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ABSTRACT

C O M P A R A T IV E  S Y S T E M A T IC S  O F  S U B T E R R A N E A N  A M P H IP O D  C R U S T A C E A N S  IN 

T H E  F A M IL IE S  C R A N G O N Y C T ID A E  A N D  B O G ID IE L L ID A E

Stefan Koenemann 

O ld Dom inion University, 2000 

D irec to r Dr. John R. Holsinger

The research project presented in this doctoral dissertation deals w ith the system atics o f  two 

different taxonom ic groups o f  subterranean am phipods (Crustacea). Therefore, rather than being a single 

project, this study is divided into several sub-projects. A ltogether, the chapters fo r the sub-projects are 

com posed o f  five publications. An introductory chapter and a  sum m arizing d iscussion are added to  provide 

a structural unit for the collection o f  papers and to  com pare the results o f  the individual projects.

The thesis investigates the system atics o f  the am phipod families B ogidiellidae Hertzog, 1936, and 

Crangonyctidae Bousfield, 1973. Based on descriptive taxonom y according to  m odem  standards, revisions 

are given for the crangonyctid genus Bactrurus Hay, 1902, the bogidiellid genus Spelaeogammarus da 

Silva Brum. 1973, and the fam ily Bogidiellidae. The bogidiellid sub-project a lso  includes the description o f  

the new genus and species Megagidiella azul.

This study m akes an  attem pt to com pile and evaluate molecular and  m orphological data for two 

families o f  gam m aridean am phipods. To research the phylogenetic relationships o f  the Bogidiellidae and 

Crangonyctidae, cladistic analyses, using external m orphological characters, are conducted for each family. 

In addition, sequence analyses o f  the 18S (sm all subunit) rD N A  gene are carried  out for three species o f 

Bactrurus and several selected am phipod taxa.

The results o f  m orphological and m olecular analyses are com pared and the phylogenetic 

relationships o f  the taxa under investigation are discussed, especially em phasizing their biogeographic 

distribution patterns and current taxonom ic classification.

In a sum m arizing chapter, the biogeography and evolutionary history o f  both fam ilies are 

com pared. M oreover, the application o f  different methods o f  phylogenetic reconstructions is discussed for 

the Bogidiellidae and Crangonyctidae, as w ell as for stygobiont amphipods in general.
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This thesis is dedicated to m y wife Cora who never seem ed to  get tired listening to the story o f  the 

A m phipoda, to m y father who is very proud o f  me because I m ade a  profession o f  m y adm iration for life 

and nature, and to m y m other w ho certainly is equally proud o f  m e but still not quite sure w hat exactly  I am

doing.

"In science one tries to tell people, in such a  way as to be understood by everyone, something that no one 

ever knew before. But in poetry, it is the exact opposite. "

Paul Dirac (1902-1984)
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CHAPTER I 

INTRODUCTION

The crustacean order A m phipoda is represented by approxim ately 7,000 described species 

(H olsinger, 1994a), com m only occurring in aquatic and occasionally even in terrestrial habitats. T heir 

w orldw ide distribution and taxonom ic diversity is probably unparalleled am ong all crustacean groups. 

A m phipod crustaceans inhabit freshwater, brackish, and marine environm ents. T hey are recorded from  the 

benthos o f  arctic seas to shallow  tropical shores, from therm al desert springs to cold m ountain trickles up to 

2,500 m elevation and higher.

The Am phipoda are divided into the suborders Gammaridea, Caprellidea, and Hyperiidea, and 

som etim es the Ingolfiellidea as a fourth suborder. O ne remarkable characteristic o f  the G am m aridea is their 

abundant presence in hypogean (subterranean) environments. The vast m ajority o f  gam m aridean 

stygobionts (obligatory hypogean, aquatic organisms) is distributed am ong 12 fam ilies, some o f  w hich are 

com posed exclusively o f  hypogean species, whereas others comprise both epigean and hypogean taxa 

(H olsinger, 1993, 1994a).

This research project com pares the system atics o f  two o f  the larger hypogean groups w ithin the 

suborder G am m aridea, the families Bogidiellidae and Crangonyctidae.

The family Bogidiellidae
All species o f  the Bogidiellidae occur in subterranean environm ents. To date, the family com prises 

23 genera, 11 subgenera, and a total o f  110 species. The bogidiellid sub-project o f  the thesis presented 

yielded three publications:

•  The description o f  the new species and genus Megagidiella azul (Chapter II).

•  A revision o f  the genus Spelaeogammarus, including the description o f  four new species 

(C hapter III).

•  A revision and phylogenetic analysis o f  the family Bogidiellidae (C hapter IV). To obtain 

additional support for a revised classification, a  cladistic analysis, using 27 morphological 

characters, was perform ed on 41 taxa o f  the unrevised fam ily. The revision excluded five 

genera from the family, all rem aining subgenera were elevated to generic level. Four taxa w ere 

split, resulting in five new genera. The fam ily Bogidiellidae now  consists o f  33 genera.

The genus Bactrurus (Crangonyctidae)

The Crangonyctidae are com posed o f  only six extant genera and a total o f  approximately 150 

species, including both hypogean and epigean taxa. The exclusively subterranean genus Bactrurus is a 

relatively sm all group, endem ic to the United States. Descriptions o f  four new species are given, resulting

The model journal used to format this thesis was Crustaceana.

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



2

in a total o f  seven species for Bactrurus. The genus is redescribed and its phylogenetic relationships to its 

potential sister-genus Stygobromus Cope, 1872, and o ther crangonyctid  taxa are investigated. New 

geological data are given to clarify the rather unusual geographic distribution o f  Bactrurus.

As part o f  an international cooperative project, 18S (sm all subunit) rD N A  sequencing o f  

Bactrurus and several additional am phipod taxa w as accom plished in the laboratory o f  Dr. J. W aegele at 

R uhr-U niversity  Bochum (Germ any). For the first tim e, analyses o f  D N A  data are applied  to subterranean 

crustaceans.

The revision o f  Bactrurus resulted in the preparation o f  a  m onograph for the genus (Chapter V). 

The D N A -sequencing project yielded a  separate publication (C hapter VI).

A sum m ary in Chapter VII com pares the evolutionary history, biogeography and  phylogeny o f  the 

B ogidiellidae and Crangonyctidae.

This thesis aim s to answ er several key questions about the evolution o f  stygobiont am phipods:

1. The fam ily Bogidiellidae has an enigm atic geographic distribution. Som e taxa inhabit 

isolated, continental freshw ater habitats w hereas m ore abundant groups occur in coastal 

regions, including m arine shores. How can this pattern be interpreted w ith regard to the 

evolutionary history o f  the fam ily?

2. The crangonyctid genus Bactrurus is endem ic to parts o f  central and eastern US. The 

distribution o f tw o o f  its species extends into regions that w ere covered by  ice sheets during 

Pleistocene glaciation periods. O ther species occur in karst regions tha t m ay have been 

isolated freshwater habitats since the late Paleozoic. How  can the geographic distribution o f  

Bactrurus be explained? W hich assum ptions does the biogeography o f  Bactrurus allow  us to 

m ake about their evolutionary history?

3. How  old are lineages o f  the subterranean freshw ater am phipods investigated and which 

estim ates about their evolutionary age can be derived from the results o f  th is  study?

4. Techniques and even m ethods o f  phylogenetic reconstruction usually  d iffer, depending on the 

group o r taxonomic level under investigation. In w hich w ay do these differences affect 

phylogenetic analyses o f  stygobiont am phipods? W hich m ethods/techniques should be 

applied to perform analyses at the fam ily level and above?

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.
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CHAPTER II

MEGAGIDIELLA AZUL, NEW GENUS AND NEW SPECIES O F A CAVERNICOLOUS 

AMPHIPOD CRUSTACEAN O F THE FAMILY BOGIDIELLIDAE FROM BRAZIL, WITH 

REMARKS ON ITS BIOGEOGRAPHIC AND PHYLOGENETIC RELATIONSHIPS 

Introduction

Recent biological exploration o f  caves by speleologists in several karst areas in Brazil has revealed 

m any new localities for gam m aridean am phipod crustaceans and other subterranean organism s (Pinto-da- 

Rocha, 1995). One such investigation in the Serra da Bodoquena Karst o f  central-w estern Brazil resulted in 

the discovery o f  a new  stygobiont am phipod genus o f  the family B ogidiellidae, described below. The 

specim ens w ere collected from a deep, subterranean lake in G ruta do Lago A zul (B lue L ake Cave).

Taxonomic part 

Megagidiella, new genus

D iagnosis: Eyes absent. Body sm ooth, unpigm ented. Uronites no t fused. Coxal plates longer than 

wide, not overlapping. C oxal gills occurring on pereopods 4-6; sternal g ills absent. O ostegites on pereopods 

2-5, sublinear. No sexual dim orphism  in any characters. Interantennal (lateral) lobe o f  head narrow ly 

rounded anteriorly. M andibular palp absent. M axilla 1: palp 2-segm ented; o u te r plate w ith 7 serrate spines; 

inner plate w ith 3 apical plum ose setae. G nathopod 1 propodus much larger than gnathopod 2 propodus. 

Pereopods 5-7 with narrow  bases. Pleopods and uropods unm odified. P leopods biram ous; outer ramus 3- 

segm ented; inner ram us reduced, 1-segm ented. Uropods biramous; peduncle  o f  uropod 1 with several 

ventrolateral (basofaciai) spines; uropod 3 relatively long. Telson about as long as broad, with shallow 

excavation.

Type species: Megagidiella azul, new  species by m onotypy; gender feminine.

E tym ology: T he generic name, referring to the relatively large size  o f  the type species, is a 

com bination o f  the G reek prefix  “m ega” (=  large) and part o f  the family nam e.

R em ark s  and relationships: Bogidiellids are relatively sm all am phipods, th e ir  body lengths 

generally range between 1-3 mm, occasionally  exceeding 5 mm. With adu lt specim ens reaching a body 

length o f  16.2 m m , Megagidiella  is an extraordinary exception. The m ore significant diagnostic  character, 

however, is the absence o f  a  m andibular palp, a m orphological reduction to  date  unparalleled in the fam ily 

Bogidiellidae (sensu Stock, 1981). A part from its size and absence o f  a  m andibular palp , Megagidiella 

closely m atches the typical m orphology o f  Bogidiella, s. str., e. g., gnathopod 1 larger than  gnathopod 2; 

pereopods 3-7 w ith narrow  bases; coxal plates not overlapping, w ider than long; 3-segm ented pleopodai 

outer ram us; reduced, 1-segm ented pleopodai inner ram i. M inor exceptions from  the general bogidiellid 

m odel are a 1-segm ented accessory flagellum  and the arm ature o f  the telson. O f  all described bogidiellid
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species, a 1-segm ented accessory flagellum  is known only in 4 genera: Artesia  H olsinger (in: H olsinger & 

Longley, 1980), Kergueleniola Ruffo, 1970, Marigidiella Stock, 1981, and Parabogidiella Holsinger (in: 

H olsinger & Longley, 1980).

Interestingly, the arm ature o f  the telson shows a rem arkable resem blance to  that o f  

Spelaeogammarus da  Silva Brum, 1975, from caves in eastern Brazil: Megagidiella has 2-3 apical and 3-5 

subapical (lateral) spines per telsonic lobe in com parison with 2 apical and 3-4 subapical spines in 

Spelaeogammarus. T he com bination o f  2 apical spines w ith more than 2 subapical spines is exceptional for 

bogidiellids. M oreover, the arm ature and shape o f  uropods 1-3 show notew orthy sim ilarities in both genera, 

for example, a row  o f  long setae on the medial margin o f  the outer ram us o f  uropod 3. A long with Artesia, 

from an Artesian W ell in Texas, these are the only bogidiellids know n to us with setae on the rami o f  

uropod 3.

Fig. 2.1. Megagidiella azul n. sp.. holoty pe female (16.2 mm) from Lago Azul Cave. Bonito, Estado Mato Grosso do 

Sul. Brazil. Note: buccal mass is shaded.

Megagidiella azul, new  species

Figs. 2.1-4

M ate ria l exam ined : H olotype female (16.2 mm), allotype m ale (15 m m ), and 3 paratypes (1 

male. 1 female, 1 juvenile), collected by Adrian Boiler, 1 July, 1991.

Type locality: G ruta do Lago Azul, northwest o f  Bonito, Estado M ato Grosso do Sul, Brazil.

The holotype is dissected and mounted on m icroscope slides in Faure’s m edium . It will be 

deposited in the M useu Nacional (UFRJ) in Rio de Janeiro, Brazil. The allotype and paratypes are 

preserved in alcohol and will be retained in the research collection o f  JRH  under the catalog no. H-3487.

Diagnosis: W ith the characters o f  the genus. Largest m ale 15 m m , largest fem ale 16.2 mm (Fig.
2 . 1 ).

Reproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



5

D escrip tion : A ntenna 1 (Fig. 2 2 a )  about 50%  length o f  body length. Peduncular segm ents 1-3 

gradually decreasing in length distally. Prim ary flagellum  longer than peduncle, with up to  19 articles in 

adult specim ens, w ithout aesthetascs. A ccessory flagellum  I'Segm ented.

O '

Fig. 2.2. Megagidiella azul n. sp., holotype female (16.2 mm): a) antenna 1 (accessory flagellum enlarged), b) antenna 
2. c) upper lip. d) lower lip. e) maxilla 1. f) enlarged spine and seta types of maxilla 1. g) maxilla 2. h) left mandible, i) 
incisor, lacinia mobilis. and spine row of right mandible, j) maxilliped.

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



6

Antenna 2 (F ig . 2 .2b) about h a lf  as long as antenna 1. Peduncular segm ent 4 longer than  segm ent

5. Flagellum as long as peduncular segm ent 5, w ith  5 articles.

U pper lip (F ig . 2.2c) rounded apically, w ith  setules along distal margin.

M andible (Figs. 2.2h, i): palp absent; m o lar prom inent, rounded, w eakly triturative, bearing 1 

long, finely sena te  seta; left lacinia m obilis 5-dentate, right lacinia 2 -dentate, w ith sen a te  upper margin; 

left and right m andible with 4-6, variably plum ose accessory  spines.

Lower lip (Fig. 2.2d) bearing setules on ou ter lobes and on  distal m argins o f  inner lobes; inner 

lobes sm all but distinct; lateral processes sh o n  w ith  bluntly  rounded com ers.

M axilla 1 (Fig. 2 2 e ): Palp 2-segm ented, w ith 3 apical setae. O uter plate w ith 7 com b-like spines 

(Fig. 2.f)- bearing loosely inserted setules on surface and in row  along medial m argin. Inner plate with 

m arginal setules and 3 apical plum ose setae.

Fig. 23. Megagidiella azul n. sp., holotype female (16.2 mm): a) gnathopod 1. b) gnathopod 2, c) epimeral plates, d) 
telson. e) telson. allotype male (15 mm).
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M axilla 2 (Fig. 22g): O uter plate w ith approxim ately 24 naked apical setae; apical margin o f  inner 

plate bearing about 17 naked setae and 3 plum ose setae; both plates w ith fine setules.

M axilliped (Fig. 2.2j): Palp 4-segm ented; 3 blunt spines along apical m argin o f  outer plate; apical 

m argin o f  inner plate with 2 b ifid  (y-shaped) spines, 4 plum ose setae, and 1 naked seta.

G nathopod 1 (Fig. 2 .3a): Basis naked, bearing only 1 short seta at distoposterior com er. Carpus 

short, triangular shaped, w ith 2 setae on pointed posterior lobe. Propodus alm ost tw ice as long as broad, 

approxim ately tw ice the size o f  gnathopod 2  propodus. Palm ar m argin oblique and even, finely serrate 

along whole m argin, with 5 m edial and 5-6 lateral spines; m edial margin w ith about 27  short setae and 4 

angular spines o f  unequal length. Dactyl about 80%  length o f  propodus.

Gnathopod 2 (Fig. 2.3b): Basis naked, bearing only 1 short seta at distoposterior com er. Propodus 

bearing 18-20 short setae (12-13 laterally and 6-7 medially), 5 spines near com er, and a single lateral spine 

a t m id-palm ar m argin. Palm w ith  distinctly oblique, finely serrate m argin. Dactyl about 60%  length o f  

propodus.

Pereopods 3 and 4 subequal (Figs. 2.4a, b). Bases narrow, anterior m argins little expanded. 

D actyls 24-27%  length o f  propods.

Pereopods 5-7 (Figs. 2 .4c-e) increasing in length posteriorly. Bases narrow, posterior m argins very 

w eakly expanded. Dactyls about 22, 26, and 28%  length o f  propods, respectively.

All pereopod bases apparently  w ithout lenticular organs.

Coxal plates small, w ider than long; plates 1-4 rectangular, plates 5-7 at least 2  tim es w ider than

long.

Coxal gills (Figs. 2 .4a, d) present in 3 pairs, ovate on pereopods 4 and 5 and sack-shaped on

pereopod 6.

Oostegites (Figs. 2.3b; 2.4a, c) small, sublinear, occurring on pereopods 2-5 (not setose in material

exam ined).

Epim eral plates (Fig. 2 .3c) w ith small, but distinct distoposterior com ers, bearing 1 setule each in 

groove im m ediately above com er.

Pleopods 1-3 (Fig. 2 .4 0  alike. Inner ram us reduced, 1-segm ented, with term inal plumose seta . 

O uter ram us 3-segm ented, with 2 term inal plum ose setae per segment.

Uropod 1 (Fig. 2.4g) biram ous, outer ram us slightly shorter than inner ram us; ram i about 64%  

length o f  peduncle. Peduncle bearing 14-15 spines, 3 o f  which inserted along ventrolateral (basofacial) 

m argin. O uter ram us with 12 lateral spines and 4  apical spines. Inner ram us w ith 4-5 apical and 5 

dorsom edial spines.

Uropod 2 (Fig. 2.4h): Inner and outer ram i subequal, slightly longer than peduncle. Peduncle with 

6 spines. O uter ram us bearing 8 lateral spines and 4 apical spines (2 long ones and 2 short ones). Inner 

ram us bearing 5 spines along m edial and lateral m argins and 5 apical spines (3 long ones and 2 short ones).

Uropod 3 (Fig. 2.4i) long, w ith subequal, 1-segm ented rami. Peduncle about 48%  length o f  rami, 

with 2-4 spines. O uter ram us w ith  6 apical spines and 6  sets o f  spines along lateral m argin (w ith 1-5 spines
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per set); m edial margin bearing 4-5 long plum ose setae. Inner ramus w ith 6*7 apical spines and about 19 

medial and lateral spines (som e doubly inserted).

Fig. 2.4. Megagidiella azul n. sp.. holotype female (16.2 mm): a) pereopod 3, b) pereopod 4, c) pereopod 5, d) 
pereopod 6, e) pereopod 7. f) pleopod 2, g) left uropod 1. h) left uropod 2, i) left uropod 3.
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Telson (Fig. 2.3d, 2 .3e) about as broad as long; apex w ith shallow excavation  (8%  length o f  

telson); each h a lf  bearing 2 p lum ose setae, 2 (som etim es 3) apical and 3-S subapical spines.

V a ria tio n : M orphological variation, apart from usual d ifferences between juven iles and adults (e. 

g., num ber o f  spines on appendages, flagellum  articles, etc.), was observed m ost obviously  in the arm ature 

o f  the telson. T he num ber o f  subapical spines in the adult females (16 m m  in length) varied from 3 to 5 per 

side, whereas both adult m ales ( IS  and 11 mm in length) had a constant num ber o f  3 subapical spines. In 

the holotype fem ale, a short th ird  apical spine was inserted on the left telsonic apex (F ig . 3d).

E tym ology: The epithet azul is based on the name o f  the type locality an d  is used as a noun in 

apposition.

Discussion

The type material w as co llected  at a depth between 6 and 12 m from a  deep, turquoise-blue lake 

inside Blue Lake Cave. The cave is located at the southern edge o f  the w orld’s largest wetland a rea  along 

the Serra da Bodoquena in central-w estern Brazil (Pinto-da-Rocha, 199S). B ecause o f  the large cave 

entrance, the lake, about SO m inside the cave, receives light during som e hours o f  the day (Pires, 1987). 

The w ater in the lake presum ably m arks the  upper portion o f  a subterranean aquifer.

Blue Lake Cave w as already  biogeographically significant p rio r to the d iscovery  o f  Megagidiella 

azul, inasmuch as it is the only  know n locality in the western hem isphere for the extrem ely  rare crustacean 

order Spelaeogriphacea. Prior to the discovery o f  Potiicoara brasiliensis Pires, 1987 in Blue L ake Cave, 

the only other spelaeogriphacean know n to science was Spelaeogriphus lepidopus G ordon 1957 from  caves 

on Table M ountain in South A frica. One explanation for the occurrence o f  freshw ater stygobiont 

spelaeogriphaceans in caves on opposite  sides o f  the Atlantic O cean is that these species are derived from a 

com m on ancestor w hich inhabited G ondw ana prio r to  the separation o f  Africa and South A m erica in the 

Early Cretaceous. A lthough it is tem pting to speculate that bogidiellids and spelaeogriphaceans share a 

sim ilar evolutionary history affected  by continental drift, there is to date no evidence that the ranges o f  

these groups form a generalized distribution  track. Bogidiellids are recorded only from  a few localities near 

coastal regions in northeastern and northern A frica, whereas the freshw ater am phipod fauna in central and 

southern Africa is com posed prim arily  o f  epigean param elitids, and stygobiont ingolfiellids and 

stem ophysingids.

From an ecological perspective, it is im portant to note that M. azul dw ells in a large lake o f  

phreatic water. T he extraordinary size o f  this species m ight imply a  correlation o f  body  size and available 

habitat space. An interesting parallel exam ple o f  this phenomenon can be observed in the am phipod fam ily 

Ingolfiellidae. M ost ingolfiellids, like m any bogidiellid taxa, are less than 3 mm long and  live in interstitial 

habitats. In contrast to the norm , how ever, species o f  the ingolfiellid genus Trogloleleupia live in large 

“open” cave lakes in central and southern A frica and may reach 23 mm in length (Griffiths, 1989).

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



10

Km
10N -  i  0  VENEZUELA

1000500

VCOLOMBIA

---0
)___

,14
10S 34,,14 .~ BRAZIL

,10.

20S

Pacific Ocean

30S

URUGUAY

Atlantic OceanARGENTINA

40S

50S

SOW 70W 60W 50W 40W

Fig. 2.5. Geographic distribution o f bogidiellid amphipods in continental South America: ( I ) Bogidiella cooki Grosso 
& Ringuelet (I979); (2) B. gammariformis Sket (I985); (3) B. neotropica RufTo (I952); (4) B (Dyciicogidiella) 
ringueleti Grosso & Fernandez (1988); (5) B. (.Dyct.) talampayensis Grosso & Claps (1985); (6) B. 
(Mesochthongidiella) tucumanensis Grosso & Fernandez (1985); (7) B. (Stygogidiella) hormocollensis Grosso & 
Fernandez (1988); (8) B. (Styg.J lavillai Grosso & Claps (1984); (9) Eobogidiella purmamarcensis Karaman (1982); 
(10) Mangidiella brasiliensis Stock (1981; see also Siewing. 1953); (11) Megagidiella azul n. gen., n. sp. (background 
darkened for emphasis); (12) Patagongidiella danieli Grosso & Fernandez (1993) and P. mauryi Grosso & Femindez 
( 1993) (both in same locality); (13) Pseudingolfiella chilensis Noodt (1965); (14) Spelaeogammarus bahiensis da Silva 
Brum (1975) and 3 n. ssp.. Koenemann & Holsinger (2000).
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Bogidiellid am phipods have a near w orldw ide distribution pattern, occurring exclusively in 

subterranean habitats. Their distribution pattern is characterized by several regions with relatively dense 

concentrations o f  species. For exam ple, the South A m erican continent show s the highest generic diversity 

as opposed to the M editerranean region where species richness is higher but generic diversity is lower. To 

date, 18 species, distributed am ong 10 genera and subgenera, are know n from South Am erica (Fig. 2.S).

The discovery  o f  Megagidiella azul in the interior o f  South Am erica, approxim ately 1,000 km 

from the nearest coast, is biogeographically significant because the vast m ajority o f  bogidiellids occupy 

ranges between 100-200 km from m arine coastal regions. South A m erica shows a rem arkable pattern o f  

isolated aquatic habitats, and has promise for the future study o f  stygobiont organism s and their 

environm ents.

S u m m a ry

Megagidiella azul, a new  genus and species, is described from G ruta do Lago A zul, a cave in 

central-w estern Brazil. With a body length o f  m ore than 16 mm, this species is the largest bogidiellid 

recorded to date. In addition to its large size, the  absence o f  a m andibular palp is a unique diagnostic 

character for the fam ily Bogidiellidae and alone m erits recognition o f  a new  genus. The occurrence o f  

Megagidiella azul in an isolated, inland cave habitat m arks another exceptional biogeographic record o f  a 

bogidiellid am phipod from South Am erica.
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CHAPTER III
REVISION OF THE SUBTERRANEAN GENUS SPELAEOGAMMARUS(BOGIDIELLIDAE)

FROM BRAZIL, INCLUDING DESCRIPTIONS O F THREE NEW SPECIES AND  

CONSIDERATIONS OF THEIR PHYLOGENY AND BIOGEOGRAPHY

Introduction

Exploration o f  caves in eastern Brazil in the early 1970s resulted in the discovery o f  the new  

bogidiellid genus and species Spelaeogammams bahiensis (da S ilva Brum, 1975). T he specim ens w ere 

collected from a cave near Cura^d, capital o f  the district M atam ute, in the state o f  Bahia. Subsequently, 

betw een 1989 and 1993, m any additional specim ens from various caves in Bahia w ere co llected  by 

Brazilian speleologists and sent to us for identification. Because these specimens differed m orphologically  

from the descrip tion  o f  Spelaeogammarus bahiensis, we borrow ed paratypes o f  this species from  the 

M useu N acional in Rio de Janeiro, for a com parison w ith the new  material. The paratypes enabled  us to 

identify and describe three new species and also  to partially redescribe the genus Spelaeogammarus. In 

addition, a key to the four species o f  the genus is provided as well as a table detailing m orphological 

differences.

The holotypes o f  the new species are deposited  in the M useu Nacional in Rio de Janeiro (M N R J), 

Brazil, as indicated.

Taxonom ic part

Genus Spelaeogammarus da Silva Brum, 1975

Spelaeogammarus da Silva Brum, 1975: 125-128.

T ype species (by m onotypy): Spelaeogammarus bahiensis da Silva Brum, 1975.

D iagnosis: Eyes absent. Body sm ooth, unpigm ented. Coxal plates 1-2 sm all, w ider than long; 

plates 3-6 longer than wide, overlapping. A ntenna 1 about 45-50%  o f  body length, prim ary flagellum  

longer than peduncle, with 16-20 segments. A ccessory  flagellum  with 4-5 segments. A ntenna 2 flagellum  

bearing 7-10 segm ents. M andibular palp 3-segm ented. M axilla I with sym m etrical, 2-segm ented palp; 

inner plate w ith 3 plum ose setae; outer plate bearing 6-7  serrate spines. Inner plate o f  m axilliped bearing 

apically 2 bifid (y-shaped) spines; outer plate w ith 3 or 4 blade-like spines apically  and subapically. 

Propodus o f  gnathopod 1 larger than that o f  gnathopod 2. Dactyls o f  both gnathopods d istinctly  serrate 

along inner m argins. Pereopods w ithout any trace o f  lenticular organs; pereopods 5-7 bases broad, 

propodus and/or carpus with long, bifurcate setae. Pleopods and uropods unmodified. Pleopods biram ous, 

with 3-segm ented ou ter ramus and 1-segmented inner ram us, ram i subequal in length. Uropods biram ous: 

peduncle o f  uropod 1 with 3 o r 4 large basiofacial (ventrolateral) spines; uropod 3 with subequal, 1- 

segm ented ram i, outer ramus bearing a row o f  long, bifurcate setae along medial m argin. Telson typically
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longer than wide, apex w ith shallow  excavation , bearing apical and subapical sp ines. Coxal g ills present on 

pereopods 4-6 . Oostegites linear and e longate , on  pereopods 2-5. N o sexual dim orphism  in any characters.

Key to the species o f Spelaeogammarus (based on males and females)

1. A ccessory flagellum o f  antenna 1 w ith 4  segm ents; flagellum  o f  antenna 2 w ith  7 segm ents; p ropodus o f

gnathopod 1 slightly larger than b a s is ........................................................................................................................... 2

A ccessory flagellum o f  antenna 1 w ith  5 segm ents; flagellum  o f  antenna 2  w ith 8-10 segm ents; 

propodus o f  gnathopod 1 m uch larger than  b a s is ............................................................................ S. santanensis

2. C oxal plate 6 bearing I spine, setae absent; o u te r p late o f  m axilla 1 with 6 serrate spines an d  I plum ose

seta; inner plate o f  m axilliped with 4 p lum ose s e ta e ................................................................................................ 3

C oxal plate 6 bearing 1 spine and about 20  setae; outer plate o f  maxilla 1 w ith  7 serrate spines; inner 

plate o f  m axilliped w ithout plum ose s e ta e ............................................................................................. S. bahiensis

3. A nterior m argin o f  basis o f  gnathopod 1 w ith  5-9 short setae; coxal plate 5 bearing 1 spine an d  17-18

s e ta e ....................................................................................................................................................................S. trajanoae

A nterior margin o f  basis o f  gnathopod 1 w ith  2-4 spines (or longer setae) and 1 short seta; coxal plate 5

bearing 1 spine and about 9 s e ta e .........................................................................................................S. spinilacertus

Spelaeogammarus spinilacertus, new  species

F igs. 3.1-5; 3.6c

M a te ria l exam ined: Estado do B ahia, Brazil: holotype m ale (6.1 m m ) and 1 paratype m ale (7.5 

m m ) from  Baixa do Salitre Cave, Iraquara, co llec ted  by  J. A . Cardoso, Sep 1993; 4 paratypes (3 fem ales, 1 

m ale) from  Baixa do Salitre Cave, collected b y  L. M endes and E. Rubbioli, 24 M ay, 1997; allo type fem ale 

(8.1 m m ) and 2  paratypes (1 m ale, 1 fem ale), from  Jaburu Cave, Iraquara, collected by  J. A. C ardoso , Sep

1993.

The holotype and allotype are d issec ted  and  m ounted on microscope slides in Faure’s m edium . 

H olotype (M N RJ 13340) and allotype are deposited  in the M useu Nacional. The rem aining 7 paratypes are 

retained in the research collection o f  the second  author.

D iagnosis: Spelaeogammarus spinilacertus  is easily  distinguished from o th er species in the  genus 

by 2-4 spines o r  setae o f  corresponding length on the d istoanterior margin o f  basis o f  gnathopod 1. Largest 

m ale 10.5 m m , largest fem ale 10 mm.

D escrip tion : A ntenna 1 (Fig. 3 .2a) abou t 45-50%  o f  body length. Peduncular segm ents 1-3 

gradually  decreasing in length; peduncular segm ent 1 w ith 3-4 spines; peduncular segm ent 2 w ith 2-3 short 

spines; peduncular segm ent 3 bearing 0-2 sp ines. Prim ary flagellum longer than peduncle, w ith  17-20 

segm ents; aesthetascs on m ost segm ents; accessory  flagellum  with 4 segments, term inal segm ent vestigial.

A ntenna 2 (Fig. 3.2b) about 85%  length o f  antenna 1. Peduncular segm ent 4 longer than 

peduncular segm ent 5; peduncular segm ent 5 w ith 3-4 ventral and 2-4 m edial sp ines. F lagellum  w ith 7 

segm ents, 151 segm ent tw ice as long as average length o f  segm ents 2-6.
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TA BLE III .I
Major morphological differences o f the four species o f the genus Spelaeogammarus.

Character S. spinilacertus S. tn isnoae S. tsn tanensis Sp. bahiensis
Accessory flagellum 4 segments 4 segments 5 segments 4 segments
Antenna 2 flagellum 7 segments 7 segments 8-10 segments 7 segments
Maxilla 1: outer lobe 6 serrate spines 1 

plumose seta
6 serrate spines ♦ 1 
plumose seta 7 serrate spines 7 serrate spines

Maxilliped: apical margin of 
inner lobe 4 plumose setae 4 plumose setae 2 plumose setae no plumose setae

Gnathopod 1 propod a little larger than 
basis

propod a little larger than propod much larger than propod a little larger 
than basis

Gnathopod 1: post margin of 
basis 6-6 setae (some double) 9-10 setae (all single) -  20 setae (all single) 7-9 setae (all single)
Gnathopod 1: ant margin of 
basis 2-4 spines + 1 short seta 5-9 short setae 4 short setae 3-5 short setae

Gnathopod 2: post margin of 
basis 9-10 setae 8-9 setae 21-23 setae -  9 setae

Coxal plate 5 1 spine * 9 setae 1 spine ♦ 17-16 setae 1 spine* 12 setae 1 spine ♦ 20-21 
setae

Coxal plate 6 1 spine - no setae 1 spine - no setae 1 spine * 1 seta 1 spine * 20-21 
setae

Pleopods: inner ramus 4-5 setae 5-7 setae 7-6 setae -  7 setae
Uropod 3: outer ramus -  20 bifurcate setae -  20 bifurcate setae -  8 bifurcate setae missing
Telson: spines per lobe 2 apical ♦ 3-4 subapical 3 apical + 2-3 subapical 1 apical * 3 subapical 2 apical * 3-4 

subapical

U pper lip (Fig. 3.2c) as long as broad, trapezoidal, with few apical setules.

M andible (Fig. 3.2h, 3.2i): Palp 3-segm ented, with 3-4 term inal setae; 2nd segm ent bearing 2 

apical and 2-3 subapical setae. M olar rounded and well developed, with 1 long lateral seta. Both incisor and 

lacinia m obilis on left m andible w ith 5 irregular, rounded cusps (Fig. 3.2h); 3 long and 3 short plum ose 

spines betw een lacinia and m olar. R ight m andible (Fig. 3.2i): lacinia ap ically  serrated, consisting o f  

irregularly pointed denticles; 2 long and 2 short plum ose spines between lacin ia and m olar.

Low er lip (Fig. 3 .2d) bearing setules on outer lobes, outer and m andibular lobes w ith rounded

com ers.

M axilla 1 (Fig. 3.2e): Palp 2-segm ented, with 5-6 apical setae and few  lateral setules. O uter plate 

with 6 serrate spines and 1 plum ose spine; inner plate with 3 plum ose setae.

M axilla 2 (Fig. 3.2f): O uter plate apically w ith 1-2 com b-like setae, ±  15 m edium -sized plum ose 

setae and 2 large plum ose spines (slightly  subapical); medial m argin with few  fine setules; apical margin o f  

inner plate bearing ±  18 long com b-like setae and ±  5 short naked setae (seta/spine types in Fig. 3.2g).

M axilliped (F ig. 3.2j, 3.6c): Segm ent 1 o f  palp with 1-2 medial setae; segm ent 2 bearing 12-13 

m edial setae; dactyl long and slender, bearing a  row o f  m arginal setules. Inner plates apparently  fused 

along medial m argins.

G nathopod 1 (Fig. 3.3a): Posterior margin o f  basis with 6-8 long setae (som e doubly  inserted); 

anterior m argin bearing 2-4 spines plus I short seta (som etim es 2-3 setae p lus 1 short seta). Carpus w ith 8 

setae on posterior lobe (4-6 com b-like and 2-3 naked). Propodus ovate, a lm ost tw ice as long as broad, 

larger than gnathopod 2 propodus; palm  uneven, serrate with minute setules at com er (F ig. 3.3b); palm ar 

m argin bearing 7-8 norm al spines and 15-19 short bifid spines on lateral m argin; m edial m argin w ith 6
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short setae, 1 norm al angular spine, and 4-6 oblique subangular spines (1-2 relatively long). Dactyl about 

70% length o f  propodus; inner m argin w ith distinct row o f  denticles (Fig. 3.3c).

Fig. 3.1. Spelaeogammarus spinilacertus n. sp.. allotype female (8.1 mm) from Jaburu Cave, Estado do Bahia, Brazil.

Gnathopod 2 (Fig. 3.3d): Posterior margin o f  basis bearing 9-10 long setae. Carpus posteriorly 

with fine setules and 7 sets o f  setae (1-5 setae per set). Propodus ovate, alm ost tw ice as long as broad; palm  

oblique, with 5-6 com er spines (Fig. 3.3e), 11-14 short lateral bifid spines, and 7-8 short medial setae; 

palm ar margin finely serrate a t whole margin, with minute setules at com er. D actyl about 50%  length o f  

propodus; inner margin with distinct row o f  denticles.

Pereopods 3 and 4 subequal (Fig. 3.4a). Basis w ithout spines, anterodistal m argin even (pereopod 

4 basis with 0-1 spine plus 1 seta at anterodistal margin). Posterior m argin o f  carpus bearing 4-5 spines. 

Propodus with 8-9 spines along posterior margin and 2 apical spines. Dactyl about 24%  length o f  propodus 

(Fig. 3.4b).

Pereopod 5 (Fig. 3.4c): Basis with 10-11 spines at posterior m argin (distal and proxim al group o f  

spines separated by a gap); anterior margin bearing 13-15 spines; anterior lateral surface with 6 short setae; 

10-11 short setae at posterior m argin and posterior lateral surface. Ischium  with 1 spine and 3 setae. 

Anterior margin o f  carpus w ith a row  o f  long, bifurcate setae (Fig. 3 .4 0  and 6-12 spines (som e doubly 

inserted). Propodus anteriorly w ith a row  o f long, bifurcate setae, occurring progressively shorter distally, 

with slightly thicker bases; lateral m argin with 17-19 spines (som e doubly inserted); proxim al part with 3-4 

spines. Dactyl 14-20% length o f  propodus.
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Fig. 3.2. Spelaeogammarus spinilacertus n. sp.. allotype female: a) antenna 1. b) antenna 2. c) upper lip, d) lower lip, e) 
maxilla I. 0  maxilla 2, g) spine and seta types (on maxilla I and 2. maxilliped, and gnathopod 1 and 2), from left: 
serrate spine, comb-like seta, plumose seta, and plumose spine, h) left mandible, i) right incisor and lacinia mobilis. j) 
maxilliped. k) spine types of maxilliped outer lobe (far left 2) and inner lobe (far right 2).
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e
Fig. 3-3. Spelaeogammarus spinilacertus n. sp.. holotype male: a) left gnathopod 1, b) detail o f right gnathopod 1. c) 
detail of right gnathopod 1 dactyl, d) left gnathopod 2. e) detail o f  left gnathopod 2; allotype female: f) coxal plate of 
gnathopod I. g) coxal plate o f gnathopod 2.

Pereopod 6 subequal to  pereopod 5 but slightly longer.

Pereopod 7 (Fig. 3.4d): Basis ovate, bearing 8 spines on anterior margin and 7-9 spines on 

posterior m argin. Ischium with 2 spines. M erus with 3 spines on posterior m argin and 5 spines at anterior 

m argin (1 singly and 2 doubly inserted). Carpus with 13 spines, occurring in 6-7 sets (w ith 1-3 spines per 

set) on anterior m argin, 4 spines (2 doubly inserted) plus 4 setae on posterior m argin, and 10-11 terminal 

spines. Propodus bearing 12 slender spines on anterior m argin  and rows o f  long, bifurcate setae along
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posterior and anterior margins (Fig. 3.40- Dactyl about 27 %  length o f  propodus.

Pereopods 1-7 w ithout any trace o f  lenticular organs; pereopods 5-7 w ith broad bases.

Coxal gills ovate, present on pereopods 4-6.

Coxal plates I and 2 (Fig. 3.3f, 3.3g) about equal in size, subrectangular to ovate in shape, wider 

than long; plates 3-6 longer than wide, overlapping; plates 3 and 4 about the sam e size, plate 5 largest; plate 

5 and 6 w ith distinct anterodistal lobes (Fig. 3.4c, 3.4g).; plate 7 (Fig. 3.4e) subtriangular to irregular in 

shape, w ith single long spine at tapered posterior com er.

Fig. 3.4. Spelaeogammarus spinilacertus n. sp.. allotype female: a) left pereopod 4. b) right pereopod 4 dactyl, c) left 
pereopod 5. d) right pereopod 7, e) coxal plate of right pereopod 7. f) bifurcate seta (on carpus and propodus of 
pereopod 5-7). g) coxal plate of left pereopod 6. h) epimeral plates.
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O ostegites linear and elongate, on pereopods 2-5.

Pleopods 1-3 m orphologically alike (Fig. 3.5a), decreasing slightly  in size posteriorly , with 

subequal outer and inner rami. O uter rami 3-segm ented, with 2 term inal plum ose setae  per segment; 

segm ent I bearing 6-10 lateral plum ose setae and 5-8 medial plumose setae. Inner rami 1-segm ented, with

4-5 m edial plum ose setae.

Epim eral (pleonal) plates subquadrate, with sm all, subacute posterior m argins, bearing  1 setule 

each (Fig. 3.4h).

U ropod 1 (Fig. 3.5b): Rami subequal in length, slightly shorter than peduncle. Peduncle with 3 

spines on dorsolateral, dorsom edial, ventrolateral (basofacial), and apical m argin, respectively . O uter ramus 

bearing 3-4 dorsolateral and 4 apical spines. Inner ram us with 5 apical and 4-5 dorsolateral sp ines, the latter 

occurring as 3-4 singly and 1-2 doubly inserted.

Uropod 2 (Fig. 3.5c): Peduncle bearing 1 dorsom edial spine, 2 dorsolateral sp ines, and 2  apical 

spines. O uter ram us slightly  shorter than inner ram us, as long as peduncle, bearing 2-3 spines dorsolaterally 

and 4 spines apically. Inner ram us w ith 5 dorsolateral and 4-5 apical spines.

U ropod 3 (Fig. 3.5d) with subequal, lanceolate rami, both 1-segmented. Peduncle about 46% 

length o f  ram i, with 2 apical spines, 1 subapical spine, and 1 small dorsoproxim al spine. O uter ramus 

bearing 3 apical spines, 6 sets o f  spines (w ith 2-3 spines per set) along lateral m argin, and about 20 

bifurcate long setae along m edial m argin (Fig. 3.5e). Inner ram us with 3 apical spines; lateral m argin with 5 

spines; m edial m argin bearing 9 spines (som e doubly inserted).

/

INa W

Fig. 3.5. Spelaeogammarus spinilacertus n. sp.. holotype male: a) left pleopod 3, b) left uropod 1, c) left uropod 2. d)
left uropod 3. e) bifurcate seta of outer ramus of uropod 3. f) telson.
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T elson (Fig. SO w idth about 84%  o f length, with shallow  excavation (10%  o f  length); each side 

bearing 3 setae, 2  apical and 2 (som etim es 3) subapical spines.

E tym ology: T he epithet spinilacertus is a  nou n  in apposition, alluding to  the  presence o f  spines on 

the anterior m argin o f  the basis o f  gnathopod 1. It is formed by com bining sp in i, from Latin m eaning 

‘thorn’ or ‘sp ine’, w ith lacertus, from  Latin m eaning ‘upper arm ’ (~  basis).

R em ark s: Two o f  the three specim ens from  Jaburu C ave show ed variation in some characters, 

one o f  which is d iagnostic for the species: instead o f  2 -4  spines, the basis o f  the  fem ale gnathopod 1 had 2- 

3 setae along the anterodistal m argin. These setae had the  same length as the sp ines they replaced and could 

be clearly distinguished from  corresponding setae in S. santanensis and S. trajanoae (described below ). 

Furtherm ore, both specim ens (10 m m  m ale and 7 m m  female) had 3 subapical spines on each lobe o f  the 

telson. The m ale from the Jaburu sam ple also show ed m orphological variability  in its appendages, e.g., the 

bases o f  both gnathopods and  pereopods 3-6 were relatively narrow  and elongate; sim ilarly, the propods o f  

both gnathopods appeared relatively longer and larger, w ith a conspicuously sinuso id  palm ar margin.

Spelaeogam m arus trajanoae, new  species

Figs. 3.6b, i; 3 .7c, d; 3.8a, b

M a te r ia l ex am in ed : Cam po Formoso, Estado do Bahia, Brazil: holotype fem ale (10.4 m m ) and 5 

paratypes (2 m ales, 3 fem ales) from T oca do Pitu C ave (= G ruta do Pitu?), co llected  by A. Auler and M. 

M artins, Sep 1989; 1 m ale and I fem ale paratype from  Toca do Pitu Cave, co llected  by E. Rubbioli, Jan 

1992; 3 paratypes (1 fem ale, 2 juven iles) from B uraco do Teodoro Cave, collected  by J. A. Cardoso (no 

date given); 1 fem ale paratype from Toca do G oncalo  Cave, collected by P. G em hard, 4 Jul, 1997; 1 

fragm ented specim en from  C onvento C ave, collected b y  S. Larizotti, 1986 (?).

