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ABSTRACT

Kamakhya Prasad Singh 

Old Dominion University, 1995 

Director: Dr. Oktay Baysal

A new methodology is developed to simulate unsteady flows about prescribed and 

aerodynamically determined moving boundary problems. The method couples the fluid 

dynamics and rigid-body dynamics equations to capture the time-dependent interference 

between stationary and moving boundaries. The unsteady, compressible, inviscid (Euler) 

equations are solved on dynamic, unstructured grids by an explicit, finite-volume, upwind 

method. For efficiency, the grid adaptation is performed within a window around the 

moving object. The Eulerian equations of the rigid-body dynamics are solved by a Runge- 

Kutta method in a non-inertial frame of reference. The two-dimensional flow solver is 

validated by computing the flow past a sinusoidally-pitching airfoil and comparing these 

results with the experimental data. The overall methodology is used for tw o two- 

dimensional examples: the flow past an airfoil which is performing a three-degrees-of- 

freedom motion in a transonic freestream, and the free-fall of a store after separation from a 

wing-section. Then the unstructured mesh methodology is extended to three-dimensions to 

simulate unsteady flow past bodies in relative motion, where the trajectory is determined 

from the instantaneous aerodynamics. The flow solver and the adaptation scheme in three- 

dimensions are validated by simulating the transonic, unsteady flow around a  wing 

undergoing a forced, periodic, pitching motion, and comparing the results w ith the 

experimental data. To validate the trajectory code, the six-degrees-of-freedom motion of a
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store separating from a wing was computed using the experimentally determined force and 

moment fields, then comparing with an independently generated trajectory. Finally, the 

overall methodology was demonstrated by simulating the unsteady flowfield and the 

trajectory of a store dropped from a wing. The methodology, its computational cost 

notwithstanding, has proven to be accurate, automated, easy for dynamic gridding, and 

relatively efficient for the required man-hours.
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1

Chapter 1 

INTRODUCTION

1.1 Motivation

Due to the increased pressures on cost and time incurred to generate and test existing 

as well as conceptual configurations, computational fluid dynamics (CFD) has emerged as 

a crucial technology for the development of advanced aerospace vehicles. Furthermore, for 

unsteady flow fields involving moving bodies, experimental facilities are scarce and 

experimental methods are very limited in their capabilities. Thus, increased importance is 

being placed on unsteady CFD methods as may be the only approaches available for 

predicting transient phenomena. These simulations also require the analysis o f non-trivial 

and geometrically complex configurations. Some typical examples, where the prediction of 

dynamic loads, moments, and trajectories are essential, include: flight maneuvers, store (or 

missile) separation sequences, escape-pod ejections, detachment of multistage-rocket 

components, and separation o f booster tanks from the space shuttle. To answer this 

demand, new numerical algorithms and grid generation methods need to be developed, and 

existing ones made more efficient and robust.

Unstructured grid methods have the potential to handle these complex geometries 

somewhat easier than their structured grid counterparts. This can be attributed to the fact 

that triangles and tetrahedra are the simplest geometrical shapes possessing area and 

volume, respectively. As such, they are capable of discretizing irregularly shaped domains 

m ore efficiently and with less effort. Hence, an unstructured approach has been the
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2

starting point for the present study. For the problems which involve moving bodies, some 

method of tracking the body dynamics must also be implemented [1].

Computational fluid dynam ics has become reasonably mature for steady flows. 

However, there is a strong need for advancements to compute unsteady flows and, in turn, 

the flows involving moving boundaries. In simulating a flowfield involving a 

multicomponent configuration, with one or more components engaged in a relative motion, 

there are at least four levels o f assumptions that can be made for the incident-flow and 

solid-surface interaction [2]. From  the least to the most accurate, they are: 1) All the 

moving components are assumed to be instantaneously frozen, and at each instant, either a 

steady-state or unsteady computations are performed; 2) All the moving components are 

assumed to be engaged in the same rigid-body motion, and the complete computational grid 

is assigned this motion during the unsteady flow analyses [3]; 3) Each moving component 

is assigned its own rigid-body motion, but it is assumed to be known, so it can be 

prescribed as input to the unsteady flow computations [4-7]; 4) Beyond and above level 3, 

the trajectory is determined from the instantaneous flowfield using the principles o f rigid- 

body dynamics [1, 2, 8-10], i.e. aerodynamically determined.

The proper modeling of complex unsteady moving boundary problems pose a great 

challenge to the computational fluid dynamicist. This has been the main impetus for the 

present study. Numerous approaches have been suggested and implemented to simulate 

the unsteady phenomena associated with these problems. There are two major approaches 

to tackle this kind of problems. One approach is based on the frame of reference (Eulerian 

or Lagrangian or Mixed Eulerian and Lagarangian approach), and the other is based on the 

type of grid employed (structured or unstructured grids). The present study employs an 

Eulerian approach.
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1.2 Literature Survey

3

1.2.1 Unstructured Grid Methods

Unsteady applications o f structured-grids methods to complex configurations require 

sophisticated strategies, such as, blocked, patched, overlapped or hybrid type grids, that 

may complicate the solution algorithm. Thus, unstructured grids provide a viable 

alternative to the structured grid approach.

Unstructured grid methods have gained a lot of popularity in the recent years [11] to 

solve the equations of fluid flow. This is because of the advantages these methods offer in 

comparison to the traditional structured grid approach. The primary advantages o f these 

methods are: (i) They can model very complex geometries such as a complete aircraft 

configuration more easily than their structured counterparts, (ii) These methods lend 

themselves naturally to adaptation and mesh refinement, thereby predicting the physics of 

the flow more accurately. Grid points can be added to the high gradient regions o f the flow 

with considerable ease resulting in greater spatial accuracy at an affordable computational 

cost.

The generation of unstructured grids can be broadly classified into three categories: (i) 

triangulation of structured grids; (ii) Delaunay triangulation [12]; (iii) Advancing front 

technique [13,14]. The triangulation of an existing structured grid is simpler and quicker 

but does not exploit the inherent advantages of the unstructured grids effectively. Delaunay 

triangulation requires an initial distribution of the nodes and subsequently connects them to 

form unstructured meshes. The advancing front technique does not require any initial 

segment or point distribution, but generates the points as the unstructured mesh is being 

generated. Hence the method of Delaunay triangulation is more efficient but lacks the self 

sufficiency and grid quality of the advancing front method. In the present study, the
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com putational mesh was created using an unstructured grid generation package, 

VGRID3D, which is based on the advancing front technique.

