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ABSTRACT

IN SUPPORT OF A RATIONALLY MANAGED FISHERY: AGE AND 
GROWTH IN PATAGONIAN TOOTHFISH (Dissostichus eleginoides).

Julian R. Ashford 

Old Dominion University, 2001 

Director: Dr. Cynthia Jones

Patagonian toothfish (Dissostichus eleginoides) occur on the continental shelves 

and shelf breaks of southern South America and the Southern Ocean. Stock structure, 

critical to good fisheries management, can be inferred from growth differences between 

areas, but available growth data are compromised by inconsistencies in age estimation 

methods, sampling and sample sizes, and techniques used to derive estimates. I asked the 

scientific question: how is growth in Patagonian toothfish structured spatially within the 

Southern Ocean? I developed a multi-stage randomized design to sample fish caught by 

commercial longline, and an age estimation methodology. Because toothfish are difficult 

to age, I developed an ANOVA model for estimating precision and accuracy o f age data 

relative to a standard, as the basis for a protocol for quality control of age data. The 

methodology was used to obtain age data from toothfish taken from the Falkland Islands 

and South Georgia in the South Atlantic, and the Kerguelen Islands and Heard Island in 

the southern Indian Ocean. I estimated von Bertalanffy growth parameters for each area, 

constructed models to describe rival hypotheses of stock mixing and separation between 

areas, and selected between the models using normal likelihood methods. The abundance 

of the captured population varied at a scale o f c500 m (76% of variance), and between 

fishing days (24%). Most variation in length composition was captured at scales less than 

500 m (79%). I calculated that sampling 16 10-coil lengths of line/day on 36 days of a 

voyage of 60 days hauling would be the optimal sampling strategy. Significant bias in 

age estimation was found between readers and between readings by one reader but, once 

accounted for, precision of age estimation remained similar between sexes; however, a 

validation test of the accuracy of the age estimation methodology was inconclusive.
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Growth data supported the hypothesis of stock separation between the Falkland Islands 

and South Georgia, but not between South Georgia and Kerguelen.
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CHAPTER I 

INTRODUCTION

1.1. Objectives

The development of longlining techniques for fishing Patagonian toothfish 

(Dissostichus eleginoides) led to a rapid increase in exploitation rate during the early 

1990s, which progressively affected fisheries around southern South America and the 

Southern Ocean. The level of illegal fishing was high yet the fish were considered to be 

long-lived and slow-growing, indicators of vulnerability to rapid over-exploitation. 

Efforts toward rational management of the stock by national fishing authorities and the 

Commission of the Convention for the Conservation of Antarctic Marine Living 

Resources (CCAMLR) were impeded by lack of knowledge of the basic biology of 

toothfish, precluding the use of an array of powerful population dynamical techniques 

commonly used by fisheries managers.

Rigorous analyses of growth, mortality and population age structure can be 

achieved if accurate age data are available. With age-based information, the effect of 

management choices can be simulated using dynamic pool and age-structured assessment 

(ASA) models. Cohort life tables and matrix models can be constructed, allowing life- 

history patterns and density-dependent effects in population regulation to be assessed. 

Age-structured models can be used to examine the effect of age-specific vital rates, 

allowing managers to ascertain which stages of the life history cycle are vulnerable to 

over-exploitation under a particular set of conditions. Moreover, age-based data can aid 

modelling of community interactions, allowing impacts on other species to be assessed as 

part o f an ecosystem approach to fisheries management.

However, the effectiveness of these models depends fundamentally on the quality 

of the age data and fulfillment of model assumptions. Error can be introduced through 

unrepresentative sampling practices, and through inaccurate or imprecise age estimation.

The journal model is taken from CCAMLR Science
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It can also be introduced by excessive immigration and emigration if the model domain 

does not reflect the boundaries of the population; inaccurate growth rates will in turn bias 

estimates of productivity used to set catch levels.

In this project, I focus on a general research question on growth in Patagonian 

toothfish as a vehicle for addressing the basic building blocks of a rationally managed 

fishery: representative sampling techniques; age estimation methodologies with estimates 

of error in the age data produced; delineation of population structure; and estimates of 

population growth that reflect spatial and within-population variation.

Research Question

How is growth of Patagonian Toothfish structured spatially within the Southern Ocean? 

Goals o f this dissertation

1. To establish a sampling methodology that will allow representative sampling o f the

catch for Patagonian toothfish and calculation of population parameters with 

estimates of reliability.

2. To develop a methodology for estimating age of Patagonian toothfish using otoliths,

including criteria for interpreting age from otolith microstructure.

3. To develop a quantitative method for estimating and monitoring the sources of error in

age data.

4. To validate age estimation criteria.

5. To select the model that best describes growth in Patagonian toothfish and its variation

in space.

6. To use the model of growth to infer stock structure, and potential linkages between

fishing areas.

These objectives are addressed in four sections. Questions these sections address are:
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1. How can a representative sample o f the catch population be obtained?

2. How can age o f individual fish be estimated, and how precise are these estimates?

3. Are estimates o f age accurate?
4. Does growth vary between fishing areas, and is the pattern o f growth consistent with 

current hypotheses o f stock structure fo r  Patagonian toothfish?

1.2. Patagonian Toothfish

The Patagonian toothfish (Dissostichus eleginoides) is a large-semi-pelagic 

predator, belonging to the family Nototheniidae (Figure 1.1). It occurs on the shelf and 

shelf-slope off islands and banks in the Southern Atlantic, Indian and Pacific Oceans, 

notably within the influence of the Antarctic Circumpolar Current (Yukhov 1972, Skora 

and Sozinski 1983, SC-CAMLR-XTV Annex 5). In the South Atlantic, it occurs as far 

south as the South Sandwich Islands (Ashford 1993); its congenor, Dissostichus 

mawsoni, occurs further south. D. eleginoides also occurs off the South American coast 

from Peru to Cape Horn and north off Argentine Patagonia.

Fishing began in the 1970s off northern Chile and in the South Atlantic and South 

Indian Oceans. Initially, only bottom trawling was used over continental shelves, and 

fishing rates by catch were low and mostly incidental with some directed fishing. Long- 

lining for toothfish was developed in northern Chile during the 1980s; long-lines were 

probably first used at South Georgia in 1986 and off the Kerguelen and Crozet Islands in 

the southern Indian Ocean in 1992 (SC- CAMLR XI). Longlining allowed access to 

deeper waters along the shelf-break and gave better returns: exploitation of toothfish 

grew rapidly. New fisheries were developed off southern Chile, Argentina and the 

Falkland Islands; and off Heard, Macquarie and the Prince Edward Islands (Figure 1.2). 

The main catching nations have been Chile and Russia, and more recently Argentina and 

Norway, but vessels registered in diverse countries such as Panama and Vanuatu have 

been involved (SC-CAMLR-XVI/4). The toothfish is highly prized in Japan, selling at 

US$6.00/kg in mid-1995, and is now being targetted at the United States market (Seafood

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 1.1: Patagonian toothfish (Dissostichus eleginoides)
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Figure 1.2: Map of the Southern Ocean showing the peri-Antarctic islands in the
Atlantic (48), Indian (58), and Pacific (88) sectors. From Fischer and 
Hureau (1985).
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International - September 1995). Total catch in 1995 around South Georgia and the 

adjacent Rhine and North Banks alone was estimated at 6171.1 tonnes (SC-CAMLR 

XTV, Annex 5). In 1997, the catch for the CCAMLR area was estimated at 107,000- 

115,000 tonnes, of which 70% was estimated to have been caught illegally (SC-CAMLR- 

XVI/4).

Patagonian toothfish grow to over 2m long, and are thought to live upwards of 20 

years (Hureau and Ozouf-Costaz 1980). Absolute fecundity is low at between 48,000 - 

528,900 eggs/individual over the life history, although relatively high for a notothenid 

(Chikov and Melnikov 1990, Kock et al. 1985). Spawning is annual, occurring between 

June and August (SC-CAMLR XI). Size of first spawning is ca. 80 cm for males and ca. 

100 cm for females. Little is known of their early life history: eggs are considered to be 

pelagic and have been found occasionally in the water column (SC-CAMLR-XIV, Annex 

5). Larvae and post-larvae have been found only infrequently, and generally within the 

upper 50 m of the water column (Yefremenko 1979). Juveniles are found on the 

continental shelf at ca.500 m, with increasingly large individuals along the continental 

slope in deeper waters. Maximum depth at which fish have been caught is ca. 2900 m 

(SC-CAMLR-XIV, Annex 5).

Patagonian toothfish display considerable flexibility in feeding patterns. Diet 

varies between regions and with life stage and depth. Juveniles largely eat krill 

(Euphausia superba) in Antarctic regions, while adults feed on cephalopods and other 

fish (e.g. Champsocephalus gunnari) feeding on krill (Konforkin and Kozlov 1992), 

suggesting an ability to move large distances from the continental shelf. This evidence is 

corroborated by their regular occurrence in sperm whale stomachs in pelagic waters of 

the Southern Ocean (Yukhov 1972). Diet off Chile is almost exclusively of fish, while off 

South Georgia benthic crustaceans are present in a large proportion of full stomachs from 

fish taken in water deeper than 1000m (Zhivov and Krivoruchko 1990). The digestive 

tract is adapted for ingesting large items and large amounts of food at a time (Korovina et 

al 1988) while the proportion of full stomachs varies between regions and with depth.
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Little is known of population structure. Variations in published growth parameters 

suggest a population boundary between the southern South America - Scotia Arc region 

and the islands of the Southern Indian Ocean (SC-CAMLR-XI). This evidence is 

supported by increasing levels of a disease causing degeneration of protein (jelly meat) 

off southern Chile, which has also appeared off South Georgia but has not been recorded 

in fish from the Indian Ocean or northern Chile. Parasite loadings indicate some isolation 

between fish populations found along the north and south coasts of Chile but also 

between the Patagonian shelf and South Georgia (SC-CAMLR-XIV Annex 5). This 

evidence may however be related more to differences in the environment encountered by 

older life stages than to different sources of population recruitment. Mark- recapture 

studies have commenced off the Falkland Islands but returns have yet to start in large 

numbers (J. Barton, pers. comm.); mark-recapture studies along the Scotia Arc are 

problematic due to the poor condition of fish captured by long-line (Ashford 1993, 1994), 

although studies have been initiated using fish taken by trawl. Genetic studies have been 

attempted but have either not been successful due to the high lipid content of the tissue 

(R. Williams, pers. comm.), or have not yet been published. Stock depletion experiments 

have indicated that movement of fish between areas may be large over periods as short as 

10 days (SC-CAMLR XIII). Length frequency data indicate five consistent peaks in the 

early life history which may correspond to year cohorts; however, little age-based data 

exists and no validation studies of aging techniques have yet been published in the 

literature.

1.3. Area of interest

The Southern Ocean is a circumpolar ocean, connecting the southern Atlantic, 

Indian and Pacific Oceans. It is a major site of production of several water masses, 

including Antarctic Surface Water, Antarctic Intermediate Water and Antarctic Bottom 

Water, which spread out of the Antarctic regions to lower latitudes. Mixing with North 

Atlantic Deep Water creates Circumpolar Deep Water, which may form the source o f the 

Common Water of the Indian and Pacific Oceans (Gordon 1988). The Southern Ocean is
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thus marked by considerable heterogeneity of water masses both vertically and 

horizontally, with clear differentiation of water types so close to their origin.

Within the Southern Ocean, the Antarctic Circumpolar Current (ACC) moves 

eastward around the Antarctic continent (Gordon 1988, Anon 1989). After the ACC 

passes through the Drake Passage, the current moves north along the Patagonian shelf to 

meet the Brazil Current, after which it travels eastward across the Atlantic. In the Indian 

Ocean, the current passes along the Crozet and Kerguelen Island groups, to meet the 

Macquarie Ridge before splitting into two off the Campbell Plateau south of New 

Zealand. Extensive mixing with Pacific Waters occurs until the current returns to the 

Drake Passage (Gordon 1988). Much of the transport occurs within three fronts (polar, 

Antarctic and continental) which mark large changes in temperature and salinity (Figure 

1.3). These fronts shift over time and have large implications for organisms living in the 

Southern Ocean (e.g. Hofmann et al. 1998).

1.4. Stock assessment and management

In the Southern Ocean, fishing has been largely within the area managed by the 

Commission of the Convention for the Conservation of Antarctic Marine Living 

Resources (CCAMLR). The Commission is composed of delegations from signatory 

nations to the Convention, and its headquarters are located in Hobart, Australia. Data 

from the toothfish fishery are collected, and analyzed each year by the Working Group 

for Fish Stock Assessment in preparation for the annual meeting of the Commission and 

its Scientific Committee. Decisions taken at the meetings control Antarctic fishing and 

promote marine research. The objective of the Convention is the conservation of 

Antarctic fisheries including rational use based on an ecosystem approach to 

management.

Stock assessment is concerned with advising decision-makers on the biological 

effects of different possible harvest actions (Gulland 1983). The role of stock assessment
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(Orsi et al. 1995).
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biologists in fisheries management is to provide structured analyses of available data in 

comparing management choices (Hilbom and Walters 1992), based on the dynamics of 

the exploited populations. However, their responsibility is rarely to decide between 

options; instead, practical decisions are taken by fisheries managers after balancing 

biological, social, economic and political factors (Gulland 1983). Stock assessment is 

therefore a special, applied case of the general problem of predation and interaction 

between populations wherein humans are the predators (Beverton and Holt 1954).

Beverton and Holt (1957) developed a simple population model as a starting point 

for their quantitative approach to stock assessment. They considered a closed population 

put forward by Russell (1931) in which weight increments, in the form of recruitment and 

growth, were balanced by weight decrements, in the form of capture through fishing and 

natural death:

S,+1 = S,+(A + G ) - ( M + C )  (1)

where 5, is the total weight of the exploited phase of the population at time i = 1 and 2, A 

is recruitment, G is growth, C is fishing capture, and M is natural death over the period. 

They eliminated the interdependence between the four primary factors by defining each 

in terms of parameters assumed to be independent of population density, and proceeded 

to construct a simple analytical population model:

YIJ e -nku--,o>
Y / R = Fe~MU'~'r)W ■=—i2----------- '  '

" F + M + nK

where Y/R = yield-per-recruit; F = instantaneous fishing mortality coefficient; M  = 

instantaneous natural mortality coefficient; W  « = asymptotic weight; U„ = summation 

parameter; tc = mean age at first capture; tr — mean age at recruitment to the fishing area; 

to = hypothetical age when length is zero; K = Brody growth coefficient. Similar dynamic 

pool models were derived by Thompson and Bell (1934) and Ricker (1958), but using 

different methods to estimate W„ and mortality, and calculating yields over small time 

intervals which were then summed. Using these methods, the fishing mortality can be
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calculated at which the maximum sustainable yield (MSY) is achieved, and the effect of 

different management scenarios simulated.

An alternative approach is to use the logistic growth equation to model the 

exploited population. Assuming catch to be proportional to fishing effort and stock size, 

Schaefer (1954) proposed that the change in biomass would equal population production 

less exploitation:

= rB(l — — qEB &
at k

where B is the biomass o f the stock, r is the intrinsic rate of population growth, E  is the 

fishing effort, and q is a parameter describing the efficiency of the fishing gear. The term 

r(l-B/K) is therefore the rate of surplus production, or yield, which under equilibrium 

conditions equals the rate of exploitation. The model can be shown to follow the form of 

a parabola, so that Ymsy and Bmsy occurs at the point where dY/dB = 0.

A third method is to use age-structured stock assessment (ASA) models to 

simulate the dynamics o f individual cohorts through time. ASA models now form the 

basis for management advice in many world fisheries (Megrey 1989), linking data on age 

composition to catch rates, and allowing reconstruction of population dynamics. Age- 

specific vital rates can be estimated, as well as abundances of individual cohorts. An 

example is Gulland’s (1965) sequential population assessment (SPA) model, in which he 

used a backward solution to link successive age-groups, combining the Baranov (1918) 

catch equation:

C, = — ^ —  NA1 -  e- (+" 1) (4)
* E + M  ‘
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where C, = catch of fish age t, and N  = the population at the beginning of the year, and 

the exponential survival model:

NM = N ie-{F'+M) (5)

ASA models can be applied without knowing fishing effort, catchability, or gear 

selectivity, and avoid the problems of catch per unit effort (CPUE) as an index of 

population abundance (Megrey 1989). ASA models provide estimates of absolute 

population abundances and can predict the contribution of individual cohorts to the 

fishery, so are particularly appropriate where quotas are used to control fishing effort and 

year-class strength is variable between years.

To use the models, data are collected which can be fed directly into the models, or 

from which the terms can be calculated. Mortality can be calculated using the catch 

curve, based on the exponential survival model above where the total mortality (Z) is 

equal to the sum of fishing (F) and natural mortality (M). Alternatively, survival can be 

calculated using maximum age methods (Royce 1972, Hoenig 1983), or removal methods 

(Lesley and Davis 1939, Delury 1947). Recmitment to the fishery can also be calculated 

using fomulations of the model, back-calculating to find No, the total number of a cohort 

when it enters the exploited population. Growth can be modelled using the von 

Bertalanffy model (Beverton and Holt 1957). Thus, length at time t is :

/ , = £ . (  \ - e ~ Ku~'o)) (6)

where L~ is the mean maximum size achieved by a fish, K is the rate at which is 

achieved, and to is the hypothetical age at which length is 0. Other models are also 

available to simulate growth (e.g. Schnute 1981).

However, with the exception of surplus production models, these methods all rely 

on accurate and representative information on age. Furthermore, mean age at first capture 

and at recruitment to the exploited population are normally assessed directly using age
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data. The models also assume a single, closed population with no emigration or 

immigration. Dynamic pool and surplus production models assume equilibrium 

conditions, while most ASA models are deterministic and are not well structured to 

assess stochastic effects. Yet these conditions are seldom met in practise: biometric data 

is subject to varying levels of measurement and sampling error, particularly for age data; 

movement within and between populations, and environmental influences, lead to 

variability at different temporal and spatial scales.

Assessment of this variability in biological systems complicates the process of 

reaching valid conclusions. Fisher (eg. 1922) and others developed several statistical 

frameworks for estimating parameters and their variability or error in populations. They 

further developed procedures to make inferences, including measures of belief in 

estimates using confidence intervals and tests of hypotheses based on these estimates, 

which form a useful tool for biologists and fisheries managers. In one of these 

approaches, a scientific hypothesis is advanced, for which models are developed which 

represent null and alternate statistical hypotheses. The model parameters are estimated by 

least squares and an experiment is designed with a treatment that will test between the 

hypotheses. The null (or reduced) model describes the situation where the treatment 

results in no detectable difference between treated and untreated populations; the 

alternate (or full) model where the treatment results in a detectable difference. Random 

allocation of experimental units to treatments allows a population of possible experiments 

to be generated under the null hypothesis, of which one has actually occurred. A 

probability analogy can therefore be employed (Edwards 1992): the value for the test 

statistic for the actual experiment can be compared against those for the population in a 

probabilistic randomization test (Keuhl 1995). Alternatively, significance tests based on 

normal distribution theory are equally good provided the normal distribution assumption 

is valid. The method gives a measure of the probability that the result would happen 

under the null hypothesis, and therefore whether the latter should be rejected or not 

rejected.
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Fisher (1921) also developed the concept of likelihood as an alternative to 

probability as a relative measure of belief between rival hypotheses. In the probability 

approach, the results are considered to be the variable and the hypothesis is fixed or 

constant; in the likelihood approach, the data are fixed and the likelihoods of the 

hypotheses are the variable. Likelihood depends on a distribution function rather than the 

probability analogy, and has very different properties. The likelihood for each hypothesis 

is calculated, and the ratio between the two determines which of the hypotheses is 

selected. Thus, likelihood allows different types of information to be included in a single 

framework, and the relative merits of rival hypotheses can be assessed in the light of 

observational or experimental data that bear upon them (Edwards 1992).

In fish populations, age error can result from age estimation techniques (eg. 

Beamish and McFarlane 1987); it can also result from unrepresentative sampling. The 

latter can be minimized by using probabilistic sampling designs with good spatial 

coverage (e.g. Dorval 1998). Residual error can be assessed to prevent age biases, to 

estimate random variability using a quality control program, and to evaluate the 

reliability of model results and population parameter estimates (Kimura and Lyons 1991).

Error can also result if the model domain does not reflect the boundaries of the 

population and the population does not behave homogeneously within the boundaries. 

Inaccurate growth rates will bias estimates of productivity used to set catch levels. 

Linkages between populations can profoundly influence their dynamics, altering 

parameter values and even the persistence of populations in time and space under 

different conditions (e.g. Pulliam 1988, Hanski and Thomas 1994). Environment is also 

likely to contribute to spatial and temporal variation, structuring the space in which a 

population exists, linkages between populations, and contributing stochastic effects at 

different scales. For example, temperature and resource availability influence growth, and 

may vary widely within and between populations of a single species. As a result, 

hypotheses on movement and mixing need to be constructed and assessed, and growth 

estimated at an appropriate spatial scale.
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With accurate information on age, growth and population structure, managers can 

construct stock assessment models to estimate yield, ascertain the life history pattern of a 

species, and pinpoint which age classes are vulnerable to over-exploitation under a 

particular set of environmental conditions. As importantly, models can be assessed for 

how well they handle the error detected in the data and how assumptions conform to the 

characteristics of the population. This can be balanced against data availability, cost and 

logistical demands to select the most appropriate model to simulate management choices 

in the fishery.

As a result of the increase in fishing activity within the CCAMLR area during the 

early 1990s, a workshop was convened in 1995 to review methods used for the 

assessment of D. eleginodes. The workshop considered the current state of knowledge of 

toothfish biology and demography; stock identity; abundance; and yield. It recommended 

that research programs be developed to determine absolute estimates of abundance based 

on both fisheries dependent and independent data; to estimate total removals; and 

improve estimates of biological and demographic parameters. For the latter, the 

workshop considered the following to have high priority: determination of age 

distribution, including validation o f age estimations from otoliths and scales, and the 

magnitude of age biases. Secondly, stock identity and mobility should be determined; and 

thirdly, estimates of von Bertalanffy growth parameters appropriate for yield calculations 

given size selectivity of different fishing methods.

1.5. Method: hypothesis-testing and its conceptual context.

In this dissertation, I follow a hypothesis-testing approach using probability-based 

and maximum likelihood techniques to estimate parameters and make inferences. The 

logical structure used in a line of investigation needs to be clear to allow evaluation of the 

influence of the conceptual context on the conclusions reached (Underwood 1997). I 

therefore review the conceptual background underpinning my approach.
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In the traditional model of science, scientific development is viewed as a 

piecemeal process through which the constellation of facts, theories, and methods are 

added to the sum of scientific knowledge (Kuhn 1962). The slow, incremental gathering 

of empirical observations increases rational understanding, ‘uncluttered and unbiased by 

theoretical preferences rooted in social constraints’ (Gould 2000). The process ‘begins in 

superstitious ignorance and moves toward final truth by successive accumulation of facts’ 

(Gould 1977).

This model of science as an objective process was articulated by Bacon in 1620 

and expressed more recently in the logical positivist school of thought with its emphasis 

on verification to prove hypotheses (Magee 1997). Pearson (1900) advocated a statistical 

methodology and view of nature which he saw as consistent with this model. He 

attempted to clarify how a scientist uses statistical techniques to construct a world view 

from the raw material o f the senses. Facts are classified and expressed as scientific laws 

which are then tested against more facts to make sure they are correct. By successive 

approximations, scientists approach the fundamental laws of nature (Kingsland 1995).

However, the traditional model o f science has not stood up to close scrutiny over 

time. Observations are governed by previously held cognitive structures, which limit the 

observer in ways that are largely unrecognised (Underwood 1997). Studies in psychology 

have shown the importance of prior experience and context in perception, for example in 

the perception of illusions between cultures, and in altering the physiology underlying 

visual perception (e.g. Gregory 1977). Gestalt psychologists have shown that the same 

information can be constructed in different ways, for example in seeing the same diagram 

of a cube in more than one orientation.

Evidence from other disciplines is inconsistent with the model. In anthropology 

and ethnobotany, a wide variety of incompatible knowledge systems have been 

documented which nevertheless allow different societies to interact successfully with the 

physical world (eg. Cox 2000). Historians of science have shown that contemporary 

social and political forces play a large role in influencing the scientific process, and that
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contemporary theory influences the interpretation of observations (Gould 1977). 

Furthermore, science has included beliefs incompatible with those held today, and 

inconsistent with a view of science as a process of accretion (Kuhn 1962). Indeed, the 

realist view was linked to the emergence of European science from its Renaissance and 

religious precursors as a framework for understanding the physical world. The realist 

emphasis on the power of objective observation was understandable in countering belief 

in textual authority, yet Gould (2000) showed that Bacon himself recognized the mental 

and social obstacles to an objective form of scholarship.

Popper (1959) also attacked the logic of the model. Proof requires that every 

possible observation is available; otherwise, it requires the inductive argument that 

unavailable observations can be inferred from the cases actually available. This is usually 

not possible or practicable: contrary observations may simply not yet have been sampled 

and the truth of the proposition cannot therefore be regarded as proven (Magee 1997, 

Underwood 1997). Similarly, reports from the past do not provide a reason to suppose 

that any one event will occur in the future rather than any other event (Miller 1999).

