) = it(l,i) = 0, t > 0 , 

u(x,0) — u0(x), x 6 ft, 

where uo(x) — 1 — x and ft = (0,1). Here the actual solution is found, after some 

work with Fourier Series, to be 

oo 

u(x,t) = X^K je~^ *sin(J7rx), 
j=i 

where the coefficients u°, are given by 

u] = 2 ^ ( 1 - OsinOVOde = \ { ) - ^ ™ w ) = <> ( j ) • 

In the following discussion, we will let C denote a constant that changes as it 

appears. For the solution u(x, t) to the above problem, we have 

OO OO J J OO 

\\ut{t)\\l = |K(OHL(o,i) = £ C j V ^ = Y.jCe^H = JtY.Ce~^\ 
3 = 1 3 = 1 3 = 1 

due to the uniform convergence in t of the series Y^kLi Ce~2:> t. Since J0°° e~^ d( < oo, 

using the change of variable y = jV2t, we obtain 

J OO J 

eft ^ dt 

which implies 

\\ut{t)h = 0{r^). 
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Note that as t —> 0+ , we have ||itt||/i - • °°! which will cause difficulty when approx

imating u(x, t). 

A similar situation will also arise when u0(x) = min(x, 1—x) in the above problem. 

Here we have |K(t)||2 = 0 ( r x / 4 ) . 

Both these situations can be treated with the following time/space partitioning 

scheme from [6]. 

V.2 THE TIME DISCRETIZATION SCHEME 

We will consider the one-dimensional parabolic problem of finding u(x, t) such that 

ut(x,t)-uxx(x,t) = 0, x € Q, t > 0, (34) 

u(0,t)=u(l,t) = 0, t>0, 

u{x, 0) = uo(x), x £ f2. 

where the initial condition u0(x) is incompatible with the prescribed boundary con

ditions. As with this previous section, we follow [6]. Assume 

\\ut(t)\\2 = 0(r«) 

where 0 < a < 1. Let g b e a nonnegative integer. We define an index of singularity 

as Q :— f^. For T > 0 and a positive integer N, let 

* » = ( j v ) > n = 0,l,2,---,N, 

and 

(35) 

As before, we define /„ = (£n-ij tn] for n = 1,2, • • •, N with kn = tn — tn-\ denoting 

the length of the time subinterval In. Hence, we have 

™n 
n 1\«' 

N 
T, n = l,2,---,iV. 

> " > > -

By the Mean Value Theorem from calculus, 

% s y n 
Q - i 1 

x r 
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The solution of the parabolic problem (34) is then approximated in the time variable 

t over each time subinterval /„ by a polynomial of degree q. For example, in the case 

of q = 1, let P\W be the linear interpolatory projection in time of w 6 HQ(Q) onto 

Sk where 

Sk = {v : [0,oc) - H*(n);v\In E Pq(In),n = 1, • • • ,iV}, 

Pq{In) := {v(t) = $ > * * : «i e ^o(fi)}, 

/fg(fi) = {v : D{j)v € L2(Q), j = 0,1,2; u = 0 on dtt}. 

That is, we have 

Piw(x,t) = -^7—w(x,£n_i) H j-^—to(a:, in) 

for each t £ In. Note that Pi, when seen as an operator on HQ(Q,), is bounded with 

respect to the norm ||w(i)||oo,/„ where 

lk(*)lloo,/„ = maxtein\\w(t)\\LoBia). 

Since Q, is assumed to be a bounded domain, we have Pi bounded with respect to 

the norm || • \\In as well. If w(x,t) = wo(x), that is, constant in time, then we have 

Piw(x,t) = -^—wQ(x) -\ -^—w^x) = wQ{x). 
Kn Kn 

If w(x, t) = wo(x) + twi(x), that is, linear in time, then we have 

Piw{x,t) = ~—w(x,tn_i) + — ~ ^ w ( x , t n ) 

= -\—iwo(x) + tn-iwi(xj\ H -?—[wo(x) + tnwi(x)] 
Kn Kn 

= W0(x) + tWi(x). 

Thus, Pi equals the identity on either constant or linear polynomials. If we write the 

Taylor series in the time variable t about the point tn to the first or second order, 

respectively we obtain, for each n — 1, 2, • • •, N, 

\u-Piu\\In< J \\ut(t)\\2 dt, 
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and 

| | t i -P iu | | / n < Ckl\\utt\\In. 

For higher values of q, writing the Taylor expansion to the order q, the best 

possible estimate for the projection Pq : HQ(Q.) —> S^ is given by 

\U ~ PQU\\ln < m i n / ||«t(t)||2 dt, Ckf 
dq+1 

dt<i+l (36) 

Since we are interested in cases where ||itt(£)||2 = 0(t a) for 0 < a < 1, the next 

lemma will be quite useful. 

Lemma 5.1. (Kaneko, Bey, and Hou [6]). Let 0 < a < 1, q a nonnegative integer 

and T > 0. Also, assume tn, n = 1, 2, • • •, N are defined by (35). Then 

[ s~ads < C~ 
Jln ~ N9-A/9+i' 

where C is a constant independent of N and for n > 1, 

maxi<„<jv / s ads < C— 
~ ~ Jin A 

where C is a constant independent of N. 

N' 

Proof. For n = 1, we have 

s-ads= I 

For 1 < n < iV, we have 

'n-l\Q, 

/ s-ads= / s-ads 
Jh Jo 1 — a mQ 

T 
l-a 

-°"*) 

f s~ads < J 
Jin Jin 

rp—a 

N 

n-l\-aQ 

1 \q+1 

N 

ds as s a is decreasing over In, 

n\Q /n-l\Q 

•n-l\-aQ ( n\Q~l ( n n-1 

N N, N N 
i 1 \Q-<xQ n Q - 1 

NJ 
= C n 

= C <C 
Nq 

aQ 
. Q - l - a Q 

= f 
AT9+1 - ^AT9+1 JV' 
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Using Lemma 5.1 with n — 1 and q = 1 will lead to JIn \\ut(t)\\dt — O ( ^ ) , 

assuming ||ttt(i)||2 = 0{t"a) for 0 < a < 1 and t £ I\. Since we assume ||«tt||/„ is 

bounded uniformly in n > 1, (36) implies 

1 
W - PM\in = 0 N2 n = 1, 2 , • • • , iV. 

The next lemma guarantees the stability of the Discontinuous Galerkin Method 

by showing (1 + log j^-)2 to be uniformly bounded. 

Lemma 5.2. (Kaneko, Bey, and Hou [6]). Assume tn and kn are defined by (35). 

Then, for any positive integer N, we have 

t \ 5 
1 + log-p-j < V2, for each n = 0,1, 2, • • •, N. 

Proof. We use the fact that for 0 < x < 1, we have log(l — x) < —x for x < 1. 

Now, 

K„ 

< 

< 

l + iogTir 
(#) 

l + log 

(£)«_(„_£)« 
I 

1 
1 - ( ^ ) Q 

1 - log 1 n 1\« 

n 

1 - log 1 -

1 + 

i V - l \ Q \ \ 5 

iV 

i V - l \ Q 

iV 

< V2. 

The following theorem is a modification of Theorem 2.1. Minor changes to the 

proof of this theorem in [7] serve as the proof of this result. 

