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ABSTRACT

ECOLOGY OF THE EASTERN COTTONMOUTH {AGKISTRODONP. PISCIVORUS) 
AT BACK BAY NATIONAL WILDLIFE REFUGE: A COMPARATIVE STUDY OF 

NATURAL AND ANTHROPOGENIC MARSH HABITATS.

Chad L. Cross 
Old Dominion University, 1998 
Director: Dr. Alan H. Savitzky

Mark-recapture sampling and radiotelemetry were used to investigate populations o f the 

eastern cottonmouth, Agkistrodon p. piscivorus, in both natural and anthropogenic marsh 

habitats at Back Bay National Wildlife Refuge (BBNWR), Virginia Beach, Virginia from 

autumn 1995 to late spring 1998. Mark-recapture subjects were captured, marked by 

ventral scale-clipping, and released back into the population. A modified Schnabel Census 

estimator was used to estimate population sizes and corresponding densities in both marsh 

systems based on a total o f 244 captures o f222 individuals. Most snakes were found 

> 0.05 m from water, but it was apparent that proximity to water played a major role in 

the distribution of these snakes. Most snakes were found with the body extended and in 

direct sunlight regardless o f temperature; live vegetation served as the primary cover 

object for these snakes. The majority o f captures were male snakes, and few gravid 

females were captured in either marsh in either year. Many snakes fled before capture. 

Snakes fled in the direction opposite the investigator no matter which medium (land or 

water) they occupied at the time. Aggressive behaviors were rare. Radiotelemetry 

subjects were captured, removed to the laboratory for radiotransmitter implantation, and 

subsequently released at the initial capture location. Snakes were tracked from 83-208 

days, and between 54 and 101 observations were made for each subject. Snakes in the 

anthropogenic marsh moved greater overall distances than did snakes in the natural marsh. 

Discriminant Function Analysis based on comparisons of use and non-use sites and
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Potytomous Logistic Regression, based on use-intensity classification o f sites used by 

radiotelemetry subjects both suggested that the most important habitat variables for 

determining sites used by cottonmouths in both marshes were: distance to water, distance 

to overstory trees, leaf litter cover, and vegetation cover. Gut analyses suggested that 

frogs {Rana spp.) and sunfishes (Lepomis spp.) were the primary prey sources. Snakes 

hibernated both singly and together. The greatest single concern for future populations of 

cottonmouths at BBNWR is likely the availability o f adequate cover, particularly in terms 

o f the conversion of areas containing hibemacula to management impoundments.
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INTRODUCTION

The eastern cottonmouth (Agkistrodon p. piscivorus) reaches its northernmost 

limit in southeastern Virginia. Aside from a study of genetic variation in cottonmouth 

populations in Virginia (Merkle, 1985), a study of the reproductive ecology o f the 

cottonmouth in its northernmost population (Blem, 1981), and a brief comparative 

ecology that included a small sample from southeastern Virginia (Blem and Blem, 1995), 

there has been no attempt to quantify the population ecology or behavior of this animal in 

southeastern Virginia. Large numbers o f cottonmouths are reported to occur at Back Bay 

National Wildlife Refuge (BBNWR), but no studies have been designed to study the 

populations there.

Large-scale ecological studies of cottonmouths have been carried out in other 

locations where it commonly occurs, though these studies involved different subspecies. 

Carr (1937), Allen and Swindell (1948), and Wharton (1969) have studied the ecology of 

Florida cottonmouths (,Agkistrodon piscivorus concmti), and Barbour (1956) and Burkett 

(1966) published on the ecology of the western cottonmouth (Agkistrodon p. leucostoma).

This study had several objectives, including both ecological and methodological 

questions. The specific objectives were: (1) to determine the proper sampling protocols 

and statistical estimation procedures needed to estimate population sizes; (2) to evaluate 

cottonmouth feeding ecology through sampling o f stomach contents; (3) to compare 

morphological characteristics of cottonmouths from different areas o f BBNWR; (4) to 

examine movement patterns and activity ranges, the influence of temperature, and 

hibemaculum use for cottonmouths; (5) to evaluate habitat use by the investigation of 

vegetation composition and community structure for sites used by individuals in both 

radiotelemetric and mark-recapture studies (This objective included the development of

Format specifications used in this document follow the guidelines set forth by the 
Herpetologist's League for the journal Herpetologica.
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proper sampling protocols and statistical treatment of habitat data.); (6) to document the 

behavior and occurence o f cottonmouths at BBNWR by direct observation and through 

reports from visitors and hunters, and (7) to suggest management strategies for 

cottonmouth populations at BBNWR

Systematics and Ecology o f Agkistrodon piscivorus

Systematics and Distribution.—Agkistrodon piscivorus (Lacepede) contains: (1) 

Agkistrodon p . piscivorus (eastern cottonmouth), ranging from southeastern Virginia to 

southern Georgia, (2) A. p. conanti (Florida cottonmouth), ranging from southern Georgia 

to southernmost Florida, including the upper Florida Keys, and (3) A. p. leucostoma 

(western cottonmouth), ranging from Alabama to eastern Texas. Only the nominate 

subspecies occurs in Virginia, where most populations are clustered east o f Suffolk (Gloyd 

and Conant, 1990; Mitchell, 1994). The North American species of Agkistrodon is most 

likely derived from an Asian member of the genus. The first Agkistrodon in North 

America probably crossed the Bering land bridge in tropical deciduous or mixed forest in 

the Middle Tertiary, about 24 MYBP (Van Devender and Conant, 1990).

Description.—The cottonmouth is a relatively large, heavy-bodied, dark-colored 

pit viper with broad, hourglass-shaped dorsal bands and a markedly triangular head (Ernst, 

1992; Mitchell, 1994). The dorsal ground color is yellow-olive to dark brown or black, 

and the venter is tan to gray and heavily patterned with dark blotches (Mitchell, 1994). 

Some individuals possess a light-bordered, dark cheek stripe or dark bars on the rostrum. 

This is most notable in A. p. conanti (Ernst, 1992). Juveniles are lighter in color than 

adults, with a sulfur-yellow tail tip. Crossbands are conspicuous in juveniles, but become 

obscured with age (Ernst, 1992).

Adult cottonmouths show pronounced sexual dimorphism, with males considerably 

longer and heavier than females (Mitchell, 1994). In Virginia snout-vent length (SVL) of
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males ranged from 755-1034 mm (x = 976.9 mm; n = 51) and mass ranged from 384- 

1700 g (x = 1035.0 g). For females SVL ranged from 660-940 mm (x = 275.9 mm; n = 

43) and mass was 435-700 g (X = 560.3 g; Mitchell, 1994). In southeastern Virginia 

Blem and Blem (1995) found mean SVL to be 630.0 mm for 36 males, and 548.1 mm for 

18 females. Males had substantially longer tails than did females (x = 117.4 mm vs. 99.1 

mm) but there was little difference in head length (x = 38.97 mm for males vs. 36.47 for 

females) or head width (x = 28.94 mm for males vs. 27.12 for females; Blem and Blem, 

1995). Maximum adult size has been reported as 1880 mm by Conant and Collins (1991) 

and 1892 mm by Ernst (1992). Mitchell (1994) examined nine Virginia neonates and 

reported that the SVL ranged from 221-237 mm (x = 227.9 mm) and mass ranged 

between 14.5-18.0 g (x = 16.3 g).

Reproductive biology. —Mating o f Agkistrodon piscivorus generally occurs in the 

spring, but may take place sporadically in other warm months (Wharton, 1966). Male 

cottonmouths are known to perform a combat ritual (Carpenter and Gillingham, 1990; 

Gloyd and Conant, 1990; Mitchell, 1994), and defense o f mates was reported by Martin 

(1984). In Virginia the smallest sexually mature male was 755 mm SVL, and the smallest 

sexually mature female was 660 mm SVL (Mitchell, 1994). Given the relationship 

between size and age found by Blem and Blem (1995), sexual maturity is attained at an 

age of approximately three years in cottonmouths. Ovulation occurs in late May in 

Virginia, and embryos develop through September (Blem, 1981). Cottonmouths are 

viviparous, and Virginia females generally give birth to litters of 5-9 individuals (x = 7.7; 

Blem, 1981) in September (Mitchell, 1994).

Gloyd and Conant (1990) suggest a biennial to triennial cycle o f  reproduction for 

the cottonmouth. Blem (1981) points out that although a biennial reproductive cycle was 

expected, with 50% of females giving birth in any year, he found 83% o f the females he 

collected to be gravid; however, this high percentage may reflect positive bias due to 

increased basking behavior of gravid females, a behavior not mentioned by the author.
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Behavior.—Some authors (Ernst, 1992; Gloyd and Conant, 1990; Mitchell, 1994) 

suggest that cottonmouths are generally not as aggressive as reported in older manuscripts 

(Army Air Force, 1945; United States Navy, 1966), although they often remain in place 

and gape their jaws widely when approached, showing the white interior o f the mouth. 

Cottonmouths will readily strike when molested. Wharton (1969) demonstrated that 

aggressive behaviors were more readily evident at lower temperatures (between 4.4 C and 

15.6 C), whereas escape behaviors were much more common at higher temperatures. 

Goode and Duvall (1989) studied the relationship between body temperature and 

defensive behavior in free-ranging prairie rattlesnakes (Crotalus v. viridis). The literature 

concerning the relationships between temperature and behavioral ecology has been 

discussed by Ford and Burghardt (1993).

Cottonmouths are diurnal during the spring and fall and become predominantly 

nocturnal during the summer months (Ernst, 1992). During the winter, snakes retreat to 

hibemacula ranging from hollow stumps to rock escarpments. Some cottonmouths have 

been reported to aggregate for hibernation (Dundee and Burger, 1948; Wharton, 1969).

Conservation and Management —In Virginia cottonmouths are not currently listed 

as a species of special concern (Mitchell, 1994). However, like many other organisms 

cottonmouths are sensitive to the loss of wetland habitat and have undoubtedly lost 

valuable parts of their range as a consequence of wetland destruction and urbanization. 

Additionally, many potential predators of cottonmouths are abundant at BBNWR 

including red foxes (Vulpes vulpes), raccoons (Procyon lotor), great blue herons (Ardea 

herodias), largemouth bass (Micropterus salmoides), and even ghost crabs (Ocypode 

quadrata\ Cross and Marshall, 1998; Gloyd and Conant, 1990; Mitchell, 1994).
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Habitat

The concept of habitat is difficult to define. Daubenmire (1968) states that 

"habitat is usually used to denote a rather specific kind of living environment, i. e., a 

constellation of interacting physical and biological factors which provide at least minimal 

conditions for one organism to live or for a group to appear together." This definition 

describes an animal’s "macrohabitat." To define the area used by an animal in more 

specific terms, researchers often discuss the suite of habitat characteristics used by an 

organism in its immediate environment, the "microhabitat" (Ricklefs, 1993). The concept 

o f  microhabitat will be used in the analyses undertaken in this investigation.

Accurate measurement and assessment of microhabitat are important 

considerations when studying the ecology and management o f wildlife (Alldredge and 

Ratti, 1986; Johnson, 1980; Morrison et al., 1992). The information concerning the 

relationship between wildlife species and their habitats provides basic life-history 

information that may be important for the conservation and management of an organism 

(Carey, 1981; Morrison et al., 1992).

Microhabitat analyses have been based upon the niche gestalt theory (James, 1971; 

North and Reynolds, 1996), which was derived from the multidimensional niche theory 

(Hutchinson, 1957; North and Reynolds, 1996; Reinert, 1992, 1993). According to this 

idea, the niche occupied by an organism is a complex space that contains the necessary 

environmental conditions for a species' survival (Hutchinson, 1957; Morrison et al., 1992; 

Reinert, 1992, 1993). In general, an animal's multidimensional niche is derived from a 

multivariate analysis of habitat, dietary, and life-history variables across a range o f  sites 

where the animal is found (North and Reynolds, 1996; Shugart, 1981).
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Habitat Use and Selection by Snakes

Snakes are often secretive and therefore difficult to find in their natural 

environment (Reinert 1992, 1993). As a result, habitat use by snakes has not been 

accorded the attention given to taxa that are more easily seen, trapped, or otherwise 

observed (Gregory et al., 1987; Reinert, 1992, 1993). Historically, habitat use by snakes 

was ascertained by intensive mark-recapture studies in which many snakes were captured 

multiple times (King, 1986; Plummer, 1981, 1997; Wharton, 1969). The increased 

availability and use o f radiotelemetry equipment, however, has led to a tremendous 

increase in our understanding of habitat use by snakes (Reinert, 1984a,b, 1992, 1993).

Habitat use by snakes may reflect various factors, and a thorough review of the 

pertinent literature can be found in Reinert (1993). Foraging has been shown to influence 

habitat use by Arafura file snakes (Acrochordus arafurae\ Shine and Lambeck, 1985) and 

the Florida cottonmouth (Agkistrodon piscivorus conanti\ Wharton, 1969). The digestive 

state o f the animal may also play an important role (Gibson et al., 1989; Lutterschmidt 

and Reinert, 1990; Petersen, 1995). Shedding, or sloughing o f the skin, was shown to 

cause a shift in habitat use and movement patterns in the copperhead snake (Agkistrodon 

contortrix; Petersen, 1995). Additionally, social interactions, particularly during the 

mating season, may cause habitat shifts (Gregory et al., 1987; Lillywhite,1985).

Several cues may play a factor in habitat selection (Reinert, 1993). Among these 

are temperature, which influences thermoregulatory behavior o f the animal (Huey, 1991), 

learning, asevidenced by repeated use of the same locations over time (Burger and 

Zappalorti, 1988; Petersen, 1995), and identification o f structural features o f  desirable 

habitat, which may be learned over time (Reinert, 1984a, b; Reinert and Zappalorti, 1991).

The cottonmouth, the only semi-aquatic member o f the Agkistrodon complex, has 

been reported to occupy nearly any type of habitat where water is found, from drainage 

ditches in suburbs to brackish coastal wetlands, cypress swamps, bayous, streams, rivers,
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and forested wetlands (Gloyd and Conant, 1990; Conant and Collins, 1991; Ernst, 1992; 

Mitchell, 1994).

Modeling Habitat Use

Most o f the methods common to modeling habitat use have focused on the idea of 

use sites (those sites known by observation to be used by an animal) versus available or 

non-use sites (randomly selected sites where it is assumed, for the purposes of modeling, 

that the animal does not occur during the course o f the investigation). Many papers have 

been published on this technique (Alldredge and Ratti, 1986; Hobbs and Hanley, 1990; 

Johnson, 1980; Marcum and Loftsgaarden, 1980; Porter and Church, 1987; Thomas and 

Taylor, 1990). This type of modeling has historic prominence in the snake literature 

(Burger and Zappalorti, 1988; Reinert and Kodrich, 1982; Petersen, 1995; Reinert 1984a, 

b; Reinert and Zappalorti, 1988). Other methods include linear regression models 

(Morrison et al., 1987) and Habitat Suitability Index Modeling (HSI models; U. S. Fish 

and Wildlife Service, 1981).

Many problems exist with current methods, particularly with multivariate 

techniques (North and Reynolds, 1996). One widely used technique, discriminant function 

analysis, relies upon assumptions o f  multivariate normality and constant covariance 

structure across all sites, an assumption rarely met with ecological data (Johnson, 1981; 

Noon, 1986; North and Reynolds, 1996). Many other multivariate techniques are also 

weakened by these assumptions (see Morrison et al., 1992), though some nonparametric 

adaptations are possible (e.g., nonparametric discriminant function analysis). It is 

surprising, then, that these very techniques have been central to many snake studies.

A method that does not rely upon strict multivariate assumptions is greatly needed. 

Polytomous logistic regression (PLR) models site use-intensity from radiotelemetry data, 

hence eliminating  the need for ancillary data on non-use sites. The PLR technique makes
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no assumptions about normality or common covariance structure, making it appealing for 

habitat modeling (Hosmer and Lemeshow, 1989; McCuIIagh and Nelder, 1989; North and 

Reynolds, 1996). The use of PLR for modeling snake habitat use may provide a useful 

alternative to traditional modeling efforts and is explored further in this investigation.

Population Estimation

The estimation of animal abundance is often central to the study of a population 

under ecological investigation (Blower et al., 1981; Menkens and Anderson, 1988; Otis et 

al., 1978; Pollock et al., 1990; Skalski and Robson, 1992; Strong et al., 1994). Many 

techniques and methodologies have been proposed for population estimation (see Seber, 

1982, 1986, 1992 for thorough reviews; Buckland et al., 1993; Krebs, 1989; Skalski and 

Robson, 1992). Mark-recapture methods are by far the most common technique for 

estimating numbers of mammals and fishes (Burnham et al., 1987; Hallet et al., 1991; 

Seber, 1982; Skalski and Robson, 1992), whereas distance methods are common for 

estimating numbers of birds (Buckland et al., 1993).

Mark-recapture techniques are carried out by capturing, marking, and 

subsequently releasing individuals from a given population, waiting an established amount 

o f time, and then resampling from the population to see what fraction of the recaptured 

individuals carry marks (Krebs, 1989; Seber, 1982). Mark-recapture estimation 

techniques can be used for populations that are either closed to births and deaths 

(immigration and emmigration are generally considered to be negligible during the 

sampling period) or open to births and deaths (Jolly, 1965; Otis et al., 1978; Seber, 1965, 

1982, 1986, 1992). Several assumptions are necessary in order to model the population 

correctly: all animals have the same probability o f first capture, marking does not affect 

subsequent capture probabilities, animals do not lose marks, and marked individuals 

randomly disperse in the population after being released (Krebs, 1989; Otis et al., 1978;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



9

Nichols and Pollock, 1988; Pollock et al., 1990). Several computer-intensive estimation 

procedures allow for heterogeneity and behavioral responses in the probability o f trapping, 

(Otis et al., 1978) as well as for estimating tag losses (Robinson-Cox, 1998; Seber, 1982).

Distance methods are carried out either by a line-transect method (or a derivative 

thereof) or by point counts (Buckland et al., 1993). In these types o f sampling schemes, 

the distance to a study animal and/or its angle from a transect line must be estimated fairly 

accurately. Given these constraints the bulk o f the literature for these methods is for 

estimating bird densities, though the densities o f most vertebrate groups and some insects 

have been estimated by distance sampling (see Buckland et al., 1993 for a thorough 

review). The difficulty inherent in capturing some species o f snakes limits the use o f this 

technique in most snake population studies.

Estimation o f Snake Abundance

The estimation of snake abundance is a difficult task. Parker and Plummer (1987: 

p. 253) offer four reasons for this: "(1) Snakes are often inconspicuous and nocturnal; (2) 

many snakes have extended periods of inactivity; (3) apparent population densities often 

are low; (4) the relatively extensive and irregular movements o f some snakes make it 

difficult to define the boundaries o f a population." The apparent low densities o f snakes in 

most ecological investigations is evident when reviewing the literature (Parker and 

Plummer, 1987, pp. 255-258).

The primary difficulty in estimating snake numbers and densities is low capture and 

recapture rates, with the latter contributing to severe mathematical limitations (Parker and 

Plummer, 1987; Turner, 1977). As an extreme example, Kropach (1975) marked nearly 

1000 Pelamis platurus near Panama and never recaptured a single individual during 

subsequent sampling. P. platurus however, is a pelagic marine species. Even in the
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extensive field investigations of Agkistrodon contortrix by Fitch (I960), only 11 

individuals o f492 marked were recaptured during a ten-year period. However, there are 

some instances where snake densities, and hence recapture rates, are high. Most of these 

populations are found on islands ( King, 1986; Wharton, 1969), in restricted ecological 

localities (Voris, 1985), or at communal hibernacula (Gregory, 1974; Woodbury, 1951).

Even with the difficulties introduced by low recapture rates, mark-recapture 

techniques remain the primary estimation tool for herpetological studies, with simple two- 

capture Lincoln-Peterson estimation being most popular (Fitch, 1960; King, 1986; Parker, 

1976; Turner, 1977; Parker and Plummer, 1987; Plummer, 1997; Voris, 1985;). This 

trend will likely continue given the prominence of this technique in studies of other 

vertebrate groups and the consequent theoretical work in this area (Seber, 1982). 

Additionally, mark-recapture records also are quite useful for monitoring morphological 

measures of individual growth (such as body size and mass) over time, for estimating 

activity areas, and for investigating feeding habits (Parker and Plummer, 1987; Wharton, 

1969). The trade-off granted by obtaining information on these parameters is often 

justifiable even if accurate population estimates cannot be made.

Trophic Ecology cmd Behavior

Foraging ecology of the cottonmouth, and o f snakes in general, is most often 

investigated indirectly by making assumptions based on results from gut content analyses 

(Savitzky, 1992). Analyses of cottonmouth gut contents in early ecological investigations 

suggested that the snakes took prey both on and under the water surface and on land 

(Barbour, 1956; Clark, 1949). Field and laboratory investigations on the foraging ecology 

o f the cottonmouth confirmed these suggestions. Allen and Swindell (1948) report 

observations from both the field and laboratory. Their investigations showed that the 

cottonmouth feeds mostly on aquatic prey, and that foraging was restricted to the cooler
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times o f the day and at night. Wharton (1969) confirmed that feeding occurred mostly by 

active foraging during the nighttime hours. Bothner (1974) reported cottonmouth 

foraging in drying pools. In the laboratory Savitzky (1992) studied aquatic foraging 

behavior of the cottonmouth and found that it was less adept than other aquatic snakes at 

catching fish. Wharton (1960) reported caudal luring by young cottonmouths, which 

waved their sulfur yellow-tipped tails in front o f frogs.

Allen and Swindell (1948) suggested that the short fangs of cottonmouths 

restricted them to foraging on mostly fiirless prey. The mean length of cottonmouth 

fangs, however, are longer than those of copperhead snakes, which are known to feed on 

rodents (Ernst, 1982; Fitch, 1960). Chiszar and his colleagues (1979, 1985, 1986) have 

investigated cottonmouth foraging extensively in the laboratory, both in terms of the 

formation of chemosensory search images and in trailing behavior. They found that the 

snakes were adept at finding rodents after a strike and release of the prey, but that fish 

prey were held rather than released. Allen and Swindell (1948) and O'Connell et al. 

(1981) reported that fish were held after striking. This may be an advantage when feeding 

on prey that could easily swim away after a strike (Bothner, 1974; Gloyd and Conant, 

1990). Savitzky (1993) suggests that mechanisms associated with capture and rapid 

swallowing o f piscivorus prey are favored by natural selection. An extensive study of 

capturing and handling fish by cottonmouths is found in Savitzky (1992). Kardong (1975, 

1977, 1982) defined several foraging phases of the cottonmouth with mouse prey items in 

the laboratory. He found that some mice were retained in the jaws after the strike, but 

that others were released. Retention of prey has been suggested to result from 

nonoverlapping central nervous system representations o f search images o f aquatic and 

rodent prey (Chiszar et al., 1985; O'Connell et al., 1981).