On the other hand, a social constructionist view o f science as one belief system 

among others ignores the technical efficacy of scientific achievement (Gould 2000). 

Instead, Popper (1959) argued that hypotheses cannot be proven, but only disproved. A 

hypothesis is tested repeatedly: if it stands up to the attempts at disproof, it acquires a 

degree of respect, always with the reservation that it might later be disproved. Hilborn 

and Mangel (1997) have pointed out that, in contrast to Pearson’s ideas, the classical 

statistical approaches developed by Fisher and others provide a quantitative underpinning 

for Popper’s system of falsification. Popper further argued the importance of falsification 

in choosing between competing theories (Magee 1997), and Edwards (1992) noted the 

consistency of this approach with likelihood methods. A similar view of science as a 

process of competition was developed by Kuhn (1962): in this, the collection of data 

occurs within a paradigm, or view of how the world works. During periods of normal 

science, inconsistencies mount between the data and predictions from the incumbent 

paradigm. The growing crisis weakens the paradigm, generating the conditions whereby a
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challenger can displace the incumbent in a scientific revolution, or paradigm shift 

(Ashford 1999). Knowledge is then re-structured in a gestalt manner. The importance of 

competition between rival hypotheses in ecology has been emphasized by Hilborn and 

Mangel (1997), who argued that likelihood methods provide a statistical basis for 

evaluating this competition in confrontation with data.

In contrast to the realist view, Popper and Kuhn’s ideas demand that scientific 

knowledge be regarded sceptically, with the possibility any hypothesis may later be 

disproved, no matter how well tested. Popper conceptualizes a ‘third kingdom’ between 

those of the subjective and objective: information is created but can be treated 

independently from its authors through the material products of publication and criticism 

(Magee 1973). Knowledge attains a physical form which can accumulate through 

archiving, but follows conceptual and logical rules distinct from the objective world it 

describes. The sceptical approach is distinct from relativism, which denies an objective 

world about which true and false statements can be made (Miller 1999). Scepticism 

denies only that we can ever know for certain that a statement is absolutely true or false. 

Therefore the claim of science on rationality lies in the critical search for errors when 

constructing hypotheses, and not from any justification or proof of hypotheses. The 

approach therefore emphasizes how the development of scientific knowledge is 

constrained by the process of empirical criticism by which hypotheses are tested.

The history of population ecology has been marked by controversy between 

quantitative theoreticians and empirical field biologists, notably in the debate over 

population regulation at the Cold Stream Harbor Symposium in 1957. Kingsland (1995) 

argued that this can be characterized as an Hegelian dialectic, with a synthesis in the 

subsequent work of Hutchinson and Mac Arthur. Thus the quantitative approach 

developed by MacArthur depended on a dialectical relationship between experiment and 

the formal construction of theory, in which ‘insights obtained from the field should be 

extended through mathematical analysis in order to generate new predictions and 

therefore new field research.’ Hilbom and Mangel (1997) characterized this process of 

epistemological development in quantitative ecology as a competitive confrontation
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between hypotheses and the data. In their view, generalized models are used to generate 

quantitative hypotheses that can be tested. Models are used to define and represent 

hypotheses that are a general statement about the natural world. The models are then used 

to evaluate the hypotheses against each other, subjecting them to tests through which one 

of the competing models can be selected.

1.6. This study

This dissertation is a response to the recommendations of the workshop on 

methods for the assessment of Dissostichus eleginoides to examine age distributions 

including validation and analysis of error in age estimation, to determine population 

structure, and to estimate growth parameters. A proposal for the project was reviewed by 

an ad hoc group of scientists from CCAMLR nations involved in Dissostichus research 

during the 1996 meeting of the CCAMLR Working Group on Fish Stock Assessment 

(WG-FSA). Response to the proposal was favorable and supportive, the project being 

viewed as ‘ambitious and very well planned’. In-kind support in the form of otolith 

collections were recommended to be made available from the sampling programs at 

Heard Island, Kerguelen, Marion and Prince Edward Islands, and South Georgia. The 

group welcomed the initiative, suggesting that the project provided a valuable focus for 

identifying researchers and exchanging information on the availability of material. The 

project was recommended to the WG-FSA as being ‘well organised and highly relevant 

to the needs of the working group’.

I present results from the project in this dissertation. In line with Underwood’s 

(1997) appeal for clarity in the logical structure underpinning a line of investigation, I 

explicitly adopt a sceptical view of rationality and scientific knowledge, viewing the 

scientific process as a formalized procedure for hypothesis-testing by creating scientific 

and statistical hypotheses and attempting to disprove them in the light of data, either 

individually or in a process of competition between rival hypotheses. I emphasize the 

relationship between theoretical development and empirical test by reviewing the existing
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body of knowledge, using this to generate hypotheses capable of disproof, and using the 

results of each chapter to develop theory further and suggest new questions that can be 

examined.

I follow this procedure to examine how growth in Patagonian toothfish is 

structured through the Southern Ocean and off the southern South American shelf, and 

how variability in growth may be used to infer population structure. In addressing these 

questions, growth should be modelled using representative age data. Consequently, I 

develop a representative sampling design and a method for estimating age and its error 

which can be used for quality control; I also attempt a test of a conceptual model of 

annulus deposition in otoliths. As well as addressing a fundamental question on spatial 

variation in growth, I therefore address the basic methodological prerequisites for 

simulating the population dynamics of Patagonian toothfish, needs specifically identified 

by the Scientific Committee of CCAMLR.
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CHAPTER n

SAMPLING THE LONGLINE CATCH POPULATION

2.1. Introduction

2.1.1. Sampling the longline: the problem

Longlining is a passive method of fishing, relying on active movement by fish to 

the gear. The fish are attracted by chemicals from the bait carried to them by the current 

and diffusion; response is by rheotaxis, approaching the gear by swimming upstream The 

chemicals form a plume downstream of the longline: the active space o f the gear is the 

volume of water influenced by the plume (Bjordal and Lokkeborg 1996). This is 

determined by physical variables such as strength and direction of the current, turbulence, 

physical topography creating a barrier or impeding flow through friction, and the rates of 

release and diffusion of chemicals from the bait (Olsen and Laevestu 1983). These 

variables change over time, affecting the active space: for instance, Lokkeborg (1990) 

demonstrated the rate of release of amino acids from mackerel bait decreased 

dramatically in the first two hours of soak time.

Physiological, ecological and behavioural factors specific to the target species are 

also important: the olfactory threshold o f the fish limits the effective size of the active 

space, and the response rate is affected by feeding history and foraging strategy (Bjordal 

and Lokkeborg 1996). Population density and structure may also influence response 

rates. For instance, large fish are able to swim further and faster than small, but are likely 

to gauge their response to chemical information on the size of the bait and its distance, 

the likelihood o f the bait remaining available if population density is high, and the 

availability of alternative food sources.
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Studies from areas outside the Antarctic indicate that changes between lines or 

along a line may determine which fish are taken. Matsuoka et al. (1992, 1995) found 

longer submersion times can influence the catch through higher rates of fish loss or 

saturation of baited hooks. Somerton and Kikkawa (1995) found an abundant target 

species may saturate the gear, or other species, if in abundance, may exclude the target 

species, leading to differences in selectivity where the distribution is clumped. Lokkeborg 

and Bjordal (1992) found behavioural mechanisms may be involved in size selectivity: 

larger specimens may have larger feeding ranges or territories, and be more successful in 

competing for baits. Depletion studies have indicated that toothfish move widely within a 

fishing area and distribution may be clumped (Rubilar et al. 1994).

Fishing success is therefore dependent on a suite of physical and biological 

variables that are likely to vary considerably over time and space. In the toothfish fishery, 

setting usually takes 1-2 hrs for a line of 10,200 hooks (eg. Ashford 1993), and hauling 

10-28 hrs; a single line can cover 10 km of the continental shelf-break. Different points of 

a longline are likely to be exposed to very different sets of physical variables over 

different windows of time; soak time will increase greatly for the last part of the line 

hauled compared to the first. If not carefully conducted, samples may not be 

representative of the catch population, but give estimates that are biased or, if variability 

is large, estimates that are unbiased but can result in a single sample that differs 

considerably from the true catch population parameter. The CCAMLR Working Group 

for Fish Stock Assessment has requested samples be taken representatively (SC- 

CAMLR-XV/4, Anon 1996b). However, no standardised method has been developed, 

and most sampling has been undertaken haphazardly or systematically, despite the 

warning by Kock and Selling (1996) over the interpretation of data collected for longlines 

in this manner.

2.1.2. The longline system o f fishing

Longlines and their terminology vary widely between vessels and fisheries, but 

essentially consist of a long main line (also called groundline or motherline) to which are
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attached shorter branch lines (secondary line, gangline or snood) that carry a baited hook 

at the free end. Secondary lines are spaced at regular intervals specific to the fishery. The 

practical unit in rigging and deploying longlines is the skate (coil or basket), a length of 

mainline rigged with a standard number of secondary lines. Skates are linked to make a 

fleet of longline gear, which is deployed, or set, from the stem of the vessel as a single 

longline. The line is left to soak before being hauled using a hydraulic winch, usually into 

the wind and over the starboard side forward of the centre of the vessel. During hauling, 

the fish are removed from the hooks, bled, dressed and iced or frozen; skates are repaired, 

coiled in tubs (or baskets) and the hooks rebaited in preparation for the next set (Bjordal 

and Lokkeborg 1996).

Longlines can be deployed demersally, pelagically or semi-pelagically. In demersal 

longlines, the ends of the line are usually secured by anchors and marked by surface 

buoys carrying lights and radar reflectors, and the line is weighted between skates. 

Intermediate buoys may be deployed so that, if a line breaks, the vessel can resume 

hauling at the next buoy: this saves time in steaming to the far end of the line and allows 

the vessel to continue hauling into the wind.

The toothfish fishery currently uses three types of demersal longline gear. The 

Spanish system (Figure 2. la) uses a series of several hundred coils of line joined together 

to form one continuous mother line. The mother line is thin and a strong retaining line is 

deployed in parallel and anchored at both ends: the two lines are linked by connecting- 

lines at the end of each coil. The Japanese system (Figure 2. lb) does not use a retaining 

line, only a stronger mother-line with a series of two or more surface buoys along the 

length of the line. The Norwegian system is automated and uses a continuous mother-line 

with hooks spaced at regular intervals all along (Figure 2.1c). The line is divided into 

magazines consisting of a number of coils, and weights are placed at the end of each 

section of line corresponding to a magazine (Ashford et al. 1997).
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Figure 2.1: Demersal longline equipment used in the fishery for Patagonian toothfish:
a) the Spanish manual system, b) the Japanese manual system, c) the
b) Norwegian automated system.
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2.1.3. Howto sample representatively?

To obtain a representative sample of a population, data can be taken by selecting 

sampling units randomly from a known list of the sampling units making up the 

population (the sampling frame), using a simple random sampling design. Population 

parameters can be estimated with estimates of their variance. Thus, for a given population 

of N  units, the population mean p. is the average of the y-values in the whole population 

(Thompson 1992):

If all the possible samples of the population were taken, under simple random 

sampling, the mean of all the sample means will equal the real mean of the population: 

that is, a sample mean will be a design-unbiased estimate of the population mean. The 

same applies for the sample variance. According to the Central Limit Theorem, the

(7)

The finite population variance is given by:

<J- = Z N( y , - / i ) 2 (8)
N - 1

For a sample taken by simple random sampling, the sample mean is the average o f the 

y-values in the sample:

y = - Z n y,. (9)n

The sample variance s2 is defined as:

s~ =
n - 1£ n(y ,.-y )2 ( 10)
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estimated means from the samples will follow a normal distribution around the true 

mean, with variance:

, . .N - n . c r 2 n nvar(//) = (———)----
N n

where (N-n/N) is the finite population correction factor. An unbiased estimator of this 

variance is:

- \ , N ~ n \ s (12)var(y) = (———)—  v ’
N  n

This allows inferences to be made based on the well-understood properties of a 

normal model, even when the y-values are not normally distributed. One inference that 

can be made is the construction o f confidence intervals as a measure of the reliability of 

each estimate. This measures the range of values within which the population parameter 

is likely to lie at a given level of probability (usually 95%). Thus, for a normally 

distributed, unbiased estimator o f a population parameter 6, a ( l - a ) confidence interval 

for 6 is given by:

G ± Zyj var($) ( 13>

where Z is the upper a  12 point of the normal distribution, and a  is the allowable 

probability of error.

Larger sample size reduces the population correction factor, reducing the variance of 

the mean and the width of a confidence interval, indicating the estimate is more reliable. 

There is therefore a trade-off between the effort needed to record more data, and the 

increase in reliability of an estimate. If the level of reliability desired can be specified, the 

optimal number of samples can be calculated, ensuring that time and effort are not wasted 

collecting extra data which will do little to increase confidence, or too little data are
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collected to allow reliable conclusions. Thus, if N  is large relative to n, so that the finite 

population correction factor can be ignored, the necessary sample size is:

n (14)
n o  ~  .1a

where d  is the maximum allowable difference desired.

Probability designs like simple random sampling provide unbiased estimates of 

population parameters and their variability, without relying on any assumption about the 

population itself. They guard against regularities in the population and remove 

recognized and unrecognized human sources of bias - especially desirable when the 

results are to be used in a political context with conflicting interests, like fisheries 

management. Randomization also implies a finite array of designs based on the mix of 

the sampling units that could have been chosen. In contrast, haphazard, unrandomised 

systematic, and pseudo-randomised designs are susceptible to conscious or unconscious 

assumptions about the population by the sampler, give estimates with unknown bias, do 

not give estimates with known properties and a measure of reliability, and do not 

conform to the probability analogy. In a situation with real conflicts, conclusions derived 

from either method are vulnerable to attack by a dissenting view (Thompson 1992).

Simple random sampling (SRS) has the added advantage that each data point can be 

considered independent and identically distributed (Fisher 1922), without any auto

correlation. This fulfills a basic assumption of most statistical analyses, including those 

involved in Analysis of Variance (ANOVA). However, identifying a suitable frame has 

often proved a problem in fisheries-based sampling. An SRS solution for small catches 

would be to collect caught fish and label each one, creating a frame from which fish can 

be selected by label. However, this quickly becomes impracticable as the vessel and catch 

gets bigger. In the case of toothfish, hauling occurs over 10-28 hrs, and fish are processed 

concurrently. Simple random sampling is clearly not feasible logistically.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



28

A hierarchical randomised sampling design is a practical alternative, and one that can 

reduce the variance of an estimator when the variation o f the underlying population is 

distributed in certain ways. A frame of M  sampling units is divided into N  primary 

sampling units (PSUs). This allows a variety of approaches: in cluster sampling, n PSUs 

are sampled randomly from N, and all m, sampling units in each selected PSU are 

sampled; in multi-stage sampling, a sub-sample is randomly selected from the the m, 

units as well. In randomised systematic sampling, n PSUs are selected from a frame o f N, 

but the m, units within each PSU are distributed systematically through the population. 

Once a sampling frame is identified, a hierarchical sampling design will allow an 

observer to sample the catch population during hauling of a line. Furthermore, multi

stage or cluster sampling will allow the catch population to be divided into PSUs of a 

practicable size for sampling during sampling sessions.

However, toothfish are not captured predictably, so identifying a hierarchical frame 

to sample based on the catch population is not possible. Instead, the frame can be based 

on the line itself, divided into coils, or groups of coils, which can be randomly selected. 

However, the selected m units are not independent but are organized hierarchically: the 

properties of the sampling design model are different from that for simple random 

sampling, and population parameters, their variances, confidence intervals and finite 

population variance have to be estimated differently. In this chapter, in response to the 

request by the CCAMLR WG-FSA that samples be taken representatively (SC-CAMLR- 

XV/4), I present a design for randomly sampling longlines which can be used to assess 

variability at different spatial scales. The results of a field trial of the design are also 

presented. I used two nested linear models with random effects to analyse the variance 

components of frequency and total length for the catch population, with the objective of 

determining the distribution of variation in frequency and length composition at the 

various levels of the sampling design.
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2.2. The sampling design

For ail three fishing methods, all the line set during a night forms the sampling frame, 

whether this was on a single longline or divided between several longlines. For the 

Spanish and Japanese methods, the sampling frame can be divided into sequences of 

coils (eg. a longline with 300 coils has 10 sequences of 30 consecutive coils). These 

sequences can be used as PSUs, which can be further sub-divided into sampling units 

consisting of shorter sequences to examine variability at different spatial scales. The y- 

value measured is frequency of fish. For the Norwegian system, the analogous PSU is the 

sequence of coils within a single magazine, or sequence of magazines depending on the 

size o f the magazine (e.g. a longline of 20 magazines could have 20 PSUs of one 

magazine, or 10 PSUs of two magazines, etc). Otherwise the design would be the same.

2.2.1. To estimate frequency parameters

Each line is sampled using a two-stage randomised design, with simple random 

sampling at each stage. Fish abundance is used as an example parameter to illustrate the 

method. Thus, for the frame for each day’s hauling, an unbiased estimator of the total 

number of fish in the zth primary unit is:

<15)m.

where M, denotes the number of secondary units in the zth primary unit, of which m, are 

sampled. Since simple random sampling is used at the first stage, an unbiased estimator 

of fish abundance for a line (r*) is:

t„ = — Z' y ,  <16>n
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where N  denotes the number of primary units in the frame, of which n are sampled. An 

unbiased estimator o f the mean fish abundance per primary unit is:

Sampling units are independent within each PSU but, because the design is 

hierarchical, they are not independent and identically distributed throughout the sampled 

catch population and there will be auto-correlation between sampling units within a PSU. 

Variances are therefore more complicated to estimate than in SRS. Thus, the variance of 

the estimate of zh is:

The first term represents the variance that would be obtained if every sampling unit in 

a selected primary unit were observed, while the second term is the variance due to 

estimating the primary unit values y{- from sub-samples of sampling units. The two terms 

can be estimated by replacing the population variances with sample variances, and 

parameters with estimates. Thus,

y  = t h / N (17)

and an unbiased estimator of the mean fish abundance per secondary unit is:

y,. = r„ /M (18)

where au2 is the finite population variance of the total numbers of fish in the PSUs:

<*u~  = N - 1
(20)

and oj2 is the population variance within the ith PSU. Thus, for /=1,....,N,

(21)
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var(fh) = N ( N - n ) ^ !-  +— 'La M i(M i - m f)—  (22)
n n m,

where

s.. =
n - 1

(23)

and, for /=!,.....,n,

i , ! = (— L r ) I ' '( y „ - y , ) =  (24)m , — 1

An unbiased estimator for the variance of mean fish abundance per PSU and 

sampling unit can be calculated by dividing var( T/,) by N2 and M2 respectively. The finite 

population variance for a line <Th2 is the sum Oj,2 = <J2 + 0f\

To estimate the total abundance of the toothfish population sampled during the trial, 

the data for each line can be pooled in an a posteriori fashion by treating each day’s 

hauling as a single stratum within a stratified design. Thus, an unbiased estimator of the 

overall population total rsl is obtained by adding together the stratum estimators:

(25)

where P is the number of days hauling. The variance o f the stratified estimator, because 

of the independence of sampling unit selection between days, is the sum of the individual 

stratum variances:

var(f .) = Z /> var(f.) (26)
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which can be estimated by summing the variance estimators for each day’s hauling. The 

stratified estimator for jist is:

and the variance of the estimator is:

2.2.2. To estimate length parameters

To illustrate the method, total length (TL) is used as a proxy for other biological 

composition data, and mean TL as a parameter example. To estimate mean TL and its 

variance, the line is divided into N  PSU’s and M  sampling units as above, which are 

selected using SRS at each level. However, the y-value is TL for every fish within a 

sampling unit. This gives a three-stage cluster design with PSUs as above, but the 

sampling units are now each fish and the shorter sequences of line used above are 

secondary sampling units (SSUs). Thus, mean TL for a line is:

var(/2a ) = — var(f„) (28)

(29)

where L is the number of fish caught in a day’s hauling, and

(30)
n

where

(31)
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and

x,j = 2** xijk (32)

where xtJk is the TL of an individual fish.

Since all fish within a cluster are sampled, the variance of mean TL is:

var(-*fy) = -j y  var(TA) = — ■N ( N - n ) s u2 + — I "  M i(Mi - m , A  
n m.

(33)

where

s.. =■n - 1
(34)

and

m, — 1
(35)

However, the number of fish caught in a day’s hauling is often not known, and the 

number of fish is unequal between SSUs, so unbiased means cannot be estimated simply 

by dividing 7* by L, or variances by dividing var( Ti,) by Lr. Instead, the total population 

frequency for a line estimated in 2.2.1 may be used as an estimate for L, so that:

(36)
L My ,

and

var(or ) = -L  var(TA) = - p -  var(TA) 
L My,

(37)
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Alternatively, if fish are pooled into a single sample population, the mean and 

variance of the sample population are often used as estimates of the catch population 

mean and variance.

2.3. Methods and Materials

Within the CCAMLR Observer Scheme, the field trial was undertaken between 7 

April - 23 April 1997 aboard the BIF Cisne Verde, to test whether a rigorous system was 

operable using the Spanish double-line system. A total of 12 days hauling was sampled. 

Every tenth connecting line was already marked with a spliced-in piece of coloured rope, 

which was used to monitor the amount of line remaining to be hauled. Every coil carried 

a weight of ca. 6-7 kg at its end and an extra weight half-way along; it also carried 52 

hooks, each on a secondary line attached to the mother line. Hooks were Ancora recto 

size 5, and were baited with a single thawed sardine of ca. 15 cm SL, the hook placed 

through its head. Surface buoys were placed at either end of the longline. All setting 

operations occurred at night and a similar number of hooks were laid each night over 

either one or two lines. The Fishing Master determined the number of coils laid during 

the set, depending on the nature of the seafloor, weather conditions and time available 

before dawn.

Hauling operations began generally ca. 8 hrs after setting. Hauling was carried out 

from a platform on the starboard side of the vessel, below and directly aft of the bridge, 

supervised by the Fishing Master or his assistant from a work station on the aft starboard 

wing of the bridge. Two winches were used to bring in the retaining and mother line 

simultaneously. Generally the winch for the mother-line was attended by one o f two 

winchmen working a watch of ca. 3-4 hrs. Fish caught were gaffed as they came to the 

surface by the winchman and two men handling gaff-hooks with handles ca. 6m long 

stationed on the upper deck above and aft of the winch. They then passed along a 

conveyor belt to the stem, falling through a port in the deck to land in a holding bay. Fish
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were processed using a circular saw to cut off the heads and tails, before evisceration by 

hand and cleaning automatically.

Fish were sampled on the factory deck. The known number of coils laid during a 

night’s setting operations provided the sampling frame. The size of the primary sampling 

units was set at sections of 30 coils, secondary units consisted of three sections of ten 

coils within each primary unit. At the start of hauling, random number tables were used 

to select four sampling units, of which two were randomly assigned to sampling fish for 

biometric data on the factory deck, and two to sampling by-catch at the hauling point.

Catch rates from Rubilar et al. (1994) were used to calculate an expected number 

of ca.1.5 fish caught/coil, from which forty coils/day’s hauling were calculated as needed 

to achieve the CCAMLR target of 60 fish/day. It was therefore necessary to select 

randomly two SSUs within each PSU. Fish caught on each 10-coil length were placed in 

a holding bay, and processed after the coils had been sampled. All fish sampled were 

measured for total length to the nearest centimeter; sex was also recorded.

Components o f  variance

To examine the sources of variation in the sampling design used to estimate fish 

abundances, I adapted the method used by Chittenden (1989), employing a nested linear 

model with random effects:

yhlJ = m +<*h+ buh) + *;<«) <38)

where h = 1,2,.... 12; I — 1,2; and j  = 1,2. The mean frequency is p, ah are the random 

effects due to strata (days hauling), bj(h> are the random effects due to PSUs within 

stratum, and ej(hn are the random effects for sampling units within PSU. The effects ah, 

b,(h) and ej<hi> are assumed to be independent of one another. The random effects for days 

hauling a/, are assumed to be a random sample from a population with a mean of zero and 

variance <?a ■ The null hypothesis, that all effects due to days hauling are equal, is Ho: <Ta
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= 0; the alternative hypothesis, that there is variability among days, is Ha: <Ta>Q. 

Similarly for effects b,(h) due to PSUs within a day’s hauling, with variance <Tb<a>. The 

finite population variance c?y is the sum of the variances <TV= <ra+cTb(a)+<^e(bah

To examine the sources of variation in the sampling design used to estimate mean 

TL, a similar model was used but with an extra level, corresponding to the lengths 

measured within each SSU:

d-Hhij) is the effect o f individual fish within SSU. As above, all effects are assumed to be

respectively.