Theorem 5.3. (Kaneko, Bey, and Hou [6]). Assume there is a constant 7 

such that the time steps kn satisfy kn < 7/^+1, n = 1, 2, • • •, N — 1, and let Un 

be the solution of (7) approximating u at tn. Let un denote the value of u at tn. 

Here u is approximated by a polynomial of degree q > 0 over each In for each n — 
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1, 2, • • •, JV — 1. Then there is a constant C depending only on 7 and a constant (3, 

where px > fihx and pK is the diameter of the circle inscribed in K for all K 6 T, 

such that for n = 1,2, • • •, N, 

I K - Un\\2 <c(l + log ^ ) 2 {maxj<n\\u - Pqu\\h + \\h2
nD

2u\\In} . 

The current time and space discretization schemes allow us to use Theorem 5.3 for 

the following reasons. First, by the construction, the time steps kn, n — 1, 2, • • •, N 

are increasing in size, so the condition kn < 7fcra+1 is satisfied for 7 — 1. Second, 

for the one-dimensional problem (34), we have hx — PK = \^K\ SO that ^- = 1 for 

all QK- Lemma 5.2 implies the uniformly bounded property of (1 + log ff1)5, which 

results in the stability of the Discontinuous Galerkin Method. 

For any nonnegative integer q, by using equation (36) and Lemma 5.1, we have 

for some 0 < a < 1, assuming ||ut(i)||2 = 0(t~a). 

By assuming ||D2u(t)||/n is bounded for n — 1, 2, • • •, N and employing the graded 

time partitions discussed in Lemma 5.1, Theorem 5.3 can be modified to the following 

result. 

Theorem 5.4. (Kaneko, Bey, and Hou [6]) For the parabolic problem (1), 

assume the initial value UQ{X) is defined in such a way that \\ut(t)\\ = 0(t~a), for 

0 < a < 1. Also, assume \\D2u(t)\\in is bounded for each n = 1,2, •••,N, and 

(0,1) is divided into 2M subintervals each of equal length. Denote by U^j the solution 

of (7) approximating u at tn and let un denote the value of u at tn. Let the time 

discretization {tn} be defined by (35). If q denotes the degree of the approximating 

polynomials to u in the time variable t, then for each n — 1, 2, • • •, N, 

The next theorem is a new result that is similar in many ways to that of Theorem 

4.2. It is essentially Theorem 5.4 enhanced with the multilevel calculation method, 

and shows that the accuracy of Theorem 5.4 is preserved when the multilevel solution 
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UM ! is used to approximate the Discontinuous Galerkin Method solution U^j+i- The 

strategy for the proof is similar to that used for proving Theorem 4.2. in that it 

is proven as two cases, one case using Hypotheses (I) and (II) and the other case, 

Hypotheses (III) and (IV). 

Theorem 5.5. Suppose hypotheses (I) and (II) or (III) and (IV) from Chapter 

IV are satisfied. Let u G X be the solution of equation (1) where Q. = (0,1), and 

•Um,i € Xm be the multilevel solution of equation (22) with Xm = span{wij} where 

{vJij} is the wavelet basis described in Section II.4- Let the time discretization {tn} 

be defined by (35), \\D2u(t)\\In bounded for n = 1,2,---,N, and \\ut(t)\\2 = 0{t~a) 

for 0 < a < 1. If q denotes the degree of the approximating polynomials to u in the 

time variable t, then for each n = 1,2, • • •, N, there exists a positive integer M0 such 

that for M > Mo, with the interval (0,1) subdivided into 2 M + 1 subintervals each of 

equal length, we have 

II n n II _nf 1 _ L A 
II" -UM,l\\ln ~ U {-j^Tl + 22(M+l) ) 

where \\u\\in = maxt6/ri ||u(£)||2. 

Proof (Version One). Assume hypotheses (I) and (II) are satisfied. The proof 

of this theorem is similar to the proof of Theorem 4.2, employing the same operators 

and notation. As before, we first establish an estimate on Hw .̂i ~~ ^M+IIIA.- For this 

purpose, we subtract 

-BM,I«M(1) = / M + I — C M , I U M ( I ) 

from 

BM,IUM,I — / M + I — CM,IUM,I 

to obtain 

BM,l(«M,l ~ ^M+l) — CM,I(UM+1 - Un
M1). 

Since hypotheses (I) is assumed, we have 

(UM,1 —
 UM+I) — ^ l ^ U ^ M + l — ^M,l)-

Hypothesis (II) now implies 

| | . ,n jrn || s- I^WTJ71 >r,n II (ri7\ 
\\UM,1 ~ uM+l\\In -= ^\\UM+1 uM,l\\In- \olJ 

Since u%[0 = £/M, we have 
||„,ra Tjn || n 
\\UMfi ~" UM+0\\In — U-
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Using the definition of u^-y and Theorem 5.4, there exists a positive integer Mo such 

that M > M0 implies 

\UM+l-Un
M,A\ln < | | ^ + 1 - ^ | | / n + | k n - ^ + o l | / n + I I^M+0-"M,ol | / , 

0 ViV^+l + 22(M+!) ) + 0 V iV^+l + ^2M ) + 0 

]yg+i 22(M+1) 

where the last equality is justified by the fact that 

^ M + l , n — M ^ M , ^ — 2 —7J 

from the use of the wavelet basis. Substituting this estimate into the right hand side 

of equation (37), there exists a positive integer M 0 such tha t M > M 0 implies 

||„,n jjn II _ n ( i 
lluM,l ^M+llUn - U yNq+l + 22(M+1) 

Now, using Theorem 5.4 and the above reasoning, for each n = 1,2, • • •, AT, there 

exists a positive integer Mo such that for M > Mo with the interval (0,1) subdivided 

into 2 M + 1 subintervals each of equal length, we have 

\u — u i,,ik < n»"-yi+ i ik + iit^+i-«s,,iik 

o,^+ ' 
KNq+1 22(M + 1) , 

which completes the proof of this version of the theorem. 

Proof (Version T w o ) . Assume hypotheses (III) and (IV) are satisfied. Again, 

the proof of this theorem is similar to the proof of Theorem 4.2, employing the same 

operators and notation. As before, we first establish an estimate on | | u ^ 1 — U^+1 \\jn. 

For this purpose, we subtract 

BM,IUM(1) = IM+I — C M , I ^ M ( 1 ) 

from 

BM,IUM,I = IM+I — C M , I « M , I 
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to obtain 

-BM,I(UM,I - UM+X) = CM,I(UM+1 - « M , I ) -

Since hypotheses (III) and (IV) are assumed, Lemma 4.1 applies, so there exists a 

positive integer M\ such that M > M\ implies 

(UM,I ~~ UM+I) — BM,ICM,I{UM+I lM,D-

Thus from the previous equation and the inequality 

1 
R - l II 

JDM,l\\In 
< 

a - | | C M , I | | / „ 

from the proof of Lemma 4.1, there exists a positive integer Mi such that M > Mi 

implies 

I L . " TTn II <f I I ^ M . l l U n || r r " T-.n || {<1SZ\ 
\\UM,1 uM+l\\ln -S „ 11,0 || \\UM+1 ~ uM,l\\In- \^°) 