Though fish and frogs make up a majority of the reported food items o f the 

cottonmouth, the snakes are known to eat a wide range o f  prey, and often mistakenly eat 

nondigestible items as well, such as rocks and sticks (Allen and Swindell, 1948; Ernst,
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1992; Gloyd and Conant, 1990; Mitchell, 1994; Savitzky, 1992; Wharton, 1969). A 

review o f reports containing lists of preferred food items for several snakes, including the 

cottonmouth, is provided by Mushinsky (1987) and Savitzky (1992) reviewed the iterature 

concerning habitats and food items of the cottonmouth. Reported prey items include frogs 

(Rana spp.), shrews (Cryptotis parva), hispid pocket mice (Perognathus hispidus), 

Carolina chickadees (Pams carolmensis), pied-billed grebes (Podilymbus podiceps), many 

species o f  fishes, many species of snakes (including other cottonmouths), turtles, and 

insects (mostly Coleoptera; Brown, 1979; Collins, 1980; Collins and Carpenter, 1970; 

Ernst, 1992; Gloyd and Conant, 1990; Klimstra, 1959; Leavitt, 1956; Mitchell, 1994; 

Wharton, 1969). Wharton (1969) reported that the majority o f cottonmouths on Sea 

Horse Key, Florida were feeding on carrion (fish dropped from heron and egret nests). 

Many o f the snakes that he examined also contained mud, sticks, rocks, and plant matter, 

which he attributed to the ravenous feeding behavior of these animals.

Though cottonmouths have been shown to eat almost anything, many studies 

examining the feeding ecology in these snakes have demonstrated that they feed less 

frequently than anticipated given their purported voracious appetites. This is evidenced by 

a high percentage of empty stomachs. Wharton (1969) found that 89.5% of the stomachs 

that he examined were empty. This ranged from 69.3-97.5% depending on the time of 

year, with the lowest percentage of empty stomachs found during the active summer 

months. Additionally, Barbour (1956) reported only 25% of his snakes with food items, 

Collins and Carpenter (1970) reported only 57%, and Blem and Blem (1995) only 16%; 

however, Klimstra (1959) reported that 81% of the snakes he examined contained food.

Activity Ranges and Movements

Movements of individuals over time have been studied extensively for many snake 

species (Gregory et al., 1987; Reinert, 1993; White and Garrott, 1990). However, it is
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often difficult to understand fully what cues are used by an animal and the motivation 

underlying the choice o f one area over another. Gregory et al. (1987) offer three reasons 

why it is difficult for researchers to grasp where and why animals move: "(1) we have an 

incomplete understanding of an animal's needs, (2) we seldom measure the availability of 

required resources, and (3) given that we could measure resource availability, our 

perception of availability may not be the same as that o f the animal." Modeling habitat use 

and availability (see Modeling Habitat Use) may offer partial answers to numbers (1) and 

(2), but modeling necessarily requires that the researcher choose measurements deemed 

important to the species being modeled, which may be little more than a best guess o f 

what the species perceives or requires. Though why an animal moves is not always 

answerable, movement itself is a measurable entity.

Factors affecting movements — Resource availability undoubtedly plays a major 

role in the the movements and activity ranges of snakes (Gregory et al., 1987).

Availability of a water source for semi-aquatic snakes has been shown to affect 

movements (Godley, 1980; Wharton, 1969). Wharton (1969) showed that cottonmouths 

on Sea Horse Key, Florida gathered under a heron rookery, where they fed on falling fish 

dropped from above. Hand in hand with resource availability is the influence of habitat 

structure. Topography (Brown et al., 1982; Carpenter, 1952) may play an important role 

in habitat selection and movements by limiting snakes to certain areas within a larger 

region. Natural edge effects (such as riparian habitats) may affect snake movement 

patterns (Madsen, 1984; Plummer, 1981, 1997), as might man-made structures. Petersen

(1995), for example, found that three o f his radiotelemetry subjects spent a large 

percentage of their time in anthropogenic habitats.

Sex and reproductive activities have been linked to differential movement patterns 

in snakes, though Gregory et al. (1987) caution that no definite trend is obvious from the 

literature. Madsen (1984) found that females of the grass snake (Natrix natrix) in 

southern Sweden occupied larger areas than did males, and Gannon and Secoy (1985)
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found this to be true for prairie rattlesnakes (Crotalus viridis) in Saskatchewan, Canada. 

On the other hand, Petersen (1995) found that male copperheads (Agkistrodon contortrix) 

used greater areas than females. These differential movements may be linked to mate- 

searching activities (Duvall et al., 1985) and movements to parturition sites (Parker and 

Brown, 1972). Additionally, there is evidence that gravid females might have different 

movement patterns than non-gravid females in the timber rattlesnake (Crotalus horridus; 

Brown et al., 1982; Reinert and Zappalorti, 1988).

Thermoregulatory behavior has been shown to affect movement patterns 

(Lillywhite, 1985). Differential activity patterns due to temperature most often lead to 

decreased activity during the warmest parts of the active season, and thereby cause a 

change from a diurnal to a nocturnal activity pattern. This has been shown in many 

snakes, including copperheads (Petersen, 1995; Sanders and Jacobs, 1980), cottonmouths 

(Savitzky, 1992; Wharton, 1969), rattlesnakes (Landreth, 1973), smooth earth snakes 

(Virginia valeriae), scarlet snakes (Cemophora coccinea), and southeastern crowned 

snakes (Tcmtilla coronata\ Gibbons and Semlitsch, 1982). Snake thermal ecology is 

reviewed in Peterson et al. (1993).

Activity ranges and estimation. — Activity range is broadly defined as that area 

utilized by an individual in a defined time interval. This term is often used synonymously 

with "home range," a term initially employed by Burt (1943). Gregory et al. (1987) found 

in snake literature that at least six terms had been used to describe the activity range. In 

the present study the activity range is understood to be that area used by the snake during 

the active season.

Measurements o f activity area are either discerned from mark-recapture studies 

(e.g., Wharton, 1969) or from radiotelemetry (White and Garrott, 1990). Many measures 

are available for estimating activity areas, from simple geometric measures to elaborate 

statistical techniques. Extensive descriptions of methods and examples can be found in 

Mohr and Stum pf(1966) and White and Garrott (1990). The use o f time series analyses
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for analyzing seasonal variations in habitat usage for snake data was described by Reinert 

(1992). The most common methods currently used in snake studies are the area enclosed 

by the minimum convex polygon (MCP; Mohr, 1947), and the area enclosed by the 95% 

isopleth o f the harmonic mean (HM; Dixon and Chapman, 1980; Reinert, 1992). The use 

o f HM estimates for activity range size has been shown to lead to biased results in some 

cases (Worton, 1989, 1995).

Gregory et al. (1987) cite an unpublished report that activity ranges in snakes 

range from 0.0009-34.5 ha. A tabular survey for movements and activity range size was 

compiled by Macartney et al. (1988). Petersen (1995) found that MCP activity ranges in 

female copperheads ranged from 1.55-5.17 ha and for males 3 .22-17.66 ha. Wharton 

(1969) found that cottonmouths on Sea Horse Key, Florida had activity range areas 

similar to the snakes on the mainland, with males averaging 0.174 ha and females 0.142 

ha.

Hibernation

Hibernation in reptiles has been studied extensively in terms o f physiology 

(Gregory, 1982). The factors affecting movement into and out of hibemacula are broadly 

correlated with the temperature profiles of the shallow and deep soil layers around 

hibemacula (Sexton and Hunt, 1980). That is, as the shallower layers become colder than 

deeper layers, snakes should enter hibemacula, and as that temperature scheme reverses, 

snakes should egress (Sexton et al., 1992).

In order to test the thermal reversal prediction and examine general latitudinal 

trends, Sexton et al. (1992) submitted a questionnaire to 147 potential cooperators in the 

contiguous 48 United States. They obtained information on 45 different species of snakes. 

The questionnaire divided hibernation behavior into five categories, ranging from 

hibernation in interspecific, communal underground dens to no hibernation behavior (i.e.
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snakes were active all year,). Additionally, soil temperature profiles were examined in 

their study.

Sexton et al. (1992) found that cottonmouths exhibited all five categories of 

hibernation behavior, varying according to latitude. Cottonmouths in Missouri and 

Illinois, for example, were found in intraspecific, communal dens, whereas the most 

southern populations exhibited either no hibernation behavior or used only temporary 

cover during cold times o f the year. Wharton (1969), however, found communal denning 

in Florida). Using their information along with soil temperature profiles, Sexton et al. 

(1992) suggested that use of underground, communal hibemacula should occur above 38° 

latitude, and that solitary hibemacula, use of temporary cover, and full winter-season 

activity should occur below 38° latitude.

Movements to and from hibemacula are well documented and often involve large 

movements (Gibbons and Semlitsch, 1987). Site fidelity has been shown in several species 

and is summarized in Gibbons and Semlitsch (1987). Activity during hibernation may be 

absent in colder climates (Gibbons and Semlitsch, 1987), but basking behavior during 

sunny days has been documented for cottonmouths (Wharton, 1969) and prairie 

rattlesnakes (Jacob and Painter, 1980). Egress from hibernation seems to be correlated 

with temperature rather than date (Gibbons and Semlitsch, 1987).
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MATERIALS AND METHODS 

Study Site

This study was conducted at Back Bay National Wildlife Refuge (BBNWR) in 

Virginia Beach, Virginia. The Refuge headquarters, located at N36°40'19":W75°54,55", 

sits in the main area o f BBNWR (Fig. 1). The Refuge is bordered on the north by Little 

Island Park and on the south by False Cape State Park. The Refuge was established in 

1938 (BBNWR Station Management Plan, July 1993). Approximately 11000 ha of marsh 

was included in the 1938 acquisition, and in 1939 an additional 11400 ha of open water 

within Back Bay was closed to waterfowl hunting. Since that time a total acquisition area 

o f27200 ha has been approved (BBNWR Station Management Plan, July 1993). Most of 

the newly approved acquisition land is in the area surrounding Sandbridge Beach, Virginia 

Beach, Virginia, and was not included in this study. The Refuge and the surrounding 

acquisition area contain a large diversity of both plant and animal life (see BBNWR 

Station Management Plan, July 1993; USFWS publication RL-51510).

Two major areas o f the Refuge were compared in this study. The first extends 

from the area surrounding the headquarters and north to the northern border (referred to 

herein as the natural marsh system), and the other lies south o f the headquarters and 

extends to the northern border of False Cape State Park (referred to herein as the 

anthropogenic marsh system). Sampling for this investigation treated the natural and 

anthropogenic marshes as separate systems. There is only one replicate for each marsh 

system, weakening the inference o f causal factors associated with different areal 

treatments, although differences between the two habitats can be inferred from the data 

obtained.

Natural marsh system—The. natural marsh system o f BBNWR is dominated by 

low, dense vegetation. Black needlerush (.Juncus roemerianus), arrowhead (Sagittaria
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FIG. 1 .—Area map for Back Bay National Wildlife Refuge showing both the natural marsh 
(area north o f the Visitor Contact Station, Long Island, and Ragged Island) and the 
anthropogenic marsh (area south of the Visitor Contact Station). The Refuge is bordered 
by Little Island Park to the north and by False Cape State Park to the south. Refuge 
boundaries are shown by the dash-dot line.
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spp.), cattail (Typha spp.), cordgrass (Spartma cynosuroides), and many other marsh 

species are common throughout the northern marsh. Low woodlands and shrublands are 

dominated by American holly (Ilex opaca), wax myrtle (Myrica cerifera), greenbrier 

(Smilax spp.), and red maple (Acer rubrum). In addition, many dune grasses are found in 

this area, including sea rock (Cakile edentula), sea oats (Uniolapaniculata), and spurge 

(Euphorbia polygonifolia).

Several roadside drainage ditches, naturally occurring ponds, and an artificial pond 

used for educational purposes provide cottonmouth habitat. The shoreline along Back 

Bay also provides ideal habitat. The open bay is occasionally traversed by cottonmouths, 

and two large islands, Long Island and Ragged Island, were investigated for the presence 

o f snakes. The open water of Back Bay permits passage to islands or to different areas 

along the Bay shore. Approximately 1200 ha, including the two aforementioned islands, 

made up the study area o f the northern marsh (Fig. 1).

Anthropogenic marsh system —The. anthropogenic marsh system is maintained for 

the management of migratory waterfowl and shorebirds at BBNWR, and it is managed as 

a series of impoundments. Manipulation of water levels via water control structures is a 

major tool for managing the impoundments, together with mowing, disking and root 

raking, and burning (Fredrickson and Taylor, 1982).

Vegetation in the managed impoundment consists of beggar's tick (Bidens spp.), 

black needlerush, spike rush (Eleocharis spp.), three-square (Scirpus americanus), water- 

hyssop (Bacopa spp.), pennywort (Centella asiatica), and many others. Along the 

western edge of this area is a relatively undisturbed forest with an overstory of loblolly 

pine (Pinus taeda), laurel oak (Quercus laurifolia), and live oak (Q. virginianus), and an 

understory dominated by blueberry (Vaccinium spp.), poison ivy (Toxicodendron 

radicans) and greenbrier (Smilax spp.).

The anthropogenic marsh system is a set o f pools running north to south between 

the Atlantic Ocean dune system and Back Bay. Along the edges of the managed pools are
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deep ditches and levees that presumably provide dispersal routes for snakes and their prey 

(including frogs and fishes). Those structures were monitored closely. Also, snakes could 

be found on the interior pools in areas of standing water. Approximately 1900 ha of the 

anthropogenic marsh system was monitored in this study (Fig. 1). Seasonal alteration of 

habitat by Refuge staff altered the accessability of different areas of the pools throughout 

the study.

Capture and Measurements

All snakes were captured using snake tongs (Azel Reptile Snare, Forestry 

Suppliers, Inc., Jackson, Mississippi) to reduce the chance o f accidental bites to the 

investigator. Snakes were placed into a plastic squeeze box equipped with a foamed 

rubber pad and plexiglass (modified from Quinn, 1974) and were secured for 

measurements. A grease pencil was used to mark the length of snakes on the plexiglass 

from snout tip to tail tip. Additionally, marks were made on the plexiglass at the widest 

width o f the quadrates (head width) and from the tip of the snout to the posteriormost 

indication o f the quadrates (head length). The plexiglass was lifted away from the head to 

minimize  the affects of compression on head measurements. Measurements were taken 

along the pencil mark for total length and between appropriate marks for head dimensions 

using a flexible metric measuring tape (measurements recorded to the nearest millimeter).

After marking for measurements, a noose constructed from a 1.27 cm PVC pipe 

and 4 mm nylon rope was inserted into one end of the squeeze box through movable 

portals, and the tail seized and pulled out o f the squeeze box. In this way the snakes were 

unable to strike as further examinations of the tail were completed. Tail length was 

measured from the cloacal scale to tail tip and subtracted from total length in order to 

estimate snout-vent length. Sex was determined by inserting an appropriately sized 

stainless steel probe into the caudal wall o f the cloaca (Laszlo, 1973). Probe depth was
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recorded for further analysis. Snakes were permanently marked using the method of 

Brown and Parker (1976; Femer, 1979), in which ventral scales are clipped in a specified 

numerical pattern. Clipping was deep enough to ensure scales would not heal unscarred. 

Clipped areas were coated with New Skin (MedTech Laboratories, Inc., Jackson, 

Wyoming) to prevent infection while the incision healed.

Mass was determined by placing snakes into a cloth bag (Sup-R-Bag, FurMont 

Reptile Hooks, Seabrook, Texas) and weighing with a Pesola scale (weight recorded to 

the nearest gram; Forestry Suppliers, Inc., Jackson, Mississippi). After measurements and 

marking, snakes were transferred into an acrylic tube and palped for stomach contents (see 

Foraging and Feeding Ecology). Snakes were then released at the point o f captureand 

habitat measurements were taken (see Habitat Analysis).

Collection and Analysis o f Data on Cottonmouths

Captured snakes.—Upon capture and recapture several variables were measured, 

including morphological characteristics, exposure to sun, behavior, activity, and location 

(Table 1; Appendix II). These measurements were considered independent for individual 

mark-recapture animals. Additionally, since the variables measured were generally 

separated by two or more days for radiotelemetered snakes, and hence likely independent 

of one another, radiotelemetered subjects were directly comparable to mark-recapture 

subjects. Scores for various categories were tallied and compared statistically by 

corrected chi-square analysis (Sokal and Rohlfj 1995). To evaluate the effect of 

temperature on behavior, the percentage o f observations in each category was plotted 

according to the temperature at which they occurred.

Uncaptured snakes.—Fifty-three animals evaded capture during the study. Though 

they were not captured, behavioral data could still be obtained and analyzed. The medium 

from which a snake was approached (land or water) and the medium to which it escaped
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TABLE 1 .—Description of variables assessed during captures and relocations of 
cottonmouths at Back Bay National Wildlife Refuge.

Variable Description

Snake location 

Upland 

Shoreline 

Water 

Cover object 

Tree

Vegetation 

None 

Sun Exposure 

Full sun 

Shade

Full shade 

Activity 

Coiled 

Extended 

Moving

Snake position greater than 0.5 m from water source 

Snake located less than 0.5 m from water source 

Snake located in water

Snake located under tree or shrub

Snake located under or in vegetation

Snake located in open area (including water) without cover

Snake positioned with at least one-half o f body in full sunlight

Snake positioned with less than one-half o f body in full 
sunlight

Snake positioned with no exposure to sunlight

Snake positioned with body coded

Snake positioned in very loose coil or in a linear position

Snake in motion when detected
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TABLE 1.—Continued.

Variable Description

Behavior

Passive No mouth gape or strike when approached, but includes 
snakes that bit tongs when grasped

Aggressive Mouth gape and/or strike when approached and includes 
snakes that repeatedly bit tongs

Very aggressive Snake struck at investigator and/or approached investigator 
and repeatedly struggled and bit tongs and squeeze box— 
these snakes kept mouth gaped during entire processing time

Action

Flee Snake attempted escape when approached

Approach Snake approached investigator

Immobile Snake made no attempt to flee or approach
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(land or water) was noted for each uncaptured animal. In addition, the approach distance 

before fleeing was recorded.

Statistical analysis. —Morphological data (SVL, tail length, probe length, head 

length, head width, and body mass) were separated according to area (natural or 

anthropogenic marsh) and sex prior to testing. A MANOVA was used to test for area 

effect and sex effect after testing categories for normality using the Shapiro-Wilk test (Zar, 

1996). If area effect was not significant, sexes were pooled prior to further analysis. In 

order to avoid the problems associated with measurements being correlated to body size, 

all individual measurements (with the exception o f SVL) were divided by SVL prior to 

analysis (see Blem and Blem, 1995). These measurements were first plotted against SVL 

and the residuals examined for patterns that might affect results.

Growth was examined by comparing measurements of two females and six males 

recaptured approximately one year after their initial captures. Mean growth and 

associated error are reported for both sexes; however, further statistical analysis cannot be 

justified given the small sample sizes, though general comments can be drawn.

Categorical analysis was conducted on location (upland, water, or shoreline), 

cover (tree, vegetation, or none), sun exposure (full sun, shade, or full shade), activity 

(extended, moving, or coiled), action (stand ground, flee, or approach), and behavior 

(aggressive, very aggressive, or passive). Separate chi-square statistics were calculated 

for each group (males in natural marsh, females in natural marsh, males in anthropogenic 

marsh, females in anthropogenic marsh, and radiotelemetered snakes) using Yates' 

continuity correction (Sokal and Rohlflf, 1995). For comparisons across groups, expected 

values were calculated based on sample-size dependency because sample size was not the 

same for all groups. Alpha levels were set at 0.05 for all tests; however, in order to 

protect the error rate for individual comparisons, a Bonferonni correction (Sokal and 

R oh Iff 1995) was used. That is, the alpha level was divided by the intended number of 

tests before comparisons with critical values were made.
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Contigency table analysis was used on the uncaptured snake data in order to test 

for independence o f "approach from" and "flee to" variables. A two-sample t-test with 

unequal variances (following Fm„. statistical comparisons) was used to test for differences 

in approach distance between animals in the natural and anthropogenic marsh systems.

Inasmuch as error is difficult to measure from field measurements o f size, the five 

radiotelemetric subjects were measured in both the field and laboratory in order to verify 

the accuracy and precision o f the procedure. Mean differences and associated errors are 

reported.

Habitat Analysis

Unless noted otherwise in this section, all statistical analyses were conducted using 

the Statistical Analysis System (SAS; Cary, North Carolina). For completeness and to 

facilitate discussion, procedures (PROC) are given in the appropriate sections.

Data collection.—Habitat data were collected for each snake captured during the 

study and upon the relocation of each radiotelemetered animal. In addition, 100 random 

sites in the natural marsh and 100 random sites in the anthropogenic marsh were sampled 

during the final field season. Eleven habitat variables were selected to describe each 

location. The variables chosen for analysis consisted of vegetative structural characters as 

well as distance to water, presumably an important factor for the cottonmouth (Table 2).

In addition to structural elements, notes on species composition were also made 

(Appendix I). Variables were selected to facilitate comparison with previous analyses of 

pitviper habitat (Reinert 1984a,b; Reinert 1992; Petersen, 1995).

Data were obtained by centering a i m 2 quadrat on each snake location or random 

site. In instances where a i m 2 quadrat was not available, snake tongs marked with a i m  

scale were used to mark an approximate 1 m2 area. Random points were selected by using

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2 6

TABLE 2.—Habitat variables measured at random sites, capture sites, and sites occupied 
by radio-tracked cottonmouths at Back Bay National Wildlife Refuge.

Habitat variable
Variable

abbreviation Sampling method

Distance to water DW Distance (m) from center o f  1 m2 quadrat

DBH of overstory 
tree

DBO Diameter at breast height (cm) of nearest 
overstory tree (> 7.0 cm) not inside of 
1 m2 quadrat

Distance to 
overstory tree

DOT Distance (m) to nearest overstory tree (> 
7.0 cm dbh) not inside o f 1 m2 quadrat

DBH of understory 
tree

DBU Diameter at breast height (cm) of nearest 
understory tree (< 7.0 cm) not inside of 
1 m2 quadrat

Distance to 
understory tree

DUT Distance (m) to nearest understory tree 
(<7.0 cm dbh) not inside o f  1 m2 quadrat

Percent canopy 
closure

CAN Canopy closure (%) directly above 1 m2 
quadrat

Percent leaf cover LEAF Leaf cover (%) within a i m 2 quadrat

Percent debris 
cover

DEB Debris cover (%; dead vegetation, logs, 
debris washed ashore from water, etc.) 
within a i m 2 quadrat

Percent vegetation 
cover

VEG Vegetation cover (%) within a i m 2 
quadrat

Vegetation density DENS Density (stems/m2) within a i m 2 quadrat

Height of dominant 
vegetation

HT Height (m) o f  dominant vegetation within 
a i m 2 quadrat
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a uniform random numbers table (Thompson, 1992 : 14). The first three digits of the 

chosen random number were used as a compass direction from a starting location and the 

second three numbers were used as the number o f paces from a starting location. Several 

independent starting points were used so that the entire study area was represented in the 

natural marsh and each pool was represented in the anthropogenic marsh. The 1 m2 

quadrat for a random location was placed directly in front o f the investigator in the same 

compass direction traversed.