The holotype is d issected and mounted on m icroscope slides in Faure’s m edium . Holotype (M N R J

13341) and 2 paratypes from  the type locality are deposited in the M useu N acional. The allotype and the 

rem aining paratypes are retained in the collection o f  the  second author.

D iagnosis: Spelaeogam m arus trajanoae is m orphologically closely a llied  w ith S. spinilacertus bu t 

can be distinguished from that species by 5-9 short setae instead o f  spines o r  spine-length setae on the 

d istoanterior m argin o f  the basis o f  gnathopod 1 and coxal plate 5 w ith approxim ately 18 setae plus 1 spine 

on m argins instead o f  9 setae plus 1 spine. Largest m ales 10.0 m m , largest fem ale 10.5 mm. S. trajanoae is 

m oreover d istinguished from S. spinilacertus as indicated in the follow ing description.

D escrip tion : A ntenna 1: Peduncular segm ent 1 with 5-7 spines; peduncular segm ent 2 w ith 3-4 

short spines; peduncular segm ent 3 bearing 2 spines.

L ow er lip (Fig. 3 .6 i) bearing setules on m edial margin o f  ou ter lobes.

M axilliped: Segm ent 2 w ith ±  17 setae along medial m argin. Inner and ou ter plate shown in Fig.

3.6b.

G nathopod 1 (Fig. 3.7c): Posterior m argin o f  basis bearing 9-10 s ing ly  inserted, long setae; 

anterior m argin w ith 5-9 short setae. N o setules on posterior m argin o f  ischium . C arpus bearing 6-9 setae
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on pointed posterior lobe (4-6 com b-like and 2-3 naked). Palm  o f  propodus even; lateral margin w ith 5-7 

norm al spines and 16-17 short b ifid  spines; m edial m argin w ith  6-8 short and 6 long setae.

G nathopod 2: Posterior m argin o f  basis w ith 8-9 long setae. Carpus posteriorly  with 5-6 row s o f  

setae (1-5 setae per row ). Propodus with 6-8 row s o f  setae (1-3 setae per row ) a t proxim oposterior m argin; 

palm ar m argin w ith 3-4 lateral com er spines, 16-17 short lateral bifid  spines, and 8-9 short medial setae.

Pereopods 3 and 4 (Fig. 3.8a): Basis bearing 1 spine at posterodistal m argin; anterodistal m argin 

sinusoid, w ith 1 spine and 1 seta (pereopod 3) o r  2 spines and 1 seta (pereopod 4). Carpus bearing 6-7 

spines posteriorly. Propodus w ith 13-15 spines along posterior m argin.

Pereopod 5: Coxal plate with 17-18 m arginal setae on anterior lobe. A nterior margin o f  basis 

bearing 10-12 spines; 15 short setae on both posterior and anterior lateral surfaces. Dactyl about 22%  

length o f  propodus.

Pereopod 6: Ischium w ith 2 spines and 1-2 setae. Dactyl about 26%  o f  propodus length.

Pereopod 7: Basis w ith 11 spines on anterior m argin and 10 spines on posterior margin. M erus 

with 3 sets o f  doubly inserted spines at posterior m argin and 3 sets o f  spines at anterior margin (w ith 3-4

spines per set).

Pleopods: O uter ram us with 8-10 lateral plum ose setae and 8-9 m edial plum ose setae on first 

segm ent. Inner ram us bearing 5-7 medial plum ose setae.

Epim eral plates (Fig. 3 .7d) with produced, bluntly rounded distoposterior com ers.

U ropod I : Peduncle w ith  3-4 spines on dorsolateral m argin, 4-5 spines on  dorsom edial margin. 

Inner ram us w ith 4-5 marginal spines, occurring as 4 dorsom edial and 0-1 dorsolateral spines.

U ropod 2: Peduncle w ith 1-2 dorsom edial spines, 2-3 dorsolateral spines.

U ropod 3: O uter ram us bearing 3-5 apical spines, 4-6  rows o f  spines (w ith 1-3 spines per row) 

along lateral m argin. Inner ram us bearing 10-11 row s o f  spines (w ith 5 singly and 5 doubly inserted) at 

medial m argin.

Telson (Fig. 3.8b) w idth about 81% o f  length, with u-shaped apical excavation (19%  o f  length); 

each side w ith 3 apical setae, 2 apical spines, and 3-4 subapical spines.

E tym ology: The species is named in honor o f  Professor Dr. Eleonora Trajano o f  the University o f  

S3o Paulo, w ho has m ade im portant contributions to  Brazilian biospeleology.

R em ark s : O ut o f  a total o f  12 specim ens exam ined, 2  individuals w ere found with 2 and 3 

subapical spines on each telsonic lobe, respectively. The m ajority (10 specim ens) had 4  subapical spines on 

one lobe and 3 subapical spines on the other lobe.

Spelaeogam m arus santanensis, new  species

Figs. 3.6a, e-g; 3.7a, b; 3.8c-e

M a te r ia l exam ined: Padre Cave, Santana, Estado do Bahia, Brazil: holotype m ale (13.6 m m ), 3 

male and 3 fem ale paratypes (11.5-13.6 mm), and 1 juvenile  paratype (10.6 m m ), collected by F. 

Chaim ow icz, July 1987.
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The holotype is dissected and mounted on m icroscope slides in Faure’s m edium . Holotype (M N R J

13342) and 2 paratypes are deposited in the M useu N acional. The rem aining paratypes are retained in the 

collection o f  the second author.

D iagnosis: A com paratively large cavem icolous species, easily  distinguished from  other species 

in the genus by having: 5-segmented accessory flagellum ; 20-23 setae on posterior m argins o f  the bases o f  

gnathopods I and 2; propodus o f  gnathopod I proportionally larger. Largest male 13.6 m m, largest fem ale 

10.5 mm. 5. santanensis is furtherm ore distinguished from  S. spinilacertus according to the follow ing 

description.

D escription: Antenna 1 about 40-45%  length o f  body. Primary flagellum bearing 20-21 segm ents, 

some o f  which with multiple inserted aesthetascs (Fig. 3.6e). Peduncular segm ent 1 with 5-6 spines; 

peduncular segment 3 with 2 ventromedial spines. A ccessory flagellum 5-segmented.

Antenna 2 slightly shorter than antenna I . Peduncular segm ent 5 w ith 5 ventral spines. Flagellum  

as long as peduncular segm ent 5, with 8-10 segm ents.

M andible (Fig. 3.6f, 3.6g): Palp w ith 3 term inal setae. Palp segm ent 2 o f  left mandible w ith 3 

setae and 1 spine; 3 short and l(-2?) long plum ose spines between lacinia and molar. Palp segm ent 2 o f  

right m andible with 4 setae and 2 spines.

Lower lip with few thin setules on medial m argin o f  outer and inner lobes; com er o f  outer lobes 

with slightly pointed comers.

M axilla 1: Palp w ith 8-9 apical and subapical setae and a  few  lateral setules. O uter plate w ith 7 

serrate spines apically.

M axilla 2: O uter plate apically with 0-1 com b-like setae, ±  21 plumose setae, and 1-2 plum ose 

spines (slightly subapical). Inner plate bearing ±  22 long com b-like setae and several short naked setae (tw o 

o f  which on medial margin).

Maxilliped: Palp segm ent 1 with 2 medial and 2 proxim om edial setae; segm ent 2 with ±  25 m edial 

setae; segm ent 3 bearing ± 17 medial and 3 dorsom edial setae. Dactyl w ith 8 setae on outer margin. Inner 

and outer plate shown in Fig. 6a.

G nathopod 1 (Fig. 3.7a): Posterior margin o f  basis bearing 20 long, singly inserted setae; anterior 

margin with 4 setae. Carpus with distinctly pointed posterior lobe, which bears 13-14 plumose setae. 

Propodus bearing 7-8 setae on medial surface; palm ar m argin sinusoid, w ith 10 short m edial setae, 4 long 

lateral setae, 8-9 normal lateral spines, 19-20 short bifid lateral spines, 1 norm al angular spine medially, 2-3 

oblique subangular spines (1-2 relatively long), ±  13 subangular lateral setae, and 6-7 subangular m edial 

setae. Inner margin o f  dactyl with row o f  blunt denticles.

Gnathopod 2 (Fig. 3.7b): Posterior m argin o f  basis bearing 21-23 long setae. Carpus posteriorly 

with 8-9 rows o f setae and 5 short setae distolaterally. Propodus twice as long as broad; palm  with 6 lateral 

spines and 1 medial spine, 18 short lateral bifid spines, I long lateral seta, and 12 short medial setae; 

palm ar margin with blunt serration o f  whole margin, distinct serration and minute cilia at com er. D actyl 

about 53% length o f  propodus, inner margin w ith row o f  b lunt denticles.
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Fig. 3.6. Spelaeogammarus santanensis n. sp.. holotype male: a) inner and outer plate o f  maxilliped. e) detail of 

antenna 1. f) left mandible, g) detail o f  right mandible: S. trajanoae n. sp.. paratype female (10.36 mm): b) inner and 

outer plate of maxilliped, i) lower lip; 5. spinilacertus n. sp., holotype male: c) inner and outer plate o f  maxilliped: S. 
bahiensis. paratype (8 mm juvenile): d) inner and outer plate of maxilliped, h) left incisor and lacinia mobilis.

Pereopod 3: Basis (F ig . 3.8c) w ith 2 spines at posteriodistal margin. C arpus bearing 5-6 spines 

posteriorly and 2-3 spines p lus 1-2 setae anteriorly . Propodus with 11-12 spines along posterior margin 

(som e doubly inserted) and 2 spines plus 4 setae apically. Dactyl about 25%  length o f  propodus.

Pereopod 4 subequal to  pereopod 3, except for the follow ing differences: coxal plate w ith 1 spine 

and 8 setae along distal m argin, 2 setae at proxim al m argin, and 3 setae on lateral surface. B asis w ith 2-4
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spines at posterodistal m argin.

Pereopod 5: C oxal plate with 12 setae on anterior lobe and 2 setae on lateral surface. Basis bearing 

12 spines on anterior m argin; anterior and  posterior lateral surface w ith 4 short setae respectively. Ischium 

with 4 setae. Anterior m argin o f  carpus w ith 5*6 sets o f  spines (2-3 singly and 2-3 doubly inserted). Lateral 

margin o f  propodus w ith 13 spines (3 -6  doubly  inserted). Dactyl about 18% length o f  propodus, bearing 1 

plum ose seta posteriorly.

Fig. 3.7. Spelaeogammarus santanensis n. sp., holotype male: a) left gnathopod I, b) right gnathopod 2; 5. trajanoae n. 
sp.. paratype female (10.36 mm): c) left gnathopod I, d) epimeral plates.
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Pereopod 6 subequal to  pereopod 5 except for the following characters: coxal plate w ith 1 spine 

and 1 seta on anterior lobe. Basis w ithout setae on posterolateral surface; anterolateral surface w ith 2-6 

setae; posterior m argin bearing  14 spines (pereopod 5: 11 spines). M erus posteriorly  with 3 spines and 

anteriorly with 3-4 spines plus 3-4 setae (see S. spinilacertus for pereopod 5). A nterior margin o f  carpus 

with 8 spines (3 doubly inserted). Dactyl about 20%  length o f  propodus, bearing 1 plum ose seta and 1 spine 

posteriorly.

Pereopod 7: Coxal p late (Fig. 3.8d) irregular in shape. Basis w ith 10-11 spines on anterior m argin. 

Ischium bearing 1 spine and 1-2 setae. M erus w ith 6 spines (3 doubly inserted) on anterior margin. Carpus 

with 3 sets o f  spines (with 3-4 spines per set) on anterior margin and 4 sets o f  spines (with 1-3 spines per 

set) on posterior margin. A nterior margin o f  propodus additionally with 10 sets o f  1-3 slender spines. 

Dactyl about 21%  length o f  propodus, with 1 plum ose seta at posterior margin.

Pleopods: O uter ram i bearing 12-13 lateral plum ose setae and 7-8 m edial plumose setae. Inner 

rami with 7-8 m edial plum ose setae.

Epim eral plates subquadrate, with sm all, subacute posterior m argins, bearing 1 setule each.

U ropod 1: Peduncle w ith 4 spines on dorsolateral, 4  on dorsom edial, 3 on ventrolateral, and 3 on 

apical margin, respectively. Inner ramus w ith 7 dorsolateral spines (3-4 dorsom edial and 1-2 dorsolateral 

spines).

U ropod 2: O uter ram us bearing 4 dorsolateral spines (doubly inserted).

U ropod 3: O uter ram us bearing 2 spines and 1 seta apically, S sets o f  sp ines (with 1-3 spines per 

set) along lateral margin; m edial margin w ith ±  8 bifurcate setae proxim ally and ±  6  slender setae distally. 

M edial margin o f  inner ram us w ith 8 sets o f  singly  and doubly inserted spines.

Telson (Fig. 8.e) w idth  about 76%  o f  length; apex with shallow  excavation (5%  o f  length); each 

lobe bearing 1 spine plus 1 se ta  apically and 3 spines plus 1 seta subapically.

E tym ology: The proposed epithet santanensis is a toponym , referring to the capital city Santana, 

which is situated near the type-locality.

R em ark s: In m arked contrast to the  3 other species o f  the genus, the preserved specim ens o f  S. 

santanensis appeared whitish and  almost transparent. Specim ens o f  S. spinilacertus and S. trajanoae were 

yellowish-grey, whereas S. bahiensis show ed a  dark, brow nish tone. Since these variations appeared to be 

interspecific (i.e., consistent fo r species from  different localities) it is possible that they were caused by 

structural differences o f  the exoskeletons.

Spelaeogammarus bahiensis da Silva Brum, 1975

Figs. 3.6d, h; 3.7f, g

M a te ria l examined: Patam ute C ave (type locality), Cura9a, Distrito de Matamut£, Estado do 

Bahia, Brazil: 1 m ale paratype, 11.1 mm, and  1 juvenile paratype, 8 m m  (M useu Nacional catalogue no.
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MN 5725), collected by P. M ag aM es, 1972/1973 (?).

D iagnosis: Spelaeogam marus bahiensis is m orphologically m ore sim ilar to S. spinilacertus and  5. 

trajanoae than to  5. santanensis but differs from  the form er two species in having 7 serrate spines on the 

outer plate o f  m axilla 1, 20-21 setae on coxal plate 5, and the presence o f  dorsal setu les on  pereonite 7 (1 

setule), pleonites 1-3 (2-10 setules), and uronites 1-2 (1-7  setules). In addition, it is distinguished from  5. 

spinilacertus by short setae instead o f  spines on the anterior margin o f  the basis o f  gnathopod 1. M ale 

specimen 11.1 mm in length. Corresponding to the original description by da Silva B rum  (1975) with the 

additions and m odifications given below.

b

e

Fig. 3.8. Spelaeogammarus trajanoae n. sp.. paratype female (10.36 mm): a) left pereopod 3. b) holotype female: 

telson: S. santanensis n. sp.. holotype male: c) right pereopod 3. d) coxal plate o f pereopod 7. c) telson: S. bahiensis. 
paratype (8 mm juvenile): f) coxal plate of pereopod 7, g) telson.
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R ed esc rip tio n : A ntenna 1: Peduncular segm ent 1-3 gradually  decreasing in length; peduncular 

segm ent I w ith 6 ventral spines. Aesthetascs on m ost segm ents o f  p rim ary  flagellum  (as long as segments); 

accessory flagellum  w ith 4  segm ents, terminal segm ent vestigial.

A ntenna 2: Peduncular segm ent 3 w ith 3-4 spines. F lagellum  w ith 7 segm ents.

M andible: Left lacinia m obilis distinctly toothed. Long an d  short plum ose spines betw een lacinia 

and m olar m ore dissim ilar than in o ther species (Fig. 3.6h).

M axilla 1: Palp w ithout lateral setules. O uter lobe w ith 7 apical spines (3 different types) and 

distinct row  o f  setules at m edial m argin, subapically.

M axilliped: D actyl bearing 3-4 relatively long setae a long  inner m argin. Inner plate bearing 

apically 2 bifid  (y-shaped) spines; outer plate w ith 3 blade-like spines subapically  and 2  strong setae 

apically (Fig. 3.6d).

G nathopod 1: Posterior m argin o f  basis w ith 7-9 long se tae  (all singly inserted); an terior margin 

bearing 3-5 short setae. C arpus w ith rectangular posterior lobe, bearing 3-5 long, sickle-shaped, naked 

setae, 3-6 com b-like setae, and 3-4 long, naked setae. Palm ar m arg in  o f  propodus bearing 5-9 normal 

spines and 13-18 short b ifid  spines on the lateral m argin; m edial m arg in  with 8-10 short setae, 1 normal 

angular spine, and 3-5 com er spines (1-2 relatively long). D actyl w ith  9-10 denticles, each w ith 1 short 

seta.

G nathopod 2  basically  like that o f  S. spinilacertus. Palm  w ith  2 norm al spines and 4 spines at 

com er. Dactyl w ith 6-7 denticles.

Pereopods 3 and 4 subequal. Pereopod 3 basis with 1 d istoanterior spine, and 1 distoposterior seta. 

Pereopod 4 basis w ith  1-2 d istoanterior spines and 1 seta plus 1 sp ine at d istoposterior m argin; dactyl with 

1 spine sim ilar to S. santanensis.

Pereopods 5-7 m issing in specim ens exam ined.

Pleopods basically  like those o f  S. spinilacertus. Segm ent 1 bearing 7-8 lateral plum ose setae and

5-6 m edial plum ose setae. Inner ram us with 7 plum ose setae on m edial m argin.

C oxal plates 3-4 w ith 9-10 setae and 1 spine; plates 5-6 identical, bearing 20-21 setae and 1 spine, 

respectively; plate 7 (Fig. 3 .8f) irregular, slightly lobed.

U ropod I: Peduncle w ith 4 spines on dorsolateral, dorsom edial, and ventrolateral margins, 

respectively, and 2  on apical m argin. Outer ramus with up to 5 ap ica l spines. All spines on inner ram us 

singly inserted.

U ropod 2: Peduncle bearing 1-2 dorsom edial, 1-2 dorsolateral, and 2 apical spines.

U ropod 3 m issing in specim ens examined.

Telson (Fig. 3.8g) w idth about 80% o f length; each lobe bearing 2  setae, 2 apical and 3-4

subapical spines.
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Discussion

The four species described above are recorded from eight caves in a series o f  discontinuous karst 

areas that extend over a linear distance o f  ca. 1200 km  from north to south in eastern Brazil (Fig. 9). The 

records for each species per karst area are as follow s: S. santanensis - 1 cave, S. bahiensis - 1 cave, S. 

spinilacertus - 2 caves, and 5. trajanoae - 4 caves. Each species is obviously restricted to  one or more caves 

in a separate karst area. These areas are disjunct and apparently physically isolated from each other.
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URUGUAY

Fig. 3.9. Distribution of species of Spelaeogammarus in eastern Brazil: 1) S. bahiensis (1 cave): 2) S. trajanoae (4 

caves); 3) 5  spinilacertus (2 caves); 4) S. santanensis (I cave). Shading indicates principal cave and/or karst areas. 

Map adapted from Trajano & Sanchez (1994).

The greatest distance between caves w ith tw o species is roughly 650 km (S. bahiensis and 5. 

santanensis), w hereas the shortest distance is only about 135 km (S. bahiensis and S. spinilacertus). Caves 

situated w ithin a single, continuous karst area that are inhabited by  the sam e species are never more than

ca. 100 km apart.
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Fig. 3.10. Distribution of bogidiellid genera in continental South America: 1) Bogidiella cooki Grosso & Ringuelet. 

1979: 2) B gammariformis Sket. 1985; 3) B. neotropica Ruffo, 1952; 4) B. (Dycticogidiella) ringueleti Grosso & 

Fernandez. 1988; 5) B (Dyct.) talampayensis Grosso & Claps. 1985; 6) B. (Mesochthongidiella) tucumanensis Grosso 

& Fernandez. 1985; 7) B. (Stygogidiella) hormocollensis Grosso & Fernandez, 1988; 8) B. (Styg.) lavillai Grosso & 

Claps. 1984; 9) Eobogidiella purmamarcensis Karaman. 1982; 10) Marigidiella brasiliensis Stock, 1981; 11) 

Sfegagidielta azul (Koenemann & Holsinger, 1999); 12) Patagongidiella danieli Grosso & Fernandez. 1993 and P. 

mauryi Grosso & Fernandez. 1993 (sympatric species); 13) Pseudingolfiella chilensis Noodt. 1965; 14) 

Spelaeogammarus bahiensis da Silva Brum. 1975. S. santanensis n. sp., 5". spinilacertus n. sp.. and S. trajanoae n. sp.
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Both the elongate coxal plates and aequiram us pleopods found in the genus Spelaeogam m arus are 

characters usually considered plesiom orphic fo r the fam ily Bogidiellidae (Stock, 1981; Barnard &  Barnard, 

1983). A part from  Spelaeogam m arus, coxal plates that are longer than w ide are know n only  for the genus 

Artesia  H olsinger, 1980 (in  H olsinger & Longley, 1980), and this genus, like Spelaeogam m arus, a lso has 

pleopods with aequiram us inner ram i. However, they are 5-segm ented in A rtesia  and  only 1-segm ented in 

Spelaeogam m arus. Artesia  can also be distinguished from Spelaeogam m arus by 1-segm ented accessory 

flagellum , few er flagellar segm ents in both antennae, 1-segm ented palp o f  m axilla 2 , 6-segm ented 

pleopodal exopodite, unlobed coxal plates 5 and 6, and the telson, w hich is deeply  clef) and bears 4-6 apical 

spines on each lobe.

Equally long ram i are also  found in Aequigidiella  Botosaneanu & Stock, 1989, Kerguelenicola 

Ruffo, 1974, and Parabogidiella  H olsinger, 1980 (in: H olsinger &  Longley, 1980). H ow ever, in these three 

genera the coxal plates a re  typically w ider than long. M oreover, Aequigidiella  differs from 

Spelaeogam m arus by sexually  dim orphic inner rami and spines o f  the second uropods o f  the m ale and a 

telson that is m uch longer than w ide. A lthough to date only one specim en o f  the genus Kerguelenicola  is 

known, there are several characters that distinguish it from Spelaeogam marus: 1-segm ented accessory 

flagellum , d istinct shape o f  and lack o f  arm ature on the telson, large m andibular m olar, and reduced 

num ber o f  spines and setae on the outer and inner lobes o f  m axilla 1. Parabogidiella  differs from 

Spelaeogam m arus by I-segm ented accessory flagellum, S-segm ented flagellum  o f  antenna 2, 1-segm ented 

palp o f  m axilla 2, characteristically  elongated pereopod 7, 5 pairs o f  coxal gills, and arm ature o f  the telson.

The m ost closely related bogidiellid  taxon to  Spelaeogam m arus described to date m ay be 

Bogidiella gam m ariform is Sket (1985) from  a cave in Ecuador. T his species features som e interesting 

characters that m ight be interpreted as interm ediate states betw een the relatively prim itive 

Spelaeogam m arus and the m ore derived Bogidiella  s. str. For exam ple, B. gam m ariform is has enlarged, 

bilobed coxal plates 5 and 6, w hich are longer than wide, therefore show ing a strong resem blance to  the 

coxae o f  Spelaeogam m arus. T he inner ram i o f  the pleopods o f  B. gam m ariform is are also I-segm ented, but 

show  the sam e reduction as in m ost o ther species o f  Bogidiella  s. str. (i.e., shorter than segm ent 1 o f  the 

outer ramus).

The concentration o f  the four m orphologically closely sim ilar species o f  Spelaeogam m arus in a 

series o f  disjunct caves is unique fo r South Am erica (see Fig. 3.10). Particularly interesting are the 

relatively subtle m orphological differences between the four species that, in turn, appear to  be correlated 

with the interspecific spatial distance as well as the abundance o f  species per area: S. spinilacertus and S. 

trajanoae occur in the central part o f  the range o f  Spelaeogam m arus and show  the highest m orphological 

resem blance. In contrast are the m ore obvious differences between the relatively large S. santanensis and 

the sm aller S. bahiensis, which occur on opposite ends o f  the generic range.

In South A m erica there is a  second concentration o f  species in northern A rgentina, which occur 

exclusively in hyporheic habitats along the R io G rande (see Fig. 3.10). This cluster is also strictly endem ic 

but it has a higher generic diversity, w ith six species in tw o genera and three subgenera, possibly reflecting
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the tim e o f  d ivergence from a  very  o ld  freshw ater precursor and the subsequent radiation into a  region o f  

isolated inland habitats. H ow ever, the distribution pattern o f  Spelaeogam m arus seem s to  indicate quite a 

d ifferent historical scenario, inasm uch as the  species o f  this genus show an exceptionally close 

m orphological relationship w ith each  other when com pared with all o ther South A m erican bogidiellids. If  

we assum e, for the sake o f  argum ent, the sam e evolutionary rate for all South A m erican bogidiellids, the 

cluster o f  species belonging to Spelaeogam m arus appears to  have originated from a  com m on ancestor far 

m ore recently as opposed  to o ther bogidiellids in South Am erican freshw ater habitats.

T he m orphological appearance o f  the four species as well as their distribution over a relatively 

w ide range o f  d isjunct karst ‘islands’ characterize Spelaeogam m arus as a  distinct genus within the fam ily 

Bogidiellidae. The apparent isolation o f  these species m ay well reflect a sequence o f  allopatric (geographic) 

speciation events o v er a relatively short period o f  tim e.

Summary

Three new  subterranean am phipods o f  the genus Spelaeogam marus da Silva Brum, 1975, are 

described from eastern  Brazil, bring ing  the total num ber o f  species in the genus to  four. Based on the 

exam ination o f  type-m aterial o f  Spelaeogam m arus bahiensis, a com parative diagnosis o f  all four species o f  

Spelaeogam m arus, including the  new  species Spelaeogam m arus spinilacertus, Spelaeogam marus 

trajanoae, and Spelaeogam m arus santanensis, is given and the genus is partly redescribed. The occurrence 

o f  these species in caves that are  separated from  each o ther in discontinuous karst areas is 

b iogeographically  significant for th e  fam ily B ogidiellidae in continental South Am erica.
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CHAPTER IV

PHYLOGENETIC ANALYSIS O F THE AMPHIPOD CRUSTACEAN FAMILY 

BOGIDIELLIDAE, S. LAT., AND REVISION OF TAXA ABOVE THE SPECIES LEVEL

Introduction

Close to  12% o f  the approxim ately 7.000 described species in the order Am phipoda inhabit 

subterranean groundw ater environm ents. The vast m ajority o f  these species is distributed am ong 12 

families, som e o f  which are com posed exclusively o f  hypogean species, w hereas others comprise both 

epigean and hypogean representatives (see H olsinger, 1993, 1994). All known species o f  the family 

Bogidiellidae H ertzog, 1936, are true stygobionts. Bogidiellids are relatively small amphipods, with body 

lengths generally  between 1 and  S mm. They have a w orldw ide distribution pattern, occurring m ostly in 

freshw ater but also in brackish and marine environm ents. Bogidiellid habitats include caves, wells, cold 

m ountain springs up to  2,500 m  altitude, and the interstitial groundw ater associated w ith river banks, lakes, 

and beaches.

The first com prehensive revision o f  the fam ily was published by Ruffo (1973). Bousfield (1977), 

recognizing the m orphological divergence within the family, introduced the concept o f  a superfam ily 

Bogidielloidea, w hich he divided into two groups: the fam ily Bogidiellidae and the family group o f  

Pseudocrangonyx-Paracrangonyx, including the genera Paracrangonyx, Procrangonyx, Pseudocrangonyx, 

and Sternophysinx. Subsequent com prehensive revisions o f  Bogidiellidae s. lat. were m ade by Stock (1981) 

and K aram an (1981, 1982). Since then a substantial num ber o f  new, worldwide discoveries o f  bogidiellid 

am phipods has led to the introduction o f  taxa a t both the generic and subgeneric levels. Naturally, the 

supplem entary discoveries and records o f  bogidiellid am phipods help us to understand the evolutionary 

history o f  this enigm atic group. However, the addition o f  new  taxa created some undesirable side effects, 

especially by increasing the uneven quality o f  generic diagnoses. M oreover, the fam ilial diagnosis — which 

was never very solid  anyw ay — gradually changed into a list o f  exceptions. For every diagnostic character 

there is at least one species that is an exception to  the rule. Even the last diagnostic stronghold that defines 

bogidiellids as “exclusively blind stygobionts” had to be changed recently: Bogidomma australis Bradbury 

& W illiams, 1996, from a cave in western A ustralia, despite being a perfectly typical bogidiellid, has large 

eyes!

O ur basic criterion for a  taxonomic reorganization o f  the Bogidiellidae s. lat. was the evaluation 

and com parison o f  significant morphological structures, hereafter referred to as diagnostic characters. In 

order to obtain a supplem entary source o f  inform ation fo r the taxonom ic revision and also to clear up som e 

o f  the unresolved questions about the evolutionary history o f  bogidiellid am phipods, a phylogenetic 

analysis was perform ed on the genera and subgenera o f  the family.
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Taxonomic part

The present taxonom ic com position o f  the  fam ily Bogidiellidae s. lat., is ra ther confusing. To date, 

the fam ily is com posed o f  23 genera, 11 subgenera (all w ithin the  genus Bogidiella), and a  total o f  110 

described species. In the following subsections, w e will discuss several problem atic aspects o f  bogidiellid 

taxonom y and propose ou r solution for each individual case (see A ppendix A and Fig. 4.1 for overview ). 

We believe that o u r proposed revision results in the recognition o f  a m onophyletic group, therefore, 

elim inating the need for a superfam ily B ogidielloidea. The revised family B ogidiellidae can be 

differentiated from all o ther gam m aridean am phipods by a refined familial diagnosis: uropods 1-3 w ith 1- 

segm ented ram i o f  equal or near equal length, reduced pleopodal ram i, and a d istinct carpal lobe o f  

gnathopod 1 form a unique com bination o f  diagnostic  characters that distinguishes all bogidiellids known 

to science.

^  Genera removed from the family:

BoUegidia
Dussartiella
Kerguelenioia
Paracrangonyx
Pseudingoifieiia

^  Proposed changes to existing genera or subgenera:

Genus Antillogidiella 

Bennudagidiella n. gen.

Genus MedigidieUa 
Arganogidieila a. gen.
Indogidiella n. gen.

Genus PatagongidieUa 

Grossogidiella n. gen.

Genus StygogidieUa 

Argentinogidiella n. gen.

^  All remaining subgenera are elevated to generic level

Fig. 4.1. Proposed changes to the family Bogidiellidae s. lat.
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The taxonomic value o f subgenera

The introduction o f  subgenera w as m ade by  Stock (1981) in his work on  bogidiellid  taxonom y and 

zoogeography. Stock established subgenera fo r several taxa  that were defined by secondary sexually 

dim orphic characters only. He argued  that “in cases in which on ly  one o f  the sexes is know n, the animals 

can at least be attributed to the ‘m other genus’, Bogidiella, w ithout reference to  a  subgeneric nam e” (Stock, 

1981: 348). In other words, as long as we have specim ens o f  one sex  only, w e cannot be certa in  about the 

sexually  dim orphic nature o f  the species, therefore, assign it to a separate subgenus w ithin Bogidiella. 

R ather than being a helpful facilitation, this p ractice  is disadvantageous for tw o reasons: (1) In case the 

m issing sex is found, we m ay o r m ay  not have a  sexually  dim orphic species, but w e unquestionably have a 

species with m odified appendages. The genus Bogidiella  s. str. has unm odified appendages, consequently, 

the designation o f  separate taxa fo r species with m odifications is certainly justified . From this standpoint, a 

distinction between genus and subgenus becom es irrelevant. (2 ) T he introduction o f  new taxa during the 

last tw o decades has obscured a clear, w ell-defined differentiation between genera and subgenera. The 

d iagnostic character ‘sexually dim orphic appendages’ is not exclusively used fo r the subgenera but also 

becam e a principal feature for som e o f  the genera, fo r exam ple, Aequigidiella  Botosaneanu & Stock, 1989, 

Actogidiella  Stock, 1981, and M arinobogidiella  Karaman, 1982. W e propose to  elevate all subgenera to 

generic level in order to rid the fam ily o f  these inconsistencies.

The genus Bogidiella Hertzog, 1933

Type species by m onotypy: B ogidiellaalbertim agni Hertzog, 1933.

The elevation o f  all subgenera to  generic level entails several changes fo r the  genus Bogidiella: (1) 

A subgenus Bogidiella  is no longer consistent. A ll species in the subgenus B ogidiella  remain in the genus 

Bogidiella. (2) The generic diagnosis o f  the subgenus Bogidiella becom es the valid  diagnosis o f  the genus 

Bogidiella  (i.e., pleopods and uropods w ithout m arked sexually dim orphic m odifications).

W e rem oved the follow ing species from  the genus StygogidieUa and assigned it to  the  genus 

Bogidiella , because the original description is apparently based on one im m ature fem ale and, to  our 

know ledge, there are no males reported o r described:

Bogidiella cerberus Bou St Ruffo, 1979

Bogidiella cerberus Bou &  Ruffo, 1979: 303, figs. IV-VI; type locality: A lepotrypa Cave, 

Peloponnesus (Greece).

Bogidiella (StygogidieUa7) cerberus, S tock, 1981: 354.

Bogidiella (Bogidiella) cerberus, Karam an, 1981: 31.

Bogidiella (StygogidieUa) cerberus, K aram an, 1982: 49 .
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With 38 species, Bogidiella is by far the largest o f  the bogidiellid genera. D espite the relatively  

high m orphological variation am ong these species, no successful attem pts have been m ade to  separate them  

taxonom icaily (see K aram an, 1982). Apparently, the m orphological divergences are no t distinct enough to  

justify  the designation o f  new  genera. In order to give a  clearer profile o f  Bogidiella, w e split the genus into 

4 different groups (see Appendix A). W e used the status o f  the inner ram i o f  the p leopods to  distinguish the 

albertim agni group (A ) (ram i absent) from the skopljensis group (B) (ram i present). T he great m ajority o f  

both groups A and B are species from  southern Europe. The niphargoides group (C ) is com posed o f  4 

species with one or several peculiar characters, e. g., telson much longer than wide, an tenna 1 with 17 o r 

m ore segm ents, m outhparts with conspicuous m odifications, etc. In group C, the inner ram i o f  the pleopods 

show  different states o f  reduction (all reduced; all absent or vestigial on pleopods land  2; absent on 

pleopod 3). We decided to place all species o f  which only one sex is reported o r o f  w hich the sex is 

unknow n in the lindbergi group (D). W e separated these species m ainly because th e ir insecure taxonom ic 

status w ould have biased the assessm ent o f  robust characters for the ciadistic analysis (see Taxa).

Incompatible taxa

A thorough com parison o f  bogidiellid genera and subgenera reveals several taxa with highly 

reduced or m odified m orphological structures, indicating a  distinct departure from the fam ilial diagnosis. In 

our opinion, sternal gills, uniramous uropods, 2-segm ented rami o f  the  third uropods, absent or m ulti

segm ented outer ram i on pleopods 1-3, and a deeply cleft telson are examples o f  characters that are 

incom patible with our refined familial diagnosis. The developm ent o f  these characters m ost likely follow ed 

an extensive pattern o f  progressive evolutionary steps, form ing a sharp contrast to the overall conservative 

m orphological evolution o f  bogidiellid amphipods. I f  bogidiellids are indeed an ancien t group as som e 

workers have suggested (see Stock, 19 8 1), their conservative m orphology, w hich is reflected by the 

absence o f  com plex m odifications, particularly  implies the ir m onophyly. We do not regard  these characters 

as apom orphies for the bogidiellids because it is more probable that unrelated groups developed sim ilar 

troglom orphic structures as a result o f  the ir adaptation to subterranean environm ents, for exam ple, 

verm iform  bodies and reduced coxal plates. Substantial m orphological differences can  be found in five 

genera only, som e o f  w hich are form ed by a  combination o f  tw o or m ore atypical characters. In an attem pt 

to establish the bogidiellids as a bona fide m onophyletic group, we propose to rem ove the  following genera 

from the family. C larification o f  their taxonom ic status and familial assignm ent is open fo r further study.

Genus Bollegidia Ruffo, 1974

Bollegidia  Ruffo, 1974a: 405.

Type species: Bollegidia capensis Ruffo, 1974.

Bollegidia capensis Ruffo, 1974a: 405, figs. III-V; type locality: Biaauwberg Beach, Table Bay, 

Cape Town (South A frica); known only from type locality.

Second species: Bollegidia sootai (Coineau &  Rao, 1972).
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Bogidiella sootai Coineau &  Rao, 1972: 85-92, figs. 11-14; type locality: Andaman Islands, G u lf 

o f  Bengal (India).

Bollegidia sootai, Ruffo, 1974a: 411; 1994: 365, fig. 4j; locality: Sabang Beach, eastern M indoro 

(Philippines); also reported from  M alaysia (Ruffo, 1985).

R em arks: The unusual com bination o f  a uniram ous uropod 1 and extrem ely reduced rami o f  

pleopods 1 -3 is not diagnostic for bogidiellids according to our concept. Excluding Bollegidia, bogidiellids 

have a biram ous uropod 1. The only bogidiellids with a  reduced inner ram us o f  uropod 1 occur in the 

subgenus Guagidiella  Stock, 1981. However, this m odified ram us (shortened and fused with the peduncle,

1 apical spine extrem ely m odified) is a  sexually dim orphic character. It presum ably is a male modification 

that facilitates sperm transfer. In Bollegidia, uniram ous rami are reported for both sexes and, therefore, 

cannot be related to the reduction in G uagidiella.

Similarly, the extrem ely reduced pleopods o f  Bollegidia  are a  peculiar phenomenon, even for the 

family Bogidiellidae that is characterized by  a  trend tow ards a decreased num ber o f  segm ents o f  the 

pleopodal rami. This reduction is sexually dim orphic for the genus Bollegidia'. the female outer rami o f  

pleopods 1 and 2 are com pletely absent, and on pleopod 3 the outer ram us is reduced to a 1-segm ented bud, 

whereas the m ale has a  2-segm ented outer ram us on pleopod 1, a 1- o r 2-segm ented outer ramus on 

pleopod 2, and a 1-segm ented outer ram us on pleopod 3. A com parable reduction o f  pleopodal rami 

segments can only be found in the genera Pseudingolfiella N oodt, 1965, and Kergueleniola Ruffo, 1974 

(cf. Ruffo, 1974b), both o f  w hich we also consider incom patible w ith the fam ilial diagnosis.

There arc two additional, but m inor m orphological divergences o f  B ollegidia  that do not occur in 

any other bogidiellid: brood plates attached to pereopods 3-4 (usually  on pereopods 2-5) and a weakly 

lobed carpus on gnathopod 1, bearing one strong spine with several short m arginal setules.

G en us Dussartiella R uffo, 1979

D ussartiella Ruffo, 1979: 429.

Type species: D ussartiella m adegassa Ruffo, 1979

D ussartiella m adegassa Ruffo, 1979: 431, figs. VI-VII; type locality: spring near artificial lake 

M antasoa, M anjakandriana (M adagascar); known only from type locality.

R em ark s: A greatly  reduced, scale-like inner ram us next to  a 2-segm ented outer ram us on uropod 

3 and outer ram i o f  pleopods 1-3 w ith 11, 8, and 5 segm ents, respectively, clearly mark D ussartiella as an 

atypical bogidiellid. Both characters are not unique for the family. Rem arkably, however, they both occur 

in one o f  the o ther incom patible taxa: Paracrangonyx Stebbing, 1899, has an identically structured uropod 

3, also com bined with a set o f  11-, 6-, and 3-segm ented outer rami on pleopods 1-3. Pleopodal outer rami 

with m ore than (usually) 3 segm ents are very  uncom m on for bogidiellids. T hey  are found in three taxa
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only: 6-segm ented ou ter ram i in Artesia  H olsinger, 1980 and 3- to 5-segm ented o u te r rami in both 

Aurobogidiella  K aram an, 1988 (cf. K aram an, 1988c) and Patagongidiella  G rosso & Fem&ndez, 1993.

M inor incom patible characters are a 2-segm ented, naked m andibular palp; m axilla 1 w ith  an 

extrem ely asym m etrical palp  (vestigial, 1-segm ented on left and strong, 2-segm ented palp  on right m axilla 

1) and an ou ter plate w ith 9  apical spines (usually 7 in o ther bogidiellids); and the absence o f  a carpal lobe 

on gnathopod 1.

G en u s K ergue len io la  R uffo , 1970

Kerguelenella  R uffo, 1970b: 45.

Kergueleniola  R uffo, 1974b: 507 (em end.).

Kerguelenicola , S tock, 1981: 355 {lapsus calam i).

Type species: Kergueleniola macra Ruffo, 1970

K erguelenella m acra  Ruffo, 1970b: 45, figs. l-III; type locality: Kerguelen Island; know n only 

from type locality.

Kergueleniola m acra  Ruffo, 1974b: 507 (em end.).

R e m a rk s : Sex unknow n; only known specim en found in the stom ach o f  a  freshw ater trout. 

Kergueleniola  departs significantly  from the bogidiellid familial diagnosis by the follow ing unique 

characters: deeply  cleft te lson  w ithout spines; 1-segmented outer ram i and aequiram us, 1-segm ented inner 

rami on pleopods 1-3; carpus o f  gnathopod I w ithout distal lobe; segm ent 3 o f  m andiblular palp w ith row 

o f subapical setae (C-setae).

Furtherm ore, there  are several m inor incom patible characters, for exam ple, the unusually shaped 

palp o f  the m axiliiped, the long, rounded epim eral plates, and the arm ature and shape o f  the m andibles and 

uropods.

G enus P a ra c ra n g o n y x  S tebb ing , 1899

Paracrangonyx S tebbing, 1899: 422.

Type species: Paracrangonyx com pactus (Chilton, 1882).

Crangonyx com pactus Chilton, 1882: 177, pi. 10, figs. 13-19; type locality: well a t Eyreton, N orth 

Canterbury (N ew  Zealand); also reported from several o ther localities in N ew  Z ealand (Chilton, 1894; 

Karaman, 1981).

Paracrangonyx com pactus Stebbing, 1899: 422.

M a te r ia l exam ined : 1 female (broken) and 1 m ale (U SN M  21283), both from  type locality; 1 

female (U SN M  22810), partly  dissolved, head m issing, also from type locality.

R e m a rk s : Paracrangonyx can be unm istakably distinguished from all bogidiellids by  the 

following characters: head w ith  rudim entary eye, consisting o f  ±  3 unpigm ented cells; carpus o f  gnathopod
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1 w ithout lobe; m ediostem al gills on pereonites 2-7; ou ter ram i on pleopods 1-3 w ith 11 ,6 , and 3 segm ents, 

respectively (com pare w ith Dussartiella); peduncles o f  pleopods 2-3 w ith several m arginal spines; epim eral 

plates w ith row  o f  strong spines along ventral m argins; uropod 3 w ith vestigial inner ram us and 2- 

segm ented outer ram us (com pare w ith D ussartiella\.

A dditional, lesser divergence from  the bogidiellid diagnosis includes a  very long m andibular palp 

w ith an unusually  high num ber o f  setae and an exceptionally asym m etrical lacinia m obilis.

Genus Pseudingolfiella Noodt, 1965

P seudingolfiella  N oodt, 1965: 27, fig. IB.

Type species: Pseudingolfiella chilensis (N oodt, 1959).

Ingolfiella chilensis N oodt, 1959: 200, figs. 1-18; type locality: Quebrada de Cordoba, El Tabo, 

near San A ntonio (Chile); also reported from several o th e r localities in Chile (N oodt, 1965; Karaman,

1981).

P seudingolfiella chilensis, N oodt 1965: 28, fig IB.

Second species: Pseudingolfiella soyeri Coineau, 1977.

P seudingolfiella soyeri Coineau, 1977: 288, figs. 1-4; type locality: Kerguelen Island.

R em ark s : The following characters are the m ost striking m orphological differences in 

Pseudingolfiella: uniram ous uropod 3, w ith 2-segm ented (o r bipartite) outer ram us; uropods 1 and 2 

sexually  dim orphic, with distinctly m odified ram i in both sexes, inner ram us o f  uropod 2 vestigial in fem ale 

(unknow n in P. chilensis); pleopods 1-3 uniram ous, em inently  reduced, consisting o f  a  single, naked stum p 

(pip. 1-2) o r an additional, vestigial segm ent, bearing a single seta (pip. 3), pleopod 3 sexually dim orphic 

(unknow n in P. chilensis); carpus o f  gnathopod 1 w ithout d istal lobe.

New taxa

A nother taxonom ic problem o f  the fam ily B ogidiellidae are taxa that contain m orphologically 

incom patible species o r species groups. This is especially the case with several o f  the subgenera. As 

pointed out above, the prim ary designation o f  these taxa is based on sexual dim orphism  only. The subgenus 

M edigidiella  Stock, 1981, for exam ple, is defined by sexually  dim orphic m odifications o f  uropod 1 and/or 

2, w ithout a necessary discrim ination betw een the two (see also K aram an, 1982 and Ruffo, 1994: 364). 

