Old Dominion University

ODU Digital Commons

Mechanical & A Engi ing Th
'ec am?a S Aerospace Engineering Theses & Mechanical & Aerospace Engineering
Dissertations

Spring 1997

Input Design for Systems Under Identification
Using Indirect and Direct Methods

Marco P. Schoen
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/mae_etds

Part of the Mechanical Engineering Commons, Structures and Materials Commons, and the

Systems Engineering and Multidisciplinary Design Optimization Commons

Recommended Citation

Schoen, Marco P.. "Input Design for Systems Under Identification Using Indirect and Direct Methods" (1997). Doctor of Philosophy
(PhD), dissertation, Mechanical & Aerospace Engineering, Old Dominion University, DOI: 10.25777/x66b-sj35
https://digitalcommons.odu.edu/mae_etds/191

This Dissertation is brought to you for free and open access by the Mechanical & Aerospace Engineering at ODU Digital Commons. It has been
accepted for inclusion in Mechanical & Aerospace Engineering Theses & Dissertations by an authorized administrator of ODU Digital Commons. For

more information, please contact digitalcommons@odu.edu.


https://digitalcommons.odu.edu?utm_source=digitalcommons.odu.edu%2Fmae_etds%2F191&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/mae_etds?utm_source=digitalcommons.odu.edu%2Fmae_etds%2F191&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/mae_etds?utm_source=digitalcommons.odu.edu%2Fmae_etds%2F191&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/mae?utm_source=digitalcommons.odu.edu%2Fmae_etds%2F191&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/mae_etds?utm_source=digitalcommons.odu.edu%2Fmae_etds%2F191&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=digitalcommons.odu.edu%2Fmae_etds%2F191&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/224?utm_source=digitalcommons.odu.edu%2Fmae_etds%2F191&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/221?utm_source=digitalcommons.odu.edu%2Fmae_etds%2F191&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/mae_etds/191?utm_source=digitalcommons.odu.edu%2Fmae_etds%2F191&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

INPUT DESIGN FOR SYSTEMS UNDER IDENTIFICATION USING
INDIRECT AND DIRECT METHODS

by

Moarco P. Schoen
M.E. May 1993, Widener University ‘
B.Sc. November 1989. Swiss College of Engineering

A Dissertation submitted to the Faculty of Old Dominion University in Partial Fultillment
of the Requirement for the Degree of

DOCTOR OF PHILOSOPHY
ENGINEERING MECHANICS

Old Dominion University
May 1997

Approved by:

Jen-Kuang Huang « Direcror.

Schastian Bawab «Member:

Duw'j Cox (Memberd

Gene Hou 1 Members

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ABSTRACT

INPUT DESIGN FOR SYSTEMS UNDER IDENTIFICATION, USING INDIRECT
AND DIRECT METHODS

Marco P. Schoen
Old Dominion University., 1997
Director: Dr. Jen-Kuang Huang

The motivation for system identification can be manifold. In this work. the provo-
cation to identify unknown system characteristics is derived from the control engineering
point of view. That is. one intents to design a control strategy based on the identified svs-
tem properties. The used system identification methods are the Open-Loop Kalman tilter
System Identification method (OKID) and the Closed-Loop System Identification method
(CLID). It is shown that the quantitative largest error of the system identification 1s given
by its model representation. that is the attempt to describe a system with mode! parameters
which poses a linear relationship with the input/output data. Parameter identinability s
reduced to the problem of consistent estimation. The identifiability 1s largely determined
by the way the system is excited. and in addition by the output of the system for the indi-
rect system identification. A quantitative comparison between the indirect and direct sys-
tem identification method is given. where indirect system identification showed to be
slightly superior in accuracy if a suitable controller is selected. The example models used
in the comparison are a heat-mass transfer model. a macro economical model. a structural
model. NASA's Large-Angle Magnetic Suspension Test Facility (LAMSTF). and a human
respiratory system. The problem of defining the input data such that accuracy and identin-
ability are increased is addressed and controller design criteria can be developed from 1t
The excitation input is calculated from input/output data and substituted tnto the current
input. Simulation indicate that only a few substitution are necessary to successfully iden-
tify the system. The new input design results in very accurate identification with reduced
noise influence and data length requirement. Controller design critena can be formed
based on the input design, such that identification leads to more accurate and more rehable

results.
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Unless otherwise stated the listed symbols are specified as follows.
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CHAPTERI

INTRODUCTION

1.1 Background and Problem Statement

The field of system identification has been developed for a multitude of purposes.
As each discipline gives its motivation there is a common goal: one wants to infer the
charactenistics of a particular system from its input/output data. Suppose one has a space
structure. on which an antenna is installed. This antenna is pointing to a particular ground
station to transmit and/or receive information. Space structures have relatuvely littie mass
distributed over a large volume. which causes the system to be lightly damped. or from a
control point of view. to be marginal stable. The mathematical modeling of the system was
done on earth, using physical laws. assumptions, and simplifications. The controller
design for the positioning of the antenna and its vibration compensation are based upon
the mathematical model. During the deplovment of the structure tn space. the charactens-
tics changes continuously. and other disturbances occur which are not accounted for by the
controller. Changes in matenal properties develop due to ever changing heat radiatuon
from the sun and thermal stresses. New or altered equipment notses transpire. Though the
task of the antenna to point accurately to the ground station does remain. To compensate
these alterations. the controller has to be updated constantly based on the new svstem
characteristics. Systemn identification proves to be a very useful tool 1n this and related
problems. One can automatically update, or compute the system equations. using the
input/output data and a system identification method. Though. the identfication problems
investigated in this work is driven by the controls engineering pont of view. The goal 1s to
identify an unknown or partially known system such that a controller can be designed for
that particular system.

There exists a great multitude of proposed and developed identification methods

for stochastic. linear. autonomous systcmsl'“. The main concern of this work s the

The journal mode adapted for this dissertation 1s AIAA
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parametric system identification methods. in particular the Open-loop Kalman filter Iden-

tification method (OKID) and the Closed-Loop system Identification method (CLID * 1"
The latter one can be used for direct and for indirect system identification. These methods
compute the Markov parameters of the identified system. which are the same as its pulse
response history. Both identification methods use an observer for the identification. which
makes it possible to identify not only the open-loop system. but also an associated
observer which can be later used for possible controller design.

In general. one seeks to obtain a system representation as accurate and close to the
original system as possible. The system identification methods used here. employ ARX
model representations and least-squares estimation for the determination of its parameters.
Comparing system performances from identified models with the charactenistics of the
true systems. one can always detect some differences. If the source of the inaccuracy 13
known. the quality of the identification result can be improved by addressing or by-pass-
ing the origination of the inaccuracy.

Parameter identifiability concemns the ability of deducing the model parameters
from the input/output data. This is an extensively studied field for the closed-loop system
identification method. However. direct usable or practical methodologies or formulas are

not available. In the literature this problem is treated in a very abstract wav~"'® or the 1den-

tifiability is computable if the system is known!'?.

The closed-loop system identification method uses the controller dvnamics !
compute the open-loop system Markov parameters. The controller normally serves to gen-
erate bounded input and output data from the system. The effect on the svstem 1denurica-
tion results are not known. For example it is desirable to design a controller which
produces inputs such that the identification results are improved in accuracy. speed of
computation and/or data length.

1.2 Objective

The objective of this dissertation is to develop a new input design which improves
the accuracy of the identification results compared to the true system. First the source of
the identification error is determined. Each step of the identification algonthm i invest-

gated of possible error sources. The investigation is done numericaily using the direct and
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indirect identification method. Also. the influence of the controller to limit the process
noise is investigated.

Second, identifiability criteria in general are surveyed and then developed particu-
larly for the two system identification methods. The identifiability for the ARX model
parameters are given in terms of the input/output data for practical use. From these results.
the experimental condition for the identification is derived.

Third. the two identification methods are compared numenically using several dif-
ferent example systems. These systems are a structural system. a heat and mass transfer
system. a magnetic suspension test facility, a biomedical system and an economical sys-
tem. The identifiability. data length and accuracy of the identification results from the two
methods are used as criteria. In particular, system identification with a constant reference
input is studied. These situations occur when the plant has to be identified on-line. The
problem of loss of identifiability due to the feedback signal is explored.

Fourth. a new input design 1s elaborated. This design consists of computing the
ARX model parameters first and then using this information to update the current input.
The identification is performed either in two steps, or on-line. The acquired data points are
windowed for substitution of the new input data points. Some of the current inputs are
kept to guarantee identifiability.