Variables were measured using techniques similar to those of Reinert (1984a,b) 

and Petersen (1995), although different techniques were used for several measurements. 

Diameter at breast height (dbh) for both understory and overstory trees was measured 

with a dbh tape graduated in centimeters (Forestry Suppliers, Inc. Jackson, Mississippi).

In instances where the popularly accepted dbh measuring height of 1.37 m (4.5 ft; Higgins 

et al. 1994) was not possible (i.e., when a tree had a divided bole), the dbh o f  the largest 

bole was used. Distances to understory and overstory trees and vegetation heights were 

measured with a metric tape. Leaf cover, debris cover, and vegetation cover were 

estimated visually. Canopy closure was estimated using a 100 cm2 mirror (standard 

military issue, Boy Scouts o f America) marked with a 10 X 10 grid (1 cm2/grid). The 

mirror was held in the center o f the 1 m2 quadrat at waist height, and closure was 

estimated by counting the number of grid elements where canopy could be seen.

Vegetation density was either directly counted (when vegetation was nonuniformly 

distributed in the quadrat) or estimated by counting stems in the lower right one quarter o f 

the quadrat and multiplying by four (when vegetation was uniformly distributed in the 

quadrat).

Several classes o f sites were used for initial habitat analysis. Random sites, known 

snakft collection sites, and location sites for radiotelemetered animals were separated 

before comparisons. Male and female snakes were further grouped according to location 

(either natural marsh or anthropogenic marsh; Table 3). Given the difficulties associated
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TABLE 3.—Categories o f random and Agkistrodon p. piscivorus sites used in habitat 
modelling comparisons. See text for explanation of sample sizes and description of

sampling protocol for each category.

Sampling category Category abbreviation n

Random natural marsh sites RN 100

Random anthropogenic marsh 
sites

RA 100

Natural marsh males NM 43

Anthropogenic marsh males AM 17

Natural marsh females NF 23

Anthropogenic marsh females AF 11

Radiotelemetry subject 1 
(natural marsh male)

AP-1 29

Radiotelemetry subject 2 
(natural marsh male)

AP-2 56

Radiotelemetry subject 3 
(natural marsh female)

AP-3 59

Radiotelemetry subject 4 
(anthropogenic marsh female)

AP-4 22

Radiotelemetry subject 5 
(anthropogenic marsh male)

AP-5 20
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with serial correlation o f movement data (Swihart and Slade, 1985a,b, 1986, 1997;

Swihart et al., 1988; Reinert, 1984a; b), only habitat variables collected from different 

relocations of individual animals were used in habitat analyses. That is, if an animal was 

found in the same location (movements < 1.0 m from previous location) for several days, 

the variables associated with that location were used only once in the analysis. Habitat 

characteristics of hibemacula also were not used for comparative purposes to avoid 

autocorrelation.

Use-intensity classification.—Use-intensity classifications were based upon a plot 

of snake locations on the map of BBNWR. The study area was divided into square grid 

cells of 156.25 m2 (12.5 m on each side). The distance from the center o f a grid cell to 

any side was within the range of distances that individual snakes moved in a day, based on 

radiotelemetric data. Therefore, a given snake could be in a different grid square on any 

given day. Habitat components for each grid cell represented a mean of the locations 

found within them. With these criteria, 79 individual grid cells comprised the sample. For 

use-intensity classification, BBNWR was not divided into natural and anthropogenic 

marshes, but rather was treated as one study area (see DISCUSSION).

Plotting the percentage of the telemetry points located in specific grid cells and 

summing over all snakes allowed for use-intensity classes to be assigned. The number of 

categories varies from study to study, and delineating them relies upon graphical patterns 

or, in their absence, on biological intuition concerning the species under study (North and 

Reynolds, 1996). Three categories were used in this study: low use, middle use, and high 

use. They were delineated by obvious patterns in the graph (see RESULTS) and modeled 

as described below.

Multivariate regression and analysis o f variance.—Initial analyses of the data were 

performed to evaluate normality of individual habitat variables (PROC UNIVARIATE).

As is common with habitat variables, the assumption o f  normality is rarely met (Reinert, 

1984a; Noon, 1986; Cross, unpublished), due largely to the nature of the variables in
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question. Leaf litter cover, for example, is usually either very high (near 100% coverage) 

or very low (0-5% coverage), with very few intermediate points, and the same is true for 

many other variables. This often gives rise to skewed or platykurtic distributions, in which 

there are more measurements in the tails than would be expected by chance (Sokal and 

Rohlf, 1995; Zar, 1996). Many data transformations are available to resolve these 

problems, and they often lead to biologically identical results (Reinert, 1984a). However, 

extremely platykurtic distributions often cannot adequately be transformed into a 

mesokurtic distribution, and thus other methodologies must be examined.

If the data are moderately evenly distributed about the median (Bain and 

Engelhardt, 1987; Hogg and Craig, 1995), then nonparametric procedures can be used. 

Therefore, PROC RANK was used to rank the habitat measurements, and was followed 

by PROC GLM to produce a general linear model based on these rankings. This is 

equivalent in SAS language to using PROC NPAR1 WAY, but is a more straightforward 

programming task. To test whether multidimensional means (habitat centroids; Cooley 

and Lohnes, 1971; Reinert, 1984a) differed between sites, a multivariate analysis of 

variance (MANOVA) was used on the ranked data. Only main effects were used in the 

analysis, after an initial examination of interaction and power terms revealed that they 

were not significant.

To examine differences between sites in specific variables, a multiple comparison 

procedure was used (SAS User's Guide, Vol. 2; Sokal and Rohlf 1995). Tukey's 

Studentized Range (HSD) test, which controls type I experimentwise error (SAS User’s 

Guide, Vol. 2), was chosen for the analysis because it is generally robust to unequal 

sample sizes (Sokal and Rohlf 1995).

A canonical analysis o f the sum o f squares and cross-product matrices and the 

error matrix was used in lieu of the default MANOVA printout of characteristic roots and 

vectors (SAS User's Guide, Vol. 2). This analysis was used to find habitat variables that 

were most important in discriminating between different sites. This analysis can be
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performed using a discriminant analysis in SAS (PROC CANDISC). However, that 

analysis presumes that the data are multivariate normal with equal variance-covariance 

matrices across groups (SAS User's Guide, Vol. 2; Khatree and Naik, in prep.), an 

assumption not met by the data. Therefore, a separate discriminant analysis was 

performed using nonparametric techniques.

When assumptions cannot be made about a distribution, or when normality is not 

assumed, a nonparametric discriminant procedure can be used in PROC DISCRIM (SAS 

User's Guide, Vol. 2). Therefore, a normal kernel estimator with a smoothing parameter 

o f 0.2, estimated from the data (SAS User's Guide, Vol. 2), was used. Essentially, this 

method uses a computer-intensive approach to estimate group-specific densities without 

the constraints o f normality or equal variances (SAS User's Guide, Vol. 2; Hocking, 1996). 

This procedure allows the most important discriminatory variables to be identified and also 

produces an error-rate classification using a cross-validation jackknifing technique (SAS 

User's Guide, Vol. 2).

Polytomous logistic regression—The methods described above to compare use 

sites (sites where an animal was found) and non-use sites (randomly selected sites where it 

is assumed the animal is absent) are common in the literature (Shugart, 1981; Reinert 

1984a,b; 1988; Petersen, 1995) and are discussed at length in several studies (Johnson, 

1980; Marcum and Loftsgaarden, 1980; Fagen 1988; Thomas and Taylor, 1990). These 

techniques were used in the present study principally to facilitate comparisons with other 

studies of this type. Also, they were used to facilitate comparisons with a different 

modeling technique, polytomous logistic regression (PLR). PLR models the probability 

that a site belongs to a particular use-intensity category as a function of the microhabitat 

measures at a site, while retaining the information in the ordinal ranking of the dependent 

variables (Anderson, 1984; McCullagh and Nelder, 1989; North and Reynolds, 1996).

PLR is easily performed using PROC LOGISTIC. This technique has been used to model 

use-intensity classes of spotted owls (North and Reynolds, 1996), and has previously been
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investigated as a technique for modeling habitat use by Agkistrodon contortrix by the 

investigator (Cross, unpublished).

Following the terminology of Hosmer and Lemeshow (1989) and using slight 

modifications of the PLR modeling technique presented in full by North and Reynolds

(1996):

Let X = (Xj, Xj,. . . ,  x j

= the vector o f microhabitat measurements taken in a given grid 

cell, and

7t j(X) = the probability that a site with microhabitat vector X belongs to 

use category i (i = 1, 2 ,. . . ,k), where higher i equates higher use.
t ic - 1

7t,(x) = 1 and rrk(x) = 1 -  2  rc,)1=1 1=1

The cumulative probability that a site with vector X belongs to use category i 

is given by:

F;(X) = rt1(X )+ ir2(X) + . .  . + *j(X), 

for i = 1, 2 ,. . . k-1, and further

Fk(X) = 1 - Flt.1(X) = 7ck(x) = 1 - 2  x,

For modeling purposes, a link function (McCullagh and Nelder, 1983), also known 

as the log-odds ratio (Hocking, 1996), is necessary to ensure that a function o f the 

dependent variables is a linear function o f the independent variables (Hosmer and 

Lemeshow, 1989). The link function for logistic regression is the logit transformation 

(Hosmer and Lemeshow, 1989) and is defined as:
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L-,(X) = logiKF{(X)) = //i[F,(X) / (1 - F,(X))].

PLR models the logit function as a linear function of the microhabitat variables and 

makes the assumption o f proportional odds (Hosmer and Lemeshow, 1989; North and 

Reynolds, 1996). That is, the functions differ only by their associated a (the intercept) 

and not by their P's (the slopes). Hence,

Lj(X, ttj, P) = <Z{ + P ^  + PjXj + . + p ^  

fori = 1, 2, . . . ,  k-1, and

Lfc(X, aj, P) = -(ak_, + P ^ !  + P ^  + . . . + PnXn) 

for i = k.

The parameters are estimated by the method of maximum likelihood (Hosmer and 

Lemeshow, 1989).

The estimated probability that a given site belongs to a particular use category can 

be calculated from the estimated logit functions:

Fi( X ) = l / [ l + e x p ( - L i(X, dj, P))] 

for i = 1, 2, . . . ,  k,

which are:

it1(X) = Fl(X),

iti(X) = Fi(X ) -F i_1(X),

for i = 2, 3, . .  . ,  k-1, and finally
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S„(X)=Pk(X)

The fit o f the model can be assessed by calculating the classification errors o f the 

original model. A jackknife procedure is recommended because error probabilities may be 

biased if calculated from the original data (SAS User's Guide, Vol. 2; North and Reynolds, 

1996). However, this would require generating 79 different models in SAS. Since no 

algorithm is currently availability for generating classification errors o f polytomous 

variables, a slight positive bias exists in the reported classification errors.

Estimation o f Population Size

Estimates o f population size were calculated using slight modifications of 

Schnabel's multiple census method (1938; hereafter called Schnabel Index; Seber, 1982). 

The Schnabel Index is a multiple mark-recapture estimation technique useful for 

estimating closed populations. This technique is an extension o f  the single mark-recapture 

estimator obtained by the Lincoln-Petersen method (see Seber, 1982).

As with any closed population model, the primary assumption is that there are no 

animals entering (via births or immigration) or leaving (via deaths or emmigration) the 

population during the sampling period. Several statistical tests for population closure can 

be found in the literature (Burnham and Overton, 1978; Robson and Flick, 1965; Otis et 

al., 1978). However, Otis et al. (1978) suggest that these tests are weak and that the best 

way to ensure closure is to design your study in such a way that the assumption o f closure 

is met as closely as possible (see also Seber, 1982), as described below.

The bulk o f the mark-recapture data for this study came from captures during 

the months o f May-October, 1996-1997, with some captures occurring outside these 

periods. Only three dead snakes (unmarked) were found during the duration of the study, 

hence deaths were assumed to be negligible. The few juveniles entering the population
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from late August through September were marked and released, but were not used to 

estimate population size; therefore, births were considered to be zero (no juveniles were 

recaptured). A few cottonmouths were observed in the open water of Back Bay during 

the study while on boating excursions to Long Island to search for snakes. Given the 

sparse cottonmouth population on Long Island (Cross, unpublished data) and few 

sightings, migration during the study period was assumed to be o f little consequence. 

Since no marked snakes (either scale-clipped or radiotelemetered) were found to have 

moved between natural and anthropogenic marshes, each o f  these areas was assumed to 

be closed relative to the other. Finally, animals marked and released in late 1995 and in 

1996 that were recaptured in 1997 were not included in population estimates in order to 

insure independent estimates across years.

A second major assumption of the proposed technique is that the probability of 

capture is equal among members of the population ("equal catchability;" Eberhardt, 1969; 

Krebs, 1989; Seber, 1982). This can be tested using the zero-truncated Poisson test of 

equal-catchability (Caughley, 1977; Krebs, 1989). This technique uses the frequency 

distribution of numbers of animals caught various times during the survey and then 

compares these observed frequencies to expected frequencies obtained from a zero- 

truncated Poisson distribution using a chi-square goodness o f fit test (Krebs, 1989; Seber, 

1982). This technique was used in this investigation.

Estimating the number o f snakes.—Separate estimates of population numbers were 

obtained for 1996 and 1997 for both the natural and anthropogenic marsh systems. The 

marsh systems were divided into several transects for sampling (see Introduction) and 

were sampled five to six days per week. Since both systems consisted of several 

kilometers o f sampling transects, not all transects could be sampled each day. Therefore, 

particular transects in both areas were randomly sampled on each sampling occasion in 

such a way that transects in each marsh system were sampled in their entirety every week.
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Sampling occasions were taken as the summation o f the individual transects sampled over 

a week's time.

Using slight modifications o f Kreb's (1989) and Sebefs (1982) notation, let 

N = population size,

s = number of sampling occasions = sum of all transects samples over each o f several 

days (d) o f the week (see text)

Q  = number o f animals captured on the i* occasion (i = I, 2 ,..., s),

Rj = number o f marked (recaptured) animals in C,

M: = number of marked individuals in the population just before the i^1 sample is taken
i-1

= Zj (C. -  R.) (i = 1, 2 , . .  ., s + 1), where M^, is defined as the total number 
j = i

o f different individuals captured throughout the entire sampling period.

Schnabel (1938; Bailey 1951, 1952) treated each Mj as a fixed parameter and used the 

binomial approximation:

Using maximum-likelihood theory (Edwards, 1992), the estimate of population size was 

approximated by (Krebs, 1989; Seber, 1982):

with variance approximated by (Krebs, 1989):
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This estimate o f population size is simply a modified Lincoln-Petersen estimate 

over a series of s, rather than two, capture occasions (Seber, 1982). A confidence interval 

for the estimate of population size can be found using asymptotic normal theory if Rj > 50 

(Seber, 1982). However, in most mark-recapture studies of snakes, as well as in the 

present study, the number of recaptures is much less than 50. Therefore, Seber (1982), 

following the work o f  Chapman (1951), suggests using the Poisson distribution, since Rj ~ 

POI(CjMj/ N) This often results in very wide confidence intervals about the estimate, as 

seen in the Results, below.

An additional result o f  using the Schnabel Index was derived by Chapman and 

Overton (1966) and is particularly useful in the present study. If  a Schnabel Index is 

calculated for two populations, then the population estimates can be compared statistically 

by converting the estimates to a normal z deviate with a continuity correction and then 

comparing the result to a statistical table. If  Nn and Na are the estimates o f snake numbers 

in the natural and anthropogenic marsh systems, respectively, R„ and R  ̂are the total 

number of recaptures in both systems, Qn and Q, are the sums o f  the products o f C, and 

Mj from above for each population, and p = Qn / Qa, then we can test the null hypothesis 

H,,: Nn = Na against the alternative hypothesis H,: Nn ^  Na using the following equation:

_  ^ - ( R ^  + R J x p l - l  

>/(&* +  &*) x p X  (1 - p )

Estimating the density o f snakes— Estimating density directly from population point 

estimates is not always a straightforward task because the area sampled and the area used 

to determine density generally are not identical. Thus, estimated density may be biased
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(Anderson et al., 1983; Dice, 1938; White et al., 1982). I f  it is assumed that the area 

sampled includes the entire area o f interest, then the finite population estimate o f density 

(Buckland et al., 1993; Cochran, 1977), where N = the population point estimate, and a = 

survey area, is given by:

Estimating linear density (King, 1986; Parker and Plummer, 1987), however, may 

be more appropriate considering that the area surveyed in this study concentrated on the 

shoreline habitat of natural and anthropogenic marshes. Assuming that the density of 

snakes is constant along the lengths of shoreline sampled, and letting /  = the linear extent 

of shoreline surveyed (natural marsh = 6340 m; anthropogenic marsh = 9860 m), density 

can be estimated by the following equation:

Both approaches were used in this study.

Trophic Ecology and Behavior

Gut contents were obtained opportunistically from several snakes (n = 56) in both 

marsh systems. An attempt was made to balance sampling, as much as possible, between 

the two areas and between sexes; however, balanced sampling could not be done in both 

areas given the difficulty in obtaining gut contents of snakes. In addition, three snakes 

found dead on the Refuge were dissected to obtain gut contents. After cottonmouths 

were captured and processed according to the protocols o f  the mark-recapture study, 

snakes were secured by placing their head and approximately 10 cm of their neck into an
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appropriately sized clear acrylic tube (see Reinert, 1992). Stomach contents were gently 

palped by finger pressure to within a few centimeters of the head (Fitch, 1987), after 

which the snake was placed into a squeeze box where the food was regurgitated by the 

animal. Items were collected, bagged, sealed, labeled for future identification, and frozen. 

Contents were later weighed, measured, and identified by the principal investigator.

In order to obtain information on prey availability, both marsh systems were 

sampled for potential prey items. Information on prey fishes and small mammals were 

gathered from various survey studies performed at BBNWR by private investigators and 

USFWS staff. Information on potential waterfowl prey items was obtained from weekly 

surveys by the principal investigator and USFWS biologists. Amphibian prey items were 

identified by observations during the course o f the study. Dip-net sampling o f ditches 

during the nighttime hours was used to estimate amphibian density.

Radiotelemetry

Implantation o f radiotransmitters.— Five adult snakes (two males and one female 

from the natural marsh and one male and one female from the anthropogenic marsh) were 

implanted with temperature-sensitive radiotransmitters (Model SMI; AVM Instrument 

Company, Ltd., Livermore, California) during the course o f this investigation. 

Transmitters ranged from 8-10.5 g, a mass small enough to ensure that transmitter weight 

was much less than 5% of the implanted snake's body mass (range = .8% - 2.7%; Reinert, 

1992). The transmitters were calibrated by submersion in seven water baths ranging from 

0.4-47.8 C before implantation to derive a relationship between pulse interval and 

temperature. A linear relationship was established for one radio (an older model with a 

mercury oxide battery) and exponential relationships were found for five radios (newer 

models with silver oxide batteries).
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Snakes were captured and brought into the laboratory for surgical implantation o f 

radiotransmitters, following the method o f Reinert and Cundall (1982; Reinert, 1992). 

Transmitters were coated with a solution of beeswax and paraffin (1:1 by mass) before 

implantation Snakes were anesthetized using an acrylic chamber chamber into which 

isoflourane anesthetic (Aerrane) had been placed within a perforated bottle. After the 

snakes were fully anesthetized, they were removed and measured. Following 

measurements, snakes were placed onto a surgical drape, lightly strapped to a board for 

safety, and maintained under anesthesia by means of a mask that contained isoflourane 

(Reinert and Cundall, 1982). Transmitters were implanted into the pleuroperitoneal cavity 

by making a small incision between the first and second scale rows approximately 75% of 

the SVL from the snout. Each radiotransmitter was equipped with a whip antenna, which 

was placed subcutaneously and anterior to the radiotransmitter. Incisions were closed 

using 3X0 Prolene sutures and coated with a surgical adhesive (New Skin).

Tracking and monitoring.—Snakes were monitored for various lengths of time (see 

Results) from early fall, 1996 through late spring, 1998. Tracking of snakes generally was 

performed at least once every two days during the spring, summer, and autumn, and at 

least once every three days during hibernation. Tracking usually took place during the 

morning or early afternoon hours. A Wildlife Materials receiver (model TRX-1000S; 

Wildlife Materials, Inc., Carbondale, Illinois) equipped with a collapsible three-element 

Yagi antenna (AVM Instrument Company, Ltd., Livermore, California) was used to track 

snakes. Maximum range was approximately 600 m in open marsh and considerably less 

elsewhere.

Latitude and longitude positions were obtained for relocated snakes using a global 

positioning system (GPS) receiver (Trailblazer XL; Magellan Systems Corp., San Dimas, 

California) . Additionally, distances and direction to known, mapped locations were taken 

from relocation sites to ensure accurate mapping. Pulse interval was obtained for each 

relocation (see Temperature data, below). Habitat measurements were also taken at each
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site at the time of snake relocation (see Habitat, above). Locations were mapped 

according to GPS and triangulation data using a metric ruler and 360° protractor.

Movements and activity range areas.—The total distance moved was determined 

by summing the linear distances between successive relocation sites. Mean distance 

moved per day and mean distance per movement were calculated by dividing the total 

distance moved per day by the number of days tracked and the total number of movements 

a snake made, respectively. Range length was defined as the linear distance between the 

two most distant locations (Reinert, 1992; Petersen, 1995). Activity ranges were found by 

entering the relocation data as Cartesian coordinates into program McPAAL (Michael 

Stuwe, Conservation and Research Center, National Zoological Park, Washington, D. C ). 

Areas o f use were determined by both the geometry o f the minimum convex polygon 

constructed by connecting the outermost vertices o f the polygon constructed from the 

relocation data and the area enclosed by the 95% isopleth using the harmonic mean 

method (White and Garrott, 1990). Activity ranges for 17 recaptured snakes provided 

ancillary data for comparisons with the radiotelemetric subjects. Areas for these snakes 

were found by plotting and connecting relocation points, and then applying an appropriate 

geometric formula (e.g., A = 0.5(base)(height) for a triangle). There were four females 

and 13 males with adequate data for these calculations.

Movement patterns were determined by calculating the biweekly mean movement 

per day o f each individual during the active season. These means were calculated by 

summing the total distance moved over a two week interval, then dividing by 14 days (see 

Petersen, 1995). Data were plotted but not compared statistically due to limited sample 

sizes.