Furtherm ore, the occurrence o f  additional diagnostic characters has been m ore or less neglected (e. g., 

d ifferen t states o f  reduction in pleopodal ram i). With the addition o f  new  species, the diagnostic definition 

o f  som e o f  these taxa becam e increasingly unclear and blurry. We, therefore, propose to split the follow ing 

subgenera and genera into m ore clearly defined taxa and, in doing so, elevate all subgenera concerned to 

generic level (see Fig. 4.1 for overview):
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Proposed split o f  the subgenus Antillogidiella Stock, 1981 

Genus Antillogidiella Stock, 1981, new status

Bogidiella (Antillogidiella) Stock, 1981: 354.

T ype species by m onotypy: Bogidiella m artini Stock, 1978.

B ogidiella m artini Stock, 1978: 104, figs. 1-30; type locality: Saint-M artin, Lesser A ntilles.

Bogidiella (Antillogidiella) martini, Stock, 1981: 354.

Bogidiella (Bogidiella) m artini (group A), K aram an 1981: 31.

B ogidiella (Antillogidiella) m artini, Karaman 1982: 43.

D iagnosis: Sexual dimorphism in pleopod 2 and uropod 1: m ale with reduced, 1-segm ented inner 

ram us on pleopods 1-3, segm ent 2 o f  m ale pleopod 2 bearing one m odified spine; fem ale pleopods without 

inner rami: fem ale with dagger-shaped rami on uropod I (m ale uropod 1 norm al); pars m oiaris strongly 

reduced to several small denticles, bearing one long seta; telson w ith 2 apical spines.

Bemuidagidie/la new genus

Type species by m onotypy: Bogidiella (Antillogidiella) berm udensis Stock, Sket &  Iliffe, 1987.

Bogidiella m artini ssp. Sket &  Iliffe, 1980: 876; type locality: anchialine caves, Bermuda.

Bogidiella (Antillogidiella.) m artini ssp. S to c k  1981: 354.

Bogidiella (Antillogidiella.) bermudensis Stock, S k e t&  Iliffe, 1987: 55, figs. 1-16.

D iagnosis: Sexual dimorphism in pleopod 2: m ale w ith shortened segm ent 2 on ou ter ramus, 

bearing one m odified spine; pleopods w ithout inner rami in both sexes; fem ale w ith dagger-shaped rami on 

uropod 1 (m ale uropods lacking); pars moiaris strongly reduced to wide lobe with 4 spinules; telson with 2 

apical and 2 subapical spines.

E tym ology: The new  generic nam e is a com bination o f  the geographic locality and part o f  the 

generic nam e Bogidiella-, the gender o f  the nam e is feminine.

Rem arks: Several sim ilar m orphological reductions and m odifications suggest a close relationship 

o f  Antillogidiella  and Bermudagidiella. The designation o f  2 distinct genera, however, is in general 

accordance with the diagnostic generic concept in the fam ily. M oreover, the differentiation o f  2  separate 

phylogenetic lines is strongly supported by the cladistic analysis.

Proposed split o f the subgenus Medigidiella S tock  1981

W hen Stock (1981) established the subgenus M edigidiella, he placed 5 nam ed species into the 

new taxon and listed another 4 species as possibly belonging to M edigidiella as well. The only diagnostic 

character he used to define M edigidiella w ere sexually dim orphic uropods 1 and/or 2. In the last two 

decades, the num ber o f  medigidiellids has trebled. A ccordingly, the quality  o f  m odifications in male
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uropods I and 2 has become m ore diverse and com plex. L ikew ise d id  the occurrence o f  o ther potentially 

diagnostic characters. W e propose to split the subgenus M edigidiella  into the follow ing genera:

Genus Medigidiella Stock, 1981, new status

M edigidiella  Stock, 19 8 1: 353.

Type species: Bogidiella chappuisi Ruffo, 1952.

Bogidiella chappuisi Ruffo, 1952 (in R uffo &  D elam are D eboutteville, 1952); type  locality: 

A rgeles, Pyrenees (France); reported from  several localities in Southern Europe, Turkey, and N orth  Africa.

Bogidiella (M edigidiella), chappuisi S tock, 1981: 353.

Species included: Bogidiella (M edigidiella) anieruiata S tock &  N otenboom , 1988; Bogidiella 

(M edigidiella) aquatica  Karaman, 1990a; Bogidiella (M edigidiella) arista  K oenem ann, V onk &  Schram, 

1998; Bogidiella (M edigidiella) dalm atina  (S. K aram an, 1953); Bogidiella (M edigidiella) hebraea  (Ruffo, 

1963); Bogidiella (M edigidiella) m inotaurus (R uffo &  Schiecke, 1976); B ogidiella (M edigidiella) paolii 

H ovenkam p, Hovenkam p & Van d er Heide, 1983; B ogidiella (M edigidiella) paraichnusae (Karam an, 

1979); Bogidiella (M edigidiella) uncinata  S tock &  N otenboom , 1988.

D iagnosis: Sexual dim orphism  in uropod 2: som e m ale spines on uropod 2 ram us/ram i m odified; 

inner ram i o f  pleopods 1-3 absent.

A rganogidiella  new  genus

Type species: Bogidiella arganoi Ruffo &  V igna Taglianti, 1973.

Bogidiella arganoi Ruffo &  V igna Taglianti, 1973: 115, figs. 8-9; type locality: well near Paraje 

N uevo, Cordoba (M exico).

Bogidiella (M edigidiella) arganoi, Stock, 1981: 354.

Bogidiella (Bogidiella) arganoi (group C), K aram an, 1981: 28.

Bogidiella (Guagidiella) arganoi, K aram an, 1982: 44.

Second species: Bogidiella (Guagidiella) arganoides K aram an, 1982

Bogidiella  cfr. arganoi, Ruffo &  V igna T aglianti, 1977: 153, fig. 13; type locality: Etla, Oaxaca 

(M exico).

Bogidiella (Guagidiella) arganoides K aram an, 1982: 44.

D iagnosis: Sexual dim orphism  in uropod 1: som e m ale spines on uropod 1 ram i m odified; inner 

ram i on pleopods 1-3 absent.

E tym ology: Arganogidiella  is nam ed in honor o f  Prof. R oberto A rgano; the gender o f  the  nam e is

fem inine.
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R em ark s: K aram an (1982) placed both Arganogidiella arganoi and A. arganoides in the 

subgenus G uagidiella. H ow ever, the  m odification o f  the  m ale uropod 1 in both guagidiellid  species is 

highly apom orphic as com pared to the  m odified spines in Arganogidiella  (see Incom patible taxa, genus 

Bollegidia). M oreover, G uagidiella  can  be distinguished from Arganogidiella  by vestig ial inner rami on 

pleopods 1 and 2 (absent in Arganogidiella), differently shaped, sexually dim orphic gnathopods, and a  3- 

segm ented accessory flagellum  on antenna I (2-segm ented in Guagidiella).

Indogidiella new genus

Type species: Bogidiella (M edigidiella) sarawaeensis S tock, 1983.

Bogidiella (M edigidiella) saraw aeensis Stock, 1983: 198, figs. 1-26; type locality: caves in 

National parks in Saraw ak (Borneo).

Second species: B ogidiella dacordii Ruffo, 1994.

Bogidiella dacordii Ruffo, 1994: 361, figs. 3 -4 ; type locality: St. Paul, Palaw an (Philippine

Islands).

D iagnosis: Sexual dim orphism  in uropods 1 and 2: som e m ale spines on uropods 1 and 2 rami 

m odified; pleopod 1-3 w ith  l-segm ented, reduced inner ram i.

E tym ology: T he new  nam e com bines the geographic distribution o f  the type species (East Indies) 

and part o f  the generic nam e Bogidiella', the gender o f  the nam e is fem inine.

Proposed split o f  the subgenus Stygogidiella Stock, 1981 

Genus Stygogidiella Stock, 1981, new status

Stygogidiella  Stock, 1981: 354.

Type species: Bogidiella bredini Shoem aker, 1959.

Bogidiella bredini Shoem aker, 1959: 273, fig. 1; type  locality: D ark Cave, Barbuda.

Bogidiella (Stygogidiella) bredini. Stock, 1981: 354, fig. 3.

Species included: Bogidiella (Stygogidiella) atlantica  S&nchez, 1991; B ogidiella (Stygogidiella) cypria 

(Karam an, 1989) (cf. K aram an, 1989b); Bogidiella (Stygogidiella) p erla  Stock, 1981; Bogidiella 

(Stygogidiella) purpuriae Stock, 1988; Bogidiella (Stygogidiella) uniram osa S tock &  Rondd-Broekhuizen, 

1987; Bogidiella (Stygogidiella) virginalis Stock, 1981.

D iagnosis: Sexual dim orphism  in pleopod 2: m ale w ith m odified sp ine on 2nd segm ent o f  pleopod 

2; telson w ider than long o r  as wide as long.

ArgentinogidieUa new genus

Type species: Bogidiella (Stygogidiella) horm ocollensis G rosso &  F em indez , 1988.
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B ogidiella (Stygogidiella) hormocollensis G rosso  & F ern indez, 1988: 65, figs. on pis. 1-2; type 

locality: S ierra de M edina, T ucam in  (A rgentina).

Second species: Bogidiella (Stygogidiella) lavillai G rosso &  Claps, 1984

B ogidiella (Stygogidiella) lavilla i Grosso &  C laps, 1984: 224, figs. 1-32; type locality: Rio 

Grande near Jujuy (A rgentina).

D iagnosis: Sexual dim orphism  in pleopods 1 and 2 and uropod 2: m ale pleopod 2 bearing 

m odified spine on 2nd segm ent; m ale pleopod 1 with initial stage o f  sexual dim orphism ; m ale uropod 2 w ith 

reduced spines and reduced inner ram us; telson much longer than w ide.

E tym ology  : Argentinogidiella  refers to the geographic distribution o f  both species, combined with 

part o f  the generic nam e Bogidiella; the gender o f  the m ane is feminine.

R em ark s : A pparently, A. horm ocollensis show s sexually dim orphic pleopods 1 and 3: the m ale 

has shortened setae on the l n segm ent o f  pleopod 1 (norm al in fem ale) and a relatively stronger pleopod 3. 

The draw ings o f  A. lavillai seem to indicate alm ost identical reductions. It w ould be interesting to re

exam ine the pleopods o f  A. lavillai in both sexes for sim ilar structures.

Proposed split o f the genus PatagongidieUa Grosso & Fernindez, 1993 

Genus PatagongidieUa Grosso &  Fernindez, 1993

PatagongidieUa G rosso &  Fernindez, 1993: 340.

Type species: PatagongidieUa danieli G rosso & Fernindez, 1993.

PatagongidieUa danieli G rosso &  Fernandez, 1993: 366, figs. on pi. IV; type locality: Del Arenal 

Cave, N equen (A rgentina); sym patric w ith G rossogidiella mauryi.

D iagnosis: Peduncle o f  male uropod 1 with highly  modified spine; 2nd segm ent o f  male pleopod 2 

with m odified spine; large m ediostem al processes on pereonites 2-5.

Grossogidiella new genus

Type species by m onoitypy: PatagongidieUa mauryi G rosso  &  Fernindez, 1993.

PatagongidieUa m auryi Grosso &  Fernindez, 1993: 362, figs. on pis. II-III; type locality: Del 

Arenal Cave, Nequdn (Argentina).

D iagnosis: A ppendages w ithout sexual dim orphism ; large m ediostem al processes on pereonites 2-

5.

E tym ology: G rossogidiella  is nam ed in honor o f  Dr. Luis E. G rosso; the gender o f  the nam e is

feminine.
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Phylogenetic analysis 

Cladistic methods

W e used PAUP, version 3.0s, to perform  a  cladistic analysis on the bogidiellid genera and 

subgenera. Because our m atrix contained a  relatively high num ber o f  O perational Taxonom ic Units 

(O TU s), each series o f  runs was started w ith the H euristic Search option. For the initial run, only minimal 

trees w ere kept by random  Stepwise Addition, the ancestral OTU included, T B R  branch sw apping, and the 

M ULPARS option deactivated. For subsequent runs, we generally used all trees in m em ory from the 

preceding run, activating the M ULPARS option and keeping all trees that w ere as short as o r one step 

shorter than those loaded into m em ory. These steps w ere repeated until no shorter trees could be found. As 

a double-check, a second, com plete Heuristic Search was perform ed on all shortest trees obtained from the 

previous Heuristic Search series. This search procedure w as conducted fo r num erous runs w ith m odified 

charactersets, i.e., unweighted and unordered versus partially weighted and ordered charactersets (for 

unordered and unweighted runs, the ancestral O TU  was excluded from the search; see also Character 

assessm ent and choice o f  outgroup). From the resulting, m ost parsim onious trees, w e calculated Strict 

Consensus trees. All consensus trees were finally evaluated and edited in M acCIade ver. 3 .0 . The exclusion 

o f  doubtful o r w eak characters during test runs generally  led to less resolved trees. For this analysis, the 

best results w ere obviously obtained using as m any data available as possible.

References to taxa in the phylogenetic subsections, including A ppendix B, are based on the 

unrevised fam ily Bogidiellidae s. lat., and w ere used as follows: subgenus M edigidiella  A  = genus 

M edigidiella ; subgenus M edigidiella  B =  new genus Arganogidiella ; subgenus M edigidiella  C = new genus 

Indogidiella ; subgenus Stygogidiella  A =  genus Stygogidiella', subgenus Stygogidiella  B = new genus 

Argentinogidiella. See New taxa for additional information on Antillogidiella  and PatagongidieUa.

T ax a

The cladistic analysis was perform ed on 23 genera and 10 subgenera assigned to  the unrevised 

family Bogidiellidae s. lat. That way, we w ere able to d irectly  compare the bogidiellid phylogeny with the 

taxonom ic revision we propose for the family. Because we decided to split som e o f  the genera, we ended 

up with 40 O TU s instead o f  33 (Table IV. 1). Basically, these splittings helped us to code characters for 

large, polytypic taxa like the subgenera Bogidiella, M edigidiella, and Stygogidiella, which contain 

m orphologically diverse species. W e also wanted to  test the coherence o f  som e o f  the genera and 

subgenera. For this reason in particular, we split the genera Antillogidiella  and PatagongidieUa. We 

arranged the species o f  the subgenus Bogidiella  s. str. in 4 separate groups, o f  which we designated groups 

A-C as O TU s. W e did not use group D for the analysis because o f  the uncertain taxonom ic status o f  its 

species (see The genus Bogidiella).

Character assessment and choice o f outgroup

W ith the exception o f  the genera M egagidiella, Paracrangonyx, and Spelaeogam m arus, the choice 

o f  characters em ployed in the analyses is based on descriptions and draw ings from the literature (see
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A ppendix B and T able IV. 1). Unfortunately, the uneven quality  o f  both species and generic descriptions 

obstructed  o r even prevented the use o f  several potentially contributive characters, for exam ple, secondary 

sexual dim orphism  in gnathopods and pereopods. The m anifestation o f  secondary sexual dim orphism  can 

be very subtle, with continuous interspecific changes. In several instances, assum ptions about these traits 

could not be obtained, neither from draw ings n o r descriptions and, therefore, have been excluded from this 

analysis.

The sam e m atrix w as em ployed for tw o  alternative analyses (T able IV. 1): in the first run, we left 

all characters unw eighted and unordered, so  that a character has random ly reversible states (e. g., in 

character 24, state 5 (spines absent) can evolve directly from state 0 (4 o r  m ore spines)). F or the second 

analysis, we ordered and w eighted some o f  the characters differently, assum ing a relatively complex 

evolution as opposed to  more sim ple structures (e. g., the m odification o f  sp ines and/or inner ram i on male 

uropods have m ost likely evolved progressively, in linear transform ation series from one state to  the next, 

w hereas the reduction o f  telsonic spines m ight occur as a spontaneous m utation within one generation). 

A nalyses with partially  w eighted and ordered character sets w ill hereafter be  referred to as ‘alternative run’, 

the unw eighted and unordered run as ‘default ru n ’.

A utapom orphies, although undoubtedly important fo r the taxonom y o f  bogidiellid genera and 

subgenera, have also been excluded from the analyses because they are uninform ative for the cladogram s 

show n in Fig. 4.2. D istinct autapom orphies occurred as follows: sexually d im orphic pereopod 7 and uropod 

3 in the subgenus O rchestigidiella  Stock, 1981; heavily m odified inner ram i on pleopods 1 and 2 in the 

genus M arinobogidiella  K aram an, 1982; m ediostem al processes (gills?) on  pereonites 2-7  in the genus 

Paracrangonyx; m andibular palp absent in the genus M egagidiella  K oenem ann & Holsinger, 1999; outer 

ram us o f  m ale pleopod 2 w ith lam ellar expansions on segm ents 1 and/or 2 in the subgenus Xystriogidiella  

Stock, 1981; different m inor sexually  dim orphic reductions in pleopods 1-3 in the genera Bollegidia  and 

Pseudingolfiella , and in the subgenus Antillogidiella.

In som e o f  the genera and subgenera, the occurrence o f  a character showed a  variable or 

transitional state, for exam ple, the num ber o f  apical and subapical spines on the telson (A ppendix B, 

characters 24 and 25). These variations w ere treated as separate m orphological conditions, so that the 

varying occurrence o f  2 to 3 telsonic spines is assum ed to be the transitional evolutionary state between 2 

and 3 spines in the alternative runs. A nother problem we encountered w as the pronounced degree o f  

interspecific variation am ong polytypic taxa, fo r example, inner rami o f  pleopods 1-3 absent in species A, 

reduced in species B, and vestigial in species C  and D. We used two different approaches fo r polytypic 

OTU s. For the first m ethod, variable characters w ere coded as question m arks. A lternatively, w e coded the 

sam e characters according to the m ajority o f  th e ir  occurrences in all species o f  an affected taxon (see also 

W iens, 1995, 1998). B ecause the basic difference o f  the resulting trees w as the degree o f  polytom y, we 

chose the better resolved trees o f  the M ajority Coding m ethod as representative. A third solution to this 

problem  m ay be obtained by an inferred groundpian character state (Exem plary M ethod). In this approach, 

the ancestral state o f  a  polytypic O TU  is determ ined by a partial cladistic analysis o f  som e exemplary 

species (o r higher taxa), investigating the variable character only (Yeates, 1995).
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TABLE IV. 1
Character matrix. Ancestor = outgroup. Shaded character states were subjected to different coding methods. See 

subsection Characters and Appendix B for a description o f  characters. Characters are numbered according to the list in 

Appendix B.

A ncesto r 0 0 0 I 0  I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0 0 0  i 0 0
A ctogid iella 0 1 1 5 0 I 0 1 0 0 0 2 0 9 9 0 9 9 0 I ! 1 4 6  ■ 0 9 J

A eq u ig id id la 0 0 0 0 0 9 0 0 0 0 0 0 1 9 I 9 0 4 2 0 0 1 0 2 9 0 9

A fr id id la 0 0 I 3 0 0 0 0 0 0 0 0 9 0 0 I 0 9 2 0 0  2 4 3 0 9

A ries ia 0 0 0 0  , 0 0 0 0 0 0 0 0 0 I I 3 9 5 2 I 1 0  I 0 6 0 9

A uro b o g id id la 9 9 0 3 9 9 I 1 9 9 0 0 1 0 1 9 0 0 9 0 0 I 2 4 6 0 9

B o g id id la  A 0 0 1 5 0 0 0 0 0 0 0 0 2 1 I 0 0 0 I ■ 3 5 0 9

B ogidiella  B 0 0 I 3 0 Q 0 0 0 0 0 0 9 0 1 I 0 9 0 0 I I 4 5 0 9

B o g id id la  C 0 0 1 ■ 0 0 0 0 0 0 0 0 0 I 9 0 0 9 0 0 I M  4 ■ 0 2 .

A ntillogid iella  ber 0 1 : 5 : 9 9 1 0 9 9 0 0 0 9 0 9 9 0 I 2 4  : 4 0 9

A ntillog id ie lla  mar 0 I ■ 0 0 0 0 0 0 0 0 2 0 2 9 0 I 2 4 6 0 9

D yctico g id id la 0 I 1 ; 3 ! 0 9 0 0 0 0 0 0 9 9 1 2 1 0 2 0 0 1 0 4 4  ; 0 9

G uagid iella 0 0 1 ■ 2 0 0 0 0 0 0 0 0 9 9 0 9 9 0 I 2 4 4  ' 0 2
H agid iella 0 1 5 0 0 0 0 0 0 0 9 0 2 0 9 9 0 1 2 5 4 0 9

M e d tg id id la  A 0 0 1 5 0 0 0 0 0 0 0 0 9 0 9 9 0 0 1 H 3 6 0 9 •

M edigid iella  B 0 0 1 5 0 0 0 0 0 0 0 9 9 0 0 9 9 0 0 1 2 4 4 0 9

M cd ig id id la  C 0 0 I 3 I 0 0 0 0 0 0 9 0 0 0 0 2 9 0 0 I 2 3 6 0 9

M esochthongid id la 1 3 , 0 9 0 0 0 0 0 0 9 0 9 0 0 9 0 0 1 0 4 9 0 9 ■
M ex ig id id la 1 : 4  ■ 0 0 0 0 0 0 0 0 9 9 0 3 0 I I 4  ■ 4 0 9
O rchestigidiella 0 0 1 , 4  j 1 0 0 0 0 0 0 0 0 9 9 0 2 9 0 0 1 2 3 , 4 0 2
S ty g o g id id la  A 0 1 ■ 0 0 0 0 0 0 0 0 0 0 9 0 0 I 2  | ■5 0 9
S ty g o g id id la  B 1 : 3 i 0 0 0 0 0 0 0 2 9 9 9 9 0 0 ! 0 4 3 0 9
X ystriogididla 0 1 3 0 0 0 0 0 0 0 9 0 0 0 0 9 0 0 1 2 3 3 0 9
Bogidomma 9 9 1 5 9 9 0 0 9 9 0 0 2 0 2 0 5 9 1 0 9 6 0 0
Bollcgidia 0 0 3 S 0 0 0 0 3 9 2 5 0 0 I I 4 6 0 9
Cabogidiella 0 0 1 5 0 0 0 0 0 0 0 0 9 0 9 9 0 1 2 3 4 0 9 '
D ussartidla 0 0 0 3 0 0 9 9 0 9 0 9 3 0 0 0 I 0 4  ■ 6 0 9 ■
Eo bogididla 9 9 1 3 9 9 0 0 9 9 0 0 9 9 9 9 0 9 0 0 I 2 4  ' 1 0 9
Hcbraegididla 0 0 1 3 0 0 9 9 0 0 9 9 2 9 0 0 9 9 0 0 1 2 4  . 6 0 9
Kergueleniola 9 9 3 9 ? 9 9 9 9 0 0 9 0 3 0 4 4 0 0 I 2 5 6 0 9
Maghrcbidiclla 9 9 1 4 9 9 0 0 9 9 0 0 9 0 9 0 5 9 0 1 1 2 9 9 0 9
Marigidiella 0 0 9 ■ 9 0 0 0 0 9 0 9 9 9 9 I 1 0 4 6 0 9
M annobogididla 0 0 1 2 0 0 9 ? 0 0 9 9 9 0 9 0 I 2 4 6 0 9
M egagididla 0 0 1 3 0 0 0 0 0 0 0 0 2 0 3 0 0 2 0 0 I I 1 0 0 2
Nubigidiella 9 9 I 5 9 9 0 0 9 9 0 0 1 0 1 9 0 5 9 0 1 I 2 4 6 0 2
PatagongidieUa mau 0 0 ; 9 9 0 0 0 0 0 0 0 2 9 0 0 0 0 9 0 0 I 0 9 4 ' I 9
Patagongididla dan. 0 0 0 ■ 2  * 0 0 0 0 0 0 0 0 9 9 0 0 0 0 9 0 0 1 0 2 4 1 9
Parabogidiella 0 0 1 0 0 0 0 0 0 0 0 0 0 9 I 3 2 5 2 1 I 1 0 9 • 4 0 9
Paracrangonyx 0 0 0 5 0 0 0 0 0 0 0 0 9 9 0 2 2 0 I 1 0 4 6 0 1
Pseudingolfidla 0 0 3 1 5 i 0 0 1 , I I 1 9 I 0 4 2 9 0 5 9 I 1 1 0 4 6 0 9
Spclacogammarus 0 0 0 0  i 0  : 0 0 0 0 0 2 0 0 0 0 0 9 0 0 0  0 3 1 0 9

A ssum ptions about m orphological adaptations o f  am phipods to life in subterranean environm ents 

seem  to have achieved a  level o f  w ell-founded, broad consensus in the literature (S tock , 1981; Notenboom, 

1991; H olsinger, 1993, 1994; K oenem ann et al., 1998; see also Barnard & B arnard, 1983). H ence, we 

decided to treat morphological reductions attributed to hypogean adaptation as apom orphies. Accordingly, 

each corresponding plesiom orphic condition w as coded as state 0. We think th a t the relatively frequent 

occurrences o f  homoplasies in stygobiont am phipods tend to  im pede the choice o f  effective outgroups and 

will m ost likely fail to produce a  probable phylogenetic reconstruction o f  the fam ily  Bogidiellidae (see 

K oenem ann et al., 1998). For this reason, w e considered a hypothetical, ‘a llzero ’ ancestor the optimal 

choice for an outgroup.
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Results

Because the great m ajority  o f  the resulting consensus trees had the sam e basic structure, two 

exem plary trees are chosen to represent the outcom e o f  default and alternative analyses (Fig. 4.2).

There is a distinct pattern that could be observed in all o f  the better resolved Strict Consensus trees 

obtained from partially w eighted and ordered charactersets (Fig. 4.2b): (1) Several stable clades can be 

related to geographic regions, for exam ple: Artesia  and Parabogidiella  Holsinger, 1980 (in Holsinger & 

Longley, 1980) from Texas and a  relatively large group with m ostly A rgentinean taxa. (2) There is another 

very robust clade that cannot be related to a specific geographic range but contains all o r alm ost all o f  the 

genera we propose to  rem ove from the family: the incom patible taxa Bollegidia, Pseudingolfiella, 

Kergueleniola , and D ussarliella  are accom panied by Aurobogidiella, M arinobogidiella, and M arigidiella 

Stock, 1981. Like the genera to be removed from the family, these three taxa either inhabit coastal 

interstitial habitats and/or also show  distinct m orphological m odifications. (3) The clades closest to the 

hypothetical ancestor contain alm ost exclusively taxa o f  the New W orld (Artesia, Parabogidiella, 

PatagongidieUa, Spelaeogam m arus, and M egagidiella). (4) The New W orld taxa, as opposed to the 

M editerranean and African groups, also show a greater tendency to form robust clades and to  maintain 

basal topographic positions close to  the hypothetical ancestor. (5) The split taxa M edigidiella, 

Stygogidiella, PatagongidieUa, and Antillogidiella  occupy clearly separate topological positions in all 

better resolved consensus trees.

Strict C onsensus trees o f  unordered and equally w eighted charactersets were generally poorly 

resolved (Fig. 4.2a). In spite o f  that, some o f  the clades from alternative runs still appeared in these more 

polytom ous trees, e. g., a sm all Argentinean cluster and again the “non-geographic” clade with m ostly 

marine, distinctly m odified taxa. A lso, the basal positions are again predom inantly occupied by New W orld 

taxa. Interestingly, the split genus PatagongidieUa rem ains separated, but still on the same clade in this 

equally w eighted analysis.

Discussion

A look at the distribution m ap o f  bogidiellid am phipods (Fig. 4.3) reveals several particularities:

(1) Bogidiellids occur w orldw ide, except for Boreal, Arctic, and A ntarctic regions. (2) There are several 

m ajor concentrations o f  species, the largest o f  which is in the M editerranean region, and sm aller ones in 

Central Am erica, South A m erica, and the West Indies. (3) Species richness is highest in the M editerranean 

region (33 species in 4 genera), w hereas generic diversity is greater in the N ew  W orld (South America: 10 

genera, 18 spp.; Central A m erica: 5 genera, 12 spp.; W est Indies: 7 genera, 10 spp.). (4) The m ajority o f  

bogidiellids are located no further than ±  160 km from coastlines. In several instances, however, they live 

in inland, continental habitats, especially in South Am erica but also in Europe and the M iddle and Far East.
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Fig. 4.2. Cladistic analysis o f  the family Bogidiellidae s. lat. (see Cladistic Methods for details). With the exception of 

Bogidiella and PatagongidieUa, genera are capitalized to facilitate the discrimination between genera and subgcnera. 

Several taxa are split as indicated by capital letters in parentheses. Numbers in parentheses refer to number o f  species 

known from each region, respectively, a) PAUP Strict Consensus tree o f  default run: characters unordered and equally 

weighted (Cl: 0.29: RJ: 0.29; length: 426, min. length: 124, max. length: 549); b) PAUP Strict Consensus tree o f 

alternative run with areas related to OTUs; characters partially weighted and ordered (Cl: 0.36; RI: 0.48; length: 346).

There are different points o f  view about the biogeographic history o f  bogidiellid stygobionts. 

Because it is assum ed that some o f  their isolated freshw ater habitats have been separated from m arine 

waters since the break-up o f Pangaea, 180-200 m illion years ago, and have rem ained isolated ever since, 

bogidiellids m ight have a very o ld  freshwater origin. On the o ther hand, we also see a distribution in 

geographically m uch younger regions, like the W est Indian islands, m ost o f  which em erged from the sea
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during tectonic uplifts and  sea level regressions in the early  to m iddle Tertiary, betw een 20 and  SO m illion

years ago.

A ccording to these tw o vicariant scenarios, alternative hypotheses are generally used  to  explain 

the evolution o f  bogidiellid am phipods. T he first theory  postulates an ancient freshw ater o rigin, suggesting 

that bogidiellids were already adapted to  freshw ater habitats before (!) the break-up o f  Pangaea an d  adapted 

progressively to brackish and marine environm ents as continents drifted apart. T he second m odel renders 

bogidiellids as prim arily a marine group, which m assively invaded continental freshw aters and 

subsequently adapted to subterranean inland habitats (see: Stock, 1981; N otenboom , 1991).

However, w e have to  be careful w ith final conclusions about the orig in  o f  bogidiellids. The 

grow ing num ber o f  new discoveries seem s to increase the com plexity o f  the ir evolutionary history  and 

m any questions still rem ain unansw ered. There are apparently no obvious v icarian t events th a t o ffer an 

explanation for the abundant occurrences in continental South A m erica as opposed to an alm ost 

‘bogidiellid-free’ African continent. S im ilarly  enigm atic is the high specific radiation in the M editerranean 

coastal regions. Land m asses in southern Europe em erged in a  com plex pattern  during th e  M iocene 

(A dam s, 1981) and m ust have been subsequently  inhabited by precursors o f  m odem  bogidiellids. This 

strongly im plies that M editerranean bogidiellids either evolved from  a relatively young m arine ancesto r or 

that Bogidiellidae are generally  able to  re-adapt from  freshw ater to  saline w aters (and vice versa) m ore 

quickly than previously envisioned. R ecent discoveries and  reports o f  bogidiellids from m arine interstitial 

habitats in Turkey seem to  support th is view  (K oenem ann et al., 1998; K oenem ann, 1998; see also 

N otenboom , 1991). I f  bogidiellids do have an ancient freshw ater origin, we w ould  also expect to  find 

generally m ore primitive taxa in isolated continental habitats and m ore apom orphic ones on the C aribbean 

islands and in the M editerranean coastal regions. A t present, the geographic distribution o f  know n taxa 

does not convincingly support this idea

The results o f  the phylogenetic analysis characterize bogidiellids from the  W estern H em isphere as 

the m ore plesiom orphic taxa. For som e genera, e.g., Spelaeogam m arus and A rtesia, these results are not 

unexpected and are in general accordance w ith the literature (Stock, 1981; B arnard &  Barnard, 1983). In 

other cases, however, the basal appearance o f  OTUs, close to the hypothetical ancestor, is less apparent. 

The new genus M egagidiella from a  cave in central-w estern Brazil does no t exhibit a particular 

plesiom orphic m orphology after a first o r  even second exam ination. This large-sized bogidiellid, reaching  a 

body length up to 16 m m , features short, non-overlapping coxal plates, pleopods w ith 3-segm ented outer 

ram i and reduced inner ram i, and absence o f  a  m andibular palp. A com parative m orphological exam ination 

w ould not necessarily reveal a relationship w ith the obviously prim itive Spelaeogam marus from  caves in 

eastern Brazil. In the cladistic analysis, how ever, M egagidiella  tends to appear c lose to  Spelaeogam m arus 

and PatagongidieUa, indicating a possible relationship o f  species that inhabit d isjunct caves betw een 1300 

and 2200 km apart on the sam e continent. S im ilarly surprising is the basal position o f  the sym patric genera 

PatagongidieUa and G rossogidiella. B oth taxa  are from  the sam e cave system in western A rgentina and
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show  distinct apom orphic m odifications (see N ew  taxa). T hese results allow us to  draw several 

hypothetical conclusions with regard to bogidiellid phylogeny:

(1) The appearance o f  prim itive and advanced structures seem s to be m ore com plex than 

assum ed, exhibiting various transitional, interm ingled states. A conspicuous apom orphic 

character m ight not necessarily indicate an apom orphic species o r genus. It m ay occur in 

prim itive as well as in advanced taxa and the arbitrary use o f  a  few d iscrim inating  characters 

for phylogenetic assum ptions m ust be considered highly doubtful.

(2) Despite the extraordinary generic diversity o f  bogidiellids from  the New W orld,

especially South America, an explicit tendency to form  robust clades cou ld  be observed for 

these taxa. This trend probably indicates a close relationship o f  taxa from  several d isjunct 

localities. The analysis also renders South Am erican groups as the m ore plesiom orphic 

bogidiellids. Both tendencies might be correlated w ith the highest frequency o f  isolated inland 

habitats on the South A m erican continent, strongly pointing tow ards an ancient freshw ater 

origin o f  bogidiellid am phipods.

Fig. 4.3. Geographic distribution o f  bogidiellid amphipods. The shaded circles represent the approxim ate number o f  

locality records for described species (the number o f records in southern Europe is actually slightly higher than shown 

on the map). The white circles represent genera which we propose to remove from the family.
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The results o f  the phylogenetic analysis also suggest the rem oval o f  five genera  from the fam ily 

Bogidiellidae (see Incom patible taxa). A t least four o f  the five taxa  rem oved form ed a rem arkably solid 

clade in all o f  the obtained consensus trees. N otably, most o f  these genera have two additional 

particularities in com m on: they inhabit marine interstitial habitats in coastal areas either outside o f  or 

marginal to the bogidiellid  distribution range.

In a future project, it w ould be interesting to further investigate relationships within the family 

Bogidiellidae w ith m olecular techniques, em ploying DNA sequencing o r  protein analyses. A conceivable 

objective o f  such an investigation could, for exam ple, focus on the com parison o f  m orphologically sim ilar 

taxa or taxa endem ic to distinct geographic regions.

Summary

The increasing num ber o f  w orldwide discoveries o f  subterranean am phipods, especially during the 

last two decades, has led to  additions o f  numerous new  taxa in the stygobiont fam ily Bogidiellidae s. la t  To 

date, the family is com posed o f  23 genera and 11 subgenera, and approxim ately 110 described species. 

However, given the uneven quality  o f  generic and subgeneric diagnoses in the  literature, there is 

considerable confusion regarding the status o f  som e o f  the taxa at these levels. Even the family itse lf lacks 

a clear definition. In order to gain a  better know ledge o f  the phytogeny o f  this group, a cladistic analysis, 

em ploying both PA U P 3.0s and M acClade, was perform ed on the genera and subgenera currently assigned 

to the Bogidiellidae s. lat. Supported by the results o f  this analysis, the  taxonom ic structure o f  this g roup  is 

com pletely revised above the species level. The revision excludes 5 genera  from the  family, all rem aining 

subgenera are elevated  to  generic level. Four taxa are  split, resulting  in 5 new  genera. The fam ily 

Bogidiellidae now consists o f  33 genera.
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CHAPTER V

SYSTEMATICS OF THE NORTH AMERICAN SUBTERRANEAN AMPHIPOD GENUS

BACTRURVS (CRANGONYCTIDAE)

Introduction

The crangonyctid  genus Bactrurus is a com paratively  sm all stygobiont group, restricted to 

hypogean environm ents in parts o f  eastern and central United S tates. Prior to this study, only three 

described species w ere known to science. Bactrurus w as established by  H ay (1902) w ho proposed a  new  

genus for Crangonyx m ucronatus Forbes, 1876. H ow ever, a  generic d iagnosis was not given until 38 years 

later w hen H ubricht &  M ackin (1940) introduced B. brachycaudus as the  second species o f  the genus. A 

third species, B. hubrichti, was described by Shoem aker (1945). A lthough H olsinger (1972, 1977) 

discussed the m orphological and biogeographic significance o f  Bactrurus as com pared to its closest 

crangonyctid  relatives and provided both fam ilial and generic  keys, the  genus has lacked a  com prehensive 

taxonom ic revision until now.

In the follow ing revision o f  Bactrurus, a total o f  235 locality records, com prising approxim ately 

2500 specim ens, have been exam ined or re-exam ined. T he vast m ajority  o f  these records belong to 

specim ens o f  the three species currently assigned to  the  genus. A m uch  sm aller part o f  the collection 

m aterial, how ever, contained several new species. In o rd e r to  obtain additional sam ples o f  potentially new  

species, tw o collection trips w ere m ade in M arch and M ay, 1999. T he field  trips included excursions to 

caves and associated groundw ater habitats in A labam a, Indiana, Illinois, Ohio, M issouri, Tennessee and 

V irginia. Som e o f  these localities had not been investigated for m ore than 50 years. T he evaluation o f  

specim ens obtained during the field trips as well as o lder collection m aterial led to the descriptions o f  four 

new species o f  Bactrurus given in this paper. M oreover, several new and rather unusual records enabled us 

to fill in som e o f  the gaps o f  inter- and intraspecific distribution  patterns.

To investigate the phytogeny and biogeography o f  the genus Bactrurus, a cladistic analysis was 

perform ed on seven Bactrurus species and 12 selected taxa  o f  the fam ily C rangonyctidae. Five epigean and 

hypogean am phipod taxa were chosen as outgroups. B ased on  the phylogenetic analysis, the relationship o f  

Bactrurus to its potential sister-genus Stygobrom us C ope, 1872, is rev iew ed and analyzed. In addition, 

pairw ise sequence differences o f  the 18S (sm all subunit) rD N A  gene are given for three Bactrurus species 

and three o f  the outgroup taxa (adapted from Englisch &  K oenem ann, in m s.). The evaluation o f  all data  as 

well as a detailed discussion o f  biogeographic and ecological characteristics o f  Bactrurus provide new  

perspectives on the geographic distribution and evolutionary history o f  the  genus in N orth Am erica.
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Materials, methods and definitions 

Taxonomic procedures

The follow ing redescriptions o f  B. brachycaudus, B. hubrichti and B. mucronatus are 

supplem entary to the original descriptions. B ecause all species o f  the genus show a relatively high 

m orphological resem blance, the description o f  B. brachycaudus w as chosen to  serve as the basic m odel 

with regard to a  variety  o f  m inor characters tha t show  little o r no variation am ong the other species (e.g., 

num ber o f  spines and setae on m outhparts and  appendages). Bactrurus brachycaudus is, therefore, 

redescribed in g reater detail. I f  a specific character is no t explicitly  m entioned for one o f  the other species, 

it can be assum ed to  be identical with that o f  B. brachycaudus.

The defining angles o f  propods o f  the first gnathopod w ere m easured to facilitate interspecific 

com parisons betw een differently shaped propods. For these m easurem ents, the palm ar margin and the 

subangular (posterior) margin o f  the propod w ere considered tw o sides o f  an angle.

N om enclature for setal patterns on segm ent 3 o f  the m andibular palp is based on the uppercase 

letter system  first introduced by Stock (1974) (see also  Fig. 5.2g).

Because vandalism  and pollution have becom e m ajor threats to m any cave habitats, we have 

endeavored to protect these sensitive environm ents from  further destruction by providing only cave nam es 

in the ‘M aterial exam ined’ sections for each species. I f  m ore detailed inform ation is needed on a particular 

locality, it can be obtained either from state geological surveys o r from  our database.

Species synonym ies are com plete for all references pertinent to the taxonomy and geographic 

distribution o f  taxa.

Collection methods

The follow ing collection m ethods have been applied  to  d ifferent types o f  habitats:

•  Caves: In small bodies o f  water, e.g., drip pools and sm all stream s, the animals were collected 

with the aid o f  m odified pipettes and  fine-m eshed hand nets. Additionally, a Cvetkov net 

(closing net) was used i f  needed fo r less accessible w aters (larger cave streams, deep lakes). 

W ater bodies o f  greater depths w ere sam pled w ith the assistance o f  baited traps.

•  Springs and  wells: Anim als w ere collected  utilizing either a C vetkov net, a hand net w ith 

extended grip, or by hand-picking from  the substrate.

•  D rainage outlets: Pipe outlets o f  d rainage system s beneath farm fields were sampled with the 

help o f  a hand net o r by hand-picking from  substrates.

In addition, the Karaman-Chappuis m ethod (digging m ethod) and a  Bou-Rouch pum p was 

em ployed to take sam ples o f  the groundw ater fauna near surface stream s, springs, and wells. The Bou- 

Rouch pum p is specifically  designed to collect sm all groundw ater invertebrates from  depths o f  30-120 cm.

All collection samples were preserved in 90-95%  ethanol. For the draw ings, specimens w ere first 

dissected and m ounted on microscope slides in F aure’s m edium . Holotypes o f  the new species are
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deposited in the N ational M useum o f  N atural History (Sm ithsonian Institution) under the catalogue 

num bers o f  the form er U nited States National Museum.

Definitions, nomenclature and abbreviations

sedim ents deposited by Quaternary glaciers; the repeated north-south m ovements o f  the 

ice sheets during the Pleistocene resulted in an accum ulation o f  deposits. In the Central 

Low land Province, glacial drift is com m only com posed o f  layers o f  sand, gravel, silt or 

clay.

term introduced by Holsinger (1967) to  describe the com b- or brush-like spines o r setae 

on the carpus o f  gnathopod 1 and/or 2. 

following abbreviations are used for the deposition o f  m useum  specimens:

A m erican M useum o f  N atural History 

John R. Holsinger collection 

Kansas Biological Survey 

United States National

Taxonomic part 

Genus Bactrurus Hay, 1902

Bactrurus Hay, 1902: 430.— Hubricht & M ackin, 1940: 200.— Shoem aker, 1945: 24.— Holsinger, 1972: 73;

1977: 265; 1986a: 95; 1986b: 5 3 6 .-  Barnard &  Barnard, 1983: 435.

Type species (by m onotypy): Crangonyx mucronatus Forbes, 1876.

D iagnosis: Eyes absent. Body smooth, unpigmented. Uronites unfused. Coxal plates in stretched 

body position not overlapping; coxal plates i and 2 small; coxal plate 1 w ider than long, coxal plates 2-4 

slightly w ider than long o r as wide as long; plates 5-7 longer than w ide; coxal plate o f  pereopod 5 with 

distinct distoanterior lobe, coxal plate o f  pereopod 6  with sm all distoanterior lobe, coxal plate o f pereopod 

7 ovate.

A ntennae som etim es with aesthetascs on some peduncular segm ents and on m ost segments o f  

prim ary flagellum First antenna 49-92 %  o f  body length (usually 60-77% ), primary flagellum  longer than 

peduncle, with 24-59 segm ents in adult specimens; accessory flagellum 2-segm ented, short, as long as or 

slightly longer than first segm ent o f  prim ary flagellum. Second antenna w ithout calceoli, 31-53% o f  length 

antenna 1; flagellum approxim ately as long as peduncle, bearing 9-16 segm ents in adult specimens. Lower 

lip with sm all inner lobes. M andibular palp 3-segmented, th ird  palp segm ent falcate, as long as or slightly 

longer than segm ent 2; m olar prominent, triturative. Palp o f  maxilla 1 symmetrical, 2-segmented (but 

w eakly articulated); inner plate with up to 5-8 plumose setae; outer plate with 7 strong spines apically 

(bidentate and m ultidentate types). Inner plate o f  maxilla 2  w ider than ou ter plate, bearing oblique row o f  

5-10 strong, plum ose setae. Inner plate o f  maxilliped bearing 2-6 blade-like spines apically  (one o f  which

Glacial drift:

Rastellate:

The

AM NH:

JRH

KBS

USNM
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som etim es m odified  as plum ose spine; see Fig. S.6c); outer p late w ith 2-9 blade-like spines apically and 

subapically . G nathopod 1 w ith expanded basis, basis o f  gnathopod 2 narrow; carpus o f  gnathopods 

triangular, bearing several strong, rastellate (brush-like) sp ines; propods o f  gnathopods 1 and 2  subequal 

(but propod o f  gnathopod 1 som etim es d istinctly  larger than  that o f  gnathopod 2); propods w ith oblique 

palm ; palm ar m argins with long and short, d istally  bifid spines; dactyls o f  both gnathopods w ith row o f  

sm all setae on inner m argin. Pereopods 3 and  4 subequal, w ith narrow  bases; pereopods 5-7 gradually 

increasing in length, bases w ith posterior lobes, about as w ide  proxim ally as distally, posterior margins 

convex, distoposterior lobes w ell developed, broadly rounded; pereopod 5 as long as o r slightly shorter than 

pereopod 4; pereopod 7 subequal to  or distinctly  longer than  pereopod 6. Coxal gills subovate, usually 

present on pereopods 2-7 (on pereopods 2-6  in B. m ucronatus). Broodplates subovate, occurring on 

pereopods 2-5; exceeding length and width o f  bases on pereopods 2-4, greatly reduced on pereopod 5. 