1.3 Dissertation Qutline

Chapter II introduces the example systems used in this work. In particular the char-
acteristics of heat and mass transfer systems and its problematic for system identification
are given. A structural system in form of NASA's minimast represents another sy stem for
the class of marginal. lightly damped systems. NASA’s Large Angle Magnetic Suspension
Test Facility (LAMSTF) is a highly unstable system. where a specimen 1s suspended and
its six degree of freedom are controlled. Other system used are a macro economical sys-
tem. a freeze-drying system and a human respiratory system.

The direct and indirect system identification methods used in this work are given in
Chapter III. Next introducing the two methods used in this work. a general overview of
parametric and nonparametric system identification methods is presented. Then. for the
direct system identification method and indirect system identification method. the model

representation is given, its parameter estimation and the open-loop Kalman filter system
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identification (OKID) and the closed-loop system identification (CLID) algorithm 1s
described in detail.

Chapter IV develops the ARX model for a finite-dimensional system with and
without state controller. It is shown that the ARX models for the direct and the indirect
system identification are of the same type, and poses the same accuracy problematic. Inac-
curacies occurring during the system identification process are located. Also the influence
of the process noise to the system identification accuracy is investigated.

Chapter V presents an introduction to the problematic of identifiability. In particu-
lar, parameter identifiability is distinguished from system identifiability and from struc-
tural identifiability. The focus is given to parameter identifiability since the model
structure of the system identification is fixed. The importance of the canonical representa-
tion in system identification for identifiability is outlined and the role of the initial cond:-
tion to the problem of process identification of linear time invarant deterministic systems
is derived. From the parameter identifiability. the experimental conditions are obtained
and with numerical examples validated.

Chapter VI provides a comparison between the direct and the indirect system iden-
tification methods. In particular. identification with constant reference input 1s studied.
The problem of the loss of parameter identifiability due to feedback is deliberated. Also
the required data length for achieving a certain accuracy for both method is investigated.
using the described systems given in Chapter 2 as numerical examples.

Finally, Chapter VII proposes a new input design for systems under identification.
The input design addresses the problematic of identifiability and accuracy. The svstem
identification is performed in two steps. or on-line. In the first step. a normal excitation
signal is given to the system. which is in most cases a random or binary random signal.
This input along with the output of the system is then windowed and some of the inputs
are substituted by calculated input data. The calculation of the new inputs 1s based on the

estimated model parameters.
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CHAPTER II

EXAMPLE SYSTEMS UNDER IDENTIFICATION

2.1 Introduction

In this chapter several example systems and their descriptions are given. The
example systems are being used in the subsequent chapters for numerical validation of the
obtained theory. The different dynamical models distinguish themselves from each other
by some relevant charactenistics. which may or may not have an influence on the identifi-
cation process or controller design problem. The first system is a distullation column.
where rather large time delays are expected. in this particular case a ume delay of 10 min-
utes. The second system describes a lyophilization process for pharmaceuticals. The spe-
cial characteristic of heat and mass transfer systems is the large time constants used to
describe the dynamics of the system. The interest in structural system is based on the fact
that many such systems have rather low damping ratios and their stability 1s marginal. An
example of an highly unstable system is described in Section 2.5. Also of interest are bio
medical systems, discussed in Section 2.6 and economical systems. in particular macro
economical systems. in Section 2.7.

2.2 Chemical Processing Systems

System identification is a useful tool for processes which are difticult to model
from basic physical laws only. Industrial processes. such as chemical processes. often are
structured in a complex way and therefore pose great difficulties for developing models.
from physical and chemical laws. System identification represents a logical approach for
obtaining a suitable model for control purposes. A big obstacle for the identification prob-
lem is the existence of large disturbances and severe measurement problems that exist for
many of the chemical processes. In general there are several processes which can be

defined as chemical processes. In this work. a distillation process is being used to present
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the numerical results. as well as to indicate the problematic of system identification 1n
chemical processes. In Section 2.3 a heat and mass transfer based system is being intro-
duced, which can also be classified as a chemical process. but due to the distinct difference
in its characteristic, the heat and mass transfer systems are treated separately. Another
concemn is the slow dynamical behavior of chemical processes. Its slow response to man-
ual inputs represents a danger. since the stability can not be guaranteed. Yet another prob-
lem in modeling and designing controllers for chemical processes is the large number of
variables, which are used to describe the system.

2.2.1 Distillation Process
The study of distillation processes with the intent of applying and designing con-

trol laws is quite popular, Gustavsson=C. The problem of excitation of the to be identified
plant, the distillation column. is solved by using perturbations in power supply. feed com-
position etc. The excitation of the system has to be handled carefully. since the process
itself can not be altered too much, unless the security of the plant or the quality of the
product is jeopardized. Quite often. the experiments were carried out using pseudo-ran-
dom binary sequences as the input signal. This input is especially suttable for the cross
correlation analysis. which is preferred when high signal to noise ratio of the data 1+
expected. Cross correlation is also considered to be useful for estimation of time delayvs

and model orders. Hence. parametric identification methods yield more accurate results.

Maudsley and Anderson-'.

2.2.2 Williams-Otto Process, a fourth Order Time Delay System:

The detailed description of this process can be found in Williams and Otto=". The
diagram in Figure 2.1 depicts the schematics of the process.

The raw materials are fed and mixed in the chemical reactor. The feed rates of the
raw materials are £, and Fg. Upon leaving the reactor, the product is being cooled in the
heat exchanger and an undesirable by-product is removed in the decanter. The product
enters at this stage the distillation column. At this point the product contains besides of the
desired material also impurities. some remaining raw materials and some undesirable by-

products of the chemical reaction. The desired product F, is extracted in the overhead of

the distillation column.
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Product Fp

3

Chemical Heat
Reactor — > Exchanger ——» Decanter P

Distillation Column

F——\/

Recycle Loop Flow Waste
—_——
Controller
F“:

Figure 2.1 Williams-Otto Process.

The purge F ., is removed at the bottom of the distillation column. and the remaining raw
material with the by-products is recycled back to the reactor. This feed back of unproc-
essed raw material and other by-products represents a significant time delay into the
described process. A whole cycle can take up to 10 min. The product is transported from
the chemical reactor to the heat exchanger. the decanter. the distillation column. and the
recycle loop back to the reactor.

The system given by Ross™> comprises four states. that is the deviation in the
weight composition of reactant A from its nominal value (dimensionless), the deviation in
the weight composition of reactant B. the deviation in the weight composition of an inter-
mediate product C. and the deviation in the weight composition of the desired product P

The time unit in this particular example is 10 min. Given 6, as the deviauon of the feed

rate of material A from the nominal value. Vg as the pound-volume of the chemical reactor

and &, as the deviation of the feed rate of material B. than the input vector u={u; us/T 18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



&F oF .
defined as 4, = —* and «, = -2 and the system can be given as
6V, 2T 6V, ’ =
W) = A s v Aot - 1)« Butr) (2.
where
r 1 r - - =
493101 0 0 | 192 0 0 o0 10}
| : !
A = |"320-530-128 0 | |0 192 0 0 ,p4p_ (01 (2.3
6.40 0.347 -32.5 ~1.04] {0 0 18 0 ; 10 0l
0 03833 11.0 -39 L0 0 0 074 00

-

2.3 Heat and Mass Transfer based Systems

The durability of many pharmaceutical and biological products such as serum.
blood plasma. vaccines. antibiotics. hormones. enzymes. vitamins. proteins etc. 18 gov-
erned by bacterial degradation if they are subjected to moisture. The technology and finan-
cial expenditure in processing and manufacturing of such products is nowadays immense.
A major factor in this display is found in the lyophilization process. where the water con-
tent is reduced to guarantee biological stability. Lyophilization takes place as a batch
freeze drying operation. The dehvdration in this case occurs in a closed low pressurized
chamber, where the frozen liquid. filled in vials. is subjected to a heat flux from the shelt
through the frozen product to the ice front, which is also known as backface heating. The
frozen water content of the product sublimes at this ice front and evaporates. following the
declining pressure gradient, into the chamber and then to the condenser wall. where the
water vapor crystallizes into ice again. This process claims a lot of time due to the smali
pressure differences. The energy to maintain vacuum and refrigeration at the condenser
and the latent heat supply for the sublimation over a long penod of time all represent
major cost factors.

Extensive efforts by industry and research centers are made to predict and prede-
termine the course of freeze drying cycles in order to control the quality ot the product and
to minimize costs. Many different strategies for operating freeze dryers have been pro-
posed in order to optimize the process. Most of them are based on mathematical models
In this work. a mathematical model for the pnmary drying cycle of a lvophihzaton pro-

cess is used to present the problematic expected by using svstem identification to develop
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a mathematical representation of this process. The basic relationship of the drying cvcle 1s
given as a mass and heat transfer process. The expected time constant describing this pro-
cess are normally quite large. In the following, the lyophilization process is described in
some more detailed.