Since vJi/m = UM, we have »M,0 ~~ UM> 

\uMfi "M+oWln — 0-

Using the definition of u7^ Y and Theorem 5.4, there exists a positive integer M\ such 

that M > Mi implies 

\Jjn r-.n || - - \\TTn ^ . n l l ±_ IL,™ TTn II _L 1177™ ,>." II 

0 ViV«+l + 22(M+!) J + ^ ViV9+l + ^2M) + 0 

JV«+I 22(M+1) 

where the last equality is justified by the fact that 

^ ^ = hM+l,n = M~ M̂,™ = 2 ~ ^ 7 

from the use of the wavelet basis. Substituting this estimate into the right hand side 

of equation (38), there exists a positive integer Mi such that M > Mi implies 

II"M,I " M + I I I / „ ^ a-\\CM,i\\In~\Ni+i ' 2 W D , 

Employing hypothesis (IV), there exists a positive integer M2 such tha t for M > M2, 
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we have 
a 

IKVik< 2 . 
Thus for M > M2, we have 

a IICW.lH/n < 2 
<x-\\CM,i\\in a - f 

so 
/ 1 1 

IFM.1 - ^M+lll/n = 0 (jf^i + 22(M+1) 

Now, using Theorem 5.4 and the above reasoning, for each n = 1,2, •• •, N, there 

exists a positive integer Mo = max{Mi, M2} such that for M > Mo with the interval 

(0,1) subdivided into 2 M + 1 subintervals each of equal length, we have 

II«"-»M,III/« < I I«" - ( /£ + 1 I I / , + I |CM+I-«M,.II ' . 

= o(± + j y g + 1 2 2 ( M + 1 ) 

which completes the proof. 

Practical constraints of many applications may force one to abandon the assump

tion the ||D2u(f)||/n is bounded for each n and t, e.g. the two problems in the last 

section. In this next section, we examine a space grid partitioning scheme designed 

to deal with this situation. 

V.3 THE SPACE DISCRETIZATION SCHEME 

In [6], if ||ut(t)|| = 0(t~a), then we select a set of spatial grid points {xm(tn)} which 

are dependent on the immediate choice of time step tn. This is done by selecting a 

spatial increment hn based on the size of ||ut(i) ||oo,/„ • Let 

h(t) = max1<m<2M[im(i) - xm-i(t)] 

for each t € (0,T]. Then h(t) is determined from the condition that 

{h(t))2ra = 0(t2), as t-*0+. 

In terms of N, we require that 

(MO)2*"- = o ( ^ 
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For t — tn = (~) i-<*T, n = 1,2, • • *, TV, we have , for a constant C > 0, 

(Wn))S 

ivy = c N2' 

If we solve this last equation for h(tn), using C = 1 for convenience, we obtain 

MU = rt 

With this done, we select a resolution level M(n) such that 

2M(«) > L 

h(tn) 
(39) 

for each time level tn, n = 1,2, •••iV where L denotes the length of the one-

dimensional spatial interval and M(n) denotes the fact that the grid resolution M is 

dependent on the time step tn. The spatial partition points are defined by 

•^m\J"n) 
mL 

2M(") 
m = l ,2 , - - - ,2 ,M 

Since the space discretization is dependent on the time discretization in this scheme, 

we have the following theorem which provides an error estimate for the Discontinuous 

Galerkin Method in both the time and space variables, using the desired number of 

time steps N. 

Theorem 5.6. (Kaneko, Bey, and Hou [6]) For the parabolic problem (1), assume 

the initial value UQ{X) is defined in such a way that \\ut(t)\\ = 0(t~a), for 0 < a < 1. 

Denote by U^ the solution of (7) approximating u at tn and let un denote the value of 

u at tn. Let the time discretization {tn} be defined by (35). Assume (0,1) is divided 

into 2M(") subintervals each of equal length, where M(n) is defined by (39). If q 

denotes the degree of the approximating polynomials to u in the time variable t, then 

for each n — 1, 2, • • •, N, 

IK-^(n)ll2 = 0 
1 1 

Nq+l + Jf2 

The above scheme allows us to use fewer spatial grid points as n —• N, thus 

lowering the computational effort and expense. 

In the next section, we detail an actual one-dimensional implementation of the 

Discontinuous Galerkin Method, coupled with the Multilevel Augmentation Method 

described earlier. 
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CHAPTER VI 

IMPLEMENTATION 

VI. 1 S E T U P 

For implementation of this method, the linear wavelet basis of the Sobolev space 

HQ(Q, 1), as constructed in Section II.4.2, is chosen, with the basic notation of Chap

ter III employed. Note that with this choice of basis, the dimension of each subspace 

XM will be d,M — 2M — 1- An arbitrary grid resolution M + 1 is chosen, an ap

propriate number of time steps N selected, and the various matrices constructed by 

augmentation. As before, we have 

(wij,Wi>j>) := / wij(x)wi'j>(x) dx, 

(±WlJ, A w . , . , ) : = £ lwtJ(x)±w,f(x) dx = 6, 

1 when i = i', j = f, 

and 

where 

*?* f 

diji'j' '•— < 

First, the matrix A™ is defined as 

0 otherwise. 

or 

From there the matrices 

^1 = [ (ww,ww) + kn ] 

A?=[h + *n] 

rh2 - [ 64 64 J ' U 2 , l 
64 

64 

H. 2,2 

48 

are constructed, then augmentation of A\ gives 
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An _ 
A l , l — G n 

2,1 

VI 
64 

l i t 
12 "• 

VI i , L 
64 48 T f v " 
VI 
64 0 48 

VI 
64 

0 

+ kn 

This process is then continued, constructing the matrices 

then augmenting A% to obtain 

\n _ 
^ 2 , 1 — 

A\ 

^ 3 , 2 

-^2,3 
Tin 
- " 3 , 3 

77m 
^ 2 , 3 -

1 
256 
V2 
256 

0 

r r n 

3 3 
256 256 

vi 0 
256 U 

0 & 
u 256 

" -J- + k 
192 ^ ^ 

0 

0 

0 

1 
256 

0 
V2 
256 . 

) 

0 

-±- + k 
192 T / v " 

0 
0 

U 3 , 2 — 

0 

0 

J - -4- fr 
192 ^ ^ 

0 

1 
256 

3 
256 

3 
256 

1 
- 256 

n 

1 
192 

V2 
256 
V2 

0 

256 U 

0 ^ u 256 

0 3 

U 2 

0 

0 

0 

+ Kn 

/2 
56 . 

; 

or 

ATI _ 
A2,l — 

ere A\ : 

12 + fc 
V2 
64 
V2 
64 
1 

256 
3 

256 
3 

256 
1 

256 

— An 

V2 
n 6 4 

-L -1- t 
48 ^ " ' " 

0 
V2 
256 
V2 
256 

0 

0 

V2 
64 

0 

48 ^ h n 

0 

0 
V2 
256 
V2 
256 

1 
256 
V2 
256 

0 

- i - 4- k 192 ^ ^n 

0 

0 

0 

3 
256 
V2 
256 

0 

0 

J - 4 - i-
192 ^ *""• 

0 

0 

3 
256 

0 
V2 
256 

0 

0 

J - -I- £-
!92 ^ ^ n 

0 

One then continues this process until the desired 

1 
256 

0 
V2 
256 

0 

0 

0 

192 ^ h'n 

grid reso 

level M is obtained. In general, for m = 2, 3, • • •, M, assuming A\ :— A1lI_ll has 

been obtained, one computes the matrices F^ M+1, G ^ + 1 M , and -^M+IM+IJ then 

constructs the matrix 
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A MA 
A M F] M.M+1 

As for the actual matrices, the construction of ^4M has been described above. The 

matrix FM^M+1 presents the most computation. Matrix GM + 1 M is the transpose 

of f J M + 1 . Matrix HM+l M+1 is a simple diagonal matrix, with the main diagonal 

entries based on the spatial index m and the time step size kn. 