Paired sternal processes proxim olaterally on  pereonites 6  and 7 and som etim es also on pleonite 1 

(processes sim ple, non-bifurcate); som etim es single, median sternal (m ediostem al) processes on pereonites 

2 and 3 (absent in m ost species). Pleopods unm odified, biram ous, w ith 5-18 segm ents per ram us (num ber 

o f  segm ents decreasing from pleopod 1 to 3; large specim ens w ith up to 30 segm ents); outer ram us slightly 

shorter than inner ram us. Epim eral plates w ith  rounded d istoposterior com ers, each o f  w hich bearing 

several short setae. Uropods unm odified, biram ous, 1-segm ented; peduncles o f  uropod 1 and 2 w ithout 

basiofacial (ventrolateral) spines; rami o f  uropod 3 reduced: inner ram us vestigial. Telson typically longer 

than w ide (about 10% w ider than long in B. hubrichti), apex w ith  shallow  excavation or V-shaped cleft (up 

to 23%  cleft), bearing only apical spines (som etim es 1-3 sm all, subapical spines in B. brachycaudus) 

Several species w ith secondary sexual dim orphism  o f  the m ale as follows: antenna 1 with longer flagellum; 

peduncle o f  uropod 1 distally w ith serrate process; telson sligh tly  to extrem ely elongated (up to 3 times 

longer than fem ale telson); telson with relatively short apical spines.

R e m a rk s : Bactrurus is m orphologically closely rela ted  to  the crangonyctid genus Stygobromus. 

H ow ever, unlike Bactrurus, Stygobrom us has a  uniramous uropod 3, w ith a m ore greatly reduced outer 

ram us. In addition, m ost species o f  Stygobrom us can also be differentiated from Bactrurus by absence o f  

bladelike spines on the inner (apical and subapical) margin o f  th e  outer plate o f  the maxilliped, and in some 

species by bifurcate lateral sternal processes.

Key to the species o f Bactrurus
1. Telson o f  m ale distinctly elongated, at least tw ice as long as uropod 3; fem ale telson distinctly tapered,

about tw ice as long as broad (w idth less than 54%  o f  le n g th ) .............................................................................. 2

Telson o f  m ale not distinctly elongated, shorter or slightly  longer than uropod 3; female telson not 

tapered (or slightly  tapered), usually not tw ice as long as b road  (w idth in B. brachycaudus up to  58%  o f  

le n g th ) .................................................................................................................................................................................... 3

2. C oxal gill absen t from  pereopod 7; lateral sternal processes on pereopods 6 and 7 and on pleonite 1 

(som etim es absent on pleonite 1); median sternal processes a b s e n t .........................................B. m ucronatus
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R educed coxal gill present on pereopod 7; lateral sternal processes on pereopods 6 and  7; m edian 

sternal processes on pereonites 2 and  3 ....................................................................B. pseudom ucronatus n. sp.

3. Lateral stem al processes on pereopods 6  and 7 and on pleonite I ; telson as w ide as o r w ider than long,

distinctly cleft (18-25% ); m erus o f  gnathopod 1 w ith plumose sp in e (s ) ........................................ B. hubricht i

Lateral stem al processes on pereopods 6 and 7 (som etim es also  on pleonite 1 in B. brachycaudus)', 

telson longer than w ide, cleft usually 1-12% o f  length o f  telson (som etim es up to  23% ); m erus o f  

gnathopod I w ithout plum ose sp in e (s ) ......................................................................................................................... 4

4. Peduncle o f  m ale uropod 1 w ith serrate distal process; defin ing angle o f  gnathopod  1 propod distinct

(120-140°); arm ature o f  telson sexually  d im o rp h ic ...................................................................................................5

Peduncle o f  m ale uropod 1 w ithout serrate distal process; defining angle o f  gnathopod 1 shallow; 

arm ature o f  telson not sexually d im o rp h ic ....................................................................................B. brachycaudus

5. Coxal gill o f  pereopod 7  only slightly  sm aller than coxal gill on pereopod 6; distal m edial m argin o f  

carpus on gnathopod 2 w ith ca. 3 plum ose setae; spines on anterior m argin o f  basis o f  pereopod 5

relatively lo n g ..........................................................................................................................................B. wilsorti n. sp.

Coxal gill o f  pereopod 7 less than h a lf  the size o f  coxal gill on pereopod 6; distal m edial m argin o f  

carpus on gnathopod 2 w ith 6-7  plum ose setae; spines on an terio r margin o f  basis o f  pereopod 5 short 

 6

6. Palm ar angle o f  propod o f  gnathopod 1 d istinctly  defined (ca. 120°);. inner plate o f  m axilla  2 with 

oblique row  o f  7 plum ose setae; ou ter ram us o f  third uropod <  80%  o f  length peduncle, bearing 2-5 

subapical spines on both m argins; peduncle o f  uropod 3 armed w ith  1-2 d istal spines

.....................................................................................................................................................................B. angulus n . sp.

Palm ar angle o f  propod o f  gnathopod 1 less distinct (135-140°) ; inner plate o f  m axilla 2 w ith oblique 

row o f  10 plum ose setae; ou ter ram us o f  third uropod > 80% o f  length peduncle, bearing 4-8 subapical 

spines on both m argins; peduncle o f  uropod 3 arm ed with 3 d istal sp in e s ......................B. cellulanus n. sp.

Bactrurus brachycaudus Hubricht & Mackin, 1940

Figs. 5.1-5

Bactrurus brachycaudus H ubricht &  M ackin, 1940: 201-202, Figs. 8A-L.; type locality: w alled spring on 

K eifer Creek, 0.6 m iles N W  o f  Fern G len (St. Louis C ounty, M issouri).-- H ubricht, 1943: 693; 

1959: 8 7 8 .-  Barnard, 1958: 4 4 . -  N icholas, 1960: 127. -  Holsinger, 1972: 73, Fig. 30c; 1977: 

277; 1981: 93; 1986a: 95, Fig. 6; 1986b: 542.— Peck &  Lewis, 1977: 45 .— Barnard &  Barnard, 

1983: map 12.— Fitzpatrick, 1983: 44.— G ardner, 1986: 15.

M a te r ia l examined.— ILLINOIS: Adams Co.: Well w ith  pum p, 10 m i. S o f  Q uincy, 2  m ales, 6 

fem ales (JRH ), J. G. W eise, 17 Sept. 1957. Greene Co.: Spring on west edge o f  S14, 2.5  m i. W  o f  

H illview , 2 m ales, 2 fem ales (JR H ), S. Peck, 22  A pr. 1966. Spring a t base o f  bluff, 3 m i W  o f  Eldred, 5 

m ales, 3 fem ales (USNM ), L. H ubricht, 8 Sept. 1940. JacksonCo.: G iant C ity  State Park, I m ale, 3
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fem ales (JRH ), J. A. Beatty, 27 Apr. 1971. Johnson Co.: Firestone C reek  Cave (form erly  called V ienna 

City D um p Cave), 1 fem ale (JRH), J. L.ewis, 3 M ar. 1973; 1 juvenile (JRH ), 15 D ec 1973. Belknap Cave, 

3 m ales, 3 females, 1 juven ile  (JRH ), J. Lewis, 19 M ay 1974. Monroe Co.: C am p V andeventer Cave, 1 

m ale (JRH ), S. Peck, 27 Nov. 1965. Dane's Cave, 1 juvenile (JRH), J. Lewis and P. M oss, 5 Sept. 1999. 

Fogelpole Cave, 2 m ales, 3 fem ales (JRH ), S. Peck, 25 Jun. 1965; 1 fem ale (JR H ), 16 Aug. 1968. Frog 

Cave, 1 fem ale (JRH), J. Lewis, S. Rafail, P. Moss and D. Tecic, 4 Jul. 1999. Fults C reek Cave, 1 female 

(JRH), S. Peck, 17 A ug. 1968. M orrison (Burkesville) Cave, 1 female (U SN M ), L. H ubricht, 6 Nov. 1937; 

2 m ales, 1 fem ale (JRH ), J. R. H olsinger and R N orton, 13 Jun. 1965. Pautler Cave, 1 m ale (JRH), J. Lewis,

S. Rafail, P. M oss and D. Tecic, 6 Jul. 1999. Rose Hole, 3 mi. W SW  o f  W aterloo, 5 specim ens (JRH), J. 

Lewis, S. Rafail, P. M oss and D. Tecic, 5 Jul. 1999. Schipp’s Well, 0 .25 m i. SW  o f  N ew  Hanover, I m ale 

(JRH), J. Lewis, S. Rafail, P. M oss and D. Tecic, 7 Jul. 1999. Seep, 2.8 mi. S o f  V alm eyer, 4 m ales, 5 

fem ales, 3 juveniles (U SN M ), L. Hubricht, 30 Jan. 1943. Small cave, 1 m ale (U SN M ), L. Hubricht, 30 Jan. 

1943. Terry Spring (Long Slash) Cave, 1 m ale (JRH), S. Peck, 27 N ov. 1965. Montgomery Co.: Drain tile 

into concrete catchm ent basin, 5.2 m i. NW  o f  H arvell, 3 specimens (JR H ), S. K oenem ann and U. Englisch, 

15 M ay 1999. Drain pipe, ca. 5 mi. E  o f  M orrisonville, 9 specimens (JR H ), S. K oenem ann and U. Englisch, 

15 M ay 1999. P ike Co.: Croxville Cave, 3 females (JRH ), S. Peck, 15 A ug. 1968. Sm all spring, 1 mi SE o f  

Pearl, 4 juveniles (U SN M ), L. H ubricht, 28 Apr. 1940. Twin Culvert C ave, 2 m ales, 2  fem ales (JRH), S. 

Peck, 25 Sept. 1965. Sangamon Co.: Drain pipe into Panther C reek, ca. 0.5 m i. W  o f  Auburn, 14 

specim ens (JRH ), S. K oenem ann and U. Englisch, 16 M ay 1999. S t  C lair Co.: D ashed Hopes Pit, 32 5  mi. 

(?) ENE o f  Colum bia, 1 male (JRH ), J. Lewis, S. Rafail, P. Moss and D . Tecic, 3 Jul. 1999. Small spring, 1 

mi. S o f  Falling Spring, 7 m ales, 8 fem ales (U SN M ), L. Hubricht, 18 April, 1937. Stem m lers Cave, 1 

fem ale (U SN M ), L. H ubricht, 16 Jan. 1938. Union Co.: Seep near M cCann School, 2 fem ales (USNM ), L. 

H ubricht, 14 Apr. 1940. Ditch along creek, 4 juveniles (JRH), J. W eise, 8 Jan . 1952. MISSOURI: 

B ollinger C o: B lue Pond N atural Area, SW  part o f  county, 1 male (JR H ), W. C. P flieger, 23 Mar. 1988. 

B oone C o.: Devils Icebox Cave, J. and T. Lewis, 2 juveniles (JRH), 4  Aug. 1979; 4  males, 3 females 

(JRH), S. W. Schulte, Dec. 1980; 4 m ales, 4 females (JRH), J. E. G ardner, 29 Jan, 1981. Hunted Cave, 26 

specim ens (U SN M ), L. H ubricht, 4 Aug. 1940. Pollys Pot (Cave), 6 specim ens (JR H ), J. E. Gardner, 28 

Jan. 1981. Seep near sm all creek, 4 mi. SE o f  A shland, 9 specimens (U SN M ), L. H ubricht, 30 Apr. 1938. 

Spring 4 mi. E o f  A shland, on Brushy Creek, 5 specim ens (USNM), L. Hubricht, 14 M ay  1936. Crawford 

C o.: Jagged Canyon Cave, 1 juven ile  (JRH), J. L. Craig, 16 Dec. 1973; 1 male (JR H ), 5 females, 12 Apr. 

1974. N am eless Cave, 5 fem ales (JRH ), B. Harris, 3 Jul. 1976; 1 m ale (JRH), J. C raig, 16 Feb. 1974. 

N arrows Cave, 1 m ale, 1 fem ale (JRH), J. E. G ardner, 7 Aug. 1980. Dent Co.: B ounds Branch Cave, 2 

m ales, 2 fem ales (JRH ), J. E. G ardner, 20 Jun. 1980. Franklin Co.: Fisher Cave, 11 specim ens (JRH), J. E. 

G ardner, 11 M ar. 1982. M eram ec Caverns, 1 male, 7 fem ales (USNM ), L. H ubricht, 16 Dec. 1939. Sheep 

Cave, 1 fem ale (JRH), J. E. G ardner, 17 M ar. 1981. Iron Co.: Boulder C ave, 3 m ales (JR H ), J. E. Gardner,

1 Jun. 1982. C ave Hollow Cave, 1 m ale, 2 females (JRH ), J. E. G ardner, 2 Jun. 1982. Jefferson Co.: 

A nderson Cave, >25 specim ens (U SN M ), L. Hubricht, 24 Sept. 1939. Becker’s spring, 0.5 mi. E o f
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Seckm an, 1 m ale (USNM ), L. H ubricht, 6 Jun. 1937. Hoffarth's w ell, Antonia, 4 fem ales (U SN M ), 

collected by  Hoffarth, 16 Oct. 1938. Pleasant V alley C ave, 1 male (JR H ), D. and M. Bechler, 20 M ar. 

1977. Rice’s Cave, 5 specimens (U SN M ), L. Hubricht, 31 Oct. 1937; 1 fem ale (JRH), D . Bechler and M. 

Harder, 30 Jan 1977. Sims Cave, 3 m ales, 3 females, 1 juvenile  (JRH), T . M arsh, 27 M ar. 1966. Sm all 

spring on bluff, 0.5 mi. NW  o f  Selma, 52 specim ens (U SN M , in 2 vials), L. Hubricht, 10 M ay 1936. Sm all 

spring at foot o f  hill, on tributary o f  Selm a Creek, 0 .7  m i. N N W  o f  Selm a, 16 specim ens (USNM ), L. 

Hubricht, 23 Jan. 1938. Small spring on bluff, 1 mi. W  o f  Selma, 9 specim ens (U SN M ), L. Hubricht, 2 Jun. 

1937. Spring house on hillside, 2.2 mi. E o f  Antonia, 4  fem ales (U SN M ), L. Hubricht, 6  Jun. 1937. Sm all 

spring on bluff, 2 mi. E o f  Antonia, 1 female (USNM ), L. Hubricht, 6 Jun. 1937. Seep, 5 mi. S o f  Antonia, 

26 specim ens (U SN M ), L. Hubricht, 2 Jun. 1940. Sm all spring, 5 mi. N o f  A ntonia, 11 fem ale (USNM ), L. 

Hubricht, 6 Jun. 1937. Seep near large spring, 2 mi. S o f  Platt, 3 specim ens (USNM ), L. Hubricht, 14 Jan. 

1942. Spring on Antire Creek, 3.5 mi. E o f  Eureka, 2 fem ales (USNM ), L. Hubricht, 30 A pr. 1939. L incoln  

C o.: Aker’s Cave, 3 m ales, 2 females (USNM ), L. H ubricht, 24 Jan. 1943. C reech Cave, I fem ale (JRH), J. 

E. G ardner, 15 Apr. 1982. M adison C o.: Small interm ittent stream (tributary o f  Tw elvem ile Creek), 7 mi. 

S o f  Fredericktow n, 1 male, 1 female, 1 juvenile (U SN M ), L. Hubricht, 21 Apr. 1938. P e r ry  Co.: C revice 

Cave, 1 m ale (JRH ), S. Peck, 23 Sept. 1961; 1 m ale, 2  fem ales (JRH ), J. R. Holsinger, 9 Jun. 1964. 

M ystery C ave (north upper passage, stream entrance to  Spider Pit), 2 m ales (JRH ), J. Lewis, 20 May 1972, 

and 1 juven ile  (JRH ), 31 Mar. 1974. Tom /Berom e M oore Cave, 1 m ale (U SN M ), L. Hubricht, 14 Sept. 

1969; I m ale, I fem ale (JRH), J. Lewis, 30 Nov. 1973; 2 m ales, 1 female, 1 juvenile (JR H ), T. L. Saberton 

and S. T rim bley (donated by D. L. Bechler), date not g iven. P ike Co.: C ave N o f  Frankford, 9 specim ens 

(USNM ), L. Hubricht, 21 Jun. 1941. R alls C o.: Fisher’s Cave, 1 male, 4 fem ales (USNM ), L. Hubricht, 21 

Jun. 1941; 2 fem ales (JRH), J. G. W eise (?), 21 Apr. 1953; 1 male, 1 fem ale (JRH), J. G . Weise, 16 O ct. 

1954. R eynolds C o.: Spring, 3 mi. W SW  o f  Ellington, ca. 95 specim ens (USNM ), L. Hubricht, 3 M ay 

1942. S co tt C o .: Spring seeps along gravel road, 1.75 m i. N W  o f  Illmo (T30N , R14E, S29), 6 males, 11 

females (JRH ), W. L. Pfliegerand G. M cDonald, 27 Feb. 1976. St. C h a rle s  C o.: D ingledine Cave, 1 m ale, 

5 females (JRH ), J. Holsinger, 9 Jun. 1964. St. F ran co is  C o.: Shaver Cave, 2 juveniles (USNM ), L. 

Hubricht, 20 Jul. 1941. SL G enevieve C o.: Kohm's C ave, 6 males, 2 fem ales (U SN M ), L. Hubricht, 24 

Aug. 1941; 1 m ale, 1 fem ale (JRH), D. and M. Bechler, 6 Feb. 1977. Saltpeter Cave, 9 specim ens (USNM ), 

L Hubricht, 24 Aug. 1941. Small spring, 4.6 mi. SW  o f  St. G enevieve, 14 specim ens (U SN M ), L. Hubricht, 

9 Mar. 1941. S t. L ouis C o.: Biffle’s bunker spring, Tyson Research Center, 1 m ale (JRH), J. C. Walker, 21 

Feb. 1996; 1 m ale, 14 Mar. 1996; 4 m ales (JRH), E. C. Biffle, A pr.-M ay 1996; 12 specim ens (JRH), S. 

Koenem ann and U. Englisch, 17 M ay, 1999. C rystal Springs, Babler State Park, 1 m ale (JRH), S. 

Koenemann and U. Englisch, 17 M ay 1999. Cherokee C ave, 1 m ale (JRH ), A . R. Tem pleton, 19 Jan. 1984. 

Basement o f  B iology Dept., St. Louis University, 1 m ale (JRH), D. L. Bechler, 1 m ale, 1977; 1 m ale 

(JRH), 12 Aug. 1977; 1 male, 1 fem ale (JRH), D. L. B echler and J. Rice, 16 Feb. 1978. C lif f  Cave, 1 m ale 

(USNM ), L. Hubricht, 25 Apr. 1938. Cave, Kirkwood, juven ile  (USNM ), L. Hubricht, 13 Jun. 1937. Sm all 

cave, Fem  G len, 1 m ale (USNM ), L. Hubricht, 23 Apr. 1939. Sm all cave (10-15 m  long), N W  o f  Eureka, 3
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males, 1 fem ale (JRH ), J. and T. Lewis, 9  Aug. 1979. W oods C ave, 12 specim ens (JRH), J. E . Gardner, 17 

Jul. 1979; spring, M onarch, 4  fem ales (U SN M ), L. H ubricht, 23 M ay 1937. W alled spring on K eifer Creek, 

0.6 mi. N W  o f  Fem  G len, 1 fem ale and 5 male S Y N T Y P E S  (A M N H  9158), 23 male, 44 fem ale and 5 

juvenile  S Y N T Y P E S  (U SN M  74846) (2 specim ens m ounted on perm anent slides in JRH collection), L. 

Hubricht, 17 A pr. 1937; ca. 50 topo ty p es (U SN M ), L. H ubricht, 22  M ar. 1942. Small spring on bluff, 0.7 

mi. S o f  G rim sby, 30 specim ens (USNM ), L. H ubricht, 29 Feb. 1936. O utlet o f  drain, O sage Hills Country 

Club, K irkw ood, 4 specim ens (USNM ), L. H ubricht, Dec. 1931. Sm all spring near old quarry, Kirkwood , 

Osage Hills, I m ale (U SN M ), L. Hubricht, 23 Apr. 1939. T exas C o .: Bat Cave, 5 males, 13 females, 2 

juveniles (U SN M ), L. H ubricht, 5 Jul. 1940; 1 fem ale (JR H ), W . R. Elliott, 14 Dec. 1999.

D iagnosis: A m edium -sized to very large species w ithout m arked secondary sexual dim orphism. 

Propod o f  gnathopod 1 slightly  shorter than propod o f  gnathopod 2. Pereopod 5 slightly longer than 

pereopod 4 (about 8% ). C oxal gills on pereopods 2-7 (reduced on pereopod 7). Lateral stem al processes on 

pereonites 6 and 7; m edian stem al (m ediostem al) processes usually  absent. Telson entire o r slightly 

em arginate, longer than w ide. Largest m ale 31 m m , largest fem ales up  to  24 m m .

D escrip tion : T he description is based on several adu lt specim ens o f  both sexes (19.9 mm  female, 

Fig.5.1); 23.5 m m  fem ale; 19.0 mm  male; 20.5 m m  male; 13.0 m m  m ale).

A n ten n a  1 (Fig. 5.2a) up to 75%  length o f  body. Second peduncular segm ent 74%  length o f  

peduncular segm ent 1; third peduncular segm ent 42%  length o f  peduncular segm ent 2; several plumose 

setules dorsoproxim ally on peduncular segm ent 1. A esthetascs som etim es on peduncular segm ents 2 and 3 

and on m ost segm ents o f  m ain flagellum . Prim ary flagellum  w ith up to  59 segm ents; accessory flagellum 2- 

segm ented.

A n ten n a  2 (Fig. 5.2b) about 40%  length o f  antenna I. Third peduncular segm ent 96%  length o f  

peduncular segm ent 2. A esthetascs and several plum ose setules on peduncular segm ent 4. Flagellum with

up to 15 segm ents.

U p p e r lip (Fig. 5.2c) rounded apically, w ith small setae along distal m argin.

M and ib les (Figs. 5 .2d-g) subequal. M olar strong, triturative, with row  o f  10-12 sm all plumose 

setae on anterior outer m argin. Row o f  8-10 plum ose spines betw een m olar and Iacinia m obilis. Left lacinia 

m obilis 4-dentate (Fig. 5 .2 0 ; right lacinia irregular, with serrate distal m argin (Fig. 5.2e). Palp segments 2 

and 3 subequal in length; palp segm ent 2  w ith 5-8 short naked setae on  lateral m argin and 7-12 plumose 

setae on m edial m argin (2-4 o f  which can be slender spines in som e m ales; see Fig. 5.2g); palp segment 3 

bearing apically  3-4 long, plum ose E-setae, a  row o f  about 22  short, p lum ose D-setae, 5-6 long, plumose B- 

setae, 4-5 long, plum ose A -setae, and faint, small setae on m edial surface. B ecause there are tw o types o f  

plum ose setae on m outhparts and gnathopods the plum ose setae o f  the m andibular palp are referred to as 

com b-type setae (Fig. 5.3b).

M axilla  1 (Fig. 5.3a): Palp 2-segm ented, articulation o f  segm ents faint; palp segm ent 2 bearing 

apically and subapically  up to  14 naked setae and 1 or 2 long plum ose setae (com b-type, Fig. 5.3b). Outer
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plate w ith 7 strong spines, 3-4 o f  which bidentate and 3-4 m ultidentate (Fig. 5.3d). Inner plate w ith 6-8

apical, p lum ose setae (Fig. 5.3c).

Fig. 5.1. Bactrurus brachycaudus, syntype female (19.0 mm) from Keifer Creek (St. Louis County. Missouri).

M axilla  2 (Fig. 5.3e): O uter plate bearing apically up to 18 setae, some o f  w'hich faintly plum ose 

(com b-tvpe, Fig. 5.3b). Inner plate with oblique row o f  8-10 strong, plum ose setae on inner m argin and 20- 

26 plumose, apical and subapical setae (all plum ose setae o f  sam e type, Fig. 5.3c).

L o w er lip  (Fig. 5 .3f) bearing small setae on m argins o f  outer lobes and on inner lobes; inner lobes 

very sm all; m andibular lobes short, with slightly  rounded, pointed com ers.

M axilliped  (Figs. 5.3g-i): Outer p late with row o f  6-9 bladelike spines and up to 23 naked setae 

on inner m argin. Inner p late with 2-4 naked, bladelike spines (one o f  which som etim es m odified as 

plumose spine; see Fig. 5.6c) and 4-8 plum ose setae on apical and subapical inner m argin (brush-type setae, 

Fig. 5.3c; com pare with m andible).

G n a th o p o d  1 (Figs. 5.4a-d): Basis bearing up to 29 long, naked setae on posterior m argin, 2-6 

plumose setae on distoposterior com er, 4-5 long, naked setae on proxim oanterior margin, 3-4 setae on 

distoanterior margin and 6 o r  7 short setae on m edial surface. Carpus triangular, with 12-13 plumose setae 

on distal m argin and up to 9 (usually 3-4) rastellate spines on distoposterior com er (Fig. 5.4b). Propod 

slightly shorter than propod o f  gnathopod 2; palm alm ost even, short part o f  distal margin finely serrate, 

armed with up to 17 spines on lateral m argin and 7 spines on medial margin; defining angle rounded, 

shallow, with 6 short spines m edially and 5 spines (long and short) on lateral com er (Fig. 5.4d); posterior
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(subangular) margin about 31%  length o f  propod, with 3-6 sets o f  plum ose setae (naked at defining angle);

Fig. 5.2. Bactrurus brachycaudus, female (19.9 mm) from Keifer Creek (St. Louis County. Missouri): a) antenna 1 

(accessory flagellum enlarged), b) antenna 2 (plumose setule enlarged), c) upper lip, d) left mandible, e) detail o f  right 

mandible, with 1 spine enlarged. Male (19.0 mm) from same locality: 0  dentate part o f  left mandible, g) palp o f left 

mandible: note that setal types on segment 3 are designated by uppercase letters in accordance with Stock (1974).
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anterom edial surface bearing 5 rows o f  plum ose setae (w ith  2-5 setae p e r row). D actyl reaching about 79 %  

length o f  propod. Coxal plate w ider than  long, with 6-7  setae. All plum ose setae o f  gnathopod 1 belong to

com b-type (Fig. 5.3b).

Fig. 5.3. Bactrurus brachycaudus. female (19.9 mm) from Keifer Creek (S t Louis County. M issouri): a) maxilla 1. b) 

comb-like setae o f  mouthparts and gnathopods. c) plumose seta o f  mouthparts. d) spine types o f  outer plate o f  maxilla 
1. e) maxilla 2. 0  lower lip. g) maxilliped. h) outer plate o f  maxilliped. i) inner plate o f  maxilliped.
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Fig. 5.4. Bacirurus brachycaudus, female- (19.9 mm) from K eifer Creek (St. Louis County. Missouri): a) gnathopod 1 

(medial view), b) rastellate spine on carpus o f  gnathopod 1. c) palm o f  gnathopod 1 (lateral view), d) defining angle 
(comer) spines o f  propod (gnathopod 1, medial view), e) gnathopod 2 (lateral view).
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Fig. 5.5. Bactrurus brachycaudus, female (19.9 mm) from Keifer Creek (St. Louis County, Missouri): a) left pereopod 

3. b) coxal plate o f pereopod 4, c) right pereopod 5. d) proximal part o f left pereopod 6. e) left pereopod 7, 0  lateral 

sternal process o f  pereonite 7. g) pleopod 1 (retinaculae enlarged), h) epimeral plates 1-3. i-k) uropods 1 -3 ,1) telson.
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G n a th o p o d  2 (Fig. 5.4e): Basis w ith 9 sets o f  2-4 long setae on posterior m argin (all naked, 

except 2 distal sets w ith plum ose setae), up to  7 long, naked setae on proxim oanterior m argin, up to 9 setae 

on distoanterior m argin and 6-7 short setae on medial surface. Carpus triangular, w ith 7-10 sets o f  plum ose 

setae on posterior m argin, ca. 7 plum ose setae on distal m argin and up to  9 (usually S) rastellate spines on 

distoposterior com er (Fig. 5.4b). Palm o f  propod slightly rounded, short part o f  distal m argin finely serrate, 

bearing 18-22 spines on lateral m argin and up to 24 spines on m edial m argin; defining angle rounded, very 

shallow , with 4-5 short, spines m edially and 3-5 spines (long and short) on lateral com er; proxim al 

(subangular) m argin about 35% length o f  propod, with 8-9 sets o f  plum ose setae (naked a t defining angle); 

anterom edial surface bearing 7 rows o f  plum ose setae. Dactyl reaching about 70 %  length o f  propod. Coxal 

plate round, as w ide as long, bearing 9 or 10 setae on distal m argin. A ll plum ose setae o f  gnathopod 1 

belong to com b-type (Fig. 5.3b).

P ereopod  3 (Fig. 5.5a): Basis with up to 10 long setae on proxim oposterior m argin (excluding 

distoposterior com er), 2-6 long setae on proxim oanterior m argin and 6-10 long setae on medial surface. 

Coxal plate slightly w ider than long, distal m argin with to up to 14 setae.

Pereopod  4  subequal to pereopod 3. Coxal plate slightly  w ider than long, distal m argin bearing up 

to 11 setae and 1 slender spine (Fig. 5.5b).

P ereopods 5-7: Plumose setae absent. Dactyls relatively short, typically about 15% percent length 

o f  corresponding propod. A nterior lobe o f  coxal plate o f  pereopod 5 bearing 4-7 setae; distoposterior com er 

with 1 slender spine (Fig. 5.5c). Pereopods 6 and 7 subequal, but pereopod 6  reaching only  69%  length o f  

pereopod 7. A nterior lobe o f  coxal plate o f  pereopod 6  w ith  2-4 setae; posterior m argin bearing 2-4 setae 

and 1 slender spine (Fig. 5.5d). Coxal plate o f  pereopod 7 ovate, w ith 6-9 setae on posterio r margin (Fig. 

5.5e).

C oxal gills subovate, present on pereopods 2-7 (Figs. 5.4e; 5.5a, c-e), greatly reduced on pereopod

7. Two pairs o f  pointed sternal processes present on pereonites 6 and 7 (Figs. 5.5d, f).

B rood p la tes  on pereopods 2-5 (Figs. 5.4e; 5.5a, c; not fully developed in specim en illustrated), 

distinctly sm aller on pereopod 5.

P leopods biram ous (Fig. 5.5g); pleopod 3 slightly  shorter than pleopods I and 2, which are 

subequal in length. Peduncle o f  pleopod 1 shorter than peduncles o f  pleopods 2 and 3; w idth o f  peduncles 

gradually increasing from pleopod 1 to 3. Inner rami about 12% longer than outer ram i; first 3-6 proxim al 

segm ents o f  both ram i fused to form a single segment; both  ram i w ith subequal num ber o f  segm ents; 

num ber o f  unfused segm ents slightly decreasing from pleopods 1-3 (average num ber o f  ram i segments: 16 

in pleopod 1, 14 in pleopod 2 and 12 in pleopod 3; can be as m any as 30 in large specim ens).

E p im era l (p leonal) p la tes (Fig. 5.5h): D istoposterior m argins bearing 4-8 setae (1-3 o f  which can 

be sm all spines on com er); ventral m argins with 2 spines on plate 1 and 4-7 spines on plate 2 and 3, 

respectively.

U ropod  1 (Fig. 5.5i): Peduncle w ith up to 21 spines on dorsolateral m argin and 3-4 spines on  

distom edial com er. Ram i subequal, about 57%  length o f  peduncle; inner ram us w ith 5 apical spines, and 7-
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9 spines on dorsal surface. O uter ram us with 4-6  apical spines and 8-12 spines on dorsal surface.

U ro p o d  2 (Pig. 5.5j): Peduncle w ith up to 9 spines on dorsolateral m argin, 1 o r 2  spines on 

dorsom edial m argin (som etim es absent), and a row  o f  5-6 spines near distomedial com er. Inner ramus 

slightly  longer than outer ram us, about 68%  length o f  peduncle, w ith 5-6 apical spines, and 7-9 spines on 

dorsal surface. O uter ram us w ith 4  apical spines and 5-7 spines on dorsal surface.

U ropod  3 (Fig. 5.51c): Peduncle bearing 1 spine on distal margin (som etim es 2 spines). Inner 

ram us vestigial, unarm ed, about 37%  length o f  ou ter ram us. O uter ram us short (approxim ately 71%  length 

o f  peduncle), bearing up to  6 (usually  3-4) apical spines and 1-5 subapical spines.

T elson  slightly tapered apically (Fig. 5.51); w idth 58-73%  o f  length (usually about 68% ); lateral 

m argins w ith 1 sm all plum ose se ta  each (see enlarged seta o f  Fig. 5.2b); apical m argin entire o r  slightly 

em arginate (1 -2%  cleft), bearing 16-20 spines.

S exual d im o rp h ism  a n d  v a r ia tio n : A s already noted, the m ajority  o f specim ens did n o t show  any 

m arked secondary sexual dim orphism . However, the propods o f  both gnathopods appeared to  have 

som ew hat sinusoid palm ar m argins in som e o f  the larger m ales (>  25 m m ).The propod o f  gnathopod 1 was 

noticeably larger than the propod o f  gnathopod 2  in som e large m ales. One 26 m m  m ale (w ith sinusoid 

palm ar m argins on propods o f  gnathopod 1 and 2) had a  double (U -shaped) row o f  12 rasteilate spines on 

the carpus o f  gnathopod 2.

N o m arked m orphological variation could be observed in the m ajority o f  the specim ens exam ined. 

M inor variation occurred in the num ber o f  aesthetascs on both antennae, which w ere strongly reduced or 

absent in som e specim ens. Palp segm ents 1 and 2  on m axilla 1 w ere w eakly articulated in m ost specim ens, 

apparently  indicating an early stage o f  fusion. The strong apical, p lum ose spine on the inner p late o f  the 

m axilliped appears to be a plum ose seta (brush-type. Fig. 5.3c) in som e specimens. V ariation w as also 

found in the num ber o f  subapical, lateral spines on the telson (som e specim ens had 1-3 subapical spines) 

and the w idth/length ratio o f  the telson.

M arked variation, how ever, was found only in two populations at opposite edges o f  the 

distribution range o f  B. brachycaudus: 39 specim ens, collected from drain pipe outlets in central Illinois 

(M ontgom ery and Sangam on Co.), show ed sexual dim orphism  in the width/length ratio o f  the telson. The 

m ajority o f  adult m ales had telsons that w ere about 20%  longer than those o f  the fem ale. The sam e sexually 

d im orphic w idth/length ratio could  be observed in a cavem icolous population from central M issouri (Texas 

Co.). In addition, these specim ens had m edian sternal (m ediostem al) processes on pereonites 2 and 3. Both 

populations w ere characterized by  a relatively sm all average body size o f  adult specim ens (9-13 mm), 

resulting in an proportionate reduction o f  segm ents and arm ature o f  som e appendages, for exam ple, the 

num ber o f  flagellar segm ents in antennae 1 and 2  and the num ber o f  spines and setae on m outhparts and 

pereopods. M ost o f  diagnostic characters, how ever, left no doubt that both populations w ere geographic 

variants and belonged to B. brachycaudus. This assum ption w as supported  by relative d ifferences o f  DNA 

sequence data  (Table V.2).

R em ark s : With some large specim ens reaching up to 31 m m  in length, B. brachycaudus is not
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only one o f  the largest subterranean am phipod species known to  science but is also the largest freshwater 

am phipod on the North A m erican continent. Bactrurus brachycaudus is reported from various subterranean 

habitats in Illinois and M issouri, including m ostly caves, but also springs and seeps, and, as the M ay 1999 

collection trip revealed, in drainage system s in glaciated areas (see  Fig. 5.28). To date, form erly glaciated 

areas in O hio, Indiana, Illinois, Iow a and M ichigan were assum ed to  be inhabited by only  one species o f  the 

genus, B. mucronatus. Rem arkably, these are the first recorded occurrences o f  B. brachycaudus from drain 

pipe outlets in glacial drift areas. In one locality (M ontgom ery Co., Illinois), B. mucronatus and B. 

brachycaudus w ere found together in the sam e drain pipe catchm ent basin, m arking first collection o f  these 

species from the sam e locality.

Bactrurus m ucronatus and the new species B. pseudom ucronatus can be differentiated from B. 

brachycaudus by an exceptionally  long telson and a tapered outer ram us on uropod 3, bearing only a few 

spines. Bactrurus hubrichti d iffers from  B. brachycaudus by having a distinctly em arginate telson with 

relatively long apical spines and the presence o f  plum ose spines on the merus o f  gnathopod 1. The presence 

o f  a serrate peduncular process on the m ale uropod 1 distinguishes B. brachycaudus from  the new species 

B. wilsoni, B. angulus and B. cellutanus.

Aquatic crustacean fauna associated w ith B. brachycaudus includes the am phipods Gammarus 

troglophilus, Crangonyx forbesi, Stygobrom us n. sp. (Holsinger, in ms.), B. m ucronatus, Crangonyx 

packardi, G. pseudolim naeus, and the isopods Caecidotea spp.

Sex ra tio s: The sex ratio o f  72 specim ens o f  B. brachycaudus from Fem  G len (St. Louis County, 

M issouri) w as fem ale biased (61% ). A pproxim ately 3/4 o f  other Bactrurus species w ith sam ple sizes o f  10 

or m ore specim ens also show ed a differential sex ratio favoring fem ales. A study o f  sex ratios in 12 species 

o f  Stygobrom us yielded sim ilar data (C ulver & Holsinger, 1969).

A fem ale biased sex ratio m ay be related to the unique properties o f  subterranean habitats, which 

are typically characterized by lim ited food resources and restricted habitat space. Species with low 

dispersal abilities are m ore easily subjected to inbreeding, which in turn leads to  ‘local m ate com petition ' 

(K rebs & Davies, 1993): I f  habitat space is lim ited, a female w ill increase her reproductive success i f  she 

produces ju s t as m any sons as needed to fertilize her daughters. From  an energy econom y point o f  view, 

any additional sons are w asted since they com pete with their brothers for m ating opportunities with 

available fem ales from the sam e brood. As a result, populations affected  in this w ay  tend to  develop fem ale 

biased sex ratios.

B actrurus hubrich ti S hoem aker, 1945

Figs. 5.6-8

Bactrurus hubrichti Shoem aker, 1945: 27, Fig. 2; type locality: w ell at Topeka (Shaw nee County, Kansas).- 

- Barnard, 1958: 4 4 . -  H ubricht, 1959: 8 2 8 . - Nicholas, 1960: 1 2 7 .-  H olsinger, 1972: 74, Fig. 30d; 

1977: 277, Figs. 8c, 14j, I5d; 1986a: 95, Fig. 6; 1986b: 542.— Barnard &  Barnard, 1983: Figs. I8f, 

20d, 21b, m ap 12.— Fitzpatrick, 1983: 144.
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Material examined: KANSAS: Bourbon Co.: Seep, 2.3 mi. S o f  Bronson, 3 males, 2 fem ales 

(USNM ), L. H ubricht, 17 May 1942. Butler Co.: H ourglass Cave, 4 m ales, 6 fem ales (JRH and KBS), W. 

H. Busby and J. J. Young, 7 Sept. 1991; 1 m ale (JRH), W. H. Busby and D. Figg, 3 M ay 1989. 

C h a u ta u g u a  Co.: M ill's Cave, 1 m ale (JRH), W. H. Busby and J. J. Young, 30 Jun., 1991. Dry Crawl 

Cave, 3 males, 4 fem ales (JRH and KBS), W. H. Busby and J. J. Young, 30 Jun., 1991. Clay Co.: Spring, 

ca. 1 mi. N N W  o f  rt. 82 and Knollwood in W akefield, 1 m ale (JRH ), N . W. Y oungsteadt, 20 M ay 1980. 

Cow ley C o.: Shallow , hand-dug well, ca. 8 mi. SE o f  Dexter (on M etcalf farm), 13 males, 3 fem ales , 7 

juveniles (JRH), A. C. Metcalf, 1968-1970. A bandoned well, 4 mi. S o f  Burden, 4 m ales, 6 females (JRH 

and KBS), W. A. Busby and J. J. Young, 30 Jun. 1991. Neosho Co.: Hand-dug well, 1 mi. N o f  Parson's 

Reservoir dam, 1 female (JRH), J. Danoff-Burg, 13 Jul. 1991. Riley Co.: Endler Spring, Konza Prairie 

Research N atural Area, 1 male, 1 female (JRH), W. Dobbs, 8 Jun. 1995. Spring, north fork o f  Kings Creek, 

Konza Prairie Research Natural Area, 9 specim ens (KBS), M. M offett, 28 May, 1981. Shallow well flow, 

Konza Prairie Research Natural A rea (in Flints Hills area), 1 fem ale (JRH ), M. W hiles and K. Hooker, 20 

Jun. 1986; 3 fem ales (JRH), 23 Jul. 1986. Shawnee Co.: Well at Topeka, 12 specim ens (paratypes in 

USNM ) collected by A. Popenoe as follows: 1 fem ale, 9 Jun. 1911; 1 m ale, 15 Feb. 1912; 1 male, 11 Feb. 

1912; 1 fem ale, 23 Feb. 1912; 2 males, 1 female, 25 Feb. 1912 (2 sam ples); 2 fem ales, 5 Apr. 1912; 1 

female, 9 Apr. 1912; 1 male, 4 M ay 1912; 1 male, 25 Sept. 1913. MISSOURI: Miller Co.: Klugs C ave, 2 

males, 3 females, 2 juveniles (USNM ), L. Hubricht, 24 Aug. 1940. OKLAHOMA: Muskogee Co.: Well, 

near Connors State College, W arner, I female (USNM ), A. Seamster, 6 Jan. 1939. Rogers Co.: Unnam ed 

spring, ca. 3.5 mi. S ofO olagah, I male, I juvenile (JRH), J. J. H oover and W. B. M ilstead, 1 Jun. 1981.

D iagnosis: Bactrurus hubrichti is a m edium -sized to large species w ithout marked secondary 

sexual dim orphism . Propod o f  gnathopod 1 distinctly larger than propod o f  gnathopod 2. Pereopod 5 as 

long as o r slightly longer than pereopod 4 (5-14% ). Coxal gills on pereopods 2-7; coxal gill on pereopod 7 

only slightly reduced. Three pairs o f  lateral stem al processes on pereonites 6 and 7 and pleonite 1; m edian 

sternal processes absent. Telson cleft, w ider than long. Largest m ale 22.0 mm, largest fem ale 20.5 m m .

D escrip tion : Bactrurus hubrichti is m orphologically closely allied with B. brachycaudus. The 

following description is based on an adult female (19.5 mm) and adult m ale (17.5 m m ).

A n ten n a  1 72-92% length o f  body (som etim es exceeding length o f  body). Prim ary flagellum with 

up to 40 segm ents.

A n ten n a  2 about 37% length o f  antenna 1. Flagellum with up to 14 segments.

L ow er lip subequal to  that o f  B. brachycaudus (Fig. 5.6a).

M andib les: Spine row with 7-9 plumose spines. Right lacinia mobilis w ith row o f  irregular, 

relatively long denticles on distal margin (Fig. 5.6b). Palp segm ent 2 w ithout spines, bearing up to 17 setae 

on lateral and m edial margins; palp segm ent 3 bearing up to 33 short, plumose D -setae, about 3 long, 

plumose B-setae and 2-4 long, plum ose A-setae.

M axilla  1 subequal to that o f  B. brachycaudus. Inner plate with 5-6 apical, p lum ose setae.
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Maxilla 2 subequal to that o f  B. brachycaudus. Inner plate with oblique row  o f  6-7 strong,

plum ose setae.

Maxilliped: O uter plate w ith 5-7 bladelike spines on inner margin. Inner plate with 3-6 naked, 

bladelike spines (one o f  w hich som etim es m odified as plum ose spine; Fig. 5 .6c) and 3-4 plum ose setae on 

apical and subapical inner m argin.

Fig. 5.6. Bactrurus hubrichti. female (19.5 mm) from an abandoned well (Cowley County, Kansas): a) lower lip. b) 

dentate pan o f  right mandible, c) retinaculae o f  pleopods. Male (17.5 mm) from same locality: d) distal part o f  inner
plate o f  maxilliped.

