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ABSTRACT

INVESTIGATIONS OF PHYTOPLANKTON DIVERSITY IN CHESAPEAKE BAY

Todd Arthur Egerton 
Old Dominion University, 2013 
Director: Dr. Harold G. Marshall

Characterizing the diversity of a community in relation to environmental 

conditions and ecosystem functions are core concepts in ecology. While decades of 

research have led to a growing comprehension of diversity in many ecosystems, our 

understanding in aquatic habitats and microbial organisms remains relatively limited. 

Phytoplankton represent a diverse and important group that contribute approximately half 

of global primary productivity and are intrinsically connected to changing environmental 

conditions, especially in systems as dynamic as estuaries. To better understand the 

ecological processes governing phytoplankton composition and diversity, spatial and 

temporal patterns of environmental parameters and their relation to the algal community 

of Chesapeake Bay were analyzed using data collected over a 25 year period (1985- 

2009).

The phytoplankton community o f Chesapeake Bay, containing 1480 taxa was 

characterized as one of high richness and low evenness, with a single species accounting 

for at least half of the biomass in almost one third of all samples examined. High 

gamma-diversity was attributed to seasonal succession of dominant flora and spatial 

heterogeneity along the estuarine gradient with high species turnover between salinity 

regions. Alpha-diversity was greatest in freshwater and polyhaline regions, and minimal



in lower mesohaline waters. Multivariate ordination analysis identified regional 

differences corresponded to salinity, turbidity, and nutrient gradients, with lowest 

richness in regions of intermediate salinity, total nitrogen and phosphorus concentrations 

and highest dissolved organic nitrogen. Temporal factors included negative impacts of 

streamflow related nutrient increases leading to greater algal abundance and lower 

diversity particularly within the polyhaline Bay. Results indicate that greater algal 

biomass was associated with higher richness and lower evenness, and may be associated 

with lower ecosystem stability, with greater variance in inter-annual phytoplankton 

biomass.

To address short-term environmental variability including nutrient loading, daily 

sampling of the Lafayette River, was conducted in spring 2006. During consecutive 

blooms of Cryptomonas sp. and Gymnodinium instriatum up to 99% of total biomass was 

due to the individual bloom species, although species richness was not significantly 

reduced. Time lag correlations indicated that the Cryptomonas sp. bloom was related to 

precipitation related increases in dissolved inorganic nitrogen concentrations, while the 

G. instriatum bloom followed periods o f reduced nitrogen concentrations that were 

accompanied by an algal community o f high richness and low evenness. Based on its 

connectivity to both environmental and biological variables, phytoplankton diversity is 

recognized as a significant indicator of ecosystem condition, with high species richness 

and evenness as potential goals for restoration efforts.
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1

INTRODUCTION TO BIODIVERSITY AND CHESAPEAKE BAY

Biological diversity is a cornerstone concept in ecological science, with research 

focused on examining linkages between the variety o f organisms and the environment. 

With estimates o f over 10 million species living on Earth inhabiting almost every 

combination of environmental gradients, this is a formidable endeavor. By building an 

understanding of where differing levels o f diversity exist we can develop a better model 

of the role the environment plays on shaping the biological community. It is 

increasingly vital to identify diversity patterns and their drivers in order to attempt and 

uncover the causes and potential effects o f declines o f biodiversity such as those being 

observed globally.

At its most fundamental level, diversity is simply a description of the variety o f items 

within some given unit. Although there are an incredibly large number o f definitions, 

sub-divisions, and levels in the examination of diversity, they all share two basic 

characteristics. These are the number of different types of items, referred to in the 

literature as richness, and the relative amount o f each type, or evenness. It is the different 

interpretations and combinations of these two qualities regarding the description of 

biological organisms which represent the vast body of research in biodiversity.

Diversity metrics

Species richness can be used as a measure o f diversity, and is the easiest to 

determine, most widely used metric, and may describe the same patterns as other more 

complicated indices (Pianka 1966). However it can also be affected by the presence of 

rarities due to sampling bias, in which rare species may be missed during a survey 

(Hubalek 2000). Multiple communities may have the same number o f species, with one
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community dominated by a small number of species, and the other community being 

more homogenous. A measurement of species richness alone would not differentiate 

between the two; therefore the calculation of evenness is often vital. Conversely, in a 

case where two communities with identical diversity indices, but one with a high richness 

and a low evenness, and the other with low richness but high evenness, would best be 

differentiated using richness (Hubalek 2000). Species evenness however can be 

calculated in different ways, and it is usually the case that diversity is presented as an 

index using a calculation which combines richness with evenness (Huston 1994).

There are a number of indices that been developed which attempt to describe 

diversity as a measure of richness and evenness since the mid-20th century (i.e. Shannon 

and Weaver 1949, Margalef 1958, Menhinick 1964, Routledge 1979, Izsak and Papp 

2000). There has been considerable debate in the literature over which index to use 

depending on the situation. An evaluation of diversity measurements by Hubalek (2000) 

tested 24 different indices using real data and simulated models. The most used index 

(besides richness alone) is the Shannon index, represented as H ’ (Shannon and Weaver, 

1949) :H' =  -  £(P i * logpi) with p, the proportion o f the total sample which is 

composed of species i (Huston 1994). I have chosen to examine phytoplankton species 

richness and the Shannon index H \  These have been chosen primarily because they are 

both commonly used indices in the majority of ecological papers, including 

phytoplankton studies (e.g. Huang et al. 2004, Irigoien et al. 2004, Ptacnik et al. 2008, 

Witman et al. 2008, Chalar 2009). The use o f these indices is also supported by their 

ability to perform well in comparative analyses (Hubalek 2000). While consistent 

methodology throughout the study should limit potential effects of differing sampling
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techniques, species richness alone may potentially overestimate the diversity in 

phytoplankton communities such as those found in Chesapeake Bay. These communities 

are often dominated by relatively few species with abundances several orders of 

magnitude higher than other species present (Marshall and Alden 1990, Marshall and 

Nesius 1996).

Thus far, the different descriptions of diversity, including all o f the above indices 

have been discussed in terms of what is known as alpha diversity. This refers to within- 

habitat diversity; in terms of species diversity this would be the number and distribution 

of species in a habitat (Magurran 1998). In terms of phytoplankton research, this may be 

the diversity o f algal species in a pond, or at a specific station in a larger body of water. 

These species are involved in interactions within a community and coexist with each 

other in competition for similar resources (Tilman 1977). Diversity between habitats is 

termed beta diversity and can be seen as the ways that organisms relate to a 

heterogeneous environment (Huston 1994). Examinations o f diversity trends over 

environmental gradients are often actually comparisons of alpha diversity at each 

individual location. An examination of beta diversity usually contains both a comparison 

of alpha diversity as well as a measurement o f similarity (Huston 1994). For these 

studies, it is not only important how many species are present, but which species are 

present, especially the changes in species composition between areas o f different 

environmental characteristics. In terms of phytoplankton research, an area such as a 

river, with high beta diversity would represent a large difference in algal communities at 

different environments within the river, due for example to differences in salinity.

Moving up to larger spatial coverage, gamma diversity, is defined similarly to alpha
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diversity but at a regional scale (Shmida and Wilson 1985). This can be described as the 

number of species in a region that includes a variety of environmental conditions. Other 

researchers have also used gamma diversity to represent beta diversity on a regional scale 

(Noss 1983).

The last several decades of ecological research concerning biodiversity has led to 

a staggering breadth of concepts that must be addressed when deciding to examine the 

diversity of a system. As far as a working definition of species, I believe that in terms of 

phycology and most current systematic work, we are operating under the framework of 

the phylogenetic species concept. While the actual identification o f phytoplankton 

species in this research is carried out based on morphological characteristics, the current 

system of algal taxonomy is based on phylogenetic systematics (Marshall et al. 2005). 

Some species which previously had been identified as closely related based on similar 

morphology, have been re-instated to other taxonomic levels based on molecular analysis 

and ultrastructure microscopy (e.g. Marshall et al. 2006, Tang et al. 2008). The 

understanding is that taxonomic groupings to the species level should represent the actual 

natural path o f evolution whenever possible. This is the hierarchal taxonomic structure 

that is employed by the Old Dominion University Phytoplankton Analysis Laboratory, 

with major taxonomic groupings representative of shared ancestral lineage (Marshall et 

al. 2005, Marshall et al. 2006b).

Drivers o f  diversity

The level o f biodiversity observed in a particular habitat is generally influenced by 

both the degree of isolation and the quality o f the environment available (Pianka 1966, 

Mac Arthur and Wilson 1967, Interlandi and Kilham 2001). These two forces work at
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different scales, and involve numerous interactions over time (Sommer et al. 1993). The 

degree of isolation largely acts on an evolutionary timeline where generations of 

mutations and selective pressures in an area sufficiently removed from an influx of 

outside genetic information allows for the divergence of organisms into a variety of 

forms (Falkowski et al. 2004). The historic distribution of taxa therefore may have a 

large effect on the current distribution and diversity if  there is a limited ability to migrate 

or be distributed elsewhere (Gomez 2006). Conversely, in situations where populations 

are not limited in their ability to be distributed, isolation forces will be relatively less 

important in determining the level of diversity than the current environmental conditions 

and subsequent biological interactions.

Microbial organisms are often considered to have a ubiquitous distribution, with 

Beijerinck (1913) and Baas Becking (1934) famously stating “everything is everywhere, 

but the environment selects.” This concept is generally thought to describe that 

theoretically all microbial cells are able to be transported globally, but local 

environmental conditions will limit or favor particular taxa contributing to the 

community composition and diversity that is observed at a given habitat (Martiny et al. 

2006). Due to their small size and apparent ease of transport by air and water currents, 

the diversity o f phytoplankton taxa has generally been considered to be most affected by 

current environmental conditions (Finlay and Clarke 1999). While examinations of 

diatom populations suggest that historical distributions and isolation forces may 

significantly affect diversity patterns on a global scale (Vyverman et al. 2007), studies at 

local and regional scales as well the majority o f global scale analyses illustrate changes in
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diversity corresponding to environmental gradients (e.g. Carrick et al. 1988, Estrada et al. 

2006, Kerswell 2006).

Describing patterns of diversity along environmental gradients and understanding the 

causative forces that shape these patterns have long been goals of ecologists (e.g. 

Dobzhansky 1950, Pianka 1966). Rarely are these patterns consistent across all studies 

or habitats, with exceptions found in most cases; however certain factors have been 

shown to be significant across a number o f investigations. One of the first and most often 

identified spatial patterns is latitude, with generally reduced diversity observed in most 

terrestrial organisms and many aquatic systems at higher latitudes (Gaston 2000, Willig 

et al. 2003, Barton et al. 2010). Diversity patterns have also been observed in 

relationship to other abiotic variables including altitude (Rahbek 1997), depth (Smith and 

Brown 2002) and salinity (Remane 1934).

While these examples illustrate numerous spatial patterns of biodiversity of larger 

organisms, and the various linkages to environmental gradients, there is considerably less 

information on the diversity patterns of microbial taxa including prokaryotic and 

eukaryotic phytoplankton species (Green and Bohannan 2006). This can largely be 

attributed to both the relative difficulty in describing microbial diversity, as well as the 

long held paradigm that microbial taxa had cosmopolitan distributions (Green and 

Bohannan 2006). There have a growing number o f studies exploring spatial and to a 

lesser degree temporal patterns o f algal diversity (Platt et al. 1970, Moss 1973, Harris and 

Trimbee 1986, Nogueira 2000, Interlandi and Kilham 2001, Barton et al. 2010). A key 

significant finding has been declines in algal diversity related to anthropogenic
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disturbances (Passy and Blanchet 2007, Ptacnik et al. 2008).

Phytoplankton diversity

Phytoplankton can serve as a model for examining the drivers and effects of 

diversity for several reasons. Being microscopic, algal cells are easily dispersed and 

capable of being transported over a wide range of habitats (Boo et al. 2010). This, more 

cosmopolitan distribution means that biogeographic constraints, experienced by other, 

less ubiquitous organisms are to a large degree not a factor in determining the range and 

growth of algal species (Dodge and Marshall 1994, Finlay et al. 2006). The presence or 

absence of a given species in a certain habitat can be attributed to conditions that are 

present at that location to a much larger degree than in other systems (Prescott 1968, 

Dolan 2005). Estuarine phytoplankton have relatively fast population growth rates as 

well (doubling time often ~lday or less) (Alpine and Cloem 1988). This means when 

conditions are ideal for a species, populations may grow rapidly, outcompete others, and 

have a measurably higher abundance (Tilman 1977). With different algal types having 

different physiologies and life histories, the “ideal” conditions for growth will vary 

depending on the algae (Tilman 1977). Some algae species are associated with 

characteristics ranging from reducing dissolved oxygen to toxin production (Hallegraeff 

1993). When these species respond to a set of environmental conditions and becomes 

abundant it is often referred to as a harmful algal bloom (HAB). Through careful 

monitoring of algal populations, including background populations and bloom conditions, 

one can begin to identify how environmental variables affect different algal species and 

subsequently the diversity o f the plankton community (Interlandi and Kilhman 2001, 

Marshall et al. 2006b, Costa et al. 2009, Stomp et al. 2011).
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There are numerous investigations of phytoplankton community composition in 

estuaries, but few that focus on diversity distribution along the entire salinity gradient 

(Muylaert et al. 2009). Often, studies rely on meta-analysis o f multiple data from 

different sources to develop a framework to examine diversity patterns and 

environmental linkages (i.e. Telesh et al. 2001). Conversely, studies may rely on a single 

transect or otherwise temporally limited dataset to describe the environment, making 

descriptions o f seasonal and inter-annual variability in these patterns problematic (i.e. 

Muylaert et al. 2009). This study examines the diversity o f phytoplankton in relation to 

environmental parameters and ecosystem functions in a large tidal estuary.

Chesapeake Bay

Chesapeake Bay is the largest estuary in the United States with a surface area of
•y

11,600 km (Chehata et al. 2007). More than 150 rivers and streams drain into the Bay 

with nearly half o f freshwater input coming from the Susquehanna River (Dauer et al. 

2000, Kemp et al. 2005). Salinity varies from 0 at the mouth of the Susquehanna River to 

25-30, ca. 300 km to the south where the Bay empties into the Atlantic Ocean. A 

considerable number of investigations of phytoplankton have been conducted in the 

Chesapeake Bay, with a large focus on the effects o f nutrient eutrophication (e.g. Harding 

and Perry 1997, Kemp et al. 2005, Dauer et al. 2009, Marshall et al. 2009b). 

Phytoplankton growth in the upper Bay is considered light limited at certain points in the 

year by high turbidity, the lower Bay is generally nitrogen limited, with the mid Bay 

varying seasonally between nitrogen and phosphorus limitations (Kemp et al. 2005). 

While these studies show that there are spatial and seasonal variations in the limitations 

of phytoplankton growth, there is little indication as to the patterns and controlling factors
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of phytoplankton diversity. In comparison to studies relying on pigment concentrations 

as a proxy for phytoplankton abundance (e.g. Roman et al. 2005, Adolf et al. 2006, 

Werdell et al. 2009), there are relatively fewer examinations o f the effects o f these 

environmental conditions on the composition of the phytoplankton community (e.g. 

Marshall and Nesius 1996, Marshall and Alden 1997, Marshall et al. 2009), fewer still 

that specifically address the level o f diversity (Dauer et al. 2009) and to my knowledge 

none that explicitly examine algal species diversity across the entire salinity gradient o f 

Chesapeake Bay.

Research questions

This dissertation addresses the many aspects of phytoplankton diversity within 

Chesapeake Bay through a series of examinations. Each study, while focusing on 

specific components and utilizing different data subsets adds to the understanding of the 

causative forces o f species diversity and the associated ecosystem functions. A large 

portion of these studies make use of data gathered through the Chesapeake Bay 

Monitoring Program (CBMP), a vast collection of long term (25 years) water quality and 

living resource data. Depending on the nature of the specific questions being addressed, 

and to maintain consistency in data comparability, it was necessary to limit the data to 

certain temporal and spatial boundaries. Whenever possible, the largest most complete 

dataset was used with some analyses taking advantage of over 20 years o f monitoring 

data, and even the most modest analysis including ten years o f data. In all cases, quality 

control practices were implemented to maintain consistency in the dataset (Egerton et al. 

2006), particularly concerning data originating from different sources, including the 

construction of a species list that is consistent across all collections so that accurate
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diversity measures could be calculated. The specifics of the following questions and 

analyses are laid out as such.

The first step to a better understanding of the diversity of a system, particularly 

one as large and complex as Chesapeake Bay is through a description of the spatial 

distributions. The second chapter describes the spatial patterns of phytoplankton diversity 

and composition in relation to the environmental conditions. An important aspect to this 

component is to characterize the relationship between species diversity and 

environmental parameters across the entire spectrum of the estuarine salinity gradient 

within the Bay. Fortuitously, phytoplankton populations have been monitored within the 

estuary at stations with average salinities ranging from fresh to polyhaline conditions 

from 1985 to the present day (2012). Unfortunately, phytoplankton collections o f the 

sole freshwater station (CB1.1) were discontinued in 1996, and the oligo- (CB2.2) and 

mesohaline stations (CB3.3C, CB4.3C, CB5.2) were halted in 2010. It was decided that 

to maximize the utility o f the phytoplankton data, records from 1985-2009 would be 

included for this component. These data include information on the phytoplankton 

community from the entire estuary for 11 years (1985-1995) and for eight o f the nine 

stations for 25 years.

While Chapter 2 concentrates on spatial patterns and linkages to environmental 

parameters, Chapter 3 address temporal changes in phytoplankton diversity. This chapter 

looks at how phytoplankton richness and evenness fluctuates both seasonally as well as 

inter-annually. One of the goals of this chapter is to examine the effect o f streamflow on 

the water quality o f the Bay and the phytoplankton community. For this study, water 

quality and phytoplankton records from 1985-2009 were utilized in conjunction with
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monthly and annual measurements o f streamflow from the major tributaries into 

Chesapeake Bay. To focus the examination on the seasonality of multiple environmental 

and biological variables, including algal diversity, the spatial component was condensed 

to averages within the four salinity zones present in the estuary. This approach allows for 

a comparison of temporal patterns within different regions, taking account for the spatial 

patterns observed in Chapter 2.

Chapter 4 addresses the potential ecosystem impacts o f varying phytoplankton 

diversity by utilizing additional sources of data. One of the most recognized ecosystem 

functions that has been related to biodiversity is productivity. Productivity can be 

measured multiple ways including biomass and productivity rates. These characteristics 

are monitored as part of the CBMP with primary productivity measurements recorded 

between 1989-2009. For this aspect of the chapter, analyses utilize data within this time 

period. An investigation o f temporal stability is also conducted as an analysis o f the 

inter-annual variance in algal biomass. The effect o f diversity of one trophic level to that 

of another trophic level is another important ecosystem function parameter. Along with 

the phytoplankton monitoring data, zooplankton community data was collected within 

Chesapeake Bay between 1985 and 2001. Analyses o f these data occur during this time 

period.

Chapters 2 through 4 examine phytoplankton communities across large temporal 

and spatial scales to address the large scale processes that influence the diversity o f these 

taxa within a large tidal estuary. However phytoplankton are effected by a wide range of 

scales, both spatially and temporally. Chapter 5 looks at daily fluctuations in water 

quality parameters at one location in relation to phytoplankton composition and diversity.
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By examining the relationship between algal diversity and the environment on a small 

scale, and comparing that to the patterns observed on a larger scale, the hope is to obtain 

a more complete understanding of the overall processes. Furthermore, this component 

was conducted at an urban eutrophic site, the Lafayette River which may serve as a 

potential model for how a larger system such as the Chesapeake Bay as a whole might 

respond to increased eutrophic conditions in terms o f biodiversity and ecosystem 

function.
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SPATIAL PATTERNS OF PHYTOPLANKTON DIVERSITY AND 

COMPOSITION IN CHESAPEAKE BAY

Introduction

Species diversity is a core concept in ecology; however the drivers regulating 

diversity in many systems are not fully understood. Describing the spatial distribution of 

organisms is often the first step in understanding the ecology o f a species. In the same 

manner that species distributions are non-random, with patterns related to evolutionary 

history and environmental conditions, species diversity patterns are also heterogeneous.

It is increasingly important to develop assessments o f biological diversity and relate them 

to environmental conditions to gauge current and future changes to biodiversity (Butchart 

et al. 2010). Identification of these patterns and recognition o f significant drivers of 

diversity is complicated by the complexity of multiple environmental gradients and 

biological interactions seen in natural systems.

Species richness and evenness are fundamental to assessing biodiversity. Comparing 

levels of species richness between sites with different environmental features is an 

important first step to identifying possible drivers of diversity that are influencing a 

particular ecosystem. While the number of species at a particular site is termed alpha 

diversity, the total number of species in different environments within a particular region 

is known as gamma diversity (Magurran 2004). Gamma diversity can also serve as a 

measure of the diversity present on a temporal scale, such as the total number of species 

observed at a location over an extended period of time (Arscott et al. 2003, Stegen et al. 

2012). The measurement o f how diversity and community composition changes between 

environments within these regional scales, or time periods is referred to as beta diversity
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(Whittaker 1960, Harrison et al. 1992). Beta diversity can be used to measure change 

over spatial and temporal periods (Zamora et al. 2007). By looking at not only the level 

of species richness, but also the makeup of the community as it transitions along various 

environmental gradients, a better understanding of the potential effect o f these variables 

can be determined (Nabout et al. 2007). This also adds to the understanding of how 

heterogeneity in the habitat, or region, both spatially and temporally, due to differences in 

environmental factors, may allow for the coexistence of multiple species and contribute 

to the overall diversity (Hutchinson 1961).

Ecological research has identified numerous such environmental features as 

significant to shaping the spatial variability in species diversity including latitude, 

altitude, water and nutrient availability (Huston 1994). In estuarine habitats, one of the 

most significant features is the salinity gradient formed from the continuum of riverine 

input to marine waters. Described by Remane (1934), the diversity o f brackish water 

organisms is greatest in freshwater and marine waters and reduced in intermediate 

salinities (Fig. 1A). This view of minimal diversity at intermediate salinities is generally 

referred to as the artenminimum model. The underlying concept behind the model is that 

freshwater species have evolved and become adapted to low salinities, marine species are 

adapted to high salinities, and relatively few species are adapted to be tolerant enough to 

exist in the transitional area between the two.

This model was first used to describe the spatial distribution of benthic invertebrate 

diversity in the Baltic Sea, and has subsequently been used to describe the diversity of



15

A
<n Freshwater

animals

S
£3
Z

Brackish
animals

Marine animals

2010 15 30 350 5 25
Salinity

Estuarine
species

Manne species

Diadromous 
species

Freshwater 
species

Oligo-
ihaline

Freshwater

10 15 20 25 30 35 40 45 50 55 60
Mesohaline | Polyhaline | Euhaline | Hyperhaline 

18 30 40
Salinity classification system (Venice system )--------------------►

Fig . 1. Conceptual models of biodiversity changes across a salinity gradient. A: Original 
diagram of Remane (1934) B: Refined model of Whitfield al. (2012) incorporating 
salinity classification system, euhaline and hyperhaline conditions



16

various groups of organisms in numerous transitional saline waters globally including 

estuaries (e.g. Wagner 1999, Martino and Able 2003, Lercari and Defeo 2006). Thus, the 

model has become a standard component in textbooks regarding species diversity in 

estuaries (McLusky and Elliott 2004, Whitfield 2012). Through decades o f research, 

there have also been brackish water systems found that demonstrate differing patterns of 

diversity, as well as different causative forces proposed and several revisions have been 

made to the artenminimum model (Fig. IB; Whitfield 2012). In general, studies have 

shown reduced species richness in low intermediate salinities, generally 5-10 continues to 

be observed in most systems, with debate over the causative forces responsible. One 

proposed model to explain this pattern involves the observation that in tidal waters, the 

variation in salinity is highest at locations with intermediate mean salinity values. Attrill 

(2002) argues that the cause of low diversity in estuaries in these regions is the stress 

exerted by variable salinity rather than its absolute value.

The artenminimum model has also been challenged in its applicability to describing 

diversity within planktonic communities. Planktonic organisms are suspended within the 

water and should therefore not be as affected by salinity fluctuations as are benthic 

organisms (Telesh et al. 2011). In contrast to Remane’s artenminimum model, Telesh et 

al. (2011) present data illustrating highest planktonic diversity in transitional salinities. 

These results have subsequently been challenged as artifacts o f the statistical analysis 

conducted (Ptacnik et al. 2011). Additionally, there are numerous other parameters that 

co-vary with salinity along the estuarine gradient, and which may also affect species 

diversity.
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Phytoplankton can serve as a model for examining the drivers and effects of 

diversity for several reasons. Being microscopic, algal cells are easily dispersed and 

capable of being transported over a wide range o f habitats (Boo et al. 2010). This, more 

cosmopolitan distribution means that biogeographic constraints, experienced by other, 

less ubiquitous organisms are to a large degree not a factor in determining the range and 

growth of algal species (Dodge and Marshall 1994, Finlay et al. 2006). The presence or 

absence of a given species in a certain habitat can be attributed to environmental factors 

such as salinity and water quality conditions that are present at that location to a much 

larger degree than in other systems (Prescott 1968, Dolan 2005). Phytoplankton have 

relatively fast population growth rates as well (Alpine and Cloem 1988). This means 

when conditions are ideal for a species, its population may grow rapidly, outcompete 

others, and have a measurably higher abundance (Tilman 1977). With different algal 

types having different physiologies and life histories, the “ideal” conditions for growth 

will vary depending on the algae (Tilman 1977). Some algae species are associated with 

characteristics ranging from reducing dissolved oxygen to toxin production (Hallegraeff 

1993). When these species respond to a set o f environmental conditions and becomes 

abundant it is often referred to as a harmful algal bloom (HAB). Through careful 

monitoring of algal populations, including background populations and bloom conditions, 

one can begin to identify how environmental variables, including salinity affect different 

algal species and subsequently the diversity of the plankton community.

There are numerous investigations of phytoplankton community composition in 

estuaries, but few that focus on changes in diversity along the entire salinity gradient 

(Muylaert et al. 2009). Often, studies rely on meta-analysis o f multiple data from
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different sources to develop a framework to examine diversity patterns and 

environmental linkages (i.e. Telesh et al. 2001). Conversely, many studies rely on a 

single survey transect or are otherwise temporally limited, making descriptions of 

seasonal and inter-annual variability in these patterns problematic (i.e. Muylaert et al. 

2009). In the present study, I have examined the diversity and composition of the 

phytoplankton community along the salinity gradient o f Chesapeake Bay using data 

collected monthly as part of a long-term monitoring program of this estuary.

Study site

Chesapeake Bay is the largest estuary in the United States with a surface area of 

11,600 km2 (Fig. 2; Chehata et al. 2007). More than 150 rivers and streams drain into the 

Bay with nearly half o f freshwater input coming from the Susquehanna River (Dauer et 

al. 2000, Kemp et al. 2005). Salinity varies from 0 at the mouth of the Susquehanna 

River to 25-30, ca. 300 km to the south where the Bay discharges into the Atlantic Ocean. 

A considerable number of investigations of phytoplankton have been conducted in the 

Chesapeake Bay, with a large focus on the effects of nutrient eutrophication on primary 

production and algal abundance (e.g. Harding and Perry 1997, Kemp et al. 2005, Dauer et 

al. 2009, Marshall et al. 2009). Phytoplankton growth in the upper Bay is considered 

light limited at certain points in the year due to high turbidity, the more saline lower Bay 

is generally thought to be nitrogen limited, with the mid-Bay varying seasonally between 

nitrogen and phosphorus limitations (Kemp et al. 2005).

While these studies show that there are spatial and seasonal variations in what limits 

phytoplankton growth, factors controlling phytoplankton diversity have not been 

examined. In comparison to studies relying on pigment concentrations as a proxy for
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phytoplankton abundance (e.g. Roman et al. 2005, Adolf et al. 2006, Werdell et al. 2009), 

there are relatively fewer examinations of the effects o f these environmental conditions 

on the composition of the phytoplankton community (e.g. Marshall and Nesius 1996, 

Marshall and Alden 1997, Marshall et al. 2009), fewer still that specifically address the 

level of diversity (Dauer et al. 2009) and to my knowledge none that explicitly examine 

algal species diversity across the entire salinity gradient of Chesapeake Bay.

Methods

Since 1984, the interagency Chesapeake Bay Monitoring Program has overseen a 

network of stations within the Bay and its tributaries that are monitored for a wide suite 

of water quality parameters and living resources. Within this network, a subset of 

stations, including 9 within the mainstem of the Bay were monitored monthly (twice 

monthly 1985-1989) to characterize phytoplankton abundance and composition (Fig. 2; 

Marshall et al. 2005). For these stations, above pycnocline depth composite whole water 

samples (0.5- 1L) were collected in polycarbonate bottles and immediately fixed with 

Lugol’s solution. Following a settling procedure, a fraction o f the sample was examined 

using inverted light microscopy with all phytoplankton cells identified to the lowest 

taxonomic unit and abundances recorded as cells L '1 (Marshall et al. 2005). Seasonal 

phytoplankton diversity was evaluated as species richness defined here as the number of 

unique algal taxa enumerated whitin individual monthly samples (alpha diversity). For 

months where two collections were made, the average richness for the month was used in 

the analyses. Diversity was also measured using the Shannon index (H’) which is a 

measure of the relative abundance of each species within a sample and therefore is
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commonly used as a measure o f species evenness (Shannon and Weaver 1949): H' =

-  Z(Pi log Pj) where p, is the proportion of the total algal biomass o f species /. Higher 

values of H ’ indicate a greater species diversity, and generally indicate a greater level of 

species evenness, with a more widely distributed range of biomass attributed to a larger 

number of species.

Phytoplankton composition data has been collected at these stations from 1985- 

2009, with the exception of CB 1.1, which was discontinued in 1996 (Fig. 2). Algal 

primary productivity was measured at these stations as the rate of 14C bicarbonate 

incorporation reported as pgC I / ’h '1 (Nesius et al. 2007). Sampling also included 

measurements of water temperature, salinity, chlorophyll a, secchi depth, dissolved 

oxygen (DO), silica, total suspended solids (TSS), dissolved inorganic nitrogen (DIN), 

dissolved organic nitrogen (DON), particulate nitrogen (PN), total nitrogen (TN), 

orthophosphate (PO4 "), particulate phosphorus (PP) and total phosphorus (TP), which 

were collected bi-weekly to monthly from 1985 to the present (Dauer et al. 2009). These 

data were used to relate phytoplankton diversity indices to environmental drivers.

Data analyses

To examine the distribution of alpha diversity along the salinity gradient, 

phytoplankton species richness and H ’ were plotted against salinity following Telesh et 

al. (2011). To avoid the possible statistical artifact suggested by Ptacnik et al. (2011), 

salinity values were plotted directly instead of binning them into categories. Paired 

diversity and salinity data were plotted for all collections (1985-2009). Separate plots 

were generated for each season, (Winter: December-February; Spring: March-May; 

Summer: June-August; Autumn: September-November) to investigate potential seasonal
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differences in this relationship. Additionally, mean salinity, species richness and H ’ were 

calculated for each station, to identify spatial variability. To investigate whether 

phytoplankton diversity was affected not by absolute salinity values but salinity variation 

as per the results o f Attrill (2002), species richness was compared to the annual range of 

salinity recorded for all station/year combinations using analysis of variance of linear and 

polynomial (quadratic) regression models conducted on the entire dataset. A significance 

of 0.05 was used for all analyses. If both models were significant, partial F  tests were 

used to determine whether the polynomial model better fit the data than the linear model 

(Quinn and Keough 2002, Witman et al. 2008).

