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ABSTRACT

EFFECTS OF ELEVATED ATMOSPHERIC C 02 ON ROOT DYNAMICS, BIOMASS 
AND ARCHITECTURE IN A SCRUB-OAK ECOSYSTEM AT 

KENNEDY SPACE CENTER, FLORIDA

Daniel Benjamin Stover 
Old Dominion University, 2007 

Director: Dr. Frank P. Day

A major gap in whole-plant ecology lies with our understanding of root system 

growth, function and distribution. Large belowground structures, in addition to fine 

roots, are of particular interest because of their role in carbon sequestration. Non

destructive methods, including ground-penetrating radar (GPR) and minirhizotron 

observation tubes, were used to investigate effects of elevated C 02 on root biomass, 

dynamics (productivity, mortality, and turnover), root persistence and architecture in a 

fire dominated scrub-oak ecosystem. Open-top chambers have been exposed to elevated 

atmospheric C 0 2 for the past eleven years at Kennedy Space Center, Florida. No 

significant sustained C 02 treatment effects were observed in fine root length density, due 

to root closure. Root density at lower depths increased to match abundance levels 

observed in the upper portions of the soil profile. C 02 significantly affected fine root 

production, mortality, and turnover during the early years of fumigation; however, this 

effect disappeared as fine root closure occurred. Survivorship analysis suggested the 

smallest fine root size classes (<0.1 mm in diameter and <0.25 mm in length) were most 

susceptible to mortality. In addition, root persistence increased with increasing soil 

depth. Coarse root biomass had a significant treatment effect (p = 0.049), with elevated 

roots having more biomass than those under ambient C 02. Overall, 86% of the total
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biomass was belowground with 78% allocated to coarse roots and 22% to fine roots. 

Coarse root architecture determinations confirmed the complexity and abundance of large 

belowground structures in this system. Large roots with sharp angles or that transverse 

the study areas were most likely to be observed in the GPR images. Large root burls 

were readily visualized in the GPR based architecture models. The results suggest that 

coarse roots may play a large role in the sequestration of carbon belowground in scrub- 

oak ecosystems, thus having implications to carbon dynamics, CO2 treatment memory, 

and plant regeneration following disturbances such as fire.
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CHAPTER I 

INTRODUCTION

“Humans are forcing the Earth’s environmental systems 
to change at a rate that is more advanced than their 
knowledge o f the consequences.” -Schneider, 2000

A great amount of attention has been placed on atmospheric carbon dioxide 

(C02) levels over the past few decades. Much of this interest lies in the expected 

alterations of the environment due to climate changes. Since the 1980’s, a large amount 

of funding has been expended to examine the causes and effects of excess C 0 2 in the 

atmosphere. It is generally accepted that human activities (i.e. agricultural practices, 

deforestation, burning of fossil fuels, industrialization, etc.) have amplified background 

atmospheric enrichment rates of C 02. Recent evidence suggests that human activities 

have altered the carbon cycle resulting in conditions that have not been observed on Earth 

during the past several million years (Schlesinger 1991). Data from Mona Loa 

observatory in Hawaii and ice cores from Greenland and Antarctica suggest that human 

activities have increased atmospheric C 0 2 concentrations from 270 to 350 parts per 

million (ppm), a 30% increase in less than 200 years (Schlesinger 1991) (Fig. 1). 

Biosphere models predict that with current anthropogenic trends, the C 02 concentration 

will double within the next 50-100 years to approximately 700 ppm and mean global 

temperature could increase 1.4 - 5.8 °C (Schlesinger 1991, IPCC 2001, Janzen 2004).

The journal model for this dissertation is Ecology.
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Expected changes from this massive alteration to the carbon cycle include rising sea 

levels, modification to precipitation and other weather patterns, and shifts in plant species 

dominance. We must actively find ways to better manage ecosystems and their services 

to handle the modified global carbon cycle.

Plants acquire carbon through photosynthesis by fixation of CO2 molecules, 

primarily in the leaves. Carbon accumulated in biomass effectively immobilizes CO2 

from atmospheric pools, which can then be transferred to belowground structures such as 

roots. At this point, carbon can enter the rhizosphere by means of root turnover and 

decomposition, which, in effect, results in carbon loading into the lithosphere. Overall 

this process has potential for the sequestration of excess CO2 in the environment. 

Although multiple other scenarios and potential solutions have been proposed, this 

natural option is cheap and biologically and environmentally sound. The magnitude of 

carbon sequestration belowground is not fully understood; however, many ecosystem 

level studies are beginning to address this gap in our knowledge. The goal of this 

research was to evaluate the effects of elevated CO2 on terrestrial plant ecology, 

specifically focusing on belowground structures.

CARBON CYCLE

The carbon cycle is one of the most dynamic and important biogeochemical 

cycles on Earth. Carbon is the backbone of life and plays a dominant role in nearly every 

aspect and process in all ecosystems. The largest pool of carbon dioxide resides in the 

ocean; however, the largest flux exists between the atmosphere and vegetation and 

oceans. Schlesinger (1991) suggested terrestrial vegetation could potentially consume 

each molecule of CO2 within organic carbon in approximately 6 years, without any

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



further atmospheric inputs. The atmosphere contains approximately 720 x 1015 g C with 

a mean residence time of nearly 3 years (Schelsinger 1991). Natural variations exist 

within atmospheric CO2 concentrations due to regional, seasonal and mixing variations. 

Seasonality accounts for 50% of the variation in CO2 in the northern hemisphere due to 

spring/summer growing seasons of vegetation and the resulting photosynthetic carbon 

fixation (D’Arrigo et al. 1987). In the southern hemisphere, CO2 concentration 

variability is accounted for by ocean absorption and algal growth (Schlesinger 1991).

Over the past 200 years, humans have altered the steady state cycling of carbon in 

the biosphere. In effect, mankind has taken control of the carbon cycle (Fig. 2), changed 

its processes, re-routed it, and in some cases created and destroyed its functional 

pathways (Janzen 2004). Ecosystem models suggest oceanic processes absorb 107 x 1015 

g C yr'1; however, the ocean surface releases 105 x 1015 g C yr'1. Schlesinger (1991) 

calculated that if all carbon emission halted, the oceans could sequester and therefore 

balance the carbon cycle again. The oceanic carbon pool is estimated to contain 38,000 x 

1015 g C with a mean residence time (MRT) of nearly 350 years due to low levels of deep

15 1water mixing (Schlesinger 1991). Carbon sediment burial (0.1 x 10 g C yr' ) and 

surface flow (0.4 x 1015 g C yr'1) have little effect on balancing the carbon cycle.

Plant biomass accounts for about 560 x 1015 g C, with 1,500 x 1015 g C in the soils 

(Schlesinger 1991). Gross primary production (GPP) removes nearly 120 x 1015 g C yr'1 

from the second largest carbon pool, the atmosphere (720 x 1015 g C) (Schlesinger 1991). 

However, plant respiration returns nearly half that amount (60 x 1015 g C yr'1) back into 

the atmosphere with an average MRT of nine years. Soil respiration and organic matter 

decomposition also release about 60 x 1015 g C yr'1 (Schlesinger 1991). Land use

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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(modified from Schlesinger 1991, 1995).
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change, particularly deforestation/land clearing and cement production, is releasing CO2 

(1.8-2.0 x 1015 g C yr'1) into the air and also reducing the amount of carbon fixation, thus 

lowering GPP (Schlesinger 1991).

Carbon dioxide release from fossil fuels is estimated to be 5 x 1015 g C yr'1 

(approximately 0.7% per year) (Rotty and Masters 1985). Interestingly, only 0.4% (1.5 

ppm or 58% of fossil fuel release) is actually present in the atmosphere and only 30-40% 

(1.6 x 1015 g C) present in the ocean (Tans et al. 1990, Schlesinger 1991). Using the 

present values of carbon pools and fluxes, the data implies that the carbon cycle is 

unbalanced and might contain an unaccounted sink in the system containing nearly one 

billion tons of C yr'1 (2.2 x 1015 g C).

_______ Net Emissions_______  =  Net Changes in the Carbon Cycle_______
Fossil Destruction Atmospheric Oceanic Unknown
Fuel + of Land = Increase + Uptake + Sink 

Vegetation

5 + 1.8 3 + 1.6 + 2.2

(All values are expressed in 1015 g C yr'1) (Schlesinger 1991)

The existence and magnitude of this missing carbon sink (also referred to as the 

residual terrestrial sink) has been extensively debated over the past few decades 

(Houghton 2003, Schimel et al. 2001). Oceanographers suggest that land release and 

GPP are inaccurate while others suggest that soil and vegetative carbon fixation (or 

potential stimulation) estimates are too low. Despite arguments accounting for carbon in 

the biosphere, it is agreed that fossil fuel burning for human use and industry has created 

a new and large biogeochemical flux that never before existed (Janzen 2004).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



7

Over the past 25 years extensive research has been conducted on the effects of 

elevated C 0 2 on plant growth and functioning (Ward and Strain 1999, Korner 2001, 

Bazzaz and Catovsky 2002, Poorter and Navas 2003). The results of these studies have 

predicted shifts in dominance within plant communities, changes in resource availability 

and allocation, and most importantly altered ecosystem services. The necessity for large- 

scale ecosystem studies on C 0 2 enrichment is currently being addressed; however, 

belowground responses have traditionally been ignored or over-simplified despite the 

important role they might play in carbon sequestration (Mooney 1991, Mooney et al 

1991, Komer and Amone 1992, Day et al. 1996).

ROOT ECOLOGY

Harper (1991) stated that the evolution of roots represents the most dramatic event 

in the evolution of the plant kingdom. However, plant roots have historically been the 

most ignored aspect of plant biology. Ironically, this forgotten portion is likely the most 

essential component of the entire plant biological system. Root systems are comprised of 

a congregate of several individual components that together constitute the functional 

“hidden half’ of plants (Wilcox 1968, Bohm 1979, Feldman 1984, Waisel et al. 2002). 

Plant roots perform numerous biologically significant tasks including nutrient and water 

uptake, photosynthate storage, carbon compound release for mycorrhizal interactions, 

structural support and anchorage to name just a few. All of these functions are performed 

in a heterogeneous soil environment that presents a wide variety of obstacles to roots, 

constraining their functionality. These include physical (pore size, abrasion etc), 

chemical (diffusion, ions and buffering), and biological (microbes, parasites/insects and 

competition) factors.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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It is estimated that roots can comprise 40-85% of net primary productivity in 

some ecosystems (Fogel 1985, Fitter 1987). Despite the importance of belowground 

structures, little research has been conducted on root systems. The inherent opaque 

nature of soil and the vast network of roots that are deployed into the rhizosphere make 

quantification extremely difficult (Fitter and Stickland 1992, Nielsen et al 1997). 

However, over the past decade advances in technology have permitted a better 

understanding of the importance of roots to overall plant growth and development. 

Minirhizotron tubes (Johnson et al. 2001, Day et al. 1996), ground-penetrating radar 

(Butnor et al. 2003) and glass plate rhizotron techniques (Gross et al. 1992) have allowed 

excellent, but limited quantification of root growth and development. Despite the 

difficulties associated with investigating root systems, an ever-increasing body of 

knowledge about the ecology of root systems has started to emerge (Tierney et al. 2003).

Plant root systems can be divided into two major classes: fine roots and coarse 

roots. Fine roots are typically defined as those roots with a diameter less than 2 mm, 

while coarse roots are defined as those with larger diameters. Coarse roots are long lived 

and associated with anchorage, carbohydrate storage and transport; whereas, short-lived 

fine roots are associated with water and nutrient uptake (Lyford and Wilson 1964, Lyford 

1980, Vogt and Bloomfield 1991, Bemtson 1994).

FINE ROOTS

Fine roots are particularly interesting due to their functional role in acquiring 

resources for the plant. Studies have shown that fine roots exhibit relatively rapid 

turnover in the soil. Jackson et al. (1997) calculated the total fine root carbon pool to be 

5% of the atmospheric pool and 33% of annual NPP. The growth and maintenance cost

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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for this essential component of the root system can require as much as 50% of the daily 

photosynthate produced in crop plants (Lambers 1987, Wells and Eissenstat 2001). More 

importantly, fine root mortality is a major source of carbon and other essential nutrients 

(e.g. N, P, K, Ca and Mg) in the soil (Cox et al. 1978, Joslin and Henderson 1987, 

Hendrick and Pregitzer 1992, Gordon and Jackson 2000). Root mortality can deposit 18- 

58% more nitrogen into the soil than litterfall alone (Vogt et al 1996, Wells and 

Eissenstat 2001, Hendrick and Pregitzer 1992). In addition, these small diameter roots 

might be the most prominent sink for new carbon sequestered in terrestrial NPP (Jackson 

et al. 1997, Higgins et al. 2002). However, the external and internal factors and controls 

that govern root mortality have yet to be fully understood (Huck et al. 1987, Pritchard 

and Rogers 2000, Pregitzer 2002, Zobel 2003). Recent work on fine root dynamics 

suggests the interplay of endogenous and exogenous controls in determining root 

longevity (Tierney et al. 2003).

Inherently, root dynamics are controlled by environmental factors such as soil 

temperature (Fitter et al. 1998, 1999), soil moisture (Caldwell 1976, Hook and Lauenroth 

1994, Kramer and Boyer 1995) and nutrient availability (Nadelhoffer et al. 1985, 

Marschner 1995, Gill et al. 2002). Tierney et al. (2003) found that root length was 

directly correlated with mean monthly soil temperature. Other studies have shown that in 

northern forests, without water limitations, fine root production peaks in the late summer 

and early fall when soil temperatures are highest (Burke and Raynal 1994, Steele et al. 