G n a th o p o d  1 (F ig. 5.7a): Basis w ith 6-8 sets o f  long, naked setae on posterior m argin (w ith up to 

17 setae in total), about 4  plum ose setae on distoposterior com er, 5-6 long, naked  setae on proxim oanterior 

m argin. 3 shorter setae on distoanterior m argin and up to 8 short setae on m edial surface. M erus w ith 2-3 

plum ose spines (Fig. 5.7c). Carpus bearing 11 plum ose setae on distal margin and  2-3 rastellate spines on 

distoposterior m argin (Fig. 5.7d). Propod w ider and longer than propod o f  gnathopod 2; palm  slightly 

convex, at least 2/3 o f  palm ar m argin finely senate , bearing 17-20 spines on  lateral m argin and 11-15 

spines on m edial m argin; defining angle distinct (ca. 135°), with 2-3 spines m edially  and 3-6 spines on 

lateral com er; posterior (subangular) m argin 24%  length o f  propod, w ith 4 sets o f  plum ose setae; 

anterom edial surface bearing 5 rows o f  plum ose setae. Dactyl reaching about 77 %  length o f  propod. Coxal 

plate bearing 6-8 setae.

G n a th o p o d  2 (Fig. 5.7b): Basis with 5-7 sets o f  2-3 long setae on posterior m argin, ca. 4 plum ose 

setae on distoposterior com er, about 4 long, naked setae on proxim oanterior m argin, 6-7 (m ostly short) 

setae on distoanterior m argin and a row  o f  7 (m ostly) short setae on medial surface. Carpus with 6-7 sets o f  

plumose setae on posterior m argin, about 5 plum ose setae on distal margin and up to 4-5 rastellate spines 

on distoposterior com er (Fig. 5.7d). Palm o f  propod slightly rounded, finely serrate along whole m argin,
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w ith 13-17 spines on lateral m argin and 12-14 spines on m edial margin; defining angle rounded, very 

shallow , with row  o f  5-6 spines on m edial com er and a row  o f  4 spines on lateral com er; proximal 

(subangular) m argin ca. 42%  length o f  propod, w ith 5 sets o f  plum ose setae; anterom edial surface bearing 5 

rows o f  plum ose setae. Dactyl 70 %  length o f  propod. Coxal plate round, as w ide as long, bearing 11-15

setae on distal m argin.

Fig. 5.7. Bactrurus hubrichti, female (19.5 mm) from an abandoned well (Cowley County, Kansas): a) gnathopod 1 

(medial view), b) gnathopod 2 (medial view), c) dentate spine o f  merus o f  gnathopod 1. d) rastellate spine o f  carpus o f

gnathopods 1 and 2.

P ereopod  3 (Fig. 5.8a): basis with up to 8 long setae and 2 short setae on proxim oposterior 

margin. 6 short setae on anterior m argin and 11 long setae on m edial surface. Coxal plate w ith to up to 11

setae.

P ereopod  4: Coxal plate w ith 10 setae and 1 slender spine (Fig. 5.8b).

P ereo p o d s 5-7: Coxal plate o f  pereopod 5 w ith 5 setae on distoanterior lobe, distoposterior com er
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with 1 slender spine and 1 seta (Fig. S.8c). Coxal plate o f  pereopod 6 w ith 3 setae on distoanterior lobe, 

posterior m argin with 4 setae (Fig. 5 .8d). Coxal plate o f  pereopod 7 with S setae on posterior margin (Fig.

5.8e).

Fig. 5.8. Bactrurus hubrichti, male (17.5 m m ) from an abandoned well (Cowley County. Kansas): a) right pereopod 3. 

b) coxal plate o f  pereopod 4, c) epimeral plate 2. Female (19.5 mm) from same locality: d) left pereopod 5, e) right 

pereopod 6. 0  left pereopod 7. g) uropod 3. h) telson.

C o x al gill on pereopod 7 only slightly reduced (Fig. 5.8e). Three pairs o f  pointed, lateral stem al 

processes present on pereonites 6 and 7 and pleonite 1 (Figs. 5.8d, e).

P leopods N um ber o f  unfused segm ents o f  outer and inner ramus as follows: pleopod 1 with 15-18 

segments, pleopod 2 with 15 segments and pleopod 3 with 10 segments. Retinaculae subequal to those o f  

B. brachycaudus (Fig. 5.6d).

E p im era l p lates: D istoposterior m argins bearing 6-8 short setae; ventral m argins: plate 1 w ithout 

spines, plates 2 and 3 with 4-5 spines, respectively (Fig. 5.80-

U ro p o d  1: Peduncle with about 18 spines along dorsolateral m argin and row  o f  4 spines on
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distom edial com er. Inner ramus w ith 3-4 apical spines and about 11 spines on dorsal surface. O uter ram us 

59%  o f  length peduncle, with 3-4 apical spines and up to 17 spines on dorsal surface.

U ropod 2: Peduncle w ith ca. 6 spines on  dorsolateral m argin, and a row  o f  3-S spines near 

distom edial com er. Inner ramus slightly  longer than outer ram us, 74%  o f  length peduncle, bearing 4 apical 

spines and 9 -1 1 spines on dorsal surface. O uter ram us w ith 3-4 apical spines and 5-11 spines along dorsal 

surface.

U ropod 3 (Fig. 5.8g): Peduncle with 1 spine on distal m argin (som etim es absent). Inner ram us 

about 45%  length o f  outer ramus. O uter ramus ca. 73%  length o f  peduncle, bearing 4 -7  apical spines, 2-8 

subapical spines on lateral margin and 1 spine on m edial margin (som etim es absent).

T elson subquadrate, usually  11-14% w ider than long (som etim es as long as w ide), cleft 18-25% 

length o f  telson; apical lobes with 6-10 spines each.

Sexual dimorphism and variation: The specim ens exam ined did not show  any secondary sexual 

dim orphism  or m arked m orphological variation.

R em ark s: Bactrurus hubrichti occurs in caves, springs, seeps and wells in eastern  Kansas, central 

M issouri and northeastern O klahom a. It can be easily  distinguished from  all o ther Bactrurus species by  a 

distinctly cleft telson, which is usually  w ider than long, and the presence o f  plum ose sp ines on the m erus o f  

gnathopod 1.

A quatic crustacean fauna associated w ith B. hubrichti includes the am phipods Stygobromus 

clantoni, Crangonyx packardi, and the isopod Caecidotea sp.

A single, 9.2 mm male specim en (USNM  81545) was found in a vial w ith a  label that read: “w ell 

at Fairview, Loudon Co., VA, ca. 6 m i. from Bull R un M ountain, A ug. 5, 1924, M r. M arch” . The specim en 

was in a bad condition, but it perfectly  m atched the description o f  B. hubrichti. Because B. hubrichti occurs 

in the m iddle-w estern US without any  known occurrence east o f  the M ississippi R iver, w e have concluded 

that the Virginia collection was m islabeled.

Bactrurus m ucronatus  (F o rb es, 1876)

Figs. 5.9-13

Crangonyx mucronatus Forbes, 1876: pp. 6, p. 21; Figs. 1-7; type locality: well, N orm al (M cLean County, 

Illinois).-- O. P. Hay, 1882: 241.— Schellenberg, 1936: 34.

Eucrangonyx mucronatus (Forbes).— Stebbing, 1899: 423; 1906: 388.— W eckel, 1907: 29, Fig. 2.

Bactrurus mucronatus (Forbes).— W. P. Hay, 1902: 430.— H ubricht &  M ackin, 1940: pp . 200.— Hubricht, 

1943: 693.— Shoemaker, 1945: p. 24, Fig. 1 (redescription).— Barnard, 1958: 4 4 .— Hubricht,

1959: 8 7 8 .-  N icholas, I960: 127 [in p a r t ] .-  Holsinger, 1972: 75, Fig. 30d; 19 7 7 :2 6 5 , Figs. 8c,

14j, I5d; 1981: 93; 1986a: 95-96, Fig. 6; 1986b: 5 4 2 .-  Peck & Lewis, 1978: 4 5 . -  Barnard & 

Barnard, 1983: map 12.— Fitzpatrick, 1983: 144.— Lewis, 1983: 36.

M ate ria l examined: IL L IN O IS : Champaign Co.: Big concrete drain p ipe into drainage ditch,
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3.2 mi. N  o f  M ayview , 7 specim ens (JRH), S. K oenem ann a n d  U. Englisch, 13 M ay 1999. O ld  well, 

Cham paign, 1 m ale N E O T Y P E  (U SN M  81546) 3 m ales, 7 fem ales and 1 juveniles (U SN M ), collector not 

given, 29 M ar. 1902. D rainage ditch. Savoy; 2 fem ales (U SN M ), H. J. Van Cleave, 9 M ay 1942. O ld  well, 

Urbana, 4 m ales, 12 fem ales (U SN M ), J. G. M ackin, date not g iv en . Drain tile discharge (a t T20N, R10E, 

529+35), 15 m ales, 25 females, 2  juveniles (JRH ), A. Seidenberg , 28 Feb. 1967. C o les C o.: Drain pipes 

into ditch o r little stream , ca. 6 m i. N  o f  Charleston, 15 specim ens (JRH ), S. K oenem ann and U. Englisch, 

13 M ay 1999. F u lto n  C o .: O utlet o f  drain, 1.4 mi. S o f  Avon, 13 specim ens (U SN M ), L. Hubricht, 4  M ay 

1941. G a lla tin  C o .: Drain pipes, ca. 5 mi. S o f  O m aha, 1 fem ale  (JR H ), S. K oenem ann and U. Englisch, 15 

M ay 1999. H en d e rso n  C o.: O utlet o f  drain, 3.0 m i. E o f  B iggsville , over 10 specim ens (USNM ), L. 

Hubricht, 25 A pr. 1942. K nox C o .: O utlet o f  drain, 2 mi. N o f  A bingdon, 1 male (U SN M ), L. H ubricht, 4 

M ay 1941. O utlet o f  drain, 3.1 mi. N o f  St. Augustine, ca. 5 0  specim ens (U SN M ), L. Hubricht, 4  M ay 

1941. O utlet o f  drain, 1.5 mi. SE o f  W illiamsfield, >50 specim ens (U SN M ), L. H ubricht, 3 May 1941. L a  

Salle  C o.: O utlet o f  drain, Gustave Engelhaupt farm, ju s t N  o f  P eru , >50 specim ens (U SN M ), L. Hubricht, 

4 M ay 1941. M cD onough  C o.: O utlet o f  drain, 4.8 mi. N o f  M acom b, >100 specim ens (USNM ), L. 

Hubricht, 4  M ay 1941. O utlet o f  drain, 3.0 mi. S o f  C o lm ar, >125 specim ens (in  2 lots) (USNM ), L. 

Hubricht, 4 M ay 1941. M o n tg o m ery  C o.: Big iron drain pipe in to  catchm ent basin (h igh volume output), 

ca. 5 mi. W o f  M orrisonville, 1 m ale (JRH), S. Koenem ann and U. Englisch, 15 M ay 1999. M o u ltrie  C o.: 

O ld concrete drainage catchm ent basin, ca. 5 mi. W SW  o f  M attoon , 8 specim ens (JR H ), S. Koenem ann and 

U. Englisch, 13 M ay 1999. P eo ria  C o.: Outlet o f  drain, 1.5 m i. E o f  Laura, 7 specim ens (USNM ), L. 

H ubricht, 4  M ay 1941. Saline C o .: Equality Cave (Cave Hill C av e), 26 specim ens (U SN M ), L. H ubricht,

22 Jun. 1940. 3 m ales, 6 females (JR H ), J. Holsinger and R. N orton , 14 Jun. 1965; 1 fem ale (JRH), S. Peck,

23 Oct. 1965; 3 m ales, 2 fem ales (JRH), D. A. Hubbard, J r ., 8 A ug. 1992; 8 specim ens (JRH), S. 

K oenem ann and U. Englisch, 14 M ay 1999. V erm illion  C o.: O u tle t o f  drain, 1.0 m i. W  o f  Fairmont, >50 

specim ens (U SN M ), R. W. Larim are, 11 Apr. 1952. W a rre n  C o .:  O utlet o f  drain, 5.2 mi. E o f  Biggsville, 

>25 specim ens (U SN M ), L. H ubricht, 25 Apr. 1942. O utlet o f  drain, 2 mi. SE o f  C am eron, 5 fem ales 

(USNM ), L. H ubricht, 25 Apr. 1942. IND IA N A : G ra n t  C o .: O utlet o f  drain, 5 m i. W o f  Jonesboro, 4 

specim ens (U SN M ), L. Hubricht, 27 Apr. 1941. Drain pipes at little bridge, ca. 5 m i. W  o f  Jonesboro, ca. 

40 specim ens (JRH ), S. K oenem ann, U. Englisch and J. Lewis, 10 M ay 1999. H e n ry  C o.: Drain tiles, 3.2 

mi. W o f  K nightstow n, 11 specim ens (JRH), S. K oenem ann, U . Englisch and J. Lew is, 10 M ay 1999. 

O utlet o f  drain, 3.8 mi. W  o f  K nightstow n, >25 specim ens (U S N M ), L. Hubricht, 17 Apr. 1942. O utlet o f  

drain, 3.5 m i. W  o f  Knightstown, 4  m ales, 4 fem ales (in 2 lo ts )  (U SN M ), L. H ubricht, 17 Apr. 1942. 

M arion  C o.: W ell o r sw am p (?), Irvington, 4 m ales, 12 fem ales (U SN M ), W. P. Hay, date not given. 

M on tg o m ery  C o.: Drain tiles, ca. 1/2 m i. E o f  je t. 47/234, ca. 75  specim ens (JRH), S. Koenemann and U. 

Englisch, 11 M ay 1999. N oble C o.: O utlet o f drain, 1.4 mi. W o f  W aw aka, 1 fem ale (U SN M ), L. H ubricht, 

19 Apr. 1942. S he lby  C o.: Drain tile, 3-4 mi. N o f  H ope, 1 m a le  (JR H ), S. K oenem ann, U. Englisch and J. 

Lew is, 10 M ay 1999. IO W A : D es M oines C o.: O utlet o f  d ra in , 0.2 m i. N W  o f  D anville, 4 m ales, 3 

fem ales (U SN M ), L. H ubricht, 24 A pr. 1942. H en ry  C o.: O u tle t o f  drain, 1.7 mi. S o f  Swedesburg, >100

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



73

specim ens (in 2 lots) (U SN M ), L. Hubricht, 24 Apr. 1942. Outlet o f  drain, 1.4 mi. S o f  N ew  London, 23 

specim ens (USNM ), L. Hubricht, 24 Apr. 1942. W ash ing ton  Co.: O utlet o f  drain, 0.5 m i. S o f  Haskins, 12 

specim ens (USNM ), L. Hubricht, 24 Apr.1942. O utlet o f  drain, 1.0 m i. S o f  Haskins, >10 specim ens 

(U SN M ), L. H ubricht, 24 Apr. 1942. M IC H IG A N : B errien  Co.: Bear C ave, just N o f  B uchanan, 1 male, 

2 fem ales (JRH), D. A . Hubbard, Jr., 28 Dec. 1993. M o n ro e  Co.: O utlet o f  drain, 0.5 m i. N  o f  O ttaw a 

Lake, >25 specim ens (U SN M ), L. Hubricht, 18 Apr. 1942. Outlet o f  drain, 1.5 mi. W SW  o f  Dundee, 18 

specim ens (USNM ), L. Hubricht, 18 Apr. 1942. O H IO : B u tle r  Co.: D ug well, Francis farm  at Shandon, I 

male, 1 fem ale (U SN M ), S. R. W illiams, date not given. C lin ton  C o .: 15 foot-deep w ell, Starbucktown, 

Liberty Turnpike, 1 m ale (U SN M ), collector not given, 19 Oct. 1939. L ogan  C o .: Drain p ipe outlet, 2.4 mi. 

SW o f  M iddlesboro, 2 m ales, 1 female (USNM ), L. Hubricht, 17 Apr. 1942. L ucas C o.: Drain pipe outlet,

1.3 mi. S o f  Reynolds C om er, >10 specim ens (USNM ), L. Hubricht, 18 Apr. 1942. M ario n  C o.: High 

pressure groundw ater pum ps at sewage construction site, ca. 2-3 m i. S o f  M arion, 2 m ales, 1 female, 3 

juveniles (JRH), S. K oenem ann and U. Englisch, 6 M ay 1999. Drain pipe outlet, 8.6 mi. SSW  o f  M arion, 2 

males (USNM ), L. H ubricht, 18 Apr. 1942. M ontgom ery  C o.: Driven well, Phillipsburg, 1 m ale (USNM ), 

J. S. H auser, Feb. 1930. Drain pipe outlet, 4.4 mi. E o f  N ew  Lebanon, 9 specim ens (U SN M ), L. Hubricht, 

17 A pr. 1942. P re b le  C o .: Drain pipe, 5 mi. W o f  Eaton, 13 specim ens (JRH), S. K oenem ann and U. 

Englisch, 8 May 1999; >20 specim ens (USNM ), drain pipe outlet, 0.2 m i. N W  o f  New H ope, L. Hubricht, 

17 Apr. 1942. W ay n e  C o .: Crayfish burrow, Wooster, (at R14W , T20N, Sec. 25), 1 m ale, 1 fem ale (JRH),

A. W eaver, 21 Apr. 1960. W ood C o.: Drain pipe outlet, 1.3 mi. SE o f  Perrysburg, ca. 100 specimens 

(USNM ), L. Hubricht, 18 Apr. 1942. C o u n ty  ? (not given): Drilled well, 2 females (U SN M ), collector and 

date not given.

D iagnosis: Bactrurus mucronatus is a m edium -sized species w ith conspicuous secondary sexual 

dim orphism  in the telson: Telson in adult males distinctly elongate, reaching 34%  length o f  body (up to 3 

times longer than fem ale telson). Propods o f  gnathopod 1 and 2 subequal in size. Pereopod 5 slightly 

shorter than pereopod 4  (8-9% ). Coxal gills on pereopods 2-6. Three pairs o f  lateral sternal processes on 

pereonites 6, 7 and pleonite 1 (som etim es absent on pleonite 1); m edian sternal processes absent. Telson 

entire o r slightly em arginate (2% ); width o f  female telson ca. 54% o f  length. M ost adult specim ens 6.0-9.0 

mm; largest male 15.5 m m , largest female 12.0 mm.

D escrip tion : Based on adult female (12.0 mm) and adult m ale (15.5 m m ; Fig. 5 .9).

A n ten n a  I 73-75%  length o f  body (Fig. 5.10a). Prim ary flagellum w ith up to 39 segm ents.

A n tenna  2 abou t 41-50%  length o f  antenna 1 (Fig. 5.10b). Flagellum  w ith up to 12 segments.

L ow er lip w ith  short m andibular lobes (Fig. 5.11 c)

M andib les: R ow  o f  8 plum ose spines between m olar and lacinia mobilis; distal m argin o f  right 

lacinia m obilis irregularly seriate (Fig. 5.10c). Palp segm ent 2 usually w ithout spines, bearing 9-11 setae on 

lateral and medial m argins (1 fem ale with 2 spines and 9 setae); palp segm ent 3 with ca. 28  short, plumose 

D-setae, about 3 long, plum ose B-setae and 2-4 long, plum ose A-setae.

M axilla  1 (F ig . 5.10d, e): Palp segm ent 2 bearing apically and subapically 8-12 naked setae and 1
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or 2 stronger, plum ose setae (comb-type, Fig. 3b). Inner plate w ith 6-8 apical, plum ose setae. 

M axilla  2 (Fig. 5 .100: Inner plate w ith oblique row  o f  6-7 strong, plumose setae.

Fig. 5.9. Bactrurus mucronatus, male (15.5 mm) from an old well near Champaign (Champaign County, Illinois).

M axilliped : Outer plate armed with 5-8 bladelike spines on inner margin. Inner plate apically w ith 

3-6 naked, bladelike spines (one o f  which som etim es m odified as plum ose spine; see Fig. 5.6c) and 3-7 

plumose setae apically and subapically.

G n a th o p o d  I (Figs. 5.1 lb): Basis w ith 5-9 sets o f  long, naked setae on posterior margin (w ith up 

to 20 setae in total), ca. 4 plum ose setae on distoposterior com er, 3-4 long, naked setae on proxim oanterior 

margin, 2 shorter setae on distoanterior m argin and 6-7 short setae on medial surface. C arpus with up to  4 

rastellate spines on distoposterior margin and 9 plum ose setae on distal margin (see Fig. 5.11b). Propod 

subequal in size to propod o f  gnathopod 2; palm ar m argin slightly concave, finely serrate at proximal and 

distal ends, bearing 12-14 spines on lateral m argin and approxim ately 10 spines on m edial margin; defining 

angle rounded, shallow (sometimes distinct in adult males: 140°), with 6 spines m edially, 5-6 short spines 

on lateral com er and 3 strong spines between m edial and lateral com er spines; posterior (subangular) 

margin 28% length o f  propod, with about 17 plum ose setae (naked at defining angle); anterom edial surface 

bearing 5-8 row s o f  plumose setae. Dactyl ca. 81%  length o f  propod. Coxal plate with 6-7 setae.
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G n a th o p o d  2 (Fig. 5.1 la): Basis w ith 5-7 sets o f  long setae on posterior m argin (w ith  13-18 setae 

in total), ca. 4 plum ose setae on distoposterior com er, 3-4 long, naked setae on proxim oanterior m argin, 1 -4 

naked setae on distoanterior m argin (som etim es absent) and a row  o f  6 short setae on m edial surface.

Fig. 5.10. Bactrurus mucronatus. female (12 mm) from Equality Cave (Saline County. Illinois): a) antenna I. b) 
antenna 2. c) dentate part of right mandible, d) maxilla 1. e) maxilla 2: 14 mm male; f) spine types o f inner plate of
maxilla 1.

Carpus w ith approxim ately 5 sets o f  plumose setae on posterior m argin, 3-7 plum ose setae on distal m argin 

and 3-4 rastellate spines on distoposterior com er (see enlargem ent o f  Fig. 5.1 lb). Palm o f  propod alm ost 

even (som etim es slightly concave), finely serrate at distal and proxim al ends, armed w ith ca. 9 spines on
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lateral m argin and 7-9 spines on m edial m argin; defin ing angle rounded, w ith row  o f  4-5 spines on m edial 

com er, 2-3 spines on lateral com er (long and short spines) and 2-4 spines betw een m edial and lateral com er 

spines; proxim al (subangular) m argin ca. 33%  length o f  propod, bearing 7-9 sets o f  plum ose setae; 

anterom edial surface bearing 7 row s o f  plum ose setae. Dactyl 69 %  length o f  propod. Coxal plate round, as 

w ide as long, bearing 9-12 setae.

Fig. 5.11. Bactrurus mucronatus, female (12 mm) from Equality Cave (Saline County, Illinois): a) gnathopod 1 (medial
view), b) gnathopod 2 (lateral view, with rastellate spine o f carpus enlarged), c) lower lip.

P ereo p o d  3 (Fig. 5.12a): Basis with ca. 5 long setae and 2 short setae on proxim oposterior 

m argin. 5 short setae on anterior m argin and 5 long setae on medial surface (som etim es additionally 1-3

long setae on proxim oanterior m argin). Coxal plate w ith to 9-10 setae.
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Fig. 5.12. Bactrurus mucronatus. female (12 mm) from Equality Cave (Saline County. Illinois): a) left pereopod 3. b) 

left pereopod 5. c) proximal part o f left pereopod 6, d) left pereopod 7: 14 mm male: e) pleonites 1-3.

P ereopod 4: subequal to pereopod 3.

P ereopods 5-7: Coxal plate o f  pereopod 5 with 5 setae on d istoanterior lobe and 1 seta (or slender 

spine) on distoposterior com er (Fig. 5.12b). Coxal plate o f  pereopod 6 bearing 2-3 setae on distoanterior 

lobe and 2 setae on posterior margin (Fig. 5.12c). Coxal plate o f  pereopod 7 with 4-5 setae on posterior

margin (Fig. 5.12d).
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C oxal gill absent from pereopod 7. M ost specim ens with paired sternal processes present on

pereonites 6 and 7 and pleonite 1 (Figs. 5.12c, d).

P leopods (Fig. 5.12e): Peduncles subequal to those o f  B. brachycaudus. N um ber o f  unfused ram i 

segments: pleopod I w ith 12-16 segm ents, pleopod 2 w ith 11-14 segm ents and pleopod 3 with 8 segm ents. 

Retinaculae with unilateral row o f  hooks (Fig. 5.13e).

E p im era l p la tes (Fig. 5.12e): D istoposterior m argins bearing 5-7 short setae; ventral m argins: 

plate 1 w ithout spines, plates 2 and 3 with 2-5 spines, respectively.

a

Fig. 5.13. Bactrurus mucronatus. female (12 mm) from Equality Cave (Saline County, Illinois): a-c) uropod 1-3. d) 

telson. e) retinaculae o f  pleopods. Male (14 mm) from same locality: 0  telson.

U ropod 1 (Fig. 5.13a): Peduncle with 9-12 spines on dorsolateral m argin, 2-4 slender spines on 

dorsomedial m argin and 2-3 spines on distomedial com er. Rami subequal, about 61%  length o f  peduncle; 

inner ramus w ith 4-5 apical spines and 5-7 spines on dorsal surface. O uter ram us w ith 4-5 apical spines and 

6-7 spines on dorsal surface.

U ropod  2 (Fig. 5.13b): Peduncle with 4 spines on dorsolateral m argin, 1 spine on dorsom edial 

margin (som etim es absent) and 2-3 spines near distom edial com er. Inner ram us sligh tly  longer than outer 

ramus, ca. 79%  o f  length peduncle, bearing 4-5 apical spines and 9-11 spines on dorsal surface. O uter
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ram us w ith 4 apical spines and 2-4 spines a long  dorsal surface.

U ro p o d  3  (Fig. 5.13c): Peduncle w ithout spines. Inner ram us vestigial, bud-like, about 32%  length 

o f  outer ram us. O uter ram us distinctly reduced, only  abou t 54%  length o f  peduncle, w ith 3-4 apical spines 

and 1 -3 subapical spines on lateral m argin.

T elson  sexually dim orphic. Fem ale telson entire o r slightly em arginate (2% ), tapered, w idth about 

54%  o f  length, arm ed with approxim ately 14 apical spines. M ale telson extrem ely elongated, reaching 34%  

length o f  body in adult specim ens (about 3 tim es longer than fem ale telson), with ca. 22 apical setae and 

few sm all setae on lateral m argins.

S ex u a l d im o rp h ism  a n d  v a r ia tio n : A part from the telson and  a  longer an tenna 1 in m ost m ale 

specim ens, the propods o f  gnathopod 1 and 2 had concave palm ar m argins in some adu lt m ales (opposed to 

alm ost even o r slightly concave palm s in fem ales).

T he m ajority o f  specim ens exam ined (86% ) had two pairs o f  lateral sternal processes on 

pereopods 6 and 7 and a sm aller pair on p leonite 1. Seven records, exclusively from Illinois, consisted o f  

specim ens w ith paired sternal processes on  pereonites 6 and 7 but no processes on p leonite 1. A lthough 

three o f  these seven records occurred in an isolated c luster in southern Illinois (two records from  Equality 

Cave, Saline C o., and one record from  a  d rain  p ipe in G allatin  Co.), the  rem aining fo u r collections seem ed 

to be random ly distributed in north-central Illinois. T heir localities w ere in close proxim ity to sam ples w ith 

specim ens that had sternal processes on pereonites 6 and 7, and pleonite 1. Thus, no  apparent geographic 

separation into m orphologically d ifferent subpopulations (three pairs vs. two pairs o f  sternal processes) 

could be observed.

R e m a rk s : Bactrurus mucronatus lives in groundw ater habitats associated w ith  glacial drift areas 

o f  O hio, Indiana, Illinois, Iowa and M ichigan. A lthough the m ajority o f  recorded localities o f  this species 

are m ainly outlets o f  farm field drainage system s, a  few  are dug o r drilled  wells. The only  exceptions are 

Equality C ave in southeastern Illinois (specim ens collected  from a sm all, vadose stream ), and B ear Cave in 

southw estern M ichigan. The latter, located near Lake M ichigan, has abou t 100 m o f  passage developed in 

K ansian-aged travertine deposits. The specim ens w ere collected from epikarstic drip pools (D . A. Hubbard, 

pers. com .). In alm ost all o f  the drain p ipe sam ples, B. mucronatus w as accom panied by the stygobiont 

isopod Caecidotea kendeighi. In one instance, B. mucronatus was collected  together w ith  B. brachycaudus 

from the sam e drainage catchm ent basin (see ‘Sexual dim orphism  and variation’ and ‘R em arks’ under B. 

brachycaudus).

Bactrurus mucronatus is easily d istinguished from  m ost o ther Bactrurus species by  the absence o f  

coxal gills on pereopod 7 and the extrem ely elongate m ale telson. H ow ever, even in fem ale specim ens, the 

w idth length ratio  o f  the apically tapered te lson  is a unique, distinguishing character.

A quatic crustacean fauna associated  w ith B. mucronatus includes the am phipods Crangonyx 

forbesi, Crangonyx packardi, Synurella den ta ta  and the isopods Caecidotea kendeighi, Caecidotea. sp. and 

Lirceus sp.
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Bactrurus pseudomucronatus new species

Figs. 5.14-15

B a c /ru n iy su b sp .(? ) .-  Holsinger, 1972: 75-76.

Bactrurus n. sp. or subsp.— G ardner, 1986: 15.

Bactrurus sp.-- H olsinger, 1986a: 95.

Type locality: M ansell C ave (Randolph County, Arkansas).

Material examined: ARKANSAS: Lawrence Co.: Deep cistern, 5.5 mi. S o f  Im boden, 1 m ale 

(U SN M ), B. C. M arshall, 16 Sep. 1940. Randolph Co.: M ansell Cave, HOLOTYPE m ale (8.5 mm, on 2 

slide m ounts; USNM ), allotype female (8.5 mm; USNM  acc. nr. 330764) and 102 paratypes (U SN M ), D. 

Barnett, 5 Jan. 1970. MISSOURI: Carter Co.: Jayco Hole Cave, 6 specim ens (JRH), J. E. G ardner, 16 

Sept. 1980. N orris Cave, 4 fem ales (JRH ), J. E. G ardner, 29 Jan. 1979. Secesh Cave, 2 m ales, 4 fem ales 

(JRH), J. E. Gardner, 23 Jul. 1979. Spout Spring Cave, 2 m ales, 1 female (JR H ), J. E. G ardner, 10 Nov. 

1972. Seeps along b lu ff o f  C urrent River, at mouth o f  M ill Creek, 4 mi. N W  o f  Van Buren, >25 specim ens 

(U SN M ), L. Hubricht, 3 M ay 1942. Douglas Co.: Seep, 1.5 mi. W o f  Roosevelt, 7 males, 24 fem ales, 1 

juvenile  (U SN M ), L. Hubricht, 1 M ay 1940. Oregon Co.: Bluehole Cave, 1 m ale (JRH), J. E. Gardner, 7 

Jul. 1981. Kelly Hollow Cave, 3 fem ales (JRH ), J. C raig, 10 Feb. 1973; 2  males, 1 fem ale (JRH ), M. 

Sutton, 20 Jan. 1991; 5 specim ens (JRH ), S. K oenem ann and U. Englisch, 20 May 1999. N ew  Liberty 

Cave, 1 m ale (JRH), M. Sutton, 5 Jan. 1991. Shannon Co.: Benton Stretch Cave, 3 m ales, 9 fem ales 

(JRH), J. E. G ardner, 22 M ar. 1984. Bootlegger Cave, 1 m ale (JRH), J. E. G ardner, 20 Apr. 1983. Douglas 

Hollow C ave, 2 males, 1 juvenile  (JRH), J. E. G ardner, 15 M ar. 1983. Fillchew Cave, 1 fem ale (JRH ), J. E. 

G ardner, 20 M ar. 1984. Forester Cave (form erly known as Bloom Hollow C ave?), 17 specim ens (JRH ), S. 

K oenem ann and U. Englisch, 19 M ay 1999. Jam -U p Cave, 1 female (U SN M ), L. Hubricht, 1 Sept. 1940. 

Packrat Cave, 3 females (JRH), J. E. G ardner, 18 Apr. 1984. Cave in Pow der Mill Hollow, 23 specim ens 

(U SN M ), L. Hubricht, 2 Aug. 1942. Small cave in Searey Hollow, 2 males, I fem ale (USNM ), L. Hubricht, 

1 Sept. 1940.

D iagnosis: Bactrurus pseudomucronatus is a m edium -sized species that shows a high superficial 

m orphological resem blance to B. mucronatus. Like the latter, the male telson o f  B. pseudomucronatus is 

extrem ely elongate, although at 16-28% o f  body length, it is proportionally not quite as long as in B. 

mucronatus. Propods o f  gnathopods 1 and 2 subequal in size. Coxal plate o f  gnathopod 2 w ider than long. 

Coxal g ills on pereopods 2-7 (distinctly reduced on pereopod 7). Two pairs o f  lateral sternal processes on 

pereonites 6 and 7; single m edian sternal processes on pereonites 2 and 3. Telson entire o r slightly 

em arginate (2% ); width o f  fem ale telson 52% o f  length. M ost adult specim ens 5.0-10.0 m m ; largest male

13.5 m m , largest female 12.0 mm.

Description: Based on an allotype fem ale (8.5 m m ) and holotype m ale (8.5 mm).

A n ten n a  I 49-73%  length o f  body (Fig. 5.14a). Prim ary flagellum w ith  up to 24 segm ents. 

A n ten n a  2 about 43-53%  length o f  antenna I (Fig. 5.14b). Flagellum w ith 9-11 segm ents.
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Fig. 5.14. Bactrurus pseudomucronatus n. sp.. allotype female (8.5 mm) from Mansell Cave (Randolph County. 

Arkansas): a) antenna 1. b) antenna 2, c) dentate part o f  right mandible, d) gnathopod 1 (medial view), e) gnathopod 2

(medial view).

L ow er lip subequal to that o f  B. mucronatus.

M andibles: Row o f  6 plumose spines between m olar and lacinia m obilis; distal m argin o f  right
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lacinia m obilis w eakly serrate (Fig. 5.14c). Palp segm ent 2 w ith about 8 setae on lateral and medial 

m argins; palp segm ent 3 w ith approxim ately. 21 short, p lum ose D -setae, 4 long, plum ose B-setae and 2

long, plum ose A-setae.

M axilla  1 subequal to  that o f  B. mucronatus. Segment 2 o f  palp w ith 9 naked spines apically (2 o f

which are strong and plum ose).

Fig. 5.15. Bactrurus pseudomucronatus n. sp., allotype female (8.5 mm) from Mansell Cave (Randolph County. 

Arkansas): a) left pereopod 3, b) left pereopod 5. c, d) proximal parts o f  pereopods 6 and 7, e) retinaculae o f  pleopods. 

f) epimeral plates 1-3, g) telson. Holotype male (8.5 mm) from same locality: h) telson.

M axilla  2 subequal to  that o f  B. mucronatus. Inner plate with oblique row  o f  5-7 strong, plumose

setae.

M axilliped : O uter plate armed with 5-6 bladelike spines on inner m argin. Inner plate with 2-5 

naked, bladelike spines (one o f  w hich som etim es modified as plum ose spine o r spine with jag g ed  margins) 

and 4-6 plum ose setae.

G n a th o p o d  1 (Fig. 5.14d): Basis w ith 4 sets o f  long, naked setae on posterior m argin (with about 

9 long setae in total), 4 plum ose setae on distoposterior com er, 3-4 long, naked setae on proxim oanterior 

m argin, 1 seta on distoanterior m argin and 2-3 setae on medial surface. C arpus w ith 2 rastellate spines on 

distoposterior m argin and 5 plum ose setae on distal margin. Palm ar m argin o f  propod slightly  concave,

g d h

f
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with faint serrations on  proxim al and distal ends, bearing 7-9 spines on  lateral m argin and 5-8 spines on 

medial m argin; defin ing  angle rounded, w ith 4-5 spines m edially and a  row o f  3-4  short spines on lateral 

com er; posterior (subangular) m argin 30% length o f  propod, w ith about 9  plumose setae (naked at defining 

angle); anterom edial surface w ith 3 rows o f  plum ose setae. Dactyl ca. 78%  length o f  propod. Coxal plate

with 4-5 setae.

G n a th o p o d  2 (Fig. 5.14e): Basis with 5 sets o f  long setae on posterior m argin (w ith about 11 long 

setae in total), ca. 3 plum ose setae on distoposterior com er, 3 long, naked setae on proxim oanterior m argin,

3 naked setae on  d istoanterior m argin and 3-4 short setae on m edial surface. C arpus w ith 3 sets o f  plum ose 

setae on posterior m argin, 2 plum ose setae on distal m argin and 3 rastellate spines on  distoposterior com er. 

Palm o f  propod slightly  concave, w ith faint serrations at distal and proxim al ends, w ith 8-10 spines on 

lateral margin and 4-5 spines on m edial margin; defining angle rounded, shallow , bearing 3-4 spines on 

medial com er and  2 spines on lateral com er; proxim al (subangular) m argin ca. 39%  length o f  propod, 

bearing 4 sets o f  plum ose setae; anterom edial surface bearing 5 row s o f  plum ose setae. D actyl 71 %  length 

o f  propod. C oxal plate w ider than long, with 5-7 setae.

P e reo p o d  3 (F ig . 5.15a); Basis w ith 6-8 long setae on proxim oposterior m argin (excluding setae 

on d istoposterior com er), 5 short setae on anterior m argin, 2-3 long setae on proxim oanterior m argin and 2-

4 long setae on m edial surface. C oxal plate w ith to 9-11 setae.

P e reo p o d  4: subequal to  pereopod 3.

P e re o p o d s  5-7: A nterior m argins o f  bases with only 5-7 short spines. C oxal plate o f  pereopod 5 

with 3-4 setae on distoanterior lobe and 1 seta on distoposterior co m er (Fig. 5.15b). Coxal plate o f  

pereopod 6 subequal to that o f  B. mucronatus (Fig. 5.15c). Coxal p late o f  pereopod 7 w ith 4 setae on 

posterior m argin (Fig. 5.1Sd).

C oxal g ills on pereopods 2-7, distinctly reduced on pereopod 7 (less than h a lf  the size o f  coxal gill 

on pereopod 6). Lateral sternal processes present on pereonites 6 and 7 (Figs. 5.15c, d).

P leopods: N um ber o f  unfiised rami segm ents (for outer and inner ram i): pleopod 1 with 9-12 

segments, p leopod 2 w ith 7-9 segm ents and pleopod 3 with 5 segm ents. Retinaculae subequal to those o f  B. 

brachycaudus (Fig. 5.15e).

E p im e ra l p la te s  (Fig. 5 .150 : D istoposterior m argins bearing 2-5 short setae each; ventral 

margins: plate 1 w ith 2-3 spines, plate 2 w ith 3 spines and plate 3 w ith 2 -4  spines.

U ro p o d  I: Peduncle w ith 7-9 spines on dorsolateral m argin, 2 setae on dorsom edial margin and 2 

spines on distom edial com er. Length peduncle/outer ram us and arm ature o f  inner ram us subequal to that o f

B. mucronatus. O u ter ram us w ith 4-5 spines on dorsal surface.

U ro p o d  2: Peduncle w ith 2-3 spines on dorsolateral m argin and  3 spines near distom edial com er. 

Length peduncle/outer ram us subequal to that o f  B. mucronatus. Inner ram us w ith 3-4 spines on dorsal 

surface. O uter ram us bearing 2-5 spines along dorsal surface.

U ro p o d  3: Subequal to  that o f  B. mucronatus. O uter ram us bearing 2-3 apical spines and 1-2 

subapical spines on lateral m argin.
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T elson sexually dim orphic. Female telson entire or slightly  em arginate (2% ), slightly tapered, 

w idth about. 52%  o f  length, bearing 10 apical spines. M ale telson extremely elongate, reaching 16-22% 

length o f  body in adult specim ens, with about 20 apical setae (in  2 clusters) and few small setae on lateral

m argins.

S exual d im o rp h ism  a n d  varia tio n : A s in B. mucronatus, the only noticeable secondary sexual 

dim orphism  w as observed in the telson and in the length o f  the m ale antenna 1. No m arked m orphological 

variation was no ted  otherw ise.

R em ark s: The range o f  B. pseudomucronatus is restricted to karst areas in the Salem Upland 

section o f  the O zark  Plateaus. The species typically  occurs in caves and seeps in southern M issouri (several 

caves, a few seeps) and northern Arkansas (1 cave, 1 deep cistern).

The ty p e  locality, located in Eleven Point River V alley (W hite River drainage), is developed in 

C otter lim estone o f  O rdovician age. The type series consisted o f  109 specim ens collected from a  small, 

shallow  pool approxim ately 10 m from the entrance (D . E. Barnett, pers. com.).

Bactrurus pseudomucronatus can be distinguished from B. mucronatus by the characters given in 

the diagnosis (see  also: B. mucronatus, ‘Rem arks’).

A quatic crustacean fauna associated with B. pseudomucronatus includes the am phipod 

Stygobromus n. sp. (H olsinger, in m s.) and the isopod: Caecidotea tridentata.

E tym ology: The epithet pseudomucronatus, m eaning “false mucronatus", alludes to the 

m orphological sim ilarity  o f  B. pseudomucronatus to B. mucronatus (B. pseudomucronatus was som etim es 

falsely identified as B. mucronatus).

Bactrurus wilsoni new  species

Figs. 5.16-19

Bactrurus sp.— Holsinger, 1986a: 95.

T ype locality: w ell in Culwell residence, Hayden (B lount County, Alabama).

M a te r ia l exam ined : ALA BA M A : B loun t C o .: Well in kitchen o f  W ilson residence (presently 

ow ned by C harlie and Jane Culver), 2.1 mi. N E o f  Hayden, 1 m ale paratype, Jim m y W ilson, J. R. W ilson 

and L. M. Ferguson, 12 Aug. 1982; allo type fem ale (11.5 m m ; JR H  3901), J. R. W ilson, M ay 1983; 1 

m ale, 1 female, paratypes (JRH ), J. R. Wilson, Jul.-A ug. 1983 (specim ens donated to present study by L. 

M. Ferguson); H O L O T Y P E  m ale (16.0 mm; U SN M ), J. Culwell, 9 Jun. 1999, and 1 m ale paratype (JRH), 

12 Jun. 1999.

D iagnosis: A m edium -sized species distinguished by sexual dim orphism  in uropod 1 and telson. 

D istal margin o f  right lacinia m obilis with large, irregular denticles. Propod o f  gnathopod 1 distinctly w ider 

and shorter than that o f  gnathopod 2. Pereopod 5 about as long as pereopod 4. Coxal gills on pereopods 2- 

7. Tw o pairs o f  lateral sternal processes on pereonites 6 and 7; m edian sternal processes absent. Peduncle
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o f  m ale uropod 1 with sena te  distal process. Telson o f adult male slightly  longer than telson o f  fem ale, 

apical spines shorter than those o f  fem ale; telson entire o r w ith V -shaped excavation (12-15%  cleft), w idth 

75-77%  o f  length. Largest m ale 16.0 m m , largest fem ale 15.5 mm.

D escrip tion : Based on holotype m ale (16.0 mm), paratype m ale (15.5 m m ) and  paratype fem ale

(10.5 mm).

A n tenna  1 subequal to that o f  B. mucronatus, reaching 58-78%  length o f  body. Prim ary flagellum  

with up to 44 segm ents.

A n tenna  2 about 31-47%  length o f  antenna 1 (Fig. 5.16a). Flagellum  with up to  12 segm ents. 

L ow er lip  w ith relatively w ell-developed outer lobes (Fig. 5.16d).

Fig. 5.16. Bactrurus wilsoni n. sp., paratype male (15.5 mm) from well in Hayden (Blount County. Alabama): a) 

antenna 2. b) lower lip. Paratype female (10.5 mm) from same locality: c) dentate part o f right mandible, d) spine types 
of inner plate of maxilliped. e) outer plate o f maxilliped.
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M an d ib les: Row o f  5-7 plum ose spines between m olar and lacinia m obilis; distal m argin o f  right 

lacinia m obilis with large, irregular denticles (F ig . 5 .16b). Palp segm ent 2 w ith 10*11 setae on lateral and 

medial m argins; palp segm ent 3 w ith 19-22 short, plumose D -setae, about 4 long, plum ose B-setae and 1 

long, plum ose A -seta (som etim es absent).

Fig. 5.17. Bactrurus wilsoni n. sp., paratype male (15.5 mm) from well in Hayden (Blouni Counts. Alabama): a) 

gnathopod I (medial view), b) gnathopod 2 (lateral view, with rastellate spine o f  carpus enlarged). Paratype female 
(10.5 mm) from same locality: c) palm o f propod o f  gnathopod I (medial view).