Spatial gamma diversity (ys) was calculated as the total number o f species identified 

within the Bay mainstem at a given time, in this case one month. As the number of 

species identified is dependent by the area sampled (number o f stations sampled) 

(Harrison et al. 1992), months when all 9 stations were not sampled were excluded from 

this analysis. Phytoplankton monitoring at the northernmost station (CB1.1) was 

discontinued in 1996, therefore the Bay-wide gamma diversity only used data collected 

between 1985-1995. 99 months of data were included in this analysis as a result.

Seasonal means of monthly ys were compared using ANOVA. Temporal gamma 

diversity (yj) was calculated as the total number of species identified at each individual 

site over a year (Arscott et al. 2003). Temporal beta diversity (pj) can be used as an 

indication of species turnover through time (Shurin et al. 2010). pr was calculated as 

Whitaker’s (1960) y/a-1 to relate the proportion of total richness observed over a year to 

the richness present at a single period of time (one month) following Arscott et al. (2003).
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To evaluate the effect of the salinity gradient on these parameters, analysis o f variance of 

linear and quadratic regression models o f yr and Pr with salinity were conducted.

In order to identify the degree to which environmental and biological factors varied 

and co-varied with salinity along the estuarine gradient, linear and quadratic regression 

analyses were conducted using the physical and chemical data collected at the same time 

as the phytoplankton collections, and the distance of each station downstream from the 

mouth of the Susquehanna River at the uppermost section of the Bay. ANOVA was also 

used to evaluate significant differences between stations. These analyses included the 13 

measured environmental variables listed above as well as the TN:TP ratio.

Finally, to explore the linkages between environmental variables and phytoplankton 

species composition (spatial beta diversity), a nonmetric multidimensional scaling 

(NMDS) ordination analysis was used (Rothenberger et al. 2009). Initial analyses 

utilizing the full water quality and phytoplankton dataset comprising 2117 collections 

contained too much noise to discern trends and therefore indicated data reduction was 

necessary to observe spatial patterns. As the focus o f the study was on spatial and 

seasonal variability, average species compositions and environmental parameters were 

calculated for each station (n=9)/ month (n=12) combination for a total o f 108 

collections. Species abundances in cells L '1 were logio transformed after adding 1 to each 

value, and species that were present in less than 5% of collections were removed from 

analyses (Rothenberger et al. 2009). The four seasonal environmental distance matrices 

were made up of 27 collections and the 14 environmental parameters listed above in 

addition to the biological parameters of species richness, chlorophyll, primary 

productivity and total phytoplankton cell abundance. The number o f species included in
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the analyses varied by season resulting in four matrices; Winter with 317 species 

columns, Spring with 334, Summer with 373 and Fall with 362 species, all with 27 

collection rows. NMDS analysis was conducted for each season based on the Sorensen 

distance measure o f the phytoplankton composition data, using PC-ORD 5.10 for 

Windows (MjM Software, Gleneden Beach, OR) (Rothenberger et al. 2009). Joint plots 

were generated based on the ordination distance matrices and overlaid with 

environmental vectors that were correlated with R value of 0.3 or higher. IBM SPSS 

Statistics 20 (IBM) was used for all other statistical analyses.

Results

Environmental parameters

There was a high degree of spatial heterogeneity in physical and chemical 

characteristics within the Chesapeake Bay mainstem (Table 1), with ANOVA detecting 

significant differences between stations of all measured parameters (p<0.0001) with the 

exception of water temperature (p=0.989) over the ca. 300 km distance along the Bay. 

While the most apparent constituent of the estuarine gradient in Chesapeake Bay is the 

salinity increase downstream (as indicated by the significant positive linear regression 

with distance p<0.000, R2=0.862), other parameters displayed a variety o f spatial 

patterns, both linear and non-linear. Secchi depth also generally increased linearly 

downstream (p<0.0001, R2= 0.361), with the highest water clarity at the baymouth. A 

number of environmental parameters declined with distance downstream in a relatively 

linear fashion, including DIN (p<0.0001, R2=0.615), PP (p<0.0001, R2=0.267), silica 

(p<0.0001, R2=0.558), TN (p<0.0001, R2=0.721) and TP (p<0.0001, R2=0.270). These 

parameters all had highest average values in the upper Bay with lower values
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downstream. Other parameters were non-linear with downstream distance, and were 

better explained by quadratic regression models. For instance orthophosphate (p<0.000, 

R2=0.262) and TSS (p<0.0001, R2=0.074) both had a U-shaped distribution, with lowest 

concentrations in the mid Bay and higher values in the upper and lower regions. 

Conversely, average DO (p=0.003, R2=0.013), DON (p<0.0001, R2=0.316) and PN 

(p<0.0001, R =0.128) levels were highest in the mid Bay and lower in the upper and 

lower Bay stations, illustrated as an inverse U or hump shaped relationship with 

downstream distance.

Biological parameters

Phytoplankton abundance, productivity and composition also differed along the 

Chesapeake Bay transect (Table 2). ANOVA indicating significant differences between 

stations of total phytoplankton abundance (chlorophyll, productivity rate, cell densities) 

and composition (relative abundance of major groups). These biological parameters had 

varying spatial distributions within the Bay, with some explained by significant linear 

regression models with downstream distance, and others by quadratic polynomial models. 

Regression analysis indicated a weak, but significant negative linear relationship between 

total phytoplankton abundance and distance (p<0.000, R2=0.050), with a lower average 

cell density downstream compared to upper Bay stations. Both chlorophyll 

concentrations and primary productivity rates were highest within the mid Bay, 

displaying a unimodal relationship better explained by significant quadratic regression 

models (chlorophyll p<0.0001, R2=0.024, productivity p<0.0001, R2=0.182).

The phytoplankton community o f Chesapeake Bay contains species belonging to 

13 major taxonomic groups spanning two domains, however between 97.1-99.3% of all



T a b l e  2. Biological parameters of Chesapeake Bay (CB) mainstem phytoplankton stations. Values are long term station averages 
(CB1.1: 1985-1995, all other stations 1985-2009).__________________________________ ________________________________

CB Chlorophyll
(MgL')

Productivity 
rate 

(MgC L-1 H‘ 
')

Total 
phytoplankton 

abundance 
(cells L 1)

Diatoms
(percent

abundance)

Dinoflagellates
(percent

abundance)

Cyanobacteria
(percent

abundance)

Chlorophytes
(percent

abundance)

Cryptomonads
(percent

abundance)

Others
(percent

abundance)

1.1 8.5 41.9 20,438,140 44.2% 0.7% 33.3% 16.0% 4.9% 1.0%
2.2 6.7 30.4 9,495,147 45.8% 6.4% 27.3% 5.4% 13.9% 1.3%

3.3C 13.5 59.3 17,227,386 39.9% 16.6% 21.2% 1.4% 18.0% 2.9%
4.3C 9.2 45.9 18,504,615 41.9% 9.8% 25.9% 1.8% 18.2% 2.4%
5.2 8.9 40.8 20,075,635 45.3% 6.0% 26.6% 1.7% 17.8% 2.5%
6.1 9.3 29.4 7,686,584 60.9% 5.9% 8.8% 1.0% 22.8% 0.7%
6.4 8.2 34.9 7,511,324 61.0% 6.6% 5.5% 1.3% 24.6% 1.1%

7.3E 6.8 25.3 5,976,787 62.7% 5.7% 7.0% 0.9% 23.0% 0.8%
7.4 5.3 23.1 5,477,952 65.8% 4.7% 6.6% 0.6% 21.6% 0.8%
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algal cells identified belong to five groups. These include the prokaryotic cyanobacteria, 

and the eukaryotic chlorophytes, cryptomonads, diatoms and dinoflagellates. Diatoms 

were the most abundant phytoplankton group within all regions of Chesapeake Bay, 

making up between 39.9-65.8% of the average algal community (Table 2). Relative 

diatom abundance increased with proximity to the baymouth (p<0.0001, R2=0.102). The 

percentage of cryptomonads also increased significantly in a linear fashion with 

downstream distance (p<0.0001, R2=0.110), and represented approximately 20% of total 

cell abundance in all areas but the upper Bay. Conversely, the proportion of 

cyanobacteria (p<0.0001, R2=0.205) and chlorophytes (p<0.0001, R2=0.179) significantly 

declined from the upper to lower Bay stations. Cyanobacteria abundance was highest in 

the upper Bay, with moderate relative abundances in the mid Bay, and extremely low 

abundances in the lower Bay. The abundance of chlorophytes declined more rapidly with 

downstream distance, and were largely absent within the Bay except for the uppermost 

stations. Dinoflagellates made up a higher percentage of the phytoplankton within the 

mid Bay, with reduced representation in the upper and lower Bay regions, having a 

unimodal distribution better explained by a significant quadratic regression with distance 

(p<0.0001, R =0.063). The remaining taxa not belonging to these five categories were 

grouped into an others category, which had no significant (p>0.05) linear or quadratic 

relationship with distance.

Phytoplankton diversity

A total o f 1480 phytoplankton taxa were identified within the Chesapeake Bay 

and its tidal tributaries over the course of over 25 years of monitoring (Table 3- 

Appendix). Diatoms contained the highest richness with 687 taxa belonging to 110
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genera. Chlorophytes were represented by 279 taxa (71 genera) followed by 

dinoflagellates with 199 taxa (37 genera) A total of 125 cyanobacteria taxa were 

identified from 40 genera. O f the other taxa, these were 63 euglenophytes, 39 

chrysophytes, 25 xanthophytes, 19 cryptophytes, 16 coccolithophores, 12 prasinophytes, 

six raphidophytes, five silicoflagellates, and five prymnesiphytes. Following the 

conventions o f Reichert et al. (2010), 1297 taxa were considered rare (present in less than 

1% of the total collections). There were 118 taxa considered intermediate (between 1% 

and 10%), and 65 common taxa (present in 10% or more of the collections). The most 

ubiquitous taxa included the diatoms Skeletonema costatum, Chaetoceros sp., 

Thalassionema nitzschioides, Dactyliosolen fragilissimus, Cylindrotheca closterium, 

Ceratuaulinapelagica. The dinoflagellates Gymnodinium sp., Prorocentrum minimum, 

Heterocapsa rotundata, and Prorocentrum micans, and the cryptomonad Crytomonas sp. 

also made up the most frequently observed taxa.

Alpha diversity, mesaured as species richness, varied by an order o f magnitude, 

ranging from 6-76 phytoplankton taxa per sample, with a mean of 34.5. While 

characterized by relatively high species richness, the phytoplankton community generally 

had low species evenness. That is there was a large disparity between abundances of 

dominant and background taxa, such that 64% of samples had at least half of the total 

algal biomass due to one of the aforementioned algal groups. These collections were 

most often dominated by diatoms (24%), cryptomonads (18%), or dinoflagellates (16%). 

In 29% of the samples, a single species accounted for at least half o f the total biomass. 

These samples were most often dominated by diatom species (20%), with Ceratulina 

pelagica and Skeletonema costatum being the most frequent dominant taxa.
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A significant effect of salinity on alpha species richness was found, with 

significant regressions observed in each season (Fig. 3). The polynomial (quadratic) 

model better described the U-shaped relationship between the two variables more so than 

the linear model due to the high diversity at the freshwater station (CB1.1). Variability in 

salinity accounted for between 34 and 46% of the variability in phytoplankton species 

richness (Fig. 3). There was also a significant non-linear relationship between salinity 

and H \  however there was much greater variability, with the variability in salinity only 

explaining between 2 and 9% of the variability in H ’ depending on the season. There 

were also no significant linear (p=0.578) or quadratic (p=0.710) relationships between the 

salinity range experienced at a station and phytoplankton species richness (data not 

shown). The relationship between species richness and salinity was apparent in both the 

entire dataset (1985-2009) as well as the data from 1985-1995. Average station species 

richness values differed between 0.19% and 7.72% between the two datasets, compared 

to the up to 211% differences between different stations along the gradient. With the 

focus of this analysis on the spatial differences along the Bay transect, and due to the 

similarity in results, I have chosen to include the 1985-2009 data except where noted.

In all seasons, species richness was generally higher at the freshwater site and 

declined with increased salinity to a minimum in the 5-10 range and then increased with 

salinity to what were often the maximum levels at the highest salinities. Winter samples 

had the lowest average species richness at the freshwater station (CB1.1), while still 

having high diversity in the more saline sites leading to the most linear relationship with 

salinity (Fig. 3A). Winter collections also had higher variability in richness at many of 

the more saline locations, including particularly high values in the upper meshohaline/
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lower polyhaline region (15-20) and lower values in the upper polyhaline locations (>25). 

Spring collections were the most variable, including both high and low richness in the 

oligohaline and lower mesohaline, resulting in the lowest R2 values (Fig. 3B). Spring 

collections also included samples with the highest species richness, originating from the 

freshwater site. Summer and fall collections were the most bimodal, with high species 

richness in freshwater and polyhaline waters and low diversity in meso- and oligohaline 

locations, resulting in U-shaped distributions with the steepest slopes (Fig. 3C,D). 

Diversity as measured by H ’ was much more variable, with less apparent relationship 

with salinity or seasonal patterns (Fig. 4). In contrast to species richness, which was 

minimal at lower mesohaline salinities, H ' although variable, was often lowest at higher 

salinities, generally near 12-15. This trend was most apparent in the spring, with average 

H ’ values below 2.5 at meso and polyhaline stations.

The level of spatial gamma diversity varied greatly, ranging between 72-184 

different algal taxa observed within the Chesapeake Bay (1985-1995) during a one month 

time period, and between 257-383 taxa within a calendar year. Spatial gamma diversity 

was significantly different between seasons (p<0.0001) (Fig. 5). The highest average 

total number of phytoplankton taxa (115.4) was observed in the autumn. Samples 

collected during spring had the lowest average gamma diversity (91.8), significantly 

lower than summer (102.8) and autumn, but not significantly different than average 

winter values (101.9). Temporal gamma diversity at each station was also highly 

variable, ranging from 52-168 unique algal taxa observed during a year at an individual 

station. Temporal gamma diversity was related to salinity in much the same way as alpha 

diversity (Fig. 6), being best described by a significant U-shaped quadratic regression
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Fig . 3: Seasonal phytoplankton species richness and salinity values collected within 
Chesapeake Bay in (1985-2009). All collection data shown illustrated as circles, with 
triangles representing mean values for the nine sampling stations. Trendlines illustrate 
significant non-linear (quadratic) regressions between richness and salinity.
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within Chesapeake Bay in (1985-2009). All collection data shown illustrated as circles, 
with triangles representing mean values for the nine sampling stations. Trendlines 
illustrate significant non-linear (quadratic) regressions between richness and salinity.
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F ig. 5: Seasonal Bay-wide phytoplankton species richness representative o f regional 
(gamma) diversity (1985-1995). ANOVA indicates significant differences in richness 
between seasons (p<0.000). Groups with the same letter are not significantly different 
than each other.
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model (pO.OOOl, R2 =0.501). While there was a greater degree of variability, 

particularly in the oligohaline region, the trend was similar with reduced diversity at 

intermediate salinities, with greater values at the upper and lower reaches o f the estuary. 

Temporal beta diversity also varied with salinity, with significant negative linear 

(p<0.000, R2=0.055) and hump shaped quadratic (pO.OOOl, R2=0.083) regressions, 

although with a much weaker signal than the other diversity metrics (Fig. 7). While 

weak, the trend was for a greater degree of temporal beta diversity in the mesohaline 

region, and lower salinities in general in relation to the polyhaline samples. Stations with 

higher temporal beta diversity experienced a greater degree o f variation in average 

monthly species richness in relation to the total diversity present at the station during the 

year, and therefore had a higher degree of difference in species present throughout the 

year (Arscott et al. 2003). Stations with lower beta diversity, such as the polyhaline had 

less variation in species richness, with a lower variability o f species present over time. 

Phytoplankton composition

The NMDS ordination analyses of phytoplankton species abundances illustrated 

that community composition varied greatly within the Bay throughout the four seasons 

(Figs. 8-11). The ordination plots show how similar the phytoplankton communities are 

based on their distance to each other. Points which are close to each other represent 

similar species composition while those that are further away are less similar. These 

metrics incorporate both the presence/absence of individual species and the abundances 

of those species. The points are coded by station, with each point representing the 

average monthly phytoplankton composition for that station, based on the long-term 

average of individual species abundances (1985-2009). Again, separate NMDS analyses
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were conducted utilizing only the 1985-1995 data, which produced comparable results to 

the full dataset, including the same spatial and seasonal patterns of composition, as well 

as relationships with environmental factors, and did not offer any additional insights or 

contradictory results to those using the full dataset. Therefore only the results of the 

NMDS analysis on the complete 1985-2009 data are presented. The NMDS ordinations 

also contain vectors which represent the correlation between the environmental variables 

and the distribution of species compositions. These describe both direction and strength, 

as the bearing of the line is towards increasing higher values and the length of the line 

indicates the R2 value of the parameter. Only those variables with a correlation 

coefficient of 0.3 or higher are shown on the plots. Species richness, chlorophyll, total 

cell abundance and primary productivity rates are also included as vectors, to further 

illustrate the relationship between alpha diversity, the environmental variables, and the 

phytoplankton species composition and abundance. The vector data are also based on the 

long-term monthly averages for each station. This approach captured the vast majority of 

the variability o f the dataset, with the seasonal biplots accounting for between 91-97% of 

the variance in the distance matrix within the two plotted axes.

Phytoplankton composition varied both spatially (between stations) and 

temporally (both between and within seasons). While there were differences in each 

season, the ordination bi-plots (Figs. 8-11) indicate several patterns and groupings of 

similarity in species composition that are consistent with the spatial distribution of the 

sampling sites. Samples from the four polyhaline stations (CB6.1, CB6.4, CB7.3E and 

CB7.4) form a distinct assemblage in the left half of each seasonal plot, indicating a very 

similar composition within this region, relative to the rest of the Bay. Diatoms, including
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Skeletonema costatum, Ceratulina pelagica and Dactyliosolenfragilissimus dominated 

this region year-round along with the flagellate Cryptomonas sp. Species composition in 

the mesohaline stations (CB3.3C, CB4.3C and CB5.2) were similar to each other, with 

points from these stations concentrated in the center o f the joint plots. This grouping is 

tighter in the analysis of the summer months (Fig. 10) indicating similar composition 

between stations at this time of the year, with less similarity in other seasons, particularly 

in the winter (Fig. 8). This region contained a variety of algal taxa o f varying abundances 

depending on the season. Winter algal composition was dominated by diatoms, including 

S. costatum and Chateoceros spp., with spring samples containing a larger fraction of 

cyanobacteria and dinoflagellate taxa including the bloom forming taxa Microcystis spp. 

and Prorocentrum minimum. Cell abundance was greatest in the mesohaline Bay during 

the summer season and strongly dominated by cyanobacteria including Microcystis and 

Merismopedia species, with lesser densities during autumn. Collections from the 

oligohaline (CB2.2) and freshwater (CB1.1) stations were generally more distantly 

related to other species compositions, located to the right on the ordination plots (Fig. 8-

11). The composition within the freshwater collections were the most dissimilar to the 

other sites, and could be described as forming its own grouping, particularly in the 

autumn (Fig. 11). The freshwater region was seasonally dominated by a variety of 

cyanobacteria with Microcystis, Merismopedia and Oscillatoria species being the most 

dominant, particularly during summer. This station also contained a much higher number 

of chlorophyte taxa than other regions in the Bay, with Scenedesmus quadricauda being 

the most abundant. Composition within the oligohaline station was intermediate 

between the freshwater and mesohaline collections, and was more similar to one group,
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or the other depending on the season. In the spring the composition of the oligohaline 

and freshwater stations were more similar, with high concentrations o f small diatoms 

including Cyclotella species, and filamentous cyanobacteria such as Oscillatoria (Fig. 9).

The 1st axis o f the ordination plots describes much o f the overall estuarine 

gradient present, both in terms of the location o f the phytoplankton stations and the 

environmental parameters that are associated with those stations (Table 3). In general the 

horizontal axis of the plot describes the spatial distribution and condition along the length 

of the Chesapeake Bay from north to south (Figs. 8-11). The composition of the 

collections made closest to the baymouth are located to the left of the plots, with 

increasingly upstream collections shown further to the right. The overlaid vectors also 

describe the changing environmental variables along this gradient, with salinity, secchi 

depth and generally nutrient concentrations (particularly nitrogen and especially DIN) all 

strongly correlated with the 1st axis (Table 3). The 2nd axis (vertical) is most correlated 

with DON and PN, and much less so by salinity (Table 3).

Species richness, chlorophyll, productivity and abundance are correlated in very 

different ways with the species composition patterns and environmental factors (Table 4). 

Species richness is correlated with both axes, especially in the winter and autumn 

seasons, while the other biological metrics are generally only correlated with one axes, 

and largely to a much lower degree (Table 3). There are differences in some parameters 

seasonally, but the lower-Bay collections to the left of the plots are associated with higher 

salinity and water clarity, and lower nutrient concentrations, particularly both the organic 

and inorganic forms of nitrogen as well as silica and to a lesser degree phosphorus. The 

mid Bay collections (those points marked in the central portion of the ordinations) are
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T a b l e  3 : Pearson correlations between environmental and biological variables and 
ordination axes o f NMDS similarity matrix ordination plots o f  Chesapeake Bay 
phytoplankton species composition for each season. Winter: Dec-Feb, Spring: Mar-May,
Summer: Jun-Aug, Autumn: Sep-Nov.___________________________________________

Winter Spring Summer Autumn
Axis 1 Axis 2 Axis 1 Axis 2 A xis 1 Axis 2 Axis 1 Axis 2

Salinity 0.871 0.028 0.877 0.142 0.921 0.084 0.911 0.027
Secchi 0.458 0.134 0.783 0.037 0.597 0.073 0.473 0.170

DO 0.514 0.045 0.001 0.000 0.137 0.048 0.040 0.004
TSS 0.003 0.123 0.464 0.129 0.004 0.140 0.003 0.153
SIF 0.842 0.085 0.756 0.020 0.590 0.247 0.732 0.011

Temperature 0.297 0.001 0.001 0.007 0.025 0.005 0.035 0.019
DIN 0.855 0.102 0.848 0.034 0.794 0.024 0.731 0.160
DON 0.003 0.463 0.071 0.547 0.125 0.638 0.181 0.438
PN 0.007 0.650 0.166 0.620 0.012 0.524 0.098 0.098
TN 0.890 0.055 0.851 0.085 0.913 0.004 0.838 0.088

P 0 4F 0.281 0.302 0.491 0.024 0.131 0.002 0.180 0.059
PP 0.483 0.019 0.729 0.000 0.358 0.063 0.534 0.177
TP 0.484 0.047 0.762 0.003 0.382 0.102 0.403 0.046

TN:TP 0.774 0.017 0.115 0.522 0.643 0.001 0.676 0.022
Chlorophyll 0.209 0.068 0.010 0.239 0.125 0.240 0.022 0.000
Productivity 0.027 0.284 0.221 0.077 0.582 0.612 0.253 0.378

Cell abundance 0.090 0.347 0.174 0.267 0.265 0.008 0.285 0.005
Species richness 0.738 0.068 0.350 0.629 0.241 0.645 0.507 0.391
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related with intermediate values o f salinity and secchi depth, and intermediate 

concentrations o f inorganic and total nitrogen. These assemblages, are most related with 

increased levels of organic and particulate nitrogen year round, and elevated TN:TP 

ratios in spring (Figs. 8-11). The groupings o f the oligohaline, and to a greater degree the 

freshwater collections are associated with low salinity and water clarity, and highest 

concentrations of nutrients, especially inorganic nitrogen. The position of the CB1.1 and 

polyhaline samples in the opposite half of the plots as the DON and PN vectors also 

illustrates that these sites are connected with reduced levels o f organic and particulate 

nitrogen, particularly in the summer (Fig. 10).

Discussion

Estuaries represent complex transitional habitats of multiple environmental 

gradients including the continuum from marine to freshwater. In Chesapeake Bay, there 

is a multifaceted gradient of highly correlated variables that influence phytoplankton 

growth and composition, including salinity, nutrient concentrations and light availability 

(Table 1). The ordination analyses (Figs. 8-11) illustrate the strong interconnectedness of 

environmental parameters over the length of the estuary. While the physical and 

chemical features within the Bay do transition over the 302 km between the Susquehanna 

River and the Atlantic Ocean, not all do so in a continually directional fashion that is 

often implied in estuary gradients. The resulting combination of linear and non-linear 

gradients leads to a spatially heterogeneous environment capable o f supporting a large 

and diverse biological overall community (gamma diversity), made up of multiple 

dissimilar community assemblages.
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Alpha species richness was highly correlated with salinity more consistently with 

the Artenminimum model of Remane (1934) than that proposed by Telesh et al. (2011), 

with minimal algal species generally found in regions with salinities o f 5-10 (Fig. 3).

The Artenminimum model does a much better job describing species richness patterns 

than diversity as H ’ along a salinity gradient (Fig. 4). These results are consistent with 

the majority of examinations of species richness of organisms within estuaries (Whitfield 

et al. 2012), including within tributaries of Chesapeake Bay (Wagner 1999). In contrast 

to the results o f Attrill (2002), this relationship is linked to the salinity value itself, or 

another correlated variable (such as secchi or TN) and not the variation in salinity, as 

there was no significant relationship between salinity range at a site and species richness. 

The model proposed by Attrill (2002) may better describe the degree of stress on species 

richness due to salinity fluctuations exerted on benthic organisms such as those on which 

it is based rather than plankton. Additionally, the range in salinity examined by Attrill 

(2002) in the Thames estuary (0-35) exceeds that observed in this study (0-27), with the 

upper polyhaline samples having minimal salinity fluctuations in the Thames. Therefore 

it is possible that an extended transect of data collections from the baymouth into the 

higher salinities o f the Atlantic might reveal species richness patterns more indicative of 

the Attrill (2002) model.

Phytoplankton spatial distributions within estuaries in general and Chesapeake 

Bay in particular are complex and have been recognized as heterogeneous by multiple 

investigators (eg. Marshall and Nesius 1996, Kemp et al. 2005, Roman et al. 2005, 

Lacouture et al. 2006, Adolf et al. 2006). Even with a high degree of seasonal variability, 

the assemblages o f phytoplankton composition illustrated by the NMDS ordination
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analyses generally align to unique habitats along the length of the Bay. While these 

habitats can be defined by multiple environmental and biological traits, they can be 

described for convenience using the construct of the salinity boundaries known as the 

Venice System, defined in short as freshwater/limnetic zone 0-0.5, oligohaline zone 0.5- 

5, mesohaline zone 5-18, polyhaline zone 18-30, and euhaline zone >30 (Oertli 1964, 

Bleich et al. 2011). There is growing evidence that these zonations, particularly the 

separation between oligohaline and lower mesohaline waters (5-10) constitute more of a 

biologic boundary (ecocline) than a steady transition between the two (ecotone) (Attrill 

and Rundle 2002). The relative similarity o f species composition within these zones and 

dissimilarity between zones indicates a strong effect of the salinity gradient on the 

plankton community structure. High species turnover (beta diversity) near the 

meso/polyhaline transition has also been observed in the Schelde estuary of Belgium and 

the Netherlands, where it represented the transition between riverine and coastal 

phytoplankton communities (Muylaert et al. 2009). This relationship with salinity also 

appears to have a temporal component, with the stations located in the mesohaline, 

generally having higher average temporal beta diversity values than stations at higher and 

lower salinities (Fig. 7).

The freshwater community of Chesapeake Bay collected at the mouth of the 

Susquehanna River typically contained a greater abundance o f cyanobacteria species 

including colonial and filamentous bloom forming species typical o f eutrophic freshwater 

systems (Steinberg and Hartmann 1988). These populations included the toxin producing 

species Microcystis aeruginosa and Aphanizomenon jlos-aquae, plus representatives 

from other genera which contain potentially toxic species including Anabaena (Marshall
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et al. 2008). Along with the lowest salinity, this community was associated with the 

highest nitrogen concentrations in the Bay, particularly the level of DIN which was as 

much as two orders o f magnitude higher than other regions. There was considerable 

inter- and intra-annual variability, but average (a ) and annual (y t)  species richness was 

generally high (Fig. 3) along with a relatively high degree of temporal beta diversity (Fig. 

7) indicating a more variable species composition throughout the year.

Environmental conditions were highly variable at the station CB2.2, with average 

salinity fluctuating seasonally within the oligohaline zone. During the spring when 

salinities at the station were lowest, the phytoplankton composition was most 

representative of freshwater conditions including the same cyanobacteria observed 

upstream, and least so in autumn, with a greater abundance o f diatoms and flagellates 

particularly the bloom forming Heterocapsa rotundata. Water clarity was lowest in this 

region with the highest levels of TSS (Table 1). These conditions contribute to light 

limitation (Kemp et al. 2005) and reduced phytoplankton abundance, biomass and 

productivity (Table 2). The oligohaline also has some of the lowest levels of algal 

diversity observed, both at the a  level (Fig. 3) and at the y t level (Fig. 6), further 

illustrated by the separation of the species richness vector and the composition of 

collections from this region especially during the winter (Fig. 8). This region had a 

variable inter-annual species composition indicated by the elevated average pT values 

(Fig. 7).

The mesohaline zone, located within the mid Bay, while having intermediate 

values of most environmental parameters (Table 1) (particularly salinity and nitrogen 

concentrations), have the highest levels of phytoplankton biomass and productivity



50

(Table 2). The mid Bay is also deeper than the upper and lower Bay, with a greater 

residence time (Roman et al. 2005), and consequently the site of the highest degree o f 

hypoxia and anoxia (“deadzones”) within the Bay (Cerco and Cole 1993, Kemp et al. 

2005). This region contains a number of HAB taxa including the previously mentioned 

cyanobacteria and the bloom forming dinoflagellate Prorocentrum minimum. P. 

minimum blooms, commonly known as mahogany tides, are prevalent in this region and 

have been associated with finfish and shellfish mortality and loss of submerged aquatic 

vegetation habitat (Tango et al. 2005). While containing intermediate values of TN and 

DIN, this zone had the highest concentrations o f DON and PN in the Bay (Table 1, Figs. 

8-11). Elevated DON has been linked to cyanobacteria and dinoflagellate blooms 

(Glibert et al. 2001, Glibert et al. 2004). Average and annual phytoplankton species 

richness was generally low, with stations CB3.3C at the mouth of the Chester River (just 

below Baltimore, MD) and CB4.3C at the mouth of the Choptank River regularly having 

the lowest diversity in the Bay, often with only half the number of taxa observed 

compared to the upper and lower Bay stations. While a  and y diversities were low, this 

area had the highest average values o f Pt diversity, indicating the greatest level o f intra­

annual species turnover (Fig. 7; Shurin et al. 2010).

Higher salinities and lower nutrient concentrations (particularly nitrogen) were 

observed within the polyhaline Bay (Table 1). Water clarity was highest in this region 

along with the lowest average levels of phytoplankton abundance and productivity (Table 

2). These conditions were associated with a diverse number o f algal species including a 

dominance of centric chain forming diatoms, particularly the ubiquitous taxa S. costatum, 

D. fragillissimus and C. pelagica. A higher percentage of centric diatoms relative to
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pennate forms is often linked to eutrophication (Cooper 1995). However, this group is 

also much more associated with more saline waters than are pennate diatoms (Guillard 

and Kilham 1977), so the linkage along this gradient is confounded and potentially 

spurious. Cryptomonads as a group increased within the Bay with salinity and were most 

abundant in the polyhaline zone, making up a significant portion of the phytoplankton 

community throughout the year (Table 2). Alpha and gamma species richness was 

generally high within the polyhaline, with the highest levels observed at the baymouth 

(station CB7.4). This station often contained not only a diverse mixture of taxa observed 

throughout the rest of the Bay, but also numerous oceanic species rarely encountered at 

other sites, including large pelagic diatoms such as Odontella sinensis and oceanic 

associated dinoflagellates including Dinophysis caudata. There was a much lower degree 

of seasonal species turnover in the polyhaline, with average beta diversity values lower 

than the rest o f the Bay (Fig. 7). The relative stability of environmental factors compared 

to upstream habitats was reflected in a lower degree o f variability in species composition 

and variation in species richness over time.

