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ABSTRACT

INPUT DESIGN FOR SYSTEMS UNDER IDENTIFICATION, USING INDIRECT
AND DIRECT METHODS

Marco P. Schoen 
Old Dominion University. 1997 
Director: Dr. Jen-Kuang Huang

The motivation for system identification can be m anifold. In this work, the provo

cation to identify unknown system characteristics is derived from the control engineering 

point o f view. That is, one intents to design a control strategy based on the identified sys

tem properties. The used system identification methods are the Open-Loop Kalman filter 

System  Identification method (OKID) and the Closed-Loop System Identification method 

(CLED). It is shown that the quantitative largest error of the system identification is given 

by its model representation, that is the attempt to describe a system with model parameters 

which poses a linear relationship with the input/output data. Parameter identiriabiiity is 

reduced to the problem of consistent estimation. The identifiability is largely determined 

by the way the system is excited, and in addition by the output o f the system for the indi

rect system  identification. A quantitative comparison between the indirect and direct sys

tem identification method is given, where indirect system identification showed to be 

slightly superior in accuracy if a suitable controller is selected. The example models used 

in the com parison are a heat-mass transfer model, a macro economical model, a structural 

model. NASA’s Large-Angle Magnetic Suspension Test Facility (LAM STF). and a human 

respiratory system. The problem of defining the input data such that accuracy and identifi

ability are increased is addressed and controller design criteria can be developed from it 

The excitation input is calculated from input/output data and substituted into the current 

input. Sim ulation indicate that only a few substitution are necessary to successfully iden

tify the system. The new input design results in very accurate identification w ith reduced 

noise influence and data length requirement. Controller design criteria can be formed 

based on the input design, such that identification leads to more accurate and more reliable 

results.
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CHAPTER I

INTRODUCTION

1.1 Background and Problem Statement

The field of system  identification has been developed for a multitude of purposes. 

As each discipline gives its motivation there is a common goal: one wants to infer the 

characteristics of a particular system from its input/output data. Suppose one has a space 

structure, on which an antenna is installed. This antenna is pointing to a particular ground 

station to transmit and/or receive information. Space structures have relatively little mas> 

distributed over a large volume, which causes the system to be lightly damped, or from a 

control point of view, to be marginal stable. The mathematical modeling of the system  wa> 

done on earth, using physical laws, assumptions, and simplifications. The controller 

design for the positioning of the antenna and its vibration com pensation are based upon 

the mathematical model. During the deployment o f the structure in space, the characteris

tics changes continuously, and other disturbances occur w hich are not accounted for by the 

controller. Changes in material properties develop due to ever changing heat radiation 

from the sun and thermal stresses. New or altered equipment noises transpire. Though the 

task of the antenna to point accurately to the ground station does remain. To com pensate 

these alterations, the controller has to be updated constantly based on the new sy stem 

characteristics. System identification proves to be a very useful tool in this and related 

problems. One can automatically update, or compute the system equations, using the 

input/output data and a system  identification method. Though, the identification problem s 

investigated in this work is driven by the controls engineering point o f view The goal is to 

identify an unknown or partially known system such that a controller can be designed for 

that particular system.

There exists a great multitude o f proposed and developed identification m ethods

for stochastic, linear, autonomous system s1' 14. The main concern o f this work is the 

The journal mode adapted for this dissertation is AIAA
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param etric system identification methods, in particular the Open-loop Kalman filter Iden

tification method (OKED) and the Closed-Loop system Identification method (C L ID i1' -1 

The latter one can be used for direct and for indirect system identification. These methods 

com pute the Markov parameters o f the identified system, which are the same as its pulse 

response history. Both identification methods use an observer for the identification, which 

makes it possible to identify not only the open-loop system, but also an associated 

observer which can be later used for possible controller design.

In general, one seeks to obtain a system representation as accurate and close to the 

original system as possible. The system  identification methods used here, employ ARX 

model representations and least-squares estimation for the determination of its parameters. 

Com paring system performances from identified models with the characteristics of the 

true system s, one can always detect some differences. If the source of the inaccurac> is 

known, the quality o f the identification result can be improved by addressing or by-pass

ing the origination o f the inaccuracy.

Parameter identifiability concerns the ability o f deducing the model parameters 

from the input/output data. This is an extensively studied field for the closed-loop system 

identification method. However, direct usable or practical methodologies or formulas are

not available. In the literature this problem is treated in a very abstract w a y '18 or the iden

tifiability is computable if  the system is know n19.

The closed-loop system identification method uses the controller dy namics to 

com pute the open-loop system M arkov parameters. The controller normally serves to gen

erate bounded input and output data from the system. The effect on the sy stem identifica

tion results are not known. For exam ple it is desirable to design a controller which 

produces inputs such that the identification results are improved in accuracy, speed of 

com putation and/or data length.

1.2 Objective

The objective o f this dissertation is to develop a new input design which improves 

the accuracy of the identification results compared to the true sy stem. First the source of 

the identification error is determined. Each step of the identification algorithm is investi

gated o f possible error sources. The investigation is done numerically using the direct and
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indirect identification method. A lso, the influence o f the controller to limit the process 

noise is investigated.

Second, identifiability criteria in general are surveyed and then developed particu

larly for the two system  identification methods. The identifiability for the ARX model 

param eters are given in terms o f  the input/output data for practical use. From these results, 

the experimental condition for the identification is derived.

Third, the tw o identification methods are com pared numerically using several d if

ferent example system s. These system s are a structural system, a heat and mass transfer 

system , a magnetic suspension test facility, a biomedical system and an econom ical sys

tem. The identifiability. data length and accuracy of the identification results from the tw o 

m ethods are used as criteria. In particular, system identification with a constant reference 

input is studied. These situations occur when the plant has to be identified on-line. The 

problem  of loss o f identifiability due to the feedback signal is explored.

Fourth, a new input design is elaborated. This design consists of com puting the 

ARX model param eters first and then using this information to update the current input. 

The identification is performed either in two steps, or on-line. The acquired data points are 

w indowed for substitution of the new input data points. Some of the current inputs are 

kept to guarantee identifiability.

1.3 Dissertation Outline

Chapter II introduces the exam ple systems used in this work. In particular the ch ar

acteristics of heat and mass transfer systems and its problematic for system identification 

are given. A structural system in form of NASA’s minimast represents another system  for 

the class of marginal, lightly dam ped systems. NASA’s Large Angle M agnetic Suspension 

Test Facility (LAM STF) is a highly unstable system, where a specimen is suspended and 

its six degree of freedom  are controlled. Other system used are a macro econom ical A s 

tern. a freeze-drying system and a hum an respiratory' system.

The direct and indirect system  identification methods used in this work are g i\e n  in 

Chapter III. Next introducing the two methods used in this work, a general overview of 

param etric and nonparametric system  identification methods is presented. Then, for the 

direct system identification m ethod and indirect system identification method, the model 

representation is given, its param eter estimation and the open-loop Kalm an filter system
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identification (OKID) and the closed-loop system  identification (CLID) algorithm is 

described in detail.

Chapter IV develops the ARX model for a finite-dimensional system with and 

w ithout state controller. It is shown that the ARX models for the direct and the indirect 

system identification are o f the same type, and poses the same accuracy problematic. Inac

curacies occurring during the system identification process are located. Also the influence 

o f the process noise to the system identification accuracy is investigated.

Chapter V presents an introduction to the problem atic o f identifiability. In particu

lar, param eter identifiability is distinguished from system identifiability and from struc

tural identifiability. The focus is given to param eter identifiability since the model 

structure o f the system identification is fixed. The importance of the canonical representa

tion in system identification for identifiability is outlined and the role of the initial condi

tion to the problem of process identification o f linear time invariant deterministic systems 

is derived. From the parameter identifiability. the experimental conditions are obtained 

and with numerical examples validated.

Chapter VI provides a comparison between the direct and the indirect system iden

tification methods. In particular, identification with constant reference input is studied. 

The problem of the loss of param eter identifiability due to feedback is deliberated. Also  

the required data length for achieving a certain accuracy for both method is investigated, 

using the described systems given in Chapter 2 as numerical examples.

Finally, Chapter VII proposes a new input design for systems under identification 

The input design addresses the problematic o f identifiability and accuracy. The system 

identification is performed in two steps, or on-line. In the first step, a normal excitation 

signal is given to the system, which is in most cases a random or binary random signal 

This input along with the output of the system is then windowed and some of the inputs 

are substituted by calculated input data. The calculation o f the new inputs is based on the 

estim ated model parameters.
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CHAPTER II

EXAMPLE SYSTEMS UNDER IDENTIFICATION

2.1 Introduction

In this chapter several example systems and their descriptions are given. The 

exam ple systems are being used in the subsequent chapters for num erical validation of the 

obtained theory. The different dynamical models distinguish them selves from each other 

by som e relevant characteristics, which may or may not have an influence on the identifi

cation process or controller design problem. The first system is a distillation column, 

where rather large time delays are expected, in this particular case a time delay o f 10 m in

utes. The second system describes a lyophilization process for pharm aceuticals. The spe

cial characteristic o f heat and mass transfer systems is the large time constants used to 

describe the dynam ics o f the system. The interest in structural system  is based on the fact 

that many such system s have rather low damping ratios and their stability is marginal. An 

exam ple of an highly unstable system is described in Section 2.5. Also of interest are bio 

medical systems, discussed in Section 2.6 and economical system s, in particular macro 

econom ical systems, in Section 2.7.

2.2 Chemical Processing Systems

System identification is a useful tool for processes which are difficult to model 

from basic physical laws only. Industrial processes, such as chem ical processes, often are 

structured in a com plex way and therefore pose great difficulties for developing models, 

from physical and chemical laws. System identification represents a logical approach for 

obtaining a suitable model for control purposes. A big obstacle for the identification prob

lem is the existence of large disturbances and severe measurement problem s that exist for 

many of the chem ical processes. In general there are several processes which can be 

defined as chemical processes. In this work, a distillation process is being used to present
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the numerical results, as well as to indicate the problematic of system identification in 

chem ical processes. In Section 2.3 a heat and mass transfer based system  is being intro

duced, which can also be classified as a chemical process, but due to the distinct difference 

in its characteristic, the heat and mass transfer systems are treated separately. Another 

concern is the slow dynamical behavior o f chemical processes. Its slow response to m an

ual inputs represents a danger, since the stability can not be guaranteed. Yet another prob

lem in m odeling and designing controllers for chemical processes is the large number of 

variables, which are used to describe the system.

2.2.1 Distillation Process

The study o f distillation processes with the intent o f applying and designing con

trol laws is quite popular, Gustavsson-0. The problem of excitation of the to be identified 

plant, the distillation column, is solved by using perturbations in power supply, feed com 

position etc. The excitation of the system has to be handled carefully, since the process 

itself can not be altered too much, unless the security o f the plant or the quality of the 

product is jeopardized. Quite often, the experiments were earned out using pseudo-ran

dom binary sequences as the input signal. This input is especially suitable for the cross 

correlation analysis, which is preferred when high signal to noise ratio of the data is 

expected. Cross correlation is also considered to be useful for estimation o f time delavs 

and model orders. Hence, parametric identification methods yield more accurate results. 

M audsley and A nderson"1.

2.2.2 Williams-Otto Process, a fourth Order Time Delay System:

The detailed description of this process can be found in Williams and O tto- '  The 

diagram  in Figure 2.1 depicts the schematics of the process.

The raw materials are fed and mixed in the chemical reactor. The feed rates of the 

raw m aterials are FA and FB. Upon leaving the reactor, the product is being cooled in the 

heat exchanger and an undesirable by-product is removed in the decanter. The product 

enters at this stage the distillation column. At this point the product contains besides of the 

desired material also impurities, some remaining raw materials and some undesirable by

products o f the chem ical reaction. The desired product Fp is extracted in the overhead of 

the distillation column.
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Figure 2.1 W illiam s-Otto Process.

The purge Fw2 is removed at the bottom of the distillation column, and the remaining raw 

m aterial with the by-products is recycled back to the reactor. This feed back of unproc

essed raw material and other by-products represents a significant time delay into the 

described process. A whole cycle can take up to 10 min. The product is transported from 

the chem ical reactor to the heat exchanger, the decanter, the distillation column, and the 

recycle loop back to the reactor.

The system given by Ross23 comprises four states, that is the devtation in the 

weight com position of reactant A from its nominal value (dimensionless). the deviation in 

the weight composition of reactant B . the deviation in the weight composition of an inter

mediate product C. and the deviation in the w eight com position of the desired product P 

The time unit in this particular example is 10 min. Given as the deviation of the feed

rate o f material A from the nominal value. VR as the pound-volum e of the chemical reactor 

and 5Fg as the deviation of the feed rate o f material B . than the input vector u=[u ; u: l r is
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defined as u, = ^  and ^  and the system can be given as

t ( f )  = A x i t )  ♦ A , [ ( ( - l l  + 8 u | / )  ( 2 .  1 i

where

=

-4.93 -1.01 0 0 ] 1.92 0 0 0 j
-3.20 -5.30 -12.8 0 j

••'i =
0 1 92 0 0 i

6.40 0.347 -32.5 -1.04j 0 0 1.87 o 1
o 0.833 11.0 -3.96! 0 0 0 0 724!

, I 0|

and B = !° '! (2.2)
mo!
' O  o i

23  Heat and Mass Transfer based Systems

The durability of many pharmaceutical and biological products such as serum, 

blood plasma, vaccines, antibiotics, hormones, enzymes, vitamins, proteins etc. is gov 

erned by bacterial degradation if they are subjected to moisture. The technology and finan

cial expenditure in processing and manufacturing of such products is nowadays immense 

A major factor in this display is found in the lyophilization process, where the water c o n 

tent is reduced to guarantee biological stability. Lyophilization takes place as a batch 

freeze drying operation. The dehydration in this case occurs in a closed low pressurized 

chamber, where the frozen liquid, filled in vials, is subjected to a heat flux from the shelf 

through the frozen product to the ice front, which is also known as backface heating. The 

frozen water content of the product sublimes at this ice front and evaporates, following the 

declining pressure gradient, into the cham ber and then to the condenser wall, where the 

water vapor crystallizes into ice again. This process claim s a lot of time due to the smali 

pressure differences. The energy to maintain vacuum and refrigeration at the condenser 

and the latent heat supply for the sublimation over a long period o f time all represent 

major cost factors.

Extensive efforts by industry and research centers are made to predict and p rede

termine the course of freeze drying cycles in order to control the quality of the product and 

to minimize costs. Many different strategies for operating freeze dry ers have been pro

posed in order to optimize the process. M ost of them are based on mathematical models  

In this work, a mathematical model for the primary dry ing cycle o f a lyophilization p ro 

cess is used to present the problematic expected by using sy stem identification to develop
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a mathematical representation o f this process. The basic relationship of the drying cycle is 

given as a mass and heat transfer process. The expected time constant describing this pro

cess are normally quite large. In the following, the lyophilization process is described in 

some more detailed.

2.3.1 Lyophilization Process

The lyophilization process can be partitioned into four stages: product preparation 

and freezing, prim ary drying, secondary drying, stoppering and removal. In the first stage, 

the pharmaceuticals are filled into vials along with so called additives for protection. The 

vials are placed into the freeze dryer and the product is being frozen. During the freezing 

stage, a boundary, where phase change occurs, moves from the vial bottom upw ards to the 

top of the product. The unconstrained water crystallizes while the remaining water turns 

into a higher concentration with the product. The latter typically represents either an 

eutectic or an am orphous solution. The crystallization o f the water normally occurs in 

such a way, that the ice crystals grow in a shape of little cylinders or fingers perpendicular 

to the moving ice front. During the second stage, the primary drying cycle, the cham ber of 

the freeze dryer is evacuated in order to increase the partial water vapor pressure differ

ence between the frozen ice zone and the chamber. The shelf heating system is turned on 

and starts to provide the enthalpy for the sublimation process. The sublimation takes place 

at a moving ice front, which proceeds from the top o f the frozen material dow nwards. The 

participating ice is the unconstrained water accumulated in the cylindrical tubes. Through

out the primary drying, the product, which consists of the dried layer on the top and the 

frozen core at the bottom of the product, stays below a certain temperature to insure that 

no melting occurs. The secondary drying circumcises the third stage of the lyophilization 

process. At the end of the primary drying, all the unconstrained water has been remoscd 

and what remains is the water which is bound in the solution. At this point, the product 

could be removed, but in practice the water content is still too high to guarantee biological 

stability. The secondary drying is responsible for lowering the bounded water content to 

an acceptable level, which depends on the product. This stage is less crucial and can be 

performed at a higher shelf temperature. The last stage is the stoppering of the product and 

the removal from the freeze dryer. The freeze dried product can normally be stored at 

room temperature.
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23 .2. Mathematical Model of the Primary Stage of a Lyophilization 

Process

The mathematical model used in this work is taken from Schoen et al.24 The 

model describes a nonlinear fourth order system, where the states are the interface position 

of the ice front, the tem perature in the frozen part of the product, the tem perature in the 

dried portion o f the product and the chamber gas temperature. The following im prove

ments are made to the original system: inclusion o f the inert gas inside the pores of the 

product; subtraction o f the heat, carried by the evaporating w ater molecules from  the dried 

product mass instead of subtracting it from the frozen product layer: and incorporation of 

top and bottom heat radiation. The improved nonlinear set o f equations and the corre

sponding nomenclature for this system is given in the Appendix.

The model is based on data taken from an Edwards Lyoflex 1.0 Specia l Freeze 

Dryer, installed at Glaxo Inc. in Raleigh. North Carolina. The product form ulation used 

were composed o f  15 mg glycine and 2 mg active product. The pilot freeze dryer has a

shelf area o f 12 ft.2, which can be regarded as the shelf tem perature control surface. The 

other control inputs are the nitrogen pressure in the chamber and the condenser coil tem 

perature. A more detailed discussion o f the model and its foundation can be found in

Schoen et al.24. The linearization o f the model was done at the operating point of t = 450 

min in total process time (that is about 30 minutes into the primary drying time) The 

states are the interface position of the dried and frozen product layer, the tem perature in 

the frozen product layer, the temperature in the dried product layer and the cham ber tem 

perature. The state-space representation of the linearized model is given as follow s:

-0.1222659 0 0 -0  5784x10-* 0 535Sxl0~*
4 = 256.6889971 -0.85449787 0 62666897 0 053395"? , 2 . 3 )

-3539.317452 0.2978252! -18745728 1 4601441
j_ 4706423 195 0 0 2243 724818 -1971710 996j

[" 0 0 0 15028643) I0-^)i
B _ j0.22737876 0 OOI627583 ,-> 4 ,

10.00053678 0 0 00109832
! 0 1969657 94 2.88764861
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2.4 Structural Systems

Examples for structural systems can be found in space structures, building struc

tures. chassis o f automobiles, antennas, etc. The problem atic o f controlling such kind of 

structures can be easily visualized on space antennas. These structures have a distinct 

characteristic, since they are normally light weighted and have large dim ensions. The 

objective o f a space antenna is to point with very high accuracy to a specified point on the 

surface o f the earth, that is for example a ground station. The antenna and the satellite on 

which it is mounted is exposed to various changing influences, such as thermal changes or 

changes in the material property of which the structure is built etc. The structure has some 

natural vibration, which is to be neutralized by some control algorithm, so that the point

ing accuracy is not affected by the movements. The space antenna also has to deal with the 

problem to maintain the shape of its reflector accurately.

The original controller design for solving this problem  was based on som e mathe

matical formulations, which employed the original characteristics of the material used and 

some assumed describing laws. During the course o f the satellites deployment in space, it 

is exposed to continued thermal changes, alteration o f its material properties etc . such that 

the contoller requires a steady adaptation. This can be done using system identification, 

where the most recent characteristically changes are detected and passed on to update the 

controller.

In general, two different approaches are being used to describe structural systems 

mathematically. One way is to use infinite dimensional distributed parameter models, the 

other way is to use ordinary differential equations, w hich results in finite dimensional 

models. The controller design is than based on the particular mathematical representation 

A m ajor error introduced into the design process is than the truncation of the model, such 

that the mathematical description is more practical. A nother mode! error is. as mentioned 

above, the lack o f exact values for the model parameters.

Identification of such systems are rather popular. There are two types of  methods 

deriving a mathematical representation o f the system from  input/output data. One t \pe  is 

the modal testing approach, the other is the system identification method. Modal testing of 

a structures can yield the values of the damping ratios, the frequencies, the mode shapes 

and the modal participation factors of the system, using suitable measurements S w e m
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identification uses also suitable measurements o f som e input/output signals and processes 

them  to develop a mathematical representation o f the system.

Structural systems, such as large space structures, posses quite often very low fre

quencies. lightly damped modes and sometimes their natural frequencies are located 

closely to each other. Some natural frequencies m ay even be lower than the rigid body 

spacecraft controller bandwidth. The induced problem s are treated by using specially

design controllers. Joshi25. In this work, a simple structure will be used. This structure 

represents a beam like mast, which is introduced in the following section.

2.4.1 Spring-Mass System

Figure 2.4.1 depicts the schematic of the spring-damper-mass system. Chen et

a l .15. The lumped mass system has three modes (six states). The modal frequency and the 

dam ping ratio o f each mode are listed as follows:

Mode Frequency [rad/sec] Damping [‘T] 

0.63 

1.01 

1.303

1.6369

4.4719

6.1085

output 1

output 2 k, 10.0
k-> 10.0
k, 10.0

m[ 0.5
mi 10 
m; 1.0

Figure 2.2 The simulated lum ped-m ass beam -like structure.
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The system is excited by a random force at node 3. and the output is measured at nodes 1 

and 2. The state-space model is given as follows:

a  =

0.9856 0.1628 0 0 0 0
-0.1628 0.9856 0 0 0 0

0 0 0.8976 0.4305 0 0
0 0 -0.4305 0.8976 0 0
0 0 0 0 0.8127 0.5690
0 0 0 0 -0.5690 0.8127_

B = Fo.OOil 0.0134 -0.0016 -0.0072 0.0011 0.0034
-.r

1.5119 0.0 2.0 0.0 1.5119 O.ol 
1.3093 0.0 0.0 0.0 -1.3093 O.Ol

(2.5)

( 2 . 6 )

(2.7)

2.5 Large-Gap Magnetic Suspension Systems

At NASA-Langley Research Center in H am pton. VA. a m agnetic suspension sys

tem has been developed. The objectives of this testbed are to develop and evaluate the 

technology for magnetic suspension at large gaps, accurate position sensing at large gaps, 

accurate suspended element control at large gaps and suspended element control over 

large angles. Possible applications include magnetic suspension system s for wind tunnels, 

microgravity and vibration isolation systems, m agnetically suspended pointing mounts 

and large-angle magnetic suspension systems for advanced actuators.

Unstable systems represent an additional difficulty for applying system identifica

tion. In order to obtain bounded input and bounded output signals, the system has to oper

ate in closed-loop. The identification uses therefore either the closed-loop input/output 

data, or the bounded input/output from  the system. Both methods, the direct and indirect 

system identification methods can be applied.

The system, which is currently under developm ent, is capable to control all six 

degrees of freedom of the suspended specimen, that is. three displacements < t. v and r> and 

three rotations (pitch, yaw and roll). A total of eight electrom agnets are arranged in a pla

nar array to control the suspended elem ent as depicted in Figure 2.3.
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Figure 2.3 The six D O F Magnetic Suspension System Configuration.

The measurement of the position and motion of the suspended elem ent are perform ed 

using a total o f six pairs o f laser sensors. The outputs are the am ount o f light blocked 

along a thin laser sheet and the inputs consists of eight currents into the eight electrom ag

nets. The details o f the suspended specimen, the cotls and power am plifiers and the posi

tion sensors are described in the following sections.