For both models, the estimates of the variance components were found using 

analysis of variance in which the expected mean squares are estimated using the observed 

mean squares, and solved for each variance (Kuehl 1994). The expected mean squares are 

shown in Table 2.1. For the first model, the estimators for the components o f variance 

are:

-%i ~  M + a h + b uh) +  c jihn + d k(h,j) (39)

where h=l,2„... 12; /=1,2; y=l,2; and £=1,2,.../i/,. c,y/„> is the effect of SSU within PSU, and

independent and random with means 0 and variances <Ta, CTbtah CTctbi, and <Td(o

(40)

[MS(B/ A ) -  MSE\ 
2

(41)

2 _ \M S A -MS(B / A)] 
4

(42)
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Table 2.1: Expected mean squares for one-way random effects nested ANOVA used to

examine the components of variance due to different levels of the sampling 

design in estimating a) toothfish catch abundances and b) toothfish total 

length.

Source o f  variation Expected mean square

a)

day’s hauling 0 W + 2 < W -f -4 < 7  u2

PSU <Teiba)~ + 2(Tb(a)~

Sampling unit 2
^eiba>

b)

day’s hauling + n<?c,b>2 +2n(TMa2 +4ncra2

PSU <7d«2 +n&c<h 2 +2n<rb<a 2

SSU G’d(c) + n<̂c(b)

Fish Gdu)
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For the second model,

a d{c)2 = M S { D ! C )

2 [ M S ( C  /  B ) -  M S ( D /  C)\

2 _ [ M S ( B / A ) - M S ( C / B \
”  2ntj

2 _  [ M S A - M S { B ! A)\

4".y

where ntj = the number of fish within a SSU.

2.3. Results

A sample of 1090 fish were taken from 48 SSUs sampled over twelve days. The 

frequencies, mean TL and standard deviation are shown in Table 2.2 for each SSU nested 

within PSU within line. The TL distribution is shown in Fig. 2.2. There was little 

evidence of any trend in TL over a day’s hauling (Fig 2.3).

For the abundance data, the catch per sampling unit varied from 3-97 fish, with 

mean = 22.6 fish/unit and variance o f the mean = 1.99. The ANOVA was performed on 

untransformed and log-transformed data: residuals using untransformed data were not 

normally distributed (Shapiro-Wilks test, ot=0.05), so transformed data were used for the 

analysis. The spread of residual variances was high but was reduced by transformation. 

The results of the ANOVA are shown in Table 2.3. Variation between days hauling was 

not significant at a=  0.05. However, the result was marginal with Pr > F = 0.0533, and a 

low power of \-f}= -0.40. Variation between PSUs within days hauling was not 

significant at a  — 0.05, so Ho:cTb<a) = 0 cannot be rejected. Furthermore, the variance 

component for o~b(a) was negative: this was accepted as evidence of a true value of zero

(43)

(44)

(45)

(46)
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Table 2.2: Frequencies, mean TL in cm and standard deviation (SD) for Patagonian

toothfish sampled from 10-coil lengths of line during hauling by the B/F 

Cisne Verde between 7-23 April 1997 off South Georgia.

Line Freq Mean TL SD Line Freq Mean TL SD

1 3 98.0 3.61 7 25 101.4 11.0

1 18 99.5 9.64 7 36 92.6 13.5

1 21 91.2 12.39 7 11 88.9 12.0

1 19 87.5 10.40 7 13 91.5 14.4

2 12 103.2 14.1 8 35 98.6 10.9

2 13 93.1 14.91 8 26 91A 15.4

2 11 89.5 13.77 8 13 105.4 18.5

2 18 90.4 16.01 8 20 110.9 11.0

3 22 93.3 12.86 9 9 93.8 8.2

3 27 101.0 12.77 9 10 96.1 17.6

3 17 98.4 8.34 9 10 98.1 12.6

3 30 94.7 10.79 9 36 93.7 12.5

4 9 91.4 14.70 10 12 91.2 9.4

4 21 88.9 10.62 10 11 95.9 15.8

4 28 92.8 15.01 10 26 95.0 15.1

4 29 87.3 11.62 10 4 110.5 10.1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



40

Table 2.2: continued.

Line Freq Mean TL SD Line Freq Mean TL SD

5 18 104.7 9.47 11 26 91.2 12.3

5 18 103.8 8.99 11 48 86.8 8.0

5 10 103.8 11.90 11 26 84.7 6.8

5 24 103.4 9.92 11 35 87.5 9.8

6 20 109.7 25.6 12 60 85.2 7.7

6 16 93.2 11.4 12 32 95.7 19.1

6 30 104.8 14.2 12 20 86.2 6.8

6 30 104.8 14.2 12 97 92.3 10.8
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Figure 2.2: Frequency distribution of total lengths for Patagonian toothfish

sampled from the catch taken by the B/F Cisne Verde 
between 7-23 April 1997 off South Georgia.
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Table 2.3: Results from 1-way ANOVA analysing components of variance for toothfish

abundances at three spatial scales: line, 30-coil sampling units (PSU), 10-coil 

sampling units.

Source d f Sum o f  squares Mean square F P

Total 47

line 11 7.4025 0.67295 2.18 0.053

PSU 12 3.3608 0.28007 0.91 ns

SSU (error) 24 7.4001 0.30834

CTe2 = 0.30834 76%

a b2 = -0.01414 0%

a a2 = 0.09822 24%
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(Kuehl 1994), so that the variance among lines accounted for 24% of the variation in 

toothfish abundances and the variance among SSUs accounted for 76%.

The practical advantage of a multi-stage design is that it is often less expensive to 

observe many secondary units when grouped than to observe the same number of units 

randomly spread over the population. Sampling effort can be allocated depending on the 

relative costs o f sampling the various units (Thompson 1992). Thus, using observer hours 

as the unit of cost, the optimum number of sampling units/ day can be calculated using:

where c/ = cost of sampling a selected day (15 hrs), and c2 = the cost of sampling the 

SSU’s (0.5 hrs). Using the cost function:

where C = total observer cost/voyage of 60 days (60 days=1440 hrs), co= fixed overhead 

(12 hrs/day rest periods = 720 hrs), and solving for n, a total o f n = 36 days should be 

sampled. Thus, rather than sampling every day, a better allocation of effort based on 

these results is for the observer to randomly select 36 fishing days over the voyage, and 

randomly sample 10 sampling units within that day, leaving other days free for other 
tasks.

For the biometric data, the maximum TL sampled was 197 cm; the minimum was 

63 cm. The ratio estimators gave mean TL = 94 cm and variance of the mean = 30; 

whereas pooling all fish and assuming independence gave mean TL = 94 cm and 

variance of the mean = 0.18. The ANOVA was performed on log-transformed data, as 

residuals for untransformed data were not normally distributed and the spread of 

variances was larger than for transformed data. The results o f the ANOVA are shown in 

Table 2.4. As the number of fish were not equal between SSUs, the squares of the mean

(47)

C = c0 +c,n + c2nm (48)
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Table 2.4: Results from 1-way ANOVA analysing components of variance for toothfish

log (TL) at four spatial scales: line, 30-coil sampling units (PSU), 10-coil 

sampling units (SSU), within SSU. Approximate Fo statistics are shown.

Source d f Sum of squares Mean square F P

Total

Line 11 3.3473 0.30430 5.140 0.0051
PSU 12 0.6675 0.05563 1.106 ns
SSU 24 1.0601 0.04417 2.734 0.0001
Fish (error) 1042 16.8332 0.01615

a d2 =0.01615 79%

CTc2 =0.00141 6.9%

a b2 = 0 .00012  0.6%

a a2 =0.00275 13%
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deviations in the Sum-of-Squares for SSU were weighted by the number of fish in each 

SSU, and coefficients for the variance components in the expected mean squares were 

calculated as detailed in Kuehl (1994). Approximate Fo statistics were then calculated to 

test the null hypotheses of no effects at the various levels of the model (Table 2.4). 

Degrees of freedom were calculated using the Satterthwaite Approximation. Variation 

between lines was significant at a  = 0.05, so that Ho:cra = 0 can be rejected. It was not 

significant between PSUs, but was significant between SSUs, so that Ho:<Tc(b)=0 can be 

rejected. Using the coefficients for the variance components calculated above, variance 

among lines accounted for 13% of the variation, and variation between fish within a SSU 

for 79%; variation between SSUs was only 6.9%, and between PSUs almost negligible at

Allocating observer effort between day and SSU using the cost functions above, 

the optimum number of SSU’s/day to sample is:

and n = 31.3 days should be sampled.

2.4. Discussion

2.4.1. The sample design

Using this design, catch can be sampled at the same time as hauling with little impact 

on commercial processing. Therefore, this approach will be invaluable when using 

observers to obtain data on catch and by-catch. The design proved easy to put into 

practice: SSUs of 10 coil sequences were easier to sample than individual coils, and 

PSUs of 30 coil sequences meant fewer, longer sampling sessions which were easier to 

co-ordinate with crew members. The method also proved highly adaptable, allowing

0 .6%.

(49)
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sampling on the factory deck to be integrated with rest periods, sampling tasks at other 

stations (e.g. Ashford et al. 1994, 1995, 1996a), and other observer tasks in one sampling 

schedule on a day-by-day basis (e.g. Ashford and Croxall 1998).

The sampling method assumes independence between strata in the design. 

Obvious structures to use for the strata are the individual lines. However, fishing days 

were used because setting of lines at night divided fishing into clear daily cycles, with a 

reasonably consistent number of hooks set each night, over either one or two lines. If 

more than one line was placed on one night, they were generally close to each other, 

frequently laid within an hour of each other, and were considerably shorter than single 

lines laid in a night. Furthermore, most travelling occurred immediately after hauling, 

before the next setting operations, so using days hauling conformed better to the principle 

o f stratification, that the population be divided in such a way that units within a stratum 

are as similar as possible.

The design for estimating abundances was balanced and the number of sampling 

units known. It proceeded in a straightforward manner with unbiased estimates of the 

mean and its variance. However, the design for estimating length composition was 

unbalanced with an uncertain number of fish caught on the line segment making up a 

SSU. Population parameters are often estimated by pooling all fish sampled, but this 

assumes the fish are independent and identically distributed as under a SRS design; this is 

not the case under a hierarchical design unless fish tire randomly distributed in the catch. 

The pooled estimates are likely to be biased. Estimating population parameters using an 

estimate of L , the number of fish on the line, indicates that the pooled estimator may 

substantially under-estimate variance, giving unrealistically narrow confidence intervals. 

The pooled estimator may therefore be misleading: tests of hypotheses based on pooled 

variance may result in unjustified rejection of the null hypothesis, leading to erroneous 

conclusions.

However, the estimators using L  will only be unbiased if L is known. An estimate 

of L  will be a random variable: the estimate of mean length and its variance will therefore
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be a ratio of random variables. Ratio estimators have different properties, may not follow 

a normal distribution, and are not unbiased (Sokal and Rohlf 1995). But the ratio 

estimators reflect more faithfully the method of sampling, give a more precautionary 

variance than the pooled estimate, and the estimate of L has a low variance in any case: 

the number of PSUs and SSUs are known, and only the number of fish in a SSU is 

unknown and has to be estimated by mean ffequency/SSU. Thompson (1992) pointed 

out that a biased estimator can be better than an unbiased estimator, if the bias is small 

and the mean square error of the biased estimator is much smaller than for the unbiased 

one. Estimates are then more likely to fall near the real value. Similar criteria can be used 

to select the better o f the two biased estimators in this study. Further work is needed to 

identify the properties of the ratio estimators, and the size of the biases and mean square 

errors for both methods.

2.4.2. Components o f variance

This study demonstrates that abundances of the captured population vary at the 

spatial scale corresponding to ten coils of line (ca. 500m). Abundances also vary at the 

higher scale of fishing days. For length composition, most variation is captured within 

SSU at scales less than 500m, but some is also present at higher scales. Both ANOVAs 

demonstrated that variance between PSUs at the scale corresponding to 30 coils (1500m) 

was negligible.

For the ANOVA examining toothfish abundances, the estimates of variance 

components were not unbiased within the model design because the estimate for 

between-PSU variance was taken as zero when in fact it was negative. For the ANOVA 

examining length composition, 79% of the variability was attributable to within SSU 

variance, 13% to between day and 6.9% to between SSU variance. No variance estimates 

were negative, so the estimates were unbiased within the model design. Typically, the 

variance within clusters should be as great as possible to obtain the most precise 

estimators: these results indicate that this is substantially true for this sampling design, 

although account needs to be taken of variance at the day and SSU levels.
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This study identifies several scales at which it is important to sample toothfish 

catches, in estimating catch population parameters and constructing tests of hypotheses. 

Taking these results together, a two-stage cluster design would be appropriate with day at 

the first stage and 10-coil sequences at the second stage, within which all fish would be 

sampled. Thirty-coil sequences are unnecessary in the design and need only be used for 

convenience. Observer effort allocated to sampling 32 days out of 60 days hauling on a 

voyage, and 16 SSUs within a day, would give the best trade-off between cost and 

estimation of parameters describing abundance and biometrics. However, variation at 

other spatial scales are beyond the inferential limits of the study, and further work is 

needed to examine variation at higher temporal scales and between fishing areas.

Additionally, inferences on the wild population are beyond the scope of this 

study. In active fishing methods like trawling, the catch population can be linked strongly 

to the underlying wild population, allowing reasonable extrapolations between the two. 

But in a passive method like longlining, the captured population selects itself and its 

structure may be considerably different to that of the wild population, depending on the 

variables governing choices made by the fish. These variables are poorly understood for 

toothfish, and more work is needed to determine the relationship between the wild and 

captured populations, and how these variables and their fluctuations mediate the 

relationship. Comparative studies between catches in time and space are likely to be more 

reliable; but differences may reflect changes in the mediating variables rather than the 

wild population.

2.4.3. Implications o f the study fo r  toothfish and other fisheries

The hierarchical sampling design presented is largely driven by considerations of 

convenience. However, the results of the ANOVAs indicate that for toothfish, most 

variation is captured at lower levels in a way that makes a clustered design efficient in 

providing estimates with low variance compared to alternative designs. The ratio 

estimates, although biased, may be considerably more realistic for examining length and
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frequency compositions than the common alternative of pooled estimates, especially once 

observer effort is optimally allocated.

In contrast, a haphazard sampling design will not provide estimates in which the 

properties can be fully described, or avert bias through unconscious assumptions. It will 

also not give the information to allow these issues to be addressed. The advantage of 

convenience is cursory, as the randomized method is easy to implement once understood 

by the observer; the few minutes saved each day by not selecting sampling units 

randomly will quickly be outweighed by the much greater precision in confidence and 

savings in unnecessary time spent sampling, or in generating results that are too 

unreliable to justify conclusions (Thompson 1992). Furthermore, observers sampling 

haphazardly allocate their time in a number o f discrete periods during a day: the 

haphazard methodology is hierarchical and incurs similar disadvantages to the 

randomized design, but without the means to assess these problems.

The line itself may not always be practical as a frame: proxies for the line, such as 

time, can provide a useful alternative. However, time does not allow the frame to be 

identified beforehand, except as a predicted mean time. The frame will therefore be a 

random variable, resulting in some unpredictable statistical properties. On a slow day’s 

hauling, the end o f the line will overshoot the frame, so that the later coils will have no 

chance of being sampled; on quick days, the frame will undershoot and some selected 

sampling units will not be sampled. Variations in the rate of hauling will be confounded 

with distribution of frequencies: the number of fish sampled per time unit will be a 

function of hauling rate and the distribution of the catch. When a line is snagged, no or 

few fish will be sampled. The variation in numbers of fish caught/unit will be magnified 

along one tail of the distribution, skewing it artificially, introducing possible artificial 

outliers, and further unbalancing the number of fish/SSU. Where possible therefore, the 

line is a much better frame than a proxy.

Hierarchical designs are used to sample biometric data in other fisheries when a 

fishery’s structure is complex. However, managers frequently improvise a sampling
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design, leading to assumptions that may not be justified. For instance, catch from 

individual trawls is frequently sampled by scooping a bucket through the topmost layer of 

fish in the trawlers’ hold. This assumes that the fish are mixed randomly in that layer, and 

there are no sorting effects either in the population captured by the net, or in their fall into 

the hold. The distribution of trawls in the first sampling stage is often unpredictable, so 

managers improvise with a set of rules (such as ‘sample the last trawl each day’), and 

make the assumption that the selected PSU’s are a random sample from a larger 

population in time and space. This assumption is then justified by comparing the last 

trawl with other trawls in the day to look for discrepancies in selected estimates and their 

variances (Chester 1984). Parameters are estimated by weighing the means of the SSUs 

selected. However, significant error can arise if the conclusions from these comparisons 

are applied outside their inferential limits, or if coverage within the frame was 

insufficient. Furthermore, the estimators do not weigh correctly for the full sampling 

frame and so are biassed: the number of fish (L) in the frame remains unknown.

Similarly, Chittenden (1989) sampled Atlantic croaker and weakfish from 

commercial boxes taken from pound-nets and haul-seines in Chesapeake Bay. All fish in 

a box were sampled in a cluster-sampling design with the box as PSU, and fish as 

sampling units. He used a 1-way ANOVA to examine the variance components 

contributed by among-box and within-box variation, using TL as a proxy for other 

biological composition data (weight, age, sex): 98% of variation was attributable to 

within-box variation, so he concluded that the strategy in box-selection was not a major 

problem, providing a justification for pooling fish for subsequent analysis (e.g. Piner 

1999), thereby circumventing the problem of an unknown L.

However, pooling fish gives biased estimates where significant between-PSU 

variability exists; and this may be the case on seasonal time-scales outside the inferential 

limits of Chittenden’s (1989) study. If TL is insensitive as a proxy for other biological 

data, for instance masking shifts in sex ratio, the problems of extrapolating beyond the 

limits of inference may be compounded. Analysis of variance components can therefore 

be useful for allocating sampling effort, and can indicate at what level sampling may go
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most awry when it is not properly randomised. But, as in the previous example, 

alternatives to proper randomisation at each level of the design may lead to biases when 

assumptions are not justified, and can only be regarded as a fallback when a properly 

randomised hierarchical design cannot be implemented. Biometric estimators will be 

unbiassed only when weighed for a known number of fish in the frame.

The problem of an estimated L  encountered in this study therefore has wider 

applicability than simply to longline sampling. It will apply where: the fishery structure 

dictates a hierarchical design; fish do not arrive at the sampling station in a predictable 

manner so that higher order sampling units are based on gear or other features of the 

fishery not directly related to the fish population; and the number of fish sampled in each 

higher order sampling unit is unequal. The bias due to the ratio estimate, and its mean 

square error, will depend on the particular fishery, but the properties of the ratio estimator 

are likely to have widespread implications and deserve further work.

2.5. Conclusion

A preliminary version of the sampling design was presented at the 1996 WG-FSA 

meeting (Ashford and Duhamel 1996), at the same time as a randomised design for 

shore-based sampling of the artesanal fishery off northern Chile (Ashford et al 1996b). 

The Working Group discussed the design and requested a set of protocols for shipboard 

sampling of Ionglines, which was presented at the 1997 meeting (Ashford and Duhamel 

1997). In the same season, the design was field-tested and simplified to the version 

presented in this chapter. The simplified design was presented at the 1997 meeting 

(Ashford and Everson 1997), and a full protocol presented in the following year (Ashford 

et al. 1998). Due to a lack of consensus in the working group, the design was not 

recommended as a standard for use within the CCAMLR area, but the simplified version 

has been used subsequently in several management areas for training observers.
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CHAPTER HI 

ESTIMATING AGE

3.1. Introduction

3.1.1. The importance o f age data

The age composition of fish stocks is fundamental to understanding population 

dynamics and stock productivity. Age data allow population age structure to be modelled, 

so that growth, mortality and recruitment rates can be estimated (Jones 1992), and used to 

provide management advice. With age data, individual cohorts can be followed through 

time. Cohort life-tables can be constructed, from which age-specific survival and 

mortality rates can be calculated. Life-tables also allow calculation of standardised 

killing power, allowing comparisons between separate studies; and age-specific 

fecundity, using data on egg production within each age class. These age-specific vital 

rates can be used to elucidate life-history strategies.

Age data can also aid in understanding population fluctuations due to intrinsic and 

extrinsic factors: age-specific mortality over time can be used to examine age-specific 

density-dependent effects in population regulation, similar to key-factor analysis (Begon 

and Mortimer 1986). Life-history patterns can be examined for combinations of high 

fecundity and time-lags, or overcompensation in density-dependent effects which may 

generate variability in abundance (Begon and Mortimer 1986, May 1975). Population 

structure may tend toward equilibrium (Hastings 1997), but extrinsic environmental 

perturbations can induce substantial variation in vital rates, which differ in their effects 

on different age classes. Monitoring age composition over time can allow the effect of 

environmental variability to be examined on different time scales. Finally, anomalous 

fluctuations in age structure through time can alert managers to irregularities of scale in 

sampling programs (Underwood 1996, Anon 2000), allowing correction.
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Age data therefore allow managers to ascertain the life history pattern of a stock 

species, and which age classes are vulnerable to over-exploitation under a particular set 

of environmental conditions. Similar life history patterns have common properties, so 

that management of one stock can benefit from the lessons learned in managing another 

with a similar pattern. As importantly, age data allow managers to use age-structured 

stock assessment (ASA) models, providing estimation of age-specific vital rates, and 

predicting abundances o f individual cohorts (Megrey 1989).

3.1.2. Error in Age Data

Good age estimation is critical for management of fisheries. Inaccuracies in aging 

estimates result in significant non-random bias, producing erroneous output from models 

(Beamish and McFarlane 1983, Dorval 1998, Coggan et al. 1990), leading to 

inappropriate management strategies. Yet microstructural features occur in otoliths in a 

hierarchy of scales corresponding to regular cycles and events in a fish’s life. The 

structures corresponding to an annual period need to be selected from the others, yet 

interpretation demands a degree of subjectivity which will contribute error to all age 

determinations (Campana et al. 1995).

Error can be of two forms which are not necessarily linked: accuracy in 

estimating the true age, and precision (or reproducibility) of measurements by readers 

(Campana et al. 1995). Inaccuracies can result in bias typically toward younger or 

occasionally toward older individuals (Beamish and McFarlane 1983). Error due to 

precision can mask year-class strength: Fournier and Archibald (1982) pointed out that 

the expected percentage of a small cohort in a population would have a 140% error if 

aging was correct 80% of the time and recruitment varied widely from year to year. 

Estimates of mortality for a small cohort would be under-estimated initially and over

estimated in later years; whereas large recruitments would appear smaller and small 

recruitments larger. Bradford (1990) found that aging errors can halve estimates of 

recruitment variance, and introduce bias and autocorrelations in recruitment time series
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estimated from sequential population analysis. Lai and Gunderson (1987) found that 

biases in von Bertalanffy growth parameters due to aging error resulted in significant 

increases in the optimum fishing mortality (F*) in a yield-per-recruit model; under-aging 

using scales resulted in estimates of F* and tc* (mean age at first capture) that would lead 
to over-fishing.

Reader error occurs through the incorrect or inconsistent use of aging criteria, 

influenced by light artefacts in microscopy, discrepancies in preparing samples or poor 

preparation methodology, and the complexity of the aging material itself (Neilson 1992). 

Faulty sampling design can also contribute substantially to error in age data. Dorval 

(1998) used an ASA model (Pope and Shepherd 1982) to simulate the menhaden fishery 

of the east coast of the United States, and found that undercoverage of areas resulted in 

average errors in estimating recruitment and fishing mortality of up to 116%. He 

concluded estimates were unreliable when spatial sampling errors were present, and 

efficient management requires proper sampling frame coverage and implementation of 

probability-based sampling designs.

To generate reliable age data, there are three essential requirements (Morison et 

al. 1998): the catch should be sampled representatively to cover the fishery fully and 

reduce sampling error (if an age-length key is used, the lengths sampled must be 

representative of the population). Secondly, the technique for age determination should 

be validated across the population life history, so that the correct criteria are used for age 

estimation. Thirdly, quality control is needed to ensure age data are estimated 

consistently for a given methodology, across the catch and over time (Morison et al.

1998, Anon 2000). Furthermore, quality control should minimize sources of error, and 

provide a quantitative presentation of variability in age determinations should be 

provided to incorporate in decisions on age-based analysis and modelling (Kimura and 

Lyons, 1991). These requirements are particularly important in species for which it is 

difficult to estimate age, to ensure the best quality age data possible and to gauge whether 

age data are precise enough to justify the use of ASA techniques. If age data are highly
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variable and inconsistent, management would better resort to less rigorous approaches 

that avoid their use.

3.1.3. Estimating age

Fish are usually aged using microstructural features in otoliths and scales. Scales 

are easier to obtain and prepare than otoliths, and can be sampled several times during the 

life of a fish. However, scales may be reabsorbed and regenerated, or their development 

delayed for several months after hatching, or annuli in older fish obscured by 

compression of the circuli as growth slows with age. True age can then be under

estimated especially in long-lived species in which growth is concentrated in the early 

life history (Beamish and McFarlane 1987, White 1991). Otoliths are not reabsorbed or 

metabolically re-worked (Campana and Neilsen 1985), and contain a more complete 

record of growth from hatching to capture. They also contain trace elements taken up 

from the water column, which can be used to place a fish retroactively in space and time 

(eg. Thorrold et al. 1999). Otoliths therefore offer advantages over scales for long-lived 
fish.

Several techniques have been employed for preparing otoliths for estimating age 

of fish. Translucent otoliths in which internal aging features can be seen, are read whole. 