While there has been considerable debate regarding the issue, there is a growing 

consensus o f evidence that higher biological diversity is associated with greater 

ecosystem stability (Tilman et al. 1998, McCann 2000, Cadotte et al. 2012). One of the 

proposed pathways of this relationship is that more diverse communities exhibit greater 

resistance and resilience to environmental stressors and biological invasions (Alison 

2004, Britton-Simmons 2006). Both low alpha diversity (Paavola et al. 2005) and high 

beta diversity (Steiner and Leibold 2004) have been linked to greater susceptibility to 

biological invasions. HABs have been characterized as biological invasions and linked to
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periods of low stability in freshwater habitats in which there was higher probability o f M. 

aeruginosa blooms following the beginning of a decline in algal species diversity (Chalar 

2009). There have been other attempts to utilize phytoplankton diversity as a metric o f 

ecosystem health, with lower diversity generally related to degraded conditions 

(Revelante and Gilmartin 1980, Danilov and Ekelund 1999, Ptacnik et al. 2008). The 

spatial patterns o f algal diversity within the Chesapeake Bay estuary may be seen as 

consistent with these predictions, in that regions with lower species richness and 

evenness (mid-Bay) have higher biomass and are more prone to algal blooms and 

reduced dissolved oxygen. However, caution must be taken in drawing conclusions from 

these correlations, as the salinity zone and physical characteristics o f the mid-Bay and 

brackish waters in general also contribute significantly to these traits (Paavola et al.

2005).

Conclusions

Chesapeake Bay supports a diverse phytoplankton community comprised of 

multiple assemblages of algal taxa associated with spatially heterogeneous environmental 

conditions along the length of the estuary. The community can be characterized as one of 

high richness and low evenness, with a small number of dominant taxa and a larger 

number o f less abundant background species. While there is considerable overlap in the 

distribution of certain taxa within the Bay such as Ceratulina pelagica and Skeletonema 

costatum, the dissimilarity o f these algal assemblages between salinity zones suggests 

that the ecosystem is better described as a series of ecological boundaries, with high beta 

diversity occurring at these ecoclines, particularly between polyhaline and mesohaline 

waters and mesohaline and freshwaters. The manner in which alpha species richness
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changes along this salinity gradient is consistent with the artenminimum model of 

Remane (1934), and challenges the generality of the findings o f Telesh et al. (2011) 

regarding estuarine plankton diversity patterns. While the artenminimum model presents 

a simplified model o f changing diversity within and estuary, the complexity o f multiple 

environmental gradients and changing species composition is illustrated through the 

ordination analyses. Species richness patterns were not correlated with environmental 

parameters in the same way as algal productivity and biomass, indicating that 

management practices aimed at affecting one may have varying or negligible results on 

the other. Highest regional diversity was observed during periods o f increased patchiness 

both in environmental conditions and phytoplankton composition, when the distinction 

between salinity zones was greatest. Areas that contained lower levels o f alpha and 

gamma diversity generally had higher levels of productivity and experienced higher rates 

of species turnover, observations which may have additional implications due to potential 

higher susceptibly o f biological invasions including HABs.
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SEASONAL PATTERNS OF WATER QUALITY, PHYTOPLANKTON 

ABUNDANCE, COMPOSITION AND DIVERSITY AND THE EFFECTS OF 

STREAMFLOW IN CHESAPEAKE BAY.

Introduction:

Phytoplankton populations are known to be associated with specific 

environmental conditions and habitats (Smayda 1958, Paerl 1988, Bustillos-Guzman et 

al. 1995, Marshall et al. 2006b). Included in the array of variables influencing 

phytoplankton presence and abundance in estuaries are water temperatures, salinity, 

nutrient concentrations and their ratios to each other, and water flow. Changes among 

these variables often occur seasonally in a predictable resulting in an environment that is 

more or less favorable to the development of certain species within the regional 

phytoplankton community, corresponding to relatively consistent patterns in 

phytoplankton abundance and community composition (Reynolds 1989, Lehman and 

Smith 1991, Figueredo and Giani 2001). These seasonal patterns often represent a 

continuum of successional stages of dominant phytoplankton populations throughout the 

year, such as that observed in estuaries and coastal systems including Chesapeake Bay 

(e.g. Marshall 1980, Mallin et al. 1991, Harding 1994).

Chesapeake Bay is the largest estuary in the United States, with a basin o f ca. 11,600 

km2 and a watershed of ca. 164,000 km2 including 150 major rivers and streams and is 

the home to over 17 million inhabitants (Figure 2; Kemp et al. 2005, Chehata et al. 2007). 

With a large catchment to basin ratio, the Bay is heavily influenced by precipitation 

within the watershed and its impact on streamflow, terrestrial runoff, water quality and 

ultimately biological conditions (Dauer et al. 2000. Boesch et al. 2001). As the
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watershed is in a temperate region, the levels o f precipitation and subsequent streamflow 

rates are highly seasonal, and while they can vary greatly from year to year, they 

generally have the same seasonal sequence (Schubel and Pritchard 1986, Harding and 

Perry 1997, Pionke et al. 2000). These seasonal flow patterns and associated nutrient 

fluxes correspond with the successional patterns of phytoplankton composition and 

abundance in the Bay (Marshall and Lacouture 1986, Marshall and Alden 1997). In 

addition to seasonal patterns, long term variability in rainfall, snowmelt, tropical storm 

activity, temperature changes and global climate processes all contribute to inter-annual 

differences in streamflow, which lead to further abiotic and biotic effects (Hagy et al. 

2005, Kemp et al. 2005, Najjar et al. 2010).

Environmental conditions and their variability influence the abundance of 

particular organisms, along with the diversity o f organisms that are present (Chesson and 

Warner 1981, Barton et al. 2010). There are several examples in the ecological literature 

of environmental gradients corresponding to varying levels o f species diversity. This 

includes latitude, altitude, nutrient concentrations and water availability (Huston 1994). 

In estuarine environments, species diversity of benthic invertebrates, fish, macroalgae, 

shellfish, zooplankton and phytoplankton has been shown to vary with salinity, generally 

resulting in lower diversity found in intermediate salinities compared to the fresher and 

more saline waters (Remane 1934, Whitfield 2012). While these gradients generally 

describe spatial diversity patterns, they may also correspond to temporal changes in 

environmental parameters and diversity (Menge and Sutherland 1976, Steiner et al. 

2005). Changing environmental conditions have been associated with varying diversity
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levels on both seasonal and long term scales (Gaedeke and Sommer 1986, Calijuri et al. 

2002, Barton et al. 2010).

Chesapeake Bay is not only one of the most productive estuaries in the United States, 

but also one of the most studied (Boesch et al. 2001). Water quality and biotic data have 

been gathered through various programs robustly for at least 60 years, with historical 

records dating back over a century (Cooper and Brush 1993, Boesch et al. 2001). Since 

1984, the interagency Chesapeake Bay Monitoring Program has overseen a network of 

stations within the Bay and its tributaries that are monitored for a wide suite of water 

quality parameters and living resources (www.chesapeakebay.net). The numerous 

reports that have been written on the bay phytoplankton community include multiple 

examinations of long-term trends ranging from time periods o f 5 to more than 40 years 

(e.g. Marshal and Alden 1994, Marshall and Nesius 1996, Harding and Perry 1997, 

Marshall et al. 2009c). These findings include several indications o f eutrophication that 

include increased phytoplankton abundance and patterns o f changing phytoplankton 

dominance, with nutrient loading tied to both land use and streamflow within the Bay 

ecosystem (e.g. Marshall and Alden 1997, Hagy et al. 2004, Adolf et al. 2006, Dauer et 

al. 2009).

Many of the examinations of eutrophication in Chesapeake Bay, and elsewhere, have 

utilized pigment levels as a measure of phytoplankton abundance (e.g. Flemer 1970, 

Harding and Perry 1997, Roman et al. 2005, Werdell et al. 2009), with fewer 

examinations that emphasize effects on phytoplankton community composition and 

diversity (exceptions include Mallin et al. 1991, Marshall 1994, Marshall and Nesius 

1996, Pinckney et al. 1998, Zimmerman and Canuel 2002, Dauer et al. 2009).

http://www.chesapeakebay.net
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Eutrophication is often associated with a shift in algal composition to one which is 

dominated by taxa that are considered unfavorable for a variety of reasons (Heisler et al. 

2008). In freshwater habitats, this often includes the dominance of cyanobacteria, 

particularly bloom and even toxin producing species (O’Neil et al. 2011). Eutrophic, 

more saline waters may be dominated by bloom forming dinoflagellates, including those 

that may also produce toxins (Anderson et al. 2008, Mulholland et al. 2009). Generally, 

eutrophic algal communities represent lower quality food sources for zooplankton and 

other grazers, resulting in cascading negative effects on higher trophic levels, that may 

include economically important fish and shellfish populations (Riegman 1995,

Ghadouani et al. 2003, Danielsdottir et al 2007). In addition, eutrophic waters often 

experience hypoxic or anoxic conditions through increased algal respiration, subsequent 

oxygen uptake during bacterial degradation, as well as higher levels o f shading which can 

lead to a loss o f seagrass beds and the fauna associated with them (Glibert et al. 2001, 

Burkholder et al. 2007).

A reduction of habitat quality has not only been associated with changes in 

abundance and species composition, but also a loss of species diversity in both terrestrial 

and aquatic systems (Van Horn 1983, Dobson et al. 2006). Numerous studies have 

linked a reduction of diversity to decline in several ecosystem level functions, e.g. 

productivity, stability and invasibility (Tilman et al. 1996, Lennon et al. 2003, Ives and 

Carpenter 2007). These linkages are of greater importance in relation to the global 

decline in biodiversity observed in almost all groups of organisms examined (Butchart et 

al.2010). Due to their ease of dispersal and apparent ubiquitous nature, microbial 

organisms, including phytoplankton, have also been considered less subject to much of
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the pressures associated with the loss of diversity seen in other systems (Bas Becking 

1934, Briggs 1991, Fenchel et al. 1997). However, both fossil and contemporary 

evidence suggests that this might not be the case, and that phytoplankton diversity may 

indeed be susceptible to declines caused by these same pressures (Bown et al. 2004, 

Ptacnik et al. 2008).

The objectives o f this study are to examine the seasonal and inter-annual relationships 

of flow entering Chesapeake Bay on multiple water quality parameters over a 25 year 

time period, and in turn the impact on the composition and diversity o f the Bay’s 

phytoplankton community.

Methods 

Streamflow data

Estimates of annual mean streamflow entering the Chesapeake Bay were obtained 

from records o f the United States Geological Survey (USGS), based on monthly mean 

values of daily stream gauge data collected since 1937

(http://md.water.usgs.gov/waterdata/chesinflow/). The values represent the sum of 

streamflow inputs of the three major tributaries (Susquehanna, Potomac and James rivers) 

which account for 92% of streamflow into the Bay (Belval and Sprague 1999). Annual 

estimates from 1985-2009 were grouped into one of three categories as per USGS 

classifications (Gamer 2012). These were: 1) normal (11 yrs): representing flow rates 

between the 25th and 75th percentile; 2) above normal/high flow (6 yrs): with rates in the 

upper 75th percentile; and 3) below normal/low flow (8 yrs): with rates in the lower 25th 

percentile. ANOVA was used to confirm that these three groups have statistically

http://md.water.usgs.gov/waterdata/chesinflow/
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significantly different annual flow rates (p=<0.000). Linear regression analysis of annual 

values was conducted to identify long-term changes in streamflow.

Chemical and physical parameters

Monthly collections have been made in the Chesapeake Bay mainstem from a 

network of over 20 water quality stations including 9 stations also sampled for 

phytoplankton composition from 1985-2009, with the exception of station CB1.1, from 

which phytoplankton data was collected 1985-1995 (Fig. 2). A full suite of physical and 

chemical parameters were measured including nutrient concentrations and chlorophyll 

levels using standard methods (Mallonee and Ley 2012). This study utilized water 

quality data from all collections concurrent with phytoplankton composition collections 

at the nine stations from l985-2009 (CB1.1: 1985-2009), which included salinity, secchi 

depth, water temperature, dissolved oxygen (DO), total suspended solids (TSS), silica 

(Si), dissolved inorganic nitrogen (DIN), dissolved organic nitrogen (DON), particulate 

nitrogen (PN), total nitrogen (TN), orthophosphate (PO4F), particulate phosphorus (PP), 

total phosphorus (TP) and the TN:TP ratio.

Biological parameters

Phytoplankton abundance, composition and relationships were determined based 

on microscopic examination of Lugol’s preserved monthly samples collected from 1985- 

2009 (Marshall and Alden 1997, Lacouture 2010). Micro- and nannoplankton species 

densities were grouped by phyla, with chlorophytes, cyanobacteria, cryptophytes, 

diatoms and dinoflagellates representing greater than 97% of total phytoplankton 

abundance within these Bay samples. Chlorophyll concentrations were measured using 

standard spectrophotometric methods (Mallonee and Ley 2012), with primary
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productivity rates measured using a 14C uptake technique (Marshall and Nesius 1996). 

Algal diversity was characterized as the number of unique phytoplankton taxa for each 

collection (species richness), and using the Shannon diversity index, represented as H ’ 

(Shannon and Weaver, 1949): H' = -  E(Pi * logpi) with p, the proportion of the total 

sample which is composed of species / (Huston 1994).

Statistical analysis

To focus the analyses on the temporal patterns of phytoplankton diversity and 

composition as well as conduct the study on the entire length of the Bay mainstem, the 

environmental and biological data were grouped into four salinity regions using the 

Venice classification system (Oertli 1964), previously identified as similar in water 

quality and phytoplankton composition within Chesapeake Bay (Chapter 2). The 

polyhaline region included stations CB7.4, CB7.3E, CB6.4 and CB6.1. The mesohaline 

region was represented by CB5.2, CB4.3C, and CB3.3C. The oligohaline station CB2.2 

and freshwater station CB1.1 each were the sole representatives of their own group. 

Monthly averages o f all environmental and chemical data were generated each of the four 

groups. To evaluate the effect of streamflow on the overall water quality multivariate 

analysis o f variance (MANOVA) was used on the monthly averages o f the 14 water 

quality parameters (1985-2009) separately for each region with month as a covariate to 

test for a difference between streamflow groups (high, normal, low). When MANOVAs 

were significant for a region, (Wilk’s Lambda p value < 0.05), univariate analysis of 

variance (ANOVA) was conducted on the individual response variables. This approach 

to ANOVA protects against inflation of Type I errors (Schenier 1993, Rubbo and 

Kiesecker 2005). A post hoc Ryan-Einot-Gabriel-Welsch test was used to compare
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treatments when significant differences (p<0.05) were detected by ANOVA. The same 

approach was used to investigate the differences between streamflow groups on the 

biological parameters: chlorophyll, phytoplankton abundance, primary productivity rate, 

phytoplankton species richness, Shannon diversity, and the abundance of the major 

taxonomic groups. The database was constructed using Microsoft Access and Excel, 

with all statistical calculations made using IBM SPSS Statistics 20.

Results

Flow

Of the 75 years of USGS data, the annual average flow rate entering Chesapeake Bay 

has ranged from 45,400-121,000 fit3sec'1, with a long term mean of 78,257 ft3sec'1 (Fig.

12). There has been no significant long term increase or decrease in annual average flow 

rate over this time period (p=0.183, R2= 0.011). Annual averages between 63,750 and 

89,675 fit3sec'1 are within the 25th and 75th percentile and were classified by the USGS as 

normal years. During the 25 years (1985-2009) o f the current study there have been 6 

above normal years, 8 below normal and 11 years falling into the normal range. This 

period includes years with the lowest recorded annual flow (1999 and 2002) and some of 

the highest flow rates on record (2003, 2004 and 1996).

Intra-annual seasonal patterns of streamflow were relatively consistent between 

groups (high, normal, low). Flow into the Chesapeake Bay from the Susquehanna, 

Potomac and James rivers peaked in March and April with combined maximum values 

from 55,700 to 103,000 fit3sec'1 (Fig. 13). Rates declined through spring into summer 

with minimum flow in August and September. Annual minimum values ranged from 

5,800 to 29,300 ft3sec'1. During some high flow years, there were additional periods of
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higher flow in September, not observed in other years (Fig. 13). Flow rates increased 

from October to January, with lower levels generally during February, before rising to the 

spring maximum. There were significant differences in flow rates throughout the year 

between the three flow groups (p<0.0001). Above normal flow years had higher levels of 

streamflow in the spring months and higher levels throughout the year, with summer 

months of below normal years having the lowest overall flow.

Water quality

There was a significant effect of annual streamflow on water quality parameters as a 

whole as detected by MANOVA in each of the four salinity regions (polyhaline, 

mesohaline, fresh pO.OOOl, oligohaline p= 0.003), with subsequent ANOVA analyses 

identifying varying results depending on the individual parameter and region (Table 5; 

Figs. 14-18).

Salinity was reduced by streamflow, in the oligohaline, mesohaline and polyhaline 

regions with significantly lower levels in wet years than normal and dry years 

(PO.OOOl). Salinity at the freshwater station remained fresh (0-0.14) in all years 

regardless of flow level. The salinity within the regions remained consistent to the 

assigned Venice classification, with the oligohaline region ranging from 1.38-3.17, the 

mesohaline from 10.29-13.47 and the polyhaline from 19.7 to 22.29. Seasonally, salinity 

was also inversely related to streamflow, with the lowest levels in April and May 

following the period of maximum flow (Fig. 14 A). Low flow years had significantly 

higher salinities than wet years, particularly in summer and autumn.

Water clarity declined significantly with increased streamflow in all four regions of 

Chesapeake Bay (Table 4), with greater secchi depth corresponding with lower flow



T a b l e  4. Water quality parameters from four salinity regions within Chesapeake Bay (1985-2009) during periods of high, normal and 
low annual flow; high=annual flow is in the upper 25% of longterm records, normal= 25-75%, and low= the lowest 25%. Annual 
averages for each parameter within each period and period shown along with results of the analysis of variance of between subject 
effects of streamflow treatment. Significant effects (p<0.05) within region in bold. Parameter abbreviations are given in the methods 
section.

low
Polyhaline 

normal high P low
Mesohaline 

normal high P
Salinity 22.29 21.55 19.70 <0.000 13.47 12.38 10.29 <0.000

Secchi (m) 2.11 1.80 1.77 <0.000 1.81 1.55 1.44 <0.000
DO (mg I'1) 9.2 9.3 9.6 0.285 9.2 9.0 9.4 0.598

TSS (mg f 1) 9.6 8.4 10.5 0.067 5.9 6.0 6.2 0.582
Temp (C) 16.2 16.0 15.4 0.858 16.6 17.2 15.8 0.703
Si (mg r 1) 0.19 0.26 0.28 0.001 0.60 0.74 0.88 <0.000

DIN (mg T1) 0.041 0.040 0.077 0.000 0.246 0.249 0.393 <0.000
DON (mg f 1) 0.235 0.223 0.215 0.317 0.314 0.292 0.289 0.002

PN (mg T1) 0.120 0.131 0.149 0.001 0.190 0.209 0.210 0.129
TN (mg I'1) 0.400 0.393 0.442 <0.000 0.737 0.743 0.886 <0.000

P 0 4F (mg I'1) 0.0063 0.0052 0.0049 0.272 0.0052 0.0049 0.0051 0.465
P P (m g r ') 0.0136 0.0133 0.0150 0.038 0.0166 0.0180 0.0185 0.037
TP (m g f1) 0.0267 0.0234 0.0243 0.137 0.0304 0.0323 0.0316 0.290

TN:TP 17.11 19.16 21.03 0.002 28.98 26.62 31.43 0.165

ONl/l



T a b l e  4 . (c o n tin u e d )

low
Oligohaline 

normal high P low
Fresh

normal high P
Salinity 3.17 2.56 1.38 <0.000 0.00 0.01 0.00 0.355

Secchi (m) 0.82 0.73 0.58 <0.000 0.99 0.90 0.83 0.001
DO (m gl'1) 8.6 8.7 9.3 0.244 9.6 9.6 10.3 0.347

TSS (mg I'1) 14.2 15.9 20.9 0.001 8.3 10.4 15.3 0.022
Temp (C) 17.1 16.7 15.5 0.621 17.2 16.1 14.6 0.425

SIF (mg I’1) 1.22 1.43 1.59 0.001 1.22 1.44 1.70 <0.000
DIN (mg I'1) 0.827 0.875 1.101 <0.000 1.131 1.226 1.313 <0.000

DON (mg l '1) 0.272 0.260 0.241 0.156 0.243 0.226 0.238 0.208
PN (mg I'1) 0.134 0.145 0.152 0.416 0.142 0.134 0.139 0.231
TN (mg I"1) 1.239 1.276 1.495 <0.000 1.511 1.589 1.683 0.001

P 04F (mg I'1) 0.0148 0.0169 0.0164 0.325 0.0074 0.0088 0.0097 0.098
PP (mg l’1) 0.0259 0.0272 0.0336 0.001 0.0247 0.0275 0.0308 0.068
TP (m gl’1) 0.0484 0.0513 0.0572 0.001 0.0396 0.0427 0.0471 0.029

TN:TP 26.86 25.66 27.85 0.494 42.07 39.10 43.47 0.768
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years (Fig. 14B). Seasonally, secchi depth was greater in autumn and winter months and 

lowest during spring in the fresh and oligohaline regions and summer in the mesohaline 

and polyhaline waters. Total suspended solids were significantly greater in the fresh and 

oligohaline regions in years with high streamflow, with no significant difference in the 

meso- and polyhaline levels (Table 4). TSS was greatest in the freshwater region, 

particularly during March and April when streamflow was highest (Fig. 14C).

Silica concentrations were significantly increased by streamflow in all regions (Table 

4). Within the polyhaline region, silica levels were lowest in spring and greatest during 

July with the same general pattern in the mesohaline, with reduced levels during low flow 

years (Fig. 15 A). In the oligohaline and fresh water regions, silica levels were highest in 

winter, with lower concentrations in spring and summer, and higher concentrations 

during years o f higher flow (Fig. 15 A). Water temperature and dissolved oxygen both 

showed consistent seasonal patterns that did not differ from year to year in relation to 

inter-annual streamflow variations (Table 4; Fig. 15 B,C). Dissolved oxygen 

concentrations reflected water temperature patterns and were highest from December to 

February and lowest from June to September in each region (Fig. 15C).

Dissolved inorganic nitrogen concentrations were elevated with increased 

streamflow, with significantly higher DIN in each region during years of higher flow 

(Table 4). DIN was highest within the freshwater region, and declined seasonally from a 

maximum during winter to minimum levels in summer and autumn months (Fig. 16A). It 

was similar in the oligohaline, with higher concentrations during high flow years. DIN 

concentrations were lower in the meso- and polyhaline regions, being highest in March 

and April and lowest in July. Years o f increased streamflow had higher DIN levels,
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particularly in winter and spring seasons (Fig. 16A). In contrast, there was no significant 

difference in dissolved organic nitrogen levels between streamflow groups in all but the 

oligohaline region (Table 4). Seasonal patterns were variable, both between regions and 

flow groups. In general, DON was highest in September and October, with greater 

concentrations during low flow years in most regions (Fig. 16B). Orthophosphate levels 

varied seasonally, but had lower inter-annual variability and were not significantly 

different between periods o f different flow in any of the four regions (Table 5; Fig 16C). 

Within the oligo-, meso- and polyhaline sections of the Bay, PO4 levels were lowest in 

winter and spring and greatest during late summer and autumn. Concentrations at the 

freshwater location were more variable and generally greater in winter, with lowest levels 

in spring and summer (Fig. 16C).

Particulate nitrogen and particulate phosphorus had similar seasonal patterns in the 

meso-and polyhaline regions, with highest concentrations in June and July (Fig. 17A,B). 

Freshwater PN levels were lowest in the winter, with greater concentrations in the other 

seasons, while oligohaline PN was variable throughout the year (Fig. 17A). Both fresh 

and oligohaline PP levels were highest in March and April, with lowest concentrations 

occurring during autumn (Fig. 17B). A significant difference between streamflow years 

in PN concentrations only occurred within the polyhaline, with highest levels during 

periods of high flow. Higher streamflow also was associated with greater PP, with 

significant differences in the oligo-, meso- and polyhaline regions (Table 4).

Total nitrogen levels were significantly increased with greater annual streamflow 

throughout the Bay (Table 4). Seasonally, the patterns largely reflected those of DIN, 

with greatest values during March and April and minimum concentrations in September
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(Fig. 18A). Annual streamflow had a significant effect on total phosphorus in the fresh 

and oligohaline regions, with higher concentrations associated with higher flow (Table

4). TP in the meso- and polyhaline, had a consistent seasonal pattern o f higher 

concentrations between July and September, with little interannual variation in regard to 

flow. The TN:TP ratio was highly variable, both seasonally and between regions ranging 

from an annual average of 19.1:1 in the polyhaline to 41.5:1 in the freshwater region (Fig. 

18C). The meso- and polyhaline regions had clear seasonal patterns o f greater TN:TP in 

spring, and lower ratios from July to October, with ratios less than 16 during this period 

in the polyhaline (Fig. 18C). Ratios were higher in the oligohaline and especially at the 

freshwater region, with less seasonal variation. There was a significant difference in 

TN:TP ratio between years of different streamflow only within the polyhaline region, 

with higher flow having higher ratios, particularly during spring (Table 4; Fig. 18C). 

Phytoplankton abundance and productivity

There was a significant effect o f annual streamflow on the biological components as a 

whole as detected by MANOVA in each of the four salinity regions (polyhaline and 

mesohaline, p<0.0001, oligohaline p= 0.014, freshwater p=0.001), with subsequent 

ANOVA analyses identifying varying differences of the individual biological metrics and 

regions (Table 5, Figs 19-22).

Phytoplankton abundance and productivity had a unimodal seasonal pattern in the 

freshwater region, with maximum chlorophyll concentrations, productivity rates, and cell 

abundances in summer, and minimal levels during winter (Fig. 19). This pattern was 

observed throughout the study, and did not vary significantly between groups of different 

streamflow (Table 5). Within the oligohaline region, algal productivity and abundance



T a ble  5. Biological parameters from four salinity regions within Chesapeake Bay (1985-2009) during periods of high, normal and 
low annual flow; high=annual flow is in the upper 25% of longterm records, normal= 25-75%, and low= the lowest 25%. Annual 
averages for each parameter within each period and period shown along with results of the analysis of variance of between subject 
effects of streamflow treatment. Significant effects (p<0.05) within region in bold_________________________________________

Polyhaline Mesohaline
low normal high P low normal high P

Chlorophyll (mg I'1) 7.2 6.7 9.1 0.003 10.1 10.2 10.6 0.321
Productivity(mg C r'h '1) 16.6 34.6 31.6 0.001 40.9 37.6 45.1 0.691

Species richness 39.5 37.9 35.3 0.000 20.0 23.0 19.2 0.000
Shannon index 2.8 2.8 2.7 0.022 2.3 2.3 2.0 0.000

Total abundance (cells I'1) 5,457,055 6,110,706 8,534,536 0.002 14,557,552 21,759,034 19,026,771 0.197
Diatoms (cells T1) 3,535,370 3,584,779 6,088,786 0.000 6,063,008 6,218,357 6,322,519 0.758

Dinoflagellates (cells I 1) 335,678 358,512 333,602 0.449 1,180,535 1,654,379 1,549,340 0.191
Cyanobacteria (cells I'1) 565,173 777,564 336,117 0.025 5,157,081 10,762,747 8,704,394 0.481
Chlorophytes (cells l'1) 42,311 70,817 127,327 0.374 254,938 316,875 216,042 0.546

Ciyptomonads (cells I 1) 910,438 1,278,311 1,570,903 0.000 1,656,380 2,320,775 1,861,925 0.004
Others (cells I'1) 68,086 40,724 77,801 0.398 245,609 485,902 372,551 0.040

low
Oligohaline 

normal high P low
Fresh 

normal high P
Chlorophyll (mg I'1) 5.3 5.4 6.1 0.881 5.4 7.3 8.1 0.057

Productivity(mg C r'h'1) 26.5 17.1 29.3 0.174 42.1 34.8 32.5 0.284
Species richness 19.5 19.1 18.1 0.120 29.9 29.0 19.9 0.005

Shannon index 1.8 1.7 1.6 0.311 1.8 2.1 1.7 0.168
Total abundance (cells I'1) 8,463,960 7,005,489 14,032,711 0.233 25,373,487 14,983,151 17,978,219 0.628

Diatoms (cells f') 3,897,815 2,525,359 3,843,662 0.125 5,888,038 7,569,905 4,075,652 0.312
Dinoflagellates (cells I'1) 358,116 825,264 514,445 0.168 65,534 95,360 139,108 0.686
Cyanobacteria (cells I'1) 2,937,491 2,402,203 8,292,768 0.172 15,251,840 3,786,382 11,332,902 0.157
Chlorophytes (cells I'1) 491,062 335,089 738,310 0.208 3,145,922 2,681,566 2,033,223 0.737

Cryptomonads (cells I 1) 733,695 847,041 577,769 0.012 882,350 637,059 365,708 0.055
Others (cells I'1) 45,780 70,531 65,757 0.378 139,802 212,878 31,626 0.089
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were greatest in late summer, with no clear maximum period of chlorophyll development 

detected (Fig. 19). The mesohaline had higher chlorophyll and productivity rates during 

spring, summer and autumn, with lowest levels in winter. Algal abundance was greatest 

in late summer and autumn at this region. Within the polyhaline, there was a significant 

effect o f streamflow on algal abundance and productivity (Table 5). Chlorophyll 

concentrations and cell densities were highest during periods of high streamflow (Fig. 

19A,C) and productivity rates were lowest during low flow years (Fig. 19B). 

Phytoplankton composition

Along with total algal abundance, densities o f the major phytoplankton taxonomic 

groups were generally significantly different between periods of different streamflow 

only within the polyhaline region (Table 6). Diatom and cryptomonad densities were 

both significantly higher during periods o f higher flow, with cyanobacteria abundance 

lower in high flow years in this region o f the Bay (Fig. 20). Diatoms were the dominant 

taxonomic group throughout the season in all years o f the study in each of the four 

regions with densities between 41-68% of the phytoplankton community (Table 2).

There was not a consistent seasonal period of diatom development throughout the Bay, 

with maximal levels generally seen during spring and summer in freshwater and 

oligohaline regions, and in winter and early spring in the meso- and polyhaline Bay (Fig. 

20A).

Cryptomonads represented the second most abundant phytoplankton group in 

Chesapeake Bay, representing 5-25% of total abundance (Table 2). Seasonally, 

cryptomonads displayed a broad unimodal pattern o f abundance with minimal 

concentrations in winter and higher levels between May and October (Fig. 20B). Unlike
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the other taxonomic groups, there was a significant difference in cryptomonad densities 

between years of different flow level in multiple regions o f the Bay. Within the 

polyhaline and mesohaline regions, cryptomonad densities were greater during higher 

flow years compared to low flow years, with the reverse relationship seen in the 

oligohaline waters, and no significant difference observed in the freshwater region (Table 

5).

