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ABSTRACT

MODELING HABITAT AND ENVIRONMENTAL FACTORS AFFECTING 

MOSQUITO ABUNDANCE IN CHESAPEAKE, VIRGINIA

Alan Scott Bellows 
Old Dominion University, 2007 

Co-Directors: Dr. Robert K. Rose
Dr. Thomas R. Allen, Jr.

The models I present in this dissertation were designed to enable mosquito control 

agencies in the mid-Atlantic region that oversee large jurisdictions to rapidly track the 

spatial and temporal distributions of mosquito species, especially those species known to 

be vectors of eastern equine encephalitis and West Nile virus. I was able to keep these 

models streamlined, user-friendly, and not cost-prohibitive using empirically based 

digital data to analyze mosquito-abundance patterns in real landscapes.

This research is presented in three major chapters: II) a series of semi-static 

habitat suitability indices (HSI) grounded on well-documented associations between 

mosquito abundance and environmental variables, III) a dynamic model for predicting 

both spatial and temporal mosquito abundance based on a topographic soil moisture 

index and recent weather patterns, and IV) a set of protocols laid out to aid mosquito 

control agencies for the use of these models.

The HSIs (Chapter II) were based on relationships of mosquitoes to digital 

surrogates of soil moisture and vegetation characteristics. These models grouped 

mosquitoes species derived from similarities in habitat requirements, life-cycle type, and 

vector competence. Quantification of relationships was determined using multiple linear
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regression models.

As in Chapter II, relationships between mosquito abundance and environmental 

factors in Chapter III were quantified using regression models. However, because this 

model was, in part, a function of changes in weather patterns, it enables the prediction of 

both ‘where’ and ‘when’ mosquito outbreaks are likely to occur. This model is distinctive 

among similar studies in the literature because of my use of NOAA’s NEXRAD Doppler 

radar (3-hr precipitation accumulation data) to quantify the spatial and temporal 

distributions in precipitation accumulation.

Chapter IV is unique among the chapters in this dissertation because in lieu of 

presenting new research, it summarizes the preprocessing steps and analyses used in the 

HSIs and the dynamic, weather-based, model generated in Chapters II and III. The 

purpose of this chapter is to provide the reader and potential users with the necessary 

protocols for modeling the spatial and temporal abundances and distributions of 

mosquitoes, with emphasis on Culiseta melanura, in a real-world landscape of the mid- 

Atlantic region. This chapter also provides enhancements that could easily be 

incorporated into an environmentally sensitive integrated pest management program.
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1

CHAPTER I 

GENERAL INTRODUCTION

Introduction

Geographic information system (GIS) technology has grown from relative obscurity to a 

worldwide industry (Bemhardsen, 2002). Before the relatively widespread availability of 

GIS, global positioning systems (GPS), and remotely sensed techniques and data, 

modeling spatial and temporal heterogeneity was often difficult, if not impossible. This 

difficulty was primarily associated with a general inability to manage, store, and analyze 

the huge banks of data needed to model complex real-world patterns and processes 

(Johnson, 1993). But now, applications for GIS are as diverse as the broad range of data 

that can be applied to this technology; this is reflected in recent literature. A burgeoning 

source of such information, GIS, GPS, and digital satellite remote sensing provide 

promising data and analytical tools for applied and multi-disciplinary studies.

The use of digital satellite data in GIS is becoming a valuable approach in the 

field of epidemiology for the study of vector ecology in disease transmission (Clarke et 

al., 1996; Kitron, 1998). Recent advances in earth-observing sensors have made possible 

the generation of a wide range of spatially explicit environmental and biophysical data 

relevant to the study of disease vector ecology (Goetz et al., 2000). Surveillance, 

monitoring, and subsequent health policies associated with the study of vector-borne 

emerging infectious diseases (EID), such as hantavirus (Glass et al., 2000), Lyme disease

This manuscript has been prepared in compliance with the journal Landscape Ecology
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(Dister et al., 1997), Sin Nombre virus (Boone et al., 2000), and malaria (Srivastava et al,

2001) are becoming more streamlined and functional through the integration of spatial, 

ecological, and epidemiological data (Clarke et al., 1996). A common thread in many 

such studies is an attempt to lower disease transmission rates by interrupting the 

epidemiological cycle.

Two arthropod-borne viruses (a.k.a., arboviruses) that are currently of particular 

concern in the eastern United States are West Nile virus ([WNV] Wonham et al., 2004) 

and eastern equine encephalitis ([EEE] Hassan, et al. 2003). Primary vectors for both 

viruses are mosquitoes, and can be broadly cast into two non-mutually exclusive groups: 

enzootic (reservoir) and epizootic (bridge) vectors. Both vimses remain enzootic in avian 

reservoir hosts via bird-feeding (omithophilic) reservoir vectors and become sporadically 

epizootic in wildlife, livestock, and human hosts via opportunistically feeding bridge 

vectors (Mclean et al., 2001; Hassan et al., 2003; Tate et al., 2005). These epizootic hosts, 

especially mammals, are generally considered “dead-end” hosts because they do not 

develop viremias high enough for transmission back to biting mosquitoes (Hassan et al.,

2003).

The most recent major North American EID (Beasley et al., 2003), WNV, is a 

form of Japanese encephalitis (swelling of the brain) belonging to the taxonomic family 

Flaviviridae: Flavivirus. WNV was first isolated in 1937, from a woman in the West Nile 

province of Uganda. Human and equine outbreaks were restricted to the eastern 

hemisphere until 1999, when the first North American human case was reported in New 

York City (Devine, 2003). This outbreak began the largest documented arboviral 

epidemic recorded for the western hemisphere, and the largest worldwide for WNV
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(Makar and Stowell, 2004). Since the 1999 outbreak, WNV has spread across North 

America and south to Central America and resulted in -17,000 human cases, including 

-670 deaths (Kilpatrick et al., 2005). Primary reservoir vectors of WNV are omithophilic 

mosquitoes of the genus Culex (Turell et al., 2005), but the virus has been recovered from 

43 mosquito species from 11 genera (Dauphin et al., 2004) and eight genera of ticks 

(Higgs et al., 2004). Since the New York case, WNV has been detected in dead birds of 

138 North American species. Potential bridge vectors of WNV include opportunistic 

feeders such as Aedes albopictus and Culex salinarius (Turell et al., 2005).

EEE and two other closely related equine encephalitides, western (WEE) and 

Venezuelan (VEE) equine encephalitis, belong to the family Togaviridae: Alphavirus. 

EEE was first isolated in North America in 1933 during concurrent human outbreaks in 

Delaware, New Jersey and Virginia and currently persists in the eastern North America, 

the Caribbean, and South and Central America (Weaver et al., 1999). In North America, 

EEE tends to be more prevalent in summer and autumn, and foci are generally associated 

with freshwater swamps, the preferred habitat of the primary reservoir vector, Culiseta 

melanura (Weaver et al., 1999). Predominant reservoir hosts are gregarious passerine 

bird species that often roost en masse in swamp habitats (Komar et al., 1999). As with 

WNV, crows and jays are particularly susceptible to EEE (Hassan et al., 2003) and often 

serve as indicators of viral activity. Once enzootic transmission is established, the vims 

becomes available to epizootic bridge vectors such as Coquillettidia perturbans and 

Aedes vexans, which readily feed on mammals as well as birds (Hassan et al., 2003). As 

its name suggests, equine epizootics are the most commonly documented and infections
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4

usually kill horses. Since 1964, there have been -200 confirmed human cases of EEE 

(Calisher, 2004) with a 30% mortality rate (CDC, 1992).

Persistence and transmission dynamics of arboviruses are functions of many 

factors, including vector competence, and the susceptibility, proximity, and mobility of 

vertebrate hosts (Hassan et al., 2003). Additionally, transmission generally coincides 

spatially with environmental conditions conducive to vectors breeding within habitats 

frequented by host species (Kitron, 1998; Kaya et al., 2004). Like many other mosquito- 

borne viruses, there is no human vaccine available for EEE (Calisher, 2004) or WNV (Li, 

2004) and the most effective preventative measure is mosquito control, i.e., regulation of 

mosquito populations.

My models are based on the collective influence of spatially explicit habitat 

characteristics. These types of influences drive the spatial distributions of organisms, but 

were largely ignored before the publication of Levins’ (1969) metapopulation theory. 

Notable exceptions are Huffaker (1958) and Andrewartha and Birch (1954). More 

recently, the role of spatial structure has emerged as a pivotal influence on the spatial and 

temporal distributions and abundances of organisms (e.g., Lindenmayer and Lacy, 1995; 

Lindenmayer and Possingham, 1996; Bender et al., 2003; Tischendorf et al., 2003) and 

has become a major motivation for much current research, including mine. Traditional 

models tended to oversimplify the mechanics of population regulation, and thus generally 

provide limited insight into real-world situations (Hanski 1994). In most cases, spatially 

influential factors were only implicitly addressed (Levins, 1969; Lande, 1987; Keeling,

2002). Population- and community-level studies generally do not explicitly incorporate 

the influence of spatial factors because hierarchical theory traditionally introduces
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environmental factors only at the ecosystem and landscape levels of ecology. 

Distributional dynamics becomes even more convoluted if spatial heterogeneity of 

landscape characteristics is considered. Thus, spatially explicit landscape components, 

important and often continuous in variation, must be considered if ecologically integrated 

pest management techniques, such as those to control arthropod vectors, are to be 

effective.

The central purpose of this research was to create a series of complementary GIS- 

based models (Chapters II and III) capable of: 1) identifying potential mosquito habitat 

and 2) determining which of these are most likely to be active based on recent weather 

patterns. Chapter IV summarizes the necessary protocols for modeling the spatial and 

temporal distributions and abundance of mosquitoes, with emphasis on Cs. melanura, the 

primary reservoir vector of EEE, in a real-world coastal landscapes of the mid-Atlantic 

region (MAR).

This study was conducted with the cooperation of the Chesapeake Mosquito 

Control Commission (CMCC), Chesapeake, Virginia. The spatial extent is the entire city 

of Chesapeake, Virginia. The city, located on Virginia’s Coastal Plain physiographic 

region, has a total area of 91,427 ha and has a growing 2004 human population of 

214,725—up 20.8% from 1990. Chesapeake was selected for study because 1) the 

structure of the landscape represents a diverse mosaic of land use, 2) the CMCC is a well 

established and nationally respected mosquito control agency that strives to stay on the 

cusp of technology, and 3) of the known occurrence and relative distributions, within the 

city, of ~40 (-30 in 2004) mosquito species listed as potential vectors of WNV by the
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6

Center for Disease Control (CDC). Among these species are the major reservoir and 

bridge vectors of EEE.

Suitable habitat for a broad range of mosquito species, including tidal and 

freshwater creeks and the Great Dismal Swamp with its canals and forested wetlands, lies 

embedded in the landscape mosaic. In addition, an extensive ditch network that allows 

for agriculture, and more recently, suburban development, drains much of southern 

Chesapeake. Thus, the close proximity of good mosquito habitat threaded within and 

among high densities of humans creates a landscape conducive to the transmission of 

WNV and other mosquito-borne diseases.

Each of the following three chapters (Chapters II-IV) will be separately submitted 

for publication in peer-reviewed journals, and thus, each is written as a stand-alone 

manuscript formatted as per the requirements of the journal. This introduction was 

designed and written as a general chapter overview with relevant sections appearing in 

the respective chapters that follow. It is also important to note that final analyses 

associated with Chapter III are dependent on the results of Chapter II. Because of this, 

readers should be aware that some sections of this dissertation and this general 

introduction, especially in methods, will be repeated in more than one chapter, and 

potentially in all three (Chapters II-IV). Chapter V will serve as a general summary of the 

research herein, and will not be submitted for publication.

Chapter II Overview

The primary objective of this chapter is to construct a set of predictive, spatially explicit, 

and scale-dependent habitat suitability indices (HSI models) based on the
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“Hutchinsonian-niche concept” (Hutchinson, 1957). These models are based largely on 

remotely sensed (e.g., satellite imagery, land use/cover, soil surveys) data formatted for 

use in a GIS. Model results are predictive, and used to identify areas within the landscape 

in which mosquito species are most likely to occur. This approach requires the 

development of a baseline habitat classification model capable of identifying, 

categorizing, and ranking suitable habitat based on relationships between mosquito 

captures (Chesapeake, Virginia: 2004) and selected habitat attributes at mosquito 

trapping sites. This chapter will lay the groundwork for Chapter III.

Many life-history aspects that influence the distributions of populations (e.g., 

competition, physiological and behavioral niche tolerances) are controlled by landscape- 

level gradients, e.g., moisture (Kaya, et al., 2004; Bellows et al., 2001). Thus, digital 

surrogates are needed because direct measurement of habitat attributes is not practicable 

at the landscape-level. As such, selection of attributes for inclusion in these models is 

based on the ability to accurately represent, in digital format, the critical niche 

dimensions of mosquitoes.

The influence of environmental factors on landscape- or ecosystem-level patterns, 

processes, and functions is scale-dependent (Turner, 1989). Levin (1992) suggests that 

difficulties associated with the unification of population biology and ecosystems science 

can be attributed to problems of pattern and scale. Variation in the spatial heterogeneity 

among the environmental attributes used in this HSI is inherent, as is the variation in 

scale dependence among factors from an organism’s point of view (Wiens, 1976). 

Therefore, the conception of a parsimonious set of measurable habitat attributes 

(variables) designed to collectively assess habitat suitability must incorporate issues of
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scale, i.e., the spatial scale for each attribute to which a species, or group of species, most 

strongly responds. These issues are integrated into these HSI models via preliminary 

statistical comparisons of mosquito capture data and each habitat variable at different 

spatial scales, thereby isolating the most suitable scale for each variable for explaining 

mosquito abundance.

Predictive habitat suitability for all areas within the landscape was determined by 

the collective influence that habitat attributes (independent variables) had on mosquito 

abundance (dependent variable) at associated trap sites as determined by multiple 

regression analyses. More specifically, each habitat attribute constitutes a spatially 

continuous description of landscape pattern, such as digital satellite imagery 

enhancement (e.g., vegetation indices), land-use, hydrology, and soil properties 

represented in raster format. Independent variables were selected to represent maximum 

landscape heterogeneity in subsequent analyses while still maintaining a realistic degree 

of model generality. In support of regression results, importance values of various 

wetland types (e.g., estuarine, palustrine, riverine, lacustrine) to predicted mosquito 

abundance were calculated using a spatial overlay operation of National Wetland 

Inventory (USGS) maps and areas with high habitat suitability in HSIs using polar 

ordination analysis. Relational patterns associated with wetland-type importance were 

evaluated for dissimilarity using multivariate ordination analysis.

Forty-six of the 56 mosquito trapping sites sampled during 2004 had > 5 nights of 

mosquito trapping (trap nights = TN). Capture data were normalized to account for 

variation in trapping effort among sites by dividing total captures of each species 

separately, and of all species combined, collected at each site by the number of TNs.
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Capture data for individual species were grouped with other species based on similarities 

of habitat requirements, life-cycle types (after Crans, 2004), and vector potential (Turell 

et al., 2001 and 2005, among others). This was done to minimize complexity and increase 

usefulness of mosquito-habitat models. Because this HSI is spatially explicit, and much 

of the habitat attribute data is temporally static, model validation using capture data for 

alternate years when mosquitoes were collected (2003 and 2005) would be problematic 

and would also have spatial redundancies because many of the trapping sites sampled in 

2004 were also used in 2003 and 2005. In addition, the number of trapping sites in 2003 

with sufficient TNs is smaller than 2004, and when analyses were performed a complete 

set of 2005 capture data was not yet available. Cross-year comparisons (2003-2004) 

consisted of pair-wise correlation testing.

These models were derived from spatially explicit empirical data, thus making 

them useful for locating potential mosquito habitat within real landscapes. The use of 

data collected by remote-sensing techniques enables the integration and analysis, within 

the framework of a GIS, of large and diverse data sets with extents not feasible by field 

collection alone. Because these HSI models are applied (i.e., not merely theoretical), 

much attention was devoted to keeping them streamlined, user-friendly, and not cost- 

prohibitive, while retaining its ability to process empirical data in real landscapes.

Chapter III Overview

In this chapter, the semi-static HSI classification described for Chapter II was temporally 

augmented by a weekly predicted abundance model for the omithophilic (bird-biting) 

mosquito, Cs. melanura. This was done in a GIS through the integration of a temporally
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static topographic soil moisture index and spatially explicit “recent” weather data. Cs. 

melanura was selected for several reasons. It is not a biter of humans, and thus is not 

generally the issue in residential complaints, but it was, by far, the most frequently 

captured species in Chesapeake in 2004 (62.0% of all captures), and it is the primary 

enzootic vector for EEE (Nasci and Edman, 1984; Crans et al., 1994), making it the 

primary focus of the CMCC’s adulticide efforts.

The environmental conditions that bring mosquitoes, the pathogens they transmit, 

and potential hosts together are often measurable (Shaman and Day, 2005). For example, 

spatial and temporal fluctuations in mosquito abundance are both directly and indirectly 

influenced by weather patterns (Rogers, 1967; Shaman et al, 2002; Reiter, 2001; Tong 

and Hu, 2001; USDA 2004, and others). Naturally occurring outbreaks of EEE are 

usually associated with periods of high temperatures and rainfall, creating conditions 

conducive to the rapid expansion of Cs. melanura and other mosquito species (USDA,

2004). Rainfall increases the diversity and abundance of habitats available to breeding 

mosquitoes and the resultant near-surface humidity increases both flight activity and 

host-seeking behavior (Shaman and Day, 2005). These associations make the geographic 

locations of breeding and host-seeking activities predictable, and therefore, potentially 

reveal the most judicious stages at which to interrupt viral epidemiologic cycles of 

mosquito-bome diseases.

Topography is a major influence on the flow direction, accumulation, and 

distribution of water within natural watersheds as well as on landscape-level soil moisture 

gradients (Yeh et al., 1998; Bemhardsen, 2002; Garbrecht and Martz, 2000). Researchers 

have long used topographic indices to predict relative soil moisture (e.g., Beven and
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Kirkby, 1979, Urban et al., 2000). Others have suggested improved soil moisture indices 

that integrate topographic data and empirical soil data (Iverson et al., 1997, O’Loughlin, 

1981 and 1986), especially in landscapes with little topography (Dimbock et al., 2002). 

Chesapeake has low relief similar to the landscape studied by Dimbock et al. (2002). 

Topographic indices permit the identification of saturated areas, with decent accuracy, 

especially where upslope accumulation exceeds local soil transmissivity (O’Loughlin, 

1986), and thus reveals potential mosquito habitat.

I used Beven’s (1997) topographic moisture index (TMI) to quantitatively identify 

areas where surface wetness was most likely to occur after precipitation events. The TMI 

was based on a 2-ft vertical (0.61 m) interval digital elevation model (DEM) of the city of 

Chesapeake (detailed in Chapter III Methods). This DEM was used to generate a 

hydrologic model (ArcGIS 9.1, Spatial Analyst extension) to quantify flow accumulation 

on a pixel-by-pixel basis. The National Hydrology Dataset (NHD: USGS) was used to 

determine the extent of the two watersheds Chesapeake lies within : Hampton Roads and 

the Albemarle Sound watersheds. Because the extent of these watersheds exceeds the 

boundary of Chesapeake, I clipped the area from the USGS’s one-arc second DEM to 

quantify regional flow accumulation at the city’s boundary. This regional accumulation 

raster was incorporated into the 2-ft vertical resolution hydrologic model of the city, thus 

accounting for all potential hydrologic contributions.

I used spatially explicit meteorological data (NEXRAD: AEWt-generation 

[Doppler] RADar) (National Oceanic and Atmospheric Administration [NOAA],

National Weather Service [NWS]) to create weekly “accumulated precipitation” (PA) 

grids. NEXRAD (NOAA, NWS) is georeferenced radar data (Weather Service Doppler
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Radar [WSR:88D]) that includes the 3-hr PA data used herein (Beringer and Ball, 2004). 

These data were preprocessed and overlaid into total weekly PA grids in ArcGrid format 

(detailed in Chapter III methods). Weekly PA grids were overlaid onto weekly 

temperature grids and the TMI grid (additively) to map areas with high probabilities of 

surface and subsurface wetness. A priori regression models were used to determine the 

weighted (multiplier) values for temperature, PA, and TMI grids before the overlay 

operation. Thus, knowing the spatial distribution of surface wetness, I was able to map 

which areas of suitable habitat, from Chapter II, are most likely to experience outbreaks 

of Cs. melanura.

From a prevention and control standpoint, it is critical that mosquito control 

agencies such as the CMCC have the ability to rapidly track the spatial and temporal 

distributions of potential arboviral vectors such as Cs. melanura. My weekly abundance 

models (maps) provide this ability. Weekly maps can be prepared quickly using a series 

of sub-models I created in ArcGIS ModelBuilder. These sub-models perform arduous 

data preprocessing in a streamlined and user-friendly manner. Most of the data needed 

are either free (e.g., NEXRAD, NHD, DEM, weather summaries) or generated by the 

agency itself (e.g., capture data). In addition, weekly maps are not hindered by biases 

associated with human population densities and residential complaints. They do, 

however, give mosquito control agencies the ability to respond quickly to distributional 

changes of Cs. melanura, thus lowering the transmission potential in nearby suburban 

and urban areas. Such knowledge will enable the agencies to apply insecticides in a more 

effective, timely, and economical manner, thereby reducing the health risks of EEE and 

similar diseases while reducing costs of chemicals and spraying efforts.
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Chapter IV Overview

The purpose of this chapter is to provide the reader and potential users of the models 

presented in Chapters II and III with the necessary protocols for modeling the spatial and 

temporal distributions and abundances of mosquitoes, with emphasis on Cs. melanura, in 

real-world landscapes. Because of similarities in climate and mosquito assemblages, this 

sequence of models should be effective throughout coastal-plain and lower-piedmont 

areas in the MAR. However, the portability potential of these models in upper piedmont 

and montane regions of the MAR would need to be tested because of the ecological 

effects of elevation. Higher elevations replicate higher latitudes and generally have 

different assemblages of organisms. This is, in part, due to differences in climate (e.g., 

cooler temperatures, shorter active seasons) as well as differences in the mechanics of 

surface water distribution (e.g., soil type, slope, runoff and drainage potential). For 

example, Cs. melanura is present in lowland swamps throughout the MAR, but its range 

does not extend into the Appalachian range (Crans, www-rci.rutgers.edu).

The intended audience for this final chapter is primarily GIS analysts employed 

by mosquito-control and public health agencies. Environmental managers and decision 

makers of these agencies with limited experience in spatial modeling could also use these 

protocols to make more educated decisions regarding temporal and spatial mosquito 

monitoring and control practices.

Chapters II and III are designed for publication as separate entities. This chapter 

cogently summarizes the technical procedures of both chapters, with enough detail and 

background for the recreation of a seamless series of models for predicting mosquito 

outbreaks. Because most mosquito-control and public health agencies lack the ability to
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conduct exhaustive in situ monitoring and environmental data collection, they would 

benefit from the application of models capable of predicting the temporal and spatial 

distributions of mosquitoes at a landscape scale (Shaman et al., 2002). Chapters II and III 

produce such a series of models.

In addition to providing protocols for generating models that predict habitat 

suitability and forecast mosquito outbreaks, this chapter presents suggestions for 

improving the quality of collected mosquito monitoring data. The sampling design and 

data collection techniques for mosquito captures used in Chapters II and III were 

developed by the CMCC, and thus not specifically tailored for integration into spatial 

models. Consequently, this fourth chapter contains a discussion, including 

recommendations, of modifications in sampling design and data collection that could be 

used to improve the accuracy and precision of habitat suitability and predicted abundance 

models, including issues with the selection of representative habitats to be sampled, 

number and distribution of trapping sites, and use of multiple trapping techniques for 

increasing the diversity of mosquito species collected.

This chapter also discusses the prognostic value of several augmenting datasets 

that could be easily processed into spatial format, including: larval monitoring and 

control data, bird surveillance (e.g., dead birds, sentinel bird flocks), and human 

demographics. Except for larval monitoring and control, these datasets would be more 

directly associated with reducing the risks of disease transmission than with efforts to 

control nuisance mosquito species. Pre- and post-larvicide monitoring data from both 

treatment and control sites could be used not only to quantify the effects of control 

efforts, but also to increase the predictive power of my models.
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Dead bird data could be integrated into disease surveillance programs to provide 

an early warning system of viral activity in both mosquitoes and birds. This would be 

especially critical when dead bird reports spatially coincide with outbreaks of known 

vector species such as Cs. melanura.

Sentinel birds have long been used to monitor arbovirus activity (Moore et al.,

2003). Similar to dead bird reports, sentinel bird data can also be used as an early 

warning system of viral activity and to quantify transmission rates (Komar, 2001). 

Because the geographic location of sentinel flocks is usually known, data are especially 

suited for spatial modeling.

Children and the elderly are at a higher risk for debilitating complications 

resulting from viral encephalitis (Whitley and Kimberlin, 1999; Peterson and Marfin,

2002). Because of these elevated risks, it is critical that locations where these two 

demographic groups congregate (e.g., nursing homes, retirement communities, schools, 

playgrounds) should be considered when monitoring arboviral activity. These locations 

could easily be incorporated into a GIS and used in an overlay analysis with predicted 

abundance maps

In summary, the ability to assess habitat suitability and predict outbreaks of 

mosquitoes using accurate landscape-level data is vital in the development of effective, 

efficient, and environmentally sound integrated pest management programs. This chapter 

provides a baseline protocol for achieving these objectives. Where appropriate, I have 

attempted to supplement my methods with short discussions regarding potential 

enhancements to experimental design, data collection technique, and the incorporation of
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ancillary datasets that could be used to increase the predictive power these or similar 

models.