Alternatively, otoliths can be broken to reveal the otolith microstructure, and the exposed 

surface viewed with reflected light. If age features remain obscure, burning the exposed 

surface in an alcohol flame can improve definition (Christensen 1964, Chilton and 

Beamish 1982); baking can have similar results, but with greater control and evenness in 

applying heat. The method is simple to use and demands little equipment. However, 

otoliths may crumble or shatter; breaks may not pass cleanly through the nucleus; and the 

exposed surface is frequently rough, scattering reflected light. Moreover, handling whole 

or broken otoliths is awkward, slowing age reading.

A third option is to cut thin sections in large numbers by mounting otoliths in 

parallel rows in resin blocks, and cutting using a diamond saw (Bedford 1983). The plane
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to be read can be aligned more precisely than by breaking, and viewed using transmitted 

or reflected light. The sections are mounted on slides which are convenient to handle and 

store. The method can be adapted for fine scale work using Scanning Electron 

Microscopy (Ashford et al.1993). However, the precision of the cut depends on placing 

otoliths with their nuclei aligned along the saw’s cutting track: in many species, this can 

be difficult because the nucleus is small or cannot be identified accurately from surface 

marks.

3.1.4. Assessing error due to reader precision

Kimura et al. (1979) originally examined precision error using analysis of 

variance and variance components. Ages were determined for a single sample by two 

readers on two occasions, giving four readings. Total variance was partitioned into 

between-reader (j*2) and within reader components (se~) under the assumptions of the 

random effects model:

y,j = jU + a,-+ e0 (50)

where fi = the mean, a, = the between-reader effect, and e,j = the within-reader effect. 

Unbiased estimates of precision variability were obtained using the error mean square, 

and the consistency of within-reader variance could be tested (Hoi: sei2 — se 2, Fvi.V2 )• If 

no significant difference, the hypothesis that the between reader variance was zero (H02: 

sa = 0) could be tested, and the variance component sA2 estimated. The two null 

hypotheses together imply there is no difference in the statistical properties o f age 

determinations by the two readers. The approach accounts for the sources of variation and 

distinguishes between between-reader and within-reader variability, allowing unbiased 

estimates of each and calculation of the overall variance of an age determination (V(y,y) =
1  2

■svf+Se ). However, estimates showed a trend of increasing variability with age, and data 

were analysed by nominal age category (where nominal age was the mean of the four 

readings taken for each fish), confounding the response variable of observed age (Hoenig 

et al. 1995). The repeat readings by each reader were also assumed to be replicates, but
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bias may occur within reader making this assumption questionable without a prior test; 

however, Hoi does not specifically test for this. If within-reader bias occurred, it would 

inflate the estimate of imprecision by a given reader and may artificially weaken the test 

of differences in age estimates between readers (H0 2 : sa = 0). The calculations for sum- 

of-squares were also improvised and their mathematical properties are not fully clear. 

Finally, H02 is not a direct test for bias between readers, and the procedure does not 

allow bias to be estimated.

Another approach is to measure the percentage of repeat readings in agreement, 

but agreement is likely to fall with age, so that comparisons between older and younger 

sample populations will show differences that are due to age discrepancies as well as 

reading error (Beamish and McFarlane 1987). Instead, Beamish and Fournier (1981) 

proposed using average percent error (APE) as an overall index to allow objective 

comparisons between species and populatons:

APEj = ioox -i-2 ;i=1 o _ J k l  (51>

where X,j is the z'th age determination of the y'th fish, Xs is the mean age of the y'th fish, and 

R is the number of times each fish is aged. Chang (1982) developed this approach, using 

standard deviation rather than absolute deviation to produce an estimate of the average 

coefficient of variation (CV) that was more statistically rigorous than APE (Campana et 

al. 1995):

k ,
CVj = lOOx- R - 1 (52)

Kimura and Lyons (1991) found age determinations to be normally distributed with 

constant CV over wide age ranges, supporting the use of CV for measuring variability in 

age precision studies. However, the usefulness of APE and CV as overall indices of 

precision depend on the distribution of error with age: for instance, if error is chiefly due
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to the difficulty of interpreting the first annulus or early life history, error will remain 

constant with age, but CV will decrease, so that population age structure will again 

influence estimation o f variability. Similarly, variation in precision among ages may 

occur due to changes in the pattern of annuli laid down at different life history stages, and 

will make comparisons sensitive to age distribution (Hoenig et al. 1995). Variability is 

averaged across observations without accounting properly for the different sources of 

variation between experimental designs (eg. within and between fish, within and between 

readers) (Hoenig et al. 1995), and the measures make no distinction between reader bias 

and variability: any bias will inflate the estimate, so to measure precision variability, bias 

must be discounted beforehand (Campana et al. 1995).

Bias can occur systematically across the age range of a population, or 

change with age: one reader may under-age fish at one end of the range and over-age at 

the other, or bias change non-linearly between years with changes in the structure of the 

otolith. Regression will detect the first two types of bias and matched-pair tests 

(parametric and non-parametric) can detect systematic bias, but neither can detect non

linear bias around a 1:1 relationship. Instead, age-bias plots can be used where the age 

readings of reader Y are presented as the mean age and 95% confidence intervals 

corresponding to each of the age categories reported by reader X (Campana et al. 1995). 

Age bias plots allow visual detection of all three forms of bias, but do not allow a 

quantitative estimate or test of significance (Campana et al. 1995).

Alternatively, a symmetry test can be used where there are changes in bias with 

age (Bowker 1948, Hoenig 1995). This tests for the hypothesis that an m x m  contingency 

table consisting of two classifications of a sample into categories (ages given by two 

readers, or repeat readings by one reader) is symmetric about the main diagonal. The test 

statistic is:

y2   v'm-1 ym ^ij ^ji ) (53)
i/C 1̂=1 j=i+1

n i j + n ji
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where n,j = the observed frequency in the t'th row and y'th column, and ny, = the observed 

frequency in the yth row and zth column, and is distributed as a chi-square variable. 

However, the statistic is sensitive to stochastic effects so that its value will be influenced 

by large precision variability, and this effect will be complicated further by age structure 

if variability changes with age. The test also does not account properly for the different 

sources of variability which may lead to bias; bias may be obscured if it only occurs over 

a part of the life-history; and the types of bias cannot be easily distinguished or their 

sources identified.

These techniques can be used to estimate error in programs for assuring the 

quality of age data. Kimura and Lyons (1991) reported on a program undertaken by the 

Ageing Unit at the Alaska Fisheries Science Center: 20% of all routine age readings were 

independently re-aged by another age reader to estimate bias and precision for six species 

over their life history. Estimates of CV were used to compare ‘ageability’ of species, and 

age classes within species. Between-reader biases and variability could be monitored for 

potential effects on later analysis and modelling. Morison et al. (1998) repeated readings 

for 25% of samples to check for consistency, using APE as a measure of precision. They 

expected APE to be less than 5%, and used bootstrap techniques (Efron and Tibshirani 

1993) to calculate bias-corrected means and confidence intervals. Many laboratories 

maintain reference collections of age determination structures with known age or 

estimated precision: subsamples are inserted randomly into regular production samples to 

ensure that age readings do not ‘drift’ over time (Campana et al. 1995). Reference 

collections can also be compared between laboratories to assess inter-agency differences 

(eg. Boehlert and Yoklavich 1984).

3.1.5. Patagonian toothfish

Hureau and Ozouf-Costaz (1980) used polarized light to estimate age from scales 

of Patagonian Toothfish, and gave brief criteria for age estimation using scales and 

otoliths. Ages read using otoliths and scales from the same fish were considered to give 

good agreement, but no quantitative assessment was attempted.
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Young et al (1995) compared scales and otoliths from toothfish caught off 

southern Chile. They used thin sections cut transversely through the otolith, and found 

the nucleus and annuli were difficult to interpret. No criteria were given for interpreting 

scales: instead, the authors relied on independent readings from scale readers experienced 

with other species. They found that scales gave significantly lower estimates for age than 

otoliths in older fish. They estimated mean CV=11.3 for age readings by two observers 

using scales and otoliths.

Cassia (1998) compared age readings from scales and otolith sections from 

toothfish captured off South Georgia. She found complete agreement between otoliths 

and scales in 43.8% of cases for which she could obtain readings; in the other 56% of 

cases, the discrepancies were found were not significantly different. Otolith sections were 

frequently too opaque to read, but the percentage of unreadable otoliths was not given nor 

full criteria for interpretation of otoliths. For scales, she followed the criteria of Hureau 

and Ozouf-Costaz (1980), using polarized light to detect the first ring.

Both Young et al (1995) and Cassia (1998) found difficulties in locating the 

nucleus and interpreting internal features due to the opacity of the otolith matrix. Ashford 

and Wischniowski (1998) used a technique involving baking and breaking otoliths to 

examine toothfish otoliths taken from South Georgia. This gave good readable images, 

but the otolith pattern was difficult to interpret. Two different sets of criteria were used: 

C l developed from the criteria outlined by Hureau and Ozouf-Costaz (1980), and C2 

based on generalized criteria used by the Pacific Biological Station (MacLellan 1997). 

Within and between reader precision was estimated using CV, and was found to be 

similar. For criteria C l, mean CVWithin= 8.0 and CVbetween= 9.05.

Kalish and Timmiss (1998) noted that the appearance of opaque and translucent 

zones is highly variable among specimens from a single locality, and there may be 

differences in the ‘readability’ of otoliths from different localities. The CVs found above 

corroborate this observation, but there has been no published attempt to extend the scope
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of these findings or analyse differences between laboratories. Age estimation may vary 

significantly at each level, affecting comparisons between estimates of growth and age 

distribution used in models for stock management.

3.1.6. This study

The recent evidence that age estimations are difficult for toothfish otoliths, 

introducing variability into age data, means that estimation and management of error is 

critical if age data are to be used in estimating growth and population vital rates through 

management models like VP A.

Conventionally, a first step to reducing age estimation error is to develop a 

consistent preparation methodology, and a conceptual model of how the hierarchical 

internal structure o f an otolith corresponds to the required time-scale. From the model, a 

clear set of age criteria can be predicted for use by all readers. This model is frequently 

inferred from related species, or species with structural affinities, that have a known 

relationship between otolith structure and time. Alternatively, where the structure is 

simple, the strongest recurring pattern is used, so long as it appears at a reasonable scale 

conforming to what is known about the species longevity and biology.

At this stage, although the model may be based on more-or-less strong evidence, 

it cannot be considered to have been tested, or validated. Instead, it provides a working 

hypothetical standard which can be tested in a validation. Precision error in the data 

produced by the model can be divided into two forms: bias between readings, and 

residual random variability. Even without a validation, both forms of precision error can 

be assessed, and individual readers trained to interpret the criteria without bias and within 

certain bounds o f variability.

In this chapter, I describe the development of a new methodology for preparing 

toothfish otoliths for age estimation. I present a conceptual model of the correspondence 

between otolith structure and time, and a set of criteria to aid interpretation. This is
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followed by an analysis of precision error for two sample sets, and readers within and 

between laboratories. However, to account for the different sources of precision error 

properly, analysis of variance is needed (Hoenig et al. 1995): I therefore present an 

ANOVA model that incorporates an estimate of random precision variability somewhat 

analogous to Chang’s (1982) averaged CV, tests of bias within and between readers, and 

estimates of any significant bias.

I use the ANOVA model to correct for bias in readings, and look for differences 

in readability by sex. I also construct a reference collection of otoliths, each with 

estimated age and variance; instead of relying on the conceptual model of otolith 

structure with subjective interpretation of criteria, I use the collection as a numerical 

paradigm for reading otoliths, allowing training, re-familiarization and monitoring of 

reading consistency over time. Finally, I discuss ways in which the ANOVA model can 

be generalized for use with error distributions that depart from normal.

3.2. Methods and materials

3.2.1. Preparation methodology

Trial sections through sagittal, transverse and longitudinal planes of otoliths were 

prepared initially using a diamond saw and viewed using reflected and transmitted light. 

These indicated that the transverse plane gave the best surface for reading with a single 

nucleus and no secondary primordia. Sections were then prepared for viewing using 

SEM (Ashford and White 1993) by etching with EDTA, in an attempt to increase 

resolution and avoid the effects of opacity and light artefacts. However, sections 

frequently missed the nucleus and the SEM images of the etched sections were still 

difficult to interpret. The break and bum technique was also tried (Ashford and 

Wischniowski 1997): baking otoliths before breaking gave more consistent results than 

burning, and internal features were more clearly defined, but otoliths tended to break

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



64

along crenellations where incremental structures are likely to be more compressed and 

difficult to interpret (Everson 1980).

Finally, a new technique was developed using a grinder to prepare thick sections 

for viewing by reflected light. One o f each pair of otoliths was selected randomly and 

baked at 375°C for approx. 3.5 minutes, or until a light brown. The otolith was then 

ground by holding the anterior side against the grinding wheel o f a Hillquist Thin 

Section Machine until an internal mark was revealed which was found to lie consistently 

just anterior to the nucleus. The ground face was then mounted on a glass slide using 

Krazy-Glu, left to dry, and ground from the posterior side to form a thick transverse 

section incorporating the nucleus and avoiding crenellations. The section was finally 

polished using Mark V Laboratory 3M aluminium oxide polishing paper, covered with 

Flo-Texx, and viewed using reflected light under a Leica MZ8 binocular microscope at a 

magnification of x25.

3.2.2. Conceptual model and criteria fo r  estimating age

A conceptual model of the relationship between otolith structure and chronology 

was developed from brief criteria outlined by Hureau and Ozouf-Costaz (1980). More 

detailed criteria were elucidated in order to discriminate better between yearly annuli and 

checks found in different regions within the otolith cross-section.

Hureau and Ozouf-Costaz (1980) divided the section into three regions: a nucleus, 

a region of concentric large annuli immediately surrounding, followed by a region of 

narrower regular annuli. Working out from the nucleus, the annuli were largest in the 

dorsal axis, and compressed on the medial and proximal sides (Fig 3.1). The dorsal axis 

then became compressed, and the annuli widest on the proximal sides. In the regular 

region, the narrowest annuli on the proximal side were considered to be annual. The 

yearly annuli tended to diminish in width to the edge of the otolith, although exhibiting
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Figure 3.1. Example of age count for transverse section of otolith from D. eleginoides using criteria given 
by Hureau and Ozouf-Costaz (1980). The edge of each yearly annulus is marked by the open circle of each 
symbol; the first symbol marks the outer edge of the first annulus. The change from dark to light symbols 
marks the boundary between the region of large clear yearly annuli and the region of regular yearly annuli. 
Age = 29 years.
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some variation in width. In the region o f large annuli, heavily calcified zones were 

interspersed with narrower zones consisting of bundles of narrow micro-increments: 

these were considered respectively to be the opaque and hyaline zones of yearly annuli. 

They tended to occur at decreasing intervals but were very variable in contrast along the 

count path and between fish. The nucleus consisted of a central core strongly marked by 

regular micro-increments, surrounded by a region with less defined micro-increments 

forming a dorsal protrusion.

Criteria are summarized in Table 3.1. The count path followed the large annuli 

along the dorsal axis, moving to the regular annuli along the proximal dorsal axis as the 

dorsal axis became compressed (Figure 3.1). Structures occurred at different scales in all 

regions: in the regular region, the narrowest annuli were considered annual as long as 

they persisted clearly either side of the count path. Marks or structures that did not persist 

far to either side of the count path or occurred irregularly at a lower scale were 

considered false checks. In the region of large annuli, distinguishing between annuli and 

checks was more difficult: annuli were considered to be larger, have stronger contrast 

between opaque and hyaline zones, and to persist either side of the count path notably 

into the compressed medial region. Checks tended to be confined to one region or vary 

considerably in clarity between regions. In the nucleus, a discontinuity was observed 

running diagonally between the core and the dorsal protrusion. The edge of the nucleus 

was defined as the inner border of the first hyaline zone, which was typically clearer than 

the succeeding hyaline zones. As the hatch date of D. eleginoides is not known, the 

nucleus may not represent a full year’s growth, so the outer edge of the nucleus was 

considered as Year 0. The birthday of all fish was taken to be 1 July, so that the outer 

annulus was counted if the fish was taken after 1 July but not if taken before.

3.2.3. A model fo r estimating precision error in toothfish age estimations

A randomized complete blocks design was used with a single replicate o f each 

treatment per block. The blocking factor was individual fish, considered randomly drawn
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Table 3.1: Criteria for estimating age in Patagonian toothfish.

Region Criteria

1. Nucleus Consists of: central core marked by regular micro-increments,

and a surrounding region developed dorsally. Edge of nucleus 

defined as the inner border of first annual hyaline zone

2. Large clear annuli Read along dorsal axis. Large yearly annuli consisting of

alternating hyaline and opaque zones: opaque zones heavily 

calcified, sub-annual checks occur frequently in opaque zones, 

and narrower hyaline zones often made up of bundles of closely 

spaced micro-increments. Annuli spaced at regular intervals but 

trend to decrease in width dorsally.

3. Narrow regular annuli Read along proximo-dorsal axis. Yearly annuli consist

o f fine-scale alternating hyaline and opaque zones, often of 

similar width, which persist along proximo-dorsal edge (sub

annual checks sometimes present but these do not persist).
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from the wider population. Each reading was considered a separate fixed treatment, with 

a single replicate in each cell. The treatment and block effects are assumed to be additive, 

with no interaction. Let yij be the ith reading on the otolith from the yth fish. Under the 

assumptions of the mixed effects model:

y,j =M + Ti +bj +e ij (54)

i = l,2...t; j = l,2...r.

where ju = the general mean

T, = the effect of the ith level of the factor reading 

bj = the effect of the jth level of the blocking factor fish 

eijt = the experimental error

The random effect blocking factor 6; (fish) and random error e,j are assumed to be 

independent normally distributed random errors with mean 0 and variances cr*2 and <J2 

respectively. The blocking factor bj partitions the variance due to individual fish, 

including effects due to the hierarchical ordering of variation from the sampling design, 

leaving the variance due to age estimation Ti as the factor of interest. The Sum of 

Squares error is calculated based on the identity:

-  y ,  -  y. j  +  y . . )

and MSE is an unbiased estimate for <T, the overall precision variability. 7/ is an 

estimate of the bias for each reading: where it is found significant using the conventional 

F  test, the individual means can be tested using pairwise treatment comparisons like the 

Tukey Honestly Significant Difference and the Student-Newman-Keuls Multiple Range 

Test. Bias can then be estimated using the difference between the estimated general mean 

and estimated treatment mean (y..-y,J. A nonadditivity test (Tukey 1949) can be used to 

detect for interactions between factors, i. e. nonadditivity of the form A Ti bj. The test can 

be used as an indicator if relative treatment responses differ between blocks containing
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very different conditions. The experimental design could also be described as a split-plot 

arrangement with a single replication for whole plot and sub-plot units, or a confounded 

factorial in which main effects due to fish were confounded with blocks. Thus, the whole 

plot blocking factor was individual fish, and subplot units were readings.

Furthermore, if two readings were taken by each reader, the treatment term of the 

model could be further divided into two crossed factors of reader and reading, so that the 

interaction term obtained could be used as an indicator of imprecision between readings 

by one reader. Let y,y be the jth  reading by the ith reader on the otolith from the &th fish. 

Under the assumptions of the mixed effects model:

y,jk =M + a ,+  Pj + i fx p \  + p k + £ljk (55)

i = 1,2...a; j = 1,2...b; k = l,2,...r

where p. — the general mean

a.i = the effect of the ith level of the factor reader 

bj = the effect of the jth level of the factor reading 

(ab)ij = the interaction effect between reader and reading 

p  t = the effect of the blocking or whole-plot factor fish 

eijk = the subplot random error

Again, the random effects blocking factor pk and subplot random error e,yjt are 

assumed to be independent normally distributed random errors with mean 0 and variances 

(Jb and a~ respectively. Since only one observation is available in each cell of the 

arrangement, additivity between fish and treatment is assumed, allowing the mean square 

partition for interaction between fish and treatment to be used as an estimate of 

experimental error (Kuehl 1994).
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3.2.4. Estimating precision error in the toothfish fishery

A total of 110 fish were sampled on board the B/F Cisne Verde between 4-12 

April 1997 while fishing on the shelf slope to the north and north-west of South Georgia. 

Bottom depth ranged from 1240-1840m. The randomised sampling design outlined in 

Chapter 2 was used to sample fish from each day’s catch: primary sampling units 

consisted of successive series of 10 coils o f line, from which one series was randomly 

selected, and all fish caught on the series sampled for otoliths. A second sample of 

otoliths from 100 fish was collected haphazardly from longlines set in international 

waters near the Falkland Islands in the South Atlantic between 27-28 February 1997. 

Full biometric data were taken for both samples; otoliths were wiped clean and placed in 

paper envelopes to dry. The otoliths were prepared using the grinding technique outlined 
above.

For the first sample, two readers read the otoliths twice each. Each reading was 

completed in a single day, the order of otoliths was randomised between readings, and 

repeat readings occurred 7-10 days after the first reading. For the second sample, the 

sections were read twice at Old Dominion University and sent to the National Institute of 

Water and Atmospheric Research (NIWA) in New Zealand where they were read once 

using NTWA criteria. One otolith was crushed during preparation and another considered 

unreadable. All readings were made without auxiliary information or reference to any 

previous set of readings. As all fish in our sample were all taken in either February or 

April, the outer annulus was not counted.

Data from both samples were analysed using the first model in Section 3.2.3. As 

two readings were taken by each reader, the South Georgia sample was also analysed 

using the second model. All analyses were carried out using SAS Version 4.0.
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3.3. Results

3.3.1. South Georgia sample

The distribution of TL in the sample is shown in Figure 3.2. Scatter plots of ages 

estimated within reader and between reader are shown in Figure 3.3. The analysis of 

variance is shown in Table 3.2. The residuals showed no trends with age or order of 

reading, but outliers occurred for readings from two fish: in one case, where a single 

value from a single treatment differed widely from the other three, the reading was 

winsorized, i.e. replaced with the nearest value (Sokal and Rohlf 1995), and a single 

degree of freedom subtracted from the calculation of mean square error. In the other case, 

all four values diverged: it was concluded that the otolith was unreadable, and the fish 

was removed from the sample. Remaining residuals were distributed normally and 

fulfilled the assumption of homogeneity o f variances between treatments, tested using 

Fmax= l̂argest”/̂ smallest” with a  = 0.05. Using the test for nonadditivity, the sum of squares 

for error was partitioned into a 1 degree o f freedom sum of squares for nonadditivity and 

a residual sum of squares. The null hypothesis for no nonadditivity was tested with the 

statistic:

P _  MS(Nonadditivity) _  11.59 _
° MS {residual) ~ 3.57 “

The null hypothesis was not rejected with Fo<F.o5 .i.308 = 3.92. The effects were therefore 

considered to fulfil the assumption of additivity (that is, of no interaction effect between 

individual fish and reading).

The one-way ANOVA indicated that the full linear statistical model was better 

than the reduced model for describing the data, and therefore that there were significant 

differences between age readings. Furthermore, the interaction effect between readings 

for each reader was examined using the two-way ANOVA and found significant, 

confirming that a single observer showed bias between readings. The HSD and SNK 

procedures were used for pairwise comparison of all treatment means: the readings taken
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a) South Georgia

® 10

180

b) International waters

80 100 120 
Total length (cm)

140 160

Figure 3.2: Total length of D. eleginoid.es sampled from the catch taken a) off South 
Georgia, and b) in international waters near the Falkland Islands.
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Figure 3.3: Age frequency plots summarizing pairwise comparisons of age estimates
for South Georgia sample between a) two readings by Reader 1, 
b) two readings by Reader 2, c) first reading by Reader 1 and Reader 2, 
d) second reading by Reader 1 and Reader 2.
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Table 3.2: Results from randomised block ANOVA, used to detect bias and estimate

precision variability for repeated age estimates by two readers, for 

Patagonian toothfish sampled off South Georgia.

Source d f sum o f squares Mean square F Pr>F

Total 415 26340.9
fish 103 25033.6 243.0 67.6 0.0001

treatment 3 196.2 65.4 18.2 0.0001

error 309 1111.1 3.6
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by Reader 2 were found to be significantly different from each other (a = 0.05%), and 

from both readings taken by Reader 1. The bias shown by Reader 2 in his first reading 

was estimated as jj-fin = 0.89, and for his second reading as a?-A/22 = -1.03. The variation 

in precision of age estimation remaining after the bias had been accounted for was 

estimated by the MSE, <f = 3.60. The power of the analysis was estimated in an a 

posteriori manner using:

, , M S anu,nX ~  M Sa —1(-----------------------
* * M S wuhm

= 3.59

Which, at vl = 3 and v2 = 412 degrees of freedom, gives a power of cl00%.

The South Georgia sample was also examined for sex differences in precision. 