Cyanobacteria concentrations were much greater in the fresh, oligo- and 

mesohaline regions of the Bay, where they represent an average of 27% of the 

phytoplankton abundance compared to 7% in the polyhaline region (Table 2). Seasonal 

patterns were variable between years, but densities were often highest during late summer 

months, and lowest in winter (Fig. 20C). Dinoflagellate abundance was also variable 

between regions, with the greatest concentrations in the oligo- and mesohaline regions 

where they accounted for an average of 10% of total algal abundance. Seasonal patterns 

differed between regions, with dinoflagellate abundances greatest in summer in the 

freshwater region, during spring in the meso- and oligohaline, and variable within the 

polyhaline Bay (Fig. 21 A). Chlorophytes were a minor constituent (<2%) of the algal 

composition in all but the oligohaline and freshwater regions, where they represented 

between 6-16% of the total phytoplankton abundance (Table 2). In the freshwater region, 

where they were most prevalent, their cell densities were greatest from June to 

September, with minimal abundance in winter (Fig. 2 IB). This pattern was generally 

consistent between years, with no significant difference associated with flow. The 

remaining 1 -2% of phytoplankton species, were a minor component of the algal



A: Dinoflagellate abundance B: Chlorophyte abundance C: O ther taxa abundance

Fig. 21. Average seasonal patterns of A: Dinoflagellate, B: Chlorophyte and C: the 
remaining other algal taxa abundance from freshwater, oligohaline, mesohaline and 
polyhaline regions within Chesapeake Bay (1985-2009) during periods o f high (n=6), 
normal (n=l 1), and low (n=8) annual streamflow.
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community in each of the Bay regions, and were not significantly affected by annual the 

streamflow rates (Fig. 21C; Table 5).

Phytoplankton diversity

Average phytoplankton species richness was reduced by high annual streamflow 

baywide, with significant differences in the fresh, meso- and polyhaline regions (Table

5). Seasonal patterns o f richness varied between locations. Spring and summer months 

within the freshwater Bay had high species richness, with lower values during winter and 

high flow years (Fig. 22A). Richness at the oligohaline was lowest within the Bay, and 

remained low throughout the year, regardless o f flow. The mesohaline region was more 

variable, with greater richness in late winter and late summer, and lower levels during 

spring and early summer. High flow years were associated with significantly lower 

richness in this region (Table 5). Species richness was greatest within the polyhaline 

region, with similar seasonal patterns observed in years of different flow rates (Fig. 22A). 

Richness was greatest in this region in winter and autumn, with minimal levels during 

summer, and was highest throughout the year during low flow periods, and lowest during 

spring and summer of high flow years (Fig. 22A). Diversity as measured with the 

Shannon index (H’) also indicated a reduction with increased streamflow, however it was 

significant only within the meso- and polyhaline regions (Table 5). Seasonal patterns in 

H’ differed between regions and from those of species richness (Fig. 22B). Within the 

freshwater region, H’ declined between June and September, especially in high flow 

years. Meso- and oligohaline phytoplankton H’ also declined during this same time 

period, a pattern not apparent, and in some cases opposite to that of species richness (Fig. 

22). In the polyhaline region, H ’ seasonal patterns were generally consistent with those
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of richness, both having greater values in autumn and winter, however H’ was lowest 

during April and May while richness was lowest in June and July.

Discussion

Regional and seasonal differences

Water quality parameters and phytoplankton populations showed seasonal 

variability that differed greatly between salinity regions. Annual fluctuations in flow into 

the Bay were strongly associated with seasonal and inter-annual changes in the physical 

and chemical environmental conditions; however, there were considerable differences 

between salinity regions in the manner and extent in which they were linked. Parameters 

including salinity (Fig. 14A), DO (Fig. 15C), and DIN (Fig. 16A) had similar seasonal 

patterns Bay-wide that were consistent with seasonal streamflow fluctuations , while 

others such as TSS (Fig. 14C), silica (Fig. 15 A), and TP (Fig. 18B) both differed between 

regions and in response to streamflow. These differences were greater in reference to the 

biological parameters. Phytoplankton abundance and productivity were seasonally most 

variable in the fresh and oligohaline regions, with both the lowest winter productivity and 

highest summer productivity observed in these sections of the Bay (Fig. 19B). In 

contrast, the meso- and polyhaline regions had less seasonal variability, and experienced 

annual maxima earlier in the year than the less saline regions. Regional different 

seasonal patterns in algal biomass and productivity have been previously reported in 

Chesapeake Bay and other estuaries (Smith and Kemp 1995, Marshall and Nesius 1996, 

Eyre 2000, Adolf et al. 2006). These differences are often attributed to regional 

differences in limiting growth factors and differences in the composition of the local 

dominant plankton species (Marshall and Alden 1990, Kemp et al. 2005).
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Increased streamflow significantly reduced salinity both seasonally and inter- 

annually, however the levels at each region varied within the range associated with the 

Venice classification system (mesohaline remained mesohaline, polyhaline remained 

polyhaline, etc.). The phytoplankton taxa present within these regions are likely to have 

salinity tolerances that exceed the range o f change experienced at each location during 

the course of the study (Brand 1984). While salinity appears to play a significant role in 

explaining the spatial patterns of phytoplankton composition and diversity within an 

estuary (Chapter 2, Muylaert et al. 2009), it is unlikely that the variation in salinity 

experienced within a region is responsible for temporal seasonal or inter-annual changes 

to the algal community. Instead, it appears that changes in other parameters including 

nutrient concentrations and turbidity play a larger role in influencing temporal changes.

Within the polyhaline lower Bay, increasing streamflow entering Chesapeake Bay 

was associated with more eutrophic abiotic and biotic characteristics as identified by 

multivariate analyses. In particular, significantly higher DIN, TN, PP concentrations as 

well as a higher TN:TP ratio and reduced salinity and water clarity, along with a more 

abundant phytoplankton community were associated with higher flow (Tables 4, 5).

These linkages were not as apparent elsewhere in the Bay. Despite significantly higher 

DIN, TN and silica levels and reduced secchi depths in all regions o f the Bay during 

years o f higher flow, there was no significant effect o f streamflow on chlorophyll or 

productivity in any of the three less saline regions. These results are consistent with other 

analyses of Chesapeake Bay showing distinct regional differences in the response of the 

phytoplankton community to changes in environmental variables (Williams et al. 2010, 

Dauer et al. 2012). While there was not a significant increase in average annual flow
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over the course o f the study, increased flow into the Bay has been associated with 

increased turbidity and phytoplankton growth (Williams et al. 2010). The results 

presented here, along with the analyses of Williams et al. (2009) indicated flow induced 

increases in nutrient concentrations are drivers of higher algal abundance, particularly in 

the polyhaline Bay. However, using flow adjusted analyses, there appears to be a 

decoupling between nutrients and the phytoplankton response, with decreasing nitrogen 

and phosphorus levels not being associated with any significant trend in algal abundance 

(Dauer et al. 2009, Dauer et al. 2012). This has been suggested as being related to 

nutrient conditions being higher than a saturation threshold of potentially limiting levels, 

above which a lack of response is not observed (Dauer et al. 2012). This hypothesis may 

explain why the upper Bay regions, which had much higher nutrient concentrations, did 

not show significant differences in chlorophyll or productivity between years o f varying 

streamflow, with even low flow years had saturating nutrient conditions in all but the 

lower Bay. Decoupling between seasonal nutrient levels and phytoplankton growth has 

been observed in other estuaries with elevated, non-limiting nitrogen and phosphorus 

concentrations (Rahimibashar et al. 2009).

Phytoplankton diversity and seasonal succession

While abundance and productivity metrics differed between the Bay regions in 

response to streamflow, there was a more consistent effect on phytoplankton diversity. 

Species richness specifically was lower during years o f high streamflow within each of 

the Bay regions (Table 6). Declines in species richness have been associated with 

degraded habitat quality in general and eutrophic conditions in aquatic ecosystems in 

particular (Wang et al. 1997, Riis and Sand-Jensen 2001). Likewise, changes in



86

phytoplankton evenness, reflected in diversity metrics such as the Shannon index, are 

often more responsive than changes in richness to nutrient enrichment, as they generally 

illustrate the relative dominance of a few species (Hillebrand and Sommer 2000). These 

changes are often associated with the characteristics o f different phytoplankton groups 

and their affinity to specific environmental conditions.

Amongst the phytoplankton, diatoms have high growth rates and nitrogen uptake 

rates plus the ability to utilize a variety of nitrogen sources (Tang 1995, Lomas and 

Glibert 2001). This can result in a competitive advantage against other algal species that 

are nitrogen limited, particularly when DIN concentrations are high (Falkowski et al.

1985, Tang 1995, Del Amo et al. 1997). When nitrogen (and silicate) levels become 

elevated, as they do each winter/spring, especially during high flow years, this 

competitive ability increases, which along with rapid growth rates and a wide tolerance to 

temperatures (Suzuki and Takahashi 1995) produces the annual spring diatom bloom 

(Marshall and Lacouture 1986, Malone et al. 1996). Within Chesapeake Bay, this event 

is accompanied by a seasonal decrease in richness within the meso- and polyhaline 

regions. In addition to the data in this study, high N:P ratios (e.g. 20-50:1) have often 

been associated with a diatom and chlorophyte dominated phytoplankton community, 

while lower ratios (e.g. 5-10:1) generally have higher cyanobactiera concentrations 

(Bulgakov and Levich 1999, Wetzel 2001, Lagus et al 2004).

When available nitrogen levels become more limited in summer months, diatoms and 

other phytoplankton groups must compete with each other for a smaller pool o f resources. 

Due in part to the ability o f some taxa to fix atmospheric nitrogen, cyanobacteria can 

flourish in these conditions, and for a period of time may out-compete other algal groups,
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with maximum abundances observed in all regions of the Bay between July to September 

(Fig. 20C) when DIN was lowest and phosphate levels were greatest (Fig. 26). In 

freshwater habitats increased phosphorus concentrations and associated decreased N:P 

ratios have been associated with increased productivity and cyanobacteria blooms 

(Wetzel 2001, Heisler et al. 2008). Cyanobacteria blooms within Chesapeake Bay are 

most prevalent in tidal fresh and oligohaline waters, and include Microcystis aeruginosa 

which can produce potentially fatal hemolytic toxins (Marshall et al. 2005). Large 

blooms of M. aerguinosa and harmful concentrations o f its microcystin toxin have 

resulted in health advisories and beach closures occurred within oligohaline Chesapeake 

Bay tributaries during 2003 and 2004, which were years of record high streamflow 

(Marshall et al. 2008, Tango and Butler 2008).

In addition to cyanobacteria, dinoflagellates also form blooms in Chesapeake Bay, 

with spring blooms of Heterocapsa rotundata, H. triquetra and Prorocentrum minimum 

common annual occurrences in the oligo- and mesohaline regions. (Tango et al. 2005, 

Marshall et al. 2006b, Marshall and Egerton 2009a) Dinoflagellates, particularly those 

that are found in autumn months often have a life history which includes a resting stage 

that can remain dormant for the majority of the year (Rengefors and Anderson 1998). 

These species also are often mixotrophic, meaning that in addition to utilizing 

photosynthesis and the availability of dissolved nutrients, they can also take up sources of 

carbon, nitrogen, and other nutrients heterotrophically (Stoecker 1999). These species 

often cannot compete with diatoms in terms of inorganic nutrient uptake over longer 

periods of time, but are able to become dominant for shorter periods before returning to a 

resting cyst stage (Kremp et al. 2008, Kim et al. 2009). Within Chesapeake Bay, blooms
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of mixtrophic dinoflagellates are most common during the summer (Bockstahler and 

Coats 1993) when diatom densities are generally lower, particularly in the lower bay. 

Included in this group, is the harmful algal bloom forming species Cochlodinium 

polykrikoides which produces dense seasonal blooms in the polyhaline Bay and its 

tributaries (Marshall and Egerton 2009b). Dense blooms of C. polykrikoides have been 

observed following intense storm activity and high streamflow that were preceded by 

extended drought periods (Mulholland et al. 2009). These rather large seasonal changes 

in localized streamflow and related water quality parameters can exist even during years 

of non-exceptional streamflow. Larger than normal blooms of C. polykrikoides were 

observed in lower Chesapeake Bay during 2007, which had annual streamflow levels 

within the normal range of annual streamflow (Mulholland et al. 2009).

While increased streamflow and nutrient enrichment have been associated with some 

dinoflagellate blooms, periods of low precipitation and reduced streamflow have also led 

to the proliferation of other dinoflagellate taxa. Dinophysis acuminata, a potentially 

harmful species capable of producing oxadaic acid toxin formed an unprecedented bloom 

within a Chesapeake Bay tributary during 2002, which had the lowest flow on record 

(Marshall et al. 2003b, Tango et al. 2004). The transport o f this bloom was associated 

with increased saltwater intrusion due to the extremely low flow experienced that year 

and the transport o f this species into northern regions o f the Bay (Marshall et al. 2003b , 

Tango et al. 2004). Blooms of this species have not been observed within Chesapeake 

Bay in subsequent years.
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Conclusions

Seasonal streamflow affects phytoplankton communities in a multitude of ways, 

with increased levels potentially either increasing or decreasing algal productivity 

through nutrient additions and sediment inputs (Marshall and Alden 1997). While

the long term increasing trend of streamflow entering the Chesapeake is not significant 

(Williams et al. 2010), regionally the northeastern United States has been characterized as 

an area of increasing streamflow (Groisman et al. 2001). Much (89%) of the inter-annual 

variability in streamflow is due to changes in precipitation, with a relatively small amount 

due to changes in the level of evapotranspiration (Najjar 1999). Future predictions 

indicate that, in addition to greater precipitation and elevated total streamflow, higher 

levels of seasonality will be experienced, including more flow during winter and less in 

summer (Hayhoe et al. 2007, Pyke et al. 2008). In the Bay, these potential future 

conditions suggest increases in turbidity and algal biomass will occur along with changes 

in algal species composition and increased frequency and magnitude of algal blooms 

(Najjar et al. 2010). The results of this study suggest that phytoplankton diversity would 

also be negatively affected, with greater streamflow leading to lower species richness in 

Chesapeake Bay, particularly in the polyhaline region. As with other ecosystems, 

declines in species diversity are likely to be associated with changes in ecosystem 

functions and have significant impacts on higher trophic levels as well.
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PHYTOPLANKTON DIVERSITY AND ECOSYSTEM FUNCTIONS IN A 

EUTROPHIC ESTUARY; PRODUCTIVITY, STABILITY, AND TROPHIC

INTERACTIONS.

Introduction

Along with understanding the roles of environmental factors on diversity, another 

central concept in ecology is describing the relationships between diversity and 

ecosystem functions. Spurred on by the global rise in the species loss, there has been 

considerable research and debate examining the interaction between species diversity and 

broad ecosystem functions including productivity, stability and the impact on other 

trophic levels.

Regarding the diversity-productivity relationship, several decades of studies have 

produced evidence of multiple potential patterns (e.g. Huston 1979, Tilman 1982,

Leibold 1999, Fukami and Morin 2003, Irigoien et al. 2004, Witman et al. 2008). Waide 

et al. (1999) conducted a meta-analysis of ca. 200 diversity-productivity relationships 

from multiple ecosystems and reported 26% were positive linear, 12% negative linear, 

30% were unimodal, and 32% had no significant relationship. Similar results were noted 

by Grace (1999) and Mittelbach et al. (2001), with the highest number o f the studies 

examined having a unimodal relationship between diversity and productivity, and 

positive linear being the second most frequent relationship observed. Certain studies 

have argued that the true relationship between the two parameters is unimodal, with 

maximum diversity observed at intermediate productivities, and that observed linear 

patterns are largely due to reduced sample size (e.g. Huston 1994, Rosenweig 1995, 

Irigoien et al. 2004). However, other data suggests that the relationships between
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diversity and productivity are variable and context specific, without a single unifying 

pattern (e.g. Mittelbach 2001, Partel et al. 2007).

There has been a similar effort investigating the relationship between diversity 

and ecosystem stability (e.g. Walker 1989, Tilman et al. 1998, McCann 2000, Ives and 

Carpenter 2007). Stability of an ecosystem can be defined and measured in multiple 

ways, however it generally refers to the ability o f a system to either remain in, or return 

to a static state, or equilibrium (Ives and Carpenter 2007). This includes both resistance 

and resilience of a system to disturbance, invasion, and other outside forces (Lawton and 

Brown 1994, Loreau et al. 2002). While there is some debate, there also has been a 

growing consensus that at the community and ecosystem level, diversity increases 

stability (McCann 2000, Ptacnik et al. 2008, Cleland 2012).

Within an ecosystem, the abundance and composition of one trophic level can 

directly lead to changes in other trophic levels (e.g. predator-prey relationships Orth et al. 

1984, Egerton and Marshall 2006). Likewise, changes in species diversity present within 

a particular trophic level can affect other trophic levels as well (Finke and Denno 2004, 

Hillebrand and Cardinale 2004, Schmitz 2007, Viketoft et al. 2009). The resource 

competition theory indicates that varied heterogenous resources should support a higher 

diversity of organisms (Hutchinson 1961, Tilman 1982, Gamfeldt and Hillebrand 2011). 

Extending this concept to trophic interactions, a diverse primary trophic level represents a 

more varied set o f resources available for higher trophic levels. Observational and 

experimental studies have indicated that consumer diversity is enhanced by or at least 

correlated with increased producer diversity (Pianka 1966, Sieman et al. 1998, Jetz et al. 

2009).
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The majority o f the relationships examined between diversity and ecosystem 

functions have involved terrestrial macroscopic organisms, with fewer directed to aquatic 

systems in general and microscopic aquatic taxa in particular. This is despite the fact that 

marine habitats represent the largest ecosystem on Earth and that phytoplankton account 

for approximately half of global primary production (Falkowski et al. 1998, Irigoien et al. 

2004, Ptacnik et al. 2008). In response to this aquatic data gap, there have been a 

growing number of ecological studies focusing on freshwater and marine diversity. In 

terms of aquatic diversity and productivity, there appears to be similar disagreement as 

terrestrial systems, with positive, negative, unimodal and non-significant relations 

identified (Hall et al. 2000, Smith 2007, Witman et al. 2008). Regarding phytoplankton 

specifically, a meta-analysis of global marine algal communities by Irigoien et al. (2004) 

has indicated a hump-shaped unimodal pattern, with maximal diversity (Shannon 

diversity index) at intermediate algal biomass. Likewise, it has been demonstrated that 

phytoplankton diversity is positively related to stability in terms of resource use 

efficiency, and is similar to that observed in terrestrial systems (Ptacnik et al. 2008). In 

contrast, the relationship between diversity o f different trophic levels appears to be 

considerably different in aquatic systems, with reduced or little effect o f producer 

diversity on grazer diversity (Parker et al. 2001, Irigoien et al. 2004).

I investigated the relationships between diversity and ecosystem functions within 

natural phytoplankton communities in a large tidal estuary. In particular, these were 

relationships between phytoplankton diversity and 1) productivity/biomass, 2) stability, 

and 3) zooplankton diversity. This study utilizes over 2200 estuarine plankton samples 

collected from Chesapeake Bay over a 25 year period (1985-2009).
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Methods

Productivity can be measured using multiple metrics that quantify biomass, or a rate 

of growth. Phytoplankton biomass in Chesapeake Bay was determined as cell Carbon 

estimates based on biovolume data from microscopic cell counts of Lugol's preserved 

whole water samples (Smayda 1978, Marshall and Alden 1997, Lacouture 2010). 

Phytoplankton biomass data was collected monthly at stations within Chesapeake Bay 

from 1985-2009 (n= 2229). Algal primary productivity rate was measured concurrently 

at these stations as the Carbon assimilation rate (mgC m '3 h '1) via a radiolabeled 14C 

method from 1989-2009 (n=1774) (Nesius et al. 2007). Zooplankton samples were 

examined using microscopic analyses o f formalin preserved net tow collections made at 

the same time as the phytoplankton samples from 1985-2001 (n=1281) (Carpenter 2003, 

Johnson 2008).

Ecosystem stability can be defined as a measure o f the variability o f a system, often 

quantified as the variance o f population densities or biomass over time using the 

coefficient of variation (McCann 2000). This approach was used to investigate the 

degree of inter-annual variability in total phytoplankton biomass and productivity for 

each Chesapeake Bay station, with the annual mean values calculated from monthly 

records (1985-2009). Using the annual averages for each station, the coefficient o f 

variation (CV) for each station was calculated as the standard deviation between years 

divided by the long term station mean. As the CV measures variance around the mean, 

lower values indicated higher stability (Tilman et al. 1998).

Phytoplankton and zooplankton diversity was characterized as the number o f unique 

phytoplankton taxa for each collection (species richness), and using the Shannon
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diversity index, represented as H ’ (Shannon and Weaver, 1949). As salinity is a 

significant variable in explaining the diversity of estuarine organisms, including 

phytoplankton in Chesapeake Bay (Chapters 2-3), its effect was extracted from the 

regression analysis using a two step approach performed in a similar study by Witman et 

al. (2008). First, the residuals of log transformed phytoplankton, log transformed 

zooplankton species richness and H' were extracted from regressions with salinity 

(observed log richness/i/' minus predicted log richness///"). Second, another set of 

regression analyses were conducted between the residuals o f the diversity metrics against 

the productivity parameters. This is the standard analysis to remove the effect o f a 

covariate in regression analysis (Sokal and Rohlf 1981, Witman et al. 2008). Linear and 

quadratic polynomial regression models were tested for each pair of variables, with a 

significance threshold of a=0.05 for all tests. If both regression models were significant 

for a particular analysis, a partial F was used to determine if  the quadratic model 

significantly improved the explanation of the data more than the linear model (Quinn and 

Keough 2002, Witman et al. 2008). IBM SPSS Statistics 20 was used for all statistical 

analyses.

Results

Significant linear relationships were present between phytoplankton diversity and 

productivity, with differences in the direction (positive/negative) and percentage of the 

variability explained between the specific diversity (species richness and H’) and 

productivity (biomass and productivity rates) metrics (Table 6; Fig. 23A-H). No
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Fig. 23. Scatterplots of (log) phytoplankton species richness and Shannon diversity (H r) against (log) algal biomass and (log) 
productivity rate from Chesapeake Bay (1985-2009). Regressions in figures on the left (A, B, E, F) are based on the original observed 
data, while those on right (C, D, G, H) are on the residuals of the diversity values after the effect of salinity as a covariate has been 
extracted (see methods for details). Statistically significant relationships (P<0.05) shown with trendline.
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T a b l e  6 :  Results o f linear regression models shown in Figs.23-25. Regressions in Fig 23 
estimate phytoplankton diversity (richness and FT) using productivity variables (biomass 
and productivity rate). Regressions in Fig. 24 estimate stability (inter-annual CV of algal 
biomass) using phytoplankton diversity variables (richness and FT). Regressions in Fig. 
25 estimate zooplankton diversity (richness and H’) using phytoplankton diversity 
variables (richness and H ’)._____________________________________________________

Plot Type df regression MS residual MS F P
23A Pos. 1,2227 5.99 0.033 182.04 < 0.0001
23B n.s. 1,1779 0.008 0.036 0.22 0.636
23C Pos. 1,2227 4.44 0.019 230.09 < 0.0001
23D n.s. 1,1779 0.004 0.020 0.22 0.638
23E Neg. 1,2227 165.05 0.49 337.19 < 0.0001
23F n.s. 1,1779 1.14 0.53 2.14 0.144
23G Neg. 1,2227 109.70 0.49 226.41 < 0.0001
23H n.s 1,1779 0.295 0.507 0.582 0.446
24A n.s. 1,7 .001 .014 0.063 0.808
24B n.s. 1,7 0.650 0.30 2.18 0.183
24C n.s. 1,7 0.001 0.014 0.079 0.787
24D m.s. 1,7 0.032 0.009 3.475 0.100
25A Pos. 1,1222 61116.25 191.37 319.36 < 0.0001
25B Pos. 1,1222 9439.59 90.07 104.80 < 0.0001
25C Pos. 1,1222 8.72 0.604 14.44 < 0.0001
25D n.s. 1,1222 0.53 0.53 0.99 0.32
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significant hump-shaped unimodal relationships were detected. Algal biomass and 

productivity rates measured were variable, each ranging over three orders o f magnitude 

(Fig. 23). Phytoplankton richness also varied greatly, and ranged from 5-76 species 

identified per sample collection. A positive relationship was identified between species 

richness and biomass, accounting for 7.5% of the variability in richness by the variability 

in algal biomass (Fig. 23A). When species richness was corrected with salinity as a 

covariate, a positive relationship was still apparent, with biomass explaining 9.3% of the 

variability (Fig. 23C). In contrast, there was no significant relationship between 

phytoplankton species richness and productivity (Carbon fixation) rate, in either the 

original or the salinity corrected dataset (Fig. 23 B, D). A stronger relationship was 

identified between algal biomass and Shannon diversity (//'), which measures both 

richness and the relative abundance of species within the community (evenness). A 

significant negative linear relationship between biomass and H ’ explained 13.1% of the 

variability in diversity by the variability in biomass (Fig. 23E). After the data was 

corrected with salinity as a covariate, biomass accounted for 9.2% of the variability in H ’ 

(Fig. 23G). In addition, no significant relationships between H ’ and productivity rate 

were found (Fig. 23F, H).

Temporal stability was measured as the inter-annual variability in mean algal 

biomass at the nine stations within Chesapeake Bay using the coefficient o f variance 

(CV). Lower CV values indicated lower variance, and therefore higher stability. No 

significant relationships were identified between either species richness or H ’ with CV in 

the original observed dataset (Table 6; Fig. 24A, B). When the diversity values were 

corrected for salinity by calculating the residual values, a marginally significant
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Fig. 24. Plots of temporal biomass stability as the coefficient of variance in interannual phytoplankton biomass and species richness 
and Shannon diversity ( / / ’) at nine stations in Chesapeake Bay (1985-2009). A marginally significant (P=0.1) relationship between 
salinity corrected H ’ and CV biomass is shown in figure d by a dashed line indicating a positive relationship between stability and 
diversity.

P=0.808

SO
00



99

(P=0.100) negative linear relationship between H ’ and CV was detected (Fig. 24C, D).

In this regression, variability in phytoplankton species diversity explained 33.2% of 

variability in inter-annual variance of algal biomass. Stations within the Bay with higher 

diversity (H ’) were more stable, experiencing lower variability in annual mean biomass. 

This relationship was not indicated between stability and species richness, even after 

correcting for the salinity covariate (Fig. 24C).

Zooplankton diversity was generally lower than phytoplankton diversity, and 

equally variable, with species richness ranging from 4-91 zooplankton taxa per sample. 

There was a significant positive linear relation between phytoplankton and zooplankton 

species richness (Table 6; Fig. 25A). Twenty-one percent o f the variability in 

zooplankton richness was explained by the variability in phytoplankton species richness. 

After correcting for the co-varying effect of salinity, a positive relationship remained, 

however the regression only explained 7.8% of the variability (Fig. 25B). When diversity 

was measured using H \  a weak relationship between zooplankton and phytoplankton 

explained only 1.1% of the variability (Fig. 25C). This relationship disappeared after 

correcting both zooplankton and phytoplankton H ’ for salinity (Fig. 25D).

Discussion

Phytoplankton communities are dynamic in estuaries including Chesapeake Bay, 

with significant spatial and temporal variability in not only abundance and composition, 

but also species richness and evenness (Chapters 2,3, Marshall et al. 2005, Adolf et al. 

2006). An exploratory analysis identified that algal diversity was in some cases related to 

multiple ecosystem functions. Correlative studies, including this study, cannot 

characterize the underlying causal mechanisms between variables, but are useful at
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detecting patterns between properties in natural communities and identifying starting 

points for process-oriented research to begin exploring potential explanations that can be 

addressed in more controlled future experimental settings using hypothesis testing 

(Witman 2008).

Diversity/productivity relationships have been explored in numerous ecosystems 

for decades using a variety of measurements for both parameters (e.g. Mac Arthur and 

MacArthur 1961, Pianka 1966, Huston 1979, Tilman 1996). Although both are 

sometimes generalized as diversity, species richness and evenness measure very different 

properties o f a community, and can relate to productivity in fundamentally different ways 

(Nijs and Roy 2000). Evenness, is an important component in describing community 

composition, particularly in regards to phytoplankton where densities of co-occurring 

species may differ by orders of magnitude (Chapter 5, Jacobsen and Simonsen 1993). A 

measure o f evenness was examined in this study using the Shannon diversity index which 

incorporates evenness and richness. Likewise, examinations of the relationship with 

diversity have defined productivity in multiple ways including biomass and primary 

production rates measured using varying approaches (Waide et al. 1999, Tilman et al.

2001). By using multiple metrics, this study identified varying relationships between 

diversity, productivity and stability that would not have been apparent using a single set 

of measurements.

Both phytoplankton and zooplankton diversity are influenced by salinity (Chapter 

2, Whitfield 2012). Samples analyzed in this study were collected Chesapeake Bay 

stations with salinities ranging from 0 to 31.9. To focus the analysis on the relationship 

between species richness, H \  and ecosystem function, salinity was treated as a covariate
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and corrected for by extracting the residuals o f richness and H ’ from an initial regression 

against salinity (Witman 2008). If a pattern was identified in the observed data, but 

absent or different in the corrected dataset, it would be considered likely due to 

correlation with environmental conditions related to location within the estuary (i.e. 

salinity). While phytoplankton and zooplankton diversity may be influenced by 

additional, potentially confounding environmental factors, including nutrient 

concentrations and turbidity, these factors largely co-varied in Chesapeake Bay with 

salinity along the estuarine gradient (Chapter 2). Therefore, by correcting for salinity, the 

influence of additional covariates may also be removed, or at least reduced. In most 

cases, patterns identified using the original uncorrected observed data were also found 

using the salinity corrected data, indicating that the relationships identified were not due 

to salinity alone, and represented a connection between diversity and the specific 

ecosystem function analyzed.

Diversity-productivity relationships

Experimental manipulations and observational studies have identified positive, 

negative, unimodal and non-significant relationships between phytoplankton species 

richness and evenness and productivity rate and biomass (Mittelbach et al. 2001). Within 

Chesapeake Bay, a linear negative relationship was found in the current study between 

phytoplankton biomass and / f  while a positive relationship existed between biomass and 

phytoplankton species richness (Fig. 23). Examinations of freshwater lakes have 

identified unimodal relationships between phytoplankton species richness and 

productivity of natural communities, and a negative relationship in experimentally 

manipulated lakes (Dodson et al. 2000). Using the Shannon diversity ( / / ’) index,
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Irigoein et al. (2004) described global marine phytoplankton diversity as a unimodal 

function of phytoplankton biomass with maximum diversity predicted at an intermediate 

biomass (-30 mg C m ' ) .  A similar unimodal pattern between H ’ and phytoplankton 

abundance was in a reservoir study within the Uruguay River basin by Chalar (2009), 

with maximum diversity seen at about 3000 cells m l'1. No significant unimodal 

relationships were identified in this analysis. Previous studies have identified that the 

observed pattern between diversity and productivity depends on the extent o f the system 

studied and that unimodal relationships will only be identified if there is a large enough 

range of productivity examined (Rosenzweig 1995, Waide et al. 1999).

Chesapeake Bay is a highly productive estuary, subject to nutrient enrichment and 

eutrophication (Boesch et al. 2001, Kemp et al. 2005). Algal biomass estimates based on 

cell biovolume in the current study ranged from 3.7 to 21,000.1 mg C m'3, with a long 

term Bay-wide average o f 1409.2 mg C m'3. The unimodal relationship between 

plankton diversity ( / / ’) and biomass described by Irigoein et al. (2004) involved a 

positive function below ca. 30 mg C m'3and decreasing H ’ from approximately 30 to 

1,100 mg C m'3. This relationship was based on a widely distributed global dataset of 

353 marine phytoplankton samples collected from the following locations: Norwegian 

Sea, North Atlantic Ocean, Iceland Basin, Irminger Sea, Long Island Sound, North Sea, 

English Channel, Benguela and Oregon upwellings, Indian Ocean, mesocosms in the 

Beren fjord, and five extended Atlantic Ocean meridional transects (Irigoein et al. 2004). 

The unimodal relationship was observed by comparing the diversity and productivity of 

all these habitats to each other, and was not apparent within the individual environments. 

When examining high productivity habitats in the analysis o f Irigoein et al. (2004)
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individually such as the Benguela and Oregon upwelling locations, a linear negative 

relationship was observed between H ’ and biomass. This is more indicative o f the 

pattern in Chesapeake Bay, where biomass values were orders of magnitude higher than 

in the habitats studied by Irigoein et al. (2004) and associated with lower values o f H ’ 

(Fig. 23).