Conclusions

This sequence of models should be useful to mosquito-control agencies because it 

consists of a series of robust components designed to use real-world data. Chapter II 

involves the construction of a scale-appropriate HSI that establishes baseline models for 

mapping mosquito habitat based on species groups. The models in Chapter III integrated 

recent rainfall and temperature data with the results of Chapter II for locating, in near real 

time, which areas are the most likely to experience mosquito outbreaks. Lastly, Chapter 

IV provides the reader and potential users the necessary protocols for reconstructing the 

models in Chapters II and III in a real-world coastal landscapes in the MAR, with 

emphasis on Cs. melanura, the primary reservoir vector of EEE. These models should 

subsequently lead to the development of environmentally sensitive strategies that will not 

only lower chemical and manpower costs by increasing the efficiency of control efforts, 

but also reduce transmission risks of mosquito-bome diseases such as EEE and West Nile 

virus (WNV).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



17

CHAPTER II 

SPATIAL PREDICTION OF MOSQUITO HABITAT ON THE 

SOUTHERN COASTAL PLAIN OF VIRGINIA USING REMOTE- 

SENSING TECHNIQUES AND A GIS 

Introduction

In the last 30 years geographic information system (GIS) technology has grown from 

relative obscurity to a worldwide industry that is expanding at a rate of more than 20 

percent per year (Bemhardsen, 2002). Before the relatively widespread availability of 

GIS, global positioning systems (GPS), and remotely sensed techniques and data, the 

modeling of spatial and temporal heterogeneity of landscapes was often difficult, if not 

impossible. This difficulty was primarily associated with a general inability to manage, 

store, and analyze the huge volumes of data needed to model complex real-world patterns 

and processes (Johnson, 1993). Now, applications for GIS are as diverse as the broad 

range of data that can be applied to this technology; this is reflected in recent literature. A 

burgeoning source of such information, GIS, GPS, and digital satellite remote sensing 

provide promising data and analytical tools for applied and multi-disciplined study.

The use of digital satellite data in GIS is becoming a valuable approach in the 

study of vector ecology and disease transmission (Clarke et al., 1996; Kitron, 1998). 

Surveillance, monitoring, and subsequent health policies associated with the study of 

vector-borne emerging infectious diseases (EID), such as hantavirus (Glass et al., 2000), 

Lyme disease (Dister et al., 1997), Sin Nombre virus (Boone et al., 2000), and malaria
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(Srivastava et al., 2001), are becoming more streamlined and functional through the 

integration of spatial, ecological, and epidemiological data (Clarke et al., 1996). A 

common thread in many such studies is an attempt to lower disease transmission rates by 

interrupting the epidemiological cycle.

Two arthropod-borne viruses (a.k.a. arboviruses) that are currently of particular 

concern in the eastern United States are West Nile virus ([WNV] Wonham et al., 2004) 

and eastern equine encephalitis ([EEE] Hassan et al., 2003). Mosquitoes, the primary 

vectors for both viruses, are broadly cast into two non-mutually exclusive groups: 

enzootic (reservoir) and epizootic (bridge) vectors. Both vimses remain enzootic in birds 

via bird-feeding (omithophilic) mosquitoes, and become sporadically epizootic in 

wildlife, livestock, and human hosts via mosquitoes that feed on a wide variety of taxa 

(McLean et al., 2001; Hassan et al., 2003; Tate et al., 2005). These epizootic hosts, 

especially mammals, are generally considered “dead-end” hosts, as they rarely develop 

viremias high enough for transmission back to mosquitoes (Hassan et al., 2003).

WNV, the most recent major North American EID (Beasley et al., 2003), is a 

form of Japanese encephalitis (swelling of the brain) belonging to the taxonomic family 

Flaviviridae: Flavivirus. WNV was first isolated in 1937, from a woman in the West Nile 

province of Uganda. Human and equine outbreaks were restricted to the eastern 

hemisphere until 1999, when the first North American human case was reported in New 

York City (Devine, 2003). This began the largest documented arboviral epidemic 

recorded for the western hemisphere, and the largest worldwide for WNV (Makar and 

Stowell, 2004). Since the 1999 outbreak, WNV has spanned North America and moved 

south to Central America, resulting in ~ 17,000 human cases including ~ 670 deaths
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(Kilpatrick et al., 2005). Primary reservoir vectors of WNV are omithophilic mosquitoes 

of the genus Culex (Turell et al., 2005), although the virus has been recovered from 43 

mosquito species from 11 genera (Dauphin et al., 2004) and eight genera of ticks (Higgs 

et al., 2004). Since the New York case, WNV has been detected in dead birds of 138 

North American bird species, especially those of the family Corvidae ([crows and jays] 

Dauphin et al., 2004). Potential bridge vectors of WNV include opportunistic feeders 

such as Aedes albopictus and Culex salinarius (Turell et al., 2005). Vector maintenance 

and transmission efficiency of WNV of North American mosquito species is far from 

resolved because of the relatively recent introduction of the virus to a new suite of 

potential vector and host species (Turell et al., 2001 and 2005).

EEE and two other closely equine encephalitides, western (WEE) and Venezuelan 

(VEE) equine encephalitis, belong to the genus Alphavirus (Togaviridae). EEE was first 

isolated in North America during concurrent human outbreaks in Delaware, New Jersey 

and Virginia in 1933, and currently persists in the eastern North America, the Caribbean, 

and South and Central America (Weaver et al., 1999). EEE has a long North American 

history, and thus its epidemiology has been well studied.

In North America, EEE tends to be more prevalent in summer and fall, and foci 

are generally associated with freshwater swamps, which are the preferred habitat of the 

primary reservoir vector, Culiseta melanura (Weaver et al., 1999). Predominant reservoir 

hosts are gregarious passerine birds species that roost abundantly in swamp habitats 

(Komar et al., 1999). As with WNV, bird species of the family Corvidae are particularly 

susceptible to EEE (Hassan et al., 2003), making them poor enzootic hosts but good 

indicators viral presence. Once enzootic transmission is established, the virus becomes
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available to epizootic bridge vectors such as Coquillettidia perturbans and Aedes vexans, 

which readily feed on mammals as well as birds (Hassan et al., 2003). As the name 

suggests, epizootics are the most commonly documented in horses and infections are 

usually fatal. Since 1964, there have been 200 confirmed human cases of EEE (Calisher, 

2004) with a 30% mortality rate (CDC, 1992).

Persistence and transmission dynamics of arboviruses are functions of many 

factors, including vector competence, susceptibility and proximity and mobility of 

enzootic vertebrate hosts (Hassan et al., 2003). Additionally, transmission generally 

coincides spatially with environmental conditions conducive to vector breeding 

conditions found within habitats frequented by host species (Kitron, 1998; Kaya et al., 

2004). Like many mosquito-borne viruses, there is no human vaccine available for EEE 

(Calisher, 2004) or WNV (Li, 2004) and the most effective preventative measure is 

mosquito control, i.e., regulation of mosquito populations.

Many life-history aspects that influence the distributions of organismal 

populations (e.g., competition, physiological and behavioral niche tolerances) are 

controlled by landscape-level gradients ([e.g., moisture] Kaya, et al., 2004; Bellows et al.,

2001). Although direct observation of many disease vectors is not possible at large spatial 

scales, vector presence or the environmental conditions in which they flourish can be 

inferred via more visible indicators such as habitat type and attributes (Shuchman et al.,

2002). Digital surrogates of habitat attributes are useful because direct measurement of 

habitat attributes is not practicable at the landscape-level (Goetz et al., 2000). Thus, 

selection of attributes for inclusion in this model is based, in part, on the ability to 

accurately represent, in digital format, critical niche dimensions of mosquitoes.
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Recent advances in earth-observing sensors have made possible the generation of 

a wide range of spatially explicit environmental and biophysical features relevant to the 

ecology of disease vectors (Goetz et al., 2000). Common approaches are to use these data 

to map disease transmission risk or suitable vector habitat using landscape classification 

based on land cover/use (Overgaard et al., 2003; Pope et al., 2005; Kaya et al., 2004) and 

environmental characteristics, such as dominant vegetation type (Pope et al., 1994; 

Guerra et al., 2002), wetland type (Hayes et al., 1985; Lathrop et al., 2000), and soil 

properties (Beck et al., 1994; Glass et al., 1995; Patz, 1998).

Many studies have linked the presence of disease vectors to spatial and temporal 

vegetation characteristics via spectrally derived vegetation indices (VI) that represent 

various aspects of vegetative cover (e.g., vegetative moisture, biomass, photosynthetic 

activity) (Goetz et al., 2000). VI algorithms use mathematical operations between digital 

reflectance values of two different spectral bands (Campbell, 2002). They are generally 

designed to exploit the high absorption of visible red and high reflectance of near- 

infrared bands by photosynthetically active pigments and leaf mesophyll tissues (Hay et 

al., 1998).

First described by Rouse et al. (1974), the normalized difference vegetation index 

(NDVI) is one of the most widely used Vis for mapping primary production and leaf area 

index and, to a lesser degree, soil moisture gradients (Todd and Hoffer, 1998). NDVI has 

been used to map suitable vector habitat (Baylis et al., 1998; Estrada-Pena, 1999), to 

forecast disease outbreaks (Linthicum et al., 1999; Nihel et al., 2002), and to detect soil 

moisture gradients (Todd and Hoffer, 1998).
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Another technique, Tasseled-Cap transformation (TC), computes biophysical 

scene characteristics associated with soils and vegetative vigor from multispectral 

satellite imagery (e.g., Landsat Enhanced Thematic Mapper [ETM+]) by condensing 

reflectance information for several weighted spectral bands onto a single transformation 

plane containing soil brightness, vegetation greenness, and wetness (soil and vegetation 

moisture) information (Crist and Cicone, 1984). TC concentrates data variability in three 

orthogonal axes (components) that are known to correlate with suitable arbovirus vector 

habitat (Beck et al., 2000). Dister et al. (1997) used TC to classify tick abundance and 

then generate transmission risk maps for Lyme disease. Barrera et al. (2001) used NDVI 

and TC to characterize VEE endemic foci in lowland tropical forests in western 

Venezuela.

The impact of factors influencing landscape- or ecosystem-level patterns, 

processes, and functions is scale-dependent (Turner, 1989). Further, Levin (1992) 

suggests that difficulties associated with the unification of population biology and 

ecosystem science can be attributed to problems of pattern and scale. Variation in the 

spatial heterogeneity among the environmental attributes is inherent, as is the variation in 

scale dependence among factors at the organismal level (Wiens, 1976). Therefore, the 

conception of a parsimonious set of measurable habitat attributes designed to collectively 

assess habitat suitability must incorporate issues of scale, i.e., the spatial scale of each 

attribute to which a species, or group of species, most strongly responds.

The primary objective of my study was to construct a set of predictive, spatially 

explicit, and scale-dependent habitat suitability indices (HSI) for mosquito species based 

on the “Hutchinsonian-niche concept” (Hutchinson, 1957). Particular attention is given to
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the habitat requirements associated with soil properties for known vector species of WNV 

and EEE. These models are based largely on remotely sensed data (e.g., satellite imagery, 

land use/cover, soil surveys) formatted for use in a GIS and analyzed using inferential 

statistical models (i.e., multiple linear regression). Model results are predictive, and used 

to identify areas, or “patches,” within the landscape in which mosquito species are most 

likely to occur. This approach requires the development of a baseline habitat 

classification model capable of identifying and ranking suitable habitat-based 

environmental characteristics.

Methods

Study Area

This study was conducted with the cooperation of the Chesapeake Mosquito Control 

Commission (CMCC), Chesapeake, Virginia. The spatial extent is the entire city of 

Chesapeake, Virginia (Figure 1). The city, located on Virginia’s Coastal Plain 

physiographic region, has a total area of 91,427 ha, with a growing population of 214,725 

(2004), up 20.8% from 1990. Chesapeake was selected for study because: 1) the structure 

of the landscape represents a diverse mosaic of land use that is representative of the 

region, 2) the CMCC is a well-established and nationally respected mosquito-control 

agency that strives to use current mosquito-control technology, and 3) ~30 mosquito 

species occurring within the city, including the major reservoir and bridge vectors of 

EEE, are listed as potential vectors of WNV (Appendix A) by the Centers for Disease 

Control (CDC) of the United States Department of Health and Human Services.
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Suitable habitat for a broad range of mosquito species, including tidal and 

freshwater creeks and the Great Dismal Swamp National Wildlife Refuge (GDSNWR), 

with its canals and forested wetlands, lies embedded in the landscape mosaic. In addition, 

an extensive ditch network to allow for agriculture, and more recently, suburban 

development, drains much of southern Chesapeake. Thus, the close proximity of good 

mosquito habitat threaded among high densities of humans creates a landscape conducive 

to the transmission of WNV, EEE and other mosquito-borne diseases. This combination 

of extensive wildland-urban interface is deemed highly representative of current 

urbanization and emerging infectious arboviral diseases.

Dependent Variables

Mosquitoes were captured using CCVbaited CDC light traps stationed at 56 permanent 

trapping sites throughout Chesapeake (Figure 1) from early April through early 

November, 2004. Only captures of females were used in analyses.

Only 46 of the 56 mosquito trapping sites were used for my analysis because the 

remaining 10 sites sampled during 2004 had < 5 sampling nights (trap nights = TN). 

Capture data were normalized to account for variation in trapping effort among the 46 

sites by dividing total captures of each species collected at each site by the number of 

TNs for that site.

Because this HSI is spatially explicit, and much of the habitat attribute data are 

temporally static, model validation using capture data for alternate years when 

mosquitoes were collected (2003 and 2005) would be problematic and have spatial
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Fall T ine
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Figure 1. Location of the City of Chesapeake within the state of Virginia. Major 
physiographic provinces are indicated. Inset shows the location of 2004 trap sites (blue 
circles) and the Great Dismal Swamp National Wildlife Refuge (outlined in red).

redundancies because many of the trapping sites sampled in 2004 were also used in 2003 

and 2005. In addition, the number of trapping sites in 2003 with sufficient TNs (N = 28)is 

smaller than 2004, and at the time analyses were run a complete set of 2005 capture data
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was not yet available. Cross-year comparisons (2003-2004) to evaluate temporal patterns 

consisted of pair-wise t-test and correlation analysis of capture data for trapping sites 

common to both years (Zar, 1996).

CDC listing as a potential WNV vector species requires no determination of 

infection, dissemination, or transmission rates, but only that a species be collected in a 

“West Nile positive” pool (CDC: http://www.cdc.gov/ncidod/dvbid/westnile/). Because 

of the large number of potential vectors occurring in Chesapeake (Appendix A), 

generating a HSI for each listed species would be both cumbersome and impractical. The 

most abundant species, Cs. melanura (70.3% of modeled species [2004]), was modeled 

separately (CSMN; Table 1). Culiseta melanura is the primary enzootic vector for EEE 

and for this reason, it is the main target species of the CMCC control and surveillance 

program. This bias targeting Cs. melanura, is required because of its large numbers 

relative to the other species. Its inclusion in any multi-species model would have diluted 

the effects of the other species. In an effort to reduce the number of remaining models, 

only abundant species and species having high vector competence for WNV or EEE (N -  

10) were considered. Vector competence is based on the susceptibility of mosquito 

species to disease dissemination from a host, and transmission back to a host (Sardelis et 

al, 2001). Capture data for these 10 species were combined into four separate groups: a 

single “competent-vector” group not including captures of Cs. melanura (ALSP), 

container-breeders [CONT], swamp species [SWMP], and ephemeral pool species 

[EPHM]; Table 1) based on similarities among habitat requirements, life-cycles (Crans, 

2004), and vector competencies (after Vaidyanathan et al., 1997; Cupp et al., 2003; VDH,
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2004; Turell et al., 2001, 2005). Although daily activity periods (i.e., diurnal, crepuscular, 

nocturnal), preferred host (e.g., avian, mammalian), and “maximum” known dispersal 

distance from site of emergence (Table 2) play critical roles in disease transmission, these 

factors were not considered in this classification. They will, however, be incorporated 

into the discussion of results.

Table 1. Total numbers of captured females in 2004. Total (Caps), percents of total 
females captured, life cycle types, and species group for each the 11 species are provided.

Species Life cyclet Total Caps ( 9 ) % Caps ( 9 ) Species Group5

Aedes albopictushj d' e 2c 2,824 1.161 CONT

Culex pipiens “ 3c 68 0.028 CONT

Culex restuans " . 3c 1,497 0.616 CONT

Ochlerotatus triseriatus b 2c 339 0.139 CONT

Coquillettidia perturbans d 5a 6,025 2.477 SWMP

Culex erraticus d 3a 858 0.353 SWMP

Culex salinarius b 3b 21,991 9.042 SWMP

Ochlerotatus canadensis b lc 32,288 13.276 SWMP

Aedes vexans b 2a 1,741 0.716 EPHM

Psorophora columbiae 2a 4,506 1.853 EPHM

Group total 72,137 29.661 ALSP

Culiseta melanura c 4a 171,071 70.339 CSMN

Total 243,208

a Potential enzootic vector of WNV.
* Potential epizootic vector for WNV.
0 Primary enzootic vector for EEE.
dPotential epizootic vector for EEE. 
e Primarily diurnal
1 From Crans, 2004. Summarized in Table 3.
§CONT = container, SWMP = swamp, EPHM = ephemeral, ALSP = all species except Cs. 
melanura, and CSMN = Cs. melanura
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Table 2. Summary of daily activity periods, preferred host(s), and known flight ranges of 
modeled mosquito species. Activity periods: Diumal = D, Crepuscular = C, and 
Nocturnal = N.

Species 1' Host Preference^ Flight Range1 D C N

Ae. albopictus Humans3 -30-100 m x 3,8 X8

Ae. vexans Generalist3 -16-40 km x 4 X2 x 2

Cq. perturbans Generalist8 -1.5-8 km X3 X3 x 2

Cx. erraticus Birds2 -0-0.4 km X2

Cx. pipiens Birds3’8 -0.4-0.8 km X3

Cx. restuans Birds3,8 -1.5-3 km X8 X8

Cx. salinarius Generalist5 -1-8 km X5

Cs. melanura Birds8 -0.8-1.5 km X 8 X 8

Oc. canadensis Mammals8 -0.4-8 km x 2’3 X 3 X 3

Oc. triseriatus Mammals6 -0.8-1.5 km X 8 X 2

Ps. columbiae Generalist7 -8-16 km X7 X 7 X7

^Not necessarily exclusive 
1 from Hopkins (2002)
'y
from Carpenter and LaCasse (1955) 

3from Horsfall (1955)
4from O'Malley (1990)
5from Slaff (1990)
6from Walker (1992)
7from Meisch (1994)
8from Turell (2005)

Crans’ (2004) classification of life-cycle types (LCT) is based largely on the 

timing, frequency, and habitats of reproductive events and larval development of 

mosquitoes. LCTs are named for representative species (e.g., LCT lc = Oc. canadensis 

type [Table 3]). The 11 mosquito species modeled herein (Table 3) represent all but three 

of the 11 mosquito LCTs associated with CDC-listed species from Chesapeake.
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Collectively, captures of mosquito species with these three unrepresented LCTs amount 

to only 0.0187% of females in 2004. By contrast, the least abundant vector species to be 

modeled, Cx. pipiens, is slightly more numerous (0.028%). Of the three unrepresented 

LCTs, Ochlerotatus stimulans type (la) was not included, but differs from Oc. 

canadensis type only in the number of emergences from a single generation of eggs, 

Ochlerotatus sollicitans type (2b) was not included, but differs from similar type in that it 

is highly salt-tolerant, and Orthopodomyia signifera type (4b) is similar to the other 

treehole-breeding species included herein (e.g., Oc. triseriatus, Ae. albopictus), but it 

requires more winter protection.

Independent Variables

Predictive habitat suitability for all areas within the landscape was determined by the 

collective influence of habitat attributes (independent variables) on mosquito abundance 

(dependent variable) at associated trap sites. More specifically, each habitat attribute 

constituted a spatially continuous description of landscape pattern, such as digital satellite 

imagery enhancement (e.g., vegetation indices), land use, hydrology, and soil properties 

represented in raster format (Table 4). Independent variables were selected to represent 

maximum landscape heterogeneity while still maintaining a realistic degree of model 

generality.
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Table 3. Life cycle types and primary larval habitat of mosquito species. Life cycle (LC) 
type, primary larval habitat (1' Habitat), duration of 1' habitat (temporary/permanent 
[T/P]), and microhabitat information was summarized from Crans (2004).___________

Species LCla-5a 1' Habitat T/P Microhabitat

Ae. albopictus 2c container T Natural (e.g., treeholes, plant axils), artificial 
(e.g., discarded tires)

Ae. vexans 2a ephemeral pool T Any fresh floodwater, especially river 
floodplains (open areas)

Cq. perturbans 5a swamp/bog P Larvae attach to roots in aquatic vegetation in 
freshwater swamps

Cx. erraticus 3a swamp/bog P Swamp and bog wetlands with abundant 
vegetation

Cx. pipiens 3c manmade -
Polluted (e.g., sewage treatment plants, 
landfills, containers)

Cx. restuans 3c manmade -
Polluted (e.g., sewage treatment plants, 
landfills, containers)

Cx. salinarius 3b brackish marsh Brackish habitat between salt marshes and
upland drainage

Cs. melanura 4a swamp/bog P Freshwater swamp habitats

Oc. canadensis lc swamp/bog P
Many, especially in litter along water margins 
(floodplains)

Oc. triseriatus 2c container T Natural (e.g., treeholes, plant axils), artificial 
(e.g., tires)

Ps. columbiae 2a ephemeral pool T Any fresh floodwater, especially river 
floodplains (open areas)

lc  Univoltine Aedine Life Cycle Types: Oc. canadensis type (spring hatch represents the bulk of a year’s 
population, but often make successive appearances).

2a Multivoltine Aedine Life Cycle Types: Ae. vexans type (direct sunlight increases pool temperature for 
fast larval development before pools dry out).

2c Multivoltine Aedine Life Cycle Types: Oc. triseriatus type (floodwater species that develop in container 
habitats, Oc. triseriatus is common in suburban areas).

3a Culex!Anopheles Life Cycle Types: An. quadrimaculatus type (sparse in spring, most abundant in mid
summer to early fall).

3b Culex!Anopheles Life Cycle Types: Cx. salinarius type (larvae are only somewhat salt-tolerant).

3c Culex!Anopheles Life Cycle Types: Cx. pipiens type (tolerate pollution: high organic content, putrefied 
water).

4a Unique Life Cycle Types: Cs. melanura type.

5a Monotypic Life Cycle Types: Cq. perturbans Type: (larvae extract oxygen from the roots o f aquatic 
plants).
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Table 4. Summary characteristics of thematic layers representing independent variables. 
“Source” = the creator of the original data and the date it was created by the source, 
respectively.______________________________________________________________

Layer Data Type Source Description Code
Neighborhood
Aggregation*

Capture 
data5’55

Vector (point; 
March-November, 

2004)
CMCC*

Adult ($ )  mosquito 
numbers at 46 

permanent trap sites

n/a n/a

Tasseled-
Cap§,t

Raster: Landsat 
ETM+

(29 July 2002)
USGS

TCI (Greenness) 
TC2 (Brightness) 
TC3 (Wetness)

TCI-3 Focal Mean

Land
cover/use5’*

Raster: National 
Land Cover Data 

(NLCD; 2002)
USGS Level I - Focal Majority

Soil data
derivatives5

,§§
Raster: Soil Surveys 

(SSURGO; 2004)
NRCS Refer to Table 7 Table 7 Focal Mean

Hydrologic
§.§§

Vector —► Raster 
National Hydrology 
Dataset (ESRI Grid; 

July 2004)

Vector —»Raster 
Chesapeake Drainage 
Ditches (ESRI Grid: 

2000)

USGS

CMCC

Hydrologic sum, 
measure of spatial 

density o f permanent 
water sources

HYDSM

Overlay
and

Neighborhood
Sum

5 Using ArcGIS v9.0; Environmental Systems Research Institute (ESRI), Inc., Redlands, CA.
55 Using ArcView v3.3; Environmental Systems Research Institute (ESRI), Inc., Redlands, CA. 
1 Using Erdas Imagine v8.7; Erdas, Inc. Atlanta, Georgia.
* Neighborhood attributes see Table 5.
*Chesapeake Mosquito Control Commission
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Among the issues of scale associated with thematic representation is the inherent 

problem that increasing spatial scale results in a net loss of variation (Levin, 1992). I 

have accounted for a portion of this lost variation by creating a series of grids for each 

habitat attribute raster by operationally aggregating pixel data to increasingly larger 

scales (odd numbers, l x l  through 21 x 21, 30-m/side pixels [Table 5, Figure 2]) using 

ArcGIS-9.1, Spatial Analyst and Model Builder extensions. Model Builder was used to 

generate a multi-stepped model capable of: 1) creating a set of new raster layers for each 

independent variable, one for each of the 11 scales, and 2) extracting values from these 

rasters that correspond to locations for each of the 46 trapping sites into a new shapefile.

Table 5. Spatial scales used as independent variables in habitat suitability indices. 
Length, side, and area are neighborhood (moving window) attributes.

Neighborhood (# o f pixels) Window Length / side (m) Perimeter (m) Area (ha)

1 xl 30 120 0.09

9 3x3 90 360 0.81

25 5x5 150 600 2.25

49 7x7 210 840 4.41

81 9x9 270 1,080 7.29

121 11 x 11 330 1,320 10.89

169 13 x 13 390 1,560 15.21

225 15 x 15 450 1,800 20.25

289 17 x 17 510 2,040 26.01

361 19 x 19 570 2,280 32.49

441 21 x21 630 2,520 39.69
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Figure 2. Tasseled-Cap (TC) greenness represented at four of the 11 spatially aggregated 
scales. Pixel values are derived from neighborhood statistics (i.e., means for TC) using a 
moving window. Pixel sizes at all scales remains 30 x 30m.

I used Pearson’s correlation analysis to determine, for each habitat attribute, the 

spatial scale most strongly correlated with captures for each species group (Zar, 1996; 

Appendix B). Thus, the spatial scale of the habitat attributes in any given HSI will not
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necessarily be consistent. A similar multiple-scale approach was used by Johnson et al. 

(2002) to predict the occurrence of several frog species within fragmented landscapes in 

the north-central United States. They achieved higher predictability with a multi-scale 

habitat occupancy model than those considering only a single spatial scale. In another 

study, Store and Jokimaki (2003), using multi-scale GIS models to predict habitat 

suitability for two bird species, were able to use habitat variables at different scales to 

create a multi-species HSI.