1.2.2 Methods for Moving Boundary Problems

A great deal of work has been done to solve the unsteady moving boundary problems 

using structured grids. The most promising approach has been the domain decomposition 

technique [4, 5,8-10,15], The three basic types of domain decomposition techniques are: 

multiblock, zonal, and overlapped methods. The dynamic overlapped method has proven 

to have the potential to simulate complex moving boundary problems that include bodies in 

relative motion. This procedure permits each sub-domain to be meshed independently, 

thereby reducing the grid generation task especially for complicated flow regions. The 

main drawbacks of this methodology are that it is not conservative, at least as it has been 

implemented so far, and that it requires an overlapped region between subdomains which 

is not possible at all times. It is important to note that the geometric conservation law 

(GCL) [16, 17] is not needed for the dynamic overlapped method since the computational 

grid moves like a rigid body with the moving body.

The two basic approaches which have been used to discretize the fluid region by finite 

volume or finite difference methods are the Eulerian and Lagrangian methods. In the 

following section, a discussion about both methods are given and their advantages and 

disadvantages are weighed with respect to each other. Also, some of the recent work using 

these approaches to model moving boundary problems has been reported.

Lagrangian methods have been used successfully to simulate unsteady moving 

boundary problems [18, 19]. In this approach, the grid nodes are fixed to the fluid 

particles and they move with the fluid. Thus, each computational cell is associated with the 

same fluid element. The method has at least three major advantages: (i) Tracking of
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material interface is easier; (ii) Implementation of the interfacial boundary conditions is 

much easier; (iii) Absence of numerical diffusion reduces the numerical error associated 

with it. The main limitation of this approach is its inability to  cope easily with strong 

distortions. In other words, these methods are limited to cases where mesh tangling does 

not occur. One of the major problems is the numerical inaccuracies generated due to the 

highly irregular meshes. There are two solutions to alleviate this problem: one is rezoning 

where the distorted mesh is mapped into a more regular m esh, and the second is a 

reconnection in which the topology of the mesh points are modified such that the mesh 

points acquire new neighbors.

The Eulerian approach [18] treats the computational mesh as a fixed reference frame 

through which the fluid moves. In this approach, the coordinate system is stationary in the 

fixed reference frame or moves in a prescribed manner to account for the continously 

changing shape of the solution domain. Thus, the grid motion is independent of the motion 

of the fluid. The main advantages of this method over the Lagrangian methods are: 1) Its 

ability to handle fluid motion undergoing large distortions, and 2) Easy formulation of the 

method. Owing to the above factors, this method has been used widely [3, 4, 5, 8] to 

simulate unsteady moving boundary problems. The main limitations of this approach is the 

difficulty o f  tracking the interface accurately. Other issues which have not been settled for 

the Eulerian approach are the finding o f an appropriate formulation of the field equations 

and also the best suited numerical method (finite volume or finite element). Since the fluid 

particles are free to cross the grid lines in an Eulerian approach, numerical mixing and 

diffusion are convected across the cell interface which may sometimes affect the solution 

accuracy severely. The error associated with approximating the convective terms translates 

into the numerical diffusion. One of the other numerical limitations of this approach is that 

the contact/shear layer is smeared with the elapse of time and distance. Despite the above 

factors, the Eulerian approach has enjoyed the confidence of CFD practitioners as it offers 

convenience and simplicity both conceptually and geometrically.
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The shortcomings of the purely Lagrangian and purely Eulerian methodology have 

prompted researchers to come up with an integrated approach [18, 20]. The integrated 

approach, better known as Arbitrary Lagrangian Eulerian approach (ALE) has been 

implemented successfully for two dimensional moving boundary problems [20]. This 

method embraces the positive features of the Eulerian and Lagrangian method. This 

approach has no basic dependence on particles and the computational mesh is treated as a 

reference frame that traverses with an arbitrary velocity which is different from the grid 

velocity.

In recent years considerable amount of attention has been given towards solving 

unsteady moving boundary problems using the structured grid approach. The approach 

which has shown promise, especially for problems with bodies in relative motion, is the 

dynamic overlapped/embedded scheme or the dynamic Chimera scheme.

Meakin and Suhs [21] have successfully extended the Chimera scheme for unsteady 

problems involving multiple bodies in relative motion. This method incorporated the 

unsteady Chimera technique with an implicit, approximately factored, finite difference 

scheme for the unsteady thin-layer Navier-Stokes equations. Meakin [15] has applied the 

unsteady Chim era scheme to simulate the complex unsteady flow about the 

wing/pylon/finned store configuration. Here, unsteady computations have been carried out 

over a finned store separating from a wing and pylon where the trajectory of the store was 

determined by aerodynamic forces and moments.

Yen and Baysal [4, 5, 9, 10, 22] have successfully carried out the unsteady 

calculations using a very effective method called the dynamic domain decomposition 

technique. An Eulerian approach was also incorporated. The dynamic domain 

decomposition method has the advantage of treating each subdomain differently, and 

different solution methods can be incorporated for different subdomains. An interpolation 

scheme is necessary for the communication between subdomains. Also this method lends
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itself to parallel processing. One of the other advantages of this dynamic overlapped 

scheme is its potential to handle large amplitude motions without much need for remeshing 

or regeneration. This is because the overlapped grid is moved like a rigid body. The 

strength o f this method has been demonstrated by successfully performing the complex 

unsteady flow simulation around a wing-store (WS) configuration [9]. Here, the complex 

flowfield around a store separating from a delta wing has been captured by employing the 

dynamic overlapped scheme. The trajectory of the store was determined aerodynamically. 

This method has proved to be an effective and robust method for moving body problems 

involving multiple bodies where at least one body is in relative motion.

Arabshahi et al. [23] have developed a multiblock approach to solve complex 

unsteady moving boundary problems. They have solved the three-dimensional unsteady 

Euler equations about a wing/pylon/store configuration and demonstrated the limitation of a 

static domain decomposition technique for moving boundary problems, where the grid lost 

its integrity very quickly with the continued motion.

The methods which have been discussed so far are based on an Eulerian approach. 

Another very promising method which is based on a Lagrangian approach is by Kandil 

and Chuang [24, 25]. In this approach, the governing equations for fluid flow were 

derived in the moving frame of reference. During the time accurate calculations, the 

Navier-Displacement equations were solved sequentially for the grid deformation. For 

rigid body motion, this method eliminates the need to compute the grid motion at every time 

step. The method has been implemented successfully in modeling the unsteady flowfield 

around an oscillating delta wing. Since the grid is not moved as a whole but rather adapted 

to the motion, this method is limited to small-amplitude motions, such as, those 

encountered in aeroelasticity problems.

