

Leading the Lead Out! Low-cost Household Biochar Water Filter for Lead Removal Department of Civil & Environmental Engineering, Old Dominion University Pushpita Kumkum, Sandeep Kumar

Motivation Expensive and difficult to install the traditional filter Prefers to drink from the tap to avoid the cost and hassle xposure to lead can seriously harm a child's health 6-10 million US homes have lead-pipes More than 500,000 kids in the U.S. have elevated levels of lead in their and development and nervous system blood This can cause: Lower IO **Replacing the lead service lines or** Decreased ability to pay attention distributing bottles during crisis like Flint, MI Underperformance at school can be Pollutior Money Time Labor Economic impact Widespread estimation linked to \$50.90 \$55 impact on childhood lead exposure Quality of life US EU for the This Filter can be a **Developing and** solution for entire lead-Developed contamination problem of 0.33% region the world

Basic Features of the Proposed Biochar Water-Filter

Feedstock can be yard-waste

Extensive leadremoval potential

Affordable to allsmall, rural, tribal and disadvantaged communities

Lab-scale Performance **Objective & Scope Batch Study** Theoretical Investigation • Building a Prototype Biochar Dose = 0.5 g/l • Demonstrating the Efficiency • Determination of design parameters Packing of biochar in the filter • Testing in real-time setting • Creating a business plan Initial Lead Concentration 500 ppb 1000 ppb **Batch Reactor** • Formation of Enterprise **Column Study** • Partnership with NGOs Applying to EPA Small Business Innovation Research Schematic of lab-scale column study apparatus **Research & Development Construction of Biochar-maker and Production of Biochar** Column with biochar Water Sample 2 h 1 day 2 day (a) Initial Pb Concentration = 0.5 ppm, Flow rate = 10 ml/min, Amount of Biochar = 15 g Feedstock Produced After (b) Initial Pb Concentration = 0.5 ppm, Flow rate = 2 ml/min, Amount of Biochar = 15 g pyrolysis biochar Contaminated No lead in effluent sample – even after 5 days! Water **Step-by-step Process of Granulating the Biochar Quantifiable Benefits of the** Filter **Pushing the** Spreading biochar dough with a roller Drying Granulated dough biochar through the sieve **Granulation Parameters** Biochar **Binder Used** Results Produced uniform, med. sized Conclusion 26 g 26 g granules large, non-uniform 15 g 114 g granules • More efficient binder solution for granulating biochar needs to be explored further very uniform, small 97 g 21 g • Lower flow rate increases the biochar adsorption potential granules • Breakthrough time was reached within 1 h of total run time for higher flow rate Tied-up with a • Total amount of Pb adsorbed was 51 mg/g biochar for initial concentration of 0.5 company: Diamond ppm and 2ml/min flow rate Science & Technology Acknowledgements Submitted proposal for EPA Small Business **Innovation Research** US Environmental Protection Agency: Grant Number (FAIN): 83926601 Biomass Research Laboratory Group at Old Dominion University

Dr. Sandeep Kumar (757) 683 3898 skumar@odu.edu

Component	Unit Price (\$)	Effort/Cost
Biochar-maker Unit	0	Man-hour, Used food cans
Feedstock	0	Man-hour, Twigs <i>,</i> wood chips
Filter Material	0.56	Plastic Cup
Mesh/Screen/ch eese cloth etc.	0.43	Household Item
Installation Cost	0	Easy to Install
Total	0.99	Inexpensive!!