Data for most layers (e.g., spectral reflectance and soil property derivatives) were 

aggregated using a moving-window function that replaced raw attribute values with the 

focal neighborhood mean of all pixels within their respective spatial scales. A similar 

moving-window function to generate focal neighborhood sums was used to represent 

spatial density in binary data layers (e.g., water = 1, not water = 0). Neighborhood 

majorities were used to spatially aggregate categorical data (e.g., land-use). Because of 

variation in order of magnitude among the raw values of independent variables, all data 

layers were rescaled (standardized) to values between 0 and 1. It was expected that 

different aggregation scales among independent variables for each HSI would likely be 

inconsistent. However, in order to treat them as the same variable at differing spatial 

scales, I needed to determine that the 11 spatial scales were statistically autocorrelated 

(interdependent), and that the interdependencies exceeded the maximum aggregation 

resolution (Table 5). To justify potential multiple-scale models, I performed a 

preliminary analysis on continuous variables to determine the range, or on the ground 

distance, of spatial autocorrelation associated with each independent variable.
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Tasseled-Cap Transformation (TC)

Landsat-7 ETM+ was used to compute TC for the City of Chesapeake because this 

imagery is readily available, recognized by most applicable software packages (e.g.,

ESRI products, Erdas IMAGINE), and relatively inexpensive. The ETM+ image, July 29, 

2002 (acquired from the USGS’s EROS Data Center), was cloud-free and in 30m x 30m- 

pixel size. This date represents the peak of the CMCC’s mosquito trapping season.

Tasseled-Cap transformation was used, in lieu of NDVI, because its algorithms 

extract and condense spectral information pertaining to soil and vegetation characteristics 

(e.g., vegetative vigor = measure of photosynthetic [chlorophyll] activity) from all six 

Landsat bands, and not just red and near-infrared (NIR) bands as with NDVI, to which it 

is often compared. TC enhances spectral information for ETM+ by weighted 

transformation of brightness values (Crist and Cicone, 1984). Transformed values are 

reprojected onto three orthogonal axes (TC1-TC3). Output values for the TCI (brightness 

[soil characteristics]) are the sum of weighted raw reflectances for bands 1-5 and 7. TC2 

output values (greenness [vegetation characteristics]) are the weighted reflectance for 

band 4 (NIR) minus the weighted reflectances for bands 1-3, 5 and 7. Output values for 

the TC3 (wetness [soil and vegetation characteristics]) are the sum of weighted 

reflectances for bands 1-4 and minus bands 5 and 7. TC1-TC3 were used as independent 

(habitat) variables (Table 4). Axes were calculated using the following equation:
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Equation 1. TC axis equations (ETM+) band weights (taken from Huang et al., 2002):

Axis Blue (B l) Green (B2) Red (B3) NIR (B4) MIR’ (B5) FIR”  (B7)

TCI 0.3561205 0.39722874 0.39040367 0.69658643 0.22862755 0.15959082

TC2 = 0.3343884 -0.35444216 -0.45557981 0.69660177 -0.02421353 -0.26298637

TC3 = 0.2626188 0.21406704 0.09260517 0.06560172 -0.76286850 -0.53884970

*Middle-infrared
*Far-infrared

Land-cover/land Use Data (LCLU)

Virginia LCLU data (National Land Cover Data [NLCD]: 2002) acquired from the USGS 

were subsetted to the extent of the City of Chesapeake with an additional 1.5-km buffer. 

The USGS Level II (e.g., deciduouslevel 1 forestlevel n) classification scheme (after 

Anderson et al., 1976 [Table 6]) was derived from Landsat TM digital satellite data (30 x 

30m pixels) and validated by the USGS on a 5-state mid-Atlantic region using aerial 

photographs. Because of the large-scale validation by the USGS, I ran a preliminary 

accuracy assessment to determine the local usefulness of these data using a stratified 

random sampling design to select sample points (N = 1,016) throughout Chesapeake 

(Congalton and Green, 1999). Land cover/use of these sites was referenced using USGS 

digital orthophoto quarter-quads (DOQQ [1-m resolution]: USGS).

Soil Data

Soil survey data for the City of Chesapeake, Virginia (Soil Survey # va550, publication 

date: 10/05/2004) were exported in SSURGO format (Soil Survey Geographic Data) 

from the United States Department of Agriculture (USD A), Natural Resources 

Conservation Service’s (NRCS, 2005) Soil Data Mart. SSURGO data describe the
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characteristics and distribution of soil types within the landscape. These data are 

delivered in tabular (ASCII-delimited) and spatial (ArcView shapefile [polygons]: UTM 

Zone 18, Northern Hemisphere [NAD 83]) formats. SSURGO datasets for the City of 

Suffolk, Virginia (va800,10/07/2004) and City of Virginia Beach, Virginia (va810, 

10/07/2004) were also acquired, because several mosquito trap sites were located near 

boundaries of these cities (Figure 3). These additional datasets ensured that soil data 

were available for a minimum distance of 1.5 km for these border trap sites.

Table 6. Level-I reclassification scheme developed herein for the City of Chesapeake, 
Virginia. This scheme is based on the Level II land-cover/use classification scheme (after 
Anderson et al., 1976) used in USGS: NLCD (2002) datasets._______________________

Level I L I code Level II L II code

Water 1 Open Water 11

Developed 2 Low Intensity Residential 21

Developed 2 High Intensity Residential 22

Developed 2 Commercial / Industrial / Transportation 23

Developed 2 Transitional 33

Forested 4 Deciduous Forest 41

Forested 4 Evergreen Forest 42

Forested 4 Mixed (Evergreen and Deciduous) Forest 43

Herbaceous 8 Pasture / Hay 81

Herbaceous 8 Row Crops 82

Herbaceous 8 Urban / Recreational Grasses 85

Forested 4 Woody Wetland 91

Wetland 9 Emergent Herbaceous Wetland 92
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Figure 3. Spatial extents of SSURGO data for Chesapeake, Suffolk, and Virginia Beach. 
Circles represent trapping sites; those close to the city line are in yellow. Cheasapeake = 
blue, Suffolk (partial extent) = purple, Virginia Beach (partial extent) = green.

There are challenges associated with incorporating SSURGO spatial data into a GIS. 

Themes in thematic maps are based on map units; however, SSURGO map units are 

made up of one or more named soil types (components), each with a distinguishing suite 

of properties. As such, thematic representations of the soil properties of map units 

describing suitable mosquito habitat were created by pooling the properties (e.g., 

weighted averages) of each component as a function of the percent of map unit 

composition (Table 7). Pooling component properties resulted in a continuous single
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value/pixel raster surface for soil properties associated with mosquito breeding habitats 

(Laird, 1988).

Table 7. SSURGO soil properties used as independent variables in habitat suitability 
regression models. Code and derivative equation for each property is provided. CVX, 
refers to individual values for map unit components, CPX, refers to the percent of 
composition for individual components in respective map units, and Ny is the number of 
possible values of CVX,._______________________________________________________

Soil Property Value (SPV) Code Equation Applicable CVX/

Percent Hydric Composition HYDPC 0 = not hydric
(Soil meets requirements for hydric soil) 1 = hydric 

1 = well drained

Drain Potential 2 = moderately well drained

(Degree o f hydraulic conductivity and low DRAIN B 3 = somewhat poorly drained
water-holding capacity) 4 = poorly drained

5 = very poorly drained

Runoff Potential 
(Degree of potential water loss by 

overland flow)
RUNOF

1.00 = negligible 
0.75 = very low 
0.50 = low 
0.25 = medium

Water Table Depth 
(Minimum value for the range in depth to WTDAJ ^  Continuous (provided by NRCS) 

Values inverted on a 1-5 scale
the seasonally high water table April-June)

Available water storage (25 cm) 
(Maximum value for the range o f available AWS25 N/A Continuous (provided by NRCS)

water in plant root zones)

Equations:

A) SPV = (CVw x CPh) + (CV2; x CP2,)... (CVm x CPn;)

B) SPV = (CVlf x CP») + (CV2; x C P2/) . . .  (C V n/x C Pm)  / Ny

+ For more technical criteria of component attributes refer to NRCS (1995).
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Hydrologic

Two vector datasets, the National Hydrology Dataset ([NHD, 2002] USGS) and a 

digitized map of Chesapeake canals and ditches (CMCC [2000]), were overlaid, 

combined as a single polygon shapefile, and then converted to raster to create a binary 

grid representation (water = 1, not water = 0) of Chesapeake water bodies, including the 

GDSNWR. This binary grid was spatially aggregated using a focal neighborhood sum, 

resulting in multi-scale (Table 5) representations of water prevalence (Table 4).

Regression Models

Multiple (linear) regression models were used to quantify habitat suitability based 

on the hypothesis that mosquito abundance is a function of the variation in measurable 

environmental (habitat) attributes. These habitat attributes were represented by digital 

thematic layers in a GIS. Linear regression models are commonly used in studies seeking 

to describe relationships between organismal abundance and environmental factors; 

however, they are easily misused (Johnson, 2002). Ecological phenomena are often 

complex, and data sets often have inherent anomalies and background variation that can 

produce results that are analytically unreliable (Matthews et al., 1994; McCune, 1997; 

Maurer, 1999).

I used all possible regressions (APR) to quantitatively select the most 

parsimonious set (model) of independent variables (habitat attributes) to be used in 

multiple regression models for each species group. All regression analyses were made 

using Number Cruncher Statistical Software (NCSS) v2000. Correlation analysis between 

mosquito captures and each of the 11 aggregation scales (described above) for each
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independent variable enabled the selection of the best spatial scale for variables to be 

represented in subsequent regression models (Appendix B). These results were used to 

reduce the number of scales/variable used in all possible regressions to one, thereby 

determining the suite of independent variables, including the scale of representation, that 

was most important to each species group. Final independent variables and the scale of 

representation of each variable in the five group-specific multiple regression models were 

based on a combination of high R2 -values and low root mean2 errors in APR models. 

Multiple regression models were validated by rerunning each of the five group analyses 

in 15 trials after randomly removing the data associated with one trapping site/trial. Chi- 

square analysis was used to determine if /?2-values and root mean squared errors were 

statistically similar to initial models (Wrigley, 1985).

Habitat Suitability Maps

A habitat suitability map for each species group was produced in a GIS (using ArcGIS 

v9.1) using linear regression equations to perform an arithmetic overlay operation. 

Standardized raster-formatted data layers (X) for each independent variable (described 

above) were weighted using the associated partial regression coefficients (b), and 

overlaid using the generalized equation below (a = T-intercept).

Equation 2: f  = a + b\{X\) + A2(A%) + ... + bn(Xn)

Following the overlay operation, final maps were ranked for suitability (5 equal intervals 

[20% each]), i.e., for predicted mosquito abundance (Y).
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In order to get a sense of the local conditions associated with mapped areas of 

predicted high mosquito abundance, spatial data were extracted from National Wetland 

Inventory (NWI) maps (USFWS, 2006) and overlaid on ranked habitat suitability maps. 

Areas ranked most suitable (80-100%) on habitat maps were clipped and converted to 

shapefile format. These new shapefiles were used as a mask to extract, or cookie-cut, 

Level-I classification data (i.e., System-Level classes: estuarine, lacustrine, palustrine, 

riverine, and upland; after Cowardin et al., 1979) from NWI maps. A wetland class 

importance value (WTIyj  for each wetland class (WT,:) in each species group regression 

model (SMy) was calculated using the following equation:

Equation 3:

Bray-Curtis polar ordination (PCORD for Windows) was used to describe habitat 

affinity patterns of mosquito species groups for each NWI wetland type based on WTIs. 

Bray-Curtis ordination was selected because it has low sensitivity to noisy data present in 

most ecological data sets (Gauch and Whittaker, 1972) and because it calculates end 

point selection on the two most dissimilar species groups (Ludwig and Reynolds, 1988). I 

used Euclidean distance measure because it emphasizes major differences in species 

distributions among habitats, or in this case, wetland types (Ludwig and Reynolds, 1988). 

Pearson’s correlations (R) based on ordination results quantified relationships between 

each species group and the five wetland types (Zar, 1996).

Number of WT, pixels for SM;- in clipped scene

Number of WT, pixels for SM; in entire scene
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Results

Dependent Variables

Of the 46 permanent trapping stations where mosquito capture data were collected, 28 

were located in or near (<200m) palustrine wetlands, six near (<200m) estuarine wetlands 

and the remaining 22 within (<200m) upland habitats. Thirty-eight trapping stations were 

<400m from palustrine wetlands, well within the potential dispersal distances of Cs. 

melanura and the three SWMP species. This habitat is the primary breeding habitat of Cs. 

melanura, the CMCC’s target species. No traps were located in or near lacustrine or 

riverine wetlands. These locational assessments were made using System-Level NWI 

maps (USFWS, 2006).

In all, 275,726 female mosquitoes, representing the 29 CDC-listed WNV vector 

species (Appendix A), were captured in 2004. Of these, 243,208 88% [242.24

captures/TN]) are accounted for by captures of the 11 modeled species (Tables 1 and 3). 

Numbers of modeled species ranged from 171,071 individuals for Cs. melanura, ~ 70.3% 

of 2004 captures for these 11 species, to 68 for Cx. pipiens. Unless otherwise stated, 

future references of captured mosquitoes will include only the 11 representative species 

modeled in Tables 1 and 3.

There was no significant difference in captures by species between 2003 and 2004 

(P — 0.094, t — 1.850, d f— 10 [Table 8; Figure 4]). Additionally, capture numbers of each 

species were highly correlated between 2003 and 2004 (R -  0.931). These results indicate 

temporal similarity of capture patterns at trap sites between the two years, and indirectly 

justify the analysis of 2004 capture data only.
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Table 8. Results of a preliminary two-tailed /-Test comparing the number of captured 
females for 2003 and 2004. Values were normalized by trapping nights. Descriptive 
statistics and Pearson’s correlation coefficient (R) are provided.__________________

Species 2003/TN 2004/TN

Cx. pipiens 0.16 0.07

Oc. triseriatus 0.59 0.34

Cx. erraticus 0.50 0.85

Cx. restuans 5.87 1.49

Ae. vexans 21.29 1.73

Ae. albopictus 1.53 2.81

Ps. columbiae 4.18 4.49
Cq. perturbans 1.42 6.00

Cx. salinarius 47.64 21.90

Oc. canadensis 117.93 32.16

Cs. melanura 206.36 170.39

Total 407.49 242.24

Mean 37.04 22.02

Standard Deviation 66.47 50.28

Results

Pearson Correlation (R) 0.931

Ho: Mean Difference = 0
Observations 11 11
df 10

t Stat 1.850

P(T < t) two-tailed 0.094

/ Critical two-tailed 2.228
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Figure 4. Numbers of captured females for modeled species for 2003 and 2004. Values 
represent captures/trap night (2003 = gray bars; 2004 = black). Results for a two-tailed t- 
test are provided in Table 8.

Land-cover/land Use Data

Results of the preliminary accuracy assessment of the USGS Land cover/use (NLCD) 

data (Ka = 0.232, overall accuracy = 28.84%) were well below the accepted standard (KA 

= 0.8), and were largely due to the lack of mutual exclusion between land-cover and land- 

use classes (e.g., failure to distinguish between various forest types and light residential 

or natural and recreational grasses). For example, many sites classified as upland forest
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were actually forested residential, and other sites classified as forested uplands were 

actually forested wetlands. In addition, a portion of the remaining error can be attributed 

to the added variation within land cover/use classes on a 5-state region compared to the 

spatial variation within the City of Chesapeake. The data were reclassified to a Level I 

classification scheme (Table 6) to reduce confusion among classes and then reassessed. 

The reclassification still produced results below the accepted standard (KA = 0.664, 

overall accuracy = 76.28% [Table 9]), resulting in my decision to drop land cover/land 

use as an independent variable in the development of useful HSI models.

Table 9. Error matrix and accuracy summaries for the reclassified Level I scheme of the 
USGS: NLCD Level II land-cover/use dataset for the City of Chesapeake, Virginia 
(2002). Kappa statistic [KA] is provided._______________________________________

Classified Class 1 Class 2 Class 4 Class 8 Class 9 Row total

Class 1 47 3 0 0 0 50

Class 2 0 272 22 9 0 303

Class 4 0 88 282 17 0 387

Class 8 0 51 42 133 0 226

Class 9 0 7 2 0 41 50

Col Total 47 421 348 158 41 1016

Producer’s Accuracy 

Class 1 = 100.00% 

Class 2 = 64.61% 

Class 4 = 81.03% 

Class 8 = 83.65% 

Class 9 = 100.00%

User’s Accuracy 

Class 1 = 94.00% 

Class 2 = 89.77% 

Class 4 = 72.87% 

Class 8 = 58.85% 

Class 9 = 82.00%

Overall Accuracy = 76.28% 
KA = 0.664
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Multiple Regression Models

Maximum ranges for statistically significant spatial autocorrelation of independent 

variables (except NLCD data) ranged from 6,815m to 42,227m (Table 10). All ranges 

were well in excess of the maximum aggregation resolution (630m). As a result, I 

assumed that the 11 spatial scales for each independent variable (Table 5) are 

interdependent, and in turn justify the use of different spatial scales of representation 

among variables within the same HSI.

Table 10. Summary of semivariance analysis for the base spatial scale of each continuous 
independent variable. Scales (Olx = 30x30m pixel resolution) are described in Tables 4 
and 7. Range represents the distance (on the ground) beyond which data are not spatially 
autocorrelated. Error values are provided.________________________________________

Variable Maximum Range (m) Mean2 Error

HYDPCOlx 12,655 0.079

DRAINOlx 7,537 0.036

RUNOF 9,331 0.058

WTDAJOlx 12,510 0.015

AWS25_01x 6,815 0.027

T C lO lx 42,227 0.005

TC2_01x 26,679 0.004

TC3_01x 28,739 0.004
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Multiple regression results for each species group are provided in Tables 11 

through 15, and collectively summarized in Table 16. The number of independent 

variables used in the regression models, for all possible regression results, for each of the 

five species groups ranged from four (SWMP: swamp species) to seven (CONT: 

container species). The maximum variance inflation factor (VIF) any variable in any of 

the five regression models was 3.488 for DRAIN_17x in CSMN model. Consequently, I 

can assume that there was no multicollinearity among independent variables.

Results of regression model validation trials were consistent with the initial models. R2- 

values (Appendix C) and root mean square errors (Appendix D) for validation trials were 

not dissimilar (P>0.05, df=  14) to those computed in all five initial group regression 

models. P-values for the validation trials are provided in Appendix E.

All five regression models suggested significant relationships (P<0.05) between 

captures of female mosquitoes and independent variables. However, the large number 

(50%) of negative relationships between captures and independent variables was 

unexpected (Tables 11-16). The species group with the lowest percentage of negative 

relationships was CSMN (40%), which is the target species of the CMCC. The group 

with the highest percentage was CONT (57%); the remaining three groups all had 50% 

negative. There were, however, several noteworthy patterns. Available water storage 

(AWS25) was negatively associated with abundance for all species groups except EPHM, 

where it was not a model factor. Similarly, Tasseled-Cap wetness (TC3) was negatively 

associated with predicted abundances of ALSP (R — -0.357), CONT (R — -0.206), and 

SWMP (R = -0.261), but positively associated with the abundance of the target species 

group CSMN (R = 0.314). TC3 was not a model factor for EPHM. Percent hydric soil
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Table 11. Multiple regression results for the all species group. Reports for independent 
variables (described in Tables 4 and 7) include variance inflation factors (VIF >5.0 
suggests multicollinearity problems) and regression and correlation coefficients._____

ANOVA

Source d f SS MS F P

Intercept 1 1.441 1.441 2.8832 0.0201

Model 6 0.655 0.109

Error 39 1.476 0.038

Total 45 2.130 0.047

Root Mean2 Error = 0.195

r 2 = 0.3073

T-intercept = 0.485

Independent Variable VIF Coefficient Partial R

TC3_07x 1.127 -0.383 -0.357

HYDSM_05x 1.283 0.209 0.308

DRAINOlx 1.379 -0.224 -0.255

RUNOF_17x 1.248 0.155 0.159

AWS25_09x 1.501 -0.257 -0.191

WTDAJ_21x 1.526 0.059 0.034

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



50

Table 12. Multiple regression results for the container species group. Reports for 
independent variables (described in Tables 4 and 7) include variance inflation factors 
(VIF >5.0 suggests multicollinearity problems) and regression and correlation 
coefficients.

ANOVA

Source d f SS MS F P

Intercept 1 9.469 9.469 7.8593 0.000007

Model 7 54.701 7.814

Error 38 37.783 0.994

Total 45 92.484 2.055

Root Mean2 Error = 0.997

r 2 = 0.5915

7-intercept = 2.461

Independent Variable VIF Coefficient Partial R

TC2_21x 1.569 0.068 0.004

TC3_01x 1.401 -1.368 -0.206

H Y D S M llx 1.273 0.008 0.181

HYDPC1 lx 2.049 -0.616 -0.151

R U N O F l lx 1.273 -1.468 -0.306

AWS251 lx 1.969 -3.151 -0.379

WTDAJOlx 1.304 4.978 0.664

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



51

Table 13. Multiple regression results for the swamp species group. Reports for 
independent variables (described in Tables 4 and 7) include variance inflation factors 
(VIF >5.0 suggests multicollinearity problems) and regression and correlation 
coefficients.

ANOVA

Source d f SS MS F P

Intercept 1 0.898 0.898 2.6726 0.0453

Model 4 0.402 0.101

Error 41 1.542 0.038

Total 45 1.944 0.043

Root Mean2 Error = 0.194

r 2 = 0.2068

7-intercept = 0.328

Independent Variable VIF Coefficient Partial R

TC3_09x 1.041 -0.277 -0.261

HYDSM_03x 1.061 0.159 0.300

RUNOF_17x 1.055 0.087 0.095

AWS25_01x 1.049 -0.329 -0.301
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Table 14. Multiple regression results for the ephemeral species group. Reports for 
independent variables (described in Tables 4 and 7) include variance inflation factors 
(VIF >5.0 suggests multicollinearity problems) and regression and correlation 
coefficients.

ANOVA

Source d f SS MS F P

Intercept 1 0.466 0.466 7.7116 0.000017

Model 6 1.160 0.193

Error 39 0.978 0.025

Total 45 2.138 0.048

Root Mean2 Error = 0.158

r 2 = 0.5426

7-intercept = -1.884

Independent Variable VIF Coefficient Partial R

TCl_17x 1.227 2.160 0.674

TC2_21x 2.167 0.583 0.564

HYDSM_03x 1.087 -0.051 -0.124

DRAIN_05x 1.941 -0.268 -0.268

RUNOF_19x 1.348 0.171 0.203

WTDAJOlx 1.114 -0.168 -0.198
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Table 15. Multiple regression results for Cs. melanura. Reports for independent variables 
(described in Tables 4 and 7) include variance inflation factors (VIF >5.0 suggests 
multicollinearity problems) and regression and correlation coefficients._______________

ANOVA

Source d f SS MS F P

Intercept 1 1.159 1.159 5.2537 0.000842

Model 5 0.817 0.163

Error 40 1.244 0.031

Total 45 2.061 0.046

Root Mean2 Error = 0.176

ll<Nqc; 0.3964

7-intercept = -0.460

Independent Variable VIF Coefficient Partial R

TC2_21x 2.851 -0.254 -0.224

TC3_21x 1.228 0.271 0.314

DRAIN_17x 3.488 0.970 0.513

RUNOF_17x 1.379 0.010 0.107

AWS25_07x 2.061 -0.446 -0.295
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Table 16. Summary of results for multiple regression models for each of the five species 
groups (Tables 11-15) defined in Table 1. Positive (+) and negative (-) relationships and 
variable scale (e.g., 9x [Table 5]) are indicated. Partial R values > 0.250 but < 0.499 are 
underlined, and partial R values > 0.500 are double-underlined.

ALSP CONT SWMP EPHM CSMN

Variable(*)

AWS25 9 x w l l x (-) 21x(-) 7x(-)

DRAIN l x ^  5 x ^  17x(+)

HYDPC l l x ^

HYDSM 5 x ^  11 x (+) 3x(+) 3xH

RUNOF 17x(+) l l x ^  17x(+) 19x(+) 17x(+)

TCI 17x(+)

TC2 21x(+) 21x(+) 21xw

TC3 7x h 1x (_) 9x (_) 21x(+)

WTDAJ 21x(+) l x ()

*Defined in Tables 4 and 7.

(HYDPC) was unexpectedly a poor predictor of mosquito abundance and was only a 

factor in the CONT (R -  -0.151) species group, where it was negatively associated. Soil 

runoff potential (RUNOF) was positively related to predicted mosquito abundance in all 

species groups except CONT (R = -0.306). Tasseled-Cap brightness (TCI) was a poor 

predictor of mosquito abundance for all species groups except EPHM, where it was the 

best predictor (R = 0.674). Most unexpected were the negative relationships between 

predicted abundance of EPHM and [inversely ranked] soil drainage (DRAIN; R = -0.268)
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and water table depth (WTDAJ; R = -0.198), and the negative relationship between 

CSMN and Tasseled-Cap greenness (TC2; R = -0.224). TC2 was positively related with 

CONT (R = 0.004) and EPHM (R = 0.564) abundance.

Only CSMN responded relatively consistently with regard to spatial scale; all 

predictor variables for this group but AWS (210m aggregate resolution [7x, Table 5]) 

were most reliable at the largest scale used (21x). Spatial scales of predictors for EPHM 

were large for positive relationships (RUNOF = 19x, TCI = 17x, TC2 = 21x) and smaller 

for negative relationships (DRAIN = 5x, HYDSUM = 3x, WTDAJ = lx). A similar, but 

not as consistent pattern, was seen for ALSP. Patterns in spatial scale of predictors were 

not evident for CONT and SWMP species groups (Table 16). Additional spatial-scale 

relationships will be reviewed in the discussion of these results.