Until now, the discussion has been focused on dynamic structured grid methods for 

solving unsteady moving boundary problems. Lately, some inroads have been made by
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solving this class of problems via the method of unstructured grids. The most notable 

amongst them  have been the works by Lohner [26,20 ], Batina [3], Probert et al. [27,28] 

and Peraire et al. [29,30].

Lohner et al.[26] have demonstrated a method where they have combined adaptive 

remeshing techniques, unsteady flow solver, and rigid-body dynamics to simulate a fully 

coupled fluid-rigid body interaction problem. The method uses the finite element method 

based on the Arbitrary-Lagrangian-Eulerian (ALE) formulation. This method has been 

applied successfully in two-dimensions. Some of the application problems where this 

method has been used are: simulation of the unsteady flowfield around an object falling into 

a supersonic freestream and the motion o f a ramp in a supersonic freestream. Lohner has 

extended this approach further in three dimensions to simulate the store separation problem 

[31].

Probert et al. [27, 28, 30] have developed an adaptive finite element technique for 

time dependent compressible flows in two-dimensions. This approach is similar to the 

approach by  Lohner except for the fact that a partial rem eshing technique has been 

employed, as opposed to the full remeshing and H-refinement used by Lohner. An 

Eulerian approach is used for most of the flowfield but a Lagrangian view-point is used in 

the vicinity of the moving boundaries. The methodology has been tested in two- 

dimensions by performing unsteady calculation around a space shuttle separating from a 

rocket booster.

Batina et al. [3,32] have successfully implemented an explicit and an implicit solution 

algorithm for unsteady moving boundary problems. A dynamic mesh algorithm has been 

employed to simulate the unsteady flowfield around oscillating airfoils. This method has 

been extended successfuly in three dimensions and the dynamic mesh algorithm and flow 

solver tested by performing an aeroelastic analysis on a complex aircraft [33]. The
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capabilities include mesh enrichment and coarsening. However, a robust rem eshing 

technique is needed to handle bodies in relative motion.

1.3 Objectives of Present Work

The primary objective o f this research work was the development of a dynamic 

unstructured grid method capable o f  determining aerodynamically the motion and the 

related unsteady flowfield of released bodies. A list of the objectives are given below:

(i) Development of the static version of the cell-centered explicit finite volume, Euler 

flow solver, USM3D ( version 1.0) into an unsteady flow solver.

(ii) Development of a robust and efficient dynamic mesh algorithm that can handle 

complex moving boundary problems.

(iii) Development of a trajectory code based on the rigid-body dynamics equations to 

predict the trajectory of a body under the influence of gravity and aerodynamic forces 

and moments.

(iv) Coupling the unsteady flow solver, dynamic mesh algorithm, and the trajectory 

code to obtain a dynamic unstructured methodology which is capable of simulating 

prescribed and aerodynamically determined relative-moving boundary problems.

(v) Validating the dynamic, unstructured code in tw o and three dimensions by 

performing unsteady calculations on configurations for which experimental data are 

available.

(vi) Demonstrate the present methodology via representative cases.
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1.4 Outline of Dissertation

The sequence of the dissertation is as follows. Chapter 2 presents the basic equations 

governing the fluid flow and the rigid-body dynamics. Here, the governing equations are 

described and the appropriate assumptions to arrive at these equations are stated. Chapter 3 

describes the solution algorithms needed to solve these equations. Here the spatial and 

temporal discretization methods for the fluid flow equations along with the initial and 

boundary conditions, are highlighted in detail. Also, the dynamic mesh algorithm which 

includes the grid adaptation and adaptive window procedures, are described in this chapter. 

Finally, the functional methodology that couples the fluid flow equations and the dynamic 

mesh algorithm is explained in chapter 3. Chapter 4 demonstrates the application o f the 

grid adaptation technique in three-dimensions by prescribing a motion for an ONERA M6 

wing. Also, the validation of the six degrees-of-freedom trajectory code is presented here.

The unstructured dynamic flow solver has been validated in two and three- 

dimensions. The two-dimensional dynamic flow solver has been validated by performing 

an unsteady numerical simulation about a sinusoidally oscillating NACA 0012 airfoil and 

comparing it with experimental results. The three-dimensional dynamic flow solver has 

been validated by simulating the unsteady flowfield about an oscillating rectangular wing 

for which experimental data is given. These validation results are presented in Chapter 5.

The strength of the dynamic unstructured method was tested further by performing 

unsteady flow simulations about bodies in relative motion. The unsteady flowfield about a 

store separating from an airfoil, under the influence of aerodynamic forces and moments in 

two-dimensions, is carried out and are presented in Chapter 6. Also, the results showing 

the applicability of this method in three-dimensions is demonstrated by simulating the 

complex six degrees-of-freedom motion of a store separating from a wing under the 

influence o f gravitational and aerodynamic forces and moments, is presented in this
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chapter. Some conclusions based on this study are presented in Chapter 7. Also, some 

recommendations for extending the applicability of this method is presented in chapter 7.
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Chapter 2

GOVERNING EQUATIONS

2.1 Governing Equations for Fluid Flow

The governing equations of fluid flow that ensure the conservation o f mass, momentum 

and energy form a set of coupled partial differential equations. W hen the viscosity, heat 

transfer, and body forces are neglected for simplicity they reduce to the well known Euler 

equations. In the present study the Euler equations are expressed in their conservative 

form using the integral formulation. The unsteady Euler equations are capable of modeling 

moving shock waves, entropy rise across shock waves, and entropy gradient and vorticity 

generation and advection behind shocks. This is evident from the Crocco’s theorem and 

the inviscid vorticity transport equation.

The three-dimensional time dependent Euler equations for moving boundary problems, 

which require dynamic grids, can be expressed in integral form for a bounded domain A 

with a boundary 3Q as

|- J J JQ d V + JJF (Q ).h d S  = 0
dt n an

(2 . 1)

where

Q = [p, pu, pv, pw, pe0] ( 2 .2 )
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and

F(Q) • n = ( v  • n)

p 0

pu n *
pv • +  p- n y
pw

,pe0 + p ,a t.