As we did before, we decompose l/^f+i a s 

' M+1 
M,0 

MA 

where 

u M. o
 :— [C"yJ(2M-i)xi) 

M,l k " j ' ] 2 M x l -

These will be the scalars we eventually find. 

For the constant in time case, we have / M + 1 written as 

7 M+1 
7 M 

^ M 

where 

f M '•— l / i ' . j ' ] (2 M - l )x l> 

!? M '•— [9i'fhMxl-

with 

M ( 2 M - X - 1 ) 

u=10 ii=(M+l) 0 / n 

for i'f = 1 0, • • •, M (2M~l - 1), and 

M (2 

9i'j' : = 

> M - ! - l ) (M+1) ( 2 M - 1 ) 

Z C3" 1Kj. u , i ' j ' )+ Z rj?f1(wij,Wi'j')+ {f,v>i'j')dt, 
A — m „-,.• f*x>-i\ n Jin ij=W ij=(M+l) 0 
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for i'f = (M + 1) 0, • • •, (M + 1) (2M - 1). 

With these various arrays now defined, the system 

A 

becomes the system 

An 

M + l u M + l 

rM,M+1 

7 

Gn rrn 
M+1,M nM+l,M+l 

M + l 

n 
Mfi 
n 
MA 

7 M 

or 

AMU M,0 + rM,M+lv M , l — J M ) 

f-in Ttn _i_ tfn ~^tn ~F? 
^M+l,M u Mfi ~r ^ M + l . M + l ° MA ~~ 9 M-

To obtain the multilevel approximation uM1 of the M+l level numerical solution 

UM+I, we first solve the coarse grid problem 

An — m _ r 
^M U M — J M 

obtaining the Mth level solution ~vtM. 

Next we solve the system 

- " M + l . M + 1 V M,l — 9 M GM+1,M U A M 

obtaining 

"' M , l ~~ V J - ' M + 1 , M + 1 

With l / M 1 now known, we solve the system 

V 1/1 — ( n j f + i j ( + i ) ( 9 M - G M + l . M «• M) 

obtaining 

Finally, we set 

An —>n _ ~fn _ pn —fn 
nMuMfi— J M r M , M + l v M , l i 

u Mfi — (AM) ( / M — - ^ M . M + l v Mfi)-

u
 MA — 

-—yn 
u Mfi 

-jr>n 
V MA 

(4"j')(2M-l)xl 

( ^ ' ) 2 M x l 

then form the linear combination 
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M (2A 
-1 

UM+1 ~ UM,1 '•— Z ^ £i'j' 
i'j'=10 

fWi'ji + 

(M+l) (2M-1) 

i'j'=(M+l) 0 
(40) 

To write the codes for the implementation, some changes of notation are made 

to simplify the computer codes. To do this, we first define the matrix 

AM = [(u> ij,l<Vj')](2M_1)x(2M_1), 

where (wij,Wi>j>) = J0 WijWi'ji dx. Also, we define 

FM = [(Wij,lUi>j>)](2M-l)x2M 

GM — [(Wij,Wi'j')]2Mx{2M-l) 

HM = [(Wij,Wiij>)]2Mx2M. 

Further, let 

AM + Knl : = AM, tM : = r M,M+II GM : = ^ M + I J M J - " M + "-n-* : — - " M + I , M + 1 ) 

where the matrices / in AM + knI and / in HM + knI are identity matrices with the 

same dimensions as AM and HM, respectively. The dimension of / is clear from the 

context. Thus 

An — 
AM + knI FM 

GM HM + knI 

Also, we need 

1M = / (f,W'j')dt 
Uln J ( 2 M - l ) x l (2M-1)> 

Finally, we index the "wavelets" used in the codes with single subscripts rather than 

double subscripts for simplicity. These notational changes simplify the coding for 

the implementation. 

Next we detail this multilevel procedure as it applies to the implementation of 

the constant in time case of the Discontinuous Galerkin Method. 
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VI.2 CONSTANT IN TIME CASE 

For the constant in time case, equation (10) on the M + 1 spatial resolution level 

becomes 

\AM+I + knI) £ M+i — AM+I £ M+I + / M+I 

and the M + 1 level solution is calculated as 

(41) 

» n - l 

where 

and 

f M+I = ( ^ M + I + M ) [AM+i £ 
M + l M+lJ 

£ M+l = [ ^ J ( 2 M+I_ 1 ) X 1 

7 M + I = / (f,wj)dt 
-J In ( 2 M + l _ 1 ) x l 

The numerical solution on the M + l level is written as 

2 M + l _ 1 

UM+1(x,t) = J2 £>m(z). 
m = l 

For the multilevel method, we replace AM+I with 

^4M i*M 

such that 

>W+i + KI 
AM + fcn-f -^M 

GM HM + knI 

Also, we write 

M + l 
S M 

-nn
M 

where 

and 

S M ~ [ s m J ( 2 M - l ) x l ' V M — l7?mJ(2M)xl 

7 M + l 
/ M 



for 

1M = / (f,u>j)dt 
l ( 2 M - l ) x l 

The system (41) becomes the system 

9 M = / (f,wj)dt 
\-JIn J 2 M x l 

• n - 1 

(AM + knI) £ M + FMJfn
M = AM £ M + FMlfn

M + f M 

m-1 
GM £ M + (HM + knI) f]n

M — GM £ M + HM I /M + 9 M 

which may be written as 

T M = (AM + knI)~
l[AM £ M + FM~r(nMX + ~f M ~ FM^n

M\ 

~^M
 =

 (HM + knI)~ [GM £ M + HM^M + i f M ~ GM £ M\-

The numerical solution is written as 

2 M _ j 2 ( M + 1 ' - 1 

m = l m = 2 M 

To determine the initial values for the scalars, note that on the M + 1 level, 

have 
2 M - 1 2 ( M + 1 ' - 1 

m = l m = 2 M 

The basic algorithm for the multilevel method that was used is as follows. 

VI.2.1 Multilevel Algorithm-Constant in Time Case 

Step 1. Calculate AM, FM, GM, HM, f M> if M> determine the initial values £ M 

Ml — 1 
* n - l Step 2. Set £ M — £ M, rj"M — TfM. 

Step 3. Main Loop For n = 1 to iV: 

1. Choose fcn. 

2. Calculate Mth Level Solution. 

TM = (^M + W ) '[^MTM + 7 M ] 

file:///-JIn
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3. Calculate Multilevel Solution. 

*n-l 
rfli — (HM + knI) [GM £ M + HMlfn

M + lfM — GM £ M\ 

tli = (AM + kj) x[AMl?n
M +FMlfn

M
1 + JM- FMjfn

M] 

4. Define 

u M+l ~ u M,l 
£ M 

2 M - 1 2 ( M + 1 ' - 1 

UM+1 ~ «M,1 = I ] € > m ( z ) + X) 1 > m ( l ) 
m = l m = 2 M 

• n - 1 

5. Update £ M and "^ • n - l 
M • 

»ra—1 

6. Update n. 

End Main Loop 

n = n + 1 

Next we detail the implementation of the multilevel procedure as it applies to the 

constant in time case of the Discontinuous Galerkin Method. 