Habitat Suitability Maps

Habitat suitability maps for each of the five species group regression models are 

presented (Figures 5-9), showing the most suitable areas (80-100%) in red. These maps 

are the results of an overlay operation of weighted raster values using the regression 

equation. Wetland type importance (WTI) values resulting from the extraction and 

overlay of wetland class data from NWI maps onto habitat suitability maps suggest that 

upland habitat had the highest WTIs for CONT, EPHM, and SWMP groups. WTIs for 

ALSP were highest for estuarine wetlands, and WTIs for CSMN were highest for 

palustrine wetlands (Table 17). However, the corresponding maps (Figures 10-19) 

suggest that upland/wetland ecotones are hot spots of mosquito abundance. This pattern 

was most evident when an additional overlay of drainage ditches (Arc View shapefile
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format) is added. Nearly all upland habitat predicted to be most suitable for CSMN 

(Figures 18 and 19), EPHM (Figures 16 and 17), and SWMP (Figures 14 and 15) was 

within a ditched network. The CONT group was predicted to be most abundant in 

uplands bordering permanent water bodies (Figures 12 and 13); and ALSP group 

abundance was primarily associated with permanent water bodies, and, to a lesser extent, 

ditches (Figures 10 and 11).

Table 17. Summary of areal extent of the five System-Level National Wetland Inventory 
wetland classes for the City of Chesapeake. Also provided are the areal extents (in 30m x 
30m pixels) and wetland type importance values (WTIs) for these classes for the most 
suitable habitat (80-100%) for each of the five species group (described in Tables 4 and 
7) regression models. The wetland class with the highest WTI for each species group is 
underlined._________________________________________________________________

Upland Palustrine Riverine Estuarine Lacustrine
Pixels
NWI

Chesapeake 531,483 211,135 5,438 21,543 1,753

ALSP 5,428 2,232 1,603 8,801 1,112
CONT 12,840 225 7 346 0
SWMP 8,445 1,127 263 598 164
EPHM 9,484 130 59 0 0
CSMN 57,034 66,788 250 705 8

WTI
ALSP 0.102 0.042 0.030 0.166 0.021
CONT 0.242 0.004 <0.001 0.007 0
SWMP 0.159 0.021 0.005 0.011 0.003
EPHM 0.178 0.002 0.001 0 0
CSMN 1.073 1.257 0.005 0.013 < 0.001
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Figure 5. Habitat suitability map for the all species (ALSP) group based on multiple 
regression results. Areas with the highest degree of suitability (81 -  100%, using equal- 
interval breaks) are indicated in red.
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Figure 6. Habitat suitability map for container (CONT) species group based on multiple 
regression (equation) results. Areas with the highest degree of suitability (81 -  100%, 
using equal-interval breaks) are indicated in red.
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Figure 7. Habitat suitability map for swamp (SWMP) species group based on multiple 
regression (equation) results. Areas with the highest degree of suitability (81 -  100%, 
using equal-interval breaks) are indicated in red.
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Figure 8. Habitat suitability map for ephemeral (EPHM) species group based on multiple 
regression (equation) results. Areas with the highest degree of suitability (81 -  100%, 
using equal-interval breaks) are indicated in red.
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Suitability
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Figure 9. Habitat suitability map for Cs. melanura based on multiple regression 
(equation) results. Areas with the highest degree of suitability (81 -  100%, using equal- 
interval breaks) are indicated in red.
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Figure 10. Visual overlay of the most suitable habitat (80-100%, red polygons) for the all 
species group and the System-Level NWI map for the City of Chesapeake, Virginia. 
Names of boxes A-D correspond to the nomenclature of the National Wetland Inventory 
Map subsection in which each is primarily located in; these boxes are represented at 
smaller scales (increased detail) in Figure 11.
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Figure 11. Representative sections of the overlay of National Wetland Inventory maps 
and the habitat suitability index for the all species group. Sections (boxes A-D, Figure 10) 
showing high levels of suitability (80-100%; red stippling) in relation to System-Level 
wetland classes described in Figure 10 and drainage ditches (in black). Scales are relative 
to the box sizes in Figure 10.
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Figure 12. Visual overlay of the most suitable habitat (80-100%, red polygons) for the 
CONT group and the System-Level NWI map for the City of Chesapeake, Virginia. 
Names of boxes A-D correspond to the nomenclature of the National Wetland Inventory 
Map subsection in which each is primarily located in; these boxes are represented at 
smaller scales (increased detail) in Figure 13.
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Figure 13. Representative sections of the overlay of National Wetland Inventory maps 
and the habitat suitability index for the container species group. Sections (boxes A-D, 
Figure 12) showing high levels of suitability (80-100%; red stippling) in relation to 
System-Level wetland classes described in Figure 12 and drainage ditches (in black). 
Scales are relative to the box sizes in Figure 12.
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Figure 14. Visual overlay of the most suitable habitat (80-100%, red polygons) for the 
SWMP group and the System-Level NWI map for the City of Chesapeake, Virginia. 
Names of boxes A-D correspond to the nomenclature of the National Wetland Inventory 
Map subsection in which each is primarily located in; these boxes are represented at 
smaller scales (increased detail) in Figure 15.
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Figure 15. Representative sections of the overlay of National Wetland Inventory maps 
and the habitat suitability index for the swampl species group. Sections (boxes A-D, 
Figure 14) showing high levels of suitability (80-100%; red stippling) in relation to 
System-Level wetland classes described in Figure 14 and drainage ditches (in black). 
Scales are relative to the box sizes in Figure 14.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



68

( V i N n i t n I L  S m i t h  „

\ s* -

(B) De<|i ( i n k

-*■
X

jfC) FenjUre«&.p\)

5, V*. ',!4
‘ J -5,

I Ephemeral Species (81-100%) 
| Upland 

-- Pa lustrine 
Riverine 
Estuarine 
Lacustrine

0 2.5 5 10 Kilometers
 1__i i__i I_i i i I

N

A
Figure 16. Visual overlay of the most suitable habitat (80-100%, red polygons) for the 
EPHM group and the System-Level NWI map for the City of Chesapeake, Virginia. 
Names of boxes A-D correspond to the nomenclature of the National Wetland Inventory 
Map subsection in which each is primarily located in; these boxes are represented at 
smaller scales (increased detail) in Figure 17.
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Figure 17. Representative sections of the overlay of National Wetland Inventory maps 
and the habitat suitability index for the ephemeral species group. Sections (boxes A-D, 
Figure 16) showing high levels of suitability (80-100%; red stippling) in relation to 
System-Level wetland classes described in Figure 16 and drainage ditches (in black). 
Scales are relative to the box sizes in Figure 16.
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Figure 18. Visual overlay of the most suitable habitat (80-100%, red polygons) for the 
CSMN group and the System-Level NWI map for the City of Chesapeake, Virginia. 
Names of boxes A-D correspond to the nomenclature of the National Wetland Inventory 
Map subsection in which each is primarily located in; these boxes are represented at 
smaller scales (increased detail) in Figure 19.
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Figure 19. Representative sections of the overlay of National Wetland Inventory maps 
and the habitat suitability index for Cs. melanurap. Sections (boxes A-D, Figure 18) 
showing high levels of suitability (80-100%; red stippling) in relation to System-Level 
wetland classes described in Figure 18 and drainage ditches (in black). Scales are relative 
to the box sizes in Figure 18.
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Variation in WTIs based on species group predicted abundance among the five NWI 

wetland types was explained nearly completely (99.8%) by the first two Bray-Curtis 

polar ordination axes (Axis 1 = 97.7%, Axis 2 = 2.1%). Endpoints for Axis 1 were 

CSMN and a cluster of the other four species groups (Figure 20 A-E). Endpoints for Axis 

2 were CSMN and ALSP. It is important to remember that negative correlation 

coefficients in Bray-Curtis ordination indicate only the direction of a dissimilarity 

gradient along the ordination axis, and not negative relationships. Variation among 

species groups dissimilarities for Axis 1 largely explained the predicted abundance of 

CSMN for palustrine (r = -0.998) and upland habitats (r = -0.996), and to a lesser degree, 

ALSP in estuarine habitat (r = 0.239; Figure 20). A much smaller proportion of the 

variation in WTIs based on species group predicted abundance among the five NWI 

wetland types was explained by Axis 2 (2.1%). Endpoints for Axis 2 were CSMN and 

CONT (Figure 20 A-E). Ordination scores for both axes were driven primarily by the 

results for CSMN.
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Figure 20. Bray-Curtis Polar ordination plots of the five wetland types based on wetland- 
type importance values for species groups. Distances between species groups along an 
axis reflect potential differences among species group abundances for that National 
Wetland Inventory wetland type (A-E). Included are graphic overlays of WTI values on 
ordination diagram points. The size of the triangles (representing species groups) 
indicates potential wetland affinities for each species group as described by that axis. 
Scatterplots quantify the relationships (Pearson’s correlation coefficients [r]) between 
species groups and the explained variance of each axis with regard to each wetland type.
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Figure 20. Continued
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Figure 20. Continued
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Discussion

The models in this study were designed to predict adult mosquito abundance based on 

environmental factors associated with larval habitat (i.e., soil condition, vegetative vigor, 

permanent bodies of water). Predicting mosquito emergence using adult capture data is 

not unprecedented. Shaman et al. (2002) used captures of adults from New Jersey light 

traps in conjunction with soil moisture indices to successfully predict mass emergence of 

adults from modeled larval habitats. As with my study, Shaman et al. experienced both 

positive and negative relationships between mosquito captures and environmental factors 

that were expected to have only positive effects on predicted abundance. They concluded 

that these counterintuitive results were a function of variations in the biology of each 

species. They also suggested that larval monitoring data, which they did not have, might 

have enhanced the predictive power of their models. However, due to the recent isolation
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of WNV in North America (1999), many mosquito control and surveillance programs 

have only recently begun to collect larval data. For example, the CMCC, the source of 

capture data for my study, is currently developing a larval monitoring program (personal 

communication with Melissa Cushing, CMCC [January 2006]). Thus, a dataset for larval 

captures was not available.

One factor not addressed by Shaman et al. (2002) was the flight, or dispersal, 

distance of adult mosquitoes from their natal habitat. This would likely have an effect on 

adult abundance models that use larval habitat attributes. For the species modeled in my 

study, distances traveled from larval habitats to capture sites were unknown; however, the 

literature suggests these distances vary from a few hundred meters to several kilometers 

depending on the species (Table 2).

Many studies have examined the spatial distributions of dispersing cohorts of 

flying insect populations (Rogers, 1977; Botterweg, 1982; Zumr, 1992; Zolubas and 

Byers, 1995; Duelli et al., 1997; Liew and Curtis, 2004). Most of these studies suggest 

that without external effects, such as wind speed and direction, numbers of individuals 

captured are inversely proportional to the distance from the initial source. Therefore, I 

assumed that any single adult female captured at any given trapping site was likely to be 

much closer to where it emerged than its maximum dispersal potential. Dispersal 

potential of adult mosquitoes was, in part, my justification for using a broad range of 

spatial scales to predict mosquito abundance.

Some mosquito species (e.g., Culex spp., Oc. triseriatus) are not always most 

accurately represented by CDC light traps, and are often better represented by using 

gravid traps (CDC, 2003; US ACE, 2005). Gravid traps attract females to an oviposition
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medium in lieu of a blood meal attractant (CO2). The CMCC had made limited use of 

gravid traps, and these data were not made available for my study. In Louisiana, Godsey 

et al. (2005) reported ~3.4 times the number of captures of Culex spp. in gravid traps than 

in light traps baited with dry ice. This included Cx. salinarius, which they captured ~11.7 

times more frequently in light traps than in gravid traps. In north-central Ohio, White et 

al. (2003) captured 17 mosquito species from four genera using gravid traps; Cx. pipiens 

and Cx. restuans were the two most abundant species. In my study, Cx. erraticus, Cx. 

pipiens, and Cx. restuans collectively represented only 0.89% (Table 1) of all captures, 

whereas Cx. salinarius represented 8.03% (Table 1). My results were similar to those of 

Godsey et al. (2005, without gravid trap data). Moreover, the CMCC deployed light traps 

from late afternoon to early morning (personal communication with Melissa Cushing, 

CMCC [January 2006]); thus, diurnal species such as Ae. albopictus (1.03%, Tables 1 

and 2) were potentially underrepresented in the CMCC’s capture data. These issues of 

trapping technique efficiency may have affected the numbers of captures for all four 

species in the CONT and one (Cx. erraticus) of the four species of the SWMP group.

Finally, an inherent source of error that had unquantifiable effects on the numbers 

of mosquitoes captured at trapping stations was the variation in spatial coverage of the 

CMCC’s adulticide efforts. Shaman et al. (2002) suggested that increased mosquito 

abundance at one of their study areas might have been due to an absence of mosquito 

control in that area. At the time of my research, the CMCC was instituting a computer- 

based program to quantify the spatial and temporal distributions mosquito adulticide use. 

As a result, records for how much, where, and when adulticides were sprayed were not
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available. However, the lack of a significant difference in capture trends between 2003 

and 2004 suggests that residual adulticide effects were minimal.

I expected that properties associated with increased vegetative vigor and soil 

moisture content would increase habitat suitability for mosquitoes, but this was not found 

in my study. In fact, predicted abundances for all five species groups were negatively 

related to at least one of the five independent variables derived from SSURGO data and 

at least one of the three Tasseled-Cap variables (Table 16). Although these negative 

relationships were not expected, many are explainable and supported by the literature 

(e.g., Shaman et al., 2002; Keating et al., 2004; Rey et al., 2006). In addition, many are 

supported by positive relationships. It is, however, noteworthy that all R values > 0.500 

had positive relationships on predicted mosquito abundance (Table 16).

For instance, small-scaled, negative relationships between Tasseled-Cap wetness 

(TC3) and the predicted abundances of ALSP (R = -0.357; 7x [Table 11]), CONT ( R - -  

0.206; lx  [Table 12]), and SWMP (R = -0.261; 9x [Table 13]) may be an indirect 

function of canopy cover (TC2), which is considered to carry more explanatory power 

than TC3 (Campbell, 2002). An alternative explanation is that spectral reflectance values 

are largely influenced by the uppermost layer in the scene and thus increased summer 

foliage would have decreased the detectability of underlying soil wetness (TC3).

With only two species, Ps. columbiae and Ae. vexans, EPHM is the smallest non

target species group (Table 1). Both species have similar life histories (Ae. vexans type 

2a, from Crans, 2004 [Table 3]), and tend to lay eggs directly on soils in areas with dense 

vegetative cover and prone to frequent inundation (O'Malley, 1990; Meisch, 1994). Thus, 

the large-scale (21x) positive relationship between Tasseled-Cap greenness (TC2) and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



79

predicted abundance of EPHM (R = 0.674) was expected because higher values for TC2 

would indicate high vegetative vigor. However, I did not expect the conflicting and 

nearly equal positive response of EPHM abundance (R -  0.564 [Table 14]) to increases in 

Tasseled-Cap bareness (TCI). I am unable to explain this relationship with my data 

because these species rarely lay eggs on bare soils (Gjullin et al., 1950, O’Malley, 1990). 

Also unexpected was the negative relationship between predicted abundance of CSMN 

(R = -0.224 [Table 15]) and TC2. Similar to the findings of Keating et al. (2004), this 

relationship is likely a function of a propensity to use more developed upland habitat that 

has been heavily ditched. This generalized preference of Cs. melanura and other species 

groups for ditched areas and upland/wetland ecotones is clearly evident from visual 

examination of wetland maps (Figures 10-19), but is not apparent in WTIs or ordination 

scores alone (Table 17 and Figure 20 A-E).

The predictable pattern of soil moisture negatively affecting mosquito abundance 

is seen by negative relationships between available water storage (AWS) and four of the 

mosquito species groups (Table 16). AWS may not be a good indicator of potential 

surface wetness. Soils with higher AWS values are typically those not prone to surface 

wetness (flooding), but instead represent soils in which soil moisture is most available in 

plant root zones. These soil layers tend to be deep and well drained, with a large number 

of small pores that can hold great volumes of water (personal communication with David 

Kriz, National Soil Conservation Service, Richmond, VA [February 2007]). I was unable 

to find any recent studies that addressed effects of AWS on the quality of mosquito 

breeding habitat. Because most mosquito species require standing water to breed, soils 

that retain water deep within horizons, in part, explain the negative relationships between
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AWS and the predicted mosquito abundances for modeled species groups, regardless of 

spatial scale.

Nevertheless, several studies have reported that soil characteristics generally 

assumed to increase the suitability of mosquito breeding habitat have sometimes had the 

opposite effect. For example, Shaman et al. (2002) analyzed 15 yr of data and found the 

prevalence of Cx. pipiens, a container species associated with polluted waters, to be 

negatively associated with local wetness models in nine years, and positively related to a 

swamp species, Anopheles walkeri (negative only one year) and an ephemeral habitat 

species Ae. vexans (negative only two years). Their local wetness models, like mine, were 

derived from soil moisture variables (e.g., water table depth, runoff, surface saturation). 

The generally positive influence of runoff (RUNOF) on predicted mosquito abundance in 

my study is supported by Shaman et al. (2002). This validation can be extended to 

include the container-breeding species (Cx. pipiens et al.), in which RUNOF negatively 

affected predicted abundance (R -  -0.306). It is somewhat intuitive that runoff might not 

increase local abundance for mosquito species that rely primarily on containers (e.g., 

scrapped tires, nursery pots) and tree holes for breeding sites; Shaman et al. (2002) 

suggested that unmeasured factors (e.g., dry conditions leading to eutrophication) can 

promote reproduction in some species and not others.

It is difficult to say with confidence that my results either agree or disagree with 

those of Shaman et al.’s for two opposing reasons: 1) I used species groups instead of 

individual species, no doubt contributing more ecological noise than their single-species 

models, and 2) my models addressed soil characteristics separately whereas their model 

combined them. However, it is still interesting and puzzling that any mosquito species,
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which in eastern Virginia all need standing surface water for larval development, would 

be negatively associated with factors that increase the probability of surface wetness.

Another apparent soil moisture/mosquito abundance anomaly was reported by 

Keating et al. (2004), who collected more anopheline mosquito larvae in regions with 

well draining soils than those with poorly drained soils. Well-drained areas tended to be 

more developed and contained more suitable manmade breeding habitats (e.g., drained 

swimming pools, water tanks, ditches) than areas with poorly drained soils. They 

attributed this finding of increased suitable breeding microhabitats to local human 

activity (e.g., community-level development and infrastructure) and socioeconomics, and 

thus higher mosquito densities were only indirectly associated with mosquito ecology. 

Rey et al. (2006) also found certain species to be more associated with human activity 

than with natural habitats.

The results of Keating et al. (2004) are relevant in other, but similar, ways to my

study. Much of the area within the City of Chesapeake (ca. 20%, Figure 1) is coincident

with the Great Dismal Swamp. Since colonial times this forested wetland has been under

assault by potential developers. In William Byrd’s account of the Great Dismal Swamp

(c/rcal 728-1737; edited by Swem, 1922) he states:

“The Dismal then being so utterly useless to the crown, and such a 
nusance [sic] to the neighboring country, and the advantages of 
draining it being so many, there remains no difficulty but to find out 
a method of doing it without leading his majesty into an expence 
[sic].”

Because efforts to drain the Great Dismal Swamp predate the earliest geographic data for 

the region, the original extent of the swamp may never been accurately established (Oaks 

and Whitehead, 1979). However, Shaler (1890), a century and a half after Byrd proposed
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his plan to drain the swamp, estimated that the Great Dismal Swamp occupied ~3900km2; 

presently, the swamp occupies ~500km2. Most of this reduction in area was accomplished 

via a drainage network of canals and ditches that continues to be expanded today; 

ditching is especially prevalent in the western and southern areas of the city. This 

“Tulloch ditching” is the purposeful draining of wetlands by digging ditches and 

carefully removing the dredge spoil to an offsite location. The practice is designed to 

convert (drain) wetlands into land that is no longer subject to wetland regulations, and 

thus, is made available for alternate uses (Hershner, 1999).

Although this extensive system of canals and ditches may have effectively 

transformed land into habitat more readily useful for agriculture and urban development, 

these activities may have inadvertently resulted in the creation of residual microhabitats 

for breeding mosquitoes such as reported by Keating et al. (2004). Many areas correctly 

classified as “upland” in NWI maps have been Tulloch ditched (Figures 11, 13, 15, 17, 

19). As of 1999, the City of Chesapeake has Tulloch ditched seven times more wetland 

acreage than all other municipalities in the Hampton Roads region combined; further, the 

city has plans to double this acreage (Hershner, 1999).

Although ditching creates upland habitat from wetland, the ditches remain 

excellent mosquito breeding sites (Laird, 1988) embedded in otherwise unsuitable 

habitat. This pattern was most clearly seen in the predicted spatial abundances of Cs. 

melanura, the target species of the CMCC, but also was evident for the EPHM and 

SWMP groups. The influence of the system of ditches and canals is further reflected in 

the positive responses of most of the regression models of species groups. The 

independent variable H YD SUM accounted for the spatial distribution of ditches and
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canals (Table 4). As expected, predicted abundance increased for most species groups in 

heavily ditched areas because of the potential for good breeding habitat in these disturbed 

areas (Laird, 1988). The negative relationship between HYDSUM and predicted 

abundance of EPHM (R -  -0.124) was likely a result of a general affinity for temporary 

habitats not represented by a factor describing permanent bodies of water. All but two 

trapping stations were located within <200m of a ditch or canal. This close proximity of 

trapping stations to canals and ditches may have had a two-pronged effect. HYDSUM 

was not a good predictor variable for CSMN because this group responded most strongly 

to independent variables at consistently broad spatial scales. Therefore, the variation in 

HYDSUM values among trapping stations would have been diluted as scale was 

increased, possibly to a point where any statistical relationship wais lost. On the other 

hand, ALSP (R = 0.308), CONT (R = 0.181), and SWMP (R = 0.300) groups responded 

positively to increases in HYDSUM at much smaller spatial scales, thus preserving the 

variation of HYDSUM among trapping stations.

Moreover, the increased responses of the predicted abundance of Cs. melanura to 

independent variables at broad spatial scales was supported by visual examination of the 

wetland maps for this species (Figure 18 and 19), where large and contiguous areas of 

high predicted abundance dominate. This spatial-scale consistency in both suitability 

maps and independent variables is likely to be a function of habitat selection by Cs. 

melanura. It cannot be overemphasized that Cs. melanura was the target species, 

contributing to a bias in the placement of traps when the present trapping regime began in 

2002. Again, the vast majority of trapping effort has been in close proximity to palustrine 

wetlands, the preferred habitat of Cs. melanura.
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The remaining four species groups all had smaller and more localized areas of 

high predicted abundance; this was also seen in the scale of independent variables they 

most positively responded to. I suggest that the within-group variation of spatial scales 

for these groups was due to environmental variables I did not consider. Although species 

group-specific explanations for the variations in spatial scale are difficult to parse with 

the data I analyzed, or for lack of data I did not analyze, the fact remains that the 

predictability of mosquito abundance in my regression models was increased by the 

incorporation of differing spatial scales. Rey et al. (2006), who studied habitat 

segregation by mosquito species in south Florida, also found that species respond to 

habitat variables at different spatial scales from 30m2 to 630m2.

Summary

The methods used herein provide a simplified series of species-group models based on 

similarities in mosquito life histories. The data used in these models were provided (i.e., 

mosquito captures, City of Chesapeake hydrology [canals and ditches], both from 

CMCC), downloaded at no cost (i.e., national hydrology dataset [USGS seamless data], 

soil data [SSURGO, NRCS]) or relatively inexpensive (i.e., Landsat ETM+). My 

decision not to incorporate land cover/use data (USGS: NLCD) in my models was based 

on three real problems: 1) the inability to achieve an acceptable level of accuracy in the 

Level II classification that equated to less than desirable data reliability, 2) not all NLCD 

Level II classes were represented by trap-site locations, which would have made ranking 

of city-wide habitat suitability more difficult with many land use/cover classes
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disproportionately represented or omitted, and 3) these data were categorical and would 

have required independent analysis. The latter is the least problematic of the three.

Although it has long been known that mosquitoes require standing water for 

breeding, there is much variation in habitat affinities among species (Howard et al., 1912; 

Shannon, 1931; Carpenter and LaCasse, 1955; Horsfall, 1955). In order to develop 

effective and efficient mosquito control programs, it is necessary to understand these 

species-specific differences and to be able to model habitat suitability using accurate 

landscape-level data. My HSIs were derived from spatially explicit empirical data, thus 

making them useful for locating potential mosquito habitats within real landscapes. The 

use of data collected by remote-sensing techniques enables the integration and analysis, 

within the framework of a GIS, of large and diverse data sets to an extent not feasible by 

field collection alone. Because my HSI models are applied in nature, much attention was 

devoted to keeping them streamlined, user-friendly, and not cost-prohibitive, while 

retaining the ability to process empirical data in real landscapes.
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CHAPTER III

PREDICTION OF CULISETA MELANURA (COQUILLETT) 

ABUNDANCE ON THE SOUTHERN COASTAL PLAIN OF VIRGINIA IN 

RESPONSE TO RECENT WEATHER EVENTS USING REMOTE 

SENSING TECHNIQUES AND A GIS

Introduction

Besides being a general nuisance, mosquitoes are vectors of many diseases (a.k.a., 

arboviruses [arthropod-borne viruses]) that have threatened public health in North 

America since Colonial times (Fischer and Schweigmann, 2004; Andersen, 2006). One 

such example was the yellow fever outbreak that killed over 2,000 people in the port 

cities of Norfolk and Portsmouth, Virginia, between July and October 1855 (Goldfield, 

1873). Years later, Walter Reed discovered that this viral disease was transmitted by a 

mosquito, Aedes aegypti (Vainio and Cutts, 1998).

One modem mosquito-bome arbovirus in the eastern United States is eastern 

equine encephalitis ([EEE] Hassan et al., 2003). First isolated in North America during 

simultaneous human outbreaks in Delaware, New Jersey and Virginia in 1933, EEE 

persists in the eastern North America, the Caribbean, and South and Central America 

(Weaver et al., 1999). Because of the relatively long history of association with North 

America, the epidemiology for EEE is well understood.
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The persistence and transmission dynamics of EEE are functions of distribution, 

competence of vectors, and the proximity and mobility of their enzootic vertebrate hosts 

(Hassan et al., 2003). Thus, arboviral foci generally coincide spatially within habitats 

frequented by host species where environmental conditions are favorable for breeding 

mosquitoes (Kitron, 1998; Kaya et a l, 2004). My study addresses the spatial and 

temporal distribution, within the City of Chesapeake, Virginia, of the primary enzootic 

vector of EEE, the bird-feeding mosquito Culiseta melanura (Nasci and Edman, 1984; 

Crans et al., 1994). Foci of EEE are generally associated with palustrine habitat, the 

preferred habitat of Cs. melanura (Weaver et al., 1999) and gregarious passerine birds 

species that serve as reservoir hosts (Komar et al., 1999). Once enzootic transmission is 

established, the virus becomes available to epizootic bridge vectors that readily feed on 

mammals as well as birds (Hassan et al., 2003). As its name suggests, epizoonoses are 

most commonly documented with horses, and infections are usually fatal. However, since 

1964, 200 human cases of EEE have been confirmed (Calisher, 2004) with a 30% 

mortality rate (CDC, 1992).