(2.3)

The velocity vector, V , of a fluid particle is written relative to the motion of the dynamic 

grids,

V = { ( u - x t ), ( v - y t ), ( w - z t )} (2.4)

and the contravariant face speed is computed by averaging the node speeds and is given by

a ,=  xt n x + y t ny + z t nz (2.5)

In these equations, nx, ny and nz denote the components of the unit vector which points

normal to the cell face, and xt, y, and zt are the grid speed terms in the x, y, and z

directions, respectively. The equations are normalized with a freestream density p„ and a 

speed of sound a„. The term e0 is the total energy per unit volume. The pressure and 

total enthalpy are related via the ideal gas assumption as

P = ( Y - l ) [ e 0 - 0 . 5 p ( u 2 + v2 + w2)] (2.6)

and

h0 = ?— + 0.5 (u 2 + v2 + w2) (2.7)
( Y- l )  p v '
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2.2 Governing Equations for Rigid Body Dynamics

To extend the methodology to handle the class o f problems for which the motion of the 

body is not known a priori, an interfacing between the force and moment fields computed 

from the fluid dynamics equations and the rigid body kinematics of the motions involved 

needs to be established. To arrive at the equations o f rigid body dynamics, consider a fluid 

particle P (Fig. 2.1) which has a position vector r  with respect to the inertial frame of 

reference X Y Z [34, 35]. The non-inertial frame of reference xyz has its origin at O' with 

R being its position vector with respect to the inertial frame of reference. The non-inertial 

frame is fixed to the body and translates and rotates with the body relative to the inertial 

frame. The position vector of P with respect to non-inertial frame of reference is given by 

x . Hence the position vectors are related by

r = R + x (2.8)

inertial fram e
n on-inertial fram e

Fig. 2.1 Coordinate systems showing their position vectors.
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The absolute velocity of P with respect to the inertial coordinate system is obtained by 

differentiating Eq. (2.8) with respect to time as

v = r = R + (;Or +  © x x  (2.9)

where, R is the velocity of the origin O', (x)r is the velocity of the particle relative to non- 

inertial frame, © is the angular velocity o f the body, and © x x is the velocity due to 

rotational motion of non-inertial frame. It is important to note that the velocity of P relative 

to non-inertial frame, (x)r, is zero for non-deforming bodies.

D ifferentiating Eq. (2.9) with respect to time, the expression for the absolute 

acceleration o f  P is obtained as

a = r = R + © x x  + © x ( © x x )  + (x)r + 2 © x  (x)r (2.10)

In the above equation, R is the absolute acceleration of origin O', (x )r is the acceleration of 

particle P relative to the non-inertial frame, 2© x (x)r is the Coriolis acceleration which 

represents the difference in acceleration between the inertial and non-inertial axes, © x  x is 

the tangential acceleration and can be also termed as effect of angular acceleration caused by 

the rotation o f the non-inertial axes, and w x  (© x  x) is the centripetal acceleration that 

represents the angular acceleration component introduced due to the angular velocity of the 

non-inertial axes. In the above equations, ( )r terms denote relative terms.

An unconstrained motion of a rigid body has three translational and three rotational 

degrees of freedom, that is, six degrees-of-freedom (DOF). The six equations of motion 

can be derived by a direct application of Newton's second law of motion to relate the 6-
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DOF motion and the force and the moment fields. The general expression to describe the 

rotational motion of a rigid body is given by

M = I ©  +  co x  (Tco) (2 .1 1 )

where the moment M, moment of inertia tensor I, and the angular velocity © have the 

following components:

M = (M x,M y,M z)
(2 .12)

1 =

x̂x x̂y x̂z 

lyx lyy ŷz 

ẑx ẑy ẑz

© = (©x,©y,©z)

(2.13)

(2.14)

The translational equations of motion for a rigid body are derived with respect to an 

axis system fixed to the body. The equations are given by

F = m (vr) + m ( w x v ) (2.15)

The assumptions made to derive the rigid-body dynamic equations are: i) the origin of 

the coordinate system is at a point fixed in inertial space, ii) the non-inertial coordinate 

system, xyz, has the same angular velocity as that o f the body.

To simplify the rotational equations of motion, the non-inertial coordinate axes are 

assumed to coincide with the principal axes. With this choice of axis system, all cross
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products of inertia vanish and moments of inertia become tim e independent. Thus, Eq. 

(2.11) reduces to the Euler’s equation of rigid-body motion:

Since a matrix multiplication is non-commutative, a finite angular displacement is not a 

vector but a directed line segment. Consequently, angular velocities, cox, coy and coz about 

the body axes cannot be integrated to obtain the angular displacements. Therefore, a set of 

generalized coordinates is needed to describe the orientation of a rigid body. These 

coordinates are known as the Euler angles. It is important to note that the order of rotation 

is very im portant, and in the present study the three rotations are given as follows:

(i) A positive yaw rotation, V|/ about the Z axis resulting in the primed system.

(ii) A positive pitch rotation, 0 about the y' axis, resulting in the double 

primed system.

(iii) A positive roll rotation, <j) about the x" axis, resulting in the final unprimed system.

The sequence of rotations is shown in Fig. 2.2. The Euler angles through the body 

axis angular velocities are governed by the Euler rate equations:
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\j/ = (coy sin <(> + coz cos <}>) / cos 0 

0 = coycos<j>-cozsin<l> (2.17)

<j> = cox +(Dysin<|>tan0 + cozcos<j>tan0

These equations Eqs. (2.17), along with the translational and rotational equations of motion

(2.15) and (2.11) respectively, determine the trajectory of the rigid body.

Z, z'

Fig. 2.2 Euler angles (yaw-pitch-roll sequence)
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Chapter 3 

SOLUTION ALGORITHMS

3.1 Solution Algorithm for Fluid Flow

3.1.1 Finite Volume Discretization

The finite volume formulation is based on the physical conservation laws in integral 

form for small volumes placed around every mesh point. The finite volume formulation 

has more flexibility than the finite difference method because it can handle relatively 

arbitrary point distributions. Also, the direct discretization of the integral form of 

conservation laws ensures the conservation of mass, momentum, and energy at the discrete 

level. One of the other advantages of this technique is, in the absence of source terms, the 

evaluation of fluxes is done on two dimensional surfaces rather than in three-dimensional 

spaces.

A semi-discrete approximation to the governing equations (2.1) is given by

v , ^ +  V F : A - 0  (3.1)
dt j=*cd) J

Put to words, Eq. (3.1) states that the time rate of change of volume-averaged conserved 

variables in the i ^  control volume is equal to the sum of the area-averaged fluxes F y  over 

all the faces of a cell.
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The random placement of cells in an unstructured mesh requires the employment of 

generalized indexing scheme. The present methodology uses the cell-centered finite 

volume formulation where each cell is considered a control volume Q , consisting of four 

triangular surfaces, Equation 3.1 is applied over the four triangular faces of each cell 

[36,37]. It is to be noted that a tetrahedral mesh contains about five to six times more cells 

than nodes. Thus, an unstructured cell-centered scheme may be five to six times more 

costly in terms of CPU time and memory than an unstructured cell-vertex scheme. On the 

other hand, an unstructured cell-centered scheme produces a higher spatial resolution due to 

the higher number of control volumes used in comparison to an unstructured cell-vertex 

scheme. In the present study, the cell-centered formulation was selected for its superior 

accuracy compared to the cell-vertex formulation, despite the relative storage increase. 