1997, Burton et al. 2000, Tierney and Fahey 2001, Tierney et al. 2003). However, this 

increase in root production with increasing temperature is balanced with increases in root 

mortality (Forbes et al. 1997, King et al. 1999, Pregitzer et al. 2000).
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Not all fine roots die at the same rate. Fine roots appear to show a great deal of 

variability in longevity with average root life spans ranging from less than one to more 

than eight years (Harris et al. 1977, Trappe and Fogel 1977, Persson 1978, 1979,1980, 

Santantonio 1979, Grier et al. 1981, Keyes and Grier 1981, Joslin and Henderson 1987, 

Hendrick and Pregitzer 1992). Wells and Eissenstat (2001) found that fruit tree fine roots 

< 0.3 mm in diameter did not typically survive more than one growing season and fine 

roots > 0.5 mm did not survive the low temperatures during a winter period. In most 

deciduous trees, nearly half of the fine roots were lost during periods of leaf senescence 

(Hendrick and Pregitzer 1992, 1993). Since roots transport large amounts of resources 

into the soil, the predicted increase in temperature (1-3.5 °C by the year 2100) could have 

profound influences on seasonal shifts of photosynthates as well as respiration and other 

essential belowground processes (Houghton et al. 1995, Eissenstat et al. 2000)

The physical nature of roots also controls the longevity of the root system. For 

example, small diameter roots tend to have lower tissue density and C:N that make them 

more susceptible to mortality and decomposition (Eissenstat and Yanai 1997, Gill et al. 

2002). Gordon and Jackson (2000) found that roots with diameters less than 2 mm 

typically had higher nutrient concentrations and lower amounts of carbon than larger 

roots. This size class is of particular interest due to its primary function in resource 

uptake and exploration (Jensen and Petersen 1980, Cunningham et al. 1989, Comas and 

Eissenstat 2004).

Tree roots can have a wide distribution in the environment, expanding nearly 20 

m from the trunk and to depths that exceed 10 m (Pregitzer 2002). Hendrick and 

Pregitzer (1992) noted the difference in root distributions with relation to depth and
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found longer, thiner roots at shallow depths. In northern forests, these shallow root 

systems (less than 40 cm) can consist of up to 50% of the fine root biomass (Hendrick 

and Pregitzer 1996). In addition, they found that fine roots closer to the soil surface had a 

higher turnover rate. In CO2 enriched plots, Day et al. (1996) found enhanced root 

proliferation near the soil surface (0-12 cm) and again at lower depths (49-61 cm). These 

layers of enhanced root growth correspond to zones of high nutrient and water 

availability (shallow) and water availability (deeper). In grassland systems, decreasing 

root mortality was correlated with increasing soil depth, with more than 45% of the 

turnover occurring in the moist top 6 cm (Amone et al. 2000). Also, fine roots found 

deeper in the soil have lower respiration rates that might correlate to greater longevity. 

Some studies suggest that roots might acquire different resources in the soil profile at 

different times in their lifespan, implying alterations in functionality (Gebauer and 

Ehleringer 2000, Pregitzer et al. 2000). Overall, little is known about the dynamics of 

deep roots or about nutrient and carbon cycling in lower soil profiles (Hendrick and 

Pregitzer 1996).

Fine roots have a dual nutritional role in the soil. First, fine roots function as 

organs for nutrient uptake. Secondly, fine roots have a rapid turnover rate and replenish 

the soil with carbon and nutrients and account for approximately 49-56% of the total 

carbon and 48-58% of nitrogen cycled in the soil (Hendrick and Pregitzer 1993). The 

mean residence time of carbon in fine roots averages 4.2 and 1.25 years for pine and 

sweetgum respectively and is influenced by a number of environmental factors 

(Matamala et al. 2003). An essential understanding of nutrient cycling in both soil and 

fine roots has been limited by inadequate techniques to quantify fine root dynamics (Kurz
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and Kimmins 1987, Hendrick and Pregitzer 1992, Pregitzer et al. 1995). However, 

nutrient dynamics of the rhizosphere might be subject to change with increasing levels of 

atmospheric carbon dioxide.

The effect of increasing CO2 on fine roots has produced a number of interesting 

and sometimes conflicting results. Amone et al. (2000) found a significant increase in 

nutrient use efficiency under elevated CO2 . However, Pregitzer et al. (1995) found that 

increasing CO2 increased fine root length with little change in litter quality despite 

changes in nitrogen availability; however, mean fine root lifespan decreased. Pritchard et 

al. (2001) found that rate of root turnover was unchanged by increasing CO2 . Increasing 

C 0 2 is also suspected in influencing the development and deployment of roots in the soil. 

For example, low order fine roots have a low carbon construction cost but higher 

respiration, mortality and decomposition rates than higher order fine roots (Eissenstat and 

Yanni 1997, Pregitzer et al. 2002, Guo et al. 2004). In addition, root nitrogen 

concentration and biomass decreases with increasing root order, which has strong 

implications on the growth rate and mortality of fine roots (Guo et al. 2004).

Increasing C 0 2 influx and the resulting changes in carbon transfer from the 

atmosphere through the plant to the roots could influence ecosystem carbon storage 

beyond what is typically sequestered in biomass and soil organic matter (Pregitzer et al. 

1995). In tropical systems, it is believed that carbon will be sequestered deeper in the soil 

profile where nutrient limitations exist, resulting in slow decomposition and longer mean 

residence times (Nepstad et al. 1994, Fisher et al. 1994, Fitter et al. 1997). Another 

important, but poorly understood phenomena involved with carbon transfer is root 

exudation. Root exudation is a carbohydrate expensive process by which plants release
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carbon compounds that modify microenvironmental conditions making nutrients labile 

and encourage mycorrhizal colonization (Norby et al. 1987). A better understanding of 

fine root systems and their ecosystem services could help in buffering anthropogenic 

changes in the environment.

COARSE ROOTS AND ROOT ARCHITECTURE

Coarse roots differ greatly from their fine root counterparts not only in size, but in 

function and potential ecosystem services. Large diameter roots function in carbohydrate 

storage, anchorage and transport for the whole plant system. Interestingly, coarse roots 

are suspected to be a major contributor to carbon sequestration due to their large carbon 

demands for long-term structural construction. However, only recent preliminary studies 

with ground penetrating radar (GPR) have been able to non-destmctively elucidate the 

growth, mass, and architecture of these unique structures (Butnor et al. 2001, 2003). It is 

also important to note that in sclerophyllous shmblands, the root system is comprised of 

coarse roots, large rhizomes, underground stems and enormous burls or lignotubers 

(Cannadell and Zedler 1995). This suggests that the belowground ecology of a scrub 

ecosystem might be dominated by these large root structures, thus implying a potentially 

large source for carbon sequestration.

To understand roots in an ecological perspective, focus must be placed on the 

morphology of a root system (i.e. root system architecture) rather than on individual roots 

(Fitter 1987). This area of study represents one of the major gaps in our knowledge of 

root biology and focuses on the shape and structure of root systems. Root architecture is 

defined as the explicit spatial configuration of a root system (Lynch 1995, Nielsen et al.

1997). The spatial deployment of roots is critical for the growth and survival of plants
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due to the non-uniform distribution of resources in the environment (Nielsen et al. 1997). 

The shape and structure of root systems determine the ability of plants to capture and 

move essential resources (Caldwell 1987, Fitter et al. 1991, Thaler and Pages 1998). Past 

studies on root system architecture have not been successful in developing an 

architectural classification system due to the high degree of plasticity (Cannon 1949, 

Weaver 1958, Krasilnikov 1968, Fitter 1987). Until recently, there have not been 

adequate methods or techniques to study architecture under laboratory conditions (Fitter 

1982, 1987). Studies in natural systems still elude ecologists (Fitter and Stickland 1992, 

Bemtson 1994). Even Leonardo da Vinci recognized the importance of plant architecture 

in his Notebooks. He postulated “All of the branches of a tree at every stage of its height 

when put together are equal in thickness to the trunk (below them)” (Spek 1997).

To define the architecture of roots, one must consider three essential features that 

control the overall form of root systems: 1) balance of primary and adventitious roots, 2) 

degree of branching, and 3) plasticity of branching (Fitter 1987). Specifically, root 

system architecture can be quantified by five main characters: the distribution of branches 

within the system, or its topology, the lengths and diameters of intemodes or links within 

the system, and the two angles of branching, which together can be regarded as the 

geometry of the system (Fitter 1987, Fitter and Stickland 1991). The overall architecture 

results from growth and distribution of branches (axial and radial) (Thaler and Pages

1998). However, the patterns of growth are often dependent on environmental 

conditions, genetics and their interplay among different species (Grime et al. 1986, Fitter 

1991, Zobel 1991, Bemtson 1994, Fitter and Stickland 1991).
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Elevated CO2 could influence the functionality of root architecture (Nielsen et al. 

1994). Rogers et al. (1999) believed that a highly branched architecture will be favored 

in elevated CO2 environments resulting in a decline in the root systems proportional 

exploration efficiency. Exploration efficiency (EE) is defined as the volume of soil 

exploited per unit volume of root or per unit carbon cost (Fitter 1991, Berntson 1994). 

Therefore, in high CO2 environments, more carbon is available for root growth and 

production, which will in turn lead to increased deployment and foraging to meet 

additional resource demands.

Human induced changes on the environment and a global disruption of the Earth’s 

equilibrium will have profound influences on ecosystems. Current studies on terrestrial 

plant communities have only begun to integrate the plant system as a whole let alone on 

larger scales. However, it is imperative that we examine the effects of atmospheric CO2 

enrichment on often-excluded belowground components of ecosystems in order to 

understand, predict and potentially reverse global changes.

STUDY GOALS AND OBJECTIVES

This study will hopefully link a number of critical and fundamental aspects of 

root ecology in an attempt to understand how elevated CO2 affects root growth and 

development. Increasing our understanding of root ecological processes (on multiple 

scales) will increase our understanding of carbon transfer and sequestration into the soil 

and potentially refine our estimates of the global carbon cycle.

This dissertation is a part of a larger long-term research project on Merritt Island 

at Kennedy Space Center, Florida. The broader study has examined the impacts of 

elevated atmospheric CO2 on a nutrient poor scrub-oak ecosystem for the past eleven
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years through the use of open-top chambers receiving ambient or elevated CO2 

treatments. Our study ecosystem is dominated by a periodic fire disturbance. The work 

presented here expanded on past studies on the belowground contribution to plant 

productivity and carbon storage. Particularly, this project utilized non-destructive 

technologies (i.e. ground penetrating radar and minirhizotrons) to better understand this 

system.

The primary goals and questions of this study were: Does elevated carbon 

dioxide influence the growth and morphology of roots? Have fine root dynamics (i.e. 

production, mortality and turnover) changed since initial CO2 fumigation? What 

environmental and morphological factors control fine root survival? Are there 

differences in the coarse root biomass between CO2 treatments? Can root architecture be 

determined with ground-penetrating radar?

I hypothesized that fine root productivity, mortality, and turnover will be higher 

after several years of CO2 fumigation compared to earlier findings by Dilustro et al. 

(2002). Also, I hypothesized that large diameter fine roots will persist longer than 

smaller sized roots in the scrub-oak ecosystem. In addition, fine roots exposed to 

elevated CO2 as well as those grown deeper in the soil profile will have greater 

survivorship compared to those grown under ambient CO2 or near the top of the soil 

profile. I hypothesized that GPR signal strength is correlated to root biomass and can be 

used to determine coarse root biomass in the scrub-oak ecosystem. Coarse roots 

continually fumigated with elevated CO2 will also have a greater biomass compared to 

those treated with ambient CO2 concentrations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



17

Chapter III presents minirhizotron results on fine root dynamics, including fine 

root production, mortality and turnover, as well as findings on the effects of C 02 and 

diameter on fine root survivorship. Chapter IV addresses the effects of elevated C 02 on 

coarse root biomass by means of ground penetrating radar (GPR) and presents a 

predictive relationship between mass and GPR imaging. Chapter V examines the ability 

to quantify coarse root architecture with GPR. Finally, Chapter VI summarizes these 

results in the context of the role they play in carbon sequestration and terrestrial root 

ecology.
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CHAPTER II 

SITE DESCRIPTION AND OVERALL EXPERIMENTAL DESIGN 

SITE DESCRIPTION

The study site for this research is located on Merritt Island in Brevard County, 

Florida (28° 36’ 29” N; 80° 40’ 15” W) (Fig. 3). Merritt Island, located on the northern 

part of Kennedy Space Center (KSC), is a barrier island with topography ranging from 

sea level to about 2 m above mean sea level. The site is located in a subtropical climate 

with mean daily temperatures ranging from 22.3 °C in January to 33.3 °C in July. Mean 

daily minimum temperatures are 9.6 °C and 21.9 °C for January and August respectively 

(Huckle et al. 1974, Mailander 1990) (Fig. 4). The KSC site averages 131 cm 

precipitation per year with high year-to-year variability (Schmalzer and Hinkle 1987).

The area has a pronounced wet and dry season, with the rainy season occurring from May 

to October, with the remainder of the year being mostly dry (Mailander 1990) (Fig. 4 and 

5). Fire events, usually from lightning, are quite common during dry periods in April and 

May (Schmalzer and Hinkle 1991). The site experienced a severe drought in the 1998- 

growing season.