Many environmental conditions that bring together mosquitoes, the pathogens 

they transmit, and potential hosts are measurable (Shaman and Day, 2005). For example, 

spatial and temporal fluctuations in mosquito abundance are directly and indirectly 

influenced by weather patterns (Rogers, 1967; Reiter, 2001; Tong and Hu, 2001; Shaman 

et al., 2002; USDA, 2004; and others). Naturally occurring outbreaks of EEE usually are 

associated with periods of high temperatures and rainfall, creating conditions conducive 

to the expansion of Cs. melanura and other mosquito species (USDA, 2004). Rainfall 

often increases the diversity and abundance of habitats available to breeding mosquitoes
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and the resultant near-surface humidity increases both flight activity and host-seeking 

behavior (Shaman and Day, 2005). These associations make the geographic positions of 

breeding and host-seeking activities predictable, and therefore potentially reveal the most 

judicious stages at which to interrupt viral epidemiologic cycles of mosquito-bome 

diseases.

The distribution and accumulation of rainwater within natural watersheds at both 

macro- and micro-scales are intimately tied to topography (Yeh et al., 1998; Bemhardsen, 

2002; Garbrecht and Martz, 2000; Shaman et al., 2002). Although researchers have long 

used topographic indices to predict relative soil moisture and potential surface wetness 

(Beven and Kirkby, 1979; Urban et al., 2000), others advocate the use of improved soil 

moisture indices that integrate topographic data with empirical soil data (Iverson et al., 

1997; O’Loughlin, 1981 and 1986), especially in landscapes with little topographic relief 

(Dimbock et al., 2002). The integration of soil characteristics and topography enables the 

detection of areas where upslope water accumulation can potentially exceed soil 

transmissivity (O’Loughlin, 1986), and thus reveals locations susceptible to flooding or 

ponding. Chesapeake is nearly flat, similar to the landscape studied by Dimbock et al. 

(2002), so a model that integrates a topography-based soil moisture index and empirical 

soil data should be more useful than models in which only topography is considered (e.g., 

Beven and Kirby, 1979).

The integration of digital satellite data in GIS-based modeling of disease vector 

abundance and disease transmission is becoming a more broadly used approach in 

arboviral research (Beck et al., 1994; Washino and Wood, 1994; Kaya et al., 2004; and 

others). Recent advances in Earth-observing sensors have spurred the development of a
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wide variety of spatially explicit environmental data applicable to the ecological study of 

disease vectors (Goetz et al., 2000). Because of these advances, surveillance, monitoring, 

and subsequent health policies associated with the study of arboviruses have taken on a 

more applied nature through the integration of spatial and epidemiological data (Clarke et 

al., 1996). However, because most mosquito control and public health agencies are 

unable to conduct exhaustive in situ monitoring, they would benefit from the application 

of models capable of predicting the temporal and spatial distributions of mosquitoes at a 

landscape-scale (Shaman et al., 2002). My study produces such a potentially useful 

model.

In Chapter II of this dissertation, I created semi-static habitat suitability indices 

(HSI) for five groups of mosquito species based on life-history characteristics from Crans 

(2004). These HSIs quantified the affinities of each group to measured soil and 

vegetation attributes. One group contained a single species, Cs. melanura, the target 

species for the Chesapeake (Virginia) Mosquito Control Commission. The HSI for Cs. 

melanura predicted highest abundances in relatively large, poorly drained areas with high 

degree of surface wetness.

The primary objective of this chapter was to augment the semi-static HSI model 

for Culiseta melanura (generated in Chapter II) with a dynamic GIS-based model 

incorporating weather patterns and a soil moisture index based on topographic derivatives 

to predict mosquito abundance. This “dynamic” model is capable of predicting not only 

where, but also when adult Cs. melanura are likely to emerge in large numbers. To 

achieve this predictability, I used spatially explicit meteorological data (NEXRAD: 

iVEXt-generation [Doppler] RADar, National Oceanic and Atmospheric Administration
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[NOAA], National Weather Service [NWS]) to create weekly “accumulated 

precipitation” grids that would be overlaid onto topographic soil moisture indices in order 

to map areas with high probabilities of surface and subsurface wetness. NEXRAD 

(NOAA, NWS) is georeferenced radar data (Weather Service Doppler Radar 

[WSR:88D]) that includes precipitation accumulation (Beringer and Ball, 2004). Thus, 

knowing current rainfall amounts and distributions, and the developmental period of 

mosquitoes, I can map which areas of suitable breeding habitat, from Chapter II, are most 

likely to experience outbreaks of adult mosquitoes. Such knowledge will enable the 

mosquito control agencies to apply insecticides in a more effective, timely, and 

economical manner, thereby reducing the health risks of EEE and similar diseases while 

reducing costs of chemicals and spraying efforts, and perhaps achieving a more effective 

level of control.

Methods

Study Area

This study, conducted with the cooperation of the Chesapeake Mosquito Control 

Commission (CMCC), encompasses the entire City of Chesapeake, Virginia (Figure 1). 

Located in the Coastal Plain physiographic province, Chesapeake has an area of 91,427 

ha and a 2004 population of 214,725.

The climate of Chesapeake is humid subtropical and similar to the rest of Virginia 

east of the Blue Ridge Mountains (Woodward and Hoffman, 1991). Monthly 

temperatures range from -1.8°C (January) to 31.6°C (July) based on 30-yr averages 

(1971 -  2000; NCDC, 2002) collected at NWS Station KAKQ, Wakefield, Virginia
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located at Wakefield Municipal Airport (Lat/Long: 36.9839°N, 77.0072°W), about 50 km 

west of Chesapeake. Temperature extremes are moderated by proximity to the 

Chesapeake Bay and the Atlantic Ocean. Annual average precipitation is 114.4 cm (45.05 

inches) based on 30-yr averages (1971 -  2000; NCDC, 2002). The growing season (frost- 

free days) for the region is 185 -  200 days (Palone and Todd, 1998).

Chesapeake was selected for study not only because its landscape mosaic 

represents the regional diversity of land use, but also because of the known occurrence 

and relative distributions, within the city, of ~30 mosquito vector species of EEE and 

West Nile virus (WNV). Tidal and freshwater creeks, palustrine habitats, and an 

extensive network of ditches are embedded in the landscape mosaic, providing good 

mosquito habitat is threaded within and among high densities of humans, creating a 

landscape conducive to the transmission of EEE and other mosquito-borne diseases. 

Moreover, the primary reservoir vector for EEE, Cs. melanura, is, by far, the most 

numerous species captured by the CMCC during monitoring efforts. Equally important is 

the technologically advanced program of mosquito control and surveillance of the 

CMCC, dating from 2003, and the system of ditches, built since the 1880s, which drained 

low-lying, waterlogged soils, and plays a significant role in mosquito population 

dynamics.

Culiseta melanura Captures

Culiseta melanura were captured using C02-baited CDC light traps at 56 permanent 

trapping sites throughout Chesapeake (Figure 1). Populations were monitored from early 

April through late October and only females were used in analyses.
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Only 46 of the 56 sites for 2004 were used in analyses because the others had < 5 

trap nights (TN). Capture data were normalized to account for variation in trapping effort 

among the 46 sites by dividing total captures of each species collected at each site by the 

number of TNs for that site.

Model validation (years and sites) using capture data for other years when 

mosquitoes were collected (2003 and 2005) would have been problematic because the 

number of trapping sites in 2003 (N = 30) was smaller than in 2004, and at the time 

analyses were run a complete dataset of 2005 Cs. melanura captures was not yet 

available. Cross-year comparisons for 2003 and 2004 to evaluate temporal patterns 

consisted of ANOVA (years) and correlation analysis (sites) of Cs. melanura capture data 

for the trapping sites common to both years (Appendix F). Single-factor ANOVA (a = 

0.05) was used to evaluate differences in mean captures/TN of Cs. melanura, by trapping 

site, between 2003 and 2004 (Zar, 1996). Pearson’s correlation was used to compare 

captures/TN at individual trapping sites between 2003 and 2004 (Zar, 1996).

Weather Lag-Time Analysis (a priori)

A series of multiple linear regression models was used to test the a priori hypothesis that 

fluctuations in weekly captures of Cs. melanura in 2004 were, in part, functions of 

current average daily temperature and recent precipitation accumulation (PA). Six time- 

sequential regression analyses were run (a = 0.05); in each successive regression, weekly 

captures of Cs. melanura were regressed against average weekly air temperature 

(AWAT) for the same 1-week PA period for successively earlier weekly intervals (see 

Table 18). Weekly intervals of the three datasets (i.e., captures, AW AT, PA) used in
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these regressions were calculated for 32 weeks (April 4 -  October 10, 2004; Appendix 

G). Temperature and precipitation data for the City of Chesapeake were provided by the 

CMCC. Regression models were made using Number Cruncher Statistical Software 

(NCSS) v2000.

Digital Elevation Model

Because the vertical resolution used in USGS’s digital elevation model (DEM) that 

includes Chesapeake (5 ft [1.52 m]) is insufficient to accurately describe the ecological 

influence of elevation in this relatively flat coastal landscape, I created a 2-ft interval 

DEM (ESRI Grid format [30m x 30m pixels]) of the study area (ArcGIS v.9.1, 

ArcToolbox, Spatial Analyst Extension) from a 2ft-interval contour map of the City of 

Chesapeake provided by the CMCC. The contour map used to create this DEM did not 

include data for the Great Dismal Swamp, a forested wetland that abuts the western 

margin of Chesapeake (Figure 1).

To construct this higher vertical resolution DEM, I first extracted elevation values (Z- 

values) for all nodes on the CMCC’s 2-ft contour map (Figure 21 [partial extent]) to a 

new point shapefile (Figure 21 [partial extent]). I then interpolated the Z-values from the 

point shapefile to produce a 2-ft (0.61 m) interval continuous and hydrologically correct 

surface of elevation (Figures 21 and 22 [30m x 30m pixels]). The interpolation method 

was Topo to Raster (ArcGIS 9.1, Spatial Analyst Extension). However, Chesapeake’s 

extensive ditch network was not represented in the contour map. To correct for this, I 

used a stream-burning technique (Saunders, 2000) to incorporate the deviations in 

elevation values associated with ditches. An ArcView shapefile of the ditches for
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Chesapeake was provided by the CMCC (Figure 23 [partial extent]). In order to acquire 

empirical data, I measured the depths of 63 ditches throughout the city. The CMCC’s

Table 18. Summary of the six a priori time-lag regression models. Dependent and 
independent variable datasets used in these regression models used to test the hypothesis 
that fluctuations in weekly (wk) captures of Cs. melanura in 2004 (4 April through 30 
October) are a function of current average weekly air temperature (AWAT) and past 
precipitation accumulation (PA).

Variable Dataset 1 -wk lag 2-wk lag 3-wk lag 4-wk lag 5-wk lag 6-wk lag

^Current week: Cs. 
melanura captures • • • • • •

^Current week: 
AWAT • • • • • •

§One week prior: 
total weekly PA •

5Two weeks prior: 
total weekly PA •

§Three weeks prior: 
total weekly PA •

5Four weeks prior: 
total weekly PA •

sFive weeks prior: 
total weekly PA •

§Six weeks orior: 
total weekly PA •

^Dependent variable (2004)
^Independent variable, prior to Cs-. melanura weekly capture dataset (2004)

ditch network shapefile was converted to grid format and assigned a constant value 

representative of the calculated average of depth (~1.5 m) and burned into the 2-ft DEM 

to create a more locally appropriate final DEM for the city (Figures 23 and 24; ArcGIS- 

9.1, ArcToolbox, Spatial Analyst).
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showing 2-ft (0.61 m) interval contour (left), the point shapefile created from the nodes of the 0.61-m interval contour (center), and 
the elevation surface interpolated from the point shapefile of the nodes of the 0.61-m interval contour (right). The inset shows the 
location of the section (red box) within the City of Chesapeake (light green). The rivers are tributaries of the western branch of the 
Elizabeth River.



96

Elevation (m eters) 

High: 43.0

Low: -12.2

0 2.5 5 10 Kilometers
 1__i i__i I_i i i I N

A
Figure 22. The digital elevation model interpolated from the 2-ft (0.61 m) contour map. 
The Great Dismal Swamp is not included in the extent.
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Figure 23. Stream-burning the ditch-network into the DEM. Representative section of the ditches shapefile (left; provided by the 
CMCC) used in the stream-burning process on the interpolated 2-ft (0.61 m) interval DEM (Figure 3). The same section after 
stream-burning the ditch network (right). The inset shows the location of the section (red box) within the City of Chesapeake 
(light green). The Pocaty River is shown in the northwest comer of the image and a tributary of the Northwest River is shown in fi
the Southwest comer of the image.
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Figure 24. The 2-ft interval DEM after stream-burning in the ditch network. The Great 
Dismal Swamp is not included in the extent.
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Hydrologic Model

The National Hydrology Dataset (NHD: USGS) was used to determine the extent of the 

two watersheds in which the City of Chesapeake lies: Hampton Roads and the Albemarle 

Sound. These watersheds extend beyond the boundary of Chesapeake, and thus upslope 

values influence drainage values within the city. Consequently, I created a total 

watershed flow accumulation grid from the USGS 5-ft vertical resolution (30m x 30m 

pixel) DEM using ArcGIS-9.1, ArcToolbox, Spatial Analyst extension. Next, I extracted 

a 1-pixel (30m x 30m) wide grid along the city boundary to quantify regional flow 

accumulation from outside Chesapeake. This regional flow-accumulation raster was 

integrated with the 2-ft (0.61 m) vertical resolution flow-direction raster of the city to 

produce a more accurate local flow-accumulation raster (Figure 25 [partial extent]) that 

accounted for regional flow accumulation (ArcGIS-9.1, ArcToolbox, Spatial Analyst). 

This local-accumulation raster was used to create a topographic soil moisture index 

( I'MI), described below.

Topographic Soil Moisture Index (TMI) Grid

Soil moisture characteristics (SSURGO Soil Surveys # va550, va800, va810: 

USDA, Natural Resources Conservation Service [NRCS] Soil Data Mart) were inherent 

in the Cs. melanura HSI (from Chapter II) used in this study. As such, the use of soil 

characteristics in the soil moisture index would likely result in statistical redundancies. 

Therefore, I used a more complementary TMI (after Beven, 1997) to circumvent these 

issues in lieu of Iverson et al.’s integrated soil moisture index (1997) because the TMI 

uses only topographic derivatives. As a result, my model will have the theoretical
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Flow Accumulation (pixels)
H igh: 2049
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Figure 25. Flow-accumulation grid after stream-burning. The same section as Figure 21 
showing of the local flow-accumulation grid from the interpolated 2-ft (0.61 m) interval, 
stream-burned, DEM and the regional flow-accumulation grid. Pixel values represent the 
number of 30m x 30m upslope pixels. The location of the inset within the city of 
Chesapeake is defined in Figure 21.
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equivalent of a soil moisture index with both soil and topographic properties.

The construction of a TMI surface model for the City of Chesapeake was based 

on the following equation (after Beven, 1997):

Equation 4: TMI = In (A / tan (3)

Where pixel values for A = flow accumulation surface (Figure 25 [partial extent]) and P = 

DEM slope surface (Figure 26). The final TMI surface was created in grid format (Figure 

27 [30m x 30m pixel]) using ArcGIS-9.1, ArcToolbox, Spatial Analyst extension.

Soil moisture values that coincided spatially with the locations for each of the 46 

trapping sites were extracted from the TMI grid to create a soil moisture point shapefile. 

Extracted TMI values (from Equation 4) were used as the independent variable in a linear 

regression model (a = 0.05) to test the hypothesis that variation in captures of Cs. 

melanura among trapping sites (dependent variable) is related to spatial variation in the 

calculated TMI values (Zar, 1996). Because the interpolated DEM used to create this 

TMI did not include the Great Dismal Swamp, TMI values for trapping sites located in 

the Swamp were not included in this analysis. This regression model was made using 

NCSS, v2000.
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Figure 26. Slope surface of the interpolated 2-ft (0.61 m) interval, stream-burned, digital 
elevation model.
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Figure 27. Topographic [soil] moisture index (TMI) surface. Pixels values were 
calculated using Equation 4.

TMI values
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The final TMI grid was normalized and rescaled before integration into the final 

dynamic predicted abundance models (below) with the following equation:

Where TMIr = normalized and rescaled TMI pixel values, TMIo -  calculated TMI vales 

(Equation 4), TMImin -  the lowest pixel value in the calculated TMI, and TMImax -  the 

highest pixel value in the calculated TMI.

Weekly Weather Grids

Neither the Cs. melanura HSI (from Chapter II) nor the TMI described above are prone 

to temporal changes because the factors involved in their creation are relatively static 

(e.g., topography, soil characteristics, vegetation patterns). The primary role of weekly 

weather data grids described below was to provide a dynamic and environmentally based 

aspect to the abundance models created in this study.

Integration of temperature and precipitation data into a single output is 

problematic because they are represented by different data types (intervals for 

temperature and ratio for precipitation) and relative scales. Consequently, both datasets 

were normalized and rescaled using the following equations:

Equation 5:
{TMIq -  TMImin)

TMIr -  ------------------------
(:TMImax-

x  100
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Equation 6 (temperature): X r

Equation 7 (precipitation): Xr -  (X0 + Xmax) X 100

Where Xr = the normalized and rescaled value (0-100), X q -  the observed value, Xmin is 

the historical minimum, and Xmax is the historical maximum. Minimum and maximum 

extremes were derived from different data sources and referenced below, where 

appropriate.

Some of the data needed for the construction of weekly weather grids were not 

available for 2004 (i.e., 3-hr PA data), the period when the capture data were collected. 

Instead, I used weather data collected in 2006. This use of 2006 data in my model 

construction is not an issue because the relationships between mosquito activity and 

variations in weather (i.e., temperature and precipitation) are so well documented.

Weekly Average Air Temperature (AWAT; constant-value) Grids 

Spatially explicit temperature data for the study area are not available; as a result AWAT 

grids incorporated into these models had a constant, citywide value. AWAT in 2006 (Xn) 

for Chesapeake were calculated using Equation 6 and transferred to constant-value 

AWAT grids using Quality Controlled Local Climatological Data from the National 

Climatic Data Center (QCLCD: NCDC) collected at the NWS Station at Chesapeake 

Regional Airport ([KCPK] 36.6639°N, 76.3306°W; Appendix H). Historical minimum

105

( X q  X min)
x  100

(X max Xmin)
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(Xmin = 2.8 C) and maximum (Xmax -  32.2 C) AWAT values (March -  October) were 

based on 30-yr monthly records from 1971-2000 (NCDC, 2002) collected at station 

KAKQ.

Weekly Precipitation Accumulation (PAI Grids (NEXRAD Level-Ill Precipitation Data 

Acquisition and Preparation)

NEXRAD Level-Ill (WSR:88D), 3-hr PA data (NOAA, NCDC) were used to create 

spatially explicit, georeferenced weekly “accumulated precipitation” grids. These data 

may be downloaded at no cost (http://www.ncdc.noaa.gov/nexradinv) in ArcView 

shapefile format using the NEXRAD Data Exporter (Figure 28; [Java] BETA v.1.3.3). 

The NEXRAD data source closest to Chesapeake is KAKQ, Wakefield, Virginia (a.k.a., 

National Doppler Radar Site, Norfolk/Richmond).

NEXRAD 3-hr PA shapefiles were preprocessed into weekly PA (WPA) grids 

using a series of models created in ArcGIS v.9.1, Modelbuilder. These models make the 

creation of WPA grids streamlined and highly repeatable.

WPA grids were created in ArcGrid format by batch-conversion of 3-hr PA shapefiles for 

a given day (Figure 29; 1km x 1km pixels, NAD-1983, State Plane, Virginia [South], 

FIPS-4502 Ft. Projection: Lambert Conformal, Conic). Only shapefiles with coverage 

(polygons) within Chesapeake were used in this model; thus, the number
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Figure 28. Sample of NEXRAD 3-hr precipitation accumulation data in ArcView 
shapefile format. Data (14 May 2005 [0214-0514 EST]) were collected at KAKQ, 
Wakefield, Virginia (Lat/Long: 36.9839°N, 77.0072°W). Chesapeake is outlined in black.
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Figure 29. Sample of NEXRAD 3-hr precipitation accumulation data converted to 
ArcGrid format. (Data (14 May 2005 [0214-0514 EST]) were collected at KAKQ, 
Wakefield, Virginia (Lat/Long: 36.9839°N, 77.0072°W). Chesapeake is outlined in black.
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of shapefiles used per day ranged from zero (no polygons extending into Chesapeake) to 

eight. Next, all 3-hr PA grids were reclassified using a model that reassigned “no-data” 

values a new value of zero (Figure 30). This step was needed because a no-data pixel 

value in any of the 3-hr PA grids excluded that pixel in the final product but zero 

provided a real value. Once converted and reclassified, all 3-hr PA grids were clipped to 

the extent of Chesapeake’s boundary and resampled to 30m pixels. The clipped 3-hr PA 

grids were then added together to create WPA grids using overlay analysis in ArcGIS 

v.9.1, Spatial Analyst extension.

The final step in creating WPA grids was to normalize and rescale (0-100) 

precipitation values (Xrp) using Equation 7 (Figure 31). I was unable to find weekly or 

monthly historical minimum and maximum P A for any of the three nearby weather 

stations (i.e., KAKQ, KCPK, KORF [Norfolk International Airport]) or from the CMCC; 

only averages were reported. Thus, minimum (Xmin = 0.0 in [0.0 cm]) and maximum (Xmax 

= 10 in [25.4 cm]) WPA values for Chesapeake were based on information provided 

during a personal communication with Evan Stewart (Meteorologist, WVEC Television 

[March 2006]).

Weekly Abundance Maps

Spatially explicit weekly maps that predict abundance of Cs. melanura during eight 

different periods (Appendix I) were produced in a GIS (using ArcGIS v9.1). Periods were 

not selected randomly, but were chosen to represent the variation in AWAT and PA.
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Figure 30. Sample of NEXRAD 3-hr precipitation accumulation reclassified (No data =
0) grid. Chesapeake is outlined in black. NAD-1983, State Plane, Virginia (South), FIPS- 
4502 Ft. Projection: Lambert Conformal, Conic (14 May 2005 [0214-0514 EST]).
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Figure 31. Final resampled NEXRAD-based precipitation accumulation grid. Pixel (30m 
x 30m) values represent precipitation accumulation for the week of May 14 -2 0 , 2006. 
Precipitation values were calculated using Equation 7 and weighted using the partial R 
value for precipitation (0.372) from the time-lag regression model (Table 20).
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First, weekly maps representing the combined influence of calculated soil 

moisture (TMI), AW AT, and 2-week lag time PAs were generated on a pixel-by-pixel 

basis using an arithmetic overlay operation in ArcGIS v.9.1, Spatial Analyst extension 

with following equation:

Equation 8: WSCwr = (TMI x 7?tmi) + (Xn x -Kawat ) + (X^-i x 7?wpa) x 100

Where WSC’wr = the combined and weighted influences on Cs. melanura abundance for 

weighted TMI, AW AT, and WPA, TMI = the rescaled (0-100; Equation 5) TMI grid 

pixel values, 7?tmi -  the regression coefficient for the TMI, Xn = the rescaled (0-100; 

Equation 6), constant-value, AW AT grid pixel values, Raw at = the partial regression 

coefficient for AW AT, Arp_2 = the rescaled (0-100; Equation 7) WPA grid pixel values 

(for the 2-week lag-time model [Figure 32), and 7?wpa -  the partial regression coefficient 

for total WPA.

Final weekly abundance maps (grids) were created on a pixel-by-pixel basis with 

a spatial overlay operation using the following generalized equation:

Equation 9: YAW = H SICm X fVSCWR

Where Taw = predicted weekly predicted adundance for Cs. melanura and HSIqm -  the 

rescaled pixel values (0-100) for habitat suitability determined in Chapter I (Figure 33) of 

this dissertation. Equations 8 and 9 are visually displayed in Figure 34. Following the 

overlay operation, final weekly abundance maps were reclassified into three equal 

intervals.
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Figure 32. Pixel values for the eight final NEXRAD-based (weighted) weekly precipitation accumulation grids. Weeks 
specified in Appendix I. Pixel values were calculated using Equation 4 and weighted using the partial R value for 
precipitation (0.372) from the time-lag regression model (Table 20).
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Figure 33. Rescaled (0-100) Habitat Suitability Index for Cs. melanura generated in 
Chapter II.
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Figure 34. Summary of generic arithmetic operations, components, and products for Equations 8 and Equation 9: A) weighted 
topographic soil moisture index [TMI x /?tm], B) weighted [constant-value] average weekly temperature grid [Xn x i?Aiw], C) 
weighted weekly precipitation accumulation grid [Xrp.2 x / ? p a w ] ,  D) the combined influences on Cs. melanura abundance for A - 
C [IESCwr], E) the rescaled habitat suitability grid [//5/cm] determined in Chapter I of this dissertation, and F) the final product 
[ E a w ] ,  the weekly predicted adundance for Cs. melanura. Input grids used are for peroid 3 (Appendix I).
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Results

Captures

Of the 46 permanent mosquito-trapping stations, 28 were located in or near (<200m) 

palustrine wetlands, the primary breeding habitat of Cs. melanura. This number increases 

to 38 traps at 400m, a distance well within the potential dispersal distance of Cs. 

melanura. Of the remaining trapping sites, six were located in or near (<200m) estuarine 

wetlands and two were in uplands; no traps were located in or near lacustrine or riverine 

wetlands. These locational assessments were made using System-Level National Wetland 

Inventory maps (USFWS, 2006).

