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ABSTRACT 

ECOLOGY OF NEOTROPICAL ARBOREAL SNAKES AND BEHAVIOR OF NEW 

WORLD MOLLUSK-EATING SNAKES 

Julie M. Ray 
Old Dominion University, 2009 
Director: Dr. Alan H. Savitzky 

The Neotropics is a biologically diverse region that provides many opportunities 

for ecological and behavioral studies. I utilized the speciose ophidian fauna of central 

Panama to explore the general ecology of arboreal snakes, the defensive behaviors of the 

snake community, and the diet of mollusk-eating snakes. I studied arboreal species to 

understand interspecific relationships in several morphometric characters and to examine 

preferences in habitat. There were significant morphometric differences in relative length 

of jaw, mass, tail length, and size at midbody. The arboreal realm was partitioned among 

species by distance to ground, distance to water, and diameter of the perch. Correlations 

were found in some species between body mass or length and distance to the ground and 

leaf length. Additionally, many arboreal species have been documented to bridge gaps in 

vegetation, but few studies have investigated this behavior systematically. I tested 

average bridging ability of five Neotropical arboreal snakes and investigated 

morphological elements underlying differences in relative cantilevering ability. I found 

significant interspecific differences in average and maximum distances bridged. Species 

with the relative heaviest mass had the lowest cantilever ratios. Defensive behaviors, 

which are employed for protection from predators, also were evaluated. I document 

interspecific differences in these behaviors at the community level. With knowledge 



gained from the ophidian community in Panama, I further documented on the defensive 

behaviors of other New World mollusk-eating snakes. Finally, I studied the diet of 

selected mollusk-eating snakes. I evaluated fecal samples of Dipsas and Sibon and found 

that their diet is broader than mollusks alone. In fact, a majority of Dipsas in central 

Panama were feeding on oligochaetes. Some species of Sibon were feeding on mollusks, 

whereas others fed primarily on amphibian eggs and oligochaetes. The discovery of a 

broader diet in these taxa may have conservation implications as populations of 

amphibians and terrestrial mollusks decline worldwide. The expansion of our knowledge 

of the natural history, ecology, and behavior of Neotropical snakes has provided 

information that will be important for future studies of community- and ecosystem-level 

interactions and for the conservation of the biota of central Panama. 
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CHAPTER I 

GENERAL INTRODUCTION 

The Neotropics constitute a vast region of high biodiversity (e.g.. Gentry, 1992; 

Kricher, 1999). Many threats exist for organisms residing within tropical forests (Kricher, 

1999). Deforestation is destroying rainforests at astonishing rates (Laurance and Peres, 

2006), and many populations of organisms are being lost or drastically reduced (e.g., 

Gibbons et al., 2000; Lydeard et al., 2004; Lips et al., 2006). The Neotropical biota must 

be studied to develop conservation-oriented management plans, and basic biological 

information is needed to protect species, communities, and ecosystems. 

This study is intended to improve our understanding of a Neotropical snake 

community by focusing on the arboreal and mollusk-eating members of the fauna. 

Observations on temperate mollusk-eating snakes were included for comparative 

purposes in some analyses. Study sites were located in North America (USA), Central 

America (Panama), and South America (Peru). 

STUDY SITES 

The majority of my fieldwork was conducted in the Republic of Panama. Central 

America supports a highly diverse herpetofauna (Myers, 1982), and snakes, including 

arboreal species and mollusk-eating snakes of the genera Dipsas and Sibon, are abundant 

(C. E. Montgomery, pers. comm.; pers. obs.). Additional data on mollusk-eating snakes 

The model journal is Copeia. 
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were collected in Peru and at various sites in the USA. 

Parque Nacional General de Division Omar Torrijos Herrera, Code Province, 

Republic of Panama.—Parque Nacional General de Division Omar Torrijos Herrera 

(PNGDOTH; English translation: Omar Torrijos National Park; 8° 40' N, 80° 37' W) is 

25,275 ha in total size and is situated along the Continental Divide. My study area is 

located in the mid-elevation (-800 m), pre-montane cloud forest on the Atlantic versant. 

Trails in mature secondary forest (35+ years of age) and nearby mountain streams 

constituted the 3.5 km of terrestrial and riparian transects utilized for this study (Lips et 

al., 2006; Table 1.1; Fig. 1.1, 1.2). Transects were marked every 10 m with flagging to 

facilitate recording the movements of snakes and to allow snakes to be returned to the 

location of capture. Additional captures were made along the road within the boundary of 

the park and at a small pond within the forest. 

Table 1.1. Study transects in Parque Nacional G. D. Omar Torrijos Herrera 
(PNGDOTH). Includes names of transect as used in this study and by PNGDOTH. The 
length of each transect is listed in meters. Numbers in parentheses refer to numbers on the 
map (Fig. 1.2). 

Study Transect PNGDOTH Transect 
Name Name Length (m) 

Riparian 
Cascada (2) - 200 
Guabal (3) Rio Guabal 200 
Loop Stream (1) Rio Ranita 200 
Silenciosa (4) Rio Silenciosa 200 

Terrestrial 
Loop Trail (5) Sendero Los Helechos 430 
Main Trail (7) Sendero La Rana 400 
Rocky Road (6) La Salida 420 
Verrugosa Sendero Cuerpo de Paz 1800 

Other 
Pond La Laguna 



Fig. 1.2. Map of riparian and terrestrial transects in Parque Nacional G. D. Omar Torrijos 
Herrera. Verrugosa Trail begins at the northern point of transect 4 and is not shown in its 
entirety on this map. See Table 1.1 for details. 
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Chytridiomycosis, a disease spread by Batrachochytrium dendrobatidis and 

known to kill many species of amphibians (Lips et al., 2006), had already affected 

PNGDOTH prior to this study. The first frog that tested positive for chytridiomycosis, as 

determined by PCR (Brem, 2006; Brem et al., 2007), was found in September 2004 (Lips 

et al., 2006), and the first death attributed to chytridiomycosis occurred in October 2004. 

Fifty-seven percent of amphibians were lost in PNGDOTH between October 2004 and 

January 2005 (Lips et al., 2006), and amphibian populations have not recovered 

significantly (K. R. Lips, pers. comm.; pers. obs.). 

Altos del Maria, Panama Province, Republic of Panama.—Altos del Maria (ADM) is 

located near El Valle de Anton in western Panama Province (8° 38' N, 80°4' W). The 

forest and streams included in this study had intact forest, but clearing of the forest was 

advancing toward the site and overtook one stream in July 2006. Riparian and terrestrial 

transects were located in primary forest at mid-elevation (500-1200 m) pre-montane 

habitat (Table 1.2) and were visually surveyed for snakes at night. ADM experienced a 

chytridiomycosis-induced decline of amphibians in early 2006. In conjunction with the 

decline, zoos began removing amphibians for the conservation-breeding center, El Valle 

Amphibian Conservation Center, located at El Nispero Zoo in El Valle de Anton. I 

abandoned ADM as a field site in July 2006. 

Central Valley, California.—Contia tenuis was captured at various sites around the 

Central Valley of California by Gregory Pauly. Sites are listed below and coordinates are 

provided when available. 
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Table 1.2. Study transects in Altos del Maria. Includes name and length of riparian and 
terrestrial transects. 

Study Transect Name Length (m) 
Riparian 

Rio Maria 200 
Tributary 1 200 

Terrestrial 
CAS/ADM2 200 

Road 200 

• Redding, located at the northern end of the Sacramento Valley. Shasta 

County, California (40°34'N, 122°22'W) 

• Auburn, located in the Sierra Nevada foothills Placer County, California 

(38°53'N, 121°4'W) 

• Quail Ridge Ecological Preserve, near the University of California, Davis in 

eastern Napa County, California (38°49'N, W122°15'W) 

• Hwy 128 at Stebbins Cold Canyon, about 6 km from the Quail Ridge 

Ecological Reserve, Napa County, California 

• Sacramento River, south of Sacramento, Yolo County, California (38°76'N, 

121°96'W) 

• South River Road (near Linden Road), in southwestern Sacramento, Yolo 

County, California (38°56'N, 121° 16'W) 

• Brannon Island State Recreation Area, Sacramento County, California 

Lake Erie Islands, Ottawa and Erie Counties, Ohio.—Storeria dekayi (N = 95) was 

collected from South Bass, Middle Bass, and North Bass Islands, Ottawa County and 
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from Kelleys Island, Erie County, in western Lake Erie, Ohio, USA (approximately 

41°65'N, 82°82'W; see Ray and King, 2007 for map). 

Potawatomi Woods Forest Preserve and Kishwaukee River State Fish and Wildlife 

Area, Kirkland, Illinois.—Storeria dekayi (n = 20) and S. occipitomaculata (n = 20) 

were collected from the Potawatomi Woods Forest Preserve and the Kishwaukee River 

State Fish and Wildlife Area near Kirkland, DeKalb County, Illinois, USA (42°06"N, 

88°52'W). Snakes were collected from a grassy field with several old buildings; most 

snakes were captured under debris near the structures. 

Beaver Island, Michigan.—Storeria occipitomaculata (n - 10)was collected from sites 

on Beaver Island, Charlevoix County, Michigan, USA (45°40'N, 85°32'W). Snakes were 

collected from a field where wood and tin cover sheets had been laid previously, near 

anthropogenic structures, and in debris piles at an old farm. 

STUDY ORGANISMS 

Neotropical snake communities.—The number of studies documenting the composition 

of Neotropical snake communities has increased in recent years (e.g., Guyer and 

Donnelly, 1990; Duellman and Salas, 1991; Ibanez et al., 1995; Martins and Oliveira, 

1998; Lee, 2000; Savage, 2002; Solorzano, 2004; Duellman, 2005; Wilson and 

Townsend, 2006). The diets of Neotropical snakes include invertebrates, amphibians, 

reptiles, birds, eggs of all latter prey items, and mammals. Habitats from fossorial to 
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terrestrial, aquatic, and arboreal, and the activity period of particular species may be 

diurnal, nocturnal, or crepuscular (Savage, 2002; Solorzano, 2004; Duellman, 2005). 

Neotropical snakes range from about 25 cm to about 3 m in total length (Savage, 2002; 

Solorzano, 2004; Duellman, 2005). 

Neotropical arboreal snakes.—An arboreal species is defined as one that spends at least 

50% of its time in aboveground vegetation (Lillywhite and Henderson, 1993; Franca et 

al., 2008). Even the most highly arboreal species can be found occasionally on the ground 

(e.g., Imanlodes cenchoa perched on rocks in the stream, pers. obs.) and terrestrial 

species occasionally are found moving or resting in trees (e.g., Rhinobothryum bovallii, 

Solorzano, 2004; pers. obs.). 

Arboreal snakes may constitute a large proportion of the vertebrate biomass in 

some habitats (Duellman, 1978; Guyer and Donnelly, 1990; Duellman and Salas, 1991), 

suggesting they are important components of the community. Facultative or obligate 

arboreal snakes face several challenges while conducting routine activities (e.g., 

reproduction, locomotion, foraging) on an unstable substratum, which has led to 

evolution of morphological and behavioral specializations (e.g., Henderson and 

Nickerson, 1976; Myers, 1982; Lillywhite and Henderson, 1993). Morphological 

adaptations associated with arboreality include reduced body mass, laterally compressed 

body form, and eyes that can be directed downward (Lillywhite and Henderson, 1993), 

and behaviors include movements mimicking swaying branches, presumably to enhance 

crypsis (Lillywhite and Henderson, 1993). Furthermore, in an environment with highly 

variable microhabitats and environmental conditions (e.g., Allee, 1926; Allee et al., 1949; 
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Smith, 1973; Myers, 1969), resource partitioning may occur interspecifically and 

intraspecifically (between sexes, ages, or size/age classes, but see Tu et al. [2000], who 

found no differences in perch location between male and female Trimeresurus 

stejnegeri). What little information is available on the global arboreal snake assemblage 

has been deduced largely from a few species or genera (e.g., Henderson and Nickerson, 

1976) and has not permitted conclusions to be drawn about an entire assemblage 

(Lillywhite and Henderson, 1993). 

Furthermore, many studies focusing on arboreal snakes have not evaluated fully 

the environment higher than the limitations of human visibility from the ground (about 3 

m; Lillywhite and Henderson, 1993). Until recently the canopy has been difficult to 

access (Barker and Pinard, 2001), so the vertical dimension rarely has been studied to its 

fullest potential. For example, Lillywhite and Henderson (1993) reviewed the literature 

on 19 species of snakes and found that 18 were frequently captured between 1.5 and 3 

meters. However, with tens of meters of vertical habitat available, it is reasonable to 

assume that snakes visit higher sites, at least occasionally. This range of observations also 

was not logistically possible for this dissertation, due to the lack of a canopy access 

system and the relatively young age of the forests I studied, so trees were not large 

enough for single-tree climbing equipment. 

Mollusk-eating snakes.—Morphological adaptations for the consumption of snails and 

slugs have evolved at least five times, with varying degrees of specialization (Gruz, 

2002). Specialized skulls, cephalic musculature, and teeth (Dunn, 1951; Peters, 1960; 

Savitzky, 1983) have evolved among ophidian species specialized to consume mollusks. 
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Snakes exhibiting such modifications reside in Africa, Asia, and North America, as well 

as Central and South America, where the radiation is greatest. Four Neotropical genera 

are considered mollusk specialists: Dipsas, Sibon, Sibynomorphus, and Tropododipsas, 

belong to the colubrid subfamily Dipsadinae, which also includes predators on frogs and 

lizards, such as Imantodes and Leptodeira (Solorzano, 2004). 

A diet of mollusks poses many challenges, especially considering that several 

ophidian predators on mollusks are arboreal and none are known to digest the calcified 

shell completely. Even without the shell, the consumption of slugs is complicated by a 

dynamic, hydrostatic body structure (Sazima, 1989; pers. obs.), production of copious 

mucous, and, at least in some species, defensive toxins (Schroeder et al, 1999). 

Several mollusk-eating snakes (including members that live in other areas of the 

New World) display interesting defensive behaviors, such as body pyramiding (e.g., 

Cadle and Myers, 2003), that have not been documented for other species of snakes. 

Furthermore, mimicry of vipers and coral snakes has been suggested for several taxa 

(e.g., Sazima, 1989; Greene, 1997; Solorzano, 2004). Understanding such behaviors may 

provide insights into potential predators on these species. 

Tropical study species.—Fifty-six species of snakes, belonging to six families, have been 

reported from PNGDOTH (C. E. Montgomery, and K. R. Lips, unpublished data; pers. 

obs.; Table 1.3), and 23 species in three families have been reported from ADM (pers. 

obs.; Table 1.3). Snakes were studied at PNGDOTH in 1997-2007 (2006-2008 by me) 

and Altos de Maria in 2005-2006. Dipsas in central Panama may include as many as 

three cryptic species (Cadle and Myers, 2003; Myers et al., 2007; R. Ibanez, pers. 
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comm.). For this study I treat the species of Dipsas encountered at my field sites, other 

than D. nicholsi, as one taxon, designated Dipsas sp. 

To examine historical patterns in ecology and behavior I constructed a composite 

phylogeny of the Neotropical study species (Fig. 1.3) from multiple sources (Crother, 

1999; Werman et al , 1999; Vidal et al., 2000; Taggart et al., 2002; Highton et al., 2002; 

Lawson et al., 2002; Castoe et al., 2005; Hollis, 2006, Mulcahy, 2007). 

Table 1.3. Species documented in Parque Nacional G. D. Omar Torrijos Herrera 
(PNGDOTH) and in Altos del Maria (ADM). Snakes were studied at PNGDOTH in 
1997-2008 and at ADM in 2005-2006. Numbers without parentheses indicate total 
captures; those in parentheses indicate numbers of individuals. X indicates species known 
from the site but not found during the study period of 2005-2007. 

Family 
Anomalepididae 
Boidae 

Ungaliophiidae 
Colubridae: Colubrinae 

Colubridae: Dipsadinae 

Species 
Liotyphlops albirostris 
Boa constrictor 
Corallus annulatus 
Epicrates cenchria 
Ungaliophis panamensis 
Chironius exoletus 
Chironius grandisquamis 
Dendrophidion nucale 
Dendrophidion percarinatum 
Dendrophidion vinitor 
Dryadoph is plee i 
Drymobius rhombifer 
Leptophis ahaetulla 
Leptophis depressirostris 
Leptophis nebulosus 
Oxybelis aenus 
Oxybelis brevirostris 
Pseustes poecilonotus 
Scaphiodontophis sp. 
Spilotes pullatus 
Stenorrhina degenhardtii 
Tantilla melanocephala 
Atr actus imperfect us 
Dipsas nicholsi 
Dipsas sp. 

Enulius flavitorques 

PNGDOTH 
1 
1 
1 
1 
1 
1 
1 
X 
X 
X 
1 
X 
X 
1 

4(3) 
1 

132(70) 
4(4) 

X 
1 
1 

2(2) 
X 
1 

92(71) 
2(2) 

ADM 

1 
1 

4(4) 

1 

2 

X 
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Family Species 
Geophis bellus 
Geophis brachycephalus 
Geophis sp. 

Hydromorphus concolor 
Imantodes cenchoa 
Imantodes inomatus 
Leptodeira septentrionalis 
Ninia celata 
Ninia maculata 
Ninia sp. 

Rhadinaea decorata 
Sibon annulatus 
Sibon argus 
Sibon longifrenis 
Sibon nebulatus 
Urotheca euryzona 

Colubridae: Xenodontinae Amastridium veliferum 
Clelia clelia 
Erythrolamprus mimus 
Liophis epinephalus 
Nothopsis rugosus 
Oxyrhopus petolus 
Rhinobothryum bovallii 

Elapidae Micrurus multifasciatus 
Micrurus mipartitus 
Micrurus nigrocincius 

Viperidae Atropoides nummifer 
Bothriechis lateralis 
Bothriechis schlegelii 
Bothrops asper 
Lachesis slenophrys 
Porthidium nasutum 

PNGDOTH 
X 

4(4) 
1 
1 

66 (53) 
18(12) 
27 (20) 

1 
- » 
j 

2 
66 (53) 
69 (39) 

8(3) 
10(10) 

1 
2(2) 
2(2) 

1 
1 
1 

2(2) 
1 
X 
1 

2(2) 
1 

34 (25) 
1 
1 
X 

ADM 

1 

6(6) 

3(3) 
1 
1 

14(13) 
33(25) 
14(13) 

1 
5(5) 

1 
1 

X 
3(2) 
2(2) 

1 
X 

1. Undescribed species (Myers et al., 2007) 
2. Undescribed species (C. W. Myers, pers. comm.) 
3. Undescribed species (R. Ibanez, pers. comm.) 
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Fig. 1.3. Phylogeny of snakes captured in central Panama during this study. Tree 
constructed from phylogenies of Crother, 1999; Werman et al., 1999; Vidal et al., 2000; 
Taggart et al., 2002; Highton et al., 2002; Lawson et al., 2002; Castoe et al., 2005; Hollis, 
2006, and Mulcahy, 2007. 

Temperate study species.—I conducted studies in the United States on Contia tenuis, 

Storeria dekayi and S. occipitomaculata. Gregory Pauly collected 50 C. tenuis from study 

sites in central California in April - May 2006. I collected seven S. occipitomaculata on 

Beaver Island in June 2005 and 25 5. dekayi on various islands in Lake Erie in June 2005. 

Richard B. King captured six S. dekayi and eight S. occipitomaculata at the Potawatomi 

Woods Forest Preserve and the Kishwaukee River State Fish and Wildlife Area in May 

2005. 
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Methods for tropical research.—\ conducted distance-constrained visual surveys by 

slowly walking established, metered transects, primarily at night using large lights. I 

captured nonvenomous snakes by hand when within reach. Venomous snakes and snakes 

out of reach were manipulated with a snake hook. I placed small snakes in plastic bags, to 

avoid dehydration, and large snakes in cloth pillowcases. I recorded only transect and 

distance, time, height, distance to water, defensive behavior at time of capture, and 

activity at time of first sighting in the field for the 94 captures from ADM. I returned 

snakes to the local laboratory, where I recorded morphological measurements and other 

data, including fecal samples, stomach contents, and observations of defensive behaviors 

and tested cantilevering abilities (Lillywhite and Henderson, 1993; Bernarde and Abe, 

2006; Table 1.4). 

1 measured snout-vent length (SVL; from the rostral scale to the cloaca) and total 

length (TL; from the rostral to the tip of the tail) in a squeeze box (Quinn and Jones, 

1974) to the nearest 0.1 cm, and mass to the nearest 0.1 grams on an electronic balance. 1 

measured head and body dimensions (other than SVL and TL) with a digital caliper to the 

nearest 0.01 cm. Head dimensions and body circumferences were not measured for 

recaptures. I did not record head measurements for venomous snakes. 

I maintained snakes in an air-conditioned or cool location in the house and 

typically returned snakes to the site of capture within 48 hours of capture to reduce stress 

and time away from normal activities, such as foraging and mate-searching. 
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Table 1.4. Data collected for snakes captured in Parque Nacional G. D. Omar 
Torrijos Herrera, 2006 - 2007. Units are listed when appropriate, and clarification of the 
type of data collected is included as needed. 