The soils are primarily sandy and dominated by two main types, Paola and 

Pomello, which were deposited in multiple sedimentation and erosion events during the 

Ecocene (-240,000 ya). Paola is an excessively drained Entisol (Spodic 

Quartzpsamment) originating from Eolian sands. Pomello is a moderately well drained 

Spodosol (Aemic Haplahumod) that was derived from deposited marine sands (Huckle et 

al. 1974, Baldwin et al. 1980, Schamlzer and Hinkle 1987). The soils located at our site
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FIG. 3. Study Site on Merritt Island at Kennedy Space Center, Florida, USA.
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FIG. 4. Average air and soil temperature (°C) at Merritt Island at Kennedy Space Center, 
Florida. Temperatures were averaged every 15 days between January 2000 and May 
2006. Air temperature error bars represent 1 S.E. (T. Powell, personal communication).
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FIG 5: Average soil moisture (%) and precipitation (mm/month) at Merritt Island at 
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2000 and December 2005. Continuous grey line in soil moisture represents a rolling 10- 
year average trend for each month. Grey bars for precipitation represent monthly 
averages while the black line represents a 10-year rolling average for precipitation.
(T. Powell, personal communication).
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are typically acidic (pH 3-4), nutrient poor (most notably nitrogen limited), with low 

organic matter content.

The scrub-oak community is primarily comprised of clonal, horizontally 

expanding C3 species Quercus myrtifolia Wasd. (76%), Quercus geminata Small (15%), 

Quercus chapmanii (7%), Serenoa repens (Bartram) Small and Lyonia ferruginea (Walt.) 

Nutt. Recent studies on the clonal structure of dominant Quercus species show that the 2 

ha experimental site has a significant amount of genetic diversity (Ainsworth et al 2003). 

This ecosystem was chosen for its woody perennial, deciduous growth form that has a 

nutrient cycle similar to other forested ecosystems. The small aboveground (and 

resulting larger belowground) stature of scrub communities makes them ideal candidates 

for study with open top chambers (Fig. 6). The scrub-oak ecosystem was selected 

because it represents a perennial, subtropical woody community with high evaporative 

demand and low nutrient availability (Day et al. 1996).

The scrub-oak ecosystem is historically a fire-controlled system that is maintained 

with a natural 10-15 year fire cycle (Schmalzer and Hinkle 1991). Previous studies 

suggest the ecosystem requires at least three years for recovery (Schmalzer and Hinkle 

1991). Following a typical bum event, soil pH and the abundance of Al, Cu, and Ca 

increased while nutrients such as P, K, Mg, Na, and Fe all initially decreased in 

abundance; however, all properties returned to pre-bum levels within 6-18 months 

(Schmalzer and Hinkle 1991). Nitrate and ammonium typically have a delayed (-1-2 

year) increase in abundance post-bum due to recovery of soil microorganisms, leaching 

and volatilization (Schmalzer and Hinkle 1991). All of the dominant species resprout 

following a bum event, with saw palmetto having greater initial growth rates compared to
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FIG. 6. Typical eastern Florida scrub-oak vegetation.
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oaks. Our study site was burned in February 1996 before treatments began to examine 

treatment effects from the beginning of a growth cycle (Day et al. 2006). 

EXPERIMENTAL DESIGN

In this project, open top chambers (OTC’s) were used to simulate elevated CO2 

environments (Drake et al. 1989). OTC’s are considered well suited for experimental 

studies of ecosystems with small stature vegetation similar to that found in scrub oak 

communities (Mooney and Koch 1994). The OTC’s are octagonal in shape with sides 

139.9 cm wide, a maximum diameter of 356.6 cm, and a height of 365 cm (Fig. 7).

A total of 16 chambers were fabricated with PVC frames covered with clear 

mylar sheeting. Carbon dioxide treatments, initiated on May 14, 1996, included eight 

ambient (-350 ppm CO2) chambers and eight elevated (-700 ppm CO2 ) chambers.

Carbon dioxide treatments were applied with a continuous air circulation system 24 hours 

a day. OTC’s were constructed and treatments applied following a controlled bum of the 

system in late 1996. Blocks (consisting of one representative from each treatment) were 

assigned according to similarity of pre-existing vegetation composition (N=8) (Fig. 8).
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FIG. 7. Open top chamber design; air drawn into the blower exits into the chamber.
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KSC TUBE LOCATIONS
Q  = ELEVATED

(EVEN NUMBERS)

O  = a m b i e n t
(ODD NUMBERS)

O = CONTROL

SHED

Block 1 -  Chambers 1, 16, 21 
Block 2 -  Chambers 2, 3, 22 
Block 3 -  Chambers 4, 15, 23 
Block 4 -  Chambers 5, 14, 24 
Block 5 -  Chambers 12, 13, 25 
Block 6 -  Chambers 8, 11, 26 
Block 7 -  Chambers 6, 9, 27 
Block 8 -  Chambers 10,17, 28

FIG. 8. Map of the study site showing the layout of chambers. Elevated = ambient +350 
ppm; ambient = ambient; control = chamberless ambient plots
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CHAPTER III 

FINE ROOT DYNAMICS AND SURVIVORSHIP 

INTRODUCTION

The dynamic processes of root production, mortality and turnover ensure fine root 

functionality by producing new roots for uptake while removing older less efficient, non

functional roots. In addition, fine roots have the potential to serve as the primary means 

of carbon sequestration within soil carbon pools. Caldwell (1997) suggested that 

annually nearly 25% of roots are replaced. Jackson et al. (1997) estimated that fine root 

carbon pools globally equate to approximately 5% of the atmospheric pool. Soils can 

potentially store nearly three times the amount of carbon than plants; however, the 

majority of this carbon enters the soil pools via plants (Schlesinger 1997, Dilustro et al. 

2002). Therefore, the relative contribution of fine roots is important to global carbon 

budgeting, although the impact of root production and turnover to long and short-term 

sequestration is often dependent on temporal scale (Hendrick and Pregitzer 1996). Fast 

turnover means rapid carbon accumulation in the soil; whereas, long turnover periods 

mean slower sequestration. However, the processes and mechanisms are poorly 

understood.

A dominant control over fine roots lies in their survivorship or vitality. Recent 

fine root studies indicate fine root age, birth date, season, soil conditions, climate, 

nutrient availability, mycorrizhal infection and herbivory influence survival or longevity 

(See Ruess et al. 2003 for a summary). Root lifespan is quite variable depending on 

environmental conditions and ecosystem type, but typically fine roots persist from a few
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weeks to a few years (Eissenstat and Yanai 1997). In forested ecosystems, the average 

root turnover ranges from 0.348 -  0.362 yr"1 in NC and Michigan (Wentz and Chamie 

1980, Saterson and Vitousek 1984, Martinez et al. 1998). In a pine dominated system, 

Johnsen et al. (2005) found that root turnover was very slow and that 0-2 mm diameter 

roots had a mean residence time of 4-5 years compared to the predicted few weeks -  3 

years range. The dynamic relationship that roots have with the rhizosphere and soil 

supports the concept that roots have different traits than their aboveground leaf 

counterparts; therefore, root lifespan is not correlated to leaf lifespan (Withington et al. 

2006).

Root diameter also controls the survivorship of roots in the soil. Fine roots are 

typically more dynamic than coarse roots (Pregitzer et al. 1993, 1997). This leads to 

problems in accurate measurements. Soil cores are better for sampling larger roots; 

whereas, minirhizotrons are better at capturing smaller, more dynamic roots (Tiemey and 

Fahey 2002). Mean turnover time for fine roots in forested ecosystems typically range 

from several months to several years for roots <10 mm diameter, and finest roots 

(described as < 2 mm in diameter) persist 5 months to 2 years with an average of 10 

months (Gill and Jackson 2000). Tiemey and Fahey (2002) determined that root 

diameter and survivorship were related and that the probability of survival increased 43% 

with each 0.1 mm increase in diameter. Wells and Eissenstat (2001) indicated that fine 

root longevity was inversely related to diameter. The definition of a fine root (i.e. size) 

and selection of categorical size classes is a central and problematic issue for 

comparisons with other studies.

In addition to diameter, soil depth appears to control root survival. Roots in the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



29

upper 20 cm accounted for greater than 50% of the root length mortality between April 

and September in a northern decidous forest (Hendrick and Pregitzer 1996). Norby et al. 

(2004) emphasized 79% of sweet gum roots were concentrated in the upper 30 cm of the 

soil. Five years later the same depth had 63% of the roots; whereas, a three and four fold 

increase occurred in the 30-45 and 45-60 cm depth classes respectively. In a shrub 

ecosystem, the majority of root production occurs in the top 10 cm of the soil for the first 

three years of growth (Trumbore et al. 2006). The role of depth - root production 

interaction has profound implications for dynamics and carbon sequestration potential. 

Hendrick and Pregitzer (1996) reported that shallow and deep root mortality were not 

synchronous and that root mortality following leaf senescence was concentrated at depths 

greater than 50 cm. This implies that there is a temporal uncoupling between root 

dynamics within and among soil depths (Hendrick and Pregitzer 1996).

Over the past few decades, the effects of increasing CO2 on root dynamics have 

received growing attention, though many of the results are conflicting. Pregitzer et al. 

(1995) found that elevated CO2 increased root lifespan and growth rates in northern 

hardwoods. Conversely, Bemtson and Bazzaz (1997) found that increasing CO2 

decreased root lifespan and therefore increased root turnover in Betula papyrifera. The 

impacts of elevated CO2 might be dependent on additional environmental factors such as 

nutrient availability. Pregitzer et al. (1993) indicated that longevity might be inversely 

related to the duration of the resource supply. Therefore, lifespan would be increased if 

construction costs relative to maintenance costs are high and if the nutrient uptake rates 

are low (Eissenstat et al. 2000). However, many studies of turnover and survivorship are 

limited to a single growing season and lack detailed resolution.
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The primary objective of this study was to examine fine root production, 

mortality, and survivorship in a scrub-oak ecosystem after 8 years of CO2 fumigation. 

Shrublands represent one of the least studied and poorly understood ecosystems with 

respect to root dynamics (Lauenroth and Gill 2003). Specifically, we hypothesized that 

1) fine root productivity, mortality, and turnover would be higher after several years of 

fumigation compared to early in the study, 2) larger diameter fine roots would persist 

longer than smaller sized roots in the scrub-oak ecosystem, 3) fine roots would persist 

longer with increased soil depth, and 4) fine roots exposed to elevated CO2 would persist 

longer.

METHODS 

Root Measurements

In early March 1996, two butyrate minirhizotron tubes (5.7 cm diameter) were 

installed in each of the 16 chambers for a total of 32 minirhizotron tubes. The tubes were 

installed at a 45° angle to the soil surface to a sampling depth of approximately one 

meter. To prevent light and water from entering the tube, the portion of the tubes 

extending above the soil interface was blackened and capped. Each tube was etched with 

160 numbered frames (9 mm x 13 mm) along the side. Images were taped on Hi8 (mm) 

videotape with a Bartz Technology® BTC-2 minirhizotron camera system (Bartz 

Technology Co., Santa Barbara, CA, USA). The root images were captured, digitized 

and analyzed using ROOTS® version 2.2 (Michigan State University Remote Sensing 

Laboratory) to identify phenological state and measure fine root length and width. The 

ROOTS® software permits the comparison of individual roots between sampling periods 

to determine changes in length and persistence through time (i.e. survival and cohorts).
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Root length density (RLD) is defined here as root length per area observed (Dilustro et al. 

2002). Measurements were initiated in September 2002 and continued every three 

months till June 2004 when repetitive hurricane activity made it impossible to maintain 

the three-month measurement regime.

These measurements on root dynamics were compared to those taken during the 

initial three years of the study (Dilustro et al. 2002). Similar to that study, root 

production is defined as the new root length between sampling dates. Root mortality is 

defined as the measured root length at time t that has disappeared at time M-l. All 

calculations for fine root dynamics were made using data with approximately a 90-day 

sampling interval and are expressed as root length per area per day (mm cm' d ay ').

Turnover was determined by following roots and cohorts over the duration of the 

experiment and interpreting the disappearance of roots as turnover. This measure was 

calculated on an individual root basis by computing the fraction of measured length (loss) 

of new roots between time t and time t+1. Complete disappearance of an individual root 

was computed as 100% turnover. If a root persisted to the next sampling period there 

was no mortality. This calculation on each individual root removes any bias associated 

with the effect of absolute root length in computing life span. The life span of roots 

observed in only one sampling period was assumed to be one day. Turnover is presented 

here as fractional root loss per day. The initial measurement date (September 2002 

cohort) was used to determine the standing RLD crop and was censored since the date of 

birth could not be determined.

The effects of CO2 enrichment on fine roots were tested using a repeated 

measures ANOVA. Turnover was analyzed using cohort analysis (Hendrick and
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Pregitzer 1993). Frames were pooled into eight vertical depths. Depth and date were not 

independent, and thus were analyzed as repeated measures. The MIXED procedure was 

used in SAS (SAS Institute 1990) with chamber as the random effect and the fixed effects 

were CO2 treatment and depth. Blocking was effective due to the f-values greater than 

1.0 for the repeated measures analysis. The ANOVA tables calculated by PROC MIXED 

lack the separate error term due to the estimation of the covariance parameters via the 

maximum likelihood approach (Khattree and Naik 1999). When the three way 

interactions were calculated to be strongly non-significant (Pr > F = 1), the three-way 

interaction was removed from the model to conserve degrees of freedom (Khattree and 

Niak 1999).