Temperature data.—Air, surface, and soil (10 cm depth) temperatures were taken 

at each relocation site using a digital Electro-Therm thermometer (model SH66A; Cooper 

Instrument Corp.). Body temperatures were found by recording the pulse interval o f the
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snake and then comparing it to the standard curves of pulse interval versus temperature 

for each radio.

Mean body, air, surface, and soil temperatures were calculated for each snake 

during both the active season and in hibernation. Correlations o f body temperature with 

environmental temperatures were also calculated for both the active season and 

hibernation. Grand means, determined by weighting individual means by sample size 

(weighted means), were calculated for all variables.

To elucidate the possible temperature cues used by snakes to enter hibemacula in 

late autumn (ingress) and to exit hibernacula in spring (egress), weekly mean temperatures 

(air, surface, and soil) were calculated for eight weeks. Means for the two weeks prior to 

and after ingress and for the two weeks prior to and after egress were plotted. Ingress and 

egress dates and snake body, air, surface, and soil temperatures were plotted 

simultaneously for comparison.

Management o f Cottonmouths

Visitors to BBNWR are encouraged to leave a note in the "Animal Sighting Log" 

before leaving the Refuge. Many visitors see snakes along public access trails and make 

notes of their observations. Also, hunters have access to the Refuge for one week each 

October. A sighting log was made available during the hunt week of 1997, and several 

hunters left notes on snake sightings. In both cases (visitors and hunters), plots were 

made to show snake sightings at BBNWR. Given the common occurrence and sightings 

o f cottonmouths, management implications were developed for cottonmouths at the 

Refuge.
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RESULTS 

Ecological Analyses

Morphological measurements. —The largest snakes captured were males, but much 

overlap was seen in SVL. Tail length was greatest in males also, but a large area of 

overlap was evident when not corrected by SVL. Probe length (i.e., inverted length of the 

hemipenis) was large in males compared to females. Head length, head width, and body 

mass all showed large overlap between males and females.

Descriptive statistics for morphological measurements for each group o f animals 

(area and sex) and overall (pooled) were quite similar, with the obvious exception of 

probe length (Table 4). MANOVA results for area effect showed that differences between 

natural and anthropogenic marsh systems were all statistically insignificant, as was the test 

for overall area effect (P > 0.05; Table 5). Therefore, snakes from the two habitat types 

were grouped prior to testing for sexual differences. Overall effect of sex was significant 

(P < 0.0001), with both relative (i.e. SVL-corrected) tail length and probe length 

statistically significant (P = 0.0444 and P < 0.0001, respectively; Table 6).

Growth and difference measurements.—There were few recaptures over time, 

making growth difficult to assess in the present study. However, two females and six 

males were recaptured approximately one year after initial capture, allowing annual 

growth rates to be estimated. Males showed greater growth in all morphological 

categories except tail length and mass (Table 7).

Given that field measurements o f snakes have associated error, making growth 

assessment difficult if the error is great enough, all radiotelemetry subjects were measured 

in the field using the same technique as for mark-recapture specimens. After being 

brought to the laboratory, animals were remeasured using a method assumed to be more 

accurate (measurements were taken directly on anesthetized snakes). Differences in field
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TABLE 4.--Morphological measurements for cottonmouths at Back Bay National Wildlife Refuge. Snout-vent length (SVL) is given,
as are measurement/SVL ratios. Measurements are presented as x (n, SE).

All groups NM AM NF AF

Snout-vent length 
(SVL)

650.19 
(94, 17.501)

677.99 
(45, 30.801)

625.94 
(17, 40.996)

623.62 
(20, 14.628)

624.58 
(12, 38.409)

Tail length/S VL 0.19 
(94, 0.020)

0.19 
(45, 0.012)

0.20 
(17, 0.003)

0.16 
(20, 0.006)

0.18 
(12, 0.005)

Probe length/SVL 0.06 
(89, 0.006)

0.08 
(43, 0.003)

0.08 
(17, 0.005)

0.02 
(17, 0.003)

0.01 
(12, 0.001)

Head length/SVL 0.06 
(88, 0.006)

0.06 
(43, 0.002)

0.06 
(17, 0.002)

0.06 
(17, 0.001)

0.07
(11,0.001)

Head width/SVL 0.05 
(85, 0.005)

0.05 
(40, 0.003)

0.05 
(17, 0.005)

0.05 
(17, 0.003)

0.05
(11,0.001)

Mass/SVL 0.67 
(67, 0.072)

0.66 
(29, 0.048)

0.70
(15,0.055)

0.64 
(14, 0.054)

0.65 
(9, 0.059)
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TABLE 5.—Results of MANOVA testing for differences in morphological characteristics 
o f snake populations between natural and anthropogenic marsh systems at Back Bay 
National Wildlife Refuge. Morphological characters were divided by snout-vent length 

prior to analysis (see text). Wilks' Lambda for overall area effect is given.

Dependent Variable Numerator df Denominator df F P

Snout-vent length 1 
(SVL)

64 1.330 0.2523

Tail length /  SVL 1 64 0.001 0.9496

Probe length /  SVL 1 64 3.890 0.0529

Head length / SVL 1 64 0.780 0.3801

Head w idth/SVL 1 64 0.530 0.4691

Mass / SVL 1 64 0.280 0.6016

Wilks' Lambda 6 59 0.998 0.4353
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TABLE 6.—Results o f MANOVA testing for differences in morphological characteristics 
of snake populations between sexes at Back Bay National Wildlife Refuge. Natural and 
anthropogenic populations were pooled prior to analysis since no area effect was found 
(see text). Morphological characters were divided by snout-vent length prior to analysis 

(see text). Wilk's Lambda for overall area effect is given.

Dependent Variable Numerator df Denominator df F P

Snout-vent length 
(SVL)

1 92 1.160 0.2844

Tail length /  SVL 1 92 4.160 0.0444

Probe length / SVL 1 87 280.900 0.0001

Head length / SVL 1 86 0.040 0.8434

Head width /  SVL 1 83 0.070 0.7991

Mass / SVL 1 65 0.360 0.5526

Wilks' Lambda 6 60 54.754 0.0001
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and laboratory measurements were less than 1 cm in all morphological categories (Table 

7). Loss of body mass for snakes brought into the laboratory was fairly dramatic (Table 

7), but not uncommon compared to other taxa (A. H. Savitzky, personal communication).

Location—More snakes were found at upland sites (> 0.5 m from water source) 

than in either water or shoreline locations, with radiotelemetry specimens generally 

spending the greatest amount o f their time away from water. However, males in the 

anthropogenic habitat had the higher percentage of captures in the water (Table 8; Fig. 2).

Cover object—Most snakes found used vegetation as a source of cover, with 

radiotelemetry subjects and males in the anthropogenic marsh using vegetation most often. 

Several individuals, notably males and females in the natural marsh and females in the 

anthropogenic marsh, were found in the absence o f cover (Table 9; Fig. 3).

Sun exposure—The majority of captures and relocations of animals showed full sun 

exposure, suggesting high basking behavior. The radiotelemetry male in the 

anthropogenic marsh (AP-5) was the exception, with the majority o f his relocations in full 

shade (Table 10; Fig. 4). The majority of snakes were found in full sun regardless of 

temperature (Fig. 5-Fig. 8); however, a large percentage of radiotelemetry female 

relocations was in shade regardless of temperature (Fig. 8).

Activity—Most snakes located in this study were either lying extended or coiled; 

few were moving. Chi-square significance between activity categories was only found in 

radiotelemetry animals AP-1 through AP-4, with AP-1 through AP-3 most often 

extended, and AP-4 most often coiled. A male in the natural marsh (AP-2) was most 

often extended, whereas the female in the natural marsh (AP-3) was most often coiled 

(Table 11; Fig. 9). Although most snakes were motionless at all temperatures, movement 

was most common at temperatures > 18 C (Fig. 5-Fig 8).

Defensive movement—Nearly all snakes did not move when located, with few 

fleeing or approaching the investigator. Chi-square tests indicated that the "no 

movement" category was observed much more often than expected in all categories except
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TABLE 7.—Difference measurements of cottonmouths at Back Bay National Wildlife 
Refuge. Growth (in mm) for two females and six males (natural and anthropogenic marsh 
systems are presented together, see text) separated by one year between initial capture and 
recapture are shown. Additionally, field versus laboratory measurements are given for five 

radiotelemetry snakes. Measurements are presented x  (SE).

Females Males Radiotelemetry
snakes

Snout-vent length 26.50 43.83 +6.00
(6.501) (11.633) (0.837)

Tail length 14.50 14.17 +2.51
(4.501) (3.651) (1.022)

Probe length 1.70 5.50 0.00
(0.000) (1.886) (1.000)

Head length 0.00 5.67 +0.90
(0.000) (1.861) (0.900)

Head width 2.00 5.60 -0.90
(0.000) (1.592) (1.646)

Mass 70.00 50.00 -59.68
(5.000) (42.817) (12.148)
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TABLE 8.-Location for cottonmouths at Back Bay National Wildlife Refuge. Capture locations for mark- 
recapture snakes (NM-AF) and resight locations for radiotelemetry snakes (AP-l-AP-5) were placed into three 
categories and compared using chi-square tests with Yates' continuity correction (Sokal and Rohlf, 1995). 
Appropriate alpha-levels and degrees of freedom (total chi-square: a  = 0.05, df = 2; partial chi-squares a = 0.01,

df = 1) are described in the text. Asterisks indicate statistical significance.

NM AM NF AF AP-1 AP-2 AP-3 AP-4 AP-5

Upland 19 5 17 3 19 53 78 12 11

Water 23 13 8 6 4 1 1 4 5

Shoreline 15 0 1 3 3 6 2 6 11

Total chi-square 1.30 12.13* 13,00* 0.69 16.24* 79.04* 140.77* 3.56 1.86

Upland vs. Water 0.21 7.08* 2.56 0.44 8.52* 48.17* 73.11* 3.06 1.56

Upland vs. Shoreline 0.26 3.2 12.5* 0.17 10,23* 35.86* 70.31* 1.39 0.05

Water vs. Shoreline 1.29 11.08* 4.00 0.44 0.00 2.29 0.00 0.10 1.56
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Males-natural 
Males-anthropogenic 
Females-natural 
Females-anthropogenic 

■  AP-1 (male-natural) 
s  AP-2 (male-naturaO 
o  AP-3 (female-natural) 
s  AP-4 (female-anthropogenic) 

AP-5 (male-anthropogenic)

Upland Water

Location

Shoreline

FIG. 2.—Location (as percentage o f observations) for cottonmouths at Back Bay National 
Wildlife Refuge.
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TABLE 9.-Cover object data for cottonmouths at Back Bay National Wildlife Refuge. Cover type for mark- 
recapture snakes (NM-AF) and resight data for radiotelemetry snakes (AP-l-AP-5) were placed into three 
categories and compared using chi-square tests with Yates' continuity correction (Sokal and Rohlf, 1995). 
Appropriate alpha-levels and degrees of freedom (total chi-square: a = 0.05, df = 2; partial chi-squares a = 0.01,

df= 1) are described in the text. Asterisks indicate statistical significance.

NM AM NF AF AP-1 AP-2 AP-3 AP-4 AP-5

Tree 12 1 4 1 6 1 2 0 2

Vegetation 15 16 6 2 16 56 56 21 13

None 24 1 16 9 4 4 6 1 9

Total chi-square 3.81 21.79* 7.93* 7.19* 7.93* 90,59* 81.66* 34.65* 6.34*

Tree vs. Vegetation 0.15 0,05 0.10 0.00 3.68* 51.16* 48.43* 19.05* 6.67*

Tree vs. None 3.36 11.53* 6.05 4.90 0.10 0.80 1.13 0.00 3.27

Vegetation vs. None 1.64 11.52* 3.68 3.27 6.05 43.35* 38.73* 16.41* 0.41
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FIG. 3.—Cover object (as percentage of observations) for cottonmouths at Back Bay 
National Wildlife Refuge.
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TABLE 10,-Sun exposure for cottonmouths at Back Bay National Wildlife Refuge. Sun exposure for mark- 
recapture snakes (NM-AF) and resight data for radiotelemetry snakes (AP-l-AP-5) were placed into three 
categories and compared using chi-square tests with Yates' continuity correction (Sokal and Rohlf, 1995). 
Appropriate alpha-levels and degrees of freedom (total chi-square: a = 0.05, df = 2; partial chi-squares a = 0.01,

df = 1) are described in the text. Asterisks indicate statistical significance.

NM AM NF AF AP-1 AP-2 AP-3 AP-4 AP-5

Full sun 32 15 18 8 15 42 28 8 5

Shade 7 2 0 3 2 9 31 9 9

Full shade 18 1 8 1 7 11 19 5 14

Total chi-square 15.20* 17.46* 16.70* 4.69 9.09* 31.10* 2.49 0.65 3.44

Full sun vs. Shade 14.77* 7.93* 16.06* 1.45 8.47* 20.08* 0.07 0.00 0.64

Full sun vs. Full shade 3.38 10.56* 3.12 4.00 2.23 16.98* 1.36 0.31 3.37

Shade vs. Full shade 4.00 0.00 6.125 0.25 1.78 0.05 2.42 0.64 0.70
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for males in the anthropogenic marsh (Table 12; Fig. 10). Most snakes remained in place 

when approached. No snakes below 18 C made any attempt to flee or approach. Flee and 

approach behaviors were most common for mark-recapture males, and approach only 

occurred with male snakes. All attempts to flee were made at temperatures > 21 C (Fig. 

12-Fig. 10).

Defensive behavior. —Nearly all snakes were passive when approached, elevating 

and orienting the head toward the investigator rather than initiating aggressive behavior.

A few snakes, however, were quite aggressive and struck readily, and most o f these 

agressive encounters were with large males (Table 13; Fig. 11). Aggressive behaviors 

occurred at all temperatures (Fig. 5-Fig. 8).

Population and reproductive data.—Sex ratios were skewed toward males in this 

study (see Population Estimation, below). Gravid females were not commonly captured. 

In 1996, 13.3 % (2 o f 15) and 22.2% (2 of 9) of the females captured in the natural and 

anthropogenic marsh, respectively, were gravid. In 1997, 13.6% (3 of 22) and 9.5% (2 of 

21) of the females captured in the natural and anthropogenic marsh, respectively, were 

gravid.

Uncaptured snakes —A. total of 53 located snakes evaded capture throughout the 

study. Most fled before the investigator was within capture distance. Snakes in the 

anthropogenic marsh fled much sooner than snakes in the natural marsh (natural marsh: x 

= 2.34 m, se = 0.157, n = 44; anthropogenic marsh: x =4.11 m, se = 0.820, n = 9). 

However, a conservative t-test (d f = 8, in accordance with the lowest n) did not reveal a 

signigicant difference in approach distance between natural and anthropogenic systems (t 

=  2.12, P > 0.05). The pooled mean approach distance was 2.64 m (se = 0.206).

A contigency table analysis was used to determine whether the approach medium 

(land or water) was independent o f the medium to which the snake fled. The number of 

indivuals in each category was similar (Table 14). The chi-square statistic (x2 = 0.027, df 

= 1, P > 0.05) did not support the hypothesis that the approach medium affected the
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TABLE 11 .-Activity for cottonmouths at Back Bay National Wildlife Refuge. Activity for mark- 
recapture snakes (NM-AF) and resight locations for radiotelemetry snakes (AP-l-AP-5) were placed into three 
categories and compared using chi-square tests with Yates' continuity correction (Sokal and Rohlf, 1995). 
Appropriate alpha-levels and degrees of freedom (total chi-square: a = 0.05, df = 2; partial chi-squares a =0.01,

df = 1) are described in the text. Asterisks indicate statistical significance.

NM AM NF AF AP-1 AP-2 AP-3 AP-4 AP-5

Extended 23 8 9 5 15 43 24 5 5

Moving 13 6 5 3 2 1 2 2 5

Coiled 20 4 12 4 9 8 41 13 11

Total chi-square 2.25 0.79 2.09 0.19 8.32* 55.50* 32.45* 7.91* 2.39

Extended vs. Moving 2.25 0.07 0.64 0.13 8.47* 38,20* 16.96* 0.57 0.10

Extended vs. Coiled 0.09 0.75 0.19 0,00 1.04 22.67* 3.94 2,72 1.56

Moving vs. Coiled 5.65 0.10 2.30 0.00 3,27 4.00 33.58* 6.67* 1.56
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TABLE 12.--Defensive movement for cottonmouths at Back Bay National Wildlife Refuge. Action data for mark- 
recapture snakes (NM-AF) and resight locations for radiotelemetry snakes (AP-l-AP-5) were placed into three 
categories and compared using chi-square tests with Yates' continuity correction (Sokal and Rohlf, 199S). 
Appropriate alpha-levels and degrees of freedom (total chi-square: a  = 0.05, df = 2; partial chi-squares a =0.01,

df = 1) are described in the text. Asterisks indicate statistical significance.

NM AM NF AF AP-1 AP-2 AP-3 AP-4 AP-5

Immobile 45 10 19 8 24 61 73 20 21

Flee 7 6 6 4 1 1 0 1 2

Approach 1 2 0 0 1 0 0 0 0

Total chi-square 61.39* 4.13 20.18* 6.19* 37.24* 114.23* 142.03* 32.68* 31.66*

Immobile vs. Flee 26.33* 0.56 5.76 0.75 19.36* 56.15* 71.01* 15.43* 14.09*

Immobile vs. Approach 40.20* 4.08 17.05* 6.13 19.36* 59.02* 71.01* 18.05* 19.05*

Flee vs. Approach 3.13 1.13 4.17 2.25 0.50 0.00 0.00 0.00 0.50
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TABLE 13.-Defensive behavior data for cottonmouths at Back Bay National Wildlife Refuge. Behavior data for mark- 
recapture snakes (NM-AF) and resight data for radiotelemetry snakes (AP-l-AP-5) were placed into three 
categories and compared using chi-square tests with Yates' continuity correction (Sokal and Rohlf, 199S).
Appropriate alpha-levels and degrees of freedom (total chi-square: a  = 0.05, df = 2; partial chi-squares a = 0.01,

df = 1) are described in the text. Asterisks indicate statistical significance.

NM AM NF AF AP-1 AP-2 AP-3 AP-4 AP-5

Aggressive 12 6 6 3 3 10 5 1 1

Very aggressive 14 2 2 2 1 0 2 0 1

Passive 27 8 17 7 21 52 59 19 16

Total chi-square 6.49* 2.39 12.50* 2.19 28.01* 70.68* 90.22* 30.71* 25.61*

Aggressive vs. Very 
aggressive

0.04 1.13 1.13 0.00 0.25 8.1* 0.57 0.00 0.50

Aggressive vs. Passive 5.03 0.07 4.35 0.90 12.96* 27.11* 43.89* 14.45* 13.47*

Very aggressive vs. 
Passive

3.51 2.50 10.32* 1.78 17.39* 50.01* 51.41* 17.05* 13.47*

£
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TABLE 14.-—Contigency table for 53 cottonmouths that escaped capture at Back Bay 
National Wildlife Refuge. Snakes from natural and anthropogenic marsh systems were 
pooled prior to analysis (see text). Data are presented according to the medium from 
which approach was made and to which medium the snake fled and subsequently evaded

capture.

Approach from land Approach from water

Flee to land 14 13

Flee to water 14 12
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escape medium. That is, the snake simply fled opposite the direction o f  approach no 

matter where it was or how it had been approached.

Habitat Analyses

Multiple comparisons.—Descriptive statistics for the eleven habitat variables 

revealed differences among each category examined (Table IS). In general, standard 

errors were small for all variables except vegetation density. Of particular interest was the 

seemingly low variation among both snake sites and random sites. For the results below, 

NM = natural marsh males, AM = athropogenic marsh males, NF = natural marsh females, 

and AF = anthropogenic marsh females.

Distance to water (DW) did not differ between random sites in the natural and 

anthropogenic marsh systems, and mark-recapture animals did not differ between natural 

and anthropogenic marshes. However, both NM and NF were found closer to water than 

random north sites and AM and AF were found closer to water than random south sites, 

though no differences were found between natural marsh and anthropogenic marsh 

animals Radio-tracked animals, on the other hand, showed surprising differences. Males 

and females radio-tracked in the natural marsh (NM and FM, respectively) showed no 

significant DW differences from random sites in the natural marsh, whereas the 

telemetered AM differed from random anthropogenic sites. The telemetered AF, 

however, did not differ from random anthropogenic marsh sites. Radiotracked snakes in 

the natural marsh were found significantly farther from water than mark-recapture snakes 

in the natural marsh, but those tracked in the anthropogenic marsh did not show 

differences when compared to mark-recapture animals in the anthropogenic marsh. The 

AM male (AP-S) was found significantly farther from water than were the radiotracked 

NM males (Table 16).
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TABLE 15.—Means and standard errors (given in parentheses) of habitat variables for 
each snake or random category. Habitat variables are given in Table 2. Snake and

random categories are given in Table 3.

DW DBO DOT DBU DUT CAN LEAF DEB VEG DENS HT

RN 17.93
(3.46)

11.29
(0.43)

6.81
(143)

2.99
(0.16)

3.24
(0.76)

18.81
(2.76)

18.93
(3.08)

15.39
(1-97)

64.88
(3.71)

223.29
(19.85)

0.87
(0.06)

RA 19.41
(2.93)

14.53
(0.73)

13.36
(1-42)

2.23
(0.13)

12.19
(1-69)

12.66
(2.64)

11.16
(2.60)

16.90
(2.40)

56.44
(4.51)

169.29
(17.69)

0.55
(0.05)

NM 1.02
(0.48)

10.08
(0.52)

3.38
(0.85)

3.11
(0.24)

2.53
(0.65)

41.05
(6.68)

8.49
(3.18)

17.91
(4.70)

34.07
(6.74)

52.42
(12.90)

0.41
(0.09)

AM 1.01
(0.57)

11.92
(0.85)

15.06
(3.15)

6.27
(3-71)

8.91
(2.51)

0.00
(0.00)

0.59
(0.59)

13.23
(7.14)

23.53
(8.67)

52.65
(22.37)

0.34 
(0.11)

NF 1.89
(0.76)

12.17
(144)

9.50
(4.50)

2.95
(0.37)

1.71
(0.24)

15.45
(6.68)

9.32
(5.26)

18.86
(7-26)

60.0
(9-26)

150.55
(39.23)

0.80
(0.16)

AF 0.52
(0-45)

10.73
(1-41)

13.64
(4.65)

2.69
(0.43)

7.73
(2.51)

7.27
(7.27)

7.27
(7.27)

1.82
(122)

24.09
(12.15)

125.91
(76.80)

0.67
(0.38)

AP-1 17.17
(2.53)

12.77
(062)

6.11
(1.82)

4.03
(0.26)

6.02
(1-83)

25.52
(7.29)

18.62
(5-44)

58.45
(8.19)

69.48
(8.54)

117.10
(16.23)

1.16
(0.17)

AP-2 13.27
(1-15)

9.65
(0.57)

4.68
(0.93)

3.80
(0.14)

1.29
(0.07)

4.46
(1-92)

34.11
(4.08)

34.38
(3.32)

84.02
(4.13)

159.73
(11.23)

1.11
(0.04)

AP-3 6.64
(0.85)

10.71
(0.43)

5.76
(102)

3.60
(0.25)

5.17
(1.04)

35.34
(5.55)

16.86
(4.05)

21.95
(3.38)

63.61
(5-85)

152.71
(16.13)

0.92
(0.12)

AP-4 2.44
(0.39)

12.93
(0.79)

8.35
(197)

2.63
(0.28)

3.94
(0.99)

26.14
(6.77)

18.18
(6.19)

20.0
(5.62)

72.73
(7.36)

279.55
(35.53)

1.50
(0.13)

AP-5 15.30
(10.30)

17.31
(145)

25.20
(13.54)

3.21
(0.20)

7.25
(3.30)

80.75
(7.92)

11.25
(6.14)

7.25
(3.93)

35.50
(10.64)

134.00
(43.79)

0.53
(0.15)
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TABLE 16.—Results of Tukey's Studentized Range (HSD) Test for distance to water (m). 
Comparisons significant at P = 0.05 are indicated with a "Y" (Yes); insignificant 
comparisons are indicated with an "N" (No). Descriptions o f abbreviations

are given in Table 3.