Data were divided by sex, and each subset of data analysed separately with ANOVA 

(Table 3.3). Male and female populations were assumed independent. The residuals for 

both populations showed no trends with age, and the same outliers were eliminated as for 

the main analysis. In both cases, the remaining residuals were distributed normally, and 

differences between variances were not significant. For females, the second reading by 

Reader 2 was significantly different (HSD and SNK tests, a  =0.05), indicating bias in age 

estimation. For males, both readings by Reader 2 were significantly different (SNK test, 

a  = 0.05), indicating bias in age estimation. I also examined if variances in estimating 

age were the same for males and females (Ho:om2 = o f  ) using the variance test:

<yf ~ 3.84 F  = ——  = ——— = 1.19 
(T 2 3.23

The null hypothesis was not rejected with Fo<F.05 .\S9 .\ 17 = 1-47. Taken together, these 

results indicated that Reader 2 changed his criteria between readings, particularly for 

males, but once this bias was accounted for, the precision o f age estimation remained 

similar between sexes.
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Table 3.3: Results from randomised block ANOVAs, used to test for differences in age

precision between sexes. Data are repeated age estimates by two readers, for 

Patagonian toothfish sampled off South Georgia.

Females:

Source d f sum o f squares Mean square F Pr>F

Total 255 20251.9

fish 63 19409.9 308.1 80.1 0.0001

treatment 3 115.3 38.4 10.0 0.0001

error 189 726.7 3.8

Males:

Source d f sum o f squares Mean square F Pr>F

Total 159 5948.3

fish 39 5483.1 140.6 43.5 0.0001

treatment 3 86.8 28.9 8.9 0.0001

error 117 378.4 3.2
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3.3.2. Sample taken from international waters.

Scatter plots of ages estimated by Reader 1 versus Reader 2 are shown in Fig. 3.4. 

The analysis of variance is shown in Table 3.4. As the NIWA reader only read the 

otoliths once, each reading was considered as a separate treatment. The residuals showed 

no trends with age or order o f reading, but all values for one fish diverged: the otolith was 

concluded to be unreadable, and the fish removed from the sample. Remaining residuals 

were not distributed normally (Shapiro-Wilks test, a  = 0.05), and the data was square- 

root, log, and logio transformed: the distribution of the square-root transformed data was 

closest to normal (Shapiro-Wilks test, a  = 0.05, P<W = 0.0108), but showed evidence of 

platykurtosis. Testing for equality of variances using Fmax = slargest2'/SsmaUesi2, there was no 

significant difference (a  = 0.05) between treatments. As a consequence of the Central 

Limit Theorem, means follow the normal distribution more closely than variates so, with 

a large sample size (n>50), the ANOVA design is robust to departures from normality 

(Sokal and Rohlf 1995). Thus, the square-root transformed data was considered 

sufficently normal for the analysis to proceed. The null hypothesis for no nonadditivity 

was tested: Fo= 4.3282, which lay between the critical areas F 05.1.189 = 3.92 and Fo25,i.i89- 

The effects were concluded to be marginally nonadditive, and there was some interaction 

between fish and reading.

The treatment effect was found to be significant. The HSD and SNK procedures 

for pairwise comparison of treatment means indicated that the second reading by the 

ODU reader and the reading by the NIWA reader were significantly different from each 

other (a  = 0.5%), but the first reading by the ODU reader was not significantly different 

from the other two. The bias shown by the NIWA reader was estimated as n -fin  = -0.028, 

and for the second reading by the ODU reader as p -fin  — 0.038. The variation in 

precision of age estimation remaining after the bias had been accounted for was estimated 

by o2 = 0.033. Calculating power for the analysis in an a posteriori manner, <() = 7.04, 

which at vl = 2  and v2 = 294 degrees of freedom, gives a power of ca. 100%. These 

estimates are based on the transformed data, and the probabilities of statistical inference
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Figure 3.4: Age comparison plots summarizing pairwise comparisons of age estimates
for sample from international waters, between a) two readings by the 
Reader from Old Dominion University, and b) one reading by the ODU 
Reader and the reader from the NIWA.
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Table 3.4: Results from randomised block ANOVA, used to detect bias and estimate

precision variability for repeated age estimates by two readers, for 

Patagonian toothfish sampled in international waters. Dependent variable is 

square-root transformed age.

Source d f sum o f squares Mean square F Pr>F

Total 287 142.25

fish 95 135.82 1.430 43.8 0.0001

treatment 2 0.23 0.114 3.5 0.0326

error 190 6.20 0.033
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apply only to the new scale of measurement, so cannot be directly compared to the 

sample from South Georgia.

3.4. Discussion

3.4.1. Preparation methodology and criteria

The grinding technique avoided the problem of locating the nucleus using features 

on the surface of the otolith. Otoliths could be oriented precisely, and the operator could 

monitor progress by frequent checks, so that the grinding plane could be accurately 

placed through the otolith nucleus and between crenellations. It allowed more flexibility 

in choosing a region of the otolith with clearer microstructure which, combined with prior 

baking, improved results considerably over the sectioning technique using light and 

SEM, and the break and burn technique previously tried. Preparation by grinding was 

slower than the other techniques, but the resulting slide was easier to handle and store 

than broken otolith halves, saving time in the later stages of processing. The better 

images may improve precision as well as reduce the number of unreadable images, so a 

given standard of precision can be achieved with fewer samples.

The otolith structure was highly crenellated and complex. It was frequently 

difficult to discriminate between checks, yearly annuli and structures corresponding to 

non-targetted time-scales. Within-otolith variability was large, and annuli frequently 

became compressed or obscured approaching crenellations. Although the criteria 

provided a framework for interpreting otolith structure, criteria were not easy to define 

objectively, resulting in subjective interpretation contributing to precision error. 

Considerable experience was needed before the criteria could be used with ease. On this 

evidence alone, care is needed to assess the error in age data for Patagonian toothfish and 
maintain quality standards.
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3.4.2. The ANOVA model

The analytic model allowed bias and variability to be assessed within an ANOVA 

framework, avoiding the problems encountered by Kimura et al. (1979). The randomized 

block design with blocking on individual fish allowed error due to reading treatment to be 

isolated and integrated over a representative sample population. The model allowed the 

variation due to bias and precision to be accounted for properly, unlike the methods of 

percentage agreement, APE and CV. Precision bias could be examined without treating 

readings by one observer as replicates, avoiding Kimura’s (1979) assumption of no 

within-reader bias. So long as the residuals conformed to the assumptions of ANOVA, 

the known properties of the model could be applied without improvisation, allowing 

unbiased estimation of reader bias and residual variability in a form that could be easily 

incorporated in further analyses of the age data. Blocking by fish also compensated for 

differences in age distribution: so long as the residuals show no trend with age, the reader 

bias and precision variability could be compared between samples of different ages. 

However, care is necessary in evaluating <r: the estimate includes error from all 

treatment groups, so within and between reader precision are confounded in the present 

design. To estimate within-reader variation, data should be sub-divided by reader and 

analysed separately for each reader. To estimate between-reader variation, separate 

pairwise analyses should be performed.

The performance of the model depends on how well data fulfill ANOVA 

assumptions. However, even when assumptions are not fulfilled, the model represents a 

useful alternative to age-bias plots (Campana et al 1995) and assymetry tests (Hoenig et 

al. 1995) for detecting non-linear bias. Conventional analysis of residuals using the model 

presented would detect these trends, with the advantage of allowing use of the numerous 

quantitative tests and techniques available in ANOVA for treating residual trends. Once 

identified, changes in bias can be examined by blocking. Data can be transformed if it 

departs from the assumptions of normality and homogeneity o f variances, using power 

transformations or transformations to convert data with known distributions (Kuehl 

1994). In the last resort, rank transformation may be useful. As long as fish are selected
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randomly from a defined population, the results from this approach can be used directly 

to provide population estimates of bias and residual variability.

3.4.3. The model applied to toothfish populations

For the sample from South Georgia, the analysis was straightforward: the 

ANOVA assumptions were fulfilled, including the absence of interaction between the 

effects due to individual fish and to reading. The hierarchical randomized design used for 

sampling covered between-line and between-SSU scales at which significant variation in 

TL occurred (see Chapter II), and inferences were made for a defined population, the 

catch taken by the B/F Cisne Verde between 4-12 April 1997. Treatments were 

significantly different, showing Reader 1 to be consistent, whereas Reader 2 changed 

criteria between readings, estimating age both higher and lower than Reader 1. 

Considering reading as a factor allowed treatments to be partitioned into factors of reader 

and reading, so that the bias between readings by a single reader was clearly 

demonstrated by the interaction term. Due to the positive interaction effect, only the 

simple effects between individual treatments were considered. These results demonstrate 

that for toothfish, repeat readings by one reader cannot be considered true replicates: in 

an analysis like that by Kimura et al. (1979), error would include biases between 

readings. In any analysis of variance, precision should be assessed between readings by 

each reader as well as between readers.

In contrast, for the sample from international waters, the results were less reliable: 

the sampling design was not randomized, undermining the fundamental assumption of 

independence, and there was no sampling frame, so the limits of inference for the 

analysis were not well defined. Although a probability-based sampling design would 

remedy both problems, residuals did not fulfill the assumption of normality, and the 

factors were marginally nonadditive. This indicated that distributions of residuals differed 

for the two samples. If distributions are stable for the two areas, this may indicate a 

difference in the precision of otoliths, due possibly to toothfish biology, but also means 

that estimates of bias and error in international waters near the Falkland Islands would
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frequently be based on transformed data. Even with the same treatment regimes for both 

samples therefore, comparisons between precision estimates for samples taken from 

catches in these international waters and off South Georgia may be difficult.

On the other hand, the differences in distribution may be methodological. Age 

estimates recorded for 85% of the fish by the NIWA reader and during the first reading 

by the ODU reader, fell within two years or less of each other, with the ODU reader 

consistently giving higher readings. However, differences were much higher for the 

remaining 15% of fish. Microstructure for these fish was difficult to discern, or occurred 

at different scales. In six cases, the NIWA reader interpreted several narrow opaque and 

translucent zones as multi-banded annual increments, whereas the CQFE reader 

interpreted each narrow paired opaque and translucent zone as an annual increment. The 

reverse was true for two other otoliths but, in all these cases, the distribution of repeated 

age estimates would be bimodal rather than normal, accounting for the platykurtotic 

departure from normality found in the data. As the contentious paired and opaque zones 

occurred in the region of narrow regular annuli, discrepancies in interpretation occured in 

older fish but not younger, accounting for the marginal interaction between fish and 

reading. Fine-tuning criteria so that readers count the contentious zones similarly may 

therefore result in assumptions being fulfilled for further precision analyses of fish from 

these international waters, allowing comparisons with South Georgia data.

In contrast, data from samples from the New Zealand sector prepared at NIWA by 

baking and sectioning and read once by the same NIWA and ODU readers (Horn 1999), 

indicated a similar residual distribution to the data from South Georgia. The residuals 

from the New Zealand samples fulfilled all assumptions, although readings were 

significantly different (a  =0.05)(TabIe 3.5), with treatment means deviating from the 

overall mean by -0.54. Precision variability cr was estimated to be 4.096, and using the 

variance test:

F = ^ 4  = — = 1.14 
<TX  3.60
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Table 3.5: Results from randomised block ANOVAs, used to estimate precision

variability for otoliths prepared at NIWA. Data are repeated age estimates 

by two readers.

Source d f sum o f squares Mean square F Pr>F

Total 111 2332.5
fish 55 2074.0 37.7 9.21 0.0001

treatment 1 33.2 33.2 8.11 0.0062

error 55 225.3 4.1
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The null hypothesis of no difference in residual precision between the two studies was 

not rejected with -Fo<F05,111,415 = 1.32, indicating precision to be similar between areas 

once bias had been accounted for. Note, however, that the comparison was not 

symmetrical: c ? n z  included only two between-reader treatments, whereas < T s g  included 

four treatments within and between readers.

As for the sample from international waters, ODU Reader 2 and the reader from 

NIWA used similar criteria when reading the sample prepared at NIWA, but Reader 2 

consistently gave slightly higher ages than the NIWA reader, and may have been 

identifying structures near the nucleus differently. Kalish and Timmiss (1998) noted that 

there may be differences in the ‘readability’ of otoliths from different localities.

However, the evidence presented here indicated that, once the effect due to bias was 

removed, the precision of readings from the South Georgia sample and the New Zealand 

sample were similar, even using different preparation techniques. More work is needed to 

separate out the effects of preparation techniques. Similarly, localities can be compared 

by preparing samples from both areas using one technique, and randomly mixing them in 

a single set for both readers to read.

3.4.4. Construction o f reference collection

Data for the ANOVA consisted of four repeat age readings for each fish, from 

which the overall mean can be used as an estimate of fish age, and standard deviation and 

variance used as measures of readability for each otolith. Otoliths can be used in training 

new readers and re-familiarizing experienced readers. By randomly inserting otoliths in 

subsequent samples, sample readings for the inserted otoliths can be compared to their 

previously estimated means. The ANOVA model or a simple paired t-test can then be 

used to detect bias; and precision variability can be estimated to ensure the sample 

reading remains within defined bounds. Where bias is found to be significant, the reading 

can be adjusted by the discrepancy between the standard mean age and sample mean age 

of the inserted otoliths. Age criteria are difficult to define objectively; instead, the sample 

set can be used as a reference collection with standardized ages.
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Some of the readings were significantly biased in both the sample from South 

Georgia and international waters. For the South Georgia sample, the overall mean could 

still reasonably be used as an estimate of age for a reference collection because the biases 

were small, the mean was not skewed by a large bias from one set of readings, and fell 

between the means of the two consistent readings by Reader 1. However, the estimates of 

dispersion incorporated the bias for the two readings by Reader 2. To remove the effect 

due to bias, Readings 1 and 2 by Reader 2 for each fish were adjusted by:

r  =  y . .  -  y i .

The standard deviations and variances were then re-calculated (Table 3.6). A similar 

procedure was followed for the sample from international waters.

Repeated use of reference otoliths in this way will generate data that will allow 

the distribution of age estimates to be examined for individual fish. If normal, confidence 

intervals can be calculated for the age of each fish in the reference collection.

Platykurtotic departures from normality, detectable by a simple Kolmogorov-Smirnov 

test, will indicate the need for fine-tuning criteria.

Recognition artefacts are a problem for collections as small as these. Repeat 

readings o f more samples can be made with the original reference otoliths randomly 

inserted; once adjusted for bias, the new sample can be incorporated within the reference 

collection. Incorporating new otoliths will renew the reference collection regularly, 

reducing reader recognition due to discolourations or signs of wear.

3.4.5. Conclusion

During the course of this study, in response to debate within WG-FS A over the 

use of scales in age determination for Patagonian toothfish, I undertook further work 

(Ashford et al. 2000) comparing ages estimated using otoliths and scales. The results
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Table 3.6: Means, standard deviations (SD) and variances (Var) for ages estimated

twice by two readers for sample set taken off South Georgia.

Fish Mean age SD Var Fish Mean age SD Var

1 19.5 1.25 1.57 26 13.0 1.37 1.87

2 11.0 0.83 0.69 27 12.3 1.22 1.49

3 14.0 1.86 3.45 28 9.5 2.34 5.45

4 11.3 2.96 8.77 29 8.0 2.69 7.23

5 42.0 4.25 18.10 30 12.0 0.81 0.65

6 18.5 3.69 13.64 31 9.0 0.05 0.00

7 26.3 1.54 2.36 32 12.3 2.96 8.77

8 14.3 0.98 0.95 33 9.0 1.44 2.08

9 23.5 1.77 3.12 34 11.0 2.01 4.02

10 11.0 0.81 0.65 35 11.0 1.95 3.79

11 12.5 0.55 0.31 36 21.2 1.71 2.93

12 10.3 0.48 0.23 37 20.8 1.73 2.98

13 17.0 1.20 1.43 38 24.5 0.98 0.96

14 33.3 3.45 11.89 39 9.5 1.02 1.05

15 31.5 2.39 5.73 40 9.3 1.87 3.49

16 27.5 1.24 1.55 41 23.8 0.94 0.88

17 32.2 2.16 4.69 42 16.0 0.86 0.74

18 27.8 2.66 7.05 43 10.0 1.86 3.45

19 25.3 2.39 5.71 44 9.5 0.55 0.31

20 26.0 2.69 7.24 45 11.5 4.08 16.68

21 34.0 1.13 1.28 46 9.8 1.25 1.57

22 36.5 4.51 20.36 47 13.0 1.84 3.38

23 21.8 2.18 4.75 48 31.5 1.28 1.64

24 31.8 2.08 4.32 49 10.5 1.88 3.53

25 27.5 2.97 8.84 50 8.0 0.81 0.65
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51 27.0 2.21 4.89 78 9.8 0.93 0.87

52 28.5 2.43 5.91 79 16.3 1.67 2.78

53 12.8 0.93 0.87 80 11.8 1.68 2.83

54 25.8 1.72 2.98 81 11.3 1.54 2.36

55 10.3 1.71 2.94 82 15.3 2.09 4.36

56 11.5 1.27 1.60 83 14.5 4.33 18.79

57 11.5 0.60 0.36 84 24.8 1.27 1.61

58 9.0 0.81 0.65 85 9.0 1.43 2.04

59 22.3 2.66 7.10 86 9.3 1.51 2.27

60 15.5 1.90 3.60 87 15.0 1.44 2.08

61 11.3 0.96 0.91 88 10.5 2.66 7.05

62 19.3 1.52 2.32 89 10.8 0.52 0.28
63 12.0 0.77 0.59 90 31.3 2.10 4.41
64 11.0 1.13 1.28 91 11.3 0.92 0.84

65 16.8 1.27 1.63 92 13.3 2.88 8.30

66 12.3 0.99 0.97 93 12.0 0.81 0.65
67 13.5 1.88 3.53 94 25.0 1.45 2.10

68 14.0 1.99 3.98 95 24.5 1.27 1.60

69 16.3 1.87 3.49 96 23.5 0.98 0.96

70 11.0 0.81 0.65 97 15.5 1.28 1.64

71 11.3 1.46 2.14 98 31.8 2.11 4.44

72 16.8 3.11 9.68 99 16.3 2.22 4.94

73 8.8 0.98 0.96 100 16.0 1.19 1.43

74 18.8 1.54 2.37 101 16.3 1.31 1.71

75 16.8 0.51 0.26 102 11.5 0.95 0.90

76 11.8 0.45 0.20 103 15.0 1.39 1.93

77 10.0 0.86 0.74 104 21.8 1.92 3.70
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demonstrated that fish were estimated consistently younger using scales compared to 

using otoliths, especially for older fish. As a result, at the CCAMLR meeting in 2000, the 

WG-FS A agreed that otoliths should be used in the future for estimating age in toothfish.

Although the otolith annuli laid down by older fish are less compressed than for 

scales and the age of older fish is therefore likely to be more accurately estimated, the 

results of the current study demonstrate that otolith structure is nevertheless complex. 

Care must be taken to interpret structures consistently, even for experienced otolith agers, 

and variability in readings must be quantified in a way that can be incorporated in 

decisions on age-based analysis and modelling (Kimura and Lyons 1991). The approach 

can be applied to error distributions that depart from normal using techniques commonly 

used in ANOVA, so that it is likely to be be applicable to other species.

Even given the complexity of the otolith, the results indicate substantial 

agreement over criteria between the age laboratories at Old Dominion University and 

NIWA. Horn (1999) has used mean CV and bias plots to demonstrate similarities in 

readings between NIWA and other laboratories estimating age in toothfish. The 

standardised age incorporated in the reference collection developed in this study is 

therefore likely to be reasonably consistent with other laboratories, and represent a 

CCAMLR standard that can proceed to be tested. Further work is needed to define this 

standard and improve consistency in age readings between laboratories. Further work is 

also needed to establish that different preparation techniques do not lead to differences in 

age estimation.

Extra precautions must be used when ageing catches of fish whose otoliths are 

difficult to read. Reading procedures can be experimentally manipulated to assess their 

influence on precision and accuracy (eg. Kimura et al. 1992). The sampling regime can 

be refined to achieve a target precision at minimum cost, or the lowest variance for a 

target cost (Lai 1987). The effect of remaining ageing error on management models can 

be assessed by sensitivity analyses (eg. Bradford 1991), or incorporated into ASA models
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(Fournier and Archibald 1982), so that management decisions are taken which correctly 

reflect the level of uncertainty in the data.

In the previous chapters, in response to needs identified by the WG-FS A of 

CCAMLR, I have fulfilled two of the three requirements for an age estimation 

programme (Morison et al. 1998). I developed a probability-based sampling program, a 

preparation methodology that produces clear and consistent images for reading, and a 

quality assurance methodology to assess error in a statistically rigorous manner using a 

reference collection based on a conceptual model of the relationship between otolith 

structure and time. In the next chapter, I will turn to the third requirement and test the 

conceptual model using a validation test. In Chapter V, I shall use reference otoliths to 

control for data quality.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



91

CHAPTER IV 

AGE VALIDATION

4.1. Introduction

4.1.1. The problem

Accurate age estimation allows a powerful suite of models and other tools to be 

deployed to understand fish populations. But inaccuracies can result in biased estimates 

of age toward younger or older individuals. Despite warnings by earlier workers (eg. Van 

Oosten 1923, Hile 1936), Beamish and McFarlane (1983) found, in a survey of 500 

studies published between 1907-1980, that 35% did not consider the possibility that ages 

may be incorrect, and less than 3% validated their age estimation technique for all year 

classes. In an additional sample of 75 studies published more recently between 1965-

1980, only 40% mentioned validation, and none validated the full age range.

Incorrect ages can profoundly affect stock management. Beamish and McFarlane 

(1987) described a case for sablefish off the west coast of North America where, prior to

1981, fish caught in the commercial fishery were estimated to be 3-8 years using scales. 

However, an age method using otoliths was validated, and it demonstrated that fish 

ranged between 4-40 years, indicating slower growth and a much less productive fishery. 

Sustainable exploitation rates should have been 20-30% of those based on incorrect scale 

ages: management strategies using otolith ages resulted in a stable fishery (McFarlane et 
al. 1985).

Similarly, otolith age estimates of Pacific Ocean perch indicated fish were 

considerably older than the scale estimates used previously (Beamish and McFarlane 

1983). Estimates of natural mortality using otoliths were considerably lower leading to a 

more conservative management strategy. The loss of wholesale value to Canadian
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industry due to over-exploitation before the correction was estimated to be $4 million in 

1981 Canadian dollars. For white suckers, Stewart (1926) validated the yearly growth of 

scales in young fish; and based upon this limited validation, subsequent studies using 

scales indicated white suckers grew quickly to ages 4-7 years, and that few survived 

beyond age 9 or 10. Annual mortality was considered high after maturity even though 

active growth continued. Beamish and Harvey (1969) used a method based on fin-rays 

that had been validated for the full age range; they demonstrated that the oldest age was 

23 years, and large numbers of fish in unexploited populations survived after growth 

slowed or ceased. Yearly annuli on scales were difficult to identify after five years, but 

were distinct on fin ray sections: validation of the full age range was necessary to prevent 

errors in age estimation and evaluate the importance of older fish as a component of the 

population (Beamish and McFarlane 1983).

Under-estimation of age using scales is usually due to compression o f circuli in 

older fish, and Beamish and McFarlane (1987) listed examples of studies identifying 

species for which scales should not be used for this reason. Although less pronounced in 

otoliths, changes in incremental pattern with age result in compression in the annuli of 

older sablefish, which can obscure annuli, leading to under-estimation of age; older fish 

may also not form annuli every year (Beamish et al. 1983). Ages assigned beyond the 

oldest validated age should not therefore be assumed to be correct. Age estimation can 

also be inaccurate in younger ages: using otoliths, readers over-estimated the age of 

known-age juvenile sablefish in 50% of cases when they had no previous knowledge of 

age. Once knowing the age, 15% were still over-aged (Beamish et al. 1983).

4.1.2. Validation methods

Wilson et al. (1983) defined validation as ‘the temporal confirmation o f an 

increment’, used to determine the accuracy o f an age determination. Beamish and 

McFarlane (1983) gave a wider meaning as ‘proving a technique (of age estimation) is 

accurate’, where accuracy can be proven. Francis (1995) refined this meaning, proposing
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that a validation is the process of estimating quantitatively how accurate an age 

determination method is.

The four methods commonly employed as validations are marginal increment 

analysis (MIA), laboratory rearing, mark and recapture, and radiometric dating. For 

marginal increment analysis of annuli, samples are taken monthly for a year and the 

width of the outer annulus examined (Bagenal and Tesch 1978). The outer annulus is for 

each age group, and the mean monthly width is plotted by age group against month. If the 

annuli are yearly, a characteristic dip should be seen corresponding to where the new 

annulus begins to grow. To validate the full age range, the sample should include fish 

from all year classes, and be subdivided by year (e.g. Barbieri et al. 1994). For the second 

method, fish are reared in a laboratory or mesocosm so that ages are known. Known ages 

are then compared with ages estimated independently from hard parts. Thirdly, wild fish 

can be tagged, injected with tetracycline or another chemical to mark growth structures, 

and released. The period between tagging and recapture can be compared to the increase 

in age independently estimated from the deposition of the mark to the edge of the growth 

structure (eg. Beamish et al. 1983). Fourthly, radiometric dating techniques can be used, 

where age estimates are calculated from the ratio of radioisotopes in otoliths and are 

compared to independent estimates from the incremental structure (eg. Kastelle et al.

1993, Campana and Jones 1997).