VI.3 LINEAR IN TIME CASE 

The linear in time case is more complex, although the basic plan is similar. The 

numerical solution on the M + l level is given by 

UM+l\Xit) ~ <t>n{X) + TT-^nte) 
Kn 

2 M + l _ 1 

£ &nwm{x) + 
t ~~ tn-\ E &n«>m(x) 

m=l 

where 

*n(x)~ E ^M. 
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T h e scalars £{$,'" a n d £*'", m = 1, 2, • • •, 2 M + 1 — 1 are d e t e r m i n e d from t h e s y s t e m 

(AM+1 + KI) i M+l + ( ^ M + l + -jknl) £ M+l — / M + 1 + A-M+l{ £ M+l + £ M+l ) 

1 T T—^4>,n 1 I — H / J , ™ 

w i t h 

o^™ S M+l + (^ M+1 """ "o^"- ' / S M+l — ^n J M+l 

7 M + I = / (f(t),Wj)dt 
( 2 M + l _ 1 ) x l 

/ M+l 
(2«+i - l )x l 

I M+l S 
</>,n 

) S M+l 
i/j,rc 

| ( 2 M+i_ 1 ) x l L J(2 M +!- l )x l 

us ing t h e s a m e definit ions for AM a n d / as before. T h i s m a y b e w r i t t e n in m a t r i x 

form as 

A/W+l + knI AM+1 + 2^nl 

]>,n—1 —¥ip,n—1 

— r v , ; i 

S M+l 

S M+l 

J M+l + ^ M + l l £ M+l + S M+l J 

^n / M+l 

wi th t h e so lu t ion of t h i s s y s t e m be ing 

S M+l 
—>4>,n 
S M + l 

/ W + i + fcn7 ^ 4 M + I + \KI 

2~knl 2 M + l ~^~ Z n 

-1 

7 M+l 
—>4>,n—1 —tip^n— 1N 

M+l "I" <, M+l 
l-fr' 

K1/ M+l 

w h e r e 

u M+l 

—>0,n 
S M+l 

—>)/>,n 
S M + l 
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using 

£ M + l it" J S M + l 
| ( 2 M + i _ 1 ) x l 

For the multilevel method, we replace AM+i with 

3 
i/),n 

( 2 M + ! - l ) x l 

such that 

AM FM 

GM HM 

AM+\ + knI 
AM + knI FM 

GM HM + knI 

AM+I + yknI — 
AM + r,kni Fh 

GM HM + ^knl 

and 

We write 

where 

2 (J 2 ^ " ^ 

1 „ 1 , r 
-AM+i + -knl 

-^AM + ^knI 2^M 

?GM ?HM + ^knI 

'M+l 
S M + l 

S M + l 

= 

—><f>,n 
S M 

—»<£,n 
VM 

—>ip,n 

S M 
—>^,n 

S M S <£,n 
J ( 2 ^ - l ) x l 

—>4>, n 

VM = l ( 2 M + 1 - l ) - ( 2 M - l ) ] x l 
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—>t/>,n 
ci>,n 

( 2 M - l ) x l 
??M ^ 

?/j,n 

J [ ( 2 M + l _ 1 ) _ ( 2 M _ 1 ) ] x l 

Also, we have 

where 

and 

M + l 
/ M 

f M + l 
J M 

—m 

( 2 M - l ) x l 

5 M = f (f(t),Wj)dt 
2MXl 

7 M = f/ (t-t^ifit^wjdt 
-J In ( 2 M - l ) x l 

¥ M 
2 M x l 

/ (t-tn^){f(t),Wj)dt 
.J In 

After some basic calculation the system becomes a new system consisting of the two 

matrix equations 

7 

AM + fcn/ AM + |fcn7 

2~"'n-' 2 M ~^~ 3 n 

),n—1 —•V'irl~lN 

S M M 

S M 

M + -4M(TM" * + I M " l + FMtrfM1 l +ytin *) 
k-1~?n - ip„7?* n 
Kn J M 2 M ' M 

M U M + VM 
ijj,n\ 

and 

2"'n-' 2 M ~^~ 3 n 

>,n—1 —¥ij),n—1 

—>rf>,n 
? 7 M 

—></>,re 
? ? M 

9M + GM(£M + £ M ) + HM{VM + VM )-GM{VM+VM) 
J, —1—m 1/~< -z?W>n 

Kn 9 M ~ 2UM " M 

for which the solution is given by 



—>4>,n 
£ M 

—>V>,n 
S M 

AM + &rJ AM + \knI 

2""n1 2 J i M ' 3 

T - 1 

2 JT-M I iKnl 

7 .—>$,n-l —»i/>,rc— 1 ffiJ 

M + ^ A f U j t f + ? M ) + FM{riM 

, n - l , —W.n-l-i 
+ V M J FM(V M + VM ) 

KM J M 2 P M " M 

and 

1 M 
—n/>,n 
1 M 2^n^ 2 M i ^Knl 

9 M + G M ( C M + £ M ) + HM{r]M + r)M ) - CrMU M + £ M J 

h-litn — i r \ , r < 
"'n y Af 2 M > 

M 

The numerical solution is written as 

2 M - 1 2(M+D_i 

m = l m = 2 M 

+ -
t - t n - 1 

/Cri 

2 M - 1 2 ( M + 1 ) - 1 

m=\ m=2M 

The basic algorithm for the multilevel method that was used is as follows. 

VI.3.1 Multilevel Algorithm-Linear in Time Case 

—t^fi —^,0 
Step 1 Calculate AM,FM,GM,HM, determine the initial values £ M , £ M 
—•0,0 —></i,0 

I M I 1 M • 

Step 2 Set 
—>0,n-l _ —^,0 —Wvi-1 _ —>?,0 _ ^ „ _ i _ —,.0,0 - ^ , n - l _ — ^ , 0 
S M — S M ) S M — S M ; 1 M " 1 1 1 ) 1 M ~ V M • 

Step 3 Main Loop: For n = 1 to iV: 

1. Calculate ~fM, fM, ~$n
M, 1?M, and choose kn. 
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2. Calculate Mth Level Solution. 

—>4>,n 
S M 

—>4>,n 
S M 

AM + knI AM + \knI 

~qknl OAM + q " ^ 

-,-1 

J M + AM{ q M + S M 

hn J M 

3. Calculate Multilevel Solution. 

flM 
—>ib,n 
VM 

HM + knI HM + \knI 

2n"n 

n - 1 

0knl 2 M ~^~ ̂ knl 

gM + GM{^M + ?M ) + HM{VM _±J?M )-GM{^M+^M) 

> - l - > n 1 ^ 7 ^ ™ 

—>0,n 
S M 

-rnl>,n 
S M 

-4M + A;„7 AM + |fc„7 

2™n-l 2 M ~^~ 3" ' " - ' 

- 1 

M + ^ M ( ? M + ? M J + ^J <M{VM + VM )-FM{r)M + Vti) 
Kn J M 2 M I M 

4. Define 

If M + l ~ " M,l 

2 M - 1 

S M + l 
—>^,n 
S M + l 

= 

—>4>,n 
? M 

VM 
—>ip,n 

S M 

*?M . 