2.5.1 System Specifications

The suspended elem ent consist of a nylon outer shell and a N eod\m ium -Iron- 

Boron core, w hich is permanently magnetized. The dimensions of the specim en are deter

mined by a diam eter of 1.27 cm  and a length of 5.08 cm. The total weight of the sus

pended element is 51.9 g. with the inertias / u  = 1.1 le-6 kgm 2 and / ^  (= /„ )  = 1 25e-5

kgm2. The suspended height is 100 cm.

The arrangem ent o f the coils is an eight coil planar array with iron cores, which 

consists of two concentric arrays o f four coils each. The primary coil array location radius 

is 11.43 cm. while the secondary coil array location radius is 21.59 cm. Each coil h is  a 

height o f 10.3 cm  and has an outer radius of 7.62 cm with an iron core radius of 5 08 cm 

and an inner radius of 3.25 cm. The maximum current density of the electrom agnets is

333.5e+6 A/m2.
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2.5.2 System Model

The analytical state-space representation of the suspension system  is given as fol

lows:

1 0 0 0 0 0 0

i  0
0 0 0 0 0

!  0 0 0 0 0 0
I  0 0 0 0 0 0

o 0 0 0 0 0
!  o 0 0 0 0 0
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0 0 0  00001  0 0 0
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0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
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0 0 0 0 0 0 0 u

0 0 0 0 0 0 0 0
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i

o
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-0.0 -24.1544 0 0 0 754.8250 0 0 0 0 0 01
-0.0 6.4160 0 0 0 754.8250 0 0 0 0 0 01

0 0 -20 2853 533.8225 -533.8225 0 0 0 0 0 o oi
0 0 -20.2853 -533.8225 533.8225 0 0 0 0 0 0 0!
0 0 20.2853 -533.8225 -533 8225 0 0 0 0 0 0 ol
0 0 20.2853 533.8225 533.8225 0 0 0 0 0 0 oi

20.0535 -0.0 0 0 0 0 0 0 0 0 0 0 01

(2.10) (2.1 i)

2.6 Biomedical Systems

Biomedical engineering is a rapidly growing field, where more and more control 

and system identification tools are utilized to maximize perform ance and ensure safety 

System identification and controls are applied to broad area o f physiological kinetics, 

which contains characterization of m etabolism, com partments and movement of materials 

through compartments within the organism . The two major fields where controls and sys

tem identification in biomedical engineering are applied are the cardiovascular system and 

the respiratory system of organisms. The identification problem concerns the characteriza

tion o f biological systems where the m odeling approach fails to address the characteristics 

o f the system under investigation and enables the application o f the developed model to 

clinical problems. Most physiological investigators still favor the direct measurement 

approach of biological parameters and the physical model derivation whenever possible 

over the identification approach. The system s are normally represented by com partment 

models. The basic equations of com partm ental systems are m ass balance equations since 

the models are assumed to consist o f interconnected com partm ents where each has a 

homogeneous characteristic.

As for the cardiovascular system s, attention is given to systems arteries, to the 

heart and to capillary fluid exchange, since the variables describing these systems posses a 

high degree of information content. A rteries systems, such as for leg or arms, are normal I > 

realized as lumped systems or so called segments. The measured signals of the system are 

the pressures at various locations such as at knee or foot etc. System descriptions of the 

heart use phenomena and variables such as electric signals, volume changes, pump charac

teristics and heart muscle mechanics. A lso of much interest is the relationship of the heart 

rate and the respiration of a subject.
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In the present work, the interest on biomedical system will be constrained to the 

respiratory system, the other major application field for controls and system identification 

besides of the cardiovascular system. The simplest representation of the respiratory sys

tem is by assigning values to the airw ay resistant and the lung compliance. L'hl and

Lewins et al.26 used least squares techniques to obtain those values for a simple descrip

tion o f a respiratory system. Some studies used more complex models of the lung. Fergu

son et al. 27 employed a two com partm ent model o f CCS transport between alveoli and the 

tissues. The param eter vector to be identified contains of the cardiac output, the lung vol

ume, the metabolic production rate o f  C 0 2 of the tissues and the initial concentration of 

C 0 2 in the tissues. These models were general description o f respiratory systems. In this 

work, the focus is on the human respiratory control system, which is som ewhat more 

involved and its modeling is based on the later application.

For the mathematical model o f  human control systems, there exists two types of 

control systems in the human body. The first is called the servo system, which is responsi

ble for example for the positioning o f  body parts to a cerebral signal, where the m otor co r

tex initiate a step input for movement of the body part. With internal damping, th is part 

reaches its final position. The other control type is the regulator. The internal respiratory 

control system belongs to the class o f  regulator. Here the disturbance is considered as a 

step input of inhaled C 0 2 and the regulator forces the respiration to increase its ventilation 

in order to decrease the C 0 2 content to a new steady-state level.

Several studies attack the m odeling problem of the human respiratory system  and 

its biological regulator. The model given by Grodins et al.28, considers C 0 2 as the only 

controlling variable o f the ventilation. The tissues were considered as a single lum ped >y s-

tem. The model was expanded by Horgan and Lange29, where circulation time and oxygen 

control were included, such that periodic breathing could be investigated. M ilhom  Jr. et 

al.30 divided the tissue reservoir into tw o compartments, the brain and the body tissue and 

considered cerebral blood flow as a function o f arterial C 0 2. Also the effect of oxygen as a 

controller of ventilation, and the effect of time delays in the transport of gases from  the 

lungs to both tissue reservoirs, were included into the model. Grodins et a l . '1 expanded the
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model to include a variety o f other effects, such as hypoxia at sea level o r altitude, 

metabolic disturbances in acid-based buffering, the dependence o f tim e delay on cardiac 

outputs, concentration equilibria etc. The present work will use the somewhat m ore simple 

but efficient model by Grodins et al.28.

The application of respiratory systems, its identification and the application to con

trol systems is manifold. The model given by Grodins et al.31 was slightly altered by Sano

et al.32 to introduce an adaptive feedback control system for incubator oxygen treatm ents. 

The controller determines the optimum oxygen concentration of the mixed gas. which is 

forced into the incubator so that the partial oxygen pressure in the arterial blood flow is 

kept in a certain range. This is a necessary treatment for newborns who suffer from  respi

ratory distress. In general, system identification in biomedical engineering is very' helpful 

wherever modeling is difficult due to the lack of physical information or describing law s. 

Indirect identification for closed loop system is especially interesting in this field, since 

biological system can not always be excited over the whole range o f frequency spectrum 

without destruction of the biological system.

2.6.1 Respiratory System: C 02 Concentration

The basic analogy is that while inhaling, the lung receives besides of the necessary 

oxygen also a C O ; mixture. This C O ; is passed on into the blood through diffusion m em 

branes and to the tissues. The body has an internal control m echanism  to keep the CO- 

concentration at a certain level. The controlling quantity is the pulmonary ventilation, that 

is the increase of C O ; concentration in the tissues and the blood, causes an increase o f the 

ventilation. The purpose of the ventilation, in this context, is to minimize the rise in C O ; 

concentration in blood and tissues. The process is also true in the opposite direction, the 

pulmonary ventilation controls the C O ; concentration, but also the CO ; concentration 

controls the ventilation. Therefore we have a closed loop system, where the controlling 

quantity is the pulmonary ventilation, the controlled quantity is the C O ; concentration and 

the disturbing quantity is the concentration of CO; in inspired gas. The model given by 

Grodins et al. describes the system by controlling system equations, which characterize 

the dependence o f the ventilation on body CO; concentration, and controlled system
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equations, which describe the dependency o f the C 0 2 concentration on ventilation and in 

the inspired gas. G rodins et. al. calls therefore the whole system as the respiratory chcmo- 

stat.

2.6.2 Controlled System

As m entioned above, the controlled system represents the dependency of the CO; 

concentration on ventilation and the inspired gas. The model describes a sim plified lung- 

blood-tissue C 0 2 exchanger model. The diagram in Figure 2.4 depicts the m ajor elements 

of this system.

M etabolic C O 2  

Production

Venous
Ventilation o

Tissue
ReserviorLung

Reservoir

Arterial

Figure 2.4 Simplified model of C 0 2 concentration on ventilation.

The ventilation depicted symbolically in Figure 2.4 is a cyclic process, where the volume 

of the lung is periodically changed. A variable portion of the total ventilation is ineffective
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because o f the dead air. whose volume is a function o f tidal volume. The oxygen and C O ; 

is exchanged across the alveolar membrane. If the alveolar R.Q. is not unity, dry inspired 

and expired gas volume will differ (which is norm ally the case. R.Q. = 0.875). The tissues 

consists o f a num ber o f individual elements connected in parallel. Each has its own char

acteristic, such as rate of m etabolism, blood flow, buffer capacity for C O ; etc. Also each 

elem ent is connected by an arterial and a venousal blood flow to the lung. The time for a 

blood elem ent from the lung to the tissue elem ent differs for each tissue element as well as 

for the time a blood element needs to reach a particular tissue element differs in the arte

rial blood flow from the time a blood element needs to reach the lung in the venousal 

blood flow from  that particular tissue element.

The model given by Grodins et al.~8 includes a number o f simplification in order to 

model the process. It is assumed that the events o f the respiratory cycle are ignored, where 

the lung has a constant volume and zero dead space. The oxygen exchange across the alve

olar membrane is set equal to the C O ; exchange (opposite direction) at every instant <R.Q. 

= 1.0). The C O ; tension in the lung is assumed to be uniform. All tissues are com bined 

into a tissue reservoir, whose rate of C O ; production becomes the total C O ; production 

and whose rate o f blood flow becom es the cardiac output. To convert the CO-, tension to 

total C O ; concentration, approxim ated CO ; absorption curves are used. No time delavs 

occur in the blood flow, that is the circulation tim e is infinitely short. Gas diffusion across 

alveolar and capillary membranes occur at an infinitely fast rate at any tension other than 

zero.

Using the above mentioned simplification, the controlled system equation, that is 

the description o f the dependency o f the ventilation on body C O ; concentration, is derived 

using continuity analogy. As for the lung reservoir, the difference between the rates ot 

C O ; inflow and outflow is equal to the rate o f change of the quantity of C O ; in the reser

voir and the C O ; fraction in the expired gas is the same as in the lung reservoir. The tissue 

reservoir balance equations involve the tissue C O ; production, the CO-, flow rate in 

arterial blood, the C O ; flow rate in venous blood and the volume rate of CO-, in the tissue 

reservoir. For the equations, the following sym bols and units were used.
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Table 2.1 Human Respiratory System Description

K j ... tissue C 0 2 production. 0.2632 [l(BTPD)/min].

K2 -- tissue fluid volume. 40.0 [I].

K j ... cardiac output, 6.0 [1/min].

K4 ... controller sensitivity, 2.0 [-].

K5 ... modified controller intercept setting. 246.24 [-].

K6 ... lung volume. 3.0 [1],

K j  ... fraction of C O 2  in inspired gas. (0.047)[-].

Gj  ... barometric pressure, 760 [mmHg].

G2 ■■■ slope of C 0 2 absorption curve. 0.00425 [1(B T PD iC 02/1.blood].

Gj  ... extrapolated intercept o f C 0 2 absorption curve.

0.32 [l(BTPD)C02/l.blood38°C].

V ... pulmonary ventilation. [ltBTPDi/min]. 

q, ... C 0 2 flow rate in expired gas. [l(BTPD)/min].

... C 0 2 flow rate in arterial blood. [l(BTPDi/min].

</, ... C 0 2 flow rate in venous blood. [IiBTPDi/min].

q4 ... volume of C 0 2 in tissue reservoir, [l(BTPD)].

q5 ... volume of C 0 2 in lung reservoir. [Ii BTPD i].

And introducing two new variables:

Volume of C O , m tissue reservoir ,  . ..
e r  = -------------------^------------------------  1 2 .1 2 '

tissue fluid volume

Volume of C O , in lung reservoir -  . ,
e 4 = ------------- :— 1- — -   *2 13 1

lung volume

By using an equation which defines the equilibrium between tissue and venous CO ; ten

sion and an equation which represents a linearized absorption curse for the C O ; content in 

arterial blood, the controlled system equation are formulated as follows:

A T , A . '  [ A T .  G . G . A f .  A C ,  ! A C  K . G . G ,  .  ,  .
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2.6.3 The Controlling System

The controlling system com prises all those physiological elements through which 

body CCS concentration operates upon pulmonary ventilation. It includes elements such 

as the motor nerves to the respiratory mussels or the motor nerves to the ventilatory pump, 

etc. This system is very difficult to model, since of lack o f physical informations and 

describing laws. The used model is based on empirical relationships. The authors of the 

present model show that the effective input to the described system is the C O ; tissue con

centration and not the arterial - or alveolar - CO ; concentration. The controlling system 

equation is given as follows:

v < n  =  ^ e r(t)-K< i 2 . 1 5 iO >

It is noteworthy that the controlling system is of the type o f a proportional controller.

2.6.4 Closed-Loop System

Figure 2.5 represents several interesting closed loop situations o f the respirators

system.

Blood-Lung-Tissue CO ; Exchanger

R espiratory

C enter
Settings

O

Tissue
Reservoir

Lung
Reservoir

Feetback Loop

1 y
Figure 2.5 Closed Loop Chemostat"1.
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The equation where the system is regarded as a regulator o f tissue C 0 2 concentration is 

obtained by implementing Equation (2.15) into (2.14). so that V is eliminated:

O ther interests can be investigated by deriving closed loop equations from (2.14) and 

(2.15) for alveolar (arterial) C 0 2 concentration and for pulmonary ventilation. The form er 

is rather complex and is therefore not given here. The latter, relationship for pulmonary 

ventilation, is of the same form as Equation (2.16). but its constants posses different val

ues. The pulmonary ventilation description is given as follows:

2.6.5. Linearized Model and State-Space Representation

Since both equations, for the tissue C 0 2 regulator and for the pulmonary ventila

tion differ only by the value of their constants, and the characteristics are similar, only the 

pulmonary ventilation description is being linearized and used in this work.

The linearization was done with the values given in Table 2.1. The input variable is 

Kj.  the fraction of C 0 2 in inspired gas. The linearization point was taken at 1 = 15 65 [1/ 

min]. Figure 2.6 and Figure 2.7 depict the theoretical ventilation transient for the nonlinear 

and the linear system. The linear system  describes the nonlinear event quite well. The 

state-space description for the pulm onary ventilation is given as follows:

+ V *  -  -

A V + B V V + C V + V ~ + D V  = E

where

A
-1.8861 -11 826145!

0 o ‘ 0 r  '  '; • B = . C = i o
i 760; “ -.760;
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2.7 Econometric Systems

Economics is a social science. It can be divided into m acro and m icro economics. 

We shall discuss only macro economic systems. Macro econom ic is the dynam ic behavior 

o f  consum ption, investment and employment driven by private and public activities. The 

m odel building o f econom ic systems is not as straight forw ard as the one to describe a 

physical system, since there exists a vagueness about some o f the functional relationships, 

particularly those including variables of a psychological nature. Another problem  is the 

m easurem ent, unlike a physical system, the economy is not well suited either to special

ized measurem ent instrum entation or planned experiments. Econometric theory is con

cerned with the determ inistic relationship between econom ical variables, for example 

between consum ption and disposable income. In the following sections, the economical 

relationships are introduced.

2.7.1 Investment Mechanism Model

In this section, we are concerned with the macro econom ic modeling, at a tairh 

elem entary level, o f a capitalist economy. The state variables are not decom posed, for 

exam ple so that one can also model effects o f international trade. Thus the model is a sin

gle sector modei. also called closed capitalist economy model. The states o f  the model are 

called  aggregates. Defining the aggregate Z as the dem and, resulting from  the plans of 

consum ers, businesses and government to spent their incomes. It is composed of consumer 

purchases C. investment purchases /. and government expenditure G.

Z=C+l+G  (2.19)

T his dem and will eventually lead to an output Y. There will be obviously a lag between 

dem and and output, because of the time it takes to translate demands for goods and ser

vices into actual outputs. In economics, this lag is called the Lundber^ian  lag. For simple 

m odels one can assume that this lag can be approxim ated by a first order lag w ith time 

constant 7\. in years.

w here s is the Laplace operator.

T he disposable income Yj  is the income K left after taxation T.
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Yd = Y - T  (2.21)

It is assum ed that some portion c of the total disposable income is used for making con

sum er purchases. This proportion c is defined in econom ics as propensity to consume 

Using again a  first order approxim ation for the relationship o f the receipt o f income and its 

use for the purchase o f consum er goods:

c  = - V -  (2.22i
I *♦* / 4 S

where Tc is called the Robertsonian  consum ption lag.

It is generally known that the problem  of m odeling the investment is rather com 

plex and difficult. Many different m odels and approaches have been suggested. In general

it can be considered as a function o f changes in the output. A lle n '' described the msest- 

ment m odeling as a linear function o f the time derivative o f the output, and a lag time con

stant Tu i = —— ( 2. 231
1 1 + T (s

where k  is a proportional coefficient. The private capital investment comes from that pro

portion o f the disposable income not used for direct consum ption, i.e. ( I-c)Yd. where the 

term (I-c)  is called the propensity- to save. In general the investment is a function of the 

output Y. output rate o f change, interest rate and marginal efficiency of investment:

/ = /(>'. Y . r . r m) (2.24)

The governmental expenditure can be modeled on a sim ilar way as the investment 

problem. The government makes its expenditure decisions. «. based on the level of public 

expenditure, which leads to the government expenditure G. The relationship between u 

and G  is again to be assum ed of a first order lag with the time constant Tg:

c  = ■ 1 2.25 1i

The total model can be symbolized in a block diagram as follows:
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Figure 2.6 M acro Economic System.

The described model is extremely simple and for example, there is no mentioning 

about any accumulation and economic growth, and can be classified as a perturbation 

model. In spite of it’s simplicity, it does illustrate most of the important economical fac

tors. such as the multiplier effect, where investment is rewarded by increases in the output, 

or reduction in taxation. The steady state gain from the investment, using this model, can 

be found to be / / ( / -c). where c < 1 . 0 . The steady state gain from the reduction in taxation is 

somewhat smaller. c /(/-c). The question now arises, how can one apply control theory to 

develop rules for government economic policy decisions. This problem has been exten

sively studied by numerous authors, such as Noton54. Desai et. al.5' etc. In general, it is 

quit straight forward to apply control theory, for exam ple one can transform  the above 

model easily into state space form and apply any control law required to achieve the 

desired output. The interpretation of this control law to economical actions is somewhat 

more involving and will not be treated here.
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2.7.2 Deterministic fourth order macroeconomic model

There exists a vast am ount of macro economical models in the literature, i.e.

Livesey36. Klein et a l.37 etc. M any models are deterministic in their form s, although more 

and more research is being done with stochastic models. In this dissertation, a simple 

deterministic fourth order macro economical model will be used. The m odel is given in

M ahmoud38, where also a brief description about the model is given. The aggregates 

(states) are as follows:

- total personal consum ption expenditure

- gross private dom estic investment in durable goods

- new construction

- effective interest rate

The model is sim ilar to the one above described, although is based on actual empirical 

data from 1966 to 1974 from the Egyptian economy.

The basic equations which form the model are given as follows:

C, = a , Yt f  a ; Ct _ , ( 2 . 2 6 )

K t = b 0 + b ] y i + b l R k + b i K l .  , ( 2 . 2 7 )

I t = K k - i  1 -  5 <ATt _ , ( 2 . 2 8 )

= To + T, Y t *  -  ' ( M t . ,  < 2 . 2 9 »

= -  e Q +■ (1 -  ?  ) [ C t -  l t *■ G ,  1 ! 2 . 3 0  I

where Q. represents the consumption rate. Yk is the disposable personal income. 

denotes the actual stock o f capital goods. lk accounts for the gross investment expenditure. 

Mk is the stock of money. The lower case letters represent suitable coefficients. In state 

space form the model is given as follows:

;0.5021 0.3083 0.3083 0 0 4079 0 0783
A _ jO 2806 -0.3819 0.2806 0 . B_. 0.1683 0 ( "* 3 1 i

10.1406 0 1406 0.4403 -0  2198; 0 0
k) 1109 0 1109 0 1109 0 : ^-0 "389 0 1872j
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Figure 2.7 Theoretical ventilation transient for the nonlinear system.
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Figure 2.8 Theoretical ventilation transient for the linearized system.

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm issio n .



CHAPTER HI

SYSTEM IDENTIFICATION METHODS AND ALGORITHMS

3.1 Introduction

As has been seen in the previous chapter, there is a definite need by engineers and 

researchers in various fields to obtain a better knowledge o f their systems, plants, struc

tures etc. The motivation, in this work, for perform ing system  identification is derived 

from the control engineering point o f view. That is. one intends to design a control strategy 

based on the identified system characteristics. There are basically two classes of system 

identification methods, the nonparametric system identification methods and the param et

ric system identification methods. The nonparametric system identification methods were 

developed from the classical control theory. The frequency analysis technique plased a 

dominant role of this development. This methodology made it possible to determine the 

transfer function accurately, in a format which could be used for the controls design. The 

modem control theory introduced an other kind of system  representation, and with a feu 

expectations, they all were o f parametric form. The problem  introduced w ith these para

metric models was, that the identification process had to solve param eter estimation and 

related techniques. This development introduced a renew ed interest in the field of param e

ter estimation techniques.

In general, an identification process can be characterized by a class of models. b> 

the set o f input/output data and a criterion for the determ ination of the goodness of the

results. Zadeh39 (1962) gives the following definition for system identification.

Definition 3.1:

Identification is the determination, on the basis o f input and output, of a system 

within a specified class of systems, to which the system  under test is equivalent.
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In Table 3.1 some of the more popular nonparametric identification methods are 

listed, including a brief statem ent o f its principal on which the method is based and its 

characteristics.

Table 3.1: Nonparam etric Identification M ethods

Method Domain Principle
1

C haracteristics j
. -  - ------ ---------- j

Correlation Time Correlation of output with 
input, and solve for the 
im pulse response

Approximation o f  the 
covariance m atrix R>u

Frequency
Response

Frequency A pply a sine wave, and 
determ ine amplitude and 
phase graphically

- Sinusoid inputs only j
- Long experim ent periods 

necessary

Frequency 
Response and 
correlation

Frequency Apply a sine wave, corre
late with sine and cosine to 
suppress noise

- Sinusoid inputs only i
- Long experim ent periods j 

necessary

Fourier
Analysis

Frequency The em pirical transfer 
function estimate = dis
crete fourier transforma
tion o f the output divided 
by the discrete fourier 
transform  of the input

- Fast
- Noise-sensitive

There are many other nonparam etric identification methods available, though the 

interest in this work is on param etric system identification methods, and we shall therefore

concentrate on those methods. Param etric system identification methods l ~ ' can be char

acterized on what model structure their algorithm is based, what estimation m ethod is uti

lized to determine the model param eters and. if the identification process is perform ed on

line or off-line. The different m odel structures are introduced in Section 3.2. while some 

of the popular estimation m ethods are briefly described in Section 3.3. A different classifi

cation can be made based on the inclusion of a feedback controller and the availability of 

the input data. That is. some system s do not require feedback control, and the identifica

tion can be performed based on the inpul/output data of the actual system. However, for 

unstable and marginal stable system s, most identification methods fail to characterize such
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a system. In these cases, feedback controller are used, and the input data to the closed loop 

system is used for identification. Though, some systems, such as biological systems, a 

feedback controller is inherent, and the only choice is the identification of the closed loop 

system. In general, based on the inclusion of the feedback dynamics, one can distinguish 

between the direct system identification methods4' 1'.  where an open-loop system is identi

fied, indirect system identification m ethods1", where the closed-loop dynam ics of a system

is identified, and the jointly  input-output identification m ethods13, w here the controller 

dynam ics is unknown and the output of the system is driven by noise only. One specific 

direct system identification method is introduced in Section 3.3. while a particular indirect 

system identification method is given in Section 3.4.