Characteristic Unit Clarification 
Data Collected in the Field 

Transect name 
Meter of transect 
Time of capture 
Air temperature 
Humidity 
Height from ground 
Distance to end of branch/leaf 
% vegetation density 
Direction of head 
Direction moving 
Plant type 
Body position 
Activity 
Diameter of perch 
Length and width of leaf 
Circumference of bromeliad 

m 

°C 
% 

cm 
cm 
% 

mm 
mm 
mm 

00:00-23:59 

measured at height of snake 
stem or terminal end of leaf or branch 
horizontal or vertical 
herb, tree, bromeliad, vine 
elongate, loose coil, tight coil 
moving, feeding, mating, sleeping 
measured at midbody (when applicable) 
measured at midbody (when applicable) 
measured at midbody (when applicable) 

Data Collected in Laboratory 
Snout-vent length 
Total length 
Mass 
Sex 
Individual identification 
Height at mid-body 
Width at mid-body 
Head length 
Head width 
Jaw length 
Interoccular distance 
Scars 
Stub 
Reproductive Status 
Presence of prey item 
Fecal sample 

cm 
cm 
g 

mm 
mm 
mm 
mm 
mm 
mm 

male or female 
PIT tag or scale clip number 

snout to rear of quadrate 
widest point 
snout to last labial 
between eyes 
presence, description of type, location 
missing tail 
female with enlarged follicles or eggs 
palpation of stomach 
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Methods for temperate research.—I captured temperate snakes by hand and placed them 

in cloth pillowcases to return them to the local laboratory for measurement. I measured 

SVL (mm) and TL (mm) with a tape measure to the nearest 0.1 cm. Mass (g) was 

measured to the nearest 0.1 g with an electronic balance or spring scale. 

Other individuals of several species were collected by other researchers and sent 

to Old Dominion University (ODU) in Norfolk, Virginia, USA. Contia tenuis were 

collected by G. Pauly and shipped from California. Some Storeria dekayi and S. 

occipitomaculata were captured by R. B. King in DeKalb County, Illinois, USA, and 

shipped to ODU. Snakes were measured and weighed upon arrival (1-2 days post-

capture). 
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CHAPTER II 

MOPHOMETRICS AND NICHE PARTITIONING IN A NEOTROPICAL 

ARBOREAL SNAKE ASSEMBLAGE 

Many snake taxa (including boids, viperids, and colubrids) have adapted to 

arboreal environments (Lillywhite and Henderson, 1993). Even species considered 

terrestrial or aquatic and not arboreal (spending < 50% of their time in aboveground 

vegetation) often rest, perch, or forage in vegetation (e.g., Martins et al., 2008; pers. 

obs.). Boa constrictor (Boidae), for example, is known to take terrestrial prey, but also 

can be found perched in a sit-and-wait position in trees or shrubs (Solorzano, 2004). 

Chironius grandisquamis forages diurnally in the terrestrial environment, feeding on 

frogs, lizards, and small mammals (Solorzano, 2004). However, this species also searches 

for birds in the arboreal habitat and ascends trees at night, where it sleeps in a coiled 

position (pers. obs.). Other species of snakes have evolved to become essentially fully 

arboreal (e.g., CoraUus annulatus; Solorzano, 2004). 

Generally, highly arboreal snakes have a characteristic body form (Guyer and 

Donnelly, 1990; Lillywhite and Henderson, 1993). Lateral compression of the body, 

reduced mass-to-length ratio, rigid muscles, and eyes with the ability to be directed 

downward are several of the characteristics (Henderson and Nickerson, 1974; Lillywhite 

and Henderson, 1993). Furthermore, morphology may reflect microhabitat use (Guyer 

and Donnelly, 1990; Cadle and Greene, 1993; Martins et al., 2001; Franca et al., 2008) 

and habitat partitioning among species within an assemblage (i.e., smaller snakes utilize 

smaller branches; Lillywhite and Henderson, 1993). 



17 

Few communities of snakes have been studied comprehensively, especially in the 

tropics. Therefore, the composition of many ophidian communities has not been 

characterized. Obligate and facultative arboreal snakes can constitute a large proportion 

(up to 50%) of the vertebrate biomass (Guyer and Donnelly, 1990), and, as is the general 

case, species richness increases as latitude decreases (Lillywhite and Henderson, 1993). 

For example, an ophidian community of 12 species in temperate Kansas has one arboreal 

species (8.3%; Lillywhite and Henderson, 1993), whereas a community in Manaus, 

Brazil has 100 species, of which 52 (51.9%) are arboreal (Lillywhite and Henderson, 

1993). 

It is not known in what ways Neotropical arboreal snakes partition their 

environment (Lillywhite and Henderson, 1993). It is likely that members of the 

assemblage come into physical contact and may compete for food or space, so niche 

partitioning within the group is likely. To determine what environmental characteristics 

are preferred by each species, it is necessary to understand what habitat is available. 

Because of differences in rainfall throughout the year, surveys during both the wet and 

dry season are necessary to determine whether snakes are using all available habitats. 

However, studies of arboreal snakes often lack a fully three-dimensional approach that 

includes the canopy. Advancements in technology (e.g., mirror systems, bendable camera 

tubes, climbing gear) have improved, but have not yet served to perfect the study of 

arboreal organisms. 

In this study I determined the proportion of arboreal species within the 

community of snakes at PNGDOTH and examined ecological and morphological 
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variation within the arboreal assemblage. I also determined which environmental factors 

correlate with the occurrence of each species. 

MATERIALS AND METHODS 

Snakes were identified as arboreal if they spent at least 50% of their activity time 

in the aboveground vegetation (Lilly white and Henderson, 1993). Categorization of each 

species was determined by data collected during this study and by consulting the 

literature (Henderson and Binder, 1976; Guyer and Donnelly, 1990; Myers, 1982; 

Savage, 2002; Solorzano, 2004). In some analyses data for Sibon argns and S. longifrenis 

were combined. 

Morphometric data collection.—The arboreal snakes in Parque Nacional General de 

Division Omar Torrijos Herrera (PNGDOTH), El Cope, Code Province, Republic of 

Panama (Chapter I) were studied in September 2006 - September 2007, November 2007, 

and May - November 2008. I measured snout-vent length (SVL) and total length (TL) to 

the nearest 0.1 cm using a squeeze box (Quinn and Jones, 1974). Mass was determined to 

the nearest 0.1 g using an electronic balance, and sex was determined with blunt-tipped 

probes. Other morphometric features (Fig. 2.1) were measured to the nearest 0.01 cm 

using digital calipers (King et al., 1999). 1 individually marked all snakes with a PIT tag 

(passive integrated transponder; Gibbons and Andrews, 2004) or a unique scale clip 

(Brown and Parker, 1976). I returned snakes to the exact location of capture within 48 

hours to minimize disruption of their normal behavior. 
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m 

Fig. 2.1. Location of measurements in diagrammatic dorsal view (top) and lateral view 
(bottom). A = interocular distance, B = head width, C = width at midbody, D = temple 
length, E = jaw length, F = torso length, G = height at midbody, and H = tail length. 

Morphometric measurements used in the MANOVA included jaw length, temple 

length (head length - jaw length), interocular distance, head width (measured at the 

widest place on the head), width at midbody, height at midbody, torso length (body 

length excluding head and tail), and tail length (Fig. 2.1). 

Environmental data collection.—For each capture included in the analyses, I measured 

height, distance to water and distance to the end of the perch. Leaf width and length were 

measured to the nearest cm at the midbody of the snake using a tape measure. Branch 

width at midbody was measured to the nearest 0.1 cm with a dial caliper. Ambient 

temperature (°C) and humidity (%) were measured with an Oakton digital max/min 

thermohygrometer. 

I also collected environmental data at random locations along 3.5 km of terrestrial 

and riparian transects in both the dry (March 2007) and rainy (May 2007) seasons, to 

provide information on habitat availability in PNGDOTH. Each data collection site was 

chosen using a random number table. An exact location for data collection (height, 

distance from water) was chosen by a field assistant who was unaware of the reason for 

measurement. Environmental data collected at each location included height from 
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ground, distance from water (for riparian transects), leaf dimensions (length and width) or 

perch diameter, temperature and humidity. 

General characteristics of the snake assemblage.—Comprehensive surveys of the snake 

community in PNGDOTH permitted analysis of the composition of species and of the 

proportion of arboreal species. I calculated the percentage of arboreal species in the 

community (as a percentage of individuals and a percentage of captures) and differences 

in the number of captures for each species between dry and wet seasons. Characteristics 

of the assemblage were determined from data collected in May 2006, September 2006-

September 2007, and November 2007. 

Statistics for morphometric analyses.—I used SAS for the MANOVA and SPSS 

(Version 13.0) for all other analyses. Alpha was maintained at 0.05 in all analyses (Zar, 

1999). All data were log-transformed. 

I tested for interspecific differences in relative tail length among Bothriechis 

schlegelii, Dipsas sp., Imantodes cenchoa, Leptodeira septentrionalis, Oxybelis 

brevirostris, Sibon annulatus, S. argus/longifrenis, and S. nebulatus. I calculated relative 

tail length by dividing the length of the complete tail (snakes with incomplete tails were 

omitted) by the total length of the snake and tested for intra- and interspecific differences 

using an ANOVA. 

I tested for interspecific differences in relative mass among Dipsas sp., Imantodes 

cenchoa, Leptodeira septentrionalis, Oxybelis brevirostris. Sibon annulatus, and S. 
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argus/longifrenis. I used an analysis of covariance (ANCOVA) to test mass with SVL as 

a covariate. 

I tested for differences in jaw length within and among Dipsas sp., Imantodes 

cenchoa, Leptodeira septentrionalis, Oxybelis brevirostris, Sibon annulatus, S. 

argus/longifrenis, and S. nebulatus. I used an ANCOVA to test for intraspecific 

differences between sexes and interspecific differences among species in log-transformed 

jaw length with head length as a covariate. 

I tested for differences in size at midbody within and among Dipsas sp., 

Imantodes cenchoa, Leptodeira septentrionalis, Oxybelis brevirostris, Sibon annulatus, S. 

argus/longifrenis, and S. nebulatus. I used an ANOVA to test for intraspecific differences 

between sexes and interspecific differences among species in size at midbody, 

determined by measuring the dorsal and lateral widths and adding each twice to 

determine the distance around the snake. This type of measurement was used to capture 

the degree of lateral compression of the snake. 

A MANOVA was used to test for interspecific differences in morphometric 

measurements among Dipsas sp., Imantodes cenchoa, Imantodes inornatus, Leptodeira 

septentrionalis, Oxybelis brevirostris, Sibon annulatus, S. argus/longifrenis, and S. 

nebulatus (Fig. 2.1). Morphological characteristics were averaged across captures for 

each individual, and characteristics were log-transformed for normality. Perch size is 

defined as the width of the perch regardless of whether it was a leaf or branch. I used 

descriptive discriminant function analyses to evaluate further any significant results of 

the MANOVA. 



Statistics for environmental analyses.—I used SAS to conduct the MANOVA and SPSS 

(Version 13.0) for all other analyses. Alpha was maintained at 0.05 in all analyses (Zar, 

1999). 

I used a Pearson's bivariate correlation to test for correlations among the 

following environmental characteristics: temperature, humidity, distance to the ground, 

distance to water, distance to the end of the branch, perch diameter, leaf length, and leaf 

width. 

Environmental characteristics were evaluated for eight taxa, including Bothriechis 

schlegelii, Dipsas sp., Imantodes cenchoa, Leptodeira septentrionalis, Oxybelis 

brevirostris, Sibon annulatus, S. argus/longifrenis, and S. nebulatus. All environmental 

variables were averaged across captures of an individual snake. Several environmental 

variables were evaluated for interspecific differences for species in which at least five 

captures were made. 

I used an ANOVA to test for interspecific differences in distance from ground, 

distance from water, distance to the end of branch, and perch size. A post-hoc Student-

Newman-Kuels Test was conducted when the ANOVA yielded significant results. 

SAS was used to conduct a MANOVA to test for interspecific differences in the 

environmental variables. 

Means were calculated for environmental characters including temperature, 

humidity, distance to ground, distance to water, distance to end of branch, perch 

diameter, leaf length, leaf width, and perch size for snakes and randomly selected sites 

along riparian and terrestrial transects in the wet and dry seasons. Wet season was 

defined as 01 April to 15 December, and dry season was 16 December to 31 March. 
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General characteristics of the snake assemblage.—The snake community in PNGDOTH 

consists of 56 species representing six families (K. R. Lips and C. E. Montgomery, 

unpublished data; pers. obs.; Table 1.3). Twenty-four species (42.9%) in four families 

spend at least 50% of their time in the aboveground vegetation (Savage, 2002; Solorzano, 

2004; pers. obs.). 

Between 2006 and 2007 I captured 16 species of arboreal snakes (Table 2.1). Half 

of the arboreal species were relatively abundant, whereas the others were represented by 

as few as one capture (Fig. 2.2). Captures in this study followed a distribution similar to 

that of total individuals (Fig. 2.3). Species were captured during both dry and rainy 

seasons, although some species, such as Sibon annulatus and S. argus, were represented 

by more captures during the rainy season (Fig. 2.4). 

Morphometric analyses.—There was no significant intraspecific difference between 

sexes for log-transformed tail length (P > 0.05). There was a significant interspecific 

difference in log-transformed tail length (F = 84.431, df = 7, P < 0.001). Bothriechis 

schlegelii had the shortest relative tail length, whereas Oxybelis brevirostris had the 

longest. 

S. annulatus did not show an intraspecific difference between sexes in mass (F = 

0.221, df = 1, P = 0.648), but the other species did exhibit significant intraspecific 

differences between sexes (P < 0.05, Table 2.2). There was a significant interspecific 
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Fig. 2.2. Total number of captures of each arboreal species of snake captured during 
study periods between May 2006 and November 2007. Gray represents males and black 
represents females. 
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Fig. 2.3. Total number of individuals of each arboreal species of snake captured during 
study periods between May 2006 and November 2007. Gray represents males and black 
represents females. 
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140H 

Fig. 2.4. Total number of captures of each arboreal species of snake captured during 
study periods between May 2006 and November 2007. Gray bars represent the dry season 
and black bars represent the wet season in PNGDOTH. 

difference in mass when males and females were included separately in the ANCOVA (F 

= 50.518, df = 11, P < 0.001). Bothriechis schlegelii and Sibon nehulatus were excluded 

from the analysis because fewer than five individuals per sex were captured. 

Bothriechis schlegelii was excluded from the analysis of relative jaw length 

because head measurements were not taken. There was no intraspecific difference 

between sexes (P > 0.005) in log-transformed jaw length (corrected for head length) 
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except Imantodes cenchoa (F = 4.380, df = 1, P = 0.039) and Sibon annulatus (F = 

17.373, df = 1, P < 0.001). There was a significant interspecific difference in log-

transformed jaw length (corrected for head length) with S. annulatus and /. cenchoa sexes 

included separately (F = 20.354, df = 8, P < 0.001). 

Table 2.2. Results of the ANCOVA testing for intraspecific differences in mass 
(corrected for SVL) for arboreal snakes in PNGDOTH. Significant results (a = 0.05) 
are in bold. 

Species 
Dipsas sp. 
Imantodes cenchoa 
Leptodeira septentrionalis 
Oxybelis brevirostris 
Sibon annulatus 
Sibon argus/longifrenis 

(male:female) 
48:36 
30:33 
11:14 
32:43 
18:38 
14:25 

F 
53.882 
15.044 
9.166 
4.512 
0.211 
10.598 

df 
1 
1 
1 
1 
1 
1 

P 
< 0.001 
< 0.001 
0.006 
0.037 
0.648 
0.002 

There was no intraspecific difference between sexes in size of snakes at midbody 

except in Oxybelis brevirostris (F = 5.959, df = 1, P = 0.016). There was a significant 

interspecific difference among species, with the sexes of O. brevirostris included 

separately (F = 48.461, df = 7, P < 0.001). A post-hoc Student-Newman-Kuels test 

showed five significantly different groups (Table 2.3). 

Results of the MANOVA showed a significant difference between group 

centroids (Wilk's \ = 0.012; F = 22.8; P = 0.0001; Table 2.4). The first four descriptive 

discriminant functions (DDF) were significant (P < 0.05), and over 90% of variation was 

explained by DDF1 and DDF2 (Table 2.5, 2.6). Significant differences were found 

among all species (P < 0.0001) except Sibon nebulatus and Leptodeira septentrionalis, 

which did not differ significantly from each other (P = 0.5494; Table 2.4). 



Table 2.3. Results of a Student-Newman-Kuels post-hoc analysis for interspecific 
differences in size at midbody (log-transformed) among arboreal snakes. Five 
significantly different groups were found. 

Species 
Sibon annulatus 
Dipsas sp. 
Imantodes cenchoa 
Sibon argus/longifrenis 
Oxybelis brevirostris male 
Oxybelis brevirostris females 
Leptodeira septentrionalis 
Sibon nebulatus 
P 

n 
71 
102 
81 
51 
41 
56 
33 
18 

1 
1.3201 

1.000 

2 

1.3842 

1.000 

3 

1.4295 
1.4581 
1.4698 

0.172 

4 

1.5226 

1.000 

5 

1.6215 
1.6582 
0.102 

Environmental analyses.—I found significant positive correlations between humidity 

and distance to ground, distance to ground and distance to the end of branch, distance to 

the end of branch and perch diameter, and leaf length and leaf width (P < 0.05; Table 

2.7). There was a significant negative relationship between temperature and humidity (P 

< 0.05; Table 2.7). 

The means for randomly collected environmental data for terrestrial and riparian 

transects in wet and dry seasons were calculated (Table 2.8). The greatest differences 

between snake and environmental data were observed along riparian transects in the rainy 

season. 

I found significant interspecific differences in distance to ground (f = 4.849, df = 7, p 

< 0.001), distance to water (f = 5.010, df = 7, p < 0.001), branch diameter (f = 2.767, df = 

7, p = 0.012), and humidity (f = 2.465, df = 7, p = 0.019) (Table 2.9). Temperature, 

distance to end of branch, perch width, leaf length, and leaf width did not differ 



at 
re 

30 

t 
a

rb
o

re
a

 
e

ig
h
 

<— 
a £ 
c 

. 
A

ll 

U
O

S
j 

n
p
a
r 

o o 

o 
ro 

CD 

E 
rf

ro
 

di
ffe

 

>. 
"£ 

ic
a 

•±z 

i 
•-* 

S2 

& 
« 

E o 

1| o is 

T3 a 

r-i 00 O i r j 
IT) O O r-i 
'O *T P r-i 
—i —i © ^T 

a-, 

o 
o 
o 
© 
V 

£ S 1 . o 
^ © 

••o (--
I- O 
0 \ wi 
—i m 

o 
© 

0.
0 

0 \ 
rn 

o 
o 

00 

m o 
o 
o 
o 
o 
v 

V ) 
V i 
1 • • 

^ 

, — ( 
o 
en 
C*l 

o 
o 
o 
o 

m O'-. ,_, 

1.
24

 9
8

0 54
94

 

© 

2.
87

 

m 

0.
21

 

m 

.0
00

1 

o 
V 

4.
71

 

c-i 

0.
45

 

CN 

.0
00

1 

o 

21
41

: 

00 

61
74

' 

•/S 

.0
00

1 

© 

2 8 
8 "> « § 
r-i O l "^f ^ 

o 
o 
o 
o V 

a-, 
T i 

© ' 
r - i 

,—i 

O 

t ' 
m 

o 
o 
o 
© 19

.2
7 

9.
90

 
0.

00
0 

V 

o--, 
r\ 
v> 
CM 

r-> 
*? 
_J 
re , 

O 
O 

o 
o V 

• * 

-̂< '/-) 
l / " i 

rn 

—' C-I 

o 
o 
o 
o V 

"3 "> 

if 
Q . O 

E a> 

II 
< § ^ 

e l 
£ E 
0) 

o y 
a. m 
o S 

?" 
a> ^ 
ai = > a; 
£ u 

2 ° £^ 
o u 
.2 a 
1— 4-t 
ro w 
Q.-D 
E u 
O 5 
o o 

• a c 

a i? 
.± ro 

"*' 
rsi w 

£ o 
13 a) 
03 Q . 

H- V) 

0) 
o 
0) 
Q. 
U) 

^ - » 
c 
<D 
U) 

a> 
i _ 
Q-
01 

=5 
m 
<x> 

on 
o 
o 
o 
o 
v 

i 

Q. 
+-* 
05 

4-1 

c 
05 
O 

1 ^ 

'c 

a> 
Q) 

? 
C 

I 0) 

o 
• 

ro 
E 
o 
o 

. 1 * 

-S & " 3 

I 

o o 
o 

CO r , O 
'° S £ 1= .^ p 

O re, 

—> m 

o 
o 
o 

* 1 

r-i o o 
CO O 

V 

C r-i >/", o -̂c t o 
i ; i/-, —< o oo en o 
S u-i o ° - - ° 
rf — C-l O 

en o 
m ^t o 

o, m 3 

'-. -* S 
o r-i Q 

CI CI 
c-i r--
C"j O l 
C-l i—i 

o 
o 
o 
© 

O 0 \ 
CO O 
r-i -rt 

© 
© 
© 
© 
V 

- 'O o 
V 

<5 

s: 

5-

I I 
&5 

r 



o 
</> +-» 
I/> 
<u +-* 

T3 
C 
ro 

"HT 
> '•*-> 

£ 
3 

E 
3 
O 

TJ 
C 
ra 
c 
o 
t 
o 
Q . 
o 

u. 
A 
• • 

e-

£ 
c a* 
c 

fa. 
C 
= 
= 3 

c 

o ~ 
0) LL. 
C L Q 
en Q 
0 ~ -
~ c 
01 O 

• o o 
Q, C 
O 3 

3.E 
« . | 

0) > 

5 .9-
tf) 
c 
o 

' • * - ' 

ro 
Q) 
L_ 

co
r 

ro 
o 
c 
o 
c 
O 
IO 

csi 
0) 

en 

(J 
U) 
a> 
T3 

.c 
o 
ro 

o
re

 

4 -

uT 
A 

(P
r 

(J 

ra 
o 
i^ 

M 

9 
C 
5 

! ! 