M axilla  1: Palp segm ent 2 bearing apically  and subapically 6-7 naked setae. O uter plate with 7
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bidentate and m ultidentate spines (bidentate spines som etim es absent; Fig. S. 16c). Inner plate w ith 5-6

apical, plum ose setae.

M axilla 2: O uter plate bearing apically 10-11 m ostly naked setae. Inner plate with oblique row  o f  

7 strong, plum ose setae on inner m argin and 17 plum ose, apical and  subapical setae.

A

Fig. 5.18. Bactrurus wilsoni n. sp., paratype female (10.5 mm) from well in Hayden (Blount County, Alabama): a-c) 

proximal pans o f pereopods 3, 5 and 7. d) coxal plate, with coxal gill and lateral sternal process of pereonite 6. e) 
retinaculae o f  pleopods. Paratype male (15.5 mm) from same locality: f) coxal plate o f pereopod 4.

M axilliped: O uter plate arm ed with 2-3 bladelike spines and 10-19 naked setae on inner margin 

(Fig. 5.16e). Inner p late apically w ith about 3 bladelike spines and 5 plum ose setae.

G n a th o p o d  I (Fig. 5.17a): Basis with 5-7 sets o f  long, naked setae on posterior margin plus row 

o f 4-6 long, naked setae on proxim oposterior margin (with about 16 setae in total). 4 plumose setae on
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Fig. 5.19. Bactrurus wilsoni n. sp., paratype male (15.5 mm) from well in Hayden (Blount County, Alabama): a-c) 

pleopods 1-3. d -0  uropod 1-3. Paratype female (10.5 mm) from same locality: g) telson: 16.0 mm male: h, i), 

peduncular process o f uropod, j)  telson.

distoposterior com er, 2-3 long, plum ose setae on proxim oanterior m argin, 2-3 setae on distoanterior margin 

and 2 short setae on medial surface. Carpus with 2 rastellate spines on distoposterior margin and 5-8 

plumose setae on distal m argin. Propod slightly shorter and w ider than propod o f  gnathopod 2; palm ar 

margin alm ost even, crenulated, bearing 10-14 spines on lateral margin and 7-10 spines on medial m argin; 

angle w ell-defined (ca. 135°), with 4 spines medially and 4-5 spines on lateral com er; posterior 

(subangular) m argin 20%  length o f  propod, w ith 2-3 sets o f  plum ose setae; anterom edial surface bearing 4 

rows o f  plumose setae. Dactyl ca. 86% length o f  propod. Coxal plate with 3 setae.
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G n a th o p o d  2 (Fig. 5.17b): Basis w ith 6-7 sets o f  long setae on posterior m argin (w ith about 13 

setae in total), 3 plum ose setae on  distoposterior com er, 2 long, naked  setae on proxim oanterior m argin, 5 

naked setae on distoanterior m argin and 2 short setae on m edial surface. Carpus w ith  3-4 sets o f  plum ose 

setae on posterior m argin, 3 plum ose setae on distal m argin and 4 -5  rastellate sp ines on distoposterior 

com er (see enlargem ent o f  Fig. 5.17b). Palm  o f  propod alm ost even, surface crenulated, bearing 8-12 

spines on lateral m argin and 10-12 spines on m edial m argin (no d istinct separation between com er spines 

and palm ar spines on medial m argin); defining angle ca. 135°, w ith about 2 spines on lateral com er; 

proxim al (subangular) margin ca. 36%  length o f  propod, bearing 4  sets o f  plum ose setae; anterom edial 

surface bearing 6 row s o f  plum ose setae. D actyl 74 %  length o f  propod. Coxal p late wider than long, 

bearing 5-6 setae.

P e rco p o d  3 (Fig. 5.18a): Basis w ith ca. 5 long setae and 1-2 short setae on  posterior m argin, 4-5 

short setae on anterior m argin, 2-3 long setae on proxim oanterior m argin and  1-2 long setae on 

proxim om edial surface. Coxal p late w ith 4-6 m arginal setae.

P e reo p o d  4: subequal to pereopod 3. Coxal plate w ith 6 m arginal setae (F ig . 5 .18b).

P e reo p o d  5 (Fig. 5.18c): A nterior m argin o f  basis w ith 6 re latively  long, slender spines; posterior 

m argin w ith 7-9 setae. Coxal p late with 3 setae on distoanterior lobe and  1 slender spine on distoposterior 

com er.

P e reo p o d s  6  an d  7: A nterior m argins o f  bases w ith 4-5 short spines; posterior margins bearing 8- 

12 short setae. C oxal plate o f  pereopod 6 w ith 1 seta on distoposterior lobe (Fig. 5.18d). Coxal plate o f  

pereopod 7 w ith 3 setae on posterior m argin (Fig. 5.18e).

C oxal gills on pereopods 2-7, only slightly reduced on pereopod 7. Lateral sternal processes 

present on pereonites 6  and 7 (F ig . 5.18d).

P leopods (Figs. 5.19a-c): Width o f  peduncles gradually increasing from pleopod 1 to 3. N um ber 

o f  unfused rami segm ents: pleopod 1 with 8-10 segm ents, pleopod 2 w ith 8 segm ents and pleopod 3 w ith 6- 

7 segm ents. R etinaculae subequal to those o f  B. brachycaudus (Fig. 5 .180-

E p im era l p la tes  (Fig. 5.19a-c): D istoposterior m argins bearing 3-5 short setae; plate 1 w ithout 

spines, plates 2 and 3 w ith 2-3 spines, respectively.

U ro p o d  I (Fig. 5.19d): Peduncle w ith 8-9 spines on dorsolateral m argin, I spine on dorsom edial 

m argin (som etim es absent) and 2-3 spines on distom edial com er. R am i about 56%  length o f  peduncle; 

inner ram us with 5 apical spines and 7-8 spines on dorsal surface. O u ter ram us w ith  4-5 apical spines and 

about 7 spines on dorsal surface. Peduncle o f  m ale w ith distoventral, serrate process (F igs. 5.19e, f).

U ro p o d  2 (Fig. 5.19g): Peduncle w ith 3-4 spines on dorsolateral m argin and 2-4 spines near 

distom edial com er. Inner ram us longer than ou ter ram us, about 83%  o f  length peduncle, bearing 5 apical 

spines and 4-5 spines on dorsal surface. O uter ram us w ith 5 apical sp ines and 3-4 sp ines on dorsal surface.

U ro p o d  3 (Fig. 5.19h): Peduncle w ith 1 spine on distal m argin. Inner ram us vestigial, about 48%  

length o f  outer ram us. O uter ram us reduced, about 64%  length o f  peduncle, with 3-4  apical spines and 1-5 

subapical spines on lateral margin.
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T elson  sexually  dim orphic; apical m argin entire o r with V-shaped excavation (12-15%  cleft), 

arm ed w ith 6-9 apical spines per lobe; w idth about 75%  o f  length in exam ined m ales and 77%  o f  length in 

fem ales; spines o f  fem ale telson d istinctly  longer than spines o f  m ale telson (F igs. 5.19i, j).

S exual d im o rp h ism  an d  v a r ia tio n : T he telson o f  the holotype m ale had an entire d istal margin, 

w hereas those o f  all o ther specim ens had a  V -shaped excavation (12-15%  cleft). Secondary sexual 

dim orphism  occurs in both uropod 1 and  telson.

R em ark s : To date, B. wilsoni is know n only from a single groundw ater aqu ifer on the 

C um berland Plateau in northern A labam a. The type locality, a drilled well approxim ately 17 m deep, is 

apparently  in B angor lim estone o f  M ississippian age. Specim ens from the w ell were collected  with a 

bucket-and-rope system  through an opening  in the kitchen floor o f  the C u lver house. O ne o f  the first 

sam ples (M ay 1983) also contained three specim ens o f  the stygobiont am phipod Stygobromus n. sp. 

(H olsinger. in ms.).

Bactrurus wilsoni is m orphologically  very sim ilar to the new species B. angulus and B. cellulanus, 

both o f  w hich have a serrate peduncular process on m ale uropod 1.

E tym ology: The species is nam ed in honor o f  Mr. Johnny R. W ilson, who helped collecting  the 

first specim ens in 1982 and also assisted w ith the field w ork in the spring o f  1999.

Bactrurus angulus  new  species

Figs. 5.20-22

Bactrurus sp.— H olsinger, 1986a: 95; 1986b: 540, Fig. 2— H olsinger & Culver, 1988: 25-26.

T ype locality: Saur K raut Cave, (C laiborne Co., Tennessee).

M a te ria l exam ined : T E N N E S S E E : C la ib o rn e  Co.: Kings Saltpeter Cave, 2 fem ale para types 

(JRH ), J. R. H olsinger, 24 N ov. 1973. Saur K raut Cave, H O L O T Y P E  m ale (16.7 m m; U SN M ), J. R. 

H olsinger and D. C. Culver, 4 Aug. 1977. V IR G IN IA : Lee C o.: Cum berland G ap  Saltpeter C ave, allo type 

fem ale (11.2 mm; JRH 1994), 1 m ale and 2 fem ale paratypes (JRH), J. R. Holsinger, V. M . Dalton 

(T ipton), et al., 15 Jul. 1979.

D iagnosis: A m edium -sized species m orphologically closely allied w ith B. wilsoni. It can be 

distinguished by the follow ing characters: Propod o f  gnathopod 1 noticeably w ider and slightly shorter than 

that o f  gnathopod 2; defining angle o f  gnathopod 1 very distinct (ca. 120°). Pereopod 5 about as long as 

pereopod 4. Coxal gills on pereopods 2-7. Two pairs o f  lateral sternal processes on pereonites 6 and 7; 

m edian sternal processes absent. Peduncle o f  m ale uropod 1 w ith serrate distal process. Telson o f  adult 

m ales som etim es slightly  longer than telson o f  fem ale, apical spines shorter than  those o f  fem ale; telson 

w ith shallow  notch o r V -shaped excavation (5-19%  cleft). Largest m ale 16.7 m m , largest fem ale 14.0 mm.

D escrip tion : Based on holotype m ale (16.7 m m ), allotype female (11.2  m m ) and paratype male 

(13.5 mm).

A n ten n a  1 subequal to  that o f  B. mucronatus, about 66%  length o f  body  (Fig. 5.20a). Primary
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flagellum w ith up to 41 segments.

Antenna 2 approxim ately 43-47%  length o f  antenna I (Fig. 5.20b). Flagellum w ith 11-12

segments.

L o w er lip subequal to that o f  B. wilsoni (Fig. 5.20c).

/

Fig. 5.20. Bactrurus angulus n. sp.. allotype female (1 1.2 mm) from Cumberland Gap Saltpeter Cave (Lee County, 
Virginia), a) antenna 1. b) antenna 2. c) lower lip. d) dentate pan of right mandible, e) retinaculae of pleopods.

M andib les: Row o f  6-7 plum ose spines between m olar and lacinia m obilis; distal m argin o f  right 

lacinia m obilis with irregular serrations (Fig. 5.20d). Palp segm ent 2 with 12-13 setae on lateral and medial 

m argins; palp segm ent 3 with 24-25 short, plum ose D-setae, 2-3 long, plumose B-setae and 2-3 long.
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plum ose A-seta.

Maxilla 1: Palp segm ent 2 bearing apically  and subapically  7-8 naked  setae, 1-2 o f  w hich are 

stronger and plum ose. O uter p late w ith 7 bidentate and m ultidentate spines. Inner plate bearing 5 apical, 

plum ose setae.

Fig. 5.21. Bactrurus angulus n. sp.. allotype female (11.2 mm) from Cumberland Gap Saltpeter Cave (Lee County. 

Virginia): a) gnathopod 1 (lateral view), b) gnathopod 2 (lateral view), c) telson; 13.5 mm male: d) telson. Holotype 

male (16.7 mm) from Saur Kraut Cave (Claiborne County. Tennessee): c) telson. Paratype female (12 mm) from 

King’s Saltpeter Cave (Claiborne County, Tennessee): 0  telson.

M axilla  2; O uter plate apically with 15-17 mostly naked setae. Inner p late with oblique row  o f  7 

plumose setae and up to 20 plum ose setae apically and subapically.

M axilliped : O uter plate with 4 bladelike spines and 14-16 naked setae on inner m argin. Inner
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plate apically w ith 4  naked, bladelike spines, 1 plumose apical spine, and 3-4 p lum ose setae on subapical 

inner m argin (brush-type setae, Fig. 3c).

»\J

A

8

Fig. 5.22. Bactrurus angulus n. sp.. holotype male (16.7 mm) from Saur Kraut Cave (Claiborne County, Tennessee): a- 

c) proximal parts o f pereopods 3, 5 and 7. d, e) coxal plates o f pereopods 4 and 6, f) uropod 1, g) peduncular process o f 

uropod 1. h) uropod 3. Allotype female (11.2 mm) from Cumberland Gap Saltpeter Cave (Lee County. Virginia): i) 

uropod 2.

G n a th o p o d  1 (Fig. 5.21a): Basis w ith 5-7 sets o f  long, naked setae on posterior m argin (with 

about 22 setae in total), 3-5 plum ose setae on distoposterior com er, 2 naked setae on proxim oanterior 

margin, 3 naked setae on distoanterior m argin and 3 naked setae on m edial surface. Carpus with 3 rastellate 

spines on distoposterior margin (see enlargem ent o f  Fig. 5.17b) and about 10 plum ose setae on distal 

m argin. Propod noticeably w ider and slightly shorter and than propod o f gnathopod 2; palm ar margin 

alm ost even, surface crenulated, bearing ca. 8 spines on lateral m argin and 9-10 spines on medial margin; 

defining angle distinct (ca. 120°), with 7 slender spines m edially and row o f  5-6 spines on lateral com er; 

posterior (subangular) margin 18% length o f  propod, with 2 sets o f  plum ose setae; anterom edial surface 

bearing 4 row s o f  plum ose setae. Dactyl ca. 95%  length o f  propod. Coxal plate w ith 4 setae.
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G n a th o p o d  2 (Fig. 5.21b): Basis w ith 8 sets o f  long setae on posterior margin (w ith ca. 14 setae in 

total), 3-5 plum ose setae on distoposterior com er, 3 long, naked setae on proxim oanterior margin, 3-5 

naked setae on distoanterior margin and 2  short setae on m edial surface. Carpus with 4-5 sets o f  plum ose 

setae on posterior m argin, 7-9 plumose setae on distal m argin and 4-5 rastellate spines on distoposterior 

com er (see enlargem ent o f  Fig. 5.17b). Palm  o f  propod crenulated, w ith 10-11 spines on lateral margin and  

10-12 spines on medial m argin; defining angle 135-140°, w ith 2-4 spines on lateral com er and row o f  4-5 

smaller spines on m edial com er; proxim al (subangular) m argin ca. 31%  length o f  propod, bearing 4-5 sets 

o f  plum ose setae; anterom edial surface bearing 6 row s o f  plum ose setae. Dactyl 81 %  length o f  propod. 

Coxal plate slightly w ider than long, bearing 6-7 setae.

P ereo p o d  3 (Fig. 5.22a): Basis w ith. 5-6 long setae and 1-2 short setae on posterior margin, 5-6 

short setae on anterior m argin and 4-6 long setae on proxim oanterior margin and surface. Coxal plate with 

to  7-8 setae.

P ereo p o d  4: subequal to pereopod 3. Coxal plate w ith 6-9 setae (Fig. 5.22b).

P e reo p o d  5 (Fig. 5.22c): A nterior m argin o f  basis with 5-7 short spines; posterior margin with 9- 

11 setae. Coxal plate w ith 3 setae on distoanterior lobe and 1 seta on distoposterior com er.

P ereo p o d s 6 a n d  7 subequal to those o f  B. wilsoni. (Figs. 5.22d, e).

C o x a l gills on pereopods 2-7, distinctly  reduced on pereopod 7 (less than half the  size o f  coxal gill 

on pereopods 5 and 6; Fig. 5.22e). Lateral sternal processes present on pereonites 6 and 7 (Fig. 5.22e).

P leopods: W idth o f  peduncles gradually increasing from pleopod 1-3. N um ber o f  unfused ram i 

segments: pleopod 1 w ith 12 segments, pleopod 2 with 9-10 segm ents and pleopod 3 w ith 8 segm ents. 

Retinaculae asym m etrical, with unilateral row  o f  sm all hooks (Fig. 5.20e).

E p im era l p la tes: Distoposterior m argins w ith 4-5 short setae each; plate 1 w ithout spines, plate 2 

bearing 2 spines and plate3 with 3 spines.

U ro p o d  1 (Fig. 5.22f): Peduncle with 8-9 spines on dorsolateral m argin, 3-4 spines on 

dorsom edial margin and 2-3 spines on distom edial com er. Rami about 51%  length o f  peduncle; inner 

ramus w ith 4-5 apical spines and about 6 spines on dorsal surface (som e o f  which relatively long). O uter 

ramus with 5-6 apical spines and ca. 6 spines on dorsal surface. Peduncle o f  m ale with distoventral, serrate 

process (Figs. 5.22f, g).

U ro p o d  2 (Fig. 5.22h): Peduncle w ith 3-4 spines on dorsolateral m argin, 2 spines on dorsom edial 

margin and 3-4 spines on distomedial com er. Inner ram us longer than outer ramus, about 71%  o f  length 

peduncle, bearing 4 apical spines and 5-6 spines on dorsal surface. O uter ram us with 5 apical spines and 

about 3 spines on dorsal surface.

U ro p o d  3 (Fig. 5.22i): Peduncle arm ed w ith 2 spines on distal margin. Inner ram us vestigial, only 

about 27%  length o f  ou ter ramus. O uter ram us reduced, about 83%  length o f  peduncle, w ith 3-4 apical 

spines, 1-3 subapical spines on lateral m argin and 1-2 subapical spines on medial margin.

T elson  (Figs. 5.21c-f): Apical m argin with shallow  notch or V-shaped excavation (5-19%  cleft), 

bearing 11-14 apical spines. Width o f  m ale telson 73-87%  o f  length, w ith relatively short apical spines;
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width o f  female telson 85-106%  o f  length, apical spines distinctly longer than spines o f  m ale telson.

Sexual d im o rp h ism  a n d  v a ria tio n : O ne o f  the two exam ined m ales had a telson which w as 

distinctly longer than wide (holotype m ale), w hereas the telsonic w idth/length ratio o f  the  sm aller m ale d id  

not differ from those o f  the fem ales. W ith the exception o f  1 fem ale telson w ith distinct, V -shaped 

excavation (19%  cleft), the m ajority o f  the specim ens exam ined had a telson with a shallow  distal notch (5- 

1%  cleft). Secondary sexual dim orphism  was found in uropod 1 and telson.

R em arks: Bactrurus angulus is presently know n only from tw o caves in northeastern Tennessee 

and one cave in southw estern V irginia. This species is very rare and several attempts to  collect additional 

specim ens have been unsuccessful (1996 and 1997). The type locality, located south o f  Pow ell River and 

northeast o f  Tazew ell, contains about 100 m o f  passages and is developed in M iddle O rdovician lim estone. 

Despite two visits to the cave, only  a  single m ale (holotype) has been found to date. The specim en was 

collected from a shallow , m ud-bottom  drip (seep-fed) pool in a short dead end passage.

Like B. wilsoni, B. angulus differs from m ost other Bactrurus species by a  serrate peduncular 

process on m ale uropod I . It can be distinguished from B. wilsoni by the following characters: absence o f  

large denticles on lacinia m obilis o f  right m andible; distinct defining angle o f  propod on gnathopod 1; 

dactyl o f  gnathopod 1 ca. 95%  length o f  propod (86%  in B. wilsoni)', distal medial m arg in  o f  carpus on 

gnathopod 2 with ca. 7 plumose setae (3 plum ose setae in B. wilsoni); spines on anterior m argin o f  basis o f  

pereopod 5 short (relatively long in B. wilsoni)', coxal gill on pereopod 7 distinctly reduced (less than h a lf  

the size o f  coxal gill on pereopods 5 and 6); dorsom edial margin o f  peduncle on uropod 1 w ith 3-4 spines 

(1 in B. v.’ilsoni); length and arm ature o f  outer ram us on uropod 3 show ing less reduction than that o f  B. 

wilsoni.

The stygobiont am phipod Crangonyx antennatus was associated w ith B. angulus in small stream  

pools in Cum berland G ap Saltpeter and Kings Saltpeter caves.

E tym ology: The epithet angulus (Latin for com er, angle) refers to the distinct defin ing angle o f  

the propod o f  gnathopod 1.

Bactrurus cellulanus  new  species

Figs. 5.23-25

Bactrurus sp.-- H olsinger, 1986a: 95.

Type locality: sm all spring- or seep-fed stream in unfinished basement o f  Jordan Hall on cam pus o f  Indiana

University, B loom ington (M onroe County, Indiana).

M ateria l exam ined: IN D IA N A : M o n ro e  C o.: Seep-fed stream  in basem ent o f  Jordan Hall, 

Indiana University, B loom ington, 1 fem ale paratype (JRH), F. Young, Dec. 1962; H O L O T Y P E  male 

(15.8 mm, on 2 slide mounts; U SNM ), and 1 m ale paratype (JRH), 8 Jan. 1963 (specim ens collected by 

Y oung donated to study by J. J. Lewis); a llo type fem ale (15.5 mm; USNM  acc. nr. 395927), N . Hynes, Jan.

1963.

Diagnosis: A m edium -sized species m orphologically very sim ilar to  B. wilsoni and B. angulus.
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Bactrurus cellulanus can  be distinguished by the following characters: Distal m argin  o f  right lacinia 

mobilis w ith large, irregular denticles. Propods o f  gnathopod 1 and  2 subequal in length, propod o f  

gnathopod 1 noticeably w ider than propod o f  gnathopod 2; defin ing  angle o f  gnathopod 1 distinct (ca. 

140°). Pereopod 5 about as long as pereopod 4 . Coxal gills on  pereopods 2-7 , distinctly  reduced on 

pereopod 7 (less than h a lf  the size o f  coxal gill on pereopod 6). Tw o pairs o f  lateral sternal processes on 

pereonites 6 and 7; m edian sternal processes absent. M ale uropod 1 w ith serrate peduncular process. Telson 

o f  adult m ale som etim es slightly longer than telson o f  female, apical spines shorter than those o f  fem ale; 

telson w ith shallow  notch or V -shaped excavation (5-19%  cleft). Largest m ale 15.8 m m , largest fem ale

15.5 mm.

D escrip tion : Based on holotype male (15.8 m m ) and allotype fem ale (15.5 m m ).

A n ten n a  1 subequal to  that o f  B. mucronatus, 60-79%  length o f  body. P rim ary flagellum w ith  up

to 47 segm ents.

A n ten n a  2 about 45-49%  length o f  antenna I (Fig. 5.23a). Flagellum  w ith up  to 16 segments.

L o w er lip subequal to that o f  B. wilsoni.

M an d ib les  (Fig. 5.23b): Row  o f  7 plum ose spines betw een m olar and lacinia mobilis; distal 

m argin o f  right lacinia m obilis subequal to that o f  B. wilsoni (w ith large, irregular denticles; see 

enlargem ent Fig. 5.23b). Palp segm ent 2 with 13-14 setae on lateral and  m edial m argins; palp segm ent 3 

w ith 28-30 short, plum ose D-setae, 3-5 long, plum ose B-setae and 2-4 long, plum ose A -seta.

M axilla  1 subequal to that o f  B. wilsoni.

M axilla  2 (Fig. 5.23c): O uter plate apically w ith up to 19 setae. Inner plate w ith oblique row  o f  10

strong, plum ose setae and up to 19 plum ose setae apically  and subapically.

M axilliped : O uter plate with 4-5 bladelike spines and ca. 12 naked setae on inner margin (Fig.

5.23d). Inner plate apically  with 4  bladelike spines and  3-4 plum ose setae (Fig. 5.23e).

G n a th o p o d  1 (Fig. 5.24a): Basis with approxim ately 18 long, naked setae on posterior m argin, 5 

p lum ose setae on distoposterior com er, 7-8 naked setae on anterior m argin and 5 naked setae on m edial 

surface. Carpus w ith 2 rastellate spines on distoposterior margin (see enlargem ent o f  Fig. 5.17b) and ca. 6 

plum ose setae on distal m argin. Propod noticeably w ider than propod o f  gnathopod 2 (but about equally  

long); palm ar m argin alm ost even, crenulated, arm ed w ith 15-17 spines on lateral m argin and about 21 

spines on m edial margin; defining angle distinct (ca. 140°), bearing a  row  o f  5 spines m edially  and 4 spines 

on lateral com er; posterior (subangular) margin 23%  length o f  propod, w ith 4 sets o f  plum ose setae (distal 

set naked); anterom edial surface bearing 5 rows o f  p lum ose setae. D actyl ca. 82%  length o f  propod. Coxal 

plate w ith 6 setae.

G n a th o p o d  2 (Fig. 5.24b): Basis with 7-9 sets o f  long setae on posterior m argin  (with about 11 

setae in total), 4 plum ose setae on distoposterior com er, 3 long, naked setae on proxim oanterior margin, 5-6 

naked setae on distoanterior m argin and  6 setae on m edial surface. C arpus w ith 6 sets o f  plum ose setae on 

posterior m argin, 5-6 plum ose setae on distal m argin and 4 rastellate spines on d istoposterior com er (see 

enlargem ent o f  Fig. 5.17b). Palm o f  propod almost even, crenulated, w ith 12-13 spines on lateral m argin
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and about 14 spines on medial m argin; defining angle rounded, w ith  row o f  4 sp ines on lateral com er, 

medial com er w ith row o f  4 spines, accom panied by  2 long spines and 1 short spine; proxim al (subangular) 

m argin ca. 31 %  length o f  propod, bearing 5 sets o f  plum ose setae; anterom edial su rface  bearing 6 row s o f 

plum ose setae. Dactyl 76 % length o f  propod. Coxal plate w ider than long, bearing 5-7  setae.

Fig. 5.23. Bactrurus cellulanus n. sp.. holotype male (15.8 mm) from seep (M onroe County. Indiana): a) antenna 2. b) 

right mandible (lacinia mobilis enlarged), c) maxilla 2. d. e) outer and inner plates o f  maxilliped.

P ereopod  3 (Fig. 5.25a): Basis with 6 long setae and 2 short setae on posterior margin, 5-7 short 

setae on anterior margin and 4-7 long setae on proxim oanterior m argin and surface. C oxal plate with to 10-

11 m arginal setae.

P ereopod  4: subequal to pereopod 3. Coxal plate with 11 m arginal setae (Fig. 5.25b).
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P ereopod  5  (Fig. 5.25c): A nterior margin o f  basis w ith 9 short spines; posterior margin with 15 

short setae. Coxal plate w ith 4-5 setae on distoanterior lobe and 2 setae on distoposterior com er.

P ereopods 6 and 7 subequal. A nterior m argins o f  bases with 6-8 short spines; posterior margins 

bearing up to 16 setae (including 2-3 slender spines). Coxal plate o f  pereopod 6 w ith 2 setae on 

distoposterior lobe (Fig. 5.25d). Coxal plate o f  pereopod 7 with 4 setae on posterior m argin (Fig. 525e).

C oxal gills on pereopods 2-7, distinctly reduced on pereopod 7 (less than half the size o f  coxal gill 

on pereopod 6; Fig. 5.25e). Lateral sternal processes present on pereonites 6 and 7 (Fig. 5.25d, e).

Fig. 5.24. Bactrurus cellulanus n. sp.. holotype male (15.8 mm) from seep (Monroe County, Indiana): a) gnathopod 1 

(lateral view), b) gnathopod 2 (lateral view).

Pleopods: W idth o f  peduncles gradually increasing from pleopod 1-3. N um ber o f  unfiised rami 

segments: pleopod 1 with 9-15 segments, pleopod 2 with 12-14 segm ents and pleopod 3 with 8-12 

segments. Retinaculae reduced, asym m etrical (Fig. 5.250-

E p im era l plates: D istoposterior margins with 5-7 short setae each; plate 1 w ithout spines, plates 2 

and 3 bearing 3 spines, respectively.

U ropod 1 (Fig. 5.25g): Peduncle with 12 spines on dorsolateral m argin, 4-5 spines on dorsomedial 

m argin and 4 spines on distom edial com er. Rami about 62%  length o f  peduncle; inner ram us with 5 apical 

spines and about 8-9 spines on dorsal surface. O uter ram us with 5 apical spines and 8-10 spines on dorsal 

surface. Peduncle o f  m ale with distoventral, serrate process.

U ropod 2 (Fig. 5.25h): Peduncle with 3-5 spines on dorsolateral m argin, 1 spine on dorsomedial 

margin (som etim es absent) and 2-4 spines on distomedial com er. Inner ram us longer than outer ramus.
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about 71% o f  length peduncle, bearing 4 apical spines and 7-11 spines on dorsal surface (som e o f  which 

relatively long). O uter ram us w ith 5 apical spines and 5-7 spines on dorsal surface.

Fig. 5.25. Bactrurus cellulanus n. sp., holotype male (15.8 mm) from seep (M onroe County, Indiana): a-c) proximal 

parts o f pereopods 3, 5 and 7, d) coxal plate o f pereopod 4. e) coxal plate, gill and lateral sternal process o f  pereopod 6. 

f) retinaculae o f  pleopods, g-i) uropods 1-3. j ) telson. Allotype female (15.5 mm) from same locality: k) uropod 3. I)

t e l s o n .

U ropod  3 (Fig. 5.25i, j): Peduncle arm ed with 3 spines on d istal m argin. Inner ram us vestigial, 

24-25%  length o f  outer ram us (som etim es w ith  1 tiny apical seta). O uter ram us reduced  (but relatively 

long), 80-101 %  length o f  peduncle, bearing 3-5 apical spines, 2-5 subapical spines on lateral margin and 2-
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3 subapical spines on medial m argin (sometimes I spine on dorsal surface).

T elson (F igs. 5.251, k): W idth 90%  o f  length. A pical m argin entire o r w ith  V -shaped excavation 

(15-23%  cleft), bearing 13-15 apical spines. M ale telson with relatively short apical sp ines; spines 

distinctly longer in fem ale telson.

Sexual d im o rp h ism  a n d  v aria tio n : S im ilar to B. angulus, variation could  be found in the 

excavation o f  the d istal telsonic m argin (1 m ale w ith entire m argin, other specim ens w ith V -shaped 

excavation (15-23%  cleft)). Secondary sexual d im orphism  occurred as described in uropod 1 and telson.

R em ark s: T he type-locality is a small spring- o r seep-fed stream in an unfinished basem ent 

beneath Jordan Hall on the cam pus o f  Indiana U niversity. The terrain surrounding the seep  is karst 

developed on M ississippian-aged limestone and is believed to have been a sinkhole com plex  prior to 

construction o f  Jordan Hall. Four specimens o f  the new  species w ere collected in D ecem ber 1962 and 

January 1963, but Bactrurus was n o t seen on a v isit to  the seep by JRH in June 1965. M ore recently , the 

diversion o f  the sm all stream and o ther work in the  basem ent has apparently destroyed the type-locality  (J. 

J. Lewis, pers. com .).

In addition to  B. cellulanus, stygobiont am phipods (Crangonyx packardi) and isopods (Caecidotea 

jordanf) and an epigean crayfish (Cambarus) have been collected from the type locality.

Bactrurus cellulanus is m orphologically closely  allied w ith B. wilsoni and B. angulus. Like the 

latter 2 species, B. cellulanus has a  serrate peduncular process on the male uropod 1. It can be further 

distinguished as follow s: inner plate o f  maxilla 2 w ith  oblique row o f  10 strong, plum ose setae (6-7  in m ost 

o ther species); ou ter ram us o f  uropod 3 relatively long, bearing several subapical spines on both m argins; 

peduncle o f  uropod 3 arm ed with 3 distal spines (usually  1-2 spines in other species).

Bactrurus cellulanus d iffers from L. angulus by the follow ing characters: 21 m edial and 15-17 

lateral spines on palm ar m argin o f  gnathopod 1 (9-10 m edial and 8 lateral spines in B. angulus); defining 

angle o f  propod on gnathopod 1 less distinct; rami o f  uropod 1 with 8-10 spines on dorsal surface (6 spines 

in B. angulus)-, dorsal m argins o f  inner ramus on uropod with 7-11 spines, some o f  w hich relatively  long (5 

spines in B. angulus).

Bactrurus cellulanus can be distinguished from  B. wilsoni as follows: ou ter plate o f  m axilliped 

with 4-5 bladelike spines (2-3 in B. wilsoni); posterior m argin o f  carpus on gnathopod 2 w ith 6  sets o f  

plum ose setae (3 sets in B. wilsoni); proxim al, subangu lar m argin o f  propod on gnathopod 1 w ith 4  row s o f  

plum ose setae (less setose in B. wilsoni); anterior m arg in  o f  basis on pereopod 5 w ith  ca. 9 short sp ines (6 

relatively long, slender spines in B. wilsoni); coxal gill o f  pereopod 7 less than h a lf  the  size o f  coxal gill on 

pereopod 6 (only slightly  reduced in B. wilsoni); dorsom edial m argin o f  peduncle on uropod 1 w ith  4-5 

spines (1 spine or absent in B. wilsoni); dorsal m arg ins o f  inner ram us on uropod w ith  7-11 spines, som e o f  

which relatively long (4-5 spines in B. wilsoni).

E tym ology: T he epithet cellulanus (L atin  fo r “herm it” o r “recluse”) refers to  the “reclusive” 

habitat in the basem ent o f  Jordan Hall.
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Phylogenetic analysis 

Cladistic methods

The phylogenetic analysis w as perform ed using PA U P, version 3.0s. Initially, all characters were 

left unordered and unw eighted. Subsequently, som e characters were ordered and w eighted through 

outgroup com parison (see C haracter assessm ent and Appendix C). In the follow ing text, these alternative 

runs will be referred to as ‘unordered analysis’ and ‘partially ordered analysis’. D uring a H euristic Search, 

the ancestral condition was left ‘unknow n’ and the following search options w ere in effect: only minimal 

trees w ere kept, collapsing zero-length branches; TBR branch sw apping was perform ed on m inim al trees 

only (steepest descent by random  stepwise addition). The trees obtained with these settings w ere used for 

subsequent runs, keeping all m inim al trees (M ULPARS option) that were as short as o r shorter than those 

loaded into m em ory. These steps were repeated until no shorter trees could be found. A strict consensus 

tree w as calculated from the trees generated by the Heuristic Search.

Character assessment

Except for the species o f  Bactrurus that were exam ined during the study, the assessm ent o f 

character states is based on descriptions and draw ings from the literature (see A ppendix C ). During the 

partially ordered analysis, m ore com plex characters were ordered and w eighted, assum ing that their 

evolution had to  be m ore directed and less likely than the developm ent o f  m ore sim ple structures. For 

exam ple, the different stages o f  reduction o f  coxal gills in several crangonyctid and bogidiellid taxa suggest 

a stepwise, gradual evolution over a long period o f  time, w hereas the occurrence o r loss o f  spines and setae 

on appendages m ay have evolved much faster (Koenemann &  Holsinger, 1999a).

Terminal taxa

The strength o f  phylogenetic analyses is strongly dependent on the quality  and quantity  o f  the data 

em ployed. For exam ple, to investigate the relationship o f  Bactrurus to its potential sister-genus 

Stygobromus, the m orphological sim ilarity o f  both genera has to  be taken into consideration. In this case, 

the preferable approach w as to analyze a selection o f  taxa that represent different species groups o f  

Stygobromus. But w e also w anted to  investigate the phylogenetic relationship o f  Bactrurus and 

Stygobromus to o ther genera o f  the fam ily Crangonyctidae. Therefore, in addition to  the seven Bactrurus 

species, the follow ing taxa w ere included to ensure that the analysis was as com prehensive as possible for 

the scope o f  this study (Table V. 1):

•  Stygobromus mackini Hubricht, 1943, and Stygobromus hoffmani Holsinger, 1978, occur prim arily in 

limestone caves a t the eastern m argin o f  the Bactrurus distribution range (Fig. 5.26). Each represents a 

group o f  m orphologically closely allied species, respectively: the m ackini and em arginatus groups. 

Stygobrom us graham i H olsinger, 1974, is a  species o f  the hubbsi group found in the w estern United 

States. The 14 species o f  the tenuis group, represented in the analysis by Stygobromus t. tenuis (Smith,
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1874), have the widest distribution range o f  all Stygobromus species groups. T hey are recorded from 

several states in eastern, southern, and central parts o f  the U nited States. Stygobromus phreaticus 

H olsinger, 1978, and Stygobromus araeus (H olsinger, 1969), are m orphologically  unique species that 

o cc u r in shallow  groundw ater habitats in eastern V irginia.

•  Crangonyx forbesi (H ubricht &  M ackin, 1940), a stygophile inhabitant o f  caves and related 

groundw ater habitats, w ith reduced eyes and pigm entation, frequently co-occurs w ith  B. brachycaudus. 

A large part o f  the range o f  C. forbesi overlaps w ith that o f  Bactrurus. Crangonyx subterraneus Bate, 

1859, was chosen as a European representative o f  the genus Crangonyx.

•  Synurella dentata Hubricht, 1943, is an epigean crangonyctid am phipod from the east-central United 

States. S im ilar to C. forbesi, its range partly overlaps that o f  Bactrurus. Synurella a. ambulans (MQller, 

1846) was included as a European species o f  the genus.

•  The m onotypic crangonyctid genus Lyurella D erzhavin, 1939, is endem ic to  the Caspian Sea region 

and shares several diagnostic characters w ith Synurella (e.g. coxal plates 1 and 2 longer than wide; 

presence o f  reduced eyes; telson longer than wide).

•  Stygonyx courtneyi Bousfield & Holsinger, 1989, is a  m onotypic crangonyctid genus known only from 

a sing le  hypogean freshw ater locality in the state o f  O regon. It is m orphologically very sim ilar to 

Stygobromus.

•  Gammarus pulex  Linnaeus, 1758, and G. troglophilus H ubricht &  M ackin, 1940, were chosen as 

ou tg roup  taxa. Gammarus pulex  is a  com m on epigean freshw ater species in m any parts o f  Europe and 

has been recorded as far east as Siberia, including Lake Baikal. Gammarus troglophilus is a stygophile 

th a t inhabits both epigean and hypogean habitats in the central United States; its range overlaps that o f

Bactrurus.

•  The following stygobiont taxa were included as additional outgroups: Niphargus fontanus Bate, 1859 

(w idely distributed in Europe); Spelaeogammarus spinilacertus K oenem ann &  Holsinger, 2000, and 

Megagidiella azul Koenem ann &  H olsinger, 1999b, tw o genera o f  the fam ily Bogidiellidae endem ic to 

eastern and south- central Brazil, respectively.

Results

B oth unordered and partially ordered analyses produced strict consensus trees w ith well-resolved, 

very  s im ila r topologies (Fig. 5.27). Both trees have a single stem , with the species o f  Gammarus as basal 

sis te r-g roup  to all stygobiont and stygophile taxa. Niphargus fontanus  appears as a sister-group to  both 

B og id ie llidae  and  Crangonyctidae. The sm all, m onophyletic clade o f  the bogidiellids is a  sister-group to  the 

C rangonyc tidae . A somewhat unexpected result is that Bactrurus is not m onophyletic. The genus is 

subd iv ided  into two sm aller clades; a trichotom y with B. wilsoni B. angulus and B. cellulanus (hereafter 

re ferred  to as wilsoni group) and B. brachycaudus on a  clade w ith the m orphologically  closely related B. 

mucronatus and B. pseudomucronatus (hereafter referred to  as brachycaudus group). Interestingly, the 

an a ly zed  data  set renders B. hubrichti as a  sister-group o f  both Bactrurus and Stygobromus.
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TABLE V.l

Character matrix. See Appendix C for a description o f  characters (characters are numbered according to their listing in 

Appendix C). Outgroup taxa o f the partially ordered analysis are capitalized.

GAMMARUS PULEX 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
GAmtARUS TROGLOPHILUS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MPHARGUS FOHTANUS I 0 1 2 0 0 0 0 0 1 0 1 0 0 0 2
MEGAGIDIELLA AZUL 1 0 2 2 0 0 I 0 1 0 0 0 1 0 I 3
SPELAEOGAMMARUS SPIXILACERTUS 1 0 3 2 0 0 1 0 1 0 0 1 I 0 1 1
Bactrurus brachycaudus 1 1 0 1 0 I 1 0 I I 0 I 2 1 1 2
Bactrurus hubrichti 1 I 0 0 0 2 1 0 1 1 0 0 I I I 2
Bactrurus mucronatus 1 1 1 2 0 2 1 0 1 1 2 1 2 1 1 2
Bactrurus pseudomucronatus
Bactrurus wilsoni 
Bactrurus angulus
Bactrurus cellulanus 
Crangonyx forbesi
Crangonyx subterraneus 
Lvurella
Stygobromus araeus
Stygobromus grahami
Stygobromus hoffmani
Stygobromus mackini
Stygobromus phreaticus
Stygobromus t. tenuis 
Stygonyx courtneyi
Svnurella a. ambulans
Svnurella dzntata

A lthough the crangonyctid taxa form  a  large, m onophyletic clade in both  consensus trees, the 

topology within the crangonyctids show s som e interesting differences. The first point to  note is that 

Stygobromus is not m onophyletic in the consensus tree o f  the unordered analysis: a  small clade with 

Stygobromus phreaticus, jo ined  by  Stygonyx courtneyi, appears as a sister-group to the rem aining 

Stygobromus species. In the partially  ordered analysis, Stygonyx courtneyi has becom e the sister-group to  a 

m onophyletic Stygobromus clade. The second difference between unordered and partia lly  ordered analyses 

is a sm all clade w ith both Synurella  species and Lyurella. This clade remains unresolved in the unordered 

analysis, whereas Synurella dentata  is a  sister-group to  Lyurella and Synurella a. ambulans in the partially 

ordered analysis.

Discussion

Phylogenetic analysis

The congruent sequence o f  outgroup taxa in both analyses suggest m onophyly for the 

Crangonyctidae, w ith N iphargidae and B ogidiellidae as sister-groups (Fig. 5.27). Crangonyx is paraphyletic 

but both species included occur at basal positions o f  a  large, m onotypic crangonyctid  clade. The 

phylogenetic relationships o f  the genera  Crangonyx, Lyurella, Synurella, Bactrurus and Stygobromus is in
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agreem ent with H olsinger’s cladogram o f  the C rangonyctidae (1986a). B oth unordered and partially 

ordered analyses m aintain Lyurella and Synurella on a  single clade, suggesting a close relationship o f  

Lyurella to Synurella, as postulated by H olsinger (1977, 1986a). However, the different topology within 

this clade in both trees leaves the relationship o f  Synurella and  Lyurella unresolved. The partially ordered 

analysis places Lyurella c loser to the European Synurella a. ambulans. H ow ever, more data are needed to 

clarify the relationship o f  these genera.

>

- ATLANTIC

^ Q U L F O F  -MEXICO

100 200 300

200 400 Kikxnalafi

Fig. 5.26. Geographic distribution o f  Bactrurus in eastern and central North America. Each symbol represents 

approximately one locality record (the actual number o f  records may be slightly higher in some o f the densely clustered 

areas). Open circles: B. brachycaudus; filled diamonds: B. hubrichti; filled circles: B. mucronatus; filled triangles: B 

pseudomucronatus-. dot surrounded by circle: B. wilsoni; filled square: B. cellulanus; open triangle: B. angulus. The 

large open circle in the glacial drift area (Illinois) surrounds several localities: three are the first records for B. 

brachycaudus from glacial drift habitats; one is a locality occupied by both B. brachycaudus and B. mucronatus (see 

text). The maximum southern extent o f  Pleistocene glaciation is indicated by the black dashed line. The dotted line 

delineates the maximum extent o f  a continental marine embaymcnt in the middle to late Cretaceous (adapted from 

Holsinger. 1993).

A nother difference o f  the unordered and partially ordered analysis affects the relationship o f  

Stygonyx courtneyi with the Stygobromus taxa. Interestingly, the diagnostic distinction between both genera
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is m ainly based on the com paratively longer outer ram us o f  uropod 3 in Stygonyx. A part from this 

character, Stygonyx and Stygobromus are m orphologically indistinguishable. Considering the com paratively 

greater variation o f  outer rami length on third uropods in Bactrurus (w ith B. mucronatus and B. cellulanus 

as the m ost extreme forms), the given topology probably correctly reflects the close phylogenetic 

relationship o f  Stygonyx and Stygobromus. A separate generic status for Stygonyx courtneyi is questionable 

and its assignm ent to the genus Stygobromus is perhaps justified (In this case, the analyses w ould im ply 

m onophyly for Stygobromus). But as in the case o f  Lyurella/Synurella, more data and certainly also 

additional records are needed to resolve the relationships o f  these genera.