While a unimodal relationship may exist between H ’ and biomass, the lack of 

sufficient low biomass samples provided little data to indicate such a pattern. Less than 

3% o f the sample collections had biomass values below 100 mg C m*3, with less than 

0.1% being below 10 mg C m'3. The contrast in the pattern with H \  species richness, and 

algal biomass, indicated that decline in H ' was due to a reduction of species evenness 

(Fig. 23). While it appeared that higher biomass samples contained a greater number o f 

species, there was a greater disparity in the relative abundance of the phytoplankton taxa 

within the community. The proportion of rare species has been shown to increase with 

number of individuals within a community (Preston 1962). High biomass communities 

would therefore be characterized by a small number of dominant phytoplankton species 

along with a large number of background taxa at much lower densities. Prevalence in 

disproportion in the relative abundance of algal species has previously been described 

within Chesapeake Bay and its tributaries (Marshall and Alden 1990, Marshall and 

Nesius 1996, Marshall 2009). Marshall and Nesius (1996) found that less than 5% of the 

total phytoplankton species present in Chesapeake Bay were considered dominant (most 

abundant within the sample).

Although algal diversity was significantly related to biomass, no relationship was 

apparent regarding productivity rate. Primary productivity rates in Chesapeake Bay were
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high and variable, with an average of 34 mgCm'3h '’ and ranged from 0.1 to 403.1 mgCm' 

3h‘'. Agard et al. (1996) found marine phytoplankton species richness was positively 

correlated with primary productivity and plateaued at what they considered high 

productivity (~20 mgCm^d'1). By comparison, daily rates calculated using an average 

day length of 8 hours times the hourly rate (Marshall and Nesius 1996), range from 0.8 to 

3224.6 with a mean of 271.7 mgCm'3d '!. In contrast to biomass, which represents a 

longer standing temporal period that is more consistent with the time associated for 

species composition/diversity to change (ie. > than phytoplankton growth rates), 

productivity measurements capture the photosynthetic ability of the community for a 

brief moment in time (~2 hours). These measurements also do not represent the 

contribution of cells which are not actively undergoing photosynthesis, including species 

that are present but have limited productivity (ie. light limitation) and those taxa that are 

mixotrophic/heterotrophic. These factors would allow for variability in both richness and 

evenness that would not necessarily be reflected in changes in measured productivity 

rates, and may explain why no significant relationship between the parameters was 

observed.

Even though there is not a general consensus on the patterns o f diversity and 

productivity, let alone the causal mechanism, multiple theoretical explanations of these 

relationships have been hypothesized (e.g. Huston 1979, Waide et al. 1999, Rajaniemi 

2003). At higher diversity levels, a greater number o f species should be able to utilize 

resources more efficiently and therefore achieve a higher overall level o f productivity, 

assuming that different species use different resources (Huston 1994). As competition 

for resources increases with productivity, a relatively small number o f species that are
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strong competitors should survive at high productivity, a small number o f species that are 

tolerant o f resource stress at low productivity, and a larger combination o f the two 

existing in-between where productivity and competition are at intermediate levels 

(Rajaniemi et al. 2003). Following this theory, in a theoretical unimodal model, 

phytoplankton richness at low productivity should be reduced due to nutrient limitations. 

At the lowest level, rock pools o f rainwater have almost no primary productivity, and 

support very few species o f any type (Dodson 1987, Waide et al. 1999).

On the other end o f the spectrum are nutrient enriched eutrophic waters that are 

often dominated by a single algal bloom species (Jacobsen and Simonsen 1993). At high 

productivities, phytoplankton diversity is also thought to be limited by increased light 

limitation (Huisman et al. 1999). High algal biomass, such as what is present during 

algal blooms limits light penetration into the water column through shading and may 

cause a decline in phytoplankton diversity by favoring only those species that are shade 

tolerant (Huisman et al. 1999, Irigoien et al. 2004). Resource heterogeneity has also been 

identified as contributing to a potential unimodal relationship between diversity and 

productivity, as both very unproductive and very productive environments have low 

resource heterogeneity and low diversity (Tilman and Pacala 1993, Rajaniemi 2003).

Both increased variance in limiting resource concentrations (temporal heterogeneity) and 

physical structure (spatial heterogeneity) increase phytoplankton diversity (Yamamoto 

and Hatta 2004, Declerck et al. 2007). Equally, nutrient enrichment reduces 

phytoplankton diversity by reducing heterogeneity o f limiting resources at higher nutrient 

levels (Watson et al. 1997, Interlandi and Kilham 2001, Grover and Chrzanowski 2004). 

Diversity-stability relationships
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A similar degree o f uncertainty and debate exists regarding the relationship 

between diversity and ecosystem stability, often defined, including in the current study, 

as the temporal variance in total community level biomass (McCann 2000). While there 

is debate regarding the causative mechanisms one general finding is that at higher 

diversity (generally species richness), there is lower temporal variability in biomass 

(Tilman et al. 2006, Proulx et al. 2010). Ecological theories proposed as explaining these 

observations include the ‘insurance effect,’ in which different species have different roles 

within a community, and that a larger number of species increases the likelihood that 

there is a redundancy of a particular role by multiple species (Naeem 1998, Thebault and 

Loreau 2005). The effect o f disturbance, or a loss o f individual species, is thought to be 

lessened in regard to the entire community when more species are present if redundancy 

allows for the same functional role to be carried out by a different species. High 

redundancy is observed in Chesapeake Bay phytoplankton within particular groups, 

including diatoms and dinoflagellates which are the most specious, with low 

representation of others (Chapter 2).

While there are a number of terrestrial studies focusing on the relationship 

between diversity and stability, they are less common involving aquatic habitats, 

particularly microbial aquatic organisms (Ptacnik et al. 2008). Examinations of 

phytoplankton dynamics using theoretical analyses have indicated that variable 

population densities caused by competition for resources by a number o f different species 

contributes to a relatively stable level of total algal biomass (McCann et al. 1998).

Steiner et al. (2005) carried out a microcosm study which included experimentally 

manipulated levels of freshwater algal diversity to study the effect on temporal stability.
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Their findings included a negative effect of species evenness on temporal variability in 

community biomass, indicating a positive relationship between evenness and stability at 

the community level. Ptacnik et al. (2008) identified that freshwater and estuarine 

phytoplankton diversity was positively related to increased stability through greater 

resource utilization. Within Chesapeake Bay, a marginally significant (P=0.100, R2 

0.332) negative relationship was identified between temporal biomass variance and 

phytoplankton H ’ in the current study after correcting for the salinity covariate, 

potentially indicating greater stability at higher H ’ (Fig. 24). With no significant 

relationship between species richness and biomass variance identified, the association 

with H ’ can be attributed to variation in species evenness. While not significant at the 

a=0.05 level, these results are consistent with the findings in aquatics systems of Steiner 

et al. (2005) and Ptacnik et al. (2008), and with ecological theory based on studies of 

terrestrial systems (i.e. Dodd et al. 1994, Valone and Hoffman 2003, Tilman et al. 2006). 

They suggest that factors that reduce phytoplankton diversity (i.e. eutrophication through 

increasing nutrient concentrations), may also negatively reduce the stability o f aquatic 

primary productivity (Ptacnik et al. 2008).

Phytoplankton-zooplankton diversity

Diversity of consumers has long been considered to be related to the diversity of 

producers (Murdoch et al. 1972). Exanimations of producer and consumer diversity 

have identified a positive correlation between the two (Siemann et al. 1998; Haddad et al.

2009), although the results are not universal, with no significant relationship in several 

cases (Winner 1972, Boone and Krohn 2000, Hawkins and Porter 2003). In terms of 

aquatic habitats, Margalef (1968) states that “if  the diversity o f phytoplankton is high the
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diversity o f zooplankton and even of pelagic fishes is high also.” Positive correlations 

between phytoplankton and zooplankton diversity have been identified, and are 

considered related to increased heterogeneity o f resources (Lasserre 1994, Dolan et al.

2002). However, other studies have noted that in aquatic systems consumer 

characteristics including diversity are influenced by factors other than producer diversity 

(Richerson et al. 1970, Parker et al. 2001). An analysis of marine zooplankton and 

phytoplankton indicated little relationship (R2=0.01) between the diversity {Hr) of the 

two groups (Irigoein et al. 2004).

In this analysis there was a positive relationship between zooplankton diversity 

and phytoplankton diversity in Chesapeake Bay (Fig. 25). When comparing the species 

richness o f the two groups in the original data set, the variation in phytoplankton richness 

explained 20.7% of the variation in zooplankton richness. However it appeared that the 

majority o f this relationship is due to an effect of conditions within the estuarine gradient, 

as the explanatory power o f the regression drops to 7.8% after correcting for the salinity 

covariate. When relating the diversity of the groups using the diversity index H \  a 

similar lack of relationship between the two was found (R2=0.01) as in the study of 

global marine taxa (Irigoein et al. 2004). This relationship disappeared below a 

significant level after accounting for the salinity covariate. It has been suggested that a 

positive relationship observed in natural systems between certain consumer and producer 

diversities are not due to the diversity specifically, but the two groups responding to 

similar environmental factors (Hawkins and Porter 2003). Estuarine zooplankton 

diversity has similar trends to that described in phytoplankton, with similar associations 

with salinity and seasonal patterns (Whitfield et al. 2012). In Chesapeake Bay, it appears
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that while most of the relationship between the two groups may be associated with a 

shared response to environmental conditions, a positive trend remains that suggests 

phytoplankton species richness may be an important component in the richness of 

zooplankton.

Conclusions

Multiple significant relationships were identified between phytoplankton species 

richness and evenness (// ') , and ecosystem functions within Chesapeake Bay. Increased 

algal biomass was associated with higher richness and lower evenness, while no 

relationship was apparent regarding varying productivity rates. In contrast to current 

ecological theory, a unimodal relationship between phytoplankton productivity and 

diversity was not observed. This is explained in part by the prevalence o f both very high 

algal biomass and productivity rates compared to studies of less productive systems.

Cultural eutrophication through increased nutrient loading has contributed to 

increasing trends in algal biomass in Chesapeake Bay (Harding and Perry 1997, Marshall 

et al. 2003a, Kemp et al. 2005, Williams et al. 2010). Although efforts have been made 

to reduce nutrient inputs into the Bay, little positive response has been observed in living 

resources including the phytoplankton community (Boesch et al. 2001, Dauer et al.

2012). The results presented here indicate that increased phytoplankton biomass is 

associated with changes in phytoplankton diversity, specifically a decrease in species 

evenness and an increase in species richness. Under these conditions, a greater 

proportion of the phytoplankton community would be dominated by a small number o f 

species, with an increased number of less abundant background species.
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There is also evidence that reduced levels o f phytoplankton evenness may be 

associated with lower predictability and greater variance in annual phytoplankton 

biomass. A decline in diversity and stability o f the primary producers o f the habitat could 

be expected to have significant effects on the ecosystem as a whole. While species 

evenness of Chesapeake Bay phytoplankton does not appear to be significantly related to 

zooplankton evenness, there was a positive relationship regarding species richness. As 

decreased resource heterogeneity at the phytoplankton level, in terms of species richness 

appears to have a negative effect on zooplankton richness, a decline in zooplankton 

richness may also be expected to impact the diversity o f upper trophic levels including 

ecologically and economically important pelagic fish communities (Eadie and Keast 

1984, Jung and Houde 2003).

Predictions of the response to future changing climatic conditions within 

Chesapeake Bay include a continued increase in overall algal biomass, as well as an 

increase in harmful algal blooms (Najjar et al. 2010). In addition to the negative 

properties associated with harmful algal blooms (i.e. hypoxia, toxicity), they also 

represent very low species evenness. This reduction o f diversity would contribute to 

future impacts on ecosystem function including lower ecosystem stability and possible 

negative effects on higher trophic levels as well. The results presented here and the 

recent findings o f Chalar (2009), reinforce phytoplankton diversity as a useful metric to 

be used as a component, but not the only measure, in evaluating the overall condition of 

aquatic ecosystems.
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ALGAL BLOOMS: CASE STUDIES IN PHYTOPLANKTON DIVERSITY 

DRIVERS AT SMALLER SPATIAL AND TEMPORAL SCALES

Preface

In the previous chapters I have addressed the large scale spatial and temporal 

patterns o f phytoplankton diversity in Chesapeake Bay in addition to some of the impacts 

on associated ecosystem functions. The roles environmental factors have on influencing 

the composition, abundance and diversity of the algal community, particularly the 

importance of key variables (e.g. salinity and limiting nutrient concentrations) have also 

been described. Fluctuations in these environmental factors have been linked with 

significant changes in diversity at individual stations and Baywide at seasonal and 

interannual time scales. Both within a year and between years, changes in the average 

number of species (alpha diversity) and species turnover (beta diversity) have been 

associated with the fluctuations associated with streamflow (eg. DIN, secchi, salinity). 

The general trend is that increased streamflow, both seasonally and long-term bring 

increased nutrient levels, decreased water clarity, and decreased salinity. These 

conditions were accompanied by increased phytoplankton abundance and generally 

decreased algal diversity.

The Chesapeake Bay Monitoring Program contains an extensive 27 year database 

from a complex spatial and temporal environment. This resource has allowed for the 

examination of long-term trends and the assessment o f biological responses to changing 

environmental conditions over this time period (e.g Marshall et al. 2009, Williams et al. 

2010). However, as with any large scale monitoring program, it is limited in its ability to 

detect changes at spatial and temporal scales by the distribution and frequency structure
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employed in the data collection. Given finite resources, a compromise is necessary to 

include a large enough spatial area as the entire Chesapeake Bay, the temporal aspects 

associated with seasonal conditions, plus the need to maintain the monitoring for an 

extended time period (decadal) to detect any long-term changes. In terms o f the 

Chesapeake Bay Monitoring Program, this means seasonal variability is represented by 

monthly collections. Changes in phytoplankton composition and diversity and 

environmental fluctuations within shorter time periods (<30 days) may go unnoticed. 

Additional studies employing a higher frequency sampling period have shown that these 

changes can be significant (Mitchell-Innes and Walker 1991, Litaker et al. 1993).

The tradeoff between a high frequency low spatial coverage examination and a study 

that covers a larger area, but does so less frequently is one o f data relevance. The 

investigator must decide if  the data gained from higher sampling frequency provide 

sufficient additional information, particularly if it necessitates studying a smaller area. 

This would be more beneficial for example if  there are highly dynamic conditions 

observed in a generally homogenous spatial environment. Similarly, in a spatially 

diverse habitat with lower temporal changes, resources would be better utilized in 

describing a larger area at a lower frequency.

To further examine the relationships between environmental variables, phytoplankton 

diversity and ecosystem functions over a much higher frequency time period, I have 

included the following month long study on a daily basis within the Lafayette River, 

Norfolk, Virginia. To accommodate the high sampling frequency, it was necessary to 

limit the study to a single station. Additionally, it was necessary to examine a location 

accessible on a daily basis, thus the samples were collected from shore at a site located
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nearby Old Dominion University, namely the Department o f Ocean, Earth and 

Atmospheric Sciences Center for Coastal and Physical Oceanography dock.

The study provided observations o f on-going high frequency changes in algal 

populations and several environmental variables, and serves as a case study of a eutrophic 

urban estuary. The large scale patterns observed in Chesapeake Bay documented in 

previous chapters indicate that eutrophic conditions, particularly elevated nitrogen and 

increased algal productivity as a whole can be associated with lower levels of 

phytoplankton diversity. By studying the linkages between environmental conditions and 

algal diversity in a relatively degraded body of water such as the Lafayette River, it 

allows for the exploration of how similar conditions might relate to Chesapeake Bay as a 

whole.

Abstract

Algal blooms are dynamic phenomena, often attributed to multiple environmental 

parameters that cause responses by numerous phytoplankton taxa. To evaluate the 

relationships between water quality variables and algal populations, daily samples were 

collected over a 34 day period in the Lafayette River, a tidal tributary within Chesapeake 

Bay’s estuarine complex, during Spring 2006. During this period two distinct algal 

blooms occurred; the first was a cryptomonad bloom that was followed by a bloom of the 

mixotrophic dinoflagellate Gymnodinium instriatum. Chlorophyll a , nutrient 

concentrations, and physical and chemical parameters were measured daily in addition to 

phytoplankton abundance and community composition. Sixty-five phytoplankton species 

from 8 major taxonomic groups were identified and total micro- and nano- phytoplankton 

cell densities ranged from 5.8xl06 to 7.8xl07cells I 1, while picoplankton densities



115

ranged from 3.7xl06 to 1.3xl09 cells I'1 over the same time period. During their 

respective blooms, cryptomonads and G. instriatum reached 91.6% and 99.0%, 

respectively, of the total phytoplankton biomass respectively. No significant changes in 

phytoplankton species richness were observed during the study, although there was a 

significant decline in the Shannon diversity index accompanying the bloom development 

indicating a reduction of species evenness. The cryptomonad bloom developed following 

a period of rainfall and concomitant increases in inorganic nitrogen concentrations.

While, nitrate, nitrite and ammonium were positively lag-correlated with crytomonad 

abundance between 0 and 5 days prior, the G. insriatum bloom developed during periods 

of low nitrogen concentrations with abundances negatively correlated with inorganic 

nitrogen concentrations.

Introduction

In estuarine systems, phytoplankton communities are highly variable, and are 

affected by numerous environmental and ecological factors including water temperature, 

salinity, light intensity, nutrient availability, inter- and intra-specific competition among 

the algae, and predation (Hutchinson 1961, Grover and Chrzanowski 2004, Cloem and 

Dufford 2005, Spatharis et al. 2007). Many environmental variables vary on short time 

scales in estuaries, including tidal and diel fluctuations in physical/chemical parameters 

as well as the periodic nutrient inputs from precipitation events (Hubertz and Cahoon 

1999, Morse 2011). Because of their short generation times, phytoplankton populations 

can respond to environmental and ecological forcing rapidly (McCormick and Caims 

1994, Buchanan et al. 2005, Paerl et al. 2007). Consequently, in estuaries, substantial 

changes in algal community composition can occur over relatively short time periods in
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response to environmental variability (Litaker et al. 1993, Malone et al. 1996, Paerl et al.

2010). Environmental variability and species interactions also impact the biodiversity o f 

phytoplankton communities and this can relate to changes in productivity and ecological 

function in estuarine systems (Duarte et al. 2006, Jouenne et al. 2007).

An example of rapid change of phytoplankton composition is an algal bloom, in 

which community changes can occur on the order of days resulting in near monospecific 

assemblages (Harris and Trimbee 1986, Glibert et al. 2001). Algal blooms appear to be 

increasing and nutrient over-enrichment has been implicated (Anderson et al. 2002, 

Heisler et al. 2008). Bloom events are often sampled opportunistically after they have 

been observed, and prior conditions may be unknown. Due to the speed which 

environmental parameters and phytoplankton communities can change, less frequent 

monitoring collections (i.e. monthly) may not document bloom events, and are not 

sufficient to record conditions prior, during and following bloom development. Daily 

sampling studies are more rare, but have been useful in documenting the relationship 

between short term variability in water quality parameters and algal composition 

(Mitchell-Innes and Walker 1991, Litaker et al. 1993)

The objectives of this study were to identify short-term changes in phytoplankton 

species composition and diversity associated with variability in water quality parameters 

and biological interactions that promote the development o f mono-specific blooms in this 

tidal estuarine system. This study also investigates the relationship between algal 

diversity and productivity at a fine resolution scale during a period of highly variable 

populations.

Study site
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The Lafayette River, located in Norfolk, Virginia is a tributary of the Elizabeth 

River that flows into the lower Janies River before entering the Chesapeake Bay. It is a 

tidal river, approximately 8km in length, with a mean depth o f 1.3m, and a maximum 

channel depth of 7.6m (Blair et al. 1976). The river is surrounded by residential and 

commercial development, within an urban watershed of 43.28 km2, and a shoreline that 

includes bulkheaded regions, marinas, private docks and wetland marsh of Spartina 

alternijlora (White 1972, Blair et al. 1976, Owen et al. 1976, Berman et al.2002). 

Freshwater input is by precipitation and shoreline drainage including from 13 storm 

sewers and overflow drains (White 1972, Purcell 1973). Seasonal dinoflagellate blooms 

common in this river include Prorocentrum minimum development in early spring with 

more recent summer and autumn blooms dominated by Akashiwo sanguinea and 

Cochlodinium polykrikoides (Marshall 1968, Kalenak 1982, Mulholland et al. 2009, 

Egerton et al. 2012). The river has been identified as a potential initiation point for large 

autumn regional dinoflagellate blooms dominated by C. polykrikoides. (Morse et al. 

2011).

Methods

Surface water samples were collected once a day during the incoming tide from a 

stationary floating dock on the Lafayette River between April 20,2006 and May 25,

2006. The mean water depth was 0.9m. Water temperature, salinity and dissolved 

oxygen were measured on station with a Hydrolab DataSonde 4a water quality 

multiprobe (Hach Company, Loveland, CO). Rainfall and air temperature were recorded 

at Norfolk International Airport, <10 km from the Lafayette River station. Chlorophyll a 

was measured fluorometrically (Welschmeyer 1994) and dissolved nitrate, nitrite, and
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phosphate analyses were conducted colorimetrically with an Astoria Pacific nutrient 

autoanalyzer using manufacturer specifications. Ammonium was analyzed manually 

using the phenolhypochlorite method (Solorzano 1969). Nano- and microphytoplankton 

samples (500ml) were collected at the surface (<lm), preserved with Lugol’s solution 

(1% concentration), and examined with an inverted microscope (Nikon TS100) at 150- 

600x following a modified Utermohl settling and siphoning protocol (Marshall and Alden 

1990). Autotrophic picoplankton samples, collected at the same time and depth were 

preserved with gluteraldehyde (2%) and counted using epifluorescence microscopy 

(Nikon E600) at lOOOx (Affronti and Marshall 1994). Phytoplankton biomass was 

determined using volume calculations based on cell dimensions and converted to pg C 

using the equations of Eppley et al. (Smayda 1978). Samples examined by scanning 

electron microscopy were fixed with gluteraldehyde and osmium tetroxide, dehydrated 

through an ethanol series, dried using a critical point drier, sputter coated with gold- 

paladium, and analyzed using a LEO 435VP (LEO Electron Microscopy Ltd.,

Thomwood, NY) (Tang et al. 2008). Phytoplankton diversity was calculated daily using 

both species richness (number of species per sample) and the Shannon index (H’) which 

incorporates the relative abundance of each species and therefore is commonly used as a 

measure of species evenness (Shannon and Weaver 1949): H' = — £ (P i log Pi) where p, 

is the proportion of the total algal biomass of species i. Higher values o f H ’ indicate a 

greater species diversity, and generally indicate a greater level of species evenness, with a 

more widely distributed range of biomass attributed to a larger number o f species.

The daily abundances o f phytoplankton species data and corresponding 

environmental variables were examined using Pearson correlation analysis. As algal
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growth rates are on the order of days, a lag response of phytoplankton abundance to 

nutrient concentrations was expected. The daily sampling scheme allowed for algal 

abundances to be compared to nutrient concentrations present prior to and following 

potential bloom development. The lag correlation analyses conducted here compared 

nutrient concentrations at one day intervals over a 11 day window, from days prior to five 

days forward to phytoplankton abundance. Correlation analysis was conducted for the 

dinoflagellates and cryptomoands abundances only, as they were the most dominant 

phytoplankton taxa present during the sampling period, with low representation of other 

taxonomic groups. In addition to environmental conditions, biological interactions 

including competition and predation are known to influence phytoplankton composition. 

Therefore a lag correlation analysis of species richness, H \  and the abundance of other 

dominant phytoplankton groups was also conducted on dinoflagellate and cryptomonad 

abundance.

Regression analysis was used to examine the relationship between daily species 

diversity (both richness and H’) and total algal biomass as a measure o f productivity. To 

compare the Lafayette study to other nearby habitats, diversity and biomass 

measurements from Virginia Chesapeake Bay monitoring program collections (n=26) 

during the same time period were also included in the regression analysis. As previous 

studies have identified linear and non-linear (unimodal) relationships between the 

variables (e. g. Waide et al. 1999), analysis o f variance was conducted to test for 

significant linear and quadratic regression models using SPSS 20 (IBM). If both 

regression models were significant for a particular analysis, a partial F was used to
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determine if  the quadratic model significantly improved the explanation of the data than 

the linear model (Quinn and Keough 2002, Witman et al. 2008).

Results

Meteorological and physical parameters

Over the 34-day sampling period, daytime air temperatures ranged from 11.7 to

21.7 °C, and water temperatures ranged from 15.1- 24.0 °C (Fig. 26A). Average daily 

wind speeds were variable and ranged from 5 to 20 mph and gusts exceeded 30 mph on 9 

days with a maximum of 43mph on May 1 (Fig. 26B). During the sampling period there 

were 8 rain events o f 0.5 cm of precipitation or more (Fig. 26C). Salinity at the sampling 

site decreased over the sampling period, with a maximum of 20.2 and a minimum of 17.5 

ppt, salinity decreased following periods of rainfall (Fig. 26D). The water was alkaline 

during the study with an average pH of 8.31, and a range of 7.98 to 8.79 (Fig. 26E). 

Dissolved oxygen levels varied between 5.0 and 7.8 mg f 1 and saturation ranged from 

61.6% and 98.1% (Fig. 26F)

Phytoplankton abundance, composition and diversity

Chlorophyll a (Chi a) concentrations ranged from 5.54 to 97.6 pg f 1 but were 

below 20 pg I'1 for 26 of the 34 days (Fig. 26G). There were high Chi a concentrations,

30.7 pg I'1, on April 27, with the highest Chi a concentrations observed during the period 

between May 16- 25 (74- 97.6 pg F1). Total nano and microphytoplankton cell densities 

were high and ranged from 5.8xl06 to 7.8x107 cells I '1 (Fig. 27A). Picoplankton 

abundances ranged from 3.7x106 to 1.3xl09 cells I'1. There was a large cryptomonad
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Fig. 26. Daily measurements of physical and chemical parameters in the Lafayette River 

from April 20 to May 25, 2006. A: water temperature (°C) measured on station and mean 

daily air temperatures measured at Norfolk International Airport (ORF). B: mean daily 

wind speed and maximum daily speed of wind gusts measured at ORF(miles h '1). C: 

Daily cumulative precipitation measured at ORF (cm). D: salinity. E: pH. F: Dissolved 

oxygen (mg I'1), and percent saturation. G: Daily chlorophyll a measurements (pg 1‘).
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bloom from April 24-May 1, and a second bloom dominated by the dinoflagellate 

Gyrodinium instriatum from May 16-May 24 (Fig. 27A). The morphology and size of 

the cryptomonads appeared consistent throughout the course o f the study. The cells were 

comma-shaped, with a round anterior and a reflex curved pointed antapex with an 

average length of 18.3 pm and an average maximum width of 8.3 pm. Cryptomonad 

taxonomic identification is notoriously problematic due to the cells’ sensitivity to 

chemical fixatives and small number of morphological features (Klaveness 1988, 

Menezes and Novarino 2003). For the purposes of this paper, even though consistent 

morphological features were observed during the sampling period, the cryptomonads are 

hereby referred conservatively as Cryptomonas spp., indicating the possible presence of 

multiple species. Gymnodinium instriatum was identified by its morphological features 

including the displacement of the cingulum and the shape of the apical groove (Fig. 28) 

according to Steidinger and Tangen (1996) following the most recent nomenclature of 

Coats and Park (2002).

Estimates of phytoplankton biomass were made using cell abundance and 

biovolume and were highly correlated with chlorophyll a concentrations (r=.9 5 , p=.0 0 0 ). 

Nano-and microphytoplankton biomass ranged from 609 to 65,819 pg C I'1, with the 

highest biomass measured during the Gymnodinium bloom from May 16 to 23 (Fig.

29A). Picoplankton biomass varied from 0.5 pg C I' 1 at the start of the study to 181 pg C 

F1 on May 25, but remained a minor component compared to the biomass o f the 

nano/micro plankton size classes, contributing an average of less than 1% of total 

phytoplankton biomass (data not shown).
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Fig. 28.Scanning electron micrograph of Gymnodinium instriatum vegetative cell, 
collected at the study site during the dinoflagellate bloom (on May 18, 2006. Scale bar 
1 0 pm
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While dominated by a single species during blooms, the phytoplankton 

community consisted of 65 taxa from 8  major taxonomic groups, with 41 taxa present on 

5 or more days (Table 10). There were 37 species o f diatoms, 17 dinoflagellates, 3 

cyanobacteria, 2  silicaflagellates, 2  chlorophytes, with cryptomonads, euglenophytes and 

prasinophytes each represented by one taxon. While diatoms were the most diverse 

group, consisting of mainly centric species (eg. Skeletonema costatum and Chaetoceros 

spp.), they never represented more than 49% of the cells present, and were generally 

much less abundant than the phytoflagellates (Fig. 29B)

Phytoflagellates, specifically cryptomonads and dinoflagellates, were the 

dominant algae throughout the study. The most abundant taxon was Cryptomonas spp., 

reaching a maximum density o f 7.7 xlO7 cells I' 1 by April 27. At its peak, this group 

represented 96.1% of the total phytoplankton cell abundance and 91.6% of the 

phytoplankton biomass (Fig 29B). Cryptomonas spp. concentrations decreased to 4.0 

xlO6cells F1 by May 5 before a second smaller peak o f 2.6 xlO7 cells I' 1 occurred May 13. 

As the Cryptomonas spp. abundance declined, the densities o f Gymnodinium instriatum 

rose dramatically beginning May 15 and reached a maximum density o f 3.0x107 cells I' 1 

on May 18 (Fig. 29A). These concentrations represented 89.8% of the phytoplankton 

abundance and 99.0% of the total phytoplankton biomass (Fig 29B). G. instriatum 

densities and chlorophyll a concentrations decreased May 19 following a rainfall event 

and then increased again to 1.9x107 cells I' 1 on May 21. The high total phytoplankton 

densities in the Lafayette River (5.7 xlO6 -  7.8xl07 cells I '1) were much higher than those 

recorded at Virginia Chesapeake Bay Monitoring Program (CBMP) stations during the
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same time period, where densities of 1.8 xlO6 -  1.3 xlO7 cells I' 1 were reported 

(www. chesapeakeba v .net).

Species richness was low during this Lafayette River study, ranging from 16-32 

with a mean of 21 taxa identified per sample compared to an average of 32 taxa identified 

in samples collected from the nearby CBMP station located in the Elizabeth River 

(SBE5) during the same time period (www.chesapeakebay.net). The Shannon diversity 

index ( H r), which includes a measure o f species evenness, ranged between 0.03 and 2.57 

(Fig. 27B), and was lowest during the Cryptomonas spp. and G. instriatum blooms when 

these species dominated the phytoplankton populations. However, even when 

Cryptomonas spp. and G. instriatum were at their maximum abundance and represented 

96.1% and 99.0% of the biomass, respectively, there were still about 20 other 

phytoplankton species present and so high species richness was maintained. Levels of H ’ 

rapidly increased again after the abundance of the bloom species decreased (Fig. 27B). 

There was a significant negative relationship between phytoplankton biomass and species 

diversity (H ’) over the 34 days (Fig. 30A) best described by the linear regression model 

(adj R2=0.637, pO.OOOl). This same negative relationship was also observed during the 

same time period at greater diversity and lower biomass levels amongst the other 

locations within the lower Chesapeake Bay. No significant relationship between species 

richness and biomass was identified (p>0.05) (Fig. 30B).