Ji 
•T B 

5 3 
s» [s. 

C 

Q 
p 

t» — --c r̂ 

„ ; co 

o o 

— r-J 
~ o 

o o 
o o 
o o 

Q 
Q 

Q Q O 
a Q c 

a) 
i 
a> X! 
a> 
x: 
-*-1 
a> 
ro 

"D 
D 

TS 
> 
g 
a 
tN 
U-
O 
D 
T3 
C 
ra 
v 
u. 
D 
D 

.c o 
ro ID 

_o 
in 
0) 
o (U 
Q _ 

(/) c 
<D 
<D 
^ 
<L> 

.O 
<D 
O 
c 
<u 

4— 3 = 
01 ^ 
2 c 
ro ro 

o 
c »= 
g c 

ra 03 

0) O 

(/> ^ 

U LL 

P. o 

o 
(D 

O • " 

ra 
tr 
o 
Q. 

£ 
Q) 
i -
<D 

O 

«5 C 

O 
o 
(/! 
01 
.Q 
ra 

0) 

> ro 
a: <" 
a) E 

o 

E E w o 

St 
o o 
5) £ 

> ^ ' S 

o o c; o 

O C f̂ . 

C- D X 



32 

1 ^ 

(N 

0) 
r j 
ro 

c 
03 
O 

iCI 

c 
ra 

II 
a * 

q #; 

— C\ >-
IT, - • * 

313 

r - j * , 

O 3 

r1 '̂ Sl8 

n% 

%: oc: 

§ S ? 

II 

- a. s 

li i * ,s ** 



33 

Table 2.8. Means of environmental characteristics for random sites along terrestrial 
and riparian transects and in wet and dry seasons. 

Variable 
Temperature 
(C) 

Humidity (%) 

Distance to 
ground (cm) 

Distance to 
water (cm) 

Distance to end 
of branch (cm) 

Perch diameter 
(cm) 

Leaf length 
(cm) 

Leaf width 
(cm) 

Width of 
Surface (cm) 

Terrestrial, 
Dry 

Random 
23.46+2.1 

(18) 

70.67+8.8 
(18) 

152.91+87.6 
(22) 

580.00+356.3 
(5) 

27.88+20.5 
(8) 

0.68+0.2 
(3) 

28.11+26.2 
(9) 

9.25+12.2 
(8) 

9.63+11.9 
(8) 

Terrestrial, 
Wet 

Random 
23.55+1.8 

(28) 

76.11+9.6 
(27) 

148.63+82.1 
(38) 

560.00+1143.2 
(10) 

38.95+32.4 
(20) 

16.86+32.0 
(11) 

22.14+29.7 
(21) 

10.67+14.1 
(21) 

20.45+24.4 
(20) 

Riparian, 
Dry 

Random 
22.71 + 1.8 

(19) 

72.60+19.5 
(18) 

136.41+68.5 
(27) 

147.56+141.0 
(27) 

57.64+51.6 
(11) 

70.23+83.4 
(5) 

11.43+17.6 
(14) 

7.40+11.7 
(14) 

45.70+61.6 
(10) 

Riparian, 
Wet 

Random 
23.22+1.4 

(40) 

84.03+5.5 
(35) 

205.50+201.9 
(62) 

87.24+118.4 
(61) 

57.304+55.1 
(27) 

17.28+31.7 
(20) 

17.75+27.1 
(32) 

8.78+15.7 
(32) 

19.35+27.8 
(31) 

significantly (p > 0.05) among species (Table 2.9). Post-hoc Student-Newman-Kuels 

analyses conducted for variables with significant interspecific differences found two 

significantly different groups in each analysis (Table 2.10-2.13). 

I found significant correlations between SVL and mass and several environmental 

variables (P < 0.05; Table 2.14). Size of snake at midbody was correlated with leaf length 

(r = 0.459, df = 22, P = 0.032) for Dipsas sp. 
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Table 2.9. Results of ANOVA testing for interspecific differences in environmental 
variables for the arboreal snake assemblage. Significant results are in bold. 

Environmental Variable df F P 
Temperature 
Humidity 
Distance to ground 
Distance to water 
Distance to end of branch 
Branch diameter 
Perch width 
Leaf length 
Leaf width 

7 
7 
7 
7 
7 
7 
7 
7 
7 

0.783 
2.465 
4.849 
5.010 
1.862 
2.767 
1.987 
1.057 
0.930 

0.602 
0.019 
0.000 
0.000 
0.079 
0.012 
0.059 
0.396 
0.487 

Table 2.10. Results of a Student-Newman-Kuels post-hoc analysis for interspecific 
differences in humidity among arboreal snakes. Two significantly different groups 
were found. 

Species 
Bothriechis schlegelii 
Sibon nebulatus 
Oxybelis brevirostris 
Imantodes cenchoa 
Dips as sp. 
Sibon anmdatus 
Leptodeira septentrionalis 
Sibon argus/longifrenis 
P 

n 
11 
8 

56 
36 
53 
40 
13 
29 

1 
68.245 
73.063 

0.103 

2 

73.063 
75.589 
75.944 
76.547 
77.460 
77.877 
80.524 
0.151 

Table 2.11. Results of Student-Newman-Kuels post-hoc analysis for interspecific 
differences in distance to ground at time of capture among arboreal snakes. Two 
significantly different groups were found. 

Species 
Sibon nebulatus 
Imantodes cenchoa 
Dips as sp. 
Bothriechis schlegelii 
Sibon annulatus 
Leptodeira septentrionalis 
Oxybelis brevirostris 
Sibon argus/longifrenis 

n 
10 
62 
84 
21 
56 
24 
70 
36 

1 
84.50 

109.63 
118.35 
137.00 
140.09 
162.61 
171.50 

2 

162.61 
171.50 
232.79 

0.103 0.077 



35 

Table 2.12. Results of Student-Newman-Kuels post-hoc analysis for interspecific 
differences in distance to water at time of capture among arboreal snakes. Two 
significantly different groups were found. 

Species 
Sibon argus/longifrenis 
Bothriechis schlegelii 
Sibon annulatus 
Sibon nebulatus 
Leptodeira septentrionalis 
Imantodes cenchoa 
Oxybelis brevirostris 
Dips as sp. 
P 

n 
36 
15 
35 

7 
16 
31 
35 
35 

1 
109.231 
153.793 
167.911 
183.714 
186.000 
233.055 
466.280 

0.593 

2 

466.280 
855.086 

0.060 

Table 2.13. Results of Student-Newman-Kuels post-hoc analysis for interspecific 
differences in the width of the surface at time of capture among arboreal snakes. 
Two significantly different groups were found. 

Species 
Leptodeira septentrionalis 
Dipsas sp. 
Imantodes cenchoa 
Bothriechis schlegelii 
Sibon argus/longifrenis 
Oxybelis brevirostris 
Sibon annulatus 
Sibon nebulatus 
P 

n 
9 

47 
29 
11 
24 
39 
31 

6 

1 
12.389 
13.611 
14.914 
15.036 
20.929 
23.208 
33.226 

0.614 

2 

33.226 
53.500 
0.099 

Results of the MANOVA for environmental characteristics showed no significant 

difference among group centroids (P < 0.05). A Pearson's Correlation tested for 

correlations between SVL and mass with environmental characteristics for eight common 

species (Table 2.14). 
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Table 2.14: Pearson's Bivariate correlation of SVL and mass to environmental 
variables for eight common species of arboreal snakes in PNGDOTH. Cells in bold 
designate significant correlation (P < 0.05). 

Variable 

Temperature 

Humidity 

Distance to 
ground 

Distance to 
water 

Distance to 
end of branch 

Perch 
diameter 

Leaf length 

Leaf width 

r 
P 
n 

r 
P 
n 

r 
P 
n 

r 
P 
n 

r 
P 
n 

r 
P 
n 

r 
P 
n 

r 
P 
n 

B schlegelii 
SVL 

0.427 
0.166 

12 

0.378 
0.252 

11 

0.002 
0.994 

21 

-0.065 
0.818 

15 

0.000 
0.999 

8 

0.139 
0.766 

7 

0.462 
0.297 

7 

0.789 
0.035 

7 

mass 
0.516 
0.104 

11 

0.490 
0.151 

10 

-0.098 
0.691 

19 

0.123 
0.689 

13 

0.059 
0.890 

8 

0.141 
0.763 

7 

0.396 
0.436 

6 

0.773 
0.071 

6 

Dipsas 
SVL 

0.014 
0.920 

55 

0.063 
0.656 

53 

0.086 
0.439 

84 

0.095 
0.586 

35 

-0.023 
0.900 

31 

0.060 
0.806 

19 

0.308 
0.092 

31 

0.136 
0.467 

31 

sp. 
mass 
-0.067 
0.626 

55 

0.138 
0.323 

53 

0.095 
0.389 

84 

0.110 
0.528 

35 

-0.110 
0.557 

31 

0.159 
0.515 

19 

0.260 
0.157 

31 

0.033 
0.861 

31 

/. cenchoa 
SVL 
-0.044 
0.787 

40 

-0.124 
0.471 

36 

0.187 
0.145 

62 

-0.125 
0.502 

31 

0.122 
0.587 

22 

-0.051 
0.835 

19 

0.445 
0.111 

14 

0.575 
0.040 

13 

mass 
-0.120 
0.459 

40 

-0.037 
0.829 

36 

0.286 
0.024 

62 

-0.136 
0.467 

31 

0.086 
0.703 

22 

-0.101 
0.680 

19 

0.558 
0.038 

14 

0.633 
0.020 

13 
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Table 2.14. Continued 
Variable L. septentrionalis O. brevirostris 

SVL mass SVL mass 
-0.181 
0.173 

58 

0.130 
0.343 

55 

0.315 
0.008 

69 

0.004 
0.983 

35 

0.109 
0.516 

38 

-0.057 
0.810 

20 

-0.032 
0.877 

26 

0.238 
0.242 

26 

Temperature 

Humidity 

Distance to 
ground 

Distance to 
water 

Distance to 
end of branch 

Perch 
diameter 

Leaf length 

Leaf width 

r 
P 
n 

r 
P 
n 

r 
P 
n 

r 
P 
n 

r 
P 
n 

r 
P 
n 

r 
P 
n 

r 
P 
n 

0.142 
0.628 

14 

0.179 
0.558 

13 

0.130 
0.544 

24 

•0.208 
0.440 

16 

0.178 
0.673 

8 

0.243 
0.694 

5 

0.731 
0.269 

4 

•0.010 
0.990 

4 

-0.063 
0.831 

14 

0.402 
0.174 

13 

0.035 
0.872 

24 

-0.179 
0.506 

16 

0.048 
0.910 

8 

-0.558 
0.329 

5 

0.655 
0.345 

4 

-0.073 
0.927 

4 

-0.198 
0.132 

59 

0.151 
0.268 

56 

0.253 
0.034 

70 

0.032 
0.856 

35 

0.124 
0.452 

39 

-0.136 
0.568 

20 

0.340 
0.083 

27 

0.282 
0.154 

27 
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Variable 

Temperature 

Humidity 

Distance to 
ground 

Distance to 
water 

Distance to end 
of branch 

Perch diameter 

Leaf length 

Leaf width 

r 
P 
n 

r 
P 
n 

r 
P 
n 

r 
P 
n 

r 
P 
n 

r 
P 
n 

r 
P 
n 

r 
P 
n 

S. annulatus 

SVL 
0.296 
0.057 

42 

-0.158 
0.329 

40 

-0.173 
0.202 

56 

0.010 
0.954 

35 

0.132 
0.512 

27 

0.251 
0.457 

11 

0.374 
0.079 

23 

0.276 
0.203 

23 

mass 
0.299 
0.061 

40 

-0.199 
0.232 

38 

-0.085 
.543 

54 

0.246 
0.154 

35 

0.257 
0.205 

26 

0.293 
0.382 

11 

0.227 
0.322 

21 

0.033 
0.887 

21 

S. argus/ 
longifrenis 

SVL 
0.309 
0.103 

29 

-0.147 
0.448 

29 

-0.024 
0.890 

36 

0.267 
0.115 

36 

0.301 
0.153 

24 

0.220 
0.381 

18 

0.100 
0.784 

10 

0.087 
0.811 

10 

mass 
0.208 
0.278 

29 

-0.172 
0.373 

29 

0.054 
0.753 

36 

0.278 
0.100 

36 

0.348 
0.096 

24 

-0.039 
0.877 

18 

0.035 
0.924 

10 

-0.045 
0.902 

10 

S. nebulatus 

SVL 
0.140 
0.741 

8 

-0.370 
0.366 

8 

0.233 
0.517 

10 

0.244 
0.597 

7 

0.230 
0.661 

6 

-0.261 
0.672 

5 

mass 
0.202 
0.631 

8 

-0.374 
0.362 

8 

0.256 
0.476 

10 

0.250 
0.588 

7 

0.277 
0.596 

6 

-0.112 
0.858 

5 

DISCUSSION 

The speciose arboreal snake assemblage at PNGDOTH represents 42.9% of the 

ophidian community. Based on information collected from other tropical snake 
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communities, the arboreal snake assemblage in PNGDOTH is similar in proportion to the 

entire ophidian community. For example, the snake community at La Selva Biological 

Station in Costa Rica includes 36.5% arboreal species, whereas Manaus, Brazil has 

51.9% arboreal species (Lillywhite and Henderson, 1993). In contrast, a temperate snake 

community in Kansas includes only one arboreal species (Lillywhite and Henderson, 

1993). 

In general arboreal snakes have evolved morphological characteristics to aid them 

in their life in aboveground vegetation (Henderson and Binder, 19801 Lillywhite and 

Henderson, 1993). However, some species of arboreal snakes are more highly specialized 

than others. Differences in morphology were found in relative body mass (Table 2.2), 

relative tail length, relative jaw length, and relative size at midbody (Table 2.3). Guyer 

and Donnelly (1990) evaluate the snake community at La Selva Biological Station in 

Costa Rica, including the terrestrial members, and find that arboreal snakes were lighter 

in relative body mass and had relatively elongated tails. Vitt and Vangilder (1983) also 

report reductions in relative body mass in arboreal species in the Caatinga region of 

Brazil. 

Differences in morphology within the arboreal assemblage may have evolved for 

a number of reasons. First, some snakes are more active (e.g., Oxybelis brevirostris), 

moving through the branches in search of prey, whereas other species are sit-and-wait 

predators (e.g., Bothriechis schlegelii). O. brevirostris is diurnal and feeds on fast-

moving diurnal anoline lizards. Snakes that forage actively and stalk prey presumably 

require agility. Increased tail length and reduction in body mass may reflect adaptations 

for moving easily across branches. 
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Other differences may be related to the diverse prey base available in the tropics 

(Guyer and Donnelly, 1990), including in the aboveground vegetation. Differences in jaw 

length likely are attributable to differences in prey type and size; species with larger 

relative jaw lengths (e.g., Oxybelis brevirostris) feed on larger prey items, such as lizards, 

whereas species with smaller jaws feed on soft-bodied invertebrates (e.g., Dipsas sp., 

Sibon spp.). 

Differences in the morphology of snakes have been attributed to differences in the 

habitat commonly utilized by the species (e.g., Guyer and Donnelly, 1990; Franca et al., 

2008). Habitat partitioning occurs within the arboreal snake assemblage in PNGDOTH. 

Variation in the height where snakes were captured (Table 2.9, 2.11) can be explained by 

a couple of factors. First, as height increases, branch diameter presumably tends to 

decrease (although a significant correlation was not found in the lower vegetation that 

was measured in this study; Table 2.14), with the top of the tree having finer branches. 

Snakes of large body size cannot be supported by very small branches and were not 

found on such perches. Perch or foraging height also may be influenced by the prey 

consumed by the species of snakes. Many anoles, a group of lizards commonly consumed 

by Imantodes spp. and Oxybelis spp., partition the vertical environment (Reagan, 1992; 

Buckley and Roughgarden, 2005), and snakes feeding on particular species of lizards 

(perhaps due to gape limitation) may remain near the prey source. The same argument 

can be applied to snakes that prey on frogs; snakes feeding on leaf litter frogs remain 

lower to the ground. 

Distance to water (Table 2.9, 2.11) and humidity (Table 2.9, 2.10) were correlated 

and were significant factors determining where a species was captured (Table 2.7). Such 
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factors may be related to moisture requirements of each species of snake. Small snakes 

may experience dehydration or water loss more quickly than larger snakes and may be 

limited to microenvironments of higher humidity (near streams or tank bromeliads that 

hold water). However, the distance a snake travels from water also may be correlated 

with their dietary requirements. Taxa feeding on frog eggs (Sibon argus/longifrenis) 

likely remain near streams, where they were encountered feeding on anuran eggs laid on 

leaves overhanging the streams. 

Cody (1966) suggests that there are three main factors separating species within 

grassland bird communities. The factors include placement in the vertical habitat, 

placement in the horizontal habitat, and prey type. These factors also were important in 

the partitioning of the arboreal snake assemblage in PNGDOTH. Temporal separation is 

noted by Schoener (1974) as an additional factor. Differences in diel activity pattern 

(only one species was diurnal) or seasonal separation were not tested in this study. 

Differences may occur between rainy and dry seasons, but further investigation is needed 

to confirm this. 

It is important to understand what potential habitat is available to the snakes when 

assessing habitat selection and partitioning. Despite large sample sizes of captures of 

snakes for this study, many individuals were recaptured and those often demonstrated 

small activity ranges. \Snakes frequently were captured within the same 10-20 meters 

straightline distance along a transect, and at times, on the same plant as previous captures 

(J. M. Ray, C. E. Montgomery, and K. R. Lips, unpublished data). These frequent 

recaptures reduce the indepence of the data and limit analysis. Vegetation grows quickly 

during the rainy season, expanding the size of the plant and often producing many small 

file:///Snakes
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and/or tender new leaves that may not immediately be utilized by snakes, especially those 

of relatively heavy body mass. Nonetheless, this study demonstrates that species of 

snakes differ in capture site according to certain environmental factors and continued 

study of the community will allow for more detailed analyses in the future. 

Limitations in the analysis were unavoidable because of restrictions in the 

methods used during data collection. When studying an arboreal assemblage it is 

desirable to access the entire vertical realm, but that was not possible for this study. First, 

this project was conducted in the secondary forest of PNGDOTH. Although the trees are 

over 30 years old, most are relatively small and are not sturdy enough to support single

tree climbing gear. Larger trees spared during the clear-cut were not appropriate for 

climbing (e.g., strangler figs) or were decaying and unsafe for climbing. 

Other limitations were associated with the equipment used for recording 

measurements. Ideally, temperature would have been measured with a cloacal probe, but 

attempts to use one such device failed due to high humidity. Humidity itself was not 

recorded to a high degree of accuracy due to a lack of equipment that could withstand the 

extreme conditions at PNGDOTH. Furthermore, data from a weather station is not 

available for the mid-elevation forests of central Panama. Attempts to collect regular 

rainfall data and employ temperature loggers were foiled by the destruction of equipment 

by people or animals. 

This study has provided information on interspecific differences among the 

community of Neotropical arboreal snakes in both morphology and preferred 

environmental characteristics. If the limitations described above can be overcome, a more 
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detailed analysis of interspecific resource partitioning by this community can be 

explored. 
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CHAPTER III 

BRIDGING THE GAP: INTERSPECIFIC DIFFERENCES IN CANTILEVERING 

ABILITY IN A NEOTROPICAL ARBOREAL SNAKE ASSEMBLAGE 

Arboreal snakes face many challenges during routine activities, such as courtship 

and reproduction, feeding, and escape from predators, which must occur in the unstable 

substrate on the aboveground vegetation (Lillywhite and Henderson, 1993; Jayne and 

Riley, 2007). Several morphological adaptations facilitate an arboreal existence, 

including lateral compression of the body, elongation of the tail, widening of ventral 

scales, forward-facing eyes that also can be aimed downward, and reduction in relative 

mass (Henderson and Nickerson, 1976; Lillywhite and Henderson, 1993). The most 

nimble of the arboreal snakes have rigid muscles and tight skin, allowing more controlled 

movements and free extension (cantilevering) of the body (Lillywhite and Henderson, 

1993). Behavioral modifications also play an adaptive role, but have been less studied 

because of the logistic difficulties of accessing and working in the trees (e.g., Lowman 

and Moffett, 1993). Behavioral differences include species-specific habitat preference 

(e.g., vine snakes occur in foliage [Henderson and Binder, 1980], whereas some Dipsas 

spp. hide in bromeliads [Duellman, 2005; pers. obs.]) and foraging tactics (e.g., feeding 

on arboreal prey versus foraging on terrestrial prey from an elevated position; Shine et 

al., 1996, Fitzgerald et al., 2002). 