RN RA NM AM NF AF AP-1 AP-2 AP-3 AP-4 AP-5

RN *

RA N *

NM Y Y ♦

AM Y Y N *

NF Y Y N N *

AF Y Y N N N *

AP-1 N N Y Y Y Y *

AP-2 N N Y Y Y Y N *

AP-3 N N Y Y Y Y N N *

AP-4 N N N N N N N Y N *

AP-5 Y Y N N N N Y Y Y N *
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The diameter at breast height of the closest overstory tree (DBO) did not differ 

between random sites in the natural and anthropogenic marsh systems, nor did it differ 

between mark-recapture males and females in either marsh. Radiotracked snakes showed 

a similar pattern, except that AM AP-5 was nearer larger trees than NM AP-2. No 

differences were found between relevant comparisons of radio-tracked and mark-recapture 

animals (Table 17).

The distance to the nearest overstory tree (DOT) was significanctly less for 

random sites in the natural and anthropogenic marshes. Additionally, NM and NF were 

found significantly closer to overstory trees than their anththropogenic marsh 

counterparts, but no differences were found among males or females when looking at 

individual marsh systems. Radiotracked snakes showed no differences in either system 

(Table 18).

The diameter at breast height of the nearest understory tree (DBU) did not differ 

between random sites in the natural and anthropogenic marshes. Radiotracked NM were 

nearer larger diameter understory trees than random sites in the natural marsh, but only 

male AP-2 differed from mark-recapture natural marsh males. The AM (AP-5) showed a 

similar condition when compared to random anthropogenic marsh sites, but the female did 

not. No significant differences were found among the mark-recapture classes (Table 19).

The distance to the nearest understory tree (DUT) was significantly greater in 

random anthropogenic marsh sites as compared to random natural marsh sites. Natural 

marsh males and females did not differ from random nor from each other, and the 

anthropogenic marsh snakes showed the same pattern. AM were significantly farther from 

understory trees than were NM and NF. Radio-tracked snakes showed no differences 

from random sites in their respective marsh systems (Table 20).

Percent canopy closure (CAN) was signficantly higher in the natural marsh system 

than in the anthropogenic marsh. Neither NM and NF nor AM and AF differed from 

random sites in their respective marsh systems; however, mark-recapture NM were found
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TABLE 17.—Results o f  Tukey's Studentized Range (HSD) Test for diameter at breast 
height o f overstory tree (cm). Comparisons significant at P = 0.05 are indicated with a 
nY" (Yes); insignificant comparisons are indicated with an "N" (No). Descriptions of

abbreviations are given in Table 3.

RN RA NM AM NF AF AP-1 AP-2 AP-3 AP-4 AP-5

RN *

RA N *

NM N Y *

AM N N N *

NF N N N N *

AF N N N N N *

AP-1 N N Y N N N *

AP-2 N Y N N N N Y *

AP-3 N Y N N N N N N *

AP-4 N N N N N N N N N *

AP-5 Y N Y N N N N Y Y N *
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TABLE 18.—Results o f  Tukey's Studentized Range (USD) Test for distance to overstory 
tree (m). Comparisons significant atP  = 0.05 are indicated with a "Y" (Yes); insignificant 
comparisons are indicated with an "N” (No). Descriptions of abbreviations are given in

Table 3.

RN RA NM AM NF AF AP-1 AP-2 AP-3 AP-4 AP-5

RN *

RA Y *

NM N Y *

AM Y N Y *

NF N Y N Y *

AF N N Y N Y *

AP-1 N Y N Y N N *

AP-2 N Y N Y N N N *

AP-3 N Y N Y N N N N *

AP-4 N N Y N N N N N N *

AP-5 N N Y N N N N N N N *
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TABLE 19.—Results o f Tukey's Studentized Range (HSD) Test for diameter at breast 
height of understory tree (cm). Comparisons significant at P = 0.05 are indicated with a 
"Y" (Yes); insignificant comparisons are indicated with an "N" (No). Descriptions o f

abbreviations are given in Table 3.

RN RA NM AM NF AF AP-1 AP-2 AP-3 AP-4 AP-5

RN *

RA N *

NM N Y *

AM N N N *

NF N N N N *

AF N N N N N *

AP-1 Y Y N Y N N *

AP-2 Y Y Y Y Y N N *

AP-3 N Y N N N N N N ♦

AP-4 N N N N N N Y Y N *

AP-5 N Y N N N N N N N N *
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TABLE 20.—Results o f Tukey's Studentized Range (HSD) Test for distance to understory 
tree (m). Comparisons significant at P = 0.05 are indicated with a "Y" (Yes); insignificant 
comparisons are indicated with an "N" (No). Descriptions of abbreviations are given in

Table 3.

RN RA NM AM NF AF AP-1 AP-2 AP-3 AP-4 AP-5

RN *

RA Y *

NM N Y *

AM Y N Y *

NF N Y N Y *

AF Y N Y N Y *

AP-1 N N N N N N *

AP-2 N Y N Y N Y Y *

AP-3 N N N Y N N N Y *

AP-4 N N N N N N Y Y N *

AP-5 N N N N N N N N N N *
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in areas of much higher canopy cover than AM. The radiotelemetered NF was found with 

much less canopy cover than random sites in the natural marsh. The radiotelemetered AM 

was found in much higher canopy cover locations than random sites in the anthropogenic 

marsh system and male locations in the natural marsh. The radiotracked NF was found in 

areas of higher canopy closure than was NM AP-2 (Table 21).

Percent leaf litter cover (LEAF) was higher in the natural marsh compared to the 

anthropogenic marsh. Mark-recapture NM and AM were found in areas o f less leaf cover 

than would be expected at random in their respective marshes. Radiotracked NM were 

found in areas of denser leaf cover than either random natural marsh sites or mark- 

recapture NM sites (Table 22).

Debris cover (DEB) did not differ between random sites in the two marshes, nor 

for mark-recapture animals; however, differences were seen in radiotelemetered snakes. 

Both AP-1 and AP-2 were found in areas of higher debris cover than the mark-recapture 

males in the natural marsh. The radiotracked AM was found in areas o f significantly less 

debris cover than either AP-1 or AP-2 (Table 23).

No significant difference was found between random natural marsh and 

anthropogenic sites for vegetation cover (VEG). Mark-recapture NM and AM were 

found in areas of lower vegetation cover than their respective random sites. No 

differences were found between the sexes. Radiotracked NM were found in areas of 

higher vegetation cover than mark-recapture NM (Table 24).

Vegetation density (DENS) did not differ between random sites in natural and 

anthropogenic marshes. Mark-recapture NM and AM were found in areas of much lower 

vegetation density than their respective random sites. AP-2 used areas o f higher 

vegetation density than the mark-recapture NM, and AP-4 used areas o f higher vegetation 

cover than did AP-5 (Table 25).

Vegetation height (HT) was significantly greater in the natural marsh. Mark- 

recapture NM and AM were found in areas with lower vegetation height than random
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TABLE 21.—Results o f Tukey's Studentized Range (HSD) Test for percent canopy 
closure. Comparisons significant at P = 0.05 are indicated with a "Y" (Yes); insignificant 
comparisons are indicated with an "N" (No). Descriptions of abbreviations are given in

Table 3.

RN RA NM AM NF AF AP-1 AP-2 AP-3 AP-4 AP-5

RN *

RA Y *

NM N Y *

AM Y N Y *

NF N N N N *

AF N N N N N *

AP-1 N N N N N N *

AP-2 Y N Y N N N N *

AP-3 N N N Y N N N Y *

AP-4 N N N Y N N N Y N *

AP-5 N Y Y Y Y Y Y Y Y Y *
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TABLE 22.—Results o f Tukey's Studentized Range (HSD) Test for percent leaf cover. 
Comparisons significant at P — 0.0S are indicated with a "Y" (Yes); insignificant 
comparisons are indicated with an "N" (No). Descriptions o f abbreviations are given in

Table 3.

RN RA NM AM NF AF AP-1 AP-2 AP-3 AP-4 AP-5

RN ♦

RA Y *

NM Y N *

AM Y N N *

NF N N N N *

AF N N N N N *

AP-1 Y Y Y Y Y Y *

AP-2 Y Y Y Y N Y N *

AP-3 N N N N N N N N *

AP-4 N N N N N N N N N *

AP-5 N N N N N N N Y N N *
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TABLE 23.—Results o f Tukey’s Studentized Range (HSD) Test for percent debris cover. 
Comparisons significant at P = 0.05 are indicated with a "Y" (Yes); insignificant 
comparisons are indicated with an "N" (No). Descriptions of abbreviations are given in

Table 3.

RN RA NM AM NF AF AP-1 AP-2 AP-3 AP-4 AP-5

RN *

RA N *

NM N N *

AM N N N *

NF N N N N *

AF N N N N N *

AP-1 Y Y Y Y Y Y ★

AP-2 Y Y Y Y Y Y N *

AP-3 N N N N N N N N *

AP-4 N N N N N N Y N N *

AP-5 N N N N N N Y Y N N *
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TABLE 24 —Results of Tukey's Studendzed Range (HSD) Test for percent vegetation 
cover. Comparisons significant at P  = 0.0S are indicated with a "Y" (Yes); insignificant 
comparisons are indicated with an "N" (No). Descriptions o f abbreviations are given in

Table 3.

RN RA NM AM NF AF AP-1 AP-2 AP-3 AP-4 AP-5

RN *

RA N *

NM Y N *

AM Y N N *

NF N N N N *

AF N N N N N *

AP-1 N N Y Y N Y *

AP-2 Y Y Y Y N Y N *

AP-3 N N Y Y N N N N *

AP-4 N N Y Y N N N N N *

AP-5 N N N N N N Y Y N N *

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



80

TABLE 2 5 -Results of Tukey's Studentized Range (HSD) Test for vegetation density 
(stems/m^) measurements. Comparisons significant at P = 0.05 are indicated with a "Y" 
(Yes); insignificant comparisons are indicated with an "N" (No). Descriptions o f

abbreviations are given in Table 3.

RN RA NM AM NF AF AP-1 AP-2 AP-3 AP-4 AP-5

RN *

RA N *

NM Y Y *

AM Y Y N *

NF N N N N *

AF Y N N N N *

AP-l N N N N N N *

AP-2 N N Y Y N N N *

AP-3 N N Y Y N N N N *

AP-4 N Y Y Y Y Y Y N N *

AP-5 Y N N N N N N N N Y *
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sites in their respective marshes. Radiotracked NM were found in areas o f higher 

vegetation height than mark-recapture NM (Table 26).

Discriminant analysis.—The normal kernel density discriminant function analysis 

was well-suited to these data, as evidenced by the low number of classification errors 

(< 10%) for the discriminant functions developed by the analysis (Table 27). The 

canonical correlations generated by this analysis suggested that six of the 11 variables 

were most important in discrimination between categories (viz., diameter at breast height 

of the nearest understory tree, distance to the nearest understory tree, distance to water, 

percent o f leaf cover, percent vegetation cover, and percent canopy cover).

Potytomous logistic regression.—A plot of the number of grid cells against the 

percentage o f  total telemetry points allowed for use-intensity classes to be assigned. An 

obvious pattern can be seen in the graph, and this pattern suggested that three categories 

be used in the development o f the model (Fig. 12). Of the 79 grid cells utilized by snakes, 

39 were low-use grids (1-2%), 30 were medium-use grids (3-10%), and 10 were high-use 

grids (> 12%).

A forward selection procedure with a = 0.15 selected four of the 11 variables as 

most important for delineating use-intensity classes. The four variables selected to be 

retained in the model were percent leaf cover (LEAF), distance to water (DW), distance 

to the nearest understory tree (DOT), and percent vegetation cover (VEG). The final 

model used was

L j(X ) =  a ; +  (0 .029 )D W  +  (0 .046)D U T  - (0 .013)L E A F - (0.008) V E G .

Descriptive statistics for all 11 variables were computed for each use-intensity 

class for comparative purposes. Distance to water, percent leaf litter cover, and 

vegetation density had lowest means in the low-use category and highest means in the
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TABLE 26 —Results o f Tukey*s Studentized Range (HSD) Test for stem height of 
dominant vegetation (m). Comparisons significant atP  — 0.05 are indicated with a "Y" 

(Yes); insignificant comparisons are indicated with an "N" (No). Descriptions of
abbreviations are given in Table 3.

RN RA NM AM NF AF AP-1 AP-2 AP-3 AP-4 AP-5

RN *

RA Y #

NM Y N *

AM Y N N *

NF N N N N *

AF N N N N N *

AP-1 N Y Y Y N N *

AP-2 N Y Y Y N Y N *

AP-3 N N Y N N N N Y *

AP-4 Y Y Y Y Y Y N N Y *

AP-5 N N N N N N N Y N Y *
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TABLE 27.—Results o f  crossvalidation reclassification for the normal kernel density 
discriminant function analysis. Numbers shown are the percent of observations classified 
into a particular group (across the top o f the table) from each category (down the left 
side). As an example, 99% of the RN observations were classified into the RN category, 
and 1% o f the RN observations were classified into the AF category, given the 

discriminant function. Categories are described in Table 3.

RN RA NM AM NF AF AP-1 AP-2 AP-3 AP-4 AP-5

RN 99 0 0 0 0 1 0 0 0 0 0

RA 0 100 0 0 0 0 0 0 0 0 0

NM 0 0 98 0 0 0 2 0 0 0 0

AM 0 0 0 94 0 6 0 0 0 0 0

NF 0 0 5 0 95 0 0 0 0 0 0

AF 0 0 0 0 0 100 0 0 0 0 0

AP-1 0 0 0 0 0 0 97 0 3 0 0

AP-2 0 0 0 0 0 0 0 100 0 0 0

AP-3 0 0 0 0 0 0 0 0 100 0 0

AP-4 0 0 0 0 0 0 0 0 0 100 0

AP-5 0 0 0 0 0 0 0 0 0 0 100
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FIG. 12.—Pooled use-intensity categories for five radiotelemetered cottonmouths at Back 
Bay National Wildlife Refuge. Use is measured as the percentage o f total telemetry 
locations o f a snake that occur in a given grid cell.
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high-use category; distance to the nearest understory tree showed the opposite trend 

(Table 28).

Classification errors, though slightly biased due to technique, were very good for 

the fitted model (Table 29). Over 70% of the observations were correctly classified into 

the proper use-intensity category.

Population Estimation

The zero-truncated Poisson test of equal catchability, testing the null hypothesis 

H0: equal catchability, could not be rejected in either year in either marsh. The critical x2 

value with a  = 0.05 (d.f. = 1; 2 categories in each test) is X2axo.os = 3.84. Calculated 

values for the natural marsh were x 2 = 0 04 and x2 = 0.25 for 1996 and 1997, 

respectively, and in the anthropogenic marsh were x2 = 0.20 and x2 = 0.02 for 1996 and 

1997, respectively. Therefore, snakes were considered to be equally catchable throughout 

this investigation.

Population estimates for 1996 were based on 109 captures o f 100 animals, with 71 

individual snakes and 7 recaptures occurring in the natural marsh and 29 individual snakes 

and 2 recaptures occurring in the anthropogenic marsh. Population estimates for 1997 

were based on 135 captures o f 122 animals, with 64 individual snakes and 11 recaptures 

occurring in the natural marsh and 58 individual snakes and 2 recaptures occurring in the 

anthropogenic marsh. Therefore, estimates for this study, with the restrictions detailed in 

the MATERIALS and METHODS, were based on 244 captures o f 222 individuals.

Estimates of population size were always higher in the anthropogenic marsh (1996 

= 366 snakes; 1997 = 477 snakes) than in the natural marsh (1996 = 314 snakes; 1997 = 

154 snakes); however, confidence intervals were much wider for anthropogenic marsh 

estimates given the smaller number of recaptures in that system (Table 30). The 

difference in population size estimates was not statistically different at the a  = 0.05
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TABLE 28.--Means and standard errors (in parentheses) for habitat variables for each use category in the polytomous logistic 
regression procedure. Habitat variables are given in Table 2. Category 1 = low-use grid cells, category 2 = medium-use grid cells, 

and category 3 = high-use grid cells. See text for description of technique and grid cell use selection criteria.

DW
(m)

DBO
(cm)

DOT
(m)

DBU
(cm)

DUT
(m)

CAN
(%)

LEAF
(%)

DEB
(%)

VEG
(%)

DENS
(#/m2)

HT
(m)

1 5.24 12.99 14.18 3.24 7.69 21.92 13.08 22.95 65.64 203.21 1.12
(1.30) (0.76) (5.13) (0.24) (1.75) (5.63) (3.77) (4.53) (6.61) (27.31) (0.11)

2 6.81 11.98 7.46 3.40 4.86 28.47 24.04 26.04 67.14 172.76 0.94
(1.65) (0.74) (1.79) (0.31) (1.51) (6.93) (6.19) (5.34) (7.79) (25.15) (0.11)

3 16.45 14.01 3.50 2.85 2.20 29.00 35.00 29.50 75.00 166.50 1.26
(9.24) (1.81) (0.77) (0.30) (0.34) (11.55) (12.43) (12.09) (12.02) (30.90) (0.20)

00
ON
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TABLE 29.—Classification results for the polytomous logistic regression model. Numbers 
given are the percentage o f observations classified into each category given the observed

use-intensity level.

Observed
low-use
category

Observed
medium-use

category

Observed
high-use
category

Predicted
low-use
category

80 20 0

Predicted
medium-use

category
33 67 0

Predicted
high-use
category

30 0 70
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TABLE 30.—Population size and density estimates given as estimate [and 95% confidence 
interval] for cottonmouths at Back Bay National Wildlife Refuge. See text for explanation 
o f calculation methods. Areal density based on a sampling area o f  1200 ha in the natural 
marsh and 1900 ha in the anthropogenic marsh. Linear density based on a transect length 

o f 6340 m in the natural marsh and 9860 m in the anthropogenic marsh.

Natural Marsh Anthropogenic Marsh

1996 1997 1996 1997

Population Estimate 314 154 366 477
[123,679] [75,279] [28, 1032] [105, 1759]

Areal Density 0.26 0.13 0.19 0.25
Estimate (number/ha) [0.10,0.57] [0.06,0.23] [0.01,0.54] [0.06,0.93]

Linear Density 0.05 0.02 0.04 0.05
Estimate (number/m) [0.02,0.11] [0.01,0.04] [0.002,0.10] [0.01,0.18]
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significance level in either year (1996: z = 0.203, P > 0.80; 1997: z = 1.56, P> 0.10). 

Population density estimates were similar for both marsh systems, with linear density 

estimates being almost identical (Table 30).

Observed sex ratios were skewed toward males in both marshes for both years. In 

1996 the sex ratio (M:F) was 56:15 (x2 = 22.54, P < 0.05) in the natural marsh and 20:9 

(X2= 3.45, P > 0.05) in the anthropogenic marsh. In 1997 the ratio (M:F) was 47:22 (x2 

= 5.64, P < 0.05) in the natural marsh and 37:21 (x2 = 3.88, P < 0.05) in the 

anthropogenic marsh.

Foraging and Feeding Ecology

A total of 56 stomachs were examined for contents during this study. The number 

of females was equal for both areas, but more males were represented in the natural marsh 

than in the anthropogenic marsh (Table 31). A majority of the stomachs examined 

contained food items or liquid materal. A weighted average (weighted by the numbers of 

snakes in each category) o f only 35% of examined stomachs were empty (Table 31 and 

Table 32).

Twenty stomachs contained liquid with a slurry of nearly fully digested prey. Green 

frogs (Rana clamitans) were the most common food item, followed closely by sunfish 

(Lepomis spp.) and southern leopard frogs (R. utricularia). Only one stomach contained 

mammalian remains (Microtus sp.). Reptilian prey was found in three stomachs, one 

containing a northern water snake {Nerodia sipedori) and two containing turtles 

(evidenced from the shape of the food bolus; they were not palped out o f stomachs due to 

the possibility of injuring the snakes). Twenty stomachs had nonfood items, including 

rocks, sand, dirt, vegetation, and wood materal (Table 31). A large male snake was seen 

in a slow and presumably predatory approach of a plover (Charadrius spp.), but the bird 

escaped before a strike was made. A large female cottonmouth was seen swallowing a
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TABLE 31 .—Summary of food items collected from cottonmouths at Back Bay National 
Wildlife Refuge. Data are presented as total number of items per category, separated by

marsh area and sex.

Food item 
category

Natural marsh 
males 

(n = 23)

Natural marsh 
females 
(n = 9)

Anthropogenic 
marsh males 

(n =  15)

Anthropogenic 
marsh females 

(n = 9)

Pisces

Lepomis spp. 2 I 1 0

Amphibia

Rcma clamitans 2 1 1 2

Rarta utricularia 2 0 0 1

Reptilia

Nerodia sipedon 1 0 0 0

turtle
(unidentifiable)

2 0 0 0

Mammalia

Microtus spp. 0 0 I 0

Insecta

unidentifiable 0 0 1 0

Miscellaneous

rock 0 0 1 1

sand/dirt 3 3 4 2

wood material 1 0 1 0

plant material 3 1 2 0

Liquid 4 4 7 5

Empty (no gut 
contents)

8 4 5 1
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TABLE 32.—Mean mass, volume, or dimensions (and standard errors) o f items collected 
from cottonmouths at Back Bay National Wildlife Refuge. Food item data are in grams, 
liquid item data are in milliliters, and empty stomachs are given as a percentage of the 
total. Turtle mass was not determined; however, carapace dimensions were estimated in

the field in millimeters.