6MwmAnus rtnxx 
ajumutus mooLormjus

M W aaB U  AZUL 
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j —  ’1  I—  Simm*
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t i H i l n a n i  l  a m i

HE
Fig. 5.27. Phylogenetic analysis o f seven Bactrurus species, including selected crangonyctid genera and several 

outgroup taxa (capitalized), a) PAUP Strict Consensus tree: characters unordered and equally weighted (Cl: 0.44; RI: 

0 68: RC: 0.30: length: 65; min. possible length: 29; max. possible length: 143). b) PAUP Strict Consensus tree: 

characters paniallv ordered and weighted (Cl: 0.43: RI: 0.70: RC: 0.30: length: 145; min. possible length: 63; max. 
possible length: 341).

In both trees, Bactrurus and Stygobromus are nested in a large clade, distinguished from the o ther 

crangonyctid taxa by two synapomorphies: character 2 (presence o f  rastellate spines on the carpus o f  

gnathopod 2) and character 15 (coxal plates 1 and 2 w ider than long). The paraphyly o f  Bactrurus is largely 

determined by two factors:
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( 1) The wilsoni group has becom e the sister-group to the Stygobromus!Stygonyx clade because it shares a 

d istinct synapom orphy with these genera (character 8: peduncle o f  m ale uropod 1 w ith serrate  process).

(2) The brachycaudus group is separated by  a hom oplasious character 13 (telson not cleft), which is also 

found in a clade w ith four Stygobromus species in the  tree o f  the unordered analysis (5. t. tenuis, S. 

hoffmani, S. grahami and S. araeus).

The fact that Bactrurus appears as a  paraphyletic genus is not too  surprising w hen we com pare it 

m orphologically  w ith Stygobromus. The taxonom ic discrim ination betw een both genera is based prim arily 

on tw o diagnostic characters: (1) Stygobromus is distinguished from Bactrurus by the absence o f  an inner 

ram us and a m ore reduced outer ram us o f  uropod 3; (2 ) blade-like spines on the o u te r plate o f  the 

m axilliped are either absent or much reduced in num ber in m ost Stygobromus species. H ow ever, o f  these 

differences only the absence o f  the inner ram us on uropod 3 is a truly robust diagnostic character. The other 

tw o characters (length o f  ou ter ramus o f  uropod 3 and arm ature o f  ou te r plate o f  m axilliped) show  a 

considerable am ount o f  variation in both genera, so that a clear separation o f  tw o distinctly  different 

degrees o f  reduction becom es nearly im possible. It appears that the length o f  the outer ram us o f  uropod 3 

show s an alm ost continuous reduction from  Crangonyx to  Bactrurus to  Stygobromus. S im ilarly, there are 

additional diagnostic characters that canno t be unam biguously used to  m orphologically  distinguish 

Bactrurus from Stygobromus. For exam ple, pereopod 7 varies from little to  distinctly longer than pereopod 

6 in Bactrurus, w hereas in Stygobromus it is shorter than, equal to, o r a little longer than pereopod 6.

The em ploym ent o f  different or additional characters may produce trees with d ifferen t topologies 

for Bactrurus and Stygobromus. However, it is the relatively large am ount o f  m orphological variation, 

m ainly w ithin the genus Stygobromus, tha t is likely to  com plicate a  character analysis and cloud its 

outcom e. In the long run, the utilization o f  m olecular analyses may be the best way to gain a  m ore com plete 

picture o f  the phylogeny within the Crangonyctidae.

T he data used in the phylogenetic analysis support an ancien t freshw ater origin for the 

crangonyctids. Several taxa with distinct H olarctic distributions (Crangonyx and Synurella) appear a t basal 

positions o f  a m onophyletic C rangonyctidae. However, m ore data are needed to investigate the origin o f  

crangonyctid  am phipods in greater detail. A conclusive answ er to this question will depend on w hether or 

not we can establish m onophyly for the Crangonyctidae.

T he results o f  the phylogenetic analysis do no t support Bactrurus as a m onophyletic group. 

Furtherm ore, Bactrurus and Stygobromus do not appear as sister-groups. H ow ever, both genera  appear on a 

separate clade together with Stygonyx courtneyi. A lthough the cladogram s rendered a  stab le  topological 

separation o f  both genera, we cannot unam biguously infer i f  a close relationship is based on hom oplasious 

sim ilarity  or com m on ancestry.

T he B iogeography  o f  Bactrurus

T he cladogram s show an interesting branching pattern for Bactrurus that can be related to the 

geographic distribution o f  the individual species. Bactrurus hubrichti appears on a single branch as the
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sister-group o f  the o ther tw o clades w ith three species each.

•  T he first clade is com posed o f  the three species o f  the brachycaudus g roup, each o f  w h ich  is relatively 

abundant and tw o o f  which have w ide ranges. Together, they form a m ore o r less continuous cluster o f  

records, which em braces m ost o f  the range o f  Bactrurus (Fig. 5.26).

•  A second, polytom ous clade is form ed by the wilsoni group, which is com posed o f  three highly 

endem ic species tha t share several apom orphic characters. Typically, the localities o f  th e  wilsoni group 

species are disjunct and few in num ber.

•  T he distribution o f  B. hubrichti is characterized by a pattern tha t differs from  both the  brachycaudus 

and wilsoni groups: It has a relatively w ide range, but m any o f  the localities are d isjunct. With the 

exception o f  a  sing le  record from  central M issouri, the range o f  B. hubrichti is separated  from the 

brachycaudus group by  a distinct gap (Fig. 5.26).

1. T he  wilsoni g ro u p

The three species o f  the wilsoni group are endem ic to  isolated areas. Two species occur in the 

A ppalachians and thus a re  far rem oved from all o ther species in the genus. Bactrurus cellulanus and B. 

wilsoni are recorded from  single localities, w hereas B. angulus is found in th ree  caves w ith in  a  sm all area 

(Fig. 5.26). The distances betw een the range o f  B. angulus and B. wilsoni and the  m ain c lu ste r o f  species in 

the C entral Lowland and O zark Plateaus Physiographic provinces are rem arkably  large, w ith  no recorded 

species in between. T he greatly  delim ited range o f  B. cellulanus appears to  be an  exception to  this pattern, 

inasmuch as it occurs in relatively close proxim ity to the extensive range o f  B. mucronatus in central and 

northern Indiana. H ow ever, all records o f  B. mucronatus in Indiana are from  glaciated areas, w hereas B. 

cellulanus w as found in an unglaciated karst region south o f  the glacial d rift areas. H ence, w e may 

conclude that a dispersal barrier exists between the range o f  B. cellulanus and the groundw ater aquifers o f  

the adjacent drift region to  the north. Repeated efforts to  find B. cellulanus in caves and related 

groundw ater habitats in the  greater B loom ington area surrounding the type locality  have been  unsuccessful 

to date, leading to the conclusion that this species represents an isolated relict on the periphery  o f  the range 

o f  B. mucronatus.

In addition to  th e ir  isolated distributions, species o f  the wilsoni g roup  also share several unique 

m orphological characters: the m ales o f  all three species have serrate peduncular processes on uropod 1, 

which are absent in the o ther species o f  Bactrurus, but very com m on in Stygobromus (see also 

Phylogenetic analysis). M oreover, the species o f  the wilsoni group have an a lm ost identical form  o f  sexual 

dim orphism  o f  the telson (differing w idth/length ratios and arm ature). The possession o f  several unique 

synapom orphies suggests tha t species o f  this group descended from a  com m on ancestor w ith  a continuous 

distribution. The occurrence o f  the wilsoni group in the A ppalachians and In terio r Low Plateau, at great 

distances from  the extensive m arine em baym ents o f  the Cretaceous (see Fig. 5.26), suggests that these 

species are probably rem nants o f  a  very old freshw ater group, w ith a  long since  fragm ented distribution 

pattern. Sim ilarly, the o ther four species o f  Bactrurus, despite having com paratively  m uch w ider ranges,
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also occur in a  part o f  the continent that were not exposed to m arine w aters during the Cretaceous. The 

evolutionary history  o f  Bactrurus seem s to be in accordance w ith that o f  o ther genera o f  the 

Crangonyctidae. T he fam ily is believed to be an “ancient” freshw ater group that w as already established on 

Laurasia prior to the separation o f  N orth  America and Eurasia in the early  M esozoic (see Holsinger, 1986a, 

1986b, 1994b).

2. T h e  brachycaudus g ro u p

2.1. Bactrurus mucronatus

In the brachycaudus group, tw o  species also share a unique, conspicuous apom orphy: males o f  B. 

mucronatus and B. pseudomucronatus have an extrem ely elongate telson. H ow ever, the distributions o f  the 

two species are d isjunct. Bactrurus pseudomucronatus occurs exclusively in karst groundw ater habitats in 

parts o f  the Ozark Plateaus o f  southern Missouri and northern A rkansas, w hereas B. mucronatus inhabits 

alm ost exclusively glacial drift areas o f  the Central Low land Physiographic Province. T he only exceptions 

for B. mucronatus appear to be a  single karst locality in southern Illinois (E quality  C ave), where the species 

has been regularly collected from a cave stream over the last 60 years, and B ear Cave near Lake M ichigan 

(B errier County, M ichigan). Prior to this study, the occurrence o f  the population in Equality Cave was 

believed to be isolated by a considerable distance from  the closest recorded drift population in central 

Illinois (H olsinger, 1986a). However, new  locality records obtained in M ay 1999 helped to  fill in this gap. 

They included a locality in the drift a rea  approxim ately 16 km north o f  Equality C ave. The new records 

indicate a more continuous distribution o f  B. mucronatus in the C entral Low land, as well as a possible 

hydraulic connection o f  karst and drift aquifers in southern Illinois.

On the distribution map o f  Bactrurus, B. mucronatus is the only species o f  the genus that occurs 

alm ost exclusively north the line that delineates the m aximum extent o f  the Pleistocene glaciation (Fig. 

5.26). Two alternative theories have been proposed to explain the occurrence o f  stygobiont crustaceans in 

glaciated areas:

•  A few stygobionts survived periods o f  glaciation in groundw ater refiigia under the ice.

•  Som e stygobionts followed the receding ice northward at the end o f  the last Pleistocene glaciation and 

subsequently invaded and colonized newly available habitats in coarse sedim ents deposited by

glaciers.

Because it was w idely assum ed that the Pleistocene ice sheets destroyed the hypogean biota they 

covered, m ost w orkers seem ed to favor the second explanation (H olsinger, 1978; Lewis &  Bowman, 1981). 

How ever, based prim arily  on the distribution o f  a num ber o f  Stygobromus species that occur north o f  the 

glacial boundaries, and which appear to be closely related to those in unglaciated areas, Holsinger (1978, 

1981, 1986a) m ade a  strong case for a subglacial refiigia m odel. N evertheless, survival in subglacial refiigia 

was considered im probable for B. mucronatus (Holsinger, 1986a). This assum ption w as based primarily on 

the occurrence o f  the m orphologically close populations south o f  the glacial boundary, described herein as
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B. pseudomucronatus. Bactrurus mucronatus w as believed to  have split from an ancestral species (B . 

pseudomucronatus) by northward dispersal and subsequent geographic isolation. In this scenario, B. 

mucronatus originated from a region south o f  the  m axim um  extent o f  the Pleistocene glaciations (e.g. 

southern M issouri and possibly southern Illinois) and follow ed the receding glaciers north to its p resent 

range. However, there are several biogeographic features o f  B. mucronatus that weaken the likelihood o f  

lateral dispersal and invasion o f  glacial drift areas subsequent to glacial recession:

•  The distribution range o f  B. mucronatus extends over a distance o f  approxim ately 6S0 km, from w est 

to east. G iven w hat are generally regarded as w eak dispersal abilities o f  hypogean am phipods, a 

colonization o f  these dim ensions is not very probable w ithin the given tim e-fram e (i.e., d ispersal 

would have started at the end o f  last glaciation, perhaps 10000 to 16000 BP).

•  A lateral (horizontal) invasion and colonization o f  drift is assum ed to have started from an area south 

o f  the glaciated regions, presum ably originating in proxim ity to the present range o f  B. 

pseudomucronatus (by splitting into two lineages). In this scenario, w e should expect to find rem nant 

populations between the cen ter o f  dispersal and present range. However, B. mucronatus and B. 

pseudomucronatus are separated by a gap, w hich is occupied by B. brachycaudus and there are no 

records o f  B. mucronatus in this area.

•  The dispersal from a  hypothetical center should also result in a typical, branch-like pattern, fo llow ing 

m ajor drainage systems with decreasing densities from  center to outer margins. It is obvious from  the 

distribution m ap that the present range o f  B. mucronatus does not show  this kind o f  pattern.

•  Bactrurus brachycaudus inhabits karst groundw ater habitats m uch closer to the drift areas than B. 

pseudomucronatus. Yet, several new localities for the form er species in glacial d rift discovered during 

the recent fieldw ork appear to  be exceptional occurrences. It is therefore likely that dispersal from  

karst into interstitial groundw ater systems in western Illinois is restricted or obstructed by 

physiographic barriers.

Rather than pointing tow ards a dispersal center south o f  its present range, the distribution o f  B. 

mucronatus extends in a belt-like fashion from east to west, w ith the m ost densely populated areas along  a 

center axis, also roughly following an east-west stretch (Fig. 5.26). In glaciated areas, specim ens are often 

com m on at the outlets o f  drainage system s in farm fields (Fig. 5.28). During wet periods, usually in late 

w inter and spring, m any outlet pipes discharge groundw ater w ithout interruption, continually flushing out 

stygobiont invertebrates (mostly B. mucronatus accom panied by the stygobiont asellid isopod Caecidotea 

kendeighi). At several outlet catchm ent basins, one o f  us (SK.) counted up to 200 flushed-out specim ens o f  

B. mucronatus and C. kendeighi. Large sample sizes (up to 100 specim ens) from drain outlets w ere 

recorded in the early  1940s by Leslie Hubricht. T his abundance is in sharp contrast to cave habitats tha t are 

typically sparsely populated. These findings suggest that the glaciated areas o f  the Central Lowland m ight 

have sheltered com paratively large and stable populations o f  B. mucronatus for a long period o f  tim e, 

stretching well back into the Pleistocene. How can this be explained?
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Fig. 5.28. Two photographs showing outlets o f drain pipes in central Illinois. Stygobiont amphipods and isopods are 

often found in these outlets, presumably having been flushed out o f  deeper, interstitial habitats and into drainage 

systems when groundwater tables are elevated during wet periods. Above, water is passing from a pipe into a ditch or 

small creek. Below, one can see the outlet pipe of a drainage system in a large, flat field. These systems are very 

common in glacial drift areas o f the mid-west and in unconsolidated sediments on the eastern coastal plain. They 

consist of a series of perforated pipes, which are buried approximately 2 meters beneath the surface o f poorly drained 

farm fields. In late winter and early spring, excess water from those fields is drained off in preparation for seasonal 
plowing and planting.

O ver the last I to 2 m illion years, m uch o f  the C entral Low land w as profoundly affected by 

periods o f  continental glaciation. G laciers repeatedly advanced and retreated across the surface, disrupting 

preglacial drainage patterns and eroding both  bedrock and o lder, unconsolidated  sedim ents. The m oving
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ice sheets carried vast am ounts o f  debris, w hich was m ostly  deposited as unsorted sedim ents (till). In som e 

regions, how ever, the melting glaciers form ed w ell-sorted layers o f  sands and gravels. M any o f  these 

deposits w ere subsequently  covered by  till. Q uaternary deposits in the Central Low lands are between 10 to 

400 feet thick. G eologic investigations in Illinois have revealed a  com plex, 3-dim ensional netw ork o f  

groundw ater aquifers in Quaternary drift (Larson et al., 1995, 1997). The distribution o f  subterranean 

aquifer system s depends on various hydrogeological factors, for exam ple, stratigraphy and consistency o f  

deposits, transm issivity and storage capacity o f  sedim ents, and also properties o f  the underlying bedrock 

(Larson et al.. 1997).

The distribution o f  B. mucronatus in the C entral Lowlands is apparently correlated with thicker 

Q uaternary deposits (60-120 m) and/or deposits near m ajor surface stream s as show n in Fig. 5.29. 

Considering the com plex distribution o f  shallow  sand and gravel aquifers and deeper bedrock aquifers in 

the Central Lowland, the  invasion o f  drift by B. mucronatus may have been an upw ard (vertical) rather than 

a lateral (horizontal) dispersal process. Since the perm afrost during glaciation periods d id  not penetrate the 

ground deeper than approxim ately 5 m, the colonization o f  glacial deposits could have taken place much 

earlier than postulated by  a lateral, post-glaciation dispersal model (i.e. between 10,000 and 16,000 BP). In 

a vertical dispersal scenario, the invasion o f  drift m ay have occurred during glacial and interglacial periods 

and date back as early as the onset o f  Pleistocene glaciation.

Bactrurus mucronatus is the m ost w idespread and abundant species o f  the genus. Its distribution 

pattern suggests that the colonization o f  an extensive netw ork o f  (new ly) available interstitial habitats is the 

result o f  adaptive radiation. Moreover, groundw ater aquifers in drift areas m ight have a considerably higher 

nutrient input in com parison with those in karst. The leaching o f  soluble constituents by precipitation is 

likely to play a m ore crucial role in the flat drift regions with extensive farm fields, w here a  relatively low 

run -o ff results in increased and m ore diffuse percolation and infiltration.

It is difficult to  say whether B. mucronatus was already w idespread in the Central Lowland before 

glacial deposits accum ulated or w hether it originated from  ancestral relicts that w ere isolated som ewhere 

w ithin its present range in subglacial refiigia and repeatedly re-invaded newly available aquifers. Larson et 

al. (1995 & 1997) point out that som e deep bedrock aquifers yield groundw ater to overlying glacial drift. 

The hydraulic connection is m aintained through fractured bedrock (carbonates) o r  perm eable units 

(sandstone). V ertical invasions from deeper bedrock aquifers into shallow  sand and gravel habitats cannot 

be excluded as an im portant factor in the distribution o f  B. mucronatus.

2.2 Bactrurus brachycaudus

Bactrurus brachycaudus may be able to invade new ly available habitats in m uch the same w ay as 

w e have postulated for B. mucronatus. An illustrative exam ple o f  the  rapid colonization o f  new habitat 

space was observed by one o f  us (SK) in M ay, 1999. In a  karst area at Tyson Research C en ter (M issouri), a 

form er U.S. A rm y bunker had been m odified into an artificial cave habitat. Mr. Earl B iffle, who designed 

and m aintains the ‘cave bunker’, diverted part o f  the outflow  o f  a natural spring, located on a slope ju s t
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Fig. 5.29. Distribution o f  B. mucronatus in a part o f  the Central Lowland Physiographic Province that covers the states 

o f Ohio. Indiana and Illinois. Each sy mbol (open squares) represents a collection record for this species. Quaternary 

deposits within pre-glacial bedrock valleys or along streams and rivers generally contain shallow sand and gravel 

aquifer systems. The unglaciated areas south o f  the glaciation line are rendered in the lightest shade o f  grey. (Map 

modified, with kind permission o f  U.S. Geological Survey)

above the bunker. He let the spring w ater flow through a simple pipe system , which entered the bunker at 

the back side. The interior o f  the bunker (ca. 5 x 20 m ) was parted by a little, low wall that allow ed the 

formation o f  a shallow  pool (ca. 15 cm deep) and the discharge o f  excess w ater at the front o f  the bunker. 

After a long and thorough search at the mouth o f  the spring only one juvenile  specim en o f  B. brachycaudus 

could be found, but the bunker itse lf was populated by several hundred individuals o f  that species. 

Interestingly, only a small num ber o f  specimens actually stayed in the artificial pool (w hich was inhabited 

by epigean gam m arids and a few cave salamanders). Instead, swarm s o f  juveniles and adults, m any o f  

which reached up to 30 mm in length, were crawling under alum inum  foil covers outside the pool (!) in 

shallow puddles o f  w ater. Mr. Biffle assured us that he d id not provide any supplem ental nutrients. 

However, he introduced the salam anders as natural predators to the artificial habitat.

A nother significant discovery during the 1999 field trip  w as a drain pipe sam ple that contained
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specim ens o f  both B. brachycaudus and B. mucronatus. N ot on ly  is this the first record o f  B. brachycaudus 

from a non-karst habitat, it is also the first recorded co o ccu rren ce  o f  tw o Bactrurus species from the sam e 

locality. The sam ple w as taken at the outer, northeastern m argin o f  the range o f  B. brachycaudus rage in 

M ontgom ery County, Illinois. The specim ens from  this locality  showed m in o r m orphological variation in 

several characters w hen com pared w ith B. brachycaudus specim ens from  karst habitats (see B. 

brachycaudus, Rem arks). H ow ever, a conspicuous degree o f  sexual d im orphism  was found in the telson, 

w ith m ale telsons up to  20%  longer than those o f  females. It cannot be com pletely  ruled out that these 

specim ens are hybrids o f  a  cross betw een B. mucronatus and B. brachycaudus.

The m ajority, i f  not all, o f  the localities o f  B. brachycaudus occu r w ithin the M ississippi River 

drainage system. This species is found in springs and caves in karst areas on both sides o f  the river, and it is 

possible that individuals o f  B. brachycaudus are occasionally carried in to  drift areas during  extensive 

flooding o f  the M ississippi River.

A second case o f  a locally isolated population was found at the w estern  m argin o f  the range o f  B. 

brachycaudus. Sim ilar to the specim ens from  the drift area in Illinois, a cave  population from  Texas Co. 

(M issouri) exhibited m inor degrees o f  m orphological variation, indicating possib ly  genetic isolation from 

the main population (see: B. brachycaudus. Sexual dim orphism  and variation).

The range o f  B. pseudomucronatus is adjacent to that o f  B. brachycaudus and includes a  few seeps 

and several caves in karst areas o f  southern M issouri and northern A rkansas (see R em arks under B. 

pseudomucronatus). Bactrurus pseudomucronatus is less w idespread and abundant than B. mucronatus and 

B. brachycaudus. Yet, like the o ther tw o species, its localities are probably interconnected hydrologically 

and population sizes m ay be m uch larger than the records suggest.

C o m p a riso n  o f  m o lecu la r seq u en ce  d a ta

The pairw ise sequence differences o f  the 18s rDNA (sm all subunit) gene for B. brachycaudus, B. 

mucronatus and the new  species B. pseudomucronatus shows differences betw een  1.0 to  1.3%, respectively 

(Table V.2). Since intraspecific differences around 1% were found for d ifferen t populations o f  Gammarus 

pulex  (U. Englisch, pers. com .), the low interspecific d ifferences am ong species o f  the brachycaudus 

groups may indicate a  relatively recent splitting o f  this lineage.

The com parison o f  sequence differences reveals several notew orthy observations:

•  The difference betw een B. mucronatus and B. pseudomucronatus (1 .3% ) is slightly larger than the 

difference between B. brachycaudus and B. pseudomucronatus (1.0%).

•  The same tendency w as found for the glacial drift population (M ontgom ery County, Illinois) o f  B. 

brachycaudus, which w as found together w ith B. mucronatus in one locality.

•  The slight difference o f  0.3%  betw een the glacial drift population and a  specim en from the  main range 

o f  B. brachycaudus seem s to support the view  that both  specim ens analyzed  belong to  the same 

species.
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TABLE V.2
Pairwise sequence differences of 18S rDNA (small subunit) gene, calculated in Paup 4.0. Bactrurus brachycaudus GD 

= specimens from glacial drift area. Table adapted from Englisch & Koenemann (in manuscript).

Bactrurus
mucronatus

Bactrurus
pseudomucronatus

Bactrurus
brachycaudus

GD

Crangonyx
forbesi

Niphargus
fonlanus

Gammarus
troglophilus

Gammarus
pulex

Bactrurus brachycaudus 1.2% 1.0% 0.3% 7.6% 7.3% 9.9% 9.1%

Bactrurus mucronatus - 1.3% 1.2% 8.2% 7.8% 10.2% 9.4%

Bactrurus pseudomucronatus - - 1.1% 7.8% 7.6% 9.9% 9.2%

Bactrurus brachycaudus GD - - - 7.8% 7.2% 10.0% 9.3%

Crangonyx forbesi - - - - 10.4% 13.3% 11.9%

Siphargus fonlanus - - - - - 9.4% 8.7%

Cammarus troglophilus - - - - - - 2.7%

M oreover, the m olecular data do not convincingly  support a  possible hybridization o f  B. 

brachycaudus and B. mucronatus in M ontgom ery C ounty.

S u m m a ry

Bactrurus Hay is a relatively sm all generic group  that inhabits caves and related  subterranean 

groundw ater habitats in parts o f  eastern and central USA. T w o field trips, conducted in the spring o f  1999, 

yielded im portant new  locality records that g ive us a better know ledge o f  the distribution o f  the genus. The 

exam ination o f  fresh sam ples as well as o lder collection m aterial has resulted in descriptions o f  four new  

species. Based on these descriptions and redescriptions o f  th ree  previously  known species, the taxonom y o f  

the genus is revised according to current standards. In addition , a phylogenetic analysis using 

m orphological data is em ployed to examine the relationship o f  Bactrurus to 12 selected crangonyctid taxa, 

including its potential sister-genus Stygobromus Cope. F ive epigean and hypogean am phipod taxa w ere 

chosen as outgroups for the analysis. For interspecific and intergeneric com parisons, pairw ise sequence 

differences o f  the 18S (sm all subunit) rDNA gene are g iven  fo r th ree  Bactrurus species and three o f  the 

outgroup taxa. Both the biogeography and reconstructed phyiogeny  o f  Bactrurus a re  com pared and 

discussed in detail. The evaluation o f  new data obtained by  th is study contributes to  a  m ore com plete 

understanding o f  the evolutionary history o f  the genus.

The geographic distribution o f  Bactrurus is characterized  by different patterns, w hich reflect both 

dynam ic and static elem ents, are differentiated as follows:

•  Three isolated, endemic relict species (wilsoni group);

•  three abundant and widespread species (brachycaudus group), ail o f  w hich have m ore o r less 

contiguous populations in hydrologically connected  groundw ater habitats;
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•  one species (B. hubrichti) is less w idespread than the brachycaudus group species and has at 

least one population that is isolated by a distinct gap from other localities (M iller Co., 

M issouri).

The analysis o f  the biogeography o f  the seven species o f  Bactrurus in eastern and central United

States allow s us to draw two final conclusions:

•  The occurrence o f  all seven species in interior regions o f  the North A m erican continent that were not 

covered by a shallow m arine em baym ent during the Cretaceous suggests that the present distribution is 

com posed o f  remnants o f  an ancient freshw ater group, possibly dating back to the late Paleozoic.

•  The present distribution o f  B. brachycaudus and B. mucronatus was probably profoundly affected by 

glaciation and major drainage changes throughout the Pleistocene. W hereas the distribution o f  B. 

brachycaudus is largely in karst drained by the M ississippi River, B. mucronatus is distributed 

throughout the interstitial habitats o f  glacial drift. It is likely that relatively high nutrien t and energy 

input, com bined with extensive habitat space has, resulted in B. mucronatus being the m ost abundant 

and w idespread species o f  the genus.
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CHAPTER VI

PHYLOGENETIC ANALYSIS OF SUBTERRANEAN AMPHIPOD c RUSTACEANS’ USING

SMALL SUBUNIT rDNA GENE SEQUENCE?

Introduction

Stygobiont am phipod crustaceans in the suborder G am m aridea occur f11 g roundw ater environm ents 

in m any parts o f  the world. Their habitats include caves, wells, springs, t l̂e  interstitial sP a c e s  ° f

freshw ater and m arine sediments. In som e cases, the taxonom ic structure w ithi0 t îe suborder does no t offer 

satisfactory solutions, be it at the species, genus or fam ily level. N um erous d 'sco v en es new stygobiont 

taxa, especially during the last two decades, call for m odem  taxonom ic revisioi,s -

In som e recent revisions, cladistic analyses based on m orphological ^ata  bave been used to re

organize taxonom ic groups and obtain information about their phyIogen^*‘c relationships. Exam ples 

include the families Bogidiellidae Hertzog, 1936 and C rangonyctidae Bousfie *^’ 1973 (H olsinger, 1994; 

K oenem ann. Vonk &  Schram 1998; Koenem ann &  H olsinger, 1999). A nothe r interesting case study for 

phylogenetic analyses is the crangonyctid genus Bactrurus Hay, 1902. Bactfurus ‘s endem ic to parts o f  

eastern and central United States. The distribution o f  the genus is character!2^  by  both isolated, highly 

endem ic relicts and species with w idespread ranges (see Fig. 5.26). Bactrurus flucronatus  (Forbes, 1876) is 

the m ost abundant species with the widest range. It is also the only sp ec irs Bactrurus that alm ost 

exclusively inhabits non-karst environm ents in glaciated regions o f  the Cent*3* Low land Physiographic 

Province. All o ther species o f  the genus occur in groundw ater habitats related to *carst terranes- A recent 

collection trip led to the discovery o f  what appeared to be a second spec;,es ran§e &

mucronatus in a glaciated area (M ontgom ery C ounty, Illinois). In one instar*ce’ both species w ere even 

collected from the sam e locality. The species that co-occurred with B. mucr?natus was morphologically 

very sim ilar to B. brachycaudus Hubricht &  M ackin, 1940. In contrast to brachycaudus, how ever,

specim ens from the glaciated area had sexually d im orphic telsons. Male telsPns w ere about 20%  longer 

than those o f  females. Sexually dim orphic telsons are com m on for Bactrurus ° n ly  tw o the seven 

species o f  the genus, B. brachycaudus and B. hubrichti Shoem aker, 1*^5, bave m orphologically 

indistinguishable telsons in both sexes. Yet, despite sexually  dim orphic telsons^ specim ens from the glacial 

drift area in Illinois appeared to share m ost diagnostic characters with B. brachfcaue^us- a  recent revision 

o f  Bactrurus, the specim ens from Illinois were, therefore, regarded as iso la ted  geographic variants o f  B. 

brachycaudus rather than a new species (K oenem ann &  H olsinger, in ms.).

The objective o f  this project was to investigate the phylogenetic r e la I lo n s b 'P s several closely 

sim ilar species o f  Bactrurus, including B. brachycaudus and its geographic vat'iant from  glaciated parts o f  

Illinois. Two other m orphologically sim ilar species, B. mucronatus and B. pseii^omucronatus (K oenem ann 

& H olsinger, in ms.), the ranges o f  which are adjacent to  that o f  B. brachycaudifs -> w ere also included in the 

analyses. Because o f  the similarity o f  the species o f  Bactrurus, the lim ited availability  o f  reliable diagnostic
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characters obstructs the application o f  m orphological data to phylogenetic investigations. Therefore, we 

perform ed sequence analyses o f  the sm all subunit rD N A  gene for several species o f  Bactrurus and selected 

stygobiont outgroup taxa. For the first tim e, the analysis o f  DNA data is not only applied to subterranean 

am phipods but to  groundw ater crustaceans in general.

Material and methods

Abbreviations: B. brachycaudus G D  - specim ens o f  B. brachycaudus that occur in non-karst 

environm ents o f  glacial drift areas; found together w ith B. mucronatus in one locality (M ontgom ery Co., 

Illinois).

Collection methods and selection o f  taxa: Specim ens w ere co llected  from various subterranean 

habitats, including caves and springs in karst areas, and drainage system s o f  farm fields in glaciated areas. 

M oreover, a Bou-Rouch pum p was em ployed to sam ple interstitial sedim ents o f  surface streams. All 

freshly collected m aterial was im m ediately preserved in 95%  ethanol.

The follow ing species were collected during  the field trips: Bactrurus mucronatus, B. 

brachycaudus, Bactrurus pseudomucronatus, Crangonyx forbesi (H ubricht &  M ackin, 1940), and 

Gammarus troglophilus H ubricht &  M ackin, 1940 (Table VI. 1).

Sequence data from the European subterranean genus Niphargus represented by N. fonlanus  Bate, 

1859, and the epigean freshw ater species G. pulex  Linnaeus, 1758 w ere included in the phylogenetic 

analyses. Gammarus pulex  and the stygophiie freshw ater species G. troglophilus w ere used as outgroup 

taxa.

DNA Extraction: DNA w as obtained using the QIAam p T issue Kit (Q iagen). Instructions o f  the 

M ouse Tail protocol w ere exactly follow ed, with the exception o f  the last step: the DNA was eluted with 2 

x 100 pi HiO instead o f  2 x 200 pi.

PCR Amplification: PCR was perform ed follow ing a standard protocol: a total volum e o f  50 pi 

consisting o f  1 x PCR buffer, lx  Q-Solution (Q iagen), 125 pM  dNTPs, 25 pM  o f  prim er small subunit F 

and 50 pM  o f  prim er sm all subunit R, 1.25 U Taq DNA polym erase (Q iagen), and 1 pi DNA extract. The 

PCR cycle was program m ed as follows: 1 x 5 min at 94° C; 35 x 30 sec a t 94° C, 50 sec at 52.5° C and 3 

min 20 sec at 72° C; 1 x 7 min at 70° C. The am plified PCR product w as purified using the QIA quick PCR 

Purification Kit (Q iagen). Prim er sequences are given in T able VI.2.

DNA Cloning and Sequencing: The purified PC R  products w ere ligated into the pCR®-TOPO 

vector (TO PO  TA  Cloning Kit, Invitrogen) and cloned in heat shock com peten t Top 10 F  One Shot™  cells 

(Invitrogen). Plasm ids were purified w ith the S.N.A.P. ™  M iniPrep Kit (Invitrogen).
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Cycle Sequencing was conducted in a LI-COR 4200 autom ated sequencer, using the 

Therm o Sequenase fluorescent labelled prim er cycle sequencing kit w ith 7-deaza-dG TP (Amersham).

TABLE VI. 1
Taxa used for sequence analyses. Stygobionts are obligatory groundwater organisms, whereas stygophiles can be 

defined as facultative (e.g. temporarily) subterranean species.

flypogca n Species Epigcan Species
Stygobiont Species Stygophile Species

Bactrurus mucronatus (Crangonyclidac) Crangonyx forbesi 

(Crangonyctidae)

Bactrurus pseudomucronatus

(Crangonyctidae)

Bactrurus brachycaudus Gammarus troglophilus (Gammaridae) Gammarus pulex

(Crangonyctidae) (Gammaridae)
Bactrurus brachycaudus GD

(Crangonyctidae)

Siphargus fontanus

(Niphargidae)

Sequence Analyses: Sequences were aligned with the software package C lustalW  and corrected 

by eye according to a  secondary structure presented by Crease &  C olboum e (1998) in Genetic D ata 

Environm ent (GDE). T he Chi-square test and the pairw ise sequence differences w ere calculated in Paup 

4.0 (Sw offord 1998).

Phylogenetic Analyses: Eight taxa were included in the phylogenetic analyses. Gammarus pulex  

and G. troglophilus w ere chosen as outgroups for three methods o f  phylogenetic inference, each o f  which 

was com puted with Paup 4.0. The following settings w ere chosen for the individual m ethods:

Parsim ony A nalyses: Branch-and-Bound search w ith 1000 bootstrap replicates; both M ulTrees and 

Sequence Addition option ‘sim ple’ were activated and a 50% M ajority Rule consensus tree was generated. 

Distance A nalyses: N eighbour Joining (NJ), using Kim ura 2-param eter and the Tajim a & Nei model for 

nucleotide substitution. The data set was resam pled w ith 1000 bootstrap replicates.

M axim um  Likelihood A nalyses: Branch-and-Bound search (1000 bootstrap replicates), w ith M ulTrees and 

the default Sequence A ddition in effect. A 50% M ajority Rule consensus tree was calculated.

R esults

S equencing  and Alignment: All o f  the 8 com plete ssu rDNA sequences differed greatly in length
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from the approxim ately 1,800 nucleotides (nt) regarded as typical in crustaceans and m ost other animals 

(Table VI.3). Insertions in regions V4, V7 and V9 (Crease &  Colboum e 1998) increased the length to a 

range between 2237 nt and 2329 nt.

TABLE VI.2
Oligonucleotides used for PCR and sequencing.

PRIMER SEQUENCE ORIENTATION

PCR

Small subunitF CCTA(CT)CTGGTTGATCCTGCCAGT Forward

Small subunilR TAATGATCCTTCCGCAGGTT Reverse

CYCLE SEQUENCING
M13univcrsal CS(-43) CGCCAGGGTTTTCCCAGTCACGAC Forward

M13rcvcrsc(-29) CAGGAAACAGCTATGAC Reverse
400F ACGGGTAACGGGGAATCAGGG Forward

400R CCCTGATTCCCCGTTACCCGT Reverse

700F GTCTGGTGCCAGCAGCCGCG Forward

700R CGCGGCTGCTGGCACCAGAC Reverse

I000F CGATCAGATACCGCCCTAGTTC Forward

IOOOR GAACTAGGGCGGTATCTGATCG Reverse

II55F CTGAAACTTAAAGGAATTGACGG Forward

1155R CCGTCAATTCCTTTAAGTTTCAG Reverse

I250F CCGTTCTTAGTTGGTGGAGCG Forward

1250R CGCTCCACCAACTAAGAACGGCC Reverse

I500R CATCTAGGGCATCACAGACC Reverse

I600F CGTCCCTGCCCTTTGTACACACC Forward

In Table VI.4, the pairwise sequence differences are shown. Within the genus Bactrurus sequence 

differences range between 1-1.3 %. Only the difference between B. brachycaudus and B. brachycaudus GD 

shows a value m uch lower than 1 %. A Chi-square test o f  the hom ogeneity o f  base frequencies across the 

included taxa results in a P-value o f  1. Thus, there is no significant correlation between the base 

distribution and the pairing o f  single sequences.

The ClustalW  multiple alignm ent was manually corrected due to secondary structure features and 

resulted in 2464 alignm ent positions. 2004 o f  these positions are constant. 203 o f  the rem aining 460 

positions are parsim ony informative positions.

Phylogenetic Analyses: The trees obtained for each o f  the three m ethods o f  phylogenetic 

inference (maxim um  likelihood, distance, and parsimony) had the sam e basic topological structure, w ith N. 

fontanus  as a sister-group to the crangonyctid taxa, and C. forbesi as a sister-group to a clade that 

com prised the three species (and single specim en) o f  Bactrurus (Fig. 6.1). Because the resulting trees o f  

maximum likelihood and distance analyses w ere identical, one tree (m axim um  likelihood) was chosen to
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TABLE V IJ
Sequence length. GC-content and Genebank Accession numbers for the taxa included in the analyses.

Species Sequence

Length

GC
Content

GB

Accession No.

Bactrurus brachycaudus 2322 bp 55% AF202979

Bactrurus mucronatus 2329 bp 55% AF202978

Bactrurus pseudomucronatus 2319 bp 55,2% AF202985

Bactrurus brachycaudus GD 2324 bp 55% AF202984

Crangonyx forbesi 2331 bp 53.7% AF202980

Niphargus fontanus 2237 bp 54.9% AF202981

G am m arus troglophilus 2307 bp 54.7% AF202983

G am m arus pulex 2250 bp 54.3% AF202982

represent both m ethods (Fig. 6.1a). As opposed to  the m axim um  likelihood tree, the tree produced by the 

parsim ony analysis failed to keep the m orphologically closely  related species B. mucronatus and B. 

pseudomucronatus in a separate clade. Instead, B. mucronatus formed a  sub-clade together with B. 

brachycaudus and B. brachycaudus GD (Fig. 6.1b).

TABLE VI.4
Pairwise sequence differences for Bactrurus and selected outgroup taxa. calculated in Paup 4.0. A Chi-square test was 

performed to test the homogeneity o f  base frequencies across the included taxa.

B.
mucronatus

B.
pseudomucronatus

B brachycaudus 
GD

C. forbesi jV. fontanus C.
troglophilus

G. pulex

IS brachycaudus 1.2% 1% 0.3% 7.6% 13% 9.9% 9.1%

B. mucronatus - 1.3% 1.2% 8.2% 7.8% 10.2% 9.4%

B. pseudomucronatus - - 1.1% 7.8% 7.6% 9.9% 9.2%
B. brachycaudus GD - - - 7.8% 7.2% 10% 9.3%

C. forbesi - - - - 10.4% 13.3% 11.9%

N. fontanus - - - - - 9.4% 8.7%

G. troglophilus - - - - - - 2.7%

D iscussion

The consensus tree obtained by the m axim um  likelihood (and distance) m ethod is in general 

accordance w ith both morphological and geographic characteristics o f  the species o f  Bactrurus included in 

the analyses (Fig. 6.1a):

•  Bactrurus brachycaudus and B. brachycaudus GD appear together on a sub-clade. The decision to 

treat the specimens o f  the glacial d rift area as a geographic variant rather than a new  species is also 

supported by the com paratively low sequence difference between both populations (Table VI.4).
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•  Sim ilarly, B. mucronatus and  B. pseudomucronatus are rendered on a second sub-clade. Both 

species are m orphologically  distinguished from  the other species o f  the genus by an extrem e case 

o f  sexually d im orphic telsons: in m ales, the teison is conspicuously elongate, reaching up to 1/3 o f  

the length o f  the body. Because o f  this distinct similarity, B. pseudomucronatus has been 

frequently m isidentified as B. mucronatus (hence, the epithet pseudomucronatus, m eaning ‘false 

mucronatus'). Y et, both species are distinguished by several less obvious diagnostic characters. 

M oreover, the ir distribution is disjunct (see Fig. 5.26). Bactrurus mucronatus occurs alm ost 

exclusively in glacial drift areas, w hereas B. pseudomucronatus inhabits karst regions o f  the Ozark 

Plateaus. The results o f  the analyses support the assumption that som e tim e before the Pleistocene 

an ancestral species with elongate male telsons split into two populations, one o f  which 

subsequently invaded and colonized the coarse grained sediments o f  aquifers in the glaciated parts 

o f  the Central Low lands.

Gammarus pulax

Gammarus troglophilus

Niphargus fontanus

Crangonyx forbasi100

Bactrurus mucronatus100
6 7

Bactrurus psaudomucronatus
100

Bactrurus brachycaudus
8 2

Bactrurus brachycaudus GD

Gammarus pulax

Gammarus troglophilus

Niphargus fontanus

100 Crangonyx forbasi

Bactrurus mucronatus100
6 5

Bactrurus brachycaudus GD
8 9

100 Bactrurus brachycaudus

Bactrurus psaudomucronatus

Fig. 6.1. 50% Majority Rule consensus trees obtained by maximum likelihood (a) and parsimony methods (b). Both 

trees were calculated using the Branch and Bound algorithm with 1000 bootstrap replicates (bootstrap values are shown 

for internal nodes). The trees were rooted using Gammarus pulex and G. troglophilus as outgroups.
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The parsim ony analysis rendered a different phylogeny for Bactrurus (Fig. 6.1b). The consensus 

tree show s B. pseudomucronatus as a sister-group to B. mucronatus and the brachycaudus specim ens. This 

branching pattern seems to contradict the m orphological data. For exam ple, it is highly unlikely that a 

distinct synapom orphy (extrem ely elongate, sexually  dim orphic telson) is reduced com pletely back into the 

prim itive state (norm al telson in B. brachycaudus). This inconsistency o f  the tree  in Figure 6.1b m ay reflect 

the tendency o f  parsim ony to underestimate the am ount o f  changes on long branches (Sullivan et al., 1997; 

M aley & M arshall, 1998).

Each m ethod o f  phylogenetic inference resulted in identical topologies o f  basal branches. The 

selection o f  crangonyctid taxa appears as m onophyletic group. Interestingly, the pairwise sequence 

differences render the North American species C. forbesi c loser to the European G. pulex  than to G. 

troglophilus (N orth America), the range o f  w hich even partly overlaps w ith that o f  C. forbesi.

This study demonstrates that the use o f  the small subunit gene produces reliable results for 

groundw ater am phipods at the species level and above. In a future project, it w ould be interesting to  further 

investigate relationships o f  additional stygobiont and/or stygophile taxa. A subsequent approach should, for 

exam ple, include several selected stygobiont taxa o f  all m ajor global distribution areas, combined with co- 

ocurring epigean amphipods o f  marine or freshw ater habitats.

Sum m ary

The exclusively subterranean am phipod genus Bactrurus (C rangonyctidae) occurs in central and 

eastern parts o f  the United States. Bactrurus is characterized by  m orphologically sim ilar species. In a t least 

one instance, the distinction between separate species and geographic variants appears to be blurred. A 

sequence analysis o f  the small subunit (18S) rDNA gene w as conducted for eight amphipod taxa. Both 

m aximum likelihood and distance methods resulted in phylogenies for several species o f  Bactrurus that are 

in accordance with morphological data. These results could not be validated by a parsim ony analysis. All 

three m ethods o f  phylogenetic inference, how ever, produced identical basal branching patterns. The 

m olecular analyses do not support the recognition o f  what initially appeared to be a new species o f  

Bactrurus from glaciated areas in M ontgomery County, Illinois.
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CHAPTER VII 

SUMMARY AND CONCLUSIONS

Phylogenetic reconstructions 

M orphological data

The increasing availability o f  com puters since the early eighties opened a  new  dom ain for 

reconstructing phylogenies. H ennig86 was one o f  the first softw are program s that provided a pow erful tool 

for com prehensive cladistic character analyses. A lthough the analyzable characters o f  a  taxon  cover a wide 

range o f  qualities and attributes, including ethological and physiological properties, the vast m ajority o f  

early  com puterized phylogenetic investigations w ere based on external m orphological characters. Yet, the 

use o f  m orphological characters for phylogenetic analyses is subjected to several lim itations. M ost 

im portantly to note, m orphological analyses are based on assum ptions and, hence, involve a  certain level o f  

bias that can never entirely be avoided. The assum ptions an investigator has to make com prise the selection 

o f  independently evolved characters, the coding o f  character states, as well as character type and weighting 

assessm ents. M inor changes to a data m atrix, e.g. the single change o f  a  character state o r weight, can 

already produce significantly different cladogram s.