The conceptual model of the relationship between otolith structure and time is 

used to predict annuli that are laid yearly (see Chapter III). MIA tests whether the annuli 

correspond to a year, conforming to the definition of a validation by Wilson et al. (1983). 

But the accuracy of the age data is inferred, not directly tested, and the test is graphical 

and subjective, with no statistical measure of accuracy. The other methods all address the 

accuracy of age data directly, and allow the use o f probability-based statistical techniques 

to test and measure accuracy.

However, these direct methods depend on certain assumptions. Rearing studies 

assume that growth o f reared fish will be representative of wild fish, allowing
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extrapolation of results. Yet growth structures and biological parameters are modified by 

laboratory conditions, and it is dubious to argue that the laboratory animals can be 

considered a random sample of the wild population. Mark-and-recapture allows the use 

of a randomized sampling design, but the marking process can affect growth and 

biological parameters like survival (eg. Beamish et al. 1983), so tagged individuals that 

have been recaptured may show bias with respect to the population. The technique also 

assumes chemical marks are laid immediately or at a known time after injection. 

Radiometric techniques avoid these assumptions but assume a constant specific activity 

of radioisotopes incorporated into the otoliths, a known initial activity ratio, and no 

external loss or gain to the otolith of any radioisotopes in the decay chain (Kastelle et al 

1993). Departure from any of these assumptions introduces error into the ‘known’ ages 

estimated: known ages tend to be quite variable, and the technique has not been used to 

estimate the age of individual fish.

Other validation methods are sometimes used. Length-frequency modal analysis 

can be used where length modes are well separated and serve as proxies for age classes, 

particularly where dominant year classes occur. Modes should be followed between 

years to ensure they are yearly, especially when fish are exposed to cycles in the 

environment that alter their growth. However, accuracy cannot be directly estimated 

(Francis 1995), and modes usually become indistinct with age due to mortality and 

slowing growth, restricting validations to younger year classes. Similarly, counts of daily 

micro-increments can be used to validate annuli as yearly (e.g. Radtke and Hourigan 

1990), but do not allow measurement of the accuracy of the age estimated by the 

technique, and depend on validation of the micro-increments: micro-increments must be 

deposited consistently every day throughout the year over the entire life. For hard parts 

analysis, the counts of increments are compared between calcified structures, typically 

with otoliths assumed to be accurate : the technique does not test directly for accuracy or 

timing, and cannot be considered a validation technique unless one of the hard parts has 

been independently validated. I4C from nuclear explosions which was subsequently 

incorporated in otoliths has also been used to provide a reference date (Campana and 

Jones 1997); however, the method is expensive, fish samples must be available from fish
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living prior to the build-up of I4C, and the reference date is subject to error due to rates 

of oceanographic dispersal and biological uptake that are frequently unknown. In black 

drum (Campana and Jones 1997) there appears to be a one-year delay between 

atmospheric 14C and subsequent I4C increases in coastal migratory fish.

4.1.3. Antarctic fish

Age estimation has been validated for only a few species of Antarctic fish, despite 

wide discrepancies in age estimates from different readers under different conditions (eg. 

Anon 1982; Coggan et al. 1990, Kock 1990). North (1988) examined the marginal 

increment of otoliths and scales from a suite of fish from the South Atlantic, and found 

evidence to support the hypothesis that adjacent opaque and hyaline zones in otoliths, and 

widely and closely-spaced sclerites in scales, represent one year of life. Burchett (1983) 

examined the marginal increment in otoliths of juvenile Notothenia rossii, and found that 

the opaque and hyaline zones were laid on an annual basis. Ashford and White (1993) 

found similarly for otoliths from juvenile Notothenia coriiceps. Daniels (1983) found the 

hyaline zone in otoliths of Harpagifer bispinis was readily visible in samples taken in 

autumn and winter, and an opaque border became visible in most otoliths collected in 

September. Micro-increments have been shown to be daily in Trematomus newnesi 

(Radtke et al. 1989) and Nototheniops nudifrons (Radtke and Hourigan 1990), and have 

been used to age adult fish.

In Patagonian toothfish, no validation has yet been published, but Kalish and 

Timmiss (1998) presented a preliminary report at the 1998 CCAMLR meeting, in which 

they examined the level of bomb carbon (l4C) present in the nuclei of otoliths from large 

fish captured recently. Using ages estimated independently by readers, they indicated that 

the temporal pattern of carbon deposition in the nuclei conformed to the temporal pattern 

of release from nuclear explosions, indicating that age estimates were accurate.
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4.1.4. This study

Of the four common methods used, mark and recapture was not considered 

feasible: the logistics were too demanding, costs too high, and the required time-frame 

for results too long. The poor condition of toothfish captured by longline and the rate of 

illegal fishing risked a high mortality of tagged fish and a poor rate of return. Similarly, 

laboratory rearing was impracticable because of the logistics and time needed to cover 

the full age range.

Radiochemical techniques give good results over long periods of time but tend to 

be less accurate distinguishing age of young fish for which age estimation has proved 

most difficult. They are also costly and demanding on laboratory infrastructure. MIA is 

effective for earlier year classes where otolith growth is fast, but can be less so where 

annuli growth is reduced with age and mortality reduces the number of older fish 

available. MIA provides a more limited test of the conceptual model and demands a 

greater sampling effort. However, MIA was selected because it was cheaper and the 

requisite equipment was available; samples could be obtained through the legal toothfish 

fishery, and were likely to give good results for the younger age classes contributing most 

heavily to the fishery.

In this chapter, I present results of a MIA used to test the conceptual model for 

toothfish developed in Chapter III. I put forward a methodology with a view to putting 

MIA on a more quantitative footing, and discuss the implications of the results. I further 

discuss some conceptual problems with MIA, and suggest ways in which known-age 

methods can be used to test and estimate the accuracy o f the conceptual model within an 

ANOVA framework.
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4.2. Methods and Materials

Samples were obtained opportunistically from collections made by fishing 

authorities within the CCAMLR jurisdiction and off southern Chile. Ail collections were 

made purposively, mostly using longlining but some by trawling. To ensure coverage of 

the full age range, total lengths were divided into 10cm intervals from 10-140cm and 

20cm intervals from 141-180cm and over 180cm; otoliths from 10 fish from each interval 

were selected within each monthly period. Despite this, coverage of ages was not 

consistent between all months: even where only longlining was used, the size range 

captured varied between areas, and the age range was distributed differently between 

areas and months, even within age blocks.

Otoliths were processed using the grinding method described in Chapter III. All 

sections were randomly sorted and examined using a Leica MZ8 microscope. Age was 

estimated using the conceptual model described in Chapter HI, and the outer two annuli 

measured from the inner edge of the hyaline zone, using the Optimas image analysis 

package. My scientific question was: are annuli in the otoliths o f toothfish laid yearly?

My hypothesis was that each combination of opaque and hyaline zones was yearly, 

created by faster growth of the opaque zone relative to the hyaline zone; therefore the 

mean width of the outer annulus for each year class should be larger for consecutive 

months until the annulus is fully deposited, after which it should be considerably smaller 

as a new annulus starts to develop. If annuli correspond to more or less than yearly 

intervals, this trend should not occur and the hypothesis should be rejected.

Data were grouped by 5-year age classes (1-5, 6-10, 11-15, 16-20, 21+ years). To 

compensate for variation in the age and size ranges of samples between area and month 

(and thus the effect of individual fish rather than month on the width of the outer 

annulus), the ratio of outer/inner annulus width for the two outer annuli was calculated 

for each fish. The means of the ratios pooled for all blocks were estimated for each month 

with standard errors, and the estimates were plotted by month. To examine effects due to
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age, the means o f the ratios and their standard errors were estimated by block for each 

month, and similarly plotted by month.

As inferences from the graphical analysis were qualitative and decisions on the 

hypothesis tests largely subjective in nature, further tests of differences between months 

in the width of the outer annulus were attempted using ANOVA. The statistical question 

addressed was: are there significant differences in the width of the outer annulus between 

months, consistent with annual deposition of the outer annulus? Each month was 

considered a fixed treatment effect in a comparative observational study. Because data 

were missing from cells between months, a fixed blocking factor consisting of each 5-yr 

age class was not used; the discrepancies were haphazard and did not allow a balanced 

incomplete block design instead. To compensate for the effect due to individual fish, the 

ratio of the widths of the outer two annuli was used as the response variable. Proceeding 

with a simple one-way analysis for unequal replications, let y,, be the ratio for a fish taken 

in the ith month. Under the assumptions of the fixed effects model:

y 0 = // + r, + £ IJk (56)

where jj. = the general mean

T/= the effect of the ith level of the factor month 

£ijk = the experimental error.

The assumption of normality of residuals was tested using the Kolmogorov-Smirnov test, 

and the assumption of homogeneity of variances was tested graphically. Individual 

treatment comparisons were made between months by pairwise HSD and SNK tests.

4.3. Results

The provenance and date of each sample are shown in Table 4.1. Most samples 

were taken by longline and younger ages were not taken, whereas the sample for May 

from Kerguelen was taken by trawling and older fish were not sampled. In July, only 19
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Table 4.1: Provenance and date of monthly samples used to test for yearly annuli by

marginal increment analysis o f the otoliths of Patagonian toothfish.

Month Year Fishing Area N

December 1995 Southern Chile 73
January 1996 Southern Chile 88
February 1996 Southern Chile 84
March 1994 South Georgia 75
April 1997 Falkland Islands 92
May 1995 Kerguelen 69
June 1997 S. Atlantic international waters 100
July 1982/84 Kerguelen 20
August 1997 Prince Edward Islands, S. Ocean 69
September 1997 Prince Edward Islands, S.Ocean 89
October 1997 Prince Edward Islands, S. Ocean 44

November 1997 Prince Edward Islands, S. Ocean 78
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Figure 4.1: Plots of mean of increment width ratio index versus month for
a) all ages pooled, and b-f) 5-year age classes.
Month 1 = December.
Ratio index = (width outer anulus)/(width inner annulus). 
Columns represent means, bars represent the standard error 
of the mean, n is shown above the bar.
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fish were sampled, by a sampling trawl during a non-commercial survey at Kerguelen, 

and samples were missing for all year class groupings except years 1-5.

For the graphical analysis, results for the pooled data are shown in Figure 4. la. 

Some evidence of a decrease in the mean o f the ratio of the outer/inner annuli was found 

between April and September, which may be interpreted as consistent with the trend 

predicted. However, results by age-class grouping (Figure 4.1b-f) did not show a similar 

effect. For ages 1-5, the mean ratio of outer/inner annuli decreased from December to 

August, and increased from September. For ages 6-10, there was little evidence of a trend 

except generally slightly downwards. For ages 11-15, there was a trend downwards, with 

some evidence of an increase in November. For ages 16-20, there was no evidence of a 

trend. For ages 20+, there may have been a decrease in April. In none of the year-class 

groupings did the data show a pattern in the ratio of outer/inner annulus width consistent 

with that hypothesized for a yearly annulus.

For the ANOVA model, residuals fulfilled the assumption of homogeneous 

variances and were normally distributed after removal of a single outlier (a  = 0.05). 

Significant differences were found between months (a  = 0.05) (Table 4.2). The HSD and 

SNK comparison tests showed a grouping for all means except July, and another 

grouping for means for April to September (SNK) or October (HSD).

4.4. Discussion

The results from the pooled data analysed graphically and by ANOVA 

demonstrate some slowing of growth as predicted from my hypothesis, indicating that 

annuli may be laid down yearly. However, the differences between means in the ANOVA 

is much less than predicted and the results are further weakened by the lack of expected 

trends in the graphical analysis by age-class grouping. Overall, the evidence to validate 

annuli as yearly is inconclusive.
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Table 4.2: Results from one-way ANOVA, used to test for differences in marginal

increment width between months, for the otoliths of Patagonian toothfish. 

Dependent variable is the increment width ratio index =(aomei/ajnner).

Source d f Sum o f squares Mean square F Pr>F

Total 880 83.5

month 11 3.4 0.31 3.34 0.0002

error 869 80.1 0.09
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Sampling throughout the year in the Antarctic is challenging and this collection of 

toothfish otoliths is the first with year-round coverage. Despite this, the limits on the 

sampling possible meant that the inferential limits of the study were unclear: the frame 

could be viewed as the whole species range with poorly defined sampling coverage; or it 

could be viewed as only those fish sampled, because other fish have zero probability of 

being sampled. Sampling from different years also made temporal scope unclear.

There were several sources of variation that were ultimately not accounted for in 

the design. Although a ratio was used as the y-variable to address effects due to 

individual fish allowing cohort data to be pooled (both overall and within the 5-year age 

groupings), the design assumed a linear relationship in the slowing of growth rates 

between succeeding years over the age range sampled, and demanded that, outside this 

relationship, individual fish changed little in the timing and rate of growth between years. 

It also assumed that the population remained constant during the year, with no 

unattributed effects due to migration, fish availability, or behavioural changes in bait 

uptake. Where these assumptions did not hold, distribution o f age between monthly 

samples, rate of growth, variation within otoliths, and geographic area may all have acted 

to influence MSE, bias treatment means or confound the effect due to treatment. Most 

importantly, interpretion of the edge of the otolith was elusive due to light and edge 

artefacts (eg. North 1988), contributing reader error that may be biased or random but 

was not quantifiable.

4.4.1. the ANOVA model

Although likely error due to several sources meant that the validation test was not 

conclusive, the ANOVA block design provided a quantitative approach, allowing a 

probability-based test of monthly effects that improved on the subjectivity of the 

graphical approach. For a more conclusive validation, the ordering of treatments in the 

multiple comparisons tests should demonstrate significant differences between months 

either side of the transition between one annulus and the next, with a sliding set of 

relationships between consecutive months as the new annulus grows.
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The experimental design for the ANOVA could be improved in several ways. 

Selecting fish by age from a previously aged sample population would avoid empty cells 

and achieve a balanced design, but implies a prior large-scale programme of year-round 

representative sampling and age estimation. For a comparative observational study using 

ANOVA, units should be randomly selected from within each treatment population 

(Kuehl 1994). A consistent sampling design between months with defined frame and 

randomized selection of sampling units would clarify the inferential limits, guard against 

spatial error, and avoid confounding the treatment effect. Sampling within a single 

fishing area would restrict the inferential limits to that area, whereas stratified sampling 

across areas would increase the scope. Sampling in consecutive months would limit the 

scope to the year of sampling: the inferential limits could be extended temporally by 

repeat sampling each year or in years selected randomly from within a frame of possible 

years. This would be especially appropriate if conditions change (e.g. through fishing 

mortality or low prey availability, leading to changes in growth and more stress events 

that may affect annuli appearance and deposition).

4.4.2. Conceptual considerations fo r  MIA in relation to other validation methods

Francis (1995) has pointed out some confusion from which validation studies in 

general have suffered. The main methods used in validation studies address different 

scientific hypotheses: MIA tests the hypothesis that predicted annuli are yearly, whereas 

known-age methods directly test the hypothesis that age estimations are accurate. 

Secondly, the methods are often used for somewhat different epistemological purposes: 

hypothesis-testing as against measurement o f the accuracy of age data.

Implicit in Francis’s (1995) critique is a confusion over the continuing attempt to 

verify or prove that the ages estimated for a fish population using a particular aging 

methodology are correct (eg. Beamish and McFarlane 1983). This is embodied in the 

label of ‘validation’ for the class of tests, but the approach is inconsistent with current 

ideas of hypothesis-testing (see Chapter I). The confusion may be historical in origin: the
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question of validating age data arose in an epistemological context that sought to verify 

hypotheses, frequently with non-quantitative tests. MIA was among the earliest methods 

to be used to test the accuracy of age estimation and conformed nicely to this context.

The known age approach is essentially a process of falsification: under the ANOVA 

approach, the scientific hypothesis is that age is accurate, consistent with the statistical 

null hypothesis that there is no difference between the two populations of known age and 

estimated age. An attempt is made to reject this using a probability-based test of 

significance. However, although hypothesis-testing is certainly of interest, if the purpose 

is to quantify accuracy, this is measured by the distance between the means of the two 

age sets, and is essentially a question of estimation. Maximum likelihood estimates have 

the most desirable properties (Edwards 1992, Hilbom and Mangel 1997): if the age data 

is distributed normally, they are the same as means estimated by least squares, but if the 

distribution is other than normal, maximum likelihood estimates are better for measuring 

accuracy.

The graphical test for MIA can easily be converted over to a falsification 

approach. The distinction is largely one of semantics, but plots may be interpreted 

differently if the purpose is to reject rather than support a hypothesis of yearly deposition 

of annuli. However, in the quantitative approach to MIA outlined, the logical structure is 

not straightforward: the null hypothesis (of no difference between months) must be 

rejected for the scientific hypothesis (that age is accurate) to survive. This is less elegant 

than the known-age approach; more importantly, the linkage between the scientific and 

null hypotheses is weaker, and it risks rejecting the scientific hypothesis illegitimately 

through lack of power or the influence of nuisance variation.

MIA also suffers from confusion over the periodicity it tests. Periodicity of annuli 

can be sub-annual or supra-annual, especially if the population is influenced by 

environmental cycles with a period greater than a year. A single transition between annuli 

will not discriminate between annual and supra-annual periodicity; whereas no transition 

will not discriminate between lack of periodicity and supra-annual periodicity sampled 

between transitions. Annual periodicity can only be discriminated by sampling two
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consecutive transition events. On the other hand, if annulus growth occurs as a short 

period of fast growth (eg. Ashford and White 1993, 1995), monthly samples may not 

fully capture the change, and the hypothesis of yearly periodicity will be illegitimately 

rejected.

A final source of confusion is when MIA is presented as an observation of the 

progression of the marginal increment through the year, rather than as a test of a 

predicted annulus from a prior model. It is difficult to see how a study can be conducted 

tabula rasa, and a prior definition of an annulus is in fact usually being tested but with a 

lack of logical and statistical rigour: frequently, samples are read non-randomly with the 

month of capture known, and the results are confounded with the reader’s conscious and 

sub-conscious biases.

4.4.3. Conclusion

The ANOVA model presented may provide a more quantitative footing 

for MIA, but reader interpretation of the edge effects observed in toothfish and the 

difficulties of collecting samples in the Antarctic within a well-defined sampling frame, 

mean that MIA will likely remain problematic for toothfish. In any case, MIA remains a 

rather cumbersome test of a limited hypothesis. Furthermore, it has no direct quantitative 

measure of variation in age estimates which can be integrated into a framework for 

assessing error in population age data.

For validation of estimated ages in toothfish, further work would be better 

concentrated on a known-age method which allows repeat readings by different 

observers, and estimates of bias and precision related to known age instead of a standard. 

The ANOVA model developed in Chapter III can be used, with known age as a control 

treatment in addition to the reading treatments, allowing error due to missing yearly 

annuli or sub-annual checks to be accounted for, and all sources of error integrated into a 

single set of estimates.
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O f the known age methods, laboratory rearing of toothfish is likely to remain 

impracticable, not least for the time scale needed to validate the full age range. Risk of 

mortality during such a long period would be high. Although fish might be kept in tanks 

at island stations in the Southern Ocean and marked at a known date, older fish will be 

needed, and capture, transport to the facility and aquarium management are likely to be 

prohibitively expensive. In contrast, mark and recapture can be performed from research 

vessels at sea and sampling can be by randomized design so that, unlike laboratory 

rearing, the results o f the validation test can be inferred for the population sampled. Mark 

and recapture has the further advantage over radiochemical techniques that its 

assumptions can be tested more easily. Tests o f dosage schedules can be used to 

minimize mortality associated with the capture and marking process and estimate the 

period between injection and deposition of the mark in the otoliths. Logistically, the 

condition o f captured toothfish could be improved by marking from research vessels 

using trawls which now operate regularly in most management areas. The substantial 

increase in fishing recently in several management areas means that the age range in the 

fishery is likely to be less, reducing the time scale needed for the project; the continued 

fishing means that mortality is higher than in the population prior to the increase in 

exploitation, resulting in higher yearly tag returns. The decline in biomass and improved 

enforcement of regulations has meant that illegal fishing has declined within the 

CCAMLR area and Falkland Islands conservation zones; combined with improved 

monitoring in both areas through observer programs, recapture rates are likely to be 

reasonable. Evidence of a population boundary between southern South America and the 

CCAMLR area (see Chapter V) means that recapure rates within the latter are likely to be 

better than off the Falkland Islands where the tagged fish may migrate into waters where 

enforcement and monitoring programs are not as effective. The question remains 

however, whether enough fish could be marked to ensure the returns necessary for 

statistical analyses: although the 30% of the population necessary for good biomass 

estimates (Seber 1982) is probably not possible under present logistical and cost 

restraints, it may be possible for the purposes of estimation of age precision and 

validation, identifying dispersal range, and calculating individual growth rates.
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Ideally, if a sufficiently large proportion of the toothfish population were marked 

each year in an ongoing tagging programme, subsequent samples would include marked 

fish, allowing age error to be estimated directly for the target population. However, a 

tagging program of this size would be expensive; smaller programs instead would mean 

fewer known-age fish and few opportunities to repeat validations over time. However, 

reference collections for quality control programs can be built cheaply using toothfish 

without known ages, if standardised ages of recaptured fish can be estimated and tested 

against their known ages, allowing reference collections to be corrected and expanded. 

Thus, otoliths from toothfish of standardized and known age can be randomly mixed in a 

single set to be read twice each by two readers. The data for standard age and known age 

fish can then be treated separately: using the ANOVA model from Chapter 3, standard 

age otoliths can be tested for bias between the standard and estimated ages, and known 

age otoliths for bias between known age and estimated age. Residual variance for both 

analyses can also be compared and tested to see if they are significantly different under 

the same conditions, and whether there are significant sources of random variability not 

accounted for in precision analyses using standard ages.
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CHAPTER V

STOCK STRUCTURE INDICATED BY GROWTH: DOES GROWTH 

VARY BETWEEN FISHING AREAS?

5.1. Introduction

Most models available in stock assessment assume discrete stocks which can be 

managed as separate units. Gulland (1983) highlighted the importance of selecting stocks 

at appropriate spatio-temporal scales to allow treatment as if homogeneous and 

independent without unacceptable error. The scale must not be too large to neglect 

important within-stock differences: if several sub-groups behave differently and 

movement is restricted, pooling data may seriously misrepresent the dynamics of one or 

more sub-group, especially if fishing effort is variable spatially. But the scale must be 

sufficiently large to reduce the importance of interactions with fish outside: if too small 

so that interactions with fish in other unit stocks are large, management may be 

compromised by contrary management choices taken for other stocks.

The concept of a unit stock, however, has had an erratic history, marked by 

considerable differences over definition and the weight of factors to consider in 

delineating a stock. Booke (1981) has pointed out that the word has been used to describe 

groupings at species, race, population and sub-population levels; and has shifted in 

meaning from figuratively the trunk of a tree (as opposed to the roots or branches), used 

historically to signify the source of a line of descent. In the twentieth century, Marr 

(1957) defined a stock as a group of fish ‘characterized by similarities which are not 

heritable but are induced by the environment’, and which may contain members of 

severed different sub-populations. More recently, the meaning came to include genetic 

similarity and was explicitly incorporated in a population biology framework. Thus, 

Gulland (1971) defined the unit stock as ‘a self-contained and self-perpetuating group,
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with no mixture from the outside, and within which the biological characteristics and 

impact of fishing are uniform. Such a unit stock would also be a genetic unit.' However, 

the importance of management considerations was emphasized by Larkin (1972) in his 

definition of a stock as ‘a population of organisms which, sharing a common gene pool, 

is sufficently discrete to warrant consideration as a self-perpetuating system which can be 

managed’.

At the Stock Concept International Symposium, Booke (1981) emphasized the 

life history cycle as a stock property and incorporated a spatial dimension in his general 

definition o f a stock ‘as a species group, or population, of fish that maintains and sustains 

itself over time in a definable area’. He further gave a more precise genetic definition : ‘a 

population of fish maintaining and sustaining Hardy-Weinberg equilibrium’. At the same 

meeting, Ihssen et al. (1981) added a temporal dimension, defining a stock as ‘an intra

specific group of randomly mating individuals with temporal and spatial integrity,’ while 

Maclean and Evans (1981) argued for a genetic perspective in management decisions, 

recognizing that fish species are sub-divided into local populations with genetic 

differences that are adaptive. They further pointed out geographical, ethological and 

ecological barriers that restrict dispersal and gene-flow, and argued that managers needed 

to better understand the processes governing population structure and isolation, in making 

the compromises necessary between the biological and socio-economic considerations in 

a fishery.

More recently, evidence has increased that environmental, as well as biological, 

factors may influence the structure of populations. Large- and meso-scale dynamic 

processes, in conjunction with behaviour, may influence patterns of larval and adult 

distribution, and geographic boundaries like fronts may isolate populations (e.g. Loeb et 

al. 1993, Kingsford 1993). Front dynamics provide possible mechanisms for return 

transport o f larvae: for example, southward flowing shelf water off the east coast of the 

United States is entrained by the northward flowing Gulf Stream, forming a narrow band 

of northward flowing shelf water (Lillibridge et al. 1990). On the other hand, larval 

mixing can occur across oceanic fronts through the formation of warm and cold core
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rings from front undulations, or intrusions of slope water along the pycnocline (Cowen et 

al. 1991, Myers and Drinkwater 1989).