2 ( M + l ) _ 1 _ 

^M+l « "Xf.l = £ ^ " ^ ( X ) + £ 77*>m(x) 
m = 2 M m = l 

+ 
t — tn-\ 

2M-l 2 < M + 1 ' - 1 

m = l m = 2 M 

A,n-1 . . ^ . n - l - ^ V , n - 1 _, —•i/i.n-l 
5. Update £ M , r? ̂  , £ M , and rj M 

>,n—1 
M 

p,n—l >ip,n—l —y\p,n 
S M ) ^ M — V M > S M — .S M ) ^ M — V M 

>t/i,n—1 —>V>n 

6. Update n. 

n = n + 1 

End Main Loop 
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VI.4 ERROR ESTIMATE 

Next we show that Theorem 4.2 applies to this scheme. Recall from Chapter IV 

hypotheses (I) and (II): 

(I) B^ exists. 

(II) B^iC^i is uniformly bounded. 

We will show hypotheses (I) and (II) are satisfied. Also, we use the linear wavelet 

basis functions for #,5(0,1) developed in Section II.4.2. First, by the definitions of 

•BTO)i and Cmii given by (18) and (19), respectively, we have 

B, 771,1 

and 

^ m , i '•-

An pn 
m 771,m+1 

u - " m + l . m + l 

0 0 
cn n 

where the matrices An
m, F™m+1, G ^ + l m , and #£+ l i T O + 1 are defined as 

Kn — [aiji'j'}(2™-l)x(2™-l), 

for ij = 1 0, • • •, m (2™-1 - 1), i'f = 1 0, • • •, m {2m~l - 1), 

pn 
m,m+l [aiji'j'\(2m-l)x(2nl), 

for ij = 1 0, • • • ,m (2m~l - 1), i'f = (m + 1) 0, • • •, (m + 1) (2m - 1), 

C m + l . m = laiji'j'](2m)x(2™-l), 

for ij = (m + 1) 0, • • •, (m + 1) (2m - 1), i'j' = 1 0, • • •, m (2m~l - 1), and 

# m + l , m + l = [a i j i ' j ' ] (2 '")x(2m ) , 

for i j = (m + 1) 0, • • •, (m + 1) (2m - 1), i'f = (m + 1) 0, • • •, (m + 1) (2m - 1). 

To show -B^i exists, we need only show 

det Bm,i ^ 0, 
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since Bm^ is a ( 2 m + 1 — 1) by ( 2 m + 1 — 1) matrix. Using a well known property of 

matrix determinants, we have 

det Bm i = det 
An rpn 

m m,m+l 
u - " m + l . m + l 

det ylm det H m + 1 + 1 . 

Since the Discontinuous Galerkin Method has a unique solution by the discussion on 

page 183 of [4], we must have 

detAl^O. 

Using the linear wavelet basis, we have 

wl3(x) = I 

( ^ ) i - i ( 2 < - i x _ j ) w hen 2^r < x < ^ + ±, 

(^)i-\j + l-2i-1x) w h e n ^ + i < ^ < ^ , 

0 otherwise. 

Thus, 

K-,«;y) = J^+*[(*y-\2>-1x-j)]*dx 

+ / ^ 1 [ ( 4 ) i - 1 0 - + l-2i-1x)]2dx 
J^i+ji V2 

so 

3 U 

"m+l.m+l I 3 V4 
m+1 

+ fcn M 

This implies 

hence 

det / /£ + 1 , m + 1 ^0 

det 5m , i ^ 0. 

Thus hypothesis (I) is satisfied. 

Now we look at the second requirement. Using blockwise inversion on 5 m , i , we 

have 

-1 r 
7" (Hn W 
m,m+l \21 m+1,m+1 ) BmA -

An rpn 
m rn,m+l 

0 Hn 

v J J m + l , m + l 

( ^ m ) ( A n ) ^m,m+l ( - " r ? 

0 ( # m m+1,m+1/ 
W 
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so 

Bm,lCm,l — 

Because 

we have 

so 

Further, since IIG™. 

(-™m+l,m+l) 

U (-"m+l.m+l) 

— (^m/ ^m,m+l('"m+l,m+l) "m+l,m " 

(•"m+l,m+l) "m+l,m ^ 

tf m+l,m+l 
1 f 1 

3 V4 

{Hn
m m+l,m+l) 

\ m+1 \ 

3(4m+1) 
1 + 3(4m+1)fc„ 

3(4m+1) 
ll(#m+l,m+l) II = 1 + 3(4^+1 )fc„ 

0 0 

m,m+l) I rm+l,mll 

-̂ m m+i ^S the n r s^ r o w s u m ) w e have 

\\r<n II || pn || 
ll^i+l.ill ~~ \\ri,i+l\\ 

l^mm+ill a n ( i the maximum row sum of 

E («>io> 

2 j-2-l 

W,; 

2 E [/T ''(^(^x-jjxdx 

(j + 1 - 2l'1x)x dx] 

= 2i-i* E 
i=o 

= — 2 2 . 
16 

/2* 3 1 . 2\|(2j+l)2-
V - 7 T ~ x — cJX )\j2l-i + ( •?

 + 1 „ 2 2* 1,;„3M(j+l)21-«' 
- X — 

Therefore 

3 J X il(2j + l)2" 

,m+lJ ^m+l < ll(#m+l,m+l) llll^m+1,' 
3(4m+1) 

l+3(4m+1) / t„y V 1 6 

1 

^ 

K|)m+1 + fcJVi6 
1 

^ 
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If we let kn — 2 2m
5 we have 

l l ( - " m + l , m + l ) ^ m + l . m l l — •*• 

so the block (#m+i,m+i)_1^m+i,m ' s uniformly bounded. 

Next we look at the uniform bounding of the other block of B^Cm^i, namely 

We have 
II — I An \~l Pn {Mn \-lf-m II 
II V-^m) • r m,m+lV- n m'+ l ,m+l / " m + l . m l l 

<" l l _ l ' / l r M - 1 l l l l 7?" II llf W n " l _ 1 r™ II 
— II \^m) \\\\rm,m+l\\\\\I2m+l,m+l) "m+ljmll 

^ii-^r'iiKm+iiic 
for some constant C, since (-ff^+i m + O ^ m + i m w a s shown to be uniformly bounded. 

Further, since 

II T?n II _ \\rrn \\ _ v ^r,-\m _ v ^ ( •*• | f/l<^ 

l lVm+l l l - l l t 'm+l .ml l -^gZ 2 _ _ ^ _ j (42) 

we have \\FJ^ TO+1|| - » 0 a s m - > 00. 

We now proceed via induction on m to bound ( J 4 ^ ) _ 1 . Let 

1 \ m0 

be fixed for some fixed m0 > 0 and let 

em = V2 > 0. 

For mi = m0 + 1, we have emi = y/2 * = \/2 ° = y/2 > 0 and for values 

of m0 used in practice it can been shown by straightforward calculation that 

\Un
mXl\\<K} + tmi, (43) 

so the assertion holds for mx = mo + 1. We do this in our implementation. 