The identification methods are based on “real-live" experim ents, which h a \e  to be 

carefully designed. For example, the input signals have to excite all the system  modes, but 

should be restricted such that they do not destroy the system. The portion of input design

in the experimental design is widely studied14, and includes issues such as param eter sen

sitivity, limitations on instruments, parameter identifiability. model assum ptions, etc. Also 

o f much interest is the overall experimental design, for example w hich output and with 

what frequency shall they be measured, open-loop or closed-loop dynam ics etc. Some of 

these issues will be treated in later chapters.

3.2 Model Structures

A crucial point in the process of identifying a system is the selection o f a candidate 

model. The choice o f the model structure will greatly influence the identification process 

and its results. In practice, sometimes a wide variety o f different m odels are tested and 

evaluated upon which delivers the best description o f the actual process. The different 

model structures differ from each other by what they try to include o f the description of 

the real process, that is where one sets the system boundaries, what will be taken into 

account as the system, and what will be neglected. Closely related to this decision is the 

experimental design, the determination of which signals actually should be measured at 

what sampling time and with what input signals. Once the experimental conditions are 

fixed, the choices for the candidate model structures are reduced to satisfy the require

ments given by the intended application of the identified model.

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow ner. Further reproduction  prohibited w ithout p erm issio n .



In the following, four different model structures will be briefly discussed, 

although, only one will be used later on in this work, it is worthwhile to introduce the d if

ferences and characteristics of the other models.

3.2.1 AR-Model

Yule40 (1927) proposed to represent a stochastic process by param etric models, in 

specific by an Auto-Regressive model (AR-model). T his model proved to be very efficient 

in fitting time series data in many different fields. In general, the AR-model is a linear d is

crete-tim e filter, which is excited by random impulses. The model can be given as follows:

-v * =  X w , u k - ,  +  e k ( 3 I >
i = 1

w here w t are the filter tap weights or in this case the AR-model param eters. u k _ ( is the 

observed time series and ek is a random, white noise process. Equation (3.2) satisfies the 

time series with the order q

u n + a \ u n - \ + a 2 u n - 2  +  -  + a q u n - q  =  ^  <3 -->

Than, it is easy to see that

11 n =  VV'l “ n -  I +  W 2Un +  * *

w here ak = - w k . The term autoregressive stems from the fact that the current value of the

process is the convolution of the past values of the process with some tap weight and some 

random  error. The variable u is the regressor and the output of the process is therefor 

regressed on itself.

3.2.2 ARX-Model

The Auto-Regressive with exogenous (ARX) input model is an extension of the 

AR-m odel by an additional, the exogenous, input. The term exogenous stems from the 

econom ical system representation, where ARX-m odels are quite often used. The model 

description includes therefore two convolution terms, the linear com bination o f the autore- 

gressor and the one from the exogenous variable. The model can be given as follows:

y </
>'i = I  X h 'Ut - ,  +  e k <3-3'

1 = 1  i = i
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Note, that the described model is o f the form of a transversal filter. A more detailed 

discussion o f this model and in particular its relationship with the state-space model will 

be given in Chapter IV.

3.23 MA-Model

The general difference between the AR-model and the M oving Average (MA> - 

model is that the former concerns the problem o f solving a  set o f linear equations and the 

latter o f solving a set of nonlinear equations for its model param eters. The model can be 

given as follows:

<7

“k = ek + 1  b,ek - ,  ‘3.4)
i = I

where b { are the moving average parameters, and ek are the white, gaussian noise terms

with variance a i .  One may compute uk by constructing a weighted average of sample 

values e k, e k _ { from w hich the name moving average arose.

3.2.4 ARMA and ARMAX-Models

The autoregressive moving average model (ARMA) and the autoregressive m ov

ing average with exogenous input model (ARM AX) are m odels composed of the above 

discussed models. The ARMA-model is given as follows:

<7 <7

“ k +  I  a iUk- t  = e k +  I  V t- ,
i = l  i = 1

where a k and b k are the ARM A parameters. Note that the AR-model and the MA-mode!

are special cases o f the ARMA-model.

The ARMAX-model includes the sam e extension as the AR-model to an ARX- 

model. Here, one includes the convolution o f an exogenous variable to the ARMA model.

3.3 Parameter Estimation

In system identification, one is constantly confronted by the problem of inferring 

consistent data from measured random data. The random nature of the measurement 

defines the need for a suitable estimator. It also implies that the estim ator should yield esti

m ates that are reasonable, for example the estim ator should deliver efficient and unbiased
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estimates. Estimation theory is an intensively studied subject and known for centuries. 

Astronomers around 300 B.C. dealt with the problem to estimate parameters o f observ ed 

data. Legendre and Gauss are credited with the popular method of least-squares around 

1795. In the following, the least-squares method, the on-line least squares method and the 

maximum likelihood method will be briefly introduced using the following definitions:

Given the an unknown param eter set 0  = ja , 6, a ,  ... Q(f and an output

sequence q = jy^ + , + ... v̂ j • where / is the data length and q the model order. Then

one can form the information m atrix from the input r, and the output y

T T T T T T
V r  V i q  <7-1 V  1 •-  V1 r l

T T T T r T
-V  i r  i v<7+1 - <7 r

<7 • -v2 r 2

T T T T T T
-'<7 + 2 rq  +  2 ' q  +  ! r<7+1 V, r .

T T T T T T
y l -  1 r l -  1 y l -  2 r l -  2 r l ~ l

and the following relationship is true:

q = d>0 + e < 3 .6 1

where e is a random white, gaussian data vector.

3.3.1 Least-Squares Method

Least-squares estimation m ethods do employ a quadratic functional, where the 

objective is to minimize this function, also called cost function or loss function. The scalar 

cost function is composed of the estim ation error, for exam ple of the actual output and the 

estimated output:

e t = q -d > ©

where 0  is the estimated param eter vector. Then the cost function can be written

J = ( q - 0 0 M q - < D 0 )  t3 .7i
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The least-squares solution is obtained by setting 5 7 /8 9  = 0 which results in

0  = (<Dr <t>f‘<i>r q (3.8)

The least-squares solution is derived through deterministic arguments and can be used 

when there is no associated probability density function of © and q .

3.3.2 Recursive Least-Squares Method

The method introduced in Section 3.3.1 is commonly referred to as the batch pro

cessing least-squares method because the I data points are processed simultaneously. In 

case there is new data available after having determined an estimate based on the / data, it

is necessary to completely reprocess the old data. In essence, the estimate © based on

is discarded and the solution is recom puted. This problem is often found in real tim e sys

tem identification and on-line system identification. The recursive, also so called sequen

tial least-squares method, considers the determination of the least-squares estim ate from 

an estimate based on <t>t and the new data , .  The derivation of the recursive least

squares method can be found in Sorenson41 (1980). and only the results w ill be given here.

©t = © t_ i + ^ 't [q 4 - 0 ^ 0 * _  i ] (3 9t

where the filter gain Kk is given as

= p f i U l '  '-V91

and R k is the covariance matrix of the observation and Pk is the error covariance matrix 

3-3.3 Maximum Likelihood Method

Assuming the outcome ^ o f an experim ent is dependent on an unknown param eter 

sequence 0 .  then the maximum likelihood estimate of the parameters 0  are the \alue> 

for which the observation q are most likely to occur. That is. one has to maximize the so 

called likelihood function, which is com posed o f the conditional probabihtx densitx func

tion o f the observation q given 0  :

l©> =  X— 7 e x P r - l ( q - ( b © ) V i ( q - d ) © ) ]  (3.10)

( 2 k )2\R\2
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where R  is the covariance matrix o f a zero-m ean, gaussian distributed observation, and 

is the m axim um  likelihood function. Since maximizing this likelihood function

results in maximizing the exponent in the bracket o f Equation (3.10). this problem can be 

treated as minimizing a weighted sum of least squares. The result is obtained in the same 

way as given in Section 3.3.1:

0  = {QTR~l Q) ~ lQ TR~l q (3.11)

The maximum likelihood method can handle one of the most general identification 

problem s, where one has to extract parameters for any type of system  from data containing 

both m easurem ent and process noise. The result is analogues to the solution of the 

w eighted least-squares solution, though one can use the covariance matrix of the observa

tion as a selection o f the weighting matrix.

33.4 Comparison and Applicability of Parameter Estimators

It is worthwhile to mention the four statistical properties used to characterize the 

param eter estimation methods. Assume that 0  is the estimation o f 0  based on / observa

tions. © is unbiased  if

lim £ [0 /1  = © (3 .12>
/  —* ac

If

l i m P [ ( 0 / - 0 )  = 0 ]  = 1 <3.13)
/ —* w

- , 1 ■
the estim ate 0  is considered as consistent. The efficiency of an estim ation 0 /  compared 

to 0 / “ } is defined as the following ratio:

E [ ( G - e \ l})2)n = ---------—
£ [ ( 0  -  © /” V ]

-(I,* - ■: (
W hen q  < 1. the estimation 0 ;  is more efficient than 0 /  . The estimated parameter

vector 0  is sufficient, if the conditional expectation

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm issio n .



£ [ 9 / | ( » y ; .........>/)] (3.15)

of the param eter vector 0  is independent o f the param eter vector 0 .  The sequence \ k 

represents a series o f  observations. The estimation is sufficient, if no other estimation can 

contribute any more information about the param eter vector © .

The batch processing least-squares estimation m ethod is a very general, robust

estim ator. The estimate 0  is unbiased, it will be shown in C hapter V. that it is also a o>n- 

sistent estimator. This estimator is well suited for off-line system  identification, in con

trary to the sequential or recursive least-squares estimation m ethod, w hich can be used for 

on-line system  identification. The recursive least-square estim ator can be compared to the 

Kalm an filter, and a similar problematic is found o f finding the initial weighting matrix 

Hence, the m axim um  likelihood estim ator is also a consistent estim ator and is asym ptoti

cally unbiased. Though, in the following system identification m ethods, we will make 

am ple use o f the batch least-squares method, and in some instances w ill use the recursive 

least-squares estimation method.

3.4 Direct System Identification

There exists several open-loop system identification m ethods which are quite prac

tical. For exam ple the method developed by Chen et al.6 is capable o f identifying a state 

space model for an open-loop system from a finite difference model. The ARX model i>

derived through Kalman filter theory. Juang et al. developed a system  identification 

m ethod which also uses open-loop system input/output data, but employes a state 

observer, such that the ARX model needs a much lower order to represent the same system

accurately, and the derivations are based on a deterministic approach. Chen et al.'J and

Juang et a l .10 used projection filters to develop the identification algorithm  for stochastic 

systems. The relationship between the state-space model and the ARX model is derived

based upon optimal estimation theory. Huang et a l.12 uses the z-transform ation to derive 

the relationship between the state-space model and the ARX model for closed loop sto

chastic system s using the direct system identification method.

In the following an open-loop system identification m ethod (O K ID i is introduced, 

which will be used in the following chapters periodically.

R ep ro d u ced  with p erm issio n  o f  th e  cop yrigh t ow ner. Further reproduction  prohibited w ithout p erm issio n .



3.4.1 Calculation of Observer and System Markov Parameters

Considering a stochastic, discrete time, linear autonomous system given in state- 

space form:

-r t + i  = A x k + B u k + w k (3.16>

> t  =  C x k +  D u k +  v k ‘ 3 . 17 )

where x € R n * 1, u e  Rs * 1. y e  Rm * 1 are state, input and output vectors, respectively: 

wk is the process noise. vk is the measurem ent noise: [.4. B. C. D] are the state-space 

parameters. Sequences wk. and vk are assum ed to be Gaussian, white, zero-m ean, and sta

tionary with covariance m atrices Q and R respectively.

Introducing a typical Kalman filter, one can write the following system equations: 

i = A i k + B u k + K z k <3.IS)

where x k is the estimated state. K  is the steady state Kalman filter gain, and e t is the inno

vation. or the so called the residual. The estim ated measurement is then obtained by com 

paring the Equation (3.18) fo r x k with Equation (3.17)

yk = C x k + D u k (3 .1 9 1

noting that e k = y k -  yk . Than one can easily obtain the following equation

= [A -  K C ] x k + [B -  K D \u k + K y k

or

x k  ̂ + < 3 .20 1

—  — p  -] } W i t

where A = A -  K C , B = \B  -  KD  K • the information matrix = !

LV̂

Defining

I X/-l] , 3 : 1 ,
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'•9

V =

* V i

q -  I q

I - I 

d / - 2

and T =

Than one can write

d 0 #1 - V , - l

p  C B  C A B  ... C A q ‘fi] (3 .2 !)

v =  Y V  + e  +  C A ^ x

where x -  [ r 0 x ,  x 2 . . .  a n d  e  -  [£(/ e ^ l £ ,  + :  . . .  •

and / is the data length. If q is large enough, the term C A q becomes zero and one can write 

Equation (a)

v =  Y V  + e ( 3 . 2 3  i

Employing the least-squares method, one can com pute the sequence I’ . w hich are the 

observer Markov parameters:

-  - T  T -1
Y = yV  [ V V  ]

The obtained observer Markov param eters are partitioned as follows:

( 3 . 2 4 )

Y = y o Y\ y :  -  y ]

than

Y n  = D

Yt  = C A k [B = v>( i > v (2)4 i - I k

To recover the system  Markov parameter, one can compute

r 0 = P„ = d

(3 2 6  a» 

i 3 . 2 6  h i

( 3 . 2 7 )  

i 3 . 2 S  i

Once the system M arkov parameter are obtained, one can determ ine the observer gam
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M arkov param eters as follows:

Y °  = y \2> = C K i3.29i

k -  1
(3.30)

i = I

The system is uniquely determined by its Markov parameter.

3.4.2 Eigensystem Realization

In o rder to recover the system matrices, an eigensystem realization m ethod is used, 

as is explained in the following.

As a first step, a block Hankel matrix H { 0) is constructed.

Using the singular value decomposition, the block Hankel matrix H( 0) is factorized a> 

follows:

where r = r a n k { H { 0 ) }. The order o f the identified system is then determ ined by exam

ining the magnitudes of the singular values. The singular values with relatively high mag

nitude are counted, while the singular values with relatively low magnitude are assumed to 

be noise related. The number of relevant singular values is the order of the identified sys

tem.

K, Y (3 .3 1 1

H(  0) = KXS
T

where R e  R and S e  Rn * n are two orthogonal matrices and R TR  = I„ and

s 0 and 5 = diag[G, ,  <7-, a j . G are the singular values and are
0 0 '

in the following order:

a, >a; > ... >ar>0 (3.33)
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A construction o f a minim um  order system representation can be established as 

follows:

A = r „ ' /2R l H O ) S ' Z ; ' ' 2 (3 34)

B  = x ; ‘/ : 5„r £ ,  (3.35)

C  = E*R„Z ! / ;  (3.36)m n n

where E Tr = [ / r 0 r ... 0 J  . E ^  = j / m 0 m ...  0 mJ and m  are the number o f outputs and 

r the num ber of inputs.

3.4.3 Step-by-Step Procedure for System Identification using OKED

The following is a brief description of a step-by-step procedure for system identifi

cation using OKID.

1. Form an inform ation matrix and an output vector, using Equation (3.21). and es ti

mate the coefficient matrices o f  the ARX model and the observer M arkov param e

ters by invoking the least-squares method. Equation (3.24) and (3.25).

2. Recover the system  Markov param eters, using Equation (3.27) and (3.28) and the 

observer gain M arkov param eters. Equation (3.29) and (3.30).

3. Realize the open-loop system matrices from the system Markov parameters b> 

forming a block Hankel m atrix and using singular value decomposition. Equation

(3.31), (3.32) and (3 .3 4 -3 .3 6 ).

3.5 Indirect System Identification1

As mentioned above, the indirect system identification method calculates first the 

closed-loop system M arkov param eters and than uses the known controller dynamics to 

com pute the open-loop Markov param eters. The following algorithm can be applied to 

stochastic, linear, autonom ous system s which are excited by random inputs. In the first 

section, the relationship between the closed-loop state space and ARX m odels is shown. 

The next section deals with the problem  of the estim ation of the parameter of the ARX 

model. Once the param eters are found, it will be shown how to com pute the M arkos

1. T he d e sc rip tio n  and d e riv a u o n s  are from  M m -H u n g  H s ia o .'E x p Iic it and  Iterative LQG C o n tro lle r  
D esig n ."  P h .D . d isse rta tio n . O ld  D om in ion  U niversity , pp. 55-70.
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param eters o f the closed loop system and Kalman filter as well as the M arkov parameters 

o f the open loop system and Kalman filter. A distinction will be made for closed loop 

identification with full-state feedback.

3.5.1 Relationship between the State-Space and ARX Models

A finite-dimensional, linear, discrete-time, autonom ous system can be modeled as: 

x k + i = A x k + B u k + w k *3-16'

y k = C x k + vk (3-17'

, _n x I - J  x I x I .
where x e  R  , u e  R . y e / ?  are state, input and output vectors, respectively : 

wk is the process noise, v* is the measurement noise: [A. B. C] are the state-space param e

ter. Sequences w, and v* are assumed to be Gaussian, white, zero-mean, and stationary 

with covariance matrices Q and R respectively. One can derive a steady-state filter innova

tion m odel42:

r i+1 = A x k + B u k + A K £ k (3.3

y k = C x k + z k (3.38»

where x k is the a prior estimated state. K  is the steady-state Kalman filter gain and e, is 

the residual after filtering: = y k -  C x k . The existence of K  is guaranteed if the s\stern

| /  1 4 -v
is detectable and (A, Q ' )  is stabilizable .

On the other hand, any kind of dynamic output feedback controller can be modeled

as:

Pk ♦ l = A dPk + Bd>\ ,3 -39)

11 k ~ CdPk + DJ>'k + rk ,3 4 () ’

where Aj,  B#  and Dd are the system matrices o f the dynam ic output feedback control

ler. pk is the controller state and rk the reference input to the closed-loop sy stem. C om bin

ing (3.37) and (3.38). the augmented closed-loop system dynamics becomes:

n * * i = - M  j + V t  + W t  ,3 4 1 >

-v t  =  Ccn k +  e k ( 3 . 4 2 )
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where

=
Xi

Pk

A  + B D jC B C „

BdC A,

ACK C =
A K  + B D C 

B ,
.and Cc = [C q] • (b)

It is noted that Kc can be considered as the Kalman filter gain for the closed-loop system 

and the existence o f the steady-state Kc is guaranteed when the closed-loop system matrix 

A c is nonsingular.

— i - 1
y, =  I C /  I  C cA + El 13.43)

( =  1 I = 1

w here .4 = A c - A cK cC c and is guaranteed to be asymptotically stable because the

steady state Kalm an filter gain Kc exists. Since A is asymptotically stable. .4 = 0 if / > q 

for a sufficiently large number q (see reference 10). Thus (3.43) becomes

where

>’k = I  a,v*-«+ I  V*-,  + et
i= i  1 = 1

a, = C .A "  .4 K .  and 6, = C rA ~  B.
I t  C l I C i

(3.44)

(Cl

The model described by Equation (3.44) is the ARX model, w hich directls repre

sents the relationship between the input and output of the closed-loop system . The coeffi

cient matrices a, and b , can be estimated through least-squares methods from a random 

excitation input rk and the corresponding output yt . From equation (3.44) it can be seen 

that parameters of the ARX model are linearly related to the closed-loop input-output 

data. Therefore, solving for an ARX model involves the problem of solving a linear pro

gramm ing problem  involving an over-determined set of equations.
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3.5.2 Open and Closed-Loop System and Kalman Filter Markov 

Parameters

In the previous section, an ARX model, w hich represents a closed-loop system, is 

identified from the closed-loop input/output data through the least-squares method.W ith 

known controller dynam ics, the estimated ARX model can be transform ed to an open-loop 

state-space model by the following steps. First, the closed-loop system  and Kalman filter 

Markov parameters are calculated from the estim ated coefficient matrices o f the ARX 

model. Second, the open-loop system and Kalman filter M arkov parameters are derived 

from the closed-loop system Markov parameters, the closed-loop Kalman filter Markov 

param eters, and the known controller Markov parameters. Third , the open-loop state- 

space model is realized by using singular-value decom position for a Hankel matrix formed 

by the open-loop system  Markov parameters. Finally, an open-loop Kalman filter gain is 

calculated from the realized state-space model and the open-loop Kalman filter Markox 

param eters through least-squares.

The z-transform  o f the open-loop state-space model (3.37) yields

x ( z )  = ( ; - A ) - i (flM(z) +  A ATe( c )) i .V45i

Substituting (3.45) to the z-transform of (3.17). one has

y( z )  = C { z - A )  \ B u ( z )  + A K e ( z ) )  + £( z )  <3 46i

OC 30

= X Y( k ) z ~ku ( z ) +  X jV(z)z~kE(z)  <3-47.
4 = 1  4 = 0

4 - 1  4 -  'where Y( k )  = CA B  is the open-loop system Markov param eter. ;V(k ) = CA  A K  

open-loop Kalman filter Markov parameter, and N(0)=I  which is an identity matrix. Sim i

larly, for the dynam ic output feedback controller (3.39) and (3.40) and the closed-loop 

state-space model (3.41) and (3.42). one can derive

u( z )  = X Yj ( k ) z ~ky( z )  + r ( z )  ' 3 48 >
4 = o

OO 30
Viz)  = X Y, ( k ) : ~ l n z ) +  X tf.(Jfc)c'*£(c) (3 49)

4 = 1  4 = 0
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4-1  4-1
where Yd(k)  -  C cA d Bd is the controller Markov parameter. Y c(k)  = C .A . B  the

closed loop system M arkov parameter, and N c{k) = C cA kc ~ lA cK c the closed-loop Kal

man filter M arkov param eters. It is also noted that 1^ (0 ) = D d and A't.(0) = / .

The z-transform ation o f the ARX model (3.44) yields

( .  i  ’
i -  X<v

V i =I
y(z )  = X  b - ~  r ( z )  + e (c ) 1 3.50)

i = i

Applying long division to (3.50). one has

_ I
v ( c )  =  +  (b-, +  a , 6 ,  )c  “ +  ( b x +  t f , (6- .  +  a ^ b x ) +  a ^ b ,  )c - t - . . . | r ( c )

_l _■>
+[I+a,C  + { a la l + a 2)Z " + ( t f , ( a ,a ,  + a , )  + a 2a t + U;)c + ...]e (c )

(3.5 I i

After com paring with (3.49). the closed-loop system and Kalman filter Markov param eters 

can be recursively calculated form the estimated coefficient m atrices of the ARX model.

4
= h t + I  * / , ( * - 1) .3.?:*

i = i

k
N c{k) = £  a ttVc( k - i )  • 3.53»

/ = l

It is noted that Yc(0)=0,  N j 0 ) = l . and at=bt=0, when i>q. One may obtain (3 52 > and

(3.53) form (c) and the definition of the Markov param eters16 1 . However, the derivation 

is much more complex.

Next, the open-loop system and Kalman filter Markov param eters can be derived 

from the closed-loop system Markov parameters, the closed-loop Kalman filter Markov 

parameters, and the known controller Markov param eters. Substituting (3.48) into »3.4“’» 

yields

( ~ -*Y  ~ ■ ^I V  Y l k ) -  ky U )  = ! X  Y(k) x Yd(k ) z  \v(;) I + X Y(k)z~k r{z)  + X -Vl
Vi = I A k  =0  ) k = ! 4 = 0
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= X  a kz  *.v(- )  + X  Y ( k ) z  4r ( c ) +  X  *£(-) <3-5 4 >
k = 1 k = i k = i

oo

w here Ctk = X  Y{i )Yd(k  - / ) .  Rearranging (3.54). one has 
( =  I

f  ■30 \  OO U

. T- ..  , -t
, /  -  X  a kz  k ]>■(-) = X  Y{lc)z *r {z )  + X  •v ^ ' i : " t EC)
V 4 = 1  J  t  = I k = 0

(3 .551

Similarly, one can apply long division to (3.55). and then compare it with (3.49i. to 

describe the ciose-loop system M arkov parameters recursively in terms o f the open-loop 

system  and the controller Markov parameters.

oo j  k
Y CU )  = Y U ) +  X a k Y c( j - k )  = Y( j )  + £  X Y ( i ) Y ^ k - t ) Y A j - k )

k = 1 k = It = I
(3.561

And the closed-loop Kalman filter Markov param eters can be recursively expressed in 

terms of the open-loop system M arkov parameters, the open-loop Kalman filter Markos 

param eters, and the controller M arkov parameters.