Food item 
category

Natural marsh 
males 

(n = 23)

Natural marsh 
females 
(n = 9)

Anthropogenic 
marsh males 

(n = 15)

Anthropogenic 
marsh females 

(n = 9)

Pisces

Lepomis spp. 12.0 g (0.01) 28.0 g (0) 35.1 g(0) 0

Amphibia

Rana clamitans 26.5 g (23.24) 22.5 g (0) 10 g (0) 18.2 g (3.20)

Rana utricularia 31.0 g (12.55) 0 0 20.0 g (0)

Reptilia

Nerodia sipedon 28.02 g(0) 0 0 0

turtle
(unidentifiable)

40 mm X 40 mm 
54 mm X 40 mm

0 0 0

Mammalia

Microtus spp. 0 0 8.46 g (0) 0

Insecta

unidentifiable 0 0 1 0

Miscellaneous

rock 0 0 5.0 g (0) 7.2 g (0)

Liquid 11.3 ml (1.25) 16.8 ml (2.84) 11.3 ml (2.67) 12.0 ml (3.00)

Empty (no gut 
contents)

35% 44% 33% 11%
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large Rana clamitans. The frog, which was being swallowed by the posterior end first, 

was still alive and delivered a loud distress call.

Given the broad range o f prey species reported for cottonmouths (Allen and 

Swindell, 1948; Wharton, 1969; Gloyd and Conant, 1990; Ernst, 1992; Mitchell, 1994), 

potential prey items at BBNWR include many species of birds, mammals, fishes, 

amphibians and reptiles. Many surveys of fauna at BBNWR were carried out by the 

principal investigator and the biologists at BBNWR. Bird surveys of the refuge suggested 

that there were many possible avian prey species, but no bird remains were found in snake 

stomachs. Amphibian surveys suggested a density o f 2.1 frogs/ m2, with a majority (> 

90%) of the captures being green frogs. Fish surveys revealed many possible prey species, 

but only absolute numbers were given by the BBNWR surveyors, so densities are not 

reported.

Radiotelemetry

Movements.—Five adult snakes were tracked for varying amounts of time from 

Autumn 1996 to Spring 1998 (Fig. 13-Fig. 17). The female tracked in the natural marsh 

(AP-3) was tracked for the longest time (208 days) before dying during autumn 1997.

The female underwent two surgeries due to radio failures and may have succumbed to the 

resulting stress. The other female (AP-4) was in the anthropogenic marsh and died during 

hibernation. The two males in the natural marsh (AP-1 and AP-2) appeared healthy 

throughout the duration of their tracking, but were lost presumably due to radio failure. 

The male in the anthropogenic marsh (AP-5) survived and ultimately underwent surgical 

removal of the transmitter.

The number o f days the animals were tracked varied from 83-208, with 54-101 

observations made per snake. Though cottonmouths are often reported to be very active 

during the spring and summer (Wharton, 1969; Gloyd and Conant, 1990; Mitchell, 1994),
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FIG. 13.-Movement map for subject AP-1 (male) in the natural marsh at Back Bay National Wildlife Refuge. The capture and release
site is shown as a square, movement locations are shown as dots, and the hibemaculum is shown as a circled "H." Dates are shown for
locations. Unlabeled areas on map shown by curved lines indicate low-lying marsh shrubs.



R
eproduced 

with 
perm

ission 
of the 

copyright 
ow

ner. 
Further 

reproduction 
prohibited 

w
ithout 

perm
ission.

, NOV 29 - DEC 4
NOV 4

APR 25 
5>,̂ > » S j A N 3 - 1 5  
ApR7 ^ ^ M N 2 ^ A P R 1 5

APR 1 7 n OCT 23(C) 
< iS p C T 2 6 (R )AP-2

Natural nuuih 
Mole ____________

OCT 30

OCT 27 - 28

FIG. 14.-Movement map for subject AP-2 (male) in the natural marsh at Back Bay National Wildlife Refuge. The capture and release 
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release site is shown as a square, movement locations are shown as dots, and the hibernaculum is shown as a circled "H." Dates are
shown for locations. Unlabeled areas on map shown by curved lines indicate low-lying marsh shrubs.

vOC/t



R
eproduced 

with 
perm

ission 
of the 

copyright 
ow

ner. 
Further 

reproduction 
prohibited 

w
ithout 

perm
ission.

OCT 6

B-Storage Pool

SEP 8 SEP 23

SP.P 20

100 m[0 m

B-Pool
NOV 7

NOV 5

NOV 10
OCT 13

•** i
SEP 26

MJG 29SEP 3 -

OCT 21SEP 2SEP 12 - 19 OCT 24NOV 12
OCT 14 OCT 17

A-Pool

FIG. 16.~Movement map for subject AP-4 (female) in the anthropogenic marsh at Back Bay National Wildlife Refuge. The capture
and release site is shown as a square, movement locations are shown as dots, and the hibemaculum is shown as a circled "H." Dates are
shown for locations. Unlabeled areas on map shown by curved lines indicate forested sites.

VO
Ov



R
eproduced 

with 
perm

ission 
of the 

copyright 
ow

ner. 
Further 

reproduction 
prohibited 

w
ithout 

perm
ission.

B-Storage Pool I mayij

ap-j
Anlhrupugonw
Mirth
Mill

AUO 26(C) 
AU02* (R)

SEP 23-
OCTO SEP 19

AU029

-• APR 29

OCT 17- 
MAR 25

FIG. 17.~Movement map for subject AP-5 (male) in the anthropogenic marsh at Back Bay National Wildlife Refuge. The capture and 
release site is shown as a square, movement locations are shown as dots, and the hibemaculum is shown as a circled "H." Dates are 
shown for locations. Unlabeled areas on map shown by curved lines indicate forested sites.

53



98

few movements were observed for either sex in either marsh. Total distance moved was 

low for one male in the natural marsh (AP-1), but was much higher for the other male in 

that habitat (AP-2). The longest total distance moved was by the male in the 

anthropogenic marsh (AP-5). The longest daily movement was by AP-2, which moved 

approximately 640 m in a 24 hour period. Mean distance per day and mean distance per 

movement varied widely, but were highest for the males tracked in both systems (Table 

33).

Activity areas and range lengths were variable. The smallest activity area and 

range length was for male AP-1 in the natural marsh (Table 34; Fig. 13), whereas the 

largest activity area and range length was for the other male in that system (AP-2; Table 

34; Fig. 14). The female in the natural system had a much larger range length and greater 

activity range (AP-4; Table 34; Fig. 16) than did the female in the natural marsh (AP-3; 

Table 34; Fig. 15). The male in the anthropogenic marsh did not have a large activity 

range area or range length (AP-5; Table 34; Fig. 17), though it did have the highest total 

distance moved. As Fig. 17 shows, that snake made most of its movements in a linear 

fashion within a narrow impoundment ditch. Estimated activity range areas for recaptured 

snakes fell within the sizes recoreded for radiotelemetered snakes. Males had overall 

greater mean than females, though female sample size was low (Table 35).

Subject AP-2 (Fig. 14) did not enter an underground hibemaculum but made 

several very long movements to a location where it spent several weeks under dense 

vegetation. Snakes AP-1, AP-3, and AP-5 (Fig. 18-Fig. 22) exhibited similar patterns of 

movements. Large movements were made immediately following egress from hibemacula 

and were followed by a long period of low activity. The areas where the snakes moved 

were similar in that they were characterized by very dense vegetation and high amounts of 

direct sunlight. Shedding took place in these areas before the snakes moved to new 

locations. Both females (AP-3, Fig. 15 and AP-4, Fig. 16) made movements to second
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TABLE 3 3.--Movements of radiotracked snakes at Back Bay National Wildlife Refuge during the active season. Marsh location and 
sex are indicated by the following abbreviations: NM = male in natural marsh, AM = male in anthropogenic marsh, NF = female in

natural marsh, and AF = female in anthropogenic marsh.

Subject
Number of days 

tracked
Number of 

observations
Number of 
movements

Total distance 
moved 

(m)

Mean distance 
moved per day 

(m/day)

Mean distance 
per movement 

(m)

AP-1 (NM) 83 54 15 230.40 2.78 15.36

AP-2 (NM) 102 67 16 2388.04 230.41 149.25

AP-3 (NF) 208 101 21 677.80 3.26 32.28

AP-4 (AF) 119 74 21 1517.78 12.75 72.28

AP-5 (AM) 149 73 15 4359.09 29.26 290.61
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TABLE 34.—Activity range areas and range lengths for radiotracked snakes at Back Bay 
National Wildlife Refuge. Marsh location and sex are indicated by the following 
abbreviations: NM = male in natural marsh, AM = male in anthropogenic marsh,

NF = female in natural marsh, and AF = female in anthropogenic marsh.

Subject
Harmonic mean 

95% isopleth 
(ha)

Minimum 
convex polygon 

(ha)

Range length 
(m)

AP-1 (NM) 0.108 0.48 124.80

AP-2 (NM) 1545.00 638.75 1675.26

AP-3 (NF) 3.620 5.56 216.67

AP-4 (AF) 67.94 54.54 290.00

AP-5 (AM) 3.79 3.25 668.18
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TABLE 35 —Minimum convex polygon activity areas of recaptured snakes at Back Bay 
National Wildlife Refuge. Male and female overall means (SE) are given.

Snake sex and marsh Snout-vent length (mm) Activity area (ha)

Female (natural) 561 0.054

Female (natural) 710 4.081

Female (natural; gravid) 604 0.066

Female (anthropogenic) 602 2.751

Male (natural) 807 2.093

Male (natural) 807 1.590

Male (natural) 970 0.031

Male (natural) 476 2.344

Male (natural) 672 2.894

Male (natural) 831 5.599

Male (natural) 742 4.797

Male (natural) 1002 6.511

Male (natural) 818 0.065

Male (natural) 752 1.130

Male (natural) 844 1.465

Male (natural) 782 7.976

Male (anthropogenic) 819 2.188

Female mean (all) 1.738(1.116)

Male mean (all) 2.976 (0.603)
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AP-1 (natural marsh, male)
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FIG. 18.—Distance moved per day (biweekly mean) for subject AP-1 (natural marsh, male) 
at Back Bay National Wildlife Refuge. The chart shows biweekly movements against 
Julian date both prior to ingress into the hibemaculum, and after egress from the 
hibemaculum. Season and year are given.
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AP-2 (natural marsh, male)
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FIG. 19.—Distance moved per day (biweekly mean) for subject AP-2 (natural marsh, male) 
at Back Bay National Wildlife Refuge. The chart shows biweekly movements against 
Julian date both prior to ingress into the hibemaculum, and after egress from the 
hibernaculum. Season and year are given.
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AP-3 (natural marsh, female)
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FIG. 20.—Distance moved per day (biweekly mean) for subject AP-3 (natural marsh, 
female) at Back Bay National Wildlife Refuge. The chart shows biweekly movements 
against Julian date both prior to ingress into the hibemaculum, and after egress from the 
hibernaculum. Season and year are given.
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AP-4 (anthropogenic marsh, female)
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FIG. 21.—Distance moved per day (biweekly mean) for subject AP-4 (anthropogenic 
marsh, female) at Back Bay National Wildlife Refuge. The chart shows biweekly 
movements against Julian date both prior to ingress into the hibemaculum, and after egress 
from the hibemaculum. Season and year are given.
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AP-5 (anthropogenic marsh, male)
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FIG. 22.—Distance moved per day (biweekly mean) for subject AP-5 (anthropogenic 
marsh, male) at Back Bay National Wildlife Refuge. The chart shows biweekly 
movements against Julian date both prior to ingress into the hibemaculum, and after egress 
from the hibemaculum. Season and year are given.
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hibemacula during the winter, but AP-3 returned to the original hibemaculum 11 days 

after the initial move.

Temperature—Mean body temperature for each snake during the active season 

was slightly less than air and surface temperatures, but higher than soil temperature (Table 

36). During hibernation, overall mean body temperature remained higher than all three 

environmental temperatures, except for subject AP-2, which did not enter an underground 

hibemaculum and had a body temperature much lower than either air or surface 

temperature (Table 37). The highest recorded body temperature during the active season 

was for subject AP-5 (31.10 C), and the lowest body temperature dining hibernation was 

for subject AP-1 (2.32 C).

Body temperature was highly correlated with all three environmental temperatures 

during the active season, with the highest weighted mean correlation (0.87) being between 

body and surface temperatures. During hibernation, the highest weighted mean 

correlation was with soil temperature. Not surprisingly the snake that did not seek 

underground shelter, AP-2, was the exception, with body temperature most highly 

correlated with air and surface temperatures (Table 38).

All five snakes entered hibernation when both air and surface temperatures fell 

below soil temperature, following an approximately four week overall decline in mean 

environmental temperatures. In most cases the snakes' body temperatures were higher 

than all three environmental temperatures at ingress. Interestingly, subjectAP-2 went 

under heavy vegetation under similar temperature profile conditions. The four weeks 

prior to egress were characterized by an overall increase in all three environmental 

temperatures. At the time o f egress, both air and surface temperatures were higher than 

soil temperature (Fig. 23-Fig. 27).

Female AP-3 moved twice during the hibernation period. The first move was 19 

days after ingress. For the season her body temperature was relatively high (16.25 C), as 

were the air, surface, and soil temperatures (17.9 C, 16.3 C. and 14.8 C, respectively).
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TABLE 36.—Mean body and environmental temperatures (C) for five radiotracked snakes 
at Back Bay National Wildlife Refuge during the active season. Marsh location and sex 
are indicated by the following abbreviations: NM = male in natural marsh, AM = male in 
anthropogenic marsh, NF = female in natural marsh, and AF = female in anthropogenic

marsh. Data are presented as x («, SE).

Subject
Body

temperature
Air

temperature
Surface

temperature
Soil

temperature

AP-1 (NM) 14.21 
(20, 5.247)

19.47 
(20, 7.393)

15.45 
(20, 5.187)

10.64 
(20, 2.849)

AP-2 (NM) 15.10 
(28, 8.541)

18.32 
(28, 10.403)

15.79 
(28, 8.680)

12.09 
(28, 4.566)

AP-3 (NF) 20.95 
(67, 5.985)

25.25 
(67, 7.321)

21.94 
(67, 5.990)

18.44
(67,5.081)

AP-4 (AF) 19.92 
(27, 5.488)

20.91 
(27, 7.273)

19.28 
(27, 6.645)

18.67 
(27, 4.910)

AP-5 (AM) 21.20 
(34, 4.876)

20.48 
(34, 6.926)

19.29 
(34, 5.532)

18.57 
(34, 4.174)

Weighted mean 19.14 
(176, 6.017)

21.90 
(176, 7.736)

19.30 
(176, 6.339)

16.60 
(176, 4.544)
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TABLE 37.—Mean body and environmental temperatures (C) for five radiotracked snakes 
at Back Bay National Wildlife Refuge during hibernation. Marsh location and sex are 
indicated by the following abbreviations: NM = male in natural marsh, AM = male in 
anthropogenic marsh, NF = female in natural marsh, and AF = female in anthropogenic

marsh. Data are presented as x (n, SE).

Subject
Body

temperature
Air

temperature
Surface

temperature
Soil

temperature

AP-1 (NM) 10.75 
(25, 2.993)

9.35 
(25, 5.054)

9.54 
(25, 5.010)

9.26 
(25, 2.414)

AP-2 (NM) 13.14 
(24, 6.908)

18.15 
(24, 7.355)

15.50 
(24, 5.669)

9.62 
(24, 2.696)

AP-3 (NF) 9.59 
(25, 1.373)

9.42 
(25, 4.962)

9.60 
(25, 4.920)

9.20 
(25, 2.402)

AP-4 (AF) 11.16 
(39, 2.824)

9.52 
(39, 5.244)

8.90 
(39, 4.318)

10.23 
(39, 2.677)

AP-5 (AM) 12.08 
(32, 2.080)

7.67 
(32, 4.211)

8.08 
(32, 3.441)

11.13 
(32, 1.722)

Weighted mean 11.35
(145,3.115)

10.49 
(145, 5.284)

10.04 
(145, 4.571)

9.98 
(145, 2.377)
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TABLE 38.~Correlations for body temperature versus environmental temperatures during both the active season and hiberation for five 
radiotracked snakes at Back Bay National Wildlife Refuge. Marsh location and sex are indicated by the following abbreviations:
NM = male in natural marsh, AM -  male in anthropogenic marsh, NF = female in natural marsh, and AF -  female in anthropogenic

marsh. Data are presented as x (w, SE)

Active season Hibernation

Subject
Air

temperature
Surface

temperature
Soil

temperature
Air

temperature
Surface

temperature
Soil

temperature

AP-1 (NM) 0.67 
(20, 0.175)

0.85 
(20, 0.124)

0.55 
(20, 0.197)

0.47 
(25, 0.184)

0.45 
(25, 0.186)

0.78 
(25, 0.130)

AP-2 (NM) 0.89 
(28, 0.089)

0.93 
(28, 0.072)

0.93 
(28, 0.072)

0.86 
(24, 0.109)

0.83 
(24, 0.119)

0.77 
(24,0.136)

AP-3 (NF) 0.78 
(67, 0.078)

0.86 
(67, 0.063)

0.84 
(67, 0.067)

0.31 
(25, 0.198)

0.27 
(25, 0.201)

0.58 
(25, 0.170)

AP-4 (AF) 0.84 
(27, 0.109)

0.82 
(27, 0.114)

0.89 
(27, 0.091)

0.77 
(39, 0.105)

0.78 
(39, 0.103)

0.79 
(39, 0.101)

AP-5 (AM) 0.86 
(34, 0.090)

0.91 
(34, 0.073)

0.92 
(34, 0.069)

0.58 
(32, 0.149)

0.63 
(32, 0.142)

0.80 
(32, 0.110)

Weighted
mean

0.81 
(176, 0.044)

0.87 
(176, 0.037)

0.84 
(176, 0.041)

0.61 
(145, 0.066)

0.61 
(145, 0.066)

0.75 
(145, 0.055)
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Her second move, back to the original hibemaculum, took place during an extremely cold 

period 11 days later (air temperature = 6.22 C, surface temperature = 5.7 C, and soil 

temperature = 8.0 C), and at a relatively low body temperature (8.11 C). Female AP-4 

moved once after initial ingress. Her body temperature was 11.43 C, and air, surface, and 

soil temperatures (13.0 C, 10.7 C, and 9.3 C) were relatively high.

Visitor and Hunter Reports

Many more snakes were reported by visitors to BBNWR in 1996 than in 1997. 

The number o f sightings peaked in June and July o f 1996, and in May o f 1997. 

Cottonmouths were commonly reported, but so were snakes referred to as "moccasins," 

thereby making it difficult to discern if the visitor was reporting a cottonmouth or a water 

snake (Nerodia sp.). Snakes in the "other" category included black racers (Coluber 

constrictor), hognose snakes (Heterdon platyrhinos), rough green snakes (Opheodrys 

aestivus), and black rat snakes (Elaphe obsoleta). One copperhead was reported by a 

visitor, though this snake does not occur at BBNWR (Fig. 28).

The 1997 survey o f the hunters at BBNWR resulted in many reports o f snakes. 

Most o f these reports were o f cottonmouths, but also included the snakes listed in the 

"other" category (see above). Again the term "moccasin" was used by several hunters and 

was plotted separately from the cottonmouth. One hunter reported seeing a juvenile 

copperhead (Fig. 29).
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FIG. 23.—Body and environmental temperature profiles for subject AP-1 (natural marsh, 
male) at Back Bay National Wildlife Refuge. Profiles show weekly mean temperatures for 
eight weeks—two weeks prior to and after ingress into the hibemaculum, and two weeks 
prior to and after egress from the hibemaculum. Ingress and egress dates, as well as body, 
air, surface, and soil temperatures for ingress and egress dates are shown.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



113

20 -

o
«

E0)
10

AP-2 (natural marsh, male)

Ingres*

f
9

a

Egress

m

B

s Body tom p. (Ingrocs)
Air tom p. (Ingres*) 
S u rfa c e  tem p. (Ingress) 
Soil tem p . (Ingress) 
Body tem p, (eg ress)
Air tem p, (eg ress) 
S u rfa c e  tem p, (e g re ss )  
Soli tem p, (eg ress)

1 Jan 1»»7 
Body tampt 11.5 
Air tampt 1.1 
Surface lampt (.1 
Soil tampt 10.1

15 Apr 1SB7 
Body tampt 15.7 
Air tampt 17.1 
Surface tampt 15.2 
Soli tampt 13.5

T

8 9

Week (Julian date)

FIG. 24.—Body and environmental temperature profiles for subject AP-2 (natural marsh, 
male) at Back Bay National Wildlife Refuge. Profiles show weekly mean temperatures for 
eight weeks—two weeks prior to and after ingress into the hibemaculum, and two weeks 
prior to and after egress from the hibemaculum. Ingress and egress dates, as well as body, 
air, surface, and soil temperatures for ingress and egress dates are shown.
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FIG. 25.—Body and environmental temperature profiles for subject AP-3 (natural marsh, 
female) at Back Bay National Wildlife Refuge. Profiles show weekly mean temperatures 
for eight weeks—two weeks prior to and after ingress into the hibemaculum, and two 
weeks prior to and after egress from the hibemaculum. Ingress and egress dates, as well 
as body, air, surface, and soil temperatures for ingress and egress dates are shown.
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FIG. 26.—Body and environmental temperature profiles for subject AP-4 (anthropogenic 
marsh, female) at Back Bay National Wildlife Refuge. Profiles show weekly mean 
temperatures for eight weeks—two weeks prior to and after ingress into the hibemaculum, 
and two weeks prior to and after egress from the hibemaculum. Ingress and egress dates, 
as well as body, air, surface, and soil temperatures for ingress and egress dates are shown.
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AP-5 (anthropogenic marsh, male)
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FIG. 27.—Body and environmental temperature profiles for subject AP-5 (anthropogenic 
marsh, male) at Back Bay National Wildlife Refuge. Profiles show weekly mean 
temperatures for eight weeks—two weeks prior to and after ingress into the hibemaculum, 
and two weeks prior to and after egress from the hibemaculum. Ingress and egress dates, 
as well as body, air, surface, and soil temperatures for ingress and egress dates are shown.
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FIG. 29.—Snake sightings by hunters at Back Bay National Wildlife Refuge during 1997. 
The categories shown include copperheads, a species reported quite often at the Refuge, 
but which does not occur there.
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DISCUSSION 

Ecological Analysis

Morphological comparisons did not differ between the natural and anthropogenic 

marsh habitats in any o f the categories examined in this study, suggesting that the two 

habitats, although quite different in visual appearance, offer similar requirements necessary 

for growth and survival. Blem and Blem (1995) reported that the cottonmouths from 

Hopewell, Virginia and the 51 males and 25 females they examined from southeastern 

Virginia and northeastern North Carolina differed with respect to SVL, tail length / SVL, 

head length / SVL, and head width / SVL. However, 41 o f their specimens from 

southeastern Virginia and northeastern North Carolina were from museum collections. 