-4= J , m0 > 0, that there exists m > mo + 1 and 

em = v2 > 0 such that 

\\{An
m)-l\\<Kl + em. (44) 

file:///-lf-m
file:////rrn
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We will show 

H K , + i ) - 1 | | < * n 1 + e , n + 1 . 

By the definition of A^+1>
 w e h&v e 

^ r n + 1 — -^m+1 + kn-l 

A 4- h T Pn 

•n-m T ^n1 i m,m+l 

A -4- h T Fn 

^ m i "'n1 rm,m+l 

. (K,m+x)T (hm + kn)I 

Let 

Jm+1 0 (/im + kn)I 

Using blockwise inversion, we get 

"<n \ — 1 i n 
^ Wm+lV ^ m + 1 4 n — T — 

(A« + kniy
l o 

0 (/im + kn)~
lI 

A -i- h T Fn 

•^m ~ 'Vi-' J m,m+l 

( ^ , m + l ) T ( ^ + fc„)7 

{•^m + ^n-' j ^m,m+l 

(hm + kn)-\F"+l)
T 

0 — ( j 4 m + Kn7 J f m , m + l 

Then 

'« \ - l /in 
K ~ W m + l ) A m+D •nm+l\ < 

U ( A n J ^m,m+l 

-(hm + kn)-\F«<m+1)
T 0 

< (fc-1+em) | |F r n ] m + 1 | | 

and 

( A n + l ) — Z ^ K ' S ' m + l ) W m + l A n + l ) J ( ^ m + l ) 
fe=0 
oo 

1fe / on \ — 1 
Z-J - f — W m + l ) ^ m + l J W m + l ) 
fc=0 
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Thus for m > mo + 1 and em+i > 0, we have 

l l ^ + i ) " 1 ! 
oo 

< 

fe=0 
oo 

2-J[I ~ Wm+l) -^m+l] 
fc=0 

1 

- 1 

(^rn+l 

— 1 _ II /• _ /•«?" W An 'Wm+l) 

>-l 

- l l 

™n ~r~ ^m 

/ 
fcn ' e m 

- f c ; = fc"^ f" + T n 

= AT* + ( ^ + ^ 

' v^0 + vr1-1 

- i 

/ rtnn / r m - 1 

"n "+" I _ (V2)m0 + l - m _ x
 V / I 

\ 16 16 / 

_ 1.-1 , f ^ + ^ _ Jo™0] 

\ 16 16 / 

- k-i + f v /2m0 + v /2m~1 _ /2™o | 
~ " 15 1 (V2)'"0+1 V Z 

\ 1 6 16 y/2'" ) 

< *„-+(v/?"l+vf"-V2~N) 
\ 16 16 / 

= ^ + 8-vr° + 1 ^ - 1 - vr° 
n 7 7 

= Kl + 

7 7 

7 7 'n 

- 1 < fcn'+T-
1 /—m 8 /—m—1 
-V2 + - V 2 
7 7 

< 7 7 
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Thus we now have the norm of the block 

— fAn\~lT7'n (Vtn \-lrm 
K-^m) rm,ra+nnm+l,m+lJ ^m+l,m 

bounded as m -» oo. Therefore the matrix 

is uniformly bounded for these choices of e and kn, thus satisfying hypothesis (II). 

With these two hypotheses having been satisfied, Theorem 4.2 implies there exists 

a positive integer M such that for m > M we have 

ll"n-Wmill < CLN max .Em + h q n(u) 
l<n<N 

where un is the exact solution at the time step tn for n = 1, 2, • • •, N, and 

(m+l)(2m-l) 

um,l : = umfi + Vm,l : = 2̂  ^ij^j 
ij=10 

is the multilevel solution, using iiy to denote the scaler entries of the column vector 

umti, and the w^ are the wavelet basis functions. 

VI.5 NUMERICAL EXPERIMENTS 

VI.5.1 A Conventional Example 

We use the following one-dimensional heat problem: Find u such that 

ut(x, t) — uxx{x, t) = 0, 0 < x < 1, 0 < t < .5, 

u ( 0 , i ) = u ( l , t ) = 0, 0 < i < .5, 

u(x,0) = sin(7nr), 0 < x < 1. 

The standard Discontinuous Galerkin Method solution and the Multilevel Method 

solution of the above problem were calculated so a comparison of accuracies and 

efficiencies could be made. Grid resolutions of M = 2, 3 , . . . , 10 were chosen, with 

the number of time steps TV chosen as N = 2 M _ 1 . 

As stated in Section VI.5, we need to check that (43) holds. Since N — 2 M _ 1 and 

ijv = -5, we have 

file:///-lrm
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thus 

m0 = 2M, m1=mQ + l = 2M + l, M = 2,3,4,5,6,7,8,9,10. 

We find by straightforward calculation using Matlab 7, for M = 2,3,4, 5, that 

HC^mi) II < &n + £mi 

for kn — (-75) and emi = (\ /2)m i _ 1 , thus insuring the induction base step and the 

analysis of Section VI.5 apply for M — 2,3,4, 5. The results of these calculations are 

shown in Table 1. 

TABLE 1: Induction Base Step Norms and Bounds 
M 
2 
3 
4 
5 

m0 

5 
7 
9 
11 

iK^ni 
4.3321 
9.5217 

21.3440 
48.3825 

Kn + e mi 

8.0000 
16.0000 
32.0000 
64.0000 

Although computing memory limitations prevented similar calculations for M = 

6, 7, 8, 9,10, implementation results were calculated for these resolution levels, and 

tabulated along with the results for the lower resolution levels. It is believed that 

the induction base steps are still valid for the higher resolution levels, although there 

is no direct verification of this. 

As stated above, the multiscale linear in space and constant in time basis func

tions were used, and the results calculated and compiled using Matlab 7. To calculate 

the error, the actual differences of the exact solution u and the numerical solutions 

UM+I and UM,I were calculated at each grid point, then \\un — u ^ ill a n d ||^n —
 ^M+III 

calculated for each time step n using both the inf-norm and the 2-norm. Finally, 

for each resolution level, the maximums of each of the inf-norms and 2-norms were 

selected and tabulated. Table 2 provides the results when the approximating func

tions are constant in time, while Table 3 provides the results when the approximating 

functions are linear in time. Further, cpu timings in seconds were taken for both the 

Discontinuous Galerkin Method and the Multilevel Method loops on each resolution 

level, and these tabulated as well. In the lower resolutions some cpu elapsed times 

were too small to be significant, no doubt due to the use of single-precision arithmetic 

in the Matlab 7.0 software used for the calculations. Further, while successive cpu 

timings for the same resolution level were not absolutely consistent, they did not vary 
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by significant amounts. The use of single-precision arithmetic also affected the error 

values at the higher resolutions of Table 3. It is not believed that these error values 

are actually zero, rather, these zero values can be attributed again to the limitations 

of single-precision arithmetic. 

Comparison of the norm values at the various resolution levels for both the con

stant in time and linear in time versions shows comparable values in both the inf-

norm and the 2-norm measurements of error. There were very slight differences in 

the norms at low resolution levels, but at higher resolutions, the norm values for the 

errors were identical. 