J  J  k

N e( j )  = .V(;)+ X a k^ c( j - k )  = N ( j ) +  X X Y [ i ) Ydik -  i \ S  a j  -  k;
k = 1 k = 11 = !

(3.571

Rearranging (3.56) and (3.57). one has

J  k

Y U )  = Yc( j ) ~  X X Y ( i ) Y / k - i ) Y i j - k )  (3.5S.
k = I i = 1 

]  k

X ( j )  = <Vc( ; ) -  X X Y{ i) Y d (k -  i ).V. ( j - k )  ( 3 59»
i  = 11 = I

Equations (3.58) and (3.59) show that one can recursively calculate the open-loop system 

and Kalman filter Markov parameters from the closed-loop system Markov parameters 

(from (3.52). the closed-loop Kalman filter Markov parameters (from (3 53n. and the

known controller Markov parameters Yj ( k )  = It is noted that )' (0) = 0
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and N C(Q) = I . One can easily verify (3.58) and (3.59) from (b). and also from  the defini

tion of the Markov parameters.

3.5.3 Step-by-Step Procedure for System Identification with Output 

Feedback

The above outlined method for identifying an open-loop state-space m odel from 

closed-loop input/output data with a known dynam ic output feedback controller is in the 

following summarized by a step-by-step procedure

1. Estimate the coefficient matrices o f the A RX  model from closed-loop input/output 

data by using a least-squares method.

2. Compute the open-loop system and Kalman filter Markov parameters fro the esti

mated coefficient matrices of the ARX model by using Equation (3.52) and < 3.53 >

3. Determine the open-loop system and Kalm an filter Markov param eters from the 

closed-loop system Markov param eters, the closed-loop Kalman filter M arko\ 

parameters, and the controller Markov param eters calculated from the known con

troller dynamics, by using Equation (3.58) and (3.59). respectively.

4. Realize the open-loop system matrices from  the open-loop system M arkov param e

ters by using Equation (3.31) and (3.34-3.36).

3.5.4 Closed-Loop Identification with Full-State Feedback

This section deals with a special case o f the aforementioned closed-loop identifica

tion method. If a constant-gain full-state feedback controller is used, the open-loop sy stem

can be identified by following a simpler procedure12-'14. An open-loop sy stem with a full- 

state sensor and a constant gain full-state feedback controller can be modeled as:

x k _ j = A x k + B u k + w k (3 16'

y k = x k + v k 1 3.60.

u k = -  F y k + rk i 3 61 i

where F  is the known constant feedback gain and rk is the reference input to the closed-

loop system. After applying filter innovation m odel41 to the open-loop system and elim i

nating control input uk. the closed-loop system becom es
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xi + 1 = (A -  B F ) x k + Brk + A K  -  B F ) t k (3.62)

>k = * t + e t (3.63)

Comparing (3.62) and (3.63) with (3.41) and (3.42). one can have q* = i k

A c = A - B F .  B c = B.  A CK C = A K - B F ,  and Cc = Then one can identify the

closed-loop system matrices and Kalman filter gain by the same way as the proceeding 

section. If the identified closed-loop system matrices and Kalman filter gain are described

by a quadruplet. .4<-. B <-. C c. A CK C. one needs to transform it to the same coordinate used 

in (3.62) and (3.63). so that the controller dynamics can be removed from the closed-loop 

system. Since full-state feedback is used, the identified output matrix C c- is a square

matrix, and is generally invariable. Then one may use c j  as the transform ation matrix to

.  .  . - i  - .  - .  .
transform the identified quadruplet to be [CcA cCc where /  is an identuv

matrix. Comparing the transformed quadruplet with (3.62) and (3.63). one can easilv 

obtain

A - B F  = t cA cC ~ \  B = CcBc . A K - B F  = C cA ck ,

The identified open-loop system matrices and Kalman filter gain become

A = C cA cC~J + C cB cF .  B = C cB c . C  = l . K  = .-T1 (CcA cK c + B F )

If sensors are available to provide all the state information, one can choose a con

stant gain controller, such that the closed-loop system has the same dim ension as the open- 

loop system.

3.6 Coordinate Transformation

For any dynamical systems, although its system Markov parameter is unique, the 

realized state-space model is not unique. If one needs to compare the identified state-space 

model with the analytical model, both models have to be in the same coordinates In this 

section, a unique transformation matrix is presented to transform any realized state-space 

model to a form usually used for a structure dynamic system so that any identified svstem 

parameter can be compared w ith the corresponding analytical one. This unique transfor

mation matrix exists only when at least one half of the states can be m easured dtrectlv If

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm issio n .



this condition is not satisfied, other transformation matrices may exist but they are usually 

not unique.

Consider a structural dynamic system

M p  + D p  + Kp  = Gu  (3 .64 1

where p  is displacem ent, u control force. G  control influence matrix and \ f .  D  and K  are 

mass, damping and stiffness matrices, respectively. Then the state-space equation and out

put equation are.

(3.65)x  = A x  + B u  and v = C „ x .
rrl rTt rTt

where x  =
n r  o i

• * «  =
0
_ !

r
• =  - i

A l -M  K -M  D M G
and C  is the output matrix.

If half o f the states can be measured directly, then Cm = I /  o| ^ow- one ma> r̂st con*

vert the realized discrete-tim e system [A.5.C] to a continuous-tim e system [ A. .  B .. D ] If 

A is diagonalized by matrix Q. then

Q~lA Q  = A

A f = (3 66 *

B c = ( A - I )  A BC '  c

where T  is the sam pling time. It is assumed that the matrix 

transformation matrix P  be

then

P  = [p , P,1 = j C
L 'J [C A ,

r  i

p l p  = L K p ' p 'LCa J l * --

-i

c
C .4J

1 3 6~ i

! is full rank. Let the

|  C P i  C P z \ = \ I  0 !  

[C .-^P , C A .P ; j i 0  I \

( 3 . 6 8 '
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c . r  i ~CAeP x C A cP 1 0 IA c p .  p J  =
CL 1 -J

C A 'P , c a ; p 2 ,V .V

CP = [c7>, C P ,] = [ /  o] '3.691

Note that CP  = C „ . As a result, the identified continuous-tim e model [A . B .. Cl can be
f f l  1 c c 1

transform ed to be [P lA cP. P 'fi^ .C Pl w hich is in the form of Equation (3.65 >. Then both 

the identified and analytical models are in the same coordinate and can be compared.
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CHAPTER IV

ACCURACY MEASURES OF SYSTEM IDENTIFICATION 

PROCESSES

4.1 Introduction

In the first part, the ARX model fo r a finite-dimensional system is developed for a 

system with or without having a state controller. It is shown that both ARX models are of 

the same type, and posses the same accuracy problematic. Although for the controlled s> s- 

tem the accuracy aspects are addressed w ith the help of the augmented system matrix, the 

system without controller can be com pared to the latter one. In the third part, it is shown 

that the inaccuracies produced during the system  identification process, starting from the 

ARX model through the identified open-loop M arkov parameters, are of less significance, 

even with moderate noise levels, than the error introduced by the ARX model, the param 

eter estimation error o f the ARX model, w hich is shown in part four. In pan five, the influ

ence o f the process noise to the system identification accuracy is investigated.

4.2 ARX Model Representation

The ARX model is one o f  the m ost simple input-output descriptions and is b a s i

cally a linear difference equation, in som e literature it is also called an equation error 

model. As outlined in Chapter III. it represents the parameterization of a linear time m \ari- 

ant stochastic system. AR refers to the autoregressive part and X to the extra input, which 

is the exogeneous variable in the field o f econom etrics. In this work, the ARX model rep

resents also a finite impulse response.

System identification using ARX m odels have been studied extensively in the liter

ature. Gunnarsson45 (1991) investigated the aspects o f accuracy of recursively identified 

ARX models in the frequency domain. M ost recent literature deals with time \a ry ing
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systems, such as Millnert46 (1987), Karaboyas et al.47-48 (1990) and (1991). \ lo s c a  et al.49

(1989) and especially McGraw et al.50( 1993) give conditions to use ARX models instead 

o f ARM AX models.

In the following, the derivation o f an ARX model is given. A finite-dimensional 

system can be modeled by the following linear, autonomous, stochastic model in d iscrete

time:

x k + i = A x k + B u k + wk ( 4 1 )

>k = C x k + vk , 4 2 )

The noise sequences wk and vk are assumed to be white, gaussian with zero mean and rep

resent the process noise and the m easurem ent noise, having the covariance matrices Q  and

r» .• 1 - n .  . x 1 n m  x  I n o  x 1/?. respectively. The vectors x  e  R  . u s  R . y e R are state, input and 

output vectors, respectively. U tilizing the steady state filter innovation model.

= A x k + B u k + A K z k (4.3)

y-f. = C.r +  £t (4.4)

Where the term = y t  -  C x k contains the new information, since it cannot be obtained 

from the previous data. Therefore it is called innovation. Using (4.4) into <4.31:

h  + I = A?xk + B u k ~ A K C i k + A K h  

*k+\  = A x k + B u k + A K y k  (4 .5 .

where A = A { I n - K C )

The steady state Kalman filter gain K  is guaranteed if the system is detectable and 

(A,  Q ' " )  is stabilizable43.

Rewriting Equation (4.4) in input/output description:

-v* = C i k + Zk

x, = Ax .  , + B u .  , + A K x .
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y k = C A x k _ , + CBuk _ , + C A K y k _ , + e*

\'k ~ C A K y k _ j + C A A K y k _-) + . . . +  C.4 +

+CBut  __ j + C A B u k _ ■> + ... + CA** A B u k _ ^+

+ C A*xk _ q + e k 

which can be rewritten as follows

q q
y k = £  CA A K y k _ i + £  C A Bu k t  + C A qx k _ q + z k (4.6)

/ =1  i = I

If A(In-KC) is asym ptotically stable, and the model order q large enough, than A* = 0  and 

the finite difference model can be rewritten as:

q q
y k = £  CA A K y k _ t + CA B u k _ t + Zk ( 4 . /-a)

/ = I i = l

Defining the m atrix coefficient a, and b

a = C a ‘ *.4K  and b = C A< i

Then the ARX model can be rewritten as follows:

</
>■* = 1  a , y k - ' + Z bt“k - t  + e k , 4 -7-bl

1 = 1  i = i

If the system is being controlled by some feedback controller, for exam ple a 

dynam ic output feedback controller o f the form:

Pk = A dPk + B d>k , 4 S '

uk = CdPk + D d>k + rk ( 4 9 ‘

w here p k is the controller state and rk the reference input of the closed loop system. Again 

using the steady state filter innovation model (4.3) and (4.4). the augmented closed loop 

system  dynam ics can be written as follows:
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** + i = A h  + B ^ c dPk + D d?k + r t }  + A K £ t

= A x k + B C dp k + B D dy k + B rk + A K e k

P k + l  = A dPk + B d C i k + B de k

In matrix form:

X A + B D d C B C d X + B
r k +

p k  + 1 B d C  A d P. k 0

A K  + B D

B ' *
B* J

>* = [co]

Using the following notation:

x

L £ J

n = x

LPJ
: =

A + B D j C  B C d 

B d C  A d
B d  =

A K  + B D c 

B J

( 4 . 1 0 )  

( 4 . 1 1 t

and Cc = [ c  o]
than the augm ented system  can be stated as follows:

n* + 1 = V U  + +

-V* = C c ^ k + £ k

is the Kalman filter gain for the closed loop system and the existence of the steady state 

Kc is guaranteed when the closed loop system matrix A c is nonsingular. Substituting Equa

tion (4.11) into (4.10), one can write

n* + 1 = A ^ k  + B crk + A cK c y k - A cK cc crik 

= (Ar -  A cK cCc )i\k + B cr k + A cK cy k 

Now one can use the following notation:

A r = A - A  K . Cc  c  c  c  c

then n * +I  = M t  + B crk + A cK cy k <4.12*

Using the same approach as above. Equation (4.12) can be rewritten in term s of input/out

put description.
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>■* = c c^k  + ek

^ k  =  A c ^ k  -  I +  B c r k  -  1 +  A c K c > ' k  -  1

yk = CcA cn k _ , + C cB crk _ , + C cA cK cy k _ ^ € k

>'k =  C c * ~ c X\ k - 2  +  C c * c B c r k - 2  +  C c * c A c K c y k - l  

+  C c B c r k - \ + C c A c K c ? k - \ + Z k

>’k  =  C c A c K c > k  -  1 +  C c A c K c > k  -  2  +  C c A c K c Xi  +

+  C c B c r k  -  1 +  C c A c B c r k  -  2 +  C c A c B c r k  -  }  +  • ■ ■+

■q ~k

which can be reformulated as follows:

q q

>'k =  i  C c A c A c K c>'k -  , +  i  C c A c B c r k -  t + C c A 1 n A -   ̂ + £ l
I =  I  I =  I

(4 15.

As in the previous part, one can conclude that if <Ac-AcKL.Cc) is asymptotically stable, and 

the model order q large enough, than A * = 0 and the ARX - model can be given as

>■* = I  I  + n |J 141
i = i  t = i

Equation (4.14) is of the same form as Equation (4.7-a). For both of the developed

ARX models, the same criterion is applied, namely that A* = Oand A^  = 0 . respectively.

This is only true if A and At. , in the case where the system  is being controlled, is stable

Since the steady-state Kalman filter gain exists, A and A L. are asymptotically, s t a b l e  

A sym ptotically stable condition does not imply that q. the ARX model order, h a s  to he
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unpractical large. One way to guarantee that the truncation does not withhold too much 

inform ation about the system is. if A or .4,. are stable enough so that with relatively small

q, A q = 0an d  A q ~  0 .

The identification process used in this work is solely based on the ARX model rep

resentation of the true system. The system can only be identified as good as it is repre

sented. Reviewing Equation (4.6)

q q - q
yk = I  “i h - i *  £ b i“t - i  + CA h - u  + h  a b '

i =  1 1 = 1

one can immediately single out two resources o f errors, namely the term C A q r. and

the innovation. An additional error is introduced by using the least-squares method, there

fore the parameter estimation error has to be investigated too.

4.3 Error Development during the System Identification Process

For this section, the identification process and its error detection for the Markov 

param eters can be represented in the following block diagram:

cloved loop j 
M artov Param eters !

open loop |

M artov Param eters !

Identm cd model 
At. Bi. Ci. DiE R A

A R X

Analytic model 
A. B. C. D

open loop 
Martov Parameters

closed loop 
Martov Parameters

open loop 
Martov Param eters

closed loop 
Martov Param eters

Figure 4.1 Identification schematic.
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Given the analytical system, (A B C D ) and feedback dynamics, one can produce v and r. 

from which, using an ARX model, closed-loop and then open-loop M arkov param eters 

can be computed. Following the procedure o f system identification, one might calculate an 

identified system model, using eigensystem realization (ERA). From the analytical model 

and the identified model one can calculate directly the open-loop M arkov param eters, so 

that one gets three sets o f open-loop M arkov parameters and three sets of closed-loop 

Markov parameters. Comparing the M arkov parameters obtained from the analytical 

model with the identified Markov parameters, one can quantify the total error of the sys

tem identification process. Comparing the Markov parameters calculated from the ARX 

model, with the Markov parameters from the identified system, one will get the error com 

posed by the noise influence and the system identification steps following the com putation 

of the ARX model.

In the following, several com parisons between identified and calculated Markov  

parameters are presented. The system used for the simulations is the LA.MSTAF 6 d.o.f. 

system for implementing the indirect and indirect closed-loop system identification m eth

ods. Both models were introduced in Chapter II. while the identification methods were 

given in Chapter III.

4.3.1 CIosed-Loop Markov Parameters

Three sets of closed-loop Markov parameters can be computed, using the diagram  

given in Figure 4.2

To assure that an efficient identification is utilized, the ARX model order and the 

data length has to be optimized first. The optimal model order was determ ined by using a 

variable ARX model order and noise variance. The error deviation o f the first 30 Markov  

parameter was com puted for every data pair and than plotted into a contour plot. The error 

deviation of the Markov parameters is defined by

_ HcVB - CA'slf 
k A ’d f

where the F-Norm is defined as J y  (cha X T x  ,V)) and X  is a matrix.
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Yc(k)  = bk + X  a , Y c( k - i

open loop St P and ERA

A. B. C. D
A^ Bj. Cj. D,

T rue C lo sed -L o o p  c  A R X  C losed-L oop  r  Iden tified  C lo scd -L o o p
M arkov P aram eters ^  an  M arkov  Param eters ^  a n  M a rk o \ P aram eters  ̂ i J

Figure 4.2 Closed-loop Markov Parameters.

Figure 4.3 depicts the contour plot for a very' moderate noise range, of 0*3--O S 1T  

measurement and process noise (variance), using 5000 data points. Figure 4.4 gives the 

contour plot for a much larger noise level range: 0 ^  - 3 .6 1 ^ . Sim ulations using an ARX 

model order of 14 indicate to provide good results for moderate to high noise lesels. The 

determination o f the data length was done in an analog fashion, while the ARX model 

order was kept at 14. the noise level and the number of data points were varied. Figure 4 5 

depicts the contour plot for a noise range of 09c - 1 9c ( variance) and 1000 - 5000 data 

points. Figure 4.6 includes a data range of 1000 - 9000 data points and a noise level range 

of 09c - 12.29c (variance). For the simulation of the Large Angle M agnetic Suspension 

Test Facility, the data length was set to be 5000.

To compare the closed-loop Markov param eters)^ . six different noise levels were 

used. Table 4.1 includes the simulation results.
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Table 4.1: Error Percentage of the Closed-Loop System Markov Parameters

Noise Y6*  * Y** 
[%]

Y'-'an * 
[%]

■ Yc,j 
[%]

0.01% 0.7156 0.7631 0.4125

1.0% 6.7190 7.5804 3.3978

5.0% 12.507 13.629 6.8302

10.0% 17.756 19.275 9.4349

15.0% 24.655 26.647 11.847

20.0% 27.262 30.700 13.033

The error between the analytical and identified, and the analytical and the closed- 

loop M arkov parameter derived from the estim ated ARX model parameters, are almost the 

same. The error is significantly lower between the ‘ARX-m odel’ Markov param eters and 

the identified closed-loop M arkov parameters. Figure 4.7 shows the three sets of the 1 1.1 > 

element closed-loop M arkov parameters for the case of 5% measurement and process 

noise (variance).

4.3.2 Open-Loop Markov Parameters

To calculate the open-loop Markov parameters, one can use the following formulas 

for the indirect identification method:

j *
Y( j )  = Yc( j )  -  I  I  Y(i)Yj( lc -  i ) Y c( j  - k )

i  = I i = 1 

1 *
X U )  = V CU ) -  I  I

k = I,  = :

14 .16 1

(4 .171

And for the direct method:

Yk = v (1) v ( ; 'r k ~ r k where K0 = D i see Equation 3 .2 5 1

Y k = Y t ' -  I  Y'k2) Y k . t 14  1 S i
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Com paring the analytical, ’true'. M arkov param eters with the one derived using the input 

output data and the identified system, one can com pose Table 4.2.

Table 4.2: Error Percentage of the Open-Loop System Markov Parameters

Noise Y -Yl an  ‘ a r t  
indirect

Y a n - Y ld

indirect
Y a r x * ^  id 

indirect

Y -Y1 a n  ‘ a r t  
direct

Y a n -Y ld
direct

Y V'1 a n  1 id
direct

0 . 0 1 9 c 0 . 4 0 7 4 0 . 4 0 8 5 0 . 0 3 0 3 0 . 4 0 1 0 0 . 4 0 9 9 0 . 0 2 3 9

1 .0 % 3 . 0 2 6 3 3 . 0 1 3 4 0 . 2 4 4 1 2 . 1 4 8 0 2 .1 1 5 1  | 0 . 2 2 7 8
1

5 . 0 % 5 . 1 9 8 2 5 . 4 7 2 0 0 . 5 0 3 6 5 . 3 7 7 4 5 .2 9 5 1 0 . 4 7 2 3

1 0 . 0 % 7 . 2 2 7 7 7 . 1 5 1 5 0 . 7 0 6 9 7 . 4 3 2 5 7 . 3 6 6 0 0 . 6 6 2 3

1 5 . 0 % 1 0 .9 1 3 1 1 .2 7 5 0 . 8 5 6 3 7 . 5 1 9 9 7 . 3 1 6 5 0 . 8 5 3 6

2 0 . 0 % 2 4 . 1 6 9 2 5 . 7 9 0 0 . 8 9 6 7 1 9 . 9 6 5 2 1 .1 0 8 0 . 9 1 4 0

Table 4.2 indicates the same trend found in Table 4.1. the major contribution of the 

error in the system identification process is introduced by the approxim ated s w e m  

description o f the ARX model. The error developed during the process of com puting the 

identified system matrices from the identified open-loop Markov parameters is negligible, 

even with high measurement and process noise levels. Figure 4.8 depicts the three open- 

loop M arkov parameters. (1.1) element, for the system with 5% measurement and process 

noise (variance).

4.4 Accuracy of the ARX Parameterization

Probably the most efficient way to determine if the ARX model representation is 

good enough, is to use the identified model, and generate a new set of data, w hich then can 

be com pared to the set of data obtained using the analytical model, or in practice the ph> s- 

ical system. Since we are at this point not interested in the accuracy of the simulation 

results, but in quantifying the accuracy o f the ARX parameterization, we do not need to 

generate new data sets. Obviously, a simple way to determine if the ARX model describes 

the system well enough is to plot the output of the system and compare it w ith the an ah ti- 

cal data.
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In this section, the ARX parameterization is investigated using correlation analy

sis. Also an attempt is made to quantify the information contents truncated by the ARX 

model representation o f the actual system.

4.4.1 Output Description

The correlation of two processes indicates the linear relationship between those 

two processes. The correlation coefficient r  is bounded to be in the interval -1  < r < 1 

One can utilizing r  to measure the usefulness o f the regression of tw o different output 

description. In fact, the square o f  r  times 100 is the percentage o f the data w hich can be 

explained by the linear relationship. Table 4.3 gives the different correlation coefficient for 

the simulation results o f the LA M STF 6 d.o.f. system, using three noise levels.

Table 4.3: Correlation Coefficient for the Outputs

Noise r r r r
Variance [yan'yarx-idl ^  an^and an*y rd lyar».'yan-idi !

0.001% 0.9928 0.9983 1.0 0.9901

1.07c 0.9820 0.9908 0.9951 0.9869

5.07c 0.9662 0.9733
_

0.9889 0.9700

In the table, is the output generated from the analytical model including noise. vjri _ in 

the output computed from the identified, or estimated. .ARX model param eters, is the 

output given by the .ARX model constructed from the simulated data and the analytical 

ARX model parameters, >•„. is the analy tical output of the system, having no noise influ

ence included. From Table 4.3. one can see that \ arx is slightly less accurate than the out

put representation of y ^ .  The correlation between y ^  and shows the influence of the 

process and measurement noise. With no noise, we have a perfect match between and 

yrr while with increasing noise level, the relationship drops too. The correlation between 

y ^  and yrr represents an upper bound for the accuracy of the other output descriptions

If it is possible to plot an output representation as a function o f the frequency, the 

characteristic of the output representation can be investigated in some different fashion
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Using the power density spectrum estim ation of a random vector, one can describe the fre

quency content of the signal, represented by the vector. Since we deal with a finite length 

of data, we have to estimate the power spectral density. For the sim ulation. W elch's 

method1 to estimate the power spectral densities was employed. The correlation coeffi

cient can take on any value between 0 and 1. where one means that the linear description is 

perfect and zero means there is no linear correlation existing. If one interested in the fre

quency at which the linear correlations either at best, or not existing, one can plot the 

coherence function estimate. Given the power spectral densities estimations o f  two ran

dom vectors, the coherence function is given as:

C ( w) = -   (4.19i
P u {W) Pyy(W)

This quotient is a real number between 0 and 1. which measures the correlation betw een t 

and y at the frequency u\

Figure 4.9 depicts the coherence function estimate for different output descriptions 

of the LAiMSTF system, using a noise level of 5 (variance). As one can see the low fre

quencies of the output is well represented, while for higher frequencies the correlation 

coefficient drops. This is to be credited partially to the limited sampling time o f the data 

acquisition, where a sampling frequency of 1000 Hz is used for this sim ulation. The 

coherence function estimate o f the two ARX model representation, the analytical one. 

y ^ .  and the model based on the input output data, y ^  ld, indicates that the ARX model 

representation is mainly responsible for the identification error. Since the system has seven 

outputs, a richer conclusion is not possible, other than a confirmation of the results gath

ered in the previous section.