Fine Root Survival

Fine root variables, including CO2 treatment, diameter, length and soil depth, 

were examined to determine effects on survivorship. Using measurements from the 

minirhizotron study, root diameter was determined and divided into 3 classes (< 0.1, 0.1 

-  0.2, and > 0.2 mm). Fine root length was divided into 5 classes, which included < 0.25 

mm, 0.25 -  1.0 mm, 1.0 -  2.0 mm, 2.0 mm -  1.0 cm and > 1.0 cm. Root depth was sub 

divided into eight 11 cm depth classes. Similar to Coleman et al. (2000), fine root 

survival was defined as the period from first observation till the period of last 

observation. Roots that persisted beyond the final observation date were coded as right- 

censored from the data analysis (Allison 1995).

The effects of the four covariates (CO2 treatment, diameter, length and 

depth) on fine root survival were determined using a stratified Cox proportional hazard 

regression (SAS PROC PHREG). Hazard is defined as the instantaneous risk of
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mortality during a given time interval, conditioned on the baseline survival to t (Allison 

1995, Wells and Eissenstat 2001, Anderson et al. 2003). The hazard of a given 

individual, dependent on time t is the product of two components: the baseline hazard 

function and the linear function of k covariates. This can be mathematically expressed as

h(t) = /z0(t)exp(Pix,i + ... + fikxlk)

(see Allison 1995 for further explanation). This method uses the partial likelihood 

approach to estimate the P coefficients (i.e. parameter estimates) that are correlated with 

each covariate in the model (Cox 1972). PHREG calculates the chi-squared statistic to 

test the null hypothesis that P is equal to zero. Negative and positive parameter estimates 

respectively indicate decreases and increases of hazard with increasing covariate value 

(Wells and Eissenstat 2001). In addition, the hazard risk ratio is reported for each 

covariate and is defined as e .̂ An estimated percent change in hazard associated with 

change in covariates (controlling for other covariates) can be determined with

[exp(P) -l]xl00

(Allison 1995, Wells and Eissenstat 2001, Wells et al. 2002). In addition, cohort 

survivorship was analyzed with life-table survival techniques utilizing the SAS PROC 

LIFETEST. Data were pooled by season among the 2002 and 2004 observations. In this 

analysis, the hazard function (i.e. age-specific failure rate) was defined as the probability 

that a root of a specific age group will die (fail) during the given time interval (Coleman 

et al. 2000).

RESULTS

Fine Root Productivity, Mortality, and Turnover

In the first three years of the study, a treatment effect was present where fine roots
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grown under elevated CO2 conditions produced greater RLD than those grown under 

ambient CO2 conditions (Dilustro et al. 2002). This treatment effect was lost as the mean 

RLD between treatments converged due to fine root closure (Day et al. 2006). Fine root 

production varied over time (p=0.058; Fig. 9). Early in the study, a significant CO2 

treatment effect was present; however, this effect has disappeared with CO2 treatments 

converging. Interestingly, roots grown under ambient CO2 fumigation had slightly higher 

mean production and mortality compared to elevated treated roots but this difference was 

not statistically significant. Additionally, significant variations in fine root productivity 

were observed over time within the 8 depth classes; however, no distinct pattern emerged 

(date*depth interaction p=0.028). This variability might result from fine roots exploring 

and filling the soil profile as root-soil carrying capacity is reached (i.e. root closure). 

Dilustro et al. (2002) found fine root mortality greater in late 1997 in elevated CO2 

treatments. Currently, the CO2 treatment effect in root mortality has converged (Fig. 9); 

however, mortality has increased with increasing depth regardless of CO2 treatment due 

to increased root growth in the lowers depth classes (p< 0.001). Fine root turnover was 

greater in elevated CO2 treatments in 1997; however, this treatment effect was lost in the 

latter years of the study and is most likely attributed to root closure. Turnover increased 

in magnitude (fractional root loss per day), but the overall CO2 treatment effect has 

disappeared. Similar to fine root mortality, root turnover varied significantly by depth 

(depth p< 0.001). Greatest mortality and turnover were observed in the upper 50 cm of 

soil.

Fine Root Morphology

Fine root diameter (Fig. 10) increased over the duration of the study with an early
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treatment effect dissipating later in the study (date*treatment p=0.034). Most notably, 

root diameters were largest in the upper 50 cm of the soil profile (p< 0.001) and 

diameters significantly increased over time among depth classes (p< 0.001; Fig. 11). A 

significant treatment by time interaction was determined over the duration of this 

experiment (p< 0.001) and is most likely a result of the maturing of roots and increased 

“filling” of the soil with fine roots over time. Root diameters in the uppermost depth 

class (0-12 cm) were significantly greater in elevated CO2 treatments over time 

(p=0.035). When comparing just the 2002-2004 dates used in the post root closure fine 

root measurements, root diameters increased over time and were largest in the upper 37 

cm of soil (p=0.001).

Fine Root Cohort Analysis

Initial cohort analysis performed by Dilustro (et al. 2002) indicated that there 

were more roots per cohort in the elevated CO2 treatments compared to those in the 

ambient chambers (Fig. 12-A). It was also interesting to note that elevated C 02 tended to 

produce root cohorts that persisted longer in the soil. Recent cohort examination shown 

in Fig. 12-B indicates little difference between cohort abundance between CO2 

treatments. In addition, there were no significant differences between the persistence in 

root cohorts among treatments, although the highest mortality occurred on the 

observation date following study inception. However, cohort abundance and persistence, 

on average, tended to be greater than in the 2002-2004 study period compared to the 

findings of Dilsutro et al. (2002). Further examination indicated that the system reached 

a maximum RLD of 15 mm cm'2.
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Fine Root Survivorship

Survival analysis can be useful to better understand the various aspects of biotic 

and abiotic interactions on the longevity of scrub-oak fine roots. Similar to Coleman et 

al. (2000), I tested the controls on fine root longevity by stratifying CO2 treatment, root 

diameter, depth class, and root length on measurements take in 2002-2004. Average root 

longevity was estimated between 177 and 191 days. The survival curves were similar 

between CO2 treatments and were not significantly different (P>x2 = 0.377). Based on 

my analysis, there was a 16% survival probability for roots persisting after 558 days from 

inception.

Fine Root Survival (Diameter)

A significant relationship between fine root diameter and survivorship exists (P> 

X2 < 0.001). Fig. 13 indicates that larger diameter fine roots (> 0.2 cm) persist longer 

than smaller diameter roots. Increased survival of the large diameter fine roots is evident 

where median longevity occurred at 262 days compared to 96 and 177 days for the <0.1 

and 0.1-0.2 cm diameter size classes respectively. After 558 days of monitoring, 26% of 

the fine roots survived in the largest size class. The midrange (16%) and smallest (9%) 

diameter size classes had significantly lower survival after 558 days of growth. Overall, 

there was a 29% decrease in mortality risk for larger roots or those roots entering the 

larger size classification 

Fine Root Survival (Length Class)

A significant relationship exists between fine root length and survival (P> x2 

=0.018). Fig. 14 indicates that the smallest size class (< 0.25 mm) had lowest survival
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FIG. 13: The effects of fine root diameter size (mm) on root survival probability time 
(days) during the 2002-2004-study period. Values were determined using PROC PHREG 
with initial standing root crop left censored from the analysis.
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probability. Median longevity was approximately 177 days for all length classes, except 

for the largest size class (> 1 cm), which was 167 days. This lower median longevity in 

the largest size class is attributed to lower frequency of observing roots greater than 1 cm 

long in minirhizotron studies. At the termination of the study after 558 days, the smallest 

size class had only 9% survivorship, whereas the larger size classes (except the > 1 cm 

size class) had 15-18% survival. Overall, there was a 3.8% decreased risk of mortality as 

roots grew into larger size classes.

Fine Root Survival (Depth)

Fine root survival was also significantly affected by depth (Table 1) in the soil 

profile (P> x2 < 0.001). The hazard ratio indicates a 3.8% decrease in fine root mortality 

among increasing depth classes. Highest (21%) survival was in the 100-140 cm depth 

classes, whereas the lowest survival (12%) was recorded in the 0-20 cm depth class. 

Cohort survivorship

The impact of season on fine root appearance was examined with a hazard 

function (Fig. 15). This function is also known as the age-specific failure rate (Coleman 

et al. 2000, Lee 1992). High hazard function represents high mortality in the fine roots. 

During the 2002-2004 analysis period, this study indicated that highest risk of mortality 

occurred in roots bom during the spring and summer months. Spring roots had the 

longest survival rate of all seasons and had the highest risk of failure or death in the fall 

(191 days later). New roots, which first appeared in the summer observation months 

(June), typically had greater mortality within the next observational date 95 days later in 

the fall. Winter bom roots had high mortality within 95 days. New fine root growth in 

the fall did not show a clear trend for critical mortality points, although this is most likely
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TABLE 1: Fine root survival for 1 meter depth analyzed with the PROC PHREG in 
SAS. Average time in days until mortality is reported with the amount (%) of fine roots 
surviving after 558 days.

Depth Class Depth (cm) N
Mortality (d) 

25% 50% 75% Final 
Survivorship (%)

1 0 - 1 2 3,370 91 172 273 12
2 1 3 -2 4 3,274 95 177 358 15
3 2 5 -3 7 3,033 95 177 349 14
4 3 8 -4 9 2,873 95 177 358 16
5 5 0 -6 1 2,314 95 191 368 17
6 6 2 -7 3 1,816 95 191 445 21
7 7 4 -8 5 1,569 95 191 471 21
8 8 6 -  101 1,674 95 177 358 15
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due to the lack of fall sample dates (one date compared to two for the other three 

seasons).

DISCUSSION

Fine Root Production and Mortality

The goal of this study was to examine the effects of elevated atmospheric CO2 on 

fine root production, mortality and turnover. Dilustro et al. (2002) found that fine roots 

were strongly stimulated by elevated atmospheric CO2 during the initial three years of the 

study. However, I found that this significant CO2 effect had dissipated, resulting in a 

convergence of fine root growth and mortality among the elevated and ambient CO2 

treatments. These findings support the results of Day et al. (2006) that a root carrying 

capacity has been reached, i.e. root closure, in this scrub-oak ecosystem. They indicated 

that elevated CO2 treatments appear to stimulate RLD allowing fine roots to reach 

equilibrium faster than ambient roots; however, this stimulation did not affect maximum 

root abundance.

Although it has taken the ambient CO2 treated fine roots slightly longer to reach 

equilibrium, a similar maximum growth was achieved (averaging approximately 0.07 and 

0.06 mm/cm2/day for root production and mortality respectively). Matamala et al. (2003) 

found that NPP increased 21% during the initial three years of CO2 treatment in sweet 

gum that resulted in a carbon shift of 12-16% of the NPP from woody biomass to fine 

roots. In a pine ecosystem from the same study, NPP increased 25% with only a 5-7% 

increase to roots. Hendrick and Pregitzer (1996) documented that >50% of all root length 

mortality occurred in the top most 20 cm of the soil profile during the growing season
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and that shallow and deep root mortality wasn’t synchronous. This suggests that the 

upper portions of the soil profile are more dynamic with higher rates of root production 

and mortality; whereas, roots deeper in the soil have a lower turnover rate. My data 

suggest that that root mortality decreases with depth, maybe due to fewer temperature 

extremes and reduced herbivores and pathogens (Wells et al. 2002, Andersen et al. 2003).

Pregitzer et al. (1993) found a 600% increase in fine root productivity with the 

addition of water and nitrogen in northern hardwoods suggesting that productivity and 

longevity were inversely related to resource supply. A similar response would not be 

unexpected in our system since the scrub-oak ecosystem is water and nutrient limited. 

Hungate et al. (2006) suggested that progressive nitrogen limitation (PNL) has a control 

on the scrub ecosystem due to increased nitrogen incorporation into biomass resulting in 

decreased N availability in the soil.

Root Turnover and Survivorship

The third and most critical component of root dynamics is root turnover. Few 

studies have examined the effects of CO2 enrichment on fine root turnover or longevity 

(Dilustro et al. 2002). Shrub ecosystems have low root turnover rates averaging 0.44 yr'1 

(Lauenroth and Gill 2003). Many studies have suggested that CO2 enrichment increases 

root growth, mortality, and turnover (e.g. Pregitzer et al. 1995). Thus, any enrichment 

that increases belowground net primary productivity (BNPP) should result in increased 

root turnover (Lauenroth and Gill 2003). However, survivorship was not significantly 

affected by CO2 treatment, and this is perhaps additional support for the occurrence of 

root closure in this system.

Dilustro et al. (2002) found a significant difference in root turnover towards the
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end of their study in 1997. In the current study, the elevated and ambient CO2 treatments 

have converged to a common equilibrium (approximately 0.06 fractional root loss per 

day). The effects of root closure on turnover could imply that soil carbon deposition 

from fine roots may be at its maximum rate. The rate of carbon storage and utilization by 

the microbial community is limited by substrate quality and perhaps PNL (A. Pagel, 

Personal communication). Examination of fine root cohorts indicated that although each 

individual cohort of root has a higher RLD at first observation (compared to Dilustro et 

al. 2002), the greatest mortality occurs in the following observation period. In addition, 

root closure is evident and RLD values tend to reach a maximum near 15 mm/cm .

Fine root turnover was greatest in the upper 50 cm of the soil profile. A possible 

explanation for lower turnover with increasing soil depths might be soil moisture. Since 

the scrub ecosystem is water limited with the water table fluctuating between 2-3 m, deep 

roots could potentially serve a major role in hydraulic lift to the upper portion of the soil 

profile (Richards and Caldwell 1987, Dawson 1993). Finally, this regularly disturbed 

ecosystem has likely developed strategies to ensure that intense fires would not damage 

carbon reserves for future re-growth. Roots growing deeper in the soil profile could 

provide additional carbohydrate stockpiles for scrub-oak regrowth post disturbance. 