In all, 275,726 female mosquitoes, representing the 29 CDC-listed EEE and WNV 

vector species (Appendix F), were captured by the CMCC in 2004. Of these, 171,071 

(-62%) were Cs. melanura (Figure 35).

There was no significant difference in mean captures of Cs. melanura at trapping 

sites between 2003 and 2004 (P = 0.325, F  = 0.99, df=  60 [Table 19]). In addition, 

captures of Cs. melanura at individual trapping sites common to both 2003 and 2004 

were positively correlated (R = 0.812 [Table 19]). Results of these analyses indicate that 

both spatial and temporal similarities in capture patterns at trapping sites between the two 

years are sufficient to justify the analysis of 2004 capture data only.
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Figure 35. Summary of the cumulative numbers of the 10 most common mosquito 
species. The first Y-axis (left) represents the percent of total of captures of the 10 most 
frequently collected mosquito species by the CMCC from April through October, 2004. 
The second Y-axis (right) represents the cumulative percent of 2004 total captures as 
each species is added.
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Table 19. Results the a priori single-factor ANOVA used to determine if there were 
differences in captures of Cs. melanura, by trapping site, between 2003 and 2004. Mean 
capture/TN and standard error are provided for each year. Pearson’s correlation 
coefficient for captures/TN of Cs. melanura at individual trapping sites common to 2003 
and 2004 is also provided.____________________________________________________

ANOVA

Source d f SS MS F P

Groups 1 49,483 49,483 0.99 0.325

Trapping Sites 58 2,793,446 48,162

Total 60 2,840,929

2003 mean = 178.3

2003 Std Error = 46.7

2004 mean = 121.0

2004 Std Error = 32.1

Correlation Coefficient (R) = 0.812
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Table 20. Summaries of multiple regression results for the six time-lag intervals. Values 
describe the relationships between captures of Cs. melanura1 and the independent 
variables weekly precipitation accumulation (PA) and average weekly air temperatures 
(AWAT). Regression parameters (i.e., observations [week =1], degrees of freedom [df\) 
and P values (significant values are underlined) regression equation coefficients and 
partial R values (i.e., Intercept, Precipitation, Temperature), and variance inflation factors 
(VIF) are provided.

1-week lag 2-week lag 3-week lag 4-week lag 5-week lag 6-week lag

0.519 0.585 0.529 0.390 0.358 0.433

R2 0.269 0.342 0.280 0.152 0.128 0.188

RMSE 375.03 348.33 361.65 385.30 399.03 385.87

Observations 30 29 28 27 26 25

d f 29 28 27 26 25 24

F 4.969 6.757 4.658 2.237 1.690 2.539

P 0.014 0.004 0.019 0.128 0.207 0.102

Intercept -493.50 -422.51 -310.68 -289.87 -227.63 133.58

VIF 1.11 1.06 1.06 1.00 1.02 1.02

PAf 
(partial R) -0.015 0.372 -0.366 -0.006 0.011 -0.292

PAf
(equation) -5.027 120.79 -123.29 -1.79 3.54 -99.69

AWATt+ 
(partial R) 0.523 0.371 0.482 0.390 0.356 0.284

AWATn
(equation) 51.18 38.69 52.36 42.45 39.82 32.25

^Regressed against current average A WAT and lagged PA (1-week intervals)
I I -week intervals (lagged; see Table 18)
III -week intervals (not lagged; see Table 18)
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Figure 36. Summary of regression coefficients and root mean square error values for the 
precipitation time-lag model. The first X-axis (left) represents the regression coefficients 
(R) and the second X-axis (right) represents the root mean square error values for each 
the six a priori regression models used to test the hypothesis that fluctuations in weekly 
captures of Cs. melanura in 2004 were driven by average weekly air temperatures and 
recent precipitation accumulation (see Table 18).

Weather Lag Time Analysis (a priori)

Of the six time-lagged regressions that tested the hypothesis that weekly captures of Cs. 

melanura in 2004 were positively dependent on the collective properties associated with 

AW AT and recent PA, only three had significant (P < 0.05) relationships, i.e., the 1-, 2-, 

and 3-week precipitation lag time models (Table 20). The 2-week model had the highest 

regression coefficient (R = 0.585) and the lowest root mean squared error (RMSE = 

348.33; Table 20 and Figure 36). The maximum variance inflation factor (VIF) for any
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variable of the six regression models was 1.11, for the 1 -week lag model. Consequently, I 

can assume no multicollinearity between the two independent variables. Fluctuations in 

Cs. melanura captures were best explained, with the least residual error (RMSE), by the 

2-week precipitation lag-time model (Table 20; Figure 36). This suggests that the 

activities of Cs. melanura are, at least in part, related to by temperature and recent 

precipitation. Moreover, I should now be able to transfer these relationships to dynamic 

(weekly) abundance models that use spatially explicit weather data (i.e., NEXRAD 3-hr 

PA data).

Topographic Soil Moisture Index (TMI)

A significant positive relationship was observed between mean captures/TN of Cs. 

melanura and TMI values at trapping sites (P = 0.0015, F=  11.689, d f -  39 [Table 21]). 

This result, similar to the previous time-lag analysis, supports the notion that Cs. 

melanura activities are related to environmental factors that tend to increase both 

humidity levels and the probability of surface wetness. If so, it is feasible to integrate this 

relationship with the spatially explicit weather data and the more static HSI from Chapter 

II to create a weekly abundance model for Cs. melanura.

Weekly Abundance Maps

The integration of weighted static grids, i.e., H S I c m , TMI (Equation 8 [Rtmi = 0.485; 

Table 21]), with more dynamic weighted surfaces, i.e., AW AT (Equation 8 [Rpaw = 

0.372; Table 20]) and PA (Equation 9 [ R a t w  = 0.371; Table 20]) resulted in the creation 

of weekly Cs. melanura abundance maps (Equation 9) for, and based in part on, recent 

weather patterns. Only one of the eight weekly abundance maps (see Periods in Appendix
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I) has predicted abundance of Cs. melanura exceeding 66% (moderate) of total potential 

abundance (Table 22; Figure 37).

Table 21. Regression results for the hypothesis that variation in captures of Cs. melanura 
among trapping sites is related to spatial variation in the calculated topographic soil 
moisture (TMI) values._______________________________________________________

ANOVA

Source d f SS MS F P

Intercept 1 82,476.3 82,476.3 11.689 0.0015

Model 1 447,270.2 447,270.2

Error 38 1,454,039 38,264.2

Total 39 1,901,309 48,751.5

Root Mean2 Error = 195.61

R = 0.485

r 2 = 0.235

7-intercept = 130.78

TMI coefficient = 64.07
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Table 22. Summary of abundance values, including descriptive statistics, for the eight 
selected Periods. Refer to Figure 37 and Appendix I. Abundance: Low = 1-33%, 
Moderate = 34-66%, 67 = 100% of maximum potential weekly abundance for Cs. 
melanura.

Period^ I V ©x —h
*

34-66%f 67-100%t Mean Std Dev

A 96.68 3.32 0.00 34.10 5.91

B 67.88 32.12 0.00 43.60 15.41

C 21.55 77.66 0.79 59.16 14.04

D 61.02 38.98 0.00 45.86 16.09

E 85.72 14.28 0.00 33.71 11.55

F 93.05 6.95 0.00 35.29 8.39

G 97.49 2.51 0.00 33.83 5.16

H 99.85 0.15 0.00 33.05 1.29

Value based on 768,696 (30m x 30m) pixels.
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Figure 37. Final predicted weekly abundance grids for Cs. melanura. This includes Periods A-H (Appendix I) calculated using 
Equations 8 and 9. Classifications for low, moderate, and high predicted abundances are shown.
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Discussion

Culiseta melanura is a common and widespread mosquito of the swamps of the eastern 

and central United States (Andreadis, 2002). Larvae generally develop in relatively cool 

subterranean habitats (Mahmood and Crans, 1998; Andreadis, 2002); however, they have 

been collected in discarded tires, man-made ditches, and temporary pools (Spielman, 

1964; Wallis and Whitman, 1967; Pitts and Holbrook, 2000). Although not a human 

biter, and thus not generally the subject of service requests (2,411 in 2003; CMCC,

2004), its competence as the primary enzootic vector for EEE has made Cs. melanura the 

primary focus of the CMCC’s adulticide efforts. In addition to adulticide, the CMCC 

began an early season (leaf-off) aerial larvacide program in 2004 to reduce the first 

broods of Cs. melanura, Aedes vexans, and Ochlerotatus canadensis (CMCC, 2004).

Culiseta melanura has a life history unique among species found in the region 

(Cs. melanura type; Crans, 2004). Like most Culex spp., it is multivoltine (> 1 brood/yr), 

but unlike Culex, which overwinters as an adult, Cs. melanura overwinters as larvae 

(Crans, 2004). The timing of adult emergence the following year is based on when eggs 

were laid, at what stage larvae overwintered, and water temperatures in larval habitats 

(Crans, 2004; Mahmood and Crans, 1998). Considering that soil temperatures are 

influenced by the temperature of precipitation (Hirobe et al., 1998), it is intuitive that 

warming rains will increase the temperatures of sub-surface water and surrounding soils 

associated with larval mosquito habitats, and thus increase rates of larval development. 

Rainfall also increases adult flight activity and host-seeking behavior (Shaman and Day,

2005); both would be reflected in increased captures at trapping sites—the dependent 

variable in my study’s models.
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Public health officials have long understood that climate drives the overall 

distribution of mosquito-bome diseases, but weather affects the timing and magnitude of 

outbreaks (Gill, 1920, Dobson and Carter, 1993, Epstein et al., 1998). Chesapeake lies 

within the Coastal Plain of the mid-Atlantic region where the most significant weather 

patterns are associated with storms. Between 1942 and 1984, nearly 1,350 powerful 

Atlantic storms have been recorded (Dolan et al., 1987). Many of these storms develop in 

the westerly wind belt of the middle-latitudes of the Atlantic Ocean, and therefore, are 

extratropical storms, or ‘northeasters.’ Another type of coastal storm forms over warm, 

tropical waters; these storms include hurricanes and the less powerful tropical storms 

(Dolan et al., 1988). Although these storms are rare compared to weaker storm systems, 

the energy and rainfall they deliver has a lasting influence on ecological processes, 

landscape configuration, and plant community structure (Young et al., 1995). Storms are 

often followed by a proliferation of mosquitoes, including Cs. melanura (Nasci and 

Moore, 1998), which can exploit additional breeding habitat resulting from heavy 

precipitation and subsequent increases in near-surface wetness and humidity that expand 

saturated lowlands (Shaman and Day, 2005).

Although mosquito abundance and the transmission of mosquito-bome pathogens 

are affected by hydrologic variability resulting from the spatial distribution of 

precipitation, and thus potential habitat, direct associations based on weather patterns 

alone are difficult to establish (Shaman and Day, 2005). The ability to map when, where, 

and how much precipitation occurs needs to be supplemented by the capability to model 

the settlement of water. Thus, the accuracy of surface wetness models is improved by 

incorporating topography and soil characteristics (Shaman and Day, 2005).
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The TMI (after Beven, 1997) enabled me to model the distribution of areas in the 

landscape that are most prone to surface moisture. Because soil and vegetation 

characteristics were incorporated in the HSI for Cs. melanura (Chapter II), their reuse in 

my soil moisture index would be redundant. I was able to further improve the accuracy of 

the TMI by integrating the extensive drainage ditch network used in the hydrologic 

model by applying a stream-burning technique. This added both physical and ecological 

strength to the overall abundance models. Physically, the effect of ditches on 

Chesapeake’s hydrology was captured and reflected in the TMI. Ecologically, it resulted 

in the formation of higher quality man-made mosquito habitat in otherwise inhospitable 

areas. Chesapeake was once largely covered by the forested wetlands of the Great Dismal 

Swamp, but much has been, and continues to be, ditched for farming and urban/suburban 

development. This network of ditches, now covering much of the city, was shown to be 

important habitat to Cs. melanura in Chesapeake (see Chapter II).

The positive relationship between extracted TMI values and Cs. melanura 

captures at trapping sites in my study was expected. This expectation was based to the 

proven efficacy of the soil moisture models of Beven (1997) and Iverson et al. (1997) and 

a well-documented dependence of mosquitoes on standing water.

Considering the meteorological and other affinities (described above), the positive 

relationships between Cs. melanura abundance and both warm temperatures and 

increased precipitation in my study was expected. This finding is further supported by 

Mahmood and Crans (1998), who found that the rate of larval development was 

temperature-dependent. My finding that Cs. melanura has a ~2-week delayed response to
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precipitation accumulations is supported by Shaman et al. (2002), i.e., a 10-day lag was 

most effective in a similar model.

Fluctuations in Cs. melanura captures were best explained, with the least residual 

error, by the 2-week lag-time model (Table 20; Figure 36). This suggests that the 

activities of Cs. melanura are, at least in part, related to temperature and recent 

precipitation. With these affinities and response times statistically established, and further 

supported in the literature, their transference to weekly Cs. melanura abundance models 

that use the static habitat suitability index (from Chapter II), TMI and AW AT grids and 

spatially explicit precipitation data (i.e., NEXRAD 3-hr PA data) is justifiable.

Few studies have used NEXRAD data for modeling the habitat or abundance of 

organisms dependent on the distribution of surface water; most involve the movements of 

migratory birds (summarized in Diehl and Larkin, 2005). There are, however, many 

studies that use NEXRAD to model hydrology or to predict flooding or weather patterns 

(Bieringer and Ray, 1996; Bedient et al., 2000; Bedient et al., 2003; Whiteaker et al., 

2006, among others). These latter applications of NEXRAD are similar to mine—the 

prediction of areas within the landscape most prone to surface wetness.

Besides being readily available and free, NEXRAD Level-Ill (WSR:88D) data 

can be downloaded in several commonly used spatial formats (e.g., ASCII, ArcView 

shapefile, GeoTIFF). The only real limitation to NEXRAD data is the 1-km pixel size. A 

smaller pixel would have allowed more fine-grained results in weekly abundance maps, 

but one kilometer is well within known flight ranges for Cs. melanura (Turell et al.,

2005).
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The primary benefit of the use of NEXRAD 3-hr PA data was the addition of a 

near real-time component to weekly abundance maps. The eight Periods (A-H; Appendix 

I; Figure 37) were not selected at random, but instead are intended to represent the range 

of temporal and spatial variation in predicted Cs. melanura abundance throughout the 

trapping season based on fluctuations in air temperature and precipitation accumulation. 

TMI and HSI values are static and do not change each week, but temperature and 

precipitation usually do. From these images (Figure 37), the effects of dynamic 

meteorological data on the distribution of Cs. melanura become evident. Two general and 

expected patterns arise. First, increases in predicted abundance tend to occur 

concentrically from core areas where HSI values are high (Figure 33). Second, and a 

function of the first pattern, as temperature and precipitation increases (Figure 32, 

Appendix I), areas of moderate predicted abundance became less disjunct (Figure 37). As 

expected, areas with high predicted abundance were, by far, the least common, and 

among the eight Periods, only occurred in small isolated pockets during Period C. Thus, 

areas with these elevated abundance values require both high temperatures and copious 

rainfall in order to develop.

Management Implications

Enzootic viral transmission cycles often are found in specific rural habitats where they 

can go largely undetected by most monitoring programs (Moore et al., 1993). This is 

especially true when vector species are not human biters, and thus are not frequently 

reported. When coupled with favorable weather and environmental conditions, viral 

amplification cycles can develop in Cs. melanura populations, and can increase in both
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intensity and spatial distribution, leading to potential epizootic outbreaks (Moore et al., 

1993). Thus, from a prevention and control standpoint, it is critical that mosquito control 

agencies such as the CMCC have the ability to rapidly track the spatial and temporal 

distributions of potential arboviral vectors such as Cs. melanura. My weekly abundance 

models (maps) provide this ability. Weekly maps can be prepared quickly using a series 

of sub-models I created in ArcGIS ModelBuilder. These sub-models perform arduous 

data preprocessing in streamlined and user-friendly menus. Most of the data needed are 

either free (e.g., NEXRAD, NHD, DEM, weather summaries) or generated by the agency 

itself (e.g., capture data). In addition, weekly maps are not hindered by biases associated 

with human population densities and residential complaints. They do, however, give the 

CMCC the ability to respond quickly to distributional changes of Cs. melanura, thus 

lowering transmission potential in nearby suburban and urban areas.
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CHAPTER IV

SPATIALLY EXPLICIT PROTOCOLS FOR THE CONTROL OF 

CULISETA MELANURA (COQUILLETT) IN COASTAL-PLAIN 

HABITATS OF THE MID-ATLANTIC REGION

Introduction

Advances in Earth-observing sensors have resulted in the development of a wide variety 

of spatially explicit data applicable to the ecological study of disease vectors (Goetz et 

al., 2000). The development of GIS-based models of vector abundance and disease 

transmission using these data is now a common approach in arboviral research (Beck et 

al., 1994; Washino and Wood, 1994; Kaya et al., 2004; and others). As a result, 

surveillance, monitoring, and related public health policies associated with the study of 

arthropod-borne diseases (a.k.a., arboviruses) also have become more applied through the 

integration of epidemiological and spatial data (Clarke et al., 1996).

Although arboviruses have threatened public health in North America since 

Colonial times (Fischer and Schweigmann, 2004; Andersen, 2006), new diseases appear 

from time to time. One such mosquito-bome arbovirus in the mid-Atlantic region (MAR) 

is eastern equine encephalitis (EEE; Hassan et al., 2003). First isolated in North America 

in 1933 during simultaneous human outbreaks in Delaware, New Jersey and Virginia, 

EEE persists in the eastern North America, the Caribbean, and South and Central 

America (Weaver et al., 1999). Because of the relatively long history of association with 

North America, the epidemiology for EEE is well understood.
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EEE foci are associated with freshwater swamps, the preferred habitat of the 

primary reservoir vector, Culiseta melanura (Weaver et al., 1999). Swamp-dwelling 

passerine birds are the dominant reservoir hosts (Komar et al., 1999). Once enzootic 

transmission is established, the virus becomes available to epizootic bridge vectors such 

as Coquillettidiaperturbans and Aedes vexans, which readily feed on mammals as well 

as birds (Hassan et al., 2003).

The purpose of this chapter is to provide the reader and potential users with the 

necessary protocols for modeling the spatial and temporal abundance and distributions of 

mosquitoes, with emphasis on Cs. melanura, in a real-world coastal landscape of the 

MAR. Because most mosquito-control and public health agencies are unable to conduct 

exhaustive in situ monitoring and environmental data collection, they would benefit from 

the application of models capable of predicting the temporal and spatial distributions of 

mosquitoes at a landscape-scale (Shaman et al., 2002). My study produces such a 

potentially useful series of models.

The intended audience for this final chapter is primarily GIS analysts employed 

by mosquito-control and public health agencies. In addition, environmental managers and 

decision makers of these agencies with limited experience in spatial modeling could use 

these protocols to make decisions regarding mosquito monitoring and control practices.

In Chapter II of this dissertation, a set of scale-dependent habitat suitability 

indices (HSI) for mosquito species based on the “Hutchinsonian-niche concept” 

(Hutchinson, 1957) was constructed using spatially explicit habitat data (e.g., satellite 

imagery derivatives, soil surveys). This approach required the development of baseline 

classification models capable of identifying and ranking suitable habitat-based
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environmental characteristics. These models, generated from inferential statistical models 

(i.e., multiple linear regression) and formatted for use in a GIS, are used to predict areas, 

or “patches,” within the landscape in which mosquitoes are most likely to be abundant. 

Much attention was devoted to keeping the models streamlined, user-friendly, and not 

cost-prohibitive, while retaining the ability to process empirical data in real landscapes.

Chapter III augmented the semi-static HSI model generated in Chapter II with a 

dynamic GIS-based model using weather patterns and a topographic soil moisture index. 

This “dynamic” model is capable of predicting where and when adult Cs. melanura are 

likely to emerge in large numbers. The final products were weekly “predicted- 

abundance” maps that give mosquito-control agencies the ability to respond quickly to 

landscape-level changes in mosquito distributions using information from temperature 

and rainfall patterns.

Chapters II and III are designed for publication as separate entities. This chapter 

cogently summarizes the technical procedures of Chapters II and III together, with 

enough detail and background, for the recreation of a seamless series of models for 

predicting mosquito outbreaks. With the knowledge of how to apply these models (details 

to follow), mosquito-control agencies can pursue cost-reducing strategies that consider 

both spatial and temporal mosquito abundances at large spatial scales, e.g., the city of 

Chesapeake, an area of ~900km2.

Because of similarities in climate and mosquito assemblages, this sequence of 

models should be effective throughout coastal-plain and lower-piedmont areas in the 

MAR. However, the potential for portability of these models to upper piedmont and 

montane regions of the MAR would need to be tested because of effects of elevation
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from an ecological perspective. Higher elevations replicate higher latitudes and generally 

have different organismal assemblages. This is, in part, due to differences in climate (e.g., 

cooler temperatures, shorter active seasons) as well as differences in the mechanics of 

surface water distribution (e.g., soil type, slope, runoff and drainage potential). For 

example, Cs. melanura is found in lowland swamps throughout the MAR, but its range 

does not extend into the Appalachian range (Crans, www-rci.rutgers.edu).

In summary, this sequence of models should be useful to mosquito-control 

agencies because it consist of a series of robust components designed to use real-world 

data. First, the scale-appropriate HSI will establish a baseline model for mapping 

mosquito habitat. Secondly, the spatial integration of recent rainfall and temperature data 

will aid in locating, in near real time, which areas are the most likely to experience 

mosquito outbreaks in the coming days. This should lead to the development of 

environmentally sensitive strategies that will not only lower chemical and manpower 

costs by increasing the efficiency of control efforts, but also reduce transmission risks of 

mosquito-bome diseases such as EEE and West Nile virus (WNV). In addition, the 

software used for these models (i.e., ArcGIS) is the industry standard, and the data used 

(excluding capture data) are readily available and, in most cases free, making the use of 

these models by mosquito control agencies economical.

Methodologies

Study Area

These models were constructed with the cooperation of the Chesapeake Mosquito 

Control Commission (CMCC), Chesapeake, Virginia. Located in the Coastal Plain
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physiographic region (Figure 1), the climate of Chesapeake is humid subtropical and 

similar to the rest of Virginia east of the Blue Ridge Mountains (Woodward and 

Hoffman, 1991). Monthly temperatures range from -1.8 (January) to 31.6 C (July) based 

on 30-yr averages (1971 -  2000; NCDC, 2002) collected at National Weather Service 

(NWS) Station KAKQ, Wakefield, Virginia located at Wakefield Municipal Airport 

(Lat/Long: 36.9839°N, 77.0072°W), about 50 km west of Chesapeake. Temperature 

extremes are ameliorated by proximity to the Chesapeake Bay and the Atlantic Ocean. 

Annual average precipitation is 114.4 cm (45.05 inches) based on 30-yr averages (1971 — 

2000; NCDC, 2002). The growing season (frost-free days) for the region is 185 -  200 

days (Palone and Todd, 1998).

Chesapeake was selected for study because: 1) the structure of the landscape is 

representative of the regional diversity of land use in the MAR, 2) although recently 

established (2003), the CMCC is using advanced mosquito-control technologies, and 3) 

of the occurrence, within the city, of -30 mosquito species listed as potential vectors of 

EEE and WNV (Appendix A) by the Center for Disease Control (CDC). Suitable habitat 

for abroad range of mosquito species, including drainage ditches, tidal and freshwater 

creeks, and the Great Dismal Swamp with its canals and forested wetlands, is found 

throughout the Chesapeake. Thus, good mosquito habitat is often found near high 

densities of humans, creating a landscape conducive to the transmission of EEE, WNV, 

and other mosquito-bome diseases.
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Chapter II (Overview)

In Chapter II, linear regression models were used to predict habitat suitability for 

mosquitoes in all areas within the landscape based on mosquito abundance (dependent 

variable [described in detail below]) at associated trap sites and habitat attributes 

(independent variables, Table 4). More specifically, each habitat attribute constituted a 

spatially continuous description of landscape pattern, such as hydrology, soil moisture 

properties, and digital satellite imagery enhancement (e.g., vegetation index), represented 

in raster format.

Dependent Variables

Mosquitoes were captured with CDC (CC>2-baited) light traps stationed at 46 

permanent trapping sites throughout Chesapeake (Figure 1) from early April through 

early November, 2004. Only captures of females were used in analyses.

Model validation using capture data for alternate years (2003 and 2005) when 

mosquitoes were collected would have spatial redundancies because many trapping sites 

sampled in 2004 were also used in 2003 and 2005. In addition, the number of trapping 

sites in 2003 with sufficient trap nights (TNs) was smaller than 2004, and at the time 

analyses were run a complete set of 2005 capture data was not yet available. These 

problems are addressed below (see POLICY IMPLICATIONS: Sampling section). I 

conducted cross-year comparisons (2003-2004) to evaluate temporal patterns consisting 

of pair-wise /-test and correlation analysis of capture data for trapping sites common to 

both years (Zar, 1996). This analysis defined a statistically significant trend of similarity 

in captures between 2003 and 2004.
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Information on geographic location (coordinates) and species-level capture data 

for individual trapping sites were stored in a GIS in ArcView point-shapefile format. 

Capture data were normalized to account for variation in trapping effort among the 

trapping sites by dividing total captures of each species collected at each site by the 

number of trap nights for that site. Normalization of capture data was needed to 

determine relative abundances of species at various locations. For example, if 1,000 

individuals were captured at each of two trapping sites, and one of the sites was sampled 

twice as often as the other, it could be assumed that the relative abundance of that species 

at that site is half of the other, less sampled, site. Relative abundances are needed to 

determine the influence of independent variables across large spatial scales.