4.4.2 Quantification of the Truncation Error of the ARX Model

Another concern related to the accuracy aspects are the neglected term s in Equa- 

~q
tion (4.6). The quantities CA  x,  _  and z k are being neglected for the system  represen-K q

tation using an ARX model. The goal in this section is to quantify the inform ation

I W elch. Peter D. "T he  U se o f  F ast F o u n e r  T ran sfo rm  for the E stim ation  of P ow er Spectra  A M e th o d  
Based on T im e A verag ing  over S hort. M o d ified  P en o d o g ram s."  l £ £ £  Trans Audio E lectnxicoust Y>'! 
A U-15. 1967: pp. 70-73.
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contents associated with the truncated term s. For this purpose, the same methodology is 

applied as in the previous subsection.

Figure 4.10 depicts the two neglected term s for the first output of the LAM STF 6 

d.o.f. system over the whole data length, and Figure 4.11 shows the neglected terms for the 

first output over the last 100 data points. Figure 4.12 graphs the coherence function esti- 

—q
mate for CA x^  and y ^ ,  while Figure 4.13 depicts the coherence function estimate

linearly related information content in the low frequency area, while the innovation does 

contain information relevant to y ^  in the higher frequencies. Since all the closed-loop 

poles o f the system, and most o f the open-loop poles of the system are in the low fre-

system to be identified.

4.5 Influence of the Process Noise to the System Identification

Describing a stochastic, finite dim ensional, linear, discrete-time, autonomous sys

tem. one can use Equation (4.1)

To ensure stability, and assuming all the states are measurable, a general dynamic output 

feedback controller is used

—q
quency area, the neglected term CA  _ clearly bears important information about the

x k «. i = A x k + B u k + w k .4 1)

Pk = A dPk + Bd>k (4.8)

uk = CdPk + D d>k + r k 

then the augmented system can be written as follows:

x k ♦ l = A x k + C dPk + D d>’k + rk > + M' i '

(4.9)

= (A+BDdC )xk + B C j p k + B r k + BDjVk + . 4.20 >

Pk w  = A dPk + B dC x k + Bdvk 

writing these equations in compact form:
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X

[PS k + 1

.4 + B D dC  B C c

B d ^  A d

.r B B D d l n+ rk +
. B

vt +
Tl

P. * _0 0
w.

>'» = [c 0.] +  V.

defining new variables:

X : Ac =
A +  B D dC B C d

: B c = B : tvs
B D d

P. B d ^  A d 0 . V

where A c. Bc and Cc have the same definitions as defined earlier. The augm ented system 

can be stated as follows:

+  V *  + V t  + V v 4

>'k = C cV k + v4

(4.23)

(4.24)

Substituting (4.24) into (4.23):

V k *  I = + V t  + Tv-.Vt + THU t

defining A = A c -  t vC c

*  I = A 4 \  + B r k + t vyt + t H w t (4.25)

Rewriting (4.24) in term s o f input/output descriptions; using (4.25) yields:

V* = Cc ^ k  + V*

^ k  = ^ k  - 1 + Bcr k -  1 + V t  - I + t H.W4 _ ,

y'k = C eA V k _ , + C cBcrk _ , + C , t vyt _ , + C .t H w,. _ , + vt

+ V t - : + V vt - : + 

y'k  =  xf >k _ 2  +  C  c A B c r < - 2  +  C L-AT^Vj _ 2 + C , A T W v'  * _ ; 

+ C cB cr k -  i +  C cxvy k _ i + C . t h h 4 _ t +  v4

V4 =  C . a V 1 _ 3  + C cA~Bcr k _ 3  + C . A : x. V, . +  C A X  w 4

+  V i  _ , +  C . A t ^  .  :  +  C t.A T „  w4 .  , +
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t>5

+ CcB crk _ , + CcXvy k _ , + CcXww k _ , + vk

y’k = i  C cA ‘~ lB crk - t + £  C cA*~ *t vvt _, + £  C cA*" ' t H.wt _, + vt + C , A ^
i = l i = l i = i

(4.261

Equation (4.26) represents the parameterization of the true system, where the regressor 

vector is com posed of the input, output and the process noise. Investigating the term

C A? , as is shown when q is large enough. A^ = 0 and the param eterization can be given:

1=1 1=1 1=1

(4.271

q i -1
The term £  C cA xwwk _ l represents the process noise influence on the ARX parame- 

; = l

terization. Expanding this term yields:

[co]
A B C j

i - 1
'k

1 o u* i 0
w t - , (4.28>

Using i= l ,2  q, the process noise influence is

CA w k _ j + CA~wk _ + ... + C A q w k _ ^ (4 .291

which leads to the following conclusion that the controller does have no influence on 

limiting the influence of the process noise for the ARX model representation.
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Figure 4.3 Contour plot o f the percentage o f erro r deviation of the system Markov Param
eters for a variable ARX model order and noise level, using 5000 data points.

ARX model order

Figure 4.4 Contour plot of the percentage of erro r deviation of the system Markov Param 
eters for a variable ARX model order and noise level, using 5000 data points.
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Figure 4.5 Contour plot o f the error percentage o f the system Markov parameters for a 
variable data length and noise level, using an ARX model order o f 14.
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Data Points

Figure 4.6 Contour plot of the error percentage o f the system Markov parameters for a 
variable data length and noise level, using an ARX model order of 14.
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Figure 4.7 Closed-loop system  M arkov parameters. ( l . l ) element, using the LA.MSTF 6 
d.o.f. system and 5% measurement and process noise (variance).
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Figure 4.8 Open-loop system  Markov parameters. (1.1) element, using the LA.MSTF 6 
d.o.f. system and 5% measurement and process noise (variance).
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Figure 4.9 Coherence Function Estimate for y ^ ,  y ^  ld. v.^. using the LAMSTF 6 d o t  
system  and 59c measurement and process noise (variance).
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Figure 4.13 Coherence Function Estim ate for y ^  and £ t for 5Ft noise t variance)
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CHAPTER V

A NOTE ON IDENTIFIABILITY

5.1 Introduction

Identifiability is characterized by the ability to deduce all necessary information 

from a data set of observations o f an object, so that the object can be uniquely determined. 

One can distinguish between three different identifiability terms, depending on what the 

objective is. Parameter identifiability is the discipline where model param eters are 

deduced from observations. It gives information about the internal model param eters from 

data concerning the external system behavior. System identifiability describes the ability 

to identify a system from data generated by the system itself. Structural identifiability 

defines the capability o f obtaining knowledge of the internal structure of a system from 

input/output data.

Ljung et al.18 (1974) and Gustavsson et al.3 (1977) divided the identifiability prob

lem in a systematic manner: the identification experiment is depending on the system S. 

the model M  and its parameterization, where the param eter vector is denoted as 0 .  the 

experimental condition X  and the identification method J. The systems considered are lin

ear. multivariable, stochastic, for example the system can be given in the follow ing form:

v( C) = G s( q ' 1 )u(t) + H s(q~' )e(i)  (5.1 >

where yit) is the output vector. u(t) corresponds to the input, and e<u is a sequence of inde

pendent. random vectors with zero mean and the backward shift operator is denoted as q- 

1. To derive a model, the system is param eterized by a vector 0 .  If this param eter is var

ied over a feasible region of values, the model becomes a model structure. Experimental

conditions contain informations on the design o f the input. Follow ing L jung 's1 definitions, 

one can state the following set:
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D t(S, M )  — { e \ G Uia)( z ) =GsU)  and H M,e)( : ) —H s( r ) } (5.2)

This set consists of the param eter value © that yield models M( 0  ) w ith the same transfer 

function and the same noise characteristics as the system S.  Then the follow ing definitions 

are given:

Definition 5.1:

The system  5  is said to be system identifiable under M.  J.  and X.  SKM. J . Xi .  if 

© (/: S .M J.X ) - *  D t(S.  M)  (5.3)

with probability one as I —» «>.

Definition 5.2:

The system  5 is said to be strongly system  identifiable under J  and .V. SSKJ.Xt.  if it is 

SUM.J,X)  for all M  such that D T(S, M ) is nonempty.

Definition 5.3:

The system  5 is said to be parameter identifiable under M. J. and X. PI(M.J.X).  if it is 

SI(M.J.X)  and D T(S, M )  consists o f only one element.

In the following, a short overview' o f system identifiability is given, followed by a 

survey o f  the parameter identifiability problem . In the later pan. param eter identifiability 

is attem pted to be applied to identification methods, using an ARX  model description 

(param eterization) of linear autonomous stochastic systems.

5.2 System Identifiability

System  identifiability concerns, as mentioned above, the capability o f inferring 

inform ation from generated data from the system, about the system . System s can be 

treated as abstract objects and its parameterization is o f no concern at this point. The out

come depends on the inform ation content o f the data and on the identification procedure 

for m odeling the observed data. Most studies were done for linear autonom ous systems, 

which are controllable and observable. Deterministic system identifiability from arbitrary

exact data was studied by. among others, Grewald and Glover et a l.51 1 1976). Sontag et

al.52-53 (1979) and (1980). Kalman54 (1983). Chen55 (1987) and H eij56 (1993). Heij5'

(1992) investigated the question of identifiability of finite dimensional linear time invari

ant determ inistic systems on the basis of observed data. The m inim um  number of
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observations is expressed in terms of the rank o f autoregressive representations. System
£ lJ

identifiability for deterministic and stochastic systems were treated by Staley et al. 

(1970), where the system is represented by linear scalar difference equations and identifi

ability is given in terms of observability.

The subject of structural identifiability and system identifiability are sometimes 

treated in the same way. The term structural Identifiability was introduced by Bellman et.

al.59 (1970), where the possibility o f finding a unique minimum of a given cost function 

for a specific structure is investigated. The structure contains the information of the cou

plings between the states and the inputs and outputs. Bellman concludes that for linear 

systems, all structures are identifiable whose parameters are uniquely given by the impulse 

response.

5.3 Parameter Identifiability

Param eter identifiability is an extensively studied field in the controls and mathe

matical community. Tse et al.60 (1972) defines identifiability of model param eters in terms 

o f consistency in the probability of the param eter estimate. He also establishes necessary 

and sufficient tests for parameters to be identifiable. It is shown that if the m inim al dimen

sion o f the system is known, then controllability, observability, and stability imply identifi

ability, except for the initial condition. G lover et al.61 (1974) investigates the problem of 

param eterization, having one of the objective o f addressing the identifiability problem. He 

shows the importance of canonical representation for controllable linear system . The con

ditions for identifiability from the spectral density for systems driven by white noise is 

derived. Also conditions for local and global identifiability. based on the system  transfer

1 fifunction, are given. Ljung et al. (1974) studies the identifiability problem conceptual for

closed loop systems. Soederstroem et al.6" (1975) investigates the identifiability problem 

for data obtained from closed loop experiments of noise free systems restricted to single

input output. Correa et al.63-64 (1984). uses instead of canonical forms, pseudo canonical 

forms, to establish the relationship between state-space form, and matrix fraction descrip

tions (MFDs) and finite difference equations. It is also shown how' to rem ove the depen

dencies of the parameters in the MFDs. by ordering the output variables. In the second 

part o f C orrea’s work, the estimation of parameters from pseudo-canonical, input-output
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models is treated. Gevers et al.65 (1984) takes another approach, instead o f using canoni

cal forms, he makes use o f  so called overlapping forms to represent multivariable system s. 

Also uniquely identifiable parametrization are given, using overlapping forms, for state- 

space and ARMA m odels from a Hankel matrix composed o f Markov parameters. Swami

et al.66 (1992) looks at estimation o f A R order and identifiability of param eters, where sin

gle-input output ARM A models are considered, in addition to colored additive m easure

ment noise. Van Den H of et al.67 (1992) raises concerns about identifiability for system s 

operating in closed-loop with delays in the plant and/or the controller. Conditions are 

developed such that the LS method is able to consistently estimate the open-loop plant.
ir Q

Ljung et al. (1994) defines global identifiability for model parameters, which is the deci

sion if all the free param eters of a model structure can be uniquely recovered from data. 

He shows how to reduce the question for global structural identifiability to the question of 

whether the given model structure can be rearranged as a linear regression. Also the prob

lem of persistent excitation for the input is treated.

5.3.1 Canonical Forms and Identifiability

If the system (A.B.C.D) is param eterized by the unknown parameter 0 .  it is 

desired to achieve the following two properties: Property 1: The param eterization should 

be identifiable in some sense. Property 2: All systems in an appropriate class can be repre

sented by the parameterization.

Canonical forms are one approach to this parameterization problem, especially for 

deterministic systems. A requirement is the minimality, or at least a strong limitation, of 

the number o f the significant parameters o f the model and this means the choice o f a su it

able canonical, or quasi- canonical form. Several authors investigated the approach using

canonical forms, such as Fisher69 (1966). M ayne70 (1972). D en h am '1 (1974). Hsiao *

(1983). Gevers & Werts6573 (1984. 1987) and Hannan and D eistler'4 (1988).

53.2 Process Identification of Linear Time Invariant Deterministic Sys

tems, with Single Output: the Role of the Initial Condition

Consider a unforced system given by Equation (5.4) and (5.5).

x k + \ = A x k 1541
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> 'k = C xk  <55)

The identified system is o f the sam e form and is given by

* * + i = A i * 1561

vt  = r-xk  ,5 .7 )

The following necessary and sufficient conditions for the identifiability aspect can be 

given, using Lee75 (1964):

Definition 5.4:

A system of Equation (5.4) is said to be n-identifiable if it is possible to determ ine the 

system matrix A by m easurem ent o f  all the .t variables.

Definition 5.5:

A system given by Equations (5.4) and (5.5) is said to be l-identifiable if it is possible 

to determine A and T such that Equations (5.6) and (5.7) are equivalent to Equations 

(5.4) and (5.5) in the sense m entioned by measurement of v* only.

The n-identifiability condition can be shown as follows;

x \ = A x o

2
x~. = A x .  =  A ” .r 2 1 o

x k = A x k -  1 = x oI * - ' .

Then a matrix can be built after n measurem ents, if all the variables can be observ ed:

[ .r ,|x : | . . . j  jrt j] = [a-V^Ax, | A .t: | . . . |  A x ,.,]  = ^  [ .r , |x , |x ; | . . . |  x4.,]  <5.8)

If A is to be determined uniquely, the matrix

v  = |.v; | . . . |  -I.. , L

must be nonsingular. Therefore, one can define the n-identifiabilitx condition by the matrix 

V
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Equation (5.4) is n-identifiable if Equation (5.9) is nonsingular. This means that the initial 

conditions for th is system  must excite all modes o f the system . If the system is identifi

able, then the initial conditions must have nontrivial projections on to all the eigenvectors 

o f A, so as to excite all modes of the system.

It can be shown, that the necessary and sufficient condition for the solution of the /- 

identifiability problem  is that the system is n-identifiable and that A .C  is an observable 

pair. If (A.C) is not observable, than there is no way to determ ine xk, even if A is known. 

Similarly if (A, x Q) is not an identifiable pair than one cannot determ ine A even if all of the 

xk are m easurable. In the following, it is shown that the com bination o f these two condi

tions is sufficient for l-identifiability.

Define

no

* “

>1 CA

y2 C A 2

_ >'k _ C A k _

where the observability matrix is given as

C 
CA

P =

CA k -

Xo = P A x o

(5.10i

Similarly = ^ r i = p ^ ~ x 0

Than one can define
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~s

-V I -v 2

-v 2  -v 3

>'k ?k + I > 2k -  I

= P A.r 1 A”.r lA^.r 1 . I A kx„ = PA 2
. r l A . r J A ~ . t l  . | .* -1  A A x°\ °\ °\ * O 1 o

„-l
= P A \y  and therefore A = P  S - , ^ ^

This means, the condition for l-identifiability implies observability and n-identifiabilin. 

Since A  is not singular, observability and identifiability are necessary and sufficient to 

guarantee the nonsingularity o f 5?*,/. which also is symmetric in the single output case.

In the following, only processes are being considered, where the start of the exper

iment lies in the remote past, such that the initial condition does not have any effect on the 

identifiability.

53.3 Identifiability of the ARX Model Coefficients

In this study, the identification methods used, are em ploying a parameterization of 

the given state-space system which yields an ARX model. The ARX model is given b\

q  q

y k = I  C a ‘ ~ A K \ k _ i + £  C A ‘ - l B u k _ , * t k
( = 1  f = I

<5.11 a >

which can be written in a simplified fashion

-v* = I  «,>•*-, + I  b luk - ,  + £k
i = l  i = I

<5.11hi

The sequence

0  = [fll b l a l b \ •• °q t5A2)

are the to be estimated parameters. The basis for the estim ation is the information matrix
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<t> =

T T T T T T
V '  r  v  , r q - \

T

■ v , r,■ q q  <7 - 1  

T T T
- 1 

T

1

T
3  <7 + 1 rq + 1 -v  <7 rq ■ >2 r 2

T T T T T T
3^ + 2 rq + 2 r q +  1 ' •  > 3 r 3

T T  T T T T
>'l -  I  r l -  1 > 1 - 2 r l - 2 ■ • > I -  <7 r l -

The output sequence is defined as

^ = [ v  1 y <i+2 •• ■'■/]

Then, one can show that

q = O 0  + e

Since (l-q) > q. one can use a least-squares method: 

Define the error equation as

e = q _ q>0 

and minimize it according to the cost function

j  = £ re = (q  -  <t>0)r (q -  <l>0) 

we get the least-squares solution by setting

d±  = 0
d&

0  = ( cJ>rO ) !<t>rq 

Since 0  is random, one can exam ine the statistical properties of it:

£ [ © | = £((<J>r d>) '<t>r (O 0  + e) 1

= £ [ 0 ]  + £[(<t>r<t>)'‘cDr ]£ [£ l

(5.13)

( 5 . 1 4 )

( 5 . 1 5  >

( 5 . 1 6 i

( 5 . 1 7 )

15 I S 1

i 5  19»

if all the information of the input/output data are filtered out. the sequence q is white, zero 

meaned and gaussian and therefore

£ [© ] = 0  1 5 20>

and 0  is an unbiased estimate of 0 .
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so

The error covariance o f the estimate can bc calculated as 

P6 = £ [ ( 0 - © ) ( 0 - 0 ) r j

where R is the covariance m atrix o f £

R  = CT x /

and one can write

p . = a : (d>ro r V { ( O r< I > f V } r

P q = a : (d>rd>)~‘ <5.21)

The quality o f the estim ate is now directly proportional to the variance o f the innovation. 

iManipulating the equation for the error covariance of the estimation, one can write

p 6 = a : (<t>rd > f ' = y Q d > rd )j < 5 .221

The inverse exists, if <t>rd> is nonsingular. To meet this assumption, the input/output data 

in the information matrix has to be consistent. The type o f input { }  driving the  s y s t e m

such that d>rd> is nonsingular, is called persistently exciting. Assuming the input is persis

tently exciting

lim ^yd>rd>j = 0 15 .231

where 0 is a constant nonsingular matrix. Then one can claim

2 _ j

lim/»d = J im y (j< t> r<t>) = 0 <5 24.

which means that the covariance matrix of the estimation becomes zero at / —» *> and the  

estimate o f the ARX model coefficients approach the true value of the ARX model coeffi

cients. 0  = 0 .

Hsia76 (1977) defines identifiability as the ability of consistently estimate the 

parameters of the system. A linear system is identifiable if the system  is stable .2  is
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s i

bounded) and the input test signal is persistently exciting, so that O rO  is nonsingular 

Hence we showed that for / —► <». © = © and therefore 0  is a consistent estim ator of © 

and we can claim  the system is identifiable. A information matrix <1> which satisfies the 

above mentioned properties and having the knowledge of the order o f the stable, time 

invariant system , guaranties identifiability.

53.4 Experimental Condition for Identifiability

In the above section, identifiability is shown to exist, if the information matrix is 

com posed o f  persistently exciting signals. It indicates the importance o f selecting the cor

rect experimental conditions for the system identification process. In this section, we 

attem pt to gain more insight of persistently exciting signals, since selecting an input signal 

is directly related to the experimental conditions.

The estim ation problem w as stated in Section 5.3.3 as

\  = <D©

w here q is given in Equation (5.14). 0  in Equation (5.13) and O  in Equation (5 12) 

Defining the residual as

e =  y 4 -  y t =  V, — <t>;. i© (5.25 )

where

<*><

o * . .

<tv

; - 1

(5.26i

The least-squares error can be w ritten as given in Equation (5.17):

* i
/ ( © . * )  =  £ e , : =  £ ( y ,  -<t>, . • & ) ’

= ( q - 4 > 0 ) r ( q - O © )

Then the solution o f the least-squares estimation is given by the follow ing theorem:
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Theorem 5.1:

J ( Q , k ) is minimal for © if O r<I>© = <1>rq,. If the matrix <t>rd> is nonsingular, the

«  T  - T  T
m inimum is unique and given by 0  = (<D <l>) d> q .

Proof:

7 ( 0 ,  k)  can be expanded as follows:

7 (0 ,  k) = q r q -  q rd>0 -  0 r <Dr £ + © rO rd>© <5.27i 

It is easy to see that O r<J> is always semi-positive or positive definite, and therefore 

7 ( 0 ,  k) has a minimum. Using completion o f squares:

7 (0 . i t )  = q r q -  q rd>0 -  Q T<PTc, + 0 '  <t>' d>0 +

+ q r<J>(<t>rd>) '<t>r q (5.28»

- q r<t>(<I>r< t> r V q

which can be rearranged:

7 (0 ,fc )  = q rd>(<t>r<t>) '<hrq + ( 0 -  (d>rd>) <t>r q ) r<t>r<t>(0 - (O 'O )

t5.29>

The first term in Equation (5.29) is independent of the param eter vector 0  The second 

term is clearly always positive. To establish a m inim um , one sets

0 =  0 =  ((t>T<t>y‘<t>T̂

q.e.d.

Note the condition that the matrix <t>rO  is invertible is called an excitation condition.

The error covariance P6 was given in Equation (5.21). From the covariance equa

tion. it is quite clear that the desire for consistency, or in this case identifiability. in param

eter estimation leads to the convergence question of 0  —» © . One way to detect 

consistency is if P^  is decreasing with increasing data length. To show this, one has to

answ er the question of how to use least-squares methods to estimate 0  in dynamical s\ n- 

tems. It is generally known that the Markov param eters are the impulse response of the 

system. Markov parameters can be obtained from  experimental data, using the frequenc>
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response function. They build the fundam ental background for the system identification 

methods used in this work. It can be shown that for linear time invariant system, the input 

response describes the system uniquely. Impulse responses are infinite dim ensional. 