Nutrient concentrations

Dissolved inorganic nitrogen concentrations (nitrite, nitrate, and ammonium) 

fluctuated greatly from 0.54 to 14.7 pM, with concentrations lowest at the end of the 

study from May 17 onward when dinoflagellate abundances were highest (Fig. 3 IB).

http://www.chesapeakebay.net
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Dissolved organic nitrogen concentrations were relatively consistent during the study, 

ranging from 18.5 to 24.7 pM with the highest concentration observed on May 24 

following the dinoflagellate bloom. NO2" concentrations accounted for less than 1 0 % of 

DIN throughout the study with a maximum concentration of 0.81 pM (Fig. 3 IE). 

Concentrations of NO2’ were highest following the Cryptomonas spp. bloom (April 30 to 

May 4), and below the detection limit (0.02 pM) during dinoflagellate bloom (May 17 to 

May 23). Nitrate concentrations ranged from the detection limit (0.048 pM) during the 

Gymnodinium bloom to 7.6 pM, and represented a large portion of the available DIN, 

with an average of 41% and a maximum of 8 8 % of DIN during the study (Fig. 3 IE).

NO3' were reduced on April 25 to the detection limit, corresponding with the highest 

daily precipitation during the study, and again drawn down to minimal concentrations in 

the days leading up to the dinoflagellate bloom.

Ammonium concentrations were highly variable over the study period ranging 

from 0.4 to 8.3 pM, but were never drawn down below detectable levels (<0.02 pM). 

NHU+ concentrations were highest at the beginning of the study and generally about 2-3 

days following a precipitation event (ie. April 28, May 8-9). N H / measurements were 

low (<1 pM) in the days leading up to and during the dinoflagellate bloom (May 11 to 

May 23). NFLt+ represented the dominant form of DIN throughout for the first and last 

third of the study, while during the period between the Cryptomonas spp. and G. 

instriatum blooms (May 4 to May 15) NO3' concentrations represented a greater 

percentage of DIN (52-82%) (Fig. 3 IE). Concentrations of urea were low throughout the 

study, with a mean of 0.18 pM and were at or below the detection limit (0.05 pM) for 13
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FlG. 31. Timeseries of nutrient concentrations measured in the Lafayette River from April 
20 to May 25, 2006. A:Daily measurements of total dissolved nitrogen (TDN, pM N) and 
total dissolved phosphorus (TDP, pM P). B: Dissolved inorganic nitrogen (DIN, pM N) 
and dissolved organic nitrogen (DON, pM N). C: Orthophosphate (pM P). D Silicate 
(pM Si). E. Stacked concentrations of nitrogen species.
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of the last 14 days of the sampling period (May 11 to May 25) and represented less than 

1% on average of TDN (Fig. 3IE).

Orthophosphate concentrations were relatively low and ranged from below the 

detection limit (0.027) to 0.415 pM (Fig. 31C). P0 4 + concentrations were lowest 

between April 24 and 29 during the Cryptomonas spp. bloom, but was variable during the 

Gyrdodinium bloom with elevated concentrations on May 15 and May 21, and decreased 

concentrations on May 17 and May 20.

Silicate concentrations were generally high with an average of 30.6pM and a 

maximum concentration of 56.1 pM (Fig. 3 ID). However, during the period from April 

27 to May 8 , silicate concentrations declined from 31.7 to 0.2 pM. Following the 

precipitation on May 7 and May 8 , silicate concentrations spiked to 37.6 pM and 

increased during the remainder of the study. The ratio of dissolved silicate to DIN was 

greater than 16 during the study with the exception o f May 8 , indicating that silicate 

concentrations were generally not considered limiting to diatom growth (Conley and 

Malone 1992, Morse 2011).

Time lag correlations

To understand the impact environmental and biological conditions had on the 

dominant phytoplankton in the study, time lagged correlations of cryptomonad and 

dinoflagellate abundances were analyzed. Significant positive correlations between all 

forms of DIN and cryptomonad abundance from 1-5 days prior were identified (Fig. 32). 

These results indicate that when DIN concentrations increased, cryptomonad abundances 

also increased between one and five days later. In contrast, significant positive 

correlations between cryptomonad abundance and urea and DON concentrations were
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identified between 2-5 days in forward time. Likewise, these results show that 3-5 days 

after abundances o f cryptomonads increased, urea concentrations also increased. There 

was a negative correlation between PO43' and cryptomonad abundance, with significant 

correlations observed between two days prior and three days forward. Silicate 

concentrations were generally not correlated with cryptomonad abundance, except at plus 

and minus five days, where negative relationships were identified. Cryptomonad 

abundance was positively lag correlated with diatom abundance 2-5 days forward, 

indicating that following periods of increased cryptomonad abundance, diatom 

abundances also increased. Although during the study dominance appeared to shift from 

cryptomonads to dinoflagellates, no significant relationship was identified between these 

groups. Positive relationships between cryptomonad abundance and diversity were 

identified, with significant correlations with species richness found 3-5 days later and H ’ 

after five days, indicating that diversity was greater during these periods following 

increased cryptomonad abundance (Fig. 32).

Dinoflagellate abundance in contrast was negatively correlated with DIN 

concentrations, both in reverse and forward time (Fig. 33). No significant correlations 

were found between urea concentrations and dinoflagellate abundance. Significant 

positive correlations were observed between dinoflagellate abundance and DON at minus 

four days, with a negative correlation at positive five days. Positive correlations between 

PO4 * concentration and dinoflagellate abundance were identified, again only significant 

on minus four and plus five days. Significant positive correlations were identified 

between silicate and dinoflagellate abundance, although Si is not generally considered to 

be limiting to phytoplankton taxa other than diatoms. Cryptomonad abundance was
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negatively correlated with dinoflagellate abundance, although not at a significant 

(p<0.05) level. However, diatom abundance was significantly negative correlated with 

dinoflagellate abundance at 1-4 days in forward time, meaning that as dinoflagellate 

abundances decreased, diatom abundances increased 1-4 days later. There were 

contrasting relationships identified between dinoflagellate abundance and diversity 

metrics. Significant positive correlations with species richness were identified 2-5 days 

prior with negative correlations 3-5 days. Negative correlations between H ’ and 

dinoflagellate abundance were observed from minus three days to plus one day. These 

results suggest that periods of higher dinoflagellate abundance generally followed periods 

of high richness and occurred before periods of lower richness, and that during periods of 

high abundance including three days prior and one day later there is lower evenness. 

Discussion

Fundamental to understanding the distribution and abundance of phytoplankton 

groups is their relationship to environmental variables that vary over short and long 

timescales in estuarine environments such as the Chesapeake Bay (e.g. Marshall et al. 

2009c, Williams et al. 2010). Estuaries are dynamic environments where chemical and 

physical parameters can vary over short time periods (e.g., tidal and sub-tidal timescales), 

as a result of episodic events such as storms (e.g., heavy rainfall and subsequent impacts 

on salinity, temperature, turbidity, and nutrient concentrations), as well as longer term 

climatic and anthropogenic forcing (Roberts et al. 2007, Najjar et al. 2010, Orth et al. 

2010, Morse et al. 2011, Cho et al. 2012). This study was aimed at understanding how 

environmental and biological factors combine to favor the formation of monospecific 

algal blooms over a relatively short timescales during spring when rainfall and air and
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water temperatures can be highly variable and result in short-term changes in salinity and 

nutrient concentrations in surface waters. During the course o f this 34-day study, the two 

distinct blooms developed and dissipated, each over approximately 7-day period, and 

likely would not have been detected using lower frequency sampling.

Cryptomonads are a common component of estuarine phytoplankton communities 

throughout the year and a major source of algal biomass in Virginia estuaries (Marshall et 

al 2006). Their abundance has been associated with disturbances such as wind induced 

mixing of the water column and precipitation (Klaveness 1988, Mallin et al. 1991). 

Cryptomonads are also readily preyed on by grazers that include ciliates, cladocerans, 

copepods, and dinoflagellates (Klaveness 1988, Weise and Kirchhoff 1997, Adolf et al.

2008). Gymnodinium instriatum (Freudenthal et Lee) Coats is an unarmored 

dinoflagellate that can form dense blooms, often producing “red tides” in coastal waters 

throughout the world, and has been associated with shellfish mortality through oxygen 

depletion (Jimenez 1993, Kim et al. 1993). G. instriatum, like many dinoflagellates is 

also capable of forming cysts when environmental conditions are undesirable (Shikata et 

al. 2008). While this species has a wide salinity tolerance and is considered a common 

member o f the phytoplankton community in tropical and temperate estuaries (Nagasoe et 

al. 2006, Steidinger and Tangen 1996) its abundance in the Chesapeake Bay estuary is 

largely unknown due to its gross morphological similarity to a variety o f other 

Gymnodinium and Gyrodinium dinoflagellates, however it has been documented within 

the Bay using molecular techniques (Coats and Park 2002, Malmquist 2012). G. 

instriatum is mixotrophic, and has been reported to feed on a variety of ciliates (Uchida et 

al. 1997). However, there are few studies which document G. instriatum development in
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the field, and conditions associated with its growth outside o f laboratory studies are rare 

(Nagasoe et al. 2006).

Seasonality plays a large role in the emergence of potential bloom species in the 

Chesapeake Bay watershed (Marshall 1980, Marshall and Lacouture 1986, Adolf et al. 

2006) Seasonal changes in water temperature and water quality provide a course filter on 

which organisms are capable of blooming seasonally (Glibert et al. 2001, Adolf et al. 

2006). When favorable environmental conditions emerge, the concentrations of 

particular algal species or assemblages can change rapidly, often leading to bloom 

conditions and reduced algal species diversity (Spatharis et al. 2007). These blooms can 

appear and deteriorate over short time periods or may extend for months (Mulholland et 

al. 2009, Morse et al. 2011).

One short-term forcing function that has been identified as impacting physical and 

temporal conditions in temperate estuaries is rainfall (Jordan et al. 1997, Langland et al. 

2004, Najjar et al. 2010). In many estuarine environments, wetlands and aquatic 

shoreline vegetation work to buffer the effects of seasonal or sporadic runoff by taking up 

nutrients before they enter the estuary (Vought et al.1995, Laws et al.1999, Syversen and 

Haarstad 2005). However, urban environments such as the Lafayette River, where the 

shoreline is highly developed and marsh covers less than half o f its shoreline, stormwater 

can enter the estuary directly through overland flow which is facilitated by impervious 

surfaces (Berman et al. 2002). Even relatively brief precipitation events can lead to large 

and rapid changes in water quality from storm sewer discharge and overland runoff 

(Nichols et al.1986, Roberts et al. 2007).
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Increases in Cryptomonas spp. cell density in the Lafayette River were first 

detected 48 h after a rainfall o f 0.74 cm on April 22, and cell densities reached a 

maximum about 48 h after a second rainfall o f 2.8 cm on April 25. The rainfall resulted 

in a decrease in salinity and an increase in dissolved inorganic nitrogen concentrations, 

particularly N(>3+ and NH4+. While the densities of Cryptomonas spp. increased rapidly, 

those of diatoms and other phytoplankton decreased. This was detected as reduced levels 

o f Shannon diversity {H '\ As there was no corresponding decline in species richness, 

this can be seen as reduced species evenness, as Cryptomonas spp. dominated the 

phytoplankton community, comprising 91% of the algal biomass (Fig. 27B). Based on 

the changes observed in daily abundances during the study, the apparent net growth rate 

of Cryptomonas sp. during this period was 0.86 divisions per day, similar to upper limits 

of Cryptomonas growth rates observed in cultures (Sciandra et al. 2000). As this estimate 

does not take into account potential losses due to grazing or cell advection, this rate 

should be considered an underestimate. Ammonium concentrations decreased steadily 

along with Cryptomonas growth, suggesting uptake by these cells. This is consistent with 

laboratory studies demonstrating a much higher uptake of ammonium than nitrate by 

Cryptomonas (Cloem 1977). Ammonium and nitrate levels increased following rain on 

May 7-8, followed by ammonium declining more rapidly than nitrate, and coinciding 

with renewed Cryptomonas growth. The positive relationship between elevated DIN 

concentrations prior to Cryptomonas growth is seen in the lag-correlation analyses at 

periods of 1-5 days.

Gyrodinium instriatum was at low densities (<100 cells ml'1) for the first 25 days 

of the study. However, ca. 48hrs following the rainfall on May 14 and 15, G. instriatum
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populations exceeded 30,000 cells m l'1, having an apparent net growth rate o f 3.26 

divisions per day. This was over four times greater than the maximum growth rate 

reported for this species in laboratory cultures (Nagasoe et al.2006). A synchronous 

excystment of benthic dinocysts from river sediment may have contributed to these 

increased concentrations of G. instriatum. Shikata et al. (2008) have shown G. 

instriatum can excyst over a short period of time (<.3 days) at water temperatures of at 

least 20 °C, which were consistent with those present during this bloom.

Dinoflagellate cyst-beds are produced by several species, and can serve as a 

survival mechanism in habitats with fluctuating environmental conditions (Anderson and 

Wall 1978, Anderson and Rengefors 2006). Cyst formation in G. instriatum has been 

attributed to limiting N and P levels (Shikata et al.2008) and high cell densities (Uchida 

et al.1997). High densities of a variety of benthic dinoflagellate cysts have been 

identified in tributaries of the lower Chesapeake Bay, including the Elizabeth and 

Lafayette Rivers (Seaborn and Marshall 2008, Tang et al. 2008). The increase in blooms 

of the dinoflagellate Cochlodinium polykrikoides in the Lafayette River and elsewhere 

has also been attributed to local cyst-beds (Marshall et al 2008, Tomas and Smayda 2008) 

and as being triggered by runoff following rainfall events (Mulholland et al. 2009). 

Following rains o f May 14 and 15, and during the subsequent G. instriatum bloom, 

increased concentrations o f nitrogen were not detected in the water column, with organic 

and inorganic nitrogen concentrations near or below the detection limit, likely being 

taken up by the dinoflagellates.

While excystment and population growth of G. instriatum may be stimulated by 

increased entry of nutrients into the river, this is not strongly supported by the lag
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correlation analysis. Instead, the opposite pattern was observed, with DIN concentrations 

negatively correlated with dinoflagellate abundance. Harmful algal blooms including 

dinoflagellates and other phytoplankton taxa often occur during periods o f nutrient 

limitation, particularly low DIN (Glibert et al. 2001, Sunda et al. 2006, Mulholland et al. 

2009, Morse et al. 2011). These conditions are thought to favor bloom forming 

dinoflagellates over other taxa such as diatoms that thrive in more nutrient replete 

environments (Sunda et al. 2006). Freshwater input and physical perturbations 

independent of nutrient additions can lead to rapid increases in dinoflagellate abundance, 

including through excystment (Nehring et a. 1993, Rengefors and Anderson 2002, Morse 

et al. 2011). This pathway is supported by the timing of the G. instriatum bloom after the 

storm. Alternative explanations include potential species interactions, such as the 

abundance of potential algal prey, stimulating G. instriatum growth. Blooms of another 

mixotrophic dinoflagellate, Karlodinium veneficum have been correlated with changes in 

cryptophytes abundance (Adolf et al. 2008). Increased concentrations o f cryptophytes 

stimulated grazing and population development of K. veneficum, including the formation 

of toxic blooms (Adolf et al. 2008). While live samples were not collected, and grazing 

by G. instriatum was not observed in this study, Cryptomonas sp. abundances decreased 

as G. instriatum concentrations increased, and were the lowest during the dinoflagellate 

bloom (Fig. 29B). However, cryptomonad abundance was not significantly correlated 

with dinoflagellate abundance (Figs. 32, 33).

Algal diversity was greatly reduced during both blooms, particularly evenness, as 

illustrated by the drop in H’. This led to the significant negative regression observed 

between species diversity and algal biomass (Fig. 30A). Examinations of
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diversity/productivity relationships in both terrestrial and aquatic systems have identified 

positive, negative and unimodal associations (Leibold 1999, Waide et al. 1999). Similar 

studies of phytoplankton communities are more limited, however it appears that at a large 

enough productivity gradient, the relationship appears to be unimodal, with maximum 

diversity at intermediate phytoplankton biomass concentrations (Irigoien et al. 2004). 

Within Chesapeake Bay, algal biomass is generally high, and there is a negative 

relationship between H ’ and biomass (Chapter 4). Due to the blooms experienced, the 

abundances observed in this study were as much as lOx greater than those in at other 

stations in the lower Chesapeake Bay at the same time period. The relationship between 

H ’ and biomass of the Lafayette River study follow the same pattern as those seen in the 

rest of the lower Chesapeake Bay estuarine system, potentially occupying the negative 

trailing portion of a theoretical unimodal relationship. Compared to limited resources 

that are generally thought to limit diversity at low productivities, species interactions, 

particularly competition, are a major force limiting diversity at high productivity (Guo 

and Berry 1998). In this case, both flagellates appear to reduce evenness through 

competition with other algal taxa, with the dinoflagellate also potentially limiting 

diversity through grazing pressure. Surprisingly, this study illustrates that even in bloom 

situations o f high biomass and very low evenness, phytoplankton species richness is 

unaffected and remains relatively high.

Conclusions

Dinoflagellate blooms, including those of toxic species, appear to be increasing in 

magnitude and frequency in Chesapeake Bay, its tributaries, and waters where 

eutrophication is occurring (Glibert et al. 2007, Heisler et al. 2008, Mullholland et al.
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2009, Egerton et al. 2012). The results of this study suggest that this trend will likely be 

associated with reduced levels of algal diversity. In addition, potentially harmful species 

are also being detected and in some cases becoming bloom formers at new locations in 

the Chesapeake Bay ecosystem (e.g. Marshall et al. 2003b, Marshall et al. 2008b, 

Harding et al. 2009). The distribution of cysts following blooms and their later 

development may contribute to this ongoing trend in a spreading geographic range. This 

study focused on the effects of water quality on phytoplankton species composition in an 

urban estuarine tributary susceptible to stormwater input and prevalent dinoflagellate 

blooms. The results identified subsequent changes in nutrient concentrations following 

rainfall, and examples of the varying responses of the phytoplankton community to these 

conditions. In particular, the immergence and dominance of Cryptomonas sp. and G. 

instriatum populations following storm events and subsequent decline in algal diversity. 

The rapid development and brief duration of both blooms (~5 days) emphasizes the 

importance of monitoring studies in detecting these events and their relationships to 

environmental conditions. This example demonstrates the increased complexity of 

explaining bloom development of mixotrophic dinoflagellates, which are influenced by 

water quality parameters directly as well as indirectly through potential species 

interactions. Further studies within this estuary focusing on the role of nutrient runoff, 

dinoflagellate excystment and grazing are essential to understanding not only these 

species, but also the influence of the habitats trophic status, the formation of algal 

blooms, and the effect of reduced species diversity in general.
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CONCLUSIONS

Monitoring observations have revealed that phytoplankton communities are 

decidedly non-random with aggregate distributions that change over a broad spectrum of 

spatial and temporal scales. Planktonic algal species are intrinsically connected to 

changing environmental conditions in the aquatic environment, especially within systems 

as dynamic as estuaries. By examining spatial and temporal patterns o f environmental 

parameters in relation to the species community, it is possible to build an understanding 

of the ecological processes that govern the abundance, composition and diversity of any 

group, including phytoplankton. The tidal estuarine conditions within Chesapeake Bay 

represent a large range of changing environmental parameters to investigate relationships 

with phytoplankton diversity and community characteristics.

Chesapeake Bay supports a diverse phytoplankton community comprised of 

multiple assemblages of algal taxa associated with spatially heterogeneous environmental 

conditions within the estuary. More specifically, the algal community can be 

characterized as one of high richness with 1480 taxa identified in these waters over two 

decades of monitoring (Chapter 2). An average of 35 phytoplankton taxa occurred within 

individual water samples, with regional species richness of between 257 and 383 taxa 

Baywide annually. However, the Bay should also be classified as having low species 

evenness, with a single species accounting for at least half of the biomass in almost one 

third of all samples examined. In this aspect, Chesapeake Bay contained only a relative 

small number o f dominant taxa (less than 5%) along with a much larger number of both 

rare species and the more ubiquitous taxa that remain in lower concentrations. This



146

description is not unique to phytoplankton, as the fish community o f Chesapeake Bay has 

also been classified as one of exceptionally low evenness (Jung and Houde 2003).

While there was considerable overlap in the distribution of certain taxa within the 

Bay, the dissimilarity o f algal assemblages between regions suggests that the ecosystem 

is better described as a series of ecological boundaries, with high beta diversity occurring 

at these ecoclines that are related to differences in salinity. Salinity has long been 

recognized as a significant physical characteristic influencing the composition of 

phytoplankton through varied tolerances to osmotic stress between species and groups 

(Smayda 1958, Kirst 1990). These effects on individual taxa can also be observed in 

cumulative impacts on community properties including diversity (Vadrucci et al. 2008, 

Muylaert et al. 2009). Within Chesapeake Bay, the algal community varies considerably 

along the 300km estuarine gradient, with regional assemblages that differ in abundance 

and composition (Marshall et al. 2006b, Chapter 2). In terms of diversity, specifically 

species richness, the phytoplankton community of Chesapeake Bay displayed a 

remarkably similar pattern to the artenminimum model (Remane 1934, Remane and 

Schlieper 1971), having greater richness in fresh and polyhaline waters, and reduced 

levels in intermediate (lower mesohaline) salinities (Chapter 2). This one dimensional 

view of changing diversity within the estuary, while useful is misleadingly simplified 

however, as revealed by multivariate ordination, which illustrates the underlying 

complexity o f multiple environmental factors that vary in the Bay along with the 

phytoplankton community.

In addition to phytoplankton responding to conditions changing within the spatial 

aspect of the estuary, there are considerable temporal changes in environmental
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parameters which also elicit a response by the algal community. In Chesapeake Bay, 

seasonal fluctuations of precipitation and associated streamflow are coupled with changes 

in water quality characteristics including nutrient concentrations and turbidity which 

along with seasonal light and temperature flux strongly influence the phytoplankton 

community (Chapter 3). These same influences could vary year to year due inter-annual 

differences in weather patterns. The seasonal and inter-annual impact o f streamflow on 

phytoplankton diversity varied within the estuary.

In the northernmost freshwater region, the algal community was rarely if  ever 

nutrient limited, and therefore streamflow related changes in nutrients have little 

influence on abundance, composition, and diversity (Kemp et al. 2005, Chapter 3). 

Instead, the seasonal patterns suggest that temperature and light limitation play a larger 

role, with greater species richness observed during summer, and lower richness during 

years of high streamflow when turbidity is highest. In contrast, near the mouth of the 

Bay, in the polyhaline region, nutrient concentrations are lower and are often limiting to 

phytoplankton growth. In this region, seasonal patterns imply phytoplankton diversity is 

more related to seasonal and inter-annual fluctuations o f streamflow linked to nutrient 

concentrations, particularly dissolved inorganic nitrogen and silica (Chapter 3). These

findings, while novel, are to be expected, as the factors implicated in affecting 

phytoplankton growth and abundance within particular regions of the Bay may be 

predicted to also impact the diversity o f the algal community. The variety o f limiting 

factors both spatially and temporally contributes to the overall diversity o f taxa within the 

Bay. Highest regional diversity was observed during periods of increased patchiness 

both in environmental conditions and phytoplankton composition, when the distinction
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between salinity zones was greatest (Chapter 2, 3). Areas that contained lower levels of 

alpha and gamma diversity generally had higher levels of productivity and experienced 

higher rates o f species turnover, observations which may have additional implications 

due to potential higher susceptibly of algal blooms.

Phytoplankton diversity, in addition to being related to a number of environmental 

parameters, is also related to ecosystem functions including productivity, stability and the 

diversity of other trophic levels. In terms of productivity, a linear relationship was 

observed, with increased algal biomass associated with higher richness and lower 

evenness, and no apparent relationship regarding algal diversity and productivity rates 

(Chapter 4). In contrast to current ecological theory, a unimodal relationship between 

phytoplankton productivity and diversity was not observed. This is explained in part by 

the prevalence of both very high algal biomass and productivity rates compared to studies 

of less productive systems. Increasing trends o f algal biomass have been attributed to 

cultural eutrophication through increased nutrient loading in Chesapeake Bay (Harding 

and Perry 1997, Marshall et al. 2003a, Kemp et al. 2005, Williams et al. 2010). Although 

efforts have been made to reduce nutrient inputs into the Bay, little positive response has 

been observed in living resources including the phytoplankton community (Boesch et al. 

2001, Dauer et al. 2012). The results presented here indicate that increased 

phytoplankton biomass was associated with changes in phytoplankton diversity, 

specifically a decrease in species evenness and an increase in species richness (Chapter

4).

Chapter 4 also includes evidence that reduced levels o f phytoplankton evenness 

may be associated with lower predictability and greater variance in annual phytoplankton
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biomass. A decline in diversity and stability of the primary producers in the habitat 

would be expected to have significant effects on the ecosystem as a whole (McCann 

2000, Ives and Carpenter 2007). While species evenness o f Chesapeake Bay 

phytoplankton does not appear to be significantly related to zooplankton evenness, there 

was a positive relationship regarding species richness. As decreased resource 

heterogeneity at the phytoplankton level, in terms of species richness appeared to have a 

negative effect on zooplankton richness, a decline in zooplankton richness may also be 

expected to impact the diversity of upper trophic levels, including the ecologically and 

economically important pelagic fish communities (Eadie and Keast 1984, Jung and 

Houde 2003).

The same negative relationship between species evenness (as illustrated by H ’) 

and algal biomass observed in the entire Chesapeake Bay dataset was observed within the 

Lafayette River over a 34 day study (Chapter 5). During two blooms, as much as 99% of 

the total algal biomass was due to the individual blooms species. Surprisingly, species 

richness was not significantly reduced during the blooms. The rapid development and 

brief duration of both blooms (~5 days) emphasizes the importance of monitoring studies 

in detecting these events and their relationships to environmental conditions. This study 

also demonstrates the increased complexity o f explaining bloom development. A 

relatively straightforward pathway of precipitation induced nutrient loading exploited by 

increased abundance of a single species described the Cryptomonas sp. bloom. 

Ammonium and nitrate concentrations increased following rainfall events, with cell 

abundances positively lag correlated with all forms o f DIN from 1 -5 days prior (Chapter 

5). These results are consistent with findings of an autumn study within the Lafayette
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related to dinoflagellate blooms dominated by Akashiwo sanguinea and Gymnodinium sp. 

(Morse 2011). However, during this study conducted in spring, the dinoflagellate bloom, 

which followed the Cryptomonas sp. bloom, was associated with low nitrogen conditions. 

Instead, the lag correlation analysis suggested that the G. instriatum bloom was related to 

limiting DIN concentrations along with a phytoplankton community characterized by 

high species richness and low evenness.

Dinoflagellate blooms, including those of toxic species, appear to be increasing in 

magnitude and frequency in Chesapeake Bay, its tributaries, and waters where 

eutrophication is occurring (Glibert et al. 2007, Heisler et al. 2008, Mullholland et al.

2009). Algal blooms are thought to further increase in incidence and intensity in the Bay 

in response to potential changes in future climate conditions (Najjar et al. 2010). These 

predictions indicate that in addition to greater precipitation and elevated total streamflow, 

higher levels o f seasonality will be experienced, including more flow during winter and 

less in summer (Hayhoe et al. 2007, Pyke et al. 2008). The results described in Chapter 3 

suggest that phytoplankton diversity would also be negatively affected, with greater 

streamflow leading to lower species richness in Chesapeake Bay, particularly in the 

polyhaline region. In addition to the negative properties associated with harmful algal 

blooms (i.e. hypoxia, toxicity), they also represent very low species evenness (Chapter 5). 

This reduction of diversity would contribute to future impacts on ecosystem function 

including lower ecosystem stability and possible negative effects on higher trophic levels 

(Chapter 4). The analyses presented here are based on decades of monitoring results and 

build on previous studies which reinforce phytoplankton diversity as a useful metric to be 

used as a component in addition to algal abundance and composition in evaluating the
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health of aquatic ecosystems such as Chesapeake Bay. Furthermore, increased high 

richness and greater evenness of phytoplankton communities, in part through reductions 

of algal blooms may be considered endpoints, or goals of restoration efforts to improve 

ecosystem functions o f the Bay.
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APPENDIX

PHYTOPLANKTON SPECIES LIST

Phytoplankton taxa identified in Chesapeake Bay, its tidal tributaries and sub-estuaries. 
Frequency of taxa as such: C: Common: those taxa present in 10 % or more of 
phytoplankton samples. I: Intermediate: taxa present in 1-10% of samples. Entries 
without frequency code represent rare taxa that are present in less than 1 % o f sample 
collections.

Taxa Author
Frequenc

y
Bacillariophyceae
Centrales

Actinocyclus normanii f. normanii (Gregory) Hustedt
Actinoptychus senarius (Ehrenberg) Ehrenberg

Actinoptychus splendens (Shadbolt) Ralfs
Actinoptychus undulatus (J.W. Bailey) Ralfs

Actinoptychus vulgaris Schumann
Asterolampra marylandica Ehrenberg

Asteromphalus sp.
Asteromphalus flabellatus (Brebisson) Greville

Asteromphalus heptactis (Brebisson) Ralfs
Asteromphalus roperianus (Greville) Ralfs

Attheya decora West
Aulacodiscus sp.

Aulacoseira sp.
Aulacoseira distans (Ehrenberg) Kutzing i

Aulacoseira granulata (Ehrenberg) Ralfs i
Aulacoseira granulata var. angustissima Muller

Aulacoseira herzogii (Lemmermann) Simonsen
Aulacoseira islandica Muller

Aulacoseira italica (Ehrenberg) Kutzing
Aulacoseira italica var. tenuissima (Grunow) Simonsen

Auliscus sculptus (W. Smith) Ralfs
Azpeitia nodulifiera (Schmidt) Fryxell & Sims

Bacteriastrum sp.
Bacteriastrum comosum Pavillard

Bacteriastrum delicatulum Cleve
Bacteriastrum elongatum Cleve

Bacteriastrum furcatum Shadbolt
Bacteriastrum hyalinum Lauder

Bacteriastrum hyalinum var. princeps (Castracane) Ikari
Bellerochea horologicalis Von Stosch

Bellerochea malleus (Brightwell) Van Heurck
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Campylosira sp.
Campylosira cymbelliformis (Schmidt) Grunow

Cerataulina pelagica (Cleve) Hendey C
Cerataulus radiatus (Roper) Ross

Chaetoceros sp. C
Chaetoceros affinis Lauder I

Chaetoceros affinis var. willei (Gran) Hustedt
Chaetoceros atlanticus Cleve

Chaetoceros borealis Bailey
Chaetoceros brevis Schutt

Chaetoceros coarctatus Lauder
Chaetoceros compressus Lauder I

Chaetoceros concavicornis Mangin
Chaetoceros constrictus Gran I
Chaetoceros convolutus Castracane

Chaetoceros costatus Pavillard
Chaetoceros crinitus Schutt

Chaetoceros curvisetus Cleve I
Chaetoceros danicus Cleve

Chaetoceros debilis Cleve I
Chaetoceros decipiens Cleve C

Chaetoceros densus Cleve
Chaetoceros diadema (Ehrenberg) Gran
Chaetoceros didymus Ehrenberg

Chaetoceros didymus var. protuberans (Lauder) Gran & Yendo
Chaetoceros difficilis Cleve
Chaetoceros diversus Cleve

Chaetoceros fragilis Meunier I
Chaetoceros gracilis Schutt

Chaetoceros laciniosus Schutt
Chaetoceros lorenzianus Grunow

Chaetoceros messanensis Castracane
Chaetoceros muelleri Lemmermann

Chaetoceros neapolitanus Schroder
Chaetoceros neogracilis Van Laningham C

Chaetoceros pelagicus Cleve
Chaetoceros pendulus Karsten C

Chaetoceros peruvianus Brightwell
Chaetoceros pseudocurvisetus Mangin

Chaetoceros radians Schutt
Chaetoceros rostratus Lauder

Chaetoceros similis Cleve
Chaetoceros simplex Ostenfeld
Chaetoceros socialis Lauder I
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Chaetoceros subtilis Cleve C
Chaetoceros tenuissimus Meunier

Chaetoceros teres Cleve
Chaetoceros tetrastichon Cleve
Chaetoceros tortissimus Gran

Chaetoceros wighamii Brightwell.
Climacodium sp.