2.3.1 Lyophilization Process

The lyophilization process can be partitioned into four stages: product preparation
and freezing, primary drying, secondary drying, stoppering and removal. In the first stage.
the pharmaceuticals are filled into vials along with so called additives for protection. The
vials are placed into the freeze dryer and the product is being frozen. During the freczing
stage, a boundary. where phase change occurs. moves from the vial bottom upwards to the
top of the product. The unconstrained water crystallizes while the remaining water turns
into a higher concentration with the product. The latter typically represents either an
eutectic or an amorphous solution. The crystallization of the water normally occurs in
such a way. that the ice crystals grow in a shape of little cylinders or fingers perpendicular
to the moving ice front. During the second stage. the primary drying cvcle. the chamber of
the freeze dryer is evacuated in order to increase the partial water vapor pressure differ-
ence between the frozen ice zone and the chamber. The shelf heating system 1s turned on
and starts to provide the enthalpy for the sublimation process. The sublimation takes place
at a moving ice front, which proceeds from the top of the frozen matenal downwards. The
participating ice is the unconstrained water accumulated in the cylindncal tubes. Through-
out the primary drying, the product. which consists of the dried layer on the top and the
frozen core at the bottom of the product. stays below a certain temperature to insure that
no melting occurs. The secondary drying circumcises the third stage of the lyophihization
process. At the end of the primary drying. all the unconstrained water has been remosed
and what remains is the water which is bound in the solution. At this point, the product
could be removed, but in practice the water content is still too high to guarantee brological
stability. The secondary drying is responsible for lowering the bounded water content to
an acceptable level. which depends on the product. This stage 1s less crucial and can be
performed at a higher shelf temperature. The last stage is the stoppering of the product and
the removal from the freeze dryer. The freeze dried product can normally be stored at

room temperature.
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2.3.2. Mathematical Model of the Primary Stage of a Lyophilization
Process

The mathematical model used in this work is taken from Schoen et al.~*. The
model describes a nonlinear fourth order system. where the states are the interface position
of the ice front. the temperature in the frozen part of the product. the temperature in the
dried portion of the product and the chamber gas temperature. The following improve-
ments are made to the original system: inclusion of the inert gas inside the pores of the
product: subtraction of the heat. camed by the evaporating water molecules from the dried
product mass instead of subtracting it from the frozen product layer: and incorporation of
top and bottom heat radiation. The improved nonlinear set of equations and the corre-
sponding nomenclature for this system is given in the Appendix.

The model is based on data taken from an Edwards Lvoflex 1.0 Special Freeze
Dryer, installed at Glaxo Inc. in Raleigh. North Carolina. The product formulation used

were composed of 15 mg glycine and 2 mg active product. The pilot freeze drver has a

3 .
shelf area of 12 ft.=, which can be regarded as the shelf temperature contro! surface. The
other control inputs are the nitrogen pressure in the chamber and the condenser cotl tem-

perature. A more detailed discussion of the model and its foundation can be found in

Schoen et al.**. The linearization of the model was done at the operating point of r = 430
min in total process time (that is about 30 minutes into the pnmary drying ume). The
states are the interface position of the dried and frozen product layer. the temperature in
the frozen product layer. the temperature in the dned product layer and the chamber tem-

perature. The state-space representation of the linearized model is given as follows:

r

| -0.1222659 00  -05784x10" 05358xi0™ "
i= i256.688997l -0.85449787 0.62666897 005339573 (2.3
[-3539.317452 0.29782521 -18745728 | 4601441
| 1706423.195 0.0 2243 724818 -1971710 Y96;
[0 0 0150286431107
g - 1022737876 0 001627583 (4
{0.00053678 0 0 00409832
L 0 1969657.94 2.88764861
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2.4 Structural Systems

Examples for structural systems can be found in space structures. building struc-
tures, chassis of automobiles. antennas. etc. The problematic of controlling such kind of
structures can be easily visualized on space antennas. These structures have a distinct
characteristic. since they are normally light weighted and have large dimensions. The
objective of a space antenna is to point with very high accuracy to a specified point on the
surface of the earth. that is for example a ground station. The antenna and the satellite on
which it is mounted is exposed to various changing influences. such as thermal changes or
changes in the material property of which the structure s built etc. The structure has some
natural vibration, which is to be neutralized by some control algorithm. so that the point-
ing accuracy is not affected by the movements. The space antenna also has to deal with the
problem to maintain the shape of its reflector accurately.

The onginal controller design for solving this problem was based on some mathe-
matical formulations. which employed the original charactenstics of the matenal used and
some assumed describing laws. During the course of the satellites deplovment in space. 1t
is exposed to continued thermal changes. alteration of its material properties etc.. such that
the contoller requires a steady adaptation. This can be done using system identification.
where the most recent charactenstically changes are detected and passed on to update the
controller.

In general. two different approaches are being used to descnbe structural systems
mathematically. One way is to use infinite dimensional distributed parameter models. the
other way is to use ordinary differential equations. which results in finite dimensional
models. The controller design is than based on the particular mathematical representation
A major error introduced into the design process is than the truncauon of the model. such
that the mathematical description is more practical. Another mode! error 1s. as mentioned
above, the lack of exact values for the model parameters.

Identification of such systems are rather popular. There are two types of methods
deriving a mathematical representation of the system from input/output data. One type i~
the modal testing approach. the other is the system identification method. Modat testing of
a structures can yield the values of the damping ratios. the frequencies. the mode shapes

and the modal participation factors of the system. using suitable measurements. System
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identification uses also suitable measurements of some input/output signals and processes
them to develop a mathematical representation of the system.

Structural systems, such as large space structures. posses quite often very low fre-
quencies. lightly damped modes and sometimes their natural frequencies are located
closely to each other. Some natural frequencies may even be lower than the ngid body

spacecraft controller bandwidth. The induced problems are treated by using specially

design controllers, JoshiZ. In this work. a simple structure will be used. This structure
represents a beam like mast. which is introduced in the following section.

2.4.1 Spring-Mass System
Figure 2.4.1 depicts the schematic of the spring-damper-mass system. Chen et

al.'>. The lumped mass system has three modes (six states). The modal frequency and the

damping ratio of each mode are listed as follows:

Mode Frequency [rad/sec] Damping [}
l 1.6369 0.63
2 44719 1.01
3 6.1085 1.30
output | m; | 0.5
ms 1.0
my 1.0
5 k, 1100
output 2 ke | 100
k; | 10.0

ANUNNNNNNNNUURNRNNNRNNNOONONNNONNNT

Figure 2.2 The simulated lumped-mass beam-like structure.
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The system is excited by a random force at node 3. and the output is measured at nodes |

and 2. The state-space model is given as follows:

(09856 0.1628 0 0 0 o |
~0.1628 09856 0 0 0 0
il 0 0 08976 04305 0 0 (5
0 0 -043050.8976 0O 0
0 0 0 0 08127 0.5690
0 0 0 0 -0.5690 0.8127
~T o)
B = [0.0011 0.0134 -0.0016 ~0.0072 0.0011 0.0034] (2.6)
_ [15119.00 2000 1.5119 0.0] (2.7

‘13093 0.0 0.0 0.0 -1.3093 ool

2.5 Large-Gap Magnetic Suspension Systems

At NASA-Langley Research Center in Hampton. VA, a magnetic suspension sys-
tem has been developed. The objectives of this testbed are to develop and evaluate the
technology for magnetic suspension at large gaps, accurate position sensing at large gaps.
accurate suspended element control at large gaps and suspended element control over
large angles. Possible applications include magnetic suspension systems for wind tunnels.
microgravity and vibration isolation systems. magnetically suspended pointing mounts
and large-angle magnetic suspension systems for advanced actuators.

Unstable systems represent an additional difficulty for applying system identitica-
tion. In order to obtain bounded input and bounded output signals, the system has to oper-
ate in closed-loop. The identification uses therefore either the closed-loop input/output
data, or the bounded input/output from the system. Both methods. the direct and indirect
system identification methods can be applied.

The system. which is currently under development. is capable to control all <ix
degrees of freedom of the suspended specimen, that is. three displacements (x. v and o) and
three rotations (pitch. yaw and roll). A total of eight electromagnets are arranged 1n a pla-

nar array to control the suspended element as depicted in Figure 2.3.
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Figure 2.3 The six DOF Magnetic Suspension System Configuration.