Though, for stable systems, one can truncate the diminishing portion and obtain finite 

impulse response (FIR) or transversal filters. The ARX model is also a FIR model:

•7 V

vt = X  a,>'*-,+
1 = 1  . = 1

As mentioned above the parameter © cannot be estimated unless the condition on the 

input signal is fulfilled. Using the above system, one can formulate the consistency prob

lem for each input/output vector as follows: d>rd> =

>•« V > • V :  • • . V t

V V :  - • V *

y * - \ -U V i  • • V t - i

r « - i V  - • v * _ ,

V : V i >*« • • V t - :

V : V r < ■ ■ V * - :

>i y : >'• • • y t -;
r; r-. . - V ,

>';-i

r.-i
V; _ ;

r , _  ;

V: _ ;

r  ■_

r r T r r - -
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The minimum, as given in Theorem  i. is unique if Equation (5.30) has full rank, which is 

equal to the excitation condition. One can define an empirical covariance as follows:

Pa, = lim

y.y,

r ,y.

y.r.
r.v.

y,r

r,r

T
r - i 
T
- • !

1

t5.3 1 1

j J

which means that for long data sets, the uniqueness of estimation, thus the identifiabilit\ 

of the model parameters © . is given by P9 being positive definite, and therefore the 

regressor set {y. r} is persistently exciting of the order 2 x  (q  + 1).

A simple example can be given as follows. The ARX model is given in Equation

(5.11b)

•?
>t = X  + X  b>uk-' (5.1 I b >

t - 1 r = 1

If the input u to this system  is at all times zero, the parameter b can not be identified. It u 

does not excite all the m odes o f the system, the parameter a is also not identifiable. This 

simple exam ple em phasis the im portance of the experimental condition, in particular the 

role of persistently exciting signals. We can now state the following theorem:

Theorem 5.2:

A signal u is persistently exciting o f order q if and only if

[ 5 .3 2 1limyl I  I X jf >0
• ~ U = i i * : J

Proof:

Expanding the term in Equation (5.32) leads to

r

1
lim y j X  ( M * - 1  + b zu t _: + ... +bjUl _i ) H X  ( M * - :  J
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l i m y  [ 6 ] I * I

X“--*w< X -1 X
U = I : * I i*I

X M<“ ,-<
> *  I

X 
* 1

X

[/»r

If we define the covariance o f this signal u as

Then

P, {k)  = lim y X  u,u,-k
i -  I

i f '  ; *
7) X  ( M t - i  + ^ :« t- :  + ••• +&„«»-„) }►

0 . j 3>

lim-H Y

V P .(0 ) PA  1) ■-  P A q -  1)
b: PA  1) PAO)  . -• P A q - 2 ) [b, b : ... h ]  = b TP , b

A P A q ~ \ ) P A q - 2 ) PAO)  _

<5.341

If one neglects the end effects in Equation (5.30) and (5.31), which is legitimate for long 

data sets. P is of the same form as Equation (5.31). In that case, if P 0 is positive defi

nite. than b TP b is positive for all b. q.e.d.

Theorem 5.2 gives explicitly the condition for any regressor to be persistent!) 

exciting. The question arises what input signals are in general persistently exciting. A few 

typical input signals are analyzed in the following, using Theorem 5.2.

Quite often in system identification, the input sequence to the system  is of random 

structure. The randomness of the input prohibits its prediction and therefore the sum m a

tion in Equation (5.32) does not vanish. Thus a random  signal is persistently exciting 

Using the pulse function as an input. Equation (5.33) indicates that P t becomes zero, 

and thus proves that the pulse function is not persistently exciting.
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5.4 Numerical Example

For the numerical exam ple, the beam-like structure introduced in Section 2.4.2 is 

being used. The measurement is performed such that all the states are represented in the 

output vector. As addressed in the previous section, the identifiability question is reduced 

to the convergence problem o f the estimate. To show this numerically, the F-Norm of the 

error covariance is com puted for increasing data lengths. Two sets of simulation were

perform ed. The first one includes the system w here a constant gain state feedback control

ler enhances the dam ping of the overall system. The other case involves the same system 

but no controller. The damping ratios and natural frequencies of the two systems are given 

in Table 5.1

Table 5.1: System Characteristics with and without Controller

Frequencies of 
uncompensated 

System

Damping 
Ratios of 

uncom pensated 
System

Frequencies of 
com pensated 

System

Damping 
Ratios of 

compensated 
Svstem

_ j

5.457 0.0064 8.707 0.848

5.457 0.0064 8.707 0.848

14.91 0.0101 15.08 0.246

14.91 0.0101 15.08 0.246

20.36 0.0130 20.16 o.m :
j

20.36 0.0130 20.16 0.111
1

The simulation were performed using a process and measurement noise variance of 5rr 

and for the construction of the information matrix d> an ARX model order of q = 3 The 

results are given in Figure 5.1. It is clearly to recognize the trend of

Jim j f  = jim |y (y < t> r4>j | = 0 < 5 .3 5 1

which is equivalent to the statem ent o f Equation (5.24). The consistency of the estimation
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is shown, and therefore the identifiability of the param eters of the system  exists. An inter

esting observation can be made if the compensated and uncompensated system are com 

pared. The magnitude of the norm of the covariance decreases much more rapidly for the 

controlled system. Since the error covariance directly influences the quality of the estim a

tion o f the ARX parameters, it is expected that the results of a system identification exper

iment. using the above data is greatly influenced. This is done for the data sets o f both 

system s using a data length o f / = 1000. The results are given in Figure 5.2 - 5.5. Figure

5.2 and 5.3 show the open-loop M arkov parameters for both systems as well as the identi

fied. the true and the Markov parameters composed o f  the ARX model. For the uncom pen

sated system, the difference between the Markov param eters of the true and the identified 

system  is much larger than for the identification results of the compensated system . For 

the compensated system, the identified and the M arkov parameters composed from  the 

ARX model agree very closely, which indicates that the system identification procedure 

introduces very little error. The responses o f both system s are given in Figure 5.4 and Fig

ure 5.5.

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm issio n .



M
ag

ni
tu

de

SS

F-Norm ol Covariance
12 T T T

0.8

0.6

0.4

0.2

i
\
i
■1
\
\
i
i
i
i ............ ........... ......... ......... 7

i
i
i
i
\
\
\

........ r
/

/ • ^ 1
\ * v

 * «-
500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Data Points
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Figure 5.2 Open-Ioop Markov parameters o f uncom pensated system. Markov parameters 
com puted from ARX model in dotted line, true Markov param eters are plotted in dashed 

line and identified M arkov param eter are given in dot-dashed line.
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Figure 5.3 Open-loop Markov parameters of compensated system . Markov parameters 
com puted from ARX model in dotted line, true Markov param eters are plotted in dashed 
line and identified Markov param eter are given in dot-dashed line.
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Figure 5.4 Estimated and true output o f the first state for uncom pensated sy stem.
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Figure 5.5 Estimated and true output of the first state for uncom pensated system
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CHAPTER VI

COMPARISON BETWEEN DIRECT AND INDIRECT SYSTEM 

IDENTIFICATION

6.1 Introduction

The objective o f this chapter is to com pare two identification methods based on the 

theory presented in the previous two chapters. In the first section, the methods are com 

pared based on the identifiability condition established in Chapter V. The input signal is 

subjected to a specified constraint and the error of the open-loop Markov param eters as 

well as the magnitude o f the error covariance matrices are compared. In the second pan. a 

special problematic is given for determ inistic systems described by a low ARX model 

order and a simple controller. The problem  arrives due to the constant gain feedback, 

which can in some instances cancel som e portion of the reference input and cause the 

information matrix to become singular. The third part of this chapter com pares the two 

method directly based on the data length and noise level. Stable and unstable system s from 

various disciplines are being used to perform  the simulations.

6.2 Identification with Constraint Reference Input

System Identification is applied in the most various fields in science and technol

ogy. One distinction can be drawn by classifying the operating mode of the system identi

fication. The operating mode can be on-line or off-line. Off-line identification is often used 

to get an overall system characterization and model description of the plant under investi

gation. The presented system identification methods in Chapter III are developed for off

line system identification. On-line system  identification methods can be used to adapt the 

system model to the current changes in its physical nature. Often, the controller designed 

to regulate the plant under investigation, is updated by using the new s\ stem
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characteristics obtained from the on-line identification. On-line system  identification d if

fers from the off-line system  identification method in that point, that continuously new 

data are supplied and the system  param eters, in this case the ARX model param eters, are 

continuously estim ated. Since the computational speed is essential to keep up with the 

changes o f the system and therefore controller update, the estim ation methods used in on

line identification uses often few er data points and delivers less accurate estim ations. An 

alternative estimation technique for com puting the ARX model param eters is the sequen

tial Ieast-squares estimation technique, which is a recursive solution to the estimation 

problem. The advantage is that the estimates are being updated continuously without 

repeating the matrix inversion o f Equation (5.18). On-line system identification methods

and the related estimation problem  are investigated in 77-78-79 am ong others.

In this section, the on-line system identification process is sim ulated w ith the off

line system identification m ethods introduced in Chapter III. The conditions for such an 

assumption is that the system characteristics do not change rapidly with time. i.e. the com 

putation of the new system characteristics takes much less time than the system dynam ics 

changes. As a matter o f fact, for the simulation in this work, only time invariant systems 

are being used, since the goal o f  this study is to investigate the applicability of the two s y s 

tem identification methods to situations where the system under investigation is in normal 

operating mode, and no special excitation signals can be applied to the sy stem. This situa

tion occurs in on-line system identification processes, when a plant is in production, and 

therefore the states of the system  is in steady state. Consider for exam ple the hum an lung 

model introduced in Chapter II. The input to the system is the fraction o f C O t in inspired 

gas. If one tries to excite the system , which is in normal operating m ode, by changing the 

CO 2  content in inspired gas. the person could be harmed if a high percentage o f CO-. is 

used and his condition does not allow any additional stress to his respiratory sy stem. In the 

worst case, from the system identification point of view, the input to the sy stem  is a con

stant. From Chapter V. it is obvious that a constant reference input does not excite the s y s 

tem modes (does not fulfill the identifiability condition), and therefore, the indirect system 

identification method is not capable o f producing any results. In the first part o f  this sec

tion. the possibility of using the direct system identification m ethod for this situation is
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investigated. Figure 6.1 depicts the situation. Assuming a stochastic environm ent, some of 

the measurement and process noise of the system is being fed back into the closed-loop 

and along with the control input compared with the constant reference input. The recycled 

noise carried by the control signal has random  characteristics. The question tried to be 

numerically answ ered here is, if the noise suffice to excite the system, such that the identi- 

fiability condition is satisfied and if so. system identification yields good results.

For the sim ulation, the beam-like structure introduced in Chapter II was used. The 

states o f this system  are all assumed to be measured directly, that is the C matrix is an 

identity matrix. The ARX model order was set to be seven and the number o f data points 

was chosen to be 4000 for every simulation. Since the norm o f the error covariance matrix 

depends on the size o f the matrix, the numerical results for this system cannot be com 

pared with a different system , though it indicates the applicability of the m ethod. Figure

6.2 depicts the norm  o f the error covariance as a function o f the process and measurement 

noise. The M agnitude o f the norm indicates that the ARX model order can be estimated, 

that is, identifiability exists. In Figure 6.3 the error percentage of the 30 first open-loop 

Markov param eters are plotted against the process and measurem ent noise. The error is 

too high for an acceptable system  identification. Which indicates that the ARX model 

parameters were possible to estim ate, but the estimation error lead to a large system  iden

tification error. Sim ulations with the human lung model resulted in similar results.

A less restrictive situation can be defined if the reference input has to fulfill some 

constraint, defined by the system weakness or process dynam ics. This can be a power lim

itation on the reference input due to the actuators, or as mentioned above for the lung 

model, a range lim itation, am ong others. This topic has been studied intensively since ever

80 8 I 8its introduction by Levin and is generally in the field o f optimum input signals *. In 

parameter estim ation, one seeks the input which yields the most accurate estim ates. The 

input causing the error to be minimum is called the optimum input signal. The error cova

riance was defined in Equation (5.21) as

P q = a T d ^ O ) " 1 <6.1)

From Equation (6.1). one can conclude that the estimation error of the param eter is some

how related to the m agnitude of the error covariance matrix. In the above sim ulations the
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F-norm o f the error covariance matrix was chosen to represent the magnitude. Another 

approach is to look at each element o f this matrix, and one can conclude that the magni

tude o f P 6 increases or decreases with the increase or decrease of the magnitude of

(v, , r , ) . That implies that high signal-to-noise ratio at the input and/or output o f the sys

tem delivers more accurate estimation results. The limitation of the signal-to-noise ratio is 

given by the actuator and the system itself (for the outputs). Once the constraints of the 

actuator and/or system are known, the optim al input signal design becomes a constraint 

optimum problem. In the following, the restriction, that the reference input is a constant 

input is loosened such that r is limited to a specific percentage of its normal magnitude. 

The simulation were performed using both methods, the indirect and the direct system 

identification method. Figure 6.4 depicts the error percentage of the open-loop Markov 

param eters for a variable process and m easurem ent noise, and a variable amplitude per

centage o f the reference input. As one w ould expect, the error for a constant reference 

input goes to infinity (in the graph, the error was limited to be less or equal to 1000*1-i. 

Though as soon as the reference input carries some randomness, the error drops dram ati

cally. In comparison to the direct method. Figure 6.5 indicates the indirect method pro

duces identification results with lower error percentages, especially for high noise levels 

Figure 6.6 shows the magnitude of P±. The indirect method gives slightlv lower values

com pared with the direct method. This im plies that the error is given to some extent 

already in the estimation, and therefore in the ARX-model representation. Since for com 

puting the error covariance matrix for the direct method only the input data is different, 

one can assume that the controller behaves like a filter, and reduces the randomness of the 

input signal somewhat, which causes the slightly less accurate estimation compared to the 

indirect method. Though, to perform system  identification with the indirect method pro

duces slightly better results, except if the reference input is constraint to have no or very 

little randomness.

63 Loss of Identifiability due to Feedback

The attention in this short section is given to a specific problem encountered for 

simple systems represented by ARX m odels of low order operating in a determiniNtic

environm ent83. For example, a system described by
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vk = a, v4. [ + Zj,ut . ,  + e t (6.2)

where the ARX model order is one. If one employes a constant feedback gain o f  the form

uk = - G x k (6.3)

and G xk = g y k

where G = g C

The parameter estimation problem  can than be solved by reformulating Equation 16.3 • as 

follows

P“t -1 + pgy'k - i = 0

>t = a ly l _l + b lu l _l +El + p u k_l + p g y k..

y k = (a,  + p g ) y k. i + (b,  + p ) u k_. + £t 16.4)

and the estimates of the param eters have to satisfy the following equations:

a , = a, + pg  (6 .5 1

b\ = 6, + p  (6 6)

The cost function defined in Equation (5.17) yields the same value for the estim ated 

parameters in Equation (6.5) and (6.6). regardless of the value of g. Thus, the identified 

parameters are not unique and therefore identifiability does not exist. This problem  occurs 

only for the direct system identification method and does not exist for the indirect method, 

since the input data for the later method is the reference input, where no feedback term i> 

included.

6.4 Data Length Comparison for different Systems

In the following, several different systems are used to determine num erically the 

system identification error given a specific data length. The results are used to com pare the 

two methods in regard of their efficiency and accuracy. The data length along w ith the 

noise level o f the measurement and process, were varied, to compute the error percentage 

o f the deviation o f the Markov param eters. The noise levels were selected at 5*7-. !0% and 

15% noise variance. The num ber of data points were chosen to be 1000. 2500 and 5000 

The ARX model order was determ ined according to the system under investigation. For 

most of the systems, constant gam feedback and LQR controller were designed such that 

the closed-loop system has its dam ping ratios in the interval of 0.4 - 0.8 The simulation
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contained one single set of data for each comparison at a given noise level and data length, 

such that the randomness o f the noise is eliminated in the results. The measure is solely 

based on the error percentage o f the 30 first open-loop Markov param eters o f the identified 

and true system.

The large angle magnetic suspension test facility introduced in Chapter II. is an 

unstable system. The controller used is a dynamic output feedback controller. For the sim

ulation. an ARX model order o f 14 indicated to produce the best results. This was deter

mined by the contour plot given in Figure 6.7. The controller used is given in the 

appendix. Figure 6 . 8  depicts the sim ulation results for the two m ethods. The error percent

ages for the simulations with the indirect method show marginally lower values over the 

whole region. The average error percentage over the whole region is 98.75*7- for the direct 

method and 97.22% for the indirect m ethod. Good identification results are obtained when 

2500 data points or less over the entire noise interval are used. A contour plot of the error 

percentage of the open-loop Markov param eters with changing noise variance and number 

o f data points is given in Figure 6.9. One can detect an increasing error with higher noise 

values and lower data points.

The same approach was taken for the spring-mass system . This system is marginal 

stable, and the comparison includes the direct and indirect m ethod with control input, and 

the direct method without controller presence. The ARX model order was set equal to rise, 

which was determined by the contour plot given in Figure 6 .10. The contour plot was gen

erated using the direct method and a LQR controller while keeping the noise variance con

stant for all simulations at 5%. The results o f the comparison betw een the two methods is 

given in Figure 6.11. The upper surface represents the error percentages yield by using the 

direct method to the system which has no controller. The m iddle surface is the error sur

face for system identification with the direct method to the system  including the controller, 

while the error surface with the lowest values represents the results from the indirect 

method. The average error percentages for the three cases are: direct method w ithout con

troller 25.96%. direct method w ith controller 14.87% and indirect m ethod with controller 

12.78%. These results indicate that the controller can have a rather large impact on the 

data length in respect of noise sensitivity and furthermore, the indirect method seems to 

produce more accurate results than the direct method.
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Though the macro econom y m odel in Chapter II was introduced as a determ inistic 

model, the same simulation strategy w as applied, that is, the noise level o f the process and 

measurement was ranged, and the num ber o f data points was varied as well, to generate 

the error percentage surfaces o f the tw o identification methods. The ARX model order was 

selected to be five. The controller is a constant gain output feedback controller. Figure 

6.12 depicts the three cases. The upper surface represents the error resulting by using the 

direct method to a system with contro ller (average error percentage: 28.17%). the middle 

surface is error for the same system but using indirect system identification method (aver

age error percentage: 25.1%). The surface on the bottom is representing the error o f the 

results for the direct system identification to a system without a controller (average error 

percentage: 3.28%). The figure indicates the same findings as for the two previous cases, 

though the controller does not help to  improve the accuracy of the system identification. 

The results o f the direct method to a system  without controlled input are much better than 

to a system with control input.

The lung model was equipped with a sim ilar constant gain feedback controller and 

the same simulations were perform ed as in the previous case. The results can be seen in 

Figure 6.13. The error surfaces are sim ilar to the ones for the spring-mass system. The 

averaged error percentages are for the  direct method without controller: 25.96%. direct 

method with controller: 14.87% and indirect method with controller: 12.78%. The con tro l

ler enhances the system identification accuracy and the indirect method indicates to yield 

better results.

For the heat and mass transfer system , the lyophilisation model, a controller design 

was not successful, such that reasonable system  identification results could be obtained 

The simulations were performed w ithout a controller, and with a measurement and pro

cess noise variance o f 5%. Only the direct method was used and the number of data points 

was selected in the range o f 1000 to 10000. Figure 6.14 depicts the results. The error per

centage of the open-loop Markov param eter decays with increasing data length.

As a last system, the time delay system  introduced in Chapter II is used. The iden

tification did not yield any reasonable results when the time delay was included to the sys

tem. Therefore, the model given in Equation 2.2 was altered to include only A 0 as system 

matrix. The results given in Figure 6.15 present the error surface for the direct m ethod.
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where no controller is being used and the direct and indirect m ethod with controller inter

action. The controller is com prised by an LQR controller design and is given in the appen

dix given. For this exam ple, the controller has no real advantage, and the direct and 

indirect method yield qualitatively similar results (the average error percentages are for 

the direct method w ithout controller: 13.05%. direct method w ith controller: 12.57%. and 

indirect method with controller: 12.15%).

The simulations indicate that the controller design is crucial for accurate system 

identification. Using an appropriate controller, the indirect m ethod yields better results 

than the direct method in term s o f the error percentage. This can be used in reducing the 

data length for the indirect m ethod in order to achieve the sam e accuracy as the direct 

method with larger data length.
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CHAPTER VII

INPUT DESIGN FOR SYSTEMS UNDER IDENTIFICATION

7.1 Introduction

In the previous three chapters, the problem atic o f applied system identification is 

considered, in particular, the contents of Chapter IV indicates that the ARX model repre

sentation o f the system  by its input/output data is mainly responsible for the quality and 

accuracy of the identified system description. In Chapter V. one finds that the input data is 

highly relevant for the identifiability, of a given observable and controllable system. Chap

ter VI indicated that a suitable controller can improve the system identification accuracy 

and efficiency. That is, all of the above mentioned problem s are defined and influenced by 

the selection o f the input, which can be done by using a suitable controller. The purpose of 

this Chapter is to address the above mentioned issues by developing an input design such 

that the identification results are improved. In the following a new input design is pro

posed based on input/output data gathered from random  excitation.

7.2 Input Design for ARX Model Representation

Equation (4.7) represents the ARX model for a finite-dim ensional system. If one 

considers each summation of the finite ARX model series as a contributor for the current 

estim ate o f the output, the ARX model of an open-loop system can be represented in 

matrix format as follows:

a l 0 0  . . 0

0 a 2 0  . . 0

-v* .
— 0 0 a 3 • . 0

0 0 0  .
• a <L

y k - 1

> 't -:
-v k - 3

b \

oo

. 0

0 b 2 0  . . 0

0 0  b x . . 0

0

: 
o

 

: 
o

‘k - 1

• i - :
u k - 1

Lu * - d

+ e k (7.1
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i u

where

(7.2)

If one wants to design a  new input sequence to yield a new ARX model with q 2 < q  model 

order, one can first ignore e k in Equation (7.1) and have

V .-1 a qz + 1 0 0 . 0 >'k -  q z~ 1 bqz + 0 0
1 r

• o i l
1 1

V* 0 0 . 0 > ' k - q z- 2 0 V : 0 . °  i i

3
0 0 q y -r 3 .  0 > ' k - q z- J

+
0 0 * , . - 3  ' . 0

_  .

0 0 0
• ^ 0 0 0

A L

or in short:

y = Ay + Q.u

(7.3)

(7.4)

_ — _ r* ^

k1z * I Uq z ~ I 0 0 . 0 ! Vi  -  q . - l

0 Uq z * 2 0 . 0 vi  j  - ' !  r  k - q : - .  I

where Y =
- V <

A 0 0  a 3 . q\  * 3 . 0
t

V =  |
j . k -  q : - ■!

.  \ .

0 0 0 ' ll'L L v ‘ - v .

0
0 . . .  0

r
Uk - q z- l

0 +■ 2  0 . . .  0 “ k - q z - 2

a  = 0  0 * * -t- 3 • • •  0
and u =

u k -  i ? , - 3

0  0 0 - A

It is noted that the coefficients at and b t of the ARX model are matrices for multiple input 

and multiple output system s. Since each element o f  Equation (7 4) represents a contribu

tion to the current output, the influence of the these summation can be minimized b>
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setting

y = 0 (7.5)

For a time-invariant system, the matrices A and £2 are constant. If A and £2 are known 

and £2 is invertible, one can solve for the input which satisfies Equation (7.5)

u = -C2 ' '  Ay or uk _ ^  _ ;- = - b q ' + yy t ^  ; (7.6)

where Aq = q -  q 2 ■

From Equation (4.7) the ARX model coefficient are accordingly given as

a t = C a ‘ *A K  and b t = C A  'f l  f o r /= l  q

Rewriting £2 and A in Equation (7.4)

A =

CA ' A K

0

0

0

+■ 1

CA  ‘ A K

0

0  ... 0

0  ... 0

-  -
C A  A K  ... 0

0 0 0 ... CA*

CA 'B 0 0 0

0
i

CA  '  B 0 0

£ 2  =
0 0 C A  ' B .. 0

0 0 0 . C A * ' lB

If |£2| is invertible, then

( 7 . 8 )

17 . 9  *

£2_l =

( C A ^ ' B )

0

0

0

* i -l
( CA ' B)

0

0

0

-i
( CA  B)

0 0

0

0

0

— <7 -  1 ' I

... ( CA *  B) !