Many of the morphological adaptations cited above enable the body to bridge 

gaps in the aboveground vegetation (Henderson and Nickerson, 1976; Lillywhite et al., 

2000). The ability of arboreal species to move between points in three dimensions may 
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not only play a role in escaping from predators and assisting active foragers in prey 

acquisition, but may also function to conserve energy by reducing the need to crawl to the 

ground and then back up an adjacent plant. 

Previous work on cantilevering ability in arboreal snakes suggested that they can 

freely extend their bodies up to 50% of their length to bridge a gap under laboratory 

conditions (Lillywhite and Henderson, 1993; Lillywhite et al., 2000; Lin et al., 2003; 

Jayne and Riley, 2007). Lillywhite et al. (2000) tested captive individuals of several 

species of terrestrial, aquatic, and arboreal snakes for differences in cantilever distances 

between terrestrial, aquatic, and arboreal snakes and demonstrated that arboreal species 

can bridge significantly further than aquatic and terrestrial snakes. 

This study provided experimental data and field observations on gap bridging for 

five Neotropical arboreal species that have not previously been evaluated. I predicted that 

species with lower relative body mass bridge further than heavy-bodied snakes. 

MATERIALS AND METHODS 

Study site and species.—I conducted this study using freshly captured snakes from 

Parque Nacional G. D. Omar Torrijos Herrera (PNGDOTH), near El Cope, Code 

Province, Republic of Panama (8° 40' N, 80° 37' W). Cloud forest at the site ranges in 

temperature from 19-30° C, and annual rainfall is about 3500 mm (Lips et al., 2006). 

Snakes were individually marked with PIT tags (Gibbons and Andrews, 2004) or scale 

clipped (Brown and Parker, 1976), and recaptured individuals were not retested for their 

gap-bridging ability. Other snakes had their tails clipped as part of a stable-isotope study 
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(C. E. Montgomery and K. R. Lips, unpublished data), and their total length was 

measured to the end of the stubbed tail. Five species of arboreal snakes were selected for 

laboratory experiments: Dipsas sp. (an undescribed species [Myers et al., 2007]), 

Imantodes cenchoa, Oxybelis brevirostris, Sibon argus, and S. cmmilatus. These species 

were relatively abundant at the site and exhibited a range of snout-vent lengths from 

about 500 cm to over 1 m in length. Several less abundant species were tested 

opportunistically, but sample sizes were not large enough to include in most analyses. 

The latter species included / inornatus, Leptodeira septentrionalis, Leplophis 

depressirostris. O. aenus, and S. nebulatus. 

Experimental design.—To test cantilevering experimentally, an apparatus modeled after 

that of Lillywhite et al. (2000) was constructed. The apparatus provided one stationary 

perch and one sliding perch, both at a height of 1 m (Fig. 3.1). Both perches were dressed 

with artificial (plastic) plants to provide visual complexity, which was presumed to 

enhance motivation of the snakes to gap-bridge. To estimate the distance between 

perches, a weight was attached by a string, as a plumb bob, to the end of the sliding perch 

and a tape measure was placed on the floor below. As the perches were separated, the 

distances were measured based on the location of the plumb. 

Snakes were transported 7.5 km to the laboratory located in El Cope (700 in) for 

measurement, and all were tested indoors under ambient temperature and humidity 

conditions, with no wind to influence movement of the experimental perches. For logistic 

reasons, both diurnal and nocturnal species were tested during daylight hours; all snakes 

were placed on the apparatus for testing and thus were awake. Each snake was placed on 
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the stationary perch and encouraged to move forward by gently tapping it on the tail. 

Once movement began, most snakes continued forward toward the sliding perch without 

further encouragement. The sliding perch was withdrawn in a slow, steady fashion as the 

snake approached, and nearly every snake followed the perch, attempting to reach it. The 

distance bridged was measured from the tip of the stationary branch to the point where 

the snake either withdrew or could no longer move forward without the anterior portion 

of the body falling due to lack of support (Lillywhite et al, 2000). Each snake was tested 

three times; both maximum and mean bridging distances were analyzed. 

Fig. 3.1. Photograph of experimental apparatus used to test cantilever distance of 
Neotropical arboreal snakes. Stationary perch on right (in foreground), sliding perch on 
left (in background). Photo by A. H. Savitzky. 

Field observations.—Observations of gap-bridging events were recorded in the wild 

whenever a snake was found extending from one perch toward another: The snake was 

left undisturbed until it was able to bridge the distance or withdrew. The snake was then 

captured, and the distance of the gap the snake bridged was measured. 
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Statistics.—The cantilever ratio was calculated by dividing the distance bridged by the 

total length of the snake (Lilly white et al., 2000). A one-way ANOVA (SPSS Version 

13.0) was used to calculate intraspecific differences (between snakes with and without a 

stub tail; and between sexes) and interspecific differences in the mean and maximum 

distances bridged (Zar, 1999). Post-hoc Tukey tests were performed to test for similarities 

among species. Pearson's Partial Correlations were used to test for correlations between 

mass relative to total length and distance bridged (mean and maximum). Alpha level was 

maintained at 0.05 unless otherwise noted (Zar, 1999). 

RESULTS 

There were no significant intraspecific differences (following Bonferroni 

adjustment; Zar, 1999) in the mean or maximum cantilever ratios between sexes (P > 

0.025; Table 3.1). There also was no significant intraspecific difference between snakes 

with and without damaged tails in mean cantilever ratio (P > 0.025, Table 3.1), and only 

/. cenchoa exhibited a significant difference in maximum cantilever ratio between snakes 

with or without a stub tail (F = 6.515, P = 0.020). Because sample sizes were small for 

the latter analysis and because all I. cenchoa with a stub tail were small individuals, all 

snakes within a species were grouped for further analysis regardless of tail condition. 

There was a significant difference in the mean and maximum cantilever ratios 

between different species (mean: F = 8.500, df = 4, P < 0.001; maximum: F = 8.505, df = 

4, P < 0.001). Post-hoc Tukey Tests were performed for mean (Table 3.2) and maximum 

bridged distances (Table 3.3). 
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Table 3.2. Results of the Tukey post-hoc analysis for mean cantilever ratio, showing 
groups based on similar values. Alpha = 0.05. 

Species n 2 3 1 
Dipsas sp. 13 0.3565 
Oxybelis brevirostris 21 0.3808 0.3808 
Sibon annulatus 10 0.4284 0.4284 
Imantodes cenchoa 20 0.4411 
Sibon argus 13 0.4452 
Significance 0.729 0.123 0.913 

Table 3.3. Results of the Tukey post-hoc analysis for maximum cantilever ratio, 
showing groups based on similar values. Alpha = 0.05. 

Species n 2 3 1 
Dipsas sp. 13 0.3710 
Oxybelis brevirostris 21 0.3985 0.3985 
Sibon annulatus 10 0.4491 0.4491 
Imantodes cenchoa 20 0.4548 0.4548 
Sibon argus 13 0.4675 
Significance 0.658 0.053 0.893 

Pearson's partial correlation analysis was used to test for interspecific correlations 

between mass (relative to SVL) and mean and maximum distances bridged by each 

species (Table 3.4). Mass was significantly correlated with mean and maximum bridging 

ratio for Oxybelis brevirostris and with mean bridging distance for Dipsas sp. These 

species had the lowest values for both mean and maximum cantilever ratio. Significant 

correlations between mass and mean or maximum bridging distances were not found for 

the other species (Table 3.4). 

Ten observations of bridging in the wild were collected for the target species 

(Table 3.5). Wild observations for Imantodes cenchoa and Oxybelis brevirostris were 

within the range observed in the laboratory, but observations of Dipsas sp. and Sibon 

argus exceeded the maximum cantilever ratio for those species in the laboratory. 
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Table 3.4. Pearson's partial correlations for mass (relative to SVL) to mean and 
maximum distances bridged. Significant relationships are shown in bold type. 

Mean Mean Maximum Maximum 
cantilever bridged cantilever bridged 

Species df ratio distance ratio distance 
Sibon argus 10 0.44 

Sibon annulatus 7 0.43 

Oxybelis brevirostris 18 0.38 

Dipsas sp. 10 0.36 

Imantodes cenchoa 17 0.44 

r=0.117 
P=0.718 

r=0.508 
P=0.162 

r=0.576 
P=0.008 

r=-0.586 
P=0.045 

r=-0.059 
P=0.810 

0.47 

0.45 

0.40 

0.37 

0.45 

r=0.000 
P=0.853 

r=0.459 
P=0.214 

r=0.631 
P=0.003 

r=-0.552 
P=0.063 

r=0.-.035 
P=0.886 

Less abundant species also were tested for bridging ability in the laboratory and 

observed in the field as available. Two Sibon nebulatus bridged a mean of 51% of their 

total length in the laboratory, and one observation was made in the wild of a snake 

bridging 49% of its total length. Three individuals of Leptodeira septentrionalis exhibited 

a mean cantilever ratio of 38.7, and one individual in the wild bridged 21% its total 

length. Two individuals of Imantodes inornatus had a cantilever ratio of 38, and one 

individual in the wild bridged 59% of its total length. One Leptophis depressirostris had a 

cantilever ratio of 43, and one Oxybelis aenus had a cantilever ratio of 40 in the 

laboratory. 
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The ability of Neotropical arboreal snakes to bridge gaps in vegetation is well 

documented (e.g., Henderson and Nickerson, 1976; Lillywhite and Henderson, 1993; 

Lillywhite et al., 2000; Jayne and Riley, 2007), but few studies have quantified their 

average or maximum achievable cantilever distance (Lillywhite et al., 2000). This study 

provided quantitative cantilever distances under standardized conditions for five species 

not previously tested, employing specimens freshly collected in the field. This study also 

related those experimental cantilevering distances to observations made in the field under 

natural conditions. 

Behavioral differences in arboreal species' preferred habitat have been noted 

(Henderson and Binder, 1980; Shine et al., 1996) and have been associated with 

differences in crypsis (Fitzgerald et al., 2003). However, some differences likely are 

related to body mass, reflecting the abilities of different perches to support the mass of a 

snake. Boas and pythons presumably are limited to occupying thicker branches because 

the smaller branches may not support their weight. Conversely, smaller snakes such as 

Imantodes and Sibon can move on the smaller twigs (pers. obs.). 

Both Oxybelis brevirostris and Dipsas sp. showed significant correlations 

between body mass and the average distance bridged (Table 3.4). These two species had 

the lowest cantilever ratios. Such species likely cannot access the smallest of branches 

because their mass is too great (Henderson and Nickerson, 1976). In the present 

laboratory experiment, the relatively thick perch provided strength sufficient to support 

any individual of O. brevirostris or Dipsas sp. However, individuals of these species 

were quick to drop to the ground when placed on the perch, and the initial flight behavior 
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was considered a defensive response to handling, as observed in most ophidian species. 

Dipsas sp. launched itself from the branch, flipping laterally as it landed, and then 

remained motionless. Individuals of that species typically acclimated and bridged after 

one or two attempts to place it on the apparatus. Alternatively, O. brevirostris repeatedly 

dropped to the ground, even after extensive handling, often climbing another nearby 

object (e.g., chair or table leg). Henderson and Nickerson (1976) suggest that a great deal 

of energy is consumed when Oxybelis spp. attempt to bridge gaps because of their 

relatively heavy bodies, and therefore less energy may be expended if the snakes descend 

to the ground and ascend the adjacent structure, as opposed to bridging gaps. Moreover, 

when O. brevirostris did attempt to bridge, they would reach forward until about 40% of 

the body was extended, and then would turn the tail forward in front of the body until it 

served as a brace. This behavior appeared to add support, allowing the snake to bridge 

more effectively. 

Species of Imantodes and Sibon did not exhibit a significant correlation between 

body mass and the distance bridged (Table 3.4). Individuals of these species typically did 

not perform an active defensive behavior during testing of gap-bridging and remained on 

the perch without attempting to flee. These species exhibited the greatest bridging 

distances in these experiments (Table 3.1, 3.5). Furthermore, these species are more 

highly adapted morphologically for arboreal habits (Henderson and Nickerson, 1976) and 

are able to exploit smaller twigs, which would facilitate movement between the ends of 

branches and subsequent cantilevering. 

Ten observations of voluntary bridging in the field, under natural conditions, were 

observed for the five target species (Table 3.5). The mean bridging of Dipsas sp. in the 
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field exceeded that observed in the laboratory and also was greater than the maximum 

bridging distance. The distance for Sibon argus in the field also exceeded the maximum 

distance observed in the laboratory, and the species was observed bridging the greatest 

relative distance of any of the focal species in the field. 

This study has expanded our knowledge of cantilevering in Neotropical arboreal 

snakes, providing data on species that had not been investigated previously. Further 

investigations are needed to determine how arboreal species partition among the available 

arboreal habitat, an aspect of their biology that is not yet well understood (Lillywhite and 

Henderson, 1993). In particular, the ability to cantilever and access the terminal branches 

may be an important element of behaviors such as foraging, predator escape, and 

courtship. 
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CHAPTER IV 

DEFENSIVE BEHAVIORS OF A NEOTROPICAL SNAKE COMMUNITY 

Animals employ diverse defensive behaviors to protect themselves from potential 

predators or from conspecifics during competitive interactions for mates, territories, or 

food. Endler (1986) defines five stages of attack by a predator, during which defensive 

tactics may be employed as an attempt to avoid death or serious injury: detection, 

identification, approach, subjugation, and consumption (Endler, 1986; Martins, 1996). 

Defenses vary widely across taxa. Many plants have modified stems (thorns) or 

leaves (spines). Others possess defensive toxins (e.g., Rhoades, 1979; Coley and Barone, 

1996). Animals use many different tactics, including locomotor escape, biting, stinging, 

scratching, and tail-thrashing (e.g., Evans and Schmidt, 1990; Greene, 1988). Many 

utilize color patterning for protection (Endler, 1981), including crypsis to blend in with 

their background (e.g., Merilaita et al., 1999; Ruxton et al., 2004) or mimicry of 

venomous or poisonous taxa (e.g., Ruxton et al., 2004). 

Snakes present interesting subjects for study because they lack the appendages 

that are often utilized by other vertebrates for protection (Coates and Ruta, 2000). Despite 

this apparent disadvantage, snakes employ a wide array of defensive behaviors (Greene, 

1988; Table 4.1), from simple tactics such as locomotion and crypsis to complex 

behavioral repertoires, including flaring the quadrate bones, raising the anterior body, 

hissing, and false striking (Martins, 1996). 

Few studies have consistently and comprehensively looked at the defensive 

behaviors of a community of snakes (Martins, 1996; Martins and Oliveira, 1998). Greene 
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(1988) reviews the defensive behaviors of reptiles and suggests that some observations 

may have been confused with feeding or other behaviors (i.e., a strike may be in response 

to the presence of potential prey or in defense). The designing of consistent 

documentation or laboratory trials are suggested as methods to expand the available data 

on ophidian defensive behaviors (Green, 1988; Martins, 1996). 

Martins (1996) reviews ophidian defensive behaviors and suggests which 

behaviors may be employed at each stage of predatory attack (Endler. 1986). Initial 

stages are defended with inaccessibility, concealing coloration, and immobility. Later 

stages are defended using noxious discharges, body thrashing, and biting. 

Martins (1996) states that defensive behaviors have evolved in one of two ways: 

rooted within the phylogeny of snakes, with closely related species exhibiting similar 

behaviors, or evolved more recently in response to ecological conditions. However, many 

closely related species occupy similar ecological niches, and defensive behaviors may 

appear to vary ecologically despite having a deeper phylogenetic origin. 

Identifying potential predators in the local community is important for 

understanding defensive behaviors. Potential ophidian predators native to central Panama 

include other snakes (Savage, 2002; Solorzano, 2004, Martins, 1996), the large frog 

Leptodactyluspentadactylus (K. R. Lips, pers. comm.), birds (e.g.. Pough, 1964; Smith, 

1969; Greene, 1988; Stiles and Skutch, 1989; Ridgely and Gwynne, 1992; Robinson. 

1994; DuVal et al., 2006), especially raptors (Sazima, 1992; Martins, 1996), and 

mammals (e.g., Emmons, 1987; Eisenberg, 1989). Other potential predators include some 

large invertebrates, such as crabs (Maitland, 2003), spiders, centipedes, scorpions 

(McCormick and Polis, 1982; Martins, 1996), tarantulas, and ants (Martins, 1996). 
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The indirect documentation of attacks can lend insight into which predators 

influence the behavior of snakes. Clay models have been used to record claw, tooth, or 

bill marks, to understand the role of aposematic coloration in coral snakes (Micrurus 

spp.) and their mimics (Brodier, 1995; Brodie and Janzen, 1995). Clay models are most 

useful when snakes have simple or uniform color patterns that can be easily replicated. 

However, models are more difficult to construct for snakes with complicated patterns 

(e.g., Sibon argus, Bothriechis schlegelii). An alternative method involves documenting 

the presence and location of scars and can be accomplished in conjunction with a capture-

mark-recapture study at a site where individuals are abundant. Although snakes that were 

unsuccessful in escaping a predation event cannot be included in this method, it provides 

some insight into the types of predators that influence the defensive behaviors of the 

ophidian fauna. 

The speciose community of snakes in central Panama provides an opportunity to 

document the defensive behaviors among diverse Neotropical snakes. I tested abundant 

species for defensive behaviors, evaluated the presence of scars on various species of 

snakes within the community, and obtained lists of potential ophidian predators in at a 

site in central Panama. 

MATERIALS AND METHODS 

Study Site.—Snakes were evaluated at two sites in the central region of the Republic of 

Panama. Both sites are pre-montane cloud forest with mature secondary forest and 

numerous streams (Chapter I). Snakes at Parque Nacional General de Division Omar 
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Torrijos Herrera (PNGDOTH; Chapter I) were evaluated in October 2005, May 2006, 

September 2006 - August 2007, and November 2007. Snakes were evaluated at Altos del 

Maria (ADM; Chapter I) in October 2005 and May - July 2006. 

Study species.—\ documented the defensive behaviors of 45 species representing six 

families of snakes in central Panama (Table 4.2). 

Behavioral trials and analyses.—Defensive behaviors for all snakes found in the field 

were evaluated at the time of initial capture. Once the investigator was in position, the 

snake was poked with the tip of a snake hook to gain the attention of the snake and to 

initiate any immediate responses that may occur on the vegetation (arboreal snakes) or on 

the ground (terrestrial snakes). After the initial behavior was noted, nonvenomous snakes 

were grasped by a single hand at midbody and their behaviors were recorded. Venomous 

snakes were handled with a snake hook at all times. Behaviors were recorded for up to 

one minute or until the snake ceased responding with any obvious defensive behaviors. 

Behaviors were classified based on descriptions from Greene (1988) and modifications 

that 1 made to his list (Table 4.1). 

Quantitative analysis of defensive behaviors.—Four defensive behaviors were evaluated 

quantitatively. The behaviors included three apparently common behaviors, head 

enlargement, body thrashing, and cloacal discharge, and one apparently rare behavior, 

hemipenal extension. Each behavior was scored as present or absent for each individual 

of four commonly occurring ophidian taxa (Dipsas sp., Imantodes cenchoa, Oxybelis 

brevirostris, and Sibon argus/longifrenis). 



Table 4.2. Species of snakes from central Panama included in defensive analyses. 
Natural history information from Savage (2002) and Solorzano (2004). 

Species 
Anomalepididae 
Liotyphlops albirostris 
Boidae 
Boa constrictor 
Corallus annulatus 
Ungaliophiidae 
Ungaliophis panamensis 
Colubridae 
Amastridium veliferum 
Chironius exoletus 
Chironius grandisquamis 
Clelia delta 
Dipsas nicholsi 
Dips as sp. 

Enuilius flavitorques 
Erythrolamprus mimus 
Geophis brachycephalus 
Hydromorphus concolor 
Imantodes cenchoa 
Imantodes inornatus 
Leptodeira septentrionalis 
Leplophis depressirostris 
Leptophis nebulosus 
Liophis epinephalus 
Ninia celata 
Ninia maculata 
'Ninia sp. 
Nothopsis rugosus 
Oxybelis aenus 
Oxybelis brevirostris 
Oxybelis fulgidus 
Oxyrhopus petolus 
Pseustes poecilonotus 
Rhadinaea decorata 
Rhinobothryum bovallii 
Sibon annulatus 
Sibon argus 
Sibon longifrenis 
Sibon nebulatus 
Spilotes pullatus 
Stenorrhina degenhardtii 
Tantilla melanocephala 
Urotheca euryzona 

Activity Time 

unknown 

diurnal 
nocturnal 

nocturnal 

diurnal 
diurnal 
diurnal 
diurnal 

nocturnal 
nocturnal 

diurnal 
diurnal 

nocturnal 
nocturnal 
nocturnal 
nocturnal 
nocturnal 

diurnal 
diurnal 
diurnal 
diurnal 
diurnal 

nocturnal 
nocturnal 

diurnal 
diurnal 
diurnal 
diurnal 
diurnal 
diurnal 

nocturnal 
nocturnal 
nocturnal 
nocturnal 
nocturnal 

diurnal 
diurnal 
diurnal 

nocturnal 

Activity Area 

fossorial 

scansorial 
arboreal 

arboreal 

terrestrial 
scansorial 
scansorial 
terrestrial 
arboreal 
arboreal 

terrestrial 
terrestrial 
terrestrial 

aquatic 
arboreal 
arboreal 
arboreal 
arboreal 
arboreal 

terrestrial 
terrestrial 
terrestrial 
terrestrial 
terrestrial 
arboreal 
arboreal 
arboreal 

terrestrial 
scansorial 
terrestrial 
arboreal 
arboreal 
arboreal 
arboreal 
arboreal 

scansorial 
terrestrial 
terrestrial 
terrestrial 
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Table 4.2 continued. 
Elapidae 
Micrurus mipartitus 
Micrurus nigrocinctus 
Viperidae 
Atropoides nummifer 
Bothrieches schlegelii 
Bothrops asper 
Lachesis stenophrys 

'Undescribed species (Myers et al., 2007) 
2Undescribed species (R. Ibanez, pers. comm.) 