The measurement of the position and motion of the suspended element are performed
using a total of six pairs of laser sensors. The outputs are the amount of light blocked
along a thin laser sheet and the inputs consists of eight currents into the eight electromag-
nets. The details of the suspended specimen. the coils and power amplifiers and the posi-
tion sensors are described in the following sections.

2.5.1 System Specifications

The suspended element consist of a nylon outer shell and a Neodymium-Iron-
Boron core. which i1s permanently magnetized. The dimensions of the specimen are deter-

mined by a diameter of 1.27 cm and a length of 5.08 cm. The total weight of the sus-
pended element is 51.9 g. with the inertias /, = 1.11e-6 kgmz and /., (=[..) = 1.25e-5

kgm?. The suspended height 1s 100 cm.

The arrangement of the coils is an eight coil planar array with 1ron cores. which
consists of two concentric arrays of four coils each. The primary coil array location radius
is 11.43 cm. while the secondary coil array location radius is 21.59 cm. Each coil has a
height of 10.3 cm and has an outer radius of 7.62 cm with an iron core radius of 5.08 cm

and an inner radius of 3.25 cm. The maximum current density of the electromagnets s

333.5e+6 A/m-.
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2.5.2 System Model

The analytical state-space representation of the suspension system is given as fol-

lows:
Foo 0 0 0 0 o
[ 0 0 0 0 0 0
0 0 0 0 0 0
Lo 0 0 0 0 0
.0 0 0 0 0 0
| 0 0 0 Q 0 0
A; = 1.0e+05x;
10.67147458 0 00 000022199 24092417 00
b0 0.05952476 0.0 —0.21357518 -0 1968x10™ 00
|0 0 0 0 0 0
i 0 -000015005 O 0 0 b}
10.00015005 -0 00 0 0 0
P00 0 0 0 0 Q00121139
‘000001 0 0 0 0 o
{0 000001 0O 0 0 0
0 0 000001 0 0 0
0 0 0 000001 O 0
0 0 0 0 000001 0
Ay=10e-05xi O 0 0 0 0 000001 4 o7y 4] (28
- b0 0 0 0 0 0o -
Poo 0 0 0 0 0
Lo 0 0 0 0 0
Lo 0 0 0 0 0
to0 0 0 0 0 0
L0 0 0 0 0 0
o 0 0 0 0 0 0 b
0 0 0 0 0 0 0 9
0 0 0 0 0 0 0 0
in 0 0 0 0 0 0 o
{0 0 0 0 0 0 0 0
B = l.Oe«O_’)xi 0 0 0 0 0 0 0 0- 2.9y
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Lo 0 0 0 00021 -0002! 0002! -00021
(00003 O -00003 O 00 -00 -00 00

0 0.0003 0] -00003 00 00 -0 -0y
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[ 00 -21548 0 0 0 7548250000000
-00 64160 0 I 0 754825000000 Of
0 0  -202853 533.8225 -S338235 0 000000
C= 0 0 -20.2853 -533.8225 533.8225 0 000000 . D = zerost™ <%,
0 0 202853 -533.8225-5338225 0 000000
0 0 202853 533.8225 5338225 0 000000
200535 -0.0 0 0 0 00 000000
(2.1 2.1
2.6 Biomedical Systems

Biomedical engineering is a rapidly growing field. where more and more control
and system identification tools are utilized to maximize performance and ensure safety.
Systemn identification and controls are applied to broad area of physiological kinetics.
which contains charactenization of metabolism. compartments and movement of matenals
through compartments within the organism. The two major fields where controls and sys-
tem identification in biomedical engineering are applied are the cardiovascular system and
the respiratory system of organisms. The identification problem concerns the charactenza-
tion of biological systems where the modeling approach fails to address the charactenstics
of the system under investigation and enables the application of the developed model to
clinical problems. Most physiological investigators still favor the direct measurement
approach of biological parameters and the physical model denvation whenever possible
over the identification approach. The systems are normally represented by compartment
models. The basic equations of compartmental systems are mass balance equations since
the models are assumed to consist of interconnected compartments where cach has a
homogeneous characteristic.

As for the cardiovascular systems. attention is given to systems arteries. to the
heart and to capillary fluid exchange. since the vanables describing these systems posses a
high degree of information content. Arteries systems. such as for leg or arms. are normally
realized as lumped systems or so called segments. The measured signals of the system are
the pressures at various locations such as at knee or foot etc. System descriptions of the
heart use phenomena and variables such as electric signals. volume changes. pump charac-
teristics and heart muscle mechanics. Also of much interest is the relationship of the heart

rate and the respiration of a subject.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



In the present work. the interest on biomedical system will be constrained to the
respiratory system, the other major application field for controls and system identification
besides of the cardiovascular system. The simplest representation of the respiratory sys-
tem is by assigning values to the airway resistant and the lung compliance. Uhl and
Lewins et al.%6 used least squares techniques to obtain those values for a simple descrip-
tion of a respiratory system. Some studies used more complex models of the lung. Fergu-
son et al. 7 employed a two compartment model of CO, transport between alveoli and the
tissues. The parameter vector to be identified contains of the cardiac output. the lung vol-
ume, the metabolic production rate of CO, of the tissues and the initial concentration of
COs in the tissues. These models were general description of respiratory systems. In this
work. the focus is on the human respiratory control system. which is somewhat more
involved and its modeling is based on the later application.

For the mathematical model of human control systems. there exists two types of
control systems in the human body. The first is called the servo system, which is responsi-
ble for example for the positioning of body parts to a cerebral signal. where the motor cor-
tex initiate a step input for movement of the body part. With internal damping. this pant
reaches its final position. The other control type is the regulator. The internal respiratory
control system belongs to the class of regulator. Here the disturbance is considered as a
step input of inhaled CO, and the regulator forces the respiration to increase its ventilation
in order to decrease the CO, content to a new steady-state level.

Several studies attack the modeling problem of the human respiratory system and
its biological regulator. The model given by Grodins et al.”8. considers CO- as the only
controlling variable of the ventilation. The tissues were considered as a single lumped svs-
tem. The model was expanded by Horgan and Langezq. where circulation time and oxygen
control were included. such that periodic breathing could be invesugated. Milhomn Jr. et
al.?% divided the tissue reservoir into two compartments, the brain and the body tissue and
considered cerebral blood flow as a function of arterial CO5. Also the effect of oxygen as a

controller of ventilation. and the effect of time delays in the transport of gases from the

lungs to both tissue reservoirs, were included into the model. Grodins et al.*! expanded the
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model to include a variety of other effects. such as hypoxia at sea level or aititude.
metabolic disturbances in acid-based buffering. the dependence of time delay on cardiac

outputs. concentration equilibria etc. The present work will use the somewhat more simple

but efficient model by Grodins et al. 3.

The application of respiratory systems, its identification and the application to con-
trol systems is manifold. The model given by Grodins et al.3! was slightly altered by Sano

et al. % to introduce an adaptive feedback control system for incubator oxygen treatments.
The controller determines the optimum oxygen concentration of the mixed gas. which 15
forced into the incubator so that the partial oxygen pressure in the arterial blood flow 1s
kept in a certain range. This is a necessary treatment for newborns who suffer from respi-
ratory distress. In general. system identification in biomedical engineering is very helpful
wherever modeling is difficult due to the lack of physical information or describing laws.
Indirect identification for closed loop system is especially interesting in this field. since
biological system can not always be excited over the whole range of frequency spectrum
without destruction of the biological system.
2.6.1 Respiratory System: CO, Concentration

The basic analogy is that while inhaling. the lung receives besides of the necessan
oxygen also a CO, mixture. This CO, is passed on into the blood through diffusion mem-
branes and to the tissues. The body has an internal control mechanism to keep the CO-

concentration at a certain level. The controlling quantity is the pulmonary venulation. that

is the increase of CO, concentration in the tissues and the blood. causes an increase of the
ventilation. The purpose of the ventilation. in this context, is to minimize the rise in CO-

concentration in blood and tissues. The process is also true in the opposite direction. the

pulmonary ventilation controls the CO, concentration. but also the CO- concentration
controls the ventilation. Therefore we have a closed loop system. where the controlling
quantity is the pulmonary ventilation. the controlled quantity is the CO- concentration and
the disturbing quantity is the concentration of CO, in inspired gas. The model given by

Grodins et al. describes the system by controlling system equations. which charactenze

the dependence of the ventilation on body CO, concentration. and controlled system
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equations. which describe the dependency of the CO, concentration on ventilation and in
the inspired gas. Grodins et. al. calls therefore the whole system as the respiratory chemo-
stat.
2.6.2 Controlled System

As mentioned above, the controlled system represents the dependency of the CO»
concentration on ventilation and the inspired gas. The model describes a simplified lung-

blood-tissue CO, exchanger model. The diagram in Figure 2.4 depicts the major elements

of this system.