( 7 . 1 0 i
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From Equation (7.6), the revised input u can be written as

= - ( C a ‘,:  + ; 5 )  1 C A q' '*lA K y k _ ^ _ j  for j  = 1 .2  S q  (7.11)

j c  / —» x / j  n r \ / i  x ni jIf C €  /? ,B € R and no  = ni = n

= - B~  A K x (7.12

It is proposed to use this new input in a second identification experiment as out

lined in the following. The schem atic o f such an identification process is given in Figure 

7.1. In the first step, the system  is excited by a random input and the input/output data is 

recorded. From that data, the corrected input is computed and used for a second identifica

tion experiment of the system. In Figure 7.2. the input design is depicted for the first sim u

lation. The original input is windowed q data points at a time, and q 2 ^ata points are 

substituted by the newly com puted values. The simulations were done with the spring- 

mass system given in Chapter II. A total of 2500 data points were used for the simulation, 

the ARX model order q was set to be 10 and q2 was set to be 7. The noise level of the pro

cess and measurement was 5% (variance). For the following simulation, a LQR controller 

was used to enhance the stability and damping ratio o f the system. The error percentage of 

the thirty first open-loop M arkov parameters from the identification without input design 

was 107.019%. The input was com puted according to the above formula, and feed to the 

system for a second identification. The error percentage reduced to 4.905% . Figure 7 .3 

shows the original output o f  the system for the first step of the identification and the new 

output for the second step o f  the identification. One clearly recognizes the random charac

teristic o f the output from the first identification, and the oscillatory behavior of the output 

from the second identification. Also noted is a dramatic increase m magnitude for the sec

ond identification. Figure 7.4 depicts the input for the first identification step and the input 

for the second identification step. The corrected and original input show similar character

izes and magnitude. The hum an lung model introduced in Chapter II was used, using no 

feedback controller, and identification was performed also in two steps, normal identifica

tion with random input and identification with input design. The ARX model order wa> 

chosen to be 15. and q2 w as set to be 10. The measurement noise and process noise wa> 

1 % (variance). A total o f 2500 data points were used for each simulation. For the first
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identification, the erro r percentage of the open-loop M arkov param eters was 5.71%. the 

error percentage for the identification with input design was 0.162%. Figure 7.5 shows the 

original input and the corrected input. The characteristic o f the corrected input signal indi

cates much less random ness and a much larger magnitude than for the original input. The 

large input is due to the corrected signals.

The rather large magnitude required for the input from the hum an lung model sim 

ulation lead to the following alteration o f the input design. Only the first q2 input data are 

newly com puted, and thereafter, the input data is kept random. The sim ulation for this case 

were performed with the spring-mass system, using a LQR feedback controller. The noise 

level was set to be 30%  measurement and process noise (variance). The ARX model order 

q is 4 and q2 is equal to 3. The error percentage of open-loop Markov parameters for the 

simulation without input design is 112.72%. while the error percentage of open-loop 

Markov parameters for the simulation with input design is 7.97%. Figure 7.6 gives the 

graph o f the two outputs, for the simulation without input design and the output with input 

design. The output o f  the second simulation with the corrected input show s again an oscil

latory characteristic with much larger magnitude as the for the output without input 

design. Figure 7.7 depicts the original input and the corrected input. Both seem to have the 

same randomness and  magnitude. Simulation with the lung model resulted in similar ou t

comes. The dom inant poles are identified quite accurately, though the less dominant poles 

of the system show som e inaccuracies. By changing only the first q2 inputs o f the original 

input, the system is excited at its modes and produces high signal to noise ratios, which 

yields somewhat more accurate identification results than using the original input but does 

not required the m agnitude o f the input to change.

Figure 7.8 and 7.9 depict the error percentages o f the open-loop Markov param e

ters for the simulation results using input design and normal random input for the mim- 

mast system. For both simulation the noise level of the process and measurement were 

varied between 0% and 50% (variance). The number o f data points used for the identifica

tion was in all cases 2500. and the ARX model order q  was set to 4 and q2 equal to 3 For 

the results depicted in Figure 7.8. the system was operated in open-loop. while the results 

shown in Figure 7.9 were obtained by exciting a closed-loop system. The dashed lines
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represent the error percentage level for the identification results using input design. In both 

cases and over the whole interval o f the noise level, the results with an alternating input 

design are much more accurate, especially for high noise levels. Figure 7.9 depicts also the

results for different ARX model orders (dash dotted line is for <7=15. and dotted line is for

^=3), using input design. The results are sim ilar to the ones for q=4.

In the following, the effects o f this input design to the ARX model representation 

is analyzed for a specific case, that is q  = 3. q-, = 2 .

From Equation (4.7). the new output after applying u at Ar= 1 becomes

i = i  1 = 1

\'| = C A K y Q + C B uq + £[ <7.13*

but y 0  = 0 and u0 = 0 .  so y , = E (7.14)

v, = C A K x , + C B u ,  +£-,

but m, = - B  1 .AATy, and using Equation (7.14),

v ■) — C.4 K  £ | — CA K  x . + £ i

the output y l. on the other hand is given by Equation (4.7) and can be given as

Vj — CAK\ ' q + C B uq + £

and therefore

Continuing with the same methodology:

y^ — CA K X-, + CA  A K y  j + CA~A K  Vq + CBu-,  + C.4 Bu  j + C.4 +

= C A X e, + C A A K Z \  -  C A K y z -  CAAATy, + E,

CA K  v . + CA A K v n + CBu,  + C.4 B u n + £ C A K e , + CBu ,  + £

therefore

v -  C A K C A K e , -  C A K C B u } + £ ; (7 16 >

y_« = CAKy-x + CAAKx- \  + C.4 AK  v, +
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+ CBu-,  + CABu-,  + CA Wi + £_j

y 4  =  -  C A 2K C A K z x + C A K z ,  + e 4  -  C A l K C B u x + CBu,

(7.17)

V5  — C A K \ \  + C A A K y ,  + C A ' A K v 1 +

+ C B u 4  + C A B u 3 + CA Hi + £ 5  

y s — — CA K C A K z x + C A~ K z ,  + + C A K z ^  + £< +

- C A ' K C B u x + C A B u ,  + CBuA 17.1S 1

y6  = - { C A XK -  C A '  A K ) C A K z x + C A 2' K z , + C A ZK z i  + CAKz<  + £*

- ( C A ^ K  - C A ' ' A K ) C B u x + C A 2B u ,  + C A B u a + CBu< .7 19i

If continued in this fashion, the output is described by a series o f observer gain

Markov param eters times the residual, plus a series consistent with the open-loop system 

Markov param eters times the input. The terms for £, and u t depend on the selection of q 

and q2- From Chapter IV. we know that the residual is quit small, and therefore the new 

output is described by the convolution of the original input and the open-loop Markov 

parameters. Simulations indicate that the term involving u { is small com pared with the 

summation o f  the other contributors. Therefore by using the described input design, one 

can excite the system modes directly and achieve a high signal to noise ratio, w hich leads 

to very accurate identification results.

7.3 Feedback Controller Design Criteria for System under Identification

The input design can be implemented into a controller design by using Hsiao's 

approach o f iterative LQG controller design, or simple LQR controller design. Hsiao 

points out that for good identification results the closed-Ioop system should have damping 

ratios of 0.4 - 0.7. These requirem ents sometimes do not agree with the system perfor

mance requirements. In general, controllers are designed such that a particular svstem 

characteristic can be established. System identification, on the other hand uses random
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input data, or at least binary random sequences, to excite the system. This is a broad based 

approach, since with the random input data, one wants to make sure that all the significant 

system frequencies are excited and can be detected by the system identification algorithm. 

The newly developed input design is capable o f concentrating onto the system modes, 

which leads partially to a non random input. Since this method does not require a lot of 

substitutions, this can be done periodically during the system identification process, while 

the ARX model param eters are updated and the input is improved. Figure 7.10 outlines 

such an approach.
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Figure 7.1 Two-step system identification with proposed input design.
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Figure 7.2 Input signal design with repeated substitution o f new input data.
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CHAPTER VIII

CONCLUSIONS

8.1 Contributions

A new input design has been proposed for system identification using direct or 

indirect methods. The input is calculated according to the estim ated model parameters and 

fed back along with the partially substituted original input to the system, where new out

put data is produced. This new input/output data is used for the system  identification.

Existing identification m ethods, such as O pen-Loop Kalman filter Identification 

(OKID) and C losed-Loop Identification (CLID), use random  input signals to excite the 

unknown or partially known system. The randomness o f the input signal is assuring that 

all system modes are stimulated. A lso a benefit o f the random, or binary random signal, is 

to satisfy the identifiability condition for the model param eters. However, there is a lot of 

energy wasted on composing an input signal with frequencies which do not correspond to 

the system frequencies. Another problematic of standard system identification methods is 

the truncation o f an infinite model approximation o f the physical system. In particular. 

ARX models are reduced to finite length and along with the truncation some of the sy stem 

characteristics is being cut off. A relatively unknown factor to the accuracy and/or data 

length requirem ent o f system identification is the role of the controller. The controller is 

believed to have sim ilar effects as a state observer to the system identification process, 

where a lot o f information can be condensed into a relatively short data length. Though, 

the corrected input from the controller to the system  may not guarantee identifiability.

The truncation error stem m ing from the finite ARX model is being investigated 

along with any possible other error source which may occur during the system identifica

tion process. The computation o f the identified state-space description o f the system under 

investigation does not include noticeable error sources. The major error is introduced by 

the truncation of the infinite ARX model series into a finite model. Compared to the

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



innovation, this error clearly dom inates. This error occurs for both system  identification 

methods, regardless o f the em ploym ent o f  a state or output feedback controller. The effect 

o f the process noise to the system  identification is also determined. The controller does 

have no influence on limiting the influence o f  the process noise for the ARX model repre

sentation.

The identifiability problem is reduced to the consistency param eter estim ation 

problem  and experimental conditions are developed from it. These conditions are given by 

the input/output data which makes it very practical to use. In case one has to identify the 

system from early stage of the experim ent, the role o f the initial condition to the identifi

ability problem is explored. The initial conditions of the system must excite all sy stem 

modes in order that the system is identifiable.

Several different example system s are used to investigate the influence of the con

troller to the system identification process. The numerical examples include a hum an res

piratory system, a structural system , a m agnetic suspension system, a heat-m ass transfer 

system, and a macro economical system . The indirect system identification method indi

cates to have a slight advantage over the direct system identification m ethod in term s of 

accuracy and/or data length, if the feedback controller is well designed.

The proposed input design uses som e of the information obtained from the first 

part o f the identification to update the input and concentrate more on the sy stem m odes 

The results indicate a much higher signal to noise ratio, which makes the identification 

less sensible to process and/or m easurem ent noise. The newly com puted input for stable 

systems shows to have about the sam e magnitude, though for marginally stable system s, 

the input may saturate the actuators and the input design may not work. Given the new 

input design in input/output representation, the output can be described by a convolution 

involving the residual and the observer gain M arkov parameters and a convolution invoK - 

ing the new input and the open-loop system  M arkov parameters. Since the residual is very 

small, the output is dominated by the amplified open-loop system M arkov param eters. 

Simulation using the structural system  and the human lung system indicate very accurate 

identification results com pared with the normal identification results, especially for high 

noise levels where the identification is capable o f inferring the system characteristics quite 

well.
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8.2 Further Extension of the Research

Since the indirect system  identification showed that it is capable of delivering 

slightly more accurate results than the direct method, the role of the controller poles 

should be investigated at greater depth. This knowledge will enable one to place the 

closed-loop poles at a certain location to improve the identification results.

A natural extension o f  the input design is its implementation into a controller 

design. Developing a controller design schematic which results in a controller to produce 

the same input as obtained from  the input design, one would make the proposed system 

identification process more efficient.

Naturally, a physical validation of the proposed input design is highly desirable. 

For this, almost any stable system  could be used and the identification process could be 

partitioned into two steps to make it most convenient. Another interesting point would be a 

mathematical proof of the input designs perform better than the normal excitation used in 

the system identification.

The stated input design could be implemented into the computational algorithm of 

the closed-loop or open-loop system identification methods. This would enable one to 

reduce the time necessary to perform  the computation for the system identification process 

and may lead to simplification o f the derivation.
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APPENDIX

Selected Matlab Programs fo r System Identification

cjc  ****#*****#**************<:***# sysok m ***************************
7 c

7 c November 26. 1996, Marco Schoen
7 c ____________________________________________________________________________________
^function  [y.u]=sysok(A,B.C.D):
%function [y,u]=sysok(A.B.C.D):
7 c generate input/output data for okid 
7 c  x(k+l)=Ax(k)+Bu(k)
7 c y(k)=Cx(k)+Du(k)
% loaddm odeI2.m at:% C=[I 0  1 0  1 0]:D=[0];
%C=eye(6 ):D=zeros(6 . 1):
7 c  ________________________________________________________________________________
%load model.m at:[A.B]=c2d(Al,Bl,TS);C=Cl:[no.n2]=size(C):n3=0;
%load lung.mat:[A.B]=c2d(Al.Bl.TS):C=Cl:[no.n2]=size(C);n3=0: 
% [n2.ni]=size(B);[no.n2]=size(C):[Al.Bl]=d2c(A.B.TS):
7cQ=diag([750 750 1000 750 2250
750]):R=eye(ni);[F.S,poll]=lqrd(Al,Bl,Q .R.TS):pol=poir:n3=0:
%F=zeros(no.n2);
7 c ___________________________________________________________________________
load dmodel2.mat;[Al,Bl]=d2c(A,B.TS);[no.n2]=size(C);
%load lung.mat:[A.B]=c2d(A,B.TS);Dl=D;
[n2,ni]=size(B);nI = l:n=n2/2:9fcC=[l 0 10 1 0:2 0 2 0 2 0];[no.n2]=size(C):
%D=[0;0]:
%C=eye(n2):[no,n2]=size(C):D=zeros(no.ni);
n3=0;nnc=n2+n3:
%pol=[.9543+.0573i ,9543-.0573i .9467+.064i ,9467-.064i ,9391+.0706i .9391 - 0706i]: 
pol=[.9856+. 1628i ,9856-.1628i .8976+.4305i .8976-.4305i .8127+.569i .8 127-.5691];^ 
for no controller
% F=zeros(ni,n2):F=piace(A ,B.pol):
Q=diag([750 750 1000 750 2250 
750]);R=eye(ni):[F.S,poll]=lqrd(A!.Bl.Q ,R.TS):pol=poir;
7 c ___________________________________________________________________________
Ac=[A-B*F];Bc=B;<7cX=dlyap(Ac.Bc’ Bc’ ):X=X( 1 :n2 .1 :n2): 
X=dlyap(A.B*B’):M =sqrt(diag(C*X *C’)).<7cX=sqrt(X);^:X=sqrt(diag(X)l. 
M o=eig(Al);M c=log(eig(Ac))/TS:<̂ M =sqrt(C *X *C '):
M=sqrt( diag(C*X*C’) );X=sqrt( diag( X )):
[zz.zi]=size(M c);dam =zeros(zz,l );fre=zeros(zz,l ):for i=l :zz; 
freq(i.l )=((im ag(M c(i,l))A2)-KreaI(Mc(i,l ))A2))A.5;
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dam( i, 1 )=cos( atan( imag( Mc( i. 1) )/reaI( Mc( i, 1))) );end 
disp(‘ ci - roots frequency [Hz] damping ra tio '); 
disp([M c freq dam]); 
input(‘number o f data points = ’);nd=ans;
input(‘variance o f process noise [.01] = ’);pn=sqrt(ans);pnn=pn*X; 
input(‘variance o f measurement noise [.01] = ');m n=sqrt(ans);m nn=m n*M ; 
% input(‘ARX model order=’);q=ans;
x=zeros(n2 ,nd+l);y=zeros(no.nd);ry=y;rx=x;r=zeros(ni.nd);u=r,
yrr=zeros(no.nd):xrr=x;
for i= l:nd

ry(:.i)=randn(no,l).*mnn;y(:.i)=C*x(:.i)+ry(:.i);yrr(:.i)=C*xrr( :.i); 
r(:.i)=randn(ni.l);u(:.i)=r(:.i)-F*x(:.i); 
rx(:,i)=randn(n2,l ).*pnn;x(:,i+l )=A*x(:.i)+B*u(:,i)+rx(:.i); 
xrr(:.i+ l)=x(:.i+ l)-rx(:.i); 

end;
save damoise n3 r;
nni=ni* 100;i=ni;H = zeros(no .nni);H (1 :ni)=zeros(no.ni);i=ni;for iw= 1 :nni 

ini=i+ni;H (:.i+l:i+ni)=C*(A A(iw))*B;i=ini; 
end:H =H (:,l:i);
h=0;for k=I:no.for j= l:i.h=h+H (k.j)*H (k.j);end;end;ndl=nd-l;
Trokid

cjc ******************************** d svsdoc m ***************************
7c
% March 24th, 1996, Marco Schoen
9 c______________________________________________________________________________
9c Data generation for the LAM 6 DOF system, using David Coxe's controller 
7c design and model(ls_mod6 .mat and lqgi_6 .mat) and sensor to position 
7c conversion matrix s2p (s2p.mat). to compare Markov Parameters and 
7C ARX model parameter.
7c_______________________________________________________________________

load dmodel2.mat;[Al.Bl]=d2c(A.B,TS);
[n2,ni]=size(B);nl = l ;n=n2/2;C=eye(n2);[no.n2]=size(C); 
n3=0;nnc=n2+n3;
pol=[.9543+.0573i .9543-.0573i .9467+.064i .9467-.064i .9391+.0706i .9391 - 0706i]; 
F=zeros(ni.n2);F=place(A.B,pol);
7cQ=diag([750 750 1000 750 2250 
750]);R=eye(ni);[F.S,poll]=lqrd(Al.Bl.Q .R,TS);pol=poir; 
A c=[A-B*F];Bc=B;X=dlyap(Ac.Bc*Bc’);X=X( 1 ;n2 .1 :n2); 
M o=eig(AI);M c=log(eig(Ac))/TS;M =sqrt(diag(C*X*C’ ));X=sqrt(diag(X) i; 
[zz,zi]=size(M c);dam=zeros(zz. 1 );fre=zeros(zz, 1 );for i= 1 :zz; 
freq(i,l)= ((im ag(M c(i,l ))A2)+<real(Mc(i,l ))A2))A5; 
dam( i. 1 )=cos( atan( imag( Mc( i, 1) )/real( Mc( i. 1 )))) ;end 
dispC cl - roots frequency [Hz] damping ratio');
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disp([M c freq dam]):
input( ‘number o f data points = ’):nd=ans;
input(‘variance of process noise [.01] = ’):pn=sqrt(ans):pnn=pn*X:
input(‘variance of measurement noise [.01] = ’):mn=sqrttans);mnn=mn*M :
input(‘ARX model order=’):q=ans:
x=zeros(n2 .nd+l ):y=zeros(no.nd):ry=y:rx=x:r=zeros(ni.nd):u=r. 
Cc=eye(n2);ex=zeros(n2.nd):yrr=zeros( no.nd):xrr^=x: 
K =zeros(n2.no*nd+2):etha=zeros(n2+n3.nd+l): 
for i= l:nd

ry(:.i)=randn(no.I).*m nn:y(:.i)=C*x(:.i)+ry(:.i);yiT(:.i)=C,*xrri:.i): 
r(:.i)=randn(ni.l):u(:.i)=r(:.i)-F*x(:.i): 
rx( :.i)=randn(n2,1 ).*pnn;x( :.i+ 1 )=A*x( :.i)+B*u( :.i )+rx( :.i): 
xrr( :.i+ 1 )=x( :,i+ 1 )-rx( :.i): 

end:
Q=diag(diag(rx(:. 1 ) * r x ( 1)’ )):R = d iag (d iag (ry (I ) * r y ( 1)’)):
P=Q:ex(:. 1 )=zeros(n2.1 ):nnu= 1:
AcKc=zeros(nnc.no*nd):Abar=zeros(nnc.(nnc)*nd):for i=2:nd: 

P=A*(P-P*(C’)*(inv(C*P*(C)+R))*C*P)*A ’+Q: 
K (:.nnu:nnu+no-l)=P*C’*(inv(C*P*C’+R)):
ex(:.i)=( A -A*K(:,nnu:nnu+no-1 )*C)*ex( :.i-1 H B *u(:.i-1 H-A*K( :.nnu:nnu+no-1 )*y( :.i- 

1 ):%nnu=nnu+no: 
etha(:.i)=[ex(:.i)]:
A cK c(:.(i-2)*no+l:(i-l )*no)=[A*K(:.nnu:nnu-r-no-l )-B*F]:
A bar(-\(i-2)*(nnc)+l:(i-l )*(nnc))=[Ac-A *K(:.nnu:nnu+no-l )*C]:nnu=nnu+no: 

end:K k=K (:.nnu-no:nnu-l);
figuref 1 ):subpIot(3.1.1 ):m ar=nd-999:1 :nd:plot( mar.x( 1 .m ar).’-.' kgnd: 
title (“True sate x l ’);subplot(3 .1 .2):m ar= l: 1 :nd:pIot(mar.ex( l.m ar).'.'): 
grid:title(‘Estimated State ex 1’):
subplot(3.1.3):mar= 1 :no:no*nd:plot( mar.K( 1 .mar).’-’ hgrid: 
title (‘Kalman Gain’):
%figure(2);for j=  1:7.subplot(4,2.j):
% m ar=l+j:no:(no-l )*nd+j;plot(mar.K(:.mar)):grid:end: 
% hold:mar=l:no:no*nd:plot(mar,Kk( 1.1 ).’.’ ):hold;
[ba I .ba2]=size(Cc* Abar(:. 1 :nnc)* A cK ci:. 1 :no )):aclm=zeros( ba 1 ,q*ba2); 
[bbl.bb2]=size(Cc*A bar(:.l:nnc)*Bc):bclm =zeros(bbl.q*bb2):
% for k= l:q+ l
Ffc aclm(:,(k-l )*ba2+l:k*ba2)=Cc*(A bar(:.(k-l )*(n3+n2)+l :k*(n3+n2) >A(k- 
1 ))*AcKc(:.(k-l )*no+l :k*no);
Ft bclm (:.(k-l)*bb2+l :k*bb2)=Cc*(A bari:.(k-l )*(n3+n2)+l :k*(n3+n2))A(k -1 ))*Bc: 
%end;