Tetrahedral cells were selected over hexahedral cells for easier discretization of irregular 

volumes; again, despite the relative storage increase.

3.1.2 Upwind Discretizations

The two methods which are used widely for the construction o f the interface fluxes 

are the central differenced discretization and the upwind discretization. In a central 

differenced scheme, the numerical interface flux F(QL,Q R) is determined by averaging the 

fluxes corresponding to Q values of the left and right states, (QL,Q R). The advantages of 

a central-difference type discretization are that they are easier to code and take less memory 

than the upwind discretization. The drawbacks of these schemes are that they lack 

dissipation, are inherently unstable, and decouple the adjacent cells. In order to counter 

these drawbacks, some artificial dissipation must be added. Currently, the most popular 

dissipation formula is by Jameson et al. [38], which is a blend o f second and fourth- 

differences of the conserved variables. This dissipation formula requires user specified 

second- fourth-order dissipation coefficients and also is case dependent.
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Upwind methods apply a discretization based on the locally one-dimensional 

propagation direction of waves. In other words, the interface fluxes are evaluated based on 

the characteristic theory for hyperbolic systems of equations. This approach makes the 

scheme naturally dissipative. It is important to note that upwinding is actually equivalent to 

a central differencing plus an artificial dissipation term. Upwind methods are classified into 

two categories: flux-vector splitting (FVS) and flux-difference splitting (FDS). A review 

of these schemes is given in [39].

In the present work, FDS of Roe [40] and FVS of van Leer [41] have both been used 

to compute the inviscid fluxes. A discussion of these schemes for computation on dynamic 

meshes is given below.

3.1.2.1 Flux Difference Splitting

The basic philosophy behind the concept of flux difference splitting is to construct the 

cell interface fluxes through the solution of a set of Riemann problems. Unlike the 

Godunov method [42] where an exact nonlinear solution to the Riemann problem is 

sought, Roe's method [40] seeks an approximate solution to a locally one-dimensional 

Riemann problem without sacrificing the nonlinear behavior o f the interacting waves. 

Roe's method is based on extension of the linear wave decomposition, which is the exact 

linear solution to Riemann's problem, to the non-linear equations.

For the Roe's scheme, the flux across each cell face k  is evaluated using the numerical 

flux formula

[ f ( Q u) + F(Qr ) -  IAI (Qr - Q l ) (3-2)
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where Q L and QR are the conserved variables to the left and right of the interface, 

respectively and A is the Roe-averaged flux Jacobian matrix.

The implementation of Roe's scheme to solve the non-linear Euler equations requires a 

linearization of the Euler equations because the Roe's scheme is based on linear concepts. 

Linearization of the Euler equations is accomplished by evaluating the Jacobian matrix A, 

with the averaged quantities (denoted by ~):

P - V P l P r

u =

v = VL + VR
PR

PL

/fi+JS)
I  » p j

\

/
H

(3.3 a) 

(3.3 b)

(3.3 c)

w = W L  +  W R1 / 1+. Pr

I  VPl
(3.3 d)

h0 = hoL + ^QR1
P l

/ 1 +  J —
V P l (3.3 e)

a2 = ( y - l )  h0- 0 .5  (u2 + v2 + w2)j (3.3 f)

The Roe-averaged Jacobian matrix, A , is the mean value of the Jacobian matrix A 

and has the following properties:
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(i) the Roe-averaged Jacobian matrix A(Ql,Q r ) approaches true Jacobian matrix 

A as Q l and QR approach Q,

(ii) the flux difference between left and right states can be written as

a (Q l,Q ,,)(Q 1<- Q u) = F(Qr) - F ( Q l ) (3.4)

(iii) A has a complete set of real eigenvalues and vectors.

Property (i) ensures the consistency of the governing differential equations. The 

satisfaction of Rankine-Hugoniot shock jump conditions is ensured via property (ii). This 

is also responsible for the improved resolution of shocks and contact discontinuities. 

Property (iii) allows the matrix A to be expressed in the canonical form

A = T A T  ' (3.5)

. -i
where the columns of T are the right eigenvectors o f A and the rows of T are the left 

eigen-vectors of A . A is a diagonal matrix comprising of eigenvalues of A . By virtue 

of all the properties stated above, the flux difference can be expressed as

F(Qr) - F ( Q l) = TA T-1A Q = IAF.I + IAF2I + lAFjl (3.6)

where

|AF,| =  |U ■ M )

1
u

V
+ p

0 1 
A u - A U  nx

A v - A U  ny
V a ; w

- 7  - 7  -  7
U“ + V +  W 

2

A w - A U  n7

L. u Au + v Av + w Aw -  U AU
(3.7 a)
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AF2i3 = U + a
f  Api p a A U  j

2a2

1

u ± a n x

v ± a n y

w ± a n z

Lh0 ± a U (3.7 b)

with AU =  Au nx + Av ny + Aw nz and the Roe-averaged contravariant velocity is defined 

by

U = u n , + vn„ + w n,* y 1 (3.8)

In the present investigation, the Roe scheme used for stationary boundary problems is 

modified for moving meshes by redefining the Roe-averaged contravariant velocity as (Eq. 

2.5)

U = u n x + v n  + w n z -  a, (3.9)

Figure 3.1 gives a better insight as to how the fluxes are calculated. The common face 

between the two adjacent cells, cell 1 and cell 2, consisting of the nodes N l, N2, N3, from 

one side and coincident nodes M l, M2, M3 from the other side.

N2 ,M 2

_  _ > N 4

Cell 2

N1 ,M1
Fig. 3.1 Tetrahedral cells showing common face and nodes.
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3.1.2.2 Flux Vector Splitting

Flux vector splitting is based on the construction o f a stable upwind differencing 

method to solve a set of hyperbolic conservation laws comprising of positive and negative 

eigenvalues.

For the van Leer scheme [41], the flux vectors are given in terms of the Mach number 

normal to each face. This results in the possibility o f the flow being supersonic or 

subsonic through a face. The conditions which need to be satisfied for the scheme are:

(i) F(w) = F+(w) + F“ (w).
a ±

(ii) has all eigenvalues > 0 and has all eigenvalues < 0. Also, is 
dw dw dw

continuous, with one eigenvalue vanishing for IMI< 1.