A x analysis was conducted for each behavior for each species, to test whether 

the frequency of behaviors differed from the expectation that 50% of individuals would 

demonstrate the behavior. Oxybelis brevirostris was excluded from the analysis of head 

enlargement because no individuals demonstrated this behavior (see Results). 

I used an ANOVA to test for interspecific differences for the frequency with 

which each behavior was displayed. A post-hoc Tukey test was conducted when a 

significant result was reported. Alpha was maintained at 0.05 for all analyses (Zar, 1999). 

Phylogenetic basis of behaviors.—\ used MacClade (Version 4.08 OS X) to map 

selected defensive behaviors by mapping the presence/absence of each behavior for each 

species on a previously constructed tree (Chapter 1). Selected defensive behaviors 

included: head enlargement, body thrashing, cloacal discharge, hemipenal eversion, body 

coiling, and head elevation. I also compared snakes of difference color patterns (no 

obvious patterning, concealing coloration, aposematic coloration, and mimetic 

coloration). 

diurnal 
diurnal 

nocturnal 
nocturnal 
nocturnal 
diurnal 

terrestrial 
terrestrial 

terrestrial 
arboreal 

terrestrial 
terrestrial 



Analysis of scars.—All snakes captured at PNGDOTH were returned to the laboratory 

for measurement. Scars on snakes were documented by a written description and digital 

photograph. I recorded the body region (anterior, posterior, or midbody) and position 

(dorsum, lateral surface, venter, or tail) of each scar. 

A Kruskal-Wallis Test was used to test for interspecific differences in the 

presence of scars. Nonvenomous snakes presumed to exhibit mimicry (Dipsas sp., Sibon 

anmdatus, S. argus, S. nebulatus; Sazima, 1989; Green, 1997; Solorzano, 2004) were 

compared to other nonvenomous snakes (Oxybelis brevirostris, Leptophis mbulosus. 

Leptodeira septentrionalis, Imantodes cenchoa, and /. inornatus) and to Bothriechis 

schlegelii. A Kruskal-Wallis Test analyzed interspecific differences in the body region 

and position of scars. Alpha was maintained at 0.05 for all analyses (Zar, 1999). 

Potential ophidian predators.—Local people with knowledge of the forest were asked to 

compile a list of birds (S. Arcia and A. Gonzalez, local guides) and mammals (J. del 

Carmen, park ranger; A. Gonzalez, local guide; and J. A. Santana, local resident) that 

occur within the boundaries of PNGDOTH. Additional data were gathered from the 

Rapid Ecological Assessment conducted following the establishment of PNGDOTH 

(Alvarado, 2000) and notes from other investigators (K. R. Lips, R. Brenes, F. Brem, C. 

E. Montgomery). Potential ophidian predators were identified based on published reports 

of diet or predatory events and personal observations of predation or gut contents. 
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Behavioral diversity.—Among members of the Panamanian snake assemblage defensive 

behaviors ranged from crypsis and mimicry to displays such as dorsoventral compression 

of the neck and coiling of the body into a raised pyramid (Table 4.3). 

All species exhibited locomotion when manipulated. Twenty species (44.4%) 

possess concealing coloration, and eight species (17.8%) possess coloration that 

presumably mimics an allopatric species of venomous snake. Four of the mimetic species 

(Urotheca euryzona, Erythrolamprus mimus, Oxyrhopuspelolus, and Rhinobolhryum 

bovallii) possess ringed patterns that presumably mimic coral snakes (Micrurus spp.). 

Two species (Sibon argus and S. longifrenis) possess mottled color patterns that 

presumably mimic Bothriechis schlegelii. 

Fifteen species (33.3%) of snakes struck and bit during defensive trials. False 

strikes were documented for seven species (15.6%), including the two coral snakes 

(Micrurus spp.), three species with ringed patterning (Urotheca euryzona, Oxyrhopus 

petolus, Rhinobolhryum bovallii), Liophis epinephalus and Dipsas nicholsi. Eighteen 

species (40%) exhibited head enlargement by flaring the quadrate bones to form a 

triangular shape to the head. 

Quantitative Data.—Four species of snakes were evaluated for the number of captures in 

which they performed each of four defensive behaviors (Table 4.4). Of three commonly 

observed behaviors, cloacal discharge (72.73%-82.35%), was observed in the highest 

frequencies among all species, but was not ubiquitous. Head enlargement was not 
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observed for Oxybelis hrevirostris (Table 4.4). Hemipenal eversion was most commonly 

observed in males of Dipsas sp. (28.57%). 

Table 4.4. Selected defensive behaviors for four common species of snakes in central 
Panama. Ratios indicate absence:presence of each defensive behavior. Data for 
hemipenial eversion include only male individuals. 

Species 
Dipsas sp. 

Imantodes cenchoa 

Oxybelis hrevirostris 

Sibon argus 

sex 
(m:f) 
14:8 

8:9 

10:10 

6:8 

Head 
Enlargement 

8:14 
63.63% 

14:3 
17.65% 

20:0 
0% 
4:10 

71.43% 

Body 
Thrash 

9:13 
59.09% 

5:12 
70.59% 

7:13 
65.00% 

5:9 
69.29% 

Cloacal 
Discharge 

6:16 
72.73% 

3:14 
82.35% 

4:16 
80.00% 

3:11 
78.57% 

Hemipenial 
Eversion 

10:4 
28.57% 

7:1 
12.50% 

9:1 
10.00% 

5:1 
16.70% 

Results from %~ analyses showed that Imantodes cenchoa differed significantly 

from expected in head enlargement, all species differed significantly for cloacal 

discharge, and /. cenchoa and Oxybelis hrevirostris differed significantly for hemipenal 

eversion (Table 4.5). 

Table 4.5. Results of/ testing for differences from expected frequency of each of 
four defensive behaviors for four common species of snakes in PNGDOTH. 
Significant results are in bold. 

Species 
Dipsas sp. 

Imantodes cenchoa 

Oxybelis hrevirostris 

Sibon argus 

Head 
Enlargement 

3^= 1-636 
P = 0.201 
Z2 = 7.118 
P = 0.008 

-

X2 = 2.571 
P = 0.109 

Body 
Thrash 

ll = 0.727 
P = 0.394 
X2 = 0.059 
P = 0.808 
X2= 1.800 
P = 0.180 
1= 1-143 
P = 0.285 

Cloacal 
Discharge 
I2 = 4.545 
P = 0.033 
*2 = 7.118 
P = 0.008 
I2 = 7.200 
P = 0.007 
I2 = 4.571 
P = 0.033 

Hemipenal 
Eversion 

X
2 = 2.571 

P = 0.109 
y2 = 4.500 
P = 0.034 
X2 = 6.400 
P = 0.011 
X2 - 2.667 
P = 0.102 
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No significant interspecific differences (P > 0.005) were found in the ANOVA of 

defensive behaviors, except that head enlargement differed interspecifically (F = 14.559, 

P < 0.001; Table 4.6). A post-hoc Tukey Test for head enlargement revealed two 

significantly different groups (Table 4.7). 

Table 4.6. Results of ANOVA testing for interspecific differences in each of four 
defensive behaviors. Significant results are in bold. 

Defensive Behavior df F P 
Head enlargement 3 14.559 < 0.001 
Body thrashing 3 0.469 0.705 
Cloacal discharge 3 0.189 0.904 
Hemipenial Eversion 3 0.508 0.679 

Table 4.7. Results of a Tukey post-hoc analysis for interspecific differences in head 
enlargement among four arboreal snakes. Two significantly different groups were 
found. 

Species n 1 2 
Oxybelis brevirostris 20 0.00 
Imantodes cenchoa 17 0.176 
Dipsas sp. 22 0.636 
Sib on argus 14 0.714 
P 0.534 0.933 

Phylogenetic basis of behaviors.—Dendrograms were constructed for the 

presence/absence of each of 10 defensive behaviors for species of snakes in central 

Panama (Fig. 4.1-4.7). 
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Analysis of scars.—Scars were documented on only six species of snakes at PNGDOTH: 

Imantodes cenchoa (3 of 43 individuals, or 7.0%), Leptodeira septentrionalis (4 of 18, 

22.2%), Leptophis nebulosus (1 of 3, 33%), Oxybelis breviroslris (12 of 60, 20.0%), 

Siboti anmdatus (1 of 41, 2.4%), and S. argus (1 of 31, 3.2%). Scars ranged in size and 
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shape from elongate wounds (most common in the diurnal O. brevirostris; Fig. 4.8) to 

small areas were scales were missing. In all of the scarred snakes except one, scars were 

limited to one area of the body, typically on the dorsal or lateral surface. One L. 

seplentrionalis had several wounds along its body (Fig. 4.9). No scars were documented 

on the venomous snake Bolhriechis schlegelii (n - 25) or on the nonvenomous Dipsas sp. 

(n = 57) or Sibon nebidatus (n = 10), species for which sample sizes were sufficient to 

have expected such evidence of predation. 

Fig. 4.8. Wounds and scars on individuals of Oxybelis brevirostris. A. Female. SVL = 
65.8 cm, mass = 19.6 g. B. Male, SVL = 67.8 cm, mass = 20.3 g. C. Male, SVL = 62.6 
cm, mass = 21.9 g. 

There was a significant difference between the presence of scars among the four 

focal species (x2 - 34.820, df = 9, P > 0.001), but not in the region where the scar was 

located (anterior, posterior, midbody; x2 = 7.653, df = 5, P = 0.177) or position (dorsum, 

lateral, venter, tail; x2 = 4.47'6, df = 5, P = 0.483) (Table 4.8). 
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There was a significant difference between nonvenomous snakes with mimetic 

coloration {Dipsas sp., Sibon spp.) and those without such coloration (Imcmtodes 

cenchoa, Leptodeira septentrionalis; Leptophis nebulosus, Oxybelis brevirostris; x~ = 

Fig. 4.9. Scars found on an individual of Leptodeira septentrionalis. A - B: Male. SVL = 
50.0 cm, mass = 2.0 g. 

18.358, P < 0.001; Table 4.8). However, there was no difference in region of the scar (jf 

= 0.024, P = 0.876; Table 4.8) or position of the scar Of = 0.033, P = 0.857; Table 4.8) in 

these taxa. 

There was no difference in the presence of scars between nonvenomous snakes 

with mimetic coloration (Dipsas sp. and Sibon spp.) and Bothriechis schlegelii (F = 

0.361, df= 1,P = 0.549; Table 4.8). 
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Table 4.8. Results for a Kruskal-Wallis Test for interspecific differences in the 
presence and location of scars. Alpha - 0.05. 

Presence 
Test Snakes of Scar Position Scar 

All species 34.820 4.476 7.652 
(PO.001) (P=0.483) (P=0.177) 

Nonvenomous snakes: mimetic vs. 18.358 0.024 0.033 
nonmimetic coloration (PO.001) (P=0.876) (P=0.857) 

Mimetic snakes vs. Bothriechis 0.362 
schlegelii (P=0.547) 

Potential predators oj snakes.—-The avian fauna of PNGDOTH includes at least 360 

species in 45 families (S. Arcia, unpublished data). Species in eight families have been 

documented to feed on snakes (Ridgely and Gwynne, 1989, Stiles and Skutch, 1989; 

Table 4.9). 

The mammalian fauna includes at least 41 species in nine orders and 19 families 

(Alvarado, 2000; J. Del Carmen, pers. comm.; unpublished data). Fourteen species in 

three orders (Didelphimorphia, Carnivora, and Artiodactyla) are potential predators of 

snakes (Goldman, 1920; Handley, 1966; Eisenberg, 1989) (Table 4.10). The bats and 

rodents have been poorly studied at PNGDOTH, and species within these two orders also 

Table 4.9. Families that include potential avian predators of the snake fauna in 
PNGDOTH. 

Family Common Name 
Ardeidae herons 
Accipitridae hawks, eagles, kites 
Falconidae falcons, caracaras 
Strigidae owls 
Momotidae motmots 
Bucconidae puffbirds 
Corvidae jays, magpies, crows 
Icteridae orioles, blackbirds 
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may consume snakes (Goldman, 1920; Handley, 1966; Eisenberg, 1989). 

Table 4.10. Potential mammalian predators of the snake fauna in PNGDOTH. 
Order Family Species 

Didelphimorphia Didelphidae Didelphis marsupialis 
Chironectes minimus 
Philander opossum 

Carnivora Procyonidae Nasua narica 
Procyon lotor 

Mustelidae Conepatus semistriatus 
Eira barbara 

Felidae Herpailurus yaguarundi 
Leopardus pardalis 
Leopardus wiedii 
Panthera onca 
Puma concolor 

Artiodactyla Tayassuidae Tayassu pecari 
Tayassu tajaeu 

Several species of snakes feed exclusively or opportunistically on other snakes. 

Ophiophagous snakes (Solorzano, 2004) from three families have been reported from 

PNGDOTH (Table 4.11). 

Table 4.11. Potential ophidian predators on snakes reported from PNGDOTH and 
surrounding communities. Information on diet from Solorzano, 2004. 

Family Species 
Colubridae 

Viperidae 

Elapidae 

Clelia clelia 
Erythrolampris spp. 
Masticodryas melanolomus 
Drymobius margaritiferus 
Oxyrhopus petolus 
Rhinobothryum bovallii 
Bothrops asper 
Porthidium nasutum 
Micrurus multifasciatus 
Micrurus miparliius 
Micrurus nigrocinctus 
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I performed a comprehensive study of snakes at two mid-elevation, pre-montane 

sites in central Panama, which revealed previously unreported ophidian defensive 

behaviors. Furthermore, through evaluation of scars on snakes and documentation of the 

vertebrate community, I was able to predict some potential predators of the snake 

community. 

At least some individuals of all species evaluated in my study exhibited an initial 

attempt to flee (Table 4.3). Many species possessed either concealing coloration or 

mimetic coloration of a venomous snake. Other behaviors, such as cloacal discharge (Fig. 

4.6), striking (Fig. 4.4), and biting, which are considered reactions to later stages of attack 

(Endler, 1986, Martins, 1996), were observed in fewer species, typically following initial 

attempts to escape by locomotion (Table 4.3). The rarest observations included behaviors 

such as hemipenial eversion, head-tail displays, and lateral neck compression and were 

observed in only one to a few species (Table 4.3). 

Quantitative analyses of three commonly observed behaviors and one relatively 

rare behavior yielded important results. Of the three common behaviors, none were 

observed in all individuals for any of the four species of snakes included in the analysis 

(Table 4.4). This suggests that care must be taken when assigning terms such as 

"common" or "rare" to defensive behaviors for a given species until a relatively large 

sample has been tested. In species with low capture rates a behavior that is quite rare may 

be exhibited by one individual, but appear proportionally common. Alternatively, 

common behaviors are not always exhibited and may be overlooked or underrepresented 
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in species represented by small sample sizes. Hemipenal eversion, which was relatively 

rarely observed (Fig. 4.8), was most common in Dipsas sp. and Sibon argus (Table 4.4), 

two relatively closely related species, although there was no significant difference in 

frequency among species (Table 4.6). Greene (1988) included hemipenal eversion as a 

potential defensive behavior performed by reptiles, but little work as been conducted to 

understand the function of the behavior or the range of taxa that exhibit it (Greene, 1988). 

Phylogenetic mapping of several behavioral characters using MacClade (Fig. 4.1-

4.7) further emphasizes that behaviors thought to be widespread may not be. Many 

behaviors were found to be limited to smaller numbers of closely related snakes, 

suggesting that the behavior evolved in a recent common ancestor. However, some taxa 

within a lineage did not perform a behavior found in related species, suggesting that the 

behavior was either lost or simply not observed during this study. 

Interactions between tropical snakes and their predators are poorly understood 

because of a lack of direct observations. I applied the alternative method of evaluating 

snakes for scars in an attempt to understand such interactions. I observed few scars. 

especially among the nocturnal species, suggesting several possibilities. First, nocturnal 

species may be exposed to fewer predators than diurnal snakes, thus incurring fewer scars 

from attacks. Several individuals of Oxybelis brevirostris and Leptophis nebulosus, both 

diurnal species, had elongate scars on their dorsal and/or lateral surfaces (Fig. 4.8) that 

likely were inflicted by an avian predator. One Leptodeira septentrionalis, a nocturnal 

species, had round scars (Fig. 4.9) on the dorsal and lateral surfaces, but most nocturnal 

species were unmarked. Alternatively, nocturnal snakes may not be successful in 

escaping from predatory attacks, and thus nocturnal snakes with scars may not be found. 
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Third, color pattern may play a role in preventing attacks from predators. Some of the 

nocturnal species I evaluated with few or no scars {Sibon argus, S. longifrenis) are 

suspected to mimic venomous snakes (Bothriechis schlegelii) and may be thus protected 

from predatory attack. Imantodes cenchoa, a nocturnal species with cryptic coloration, 

and O. brevirostris and L. nebulosus, diurnal species, exhibited scars, suggesting that 

cryptic color patterning is not as effective against predators. S. argus and S. longifrenis 

exhibited head enlargement, a behavior that presumably mimics the head shape of vipers 

(Greene, 1997) and thus may be protected by a combination of color pattern and 

behavior. The diurnal species (O. brevirostris [Table 4.1, 4.4] and L. nebulosus [Table 

4.1]) did not show head enlargement (perhaps due to morphological constraints that have 

evolved in associated with narrowness of the head for crypsis, but did exhibit several 

behaviors typically associated with later stages of attack (cloacal discharge, body 

thrashing, striking and biting). 

People who live near or in PNGDOTH provided data on the avian and 

mammalian fauna. By compiling lists of all known local species, I was able to survey the 

literature on diet and suggest potential predators on the ophidian community (Table 4.9 -

4.11). The most likely predators include certain birds, mammals, and other snakes. Birds 

are primarily visual predators, whereas many species of mammals and snakes feeding on 

other snakes likely utilize olfactory senses to find their prey. Different defensive 

behaviors presumably have evolved for protection from different predators. Crypsis (e.g., 

Oxybelis spp., Leptophis spp., Table 4.3) and mimicry {Sibon argus, S. longifrenis, 

Urotheca euryzona, Oxyrhopus petolus, etc; Table 4.3) are likely used to protect snakes 
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from visual predators. Other behaviors, such as biting, body thrashing, and cloacal 

discharge, can be employed against any predator, regardless of sensory modality. 

Martins (1996) suggests that interspecific similarities in defensive behaviors are 

attributable to phylogeny or ecological similarity. Unfortunately, a robust phylogeny does 

not exist for the snakes of central Panama, and many relationships are still not well 

understood. Some predictions can be made in terms of the evolution of behaviors. Widely 

distributed behaviors, such as cloacal discharge, likely evolved in a common ancestor of 

the snakes evaluated during this study (Fig. 4.6). However, other behaviors, such as 

mimicry, hemipenal eversion, and biting and striking are limited to specific ophidian 

lineages, in some cases apparently having evolved more than once. Many closely related 

species reside in similar environments, and some behaviors may be more common under 

certain environmental conditions. For example, complex behaviors such as head and tail 

displays or body coiling likely can be performed only on the ground or on a broad 

branch, large leaf, or bromeliad. 

Another limitation of this analysis is the lack of documented predator-prey 

encounters for most species. Such events are difficult to observe in the tropics, especially 

during a limited study period. Researchers in Costa Rica have used clay models to test for 

differences in predation rates on venomous and mimetic color patterns (e.g., Brodie, 

1993; Brodie and Janzen, 1995). However, color patterns of many species of snakes are 

complex and not easily replicated with models. A new method utilizes printable fabric to 

make an exact replica of the snake's pattern (M. F. Westphal, pers. comm.). The fabric is 

wrapped around clay and placed in the natural environment. However, the fabric restricts 

access to the clay, and thus impressions from predators' claws, teeth, or bills are not 
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clearly defined (M. F. Westphal, pers. comm.). Such models could be used in conjunction 

with motion-sensitive cameras that would take a picture of the event, allowing easier 

identification of the predator. 