It was impractical to create predicted abundance models at the species level 

because of the large number (ca. 30) of mosquito species occurring in Chesapeake that 

are considered to be potential disease vectors. To reduce the number of models, only 

abundant species and species having high vector competence for EEE or WNV (N = 11; 

Table 1) were used. Vector competence is based on the susceptibility of mosquito species 

to dissemination of disease from a host, and transmission back to a host (Sardelis et al.,

2001). As the most abundant species, Cs. melanura (70.3% of the species modeled) was 

modeled separately (CSMN; Table 1) because its large numbers compared to the other 

species would have been overpowering. Capture data for the other 10 species were 

combined into four separate groups based primarily on similarities in habitat 

requirements and life cycles, as follows (after Crans, 2004): 1) a single “competent- 

vector” group (ALSP) including captures of all modeled species except Cs. melanura, 2)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



138

container-breeders (CONT), 3) swamp species (SWMP, excluding Cs. melanura), and 4) 

ephemeral pool species (EPHM; Tables 1 and 3).

Independent Variables

I used digital surrogates of habitat attributes as independent variables for these models 

because direct measurement of habitat attributes is not practicable at the landscape level 

(Goetz et al., 2000). Selection of attributes for inclusion is based, in part, on the ability to 

accurately represent, in digital format, critical niche dimensions of mosquitoes.

Many studies have linked the presence of disease vectors to spatial and temporal 

vegetation characteristics via spectrally derived vegetation indices (VI) that digitally 

represent various attributes of vegetative cover (e.g., vegetative moisture, biomass, 

photosynthetic activity; Goetz et al., 2000). Soil moisture properties and hydrologic 

features, well known to influence the suitability of mosquito habitats (Laird, 1988), were 

used.

I modeled vegetation attributes using Tasseled-Cap transformation (TC; Crist and 

Cicone, 1984). This VI was used in lieu of other, more commonly used Vis such as 

Normalized Difference Vegetation Index (a.k.a. NDVI), because its algorithms compute 

spectral information pertaining to soil and vegetation characteristics from all six Landsat 

bands, whereas most Vis use only red and near-infrared bands. It is important to note that 

algorithm coefficients are different for the different Landsat satellites (e.g., MSS, TM, 

ETM+) and they are easily calculated on ArcGIS ModelBuilder and Erdas Imagine 

software programs. Tasseled-Cap transformation reprojects data onto three orthogonal 

axes (components) that are known to correlate with suitable habitats of arbovirus vectors
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(Beck et al., 2000): TCI (brightness [soil characteristics]), TC2 (greenness [vegetation 

characteristics]), TC3 (wetness [soil and vegetation characteristics]).

Landsat-7 ETM+ was used because it is readily available, recognized by most 

applicable software packages (e.g., ESRI products, Erdas IMAGINE), and relatively 

inexpensive. Potential sources for Landsat imagery include: United States Geological 

Service (USGS) Earth Resources Observation and Science (EROS), NASA’s Landsat 

Science Office, and the Virginia View program at Virginia Tech. The ETM+ image, 

dated 29 July 2002, represents the peak of the CMCC’s mosquito trapping season.

Soil moisture variables were derived from SSURGO (Soil Survey Geographic) 

data that were exported in ArcView polygon shapefile format, free of charge, from the 

United States Department of Agriculture (USDA), Natural Resources Conservation 

Service’s Soil Data Mart.

There are challenges associated with incorporating SSURGO spatial data into a 

GIS. Raster data are limited to a single value per pixel; however, SSURGO map units are 

made up of one or more named soil types (components), each with a distinguishing suite 

of properties. Thus, thematic representations of the soil properties of map units describing 

suitable mosquito habitat were created by pooling the properties (e.g., weighted averages, 

Table 7) of each component as a function of the percent of map unit composition. Pooling 

component properties enabled the creation of a continuous single-value-per-pixel raster 

surface for soil properties associated with mosquito breeding habitats (Laird, 1988).

A hydrologic features variable was constructed using two polygon shapefiles: the 

National Hydrology Dataset ([NHD, 2002] USGS) and a digitized map of the canals and 

ditches of Chesapeake provided by the CMCC. These shapefiles were overlaid to create a
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single polygon shapefile, and then converted to a binary grid of Chesapeake water bodies 

(i.e., water = 1, not water = 0).

The impact of factors influencing landscape-level patterns, processes, and 

functions is scale-dependent (Turner, 1989). I accounted for this issue by creating a series 

of grids for each habitat-attribute raster by aggregating pixel data to increasingly larger 

scales (1 x 1 through 21 x 21, 30-m/side pixels, odd numbers only [Table 5, Figure 2]). 

ArcGIS ModelBuilder was used to generate this multi-stepped model that: 1) created a 

new set of raster layers for each independent variable, one for each of the 11 scales, and 

2) extracted values from these new rasters that correspond to locations for each of the 46 

trapping sites into a new shapefile (Figure 38).

Data for TC and soil property derivatives were aggregated using a moving- 

window function that replaced raw attribute values with the focal neighborhood mean of 

all pixels within their respective spatial scales. A similar function was used to generate 

focal neighborhood sums for quantifying the spatial density in binary data layers (e.g., 

water = 1, not water = 0).

Model Analyses

I needed to determine that the 11 spatial scales were statistically autocorrelated 

(interdependent), and that the interdependencies exceeded the maximum aggregation 

resolution (Table 5) in order to treat differing spatial scales as the same independent 

variable. To justify potential multiple-scale models, I performed a preliminary analysis to 

determine the range, or “on the ground” distance, of spatial autocorrelation associated 

with each independent variable (Table 10).
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I used Pearson’s correlation analysis (captures vs. extracted raster [point] values) 

to determine the scale at which each mosquito species group responded most strongly for 

each independent variable (Figure 39). These results were used to reduce the number of 

scales per variable for all possible regressions (APR) to one, thereby determining the pool 

of independent variables, including the scale of representation most important to each 

species group. Final selection of independent variables from this pool, for each species 

group, was based on a combination of high R2 -values and low root mean2 errors in APRs.

Multiple (linear) regression models were used to quantify habitat suitability, 

pixel-by-pixel, based on the most parsimonious set of independent variables as 

determined by APR models. A habitat suitability map for each species group was 

produced in a GIS (using ArcGIS v9.1) using linear regression equations to perform 

arithmetic overlay operations. Standardized raster-formatted data layers for each 

independent variable (described above) were weighted using the associated partial 

regression coefficients (b), and overlaid using the generalized equation below (Equation 

2). Following the overlay operation, final maps were ranked for suitability, i.e., percent 

predicted mosquito abundance (F).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



142

Input F e a tu re
C lass

Exlfe 
V a lu e s  to 
P o in ts  (tx)

Output R a s te r
(1x)

O utput F e a tu re  
C la ss  fix)

E x fft 
V a lu es  
P o in ls  (3x)

Output R a s te r  
(3x)

Output F e a tu re  
C la s s  (3x)

N etghrrom ood (Jxl

E xtract 
V a lu es  to 
Po in ts  (5x)

Output R a s te r  
(5x)

O utput F e a tu re  
C la s s  (Sx)N eigh tfC rhood  (5x)

Extra 
V a lu es  to  
P o in ts  (7x)

Output R a s te r  
(7x)

Output F e a tu reN eigh tffirhood  (7x)
C la s s  (7x)

-ft
V a lu e s  to 
P o in ts  (9x)

N eigh trorbood  (9x) U (  Output R a s te r U utput F e a tu re  
C la s s  (9x)

E xtract 
V alues 

P o in ts  ( l lx )
O utput R a s te r  

( llx )
O utput F e a tu re  

C la s s  ( l lx )N e ighbo rhood  ( l lx )

Exfffe
V a lu es  to 

P o in ts  (13>0
(C, O utput R a s te r  

(13x)
O utput F e a tu re  

C la ss  (13x)N eighbo rhood  (13x)

E xtract 
V alues to 

P o in ts (1 Sx)
O utput R a s te r  

0  5X)
O utput Fa a tu  

C la ss  (15x)
N eig h b o rh o o d  (15x)

-ft
V alu es  to 

P o in ts (17x)

Uutput R a s  
0 7 x )

N eig h b o rh o o d  (17x) O utput F e a tu re  
C la s s  (17x)

E x to  
V a lu es  to  

P a in ts  (ISx)

O utput F e a tu re  
C la ss  (19)0N eig h b o rh o o d  (19x)  e (  ° U,P“' nR? s te r

Ex^act 
V alu es  to 

Poin ts (21)0

O utput R a s te r  
(21x)

O utput F e a tu re  
C la s s  (21)0

N eig b o rh o a d  (21 x)

Figure 38. ArcGIS Modelbuilder model used to extract values from independent variable 
rasters coincident with the 46 trapping sites. Final outputs are a set of point shapefiles, 
with the aggregated values from rasters at each of the spatial scales specified in Table 5.
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Figure 39. An example of a plot used to determine the most influential scale for each 
independent variable. This shows a plot of Pearson’s correlation coefficients (R, Y-axis) 
between mosquito captures (ALSP group) and Tasseled-Cap brightness (TCI) for each of 
the 11 spatial scales (X-axis, [7x = seven pixels/side; see Table 5]). The highest R-value 
was for 7x (7.29 ha).

Chapter III (Overview)

It is well understood that spatial and temporal fluctuations in mosquito abundance are 

influenced by weather patterns (Rogers, 1967; Shaman et al., 2002; Reiter, 2001; Tong 

and Hu, 2001; USDA, 2004; and others). Rainfall increases soil moisture, near-surface 

humidity, and in turn, the diversity and abundance of habitats available to breeding 

mosquitoes. These increases intensify both flight activity and host-seeking behavior 

(Shaman and Day, 2005). Moreover, the distribution and accumulation of rainwater 

within natural watersheds at both macro- and micro-scales are closely tied to topography
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(Yeh et al., 1998; Bemhardsen, 2002; Garbrecht and Martz, 2000; Shaman et al., 2002). 

Researchers have long used topographic indices to predict relative soil moisture and 

potential surface wetness (Beven and Kirkby, 1979; Urban et al., 2000).

Chapter III addressed the spatial and temporal distribution, within the City of 

Chesapeake, Virginia, of the primary enzootic vector of EEE, the bird-feeding mosquito 

Cs. melanura (Nasci and Edman, 1984; Crans et al., 1994). Culiseta melanura is a 

common and widespread mosquito of the swamps of the eastern and central United States 

(Andreadis, 2002). Larvae generally develop in relatively cool subterranean habitats 

(Mahmood and Crans, 1998; Andreadis, 2002); however, they have also been collected in 

discarded tires, man-made ditches, and temporary pools (Spielman, 1964; Wallis and 

Whitman, 1967; Pitts and Holbrook, 2000). Although not a human biter, and thus not 

generally the subject of service requests (2,411 in 2003; CMCC, 2004), its competence as 

the primary enzootic vector for EEE has made Cs. melanura the primary focus of the 

CMCC’s adulticide and larvacide programs (CMCC, 2004).

The objective of Chapter III was to augment the semi-static HSI model for Cs. 

melanura (generated in Chapter II; Figure 31) with a dynamic GIS-based model 

incorporating recent weather patterns and a soil moisture index based on topographic 

derivatives to predict mosquito abundance. This “dynamic” model is capable of 

predicting not only where, but also when, adult Cs. melanura are likely to occur in large 

numbers. To achieve this predictability, I used recent spatially explicit meteorological 

data (NEXRAD: TVEYt-generation [Doppler] RADar, National Oceanic and Atmospheric 

Administration [NOAA], NWS) to create weekly “accumulated precipitation” grids that 

were overlaid onto weekly temperature grids and a topographic soil moisture index (TMI)
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to map areas with high probabilities of surface and subsurface wetness. Thus, knowing 

current rainfall amounts and distributions, I was able to map which areas of suitable 

breeding habitat, from Chapter II, are most likely to experience outbreaks of adult 

mosquitoes.

Dependent Variable

Only captures of Cs. melanura (2004) were used in analyses in this chapter. As in 

Chapter II, capture data were normalized to account for variation in trapping effort 

among trapping sites. Cross-year comparisons for this single-species model for 2003 and 

2004 consisted of ANOVA (between years) and correlation analysis (among sites) of Cs. 

melanura capture data for the trapping sites common to both years (Zar, 1996). Again, 

these analyses defined a statistically significant trend of similarity in captures between 

2003 and 2004, relieving the need to conduct parallel analyses for both years.

Independent Variables

A series of multiple linear regression models was used to test the a priori hypothesis that 

fluctuations in weekly captures of Cs. melanura were functions of current average 

weekly air temperature (AWAT) and recent precipitation accumulation (PA). Six time- 

sequential regression analyses were run (a = 0.05); in each successive regression, weekly 

captures of Cs. melanura were regressed against AW AT for the same 1 -week PA period 

for successively earlier weekly intervals (see Table 7). Weekly intervals of the three 

datasets (i.e., captures, AWAT, PA) used in these regressions were calculated for 32 

weeks (4 April -  10 October, 2004). Temperature and precipitation data for the City of
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Chesapeake were provided by the CMCC. Similar temperature datasets are widely 

available. Fluctuations in Cs. melanura captures were best explained, with the least 

residual error, by the 2-week lag-time model. This suggests that the activities of Cs. 

melanura are, at least in part, related to temperature and recent precipitation.

Soil moisture characteristics (SSURGO Soil Surveys # va550, va800, va810: 

USDA, Natural Resources Conservation Service [NRCS] Soil Data Mart.) were inherent 

in the Cs. melanura HSI created in Chapter II. As such, the use of soil characteristics in 

the soil moisture index would likely result in statistical redundancies. Therefore, I used a 

complementary TMI (after Beven, 1997) to circumvent these issues in lieu of Iverson et 

al.’s (1997) integrated soil moisture index that directly incorporates soil moisture 

derivatives. Because the TMI uses only topographic derivatives (i.e., digital elevation 

model [DEM], hydrologic model, slope surface) my model has the theoretical equivalent 

of a soil moisture index with both soil and topographic properties.

The components of the TMI, a digital elevation model (DEM), a hydrologic 

model, and a slope surface for the City of Chesapeake, were constructed in ArcGIS 

Spatial Analyst extension. Equation 4, after Beven (1997) was used to create the TMI 

surface model.

TMI values that spatially coincided with the locations of trapping sites were 

extracted from the TMI grid to create a soil moisture point shapefile. This procedure was 

similar to the one used in Chapter II for extracting pixel values at trapping sites from 

aggregated habitat attribute grids. Extracted TMI values were used as the independent 

variable in an a priori linear regression model testing the hypothesis that variation in 

captures of Cs. melanura among trapping sites (dependent variable) is related to spatial
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variation in the calculated TMI values (Zar, 1996). The significant positive relationship 

between captures/TN of Cs. melanura and TMI values at trapping sites (P < 0.05) 

justified the incorporation of this relationship into weekly abundance models for Cs. 

melanura.

Neither the Cs. melanura HSI (from Chapter II) nor the TMI described above are 

prone to temporal changes because the factors involved in their creation are relatively 

static (e.g., topography, soil characteristics, vegetation patterns). The primary role of 

weekly weather data grids described below was to provide a dynamic and 

environmentally based aspect to the abundance models created in this study.

Integration of temperature and precipitation data into a single output is 

problematic because they are represented by different data types (intervals for 

temperature and ratio for precipitation) and relative scales. Consequently, both datasets 

were normalized and rescaled using Equation 6 (temperature) and Equation 7 

(precipitation).

Spatially explicit temperature data for Chesapeake were not available; as a result 

AW AT grids used in these models had a constant citywide value. AW AT values in 2006 

for Chesapeake were calculated using Equation 6 and transferred to constant-value 

AWAT grids using Quality Controlled Local Climatological Data from the National 

Climatic Data Center (QCLCD: NCDC) collected at the NWS Station at KCPK 

(Lat/Long: 36.6639°N, 76.3306°W). Historical minimum and maximum AW AT values 

(March -  October) were based on 30-yr monthly records from 1971-2000 (NCDC, 2002) 

collected at station KAKQ, in Wakefield, Virginia.
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NEXRAD Level-Ill (WSR:88D), 3-hr precipitation accumulation data (NOAA, 

NCDC) were used to create spatially explicit, georeferenced weekly precipitation 

accumulation (WPA) grids. These data were downloaded at no cost 

(http://www.ncdc.noaa.gov/nexradinv) in ArcView shapefile format using the NEXRAD 

Data Exporter (BETA v.1.3.3). The NEXRAD data source closest to Chesapeake is 

KAKQ (a.k.a., National Doppler Radar Site, Norfolk/Richmond).

NEXRAD 3-hr PA shapefiles were preprocessed into WPA grids using a series of 

models created in ArcGIS v.9.1, Modelbuilder, making the creation of WPA grids 

streamlined and highly repeatable.

WPA grids were created in ArcGrid format by batch-conversion of 3-hr PA 

shapefiles for a given day (Figures 29 and 40; 1km x 1km pixels) using ArcGIS 

ModelBuilder. Only shapefiles with coverage (polygons) within Chesapeake were used; 

thus, the number of shapefiles used per day ranged from zero (no polygons extending into 

Chesapeake) to eight. Next, all 3-hr PA grids were reclassified using a model created in 

ArcGIS ModelBuilder (Figure 41) that reassigned “no-data” values a new value of zero. 

This step was needed because a no-data pixel value in any of the 3-hr PA grids excluded 

that pixel in the final product but zero provided a real value. Once converted and 

reclassified, all 3-hr PA grids were clipped to the extent of Chesapeake’s boundary and 

resampled to 30m pixels. Clipped 3-hr PA grids were overlaid (additive) to create WPA 

grids in ArcGIS v.9.1, Spatial Analyst extension.
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Figure 40. ArcGIS Modelbuilder model used to convert raw NEXRAD (Level-Ill [WSR:88D]) 3-hr precipitation accumulation 
from ArcView shapefile format to ArcGrid format. This model was designed to convert the maximum possible daily files (N  — 8); 
other models for converting fewer (2-7) were also constrcted, but not provided.
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The final step in creating WPA grids was to normalize and rescale (0-100) 

precipitation values using Equation 7 (Figure 31). I was unable to find weekly or monthly 

historical minimum and maximum PA for any of the three nearby weather stations (i.e., 

KAKQ, KCPK [Chesapeake Regional Airport], KORF [Norfolk International Airport]) 

or from the CMCC; only averages were reported. Thus, minimum and maximum weekly 

precipitation accumulation values for Chesapeake were based on information provided 

during a personal communication with Evan Stewart (Meteorologist, WVEC Television 

[March 2006]).

Weekly Abundance Maps

Weekly predicted abundance maps for Cs. melanura representing the combined influence 

of calculated soil moisture (TMI), AW AT, and 2-week lag time PAs were generated on a 

pixel-by-pixel basis using an arithmetic overlay operation in ArcGIS v.9.1, Spatial 

Analyst extension using Equation 8. Final weekly abundance maps (grids) were created 

on a pixel-by-pixel basis with a spatial overlay operation using the Equation 9. Final 

weekly abundance maps were reclassified into areas having low, moderate, and high 

predicted abundance (Figure 37).
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Figure 41. ArcGIS Modelbuilder model used to reclassify 3-hr precipitation 
accumulation grids by reassigning all “no-data” values in each grid a new value of zero. 
This model was designed to convert the maximum possible daily files (N  -  8); other 
models for converting fewer (2-7) were also constructed, but not provided.
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Policy Implications

Preprocessing and Experimental Design

The majority of work associated with the construction of multi-layered spatially explicit 

models is associated with the preprocessing of data. Through trial and error, I have 

created a set of preprocessing models, in ArcGIS ModelBuilder (Spatial Analyst 

extension), which greatly reduce the data preparation time required to carry out these 

analyses (see Figures 38, 40, and 41). Although these models do not account for all 

preprocessing steps, the presented examples should provide potential users with a basic 

blueprint for data formatting and preparation. Time-saving preprocessing steps are most 

useful for producing weekly abundance maps because these maps are temporally 

repetitive and need to be prepared quickly.

The statistical tests used in Chapters II and III (e.g., linear regression, Chi-square, 

ANOVA) were primarily selected for applicability to the hypothesis and for the type of 

data presented. However, because these models were intended to be as user-friendly as 

possible, the availability of these tests among commonly accessible statistical packages 

(e.g., SPSS, NCSS, SigmaStat, and others) that require little or no computer language 

skills to use was also an important consideration.

Sampling

The sampling design and data collection techniques for mosquito captures used in these 

studies were developed by the CMCC, and thus, not specifically tailored for integration 

into spatial models. Consequently, I am providing a short discussion, including 

recommendations, of modifications in sampling design and data collection that could be
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used to improve the accuracy and precision of habitat suitability and predicted abundance 

models such as those summarized in this chapter. These modifications include issues with 

selection of representative habitats to census, number and distribution of trapping sites, 

and data collection techniques.

Of the 46 permanent mosquito-trapping sites used in these models, 28 were in 

close proximity (<200m) to palustrine (forested) wetlands. This number increases to 38 

sites at 400m. Of the remaining trapping sites, six were placed in or near (<200m) 

estuarine wetlands and two were in uplands; no trapping sites were placed in or near 

lacustrine (lake/reservoir) or riverine wetlands. This propensity to establish trapping sites 

in forested wetlands was due to the habitat affinities of Cs. melanura, the target species 

of the CMCC monitoring and control efforts, and resulted in potentially insufficient 

censusing of habitat types important to many other disease-vector and nuisance species 

(Turell et al., 2001; Crans, 2004; Turell et al., 2005). I suggest that habitat types be 

censused using a stratified scheme that represents the range of habitats of all mosquito 

species of interest. Such a scheme would enhance model sensitivity towards less common 

but perhaps critical mosquito habitats, while at the same time reduce the overemphasis of 

habitats commonly used by many mosquito species.

As specified above, the number of trapping sites used for analysis in both Chapter 

II and Chapter III was 46. This sample size is sufficient for single-year analyses, but my 

models were designed to provide iterative results for use in trend analysis for long-term 

control and surveillance programs. Considering this, 46 trapping sites limits the amount 

of spatial variation in mosquito captures, and extracted independent variables, which can 

be introduced, thus limiting the types of viable statistical tests and model validation
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methods that can be used. The best-case scenario would be to have many more trapping 

sites, each censused regularly throughout the trapping season. This not only would 

increase the long-term value of the collected data, but it also would increase the power of 

statistical analyses used for surveillance purposes (White, 2001). Increasing the number 

of trapping sites would also allow users to reserve data in order to perform within-year 

model validation. Further, more trapping sites could potentially reduce habitat-type 

sampling issues: 1) by allowing for more replicates (trapping sites) in rare, but critical, 

habitat types, and 2) by enabling users to alter the stratification scheme of habitat-type 

censusing in response to species-specific (or species-group) outbreaks.

Trapping Technique

Females are most easily attracted to traps when they are either seeking a blood meal or 

searching for a place to lay their eggs; two common trap types used are CCVbaited and 

gravid traps. Gravid traps attract females to an oviposition medium in lieu of a blood 

meal attractant (CO2). Some mosquito species (e.g., Culex spp., Ochlerotatus triseriatus) 

are more accurately represented using gravid traps than CC^-baited light traps (CDC, 

2003; USACE, 2005). The CMCC made limited use of gravid traps in 2004, and these 

data were not made available for this study. Godsey et al. (2005) reported ~3.4 times the 

number of captures of Culex spp. in gravid traps than in light traps baited with dry ice. 

White et al. (2003) had similar results during a study in north-central Ohio. In my study, 

Cx. erraticus, Cx. pipiens, and Cx. restuans collectively represented only 0.89% of all 

captures (Appendix A). Without gravid-trap data for comparison, I cannot conclude with 

confidence that capture numbers for these species, and others caught more readily in
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gravid traps, are either accurate or inaccurate representations. I recommend a 

combination of CCVbaited light and gravid traps, because they have been shown to be 

complementary and likely to produce better assessments of mosquito communities at 

trapping sites than either technique alone (CDC, 2003).

Future Policy Implications

In addition to the models presented here, there are several augmenting factors that could 

be easily processed into spatial format, including: larval monitoring and control data, bird 

surveillance (e.g., dead birds, sentinel bird flocks), and human demographics. Except for 

larval monitoring and control, these datasets would be more closely associated with 

reducing the risks of disease transmission than with efforts to control nuisance mosquito 

species.

Larval Monitoring

As with my models, Shaman et al. (2002) used captures of adults to predict emergence of 

adults from modeled larval habitats. They concluded that larval monitoring data, which 

they did not have, would have enhanced the predictive power of their models. Many 

mosquito control and surveillance programs have only recently begun to collect larval 

data. For example, the CMCC, the source of capture data for my study, began an early 

season (leaf-off) aerial larvacide program in 2004 to reduce the first broods of Cs. 

melanura, Aedes vexans, and Ochlerotatus canadensis (CMCC, 2004). At the time of my 

analyses, these data were unusable. However, pre- and post-larvicide monitoring data 

from both treatment and control sites could be used not only to quantify the effects of
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control efforts, but also to increase power of my models to assess habitat suitability and 

predict mosquito abundance. Mosquitoes need surface water for larval development. This 

makes potential geographic positions of breeding and larval development predictable, 

thus suggesting prudent locations to interrupt viral epidemiologic cycles of mosquito- 

borne diseases using spatial modeling.

Avian Surveillance

Both EEE and WNV use birds as primary reservoir hosts (Hassan et al., 2003; Komar et 

al., 2003). The 1999 human outbreak of WNV in New York was coincident with sizeable 

die-offs of birds, especially American Crows (Corvus brachyrhynchos [Rappole et al., 

2000]). Mostashari et al. (2003) reported a strong spatial correlation between the 

occurrence of dead birds and WNV activity. They suggested that data on dead birds could 

be integrated into disease surveillance programs to provide an early warning system of 

viral activity in both mosquitoes and birds. This would be especially critical when reports 

of dead birds coincide spatially with outbreaks of known vector species such as Cs. 

melanura. This program would require general public involvement for these data to be 

productive and reliable. Consequently a standardized and uncomplicated system for 

reporting dead birds must be developed. With accurate locational information, this 

reporting system could easily be adapted into spatially explicit models.

Sentinel birds have long been used to monitor arbovirus activity (Moore et al., 

2003). The CMCC has an established sentinel bird (chickens) program for detecting EEE 

and WNV presence and activity (CMCC 2004). Similar to dead bird reports, sentinel bird 

data can be used as early warning system of viral activity and to quantify transmission
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rates (Komar, 2001). Because the geographic location of sentinel flocks is usually known, 

data are especially suited for integration into spatial models.