Increased root growth deeper in the soil in response to elevated CO2 could also provide 

the greatest potential for carbon sequestration in less dynamic, more persistent carbon 

pools (Gill and Burke 2002)

Root length also had a significant impact on fine root survivorship, where 

smallest length classes had shorter lifespan compared to longer roots. Although not 

measured, I predict that short, small diameter roots will have median (50%) survivorship
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of less than 200 days and will effectively “pump” or transfer large amounts of carbon into 

the soil. King et al. (2002) indicated that 80% of all fine roots fall into a < 1.0 mm size 

category having a mean lifespan of 166 days. Longevity based on length and diameter 

has potentially profound implications for sequestration of atmospheric CO2 in a scrub- 

oak ecosystem. However, environmental variables from each ecosystem will interact in a 

unique suite of mechanisms controlling survivorship (see Ruess et al. 2003 for review). 

Recent studies have noted water and temperature as having controls on turnover 

(Pregitzer et al. 1993, Lauenroth and Gill 2003). Decreases in soil moisture, for example, 

increased root mortality and therefore turnover (Klepper et al. 1973, Huck et al. 1987).

Root survivorship was also significantly affected by location in the soil profile. 

Lowest survival time was recorded for roots in the 0-12 cm soil depth class. Other 

studies have found similar findings with the upper 10 cm of soil having the highest 

turnover rate and lowest survival of small diameter roots (Joslin et al 2006). Fine roots 

located 62-85 cm deep in the soil profile had the longest survival time (approximately 

21% surviving after nearly 600 days). These data imply that root survival increases with 

increases in soil depth. These results support earlier findings in this study that root 

density and dynamics increased over time in the lower portions of the observed soil 

profile. Increased survival deeper in the soil might be a factor of cooler soil temperatures 

or increased soil moisture (i.e. closer to the spodic horizon or water table). In addition, 

increased survival at lower depths could provide a carbon source for regrowth following 

periodic fire disturbance in this system.

Root Diameter and Survivorship

Fine root architecture is very important to survivorship, especially in lower order
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roots (i.e. terminal roots) that tend to have the lowest survival rate or in higher order roots 

that die resulting in loss of all components below that segment (Wells et al. 2002, Gill et 

al. 2002, Pregitzer 2002). However, current studies note a lack of clear understanding of 

this trend due to limitations with the minirhizotron technique in quantifying architecture 

and functionality.

In an idealized system, higher order roots would have a larger diameter and be 

more lignified, permitting resource conduction in the root versus uptake, thus increasing 

its “economical” value and longevity (Eissenstat 1997, Andersen et al. 2003). A 29% 

increase in the survivorship for each increase in diameter class implies that fine root 

diameter has a strong control in carbon sequestration (i.e. large root diameters result in 

greater biomass and carbon storage). Tiemey and Fahey (2002) indicated that fine root 

survival increased 43% for each 0.1 mm increase in diameter. In a loblolly pine system, 

King et al. (2002) observed that approximately 80% of the fine root length falls into the < 

1.0 mm diameter size class and had an average lifespan of 166 days. Roots 1.0 -  2.0 mm 

diameter survived an estimated 294 days. Conversely, small diameter roots which have 

low tissue density and shorter mean lifespan tend to perform nutrient and water uptake 

and die rapidly (Eissenstat and Yanai 1997, King et al. 2002). Smaller roots are 

intrinsically vulnerable to turnover; thus, rapid cycling could provide a pathway for rapid 

carbon loading into the soil. A clear relationship between diameter and root survivorship 

is evident; however, it is important to note that smaller diameter roots are more dynamic 

than larger roots (King et al. 2002).

Tiemey and Fahey (2002) found that root survival increased with increasing 

diameter. With our ecosystem reaching maturity, the dominant plant forms should be
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placing more carbon belowground and developing longer-lived structures that will 

support growth following the typical 7-15 year fire cycle. By increasing fine root 

diameter, scrub-oak can maximize its longevity and potential carbon storage capacity. 

Large diameter roots (> 2.0 mm) persisted longer than smaller diameter roots. This 

suggests that root mortality and turnover are lowest for fine roots with greater width and 

supports similar findings in other ecosystems (Coleman et al. 2000, Wells and Eissenstat 

2001, Eissenstat and Yanai 1997). However, large diameter roots are less efficient at 

water and nutrient uptake and are more involved in conducting these resources (Nye and 

Tinker 1977, Eissenstat 1992, 1997). Eissenstat et al. (2000) noted that the benefit of 

roots with short life spans is lost in low fertility. From an economic point of view, 

smaller diameter roots are less likely to survive in a low fertility site and therefore it is 

more beneficial and efficient for larger, long-lived carbon investments especially in 

context of a regularly disturbed ecosystem. In addition, our findings indicate that root 

diameters have increased over time with increasing depth. This increase in the 

abundance of larger, longer-lived conducting roots might suggest that root closure is also 

related to a decrease in resource availability. As a result, larger roots in the upper 50 cm 

of the soil profile might serve as transporters for water and nutrients foraged in the lower 

half of the soil profile.

Seasonal Survivorship

The scrub-oak ecosystem on Merritt Island has no observable seasonal 

fluctuations in belowground RLD. However, seasonal cohort analysis indicates that the 

greatest mortality (age specific failure rate) occurs in summer cohorts. Roots that were 

produced in the summer months tend to have the highest mortality in the fall, which
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corresponds to Gill et al.’s (2002) findings that small diameter fine roots tend to 

disappear after only one observation date. In addition, the greatest drop in survivorship 

of cohorts was in the following observation period, which supports the earlier findings of 

Dilustro et al. (2002). Roots produced in the spring also tend to have the greatest failure 

rate in the fall. Although our study site has a year-round growing season, there are 

seasonal environmental patterns, mostly relating to water. Precipitation is greatest in the 

summer and fall with a distinct dryer season in the winter and spring. A clear 

relationship as to why the wetter fall observations were a critical hazard point in the 

survivorship of fine roots could not be established. This apparent lack of pattern in fine 

root mortality resulting from seasonal controls suggests that factors controlling root death 

differ from those controlling root production (Eissenstat and Yanai 1997, West et al. 

2004). However, the fall sampling date had the highest average soil temperature and that 

could suggest that soil temperature, not water, controls cohort survivorship. In a black 

spruce forest in Alaska, roots bom in the middle of the growing season had higher 

survival than roots formed early or late in the summer season or in the winter months 

(Ruess et al. 2003). However, studies from southeastern savannas and pine forests and 

northern deciduous forests have observed root production and mortality occurring year 

round, regardless of season, from carbon reserves (Saterson and Vitousek 1984, King et 

al. 2002, Jones et al. 2003, West et al. 2003, Hendrick and Pregitzer 1992, West et al. 

2004). Like many other studies on root longevity, my sampling regime was limited to 

once per season, thus limiting the resolution of my interpretation of seasonal 

survivorship.
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Conclusions

This study has supported the view that fine roots are a dynamic and important 

aspect of the rhizosphere. Coarse roots are less dynamic and were not included in this 

portion of the study; however, it is important to consider their contribution to the soil and 

rhizosphere. The scrub-oak ecosystem partitions 14% of its total mass aboveground 

while the remaining 86% is belowground (Stover et al. 2007). Belowground, 77% of the 

total mass is in coarse roots, which serve as a major source of carbon storage in the 

ecosystem and are the source of post fire regeneration. Irrespective of CO2 treatment, 

fine roots constitute nearly a quarter of belowground mass. Although turnover is 

expected to be low, I have found that turnover in this scrub ecosystem was approximately 

26% per year with approximately 16% survivorship after more than 500 days, implying 

that this system is more dynamic that previous predictions.

In this study, I hypothesized that fine root dynamics (i.e. productivity, mortality, 

and turnover) would be higher compared to earlier studies in this scrub-oak ecosystem. 

Root turnover was greater in the recent years of the study. Root mortality in ambient 

CO2 treatments increased to match the levels from elevated CO2 treated chambers. Root 

productivity has declined in the elevated CO2 treated chambers; however, all treatment 

effects for all three root measurements have converged since the early years of the study. 

Fine root diameter increased over the course of this long-term study. Larger diameter 

roots had greater survivorship and were greatest in the top 50 cm of the soil profile. Root 

survivorship increased with increasing depth, thus supporting the third hypothesis. The 

final hypothesis indicating that root survivorship would be greater under elevated C 02 

fumigation was not supported since there was no significant difference between CO2
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treatment survivorship curves. This study has shown that fine roots play an essential part 

in belowground ecology and there are a number of environmental and morphological 

controls on root growth, mortality and turnover and therefore survivorship. These 

controls dominate the scrub-oak’s ability to sequester carbon belowground into the soil. 

The mean residence time of carbon in the system from growth through disturbance and 

then recovery will help determine the amount of carbon sequestered into the soil pools as 

well as its mean residence time. This will determine the long-term effectiveness of this 

ecosystem in managing excess atmospheric carbon.
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CHAPTER IV 

APPLICATION OF GROUND-PENETRATING RADAR TO QUANTIFY THE 

EFFECTS OF ELEVATED C 02 ON BELOWGROUND BIOMASS 

INTRODUCTION

We know little about effects on larger underground plant structures. Coarse roots 

and other large belowground structures have been under-represented in most studies 

(Norby 1994), but are expected to play a critical role in regrowth in the scrub-oak 

ecosystems, which are fire controlled with a 7-15 year natural bum cycle (Schmalzer and 

Hinkle 1991).

Historically, root systems have been the most understudied aspect of plant biology 

(Waisel et al. 2002). This is due to the opaque nature of the soils and difficulties in 

repeatability of quantitative measures of root systems (Fitter and Stickland 1992, Nielsen 

et al. 1997). Most root quantification methods, such as in-growth cores, soil cores and 

pits are destructive, thus hindering future assessments in long-term studies (Norby and 

Jackson 2000, Pierret et al. 2005). In addition, these methods are often labor intensive 

and limited by manageability of size and number. Non-destructive root analysis methods, 

such as minirhizotron tubes, only elucidate the fine roots within the system (Hendrick and 

Pregitzer 1992). A major gap in our current understanding of root systems lies with 

coarse roots.

Ground penetrating radar (GPR) is a thirty-year old geophysical technique that

This chapter has been published in Ecology. Stover, D.B., F.P. Day, J.R. Butnor, and B.G. Drake. 2007. 
Effect o f elevated C 0 2 on coarse root biomass in Florida scrub detected by ground-penetrating radar. 
Ecology in press.
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FIG. 16: Basic GPR operation. High frequency electromagnetic waves are emitted from 
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pulses ultra high frequency (approximately 100-1,500 MHz) electromagnetic waves into 

the ground (Wielopolski et al. 2000, Daniels 2004). Electromagnetic waves travel 

through the soil and reflect off buried objects, such as roots, back to a receiving antenna 

with the propagation time (Hruska et al. 1999). GPR technology holds promise for 

quantifying root mass and architecture due to its rapid, non-destructive acquisition of data 

(approximately 90 ns collection time per scan) (Butnor et al. 2001). Recent studies with 

GPR using a 1,500 MHz frequency antenna have been able to distinguish roots with 

diameters as small as 0.5 cm (Butnor et al. 2001).

The goal of this study was to apply GPR technology to answer questions 

pertaining to the influence of elevated CO2 on coarse roots in the scrub-oak ecosystem at 

Kennedy Space Center, Florida. I established a relationship between GPR signal strength 

and root biomass. Using this relationship, I estimated coarse root biomass in the open- 

top chambers where destructive measurements cannot be performed. I hypothesized that 

scrub-oak that has been continually fumigated with elevated CO2 would have greater 

coarse root biomass than plants treated with ambient CO2 concentrations.

METHODS 

Root Biomass Cores

In June 2005 and 2006, thirty soil core sites were selected in the scrub-oak 

community adjacent to the chambers. Each core site was scanned with a Subsurface 

Interface Radar System (SIR-3000) attached to a model 5100 (1,500 MHz) GPR antenna 

(Geophysical Survey Systems Inc, North Salem, NH) (Fig. 17). Other studies have found 

a frequency tradeoff between depth of penetration and resolution (Hruska et al. 1999). 

Low frequency antennas (i.e. 400 MHz) penetrate deeper into the soil but have a low
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FIG. 17: Subsurface Interface Radar System (SIR-3000) attached to a model 5100 (1,500 
MHz) GPR antenna. Antenna and survey wheel (red/grey), control unit (blue) and 
system computer and output (white/grey).
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ability to resolve detailed objects. High frequency antennas tend to be better at resolving 

detailed objects, but are limited to a depth less than 1 m. The radar unit was calibrated 

prior to fieldwork similar to Butnor et al. (2003). Each scan was 15 cm in length. Once 

the GPR data were collected, a 15 cm diameter corer was used to extract a soil core to a 

depth of 60 cm. Each core was divided into three 20 cm segments which were dry 

sieved, separated into live, dead, and unidentifiable organic matter fractions, and dried at 

70 °C for 48 hours before weighing. Large rhizomes, burls, and belowground stems are 

extremely common in scrub-oak ecosystems; thus, we classified any belowground 

structures greater than 5 mm diameter as coarse roots.

GPR Image Processing and Root Biomass Correlations

Core scans were processed with RAD AN 6.0 GPR data processing software 

(Geophysical Survey Systems Inc., North Salem, NH). Each individual scan was cropped 

to ensure that only the actual 15 cm area of the core was analyzed. Before quantification 

of the scans, several data processing steps were applied to enhance root discrimination. 