A + A • A
(iii) F±(w) is continuous, with F = F for M > 1 and F = F for M < -1 .

A ±
(iv) F (M) must be a polynomial in M with the lowest possible degree.

With the above conditions, supersonic fluxes are evaluated as

» \+ aF+ = ( F ( Q ) . n )  , F~ = ( F ( Q) . n )  = 0 f o r M n > l  (3.10)

F" = ( F ( Q) . n ) “ , F+ = (F (Q ). ii)+ = 0 forMn < -1  (3.11)

For subsonic flow, the fluxes are split into the following contributions

Ft = F +( q f ) + F - ( Q * )  ( 3 ] 2 )

where
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with

F± =-

f*1 mass
•±
mass
±
mass
±
mass

u + nx( - U ± 2 a ) / y  

v +  ny( - U ± 2 a ) / y  

w + nz( - U ± 2 a ) / Y

energy

2 6

(3.13)

f* = + — (M + l ) 21mass “  ^  \ AV1n — x)
(3.14)

f* = f ±1 energy Amass
(1 -  y)U 2 ± 2(y -  l )Ua + 2 a 2 u2 + v2 +

(v2 ->) + 2

W

a, (—U ± 2 a ) "

(3.15)

In Eqs. (3.10)-(3.15), U is the adjusted contravariant velocity, which is the scalar product 

o f the modified velocity in Eq. (2.4) with the unit normal vector to the face.

In the present investigation, the van Leer flux vector splitting has been extended for 

the three dimensional Euler equations to handle problems involving dynamic meshes while 

ensuring that the properties of the original splittings are preserved [43,44,45]. It is to be 

noted that for unsteady moving boundary problems, the requirements for split fluxes are 

the same as for stationary grids except that the fluxes are now functions of grid speeds 

through the contravariant face speed at and the grid-speed adjusted contravariant velocity U 

(as used in Eq. (2.3))

U = V* n = ( u - x t ) nx + ( v - y t ) ny + ( w - z t) n z (3.16)
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3.1.2.3 Higher Order Spatial Differencing

In a first-order scheme, the state of the primitive variables at each cell face is set equal 

to the cell-centered averages on both sides o f the face. For a higher-order scheme, the 

evaluation of fluxes requires a correct estimate of the left and right state at the cell faces. 

One method [46] is to expand the cell-centered solution to each cell face through a Taylor 

series expansion as

q (x ,y ,z )=  q(xc,yc,zc) + Vqc .Ar  +  fl(Ar2)

There are various approaches [45] to calculate the solution gradient efficiently at the cell 

center. In the present study, the solution gradient at the center of the cell is constructed by 

exploiting the invariant characteristics of triangles and tetrahedra and by the application of 

the Green's theorem [37]:

Vqc . Ar =
o (^nl  +  ^112 "*■ ^ 113) 9n4

4 Ar
At

(3.18)

where q ni , q n2, q n3 denote the primitive variables at the three nodes that constitute the face

through which the flux passes, Ar is the distance from the centroid of a tetrahedron to the 

center of that face, and q n4 are the primitive variables at the fourth node of the tetrahedron.

The nodal values of q in Eq. (3.18) above are determined by inverse distance weighting 

of the surrounding cell-centered solution quantities. This is achieved by the expression:
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where the subscript c,i refers to surrounding cell-centered values. After trying several 

weighting factors, Frink reported [37] that the inverse-distance weighting factor

four heuristically determined weighting factors. It turns out, however, the accuracy o f this 

weighting is less than second order. A fully second order accurate averaging procedure has 

been developed for two-dimensions by Rausch et al. [47] and extended to three-dimensions 

by Frink [46]. The weights were derived on the basis of the property that the Laplacian of 

a linear function is zero, where:

( w c,i  =  ( x c,i ~ x n )  *) produces the least error involved in computation of the gradient from

^ ( x n )  — £  w c,i ( x c,i x n )  — ®
i=l

(3.20a)

(3.20b)

L(zn) = I w Cti (zCii- z n) = 0
i =l

(3.20c)

The weights are evaluated by definin;>g

wc i =  1 + Awc>i (3.21)

with the cost function,

(3.22)
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minimized by soving the minimization problem utilizing the method of Lagrange- 

multipliers, subject to the constraints given by Eqs. (3.20). The expressions for the 

Lagrangian-multipliers are given elsewhere [46,47].

3,1.3 Geometric Conservation Law

The conservation laws for the discretized fluid dynamic equations for moving grids 

may be violated if the geometric conservation law (GCL) is not incorporated [10,15]. For 

a moving mesh, the preservation of a uniform flow can only be maintained when the cell 

volumes are computed using the discrete form of the geometric conservation law.

For a time interval t2-tj, the integral form of conservation law for the Euler equations 

(2.1) can be recast in the following form:

j Q d V  - j Q d V + J  f F • ndS  dt = 0 (3.23)
n ( t2) n (t . )  t, dm

where V(t) is the cell volume at time t and ndS is the unit normal on a surface pointing 

outward. The flux F can be expressed as

F = ( u p - v ) Q  = Fs,„lc- » Q  (3.24)

where up and v are the fluid particle velocity and the local velocity of a cell face, 

respectively. For the freestream values of Q and Fstatic, the derivation of geometric 

identities can be accomplished by combining Eqs. (3.23) and (3.24) as shown below:
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[v(t2)—V(tj)] Q „ +  F stat;c_ -J  ^ n d S d t - Q ^ J  f n • vdS dt = 0 (3.25)
t, 8f2(t) t, 3Q(t)

The second term j  ndS on the left hand side of Eq. (3.25) vanishes for a closed cell and the 

resulting equation is simplified to the the geometric conservation law:

[V(t2) - V ( t 1) ] = J  ^ n . v d S d t  (3.26)
t, 3 0 ( 0

To avoid grid-motion induced errors when dynamic meshes are involved, Eq. (3.26) 

must be satisfied concurrently with the conservation of mass, momentum, and energy [1, 

14,15]. The integral statement of GCL may be written as

T ‘ JJJdV= JJ v. n dS (3.27)
d t o  ao

Furthermore, to provide a self consistent solution for the local cell volumes, the GCL 

should be integrated using the same scheme that is used for the fluid equations. A 

discretization of Eq. (3.27) has been expressed in [1] which is consistent with the above 

solution algorithm and is given by

yji+l = v | 1+At  I  [atAS]n+1 (3.28)
j=*(i) ;i

Thus, this equation is used to update the local cell volumes for the current time level.
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3.1.4 Time Integration

Time can be advanced either explicitly or implicitly. In an explicit method, the matrix 

of unknown variables formed at the new time level is a diagonal matrix, and the right hand 

side of the system depends only on the flow variables from the previous time level. The 

advantages of this method are: that it requires fewer arithmetic operations per time step, it 

is simple to code, and it can be vectorized w ith ease. The primary drawback of this method 

stems from the severe restrictions imposed on the maximum allowable time step due to the 

stability and convergence conditions.