Much remains unknown about the interactions between snakes and their 

predators, but this study provides new data about the defensive behaviors of Neotropical 

snakes. 
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CHAPTER V 

DEFENSIVE BEHAVIORS OF NEW WORLD MOLLUSK-EATING SNAKES 

Mollusk-eating snakes are a polyphyletic group consisting of species believed to 

feed exclusively or primarily on molluscan prey (Dunn, 1951; Peters, 1960; Savitzky, 

1983; but see Chapter 6). Molluscivory has evolved at least five times among colubrid 

snakes (Gruz, 2002), and representatives can be found in Asia {Aplopeltura, Pareas), 

Africa (Duberia lutrix), and the Americas (Conlia, Dipsas, Ninia, Sibon, Sibynomorphus, 

Storeria, Tomodon, and Tropidodipsas), with the largest radiation in Central and South 

America (Peters, 1960; Gruz, 2002; Savage, 2002). There are similarities among many of 

the constituent taxa in morphology (Dunn, 1951; Peters, 1960; Savitzky, 1983; Greene. 

1997), color pattern, and behavior (Cadle and Myers, 2003). Head enlargement caused by 

spreading the quadrate bones (Cadle and Myers, 2003), mimicry (Gallardo, 1972; 

Campbell and Lamar, 1989; Sazima, 1989, Cei, 1993, Greene, 1997; Leonard and 

Stebbins, 1999; Harvey and Munoz, 2004; Solorzano, 2004) and various forms of body-

coiling (Ovaska and Engelstoft, 1999; Cadle and Myers, 2003, Mitchell. 2008) are 

commonly observed. However, no comprehensive study has evaluated the defensive 

behaviors of the New World mollusk-eating snakes. A review of the available data on 

defensive behaviors of New World mollusk-eating snakes, including Tomodon spp. and 

Sibynomorphus spp., which were not included in this study, is provided below. 

Storeria.—Three species of Storeria are found in North America, two of which occur in 

the United States. The Brown Snake {Storeria dekayi) is a small colubrid that ranges 
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from southern Canada to Mexico (Trapido, 1944). S. dekayi is viviparous, diurnal, and 

cryptozoic. Individuals are often found under logs or other cover objects (Willson and 

Dorcas, 2004; pers. obs.). Concealing coloration (Taylor, 1892) and locomotion away 

from the threat or toward a cover object are the defensive behaviors most commonly 

observed (Harwood, 1945). 

The Redbelly Snake {Storeria occipitomaculatd) is a small colubrid that ranges 

from North Dakota and Texas to Nova Scotia and south to Florida (Trapido, 1944). S. 

occipitomaculatd is viviparous, diurnal, and fossorial (Blanchard, 1937; Willson and 

Dorcas, 2004). Individuals are often found under logs or other cover objects (Willson and 

Dorcas, 2004; pers. obs.). 

The most common defensive behavior of Storeria occipitomacidata is 

locomotion. Flaring of the labials has been suggested to serve a defensive function 

(Gosner, 1942; Sousa do Amaral, 1999), although other authors suggest that this behavior 

is used primarily to aid in the removal mollusk or oligochaete mucous from the labials 

after feeding (de Queiroz, 1997; Cummingham and Burghardt, 1999). Death-feigning 

also has been documented for this species (Jordon, 1970). 

Contia tenuis.—The Sharp-Tailed Snake (Contia tenuis) is native to northern California, 

Oregon, and Washington in the United States and British Columbia in Canada (Leonard 

and Ovaska, 1998). The northern populations are disjunct and individuals are uncommon 

there (Shaw and Campbell, 1974). In contrast, C. tenuis appears to be expanding its range 

in the south, through the Central Valley of California (G. Pauly, pers. comm.). 

Individuals can be found active in all months of the year, especially in the southern 
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portion of the range, and occur at high elevations (2000 m), suggesting that they are 

relatively tolerant of cold conditions (individuals have been observed active at 10°C in 

February [Shaw and Campbell, 1974; Cunningham, 1962]). C. tenuis is a secretive snake 

typically found beneath logs. It also appears to be fairly common in human settlements, 

living under landscaping fabric, among mulched flowerbeds, or under anthropogenic 

cover objects (Shaw and Campbell, 1974; G. Pauly, pers. comm.). 

Contia tenuis is a small (<400 mm) snake with a dark dorsum and contrasting 

black and white lines on the ventral scales (Cook, 1960; Shaw and Campbell, 1974; 

Leonard and Ovaska, 1998). A relatively sharp spine is present at the tip of the tail. C. 

tenuis lays 2-9 eggs in the summer, which hatch in the fall (Shaw and Campbell, 1974). 

C. tenuis has long, recurved teeth, which presumably aid in the consumption of slugs 

(Zweifel, 1954; Shaw and Campbell, 1974). 

Reported defensive behaviors of Contia tenuis include locomotion, elevation of 

the anterior portion of the body, and coiling (Ovaska and Engelstoft, 1999). Body coiling, 

in association with the contrasting ventral coloration, may have evolved to mimic 

sympatric millipedes (Leonard and Stebbins, 1999). The function of the spine at the tip of 

the tail has not been determined (Cook, 1960), but may be involved in defense 

(Nussbaum et al., 1983; but see Carl, 1949, 1968; Darda, 1995 [locomotion], or Stebbins, 

1972 [prey capture]). Predators of C. tenuis may include birds and Ringneck Snakes 

(Diadophis punctatus; [Shaw and Campbell, 1974; Leonard and Ovaska, 1998]). 

Dipsas.—Approximately 30 species of "snail suckers" of the genus Dipsas are found in 

southern Mexico, Central America, and northern South America (Peters and Orejas-
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Miranda, 1970; Solorzano, 2004). Species of Dipsas are presumed to be arboreal 

(Savage, 2002; Solorzano, 2004; but see Kofron [1982] for a contrary interpretation), and 

are nocturnal and oviparous. Clutch sizes range from 1-4 eggs (Hartmann et at., 2002; 

Savage, 2002; Pizzatto et al., 2008; pers. obs.). Dipsas in central Panama may include as 

many as three cryptic species (Cadle and Myers, 2003; Myers et al., 2007; R. Ibanez, 

pers. comm.). For this study I treat the Dipsas encountered at my field sites, other than D. 

nicholsi, as one taxon, Dipsas sp. 

A wide range of defensive tactics has been observed in this genus, including head 

flaring, body thrashing, and cloacal discharge {Dipsas indica and D. pavonina [Martins 

and Oliveira 1998]; D. catesbyi and Dipsas sp. [pers. obs.]). D. pavonina also smears 

cloacal discharge while wrapping its tail around the handler, then flattens its body 

dorsoventrally and hides its head among coils of the body (Martins and Oliveira 1998). 

D. nicholsi coils the body into a conical pyramid (Cadle and Myers, 2003; pers. obs.). 

Sazima (1989) suggests that Dipsas indica mimics the sympatric pitviper 

Bolhrops jararaca in color pattern and certain defensive behaviors (Greene, 1988; 

Sazima, 1988). Others suggest that some species of Dipsas mimic sympatric coral snakes 

(Kofron, 1982; Pough, 1988; Sazima, 1989). 

Sibon.—The 12 or more species of "snail suckers" in the genus Sibon are small to 

medium-sized snakes that range from Mexico to the Amazon basin (Peters, 1960; 

Wallach, 1995; Savage, 2002; McCranie et al., 2003; Solorzano, 2004). Species are 

oviparous, nocturnal, and arboreal (Savage, 2002; Solorzano, 2004; Pizzatto et al., 2008). 
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Cadle and Myers (2003) note that Sibon nebalatus, a wide-ranging and relative 

large species, exhibits pyramidal body coiling similar to some species of Dipsas, and 

report that S. nebulatus does not bite. S. argus coils the body into a conical pyramid 

(Cadle and Myers, 2003). S. argus and S. longifrenis may mimic Bothriechis schlegelii in 

color pattern (Greene, 1997; Solorzano, 2004). 

Ninia.—The nine species of Coffee Snakes (Ninia) are small, terrestrial or semi-fossorial 

colubrids that occur from Oaxaca, Mexico to northern South America (Peters and Oreja-

Miranda, 1970; Savage, 2002; Solorzano, 2003). Ninia spp. are oviparous and diurnal 

(Dunn, 1935; Greene, 1975; Savage, 2002; Solorzano, 2004; Pizzatto et al., 2008). 

Greene (1975) describes coral snake mimicry, head flaring, and elevation of the 

anterior body and tail as defensive strategies of Ninia sebae. N. sebae also displays 

dorsoventral compression of the body, as do N. diademata, N. maculaia, and N. psephota 

(Dunn, 1935; Lee, 1996). 

Tomodon.—The two or three species of Pampas Snakes (Tomodon spp.) are small to 

medium-sized South American snakes. Tomodon ocellatus flares its head, inflates the 

body, and coils the tail in defense, and T. orestes is suspected to act in the same manner 

(Harvey and Munoz, 2004). T. orestes resembles the sympatric pitviper Bothrops 

jonathani in color pattern and some behaviors (Harvey and Munoz, 2004), and 

researchers have noted the similarity in color pattern between T. ocellatus and Bothrops 

spp. (Gallardo, 1972; Campbell and Lamar, 1989; Cei, 1993). 
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Sibynomorphus.—The South American snakes of the genus Sibynomorphus consist of 

about 12 species of small to medium-sized snakes (Cadle, 2007; Pizzatto et al., 2008). 

Species are found in southwestern Ecuador and northern Peru and south of the Amazon 

Basin in Brazil through Argentina (Cadle, 2007). Sibynomorphus spp. are oviparous and 

primarily terrestrial (Pizzatto et al., 2008). Cadle and Myers (2003) report that 

Sibynomorphus mikanii raises and flattens the head, inflates the neck, and curls the tail 

into a flattened coil. The snake may continue to coil into "an irregular ball'' or twisted 

coil, with the head inside or under the ball. Sibynomorphus spp. are not reported to strike 

or bite. 

MATERIALS AND METHODS 

Study species and sites.—This study focused on the defensive behaviors of putative 

mollusk-eating snakes, including the New World genera Conlia, Dipsas, Ninia, Sibon, 

and Sloreria. Individuals were studied in, or collected from. North, Central, and South 

America (Chapter I). 

Documentation of defensive behaviors.—\ studied 13 species from five genera of New 

World mollusk-eating snakes in the field or laboratory. Observations of defensive 

behaviors were made in the field upon first capturing a snake, following methods outlined 

in Chapter IV. Reactions to a tactile stimulus were noted according to Table 4.1. 

Recaptured individuals were retested. 
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Laboratory tests were performed in arenas that resembled the natural habitat of 

the snakes. The arenas used for Contia tenuis, Storeria dekayi, S. occipitomaculata, and 

Ninia were dressed with a mulch substrate and a log for cover, inside a rectangular plastic 

tub measuring 58 cm x 40 cm. The arena for Dipsas and Sibon was dressed with a 

substrate of leaves and a vertical branch, within a round plastic tub measuring 1 m in 

diameter. Snakes were given 30 seconds to acclimate and then were gently tapped with a 

small snake hook for 120 seconds, alternating between posterior and anterior regions of 

the body. Defensive behaviors were classified according to modifications made to the list 

of behaviors described by Greene (1988) (Table 4.1). 

Presence or absence of each of 15 behaviors (Table 5.1) was documented for 

Contia tenuis in two trials. Comparisons were made between trials to test for a change in 

the presence of a given behavior. 

Table 5.1. Description of morphological attributes and behaviors used in defense by 
Contia tenuis. 
Behavior Description 

Immobile freezes in place and does not move 
Stiff body becomes rigid 
Locomotion - slow locomotes slowly within the arena 
Locomotion - fast locomotes quickly within the arena 
Locomotion to cover moves rapidly toward cover 
Locomotion over the edge moves rapidly over the end of the microcosm 
Elevate head elevation of head and neck from substrate 
Bury head in substrate head is pushed into substrate 
Bury body in substrate body is pushed under substrate, typically following the head 
Body thrash violently thrashes unrestricted regions of body 
Coil coils the body into flat concentric circles 
Lateral flip flips to side when fleeing to expose ventral surface 

momentarily 
Tail flip tail is flipped to the side one time 
Tail wag tail is lifted and moved from side to side quickly 
Cloacal discharge releases urates and/or musk from cloaca 
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Phylogenetic basis of behaviors.—Defensive behaviors found in multiple species were 

compared to the phylogenetic tree constructed for the New World mollusk-eating snakes 

(Highton et al., 2002; Pinou et al., 2004; Fig. 5.1). I used MacClade (Version 4.08 OS X) 

to map selected defensive behaviors by importing the presence/absence of each behavior 

for each species and then adjusting the tree to match that 1 constructed. Selected 

defensive behaviors included: body coiling, body pyramiding, body thrashing, head 

enlargement, cloacal discharge, and hemipenal eversion. 
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Fig. 5.1. Phylogeny of New World mollusk-eating snakes evaluated in this study. Tree 
constructed from Highton et al., 2002 and Pinou et al., 2004. 
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Defensive behaviors.—Three temperate species (Table 5.2) and eight tropical species 

(Table 5.3) of mollusk-eating snakes were tested. The defensive behaviors of Dipsas 

catesbyi, Dipsas sp., Ninia sp., and Sibon annulatus were documented for the first time in 

this study. In other cases my observations elaborated upon previously published accounts 

(S. longifrenis and S. nebulatus). The defensive tactics of New World mollusk-eating 

snakes captured during this study are described below. 

Table 5.2. Sample sizes of temperate mollusk-eating snakes included in defensive 
behavior trials. See Chapter I for descriptions of study sites. 

Site 

Species California 
Contia tenuis 50 
Storeria dekayi 0 
Storeria occipitomaculaia 0 

Kishwaukee 
0 

20 
20 

Lake 
Erie 

0 
95 
0 

Beaver 
Island 

0 
0 
10 

Total 
50 
115 
30 

Table 5.3. Sample sizes of Neotropical species of mollusk-eating snakes included in 
defensive behavior trials. ADM: Altos del Maria, PNGDOTH: Parque Nacional General 
de Division Omar Torrijos Herrera, RA: Reserva Amazonica. See Chapter I for 
descriptions of study sites. 

Species 
Dipsas catesbyi 
Dipsas nicholsi 
Dipsas sp. 
Ninia celata 
Ninia maculata 
Ninia sp. 
Sibon annulatus 
Sibon argus 
Sibon longifrenis 
Sibon nebulatus 

ADM 
0 
0 
0 
1 
1 
0 
14 
J J 

14 
1 

Site 
PNGDOTH 

0 
1 

95 
0 
0 

64 
68 
10 
12 

RA 
2 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Total 
2 
1 

95 
1 
1 
-> 
j 

78 
101 
24 
13 
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Contia tenuis.—Several accounts (see Leonard and Ovaska, 1998 for review) have 

documented defensive displays and have suggested the existence of other behaviors (e.g., 

use of the tail spine). In my study individuals performed a lateral flip, in which the snake 

quickly revealed part of the horizontally marked ventral surface. The tail spine was not 

used in any obvious defensive behavior. At times the tail was planted into the substrate of 

the arena, appearing to aid the snake in changing direction quickly or anchoring the snake 

as it flipped laterally. 

During testing, one individual of Contia tenuis escaped to the floor near a golden 

retriever (Canis familiaris). The snake raised the anterior portion of its body off the 

ground (Fig. 5.2A) and maintained this position even after being moved away from the 

dog. This behavior was not observed in any snake without the presence of the dog (n = 

50), and two other snakes placed in front of the dog did not assume the elevated posture. 

The same snake that reacted to the dog revealed its ventral surface (Fig. 5.2B) when 

placed on a table shortly afterward and gently tapped with a snake hook. The elevated 

posture has been reported previously (Collins, 2003), but the association of the behavior 

only with a large canid in this study suggests that this may be a high-intensity display. 

Quantitative analyses of Contia tenuis.—\ determined the frequency of each of 15 

defensive behaviors for individual Contia tenuis tested during two trials (Table 5.4). 

Results of ANOVAs to test for differences between trials showed no significant 

differences (P > 0.05) for any behavior (Table 5.5). 
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Fig. 5.2. Defensive behaviors of Contia tenuis. A) C. tenuis responding to a golden 
retriever by raising anterior portion of the body; the position was maintained for several 
minutes. B) C. tenuis placed so as to reveal its contrasting ventral pattern. 

Table 5.4. Number of and percentage of Contia tenuis individuals performing each 
defensive behavior in two trials. Trial 1 (Tl) consisted of 46 individuals. Trial 2 (T2) 
consisted of 25 individuals. 

Tl 

% 

T2 

% 

Immobile 

19 

41.30 

10 

40 

Stiff 

12 

26.09 

4 

16 

Locomotion 
(slow) 

9 

19.57 

12.00 

Locomotion 
(fast) 

38 

82.61 

19 

76 

Locomotion 
to cover 

34 

73.91 

17 

68 

Locomotion 
to edge 

15 

32.61 

7 

28 

Table 5.4. continued 

T l 

% 

T2 

% 

Elevate head 

4 

8.70 

10 

Bury head 

40 

87.00 

23 

92 

Bury body 

20 

43.78 

10 

40 

Body thrash 

14 

30.43 

7 

28 

Coil 

15 

32.61 

7 

28 
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Table 5.4. continued 

T l 

% 

T2 

% 

Lateral flip 

17 

36.96 

9 

36 

Tail flip 

4 

8.70 

2 

8 

Tail wag 

71.74 

17 

70 

Cloacal discharge 

20 

43.48 

12 

50 

Table 5.5: Results of ANOVA to test for differences in presence of each defensive 
behavior between Trial 1 and Trial 2 for Contia tenuis. 

Defensive Behavior 
Immobile 
Stiff 
Locomotion - slow 
Locomotion - fast 
Locomotion to cover 
Locomotion over the edge 
Elevate head 
Bury head in substrate 
Bury body in substrate 
Body thrash 
Coil 
Lateral Flip 
Tail flip 
Tail wag 
Cloacal discharge 

F 
0.041 
0.780 
0.543 
0.120 
0.074 
0.084 
0.247 
0.337 
0.021 
0.012 
0.084 
0.002 
0.003 
0.006 
0.264 

P 
0.840 
0.380 
0.464 
0.730 
0.787 
0.772 
0.621 
0.563 
0.886 
0.914 
0.772 
0.965 
0.960 
0.938 
0.609 

Storeria occipitomaculata.—Body thrashing and cloacal discharge were observed. 

Snakes from the Kishwaukee River State Fish and Wildlife Area and Potawatoni Woods 

Forest Preserve (Illinois) did not flare their labials or death feign. Five snakes (50%) 

tested on Beaver Island (Michigan) did flare their labials, and a researcher working on the 

island reported that three individuals exhibited death-feigning after being captured and 

handled (M. Cross, pers. comm.). 
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Storeria dekayi.—Individuals of Storeria dekayi attempted locomotor escape and cloacal 

discharge. 

Dipsas catesbyi.—Two individuals of Dipsas catesbyi exhibited body thrashing, head 

enlargement, and cloacal discharge. Neither individual showed signs of forming flat or 

pyramidal body coils, as have been observed in other species of Dipsas (Cadle and 

Myers, 2003). 

Dipsas sp..—Individuals readily exhibited head enlargement resulting from flaring of the 

quadrate bones (Fig. 5.3), body thrashing, and cloacal discharge. I did not observe 

pyramiding or body coiling in any individual (n = 92). 

Fig. 5.3. Head enlargement observed in Dipsas sp. 

Additional observations (n = 13) were made of Dipsas sp. performing defensive 

behaviors in trees or on an artificial apparatus built to resemble a branch. Snakes 

launched themselves from the branch or artificial perch to the ground, flipping laterally as 

they landed, and then remained motionless. 
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Dipsas nicholsi.—One adult female Dipsus nicholsi was captured at PNGDOTH and 

represented the first capture of this rare species west of the Panama Canal (Myers et al., 

2007). When gently prodded with a snake hook, the snake exhibited jerking movements, 

flinging the head and tail toward each other in reversing directions, often halting in one 

position before flipping in the opposite direction (Fig. 5.4). After 3-4 such jerking 

movements the snake formed a raised coil (Fig. 5.4) and eventually assumed a raised 

pyramidal posture as reported for the species by Cadle and Myers (2003). After three 

days the behavior was reduced in intensity and could not readily be elicited. 

Fig. 5.4. Defensive behaviors of Dipsas nicholsi. A-B) Positions assumed by body 
between jerking movements. C) Snake beginning to form raised coil, with head in the 
center. 
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Sibon argus.— Individuals of Sibon argus collected during this study performed the 

characteristic coiling behavior described by Cadle and Myers (2003) (Fig. 5.5). S. argus 

exhibited a similar escape response to that of Dipsas sp. when tested in an arboreal 

location: snakes launched themselves to the ground, although they did not flip laterally as 

they landed. When S. argus remained motionless on the ground in the wild, it was 

difficult to distinguish the cryptically-colored snake against the substrate; one individual 

was lost after it dropped from a branch. 

Fig. 5.5. Body coiling behavior of S. argus. Note that the head is tucked inside of the 
coils. 

Sibon longifrenis.—Despite its morphological similarity to Sibon argus (Savage and 

McDiarmid, 1992), S. longifrenis did not coil the body when threatened (n = 24), as did 
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S. argus (Cadle and Myers, 2003; pers. obs.). S. longifrenis exhibited locomotor escape, 

body thrashing, and cloacal discharge. 