Root structures appear as hyperbolic reflectors, whereas parallel bands represent plane 

reflectors such as ground surface, soil layers and low frequency noise (Fig. 18). Parallel 

bands were removed with a horizontal Finite Impulse Response Filter (FIR) filtration 

method called background removal (Oppenheim and Schafer 1975; Butnor et al 2003). 

We used the Kirchoff migration to correct the position of objects and collapse hyperbolic 

diffractions based on signal geometry (Daniels 2004). Finally, we performed a Hilbert 

transformation on the radar data. Hilbert transformations express the relationship 

between magnitude and the phase of the signal allowing the phase of the signal to be 

reconstructed from its amplitude, thus allowing subtle properties and objects to be
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elucidated and reducing false “echoes” (Oppenheim and Schafer, 1975; Geophysical 

Survey Systems Inc., North Salem, NH). Radar profiles were converted to bitmap image 

files using RAD AN to Bitmap Conversion Utility 1.4 (Geophysical Survey Systems, 

North Salem, NH).

Radar images were quantified with Sigma Scan Pro Image Analysis software 

(Systat, Point Richmond, CA). Each image was converted to an 8-bit grey scale image. 

To quantify roots within the image, pixel intensity was measured. Intensity is a relative 

measure of how light or dark an individual pixel is on a scale of 0 (black) to 255 (white). 

We used an intensity threshold range of 60-255, which was able to delineate roots > 0.5 

cm. This technique measures the relative pixel area of interest. A linear regression was 

run to quantify the relationship between root biomass from the soil cores and the GPR 

signals.

Root Biomass in Chambers

In December 2005, five random GPR scans were taken within each of the eight 

open-top chambers. Each scan was 15 cm long and was processed in RAD AN and Sigma 

Scan in the same manner as the core scans previously described. The sum of each scan’s 

intensity threshold was used to estimate biomass with the regression equations developed 

from the biomass cores. The effects of CO2 enrichment on coarse root biomass were 

tested by ANOVA using the MIXED procedure in SAS (SAS Institute 1990). Within the 

statistical model, biomass was blocked within chamber and CO2 was the fixed effect. 

RESULTS

Root Biomass/GPR Regressions

Biomass from the cores was partitioned into live and dead roots (Table 2). The
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>>
average live biomass was 290 g per core (15,395 g m ') and the average dead biomass 

was 44 g per core (2,308 g m'2). Mean total biomass in the cores was 331 g/core (17,703 

g/m2). Root diameters varied among cores, but large diameter roots were captured by the 

15 cm core. Roots and other belowground structures with the largest diameters (7.9 -  15 

cm) were primarily found in the top 20 cm of the soil profile. A noticeable decline in 

diameter size was observed with increasing depth. At the 40 -  60 cm depth, the largest 

roots measured approximately 2 -  5 cm diameter. The regression between root biomass 

(live plus dead components) and the total number of pixels within the thresholds from the 

GPR images yielded a significant relationship (R2 = 0.68; r = 0.822) (Figure 19).

Root Biomass in Chambers

The regression equation was applied to GPR scans from the open-top chambers. 

Mean root biomass in the elevated and ambient chambers was estimated at 8,971 ±1,105 

g/m2 and 6,551 ± 1,295 g/m2 respectively (Figure 20). There was a significant CO2 

treatment effect for coarse root biomass in the scrub-oak system (p = 0.049). The effects 

of soil moisture on GPR signal penetration were examined at our field site by scanning 

multiple locations following the addition of increasing amounts of water. Soil moisture 

was recorded with a handheld TDR probe at 20 cm depth. The sandy soils at Merritt 

Island drain rapidly, thus producing little change in our interpretation of scans except in 

the case of saturated field moisture conditions (Stover unpublished data). As a result, we 

feel confident that our results from GPR data interpretation and predictive root biomass 

equations are not limited to just conditions present at the time of core collection. 

DISCUSSION

The goal of this study was to apply recent advances in ground-penetrating radar to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



63

TABLE 2: Root core dry mass (g /15 cm diameter core) ranges for different root 
fractions to 60 cm depth.

Root Fraction Max Min Mean ± S.E. Biomass Mean ± S.E. (g m' )

Live 1,696 45 290 ± 68 15,395 ±3,717

Dead 82 18 44 ±3 2,308 ± 174

Total 1,728 62 331 ±69 17,703 ± 3,762
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FIG. 19: Relationship between total live plus dead root biomass obtained from soil cores 
(g/ 15 cm core diameter to 60 cm depth) and GPR root reflectance (total pixels within 
threshold). Root reflectance was determined by measuring the total number of pixels 
(pixel intensity) within a specific intensity threshold in each GPR image. Solid line 
represents a significant linear regression of the mass to GPR signal reflectance
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penetrating radar scans.
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the difficult determination of below ground effects of elevated CO2 in a long-term study. 

The results indicate that properly processed GPR data can reasonably detect root biomass 

in the upper 60 cm of the soil profile. Significant relationships between the combined 

live and dead coarse root biomass and the total number of pixels within the radar image 

provide a basis for a robust measurement of root biomass.

Processed GPR data applied to our biomass regression equation showed 

significantly different biomass between CO2 treatments, indicating that scrub-oak treated 

with elevated CO2 had more coarse root biomass than areas treated with ambient 

atmospheric CO2 . This implies that more carbon sequestration is occurring in elevated 

CO2 chambers in the form of coarse roots. Belowground carbon storage in the coarse 

roots probably plays an important role in the re-growth of the scrub-oak community 

following fire. It is estimated that roots can comprise 40-85% of net primary production 

in some ecosystems (Fogel 1985, Fitter 1987). Norby (et al. 1993, 1994) implied the 

importance of examining CO2 effects on Quercus, since root mass increased more than 

twice that of stem mass. These studies showed 77 - 136% increase in root mass in Q. 

alba grown under elevated compared to ambient CO2 . The ecosystem in the current 

study is dominated by scrub oaks and saw palmetto, which are clonal and produce large 

amounts of coarse roots, lignotubers, and belowground stems. Sclerophyllous shrublands 

and tropical evergreen forests tend to produce the greatest total mass of roots, on average 

about 5 kg m2 (Jackson et al. 1996, Robinson et al. 2003). Large root burls are very 

common in this system, thus making it difficult to separate the belowground stem from 

the root system. These structures provide major carbohydrate storage for re-growth and 

are known to persist long after aboveground biomass is removed. These structures play a
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major role in post fire recovery and are a critical component of belowground storage and 

ecology in this shrub system.

Numerous studies (e.g. Norby 1994, Miller et al. 2006) have suggested that coarse 

roots are large carbon sequestration sites and predicted that greater biomass should be 

present in elevated CO2 treatments, but few if any have been able to quantify this effect. 

Our finding provides support for these predictions. This finding is unique in that this 

study is one of the first to non-destructively quantify coarse roots as affected by elevated 

CO2 . The methods utilized in this study can be applied to long-term studies to refine our 

understanding of coarse roots as well as to examine changes in biomass of larger 

belowground structures over time.

Previous belowground studies at our site have focused only on fine roots via 

minirhizotron methodology (Day et al. 1996). Early in the study, a treatment effect was 

reported; however, after about 3 years, this effect had dissipated (Day et al. 2006). Many 

woody plants in fire-controlled systems develop large belowground structures. In this 

system, biomass is promoted in elevated CO2 treatments and most notably in the 

belowground component. Estimated aboveground biomass (leaves and stems combined) 

was 1,362 g m'2 in ambient treatments, whereas in the elevated treatments, aboveground 

biomass was approximately 2,037 g m'2 (e.g. Dijkstra et al. 2002, T. Seiler, unpublished 

data). Belowground, the ambient chambers had 6,551 g m'2 in coarse root biomass

whereas the elevated chambers had 8,971 g m'2 (Table 3). Fine root biomass comprised

2 22,226 g nT and 2,203 g m' in the ambient and elevated chambers, respectively (A.

Pagel, unpublished data) (Table 3). Since the fine roots had apparently reached closure in 

both treatments, the increase in belowground biomass under elevated CO2 was
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proportionally greater in coarse roots (75% ambient, 80% elevated) compared to the fine 

roots (25% ambient, 19% elevated) (Fig. 21). Based on the above and belowground

9  9estimates, total biomass was approximately 10,139 g m' and 13,212 g m' for ambient 

and elevated CO2 treatments respectively, thus indicating that the increase in biomass 

distributed under elevated CO2 was distributed in the same proportion above and 

belowground as in the ambient treatments. The contribution of belowground biomass to 

system carbon storage was massive (85% of total biomass) (Fig. 22).

While using GPR for root analysis is still in its infancy, this technique shows 

great promise for elucidating belowground plant structures. Very few studies have 

applied GPR to biological systems, especially to roots. GPR based estimates require 

substantial ground-truthing to ensure accurate quantification and repeatability of the 

technique. Potential future applications of GPR to this system will focus on determining 

coarse root growth patterns temporally (growth rates) and spatially (root architecture). 

Similar to other studies, our method only identifies roots greater than approximately 0.5 

cm diameter (Butnor et al. 2001, 2003, Cox et al. 2005, Wielopolski et al. 2000). 

Therefore, this technique excludes the fine root biomass component.

In conclusion, GPR based biomass estimates suggest elevated CO2 chambers have 

greater belowground biomass, indicating a significant treatment effect in a scrub-oak 

ecosystem, thus supporting the central hypothesis. In addition, GPR appears to be a rapid 

and feasible method to quantify and examine coarse roots and is redefining our 

understanding of the role larger belowground structures play in ecosystem dynamics.
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TABLE 3: Average biomass (g mf2) of major plant compartments in the scrub-oak 
ecosystem treated with elevated CO2 (* T. Seiler, unpublished; **A. Pagel, unpublished).

CO2 Treatment
Biomass Compartment (g m'2) Ambient Elevated

Aboveground 
(stems + leaves)*

1,362 2,037

Coarse Roots 6,551 8,971

Fine Roots** 2,226 2,203

Total 10,139 13,212
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FIG. 21: Average belowground partitioning of fine and coarse root biomass following 
long-term CO2 treatments. Coarse root estimates include all belowground structures 
greater than 5 mm diameter.
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CHAPTER V 

DETECTION OF SCRUB-OAK COARSE ROOT ARCHITECTURE WITH 

GROUND-PENTRATING RADAR 

INTRODUCTION

Increased interest in the global carbon cycle and carbon sequestration by forest 

ecosystems has resulted in increased demands for accurate methods of quantifying 

belowground biomass pools (Watson et al. 2000). This is not surprising since landscape 

models predict that trees within forest ecosystems account for nearly 80% of sequestered 

carbon (Richter et al. 1999). Forest soils and plant roots appear to be the greatest 

terrestrial pool of sequestered carbon. Approximately 10-65% of tree biomass is 

contained within the roots depending on factors such as age, species, competition, water 

and nutrient availability (Barton and Montagu 2004). Coarse roots (> 5 mm diameter) 

provide a major belowground perennial carbon sink (Johnsen et al. 2005). Compared to 

their aboveground counterparts, coarse roots have long residence times and are know to 

persist for long periods after tree harvest or disturbances such as fire (Johnsen et al. 2001, 

Ludovic et al. 2002, Miller et al. 2006). This significant pathway for carbon storage has 

been extremely difficult to accurately survey due to its complexity and growth in a 

heterogeneous opaque medium (Nielsen et al. 1997, Butnor et al. 2003).

Unfortunately, the study of root systems has often been hampered by inadequate 

methodologies that have resulted in poor or no measurements (Fitter and Stickland 1992). 

Common techniques such as soil cores, pits and trenches are destructive and labor 

intensive. They have provided useful information on root biomass but have been limited
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with respect to the soil volume and area that can be assessed (Butnor et al. 2003). In 

addition, information on root systems has been derived from two-dimensional data 

profiles that inaccurately describe the true natural behavior of the root system (Weaver 

1919, Kutschera 1960, Coupland and Johnson 1965, Fitter and Stickland 1992). Lynch 

(1995) noted that spatial and temporal growth and distribution of roots are determined by 

dynamic interactions with chemical, physical and biological factors. This suggests the 

importance of overall root architecture to interactions in the environment.

“Root architecture” is commonly defined as the explicit spatial configuration of 

root systems comprised of a complex assemblage of subunits (Lynch 1995). The unique 

spatial distribution of roots has long intrigued plant biologists for over 100 years (Smith 

1934). Numerous attempts have been made to develop a classification system for roots; 

however, due to the high degree of variability and plasticity exhibited by roots, none of 

these attempts have been successful (Weaver 1920, Kutschera 1960, Fitter 1991, Fitter 

and Stickland 1991). Many studies have generically applied the term architecture for 

morphology (e.g. surface features on root such as diameter or root hairs), topology 

(presence of roots in a positional gradient rather than orientation) or as true architecture 

(spatial configuration) (Lynch 1995).

Fitter (1987) suggested that three fundamental features determine plant root 

architecture: balance of primary and adventitious roots, degree of branching, and the 

plasticity of branching. Specifically, six variables should be measured to determine root 

architecture and include: topology, link length, branching angle, link radius, durational 

longevity, and symbiotic associations (Fitter 1987). The overall importance of root 

architecture relates to plant productivity (Lynch 1995). Resources in the soil are not
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evenly distributed and are often difficult to access due to physical limitations or 

competition. As a result, unique or complex spatial deployment of roots in the soil 

ensures successful foraging and exploitation of resources (Lynch 1995). As a result, 

there is a great deal of interest in mapping tree root systems to understand relationships 

between root architecture, soil volume utilization, and resource acquisition (Hruska et al. 