In the Southern Ocean, fronts in the ACC cross the distribution range of 

Patagonian Toothfish between the Falkland Islands and South Georgia, and across the 

Kerguelen plateau. These may act to isolate populations within environments that 

differentially influence population vital rates. Meso-scale processes also play an essential 

role in the distribution of water masses in the Southern Ocean. Rings have been observed 

associated with the Polar Front (Gordon 1988), and meander-like displacements of warm 

and cold surface waters lead to intensification in the flow of water from the Drake 

Passage to the Bransfield Strait (Stein 1989). Cross-frontal injections of newly formed 

Antarctic Intermediate Water have been recorded in the Crozet Basin (Park and 

Gamberoni 1994), while eddy activity along the frontal zone north of the Kerguelen 

Plateau likely enhances cross-frontal exchange of water masses (Park et al. 1993). These 

processes may provide a mechanism for transport and mixing. Hofmann et al. (1998), 

using oceanographic models of the South Atlantic, demonstrated that krill off South 

Georgia may recruit from spawning areas off the Antarctic Peninsula, using fronts within 

the Antarctic Circumpolar Current for transport along the southern edge of the Scotia 

Sea. Strong ACC current flow eastward may influence movement of different toothfish 

life stages (SC-CAMLR-XIV, Annex 5): mixing may occur between areas, and be 

directional rather than random, with recruitment from upstream sites.

Several examples of how environmental processes influence the structure 

of fish populations are summarized by Cushing (1981). Arctic cod larvae hatch in 

northern Norway and ride the West Spitzbergen and North Cape currents until they reach 

the Svalbard shelf and the banks of the south-eastern Barents Sea, where they settle. 

Adolescent fish move into deeper water to join the adults in their spawning migration, 

returning to their spawning site in northern Norway. The spawning migration may be 

directly against the currents or fish may ride in a counter-current on the shelf edge. The 

population is contained geographically by the currents; larvae arise on a single spawning 

ground and continuity, or coherence, is maintained between generations. Similarly,
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European eels spawn in the Sargasso sea and elvers drift across the Atlantic within the 

North Atlantic gyre to metamorphose and move up rivers, returning finally to sea as 

adults for their spawning migration. American eels spawn nearby to the west and use the 

gyre for transport, but grow quicker than the European eel and metamorphose after one 

year instead of 2.5 years, reflecting the shorter time needed to reach the North American 

continent. North Sea herring occur in four spawning groups with differences in meristic 

characters and in vital rates such as recruitment, growth and mortality. However, adults 

from three of these groups appear to overlap spatially in feeding grounds in the central 

North Sea. Cushing (1981) shows that, if herring migrate in tidal streams using selective 

tidal transport, the differential spawning grounds would nevertheless segregate the 

populations throughout the life cycle.

The environment often drives discrepancies in vital rates between segregated 

populations. Mortality rates through predation and dispersal may vary in time and space 

and with life stage, differentially influencing the life history pattern. Growth rates are 

influenced by resource availability and temperature (e.g. Clarke and North 1991), which 

also vary in space and time. Temperature can influence movement: for example, Arctic 

cod may be limited in their movement into the Barents Sea by the 2°C isotherm, allowing 

a coridoor which would vary in size with season and year (Cushing 1981). If isolation 

persists sufficently over time, divergent selection pressures will lead to differential 

genetic adaptation: life history strategies and vital rates shift towards those sectors of 

each population most adapted to take advantage of their specific environmental context.

On the other hand, linkages between populations through movement and mixing 
may homogenize genetic differences, or modify the vital rates and persistence of linked 

populations (e.g. Levins 1969, Pulliam 1988, Polachek 1990). Gauldie (1991) has argued 

that for fisheries, stocks linked by migration and with heterogeneous growth rates may be 

more realistic than the idea of isolated stocks with homogeneous growth rates. Detailed 

knowledge of structure and movement within and between populations is therefore 

critical in delimiting the domain and understanding the limitations of a model when 

applied to a particular stock.
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5.2. How to examine population structure?

A number of methods have been developed to elucidate stock structure in fish 

populations (Ihssen et al. 1981, Maclean and Evans 1981). Meristics and morphometries 

can be used to distinguish between groups in different areas. Discrepancies in population 

or physiological parameters between populations, or differences in otolith shape and 

increment patterns, may be used to infer stock boundaries. But the methods may 

confound genetic and environmental factors: differences may be due to ecological 

separation during part of the life history rather than reproductive isolation.

Instead, stocks can be distinguished by genetic differences. However, mixing 

rates of 10% are sufficient to mask distinctions between populations, yet low enough to 

necessitate managing the populations separately, especially when large environmental 

differences separate mortality and life history characteristics. Genetic differences accrue 

slowly through evolution, especially if selection forces on two separated populations are 

similar: the most sensitive techniques for genetic discrimination, using micro-satellite 

DNA, cannot detect events occurring more recently than several thousand years ago 

(Anon 1994). Yet environmental changes, including long-term cycles governing the 

extent of pack-ice from the Antarctic continent (Murphy et al. 1995, White and Peterson 

1996), may lead to variations in population structure and mixing on a time-scale that 

would not be detectable by genetic differences, but should be accounted for in 

management.

Mark and recapture methods give information on movement and mixing in space 

and time, and between populations, but assume random mixing of tagged and untagged 

fish, good reporting, no loss of tags, and no changes in fitness of tagged fish (Ricker 

1975). Although reporting can be improved using rewards, 30% of a population needs to 

be tagged to achieve the required level of returns to estimate population abundance 

(Seber 1982). Long-lived species of low fecundity are characterized by low mortality 

rates, so that returns occur over a long time period, limiting the usefulness of the method.
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Studies have been largely restricted to adult populations because of logistical problems in 

marking sufficient numbers of young with tags to achieve good returns (Cushing 1981), 

and the legal prohibition in the United States of chemical markers because of the possible 

exposure to human consumers. As a result, in studies of population structure using mark- 

recapture, it is hard to show if adults return to spawning grounds where they themselves 

were spawned (Cushing 1981), and spawning site fidelity has frequently to be assumed 

instead. Parasite markers specific to a population can be used, but they must not affect 

mortality differentially and must occur in a high proportion of individuals in one 

population relative to the other, which limits the technique’s usefulness.

These methods provide different types of information and can be used in 

combination to make inferences about stock structure and movement. Only genetic 

techniques directly address the issue of population isolation; present tagging methods can 

demonstrate isolation during the later life history but not during the early stages, and 

provide only very general quantitative information on proportions of mixing between 

stocks. Alternatively, naturally-occuring chemical markers are laid down in the otoliths 

during growth (Mulligan et al 1987, Edmonds et al.1992) which reflect the water through 

which the fish moves. These can be linked to time and fish age using otolith annuli and 

micro-increments, and the chemical markers used to examine spawning separation and 

early life-history movement retroactively (Jones 1992, Kalish 1990, Edmonds et al. 1991, 

Campana et al. 1994, Thorrold et al.1999). However, movement must be on a time-scale 

and between water bodies with sufficiently distinctive chemical characteristics to be 

detectable. Chemical signals that are effective in spatial discrimination appear to be 

highly specific, and little work has been attempted in fish that are exclusively marine.

5.3. Growth

Knowledge o f  growth rates through the life cycle are fundamental in assessing the 

biomass productivity o f  a fishery, and how it is affected by different management choices 

(e.g. Beverton and Holt 1957, Ricker 1975). Fish generally exhibit a period of
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accelerating increases in absolute length during the early period of life, followed by a 

deceleration. The age when the changeover occurs may vary: if prolonged, the size-at-age 

relationship may be approximately linear; more commonly, size is asymptotic in older 

fish (Ricker 1975).

Growth rates can be estimated using length-at-age data, by sampling across the 

population at a single time. However, Hilborn and Walters (1992) warn that size 

information can be grossly misleading and that investigators should examine carefully 

how data are taken. Inaccurate estimation of growth rates occur when mortality is 

stronger for larger fish than smaller fish within a cohort so that smaller fish tend to 

survive (or vice versa). Sampling may have a similar effect: due to gear if it is selective 

for size within cohorts, or does not cover all age classes equally; due to differences in fish 

behaviour and distribution with size; or due to an inadequate sampling design (Ricker 

1975, Hilborn and Walters 1992). Further error will be contributed if individual variation 

in growth rate is large; if sex differences are not accounted for; or if age-specific growth 

rates show trends between succeeding year-classes (Ricker 1975), due to environmental 

cycles or long-term changes in fishing pressure. If these effects occur, the population 

growth rate estimated will be different from the true growth rate (Ricker 1975).

Alternatively, somatic growth rates can be estimated for individual fish over their 

life-span by measuring the increments laid down in scales and otoliths and back- 

calculating using the relationship between somatic and incremental growth (Ricker 1969, 

1975). But at a population level, back-calculated size estimates become biased in fish of 

younger ages under the same conditions of size-selective mortality that adversely affects 

size-at-age data (Lee 1912). The method depends on the relationship between somatic 

and otolith or scale growth, and error will be introduced if the relationship is weak. 

Furthermore, measurements within a fish are not independent, so that error within a fish 

is auto-correlated relative to other fish (Jones 2000).

Mark-recapture can be used to examine growth rates by measuring the difference 

in size between first capture and recapture. However, tagging is subject to the problems
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discussed in Section V.2. above, and growth rate may be affected by tagging. Biases will 

result if this varies with size (for example, due to greater trauma suffered by larger fish 

during handling out of the water, or during retrieval from deeper water) (Gulland 1983).

Modes in the distribution of fish size frequency can identify age groups; growth 

rates can be estimated from the distance between the modes, or directly by following 

their progression over time. However, the technique is particularly vulnerable to the 

problems discussed above in using size data, and depends on good discrimination 

between year classes, which is usually only true for the youngest ages and species which 

have a short spawning season. Environmental cycles can also confound the method by 

generating pulses of recruitment, and size-selective biases will occur as age groups 

recruit to the fishery, larger individuals recruiting earlier, sometimes by as much as 

several years (Gulland 1983).

The most common model used for describing growth (eg. Beverton and Holt 

1957, Barbieri et al. 1993, Piner 1998) in fish length was developed by von Bertalanffy 

(1938):

/ , = £ _ (  \ - e - KU-'o)) (6)

where is the mean maximum length, to is the theoretical age at which length=0, and K 

is the Brody growth coefficient, governing the rate at which is approached.

Alternative asymptotic models to describe growth are the Richards equation, the 

Gompertz equation, and the logistic equation. Schnute (1981) demonstrated that these, 

along with the von Bertalanffy, are special cases of a single general model. Sainsbury 

(1980) has found that individual variation can lead to under-estimates o f K  when length- 

at-age and growth increment data are used, which can lead to serious over-estimation of 

mean length-at-age in the case of growth increment data. Francis (1988) has pointed out 

that von Bertalanffy growth parameters can differ in meaning for estimates calculated 

from tagging and from age-length data.
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5.4. This study

Mark and recapture was considered impracticable to examine population structure 

in Patagonian toothfish, for the reasons given in Section IV. 1.4. Although directly 

addressing the issue of isolation, genetic determination was considered insufficiently 

sensitive to likely levels o f mixing, and ignored the possibility of recent changes in 

population structure relevant to current fishery management. Chemical markers in 

otoliths were considered more promising but possibly insensitive to the levels of 

variability found between Antarctic water bodies. Addressing variation in growth rates 

would allow growth to be estimated for several management areas, and be less costly 

than the other methods. Population growth rate estimated from age-length data may 

diverge from the true growth rate but avoids the problems over recruitment in frequency 

modal analysis, and the relationship between otolith and somatic growth rates in back- 

calculation. Growth inferences based on age-length data were therefore selected for a first 

examination of stock structure.

Differences in growth rates between toothfish management areas are predicted to 

arise if the stocks are segregated in time or space, and divergent selection pressures 

operate over enough time for adaptation to occur. But similar differences will occur if 

fish are segregated only after spawning, with different environmental exposure that 

modifies growth rates differentially while segregated. The fish will be genetically 

identical, mixing randomly during reproduction, but will still need to be managed as 

separate stocks because of divergent vital rates affecting dynamics and biomass 

productivity. Of course, differences will be maintained only if there is little mixing 

between the stocks. Therefore, differences in growth rates between management areas 

can be used to infer the presence of discrete stocks.

On the other hand, similar growth rates between areas may be due to a single 

stock with random mixing, but would also be true for segregated stocks exposed to 

similar environmental and selection pressures. The latter case is unlikely, demanding that 

the large suite of variables affecting a population be similar or compensatory. Even so,
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the possibility remains that vital rates could be similar but the stocks different, so that 

management decisions for one would not affect the other. Alternatively, populations may 

be genetically distinct with different vital rates, but mix over their post-spawning life- 

history. In these cases, growth rates based on age-length data will not discriminate from 

the single-stock scenario.

Beverton and Holt’s (1957) dynamic pool model uses parameters derived from 

the von Bertalanffy function. Growth models using the function have been developed for 

Patagonian toothfish, and suggest stock boundaries between the region encompassing 

southern South America and the Scotia Arc, and the southern Indian Ocean. Additionally, 

some information on parasite loadings suggest greater differences between the southern 

Patagonian shelf and South Georgia, than for fish from southern Chile to the southern 

Patagonian shelf (SC-CAMLR-XIV, Annex 5). The growth data used are compromised 

by inconsistencies in age estimation methods, sampling and sample sizes, and by the use 

of Ford-Walford plots to derive estimates, rather than non-linear regressions. However, 

the information indicates two hypotheses which can be tested: i) that there is a stock 

boundary between the Falkland Islands and South Georgia, and ii) that there is another 

boundary between South Georgia and Kerguelen.

In this chapter, I estimated Von Bertalanffy parameters for each location, and 

constructed models describing growth rates predicted from competing hypotheses of 

stock separation and mixing between locations. Assuming that the conceptual model 

developed in Chapter HI is applicable to all areas, size-at-age data will allow relative 

comparison between management areas. I use likelihood methods to select between 

hypotheses in a confrontation with the data, and discuss the implications of these results 

to understanding toothfish population dynamics, stock management, and their potential 

relationship to the oceanographic structure of the Southern Ocean. The accuracy o f the 

growth parameter estimates when used in models of toothfish population dynamics is also 

considered.
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5.5. Methods and materials

I ask the scientific question: do differences in growth between locations indicate 

that Patagonian toothfish in the Southern Ocean represent one stock or more than one 

stock? Specifically, do fish found off the Falkland Islands, South Georgia, Kerguelen and 

Heard Island demonstrate similar Von Bertalanffy growth parameters or significantly 

different growth parameters? Using normal likelihood procedures, models can be set up 

predicting the situations under each hypothesis: 1) with separate growth curves between 

locations (Ha); 2) with one growth parameter equal (Hwl_3>; and 3) with no differences in 

growth curves between locations (HW4 ) :

f f n : / IJ= ^ ( l - e " * r,l,v",0,>) (5?)

H wl : lu = (1 *) (58)

(60)

Selection between models is based on the relative likelihood calculated from the data 

using the normal likelihood function (Kimura 1980, Edwards 1992).

Otoliths and length data were taken from the full age range of toothfish sampled 

by longliner between 11 February and 7 March 1997 off the Falkland Islands, 21 April 

and 21 May 1997 off South Georgia, and 25 February and 10 March 1997 off the 

Kerguelen Islands. Total lengths were divided into blocks as for the validation study in 

Chapter IV, and 20 fish sampled as far as possible within each block. Samples by 

longliner for South Georgia and Kerguelen were obtained using the randomised design
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outlined in Chapter II: samples for each length block were taken every fishing day until 

the block allocation was fulfilled, so that sampling was over a longer period for blocks 

with fewer fish in the catch. Samples for the Falkland Islands were taken haphazardly 

from the catch by longliner, and assumed to be representative (ie. that captured fish came 

aboard in random order). Samples were also taken by commercial trawl at Kerguelen 

between 8 March and 8 April 1997: sampling was again haphazard, taking fish of the 

desired length range that could be obtained from each net, and assumed randomized 

mixing within net and no conscious or unconscious selective tendencies by the observer. 

Samples from Heard Island were randomly selected from a sample taken haphazardly 

from the catch by commercial trawl between 5 September and 24 September 1993 (and 

included six samples from similar sampling taken between 11-21 June 1990), making the 

same assumptions for the original catch sampling as for Kerguelen. Some larger fish had 

been taken from the catch sample for other projects: these were assumed to have been 

taken randomly and did not exceed TL 83.7 cm. For the Kerguelen trawl collections, 

samples were taken over consecutive fishing days until the allocation for each block was 

fulfilled. Numbers and dates of collection are shown in Table 5.1.

Data for total length and sex were recorded, except for Falkland Islands where 

standard length was recorded. To standardize length measurements, total length and 

standard length were measured for fish taken while sampling off South Georgia. The 

relationship by sex was closely described using linear regression (Ricker 1975): for 

females, the relationship was TL = 1.116SL+1.48; for males, it was TL = 1.16SL-2.04 

( R 2 f e m a ie  = 99.5%; R2maie= 99.7%). Using these relationships, SL data from the Falkland 

Islands were weighted by sex to convert to TL. Age was estimated using the 

methodology developed in Chapter III. All otolith sections from the samples and 59 

otoliths from the reference collection were pooled and randomly ordered. To control for 

data quality, age estimated from reference otoliths was compared to their standardized 

ages, and tested for significant differences using the ANOVA model developed in 

Chapter III (Table 5.2). Power was calculated in an a posteriori manner: <(> = 3.32 with
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Table 5.1: Sample sets o f Dissostichus eleginoides used for comparison of growth rates.

Location gear no.

females

no.

males

dates o f collection

Falkland Islands longline 93 67 11 Feb -  07 Mar 1997

South Georgia long line 176 80 21 A pr-2 1  May 1997

Kerguelen longline 91 68 25 Feb -  10 Mar 1997

Kerguelen trawl 72 78 08 M ar- 0 8  Apr 1997

Heard Island trawl 63 33 05 Sep- 2 4  Sep 1993

(11 Jun -21  Jun 1990)
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Table 5.2: Comparison between age estimated and standardized age for 58 reference

otoliths, using the randomised block ANOVA model developed in Chapter 

III (standardized age = mean of four age estimations undertaken in Chapter 

HI). Dependent variable: age; treatment factor: two levels (reading, 

standardized age); blocking factor: 58 levels (individual fish); a=0.05.

Source d f sum o f squares Mean square F Pr>F

Total 115 8523.8
fish 57 8387.3 147.1 64.5 0.0001

treatment 1 6.4 6.4 2.8 0.0992
error 57 130.1
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vj = 1 and V2 = 116 degrees of freedom, giving a power of ca. 100%. No significant 

difference was found between the age data from the growth study and standardised ages 

(a  = 0.05), thus assuring consistency in aging.

To check that data from both gears could be pooled, the data were first examined 

for differences in growth prameters between the catches taken by trawl and longline at 

Kerguelen. The Von Bertalanffy model was fitted by least squares for pooled data and 

separately by sex: because of the form of the equation describing the normal likelihood 

function, least squares estimates are the same as maximum likelihood estimates when the 

assumptions of normality and constant variance are met. Residuals were examined for 

normality using the Shapiro-Wilks test (a  = 0.05) and error trends. The estimates from 

the pooled fit were used to parameterize the constrained parameters in the competing 

growth models outlined above, and estimates from the male and female fits for the 

parameters. Likelihood ratio (LR) tests were undertaken between the models to examine 

differences between capture. The unconstrained model (separate curves for each gear) 

could be expected to have the highest support, but some criterion is needed to test 

whether this is sufficient to justify its selection over the simpler models. The LR (A) can 

be used to give the test statistic:

2
-  2 log(A) = - N  lo g (-^ r)

0 V

which has a chi-squared distribution, and this was used to test for the significance of 

differences between the unconstrained and other models, and by implication between 

growth parameters (Kimura 1980).

To check that data from both sexes could be pooled, a similar procedure was 

followed to examine differences in growth estimators due to sex for each location. Based 

on the results of these preliminary tests, comparisons between locations were made by 

sex and only between sampling sets using the same capture method. Thus, LR tests were 

performed for each sex between trawl samples from Kerguelen and Heard Island. To
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allow comparisons between each location sampled by longline, simultaneous LR tests 

using an adjusted a-level were performed pairwise for each sex between longline 

samples from Kerguelen and South Georgia, Kerguelen and Falkland Islands, and 

Falkland Islands and South Georgia. All analyses were undertaken using S AS PROC 
N L E N .

5.6. Results

Plots of total length against age are shown in Figure 5.1 for females and males in 

each sample set. These indicated differences in distribution between sexes for the 

Kerguelen and South Georgia samples, and differences between capture methods: trawls 

appeared to catch younger fish overall, although older females were caught off 

Kerguelen; coverage o f the first few year classes was considerably better by trawl than 

by longline. The plots also indicated differences between management areas: old and 

large females were caught off Kerguelen by trawl, but did not appear in trawls off Heard 

Island; variation appeared to be distributed differently with age for the Falkland Islands 

than for South Georgia and Kerguelen.

Estimates of growth parameters by sample set for each sex are given in Table 5.3, 

with estimated standard deviations. Data were found to be normal for male and female 

data except those from South Georgia (p<0.0001) and females taken by longline off 

Kerguelen (p<0.0072). Residuals showed little expansion with age in males, especially 

after the first 5 years, but showed some expansion in females taken off Kerguelen by 

longliner and trawl, and more strongly in females taken off South Georgia. The analysis 

for Kerguelen females was unlikely to be greatly affected by the level of 

heteroscedasticity; and the method should be robust to limited violation of normality. 

However, the violation was greater for both South Georgia sexes, and was little improved 

by square root or log-normal transformations. Parameter estimates by least squares are 

likely to depart from maximum likelihood estimates.
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Figure 5.1: Scatter plots of total length versus estimated age, fitted with the
von Bertalanffy function: a) for males taken by longline, b) for 
females taken by longline, c) for males taken by trawl, and 
d) for females taken by trawl.
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Figure 5.1: continued.
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Table 5.3: Estimates of Von Bertalanffy growth parameters for males and females, for

sample sets shown in Fig 5.2. Standard deviations in brackets

Males:

n U K to

a) Falkland Islands (longline) 67 120.7(7.9) 0.13(0.05) -1.55(2.72)

b) South Georgia (longline) 80 122.1(7.2) 0.07(0.02) -5.71(2.78)

c) Kerguelen (longline) 68 124.6(9.3) 0.07(0.02) -7.11(1.73)

d) Kerguelen (trawl) 78 83.8(4.0) 0.28(0.04) -1.05(0.20)

e) Heard Island (trawl) 33 73.9(7.8) 0.31(0.12) -1.71(0.69)

Females:

n U K to

a) Falkland Islands (longline) 93 141.4(5.7) 0.15(0.04) -1.10(1.61)

b) South Georgia (longline) 176 167.0(9.0) 0.06(0.01) -3.64(1.80)

c) Kerguelen (longline) 91 168.1(20.78) 0.05(0.02) -7.00(2.55)

d) Kerguelen (trawl) 72 172.9(9.2) 0.06(0.01) -3.48(0.64)

e) Heard Island (trawl) 63 74.4(4.4) 0.48(0.13) -0.46(0.42)
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5.6.1. Differences between capture methods

The results from the LR tests are shown in Table 5.4. For males, the Ha model 

(all von Bertalanffy parameters differed by gear-type) better fit the data for both males 

and females, indicating that trawling and longlining took different fish. A better fit was 

obtained with separate VBGF parameters, indicating all parameters were significantly 

different and the Hq model was clearly the most appropriate model for the data. This was 

not true for females: the Ha model was not better than the partially constrained models 

and some parameters could be pooled. These data, taken together, provide some evidence 

for differences due to gear, sufficient to justify treating separately samples taken by 

different capture methods.

5.6.2. Differences between sexes

The results from the LR tests are shown in Table 5.5. The Ha model fit the data 

better than the HW4 model in all samples except Heard Island, indicating significant 

differences in growth between sexes (a  = 0.05). At Heard Island, the difference was 

significant at the a  = 0.10 level, and the Hn model (all VBGF parameters differed) had 

significantly more support than the HW3 model (L» and K differ), indicating significant 

differences for to and weak evidence for differences in growth between sexes. At 

Kerguelen, the Ha model fit the data significantly better than all the constrained models 

for the sample taken by trawl, indicating strong evidence for differences in growth by 

sex, reflecting the disparity in distribution due to the lack of large males. This was not 

true for the sample taken by longliner: Ha better fit the data than Hw4, but was not better 

than the partially constrained models, so that some parameters could be pooled. Taken 

together, these data provide some evidence for differences in growth between sexes at 

Kerguelen, over and above the differences due to gear type. Similar results were obtained 

for South Georgia and the Falkland Islands: the partially constrained models (Hwi, HW2 , 

Hw3) did not have significantly different support from the unconstrained model and could 

equally well be selected, indicating weak evidence of differences due to sex. Differences
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Table 5.4: Likelihood ratio tests comparing Von Bertalanffy parameter estimates for

male and female toothfish taken by longline and trawl off Kerguelen

(a  = 0.05).