Vulnerable Human Populations

Children and the elderly are at a higher risk for debilitating complications resulting from 

viral encephalitis (Whitley and Kimberlin, 1999; Peterson and Martin, 2002). Because of 

these elevated risks, it is critical that these two demographic groups be considered when 

monitoring arboviral activity. Nursing homes and retirement communities, schools and 

playgrounds, theme parks, and other places where either children or the elderly 

congregate could be incorporated into a GIS and used in an overlay analysis with 

predicted abundance maps. This would enable mosquito control agencies to take 

preventive actions when mosquito outbreaks arise.

In summary, the predictive value of my models can be enhanced by the 

integration of one or more of the data layers described above. Larval monitoring and 

control data would likely be the most costly but also the most useful. The incorporation 

of facilities for elderly and children into a GIS would have one-time costs, with minimal 

revision, compared to programs for collecting information on dead birds or sentinel 

flocks. Expenses for all enhancements can be justified as part of an effective public- 

health program for a municipality.
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Scientific Implications

Integrated Pest Management

The use of digital satellite data in GIS is becoming a valuable and commonly used 

approach in the study of vector ecology and disease transmission (Clarke et al., 1996; 

Kitron, 1998). Surveillance, monitoring, and subsequent health policies associated with 

the study of vector-borne emerging infectious diseases are becoming more streamlined 

and functional through the integration of spatial, ecological, and epidemiological data 

(Clarke et al., 1996; Dister et al., 1997; Boone et al., 2000; Glass et al., 2000; Srivastava 

et al., 2001).

The ability to assess habitat suitability and predict spatial and temporal 

abundances of mosquitoes with accurate landscape-level data is paramount in the 

development of effective, efficient, and environmentally sound mosquito control 

measures. The models described herein, derived from spatially explicit empirical data, are 

useful for both locating good mosquito habitat and for predicting species abundances 

within real landscapes. The use of data collected by remote-sensing techniques enabled 

the integration and analysis, within the framework of a GIS, of large and diverse data sets 

to an areal extent not feasible by in situ data collection. Furthermore, the data used in 

these models were either provided (e.g., captures data, Chesapeake hydrology [canals and 

ditches]), downloaded at no cost (i.e., NHD, SSURGO, NEXRAD) or relatively 

inexpensive (i.e., Landsat ETM+, QCLCD).

These models are relatively objective, making them equally effective in densely 

population areas and isolated areas. This quality is essential because enzootic viral 

transmission cycles are often centered in rural habitats, and thus go undetected by most
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monitoring and surveillance protocols (Moore et al., 1993). This is especially true when 

vector species are not human biters, such as Cs. melanura, and, as a consequence, are not 

reported frequently as a nuisance in service calls. Coupled with favorable weather and 

environmental conditions, viral amplification cycles can rapidly increase in magnitude 

and distribution, leading to potential epizootic outbreaks (Moore et al., 1993). Therefore, 

from the standpoint of prevention and control, it is critical that mosquito control agencies 

have the ability to quickly track changes in the distributions of arboviral vectors such as 

Cs. melanura, in addition to nuisance species. Changes in predicted mosquito 

distributions can be overlaid (in a GIS) with adulticide truck routes, thus enabling 

mosquito control agencies to apply insecticides in a more effective, timely, economical, 

and environmentally sensitive manner. These changes could also be incorporated into an 

integrated management plan that includes not only surveillance and chemical control, but 

also source reduction (e.g., habitat modification and elimination [ditch maintenance, 

containers]), biological control (e.g., predator introduction [mosquito fish, Gambusia 

holbrooki]), and agency personnel and public education. Collectively, these efforts would 

reduce sources of public health and disease transmission risks, while minimizing the 

negative impacts on control measures on people and the environment (Kent, 1989).

Population and Vector Ecology

The basic tenets of population regulation (e.g., rates of birth, death, immigration, and 

emigration) and metapopulation regulation (e.g., dispersal, asynchrony) are relative, but 

in theory are relevant regardless of species or assemblage of species. Furthermore, 

principles borrowed from metapopulation theory to govern the preservation of threatened
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and endangered species and the conservation of economically important species can be 

reversed to eradicate or control nuisance species (Earn et al, 1998). It is now axiomatic 

that spatial and temporal factors influencing dispersion and colonization of organisms 

play vital roles in the dynamics of populations and metapopulations. Bascompte and 

Rodriguez-Trelles (1998) constructed a mathematical model to describe such regulation 

and the spread of infectious disease, and included parallels in terminology between the 

two concepts: colonization ~ transmission, extinction ~ eradication, habitat destruction 

~ host vaccination. Therefore, viral transmission in its strictest sense is a form of 

dispersal, and to be viable a virus must successfully disperse and colonize within the 

landscape inhabited by both vector and host.

My models were based on the collective influence of spatially explicit habitat 

characteristics. These types of influences drive the spatial distributions of organisms, but 

were largely ignored before the publication of Levins’ (1969) metapopulation theory. 

Notable exceptions are Huffaker (1958) and Andrewartha and Birch (1954). More 

recently, the role of spatial structure has emerged as a pivotal influence on the spatial and 

temporal distributions and abundances of organisms (e.g., Lindenmayer and Lacy, 1995; 

Lindenmayer and Possingham, 1996; Bender et al., 2003; Tischendorf et al., 2003) and 

has become a major motivation for much current research, including mine. Traditional 

models tended to oversimplify the mechanics of population regulation, and thus generally 

provide limited insight in real-world situations (Hanski 1994). In most cases, spatially 

influential factors were only implicitly addressed (Levins, 1969; Lande, 1987; Keeling,

2002). Population- and community-level studies generally do not explicitly incorporate 

the influence of spatial factors because hierarchical theory traditionally introduces
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environmental factors at ecosystem and landscape levels of ecology. Distributional 

dynamics becomes even more convoluted if spatial heterogeneity of landscape 

characteristics is considered. Thus, spatially explicit landscape components, important 

and often continuous in variation, must be considered if ecologically integrated pest 

management techniques, such as those to control arthropod vectors, are to be effective.

As the use of GIS in applied natural sciences becomes more extensive, so does the 

knowledge to use this new set of tools in a manner that emphasizes the analysis of 

spatially explicit environmental data (Johnson 1993). As a result, much recent research 

represents the hybridization of traditional spatially implicit with spatially explicit models 

(Hokit et al., 2001; Bender et al., 2003; Tischendorf et al., 2003; Baguette, 2004; among 

others).
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CHAPTER V 

GENERAL SUMMARY

The first recorded North American outbreak of West Nile virus in New York (1999) 

initiated an unprecedented surge in research pertaining to the control and prevention of 

mosquito-borne disease. Much of the subsequent research was directed toward the 

development of environmentally sensitive integrated pest management programs. Most of 

these studies were conducted at relatively small spatial scales using in situ data collection 

methods, and thus were not practical for most municipality-run mosquito control agencies 

with large jurisdictions. I have addressed this problem by creating a series of GIS-based 

models designed to rank habitat suitability and predict the spatial and temporal 

abundances of mosquitoes in real-world landscapes of the mid-Atlantic region.

Chapter II

My habitat suitability indices (HSI) used species-group models based on similarities in 

mosquito life histories, habitat affinities, and vector competence. By using species groups 

in lieu of single-species models, I was able to reduce my analyses to a more manageable 

number of regression models.

I did not incorporate land cover/use data (USGS: NLCD) in my HSI regression 

models for three reasons: 1) an unacceptably low level of accuracy in the NLCD Level II 

classification that that would have decreased overall model reliability, 2) not all Level II 

classes were represented at trap-site locations, making the ranking of city-wide habitat
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suitability problematic due to potential disproportions and omissions of land use/cover 

classes in subsequent analyses, and 3) NLCD data are categorical and would have 

required analysis independent from the main regression model. The latter is the least 

problematic of the three.

I expected positive relationships between predicted habitat suitability for 

mosquitoes and properties associated with increased soil moisture content (potential 

flooding/ponding) and vegetative vigor; however, this was not the case for my study. In 

fact, captures for all species groups were showed negative associations with at least one 

of independent variables derived from soil data and at least one of the three Tasseled-Cap 

variables. Although unexpected, many of these associations were explainable and 

supported by the literature. It is, however, noteworthy that all R values > 0.500 

represented positive influence on habitat suitability.

For example, the negative relationships between mosquito captures for many 

species groups and Tasseled-Cap wetness (TC3) are likely to be indirectly related to the 

positive relationships with canopy cover (TC2), which is considered to carry more 

explanatory power than TC3. In other words, spectral reflectance values are largely a 

function of the uppermost layer in the scene, and thus increased summer foliage 

decreases the ability to detect the underlying soil wetness (TC3).

Another factor influencing the spatial distribution of mosquitoes in my study was 

the extensive network of ditches and canals that has been constructed throughout 

Chesapeake, especially in the southern regions of the city. Although this network has 

effectively transformed wetlands into uplands, the ditches that remain are excellent 

mosquito breeding sites in otherwise less suitable habitat. This was most evident for Cs.
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melanura, and the EPHM and SWMP groups. This influence was quantified by the 

positive responses of most species groups to the independent variable HYDSUM, which 

accounted for the spatial distribution of ditches and canals.

Culiseta melanura responded best to independent variables at broad spatial scales. 

Visual overlay of suitable habitat and the National Wetland Inventory maps supported 

this pattern, where large and contiguous areas of suitable habitat for Cs. melanura 

dominate. The other species groups all had smaller and more localized areas of suitable 

habitat; this pattern was also seen in the regression models. It would be difficult to sort 

through possible explanations for the variations species-group responses to spatial scales, 

but predictability of mosquito abundance in my regression models was increased by the 

incorporation of differing spatial scales.

Chapter III

This chapter addressed the spatial and temporal distributions of Culiseta melanura, the 

primary enzootic vector of EEE in the mid-Atlantic region. The weekly-predicted 

abundance model created in this chapter was designed to augment the semi-static HSI 

model for Cs. melanura generated in Chapter II. This was done by combining a time- 

tested topographic soil moisture index (TMI), based on topographic derivatives 

calculated from a digital elevation model (DEM), and digital weather data, and then 

integrating these results with the HSI from Chapter II.

Because the distribution and accumulation of precipitation in watersheds are 

intimately tied to topography, the TMI I used allowed me to determine which areas in the 

landscape are most prone to flooding or ponding. I was able to increase the accuracy of
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the TMI by integrating Chesapeake’s extensive drainage ditch network to modify the 

DEM used in the hydrologic model using the stream-burning technique. This technique 

captured the physical effects the ditch network added the hydrology in Chesapeake.

The positive relationship between Cs. melanura captures TMI values at trapping 

sites in my study was expected. This expectation was based on the proven efficacy of this 

soil moisture model and a well-documented dependence of mosquitoes on the distribution 

of surface water.

Considering the known dependence of mosquitoes on meteorological patterns, the 

positive relationships between Cs. melanura abundance and both warm temperatures and 

increased precipitation in my study was expected. Additionally, my finding that Cs. 

melanura has a ~2-week delayed response to precipitation accumulations is supported by 

other studies using spatially based models similar to mine. With these affinities and 

response times statistically established, and further supported in the literature, their 

transference to weather-driven weekly Cs. melanura abundance models was justifiable.

To my knowledge, my use of NEXRAD precipitation data is unique among 

epidemiological and entomological studies. I was able to incorporate a near real-time 

component to weekly abundance maps using NEXRAD precipitation accumulation data. 

Thus, from a prevention and control standpoint, it is critical that mosquito control 

agencies such as the CMCC have the ability to rapidly track the spatial and temporal 

distributions of potential arboviral vectors such as Cs. melanura.
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Chapter IV

This chapter was different from Chapters II and III because it does not present new 

research. Instead, the purpose of this chapter was to provide potential users with the 

necessary protocols needed to apply the models created in the previous two chapters.

This chapter emphasizes the spatial and temporal modeling of abundance and 

distributions for Cs. melanura, in a real-world coastal landscape of the MAR. The 

intended audience for this final chapter was GIS analysts employed by mosquito-control 

and public health agencies and environmental managers and decision makers of these 

agencies with limited experience in spatial modeling. In addition to reviewing the 

methods I used in selection and implementation of independent variables, I provided an 

overview for the ArcGIS models (created in ModelBuilder, Spatial Analyst extension) I 

used to reduce the effort needed for data preprocessing.

This chapter also addressed possible improvements on sampling design and 

trapping technique. In addition, I provided supplementary sections on future policy 

implications as well as scientific implications of Chapters II and III. Future policy 

implications discussed were the implementation of ancillary datasets such as larval 

mosquito and avian surveillance, and vulnerable human demographics. Scientific 

implications included a discussion on the usefulness of my research to development of an 

environmentally sensitive integrated pest management program and the significance of 

this research regarding vector and population ecology.
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APPENDIX A

Mosquito species captured in Chesapeake in 2004 listed by the CDC as potential vectors 
of West Nile virus. Listed = species (JV= 29) has been found associated with WNV 
positive pools (1999-2004 [99-04]). (Source = http://www.cdc.gov/ncidod/dvbid/).

Species 99 00 01 02 03 04 Total All Yrs % Captureŝ

Ae. aegypti X X X 3 0.0040
Ae. albopictus X X X X X 5 1.0318
Ae. vexans X X X X X X 6 X 0.6361
An. barberi X X 2 0.0026
An. crucians/bradleyi X X X X 4 5.7084
An. punctipennis X X X X X 5 0.2726
An. quadrimaculatus X X X X 4 0.6679
Cq.perturbans X X X X 4 2.2013
Cx. erraticus X X X 3 0.3135
Cx. pipiens X X X X X X 6 X 0.0248
Cx. restuans X X X X X X 6 X 0.5404
Cx. salinarius X X X X X X 6 X 8.0346
Cx. territans X 1 0.0537
Cs. melanura X X X X X 5 62.5022
Oc. atlanticus/tormentor X X 2 2.1268
Oc. canadensis X X X X X 5 11.7967
Oc. cantator X X X 3 0.0015
Oc. grossbecki X 1 0.0007
Oc. infirmatus X 1 0.1892
Oc. sollicitans X X X 3 0.0022
Oc. sticticus X X 2 0.0007
Oc. taeniorhynchus X X X 3 0.0033
Oc. triseriatus X X X X X 5 0.1239
Or. signifera X X 2 0.0117
Ps. ciliata X 1 0.0343
Ps. columbiae X X X X 4 1.6463
Ps. ferox X X X 3 0.6916
Ps. howardii X X 2 0.0069
Ur. sapphirina X X X X 4 1.3716

f Percent of 2004 total CDC light trap captures for CDC listed WNV vectors species.
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APPENDIX B

Maximum Pearson’s correlation coefficients between species group captures and 
independent variables Maximum Pearson’s correlation coefficients (R; [+ or -]) for 
species group captures (Table 1) and the nine independent variables at all 11 spatial 
scales (Tables 4, 5, and 7) are provided. Only scales with at least one maximum i?-value 
for a species group are shown.

VariableScale CONT SWMP EPHM ALSP CSMN

TCl_07x 0.269 0.374
TCl_17x 0.456
TCI _21x 0.208 -0.368
TC2_07x -0.260
TC2_09x -0.239
TC2_21x -0.436 0.289 0.308
TC3_01x -0.219
TC3_07x -0.364
TC3_09x -0.269
TC3_21x -0.424 0.285

HYDSM_03x 0.204 - 0.111
HYDSM_05x 0.178
HYDSM 1 lx -0.161
HYDSM_15x 0.301
DR A IN O lx -0.221 -0.246
DRAIN_05x 0.116
D R A IN Jlx -0.420
DRAIN 17x 0.510
H YDPCO lx -0.209 -0.239
H Y D P C llx -0.409
HYDPC 15x 0.085
HYDPC_17x 0.493
R U N O F llx -0.287
RUNOF_17x 0.074 0.086 0.291
RUNOF_19x 0.259
AWS25_01x -0.261
AWS25_07x 0.184
AWS25_09x -0.304
AWS25_1 lx -0.340
AWS25_21x -0.086
W TDAJOlx 0.506 -0.089
W T D A J llx 0.086
WTDAJ_21x -0.161 -0.185
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APPENDIX C

Summary R2-values for the multiple regression validation trials. Chi-square results (Ho: 
Revalues different than expected [original i?2-values]) are also provided. Chi-square (X2) 
table value (d f  = 14) is 23.68.

Trial ALSP CONT SWMP EPHM CSMN

1 0.2703 0.4938 0.0945 0.7431 0.3619

2 0.1751 0.2246 0.4674 0.6284 0.2305

3 0.2183 0.5420 0.5318 0.6878 0.271

4 0.3173 0.7046 0.2293 0.5577 0.1726

5 0.3314 0.4656 0.1467 0.3884 0.2061

6 0.2996 0.4370 0.1635 0.7269 0.175

7 0.4493 0.4752 0.2911 0.2240 0.1636

8 0.2611 0.5751 0.2109 0.4589 0.2482

9 0.2275 0.4485 0.3776 0.1755 0.2341

10 0.2768 0.7246 0.4025 0.6912 0.2664

11 0.6811 0.5300 0.0731 0.6528 0.2224

12 0.2556 0.7331 0.1594 0.3230 0.3741

13 0.2147 0.1821 0.6617 0.3012 0.1744

14 0.0094 0.3245 0.2767 0.4696 0.1755

15 0.2710 0.5233 0.4955 0.4835 0.2823

Calc X2 0.9702 0.8765 2.8144 3.4327 1.1126

Reject Ho: No No No No No
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APPENDIX D

Summary of root mean squared error (RMSE) values for the multiple regression 
validation trials. Chi-square results (Ho: RMSE different than expected [original RMSE]) 
are also provided. Chi-square (X2) table value (d f  = 14) is 23.68.

Trial ALSP CONT SWMP EPHM CSMN

1 0.246 0.718 0.105 0.172 0.288

2 0.317 0.719 0.146 0.159 0.377

3 0.326 0.362 0.170 0.300 0.243

4 0.259 0.969 0.307 0.083 0.168

5 0.304 0.629 0.172 0.276 0.300

6 0.312 0.733 0.205 0.314 0.339

7 0.306 0.488 0.138 0.135 0.295

8 0.331 0.748 0.301 0.251 0.404

9 0.153 0.885 0.395 0.241 0.380

10 0.179 0.715 0.365 0.198 0.348

11 0.304 0.945 0.578 0.174 0.284

12 0.318 0.768 0.914 0.492 0.336

13 0.292 0.407 0.336 0.790 0.411

14 0.566 0.546 0.235 0.134 0.254

15 0.167 0.601 0.396 0.107 0.351

Calc X2 1.395 1.947 4.314 3.774 2.079

Reject Ho: No No No No No
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APPENDIX E

Summary of ANOVA P-values for multiple regression validation trials. Percent of trials 
for each group where P<0.05 is provided.

Trial ALSP CONT SWMP EPHM CSMN

1 0.011 <0.001 0.019 0.012 0.009

2 0.041 <0.001 0.008 0.044 < 0.001

3 0.005 < 0.001 0.028 0.036 < 0.001

4 0.004 0.001 0.036 < 0.001 < 0.001

5 0.019 <0.001 0.037 0.021 < 0.001

6 < 0.001 <0.001 0.042 <0.001 0.001

7 < 0.001 < 0.001 < 0.001 <0.001 <0.001

8 0.022 < 0.001 0.018 0.011 < 0.001

9 0.017 < 0.001 0.016 0.034 0.017

10 0.003 < 0.001 0.006 < 0.001 < 0.001

11 0.034 0.041 0.005 0.005 < 0.001

12 <0.001 <0.001 0.046 0.001 <0.001

13 0.045 <0.001 0.141 0.011 < 0.001

14 0.058 <0.001 0.012 < 0.001 < 0.001

15 0.011 < 0.001 0.037 < 0.001 < 0.001

Significant 93% 100% 93% 100% 100%
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APPENDIX F

Summary of trapping site locations (coordinates) and captures/TN of Cs. melanura for 
trapping sites. Coordinate system = NAD-1983, State Plane, Virginia (South), FIPS- 
4502 Ft. Projection: Lambert Conformal, Conic.

Trapping Site N (ft) W (ft) 2003 Captures 2004 Captures

CMCC001 12,086,918.629 3,476,087.15305 32.3 46.3

CMCC002 12,082,227.020 3,464,139.80785 136.2 80.7

CMCC003 12083,057.464 3,459,067.79218 342.6 112.5

CMCC004 12,089,077.304 3,446,305.39807 1061.6 440.5

CMCC005 12,125,131.998 3,439,902.57844 67.9 85.0

CMCC006 12,102,169.495 3,441,143.39272 916.6 560.2

CMCC007 12,102,330.848 3,437,515.74478 318.0 653.1

CMCC008 12,090,413.597 3,451,005.36669 318.2 258.4

CMCC009 12,108,036.219 3,432,282.66795 414.0 385.6

CMCC010 12,124,339.084 3,410,119.01067 212.9 45.8

CMCC011 12,139,884.295 3,428,709.12494 8.2 4.3

CMCC012 12,137,761.413 3,405,680.10726 54.7 63.0

CMCC013 12,157,404.855 3,428,205.45082 129.0 36.5

CMCC014 12,148,320.732 3,460,745.16183 8.0 2.0

CMCC015 12,166,259.580 3,436,666.74093 187.9 56.0

CMCC016 12,184,121.686 3,413,202.39415 149.6 19.2

CMCC017 12,131,776.881 3,436,353.44805 24.7 35.1

CMCC018 12,133,341.149 3,461,708.81035 7.2 11.0

CMCC019 12,131,205.590 3,453,960.44954 21.6 13.9

CMCC020 12,140,526.085 3,453,161.35048 18.6 2.8

CMCC021 12,139,243.655 3,387,068.07544 38.0 27.3

CMCC022 12,108,615.955 3,404,511.98697 361.1 301.1

CMCC023 12,123,669.410 3,385,119.05031 61.7 72.1

CMCC025 12,144,490.252 3,379,225.85188 12.4 11.9

CMCC026 12,116,562.161 3,394,552.21924 318.2 231.9

CMCC027 12,135,664.656 3,385,000.33172 33.5 29.2

CMCC028 12,170,255.141 3,380,341.06414 19.7 10.8

CMCC029 12,176,588.870 3,405,368.02009 56.1 27.0

CMCC032 12,146,608.236 3,461,994.58339 0.5 1.4

CMCC036 12,123,816.809 3,447,266.35314 16.5 35.0
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APPENDIX G

Summary of weekly datasets for Cs. melanura captures/TN, total accumulated 
precipitation, and average weekly air temperature for 2004.Summary of weekly (N  = 32) 
datasets for Cs. melanura captures/TN, total accumulated precipitation (PA), and average 
weekly air temperature (AWAT) for April through October, 2004, for the City of 
Chesapeake, Virginia. Data provided by the CMCC.

Week Raw Cs. melanura Captures PA (inches) AWAT (C)

1 0 0.54 10
2 0 1.02 12
3 8 1.56 14
4 534 0.20 23
5 283 0.86 17
6 284 3.44 18
7 831 2.37 24
8 1,862 2.42 24
9 1,346 1.12 25
10 652 0.71 23
11 631 1.55 23
12 129 0.15 26
13 994 1.19 24
14 543 0.37 24
15 786 2.78 27
16 881 0.93 27
17 1,000 3.72 25
18 912 1.46 27
19 249 3.76 25
20 593 4.19 24
21 660 2.14 25
22 547 2.97 24
23 669 1.05 25
24 945 0.61 25
25 842 2.22 23
26 323 0.00 20
27 363 0.64 22
28 206 4.14 17
29 85 0.70 16
30 1,218 0.82 16
31 299 0.10 14
32 323 0.00 20
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APPENDIX H

Summary of average weekly air temperature (AWAT) from April 1 -  November 4, 2006. 
AW AT = average (observed) weekly air temperature C (QCLCD: NCDC [KCPK]).
AW AT (constant-value) grid scores were calculated using Equation 6. Final weighted 
AW AT grid scores' (FAGWS) are components of Equation 8.

Month W eek ending AW AT A W A T Grid Score FAGW S

April 8 15.34 42.62 15.86
April 15 15.48 43.10 16.03
April 22 16.67 47.14 17.54
April 29 16.55 46.74 17.39
May 6" 17.18 48.88 18.18
May 13 17.03 48.37 17.99
May 20 17.99 51.63 19.21
May 27 20.94 61.66 22.94
June 3n 23.88 71.65 26.65
June 10 21.42 63.29 23.54
June 17 21.29 62.85 23.38
June 24 26.02 78.93 29.36
July l ft 25.19 76.10 28.31
July 8 25.08 75.73 28.17
July 15tf 26.56 80.76 30.04
July 22 27.52 84.02 31.26
July 29 25.49 77.12 28.69

August 5 30.72 94.90 35.30
August 12 24.93 75.22 27.98
August 19 24.83 74.88 27.86
August 26 25.73 77.94 28.99

September 2 25.00 75.46 28.07
September 9 22.46 66.83 24.86
September 16n 20.78 61.11 22.73
September 23 21.03 61.96 23.05
September 30ft 19.20 55.74 20.74

October 7 19.17 55.64 20.70
October 14 17.19 48.91 18.20
October 21ft 16.13 45.31 16.86
October 28 10.74 26.99 10.04

November 4tt 11.58 29.95 11.11

'(Raw AW AT grid value) x (regression coefficient [i? = 0.371, Table 20]). 
++Data used in eight sample period dynamic models (2-week delay).
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APPENDIX I

Eight weekly periods for average weekly air temperature (AWAT) and weekly 
precipitation accumulation (WPA). Periods were selected to represent the variation in 
AWAT and WPA (Figure 32). See corresponding weekly abundance maps (Figure 37).

Period AWAT (degrees C) PA (Average [cm])

A 30 April- 6  May (17.18) 1 6 - 2 2  April (2.11)

B 28 May -  3 June (23.88) 1 4 - 2 0  May (3.96)

C 25 June -  1 July (25.19) 11 -1 7  June (21.54)

D 9 - 1 5  July (26.56) 25 June -  1 July (2.44)

E 1 0 - 1 6  September (20.78) 27 August- 2  September (3.01)

F 24 -  30 September (19.20) 1 0 - 1 6  September (2.37)

G 15-21 October (16.13) 1 -  7 October (1.57)

H 29 October -  4 November (11.58) 15-21  October (1.60)
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