Ac Kck=[ A* Kk-B * F]: Abark=[ Ac-A * Kk *C]: 
[bal,ba2]=size(Cc*A bark*A cK ck):aclm =zeros(bal.q*ba2):
[bb 1 ,bb2]=size(Cc* Abark*Bc ):bclm=zeros( bb 1 ,q*bb2): 
for k=l :q+l

aclm(:,(k-l )*ba2+l :(k)*ba2)=Cc*(A barkA(k-l ))*AcKck:
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bcIm (:.(k-l)*bb2+l:(k)*bb2)=C c*(A barkA(k-l))*B c:
end:
figure(2 ); 
for j= l:n o

subplot(3,3,j):m ar= 1 :1 :nd:piot( mar.yfj.mar).’ );grid;xlabel( ‘k’ ):end: 
nni=ni*30;i=ni;H=zeros(no,nni);H(:. 1 :ni)=zeros(no,ni);i=ni: 
for iw =l:nni;ini= i+ni:H (:.i+ l:i+ni)=C *(A A(iw))*B;i=ini; 
end;H =H (:,l:i):
he=0;for k= l:no ,fo r j= l:i.he=he+H (k.j)*H (k,j):end;end; 
% A k=eye(size(a));h=zeros(ni.no*l01);h(:.l:no)=d;
%for i=no:no: 100*no.h(:.i+l :i+no)=c*Ak*b;Ak=a*Ak;end; 
dy=sqrt(diag(ry*ry’)7diag(y*y’)):dx=sqrt(diag(rx*rx’)7diag(x*x’)): 
yarx=zeros(no,nd);yarxi=zeros(no.nd): 
for k= l+q:nd  

for i= l:q
yarx(:,k)=Cc*(AbarkA(i-l ))*AcKck*y(:.k-i)+Cc*(AbarkA(i-l ))*Bc*r< :.k-i); 
yarx(:,k)=yarx(:.k)+yarx(:.k); 

end; 
end:figure(3);
%
plot([q+ 1 :nd],[yarx( 1 .q+ 1 :nd)],’c-'.[q + 1 :nd].[yrr( 1 ,q+ 1 :nd)].’y.' );grid: 
[cnr,cnr]=size(Cc):A term =zeros(cnr,nd+1); 
for k= nd :-l:q+ l 

for i=l :q
yarxi(:.k)=aclm (:,(i-l)*ba2 + l:i*ba 2 )*y(:.k-i)+bclm{:.(i- 1 )*bb2 +I :i*bb 2 )*r< 
yarx(:.k)=yarx(:,k)+yarxi(:.k): 

end:
A term (:,k)=Cc*(AbarkA(q))*etha(:,k-q):

end;
figure(4);for j= l:no;subplot(4 .2 ,j);
plot([nd-500:nd],[yarx(j,nd-500:nd)],’c-.’.[nd-500:nd].[yrr(j.nd-500:nd) ):
grid;end;subplot(4,2,l):titIe(‘yarx & yrr no noise'); 
figure(5);for j=  1 :no;subpIot(4,2.j);
plot([nd-500:nd],[(yarx(j.nd-500:nd)-yrr(j.nd-500:nd))]):grid:end: 
subplot(4.2,1);title(‘yarx-yrr. no noise’): 
figure(6 );for j=  1 :no;subplot(4.2,j);
plot([nd-500:nd],[(yarx(j.nd-500:nd)-y(j.nd-500:nd))]):grid:end:
subplot(4,2,l);title(*yarx-y, with noise’);
save dsys A B C  Mo Me TS H y r dy dx A bar rx ry aclm bclm
% tm arco% cliddfc
% y = Cx+v
% y rr  = C *xrr xrr=Ax+Bu 
% yarx = yarx analytical 
9c yiarx = y from data
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cjc **********************  okid m ************** ***********

% ___________________________________________________________________
% Version Decem ber 14. 1995. M arco Schoen
%
% Using okid.m in connection with sys.m  to identify LAM 6 DOF 
% System  with generated data using constant feedback gain 
% controller.
% true state space matrices A B C D, spam pling time TS 
7c true Markov parameters H(no.ni*n);
To N =num ber of data points 
% output data y(no.N); no=num ber o f outputs 
7c input data u(ni.N); ni=num ber o f inputs
7 c ________________________________________________________________________
% if exist(‘y ’) = 0 .1oad dsys;end;%  use if real data exists 
[ni,N]=size(u);[no,N]=size(y);p=no+ni:p 1 = p -1: 
input(‘order of ARX m ode=(0=skip)'); 
if ans~= 0 ,

q=ans;input(‘identify D?( l=yes.O=no)’); 
th=arx_bat(y.u.q,ans); 

end:
input(‘number of Markov param eters for E R A =(0=skipH ; 
if ans - = 0  

n=ans;
np 1 = n + 1 ;ni l= n i-1 :nni=np 1 *ni:nom I = n o -1 ;nno=np 1 *no:
Y 1 l=zeros(no,nni);Y 1 2 =zeros(no.nno): 
for i= l:q + l

i 1 = i-1 ;n I =i 1 *ni+1 :n2=n 1 +ni 1; n3=i 1 * n o + 1 :n4=n3+nom 1;
n l l= il* p + l;n l 2 = n l l+ n il:n 2 1 =nl l+ n i:n 2 2 =n 2 1 + nom l:

Y 1 1  (:.n 1 :n2 )=th( 1 :no.n 1 1 :n 1 2 );
Y 12(:.n3:n4)=th( 1 :no.n21 :n22); 

end;
Y l l=m arkov(Y l l ,Y 1 2 ,0 .n ):Y 1 2 =m arkov(Y 1 2 .Y 1 2 . 1 .n); 
if ex ist(‘H ’) = l  

[n 1 ,n2]=size(H):if n2>nni.n2=nni;end: 
else 

subplot(2 . 1 . 1 ) 
hold 

end; 
end;
[Ai.Bi.Ci,Di]=eram(Yl l.ni.q);
% Ytr... True Markov Parameters. Y l I... ARX M arkov Parameters.
7c Yid... Identified Markov Parameters
Ytn=zeros(n 1 ,ni*30+l );Yt=zeros(n 1 ,n i*30+l );n22=l +m;for j= 1 :q;

Ytr(:.n22;n22+nil )=C*AA(j-l )*B;Y id(:.n22:n22+nil )=Ci*AiA(j-l )*Bi;n.22=n22+m: 
end;
%figure(4);
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9fcplot([l :q],[Y 11(1,1 :ni:q*ni)],’y :'.[  1 :q].[Yid( 1. 1  :ni:q*ni)].’c- 
.’,[1 :q],[Ytr( 1,1 :ni:q*ni)],’m - ’):grid;
%title(‘Open Loop System  M arkov Parameters Yarx ... Yi Ytr

mo=log(eig(Ai))/TS:M o=log(eig(A))/TS:Ki=kalman(Ai.Ci.Y12.n):
disp(‘true OL poles id O L poles’);disp([Mo mo]):
err5;

cjc *************************** clmarco m ****************************
9c

% Decem ber 8 ., 1995, M arco Schoen
% ______________________________________________________________________________
9 c Identification o f LA M 6 D O F  with a dynamic output feedback controller 
9 c (LQG-Controller), p lotting the closed and open loop Markov Param eters 
9c derived from the ARX m odel and the ones from the analytical model.
9 c true state space m atrices A B C D and Mo Me 
9c spampling time TS
9 c output data y(no,N): no=num ber o f outputs 
9 c input data r(ni,N); ni=num ber o f inputs 
9c N=number o f data points
9 c ___________________________________________________________________________________
[ni,N]=size(r);[no,N]=size(y);p=no+ni:n3=0;nspm=n3;9(r[n3.n3]=size<a):no=7: 
input(‘order of ARX m ode=(0=skip)’); 
if ans~=0 ,

q=ans;input(‘identify D( l= yes,0= no)'); 
th=arx_bat(y.r.q.ans); 

end;
input(‘number of M arkov param eters for ERA=(0=skip)’); 
if ans~ = 0  

n=ans;
np I =n+ 1  ;no I =no+ 1 ;ni I = n i - 1 mom I =no - 1 :nni=np 1 *ni:nno=np 1 *no:
Y=zeros(no.nni):N=zeros(no,nno):
for i= I:q+ l

i 1 = i-1 :n 1 =i 1 *ni+1 ;n2=n 1 +ni 1; n3=i I *no+1 ;n4=n3+nom 1;
nl l= i 1 *p+ 1 :n 1 2 =n 1 l+ n il ;n 2 1 =nl l+ni:n2 2 =n2 1 +nom I;

Y(:.n 1 :n2)=th( 1 :no,n 1 1  :n 12): N(:.n3:n4)=th( 1 :no .n21 :n22); 
end;
Y=markov(Y,N.O,n);YMl=Y; N =m arkov(N ,N .l.n);N M l=N ; 
[Y,E]=clmarkov(Y.h,n.N);YM2=Y; 

end;
[Ai,Bi.Ci.Di]=era( Y.ni.q);Ki=kalman( Ai,Ci.E,n);9c[Ai.Bi.Ci.Di]=era( Y.no.qi; 
mo=log(eig( A i) )/TS; 
if exist(“H’ )~=0 

[nl,n2]=size(H);Yi=zeros(n l.n2):Ak=eye(size(Ai));Akt=Ak;
Yi(:, 1 :ni)=Di( I :no, 1 :ni);Y tr=zeros(n 1 ,n2);% Ytr(:, I :ni )=D( 1 :no, 1 :m);
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n2n=n2/ni-l;for i= l :n2n,n3=i*ni+l;Y i(:,n3:n3+nil )=Ci*Ak*Bi;Ak=Ai*Ak: 
Ytr(:.n3:n3+ni 1 )=C*Akt*B;Akt=A*Akt;end;
Ye=Yi-H;Ye=Ye*Ye’/(H *H ’);

% figure(l);subplot(2 .2 .2 )
9c plot([0:n2n],[Yi( 1,1 :ni:n2);H( 1,1 :ni:n2)]’):grid: 

end;
m o=log(eig(Ai))/TS;disp(‘true OL poles id OL poles’); 
disp([M o mo]);
9c Open loop System M arkov Parameters:
9 c Ytr = analytical M.P.. Yi = from identification, YM2 = from ARX derived. 
%figure(6 );
%plot([ 1:30].[YM2( 1.1 :ni:240)],'y:’.[ 1:30],[Yi( 1.1 :n i:240)]/c- 

1:30],[Ytr( 1,1 :ni:240)].’m ~ ’ );grid;
% title(‘Open Loop System  Markov Parameters Yarx ... Yi Ytr 
[ba 1 ,ba2]=size(Cc* Ac* A c K c ( 1 :no));
aclm2=zeros(bal ,(q + 1 )*ba2);bclm2=zeros(bb 1 ,(q+ 1 )*bb2);Ack 1 =eye( size( Ac >1:
9 c Closed Loop System  Markov Parameters:
9c True Markov Parameters. aclm2=cl. controller Markov Parameters. bclm2=cl. system
M.P.:
for k= l:q

aclm 2(:,(k)*ba2+1 :(k+ l )*ba2)=Cc*( Ack 1 )*AcKck;% AcKc(:.(k - 1 )*no+1:(k )*no>: 
A ckl= A c*A ckl;
bclm 2(:,(k)*bb2+l:(k+l )*bb2)=Cc*(AcA(k-l ))*Bc; 

end;aclm 2 (:. 1 :ba2 )=eye(no); 
bclm 2 (:, 1 :bb2 )=zeros(bb 1 ,bb2 );load s 2 p:
9c Identified Markov Parameters:
[aA,bB]=d2c(Ai,Bi.TS):
cC=s2p*Ci;
p=[cC;cC*aA];
Amc=p*aA/p;
Bmc=p*bB;
Cm l=cC/p;Cm =pinv(s2p)*Cm l;Cci=[Cm  zeros(no.nspm)]; 
[Am.Bm]=c2d(Amc,Bmc.TS):
Aci=[Am+Bm*d*Cm B m f c;bf Cm a]:Bci=[Bm;zeros(nspm.ni)]:
9c calculate AcKc accurately for identified System.
aclm ii=zeros(bal.(q+l )#ba2);bclm ii=zeros(bbl.(q+l )*bb2):Ack l=eyeisize( Ac > >: 
for k= l:q

aclm ii(:,(k)%ba2+l :(k+ l )*ba2)=Cci*(Ackl )*A cK ck;^A cK c(:.(k-l )*no+l :(k)*no>: 
A ckl=A ci*A ckl;
bclmii(:.(k)*bb2+l :(k+ l )*bb2)=Cci*( A ciA(k-l ))*Bci; 

end:aclm ii(:,l:ba2)=eye(7); 
bclmii(:, 1 :bb2 )=zeros(bb 1 ,bb2 ); 
figure! 7);
subplot(2.1,1 ):plot( [1:12].[bclm2( 1.1:8:96)],’m -
’,[1:12].[YM  1(1.1:8:96)].’g :’.[ 1:12 ].[bclmii( 1.1:8:96)].’c-.’ );gnd:
title(‘Closed Loop System  Markov Parameters Yd an. —. Yd dat. ... Yd id _ ‘
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% subplot(2 .1,2);plot([ I :12].[aclm2( 1,1:7:84)].’m ~
\[ l:1 2 ] ,[N M l(l,l:7 :8 4 )] ,’g :’,[l: I2],[aclmii( I.l:7 :8 4 )].’c-.’);grid;
% title(‘Closed Loop Kalman M arkov Parameters Nd an. Nd d a t . ... N'd id. 
err3;% figure(5);
% for j= l :b a l ;
% for i= l:b a 2 + l
% subplot(baI,ba2+ l.j* i);pIot([l: 12],[aclm2(j,i:7:83+i)]);grid 
% end;
%end;
yiarx=zeros(no,nd);yiarxi=zeros(no,nd); 
for k=nd : - 1 :q+ 1 ;babab=0 ; 

for i= l:q
yiarxi(:,k)=th(:.babab+I:babab+bb 2 )*r(:.k- 

i )+th( :,babab+bb2 + 1 : babab+bb2 +ba2 )*y (: .k -i);
yiarx(:,k)=yiarx(:.k)+yiarxi(:.k);babab=babab+ba2 +bb 2 ;

end;
end;
% figure(8 );for j=  1 :no;subplot(4.2.j);
% plot([nd-500:nd].[yiarx(j.nd-500:nd)].'c-’.[nd-500:nd],[yrr(j.nd-500:nd )].’>:’ ); 
% grid;end;subplot(4,2,l );title(‘yiarx — & yrr 
% Checking the identified system, by applying same input 
[n2,n2]=size(Am);[n3.n3]=size(a); 
xii=zeros(n2,nd+l );yi=zeros(no,nd);ui=r,zi=zeros(n3.l); 
for i= l:n d  

yi(:,i)=Cm*xii(:.i); 
xii(:,i+l)=A m *xii(:.i)+Bm *u(:.i); 

end;
9bfigure( 13);for j= l :no;subplot(4,2,j);
% pIot([q+l; 100],[yiarx(j.q+l: 100)],’r--
’. [q + 1 : 1 0 0  ], [y arx(j ,q + 1 : 1 0 0 ) ] y : ’. [q + 1 : 1 0 0  ]. [y (j  ,q + 1 : 1 0 0 ) ] b - ); 
% grid;end;subplot(4.2,l );title(‘yiarx —. yarx .. y 
epsiIon=y-C*ex;
%figure( 14);for j=I;no;subplot(4.2.j);
<>fcplot([q+l:nd],[Aterm(j,q+l:nd)],’m :’,[q+ l:nd].[epsiIon(j.q+I:nd)].'c-.' t; 
%grid;end;subpIot(4,2.1);titIe(*Aterm ... Eps 
% plot([q+ l: 1 0 0 ],[yiarx(j,q+l: 1 0 0 )],’c-
\ [ q + l :  1 0 0 ],[yarx(j,q+l: 1 0 0 )],’y.’.[q+ l: 1 0 0 ],[y i(j.q + l: 1 0 0 )].’r.’,[q + l: 1 0 0 ],[v (j.q + l: 1 0 0 >], 
b --’);
% grid;end;subplot(4.2.1 );title(‘yiarx yarx .. yi o ’); 
if y a rx = 1 0 0 %, what is the percent error deviation of yarx-viarx 

9 c  F-N’orm;
%[col.row]=size(varx);nume=0 ;denu=0 ;error=0 ;
9cfor k= l:co l;
9 c  for t=row-100:row
9 c  num e=nume+(yarx(k.t)-yiarx(k,t))*(yarx(k.t)-yiarx(k.t));
9 c  denu=denu+(yarx(k,t)*yarx(k,t));
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i-iv

% end;
%end;
%error=sqrt(nume)/sqrt(denu)* 1 0 0 ;
% 2-Norm:
%num=0 :den=0 ;error2 =0 ;
%num=norm((yarx( :.row-100:row)-y iarxf: .row -1 OOrrow) ),2 ):den=norm( (y arx (: .row- 
I0 0 :row)),2 );
%error2 =num/den* 1 0 0 ;
% disp(sprintf(‘Percentage o f error dev. o f y(arx) and y(i.arx). F-Norm: = % g \ error)); 
% disp(sprintf(‘Percentage o f error dev. o f  y(arx) and y(i.arx). 2-Norm: = % g ’.error2)): 
% if y anal. = 1 0 0 %, what is the percent error deviation o f y-yiarx 
% F-Norm:
% [col,row]=size(yarx);nume=0 ;denu=0 ;error=0 ;
%for k= l:col;
% for t= row -1 0 0 : row
9 c num e=num e+(y(k.t)-yiarx(k.t))*(y(k.t)-yiarx(k.t)):
9 c denu=denu+(y(k.t)*y(k.t));
9 c end;
%end;
% error=sqrt(nume)/sqrt(denu)* 1 0 0 ;
9 c 2-Norm:
%num=0 ;den=0 ;error2 =0 :
%num=norm( (y(: .row -1 0 0 : row )-y iarx(: .row -1 0 0 :row ) ).2 ) :den=norm( (v (: .row- 
1 0 0 :row)),2 );
%error2 =num/den* 1 0 0 ;
% disp(sprintf(‘Percentage o f error dev. o f y and y(i.arx). F-Norm: =% g'.error)): 
% disp(sprintf(‘Percentage o f error dev. o f y and y(i.arx). 2-Norm: =% g'.error2));

9 c if y anal. = 100%, what is the percent error deviation of y-yarx 
% F-Norm:
%[col,row]=size(yarx):nume=0 ;denu=0 ;error^ 0 ;
%for k= l:col:
% for t= row -1 0 0 :row
% nume=nume-Ky(k,t)-yarx(k.t))*(y(k.t)-yarx(k.t));
% denu=denu+(y(k,t)*y(k,t)):
% end;
%end;
% error=sqrt(nume)/sqrt(denu)* 1 0 0 :
% 2-Norm:
%num=0 ;den=0 ;error2 =0 ;
% num =norm ((y(:.row-1 0 0 :row )-yarx(:.row -I0 0 :row)).2 ):den=norm((v( :.row- 
1 0 0 :row)),2 );
%error2 =num/den* 1 0 0 ;
%disp(sprintf( ‘Percentage o f error dev. o f y and y(arx). F-Norm: =% g'.error)i; 
% disp(sprintf(‘Percentage o f error dev. o f y and y(arx). 2-Norm: =%g',error2>);
% error o f the mean:
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9 c statistics about y
9c mty=mean( mean( y ’)) ;%sty=std( y ’):
% disp(sprintf(‘M ean o f y • —%g’.mty));
9 c  statistics about yarx
% m tyarx=m ean(m ean(yarx’ ));%styarx=std(yarx’);
% disp(sprintf(‘M ean o f  yarx: =% g’.mtyarx));
9 c statistics about yiarx
% mty iarx=mean( m ean(y iarx ’) ):%sty iarx=std( y iarx ’);
9fcdisp(sprintf(‘M ean o f yiarx: =% g’.mtyiarx)):
% for i= l:no  
9c fo r j= l:n o
9c y_yiarxv=corrcoef(y(j,:).yiarx(i,:));y_yiarx(j,i)=y_yiarxv( 1.2);
9 c y_ y a rx v = co iT C o ef(y (j.:) .y a rx (i.:)):y _ y a rx (j.i)= y _ y a rx v ( 1.2);
9 c y_yrrv=corrcoef(y(j,:),yrr(i,:));y_yrr(j.i)=y_yrrv( 1.2);
9 c y a rx _ y ia rx v = co rT co ef(y a rx (j.:) ,y ia rx (i,:));y a rx _ y ia rx (j.i)= y a rx _ v ia rx v ( 1.2):
9 c end;
9 c t nd;
% yyiarx=diag(y_yiarx);
%yy arx=diag(y_yarx);
% yyrr=diag(y_yrr);
% yarxyiarx=diag(yarx_y iarx);
% disp(‘correlation o f  y.yiarx. y l-y ia rx l. y2 -y iarx l...:’);
% disp([yyiarx’]);
9 c figure( 15);for j=  1 :ni:subplot(4.2,j);
9 c psd(r(j,:).256,l/TS.hanning(256). 128.’none’ );
% grid;ylabel(‘ *);xlabel(‘ ‘);grid;end;subplot(4.2.1);
% title(‘Power Spectrum  Estimate o f r’ );

c7c ****************************** ides m *******************************
9c

9 c February 20. 1997 M arco P. Schoen
9c

9 c Iterative ARX m odeling for improved system identification.
9 c 1. estimated ARX model coeficient {ai.bi}
9 c 2. Form param eter matrices Av and Om 
9c 3. Load y old
9 c 4. Computer vk=-O m A-l*Av*w
9c 5. at t=k-q-l: uk-3. .. uk-q=f(Om. Av,. yk-2....vk-q)
9c 6 . used data obtained in step 5 to perform new SI: (ai. bi}=f(u.y)
%
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% 1 . D ata generation and System identification
clsysdocar,
okidar;
th=arx_bat(y,u,q,0 ):figure( i );uorg=u:yorg=y:
% 2. Param eter formation Av and Om 
A vl=zeros(no*q.no*q):O m l=zeros(no*q.ni*q): 
for k=nd : - 1 :q+ 1 :babab=0 : 

for i= 1 :q
Av 1 ((i-1 )*ba2+1 :i*ba2.(i-1 )*ba2+1 :i*ba2)=th( :.babatn-bb2+1 :babab+bb2+ba2); 
Om 1 ((i- 1 )*ba2 + 1 :i*ba2 .(i- 1 )*bb2 + 1  :i*bb2 )=th( :.babab+ 1  :babab+bb 2 ): 
babab=babab+ba2 +bb 2 : 

end: 
end:
input(‘New ARX model order =’);q2=ans;
A v=A vl((q2)*no+l:q*no.(q2)*no+l:q*no):
O m =O m l((q 2 )*no+l:q*no.(q 2 )*ni+l:q*ni):

9 c  3. Load original output and determine what input it should be 
wy l=zeros(no*q,I );vul=zeros(ni*q.l ):%vu2=zeros(ni*nd. 1 );Fcu2=u: 
for i=nd:-q:q+ 1 :%nd-fix(nd/q)*(q-1 )+ 1 ; 

for p = l:q  
wy l(((p -l)*no+ l ):(p*no),:)=y(:.i-p); 
vu 1 ((p - 1 )*ni+ 1  :p*ni. 1 )=u( :.i-p); 

end;
wy=wy 1 (q2 *no+ 1 :q*no. 1 ):
% vu(q2*ni+l :q*ni, 1 )=-pinv(Om)*Av*wry; 
vu=-pinv(Om)*Av*wy: 
vu2 =[vu l( l:q 2 .:);vu]: 
for p= 1 :q

u 2 (:,i-p)=vu 2 ((p-l )* n i+ l:p * n i.l): 
end:
%vu2 (i-q*n i+ l:i.l )=[vu 1 ( 1 :q2 *ni.I );vu(q2 *ni+l :q*ni. 1 )]; 

end;uorg=u:

9 c 4. Estimate new ARX model parameters and check goodness
%u3=u2;
clsysdocar3:
okidar2 :
th=arx_bat(y,u.q.O);
figure! 2 );%for j=  1 :no;subplot( 2 , 1  .j):
subplot! 2 , 1 , 1 );
plot([l :nd],[yorg( 1. : ) ] ) : 9 c  ’c --’,[nd-500:nd],[y(j.nd-500:nd );
grid:title( “Original Output y ’);
xlabel(‘Time index k’);
ylabel( “M agnitude’);
subplot(2 , 1 ,2 );
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p lo t([l:nd].[y (l.:)]):
grid :title(‘Corrected Output y ’):
x label(‘Tim e index k ’):
ylabel( ‘M agnitude’):
figure( 3 ):% for j=  1 :no:subp!ot(2 . 1 .j):
subpIot(2 . 1 . 1 );
p lo t([l:nd].[uorg(l.:)]):<&’c-\[nd-500:nd].[y(j.nd-500:nd)].'y -‘);
grid ;title(‘Original Input u ’);
xlabel(‘Tim e index k ’):
ylabel( ‘M agnitude’);
subplot(2 . l . 2 ):
p lo t([l:nd].[u (l.:)]):
g rid :title(‘Corrected Input u’);
xlabeI(‘Tim e index k’);
vlabeK ‘M agnitude’):
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