Animals gathered for such collections may be the largest, and hence most conspicuous 

individuals, which may lead to differences not seen in wild populations.

Growth is difficult to assess in snakes unless the age at initial capture is known. In 

most mark-recapture studies involving snakes, all snakes encountered are captured, and 

therefore age at initial capture is unknown. Using a large database o f size and age 

categories for Opheodrys aestivus, Plummer (1997) was able to assign ages to captured 

snakes. This allowed him to use the Von Bertalanfry growth model to predict growth rate 

as a decreasing linear function of length. This type of information, however, is not 

available for cottonmouths, although Blem and Blem (1995) provide conservative 

estimates relating length and age for cottonmouths in their northernmost location. Since 

this information was not available for the BBNWR populations, differences in 

morphological measurements for snakes recaptured one year after initial capture were 

examined. Growth was seen in nearly all size categories for both sexes, with the greatest 

growth observed in SVL for male snakes. This suggests that the cottonmouths at
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BBNWR are healthy and that food is available in quantities great enough for growth to 

occur.

Blem (1981) reported that 83% of the females from his Hopewell, Virginia 

population were gravid. He concluded that cottonmouths in that population reproduce on 

an annual cycle. Later, Blem (1982) suggested that this high ratio may have been the 

result o f the size of the females in the population, because variation in the proportion of 

reproductive females is likely a function of size o f the females, since lipid reserves 

necessary for reproductive output are greatest in larger females. Based on the results of 

his study, which found that approximately 70% of females in the SVL size class 600-750 

mm were gravid, I expected that a much higher percentage of females at BBNWR would 

have been gravid, given their average SVL of approximately 625 mm in both marshes. 

However, less than 25% of the captured females were gravid in either year in either marsh. 

Perhaps this is the result o f gravid females at BBNWR seeking densly vegetated basking 

areas, where they are quite inconspicuous.

Cottonmouths are known to be highly aquatic, spending the vast majority o f their 

time along shorelines (Wharton, 1969; Gloyd and Conant, 1990; Mitchell, 1994; Blem and 

Blem, 1995). In this study, most cottonmouths were categorized as occupying upland 

areas regardless o f sex, type of marsh, or whether they were a capture-recapture or 

radiotelemetry subject. Snakes in this category, however, included any distance > 0.5 m 

from water. Most snakes were found less than 1.5 m from a water source throughout the 

study, suggesting that a nearby water source is important for cottonmouths at BBNWR 

Perhaps more use-categories may better describe shoreline habitat use my cottonmouths.

Living vegetation was the most common source of cover in both marshes, though 

most animals were found fully exposed to the sun. Given that the majority of both of 

these habitats is covered by marsh plants, it is not surprising that the snakes chose 

vegetation as cover. However, it was surprising that most snakes remained in full sun and
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that those close to areas of high tree density to did not seek those areas for shade during 

the hottest part o f  the day.

The position of the snakes when found was nearly always stationary, either 

extended or coiled; only a few snakes were found moving. Radiotelemetry subjects were 

found in tight coils much more often than were mark-recapture animals in either marsh. 

Mark-recapture animals may have sensed my approach well before T was close enough to 

spot them, and the extended position in which they were found may indicate that they 

were getting into a position from which it was much easier to flee (i.e., extended as 

opposed to coiled), or that they were fleeing and stopped upon my approach.

Alternatively, extended animals may have been more readily visible, and hence the majority 

of coiled animals that were seen were those that were implanted. Blem and Blem (1995) 

reported that the snakes that they captured in Hopewell, Virginia were almost always 

found coiled, and Wharton (1969) found most of his animals tightly coiled on hot days.

The behavioral difference between the two studies and between radiotelemetry and mark- 

recapture is unclear, however, radiotelemetry specimens may have simply been displaying 

coiling behavior as a result of the surgical implantation of radiotransmitters, or I may have 

approached the radiotelemetric subjects more cautiously, thereby causing less disturbance, 

and hence the snakes remained coiled.

Contrary to anecdotal accounts of cottonmouths displaying aggressive behaviors 

and even charging potential threats (e.g., humans), few snakes reacted more aggressively 

than a simple gape of the mouth and vibration of the tail against the substrate, indicating 

that the cottonmouths in this study were much more apt simply to make their presence 

known than to aggressively react against human invasion o f their activity ranges. No 

snakes attempted to flee at temperatures < 18 C, in accordance with the temperature 

correlations reported by Wharton (1969); however, aggressive behaviors occurred at all 

temperatures. Only on two occasions throughout this investigation did snakes approach 

the investigator in an aggressive manner; both were very large males. The snakes gaped
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their mouths, swam to within 2 m o f the investigator, rapidly vibrated the tail against the 

water surface, and struck repeatedly. After approximately 1-2 minutes, the snakes turned 

to flee before being captured. A similar account was reported by Neill (1947) for a 

cottonmouth in Georgia.

The majority o f the 53 uncaptured snakes in this investigation fled before the 

investigator was within capture distance. On two occasions snakes fled by diving 

underwater between the investigator's legs. These snakes displayed no aggressive 

behavior and were likely fleeing to the closest source o f water. Snakes in the 

anthropogenic marsh fled at a greater approach distance than those in the natural marsh, 

but the difference was not statistically significant. The snakes in the anthropogenic marsh 

may be more aware and hence reactive to potential threats given their greater exposure to 

large, predatory wading birds, carnivorous mammals, machinery used in pool 

management, and hikers along the dike trails. Snakes in the natural marsh are generally 

free of such potential hazards, with the exception o f a few predatory wading birds and 

hikers. The medium to which a snake fled (land or water) was not affected by the medium 

from which it was approached or the medium that the snake was in, suggesting that the 

snakes simply fled opposite to the direction of approach.

Habitat Analysis

Accurate measurements of an animal's habitat and an understanding of the 

relationship between habitat availability and use by an organism are invaluable for 

conservation and management efforts (Carey, 1981; Morrison et al., 1992). The increased 

use of radiotelemetric techniques has led to a better understanding of habitat use by snakes 

(Reinert, 1984a, b, 1992, 1993), but the evaluation and statistical treatment o f the data 

obtained from such studies continues to be problematic (North and Reynolds, 1996). The 

data gathered in this study for both mark-recapture and radiotelemetry subjects allowed
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for the application o f traditional modeling techniques (use vs. non-use sites; Reinert 

1984a, b) and logistic regression techniques (North and Reynolds, 1996).

A MANOVA on ranked data was used to compare the 11 habitat variables 

measured for each o f 11 categories: random sites in both marshes, males and females in 

both marshes, and five radiotracked animals. Random sites within the natural and 

anthropogenic marshes differed with respect to several variables: distance to nearest 

overstory tree was greater in the anthropogenic marsh, distance to understory tree was 

greater in the anthopogenic marsh, percent canopy closure was greater in the natural 

marsh, percent leaf cover was greater in the natural marsh, and stem height was greater in 

the natural marsh. These results directly follow from the management activities that occur 

in the anthropogenic marsh at BBNWR. Large areas of the anthropogenic marsh are 

mowed and root raked, and trees are removed, resulting in lower stem height, greater 

distances to trees, less accumulation o f leaf litter, and reduced canopy closure.

Mark-recapture snakes were found in close proximity to water for all categories, 

as were snakes AP-3 and AP-4. Snakes AP-1, AP-4, and AP-5 were found far from water 

sources. However, since these snakes moved to upland areas prior to hibernation, the 

average distance to water is biased; removal of location data immediately pre-hibernation 

and post-hibemation reduces this disparity. On the other hand, since searches for mark- 

recapture animals generally took place close to water sources, the distance to water may 

be biased low for these animals. However, searches for animals did occasionally take 

place in more upland areas, but no snakes were found.

Discriminant function analysis (DFA) for habitat use analyses is often plagued with 

the problem of unsatisfactorily fulfilling the requirements necessary for unbiased results, 

namely multivariate normality and a constant covariance structure. To get around these 

restrictive assumptions, a rank transformation was performed on the data, making it 

equivalent to a nonparametric procedure. Performing both the traditional method and the 

logistic regression method made it possible to compare the two statistical techniques. The
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DFA worked well for these data, as evidenced by a high percentage (> 90%) o f  the 

observations correctly classified by crossvalidation reclassification. Canonical correlations 

generated by the analysis indicated that diameter at breast height o f the nearest understory 

tree, distance to the nearest understory tree, distance to water, percent of leaf cover, 

percent vegetation cover, and percent canopy cover all were important for differentiating 

use versus non-use sites.

Polytomous logistic regression (PLR) was used to evaluate habitat use from 

radiotelemetric data. PLR does not require assumptions about normality, nor does it 

require a constant covariance structure across use categories (North and Reynolds, 1996). 

Choosing grid-cell size is, however, problematic. PLR was developed for habitat analysis 

by North and Reynolds (1996) as a way to delineate foraging microhabitat for the northern 

spotted owl (Strix occidentalis caurina). Specific forest stands were used in their analysis 

rather than grid cells because specific stands could be identified as foraging areas. I 

developed the use o f grid cells for PLR habitat analysis for a re-analysis of the 

Agkistrodon contortrix data of Petersen (1995; Cross, unpublished) because snakes 

presumably could potentially use any area within the macrohabitat in which they are found. 

Grid cell size was chosen based on the mean distance moved per day. In this study, 

subject AP-2 was not used in this calculation given the exceptionally long movements that 

occurred for the first two weeks after transmitter implantation. The mean movement for 

AP-1 and AP-3 through AP-5 was 12.01 m, and therefore the grid cells were chosen to be 

12.5 m on each side. In this way, snakes could potentially be in a different grid cell on any 

given day.

The assignment of use categories to the data also can be problematic. In the 

current study the use categories were assigned after plotting and examining grid cell usage 

patterns for the five radiotracked snakes. Three divisions (low, medium, and high use) 

were obvious from the data, but more or less than three divisions could be possible given 

additional data. The variables that delineated the use-categories were: distance to water,
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distance to understory tree, leaf litter cover, and percent vegetation cover. Snakes in high 

use categories were generally found farther from water, closer to understory trees, and in 

areas of relatively higher canopy closure and leaf litter than the lesser used areas. All four 

of these variables were also chosen by the DFA procedure, perhaps indicating that both 

DFA and PLR worked well with these particular data. Unfortunately habitat data from 

other areas where the cottonmouth occurs have not been collected and analyzed in an 

equivalent manner. However, the data indicate that the BBNWR cottonmouths are found 

in association with the classical habitat factors found in marsh systems, namely water, 

vegetation, and small wetland trees, and not in adjacent, upland forested areas (unless 

hibernating).

The use of PLR for modeling snake microhabitat seems to be a useful technique 

and does not require the often unobtainable assumptions o f DFA or other multivariate 

techniques. Additionally, PLR does not require the time-consuming task of collecting 

ancillary data from "non-use" animal sites. This is an important consideration because 

there is no a priori reason to believe that the microhabitat characters gathered from a 

random selection of sites is in any way indicative o f a site that would be avoided by an 

animal, particularly if the random site falls within the activity range of the study organism 

(North and Reynolds, 1996).

The use of radiotelemetry locations for PLR modeling, while not requiring the use 

o f absence sites, still does not solve all of the problems o f microhabitat analysis (North and 

Reynolds, 1996). Radiotelemetry location analysis makes the assumption that the snake is 

at a chosen site when located and that the percentage of use of a given site reflects the 

inherent microhabitat value o f the location. Further, assigning a use category to sites 

assumes that all sites within an assigned category have equal importance to the organism 

(North and Reynolds, 1996). In reality, however, it may be that the most important sites 

are visited by the snakes when it is not being tracked. That is, if an animal is spending 

only a small fraction of its time in a highly important area, then the animal may never be at
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the key area when located, and hence the microhabitat variables associated with that area 

may never be included in the sample. Given the tracking frequency in this study, however, 

this is likely not a limitation in this study.

Population Estimation

Estimates o f population size were relatively high at BBNWR, but the confidence 

intervals around the point estimates were generally wide, a result of having few 

recaptures. The population estimate for the natural marsh dropped dramatically in 1997, 

but the number o f  recaptures in that marsh also increased, resulting in a narrowing o f  the 

confidence interval. This suggests that the population estimates for the marshes may be 

slightly inflated as a result o f few recaptures, which was expected given the sensitivity of 

the Schnabel method to recaptures (Seber, 1982). However, having few recaptures may 

also mean that a very small percentage of the population was captured throughout the 

study, which could bias the point estimates negatively. Clearly additional estimation 

methods are needed for this type o f work (Seber, 1992).

Population size estimates did not differ significantly between the marshes.

Wharton (1969) estimated cottonmouth densities to be as high as 9.02 snakes/ha on Sea 

Horse Key, Florida; however, that study was conducted on an island. Snakes from a 

mainland population occurred in densities of 0.75 snakes/ha. Blem and Blem (1995) 

estimated densities in Hopewell, Virginia to be <0.01 snakes/ha. BBNWR populations 

were intermediate between those above, ranging from 0.13-0.26 snakes/ha for both 

marshes. Linear densities for cottonmouths are not generally reported, but Blem and 

Blem (1995) reported "locally high" densities o f only 0.0025-0.005 snakes/m. Snakes 

from BBNWR had a linear density o f0.02-0.05 snakes/m, meaning that, on average, a 

snake might occur in every 20-50 m of shoreline investigated. Like the population 

estimate from which it is derived, the estimated density is likely to be positively biased
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given that it is derived from population estimates that were positively biased. However, 

BBNWR clearly has relatively high densities o f cottonmouths in both the natural and 

anthopogenic marsh habitats.

Sex ratios for field-collected cottonmouths were male-biased in both marshes in 

both years. Blem and Blem (1995) reported similar results for both their northern Virginia 

and southeastern Virginia/northeastern North Carolina populations. They also noted that 

93 cottonmouths bom in captivity were not sex-biased (45 females and 48 males). This 

suggests that either males are more likely to survive in the wild, or that males are more 

active and hence are captured in greater numbers than females because they are more 

conspicuous. The latter is the most likely scenario, but this was not tested in this or other 

studies.

Foraging and Feeding Ecology

Most o f the stomachs examined in this study contained some type o f food material, 

usually an unidentifiable slurry. Many field studies report very low percentages of snakes 

with gut contents (Barbour, 1956; Wharton, 1969; Collins and Carpenter, 1970; Blem and 

Blem, 1995).

Cottonmouths often eat other snakes, including their own kind (Wharton, 1969; 

Blem and Blem, 1995), and the remains of a Nerodia sipedon were found in one of the 

stomachs examined in this study. Many M. sipedon were seen in the management pools in 

the anthropogenic marsh, particularly in the younger pools, but no guts of cottonmouths in 

the anthropogenic marsh contained snakes.

The majority of the stomachs examined contained the remains of fish and frogs. 

Electroshocking surveys conducted by U. S. Fish and Wildlife Service fishery biologists 

suggest that fish are abundant in the management pools, but that densities in Back Bay are 

low. Therefore, it was postulated that snakes in the anthropogenic marsh might prey on
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fish more often than those in the natural marsh. However, the roadside ditches in the 

natural marsh, which were not surveyed for fishes, contained many sunfishes (Lepomis 

spp.). Seventy-five percent of the fishes obtained by palping stomachs were from snakes 

in the natural marsh, contrary to the hypothesis. Frogs were found in high numbers at 

BBNWR in both the natural and anthropogenic marsh habitats (estimated 2.1 frogs/m2 in 

some locations), and they made up a large proportion of the prey consumed by 

cottonmouths in both marshes. Active foraging in water, presumably for frogs and fish, 

was observed in both marshes, and the swallowing o f a still-living frog was seen in the 

natural marsh.

Radiotelemetry

Movements of cottonmouths were variable between marshes and between sexes. 

The largest total distances moved were by males AP-2, in the natural marsh, and AP-5, in 

the anthropogenic marsh. Male AP-2 made an extraordinarily long movement o f 

approximately 640 m in a 24-hour period, but moved relatively little after that. Male AP- 

5 moved almost twice the total distance o f AP-2, but did so in a series o f east-west 

movements in a ditch as opposed to a large single movement. Females moved less on 

average than did males, a trend also seen by Petersen (1995) for Agkistrodon contortrix 

(see also Brown et al., 1982 and Reinert and Zappalorti, 1988 for Crotalus horridus).

The snakes in the anthropogenic marsh moved farther on average than did those in the 

natural marsh. The ditches surrounding the management impoundments in that marsh 

served as a direct means of long-distance movements, perhaps explaining the relatively 

large mean distances per movement for these snakes.

Activity ranges calculated by both the minimum convex polygon (MCP) method 

and the harmonic mean method (95% isopleth) were similar, with the exception o f  the area 

calculated for AP-2. The difference in these measures for this snake is attributable to the
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shape o f its activity range as constructed by the harmonic mean method, which included 

large areas on the southern end of the activity range that were not used by the snake. 

Perhaps this snake had been pushed south by wind-driven currents on Back Bay (it was 

located immediately after exiting the water), and therefore moved farther in an attempt to 

return to its previous location. The activity range for this snake should be interpreted 

cautiously. The remainder of the snakes had MCP activity ranges of 0.48 ha-54.54 ha. 

These activity ranges were similar to those of the congeneric Agkistrodon contortrix 

studied by radiotelemetry in southeastern Virginia (Petersen, 1995). Mark-recapture 

subjects had activity ranges that were comparable to radiotracked snakes, with males using 

larger areas (x = 2.98 ha) than females (x = 1.74 ha). Wharton (1969) found that the mean 

activity ranges of his snakes, determined by mark-recapture sampling, were 0.142 ha for 

females and 0 .174 ha for males and that they were the approximately the same for both the 

mainland and island snakes. Range lengths (100-1700 m) for mark-recapture snakes were 

comparable for the current study and Wharton's (1969) study.

Snakes emerging from hibernation characteristically made long initial movements 

followed by a roughly two-week period o f little to no movement. It was during this time 

that the snakes sloughed their skin. Reinert (1993) suggested that this reduction in 

movement prior to shedding events may reduce predation risk for snakes with opaque skin 

covering the eyes. Petersen (1995) found the same pattern of reduced movement prior to 

shedding events in his study of Agkistrodon contortrix.

Snakes have been suggested to exhibit learned behavior (or use o f persistent cues 

over time), as evidenced by the repeated use of the same sites over time. This has been 

demonstrated, for example, for the pitvipers Agkistrodon contortrix (Petersen, 1995), 

Crotalus h. horridus (Reinert and Zappalorti, 1998), and Crotalus h. atricauddtus (A. H. 

Savitzky, personal communication). In the current study, I removed two large male 

cottonmouths from the edge of the educational pond at BBNWR to prevent interactions 

with humans. Both snakes were translocated approximately 500 m away, in opposite
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directions. Within 72 hours both snakes had returned to the location from which they had 

been initially removed. The snakes were again moved the same distance, but to different 

locations than they had been previously. Neither snake returned to the removal location.

It is not clear whether the snakes did not return due to continued harrassment by the 

investigator or whether they were moved outside of their activity ranges and hence were 

unable to orient back to the original location.

Biweekly mean movements for the cottonmouths in this study showed relatively 

large autumnal movements, followed by a period of reduced movement before hibernation. 

Biweekly means for spring movements showed long-distance movements immediately 

following emergence from hibernacula (as noted above), followed by a series of shorter 

movements. Data were inconclusive in terms of increased male movement during late 

spring, as would be expected for snakes that seek mates at that time. Mark-recapture data 

do indicate increased activity o f males during spring, however.

Snake body temperatures were highly correlated with air, surface, and soil 

temperatures during the active season, as expected given the relatively high and stable 

environmental temperatures associated with southeastern Virginia during the active season 

of these snakes. During hibernation, body temperature would be predicted to be most 

highly correlated with soil temperature if snakes overwinter in underground hibernacula, 

and most highly correlated with air or surface temperature if they do not hibernate or if 

they seek shallow temporary shelters during the coldest months. This pattern was seen in 

the current study. That is, body temperature was most highly correlated with soil 

temperature for AP-1, AP-3, AP-4, and AP-5, all of which hibernated underground.

Snake AP-2, which spent the coldest months under dense vegetation but above ground, 

had a body temperature most highly correlated with air temperature.

All snakes that hibernated underground went into root tunnels after a drop in air 

and surface temperatures o f approximately one month, when soil temperature was 

beginning to remain consistently higher than air temperature. Surprisingly, this is the same
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pattern observed for AP-2. This snake ceased movement and went under dense 

vegetation under a similar temperature regime. Emergence followed the opposite pattern, 

wherein a one-month increase in air and surface temperature seemed to trigger emergence. 

Both female snakes moved to new hibernacula during the winter, and AP-3 moved back to 

her original location approximately two weeks later. AP-4 only moved approximately 1.5 

m, but died before emerging. Her hibemaculum was inundated during an unusually wet 

winter. It is unclear why AP-3 moved.

Selection of hibernacula over time was not examined in this study, but the choice 

of upland hibernacula quite distant from active season movements in the anthropogenic 

marsh and the movement o f females to new hibernacula suggest that the snakes may use 

ancesteral chemical cues to find adequate hibernacula within their activity ranges. Long 

distance movements to hibernacula have been discussed by Gibbons and Semlitsch (1987). 

Use of the same hibernacula over time has been demonstrated for the two other pitvipers 

in southeastern Virginia, Agkistrodon contortrix (Petersen, 1995) and Crotalus horridus 

atricaudatus (A. H. Savitzky, personal communication).

Sexton et al. (1992) predicted that snakes south o f 38° latitude should hibernate 

solitarily, use temporary cover, or be active all winter, whereas those above 38° latitude 

should hibernate communally. Snakes AP-1 and AP-3, along with at least two other non­

telemetered individuals, shared the same hibemaculum, whereas AP-4 and AP-5 used 

solitary hibernacula, and AP-2 used temporary cover. This mix of hibernation behaviors 

might be expected given the borderline latitude of southeastern Virginia (36°). Wharton 

(1969), on the other hand, found that his Florida cottonmouths hibernated communally in 

rotting stumps. This may be attributable to adequate hibernacula being a limiting resource 

on the island in which Wharton (1969) worked. Hibernacula do not appear to be limited 

at BBNWR in either marsh habitat.
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Sightings by Visitors and Hunters

Many snakes were reported by visitors to BBNWR, although the number reported 

is negatively biased because many visitors do not record their sightings in the Refuge log 

book. Nonetheless, many more snakes were reported in 1996 than in 1997, although it is 

unclear why. As many as 14 snakes were seen on a single day during October 1997 by 

hunters, but not a single report was made by a visitor for that same period. Since hunters 

were in areas closed to hikers, it was expected that they would see more snakes. Many of 

the hiking trails, however, border marsh areas where snakes can be seen almost daily, 

thereby making it difficult to believe that no snakes were seen by visitors. An effort must 

be made to convince Refuge visitors to record animals that they see in order for proper 

management stratagies to be employed.