1999, Cermak et al. 2000, Stokes et al. 2002, Butnor et al. 2005). A number of studies 

have shown that root architecture varies among species and ecological groups and is 

often dependent on water and nutrient availability (Nielsen et al. 1997). Rarely has root 

architecture been studied or analyzed in field grown conditions due to inherent 

difficulties in non-destructively measuring spatial deployment and behavior (Fitter and 

Stickland 1992).

Recent studies have used GPR to examine coarse root architecture with varying 

success (e.g. Cermak et al. 2000, Wielopolski et al. 2000, Stokes et al. 2002). Unlike the 

present study, low frequency antennas yielded reduced data resolution thus limiting 

accurate interpretations. Most importantly, advances in computer modeling software are 

now allowing complex three-dimensional models to be created from GPR data, which 

allows more powerful interpretations of coarse root architecture and spatial distribution.

Understanding root architecture is important for understanding resource 

acquisition as well as carbon storage. Silviculturists and forests ecologists require root 

biomass and architecture data to effectively and accurately evaluate effects of 

management practices that affect productivity (Butnor et al. 2006). The scrub-oak 

ecosystem utilized in this study is fire controlled with a natural 10-15 year fire cycle 

(Schmalzer and Hinkle 1991, 1992). Recruitment from seed is rare for most of the
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dominant species (Menges and Kohfeldt 1995). Dominate plant species in this 

community typically re-sprout from belowground structures. As a result, root carbon 

storage must be sufficient for re-growth until photosynthetic structures can recover 

(Olano et al. 2006). Therefore, it is important to examine the coarse root architecture in 

scrub-oak, not only to understand post-disturbance recovery, but also to understand 

potential carbon sequestration in scrub-oak.

The goal of this portion of the study was to determine coarse root architecture in 

the scrub-oak ecosystem. Using the non-destructive features of ground-penetrating radar, 

I expected that accurate three-dimensional models could be created and used to elucidate 

major structures that could be visually compared to direct excavations. If successful to 

appropriate levels of resolution, GPR technology will permit the quantification of coarse 

root architecture in the CO2 study at Merritt Island. I hypothesize that coarse roots will 

be found to be more highly branched under elevated CO2 .

METHODS

Root Pit Selection and Data Acquisition

In June 2006, two 0.25 m2 plots were selected adjacent to the long-term CO2 

study site at Kennedy Space Center, Florida. One plot was positioned over a Quercus 

stem while the second plot was positioned over a relatively bare patch. In November 

2006, four adjacent 0.25 m2 plots (1 m2 total) were selected with varying amounts of 

vegetation contained within each one (Fig. 23). Vegetation and litter were removed from 

all plots and each was scanned with a Subsurface Interface Radar System (SIR-3000) 

attached to a model 5100 (1,500 MHz) GPR antenna (Geophysical Survey Systems Inc, 

North Salem, NH). Prior to fieldwork, the radar unit was scaled for depth by determining
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FIG. 23: Typical scrub vegetation density before (top) and after (bottom) clearing for 
coarse root architecture validation-excavations at Merritt Island, Florida.
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the average dielectric constant of the soil with a buried metallic object at a known depth 

(similar to Butnor et al. 2003). Each plot was scanned every 2 cm for a total of 26 scans 

per each X and Y direction. Data from the 676 X-Y intersections permitted a 3- 

dimensional volumetric data model that allowed for spatial analysis.

Root Pit Excavations

Following GPR imaging, each plot was marked with survey stakes. The fine root 

mat located near the soil surface was removed with hand clippers in order to access the 

larger roots below. Then the plots were excavated with hand trowels and shovels to 

loosen the soil and a shop-vac to remove loose soil. Careful attention was paid not to 

damage or dislocate medium and large roots during the excavation. At approximately 20- 

25 cm depth, images were taken with an Olympus 5-megapixel camera. At this point, all 

medium sized roots were removed to permit the 25-50 cm depth excavations. At 45-50 

cm total depth, a second set of images were collected (Fig. 24).

GPR Image Processing and Root Biomass Correlations

Root pit scans were processed with RAD AN 6.5 GPR data processing software 

(Geophysical Survey Systems Inc., North Salem, NH). Each individual scan was cropped 

to ensure that only the actual 0.25 m2 area of the plot was analyzed. In some cases the 

area was slightly smaller due to slight differences in the length of the data collection. 

Before quantification of the scans, several data processing steps were applied to enhance 

root discrimination. Root structures appear as hyperbolic reflectors, whereas parallel
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FIG. 24: Coarse root density at 20 (top) and 50 (bottom) cm depth following excavation 
for root architecture validation.
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bands represent plane reflectors such as ground surface, soil layers and low frequency 

noise. Parallel bands were removed with a horizontal Finite Impulse Response Filter 

(FIR) filtration method called background removal (Oppenheim and Schafer 1975; 

Butnor et al 2003). We used the Kirchoff migration to correct the position of objects and 

collapse hyperbolic diffractions based on signal geometry (Daniels 2004). Finally, we 

performed a Hilbert transformation on the radar data. Hilbert transformations express the 

relationship between magnitude and the phase of the signal allowing the phase of the 

signal to be reconstructed from its amplitude, thus allowing subtle properties and objects 

to be elucidated and reducing false “echoes” (Oppenheim and Schafer, 1975;

Geophysical Survey Systems Inc., North Salem, NH). Radar profiles were then imported 

into a 3-D module within RAD AN with each scan location in the correct X-Y position 

(Fig. 25). Each 3-D profile was visually inspected at 5-15 cm depth segments identifying 

structures matching digital images from the ground excavation pits. RADAN software 

can be visualized by creating horizontal “slices” that are 13-20 cm thick and compressed 

to show information within that 3-D volume (Fig. 26).

RESULTS

The results of this study demonstrate the complex assemblage of roots in a scrub- 

oak ecosystem. Example scrub vegetation before and after clearing in preparation for 

GPR imaging is shown in Fig. 23. Figure 24 shows the large amount of roots within the 

upper 50 cm of the soil profile. The coarse root diameters were variable in size from 1 

cm to more than 15 cm. Within the excavation pit shown in Fig. 24, a number of stems 

were encountered along with roots with a wide array of branching and deployment angles 

and directions. I feel that the excavation pits used in this study adequately represent the
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FIG. 25: Three-dimensional model of coarse roots imaged with ground-penetrating 
radar. Multiple X-Y intersections within the study grid were transformed into volumetric 
3-D data with RAD AN analysis software. GPR reflectors can be made transparent so 
that gross structural objects can be observed in 3-dimensional space.
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FIG. 26: Example horizontal “slice” extractions from GPR data after 3-D modeling.
Each slice can be adjusted for variable thickness in order to capture entire roots at a given 
depth.
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“typical” root matrix in the scrub community.

Three-dimensional analysis of the GPR profiles are represented in Fig. 25. GPR 

analysis with RAD AN software permits horizontal slices at user defined depths to be 

extracted for visual comparisons to actual excavation images (Fig. 26). Numerous large 

coarse roots could be correlated with GPR images. Typically roots that spanned the 

entire root pit or had distinct angles were easiest to identify (Fig. 27). Roots that 

originated from or intersected a stem or root burl were commonly strong reflectors in the 

GPR data (Figs. 28 and 29). Although large roots tended to produce a strong reflectance 

signal in the GPR dataset, larger objects with a well defined angle that intercepted 

multiple scan transects tended to produced the most visually recognizable objects in the 

3-D models (Fig. 30).

Large root burls appear to be common features in the belowground landscape in 

the scrub-oak ecosystem (Fig. 31). A large excavated root burl shown in Fig. 32 is 

clearly noticeable as a strong reflector in the GPR 3-D model. A minor depression 

appears to be present in both the root excavation photo and the GPR data slice. To the 

left of the root burl, two smaller roots can be identified further down in the profile 

(approximately 35-40 cm depth). These two parallel objects are also present in the lower 

horizontal slices of the 3-D GPR profile (Fig. 32).

Another feature of the three-dimensional GPR modeling software is the ability to 

make low energy reflection objects transparent, thus leaving the major reflectors (roots) 

visible. A 6 cm coarse root can be seen in both the excavation photo and the transparent 

3-D model (Fig. 31). This feature is quite useful but limited to large strong reflectors, 

and some roots can be easily masked by obstruction of other objects and reflectors in 3-D
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FIG. 27: Visual correlation between GPR data and coarse root excavation pits. Large 
roots spanning the entire length of the validation pit were most likely to be observed in 
the GPR data. Each GPR data image (left) represents a “slice” of the 3-D profile at the 
appropriately correlated depth with a viewing depth of 15-20 cm.
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FIG. 28: Visual correlation of large roots and stem masses in GPR data and coarse root 
excavation pits. Large roots, stems, and burls produce strong reflectors in the GPR data. 
Each GPR data image (left) represents a “slice” of the 3-D profile at the appropriately 
correlated depth with a viewing depth of 15-20 cm.
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FIG. 29: Visual correlation of stems in GPR data and coarse root excavation pits. Stems 
typically produce a large energy reflection in the GPR data; however, smaller groups of 
roots or root grafts tend to produce similar large single reflections. Each GPR data image 
(left) represents a “slice” of the 3-D profile at the appropriately correlated depth with a 
viewing depth of 15-20 cm.
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FIG. 30: Visual correlation of roots with distinct angles in GPR data and coarse root 
excavation pits. Roots with sharp or unique (horizontal) angles are also readily observed 
in the three-dimensional analysis. Each GPR data image (left) represents a “slice” of the 
3-D profile at the appropriately correlated depth with a viewing depth of 15-20 cm.
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FIG. 31: Transparent visualization of coarse roots in a three-dimensional profile. Roots 
with sharp angles can be easily visualized and identified. Each GPR data image (left) 
represents a “slice” of the 3-D profile at the appropriately correlated depth with a viewing 
depth of 15-20 cm.
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FIG. 32: Large root burls are common in the scrub-oak ecosystem. Burls produce large 
reflections in the GPR dataset. Note that the 3-D model appears to show the slight 
depression at the top of the root burl. Two parallel roots can been seen to the left of the 
burl and are observed in the GPR data at the correct lower depth and not in the upper 
portions of the model demonstrating the ability to scale depth with the 3-D model.
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space. A large root burl can be observed in a transparent 3-D model, whereas smaller 

objects are not easily observed (Fig. 33).

DISCUSSION

The primary goal of this portion of the study was to determine the feasibility of 

ground-penetrating radar to detect coarse root architecture. Due to limitations in 

digitizing GPR data for a quantitative comparison to root excavation pit photos, only a 

visual qualitative analysis could be performed. Despite this limitation, valuable 

information was gathered from this study. Large roots are visible in the GPR data set. 

Particularly, roots that transverse the entire study area are easiest to identify from the 

GPR data. In addition, roots that have distinct angles or branching patterns are easiest to 

visualize. Unfortunately, roots that fall along the same direction of a transect scan are 

less likely to produce a strong signal reflection. Numerous root reflectors were identified 

and correlated to actual roots in the root pit excavation photos in five of the six root pits. 

The lack of correlation in the third pit imaged and excavated in November 2006 is 

unclear and could be due to error in data collection or orientation recording in the 3-D 

model.

A few general conclusions can be made on the application of GPR to root 

architecture. First, although many coarse roots can be observed in the 3-D data slices and 

correlated to the root pit photos, a considerable number of reflectors that should have 

been identified were not. This could be due to lack of sufficient resolution in the data 

collection transects. I believe that the 2 cm distance between scan transects should be 

reduced to 1 cm, thus increasing the total number of intersections from 676 to 2601 

within a 0.25 m study grid. Increasing the number of transect intersections should
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FIG. 33: Three-dimensional profile of a root burl in the scrub-oak ecosystem. The 
volume of each GPR data “slice” has been compressed and made partially transparent to 
permit viewing of additional structures throughout the profile and below the root burl.
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enhance the discrimination of smaller root objects. In addition, increasing the data 

collection starting point (i.e. lead time or a lip space before crossing into the grid) at least 

15 cm before intercepting the area of study interest should decrease any potential 

truncation of data on the starting edge of the validation pit. Corollary to this point is to 

increase the stopping distance by an equal amount. In effect, this results in scanning an 

additional 15 cm on each side for a total of 80 cm data transect for each “true” 50 x 50 

cm pit. Increasing the scanning density and the leading and trailing edges of the grid 

should make smaller objects more visible in the 3-D models as well as assist in 

discriminating individual root reflectors from background noise.

Longer transects coupled with increased scan density should also aid in avoiding 

errors associated with overshadowing from large structures such as root burls. 

Overshadowing errors were not an issue in this study; however, due to the high frequency 

of burls (lignotubers) and other large reflectors at the study site, proper measures should 

be taken to reduce the potential for this type of data loss. Despite these added steps, roots 

that grow parallel on top of each other will still appear as a single larger object and 

cannot discriminated since the signal propagation comes from above these two reflectors. 

Work by Butnor et al. (2001) suggests that the utilization of borehole antennas into the 

soil at varying depths could help in discriminating errors of this type as well as 

identifying species with a taproot. Unfortunately, borehole antennas are not 

commercially available in the United States nor does the FCC currently permit them. In 

addition, increasing the transect length will permit larger data models to be created, thus 

creating a larger reference frame for interpretation. Larger transects should permit 

capture of information on the radial distribution of roots from a central stem. Johnsen et
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al. (2005) found that loblolly pine had lateral roots extending nearly 3-7 times further 

than the extension of the aboveground tree crown.