Climacodium biconcavum Cleve
Climacodium frauenfeldianum Grunow.

Corethron sp.
Corethron criophilum Castracane I

Corethron hystrix Hensen
Corethron valdiviae Karsten

Coscinodiscus sp. C
Coscinodiscus apiculiferus Rattray

Coscinodiscus argus Ehrenberg
Coscinodiscus asteromphalus Ehrenberg

Coscinodiscus centralis Ehrenberg
Coscinodiscus cinctus Kutzing

Coscinodiscus concinnus W. Smith
Coscinodiscus gigas Ehrenberg

Coscinodiscus gigas var. praetexta (Janisch) Hustedt
Coscinodiscus granii Gough

Coscinodiscus granulosus Grunow
Coscinodiscus kuetzingii A. Schmidt
Coscinodiscus lacustris Grunow

Coscinodiscus marginatus Ehrenberg
Coscinodiscus nitidus Gregory
Coscinodiscus nobilis Grunow

Coscinodiscus obscurus Schmidt
Coscinodiscus oculus var. iridis Ehrenberg

Coscinodiscus perforatus Ehrenberg
Coscinodiscus radiatus Ehrenberg

Coscinodiscus rothii (Ehrenberg) Grunow
Coscinodiscus rothii var. subsalsa (Juhlin-Dannfelt) Hustedt

Coscinodiscus rotula Grunow
Coscinodiscus subbulliens Jorgenson
Coscinodiscus sublineatus (Grunow) Rattray

Coscinodiscus wailesii Gran & Angst.
Cyclostephanos sp.

Cyclostephanos dubius (Fricke) Round.
Cyclotella sp. C

Cyclotella atomus Hustedt
Cyclotella bodanica Grunow
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Cyclotella caspia Grunow C
Cyclotella chaetoceros Lemmermann

Cyclotella choctawhatcheeana Prasad
Cyclotella commensis Grunow

Cyclotella comta (Ehrenberg) Kutzing
Cyclotella cryptica Reimann

Cyclotella glomerata Bachmann
Cyclotella meneghiniana Kutzing

Cyclotella stelligera Cleve & Grunow
Cyclotella striata (Kutzing) Grunow C

Cyclotella stylorum Brightwell.
Dactyliosolen antarcticus Castracane

Dactyl iosolen fragilissimus Bergon (Hasle). c
Detonula confervacea (Cleve) Gran

Detonula pumila (Castracane) Gran. I
Ditylum brightwellii (West) Grunow. c

Eucampia cornuta (Cleve) Grunow
Eucampia zodiacus Ehrenberg. c

Guinardia cylindrus Cleve
Guinardia delicatula (Cleve) Hasle c

Guinardia flaccida (Castracane) Peragallo c
Guinardia striata (Stolterfoth) Hasle.

Helicotheca tamesis Shrubsole
Hemiaulus sp.

Hemiaulus hauckii Grunow I
Hemiaulus indicus Karsten

Hemiaulus membranaceus Cleve
Hemiaulus sinensis Greville.

Hemidiscus cuneiformis Wallich
Lauderia annulata Gran I

Leptocylindrus danicus Cleve c
Leptocylindrus mediterraneus (Peragallo) Hasle

Leptocylindrus minimus Gran. c
Lithodesmium sp.

Lithodesmium undulatum Ehrenberg. I
Melosira ambigua (Grunow) 0 . Muller
Melosira arenaria Moore

Melosira dickiei (Thwaites) Kutzing
Melosira dubia Kutzing

Melosira hummii Hustedt
Aulacoseira islandica f. curvata (Ehrenberg) Muller

Aulacoseira islandica var. helvetica Muller
Melosira jurgensii Agardh

Melosira lineata (Dillwyn) Agardh
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Melosira moniliformis (Muller) Agardh I
Melosira nummuloides (Dillwyn) Agardh C

Melosira sp. I
Melosira varians Agardh. I

Odontella sp. I
Odontella alternans (Bailey) Van Heurck I

Odontella aurita (Lyngbye) Brebisson
Odontella aurita var. obtusa (Kutzing) Hustedt

Odontella granulata Roper
Odontella longicruris Greville
Odontella mobiliensis (Bailey) Grunow I

Odontella obtusa Kutzing
Odontella pulchella Gray

Odontella regia (Schultz) Ostenfeld
Odontella reticulata (Ehrenberg) Roper
Odontella rhombus Hydrax I

Odontella rhombus f. trigona (Cleve) Hustedt
Odontella sinensis Greville I
Odontella tridens (Ehrenberg) Ehrenberg

Paralia sulcata (Ehrenberg) Cleve c
Plagiogramma sp.

Plagiogramma interruptum (Gregory) Ralfs
Plagiogramma staurophorum (Gregory) Heilberg.

Plagiogrammopsis vanheurckii Grunow.
Planktoniella sol (Wallich) Schutt.

Podosira sp.
Podosira stelligera (Bailey) Mann.
Porosira gracialis (Gran) Jorgensen

Proboscia alata (Brightwell) Sundstrom c
Proboscia alata f. curvirostris Gran

Proboscia alata f. gracillima (Cleve) Grunow I
Proboscia alata f. indica (Peragallo) Gran

Proboscia inermis Castracane.
Pseudosolenia calcar-avis (Schultze) Sunderstrom c

Rhizosolenia sp. I
Rhizosolenia acuminata (Peragallo) Peragallo

Rhizosolenia bergonii Peragallo
Rhizosolenia castracanei Peragallo

Rhizosolenia eriensis H. L. Smith
Rhizosolenia formosa Peragallo
Rhizosolenia hebetata Bailey

Rhizosolenia hebetata f. semispina (Hensen) Gran
Rhizosolenia imbricata Brightwell c
Rhizosolenia rhombus Karsten



200

Rhizosolenia robusta Norman
Rhizosolenia setigera Brightwell C

Rhizosolenia styliformis Brightwell C
Rhizosolenia temperei Peragallo.
Sfceletonema costatum (Greville) Cleve c
Skeletonema potamos (Weber) Hasle. c
Stellarima microtrias (Ehrenberg) Hasle & Sims

Stephanodiscus astraea (Ehrenberg) Grunow
Stephanodiscus Hantzschii Grunow
Stephanodiscus subsalsus (Cleve) Hustedt.

Stephanopyxis sp.
Stephanopyxis nipponica Gran & Yendo

Stephanopyxis palmeriana (Greville) Grunow
Stephanopyxis turris (Greville & Amott) Ralfs.

Thalassiosira sp. c
Thalassiosira aestivalis Gran & Angst

Thalassiosira anguste-lineata (Schmidt) Fryxell & Hasle I
Thalassiosira antarctica Comber

Thalassiosira baltica (Grunow) Ostenfeld
Thalassiosira bioculata (Grunow) Ostenfeld
Thalassiosira decipiens (Grunow) Jorgensen
Thalassiosira delicatula Ostenfeld
Thalassiosira eccentrica (Ehrenberg) Cleve

Thalassiosira gravida Cleve
Thalassiosira guillardii Hasle

Thalassiosira hyalina (Grunow) Gran
Thalassiosira lacustris (Grunow) Hasle & Fryxell
Thalassiosira leptopus (Grunow) Fryxell & Hasle
Thalassiosira leptopus Ehrenberg

Thalassiosira lineata Jouse
Thalassiosira nordenskioeldii Cleve I

Thalassiosira oestrupii var. venrickae Fryxel & Hasle I
Thalassiosira proschkinae Makarova
Thalassiosira pseudonana Hasle & Heimdal

Thalassiosira rotula Meunier I
Thalassiosira subtil is (Ostenfeld) Gran
Thalassiosira tenera Proschkina-Laurenko.

Triceratium sp.
Triceratium acutum Ehrenberg

Triceratium favus Ehrenberg
Triceratium formosum f. pentagonale (Schmidt) Hustedt

Triceratium reticulum Ehrenberg.
Trinacria regina Heiberg

Pennales
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Achnanthes sp. I
Achnanthes clevei Grunow

Achnanthes danica (Flogel) Grunow
Achnanthes delicatula (Kutzing) Grunow
Achnanthes fimbriata (Grunow) Ross

Achnanthes lemmermannii Hustedt
Achnanthes longipes Agardh

Achnanthes one gens is (Wislouch & Kolbe) Van 
Landingham

Achnanthes subsalsoides Hustedt
Achnanthes taeniata Grunow.

Amphiprora sp. I
Amphiprora alata (Ehrenberg) Kutzing

Amphiprora cholnokyi Van Lan.
Amphiprora conspicua Greville

Amphiprora costata (W. Smith) Hustedt
Amphiprora gigantea var. sulcata (O'Meara) Cleve.

Amphiprora ornata J.W. Bailey
Amphiprora paludosa W. Smith

Amphora sp. I
Amphora angusta Gregory

Amphora arenaria Donkin
Amphora binodis Gregory

Amphora coffeaeformis (Agardh) Kutzing
Amphora commutata Grunow

Amphora costata W. Smith
Amphora crassa Gregory

Amphora cuneata Cleve
Amphora cut a Gregory

Amphora egregia var. interrupt a Peragallo & Peragallo
Amphora exigua Gregory

Amphora gigantea Grunow
Amphora grevilleana var. contracta Cleve

Amphora laevis Gregory
Amphora lineolata Ehrenberg

Amphora luciae Cholnoky
Amphora marina (W. Smith) Van Heurck
Amphora obtusa Gregory

Amphora ostrearia Brebisson
Amphora ovalis Kutzing

Amphora peragalli Cleve
Amphora proteoides Hustedt

Amphora proteus Gregory
Amphora rhombica Kitton
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Amphora robusta Gregory
Amphora sabyii Salah

Amphora spectabilis Gregory
Amphora szaboi Pantocsek

Amphora terror is Ehrenberg
Amphora turgida Gregory
Amphora veneta Kutzing.

Asterionella formosa Hassall I
Asterionella gracillima Hantzsch

Asterionella notata (Grunow) Grunow.
Asterionellopsis glacial is (Castracane) Round C
Asterionellopsis kariana (Grunow) Round.

Auricula insecta (Grunow) Schmidt
Bacillaria paxillifer (Muller) Hendey I

Berkeleya rutilans Grunow
Bleakeleya notata (Grunow) Round

Caloneis sp.

Caloneis fusioides (Grunow) Heiden & 
Kolbe

Caloneis lamella Zakrzewski
Caloneis lepidula (Grunow) Cleve
Caloneis silicula (Ehrenberg) Cleve

Caloneis staurophora (Grunow) Cleve
Caloneis subsalina (Donkin) Hendey

Caloneis trinodis Schultze
Caloneis wardii Cleve
Caloneis westii (W. Smith) Hendey.

Campylodiscus echeneis Ehrenberg
Campylodiscus limbatus Brebisson.

Catenula adhaerens (Mereschkowsky)
Mereschkowsky

Cocconeis sp. I
Cocconeis clandestina Schmidt

Cocconeis costata Gregory
Cocconeis disculus (Schumann) Cleve
Cocconeis distans Gregory

Cocconeis flumiatilis Wallace
Cocconeis molesta var. crucifera Grunow

Cocconeis pediculus Ehrenberg
Cocconeis pinnata Gregory

Cocconeis placentula Ehrenberg
Cocconeis scutellum Ehrenberg

Cocconeis scutellum var. ornata Grunow.
Cylindrotheca closterium (Ehrenberg) Reimann & C
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Lewin.
Cymatopleura elliptica (Brebisson) W. Smith

Cymatopleura solea (Brebisson) W. Smith.
Cymatosira belgica Grunow

Cymatosira lorenziana Grunow.
Cymbella sp. I

Cymbella affinis Kutzing
Cymbella excisa Kutzing

Cymbella helvetica Kutzing
Cymbella tumida Brebisson

Cymbella turgidula Grunow
Cymbella ventricosa Kutzing.
Delphineis surirella (Ehrenberg) Grunow. I

Diatoma sp. I
Diatoma anceps (Ehren.) Kirchner

Diatoma elongatum (Lyngbye) Agardh
Diatoma hyemale (Roth) Heiberg

Diatoma tenue Agardh
Diatoma vulgare Bory. I

Dimerogramma sp.
Dimerogramma minor (Gregory) Ralfs.

Diploneis sp. I
Diploneis beyrichiana (Schmidt) Amosse

Diploneis bombus Ehrenberg
Diploneis constrict a (Grunow) Cleve

Diploneis crabro Ehrenberg
Diploneis crabro var. pandura (Brebisson) Cleve

Diploneis elliptica (Kutzing) Cleve
Diploneis gruendleri (Schmidt) Cleve
Diploneis interrupta (Kutzing) Cleve

Diploneis litoralis (Donkin) Cleve
Diploneis obliqua (Brun) Hustedt

Diploneis ovalis (Hilse) Cleve
Diploneis smithii (Brebisson) Cleve

Diploneis subcincta (Schmidt) Cleve
Diploneis suborbicularis (Gregory) Cleve

Epithemia sp.
Epithemia argus (Ehrenberg) Kutzing
Epithemia sorex Kutzing

Epithemia turgida (Ehren.) Kutzing.
Eunotia sp. I

Eunotia bidentula W. Smith
Eunotia lunaris (Ehrenberg) Grunow

Eunotia microcephala Krasske
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Eunotia pec final is Rabenhorst
Eunotia praerupta Ehrenberg

Eunotia serra var. diadema (Ehrenberg) Patrick.
Fragilaria sp. C

Fragilaria capucina Desmazieres
Fragilaria construens (Ehrenberg) Grunow

Fragilaria crotonensis Kitton
Fragilaria hyalina (Kiitzing) Grunow

Fragilaria intermedia (Grunow) Grunow
Fragilaria leptostauron var. martyi (Heribaud) Lange-Bertalot

Fragilaria oceanica Cleve
Fragilaria pinnata Ehrenberg
Fragilaria schulzii Brockmann

Fragilaria striatula Lyngbye
Fragilaria virescens Ralfs.

Fragilariopsis cylindrus (Grunow & Cleve) Hasle
Fragilariopsis oceanica Cleve.

Frustulia sp.
Frustulia rhomboides (Ehrenberg) DeToni.
Glyphodesmis distans (Gregory) Grunow

Gomphonema sp. I
Gomphonema acuminatum Ehrenberg

Gomphonema augur Ehrenberg
Gomphonema constrictum Ehrenberg

Gomphonema exiguum Kutzing
Gomphonema geminatum (Lyngbye) Agardh
Gomphonema olivaceum (Lyngbye) Kutzing

Gomphonema sphaerophorum Ehrenberg.
Grammatophora sp.

Grammatophora angulosa Ehrenberg
Grammatophora marina (Lyngbye) Kutzing

Grammatophora serpentina Ehrenberg.
Gyrosigma sp. I

Gyrosigma acuminatum (Kutzing) Rabenhorst
Gyrosigma balticum (Ehrenberg) Rabenhorst

Gyrosigma balticum var. silimis (Grunow) Cleve
Gyrosigma distortum (W. Smith) Cleve

Gyrosigma distortum var. parkeri Harrisson

Gyrosigma fasciola (Ehrenberg) Griffith & 
Henffey I

Gyrosigma hippocampus (Ehrenberg) Hassall
Gyrosigma macrum W. Smith

Gyrosigma scalproides (Rabenhorst) Cleve
Gyrosigma spenceri (S. Smith) Griffith &
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Henfrey
Gyrosigma spenceri var. nodiferum (Grunow) Cleve

Gyrosigma wansbeckii (Donkin) Cleve.
Hantzchia sp.

Hantzchia amphioxys (Ehrenberg) Grunow
Hantzchia marina (Donkin) Grunow

Hantzchia spectabilis (Ehrenberg) Hustedt
Licmophora sp. I

Licmophora abbreviata Agardh
Licmophora flabellata (Carmichael) Agardh

Licmophora gracilis (Ehrenberg) Grunow
Licmophora inflata Mereschkowsky

Licmophora paradoxa (Lygbye) Agardh
Licmophora paradoxa var. tincta (Agardh) Hustedt

Licmophora tincta Grunow.
Lioloma delicatulum Cupp

Mastogloia sp.
Mastogloia apiculata W. Smith

Mastogloia braunii Grunow
Mastogloia cocconeiformis Grunow

Mastogloia exigua Lewis
Mastogloia gibbosa Brun
Mastogloia pumila (Grunow) Cleve

Mastogloia rostrata (Wallich) Hustedt
Mastogloia smithii Th waites.

Membraneis challengeri Grunow
Meridion circulare (Greville) Agardh I

Navicula sp. C
Navicula abrupta (Gregory) Donkin

Navicula amphipleuroides Hustedt
Navicula annulata Grunow
Navicula apiculata Brebisson
Navicula arenaria Donkin
Navicula arvensis Hustedt
Navicula atomus (Kutzing) Grunow

Navicula cancellata Donkin
Navicula caterva Hohn & Hellerman

Navicula cincta (Ehrenberg) Van Heurck
Navicula clavata Gregory

Navicula cruciculoides Brockmann
Navicula cryptocephala Kutzing

Navicula cuspidata Kutzing
Navicula cuspidata var. ambigua (Ehrenberg) Cleve

Navicula delawarensis Grunow
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Navicula digitoradiata (Gregory) Ralfs
Navicula directa (W. Smith) Ralfs
Navicula distorts (W. Smith) Ralfs

Navicula eidrigeana Carter
Navicula escorialis Simonsen
Naviculafor cipata Greville
Navicula gastrum (Ehrenberg) Kutzing
Navicula gracilis Ehrenberg

Navicula gracilis var. neglecta (Thwaites) Grunow
Navicula granulata J.W. Bailey
Navicula gregaria Donkin

Navicula halophila (Grunow) Cleve
Navicula hanseni Moller

Navicula hasta Pantocsek
Navicula hennedyii W. Smith
Navicula humerosa Brebisson

Navicula inserata Hustedt
Navicula irrorata Greville

Navicula laevissima Kutzing
Navicula laevissima Kutzing

Navicula longa (Gregory) Ralfs
Navicula lundstroemii Cleve

Navicula lyra Ehrenberg
Navicula maculata (Bailey) Edwards
Navicula maculosa Donkin

Navicula marina Ralfs
Navicula membranacea Cleve
Navicula northumbrica Donkin

Navicula opima Grunow
Navicula paleralis (Brebison) W. Smith

Navicula palpebral is Brebisson
Navicula peregrina Ehrenberg

Navicula phyllepa Kutzing
Navicula placenta Ehrenberg

Navicula placentula (Ehrenberg) Kutzing
Navicula praetexta Ehrenberg
Navicula producta W. Smith

Navicula pusilla W. Smith
Navicula radiosa Kutzing

Navicula rhombica Gregory
Navicula rhynchocephala Kutzing

Navicula salinarum Grunow
Navicula septentrionalis (Grunow) Gran

Navicula sovereignae Hustedt
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Navicula spectabilis Gregory
Navicula transitans var. asymmetrica (Cleve) Cleve

Navicula tripunctata (O.F. Mttller) Bory
Navicula tuscula Ehrenberg

Navicula viridula (Kutzing) Ehrenberg.
Neidium affine (Ehrenberg) Pfitzer.

Neodelphineis pelagica Takano
Nitzschia sp. I

Nitzschia acicularis W. Smith
Nitzschia actinastroides (Lemmermann) Van Goor

Nitzschia acuminata (W. Smith) Grunow
Nitzschia amphibia Grunow
Nitzschia angularis W. Smith

Nitzschia angularis var. affinis Grunow
Nitzschia angustata Grunow
Nitzschia apiculata (Gregory) Grunow

Nitzschia bergii A. Cleve-Euler
Nitzschia bilobata W. Smith

Nitzschia bilobata var. minor Grunow
Nitzschia calida Grunow
Nitzschia clausii Hantzsch

Nitzschia compressa (J.W. Bailey) Boyer
Nitzschia constricta (Kutzing) Ralfs
Nitzschia denticula Grunow
Nitzschia dissipata (Kutzing) Grunow

Nitzschia distans Gregory
Nitzschiafasciculata Grunow

Nitzschia filiformis (W. Smith) Hustedt
Nitzschia frustulum (Kutzing) Grunow

Nitzschia gracilis Hantzsch
Nitzschia gracillima Heiden & Kolbe
Nitzschia granulata Grunow
Nitzschia holsatica Hustedt

Nitzschia hybrida Grunow
Nitzschia insignis Gregory

Nitzschia lanceolata W. Smith
Nitzschia liebethruthii Rabenhorst

Nitzschia linearis (C. Agardh) W. Smith
Nitzschia llorenziana var. subtilis Grunow

Nitzschia longissima (Brebisson) Grunow I
Nitzschia lorenziana Grunow

Nitzschia lorenziana var. densistriata Grunow
Nitzschia lorenziana var. incerta Grunow

Nitzschia microcephala Grunow



208

Nitzschia navicularis (Brebisson) Grunow
Nitzschia obtusa var. scalpelliformis Grunow

Nitzschia obtuse W. Smith
Nitzschia pacifica Cupp

Nitzschia palea (Kutzing) W. Smith
Nitzschia palea (Kutzing) W. Smith

Nitzschia paleacea Grunow
Nitzschia panduriformis Gregory

Nitzschia parvula W. Smith
Nitzschia pellucida Grunow

Nitzschia plana W. Smith
Nitzschia proxima Hustedt
Nitzschia punctata (W. Smith) Grunow

Nitzschia pusilla Grunow
Nitzschia recta Hantzsch
Nitzschia recta Hantzsch

Nitzschia sigma (Kutzing) W. Smith
Nitzschia sigma var. intercedens Grunow

Nitzschia sigma var. rigida (Kutzing) Grunow
Nitzschia sigmoidea (Nitzsch) W. Smith
Nitzschia sociabilis Hustedt

Nitzschia socialis Gregory
Nitzschia spathulata Brebisson
Nitzschia spectabilis (Ehrenberg) Ralfs

Nitzschia thermalis (Ehrenberg) Auerswals
Nitzschia trybionella Hantzsch

Nitzschia trybionella var. levidensis (W. Smith) Grunow
Nitzschia valida Grunow

Nitzschia vermicularis (Kutzing) Hantzsch N. 
vitrea Norman.

Nitzschia vitrea Norman
Nitzschia vitrea var. recta (Hantzsch) van Heurck

Nitzschia vitrea var. salinarum Grunow
Opephora olsenii Muller.

Pinnularia sp. I
Pinnularia gibba (Kutzing) Van Heurck

Pinnularia lata (Brebisson) W. Smith
Pinnularia legumen Ehrenberg

Pinnularia major (Kutzing) Rabenhorst
Pinnularia nobilis (Ehren.) Ehrenberg

Pinnularia notabilis (Ehren.) Ehrenberg
Pinnularia rectangulata (Gregory) Rabenhorst

Pinnularia trevelyana (Donkin) Rabenhorst
Pinnularia viridis (Nitzsch) Ehrenberg.
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Pleurosigma sp. C
Pleurosigma acutum Norman

Pleurosigma aestuarii (Brebisson) W. Smith
Pleurosigma angulatum (Quekett) W. Smith C

Pleurosigma angulatum var. strigosa (W. Smith) Van Heurck
Pleurosigma delicatulum W. Smith

Pleurosigma directum Grunow
Pleurosigma elongatum W. Smith I
Pleurosigma formosum W. Smith

Pleurosigma hamuliferum Brun
Pleurosigma naviculaceum Brebisson

Pleurosigma nicobaricum (Grunow) Grunow
Pleurosigma normanii Ralfs

Pleurosigma obscurum W. Smith
Pleurosigma rigidum W. Smith

Pleurosigma salinarum Grun
Pleurosigma strigosum W. Smith.

Pseudo-nitzschia cuspidata (Hasle) Hasle
Pseudo-nitzschia pseudodelicatissima (Hasle) Hasle

Pseudo-nitzschia pungens (Grunow) Hasle c
Pseudo-nitzschia seriata (Cleve) Peragallo c

Pseudo-nitzschia subpacifica (Hasle) Hasle.
Rhabdonema sp.

Rhabdonema arcuatum (Lyngbye) Kutzing
Rhabdonema minutum Kutzing.

Rhaphoneis sp.
Rhaphoneis amphiceros (Ehrenberg) Ehrenberg. I

Rhoicosphenia abbreviata (Agardh) Lange-Bertalot
Rhopalodia sp.

Rhopalodia gibba (Ehrenberg) 0 . Muller
Rhopalodia gibberula Ehrenberg

Rhopalodia operculata (C. Agardh) Hakansson.
Scoliotropis latestriata (Brebisson) Cleve.

Stauroneis sp.
Stauroneis amphioxys Gregory

Stauroneis anceps var. hyalina Peragallo
Stauroneis membranacea (Cleve) F.W. Mills

Stauroneis phoenicenteron (Nitzsch) Ehrenberg
Stauroneis salina W. Smith.

Stenopterobia anceps (Lewis) Brebisson
Striatella sp. I

Striatella interrupta (Ehrenberg) Heiberg
Striatella unipunctata (Lyngbye) Agardh.

Surirella sp. I
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Surirella capronii Brebisson
Surirella cruciata Schmidt
Surirella elegans Ehrenberg

Surirella fastuosa Ehrenberg
Surirella fastuosa var. recedens (Schmidt) Cleve

Surirella gemma Bailey
Surirella ovalis Brebisson
Surirella ovata Kutzing

Surirella pandura var. contracta Peragallo & Peragallo
Surirella patella Ehrenberg

Surirella robusta Ehrenberg
Surirella robusta var. splendida (Ehrenberg) Van Heurck

Surirella spiralis Kutzing
Surirella striatula Turpin

Surirella tenera Gregory.
Synedra sp. I

Synedra acus Kutzing
Synedra closterioides Grunow

Synedra crystallina (Agardh) Kutzing
Synedra fabulata (Agardh) Kutzing
Synedra fulgens (Greville) W. Smith

Synedra gaillonii (Bory) Ehrenberg
Synedra provincialis Grunow

Synedra pulchella (Ralfs) Kutzing
Synedra robusta Ralfs
Synedra superba Kiitzing
Synedra tabulata (Agardh) Kutzing

Synedra tabulata var. acuminata (Grunow) Hustedt
Synedra toxoneides Castracane

Synedra ulna (Nitzsch) Ehrenberg
Synedra ulna var. biceps (Kutzing) Schonfeldt

Synedra ulna var. longissima (W. Smith) Brun
Synedra undulata (J.W. Bailey) W. Smith.

Synedrosphenia gomphonema (Janisch) Hustedt
Tabellaria sp.

Tabellaria fenestrata (Lyngbye) Kutzing
Tabellaria flocculosa (Roth) Kutzing.

Tetracyclus sp.
Thalassionema sp.

Thalassionema nitzschioides (Grunow) Grunow & 
Hustedt. C

Thalassiothrix sp.
Thalassiothrix frauenfeldii (Grunow) Grunow
Thalassiothrix longissima Cleve & Grunow
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Thalassiothrix mediterranea Pavillard I
Toxarium undulatum Bailey.

Tropidoneis sp.
Tropidoneis lepidoptera (Gregory) Cleve

Tropidoneis seriata Cleve.
ChJorophyceae
Chaetophorales

Chaetosphaeridium globosum (Nordstedt) Klebahn.
Chlorococcales

Acanthosphaera zachariasi Lemmermann
Actinastrum sp.

Actinastrum hantzschii Lagerheim I
Actinastrum hantzschii var. elongatum G.M. Smith

Actinastrum hantzschii var. fluviatile Schroder.
Ankistrodesmus sp. C

Ankistrodesmus braunii (Naegeli) Bruunthaler
Ankistrodesmus convolutus Chorda

A nkistrodesm us falcatus Beijerinck C
Ankistrodesmus falcatus var. acicularis (Braun) West
Ankistrodesmus falcatus var. mirabilis G.S.West

Ankistrodesmus falcatus var. tumidus (West & West) G.S. West
Ankistrodesmus gracilis (Reinsch) Korschikov

Ankistrodesmus longissimus (Lemmermann) Wille
Ankistrodesmus spiralis (Turner) Lemmermann.

Arthrodesmus sp.
Arthrodesmus incus var. extensus Anderson

Arthrodesmus octocornis Ehrenberg
Arthrodesmus sublatus Kutzing

Arthrodesmus validus var. incrassatus Scott & Gronblad.
Botryococcus sp.

Botryoccus braunii Kutzing
Botryoccus protuberans West & West

Botryoccus sudeticus Lemmerman.
Chlorella sp. C

Chlorella marina Butcher
Chlorella saccharophilia var. ellipsoidea (Kruger) Gemeck

Chlorella salina Kufferath
Chlorella vulgaris Beijerinck.

Choricystis sp.
Closteriopsis sp.

Closteriopsis acicularis (G. Smith) Belcher& 
Swale

Closteriopsis longissima Lemmermann.
Crucigenia sp. I
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Crucigenia apiculata (Lemmermann) Schmidle
Crucigenia crucifera (Wolle) Collins

Crucigeniafenestrata Schmidle
Crucigenia irregularis Wille

Crucigenia lauterbornii Schmidle
Crucigenia quadrata Morren

Crucigenia rectangularis (A. Braun) Gay

Crucigenia smithii (Bourr. & Mangin) 
Komarek

Crucigenia tetrapedia (Kirchner) West & West
Dictyosphaerium sp. I

Dictyosphaerium ehrenbergianum Nageli
Dictyosphaerium planctonicum Tiffany & Ahlstrom

Dictyosphaerium pulchellum Wood
Dictyosphaerium tetrachotomium Printz.

Elakatothrix sp.
Elakatothrix gelatinosa Wille

Errerella bornhemiensis Conrad
Franceia sp.

Franceia elongata Korschikov
Franceia ovalis Lemmermann.

Golenkinia radiata Nageli
Kirchneriella sp.

Kirchneriella contorta (Schmidle) Bohlin
Kirchneriella elongata G.M. Smith

Kirchneriella irregularis v. spiralis (Smith) Korschikov
Kirchneriella lunaris (Kirchner) Moebius

Kirchneriella obesa (W.West) Schmidle
Kirchneriella obesa var. major (Bernard) G.M. Smith

Kirchneriella subsolitaria G.S. West.
Lagerheimia sp.

Lagerheimia ciliata Chodat
Lagerheimia citriformis (Snow) G.M. Smith

Lagerheimia longiseta (Lemmermann) Printz.
Micractinium sp.

Micractinium crassisetum Hortobagyi
Micractinium pusillum Fresenius I

Micractinium pusillum var. elegans G.M. Smith.
Microspora sp.

Microspora lauterbornii Schmidle
Microspora quadrata Hazen.

Monoraphidium arcuatum (Korscikoviella) Hindak

Monoraphidium contortum (Thuret) Komarkova- 
Legnerova
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Monoraphidium grifithi (Berkel) Komarkova- 
Legnerova

Monoraphidium komarkovae Nygaard

Monoraphidium minutum (Nageli) Komarkova- 
Legnerova

Monoraphidium obtusum (Korschikov) Komarkova- 
Legnerova

Monoraphidium pusillum (Printz) Komarkova- 
Legnerova

Monoraphidium tortile (West & West) Komarek.
Nannochloris sp.

Nannochloris atomus Butcher.
Nephrocytium agardhianum Nageli

Nephrocytium limneticum (G.M. Smith) G.M. Smith.
Oocystis sp. I

Oocystis Borgei Snow
Oocystis coronata Lemmermann
Oocystis elliptica W. West

Oocystis parva West & West
Oocystis solitaria Wittrock.

Pandorina sp.
Pandorina morum (Muller) Bory.