Metabolic CO-
Production

R

Venous

Ventilation P ——

|

A
1

| Tissue
Lung I Reservior

Reservoir |
l

Artenal \ /

Figure 2.4 Simplified model of CO, concentration on venulation.

The ventilation depicted symbolically in Figure 2.4 is a cyclic process. where the volume

of the lung is periodically changed. A vanable portion of the total ventilation 1s neffective
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because of the dead air. whose volume is a function of tidal volume. The oxygen and CO-
is exchanged across the alveolar membrane. If the alveolar R.Q. is not unity, drv inspired
and expired gas volume will differ (which is normally the case. R.Q. = 0.875). The tissues
consists of a number of individual elements connected in parallel. Each has its own char-
acteristic, such as rate of metabolism, blood flow. buffer capacity for CO, etc. Also each
element is connected by an arterial and a venousal blood flow to the lung. The time for a
blood element from the lung to the tissue element differs for each tissue element as well as
for the time a blood element needs to reach a particular tissue element differs in the arte-
rial blood flow from the time a blood element needs to reach the lung in the venousal
blood flow from that particular tissue element.

The model given by Grodins et al.*® includes a number of simplification n order to
model the process. It is assumed that the events of the respiratory cycle are ignored, where
the lung has a constant volume and zero dead space. The oxygen exchange across the alve-
olar membrane is set equal to the CO- exchange (opposite direction) at every instant (R. ().
= [.0). The CO, tension in the lung is assumed to be uniform. All tissues are combined
into a tissue reservoir, whose rate of CO» production becomes the total CO- production
and whose rate of blood flow becomes the cardiac output. To convert the CO- tension to
total CO, concentration, approximated CO, absorption curves are used. No ume delays
occur in the blood flow, that is the circulation time is infinitely short. Gas diffusion across
alveolar and capillary membranes occur at an infinitely fast rate at any tension other than

zero.
Using the above mentioned simplification. the controlled system equation. that i~

the description of the dependency of the ventilation on body CO- concentration. 1s derived

using continuity analogy. As for the lung reservoir, the difference between the rates of

CO, inflow and outflow is equal to the rate of change of the quantity of CO» 1n the reser-
voir and the CO, fraction in the expired gas is the same as in the lung reservorr. The tissue
reservoir balance equations involve the tissue CO, production. the CO, flow rate in
arterial blood. the CO, flow rate in venous blood and the volume rate of CO» in the tissue

reservoir. For the equations. the following symbols and units were used.
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Table 2.1 Human Respiratory System Description

K, ... tissue CO, production, 0.2632 [(BTPDVmin}.

K> ... tissue fluid volume, 40.0 [1].

K ... cardiac output, 6.0 [/min].

K4 ... controller sensitivity, 2.0 [-].

K5 ... modified controller intercept setting. 246.24 [-].

Kg ... lung volume, 3.0 [l].

K ... fraction of CO5 in inspired gas. (0.047)[-].

G, ... barometric pressure, 760 [mmHg].

G, ... slope of CO, absorption curve, 0.00425 [(BTPD)CO-/1.blood].

G; ... extrapolated intercept of CO, absorption curve.

0.32 [IiBTPD)CO-/1.blood38°C].

V ... pulmonary ventilation. [[(BTPDVmin].

q, -.- CO flow rate in expired gas. [I(BTPDYmin].
q, ... CO, flow rate in arterial blood. [[(BTPDYmin].
g; ... CO, flow rate in venous blood, [(BTPD¥min].
qy4 ... volume of CO» in tissue reservoir, [l(BTPD:].
gs ... volume of CO5 in lung reservoir, [[(BTPD)).
And introducing two new variables:

Volume of CO, tn tssue reservorr R
hd 1

ussue fluid volume

Volume of CO, 1n lung reservorr 23
S 213

9,

lung volume

By using an equation which defines the equilibrium between tissue and venous CO- ten-
sion and an equation which represents a linearized absorption curve for the CO- content in
arterial blood. the controlled system equation are formulated as follows:

K.K, (K, G,G-K, K,! K, K,G,G, 5
= 2Or+{— T+ =87 +B, = — 2eG,+G.G.K. 214
K“’ T*l v + v "K“‘!’ T 7 K; v 2 1 L2
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2.6.3 The Controlling System

The controlling system comprises all those physiological elements through which

body CO, concentration operates upon pulmonary ventilation. It includes elements such

as the motor nerves to the respiratory mussels or the motor nerves to the ventilatory pump.
etc. This system is very difficult to model. since of lack of physical informations and
describing laws. The used model is based on empirical relationships. The authors of the

present model show that the effective input to the described system is the CO- tissue con-
centration and not the arterial - or alveolar - CO, concentration. The controlling system

equation is given as follows:
K -
Vin = Zepu)-K, (215

[t is noteworthy that the controlling system is of the type of a proportional controller.
2.6.4 Closed-Loop System

Figure 2.5 represents several interesting closed loop situations of the respiraton

system.
Blood-Lung-Tissue CO, Exchanger
- |
Setuings Respiratory ;
—> Center > '

Tissue P

| Reservorr

Lung |
Reservoir |

b e e

Feetback Loop

Figure 2.5 Closed Loop Chemostat™*.
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The equation where the system is regarded as a regulator of tissue CO- concentration is

obtained by implementing Equation (2.15) into (2.14). so that V is eliminated:

KKy Ko o K_,K603+K:K,G,G§-K:KSGIO : [KG: K oo
T T+E 7O + K,K_‘ T+ T-: K‘ ok—‘o -G,G.+ e, =
G\ , Gk, KK, .
:(‘_(_;} ILKIK,‘Gl+K5(\K5—K4K-G,—T-m;i‘ (2.16)

Other interests can be investigated by deriving closed loop equations from (2.14) and
(2.15) for alveolar (arterial) CO, concentration and for pulmonary ventilation. The former
is rather complex and is therefore not given here. The latter. relationship for pulmonan
ventilation, is of the same form as Equation (2.16). but its constants posses different val-

ues. The pulmonary ventilation description is given as follows:

AV+BVV+CVeV oDV = E (217

2.6.5. Linearized Model and State-Space Representation

Since both equations, for the tissue CO- regulator and for the pulmonary ventla-
tion differ only by the value of their constants. and the characteristics are similar. only the
pulmonary ventilation description is being linearized and used in this work.

The linearization was done with the values given in Table 2.1. The input vanable i~
K. the fraction of CO, in inspired gas. The lineanzation point was taken at V=15 65 {l/
min]. Figure 2.6 and Figure 2.7 depict the theoretical ventilation transient for the nonlinear
and the linear system. The linear system describes the nonlinear event quite well. The

state-space description for the pulmonary ventilation 1s given as follows:

r s co .
i 0 ! ‘. B O =714 i2.18)

A= .
~1.8861 ~11 826145! 760 - -
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2.7 Econometric Systems

Economics is a social science. It can be divided into macro and micro economics.
We shall discuss only macro economic systems. Macro economic is the dynamic behavior
of consumption. investment and employment driven by private and public activities. The
model building of economic systems is not as straight forward as the one to describe a
physical system. since there exists a vagueness about some of the functional relationships.
particularly those including variables of a psychological nature. Another problem is the
measurement, unlike a physical system. the economy is not well suited either to special-
ized measurement instrumentation or planned experiments. Econometnc theory is con-
cermned with the deterministic relationship between economical variables. for example
between consumption and disposable income. In the following sections. the economucal
relationships are introduced.

2.7.1 Investment Mechanism Model

In this section. we are concerned with the macro economic modeling. at a fairly
elementary level. of a capitalist economy. The state variables are not decomposed. for
example so that one can also model effects of intermational trade. Thus the model ts a sin-
gle sector model. also called closed capitalist economy model. The states of the model are
called aggregates. Defining the aggregate Z as the demand. resulting from the plans of
consumers, businesses and government to spent their incomes. It is composed of consumer
purchases C, investment purchases /. and government expenditure G:

Z=C+I+GC (219
This demand will eventually lead to an output Y. There will be obviously a lag between
demand and output. because of the time it takes to translate demands for goods and ser-
vices into actual outputs. In economics, this lag is called the Lundbergian lag. For simple
models one can assume that this lag can be approximated by a first order lag with ume

constant 7, in years.

y = —Z 12,200

where s is the Laplace operator.

The disposable income Y, is the income Y left after taxation 7.,
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Yy=Y-T (2.2
It is assumed that some portion ¢ of the total disposable income is used for making con-
sumer purchases. This proportion ¢ is defined in economics as propensity to consume.
Using again a first order approximation for the relationship of the receipt ot income and its

use for the purchase of consumer goods:

where T, is called the Robertsonian consumption lag.