TABLE 2: Error and Timing results for PGM and ML Methods (Constant in Time) 
~~M DG oc-norm DG 2-norm ML oo-norm ML 2-norm DG time ML time 
2 
3 
4 
5 
6 
7 
8 
9 
10 

0.1932 

0.1533 
0.0904 

0.0498 

0.0266 
0.0137 

0.0070 

0.0035 

0.0018 

0.2733 

0.3066 

0.2556 

0.1990 

0.1505 
0.1098 

0.0789 

0.0563 
0.0399 

0.1929 

0.1532 

0.0904 

0.0498 

0.0266 

0.0137 

0.0070 

0.0035 
0.0018 

0.2745 

0.3069 
0.2557 

0.1990 

0.1505 

0.1098 

0.0789 

0.0563 
0.0399 

0 
0 

0.0313 

0.0313 

0.0469 

0.4063 

4.5313 

54.8281 
803.4063 

0 
0 
0 
0 

0.0156 
0.1250 

1.0313 

11.5469 
144.5625 

Figure 7 shows the cpu timings of the resolution levels M of 7, 8, 9, and 10 for the 

methods when the approximating functions are constant in time. The cpu timings 

of the lower levels were considered too insignificant to measure so they were not 

included in the plot. Comparison of the computational times for each method shows 

substantial saving with the multilevel method, requiring less than half the time to 

compute while providing the same degree of accuracy as the straight Discontinuous 

Galerkin Method. Further, the computational costs for each method closely followed 

the predicted costs, as shown by the plot. 

Figure 8 shows the cpu timings of the resolution levels M of 7, 8, 9, and 10 for 

the methods when the approximating functions are linear in time. Again, the cpu 

timings of the lower resolution levels, while significantly longer than the constant in 

time version, were still considered too insignificant to plot. The basic costs of the 

higher resolution levels were again substantially lower for the multilevel method. As 

before, the computational costs for each method closely followed the predicted costs. 
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TABLE 3: Error and Timing results for DGM and ML Methods (Linear in Time) 

M DG co-norm DG 2-norm ML oo-norm ML 2-norm DG time ML time 
2 
3 
4 
5 
6 
7 
8 
9 
10 

0.0499 
0.0125 

0.0022 

0.0004 

0.0001 

0.0000 

0.0000 

0.0000 

0.0000 

0.0706 
0.0250 

0.0062 

0.0017 

0.0005 

0.0002 

0.0001 

0.0000 

0.0000 

0.0470 
0.0122 

0.0022 

0.0004 

0.0001 

0.0000 

0.0000 

0.0000 

0.0000 

0.0706 

0.0245 

0.0061 

0.0017 

0.0005 
0.0002 

0.0001 

0.0000 

0.0000 

0.0156 

0.0156 

0.0156 

0.0156 

0.0938 

0.9375 

12.3281 
165.4844 

2264.9000 

0.0156 

0.0156 

0.0156 

0.0156 

0.0781 

0.5938 

5.2344 

80.1094 

948.9000 

In short, these results suggests that the Multilevel Method version of the Discon

tinuous Galerkin Method provides a cheaper alternative to the traditional straight 

Discontinuous Galerkin Method, while preserving accuracy of the traditional Discon

tinuous Galerkin Method. 

VI.5.2 An Example with an Incompatible Initial Condition 

We use the following one-dimensional heat problem: Find u such that 

ut(x,t) -uxx(x,t) = 0, 0 < a; < 1, 0<t<T, 

u(0,t) = u(l,t) = 0, 0 < t < . 5 , 

u(x,0) = 1 -x, 0 < x < 1. 

The initial condition is incompatible with the prescribed boundary conditions, so this 

problem requires the special time and corresponding spatial discretization scheme 

outlined in Chapter V. Recall that the exact solution is 

oo 

u(x,t) = ^2u°e~j tsm(jnx), 
3=1 

where the coefficients u® are given by 

u] = 2 [\l - 0 s i n ( M ) # = - { - - ~ s ^ ) } = 0 ( V J ) , J Jo n j jzn 

and so we have ||ttt(£)||2 — 0(t~*). Thus a — | , and so the index of singularity is 

Q — i^ = 4 when q = 0, that is, the approximating polynomials are constant in 
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time. The initial spatial resolution level is M = 9. The same linear wavelet basis from 

before was used, as well as the same computing package, Matlab 7.0. Cpu timings 

were taken in seconds for each time step loop for the two methods. At times, several 

computations were necessary to obtain meaningful cpu times for lower resolution 

levels, as these tended to be quite small and were not always detected using single-

precision arithmetic. The results of these experiments are shown in Table 4 for the 

case of q — 0. As before, the error of the Multilevel Method matched the error of 

the Discontinuous Galerkin Method for each specified grid size. Error tended to be 

greater in early transients and less in late steps, even with the coarser grids used in 

the late steps, due to the fact that the actual solution becomes smoother as the time 

steps progress. The size of the error for the first time step was disappointing, no 

doubt due once again to the single-precision arithmetic. 

Although codes were written to calculate the solution for the case of q = 1, when 

the approximating polynomials are linear in time, this was not actually implemented 

due to the limitations of the available computing equipment, which lacked sufficient 

memory for spatial grids with resolution levels above M — 10. The first time step 

calculation requires a grid resolution of M=14, far in excess of this limitation. 

As before, the multilevel version of the Discontinuous Galerkin Method proved 

to be more efficient in the higher resolution levels required for the first time steps. 

Also, at low spatial resolution levels such as those used in the final time steps, there 

was a less appreciable cost advantage to using the multilevel method. 

TABLE 4: Time Step Results for DG and ML Methods (Constant in Time) 
n M DG 2norm DG oonorm ML 2norm ML oonorm DGtime MLtime 

1 
2 
3 
4 
5 
6 
7 
8 
9 

9 
8 
7 
6 
6 
5 
5 
5 
4 

0.2311 
0.4135 
0.3420 
0.2614 
0.1933 
0.1976 
0.1568 
0.1675 
0.1275 
0.0466 

0.1172 
0.1053 
0.0811 
0.0652 
0.0543 
0.0467 
0.0431 
0.0421 
0.0318 
0.0165 

0.2314 
0.4135 
0.3417 
0.2608 
0.1922 
0.1975 
0.1556 
0.1670 
0.1272 
0.0461 

0.1176 
0.1053 
0.0810 
0.0651 
0.0540 
0.0466 
0.0428 
0.0420 
0.0318 
0.0163 

0.3594 
0.3438 
0.0781 
0.0781 
0.0313 
0.0313 
0.0156 
0.0156 
0.0156 
0.0156 

0.1719 
0.1563 
0.0469 
0.0313 
0.0156 
0.0156 
0.0156 
0.0156 

0 
0 
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CHAPTER VII 

CONCLUSIONS AND FUTURE PROJECTS 

In this thesis, we have shown that the Discontinuous Galerkin Method can be en

hanced with a multilevel calculation method to produce a new method that offers 

the same level of accuracy as the existing Discontinuous Galerkin Method, but with 

considerably lower computational costs. Further we have demonstrated that the spe

cial time and space discretization schemes of [6] remain valid when enhanced with 

the multilevel method. 

Future projects include a generalization to the cases where the spatial region is 

taken in R2 and R3. Also, an enhancement of the multilevel method that requires 

us to only solve the linear system corresponding to an initial a coarse level m, then 

moving from a coarse level m + k, where k is any positive integer, to a finer level 

m + k + 1, will be examined. Use of quadratic and cubic wavelet bases will also be 

considered, along with possible extensions of the method to nonlinear cases. 
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