Refinement of this technique will also require additional changes to methods 

utilized in the validation of GPR data with root pit excavations. Since the 1,500 MHz 

antenna only effectively penetrates 50-75 cm in sandy soils, our data indicate that 

architecture analysis and interpretation must be confined to the upper 50 cm of the soil 

profile. Although roots can definitely penetrate deeper than 50 cm of the soil profile, 

other studies have found that only 2.1% of the total root biomass is found below 60 cm, 

such as in hardwood forests at Coweeta Basin in North Carolina (McGinty 1976, Miller 

et al. 2006). Mou et al. (1995) also found that coarse roots of sweet gum and loblolly 

pine decline steeply with depth. The use of a shop-vac to remove excess and loose soil 

greatly reduced excavation time and disturbance from physical digging by hand. An 

application of spray survey chalk would have made the visualization of roots easier in the 

photo correlations, especially for those roots that transverse the vertical, rather than the 

horizontal soil profile. Finally, future root pit photos should be digitized with a program 

such as MSU ROOTS that is used in the digitizing of fine roots (See Chapter 3 for 

details). By applying a different scale for image length, accurate measurements of root 

lengths and diameters could be achieved and used in a quantitative correlation.

Recent studies imply that the application of AMAPmod, a freeware spatial modeling 

software program, could utilize distribution data from external programs (e.g. MSU 

ROOTS or magnetic mapping tools) to produce 3-D spatial distribution maps of roots 

from the validation pits (Danjon et al. 1999). This could potentially allow RADAN 

transparent models to be overlaid and examine the percent correctness of the GPR
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identifications. The application of AMAPmod is still in it infancy with GPR data, but 

holds much promise. Detailed root architecture maps, such as those produced with a low 

frequency 400 MHz antenna by Hruska (1999), Cermak et al. (2000), and Stokes et al. 

(2002), seem unlikely with current limitations of GPR technologies. However, these 

studies have provided the conceptual foundation for the application of GPR to 

investigating root architecture.

Overall, the results from the current study indicate that root architecture can be 

examined to some degree, with the application of ground-penetrating radar. Large root 

burls and stems were correctly identified with some accuracy in this study. In past 

studies, a tradeoff between examining root system function or root system architecture 

coupled with insufficient methodologies have limited our understanding of the modular 

belowground structures (Fitter and Stickland 1991, Robinson et al. 2003). Future 

refinement of data collection techniques together with better validation comparison 

software and methodologies will permit a detailed interpretation of coarse root 

architecture and permit examination of the belowground carbon storage structures. 

Understanding coarse root architecture is important considering that carbon can be 

transferred among individuals via root grafts and that root quantity, size and distribution 

interact to determine a plant’s ability to acquire soil resources (Schultz and Woods 1967, 

Casper et al. 2003). Finally, a better understanding of the spatial and temporal 

distribution of roots will permit manipulative studies that will lead to a better 

understanding of processes that determine root and whole plant responses (Hutchings and 

John 2003). Identification and quantification of these structures with GPR will refine and 

potentially redefine the carbon budgets of shrub ecosystems along with their

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



contributions to sequestration in the global carbon cycle.
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CHAPTER VI 

CONCLUSIONS

Plant roots represent one of the most complex and essential components in nature. 

Despite their important role in resource acquisition, carbon storage and anchorage, roots 

have typically been ignored in the vast majority of botanical and ecological studies. 

Pregitzer (2002) correctly stated “ .. .roots of perennial plants are a royal pain to study.” 

However, over the past two decades, a large push to quantify the belowground portion of 

plants has resulted in major leaps in technologies and methodologies for root studies.

The application of minirhizotrons, stable isotopes, x-ray tomography, and more recently 

ground-penetrating radar are now allowing us to quantify roots (in many cases non- 

destructively) and develop functional paradigms. Recent belowground studies are 

beginning to redefine how we look at ecosystem functions, most notably in terms of 

carbon sequestration.

It is estimated that roots can comprise 40-85% of net primary production in some 

ecosystems (Fogel 1985, Fitter 1987). Plant roots have the potential to sequester 

significantly large amounts of assimilated carbon belowground. Annual carbon 

sequestration by plant roots have major impacts on the global carbon budget. In addition, 

current studies might help in explaining a portion of the missing global carbon pool. The 

scrub-oak study system is nutrient poor sclerophyllous shrubland. Shrub ecosystems are 

known to produce the greatest total root biomass of any ecosystem (Jackson et al. 1996, 

Robinson et al. 2003).
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This study is part of a larger project examining the responses of scrub-oak 

ecosystems to elevated atmospheric CO2 . The primary goals and questions of this study 

were: Does elevated carbon dioxide influence the growth and morphology of roots?

Have fine root dynamics (i.e. production, mortality and turnover) changed since initial 

CO2 fumigation? What environmental and morphological factors control fine root 

survival? Are there differences in the coarse root biomass between CO2 treatments? Can 

root architecture be determined with ground-penetrating radar?

Fine roots appear to have reached a carrying capacity in the soil, or rather, root 

closure. Dilustro et al. (2002) examined fine root dynamics (i.e. productivity, mortality 

and turnover) during the initial 3 years of this study and found a significant CO2 

treatment effect. In the current study, the CO2 treatment effects have converged. Fine 

root productivity in the elevated CO2 chambers appears to have decreased slightly 

whereas the mean turnover has increased (non-significantly) in recent years. More 

interestingly, fine root diameter has significantly increased over the course of the study. 

Root diameters have also increased with respect to increasing depth over time. This 

means that greater amounts of fine roots with large diameters are now present in the 

lower portions of the soil profile.

In addition to fine root dynamics, root survivorship was examined in this study. 

Our data indicated that fine root survival increased with increasing root diameter, length, 

and depth. This suggests that fine roots are producing larger roots that are penetrating 

deeper into the soil profile perhaps to forage for resources beyond the dense root mat in 

the upper 40 cm of the soil. Differences in fine root persistence have strong implications 

on the carbon sequestration abilities of the fine root compartment. Smaller, more
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dynamic roots located in the upper portions of the soil profile have the potential to 

turnover rapidly, therefore releasing a large amount of carbon in the soil. Fine roots 

located deeper in the soil perhaps produce more efficient, longer-lived roots that have a 

large structural carbon sink. However, with the system reaching root closure, there might 

be limits as to how much carbon sequestration occurs post disturbance. The greatest soil 

“carbon-loading” by fine roots most likely occurs during the initial years post fire.

A common problem in most belowground studies centers on the ability to collect 

data non-destructively. Long-term ecological studies have been forced to ignore or 

“black-box” the coarse root compartments due to this limitation. Recently, application of 

ground-penetrating radar to biological systems has shown promise to image plant roots.

In this study, I was able to successfully correlate data from a 1,500 MHz GPR antenna to 

root biomass collected adjacent to the long-term CO2 experiment. A significant 

correlation (R2=0.68) between biomass and processed GPR data permitted estimation of 

biomass within the CO2 treatment chambers. Our findings indicate that there is a 

significantly greater amount of coarse root biomass within the elevated CO2 chambers 

compared to the ambient counterparts.

Nearly 85% of the total plant biomass is located in the root compartment in the 

scrub-oak ecosystem. More importantly, coarse roots have the potential to be major sinks 

for carbon in this ecosystem. Within the root compartment, approximately 77% of root 

biomass is partitioned into the coarse roots. Coarse roots serve as the primary 

photosynthate storage compartment and source of carbon for re-growth in this ecosystem 

following a disturbance. The contribution of this major sink is currently redefining how
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we view carbon dynamics in this system as well as the relative importance of the 

belowground compartment.

The final study in this dissertation focused on the application of GPR to examine 

coarse root architecture. Large roots that had unique angles or that transverse the 

validation area were typically present in the 3-D modeled GPR data. Smaller roots that 

were close together or that were on top of one another were typically masked or appeared 

as a single object. Root burls, which are a common feature in this ecosystem, were 

readily seen in the GPR data. Although the architecture and spatial deployment of many 

roots were detected by GPR, many objects were not detected. The data from this study 

support the initial proof-in-concept for examining root architecture, but future studies 

should increase the sampling density from 2 cm to 1 cm. Increasing the sampling density 

should maximize the 3-D modeling abilities of the GPR software. Root architecture 

studies by Fitter and Stickland (1992) and Lynch (1995) suggest that spatial deployments 

of roots are correlated to the acquisition of resources in the soil. However, root 

architecture or deployment of the coarse roots declined with depth suggesting that most 

coarse roots were in the upper 50 cm of the soil. This would indicate that the majority of 

the carbon sequestration would be located in the upper half meter of the soil.

Overall, this study has examined both the fine and coarse root compartments of 

the scrub-oak ecosystem. Fine roots have reached closure while CO2 treatments have 

converged. Currently, larger fine roots are being produced that are persisting longer and 

have increased in density at greater soil depths. Coarse roots have significantly greater 

biomass in elevated CO2 treatments and comprise nearly three quarters of the total root
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mass. This findings are reshaping the way that we view the root compartment and the 

role roots play in carbon sequestration in a post fire disturbance scrub-oak ecosystem.

This experimental study is unique in that is involves a nutrient poor, mixed 

species costal shrub community in Florida that has been treated with elevated 

atmospheric CO2 at levels predicted globally over the next 100 years. The results 

demonstrate that the CO2 treatment effect was short lived for the fine roots. The impacts 

of CO2 treatments on coarse roots early in the study are unclear; however, a significant 

treatment effect was present in the recent (ninth and tenth) years of the overall study.

Our results indicate that non-destructive methods such as minirhizotrons and GPR will 

redefine our understanding of root ecology and the potential for carbon storage.
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APPENDIX 

FINE ROOT LENGTH DENSITY

In the first three years of the study, a treatment effect was present where fine roots 

grown under elevated CO2 produced greater RLD than those grown under ambient CO2 

conditions (Dilustro et al. 2002). This treatment effect was lost as the mean RLD 

between treatments converged due to fine root closure (Fig. 34) (Day et al. 2006). A 

closer examination of the distribution of fine roots over the past nine years into eight 

depth classes indicated that depth classes 1-3 (0-37 cm) had the highest mean RLD, 

whereas the deepest root classes 7 and 8 (74-101 cm) had the lowest mean RLD (Fig. 35). 

It is evident that RLD increased early in the study until reaching a maximum density 

(root closure); however, the accumulation of root density in the lower portions of the soil 

profile was slower within the lowest depth classes (Depth p=0.001). It is important to 

note that depth class 1 (surface depth class) was under sampled in the later years of the 

study due to soil separation and algal and organic matter deposits blocking some of the 

viewing frames. Compared to Day et al. (2006), fine roots have increased in density with 

increasing depth (more or less evenly among treatments). Overall, there is a significant 

depth*treat interaction (p=0.017) most likely driven by differences in the early years of 

the study.

FINE ROOT SURFACE AREA

Fine root surface area was significantly different early in the study, but declined 

after 1999 (Fig. 36). In 2002, a general increase in fine root surface area was observed
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FIG. 34: Long-term minirhizotron estimates of root length density (RLD) measured in 
mm cm'2. Measurements were taken for ambient and elevated CO2 treatments four times 
yearly to a depth of 1 meter. Error bars are 1 S.E.
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(date*treat p=0.037). Depth (p< 0.001) also seems to have influenced surface area in a 

manner similar to root diameter. The lowest depth class had a significant CO2 treatment 

by date interaction (p=0.043) suggesting that surface area increased over time at the 

lowest depths.

Fine root surface area has remained relatively constant throughout the study at

approximately 10 mm2 cm'2. Combined with the RLD and diameter measurements,

surface area appears to indicate that fine roots were producing larger diameter roots

following decline of RLD in 2002. This is supported since the average surface area

increased within this period, ultimately reaching a newer and higher equilibrium of the

same magnitude seen in the 1998-2000 observation periods. Increased surface area and

length maximize the ability to acquire nutrients and water; however, larger diameter roots

are less efficient at uptake and better at conducting these resources (Nye and Tinker

1977, Eissenstat 1992, 1997). Rastetter et al. (1997) found that as carbon allocations

belowground increase in response to elevated atmospheric CO2 , RLD will increase while

the average distance between roots will decrease in response to decreasing soil nutrients.

This suggests that fine roots will begin to maximize soil foraging to a point where

depletion zones begin to overlap, thus resulting in root closure.

RELATIVE C 0 2 RESPONSE

Relative CO2 effects were calculated similar to Day (et al. 2006).

Elevated RLD - Ambient RLD .-------------------------------------- xlOO
Ambient RLD

Relative CO2 calculations were divided into four 25 cm depth increments to examine 

differences in relative CO2 effects at different depths.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



122

The effect of CO2 on fine root abundance was significant during the initial 3 years 

of the study, however, this treatment effect diminished in the later years of the study (Fig. 

37). By comparing the relative treatment effect by depth, a slight divergence in the CO2 

response is observed (Fig. 38). During the initial treatment effect, the largest response 

was observed 25-100 cm deep in the soil. Specifically, a large response is noted in the 

25-50 and 75-100 cm depth classes, indicating a large increase in the abundance of fine 

roots in response to elevated CO2 . However, later in the study, most of the relative CO2 

responses became slightly negative except in the 25-50 cm depth range. This indicates 

that an elevated CO2 response has persisted at this depth over the duration of the study.

The only consistent relative CO2 response was observed in the 25-49 cm range 

indicating that CO2 enrichment is still actively increasing RLD at this depth. Long-term 

relative response trends show a large response to CO2 enrichment early in the study, 

which dissipated after the first 3-4 years.
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FIG.37: Relative CO2 response based on fine root density from minirhizotron estimates.
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