It is generally known that the problem of modeling the investment is rather com-

plex and difficult. Many different models and approaches have been suggested. In general

it can be considered as a function of changes in the output. Allen” described the invest-
ment modeling as a linear function of the time derivative of the output. and a lag time con-

_ ksy (2.23)
1+T;s T

stant T,

where k is a proportional coefficient. The private capital investment comes from that pro-
portion of the disposable income not used for direct consumption. 1.e. (/-¢)Y ;. where the
term (/-c) is called the propensity to save. In general the investment 1s a function of the
output Y. output rate of change. interest rate and marginal efficiency of investment:
I=fiY.Yorry (224
The governmental expenditure can be modeled on a similar way as the investment
problem. The government makes its expenditure decisions. u, based on the level of pubhc
expenditure, which leads to the government expenditure G. The relationship between «

and G 1s again to be assumed of a first order lag with the time constant 7,

u '\'05.’

G =

L+T s

The total model can be symbolized in a block diagram as follows:
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Figure 2.6 Macro Economic System.

The described model is extremely simple and for example. there 1s no mentioning
about any accumulation and economic growth. and can be classified as a perturbation
model. In spite of it’s simplicity. it does illustrate most of the important economical fac-
tors, such as the multiplier effect, where investment is rewarded by increases in the output.
or reduction in taxation. The steady state gain from the investment. using this model, can
be found to be //(/-c), where ¢ < 1.0. The steady state gain from the reduction in taxation is
somewhat smaller. ¢/(/-c). The question now arises. how can one apply control theory to

develop rules for government economic policy decisions. This problem has been exten-

sively studied by numerous authors, such as Noton**. Desai et. al.** etc. In general, 1t s
quit straight forward to apply control theory. for example one can transform the above
model easily into state space form and apply any control law required to achieve the
desired output. The interpretation of this control law to economical actions 1s somew hat

more involving and will not be treated here.
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2.7.2 Deterministic fourth order macroeconomic model
There exists a vast amount of macro economical models in the literature. i.e.

Livesey3®. Klein et al.’7 etc. Many models are deterministic in their forms. although more
and more research is being done with stochastic models. In this dissertation. a simple

deterministic fourth order macro economical model will be used. The model is given in

Mahmoud*8, where also a brief description about the model is given. The aggregates
(states) are as follows:

- total personal consumption expenditure

- gross private domestic investment in durable goods

- new construction

- effective interest rate
The model is similar to the one above described. although is based on actual empirical
data from 1966 to 1974 from the Egyptian economy.

The basic equations which form the model are given as follows:

C,=a, ¥, +a.C, _, 12.26)
Ky = bog+b Y, +b.R, +b.K, | (2.27
Iy = K, -1 -8)K, _, (2.28)
My = qo+1, Y+ 1R~ 1M, (2.29)
Yy=-go+l-e)[Cy~1,+G,l {2.30

where C; represents the consumption rate. Y} is the disposable personal income. A
denotes the actual stock of capital goods. /; accounts for the gross investment expenditure.
M, is the stock of money. The lower case letters represent suitable coefficients. In state

space form the model is given as follows:

105021 0.3083 03083 0 704079 00783

4 = |0.2806 -0.381902806 O . _ 01683 0 (23
10.1406 01406 0.4403 -0.2198: 0 0
01109 01109 01109 0 .  -07389 01872
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CHAPTER III

SYSTEM IDENTIFICATION METHODS AND ALGORITHMS

3.1 Introduction

As has been seen in the previous chapter. there is a definite need by engincers and
researchers in various fields to obtain a better knowledge of their systems. plants. struc-
tures etc. The motivation, in this work, for performing system identification is derived
from the control engineering point of view. That is. one intends to design a control strategy
based on the identified system charactenstics. There are basically two classes of svstem
identification methods, the nonparametric system identification methods and the paramet-
ric system identification methods. The nonparametric system identification methods were
developed from the classical control theory. The frequency analysis technique played z
dominant role of this development. This methodology made it possible to determine the
transfer function accurately, in a format which could be used for the controls design. The
modern control theory introduced an other kind of system representation. and with a few
expectations, they all were of parametric form. The problem introduced with these para-
metric models was, that the identification process had to solve parameter estimation and
related techniques. This development introduced a renewed interest in the field of parame-
ter estimation techniques.

[n general, an identification process can be characterized by a class of models. by

the set of input/output data and a criterion for the determination of the goodness of the

results. Zadeh’® (1962) gives the following definition for system identification:
Definition 3.1:
Identification is the determination, on the basis of input and output. of a system

within a specified class of systems. to which the system under test 1s equivalent.
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In Table 3.1 some of the more popular nonparametric identification methods are

listed, including a brief statement of its principal on which the method is based and 1ts

characteristics.
Table 3.1: Nonparametric Identification Methods
Method Domain Principle Characteristics
Correlation Time Correlation of output with | Approximation of the !
input, and solve for the covariance matrnix R, ,
impulse response :
Frequency Frequency | Apply a sine wave, and - Sinusoid inputs only t
Response determine amplitude and - Long experiment periods
phase graphically necessary
Frequency Frequency | Apply a sine wave, corre- - Sinusoid inputs only |
Response and late with sine and cosine to | - Long experiment penods |
correlation suppress noise necessary ;
Fourier Frequency | The empirical transfer - Fast
Analysis function estimate = dis- - Noise-sensitive
crete fourier transforma-
tion of the output divided
by the discrete fourier
transform of the input :

There are many other nonparametric identification methods available. though the
interest in this work is on parametric system identification methods. and we shall therefore
concentrate on those methods. Parametric system identification methods' - * can be char-
acterized on what model structure their algorithm is based. what estimation method is uu-
lized to determine the model parameters and. if the identification process 1s performed on-
line or off-line. The different model structures are introduced in Section 3.2. while some
of the popular estimation methods are brnefly described in Section 3.3. A different clasaifi-
cation can be made based on the inclusion of a feedback controller and the availability of
the input data. That is, some systems do not require feedback control. and the i1dentfica-

tion can be performed based on the input/output data of the actual system. However. for

unstable and marginal stable systems, most identification methods fail to charactenize such
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a system. In these cases, feedback controller are used, and the input data to the closed loop
system is used for identification. Though, some systems. such as biological systems. a
feedback controller is inherent. and the only choice is the identification of the closed loop

system. In general, based on the inclusion of the feedback dynamics. one can distinguish
between the direct system identification methods*'!. where an open-loop system 1s identi-
fied. indirect system identification methods ', where the closed-loop dynamics of a system

is identified, and the jointly input-output identification methods'?. where the controller
dynamics is unknown and the output of the system is driven by noise only. One specific
direct system identification method is introduced in Section 3.3. while a particular indirect
system identification method is given in Section 3.4.

The identification methods are based on “real-live” experiments. which have to be
carefully designed. For example. the input signals have to excite all the system modes. but

should be restricted such that they do not destroy the system. The portion of input design

in the experimental design is widely studied'*. and includes issues such as parameter sen-
sitivity, limitations on instruments, parameter identifiability. model assumptions. etc. Also
of much interest is the overall experimental design. for example which output and with
what frequency shall they be measured. open-loop or closed-loop dynamics etc. Some of
these issues will be treated in later chapters.

3.2 Model Structures

A crucial point in the process of identifying a system is the selection of a candidate
model. The choice of the model structure will greatly influence the idenufication process
and its results. In practice, sometimes a wide variety of different models are tested and
evaluated upon which delivers the best description of the actual process. The different
model structures differ from each other by what they try to include of the descniption of
the real process. that is where one sets the system boundanes, what will be taken into
account as the system, and what will be neglected. Closely related to this decision 1y the
experimental design, the determination of which signals actually should be measured at
what sampling time and with what input signals. Once the expenmental conditions are
fixed. the choices for the candidate model structures are reduced to sausfy the require-

ments given by the intended application of the identified model.
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In the following, four different model structures will be briefly discussed.
although. only one will be used later on in this work. it is worthwhile to introduce the dif-
ferences and characteristics of the other models.