Pediastrum sp.
Pediastrum angulosum (Ehrenberg) Meneghini
Pediastrum biradiatum Meyen
Pediastrum boryanum (Turpin) Meneghini

Pediastrum boryanum var. longicorne Reinsch
Pediastrum duplex Meyen

Pediastrum duplex var. gracillimum West & West
Pediastrum duplex var. inflata Wolosz

Pediastrum duplex var. reticulatum Lagerheim
Pediastrum duplex var. rotundatum Lucks

Pediastrum duplex var. subgranulatum Raciborski
Pediastrum glanduliferum Bennet

Pediastrum muticum Ktitzing
Pediastrum obtusum Lucks
Pediastrum simplex (Meyen) Lemmermann

Pediastrum simplex var. duodenarium (Bailey) Rabenhorst
Pediastrum tetras (Ehrenberg) Ralfs

Pediastrum tetras var. tetraodon Rabenhorst.
Polydrieopsis spinulosa Schmidle.

Quadrigula sp.
Quadrigula chodatii G.M. Smith

Quadrigula closterioides Printz
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Quadrigula lacustris (Chodat) G.M. Smith
Quadrigula phitzeri (Schroder) G.M. Smith.

Scenedesmus sp. I
Scenedesmus abundans (Kirchner) Chodat

Scenedesmus acuminatus (Lagerheim) Chodat I

Scenedesmus anomalus (G.M. Smith) Ahlstrom & 
Tiffany

Scenedesmus arcuatus Lemmermann
Scenedesmus arcuatus var. platydisca G. M. Smith

Scenedesmus armatus (Chodat) G.M. Smith
Scenedesmus bernardii G. Smith

Scenedesmus bicaudatus Dedusenk
Scenedesmus bijuga (Turpin) Lagerheim

Scenedesmus bijuga var. alternans (Reinsch) Hansgirg
Scenedesmus costato var. alternans (Reinsch) Hansgirg

Scenedesmus denticulatus Lagerheim I
Scenedesmus denticulatus var. recurvatus Schumacker

Scenedesmus dimorphus (Turpin) Kiitzing I
Scenedesmus ecornis (Ehrenberg) Chodat
Scenedesmus hystrix Lagerheim

Scenedesmus incrassatulus Bohin
Scenedesmus intermedius Chodat

Scenedesmus linearis Komarek
Scenedesmus magnis Meyen

Scenedesmus obliquus Kiitzing
Scenedesmus opoliensis Richter

Scenedesmus parisiensis Chodat
Scenedesmus perforatus Lemmermann

Scenedesmus quadricauda (Turpin) Brebisson I
Scenedesmus quadricauda var. maximus West & West

Scenedesmus smithii Lemmermann.
Schroederia planctonica (Skuja) Philipose

Schroederia setigera (Schroder) Lemmermann.
Selenastrum sp. I

Selenastrum gracile Reinsch
Selenastrum minutum (Nageli) Collins

Selenastrum westii G.M. Smith.
Tetradesmus sp.

Tetradesmus smithii Prescott
Tetraedron sp.

Tetraedron arthrodesmiforme Wolszynska
Tetraedron caudatum (Corda) Hansgirg I
Tetraedron cruciatum West & West

Tetraedron gracile (Reinsch) Hansgirg
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Tetraedron hastatum (Reinsch) Hansgrig
Tetraedron limneticum Borge
Tetraedron lobulatum (Nageli) Hansgirg
Tetraedron minimum (Braun) Hansgirg
Tetraedron muticum (Braun) Hansgirg

Tetraedron pentaedricum West & West
Tetraedron regulare Kiitzing

Tetraedron regulare var. incus Teiling
Tetraedron regulare var. torsum Brunnthaler

Tetraedron triacanthum Korschikov
Tetraedron trigonum (Nageli) Hansgirg

Tetraedron trigonum var. gracile (Reinsch) DeToni.
Tetrastrum sp.

Tetrastrum elegans Playfair
Tetrastrum glabrum (Roll) Ahlstrom & Tiffany

Tetrastrum heteracanthum (Nordstedt) Chodat I
Tetrastrum staurogeniaeforme (Schroder) Lemmermann. I

Treubaria setigerum (Archer) G.M. Smith
Westella botryoides (W.West) de Wildermann.

Pediastrum duplex var. clathratum (Braun) Lagerheim
Quadricoccus euryhalinicus Kuylenstiema

Cladophorales
Cladophora sp.

Oedogoniales
Oedogonium sp.

Tetrasporales
Dispora crucigenioides Printz
Gloeocystis vesiculosa Nageli
Palmodictyon varium (Nageli) Lemmermann

Ulotrichales
Geminella subtilissima (Langerheim) Printz.

Hormidium Klebsii G.M. Smith.
Koliella longiseta (Vischer) Hindak

Radiophilum flavescens G.S. West.
Ulothrix sp. I

Ulothrix subtilissima Rabenhorst
Ulothrix variabilis Kiitzing.

Volvocales
Asterococcus limneticus G.M. Smith.

Carteria cordiformis (Carter) Diesing
Carteria fornicata Nygaard.

Chlamydomonas sp. C
Chlamydomonas pertyi Goroshankin.

Eudorina sp.



216

Eudorina cylindrica Korschikov
Eudorina elegans Eherenberg.

Gonium sp.
Gonium pectorale Mueller.

Phacotus sp.
Phacotus lenticularis Ehrenberg

Pleodorina sp.
Volvox aureus Ehrenberg
Volvox tertius Meyer.

Zygnematales
Closterium sp.

Closterium aciculare T. West
Closterium acutum Brebisson
Closterium acutum Lyngbye ex Ralfs

Closterium archerianum Cleve
Closterium dianae Ehrenberg

Closterium limeatum Ehrenberg
Closterium parvulum Nageli

Closterium pronum Brebisson
Closterium setaecum Ehrenberg.

Coelastrum sp. I
Coelastrum cambricum Archer

Coelastrum microporum Nageli
Coelastrum reticulatum (Dangeard) Senn
Coelastrum sphaericum Nageli.

Coenochloris mucosa (Kors.) Hindak
Cosmarium sp.

Cosmarium alpestre Roy
Cosmarium contractum Kirchner

Cosmarium costatum West & West
Cosmarium cynthia Denot

Cosmarium ornatum Ralfs
Cosmarium rectangulare Grunow
Cosmarium subreniforme Nordstedt

Cosmarium tenue Archer
Cosmarium turpinii Brebisson.

Desmidium sp.
Desmidium baileyi (Ralfs) Nordstedt

Desmidium grevellii Kiitzing.
Euastrum sp.

Euastrum abruptum West & West
Euastrum gayanum DeToni

Gonatozygon brebissonii Debary
Hyalotheca sp.
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Hyalotheca dissiliens var. tatrica Raciborski.
Micrasterias sp.

Micraster ias johnsonii West & West
Micrasterias pinnatifida (Kiitzing) Ralfs

Micrasterias radiata Hass
Micrasterias truncata (Corda) Brebisson.

Mougeotia sp.
Penium sp.

Pleurocapsa minor Hansgirg.
Pleurotaenium sp.

Pleurotaenium nodulosum (Brebisson) DeBary.
Pleurotaenium subcoronulatum var. detum (Turner) West & West

Pleurotaenium trabecula Nageli
Pleurotaenium tridentulum (Wolle) West.

Spirogyra sp.
Spirogyra crassa Kiitzing

Spirogyra tenuissima Kiitzing.
Spondylosium planum (Wolle) West & West

Spondylosium pygmaeum Rabenhorst.
Staurastrum sp.

Staurastrum americanum (West & West) G.M. 
Smith

Staurastrum chaetoceros (Schroder) G.S. Smith
Staurastrum cingulum var. floridense Scott & Gronblad

Staurastrum curvatum W. West S. grande 
Bulnheim

Staurastrum leptocladum Nordstedt
Staurastrum leptocladum var. cornumtum Wille

Staurastrum leptocladum var. insigne West & West
Staurastrum manfeldtii var. flumenense Schumacher

Staurastrum paradoxum Meyen
Staurastrum paradoxum var. cingulum Kim

Staurastrum pentacerum G.M. Smith
Staurastrum quadrispinatum Turner

Staurastrum tetracerum Ralfs.
Xanthidinium sp.

Xanthidinium antilopeum Ehrenberg ex Kiitzing
Xanthidinium subhastiferum var. towerii (Cushman) G.W. Smith

Zygnema sp.
Chrysophyceae
Chrysophaerales

Aureococcus anophagefferens Hargraves & Sieburth
Ochromonadales

Calycomonas sp.
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Calycomonas gracilis Lohmann
Calycomonas wulffii Conrad & Kufferath.

Centritractus belanophorus Lemmermann
Centritractus brunneus Fott
Centritractus capilifer Pascher

Centritractus globulosus Pascher.
Chromulina parvula Conrad

Chromulina wislouchiana Bourelly
Chrysococcus minutus (Fritsch) Nygaard
Chrysococcus ornatus Pascher

Chrysococcus rufescens Klebs
Chrysococcus tesselatus Fritsch.

Dinobryon sp. I
Dinobryon bavaricum Imhof
Dinobryon calciformis Bachmann

Dinobryon cylindricum Imhof
Dinobryon divergens Imhof

Dinobryon petiolatum Willen
Dinobryon sertularia Ehrenberg

Dinobryon sociale Ehrenberg.
Kephyrion sp.

Kephyrion ovale Lackey.
Ochromonas sp. I

Ochromonas caroliniana Campbell
Ochromonas minuscula Conrad
Ochromonas variabilis Meyer.

Paulinella ovalis (Wulff) Johnson Hargrave 
& Sieburth.

Pseudotetraedron neglectum Pascher.
Rhizochrysis limnetica G.M. Smith.

Stylococcales
Lagynion cystodinii Pascher

Synurales
Mallomonas sp. I

Mallomonas caudata Conrad
Mallomonas producta Iwanoff
Mallomonas tonsurata Teiling.

Synura sp.
Synura adamsii G.M. Smith

Synura uvella Ehrenberg.
Coccolithophoridaceae
Coccosphaerales

Acanthoica quattrospina Lohmann
Calciosolenia granii Schiller C. murrayi Gran.
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Calyptrosphaera oblonga Lohmann

Discosphaera tubifer (Murray & Blackman) 
Ostenfeld

Michaelsarsia elegans Gran
Ophiaster hydroideus (Lohmann) Lohmann

Pontosphaera syracusana Lohmann
Rhabdosphaera claviger Murray & Blackman
Rhabdosphaera hispida Lohmann I

Rhabdosphaera longistylis Schiller
Rhabdosphaera stylifer Lohmann.

Scyphosphaera apsteinii Lohmann.
Syracosphaera histrica Kamptner
Syracosphaera pulchra Lohmann.

Isochrysidales

Emiliania huxleyi (Lohmann) Hay & 
Mohler.

Hymenomonas carterae (Braarud & Fagerland) 
Braarud.

Cryptophyceae
Cryptomonadales

Chilomonas marina (Braarud) Halldal.

Chroomonas amphioxeia (Conrad & Kufferath) 
Butcher

Chroomonas salina (Wislouch) Butcher
Chroomonas vectensis Carter.

Cryptomonas sp. C
Cryptomonas erosa Ehrenberg I

Cryptomonas erosa var. reflexa Marsson
Cryptomonas massonii Skuja

Cryptomonas ovata Ehrenberg

Cryptomonas ovata var. curvata (Eherenberg)
Lemmermann

Cryptomonas phaseolus Skuja
Cryptomonas pseudobaltica Butcher

Cryptomonas reflexa Skuja
Cryptomonas rostrata Troitzk
Cryptomonas rostrella Lucas

Cryptomonas stigmatica Wislouch.
Hemiselmis sp.

Rhodomonas minuta Skuja
Rhodomonas ovata Ehrenberg.

Cyanophyceae
Chroococcales

Aphanocapsa sp. I
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Aphanocapsa delicatssima West & West
Aphanocapsa elachista West & West
Aphanocapsa grevillei Rabenhorst

Aphanocapsa holsatica (Lemmermann) Cronberg 
& Komarek

Aphanocapsa pulchra Rabenhorst.
Aphanothece sp.

Aphanothece gelatinosa (Henn) Lemmermann
Chroococcus sp. I

Chroococcus dispersus (Keissler) Lemmermann
Chroococcus dispersus var. minor G. Smith

Chroococcus limneticus Lemmermann
Chroococcus limneticus var. elegans G.M. Smith

Chroococcus prescottii Drouet & Daily
Chroococcus turgidus (Kiitzing) Nageli.

Coelosphaerium sp.
Dactylococcopsis sp.

Dactylococcopsis acicularis Lemmermann
Dactylococcopsis fascicularis Lemmermann

Dactylococcopsis raphidioides Hansgirg C
Dactylococcopsis raphidioides f  falciformis Prinz.

Democarpa swirenkoi Schirsch

Entophysalis deusta (Meneghini) Drouet & 
Daily

Gloeocapsa sp.
Gloeocapsa aeruginosa Kiitzing

Gloeocapsa linearis Nageli.
Gloeocapsa minima (Keissler) Hollerbach

Gloeothece sp.
Gloeothece linearis f. composita G. Smith.

Gomphosphaeria sp.
Gomphosphaeria aponina Kiitzing

Gomphosphaeria Naegeliana (Unger) Lemmermann.
Johannesbaptistia pellucida (Dickie) Taylor & Drouet.

Marssoniella elegans Lemmermann.
Merismopedia sp. I

Merismopedia convoluta Brebisson
Merismopedia elegans Braun

Merismopedia elegans var. major G. Smith
Merismopedia glauca (Ehrenberg) Nageli

Merismopedia marssonii Lemmermann
Merismopedia punctata Meyen

Merismopedia quadruplicata (Meneghini) Brebisson
Merismopedia tenuissima Lemmermann. I
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Merismopedia thermal is Kiitzing
Microcystis sp. C

Microcystis aeruginosa Kiitzing I

Microcystis firma (Brebisson & 
Lemmermann) Schmidle

Microcystis incerta Lemmermann I

Microcystis viridis (Braun in Rabenhorst) 
Lemmermann.

Rhabdoderma sp.
Rhabdoderma lineare Schmidle & Lauterbom

Rhabdoderma sigmoidea f. minor Moore & Carter.

Rhabdogloea elenkinii (Roll) Komarek & 
Anagnostidis

Rhabdogloea smithii (R. et F. Chodat) 
Komarek

Snowella lacustris (Chodat) Komarek & 
Hindak

Synechococcus sp.
Synechococcus elongates Nageli.

Synechocystis sp.
Synechocystis salina Wislouch

Woronichinia elorantae Komarek
Woronichinia fusca (Skuja) Komarek.

Anabaena sp. I
Anabaena aequalis Borge

Anabaena affinis Lemmerman
Anabaena augstumalis var. marchica Lemmerman

Anabaena circinalis Rabenhorst
Anabaena confervoides Reinsch

Anabaena flos-aquae Brebisson
Anabaena limnetica G.M. Smith

Anabaena reniformis Lemmermann
Anabaena solitaria Klebahn

Anabaena spiroides Klebahn
Anabaena spiroides var. crassa Lemmermann

Anabaena wisconsinense Prescott.
Anabaenopsis raciborskii Woloszynska.

Aphanizomenon flos-aquae (L.) Ralfs.
Calothrix sp.

Calothrix parietina Thuret.
Cylindrospermum doryphorum Bruhl & Biswas

Nodularia sp.
Nodularia harveyana (Thwaites) Thuret

Nodularia spumigena f. litorea (Kiitzing) Elenkin.
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Nostoc sp. I
Nostoc commune Vaucher.

Richelia intracellularis Schmidt
Oscillatoriales

Limnothrix planktonica (Woloszynska) Meffert.
Lyngbya sp.

Lyngbya circumereta G.S. West
Lyngbya hieronymusi Lemmermann
Lyngbya planctonica

Microcoleus sp.
Microcoleus lyngbyaceus (Kiitzing) Crouan.

Oscillatoria sp. C
Oscillatoria angustissima West & West

Oscillatoria erythraea (Ehrenberg) Kiitzing
Oscillatoria granulata Gardner

Oscillatoria irrigua (Kiitzing) Gomont
Oscillatoria lemmermannii Wolosz

Oscillatoria limosa C.A. Agardh
Oscillatoria lutea Agardh

Oscillatoria mirabilis Bocher
Oscillatoria pseudominima Skuja

Oscillatoria subbrevis Schimdle
Oscillatoria submembranacea Ardissone & Strafforella

Oscillatoria terebriformis Agardh
Phormidium sp. I

Phormidium amphibium (Agardh) Anagnostidis & 
Komarek

Phormidium splendidum (Greville) Anagnostidis & 
Komarek.

Planktolyngbya contorta (Lemmermann) 
Anagnostidis & Komarek

Planktolyngbya lit oralis (Hayren) Komarek & 
Hindak

Planktolyngbya mucicola (Naumann & Huber- 
Pestalozzi) Bourelly

Planktolyngbya subtilis (W. West) Anagnostidis 
& Komarek.

Planktothrix limnetica (Lemmermann) Komarek 
& Anagnostidis

Planktothrix limnetica f. acicularis (Nygaard) V. Poljanskij
Pseudanabaena limnetica (Lemmermann) Komarek

Raphidiopsis curvata Fritsch & Rich
Schizothrix sp.

Schizothrix arenaria (Berkeley) Gomont
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Schizothrix calcicola (Agardh) Gomont
Schizothrix tenerrima (Gomont) Drouet.

Spirulina sp.
iSpirulina laxa Smith

Spirulina major Ktitzing
Spirulina subsalsa Oersted.

Trichodesmium lacustre Klebahn
Dictyochophyceae
Dictyochales

Dictyocha crux Ehrenberg
Dictyocha fibula Ehrenberg C

Distephanus speculum (Ehrenberg) Haekel I
Mesocena polymorpha Lemmermann

Pedinellales
Apedinella radians (Lohmann) Campbell C

Dinophyceae
Dinamoebales

Pfiesteria piscicida Steidinger & Burkholder
Pfiesteria shumwayae Glasgow & Burkholder.

Dinophysiales
Amphisolenia sp.

Amphisolenia bidentata Schroder
Amphisolenia globifera Stein.

Ceratocorys horrida Stein.
Dinophysis sp. I

Dinophysis acuminata Claparede & Lachmann I
Dinophysis acuta Ehrenberg

Dinophysis caudata Kent I
Dinophysis diegensis Kofoid

Dinophysis fortii Pavillard
Dinophysis lachmannii Paulsen

Dinophysis monacantha Kofoid & Skogsberg
Dinophysis norvegica Claparede & Lachmann

Dinophysis ovum Schutt
Dinophysis pulchella (Lebour) Balech
Dinophysis punctata Jorgensen c

Dinophysis rotundata Claparede & Lachmann
Dinophysis sacculus Stein

Dinophysis schroderi Pavillard
Dinophysis schuettii Murray & Whitting

Dinophysis tripos Gourret.
Ornithocercus sp.

Ornithocercus magnificus Stein.
Phalacroma sp.
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Gymnodiniales
Akashiwo sanguined (Hiraska) G. Hansen I

Amphidinium sp. C
Amphidinium acutissimum Schiller

Amphidinium acutum Lohmann
Amphidinium bipes Herdman

Amphidinium carterae Hulburt
Amphidinium crassum Lohmann I

Amphidinium extensum Wulff I
Amphidinium lacustre Stein

Amphidinium latum Lebour
Amphidinium longum Lohmann

Amphidinium operculatum Claparede & Lachmann

Amphidinium ovoideum (Lemmermann)
Lemmermann

Amphidinium schroederi Schiller
Amphidinium sphenoides Wulff C

Amphidinium steinii (Lemmermann) Kofoid & 
Swezy

Amphidinium turbo Kofoid & Swezy
Amphidinium wislouchi Hulburt.
Cochlodinium brandtii Wulff

Cochlodinium helicoids Lebour
Cochlodinium polykrikoides Margelef.

Gymnodinium sp. C
Gymnodinium arcticum Wulff

Gymnodinium boguensis Campbell
Gymnodinium coeruleum Dogiel

Gymnodinium costatum Kofoid & Swezy
Gymnodinium danicans Campbell
Gymnodinium dissimile Kofoid & Swezy

Gymnodinium flavum Kofoid & Swezy
Gymnodinium fusum Stein

Gymnodinium instriatum (Freudenthal & Lee) 
Coats

Gymnodinium marinum Kent
Gymnodinium mikimotoi Miyake & Kominami

Gymnodinium simplex (Lohmann) Kofoid & 
Swezy

Gymnodinium thompsonii I. Kisselev
Gymnodinium uberrimum Kofoid & Swezy

Gymnodinium verruculosum Campbell.
Gyrodinium sp. C

Gyrodinium estuariale Hulburt
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Gyrodinium fusiforme Kofoid & Swezy C

Gyrodinium lachryma (Meunier) Kofoid & 
Swezy

Gyrodinium spirale (Bergh) Kofoid & Swezy
Gyrodinium uncatenum Hulburt

Gyrodinium undulans Hulburt.
Karlodinium veneficum (Ballantine) J. Larsen I

Katodinium asymmetricum (Massart) Loeblich III
Chcyrrhis marina Dujardin.

Polykrikos hartmannii Zimmermann
Polykrikos kofoidii Chatton. C

Noctilucales
Noctiluca scintillans (Macartney) Ehrenberg. I

Peridinales
Alexandrium monilatum (Howell) Balech

Amphidoma sp.
Ceratium sp. I

Ceratium arietinum Cleve
Ceratium candelabrum (Ehrenberg) Stein
Ceratium carolinianum (Bailey) Jorgensen

Ceratium carriense Gourret
Ceratium contortum (Gourret) Cleve

Ceratium contrarium (Gourret) Pavillard
Ceratium declinatum Karsten

Ceratium extensum (Gourret) Cleve

Ceratium furca (Ehrenberg) Claparede & 
Lachman c

Ceratiumfusus (Ehrenberg) Dujardin I
Ceratium hirundinella (Muller) Dujardin

Ceratium horridum (Cleve) Gran
Ceratium inflatum (Kofoid) Jorgenson
Ceratium kofoidii Jorgensen
Ceratium limulus Gourret

Ceratium lineatum (Ehrenberg) Cleve c
Ceratium longinum Karsten
Ceratium longipes (Bailey) Gran

Ceratium macroceros (Ehrenberg) Vanhoffen
Ceratium massiliense (Gourret) Jorgensen

Ceratium minutum Jorgensen I
Ceratium pentagonum Gourret

Ceratium pulchellum f. semipulchellum Jorgensen
Ceratium setaceum Jorgensen

Ceratium teres Kofoid
Ceratium trichoceros (Ehrenberg) Kofoid
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Ceratium tripos (Muller) Nitzsch. I
Cladopyxis claytonii Holmes I

Diplopeltopsis minor (Paulsen) Pavillard.
Diplopsalis sp. I

Diplopsalis lenticula Bergh. C
Glenodinium sp.

Glenodinium armatum Levander
Glenodinium gymnodinium Penard

Gonyaulax sp. I
Gonyaulax conjuncta Wood
Gonyaulax diacantha (Meunier) Schiller

Gonyaulax digitalis (Pouchet) Kofoid
Gonyaulax minuta Kofoid & Michener

Gonyaulax monilata Howell
Gonyaulax monocantha Pavillard
Gonyaulax polygramma Stein

Gonyaulax spinifera (Claparede & Lachmann) 
Diesing

Gonyaulax triacantha Jorgensen
Gonyaulax verior Soumia.

Heteraulacus polyedricus (Pouchet) Drugg & 
Loeblich.

Heterocapsa rotundata (Lohmann) Hansen C
Heterocapsa triquetra (Ehrenberg) Stein. C

Oblea rotunda (Lebour) Balech.
Oxytoxum crassum Schiller
Oxytoxum milneri Murray & Whitting I
Oxytoxum parvum Schiller

Oxytoxum reticulatum (Stein) Butschli
Oxytoxum sceptrum (Stein) Schroder
Oxytoxum scolopax Stein
Oxytoxum variabile Schiller.

Peridinium sp.
Peridinium aciculiferum Lemmermann

Peridinium cinctum Ehrenberg
Peridinium inconspicuum Lefevre
Peridinium wisconsinense (Eddy) Kiitzing.

Protoperidinium sp. C
Protoperidinium avellana Meunier

Protoperidinium bipes (Paulsen) Balech I
Protoperidinium breve (Paulsen) Balech I

Protoperidinium brevipes (Paulsen) Balech I
Protoperidinium brochii (Kofoid & Swezy) Balech
Protoperidinium cerasus (Paulsen) Balech
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Protoperidinium cinctum (Ehrenberg) Balech
Protoperidinium claudicans (Paulsen) Balech
Protoperidinium conicoides (Paulsen) Balech

Protoperidinium conicum (Gran) Balech I
Protoperidinium decipiens Parke & Dodge

Protoperidinium depressum (Bailey) Balech I
Protoperidinium diabolum (Cleve) Balech
Protoperidinium divergens (Ehrenberg) Balech I

Protoperidinium fimbriatum (Meunier) Balech
Protoperidinium globulum (Stein) Balech

Protoperidinium granii (Ostenfeld) Balech I
Protoperidinium leonis (Pavillard) Balech

Protoperidinium minutum (Kofoid) Loeblich III I
Protoperidinium mite (Pavillard) Balech

Protoperidinium nipponicum (Abe) Balech

Protoperidinium oblongum (Aurivillius) Parke & 
Dodge

Protoperidinium oceanicum (Vanhoffen) Balech
Protoperidinium orbiculare (Paulsen) Balech

Protoperidinium ovatum (Pouchet) Balech
Protoperidinium pallidum (Ostenfeld) Balech

Protoperidinium pellucidum Bergh
Protoperidinium pendunculatum (Schutt) Balech

Protoperidinium pentagonum (Gran) Balech
Protoperidinium quarnerense (Schroder) Balech

Protoperidinium steinii (Jorgensen) Balech
Protoperidinium subcuvipes (Lebour) Balech
Protoperidinium subinerme (Paulsen) Balech
Protoperidinium thorianum (Paulsen) Balech.

Pyrocystis sp.
Pyrocystis hamulus Cleve.

Pyrodinium bahamense Wall & Dale.
Pyrophacus sp.

Pyrophacus horologium Stein.
Scrippsiella precaria Montresor & Zingone

Scrippsiella trochoidea (Stein) Loeblich III. C
Zygabikodinium lenticulatum Loeblich & Loeblich.

Prorocentrales
Prorocentrum aporum (Schiller) Dodge I

Prorocentrum balticum (Lohmann) Loeblich III
Prorocentrum compressum (Bailey) Abe I

Prorocentrum dentatum Stein I
Prorocentrum gracile Schutt I

Prorocentrum lima (Ehrenberg) Dodge
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Prorocentrum maximum (Gourret) Schiller
Prorocentrum micans Ehrenberg C

Prorocentrum minimum (Pavillard) Schiller C
Prorocentrum ovum (Schiller) Dodge

Prorocentrum rostratum Stein
Prorocentrum rotundatum Schiller

Prorocentrum scutellum Schroder
Prorocentrum triestinum Schiller I
Prorocentrum vaginulum (Stein) Dodge.

Pyrocystales
Dissodium asymmetricum (Mangin) Loeblich III.

Euglenophyceae
Euglenales

Characium limneticum Lemmerman
Euglena sp. c

Euglena acus Ehrenberg
Euglena agilis Carter

Euglena convoluta Korshikov
Euglena deses Ehrenberg

Euglena ehrenbergii Klebs
Euglena elastica Prescott

Euglena fusca (Klebs) Lemmermann
Euglena gracilis Klebs

Euglena mutabilis Schmitz
Euglena mutabilis var. mainxi Pringsheim

Euglena oblonga Schmitz E. oxyuris 
Schmarda

Euglena polymorpha Dangeard
Euglena proximo Dangeard

Euglena pumila Campbell
Euglena spirogyra Ehrenberg

Euglena tripteris (Dujardin) Klebs
Euglena virdis Ehrenberg.

Eutreptia sp. I
Eutreptia lanowii Steuer c
Eutreptia marina Cunha
Eutreptia viridis Perty. I
Leptocinclis sp.

Leptocinclis ovum var. gracilicauda Deflandre
Leptocinclis sphagnophila Lemmermann.

Phacus sp.
Phacus caudatus Hubner

Phacus curvicauda Swirenko
Phacus latus Pochmann
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Phacus lemmermanni (Swirenko) Skvortzow
Phacus longicauda (Ehrenberg) Dujardin

Phacus monilatus Stokes
Phacus orbicularis Huebner
Phacus perkinensis Skvortz

Phacus suecicus Lemmermann
Phacus triqueter Dujardin.

Rhabdomonas spiralis Pringsheim
Strombomonas affinis (Lemmermann) Deflandre

Strombomonas asymmetrica (Roll) Popova
Strombomonas australica Deflandre.

Strombomonas borysteniensis (Roll) Popova
Trachelomonas sp. I

Trachelomonas acanthophora Stokes
Trachelomonas acanthostoma (Stokes) Deflandre

Trachelomonas armata var. longa Deflandre
Trachelomonas bulla (Stein) Deflandre

Trachelomonas charkowiensis Swirenko
Trachelomonas globularis var. boyeri Conrad

Trachelomonas hispida (Perty) Stein
Trachelomonas hispida var. coronata Lemmermann

Trachelomonas intermedia Dangeard
Trachelomonas planctonica var. oblonga Drezepolski

Trachelomonas raciborskii Woloszynska
Trachelomonas regulosa Deflandre

Trachelomonas scabra var. longicollis Playfair
Trachelomonas similis Stokes

Trachelomonas superba Deflandre
Trachelomonas superba var. duplex Deflandre

Trachelomonas varians Deflandre
Trachelomonas verrucosa Stokes
Trachelomonas volvocina Enrenberg

Trachelomonas volvocina var. punctata Playfair.
Prasinophyceae
Chlorodendrales

Heteromastix pyriformis (Carter) Manton
Heteromastix rotunda (Carter) Manton.

Pyramimonas sp. C
Pyramimonas amylifer Conrad

Pyramimonas grossii Parke
Pyramimonas micron Conrad & KufFerath

Pyramimonas obovata Carter
Pyramimonas plurioculata Butcher

Pyramimonas torta Conrad & Kufferath.
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Tetraselmis sp.
Tetraselmis gracilis (Kylin) Butcher

Tetraselmis maculata Butcher.
Prymnesiophyceae
Isochrysidales

Isochrysis galbana Parke
Pavlovales

Pavlova homersandii Campbell
Pavlova salina (Carter) Green.

Prymnesiales
Chrysochromulina sp. I

Chrysochromulina minor Parke & Manton.
Raphidophyceae
Chattonellales

Chattonella subsalsa Giecheler
Chattonella verruculosa Hara & Chihara

Heterosigma sp.

Heterosigma akashiwo (Hada) Hada ex. Hara & 
Chihara

Olisthodiscus sp.
Olisthodiscus luteus Carter

Xanthophyceae
Chloramoebales

Nephrochloris sp.
Nephrochloris salina Carter

Mischococcales
Botrydiopsis arhiza Borzi

Botrydiopsis eriensis Snow.
Characiopsis subulata (A. Braun) Gorzi

Dichotomococcus curvatus Korschikoff
Gleobotrys limneticus (G.M. Smith) Pascher

Goniochloris pulcherrima Pascher.
Isthmochloron lobulatum (Nageli) Skuja

Monodus sp.
Monodus guttula Pascher.

Ophiocytium capitatum var. longispinum Lemmermann
Ophiocytium cochlerare A. Braun

Pseudotetraedron neglectum Pascher
Tetraedrieila spinigera Skuja

Tribonematales
Tribonema sp.

Tribonema aequale Pascher
Tribonema affine West

Tribonema ambiguum Skuja
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Tribonema minus (Wille) Hazen
Tribonema monochloron Pascher & Geitler
Tribonema pyrenigerum Pascher

Tribonema subtilissimum Pascher
Tribonema viride Pascher

Tribonema vulgare Pascher
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