Hypothesis constraints sum o f squares -N log(<jQ /crj)  d f p

a) Males (n = 146)

Hn none 9494.0

H o j i lo o  I ----L » 2 11333.8 25.90 1 0.001

k ,=k 2 11679.0 30.24 1 0.001

H oj3 tol=to2 12018.7 34.40 1 0.001

H ( o 4 all 12881.1 44.50 3 0.001

b) Females (n = 163)

Hn none 31763.8

H t o i lo o  1----loo2 31772.2 0.04 1 ns

H o j2 k ,=k 2 31786.2 0.11 1 ns

h u3 tol=to2 32323.3 2.85 I ns

H o>4 all 34205.6 12.07 3 0.01

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



130

Table 5.5: Likelihood ratio tests comparing Von Bertalanffy parameter estimates for

male and female toothfish for each location (a  = 0.05).

Hypothesis constraints sum o f squares -N log( <7q /CfJ) d f  p

a) Falkland Islands (longline) n = 160

Ha none 50513.7

Hw, l o o , -----lo o 2 51318.4 2.53 1 ns

H o * k ,=k 2 50530.0 0.05 1 ns

H o * to 1 =to2 50521.6 0.02 1 ns

H o y j all 65172.9 40.76 3 0.001

b) South Georgia (longline) n = 256

Ha none 92752.7

H a , , r
i

JllJ

93496.8 2.05 1 ns

H o * k ,=k 2 92785.6 0.09 1 ns

H o * tol=to2 92839.5 0.24 1 ns

H o y , all 117888.1 61.39 3 0.001

c) Kerguelen (longline) n = 159

Ha none 25086.3

H o * lo o  |-----lo o 2 25458.3 2.34 1 ns

H o * k ,=k 2 25129.7 0.27 1 ns

H o * to 1 =to2 25086.5 0.00 1 ns

H o y , all 35362.1 54.58 3 0.001
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Table 5.5: continued.

d) Kerguelen (trawl) n = 150

Hq none 16127

H(oi L»l—1»2 20094 32.98 1 0.001

H<o2 k ,=k 2 19472 28.27 1 0.001

H<o3 tol=to2 17936 15.95 1 0.001

Ho* all 20839 38.45 3 0.001

c) Heard Island (trawl) n = 96

Hn none 5150.2

H o j i lo o  1----lo o 2 5150.3 0.00 1 ns

Hoj2 k ,=k 2 5219.4 1.28 1 ns

HoO tol=to2 5373.4 4.07 1 0.05

Hq* all 5511.3 6.50 3 ns
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between sexes for all sample sets were therefore sufficient to justify treating them 

separately in subsequent analyses.

5.6.3. Differences between locations.

There were significant differences in growth between female fish caught by trawl 

at Kerguelen and Heard Island (Table 5.6), reflecting the absence of larger fish in the 

Heard Island sample. All parameters were significantly different and the Hn model was 

the most appropriate model for the data. For males, however, no significant differences 

were found, reflecting the absence of larger males taken by trawl at both locations.

For collections made by longline, the pairwise significance level was adjusted to 

a  = 0.0167 to allow simultaneous comparisons between three locations with an 

experiment-wise significance of a  = 0.05. There were no significant differences in 

growth between South Georgia and Kerguelen fish (Table 5.7): differences in residuals 

between the competing hypotheses were extremely low for both sexes, indicating that 

growth rates between locations were very similar. There were differences between the 

Falkland Islands and South Georgia (Table 5.8a), and Falkland Islands and Kerguelen 

(Table 5.8b): the Hn model was significantly better supported by the data than the HW4 

model in all cases. However, for males, the partially constrained models also fit the data 

well, indicating individual parameters were not significantly different, and providing 

weak evidence for growth differences between locations. For females, the partially 

constrained models were not significantly different from the Hn model, but residuals 

were larger and p-Ievels were marginal in several cases, indicating stronger evidence for 

growth differences between locations.
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Table 5.6: Likelihood ratio tests comparing Von Bertalanffy parameter estimates for

male and female toothfish taken by trawl off Kerguelen and Heard Island

(a  = 0.05).

Hypothesis constraints sum o f squares -N log( Oq / gJ )  d f  p

a) Females (n = 135)

Ha none 15071.8

H c o l lo o  I loo  1 16431.9 11.70 1 0.001

H<o2 <N

II

i
d 16391.6 11.30 1 0.001

H<o3 tol=to2 16040.9 8.40 1 0.005

H(o4. all 16599.2 13.03 3 0.005

b )  Males (n = 111)

H a none 6206.3

H c o l lo o  1---- lo o  2 6255.5 0.88 1 ns

H c o l k ,=k 2 6208.5 0.04 1 ns

Hco3 tol=to2 6279.3 1.30 1 ns

H(o4 all 6654.8 7.74 3 0.1
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Table 5.7: Likelihood ratio tests comparing Von Bertalanffy parameter estimates for

male and female toothfish taken by longline off South Georgia and

Kerguelen (a  = 0.05).

Hypothesis 

a) Females (n

constraints 

= 267)

sum o f squares -N log( <Jq2/<j J ) d f P

Hq none 103998.8

He, lo o  I-lo o 2 103999.3 0.00 1 ns

H(o2 k ,=k 2 104068.3 0.18 1 ns

h w3 to 1 =to2 104409.0 1.05 1 ns

H<o4 all 105078.3 2.76 3 ns

b) Males (n = 148)

Hn none 13840.2

Hoji lo o  1-lo o 2 13844.5 0.05 1 ns

H(o2 K i=K2 13847.9 0.08 1 ns

H(o3 tol=to2 13859.8 0.21 1 ns

H { d 4 all 13899.5 0.63 3 ns
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Table 5.8: Likelihood ratio tests comparing Von Bertalanffy parameter estimates for

male and female toothfish taken by longline off a) Falkland Islands and

South Georgia; and b) off Falkland Islands and Kerguelen (a  = 0.05).

a) Falkland Islands and South Georgia

Hypothesis 

i) Females (n

constraints 

= 269)

sum o f  squares -N log( Gq2/cjJ ) d f <P

H  Q none 119375.6

H o i loo  1—loo 2 121683.2 5.15 1 0.025

H(o2 k ,=k 2 121495.6 4.73 1 0.05

H oj3 tol=to2 119832.3 1.03 1 ns

H(d4 all 128419.8 19.64 3 0.001

ii) Males (n = 147)

H n none 23890.9

H c a i loo  1—loo 2 23894.7 0.00 1 ns

H(o2 k ,=k 2 24221.3 2.01 1 ns

H o * to 1 =to2 24136.7 1.50 1 ns

H qj4 all 27154.0 18.80 3 0.001
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Table 5.8: continued.

b) Falkland Islands and Kerguelen

Hypothesis constraints sum o f squares -N log( c tn /cr j)  d f <p

i) Females (n = 184)

HQ none 56242.5

Hoi, lo o  l- * loo2 56987.8 2.42 1 ns

H(o2 k ,=k 2 58116.5 6.03 1 0.025

H(o3 to 1 =to2 57467.4 3.96 1 0.05

Hoyt aU 62328.5 18.90 3 0.001

ii) Males (n = 135)

Ha none 19357.6

H„i loo  1 L o2 19371.0 0.09 1 ns

H(o2 r4uiii£

19752.1 2.72 1 ns

Hon tol=to2 19829.4 3.25 1 ns

Hoyt aU 21878.0 16.52 3 0.001
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5.7. Discussion

5.7.1. Population structure

The results support the hypothesis of stock separation between South Georgia and 

Falkland Islands. This was seen for longline samples for both sexes and for comparisons 

between Falkland Islands with both South Georgia and Kerguelen; given the available 

data, their consistent agreement shows strong evidence for separate stocks. Although 

there were growth differences between Kerguelen and Heard Island, the data are better 

explained by female migration than separation of stocks. Females caught by trawl off 

Heard Island were mostly young, which indicates they may migrate away when older. 

Meanwhile, older females were caught by trawl off Kerguelen. Heard Island may 

therefore represent a nursery area linked to Kerguelen; a possibility that is enhanced by 

the proximity of the two areas on the same continental shelf system, facilitating 

movement. Older males were also present at Kerguelen, as shown by the longline data, 

but were not caught by trawl; a similar migration may therefore occur for males, but the 

evidence is weaker.

The results do not support the hypothesis of separate stocks at South Georgia and 

Kerguelen. Fish taken at the two locations may therefore be from one stock.

Alternatively, there may be separate populations but with similar vital rates, or separation 

only at spawning. The latter case is not likely given the considerable distance between the 

islands. But populations may have similar vital rates due to similar environments; 

however, this is also unlikely as much higher fishing levels occurred at South Georgia 

than Kerguelen between 1993-1996. Similar fishing levels at Kerguelen occurred too 

recently to be reflected in these data. If stocks are separate, the data should reflect 

reduced competition from larger and older fish at South Georgia, leading to faster early 

growth, and therefore a higher K, than at Kerguelen.

In the experimental design, by necessity sampling was blocked on length: this 

meant coverage was not equal between ages because, as fish growth slows with age, the
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blocks of larger lengths covered more age classes. The design may also have resulted in 

selectivity for younger fish at large sizes. Again by necessity, Heard Island was sampled 

during a different year and season from the other sample sets. All analyses assumed that 

size-at-age of the captured populations was representative of size-at-age of the natural 

populations, yet differences due to gear indicate this to be unlikely. Size selective 

mortality rates may have compounded any biases in the calculation of growth parameters.

Little evidence exists on how these assumptions may affect conclusions. To 

address some of these difficulties, data were examined by sex and capture gear but the 

differences in sampling design between the Falkland Islands and both South Georgia and 

Kerguelen remain, confounding the test for growth differences. Similarly, temporal 

differences between the Heard Island (1993) and Kerguelen (1997) trawl sample sets 

confound the test for growth differences between them. However, the difference between 

years is likely to be smoothed by the number of cohorts at both locations. Fishing 

pressure overall is unlikely to explain the differences: the increase in fishing pressure at 

Kerguelen is more likely to reduce differences by reducing the number of large females. 

In any case, the Kerguelen samples were taken before changes in growth due to 

increasing fishing pressure would have reasonably been expected.

Overall, the samples are the best possible given the operational difficulties of 

coordinating sampling across four management areas located in remote areas of the 

Southern Ocean: those from all but Heard Island were collected within a three month 

period; and all were taken by trained observers on board licensed fishing vessels.

Previous data on growth differences between management areas are likely to have 

suffered from similar problems and, unlike this study, did not standardize methodology 

and readers to estimate ages between management areas, or randomize the reading of 

samples to avoid conscious or unconscious bias by age readers. For previous studies, 

these effects were therefore confounded with those for management area. Assuming that 

otolith structure can be interpreted similarly for all management areas, the data in this 

study represent the best available for testing hypotheses on population structure using 

growth differences.
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Sample sets were divided by sex in this analysis, and sampling was stratified on 

length so that some age classes were represented by few data points or none. Larger 

samples taken using random selection by age from a previously aged representative 

sample population would correct this imbalance, reduce stochasticity in mean lengths-at- 

age, and strengthen the assumption of normality as the sample increased. Departure from 

constant variance can be corrected by minimizing the sum of squares:

'L(ni / s i2)(Ii - M 'i ) ) 2

where s? is the sample variance of the lengths of the n, individuals aged Larger, 

balanced year classes would allow weights to be used and lead to convergence of the ML 

estimators on the true value for the population parameter.

5.7.2. Growth

Care is needed when the growth parameters estimated are incorporated in 

management models. Even though the collection methods used were the best available 

given the exigencies of working in the Southern Ocean, sampling was nevertheless only 

from the commercial catch population. The linkage between the catch population and the 

natural population is not well understood. These data show some selection of large fish 

by longline compared with trawl, indicating bias in the gear-specific estimates. For an 

active method like trawling, size selectivity by mesh and trawl mouth size may be 

important; for a passive method like longlining, selectivity may involve many more 

variables than the distribution of the population in time and space. The size of hooks may 

influence the number and size of fish captured.

Even so, the sample design allows conclusions on the relationships between 

different sampled populations, and these results can be used to select the best growth 

estimates available for use in modelling toothfish populations, and to determine how 

better estimates could be obtained. The results from the Kerguelen data indicate that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



140

trawling may not sample older males compared to longlining, but will sample the first 

few year classes better for both sexes. Once available and vulnerable to the gear, 

selection of younger fish is likely to be less biased by trawl; at larger sizes, longlining is 

more effective in obtaining numbers of large fish of both sexes. Differences in size-at-age 

occur between sexes for both capture methods, and occur for all sample sets. The best 

estimates of growth should therefore be by sex in these populations, and should 

incorporate younger year classes taken by trawl, and older year classes taken by longline 

(especially for males), with numbers balanced for each age category. With larger 

numbers within each age group, mean size-at-age weighted by (Vni) will also prevent 

violation of the assumptions of normality and constant variance, and may best describe 

growth over the life-span (Kimura 1980). To guard against hook selectivity, several hook 

sizes should be used when sampling to ensure that the larger fish in the population are 

represented.

Previous estimates of Von Bertalanffy growth parameters for Dissostichus 

eleginoides are given in Table 5.9. Estimates for the South Atlantic region by Zakharov 

and FroIkina (1976), Shust et al. (1990) and Aguayo (1992) were based on length-at-age 

data. Methodologies used to age fish were not clear, and neither were estimation methods 

in the two earlier studies. Aguayo (1992) used the Walford method which is less reliable 

than the non-linear method. No comparisons in aging methodology were made between 

investigators and sampling was exclusively from catches by longliner. Despite the 

agreement between studies, the uncertainties in methodologies mean that these results 

should be treated with caution.

More recently, Horn (1999) compared results from age readings between 

laboratories working on toothfish, showing substantial agreement between readers.

Cassia (1998), one of the readers from Horn’s (1999) study, sampled catches from 

longliners off South Georgia, and found no difference between scales and otoliths for 

estimating age, and used measurements of the distance between nucleus and annulus to 

measure growth. Although her results agreed with those for the earlier studies, the 

method she used assumed a linear relationship between the measure and fish length, and 

also assumed no size-selective mortality. Neither assumption was tested; nor were
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Table 5.9: Values for Von Bertalanffy parameters estimated for Dissostichus

eleginoides in previous studies.

Area sex K to Source

Patagonian Shelf all 204.3 0.0563 -0.545 Zakharov and Frolkina 

(1976)

South Georgia all 174.8 0.0712 -0.005 Shust et al (1990)

all 210.8 0.0644 0.783 Aguayo (1992)

all 170.8 0.0916 -0.031 Aguayo (1992)

all 207.0 0.0748 -0.289 Cassia (1998)

Southern Chile all 216.1 0.062 -0.877 Aguayo (1992)

Macquarie Island male 138.4 0.072 -1.37 Kalish and Timmiss 

(1998)

female 205.3 0.045 -1.54 Kalish and Timmiss 

(1998)

NZ EEZ - Sub-area 

88.1

male 134.3 0.118 0.08 Horn (1999)

female 158.7 0.085 -0.35 Horn (1999)
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differences due to sex although all data were pooled. Horn (1999) observed differences 

for growth curves fit by sex for Patagonian toothfish captured by trawl and longline in the 

southern Pacific, with females growing faster and larger than males. Similarly, Kalish 

and Timmiss (1998) were involved in the comparison of age readings between 

laboratories, and found differences between sexes for fish caught by trawl off Macquarie 

Island, with Loo for female fish substantially larger. Although differences between these 

studies may indicate differences in growth between regions, Horn (1999) attributed the 

differences between his estimates and those of Kalish and Timmiss (1998) to differences 

in sampling gear rather than region, and the differences of these two studies to that of 

Cassia’s (1998) results may also be attributable to differences in sampling gear. It may 

also be due to the treatment of data by sex; when pooled for sex, estimates of growth 

parameters in Kalish and Timmiss’s (1998) study were similar to those for Cassia 

(1998). Additionally, even though comparisons in age readings between these 

investigators indicated substantial agreement, age interpretation may change with time 

(Campana et al. 1995), and this was not controlled for in comparisons between the 

studies.

The estimates for growth in this study improve on the previous estimates by 

treating by sex and gear; using standardized methodology including randomized catch 

sampling of longline catches off South Georgia and Kerguelen; and a quality control 

programme for age data with random presentation o f otoliths for reading and comparison 

with reference otoliths. Comparisons between my estimates are therefore more reliable 

than comparisons with other studies.

Even so, previous work (Ashford and Horn 1999, Horn 1999) indicated that my 

age readings are broadly similar to those for other laboratories, and some comparisons 

may indicate further differences between regions. Thus, comparing samples taken by 

trawl in this study and that of Kalish and Timmiss (1998), is lower for both sexes at 

Kerguelen than Macquarie and K is substantially higher for males; however, the 

discrepancy between sexes is less at Macquarie. Data for trawl and longline for
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Kerguelen in this study can be pooled to allow comparisons with Horn’s (1999) results. 

Thus, for females

lu = 162.9(1- e ^ 065̂ 3 66’)

and for males:

li; = 105.9(1 _ e-° 15(,-/+2 02))

indicating the growth curve for females may be similar between the two regions, but 

may be substantially higher for males in the southern Pacific. Although I tended to give 

higher estimates of age possibly due to differences identifying the first annulus (Ashford 

and Horn 1999), leading to lower estimates for L„ and K, this is unlikely to explain that 

degree of discrepancy. It also does not explain regional differences in the discrepancy of 

between sexes. Further work is needed to see if growth at Macquarie Island and in the 

southern Pacific Ocean is different from that found in this study for the southern Atlantic 

and Indian Oceans.

5.8. Conclusion

The results presented in this chapter were presented to the 2000 meeting of the 

WG-FS A (Ashford et al. 2000). At the same time, a molecular study by Smith and 

Gaffney (2000) indicated similar conclusions for population structure: mitochondrial 

DNA showed a distinct break between samples from the South American shelf and 

samples from the Southern Ocean. Two distinct groups were further revealed within the 

Southern Ocean: one group included the Ross Dependency and Macquarie Island, the 

other included Heard Island, Kerguelen and South Georgia. The Working Group 

concluded that the two studies provided strong evidence of a separation between stocks 

within the CCAMLR area and those around the South American shelf. It also noted the
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evidence presented here of differences in growth parameters estimated from samples 

taken by longline and trawl at Kerguelen, and between sexes off South Georgia, 

Kerguelen and the Falkland Islands.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



145

CHAPTER VI 

CONCLUSION

The results from this study show that there is spatial variability at regional scales 

in growth parameters derived from size-at-age distributions, from which population 

boundaries and linkages may be inferred. Thus, relative to rival hypotheses, these data 

support the hypotheses i) that the Falkland Islands is a separate stock from South Georgia 

and Kerguelen, and ii) that South Georgia and Kerguelen represent one stock. The 

hypotheses predict that movement is low enough between the Falkland Islands and South 

Georgia/Kerguelen for growth differences to be preserved, but movement between South 

Georgia and Kerguelen is sufficient to smooth out any differences in individual growth 

rate. This implies different migration rates and linkages between the three areas. These 

linkages are likely to be largely determined by spatial distribution and current flows, 

primarily eastward in the ACC.

Traditional population dynamics models assume panmictic populations and no 

persistent spatial differences in vital rates (Hanski and Simberloff 1997). The approach 

emphasises birth and mortality rates, often assuming no immigration and emigration. In 

contrast, a spatial approach is based on the premise that species occur in assemblages of 

spatially structured local populations inter-linked by migration. These local populations 

make up a larger discrete metapopulation in which the population dynamics are more or 

less affected by the finer scale linkages. In this view, the critical processes in modelling 

dynamics are immigration and emigration: the linkages between local populations, or 

connectivity, must be identified and then quantified.

Early spatial models by MacArthur and Wilson (1967) were at the community 

level and dealt only with species richness, examining changes in species number with 

time and predicting the equilibrium number of species. Levins (1969) addressed 

population questions more directly using terrestrial organisms, but developed his model
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using presence/absence data that emphasized local extinction. Spatial effects are most 

likely to be seen in the dynamics of local populations: the source/sink model of Pulliam 

(1988) incorporated stage-based population data, and parameters for survival and 

recruitment, with an emphasis on movement between spatially separated local 

populations.

The results for toothfish underscore the importance of developing spatial models 

that also incorporate age-based population dynamics. Given the spatial distribution of 

toothfish and the potential linkages between populations through oceanographic features, 

spatial modelling of population dynamics may have considerable potential. Beverton and 

Holt (1957) developed a dynamic pool model that incorporated a spatial approach using 

age-based data, with a diffusion term to describe movement between areas. Similarly, 

Caddy (1975) took issue with fisheries models that assumed no spatial distribution of 

biomass or effort over a fishing ground, linking spatial variation in fishing mortality to 

local availability of biomass. The diffusion term is unlikely to describe toothfish 

movement, but fishing mortality is spatially variable over the range of toothfish, 

incorporating international waters with little regulation, and national and CCAMLR 

zones with regulatory regimes.

The work of Beverton and Holt (1957) anticipated the recent development of 

refugia as a management tool (Pauly 1993). A rationale for a spatial approach to marine 

refugia was outlined by Polachek (1990). Caddy (1993) used a simple cohort model to 

explore the possibility of a rotating harvest scheme for a sedentary red coral, creating 

refuges in time, while Holland and Brazee (1996) developed a matrix model to describe 

the dynamics of marine reserves, showing that red snapper populations protected from 

fishing can act as a sink for populations in fished areas, when fishing mortality is 

moderate to heavy (and connectivity is moderate). But refugia demand enforcement to be 

maintained, and for toothfish the costs are prohibitive due either to remoteness, or often 

lack of resources where the fishery is within national EEZs.
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However, spatial distribution is relatively well known, consisting of a continuous 

population on the South American continent and a series of islands and banks of differing 

area with diverse regulatory regimes. Although refugia are unlikely to be a useful tool for 

management, the present study shows there are likely to be linkages between areas, and 

spatially-based population models will greatly enhance our understanding of their effect 

on stock dynamics and production. To develop these, information is needed on age 

structure, recruitment and connectivity between areas. The methodologies developed in 

this study provide the basis for obtaining this information representatively with rigorous 

quality control of age data. Estimates of growth for Kerguelen, South Georgia and 

Falkland Islands can be taken from this study, but further work is needed to elucidate age 

structure and examine the rates and scales of movement-at-age.

Movement-at-age is likely to be heavily influenced by environmental variables. 

Alexander and Roughgarden (1996) and Botsford et al. (1993) have attempted to 

incorporate terms describing marine physical features in models of population dynamics. 

Hofmann et al. (1998) have developed a coupled physical-biological model for krill 

recruitment to South Georgia along ACC core currents. If the ACC and its fronts provide 

a corridoor from South Georgia to Kerguelen, mixing of the ACC with the Weddell Gyre 

and Agulhas Retroflection may increase mortality of life-stages, and shifts in latitude 

may direct the larvae towards or away from the Kerguelen Plateau, potentially affecting 

recruitment.

Groundfish surveys at South Georgia have indicated large inter-annual variation 

in toothfish age structure and recruitment (Everson 1991). This stochasticity could be 

demographically based (cf. May 1975), or due to discrepancies in sampling scale 

(Underwood 1996). Alternatively, variability may be environmentally driven. The 

extreme seasonality and inter-annual variation found in the Southern Ocean is 

complicated by cycles or trends: anomalies in the maximum extent of sea-ice precess 

around the Antarctic continent with a period of 7-9 years (Murphy et al. 1995), and inter

annual variation in the Antarctic may be caused by ENSO signals propagating to higher 

latitudes through the atmosphere (White and Peterson 1996). Hence, this is a very
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difficult environment to sample for population dynamics. Variability in the physical 

environment at different temporal scales may profoundly influence dynamics, and 

determine life-history strategy. For instance, several years of zero recruitment to 

settlement plates by marine vertebrates were followed by a single year of massive 

recruitment (Dayton 1989); recruitment variability at McMurdo Sound was associated 

with changes in the incidence of anchor ice, which may in turn have been associated with 

changes in the upwelling of cold deep water (Barry and Dayton 1988). Priddle et al. 

(1988) showed that models of recruitment failure or mortality did not explain all the 

observed variability in krill populations in the Scotia Sea, and pointed to large-scale 

ocean-atmosphere processes as a likely source. Trathan et al. (1993) found strong 

correlations in meso-scale krill distribution with hydrographic variability, with active 

ontogenetic migration potentially also playing a role.

Toothfish population dynamics are also unlikely to be stationary, and further 

work is needed to understand the role of variability at different time scales. For this, 

randomized sampling is needed, especially at higher temporal and spatial scales to cover 

the periods of oscillations in the physical environment. Age structure can be compared 

between populations in time and space based on the ageing methodology developed in 

this study, assuming that interpretation of criteria remains similar for all populations. 

However, further age validation studies are necessary to measure the accuracy of age data 

and check this assumption. With these data, mortality and recruitment can be assesed. 

However, the estimation of migration parameters is more difficult, yet the results of the 

stock structure study presented here indicate that they may be critical in understanding 

toothfish population dynamics. Further work is needed to develop the methodology to 

estimate and assess movement-at-age in toothfish.
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