3.2.1 AR-Model

Yule? (1927) proposed to represent a stochastic process by parametric models. in
specific by an Auto-Regressive model (AR-model). This model proved to be very efticient
in fitting time series data in many different fields. In general, the AR-model is a linear dis-

crete-time filter. which is excited by random impulses. The model can be given as follows:

q
Ve = Y wu_ te, 3.0

=1

where w, are the filter tap weights or in this case the AR-model parameters. «, _, is the

observed time series and e, is a random. white noise process. Equation (3.2) satisfies the

time series with the order g

- 3
Up+a Uy | +axly, ~+ ... +au, ., = ¢, (3.2
Than, it is easy to see that
Up = Willy +Wally 4 Fwou,  +e,
where a;, = —w, . The term autoregressive stems from the fact that the current value of the

process is the convolution of the past values of the process with some tap weight and some
random error. The varable u is the regressor and the output of the process is therefor

regressed on itself.

3.2.2 ARX-Model

The Auto-Regressive with eXogenous (ARX) input model is an extension of the
AR-model by an additional, the exogenous. input. The term exogenous stems from the
economical system representation, where ARX-models are quite often used. The model
description includes therefore two convolution terms, the linear combination of the autore-
gressor and the one from the exogenous variable. The model can be given as follows:

q
Mo T z avg t 2 bx“k-.""’k RIRS]

=1 1= 1
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Note. that the described model is of the form of a transversal filter. A more detailed
discussion of this model and in particular its relationship with the state-space model will
be given in Chapter [V.

3.2.3 MA-Model

The general difference between the AR-model and the Moving Average (MA) -
model is that the former concerns the problem of solving a set of linear equations and the
latter of solving a set of nonlinear equations for its model parameters. The model can be
given as follows:

q
u, = e+ 3y be, _, (34
1=

where b; are the moving average parameters. and e, are the white. gaussian noise terms

,
with variance 65. One may compute u«, by constructing a weighted average of sample

values e, e, _,. .... from which the name moving average arose.

3.2.4 ARMA and ARMAX-Models

The autoregressive moving average model (ARMA) and the autoregressive mos -
ing average with exogenous input model (ARMAX) are models composed of the above
discussed models. The ARMA-model is given as follows:

q q
u+ Y au,_, =e. + Y be, _, {

1 =1 1 =1

'ad
tn

where a, and b, are the ARMA parameters. Note that the AR-model and the MA-model

are special cases of the ARMA-model.
The ARMAX-model includes the same extension as the AR-model to an ARX-
model. Here, one includes the convolution of an exogenous variable to the ARMA model.

3.3 Parameter Estimation

In system identification. one is constantly confronted by the problem of inferring
consistent data from measured random data. The random nature of the measurement
defines the need for a suitable estimator. It also implies that the estimator should vield est-

mates that are reasonable, for example the estimator should deliver efficient and unbiased
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estimates. Estimation theory is an intensively studied subject and known for centuries.
Astronomers around 300 B.C. dealt with the problem to estimate parameters of observed
data. Legendre and Gauss are credited with the popular method of least-squares around
1795. In the following. the least-squares method. the on-line least squares method and the

maximum likelihood method will be briefly introduced using the following definitions:

Given the an unknown parameter set © = [“1 b, ay b ... a, bq] and an output

."1] . where [ is the data length and ¢ the model order. Then

sequence § = [_Vq +1 .Vq +2

one can form the information matrix from the input r. and the output v

' r r T T T T
‘¢  Tq Yq-1Tq-1- 1 1
T T T T T T |
_vq+ 1 rq+ 1 -Vq rq 2.0
&= |0 T T T T T
-\q+2rq+2-\q+qu+l"' 30073
T T T T T
r-1 Ti-n -2 -2 o Yiag Tl g
and the following relationship is true:
§ =>dO+¢ (3.6)

where € is a random white, gaussian data vector.

3.3.1 Least-Squares Method

Least-squares estimation methods do employ a quadratic functional. where the
objective is to minimize this function. also called cost function or loss function. The scalar
cost function is composed of the estimation error; for example of the actual output and the

estimated output:

where © is the estimated parameter vector. Then the cost function can be written

J = (E-00) (-0 (37
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The least-squares solution is obtained by setting 8J/86 = 0 which results in

- -1
6= o¢ (3.8

The least-squares solution is derived through deterministic arguments and can be used
when there is no associated probability density function of © and & .
3.3.2 Recursive Least-Squares Method

The method introduced in Section 3.3.1 is commonly referred to as the batch pro-
cessing least-squares method because the ! data points are processed simultaneously. In

case there is new data available after having determined an estimate based on the [ data. 1t
is necessary to completely reprocess the old data. In essence. the estimate © based on D

is discarded and the solution is recomputed. This problem is often found in real ime sys-
tem identification and on-line system identification. The recursive. also so called sequen-

tial least-squares method, considers the determination of the least-squares estimate from
an estimate based on @, and the new data @, _,. The dernivation of the recursive least
squares method can be found in Sorenson*! (1980). and only the results will be given here.
Or = Ok 1+ K (5 -D, 0 1] (39
where the filter gain K is given as
K, = P,®R;' (3.9)
and R, is the covariance matrix of the observation and P, is the error covariance matrix.
3.3.3 Maximum Likelihood Method
Assuming the outcome  of an experiment is dependent on an unknown parameter

sequence O, then the maximum likelihood estimate of the parameters © are the values

for which the observation & are most likely to occur. That 1s, one has to maximize the so
called likelihood function. which is composed of the conditional probability density func-

tion of the observation ¢ given O:

—

£ (ElO) = ——Iexp[-§<;-¢e>rk“<§-¢e)£ (3.10)

p 1
(2r)7IRI™
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where R is the covariance matrix of a zero-mean. gaussian distributed observatuon. and
f mi1(51©) is the maximum likelihood function. Since maximizing this likelihood function
results in maximizing the exponent in the bracket of Equation (3.10). this problem can be
treated as minimizing a weighted sum of least squares. The result is obtained in the same

way as given in Section 3.3.1:

- _ -1 -
&= RrR'e) 0 R (311

The maximum likelihood method can handle one of the most general idenufication
problems. where one has to extract parameters for any type of system from data contarning
both measurement and process noise. The result is analogues to the solution of the
weighted least-squares solution. though one can use the covanance matnix of the obsena-
tion as a selection of the weighting matnx.

3.3.4 Comparison and Applicability of Parameter Estimators

It is worthwhile to mention the four statistical properties used to charactenze the
parameter estimation methods. Assume that © is the estimation of © based on / observa-
tions. © is unbiased if

Jim E[©] = © (312
If

13,13

lim P[(©,-6) = 0]

[ —

n
—

. N - . . . - . . 'R
the estimate © is considered as consistent. The efficiency of an estimation ©; compared

a(l) . . .
to O, ' is defined as the following ratio:

214

. (1) 2
E[(@-6; )]
‘rl =

~

. . XL . T
When 1 < | . the esumation ©; is more efficient than 8; . The esumated parameter

vector © is sufficient. if the conditional expectation
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of the parameter vector O is independent of the parameter vector ©. The sequence v,

represents a series of observations. The estimation is sufficient. if no other estimation can

contribute any more information about the parameter vector © .

The batch processing least-squares estimation method is a very general. robust

estimator. The estimate © is unbiased. it will be shown in Chapter V. that it is also a con-
sistent estimator. This estimator is well suited for off-line system identification. in con-
trary to the sequential or recursive least-squares estimation method. which can be used for
on-line system identification. The recursive least-square estimator can be compared to the
Kalman filter. and a similar problematic is found of finding the initial weighting matrix.
Hence. the maximum likelihood estimator is also a consisrent estimator and i1s asymptoti-
cally unbiased. Though. in the following svstem identification methods. we will make
ample use of the batch least-squares method. and in some instances will use the recursive
least-squares estimation method.

3.4 Direct System Identification

There exists several open-loop system identification methods which are quite prac-

tical. For example the method developed by Chen et al.® is capable of identifving a state

space model for an open-loop systemn from a finite difference model. The ARX model 1~

derived through Kalman filter theory. Juang et al.” developed a syvstem idenufication
method which also uses open-loop system input/output data. but emploves a state

observer. such that the ARX model needs a much lower order to represent the same system
accurately. and the derivations are based on a deterministic approach. Chen et al.” and
Juang et al.1% used projection filters to develop the identification algonthm for stochastic
systems. The relationship between the state-space model and the ARX model 1s denved

based upon optimal estimation theory. Huang et al.'* uses the z-transformation to dernve
the relationship between the state-space model and the ARX model for closed loop sto-
chastic systems using the direct system identification method.

In the following an open-loop system identification method (OKID1 1s introduced.

which will be used in the following chapters penodically.
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3.4.1 Calculation of Observer and System Markov Parameters

Considering a stochastic. discrete time. linear autonomous system given in state-

space form:
X o1 = Ay +Bu, +w, (3.16)
Vi = Cxp+ Dup + vy (3.1
where x € R**', ue R*™ L ve R™™ hare state. input and output vectors. respectively:

wy is the process noise, vy is the measurement noise: [4. B, C, D] are the state-space
parameters. Sequences wy. and v; are assumed to be Gaussian. white. zero-mean. and sta-

tionary with covanance matrices Q and R respectively.