An analysis that aim s to investigate phylogenetic relationships w ithin a taxon relies prim arily  on 

the principle o f  hom ology. O ne o f  the basic principles o f  cladistics states that only hom ologous characters, 

which w ere derived from a com m on ancestor and are shared am ong its descendants, can produce reliable 

phylogenetic reconstructions. U nfortunately, it is often very difficult, i f  not im possible, to  distinguish 

between hom ologous and hom oplasious traits in subterranean amphipods. T he adaptation to life in cold and 

dark aquatic environm ents seem s to favor the developm ent o f  sim ilar structures in unrelated groups (w hich 

are. thus, not derived from a com m on ancestor; see also C hapter IV: C haracter assessm ent and choice o f  

outgroup). It may, therefore, often be necessary to carry out prelim inary character analyses to determ ine 

which characters are true hom ologies.

The availability o f  phylogenetically reliable characters varies greatly  am ong different groups o f  

stygobiont am phipods. For exam ple, 27 characters w ere em ployed for the analyses o f  the Bogidiellidae 

opposed to 16 characters used for the C rangonyctidae (C hapters 4 and 5). The fact that on ly  11 o f  these 43 

characters w ere shared by both families reflects a typical dilem m a: many gam m aridean am phipod taxa are 

m orphologically very sim ilar, w hich limits the choice o f  reliable characters. Consequently, the choice o f  

characters is often tailored to the taxon under investigation.

O f  course, this does not m ean that the utilization o f  m orphological characters should  be avoided 

for cladistic analyses. Som e w orkers have produced excellent results with m orphological data. The 

lim itations m erely show  how  im portant it is to  ‘know  your g roup’ and develop a good understanding o f  the 

evolution o f  individual characters. This can be achieved, fo r example, by identifying hom ologous traits 

through prelim inary studies.
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Molecular data

The analyses o f  m olecular sequences opened a com pletely new  category o f  data for systematists. 

This approach was developed in the m id fifties when am ino acid sequences o f  proteins w ere investigated. 

In the sixties and seventies, sem i-autom ated sequencing o f  universal proteins, e.g. cytochrom e b or c and 

hem oglobin, allow ed the com parison o f  a new class o f  data am ong taxa. During the last 15 years, DNA 

sequencing has becom e an increasingly im portant instrum ent for system atic studies.

M olecular data have several advantageous properties w hen com pared w ith m orphological 

characters. They usually provide m uch larger am ounts o f  equivalently com parable evidence, which can be 

recognized as independent units. For exam ple, the 18S (sm all subunit) rD N A  gene has approxim ately 2,500 

nucleotides that can be treated as 2,500 pieces o f  phylogenetic evidence. The occurrence o f  m utations in 

d ifferent fragm ents is very likely independent. In contrast, 2,500 characters w ould be an impracticably 

large num ber for m orphological analyses. M oreover, it is often im possible to decide w hether particular 

structures evolved independently o r w hether a structural change in character A is equivalent to a modified 

character B. We cannot be sure w hether the reduction o f  rami segm ents o f  the pleopods is not 

developm entaily  linked with a m odification o f  ram i spines, or i f  the m odification o f  rami spines is 

equivalent to the loss o f  gills on the seventh pereopod.

A lthough DNA data do not exhibit the shortcom ings typical fo r m orphological analyses, they are 

characterized by lim itations o f  their own. In certain cases, it may be extrem ely difficult, if  not impossible, 

to determ ine which nucleotides or sequences o f  nucleotides are hom ologous. This problem  particularly 

arises when a gene under investigation differs significantly  am ong the analyzed taxa. The probability that 

different bases at sam e positions have evolved independently is very high (e.g. insertions or deletions). 

A nother im portant requirem ent for com parative m olecular analyses is the assum ption that a particular gene 

evolved at the sam e evolutionary rate in different organism s. Recent publications have im plied that some 

genes tend to produce conflicting phylogenies when com pared with w ell-established m orphological or 

fossil data (M aley & M arshall, 1998).

Suggestions for future studies

Obviously, the weaknesses o f  individual analytical tools can be m inim ized by  com bining different 

m ethods. The ideal phylogenetic reconstruction, especially  at h igher taxonom ic levels, com piles 

inform ation from several, independent sources, for exam ple, m orphological, physiological, ethological and 

m olecular data, and com bines them to a single, com prehensive analysis ( ‘total ev idence’ approach).

H ow ever, choosing a  com prehensive approach m ay not alw ays be feasible due to  temporal or 

financial restrictions. In this case, a ‘sim ple’ phylogenetic analysis w ould be preferable. Phylogenetic 

reconstructions that em ploy inform ation from a single source, e.g. on ly  m orphological o r m olecular data, 

can definitely produce excellent results (w hich do not necessarily have to differ from  those obtained by 

m ore com prehensive analyses). Yet, these analyses depend much m ore on the reliability  o f  the analyzed 

data set and are, therefore, m ore easily prone to failure. W ith regard to the difficulties encountered during

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



125

this research project, I w ould like to address tw o factors that significantly contribute to  the success o f 

phylogenetic studies:

•  T axonom ic d esc rip tions: The assessm ent o f  morphological characters often relies on the literature. 

Although the quality  o f  taxonom ic descriptions o f  hypogean am phipods has considerably im proved 

during the past 50 years, the identification o f  useful characters still is often very difficult if  not 

im possible. The m ain problems to be noted are qualitative and quantitative differences am ong 

descriptions. The occurrence o f  potentially useful characters is only vaguely m entioned or not described 

at all in some publications, for exam ple, broodplates, retinacuiae o f  the pleopods, o r even the arm ature 

o f  m outhparts and appendages. As a result, unidentifiable structures have to be coded as ‘unknow n’ 

( ’? ’), which may increase polytom ies o r produce less reliable phytogenies. In the w orst case, a character 

has to be excluded from the analysis because too m any taxa with unknown conditions are involved. 

From a cladistic point o f  view, it w ould be highly recom m endable to introduce a  binding protocol for 

taxonom ic descriptions that guarantees a consistent standard for both describing tex t and accom panying 

drawings.

•  C ollection  an d  p re se rv a tio n  techn iques: Unfortunately, for the m olecular analyses (Chapter VI), all 

o lder specimens from  research collections failed to yield DNA products w hereas 80%  o f  the freshly 

collected specim ens successfully yielded DNA. The specimens collected during the 1999 field trip were 

preserved in 90-95%  ethanol im m ediately after the sam ples w ere taken. In com parison, research 

collection material is usually preserved in 70-75%  alcohol (som e museums still preserve their 

specim ens in form alin, which m akes DNA extraction alm ost im possible). In order to prevent post

mortem  breakdown o f  DNA by nucleases, the following steps should be considered: (1) preservation in 

purified alcohol (90-95% ); (2) preservation immediately after collection; (3) storage a t -20 to 4° C until 

extraction. These sim ple procedures are easy to carry out and can save considerable amounts o f  time 

and money (not to m ention the frustration o f  unsuccessful analyses).

B iogeography a n d  evo lu tio n ary  h is to ry

The geographic distribution o f  crangonyctid and bogidiellid taxa is rather unusual. It can best be 

analogized with an incom plete mosaic, the rem aining pieces o f  which are scattered o v er several continents 

and islands. A com parison o f  the distributions o f  both families reveals several interesting differences (Table 

V II.1).
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TABLE VII. 1
Comparison o f  biogeographic and taxonomic features o f  the families Bogidiellidae and Crangonyctidae. See Table 

Vll.2 for details on habitat types and the geographic distribution o f  crangonyctid taxa.

' Not including approximately 78 additional, unpublished species, the descriptions o f  which are in preparation.

Bogidiellidae Crangonyctidae

Distribution worldwide (predominantly Mediterranean 

and Caribbean regions, and Central and 

South America)

Holarctic (predominantly continental 

USA and eastern Europe)

Habitat types exclusively hypogean hypogean and epigean

mostly freshwater (some brackish and 

marine taxa)

exclusively freshwater

Taxonomic structure 110 species in 33 genera ca. ISO species in 6 extant genera1

The Bogidiellidae

All species o f  the Bogidiellidae occur in subterranean environm ents. T hey  have alm ost a 

w orldw ide distribution, except for boreal, arctic and A ntarctic regions. The geographic distribution o f  the 

family is characterized by four m ajor concentrations o f  taxa in Central and South A m erica, the W est Indian 

region, and especially in the larger M editerranean region. I f  we com pare the species/genera ratios o f  certain 

regions, w e find that generic diversity is highest in the w estern hem isphere, w hereas species richness is 

greater in the M editerranean region (Chapter IV, D iscussion).

The characteristics o f  this unusual distribution pattern allows several conclusions to be drawn:

•  The bogidiellids have a scattered distribution over several continents. In addition, som e taxa occur in 

isolated, continental freshw ater habitats, for example, in Brazil, A fghanistan, China and Europe. Some 

o f  these habitats probably have been separated from m arine waters since the Paleozoic. Stock (1981) 

suggested that the Bogidiellidae were already a w ell-established freshw ater group p rio r to the break-up 

o f  Pangaea, about 180-200 M Y BP.

•  There are three clusters o f  taxa in the western hem isphere and one in the M editerranean region. Each o f 

these regions has an individual, com plex geological history, com pletely different from that o f  other 

regions. What they m ay have in com m on, however, is that m ost o f  these coastal regions and islands 

em erged from the sea far m ore recently than the m iddle to late Paleozoic. The geologically  youngest 

regions are probably the present M editerranean coastal areas. M ost o f  these regions have evolved 

during the Tertiary, some as early  as the Miocene (V onk et al., 1999; Karaman &  K aram an, 2000). 

A lthough the rem arkable abundance o f  bogidiellids in these regions is certainly influenced by a variety 

o f  ecological factors (Sket, 1999), the relatively recent geological evolution o f  the M editerranean is 

likely to be the key elem ent regarding species richness and distribution in this part o f  the world. The 

present taxonom ic structure and distribution pattern suggest that invasions o f  new ly available habitats,
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even re-invasions o f  m arine environm ents, and a subsequent diversification o r large-scale adaptive 

radiation in these areas, took  place m ore recently than, for exam ple, in the w estern hemisphere.

The Crangonyctidae

The C rangonyctidae are one o f  th e  largest freshw ater fam ilies o f  the Am phipoda, w ith ca. 153 

species in seven genera. The species/genera ratio o f  the crangonyctids is significantly higher than the 

highest ratio found for the bogidiellids in the M editerranean region (33 species in 4  genera). U nlike the 

B ogidiellidae. crangonyctids occur exclusively in freshw ater habitats o f  the H olarctic region (H olsinger, 

1977). A pproxim ately 80%  o f  the crangonyctid species are recorded from  hypogean habitats (T able VII.2). 

M ost o f  the epigean species live in surface freshw ater environm ents that may be hydraulically connected 

with underlying groundw ater aquifers, for exam ple, seeps, bogs, sm all streams, etc.

H olsinger (1986a) suggested an ancient freshw ater origin fo r the Crangonyctidae, dating back to 

the late M esozoic. He pointed out that crangonyctids probably were already a w ell established freshw ater 

group on the Laurasian landm ass prior to  the break-up o f  North A m erica and Europe and supported his 

assum ptions w ith four lines o f  evidence as follows: (1) Crangonyctid taxa appear to have no close 

phylogenetic relationship to m arine groups; (2) the larger genera occur in both N orth  A m erica and Eurasia 

(see Fig. 7.1); (3) their high specific and generic diversity and distribution over im m ense geographic areas 

m ay be the result o f  a long period o f  colonization and adaptation to freshwater environm ents; and (4) the 

"crangonyctid-like” genus Palaeogamm arus. fossilized in Baltic am ber from the Eocene or O ligocene, 

im plies that the family w as already adapted to  freshw ater habitats at least by the early  Tertiary.

TABLE VII.2

Geographic distribution and habitat types o f  genera and species o f  the Crangonyctidae. Numbers in parentheses denote 

unpublished species (descriptions in manuscript o r  preparation). Table adapted from Holsinger. 1977.

Genus

Habitat Distribution

Described

species Hypogean Epigean Hypogean/epigean2

North 

America Eurasia

Bactrurus 3 (4 ) 3 (4) - - 3(4)
Crangonyx 23 (24) 9 (6 ) 11 (15) 3(3) 19(24) 4
Lyurella 1 - 1 - 1

Palaeogammarus1 3 - 3 - 3
Stygobromus 101(50) 101 (50) - - 98 (50) 3

Stygonyx I 1 - - 1
Synurella 18 5 12 1 4 14

' Extinct genus, known only from Baltic amber fossils.

■ Species found in both subterranean and epigean habitats.
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The geographic distribution o f  the genus Bactrurus provides excellent exem plary data  that allows 

us to draw conclusions about the age o f  the Crangonyctidae. Interestingly, the distribution o f  Bactrurus 

show s sim ilar patterns when com pared with the distribution o f  the Bogidiellidae: It is com posed o f  relict 

species as well as m ore abundant taxa with w idespread ranges (C hapter V, D iscussion).

•  Three highly endem ic new species occur in isolated habitats, and are know n from single or few 

localities in Alabam a, the Cum berland Gap area (Virginia and Tennessee) and in an unglaciated part o f 

southern Indiana. The rem arkable m orphological similarity o f  these three species in addition to several 

distinct synapom orphies strongly suggests their descent from a widespread com m on ancestor.

•  In contrast, the occurrence o f  two more abundant species w ith  w ider ranges seem  to po in t tow ards the 

colonization o f  newly available habitat space some time during the Pleistocene, w hen the glaciers 

repeatedly advanced and retreated, and deposited thick layers o f  sediments in the Central Lowlands.

The fact that all species o f  Bactrurus occur in regions that were apparently  not inundated by a 

shallow  m arine em baym ent during the m iddle to late Cretaceous points towards a freshw ater origin at least 

in the early M esozoic, probably even in the m iddle to late Paleozoic. This pattern is sim ilar fo r Crangonyx 

and Sty’gobrom us (there are a few exceptional occurrences in form erly inundated areas that are very likely 

recolonizations). All three genera have what m ay be relicts in karst regions at relatively high elevations, for 

exam ple, in the Appalachians and also in western North America.

S u m m ary

The com parison o f  the biogeography and taxonom y o f  the B ogidiellidae and Crangonyctidae 

reveals significant differences:

•  Both families have distinctly different geographic distributions, taxonomic structures and ecological 

preferences (Table V II.I).

•  G iven the significantly higher species/genera ratio o f  the Crangonyctidae, w e m ight expect the family to 

be a relatively young group, based on the assumption “the higher the generic diversity, the older the 

group". Yet. both bogidiellids and crangonyctids are characterized by ancient freshw ater relicts, 

possibly dating back to the m iddle to late Paleozoic, as w ell as regions w ith  high diversification and 

abundance that are very likely the result o f  much younger vicariant events.

The conclusions discussed in this chapter are based prim arily on geographic and /o r geological 

data. A final answ er to the origin o f  freshwater amphipods can probably not be expected before different 

data sources, e.g. com prehensive morphological and m olecular analyses, are investigated. As w e m ay have 

reached the lim itations o f  m orphological character analyses, it becom es evident that the sequencing o f  a 

single gene cannot resolve the rem aining grey areas o f  the evolutionary history  o f  the A m phipoda. At 

present, num erous projects are being carried out o r being planned that have the potential to unravel high- 

level, large-scale phylogenies for the Am phipoda, including the investigation o f  different genes, allozymes, 

am ino acids, and even karyotypes. The com pilation and evaluation o f  large d ata  sets from  num erous 

sources rem ains the m ost prom ising option for a reliable reconstruction o f  am phipod phylogeny.
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APPENDICES 

A - List o f all described genera and species o f the revised family Bogidiellidae (Chapter IV)

Actogidiella Stock. 19 8 1

A. cultrifera Stock. 1981 

Aequigidiella Botosaneanu&  Stock, 1989

A. aquilifera Botosaneanu & Stock. 1989 

Afridiella Karaman & Barnard. 1979

A. messanai Diviacco & RufTo. 1985

A. pectinicauda RufTo. 1982

A. somala Ruffo. 1970 (cf. RufTo. t970a)a 

Antillogidiella Stock. 1981

A. martini (Stock. 1978)

Arganogidiella n. gen.

A. arganoi (RufTo & Vigna Taglianti. 1973)

A. arganoides (RufTo & Vigna Taglianti. 1977)

Argenlinogidiella n. gen.

A. horcomollensis (Grosso & Fernandez. 1988)

A. laxillai (Grosso & Claps. 1984)

Artesia Holsinger. 1980

A. subterranea Holsinger. 1980 (in Holsinger & Longley. 1980)

A. welbourni Holsinger. 1992 

Aurobogidiella Karaman. 1988 (cf. Karaman. 1988c)

A. italica (Karaman, 1979)

Bermudagidiella n.gen.

bermudensis (Stock. Sket & IlifTe. 1987)

Bogtdiella Hertzog, 1933 — albertimagni group (A) (inner rami o f  plcopods absent)

B. albertimagni Hertzog. 1933 

B. aprutina Pcsce, 1980

B. balearica Dancau. 1973 

B. broodbakkeri Stock. 1992 

B. convexa Stock & Notenboom. 1988

B. cyrnensis Hovenkamp. Hovenkamp & Van der Heide, 1983

B. glabra Stock & Notenboom. 1988

B glacialis S. Karaman. 1959

B. helenae Mateus & Maciel. 1967

B. hispanica Stock & Notenboom. 1988

B. ichnusae RufTo & Vigna Taglianti. 1975

B. madeirae Stock. 1994

B. neotropica RufTo, 1952
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B. semidenticulata Mestrov. 1961 

B. torrenticola Pretus & Stock. 1990 

Bogidiella -  skopljensis group (B) (inner rami o f  pleopods 1-segmented. reduced)

B. calicali Karaman. 1988 (cf. Karaman. 1988b)

B. copia Karaman. 1988 (cf. Karaman. 1988a)

B. gammariformis Sket, 1985

B. longiflagellum S. Karaman. 1959

B. nicolae Karaman. 1988 (cf. Karaman. 1988b)

B. serbica Karaman. 1987 

B. skopljensis S. Karaman. 1933 

Bogidiella -  niphargoides group (C) (one or more characters distinctly modified: inner rami o f  pleopods reduced, 

vestigial, or absent)

B. cooki Grosso & Ringueiet. 1979 

B. niphargoides RufTo & Vigna Taglianti. 1977 

B. thai Botosancanu & Notenboom. 1988 

B. vomeroi RufTo & Vigna Taglianti. 1977 

Bogidiella -  lindbergi group (D) (only one sex described)

B. barbaria Karaman. 1990 (cf. Karaman, 1990c)

B. cerberus Bou & Ruffo. 1979

B. deharvengi Stock & Botosaneanu. 1988

B. lindbergi Ruffo. 1958

B. michaelae Ruffo & Vigna Taglianti. 1977

B. paolii Hovenkamp et al.. 1983

B. ruffoi Birstein & Ljovuschkin. 1968

B. sinica Karaman & Sket. 1990

B. silvern Pesce. 1981

B. sketi Karaman. 1989 (cf. Karaman. 1989a)

B. siocki Karaman, 1990 (cf. Karaman. 1990b)

B. vandeli Coineau. 1969 

Bogidomma Bradbury & Williams. 1996

B. australis Bradbury & Williams. 1996 

Cabogidiella Slock & Vonk. 1992

C. littoralis Stock & Vonk. 1992 

Dycticogidiella Grosso & Claps. 1985

D. lalampayensis Grosso & Claps, 1985 

D. ringueleti Grosso & Fernandez. 1988

F.obogidiella Karaman. 1982

£  purmamarcensis (Grosso & Ringueiet, 1969)

Grossogidiella n. gen.

G. mauryi (Grosso & Fernandez, 1990)

Guagidiella Stock. 1981
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G. holsingeri (RufTo & Vigna. Taglianti 1973)

G. pasquinii (Ruffo & Vigna Taglianti. 1977)

Hagidiella Stock. 1985

H. prionura Stock. 1985 

Hebraegidiella Karaman. 1988 (cf. Karaman. 1988a)

H. bromleyana Karaman. 1988 (cf. Karaman. 1988a)

Indogidiella n . g e n .

I. sarawacensis (Stock. 1983)

I. daccordii (Ruffo. 1994)

Xfaghrebidiella Diviacco & Ruffo. 1985

A/. maroccana Diviacco & Ruffo. 1985 

Xtarigidiella Stock. 1981

Af. brasiliensis (Sicwing. 1953)

Af. crassipes Stock. 1981 

Xfarinobogidiella Karaman. 1982

Af. thyrrenica (Schiecke. 1978)

Medigidiella Stock. 1981

Af. antennata Stock & Notenboom. 1988

XI. aquatica Karaman. 1990 (cf. Karaman. 1990a)

XI. arista Koenemann, Vonk &  Schram. 1998

Af. chappuisi (RufTo. 1952) (in RufTo & Delamare Deboutteville. 1952) 

Xf. dalmatina (S. Karaman. 1953)

Xf. he brae a (RufTo. 1963)

Xf minotaurus (Ruffo & Schiecke. 1976)

Af. paolii Hovenkamp. Hovenkamp & Van der heidc. 1983 

Af. paraichnusae (Karaman. 1979)

Af. uncinata Stock & Notenboom. 1988 

Xlegagidiella Koenemann & Holsinger. 1999

Af. azul Koenemann & Holsinger, 1999 

Xfesochthongidiella Grosso & Fernandez. 1985

Af. tucumanensis Grosso & Fernandez. 1985 

Xtexigidiella Stock. 1981

Af chitalensis Karaman. 1982

Af. hamatula Stock. 1985

Af mexicana Karaman. 1982

Af. sbordonii (Ruffo & Vigna Taglianti, 1973)

Af tabascensis (Villalobos, 1961)

S'ubigidiella Karaman. 1988a

<V. nubica (Ruffo. 1984)

Orchestigidiella Stock. 1981

O. orchestipes (RufTo & Vigna. Taglianti 1977)
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Parabogidiella Holsinger. 1980

P. americana Holsinger. 1980 (in Holsinger & Longley. 1980) 

Patagongidiella Grosso & Fernandez, 1990

P. danieli G rosso & Fernandez. 1990 

Spelaeogammarus da Silva Brum, 1973

S. bahiensis da Silva Brum. 1973 

S. spinilacerius Koenemann & Holsinger (in press)

S. trajanoae Koenemann & Holsinger (in press)

S. santanensis Koenemann & Holsinger (in press)

Stygogidiella Stock. 1981

5. adantica Sanchez. 1991 

S. bredim (Shoemaker. 1959)

•S', cypria Stock. 1990 

S. perla Stock. 1981 

5. purpuriae Stock. 1988

5. uniramosa Stock & Ronde-Broekhuizen. 1987 

S. virginalis Stock. 1981 

Xystriogidiella Stock. 1984

X. capricornea Stock. 1984

A", spathulata Stock &  Ronde-Broekhuizen. 1987
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B - L ist o f  characters and character states employed in the cladistic analysis o f the Bogidiellidae 

(Chapter IV)

References to taxa are based on the unrevised family Bogidiellidae s. lat. (see Chapter IV, Taxa)

( 1) Modifications o f  the outer ramus in male pleopod 1

State 0 = absent 

State 1 = present

Alternative run: weight factor: 6: ordered. Modified outer rami on pleopod 1 occur in three taxa only. 

Mesochtongidiella bears 1 modified spine on segment 2. whereas Mexigidiella has I modified spine on segment 2 and

3. respectively. The modifications o f Stygogidiella B are less pronounced but still distinguishable (see Chapter IV. New 

taxa).

(2) Modifications o f  the outer ramus in male pleopod 2

State 0 = absent 

State I = present

Alternative run: weight factor: 6; ordered. Modifications in the male pleopod 2 occurred more frequently than 

in pleopod 1. The majority o f  affected taxa had 1 modified spine on segment 2. A few taxa showed additionally slightly 

modified segments or differently reduced segments (see Chapter IV. Characters and Incompatible taxa).

(3) Number of outer ramus segments in pleopods 1-3

State 0 = 3 or more segments 

State I = 3 segments 

State 2 = 2 or 3 segments 

State 3 = 2 or less segments

Alternative run: weight factor: 6: ordered. State 0 comprises genera with more than 3 outer rami segments in 

pleopods 1-3 (Artesia and Dussartiella). genera with 3 segments in the outer rami o f  I pleopod and more than 3 

segments in the outer rami o f  the other 2 pleopods (Aurobogidiella and Paracrangonyx), and genera with a varying 

number o f outer rami segments (Aequigidielta with 3 or 4 segments and Patagongidiella with 3-5 segments. In 

Marigidiella. the specimens had 3-segmented outer rami in pleopod 1+2 and a 2-scgmented outer ramus in pleopod 3 

(state 2). State 3 refers to a differently varying number o f  segments in both sexes (Bollegidia: 0-2 segments) and also to 

a 1 -segmented outer ramus (Bollegidia and Pseudingolfiella) (see also Chapter IV, Characters).

(4) Inner rami o f  pleopods 1-3

State 0 = muliiarticulate, aequiramous 

State 1 = uniarticulate. aequiramous 

State 2 = uniarticulate. small 

State 3 = uniarticulate. reduced 

State 4 = vestigial 

State 5 = absent
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Alternative run: weight factor: 6: ordered. State 2 includes inner rami that arc shorter than the outer ramus but 

distinctly longer than segment 1 o f  the outer ramus. A uniarticulate. reduced inner ramus that is shorter than segment 1 

of the outer ramus is coded as state 3. Vestigial inner rami (state 4) are small, bud-like structures without setae. 

Majority Coding was applied to the following OTUs: Bogidiella C (1 species with absent inner rami. I species with 

reduced inner rami. 2 species with vestigial inner rami on pleopods 1+2 and absent inner ramus on pleopod 3: state 4); 

Stygogidiella A (3 species with absent inner rami. 2 species with reduced inner rami: state 5); Antillogidiella martini 

(male with reduced inner rami, female inner rami are lacking: state 3); Guagidiella (2 species w ith vestigial inner rami 

on pleopods 1+2 and absent inner ramus on pleopod 3: state 4).

(5) Modifications in male uropod 1

State 0 = absent

State 1 = spines modified

State 2 = rami/peduncle and spines modified

Alternative run: weight factor: 6: ordered. State 2 could be observed in two taxa. In Patagongidiella danieli. a 

process o f the uropod 1 peduncle was apparently fused with a suspiciously modified spine. Similarly. Guagidiella had 

I strongly modified spine on a distinctly reduced inner ramus that was partly fused with the peduncle.

(6) Modifications in male uropod 2

State 0 = absent

State 1 = spines modified

State 2 = rami and spines modified

Alternative run: weight factor: 6; ordered. As with state 2 o f character 5. a strongly reduced inner ramus, 

bearing I modified spine, appears to be in different states o f  fusion with the peduncle in Mesochthongidiella and 

Dycticogidiella (state 2). A reduced inner ramus plus modified spine without any signs o f  fusion occurs in 

Aequigidiella (state 2).

(7) Dagger-shaped rami in female uropod 1

State 0 = absent 

State 1 = present

Alternative run: weight factor: 6: ordered. "Dagger-shaped rami" was the most commonly used term in the 

literature for advanced reductions in uropods 1+2 (characters 7-10). It covers a variety o f  different reduction states from 

distinctly pointed rami tips without apical spines to slightly pointed tips with 1 or 2 apical spines. In all cases, however, 

the term "dagger-shaped" seemed to be appropriate. The only exceptions were Bollegidia and Pseudingolfiella. 

showing pointed, dagger-shaped reductions as well as sack-like rami (in some instances, differently reduced on outer 

and inner ramus o f  the same uropod). Because dagger-shaped rami occurred randomly in either sex on both uropods 

1+2. this reduction was split into 4 independent characters.

(8) Dagger-shaped rami in female uropod 2

State 0 = absent 

State I = present

Alternative run: weight factor: 6; ordered.
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(9) Dagger-shaped rami in male uropod 1

State 0 = absent 

State 1 = present

Alternative run: weight factor: 6: ordered.

(10) Dagger-shaped rami in male uropod 2

State 0 = absent 

State I = present

Alternative run: weight factor: 6; ordered.

(11) Rami o f  uropod 3

State 0 = biramous. aequiramous

State 1 = biramous with inner ramus greatly in size reduced 

State 2 = uniramous

Alternative run: weight factor: 6: ordered. A greatly reduced, almost scale-like inner ramus on uropod 3 is 

exceptional for bogidiellids. It occurs in Dussariiella and Paracrangonyx. Pseudingol/iella is the only bogidiellid genus 

with a uniramous uropod 3 (see Chapter IV. Incompatible taxa).

( 12) Outer ramus o f  uropod 3

Slate 0 = I-segmented 

State 1 = 2-segmented

Alternative run: weight factor: 6: ordered. A 2-segmented outer ramus occurs in Dussariiella, 

Paracrangonyx. and Pseudingol/iella only (see Chapter IV. Incompatible taxa). Because only some species in a few 

amphipod families have 2-segmented outer rami, a I-segmented outer ramus was considered the plesiomorphic state.

(13) Gills

State 0 = on pereonites 2-6 

Stale I = on pereonites 3-6 

State 2 = on pereonites 4-6

Alternative run: weight factor: 3: ordered. Majority Coding has been applied to Stygogidiella A (state 2). 

According to Sanchez (1991). Bogidiella (Stygogidiella) atlantica has gills on pereonites 3-5. which makes it the only 

species in the family with this character.

(14) Oostegites

State 0 = on pereopods 2-5 

State 1 = on pereopods 2-5 or 3-5 

State 2 = on pereopods 3-5 

State 3 = on pereopods 3+4 

Stale 4 = "absent”

Alternative run: weight factor: 3; ordered. Oftentimes, this character is poorly or not at all described in the 

literature. Consequently, some states are adapted from drawings. State I occurred in the polytypic taxa Artesia. 

Bogidiella A, and Mexigidiella. State 3 and 4 are autopomorphic modifications o f  Bollegidia and Pseudingolftella. The
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term "absent" is adopted from the literature. Apparently, brood plates were lacking in all females o f  both

Pseudingol/iella sp.

( 15) Number o f  segments in flagellum o f  antenna 2

State 0 = 5 or more segments 

State I = 5 segments 

State 2 = 5 or less segments

Alternative run: unweighted; ordered. The number o f  segments in the flagellum o f  antenna 2 is a relatively 

constant character. In some instances, a varying number o f segments occurred intraspecific as well as interspecific. 

Examples for intraspecific variation are Aequigidiella (5-7 segments = state 0) and Orchestigidiella (4-5 segments = 

state 2). Interspecific variation could be observed in the polytypic taxa Medigidiella A (4-5 or 5 segments = state 2). 

Medigidiella C (5 or 6 segments = state 0). and Guagidiella (4 or 5 segments = state 2).

(16) Number o f  segments in accessory flagellum

State 0 = 3 or more segments 

State 1 = 2 or 3 segments 

State 2 = 2 segments 

State 3 = I segm ent

Alternative run: unweighted; ordered. Corresponding to character (15). state 1 was assigned to  the polytypic 

OTUs Afridiella. Bogidiella A+B, Medigidiella A. and Stygogidiella A.

(17) Number o f  palp segments in maxilla 1

State 0 = 2 segments 

State 1 = 1-2 segments 

State 2 = I segment

Alternative run: weight factor: 3. ordered. Three taxa showed an interesting case o f  variable numbers o f  palp 

segments in maxilla 1. coded as state I: Stygogidiella horcomollensis (Stygogidiella B) obviously bears a  l-segmented 

palp. In some individuals, however, a weakly developed articulation, separating palp segments 1 and 2. could be 

perceived visually. 5. lavillai. the other species o f Stygogidiella B had a 2-segmented palp. Almost identical with the 

situation in Stygogidiella B. both species o f  Dycticogidiella had 2-segmented and l-segm ented, weakly articulated palp 

segments and state 1 was applied, too. The third OTU with state I was the only described specimen o f  Dussariiella 

madegassa which had a long 2-segmented palp on the right, and a l-segmented, reduced palp on the left maxilla 1.

(18) Number o f  setae on inner lobe o f  maxilla 1

State 0 = 3 setae 

State 1 = 2 or 3 setae 

State 2 = 2 setae 

State 3 = 1 or 2 setae 

State 4 = 1 seta 

State 5 = setae absent
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Alternative run: unweighted: ordered. Characters 18 and 19 were left unweighted because their assumed 

minor phylogenetic significance. See Chapter IV. Characters for an explanation o f  transitional states in characters 18 

and 19.

(19) Number o f spines on outer lobe o f  maxilla 1

State 0 = 9 spines 

State 1 = 7 or 8 spines 

State 2 = 7 spines 

State 3 = 6 or 7 spines 

State 4 = 6 spines

Alternative run: unweighted: ordered.

(20) Maxilla 2

State 0 = normal 

State I = reduced

Alternative run: unweighted; ordered. In the literature, the choice o f  descriptive terms for the inner plates on

maxilla 2 varies considerably. State 1 comprises inner plates that are usually described as "small”, "reduced", or

“weak” .

(21) Mandibular molar

State 0 = triturative 

State 1 = non-triturative

Alternative run: unweighted; ordered. Like in character 20. state I refers to molars that are described as 

"small", "weak", etc.

(22) Coxal plates

State 0 = longer than wide 

State 1 = wider than long

Alternative run: unweighted; ordered. In Artesia. coxal plates 1 and 2 were wider than long or as wide as

long, whereas coxae 3-7 were distinctly longer than wide. We chose state 0 as apt coding for Artesia.

(23) Telson shape

State 0 = longer than wide

State I = approximately as long as wide

State 2 = wider than long

Alternative run: unweighted: ordered. The majority o f bogidiellid amphipods have a telson that is wider than 

long. State 0 seems to be typical for non-European taxa. The Majority Coding method has been applied to Bogidiella A 

and C. and Medigidiella A (all state 2).
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(24) Apical spines o f  telson

State 0 = 4 or more spines

State 1 = 2 or 3 spines

State 2 = 2 spines 

State 3 = 1 or 2 spines 

State 4 = I spine 

State 5 = spines absent

Alternative run: unweighted; ordered. See Characters for an explanation o f  variable or transitional states 1

and 3 o f  characters 24 and 25. The Majority Coding method has been applied to Stygogidiella A (state 3).

(25) Subapical spines o f telson

State 0 = 3-5 spines 

State I = 2-4 spines 

State 2 = 2 spines 

State 3 = 1 or 2 spines 

State 4 = 1 spine 

State 5 = 0 or 1 spine 

State 6 = spines absent

Alternative run: unweighted; ordered. State 0 and 1 occurred as highly variable, autapomorphic characters in 

Megagidiella and Spelaeogammarus, respectively. The 3 subapical spines in Hebraegidiella were coded as transitional 

condition o f state 1. W e applied the Majority Coding method to Bogidiella C (state 4).

(26) Mediostemal processes

State 0 = absent 

State 1 = present

Alternative run: weight factor: 6: ordered. Mediostemal processes were present in Patagongidiella mauryi 

and Patagongidiella danieli only. We are o f  the opinion that these structures are both morphologically and 

physiologically different from the mediostemal gills in Paracrangonyx. Therefore, the gills in Paracrangonyx have 

been treated as true autapomorphies and excluded from the analysis.

(27) Eyes

Slate 0 = eyes present

State 1 = 2-3 unpigmented lens cells

State 2 = eyes absent

Alternative run: weight factor: 6; ordered. As mentioned above, we performed an phylogenetic analysis on 

the (unrevised) family Bogidiellidae s. Iat.. attempting to code all different states o f  homologue structures as 

independent characters. Since Paracrangonyx is removed from the family, however, the phylogenetic relationship o f  

reduced eye structures in Paracrangonyx (state 1) and large, fully developed eyes observed in Bogidomma (state 2) 

becomes irrelevant. In the revised family, Bogidomma australis remains the only bogidiellid with eyes, a fact that 

certainly raises attention because o f  its uniqueness. The biology o f  this species from Barrow Island, Western Australia, 

may be worth further study. All the more, because it is reported from a cave (!) at the outer margin o f  the bogidiellid 

distribution range, w-ith a possible connection to marine waters.
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C  - List o f  characters and character states used in the phylogenetic analysis o f  B actrurus and selected 

taxa (Chapter V)

I f  not explicitly indicated otherw ise, a  character w as coded  as unordered and unw eighted (i.e., 

equally  w eighted with w eight factor 1) fo r both unordered and partially  ordered analysis (see Chapter V, 

C ladistic m ethods)

(1) Eyes

State 0 =  eyes present 

State 1 = eyes absent

Partially ordered analysis: weight factor 3. For this character, state 0 was assumed as the ancestral condition 

o f  an epigean predecessor. Although different degrees o f  reduction could be observed in some o f the stygophile taxa. a 

differentiation into more than two states (absent and present) seemed doubtful because o f  the discrete appearance o f

this trait.

(2) Rastellate spines on carpus o f  gnathopod 2

State 0 =  absent 

State 1 = present

The occurrence o f  2-6 rastellate spines (sometimes reduced to strong brush-like setae) on the distoposterior 

margin o f  the carpus o f  gnathopod 2 was considered an apomorphic condition. It is present in all Bactrurus species and 

most terminal taxa o f  the genus Stygobromus. Rastellate spines and setae usually occur on both gnathopods. The only 

exception was Stygobromus t. tenuis which had no rastellate spines on the first gnathopod. To avoid overrating o f  this 

trait by scoring rastellate spines for both gnathopods as two independent characters, we decided to include the character 

‘rastellate spines’ only once, for the second gnathopod.

(3) Coxal gills

State 0 = 6 pairs (present on pereopods 2-7)

State 1 = 5 pairs (present on pereopods 2-6)

State 2 = 4 pairs (present on pereopods 3-6)

State 3 = 3 pairs (present on pereopods 4-6)

Partially ordered analysis: ordered; weight factor 3. A progressive reduction o f  coxal gills was regarded as 

adaptation to subterranean environments and, therefore, state 0 was coded as plesiomorphic character state.

(4) Coxal gills on pereopod 7

State 0 = normal 

State 1 = reduced 

State 2 = absent

Partially ordered analysis: ordered. Similar as in character 3, a continuous reduction o f  this trait was 

hypothesized, with state 2 as apomorphic condition.
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(5) Median sternal processes

State 0 = absent 

State I = present

Median sternal processes occur in many crangonyctid taxa. More than 95% o f  B. brachycaudus specimens

had no median sternal processes. According to the majority o f  occurrences, state 0 was chosen for this species

(Majority Coding method: see Koenemann & Holsinger. 1999a).

(6) Lateral sternal processes

State 0 = absent

State 1 = on pereonites 6 and 7

State 2 = on pereonites 6 and 7 and plconite 1

Partially ordered analysis: ordered: weight factor 3. The function o f  sternal processes is still unknown. We 

think that it may be an adaptation to life in cold subterranean freshwater environments and assume a linear, progressive 

evolution from state 0 to state 2. Approximately 86% o f  all B. mucronatus specimens examined had lateral sternal 

processes on pereopods 6 and 7 and on pleonite 1 (as opposed to sternal processes on pereopods 6 and 7 only). 

Therefore, state 2 was chosen for B. mucronatus.

(7) Uronites with dorsal setae

State 0 = present 

State I = absent

The presence o f  dorsal setae on uronites 1-3 is common in Gammarus and considered the ancestral condition 

o f an epigean predecessor.

(8) Peduncle o f  male uropod 1 with distal process

State 0 = absent 

State 1 = present

Partially ordered analysis: weight factor 3. A sexually dimorphic uropod 1 with peduncular process occurs in 

some species o f Bactrurus and almost all species o f Stygobromus. Modified uropods and/or pleopods are relatively 

common in the stvgobiont family, the Bogidiellidae. Sexually dimorphic modifications o f  posterior appendages might 

be functionally related to reproductive success in hypogean environments and. therefore, are treated as apomorphic 

adaptation.

(9) Outer ramus o f  uropod 3

State 0 = 2-segmented

State 1 = 1 -segmented, not reduced, with apical and subapical spines 

State 2 = 1 -segmented, distinctly reduced, with few subapical spines 

State 3 = I -segmented, strongly reduced, with no subapical spines 

State 4 = l-segmented, scale-like, with only 1-2 apical spines 

State 5 = absent

Partially ordered analysis: ordered; weight factor 3. Although a reduced outer ramus is common for both 

Bactrurus and Stygobromus, a distinction could be made between different degrees o f reduction. The outer ramus is 

clearly more reduced in all Stygobromus taxa. bearing no subapical spines and with only 1-3 apical spines in the
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majority o f  species. In Stygobromus, the outer ramus reaches 10-42% o f  the length o f  the peduncle or it is sometimes 

absent. In Bactrurus. the most advanced reduction was observed in B. mucronatus. but even this species had an outer 

ramus that reached 54% o f  the length o f  the peduncle, with at least I or 2 subapical spines. The most developed outer 

ramus o f all Bactrurus taxa was found in B. cellulanus. Because this outer ramus was very similar to those o f  both 

Crangonyx species, character state 2 was applied for Bactrurus and Crangonyx. In some specimens o f  Stygobromus 

phreaticus. the outer ramus o f  uropod 3 is absent. However, state 4 was applied since this reflects the condition in the 

majority o f  species.

(10) Inner ramus o f  uropod 3 

State 0 = present. > 70% length o f outer ramus 

Slate I = present. < 35% length o f outer ramus 

State 2 = absent

Partially ordered analysis: ordered: weight factor 3. Similar to the reduction o f  the outer ramus, we 

hypothesized a progressive reduction for this character, with state 0 as ancestral condition.

( I I )  Sexual dimorphism o f  the telson

State 0 = absent

State I = present, but minor degree o f  dimorphism 

State 2 = present, distinct degree o f  dimorphism

Partially ordered analysis: ordered: weight factor 3. State 1 refers to the short apical spines found in males o f

B. wilsoni. B. angulus and B. cellulanus (wilsoni group), opposed to distinctly longer spines in females. In the wtlsoni 

group, the female telson apparently also tends to be wider and shorter than the male telson. The same dimorphism, 

albeit much more extremely developed, occurs in B. mucronatus and B. pseudo mucronatus. The differences between 

the male and female telson can be observed without optical aids: in adult males the telson reaches up to 1/3 o f  the body 

length. Since both character states 1 and 2 are sexually dimorphic, they may be related to the reproductive success o f  

males.

(12) Length/width ratio o f  telson 

State 0 = as wide as long or wider than long 

State 1 = distinctly longer than wide

A telson scored as distinctly longer than wide was approximately twice as long as wide (length 150-200% o f 

width). The lowest length/width ratio was found in Stygobromus mackini (110%). This condition still was easily 

distinguishable from state 0.

(13) Cleft o f telson

State 0 = cleft to base (90-100%)

State 1 = cleft 5-40% o f length o f  telson

State 2 = telson entire (cleft 0-2% o f length o f  telson)

Bactrurus wilsoni, B. angulus and B. cellulanus had dimorphic telsons: in some individuals, state I was 

observed while other specimens had state 2 (see Chapter V, Taxonomic part). Unfortunately, there were not enough 

specimens available to apply the Majority Coding method. In this case, the intermediate character condition (state I )
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seemed to be the appropriate choice.

Although the difference between the extremes o f  character state 1 (5%) and state 2 (2%) is only marginal, a 

distinction o f  two different states was justifiable because both values could be measured in only some specimens o f  a 

taxon. respectively. For example, the apical notch in Stygobromus phreaticus was 5-9%. whereas most specimens o f  B. 

brachycaudus had a convex apical margin or a very small notch (0-2%).

The hypothesis that a deeply cleft telson is the plesiomorphic condition is speculative. For the analysis, we 

assumed a progressive reduction from a deeply cleft telson with subapical and apical spines to an elongated, entire 

telson with apical spines only. Therefore, the deeply to completely cleft telson was chosen as the ancestral condition

(14) Subapical spines o f  telson

State 0 = absent 

State 1 = present

(15) Coxal plates 1 and 2

State 0 = longer than wide 

State 1 = wider than long

Partially ordered analysis: ordered; weight factor 3. State 1 is a common condition for many stygobiont 

amphipods. The evolution o f  shorter coxal plates may be an adaptation to life in subterranean environments.

(16) Number o f  segments in accessory flagellum

State 0 = 4-6 segments 

State 1 = 3 segments 

State 2 = 2 segments 

State 3 = I segment

State 0 occurred in the outgroup taxa only, all crangonyctid species analyzed had a 2-segmcnted accessory

flagellum.
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