Copperheads {Agkistrodon contortrix) are found in nearly every county in 

Virginia, though they have never been found at BBNWR. Interestingly, Pague and 

Mitchell (1991) list the copperhead as occurring on the barrier beach area of BBNWR, but 

not on the Pungo Ridge area on the western side of Back Bay proper, where it is known 

to occur (Linzey and Clifford, 1981; Mitchell, 1994). Given the similar appearance of 

juvenile copperheads and cottonmouths (Gloyd and Conant, 1990), the copperheads 

reported at BBNWR were probably misidentified cottonmouths.

Management Strategies

Management strategies for pitvipers are not commonly constructed or 

implemented, perhaps a result o f the negative attitudes associated with the preservation of 

venomous reptiles. A recent study by Johnson and Leopold (1998) on the eastern 

massasauga {Sistrurus c. catenatus) suggested management stratagies to sustain and
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perhaps increase the numbers of massasaugas in New York. The massasauga is 

endangered in New York and was found in very low densities on their research site. 

Management plans need not only be implemented for endangered species or for species 

that are overabundant (e.g., Odocoileus virgmianus in many states). Conservation efforts 

for populations at presumably reasonable densities should be examined, particularly in 

areas where management of other species is given priority.

Cottonmouths are a dominant carnivore at BBNWR, occurring in large numbers. 

The Back Bay National Wildlife Refuge Station Management Plan (BBNWRSMP; Station 

Management Plan. Back Bay National Wildlife Refuge, July 1993) does not mention 

cottonmouths in the discussion of wildlife resources at the Refuge nor in the 28 

management objectives in the BBNWRSMP. The Refuge is dedicated to the management 

of waterfowl and shorebirds and does spend resources on the management of nontarget 

species, such as migratory songbirds, white-tailed deer, and nutria (Myocastor coypu), an 

introduced species. The lack of management for the cottonmouth likely reflects 

inadequate time, money, and understanding of this animal, however, rather than disdain for 

the species. I suggest that the managers of BBNWR study both this report and the field 

methodologies of Jones (1986) to obtain a better understanding of the reptiles at the 

Refuge and how they fit into the BBNWRSMP.

Both the natural and anthropogenic marshes at BBNWR support large numbers of 

Agkistrodon piscivorus. I initially expected that the natural marsh would support more 

individuals given the large-scale disturbances (such as mowing and burning) that occur in 

the anthropogenic marsh. This does not seem to be the case, however. Management of 

water level, root-raking, plowing, and burning o f large sections of the management 

impoundments does result in the temporary local displacement of cottonmouths from 

those areas, but the cottonmouths likely move to undisturbed areas within the 

anthropogenic marsh system until conditions are suitable for their return. Food resources
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for cottonmouths are presumed not to be limited, and therefore snakes can move to new 

areas without having to deal with limited prey availability.

Johnson and Leopold (1998) suggested that clearing and burning in the wetlands 

where they studied the eastern massasauga might offer more basking areas, and hence 

increase snake numbers. Cottonmouths, on the other hand, use areas o f fairly high 

vegetation cover even when areas o f early successional, low-density vegetation are 

available. This result is presumably related to the use of shoreline and water bodies by the 

cottonmouth. The areas surrounding drainage ditches and areas with fairly deep water all 

year have comparatively high vegetation cover. These are the areas where cottonmouths 

are most often found. The anthropogenic marsh habitat is bordered on the east by 

unmanaged "fingers" o f marsh habitat that extend into Back Bay proper. These areas are 

occasionally used by cottonmouths, but do not seem to offer refuge after intense 

manipulations of the impoundments are performed. Apparently the snakes find adequate 

cover simply by moving to different areas within the management impoundments. 

Management in the anthropogenic marsh should focus on leaving adequate cover for the 

cottonmouth near areas o f impoundment manipulations. Manipulations o f entire 

management pools would likely result in reduced numbers o f cottonmouths. Both 

Wharton (1966) and Blem and Blem (1995) suggest that continued disturbances of 

cottonmouths leads to permanent local extirpation of populations. It is not clear what 

long-term effects manipulations of impoundments would have on cottonmouth 

populations at BBNWR.

Disturbances in the natural marsh are rare, and common sightings o f cottonmouths 

by visitors in that area are generally limited to marsh areas along footpaths and in drainage 

ditches along the road. Many snakes in the natural marsh are out of sight of visitors and 

therefore enjoy the protection granted by dense marsh vegetation and low shrubs. 

Management of the natural marsh, therefore, should simply include strategies to leave the 

area undisturbed.
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Cottonmouths occasionally are eaten by carnivorous mammals (foxes and 

raccoons), large wading birds (herons and egrets), and even ghost crabs {Ocypode 

quadrata, Cross and Marshall, 1998). Predation pressure on cottonmouths at BBNWR is 

unknown, but it is thought that most predation is limited to juveniles, because adults are 

much larger and hence more dangerous to predators than juveniles. Management should 

focus on leaving adequate habitat for cottonmouths so they can forage effectively, find 

shelter, and reproduce in numbers great enough to counterbalance the effects o f juvenile 

mortality.

A survey of presumably adequate hibernation areas demonstrated that hibernacula 

do not seem to be limited at BBNWR. The cottonmouths studied either spent winters in 

underground root tunnels or under dense vegetation in the natural marsh, and in root 

tunnels in upland areas o f the anthropogenic marsh. The greatest threat to overwintering 

cottonmouths at BBNWR would likely be the further destruction o f areas where adequate 

hibernacula can be found. If the natural marsh is left undisturbed, hibernacula should 

remain an unlimited resource. In the anthropogenic marsh, however, conversion of the 

forested area ("green hills area") to management impoundments could be disastrous for 

cottonmouth populations and might lead to their rapid decline and eventual extirpation 

from the anthropogenic system. It is therefore strongly suggested that the higher, forested 

wetlands on the eastern side of the management impoundments be left intact.
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FINDINGS AND INTERPRETATIONS

1. Morphological measurements did not differ between cottonmouths in the natural and 

anthropogenic marsh habitats. This lack o f location effect suggests that cottonmouths 

have the required resources available for growth and survival in both marsh systems, 

and that they are perhaps the same population.

2. Growth was difficult to assess in the current study given the low number o f recaptures 

over time. Several snakes were recaptured approximately one year after initial 

capture, however, and provided information on growth. Snakes of both sexes and in 

both marshes grew in all morphological categories except tail length and mass. It is 

not known whether the lack of mass gain was due to handling or simply because the 

snakes did not feed close to the capture date.

3. Most snakes were found > 0.5 m from water. Live vegetation served as the primary 

cover object for cottonmouths, but many were found in the open and in water. Most 

snakes were found with the body extended and in direct sunlight regardless of 

temperature. Nearly all snakes remained in place upon approach, but several also fled 

before capture. Snakes fled in the direction opposite the investigator no matter which 

medium (land or water) they occupied at the time. Snakes that behaved aggressively 

usually did so after they were disturbed with tongs. Aggressive behavior was rare 

upon approach of most snakes.

4. Males were captured more frequently than females in both natural and anthropogenic 

marshes, likely a result o f male snakes being more active and thus more conspicuous. 

Few females were gravid in either marsh, suggesting that cottonmouths at BBNWR do 

not reproduce annually or that gravid females are not as catchable.
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5. A MANOVA of eleven habitat variables revealed several differences between males 

and females, between snakes in the natural and athropogenic marsh habitats, and 

between mark-recapture and radiotelemetered subjects. Discriminant Function 

Analysis (DFA) and Polytomous Logistic Regression (PLR) both suggested that the 

most important habitat variables for determining sites used by cottonmouths in both 

marshes were: distance to water, distance to understory trees, leaf litter cover, and 

vegetation cover. Though habitat structure differed between the natural and 

anthropogenic habitats, snakes apparently occupy both habitats because both provide 

adequate cover and access to foraging areas.

6. PLR provided an effective means of elucidating important habitat variables based on 

use-only sites. Unlike DFA non-use sites were not necessary for assessing important 

habitat variables, thereby eliminating assumptions about random locations. Since both 

DFA and PLR provided similar results in this study, I suggest that further work be 

performed to compare these methodologies and to assess the effects of grid size on 

PLR analyses.

7. Population sizes and relative densities for cottonmouths were high for both the natural 

and anthropogenic marsh systems at BBNWR and were higher than for the northern 

population o f cottonmouths in Virginia.

8. Estimation of population size by a modified Schnabel Census methodology provided 

adequate estimates from the mark-recapture data gathered during this study. 

Confidence intervals were quite large for some estimates, suggesting that the low 

number o f recaptures, a common problem with snake studies, may lead to biased 

estimates of population size. Areal density estimates were within the range o f many
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other studies o f snake populations, but given the heavy use of limited areas o f both 

marshes (e.g., around water bodies), areal densities were considered unreliable. Linear 

density, a measure o f the number o f  snakes per linear meter (hence not a true density 

estimate), was deemed more reliable for this study. Linear densities were quite high 

for both the natural and anthropogenic marshes, and were much higher than for the 

other population in Virginia.

9. Unlike many other studies of cottonmouths, the majority of stomachs sampled in this 

study contained food items. Snakes in both marshes fed primarily on frogs and fish, 

consistent with the high densities o f  these prey animals in both marsh habitats. Many 

stomachs contained inedible items (sticks, rocks, etc.). This has been reported 

elsewhere and is likely the result o f  incidental ingestion.

10. Activity ranges o f radiotracked snakes were quite variable in this study. Snakes in the 

anthropogenic marsh had, on average, larger activity range areas than snakes in the 

natural marsh. This may be due to the ease of movement along dredged ditches in the 

anthropogenic marsh. Activity ranges for mark-recapture cottonmouths estimated by 

geometric methods fell within the range of areas estimated for radiotelemetered 

snakes. Mark-recapture males had larger activity areas than did females.

11. Snake body temperature was highly correlated with air, surface, and soil temperatures 

during the active season, but was usually most highly correlated with soil temperature 

during hibernation. One snake did not seek an underground hibemaculum, but rather 

spent the coldest months under dense vegetation. The body temperature of this snake 

was most highly correlated with the air and surface temperature.
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12. Snakes entered hibemcula or sought cover after a four week decline in average air and 

surface temperatures, and when air and surface tempertures fell below average soil 

temperature. Snakes emerged from hibernation after approximately four weeks of 

increasing air and surface temperature. Surveys suggested that hibernacula do not 

appear to be limiting in either marsh.

13. Cottonmouths were commonly reported from both marshes by visitors and hunters.

14. Management strategies for the cottonmouth do not currently exist at BBNWR. I 

suggest that the greatest concern for future populations at BBNWR is the availability 

of adequate cover. In the natural marsh snakes can readily find cover. The 

manipulations o f the impoundments that occur in the anthropogenic marsh presumably 

force cottonmouths to emigrate until they can safely return to the manipulated area. 

The single greatest threat to the cottonmouth population in the anthropogenic marsh is 

believed to be the conversion of the forested wetland into management impoundments, 

thereby destroying hibernacula for overwintering snakes.
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APPENDIX I

Plant List for Back Bay National Wildlife Refuge 

The list is comprised o f species identified during the study, as well as those obtained from 

Refuge files. Additional species present or historically present in the Back Bay watershed 

can be found in Wright (1990).

Scientific name

Acer rubrum 
Achillea millefolium 
Acorus calamus 
Agrostis sp.
Alisma subcordatum 
Allium vineale 
Alnus rugosa
Altemanthera philoxeroides 
Amaranthus retroflexus 
Amaranthus cannabinus 
Ambrosia artemisiifolia 
Ammannia coccinea 
Amorpha fruiticosa 
Andropogon virginicus 
Antennaria neglecta 
Apocynum cannabinum 
Ascelepias incamata 
Aster hesperius 
Aster spp.
Aster subulatus 
A trip lex patula 
Baccharis halimifolia 
Bacopa sp.
Bassia hypsifolia 
Berchemia scandens 
Bidens aristosa 
Bidens laevis 
Bidens sp.
Boehmeria cylindrica 
Boltonia asteroides 
Brassica juncea

Common name

red maple 
yarrow 
sweet flag 
bent grass
southern water plantain
field garlic
speckled alder
alligator weed
rough pigweed
water hemp
ragweed
lythrum
indigo bush
broomsedge
false pussytoes
Indian hemp
milkweed
western lined aster
aster
saltmarsh aster 
spearscale 
groundsel tree 
bacopa 
bassia 
supplejack 
tickseed sunflower 
bur marigold 
beggar's ticks 
false nettle 
boltonia 
Indian mustard
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APPENDIX I—Continued.

Scientific name Common name

Brumtichia cirrhosa 
Calamagrostis canadensis 
Callitriche sp.
Cafystegia sepittm 
Campsis radicans 
Cardamine pennsylvanica 
Carex spp.
Carex stricta 
Cassiafasciculata 
Centella asiatica 
Cephalanthas occidentalis 
Chelone glabra 
Chenopodium album 
Cicuta maculata 
Cirsium vulgare 
Clethra alnifolia 
Coreopsis sp.
Cotula coronopifolia 
Crassula aquatica 
Cressa truxellensis 
Crypsis nilaca 
Cuscuta spp.
Cycloloma atriplicifolium 
Cyperus erythrorhizos 
Cyperus esculentus 
Cyperus iria 
Cyperus spp.
Decodon verticillatus 
Digitaria spp.
Diodia virginiana 
Distichlis spicata 
Drosera sp.
Daucus carota 
Dulichium arundinaceum 
Echinochloa walteri 
Elatine sp.
Eleocharis obtusa 
Eleocharis parvula 
Eleocharis quadrangulata

buckwheat vine 
bluejoint 
water starworts 
hedge bindweed 
trumpet creeper 
Pennsylvania bitter cress 
sedge
tussock sedge 
partridge pea 
centella 
buttonbush 
turtlehead 
goosefoot 
water hemlock 
bull thistle 
sweet pepperbush 
coreopsis 
brass buttons 
pygmy weed 
alkali weed 
prickle grass 
dodder
winged pigweed 
red-rooted flatsedge 
chufa
rice flatsedge 
sedge
swamp loosestrife 
crabgrass 
buttonweed 
salt grass 
sundew
Queen Anne's lace 
three-way sedge 
Walter's millet 
waterwort 
blunt spikerush 
least spikerush 
large spikerush
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Scientific name

Eleocharis spp.
Equisetum fluviatile 
Erianthus giganteus 
Erigeron canadensis 
Eriocavlon septangulae 
Eupatorium capillifolliitm  
Eupatorium maculatum 
Eupatorium purpureus 
Eupatorium serotinum 
Euphorbia polygonifolia 
Euthamia graminifolia 
Fimbristylis sp.
Fragaria virginiana 
Fraxinus pennsylvanica 
Fuirena pumila 
Fuirena squarrosa 
Galium sp.
Gaultheria procumbens 
Gaylussacia dumosa 
Gerardia maritima 
Gerardia purpurea 
Glyceria obtusa 
Gratiola neglecta 
Helenium autumnale 
Heleochloa schoenoides 
Hibiscus laevis 
Hibiscus moscheutos 
Hydrocotyle umbellata 
Hymphoides cor datum 
Hypericum ellipticum 
Hypericum mutilum 
Ilex glabra 
Ilex opaca 
Impatiens capensis 
Ipomoea sp.
Iris versicolor 
Iva ciliata 
Ivafructescens 
Juncus balticus

Common name

spikerush
water horsetail
sugar-cane plumegrass
horseweed
mermaidweed
dog fennel
joe-pye weed
boneset
boneset
seaside spurge
goldenrod
fimbristylis
wild strawberry
green ash
umbrella grass
umbrella grass
bedstraw
wintergreen
dwarf huckleberry
seaside gerardia
gerardia
manna grass
hedge hyssop
sneezeweed
swamp timothy
smooth rose-mallow
rose-mallow
pennywort
floating heart
marsh St. John's wort
dwarf St. John's wort
inkberry
American holly
jewelweed
morning gloiy
blue flag
marsh elder
high tide bush
Baltic rush

permission of the copyright owner. Further reproduction prohibited without permission.



159

APPENDIX I—Continued.

Scientific name Common name

Juncus effusus soft-stem bulrush
Juncus roemerianus black needlerush
Juniperus virginiana red cedar
Kalmia angustifolia sheep laurel
Kosteletzkya virginica saltmarsh mallow
Kuhnia eupatorioides false boneset
Lactuca serriola prickly lettuce
Lathyrusjaponicus beach pea
Leersia oryzoides rice cutgrass
Lemna minor duckweed
Leptochloa fasicularis sprangletop
Leptochloa filiformis sprangletop
Lilium canadense Canada Iilly
Lindemia sp. pimpernel
Lippia spp. frog-fruit
Liquidambar styraciflua sweetgum
Lobelia cardinalis cardinal flower
Lolium sp. ryegras
Ludwigia palustris water purslane
Lycopodium spp. club moss
Ly copus virginicus water horehound
Lysimachia terrestris yellow loosestrife
Lythrum hyssopifolia hyssop loosestrife
Lythrum salicaria purple loosestrife
Maianthemum canadense Canada mayflower
Malvella leprosa alkali mallow
Melilotus alba white sweet clover
Mentha arvensis wild mint
Mikania sp. hempweed
Mimulus ringens monkey flower
Mollugo verticillata carpetweed
Muhlenbergia asperifolia alkali muhly
Myrica cerifera wax myrtle
Myrica gale sweet gale
Myrica pensylvanica bayberry
Myriophyllum asiatica Asian milfoil
Myriophyllum exalbescens water milfoil
Nelumbo lutea American lotus
Nuphar Luteum yellow cow-lily
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APPENDIX I—Continued.

Scientific name Common name

Nymphaea odorata water lily
Odontities serotirta eyebright
Onoclea sensibilis sensitive fern
Osmunda regalis royal fern
Oxalis stricta yellow wood sorrel
Pcmicum amarum beach grass
Pcmicum spp. panic grass
Pcmicum virgatum switchgrass
Paspalum laeve smooth paspalum
Peltandra virginica arrow arum
Phalaris artmdinacea reed canary gras
Phragmiles communis common reed
Pluchea camphorata camphor weed
Pluchea purpurascens salt marsh fieabane
Pogonia ophioglossoides rose pogonia
Polygonum arifolium tear thumb
Polygonum coccmium water smartweed
Polygonum hydropiperoides water pepper
Polygonum monspeliensis beard grass
Polygonum pensytvamcum pinkweed
Pontederia cor data pickerelweed
Populus deltoides cottonwood
Potamogeton epihydrus ribbon pondweed
Potamogeton natans floating pondweed
Potamogeton pectinatus sago pondweed
Potamogeton zosteriformis flatstem pondweed
Prunella vulgaris self-heal
Puccinellia nuttalliana Nuttal's alkali grass
Quercusfalcata southern red oak
Quercus laurifolia laurel oak
Ouercus nigra water oak
Quercus virginianus live oak
Ranunculus spp. buttercup
Rhus copulina winged sumac
Rhus glabra smooth sumac
Rotala ramosior rotala
Rubus hispidus swamp dewberry
Rumex sp. dock
Ruppia maritima widgeon grass
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APPENDIX I—Continued.

Scientific name Common name

Sabatia stellaris 
Sagittaria latifolia 
Sagittaria spp.
Salicomia spp.
Salix carolinensis 
Salix nigra 
Saururus cemuus 
Scirpus americanus 
Scirpus atrrovirens 
Scirpus acutus 
Scirpus cyperimis 
Scirpus olneyi 
Scirpus robustus 
Scirpus validus 
Scutellaria lateriflora 
Senecio vulgaris 
Sesbania marocarpa 
Sesuvrum maritimum 
Setaria spp.
Shan suave 
Solanum carolinense 
Solidago spp.
Sonchus sp.
Sparganium spp.
Spartina altemiflora 
Spartina cynosuroides 
Spartina patens 
Spirea latifolia 
Spirea tomentosa 
Stellaria spp.
Tamarix pentandra 
Thelypteris thelypteroides 
Toxicodendron racScans 
Triglochin sp.
Typha angustifolia 
Typha latifolia 
Utricularia comuta 
Utricularia vulgaris 
Vaccinium corymbosum

marsh pink 
arrowhead 
duck potato 
pickelweed 
Carolina willow 
black willow 
lizard's tail 
three-square bulrush 
green bulrush 
hardstem bulrush 
woolgrass 
OIney’s three-square 
alkali bulrush 
softstem bulrush 
mad-dog skullcap 
groundsel 
sesbania 
sea purslane 
foxtail
water parsnip
horse nettle
goldenrod
sowthistle
burreed
cordgrass
big cordgrass
salt meadow grass
American meadowsweet
hardhack
chickweed
salt cedar
marsh fern
poison ivy
arrowgrass
narrow-leaf cattail
broad-leaf cattail
homed bladderwort
common bladderwort
blueberry
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APPENDIX I—Continued.

Scientific name Common name

Vaccinium macrocarpon large blueberry
Vallisneria americana wild celery
Verbascum blattaria moth mullein
Verbena hastata blue vervain
Veronica scutellata marsh speedwell
Viola cucullata blue-marsh violet
Vitis rotundifolia muscadine grape
Xanthium spp. cocklebur
Zizania aquatica northern wild rice
Zizania miliacea southern wild rice
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APPENDIX H 

Field Collection Data Sheet

EASTERN COTTONMOUTH RADIOTELEMETRY/MARK-RECAPTURE DATA SHEET
(Chad L Cross, Dept. Biological Sciences, Old Dominion University. Norfolk, VA, 23529. 757-683-3595)

I DATE: I 1 OBSERVERS: I
BBNWR: Natural Anthropogenic

SNAKE ID: radio PIT tag scale cSp
TIME: 1 FLAG NUMBER: 1 TREE TAG NO:

SNAKE LOCATION: upland shoreline water hibemaculum
COVER OBJECT: 1 DISTANCE to WATER: m
SUN EXPOSURE: full sun shade full shade
ACnVTTY: coiled extended moving (direction: )
BEHAVIOR: passive aggressive very aggressive
ACTION: flee approach stand ground

I PIT READINGS: I I

TEMPERATURE: Air C i  Surface: C iSoK: C
CLOUD COVER: none partly cloudy overcast
PRECIPITATION: none light rain heavy rain

HABITAT DESCRIPTION:

DOMINANT PLANT SPECIES:

j Tree (>7cm): 
j Tree (<7cm):

j Species:DBHand
DISTANCES

I Distance:cm
j Species:I Distance:cm

i Leaf LitterCOVER (%): j Canopy:
______________i Debris: Vegetation:

^SgecieKSTEMS: i  Density Height

NOTES:
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