In an implicit method, there are more than one set of unknown variables at the same 

time level and hence the matrix to be inverted is not a diagonal one. The number of 

arithmetic operations required per time step will be higher than for the explicit scheme, but 

this drawback is counterbalanced by the fact that implicit schemes pose no theoretical 

limitation on the time step.

It is important to note that, for unsteady flow problems, time accuracy o f the numerical 

solution is required and the temporal conservation error diminishes with decreasing time 

step. Chaderjian et. al. [48] have shown that the implicit algorithm of Pulliam and 

Chaussee [49] approaches the Euler explicit scheme as the time step is reduced. Hence, an 

explicit scheme may become the appropriate choice for certain unsteady problems.

In the present study the spatially discretized form of the governing equations are 

integrated in time using the explicit fourth-order Runge-Kutta method [38]. This method 

has second-order temporal accuracy for the non-linear equations and it may be written as 

follows:
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q S0) = Q"
,(D _ V’P c

((0) 1 At
r S0)1 v n+t V

Y l 4  V,P+1

((2 )_ VP 
1 f 5(0) 1 At ■ r S1}-i yn+1  ̂

y l
^  yn+1

,(3> _
VP 

1 r ,(0) 1 At
r [2)1 v n+t 'x 

V 1
-i 2

V " ,n(°) At r [3)2i - V n+1 yn+ 1

Q " + 1 =  QS4)

where Vi is the cell volume and R/ is the residual given by

(3 .2 9 )

J = k( i )
(3 .3 0 )

where A is the cell face area and the summation of fluxes is taken over the four faces ‘k ’ of 

tetrahedral cell ‘i’.

3.1.5 Convergence Acceleration Techniques

The explicit Runge-Kutta time integration scheme has a step size restriction based on 

the Courant-Friedrichs-Lewy condition which corresponds to a Courant number of 2 V 2 . 

A fully converged steady state solution is provided as an initial condition for the unsteady 

calculations. To accelerate the convergence rate to the steady-state, the Courant number can 

be increased by employing convergence acceleration techniques. In the present study, the 

method of local time stepping and the method of im plicit residual smoothing have been 

used. A brief discussion of these methods is given in the following section.
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3.1.5.1 Local time stepping

The convergence of a solution to the steady state can be accelerated by using local time 

stepping. This method advances the solution of each cell (denoted by i) in pseudo-time 

using the maximum possible time step based on the local stability limit:

At -= --------------------- ( C F L ) V j --------------------------------- (3.31)
(W  + a i )Af + ( h |  + a; )Af + (|wj | + aj )A f

where V and a represent the cell volume and local speed of sound, respectively. A *, A f , 

and Af are the projected areas in the x, y, and z directions, respectively.

3.1.5.2 Implicit Residual Smoothing

The time step can be enhanced further by an implicit residual smoothing. This 

method is performed by implicit averaging of residuals between a certain number of 

neighboring cells. Effectively, this process filters the residuals through a smoothing 

operator and solves the resulting set of equations by the Jacobi method. The present 

implementation of this method, is adapted from Jameson and further discussed in [38]. It 

should be noted that the above discussed acceleration methods are used only for the steady- 

state solutions, and are by-passed when unsteady simulations are performed.

3.1.6 Initial and Boundary Conditions

In order to have a well-posed problem, initial and boundary conditions need to be 

imposed. That is, the solution to any partial differential equation is governed by the choice
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of its initial and boundary conditions. In the following section, initial conditions will be 

discussed, then physical boundary conditions for steady and unsteady flows are developed. 

Modifications required to handle unsteady moving boundary problems are presented.

For the steady calculations, uniform conditions are chosen as the initial condition. For 

the time accurate calculations needed for unsteady flows, a fully converged steady state 

solution is used as the initial condition.

The far-field boundary conditions are incorporated using the locally one-dimensional 

characteristic boundary conditions. The velocity normal to the boundary and the sound 

speed for each cell is calculated from the locally one-dimensional Riemann invariants given 

by

R* = U ± — a
V " 1 (3 .3 2 )

These invariants are used to calculate the local normal velocity and the speed of sound. The

local normal velocity at the boundary is calculated by adding the two Riemann invariants

and the speed of sound is obtained by subtracting the two Riemann invariants. The density 

boundary condition is imposed by using the entropy relationship and the pressure boundary 

condition is applied using the equation of state.

For steady inviscid flows, the velocity components used in the surface boundary 

conditions are written as

u wall =  u center “  n x ^

v wall =  v center — n yU  (3 .3 3 )

Wwall =  w center -  n z ^
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where U is the contravariant velocity given by

V * n  = U = u n x + v n y + w n z (3.34)

The density and pressure boundary conditions are got by zeroth-order extrapolation as

Pwall =  Pcenter ^  3 5 ^

Pwall =  Pcenter

For unsteady moving boundary problems, however, the above conditions must be 

adjusted since the boundary faces now possess a discernible velocity. The expressions for 

the unsteady corrected velocity components remain the same as in Eq. (3.34) except for the 

velocity vector V , which now has to take into account the grid speed term (Eq. (3.15)). 

The expression for the velocity vector is given by Eq. (2.4) and it is obtained by 

subtracting the grid speed from the respective components of the velocity vector V . For a 

moving boundary problem, the pressure gradient in the normal direction is non-zero and 

can be derived from the normal momentum equation [50] as

= -p n -a  (3.36)
dn

where n is the unit normal to the boundary face, a is the acceleration of the body given by 

Eq. (2.10).
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3.2 Solution Algorithm for Rigid Body Dynamics

The aerodynamic forces and moments are formed by integrating the instantaneous 

pressure field and their moments. The expression for the forces and moments are given by

These forces and moments obtained from the fluid dynamic equations are relative to the 

inertial frame of reference XYZ. In the present study, the equations governing the rigid 

body dynamics are solved in the non-inertial frame of reference, xyz, and hence the inertial 

forces and moments need to be transformed to the non-inertial frame of reference. The 

non-inertial frame of reference used here is the axis system which is fixed to the body. The 

axis systems are shown in Fig. (2.1). The transformation of the forces and moments 

relative to the non-inertial frame of reference is accomplished through the directional cosine 

tensor Cjj.