Introducinig a typical Kalman filter. one can write the following system equations:
Y., = A +Bu, +Kg; (3.18)
where ¢, is the estimated state. K is the steady state Kalman filter gain. and €, 1s the inno-
vation, or the so called the residual. The estimated measurement is then obtained by com-
paring the Equation (3.18) for x, with Equation (3.17)
V. = Cx + Du, (3.19)

noting that €, = v, - V.. Than one can easily obtain the following equation

Y., = [A-KClx, +[B-KD]u, + Ky,
or
oy = .K.rk'#l_?ﬁk (3.20
where 4 = A-KC.B = [B—KD K] . and the information matnx ¢, = iuk
PVii

.
-

v = SN . )
_\ - [_‘q "q‘l .. \I_l] (3.-1‘
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Than one can write

y=YV+e+CcA%s (3.22)
where ¥ = |, : and € = (¢ ¢ € ... € .
.ro _tl X: e e I[_q_: q q#l q?_ 1-]

and [ is the data length. If q is large enough, the term CA? becomes zero and one can wnte
Equation (a)

y=TYV+e (323,
Employing the least-squares method. one can compute the sequence Y. which are the

observer Markov parameters:

—_ —_ T -1
¥ = iV (V7] (324

The obtained observer Markov parameters are partitioned as follows:

¥ = [70 P, P 74] (3.25)
than

Yo=D (326

Po=CA'B = [71” -Y’ﬂ (3.26 by

To recover the system Markov parameter. one can compute

-V = N7
Yo=V,=D (3.27)

‘s

&
Y, =7 - 3T 7Y, (3.28)

Once the system Markov parameter are obtained. one can determine the observer gain
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Markov parameters as follows:

=2
YO =¥~ = cK (3.29)

]

~
-
‘bl
=2

o (2) i<
Yk k= z Yl Yk—x

The system is uniquely determined by its Markov parameter.
3.4.2 Eigensystem Realization

In order to recover the system matrices. an eigensystem realization method 1s used.
as is explained in the following.

As a first step. a block Hankel matrix H(0) is constructed.

Y, Y, .. Y
oy = | Y2 Yoo Yao (331
_ch Ya«vl Ya+B-!d

Using the singular value decomposition. the block Hankel matnx A (0) 1s factonzed as

follows:
T ]
H(0) = RZS (3.3

. T
where Re R™*™ and Se R"™" are two orthogonal matrices and R' R = [_ and

§$§=1,.%X = [s 0] and s = diag(c,.6.. ....6,]. 0, are the singular values and are
00 i

in the following order:

tad
o
‘a2

6,20,2...20,>0 {

where r = rank{H(0)}. The order of the identified system is then determined by exam-
ining the magnitudes of the singular values. The singular values with relatively high mag-
nitude are counted. while the singular values with relatuvely low magnitude are assumed to
be noise related. The number of relevant singular values is the order of the 1denttied sy»-

tem.
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A construction of a minimum order system representation can be established as

follows:
A =3 RTHMS, '? (3.34)
B=1x]""SE, (3.35)
C=ERE? (3.36)

where EZ = [Ir 0, ... Or] . E; = [[m 0, - Om] and m are the number of outputs and

r the number of inputs.

3.4.3 Step-by-Step Procedure for System Identification using OKID

The following is a brief description of a step-by-step procedure for system identifi-
cation using OKID.

l. Form an information matrix and an output vector. using Equation (3.21), and esti-
mate the coefficient matrices of the ARX model and the observer Markov parame-
ters by invoking the least-squares method. Equation (3.24) and (3.25).

2. Recover the system Markov parameters. using Equation (3.27) and (3.28) and the
observer gain Markov parameters. Equation (3.29) and (3.30).

3. Realize the open-loop system matrices from the system Markov parameters by
forming a block Hankel matrix and using singular value decomposition. Equation
(3.31),(3.32) and (3.34 - 3.36).

3.5 Indirect System Identification!

As mentioned above, the indirect system identification method calculates first the
closed-loop system Markov parameters and than uses the known controller dynamics to
compute the open-loop Markov parameters. The following algorithm can be applied to
stochastic. linear. autonomous systems which are excited by random inputs. [n the fnirst
section. the relationship between the closed-loop state space and ARX models 1s shown.
The next section deals with the problem of the estimation of the parameter of the ARX

model. Once the parameters are found. it will be shown how to compute the Markos

1. The descniption and derivauons are from Min-Hung Hsiao."Explicit and Iterative LQG Contruoller
Design.” Ph.D. dissertat:on, Old Dominion Universaty, pp. 55-70.
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parameters of the closed loop system and Kalman filter as well as the Markov parameters
of the open loop system and Kalman filter. A distinction will be made for closed loop
identification with full-state feedback.

3.5.1 Relationship between the State-Space and ARX Models
A finite-dimensional, linear, discrete-time. autonomous system can be modeled as:

Yoo = Axp +Bu, +w, (3.16)

Ve = Cxp+v, (317
wherex € "' ue R°*', ve ™™ Lare state. input and output vectors, respectively:
w; 1s the process noise. v; is the measurement noise; [A, B. C] are the state-space parame-

ter. Sequences w. and v, are assumed to be Gaussian, white. zero-mean. and stationary

with covariance matrices Q and R respectively. One can derive a steady-state filter innova-

. 9
tion model?®?:

Yo = A +Bu + AKg, (3.3

v = Cx +¢ (3.38)
where , is the a prior estimated state. K is the steady-state Kalman filter gain and €, 1s
the residual after filtering: €, = v, ~ CX, . The existence of K is guaranteed 1f the system

is detectable and (A, Ql/:) is stabilizable*3.

On the other hand. any kind of dynamic output feedback controller can be modeled

Pro1 = Ayp+ By, 3.39)

up = Cyp,+Dyy, +r1, 13.40)
where A4 B4 C4 and D are the system matrices of the dynamic output feedback control-
ler. p. is the controller state and r;, the reference input to the closed-loop system. Combin-
ing (3.37) and (3.38). the augmented closed-loop system dynamics becomes:

Ngoy = AN +Br +AK g 1340

Vi = C.n+¢€, (342,
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where

r

Ll _ |A+BD,CBC, o [B]

T]k - AL =
P B,C Ay 0
AK +BD
AK_ = 3 9 and C, = [C 0]. (b)
d

It is noted that K, can be considered as the Kalman filter gain for the closed-loop system
and the existence of the steady-state K is guaranteed when the closed-loop system matrix

A_ is nonsingular.

- —i-1 - —i-1
Ye = Z CcAl ACKC-\'k—( + Z- CCAl Bcrk o tE (343
1= 1

1=

where 4 = A_~A_K_.C_ and is guaranteed to be asymptotically stable because the

steady state Kalman filter gain K exists. Since A is asymptotically stable. A =0 1f 1 > ¢

for a sufficiently large number g (see reference 10). Thus (3.43) becomes

q q9
e = z ave-,* Z blrk-:+£k (34

=1 t=1
where

t [

a, = C,A -[ACK‘_.and b,=CA B. ()

C

The model described by Equation (3.44) is the ARX model. which directly repre-
sents the relationship between the input and output of the closed-loop system. The coeth-
cient matrices a; and b; can be estimated through least-squares methods from a random
excitation input r; and the corresponding output yv.. From equation (3.44) 1t can be seen

that parameters of the ARX model are linearly related to the closed-loop input-output
data. Therefore. solving for an ARX model involves the problem of solving a linear pro-

gramming problem involving an over-determined set of equations.
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3.5.2 Open and Closed-Loop System and Kalman Filter Markov

Parameters

In the previous section. an ARX model. which represents a closed-loop system. 1s
identified from the closed-loop input/output data through the least-squares method.With
known controller dynamics, the estimated ARX model can be transformed to an open-loop
state-space model by the following steps. First. the closed-loop system and Kalman filter
Markov parameters are calculated from the estimated coefficient matrices of the ARX
model. Second. the open-loop system and Kalman filter Markov parameters are derived
from the closed-loop system Markov parameters. the closed-loop Kalman filter Markov
parameters, and the known controller Markov parameters. Third. the open-loop state-
space model is realized by using singular-value decomposition for a Hankel matrix formed
by the open-loop system Markov parameters. Finally. an open-loop Kalman filter gain s
calculated from the realized state-space model and the open-loop Kalman filter Markov
parameters through least-squares.

The z