Sibon nebulatus.—The defensive tactics observed for Sibon nebulatus (n = 12) were 

similar to those observed during previous studies (Cadle and Myers, 2003). Individuals 

exhibited jerky movements (Fig. 5.6A-C) and assumed the posture of an elevated 

pyramid (Cadle and Myers, 2003; Fig. 5.6D). When coiled, the head either was tucked 

inside of the body coils (Fig. 5.6D) or rested on top of the coils (Cadle and Myers, 2003). 

Furthermore, two individuals bit me during handling, contrary to the experience of Cadle 

and Myers (2003). 

Fig. 5.6. Defensive behaviors performed by Sibon nebulatus while forming a raised 
pyramid. A-C) Jerky movements displayed as snake flipped in various directions. D) 
Raised pyramid with head tucked inside coil. 
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Sibon annulatus.—Sibon annulatus exhibited locomotor escape, body thrashing, and 

cloacal discharge as defensive behaviors. S. annulatus never attempted to strike or bite (n 

= 78). 

Ninia sp..—All three individuals of an undescribed species of Ninia (R. Ibailez, pers. 

coram.) exhibited locomotor escape and body thrashing. One individual conspicuously 

enlarged its head laterally (Fig. 5.7A), then elevated the anterior portion of the body and 

conducted a series of false strikes, with no attempt to open the mouth or bite (Fig. 5.7B-

C). 

Ninia ce/ata.—Ninia celata (n = 1) attempted locomotor escape before exhibiting body 

thrashing, head enlargement, and cloacal discharge. When placed on the ground, the 

snake attempted to bury its head in the substrate. 

Ninia maculata.—Ninia maculata (n = 1) attempted locomotor escape and then exhibited 

body thrashing, head enlargement, and cloacal discharge. When placed on the ground, the 

snake attempted to bury its head in the substrate. 

Phylogenetic basis of behaviors.—The presence or absence of each of six defensive 

behaviors was mapped on a cladogram for 13 species of mollusk-eating snakes (Fig. 5.8 -

5.13). 
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Fig. 5.7. Defensive display of Ninia sp. A-B) showing head enlargement and dorso-
ventral body compression, c) The flattened anterior elevated, revealing a series of small 
ventral triangles of pigmentation. 

DISCUSSION 

The assemblage of mollusk-eating snakes evaluated in this study was examined because 

members were believed to consume primarily or exclusively mollusks and therefore 

might be expected to share other aspects of their ecology and behavior. However, several 

recent accounts have found that some of these species have broader diets (Ryan and Lips, 

2004; Montgomery et al., 2007; Ray et al, in review), suggesting 
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Fig. 5.8. Cladogram showing presence of body coiling among mollusk-eating snakes 
evaluated during this study. Black represents the presence of the behavior and white 
represents absence of the behavior. 
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snakes evaluated during this study. Black represents the presence of the behavior and 
white represents absence of the behavior. 
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that the group may be less distinctive in regard to prey than previously believed. 

Nonetheless, some defensive behaviors (e.g., head flaring, coiling the body into a raised 

pyramid) are observed among several taxa in this assemblage, and the raised pyramidal 

posture has been documented only among Dipsadini. Some other snakes coil their body 

(Greene, 1988), but do not form a tight, raised pyramid as observed in several of the New 

World mollusk-eaters (Cadle and Myers, 2003; pers. obs.). Under laboratory conditions 

pyramiding was performed when the snake was on a flat, broad surface, suggesting that 

these arboreal species spend time on the ground, are regularly displaced to the ground 

during predatory events, or perform such displays on large branches, leaves, or epiphytes 

that provide a stable platform for such a display. Further investigations are needed to 

understand how these species defend themselves above the forest floor or to document 

their regular presence on the ground. 

Dendrograms were made for each of six behaviors for the 13 species of mollusk-

eating snakes included in the study. Cloacal discharge was documented for all species 

and likely evolved in a distant common ancestor (Fig. 5.11). Other behaviors were found 

only in some species. Body thrashing likely evolved in a relatively distant common 

ancestor and subsequently was lost in the Storeria (Fig. 5.10). Head enlargement was not 

observed in either Storeria or in Contia, so presumably it evolved after the Dipsadini 

diverged from the later taxa (Fig. 5.12). The behavior may subsequently have been lost in 

Sibon annulatus (Fig. 5.12). Body coiling (Fig. 5.8) likely evolved in S. argus, and body 

pyramiding likely evolved in S. nebulatus and Dipsas sp. (it also has been reported in 

species of Dipsas that were not included in this analysis) (Fig. 5.9). Finally, hemipenial 

eversion likely evolved independently in S. longifrenis and Dipsas sp. (Fig. 5.13). It is 
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interesting that this behavior was not observed in S. argus, a species that is 

morphologically very similar to 5*. longifrenis (Savage and McDiarmid), although the 

species seem to differ behaviorial (i.e. S. argus exhibited body coiling, which was not 

observed in 5". longifrenis). 

In considering the phylogenetic analyses, it is important to note that a behavior 

simply may not have been observed. For example, head enlargement appears to have 

been lost in Sibon annulalus, but perhaps it simply was not exhibited by any individuals 

tested during this study. This criticism is supported by the quantitative data collected for 

Contia tenuis. Although defensive behaviors did not different in frequency between Trial 

1 and Trial 2 (Table 5.4), even the most common behaviors were not always exhibited 

during those tests (Table 5.5). In an effort to comprehensively document the defensive 

behaviors, continued research should increase sample sizes and allow a greater chance 

that rare behaviors will be observed. 

Several species of mollusk-eating snakes have been suggested to mimic sympatric 

venomous species (Solorzano, 2004; Table 4.1). For example, Greene (1997) suggests 

that Sibon argus and S. longifrenis mimic Bothriechis schlegelii (see also Solorzano, 

2002, 2004). However, B. schlegelii is highly variable in color pattern, ranging from 

mottled red and green (with either of the two colors being dominant in an individual) to 

solid golden yellow (Solorzano, 2004). B. schlegelii is relatively slow-moving, but will 

strike when disturbed (pers. obs.), whereas 5". argus and 5. longifrenis do not attempt to 

strike or bite. S. argus readily forms a flat or raised coil with the body (Fig. 5.5), a 

behavior never observed in B. schlegelii; S. longifrenis was not observed to exhibit body 

coiling. 
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Sazima (1989) suggested that Dipsas indica may mimic Bothrops jaracaca. The 

two species have similar color patterns and perform some of the same behaviors, 

including head flaring, S-coiling, and false striking (Sazima, 1989; Chapter IV). 

However, in general, vipers are not considered to be closely mimicked by these taxa 

(Pough, 1988). It is unlikely that Dipsas sp. in Panama is mimicking any species of 

sympatric viper. I documented four species of vipers in PNGDOTH during my study: 

Atropoides nummifer, Bothriechis schlegelii, Bothrops asper, and Lachesis stenophrys; 

all are terrestrial except B. schlegelii (Solorzano, 2004). The mottled pattern of B. 

schlegelii (Solorzano, 2004) does not resemble the banded pattern of Dipsas sp. (Fig. 

5.3). 

Some species of Dipsas may mimic Micrurus (Kofron, 1982; Pough, 1988; 

Sazima, 1989). Defensive behaviors of many Micrurus species include rapid locomotion 

and a head-tail confusion display (Greene, 1988). However, Dipsas sp. is nocturnal and 

arboreal (pers. obs.), whereas Micrurus spp. are diurnal or crepuscular and terrestrial or 

semi-fossorial (Solorzano, 2004). Three species of coral snakes have been reported at 

PNGDOTH, including Micrurus multifasciatus, M. nigrocincius, and M. mipariiius. 

Although Dipsas sp. is bicolored, it is unlikely that it mimics the black and red, orange, 

or white M. mipartitus. Alternatively, the brown and black color pattern of Dipsas sp. 

may be cryptic against the leaf litter of the secondary forest where they regularly occur. 

Mollusk-eating snakes may use mimicry or crypsis as an initial, passive defense, 

and employ more active defensive behaviors if a predator continues to attack. Currently, 

data on the natural predators of mollusk-eating snakes are limited, and accounts of 

predation on them have rarely been reported. Maitland (2003) reported predation on a 
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Sibon nebulatus by a large crab. Similar crabs are found at my study sites (M. Whiles, 

pers. coram.; pers. obs.). 

Ophiophagus snakes, including Micrurus spp., Clelia delict, and Erythrolampus 

mimus (Table 4.8), probably constitute a major source of predation on molluscivorous 

snakes, among other taxa. Ninia spp., which are found in the leaf litter, may be prey for 

these terrestrial ophiophagus snakes. Owls and other nocturnal birds (Table 4.6) may 

consume the nocturnal Dipsas or Sibon species, whereas diurnal birds may feed upon the 

diurnal species of mollusk-eating snakes or on nocturnal species that are found sleeping. 

Finally, mammals such as opossums and kinkajous (Table 4.7) may prey upon the 

nocturnal species or sleeping diurnal snakes. 

This study provides additional data on the defensive tactics of Neotropical 

mollusk-eating snakes. Clearly, more data are needed to understand the patterns of 

defensive behaviors among these snakes and, in possible cases of mimicry, between the 

mollusk-eating snakes and their potential models. A more complete analysis of the 

defensive behaviors of mollusk-eating snakes, preferably including the independently 

evolved taxa in the Old World, is needed to examine further whether similarities in diet 

are reflected in independently evolved defensive behaviors. Furthermore, complete 

behavioral repertoires of such species in both arboreal and terrestrial situations are 

needed in order to understand how defensive behaviors differ when performed in various 

locations. Finally, a better understanding of the natural predators of mollusk-eating 

snakes is needed to understand the conditions under which certain behaviors may be 

utilized. 
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CHAPTER VI 

DIET OF THE NEOTROPICAL SNAKE GENERA DIPSAS AND SIBON 

The natural history of many tropical snakes remains understudied (Martins 1996), 

despite recent publications on Neotropical herpetofaunas (e.g., Lee, 2000; Savage, 2002; 

Campbell and Lamar, 2004; Duellman, 2005). Diet of tropical snakes is often generalized 

across genera or larger lineages based on stomach contents or fecal samples from modest 

numbers of museum specimens or live, wild-caught individuals (e.g., Sazima, 1989; 

Solorzano, 2004). The extensively kinetic skulls of snakes have been modified in 

response to prey specialization and prey is diverse among the group (Greene, 1997; 

Cundall and Greene, 2000). For species that consume soft-bodied prey (worms, slugs, 

snails, etc.), rapid and complete digestion makes diet evaluation difficult (Kofron, 1982; 

MacCulloch and Lathrop, 2004). Morphological adaptations, such as skull modification, 

for the consumption of terrestrial snails and slugs have evolved at least five times, with 

varying degrees of specialization (Gruz, 2002). Snakes exhibiting these modifications 

reside in Africa, Asia, North America, and Central and South America (Gruz, 2002). The 

radiation of molluscan specialists is greatest in South and Central America and includes 

the Dipsadini. This tribe of Dipsadinae includes four genera of putatively mollusk-eating 

snakes, Dipsas, Sibon, Sibynomorphus, and Tropidodipsas (Peters, 1960; Cadle, 2007). 

The Dipsadini are united by synapomorphies of the skull and cephalic musculature that 

presumably enable them to consume molluscan prey (Dunn, 1951; Savitzky, 1983), with 

gastropods regarded as the "nearly sole constituent of [their] diet" (Cadle, 2007; Cadle 

and Greene, 1993, Wallach, 1995). 
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Consuming molluscan prey poses many challenges, especially since many 

dipsadins are arboreal, and most remove soft parts from the snail shell before 

consumption. The consumption of slugs by limbless snakes is complicated by the prey's 

dynamic body structure (Sazima, 1989; pers. obs.), production of copious mucous and in 

some species the possession of defensive toxins (Schroeder et al., 1999). Defensive 

diterpene toxins have been documented in the eggs of one species of slug (Schroeder et 

al., 1999), and unspecified toxins reportedly are present in the slime of slugs and snails 

(Gordon, 1994). Consumption of toxin-possessing mollusks has been confirmed in a 

temperate snake, Conlia tenuis (Shaw and Campbell, 1974; G. Pauly, pers. comm.). 

Finally, slugs are low-energy prey items, containing only 25% of the mass-specific 

energy content of mice (Arnold, 1993). Given the effort required to extract a mollusk 

from its shell and ingest the soft parts (Sazima, 1989; Rossman and Myer, 1990), snails 

(but not necessarily slugs) may be a relatively unprofitable food source (Arnold, 1993). 

Ophidian adaptations for the consumption of mollusks.—Snakes of the genus Dipsas 

and, to a lesser degree, Sibon are morphologically specialized to feed on terrestrial 

mollusks (Sousa do Amaral, 1999, 1999, Dunn, 1951; Peters, 1960; Savitzky, 1983; 

Savage, 2002). Specialized dentition and highly kinetic skulls facilitate the extraction and 

handling of mollusks (Dunn, 1951; Peters, 1960; Cundall and Greene, 2000; Gruz, 2002; 

Savage, 2002). Highly specialized mollusk-eating snakes, including members of 

Dipsadini and Pareatinae (Cundall and Greene, 2000), employ mandibular transport of 

prey, in which the left and right lower mandible move independently to aid feeding. 

Mandibular transport is a tactic limited to these molluscivore snakes and the 
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scolecophidian Leptotyphlopidae (Kley, 2001). Furthermore, Hoso et al. (2007) note that 

in the Asian snail specialists Pareas the number of teeth differs between the right and left 

mandibles. More teeth on the right mandible facilitate consumption of dextral shells but 

reduce the ability to feed on snails with sinistral shells. Such morphological differences 

have not yet been explored for Neotropical snail-eaters. 

Peters (1960) describes five adaptations of the skull and musculature of the 

Dipsadini, the largest group of mollusk-eating snakes. Modifications include (1) an 

inwardly tilted maxilla, (2) a pterygoid that is free posteriorly and lacking an articulation 

with the quadrate, (3) reduction in pterygoic tooth number, (4) a prominent intra-

mandibular hinge, and (5) changes in cephalic musculature (Kofron, 1982). Savitzky 

(1983) elaborates on the specialization of the cranial morphology for the ingestion of 

molluscan prey. 

Another possible adaptation involves secretions from various glands, as reported 

for the dipsadin Sibynomorphas mikani (Da Graca Salomao and Laporta-Ferreira., 1994). 

Such secretions may reduce the production of mucus and/or the mobility of the prey. 

Application of glandular extract to the surface of a slug yielded the same results as 

injection, indicating that specialized teeth are not necessary to deliver the glandular 

compounds (Da Graca Salomao and Laporta-Ferreira, 1994). Further research is required 

to determine how widespread such compounds are between Dipsadini and other 

molluscivores. 

Different species of snakes may employ alternative means of removing molluscan 

mucous from their labial scales after feeding (Cummingham and Burghardt, 1999). 

Dipsas variegala (Mertens, 1952) and D. indica (Sazima, 1989) rub their mouths on the 
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substrate after swallowing a mollusk. Storeria occipitomaculata and Thamnophis spp. 

may avoid the accumulation of slime near the mouth by flaring the labials during 

ingestion (De Queiroz, 1997; Sousa do Amaral, 1999). 

Members of the Dipsadini provide an excellent example of the generalization of 

diet across taxa, with all members referred to as "mollusk-eaters" (Peters, 1960) or 

"snail-suckers" (Solorzano, 2004) because ingestion of other soft-bodied prey items has 

been documented for Sibon and Dipsas. To date non-molluscan prey items have not been 

reported for Sibynomorphus or Tropidodipsas. 

Review of Dipsas and Sibon diet.—The Neotropical genus Dipsas ranges from Mexico 

to central South America. Dipsas species are highly specialized morphologically for 

feeding on terrestrial mollusks (Dunn, 1951; Peters, 1960). D. albifrons and D. variegata 

have been observed to feed on snails (Lankes, 1930 in Mertens, 1952; Rembold, 1934; 

Mertens, 1952), and D. indica feeds on snails and slugs (Sazima, 1989). Such 

observations support the proposition that members of the genus Dipsas feed exclusively 

on mollusks, although individual species may specialize on specific molluscan prey 

(Dunn, 1951; Queiroz-Alves et al., 2003). No comprehensive study has contradicted the 

widely held assumption that Dipsas exhibits a mollusk-dominated diet (but see Kofron, 

1982). Brief notes have reported non-molluscan prey in the stomachs of Dipsas spp., 

including wood roaches (Peters, 1960), unspecified insects (Beebe, 1946; Cunha and 

Nacimento, 1978), a lizard's foot (Martins, 1999), and an earthworm (Cisneros-Heredia, 

2005). However, such occurrences were attributed to incidental ingestion while foraging 

in bromeliads or other forest habitats (Peters, 1960; Cisneros-Heredia, 2005). 
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Sibon spp. are distributed from southern Central America to northern South 

America (Solorzano, 2004). Bulbous heads and modified skulls with features similar to 

those of Dipsas suggest that Sibon spp. are specialized for feeding on mollusks as well 

(Dunn, 1951; Savitzky, 1983). Few accounts document the diet of Sibon spp., and most 

general faunistic studies cite slugs or snails as prey (e.g., Savage, 2002; Solorzano, 2004). 

Kofron (1987) found remains of slugs in the stomach of S. anthracops. In addition to 

slugs and snails, Solorzano (2002; 2004) mentioned that a juvenile S. argus consumed 

unidentified centrolenid frog eggs and a S. longifrenis may have consumed an earthworm 

in captivity. Predation by various species of Sibon on centrolenid eggs have also been 

reported from Central Panama. S. argus consumes Centrolene prosoblepon (Ryan and 

Lips, 2004) and C. ilex (pers. obs.) and S. longifrenis consume Cochranella albomaculata 

eggs (Montgomery et al., 2007). Furthermore, Ryan and Lips (2004) suggest that S. 

mbulatus may feed on eggs of Agalychnis callidryas, and Ray et al. (in review) 

confirmed that eggs of A. callidryas are eaten by S. argus. 

In light of recent observations that some species of putatively molluscivorous 

snakes feed on amphibian eggs, and given the rapid loss of amphibians from within the 

range of these snakes, it is important to understand diet of mollusk-eating snakes. 

Therefore, I studied the diets of all dipsadin snakes at a site in central Panama where 

amphibian declines have been ongoing for several years. 
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MATERIALS AND METHODS 

At least six species of Dipsadini have been documented in central Panama, 

including four species of Sibon (S. annulatus, S. argus, S. longifrenis, and S. nebulatus) 

and at least two species of Dipsas. D. nicholsi is rare throughout its range (Myers et al., 

2007), whereas the other Dipsas residing in Parque Nacional General de Division Omar 

Torrijos Herrera (PNGDOTH) may comprise as many as three morphologically cryptic 

species (Cadle and Myers, 2003; Myers et al., 2007; R. Ibanez, pers. comm.). For this 

study I treat the species of Dipsas encountered at my field site, other than D. nicholsi, as 

one taxon, Dipsas sp. Furthermore, S. argus and S. longifrenis were not consistently 

distinguished from one another. Their independent recognition has been debated (Peters, 

1960, Savage and McDiarmid, 1992), although they are currently considered valid 

species. For some analyses, individuals of these two species were combined (referred to 

as "5". argus/longifrenis" below). 

I analyzed fecal samples to facilitate non-lethal sampling of individuals across 

seasons. Although soft-bodied prey is difficult to identify (Kofron, 1982), chitinous 

structures (e.g., oligochaete chaetae, molluscan radulae and shells) are not digested. Fecal 

samples were collected from Dipsas and Sibon from 20 May - 23 October 2005, 12-13 

May 2006, and 06 September 2006 - 20 August 2007 at PNGDOTH (Chapter I). 

In addition to the study conducted in PNGDOTH, fecal samples were collected 

between 06 May and 10 July 2006 from Altos del Maria (ADM; Chapter I). Snakes were 

collected along riparian and terrestrial distance-constrained transects prior to significant 
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chytridiomycosis-induced amphibian decline (first dead frog found on 22 May 2007; 

pers. obs.). 

Upon capture of each snake, I recorded the time, location, and habitat data 

(including height and distance to stream; Chapter I). All snakes were transported to the 

field house (7.5-10 km away), where I recorded snout-vent length (SVL) and tail length 

to the nearest 0.1 cm using a squeeze box (Quinn and Jones, 1974); mass was recorded to 

the nearest 0.1 g with an electronic balance. I also recorded sex and reproductive 

condition (presence of enlarged follicles or eggs in females), and individually marked 

snakes using scale clips (Brown and Parker, 1976) or PIT tags (Gibbons and Andrews, 

2004). Fecal samples were collected by gently squeezing the snake just anterior to the 

cloaca to extract feces. All snakes were returned to the exact location of capture within 48 

hours. 

Fecal samples were examined using a dissecting microscope (Wild M3 or M8) for 

any undigested hard structures (e.g., bones, shells, radulae). Such structures were further 

examined using a compound or scanning electron microscope and were identified to the 

lowest taxonomic level by colleagues at the Old Dominion University Benthic Ecology 

Laboratory or myself. Fecal samples not containing any hard structures are included as 

samples with "no identifiable prey". 

In May 2006 surveys of available prey were performed along one forest transect 

(Rocky Road; Chapter I) where Dipsas spp., Sibon anmdatus, and S. nebulatus were 

regularly found and one riparian transect (Silenciosa; Chapter I) where S. argus and S. 

longifrenis were regularly found. Surveys involved searching bromeliads for mollusks, 

oligochaetes, and other soft-bodied prey along both transects. Leaves were surveyed 



123 

along the riparian transect for the presence of amphibian eggs. Potential prey items were 

noted to lowest possible taxonomic level. 

Statistics.—Statistics were performed with SPSS 13.0 and a was maintained at 0.05 for 

all analyses (Zar, 1999). Logistic regression was used to test for differences in the 

presence of chaetae seasonally and intraspecifically (between size classes). A yj test was 

used to determine interspecific differences in dietary components recovered from fecal 

samples (oligochaetes, mollusks, and amphibian eggs) among Sibon annulatus, S. 

argus/longifrenis, and S. nebidatus. 

An analysis of covariance (ANCOVA) was used to test for differences in body 

condition between Sibon argus/longifrenis captured along stream or forest transects 

where frogs had declined and those captured at the Pond, where the leaf-breeding hylid 

Agalychnis callidryas persisted and continued to breed. The dependent variable was 

mass, the covariate was SVL, and the fixed factor was location. For ANCOVA, all 

captures from 2005-2007 were included. Females and males were analyzed separately 

because of sexual dimorphism. 

RESULTS 

Dipsas sp. was found primarily in the mature secondary forest (n = 123 captures; 

78.9%) and occasionally in vegetation along stream transects (n = 26 captures; 21.1%). 

Sibon annulatus and S. nebidatus were found primarily in mature secondary forest and 
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occasionally along streams. S. argus and 5". longifrenis were found primarily along 

streams or at a small pond (Chapter I). 

A total of 59 fecal samples were collected for Dipsas sp., with at least one sample 

(mean = 3.28, range: 1-7) from each month of the sampling period, except June 2007. 

Molluscan parts (two small snail shells, Helicoidea) were recovered from one (1.7%) of 

the samples. Nine samples (15.3%) yielded no identifiable prey. The remaining 49 of 59 

samples (83.1%) contained chaetae that were identified as belonging to oligochaetes of 

the family Lumbriculidae (H. K. Mahon and A. Rodi, pers. comm.; Fig. 6.1). The 

chitinous bristles, which pass through the digestive tract of a snake without damage, 

allow worms to grip the substrate, presumably aiding in locomotion (Roembke and 

Schmidt, 1990). Ten individual chaetae were measured from digital photographs and had 

a mean length of 860 um. 

Fig. 6.1. Scanning electron micrograph of Lumbriculid worm. (A) chaeta recovered from 
fecal sample of Dipsas sp., (B) oligochaete recovered from bromeliad, and (C) chaeta in 
situ, similar to that recovered from fecal sample (H. K. Mahon and A. Rodi. pers. 
comm.). 
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I collected 37 fecal samples from Sibon annulatus at PNGDOTH between May 

2006 and August 2007 (mean per month = 2.06, range = 0 -6 ; Table 6.1, Fig. 6.2), of 

which nine (24.3%) contained a mean of 3.3 (range: 1 - 6) molluscan opercula, seven 

(18.9%) contained chaetae from lumbriculid oligochaetes, and 22 samples (59.5%) 

contained no identifiable prey (Table 6.1, Fig. 6.2). I collected 40 fecal samples from S. 

argus at PNGDOTH between May 2006 and August 2007 (mean per month = 2.22, range 

= 0 - 8 ) , including two samples (5%) that contained one and two opercula, respectively, 

five (12.5%o) samples presumably contained gelatinous amphibian eggs, and 26 samples 

(65%o) contained chaetae from oligochaetes (Table 6.1, Fig. 6.2). I collected only three 

fecal samples of S. longifrenis at PNGDOTH (mean per month = 0.11, range = 0 - 1); 

two (66.6%) contained chaetae and the other contained no identifiable prey (33.3%; 

Table 6.1, Fig. 6.2). Finally, I collected five fecal samples from S. nebulatus at 

PNGDOTH (mean per month = 0.28, range = 0 - 2 ) , but no identifiable prey were found 

(Table 6.1, Fig. 6.2). However, a large slug was palpated from the stomach of one S. 

nebulatus from PNGDOTH; the slug was still alive, indicating that it had recently been 

consumed. 

Samples collected from Altos del Maria were more limited in number (Table 6.1, 

Fig. 6.2). Only one sample was collected from S. annulatus; it contained 16 molluscan 

opercula. Fourteen samples were collected from S. argus, of which six (42.9%) were 

gelatinous and assumed to consist of amphibian eggs, five samples (35.7%) contained 

oligochaete chaetae, and three samples (21.4%) did not contain any identifiable 

structures. Seven samples of S. longifrenis were collected, including one (14.3%) that 
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was gelatinous, two (28.6%) contained chaetae, and the other four (57.1%) contained no 

identifiable prey (Fig. 6.2). 

Table 6.1. Dietary remains in fecal samples of Sibon spp. Includes number and 
percentage of total samples for mollusks, amphibian eggs, and chaetae in four species of 
Sibon from PNGDOTH and three species of Sibon from ADM. Fecal samples without 
hard structures are included in the no prey column. 

No Identifiable 
Species n Mollusks Eggs Oligochaetes Prey 

PNGDOTH 
S.annulalus 37 9(24.3%) - 7(18.9%) 22(59.5%) 
S.argus 40 2(5.0%) 5(12.5%) 26(65.0%) 7(17.5%) 
S. longifrenis 3 2 (66.7%) 1 (33.3%) 
S.nebulatus 5 - - - 5(100%) 

ADM 
S. annulatus 1 1 (100%) 
S.argus 14 - 6(42.9%) 5(35.7%) 3(21.4) 
S. longifrenis 6 - 1(16.7%) 2(33.3%) 3(50.0%) 

Logistic regression was used to test for significant differences in presence of 

chaetae between seasons and across sizes of Dipsas sp. Chaetae were equally frequent in 

fecal samples during both rainy and dry seasons (P = 0.194; Fig. 6.3). However, there 

was a significant difference in the presence of chaetae as a function of body size (SVL) of 

snakes (P = 0.003; Fig. 6.4). The mean SVL (±SD) of snakes lacking chaetae in their 

fecal samples was 23.6+7.3 cm, whereas the mean SVL of those with chaetae in their 

fecal samples was 36.2+9.3 cm. 
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S. annulatus S. argus S. longifrenis S. nebulatus Dipsas sp. 

Species 
Fig. 6.2. Dietary remains from fecal samples of Dipsadini in PNGDOTH. Diagonal 
stripes represent samples that contained no identifiable prey, light gray represents 
molluscan prey (opercula or shells), dark gray represents presumptive amphibian eggs, 
and black represents oligochaete remains (chaetae). 
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2 3 4 5 6 7 8 9 10 11 12 

Month 
Fig. 6.3. Presence of chaetae in fecal samples of Dipsas sp., across time by sex (males, 
black; females, gray). Months 1 - 3 represent the dry season and 4 -12 represent the rainy 
season. 

There was a significant difference in the components of diet recovered from fecal 

samples for Sibon annulatus, S. argus/longifrenis, and Sibon nebula/us (yC = 36.606. P < 

0.001). Sibon argus/longifrenis found at the pond had a significantly higher frequency of 

eggs in their fecal samples (x~ - 29.824, df = 1, P < 0.001), but there was no significant 

difference in the presence of oligochaete chaetae between snakes at the pond and the 

stream transects (x2 = 0.490, df = 1, P = 0.484). In addition, both male and female S. 

argus from the pond had higher body condition (greater mass per unit SVL) than snakes 

along the stream (males: n= 19 pond and n = 39 stream, F = 21.803, df = 1, P < 0.001, 

Fig. 6.5; females: n = 62 stream and n = 27 pond. F = 45.651, df = 1, P < 0.001. Fig. 6.6). 
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Fig. 6.4. Histogram of presence of chaetae by snout-vent length for Dipsas sp.. Chaetae 
present (gray) and absent (black) in fecal samples. 

o.o H 

SVL 

Fig. 6.5. Relationship of SVL to mass for male Sibon argus/longifrenis. Solid circles and 
line represent snakes captured at the Pond; open circles and dashed line represents snakes 
captured along the stream. 
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SVL 

Fig. 6.6. Relationship of SVL to mass for female Sibon argus/longifrenis. Solid circles 
and line represent snakes captured at the Pond; open circles and dashed line represents 
snakes captured along the stream. 

The survey of riparian and terrestrial transects found small snails (Helicoidea) and 

oligochaetes of the family Lumbriculidae, along with small spiders and insects in the 

bromeliads (n = 4 tank bromeliads). Random samples of leaf litter revealed small spiders 

and insects, but no oligochaetes or mollusks. Along the riparian transect, one egg clutch 

of Hyalinobatrachium colymbiphyllum was found. Small snails (Helicoidea) were found 

in the moss on branches overhanging streams. 

15.0-J 

flj 10 0 -
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Although diverse prey items have been reported from the stomachs or intestines 

of several species of Dipsas and Sibon, members of the group are generally referred to as 

mollusk-eaters (Peters, 1960; Cisneros-Heredia, 2005). However, my results indicate that 

for most Dipsas and Sibon at PNGDOTH, at least during my study period, non-molluscan 

prey comprises most of the diet (Fig. 6.2). 

Among Dipsas, fecal samples of larger individuals were more likely to contain 

chaetae than were those of smaller snakes (Fig. 6.4). Further study is needed to determine 

whether this reflects an ontogenetic shift in prey preference. Chaetae were found in 

83.1% of fecal samples from Dipsas spp. across both rainy and dry seasons, over three 

years, and in snakes captured along both riparian and terrestrial secondary forest 

transects. These results suggest that Dipsas sp. at PNGDOTH feeds regularly on worms. 

Surveys of the leaf litter and bromeliads along transects where Dipsas sp. was commonly 

collected found oligochaetes in the organic matter trapped in the axils of tank bromeliads, 

but not in the terrestrial leaf litter. Oligochaetes are found in bromeliads in mid-elevation 

tropical forests throughout Central America and can reach high densities (Gates, 1942; 

Fragoso and Rojas-Fernandez, 1996). Although generally abundant, oligochaetes exhibit 

patchy distribution (Fragoso and Rojas-Fernandez, 1996). 

In addition to mollusks, Sibon argus in central Panama consumes oligochaetes. 

and S. argus and S. longifrenis take advantage of, at least seasonally, amphibian eggs. 

Information is not available on the foraging behavior of Sibon spp. in Central Panama, 

aside from observations of the consumption of frog eggs (Ryan and Lips, 2004; 
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Montgomery et al., 2007; pers. obs.) and the consumption of a small snail by Sibon 

annulatus (C. E. Montgomery, pers. comm.). Further investigations are needed to fully 

understand the extent of dependency on amphibian eggs and impacts of local amphibian 

declines on snakes. 

My findings may provide insight into the occurrence of Dipsas and Sibon in and 

near bromeliads. The few observations of diurnal retreats of Dipsas include bromeliads 

(Porto and Fernandes, 1996; MacCulloch and Lathrop, 2004; Duellman, 2005; pers. 

obs.). Bromeliads serve as microcosms within tropical forests (Fragoso and Rojas-

Fernandez, 1996), and it is likely that Dipsas sp. and Sibon spp. forage nocturnally in 

bromeliads and then use the epiphytes as a diurnal retreat sites. 

Based on my findings, Dipsas sp., Sibon argus, and S. longifrenis are not 

stenophagic molluscivores, at least not in all populations and/or at all ages. In Central 

Panama Dipsas sp. feeds primarily on oligochaete prey when available, and S. argus and 

S. longifrenis consume both amphibian eggs and oligochaetes when available. However, 

Sibon and Dipsas may be able to utilize molluscivorous morphological specializations 

during times when oligochaetes or other prey are unavailable. Some cichlid fishes 

residing in Lake Malawi of Africa have been documented to feed generally, but in times 

of strong interspecific competition those fishes switch to specialized diets (McKaye and 

Marsh, 1982; Meyer, 1989, Robinson and Wilson, 1998). A similar situation may occur 

within the context of the arboreal snake assemblage at PNGDOTH. where Dipsas sp. and 

some Sibon spp. occur in close proximity to each other and may experience a high level 

of interspecific competition. This may require them to broaden their diets to more 

handling-intensive prey, such as shelled mollusks, during times of intense competition. 
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Oligochaetes appear to be common at PNGDOTH (pers. obs). However, the reportedly 

patchy distribution of oligochaetes (Fragoso and Rojas-Fernandez, 1996) may render 

them difficult to locate or unavailable in some areas. A broader diet may decrease 

interspecific competition between Dipsas sp. and Sibon spp. (but see Solorzano, 2002; 

Ryan and Lips, 2004; Montgomery et al., 2007) and perhaps among age classes of 

conspecifics (Swanson et al., 2003). However, the consumption of amphibian eggs 

recently reported for Sibon spp. may place them in competition with Dipsas spp. in areas 

were amphibians have declined, albeit for oligochaetes as well as mollusks. S. 

argus/longifrenis are more frequently observed along streams; it is not known whether 

their distribution is related to diet (consumption of frog eggs on overhanging vegetation). 

Dipsas sp. outnumbers Sibon argus/longifrenis at PNGDOTH, perhaps reflecting their 

more widespread non-riparian habitat and their greater reliance on oligochaetes, whose 

abundance presumably has not been greatly affected by the amphibian declines. 

Furthermore, individuals of S. argus/longifrenis found to have fed on oligochaetes and 

not amphibian eggs were in poorer body condition than conspecifics that had consumed 

frog eggs, suggesting that the latter may either be less nutritious or simply less available. 

5*. argus/longifrenis appears to be at a disadvantage due to the decline of riparian-

breeding frogs and may persist primarily at areas where arboreally-breeding frogs 

continue to persist. 

Notably, the first observations of Sibon argus and S. longifrenis feeding on 

amphibian eggs (Ryan and Lips, 2004; Montgomery et al., 2007; Ray et al., in review) 

were made concurrently with local amphibian declines attributed to chytridiomycosis 

(Lips et al., 2006). Studies directly following the decline (March-October 2005) indicated 
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that the cryptic species S. argus and S. longifrenis, the two confirmed egg-eating 

Dipsadini at PNGDOTH, were experiencing a decline in body condition and were likely 

being lost from the community (C. E. Montgomery and K. R. Lips, unpublished data; 

pers. obs.). However, since September 2006 only two small individuals of S. longifrenis 

have been captured in PNGDOTH. My limited sampling at Altos del Maria resulted in 

double the captures of S. argus (n = 31) compared to S. longifrenis (n = 13). However, if 

the proportion of the two species had been similar at PNGDOTH prior to the amphibian 

declines, then S. longifrenis has declined significantly. Sibon argus remains relatively 

common, at least during the rainy season and at the Pond. 

The limited number of fecal samples (n = 7) collected for 5". longifrenis and S. 

argus during the first 12 months post-decline contained oligochaete chaetae (n = 1), 

gelatinous material (n = 2), or no identifiable prey (n - 4). No identifiable prey suggests 

that nothing substantial had been consumed recently or an unidentifiable prey was 

consumed and completely digested. Following amphibian decline, anuran egg masses 

became rare and were limited to the most optimal breeding times for frogs (pers. obs.). 

Whether the scarcity of S. longifrenis relative to S. argus reflects a differential response 

to the reduced availability of anuran eggs as a dietary item cannot be determined from the 

available data. However, the effects of the amphibian decline on Sibon spp. must be 

considered when working with this group of snakes. 

Conservation implications in relation to diet.—Tropical forests and their associated 

biotas are rapidly being lost (Kricher, 1999). Now that amphibian eggs and oligochaetes, 

as well as terrestrial mollusks, have been identified as dietary components of Dipsadini, 
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any loss of diversity among these disparate taxa can be expected to impact populations of 

Dipsas and Sibon. As chytridiomycosis continues to spread throughout the range of 

Dipsadini (e.g., Peters, 1960; Lips et al., 2006), it is unknown whether additional species 

within this lineage will also be affected by the absence of amphibian eggs as prey. 

Furthermore, non-marine mollusks are in global decline, for reasons that are 

unclear (Lydeard et al., 2004). Little research has been conducted on terrestrial mollusks 

in the montane region of Central Panama, so it is difficult to assess the current status of 

mollusks at my study sites. Molluscan opercula are regularly found in the feces of 5". 

annulatus. Very few terrestrial mollusks (slugs or snails) are observed in the open, but 

targeted searching reveals small snails among epiphytic mosses in the forest and near 

streams (pers. obs.). 

Finally, illegal collection of epiphytes, including bromeliads that harbor the 

oligochaetes consumed by Dipsas and Sibon, has been intense in some sites in Central 

Panama (pers. obs.). Park rangers and a rugged access road provide some level of 

protection to my study area, so illegal collection of such plants is limited. However, the 

effect of such collection should be considered a conservation threat in some other areas 

where Dipsas and Sibon reside. 

Relationships within Dipsadinae.—The taxonomic relationship of the Dipsadini to other 

genera within the Dipsadinae, such as Geophis, Atractus, and Ninia (Fernandes, 1995; 

Wallach, 1995; Cadle, 2007; Mulcahy, 2007), is unclear (e.g., Peters, 1960; Wallach, 

1995; Cadle, 2007). The demonstration that Dipsas and Sibon consume oligochaetes may 

indicate that this is a dietary synapomorphy shared with closely related taxa. However, it 
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is not known whether Tropidodipsas or Sibynomorphus consume oligochaetes. Published 

records indicate that members of Sibynomorphus (e.g., Laporta-Ferreira et aL 1986; 

Laporta-Ferreira and Da Graca Salomao, 1991; Da Graca Salomao and Laporta-Ferreira, 

2004; Cadle, 2007) and Tropidodipsas (e.g., Smith, 1943; Stuart, 1948; Martin, 1958; 

Kofron, 1985; Wallach, 1995) feed primarily, if not solely, on gastropods, but further 

investigation into the diets of those genera are needed. Furthermore, the demonstration 

the presumably molluscivorous specialists Dipsas and Sibon frequently consume 

alternative prey suggests that detailed studies are needed on congeneric species from 

across the broad range of these genera. 

Future directions.—Although many mollusk-eating snakes are presumed to be highly 

specialized to consume shelled or unshelled molluscan prey, results from my work 

suggest that Dipsas spp. and Sibon spp., at least in Central Panama, will consume 

mollusks, but in general utilize oligochaete or anuran egg prey far more frequently. 

Further analyses must be conducted throughout the range of Dipsas and Sibon to better 

understand the dependency of different populations of these species on oligochaete or 

anuran egg prey. Systematic surveys to determine the population status of terrestrial 

mollusks and oligochaetes should be performed so the availability of prey for Dipsas and 

Sibon is realized. Understanding the relative importance of prey other than mollusks as 

part of the diet throughout the range of Dipsadini may have important conservation 

implications as Sibon spp. is affected by the loss of amphibian eggs as a prey source and 

potentially put into competition with other Sibon spp., as well as Dipsas spp., for 

alternative prey sources such as oligochaetes. 
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CHAPTER VII 

GENERAL CONCLUSIONS 

I evaluated several aspects of the ecology and behavior of snakes comprising a 

Neotropical community. Among these were defensive behaviors of the ophidian 

community; interspecific differences in morphology of the arboreal snake community; 

environmental characteristics of the locations where those arboreal snakes were captured; 

and the diets of the mollusk-eating snakes. 

My evaluation of the arboreal snake assemblage demonstrated variation in 

morphology, with a range of adaptations to arboreality. Differences also were found in 

maximum cantilever distance among five abundant members of the arboreal snake 

assemblage. The ability to bridge gaps in the aboveground vegetation likely facilitates 

arboreal movement. Arboreal species partition the habitat, with distance from the ground, 

distance from water, and the diameter of the perch being the most important factors. 

Correlations were found between the size of the snake and the areas where it was found; 

larger snakes were restricted to larger branches and lower perch heights. This study 

addressed interspecific differences in morphology and habitat. Future studies of such 

differences would be strengthened by the inclusion of the larger members of the arboreal 

assemblage (e.g., Boa, Spilotes, Pseustes). Future studies also should include the full 

range of the vertical dimension of habitat structure. 

I also studied the defensive behaviors of the central Panamanian snake 

community. The repertoire of defensive behaviors for several species was documented 

for the first time. Body thrashing, cloacal discharge, and head flaring were among the 
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most commonly observed behaviors, whereas the formation of a conical pyramid was 

observed only in some species of Dips as and Sibon. Birds, mammals, and other snakes 

are presumed to be the major predators on members of the snake community in central 

Panama. Future studies should include further documentation of potential predators and 

should document snakes' responses to specific predators. 

Recent documentation that mollusk-eating snakes feed on amphibian eggs lead 

me to evaluate the diets of Dips as and Sibon in central Panama. As expected, Dipsas sp., 

S. annulatus, S. nebulatus fed on terrestrial snails, but S. argus and S. longifrenis fed 

primarily on amphibian eggs and Dipsas sp., S. argus, S. longifrenis, and S. annulatus 

also consumed oligochaetes. Future studies should include dietary investigations of 

Dipsas and Sibon at other sites in Central and South America. A thorough survey of 

mollusks at the study site would be required to determine whether the diet of Dipsas and 

Sibon is influenced by the availability of molluscan prey. 

The Neotropics remain a relatively understudied region, and broad generalizations 

about natural history are common. Efforts should be made to expand our knowledge of 

this biologically diverse region to aid in the development of management plans and 

conservation efforts. 
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