Let Tj and Xj represent the vector quantities in the inertial and non-inertial frames, 

respectively, then the two vectors are related through the transformation matrix Cjj as

mvCg = £ F  = mg -  JpndQ

l a  + J(co • x) • (x x (5)dQ = £ M  
£2

(3.37)

(3.38)

(3.39)

where the transformation matrix Cjj is given by

c y c e  c e s y  - s e
[0 ^]=  S<])S0Cvjr - C<j)Sv(r C<J>Cv)/ + S<|)Sij/S9 C0S<j) 

S<)>Si|/ + C<j>Cvj/S0 - C\j/S<J) + C<J)S\|/S0 C<))C0

(3.40)
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Here, S and C denote the sine and cosine of the suffix angles, respectively. The angles \j/, 

9, and <j> are the Euler angles and they are also termed as yaw, pitch and roll angles, 

respectively (Fig. 2.2). The sequence of rotations is very important since the matrix 

multiplication is not commutative. The sequence of rotations used here are in the order 

yaw-pitch-roll. The axis system used here is as follows: x axis is forward along the 

longitudinal axis ( e.g.: store longitudinal axis), the y axis is positive to the right looking 

forward, and the z axis is vertical downward (Fig. 2.2).

After having transformed the forces and moments to the non-inertial frame of reference, 

the rotational equations of motion given below are integrated in time using a fourth-order 

Runge-Kutta method to yield the angular velocity field, ( cox, Wy, coz).

d)x = — 1
I*x

. My 
“ y = I

yy

. M 7 
= T -L 

zz

M x ( I zz “  ! y y )  W>-C0Z

4 XX

(^xx Izz)®x®z
I y y

(3.41)

( l y y - I XX) c 0 y C 0 X 

ItZ Z

Using the angular velocity field obtained thus, the Euler rate equations (2.15) are integrated 

in time, again using a fourth-order Runge-Kutta method to obtain the Euler angles, \}/ , 0, 

and <]). Finally, the Euler angles, together with the angular velocities, are used in the 

translational equations of motion.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Equations (3.42) are integrated in time to yield the translational velocity. In Eq. (3.42), m

is the mass o f the body whose trajectory is to be determined, and g is the gravitational

acceleration. Further, the translational velocity is integrated again to obtain the linear

displacement field. Since the linear displacements are relative to a non-inertial frame of 

reference, they are transformed via the transformation matrix [Cy j as

= W T (3.43)

Thus, the linear displacement of the center of gravity of the body together with the Euler 

angles, determine the trajectory of the body under the action of aerodynamic forces and 

moments.

3.3 Dynamic Mesh Algorithm

3.3.1 Grid Adaptation Method

The unstructured mesh about the body (or bodies) of interest is considered as a system 

of interconnected springs [3]. This system is constructed by representing each edge of 

each triangle by a tension spring. Various attempts at determining the optimum relationship
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for specifying the spring stiffness have been made by Chakravarthy et al. [51]. In the 

present work, however, the spring stiffness is assumed inversely proportional to the length 

of its edge and may be written as

where p  (generally taken between one and three) is a parameter used to control the stiffness 

of the spring. In some cases normalized edge lengths

may be used in place of the actual lengths used in Eq. (3.44). Lmjn and Lmax are the 

minimum and maximum values o f the edge lengths, respectively, at a given adaptation 

stage. Then, for each mesh point, the external forces due to the connecting springs are 

resolved into their Cartesian components and summed (Fig. 3.2). The resulting set of 

linear systems are solved for the displacements o f each node using the point-Jacobi 

method:

kii =  1-0 /  [(xj -  Xj)2 + (y. -  y .)‘ +  (z, -  z - f  ” (3.44)

max

(3.45)

(3.46a)

(3.46b)

(3.46c)
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where i is summed over all edges connected to node j. The positions of the interior points 

are then updated using the determined displacements.

This iterative method has the advantage of not requiring an excessive amount of 

memory, but it does require an initial guess. For the present system, only the 

displacements at the current time level are stored, and the initial guesses of the 

displacements are the displacements at the previous time level. Since the system being 

solved is diagonally dominant (the diagonal of each row being the sum of the spring 

stiffness of every node involved in that equilibrium equation), a relaxation factor may be 

introduced to accelerate convergence. Hence, using this successive over relaxation 

method, an acceptable mesh movement is achieved in 4 to 6 iterations.

When dealing with cases that involve large amplitude motions, there is every likelihood 

of having grid skewness and poor grid point distribution. This problem can be alleviated 

by remeshing, regeneration or smoothing. In the present study, Laplacian type smoothing

[53] has been used. The expression for performing such smoothing is given by

(3.47a)

(3.47b)

(3.47c)
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Fig. 3.2 Schem atic of the assum ed spring system  a t  node denoted by j.
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where a  is the relaxation parameter and i is summed over all the edges connected to node j. 

The number of smoothing sweeps is user specified and in the present study, the number of 

smoothing sweeps is taken to be 125.

3.3.2 Adaptive Window Procedure

The computational efficiency of the grid adaptation method above can be improved by 

limiting the size of the adaptation region, since only a small area of the mesh needs to be 

stored and adapted. The method used in the present work to restrict the size of the 

adaptation region is to create a "window" around the physical domain of interest [1, 53]. 

The nodal points inside this window are considered as the spring network and, thus, 

allowed to adapt to the body movement. Significant savings in both CPU time and 

memory are realized using this procedure. In [28], it has been reported that the spatial 

adaptation procedure can be responsible for anywhere between 3 to 7.5 percent of the total 

CPU time for an unsteady simulation (the exact percentage depends on whether or not local 

enrichment or refinement is utilized in the adaptation). Nevertheless, for unsteady flows, 

where it is understood that a large number of iterations are performed, small savings per 

iteration will equate to large overall savings. In the present work, the adaptation procedure, 

regardless of window construction, costs 9.5 microseconds/node/iteration and requires 

storage of 2+2*m per node, where m is the maximum number of springs connected to any 

node on a Cray 2. Therefore, CPU time and memory savings may be obtained by reducing 

the number of nodes being adapted per iteration; for example, by only adapting 30 percent 

of the total number of nodes, a 70 percent saving is realized.

Creating the window may be carried out by either specifying a normal distance from the 

body o f interest or choosing a basis shape (circle, ellipse, etc.) around it. The entire
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domain is searched to locate the points which fall within the window and they are flagged 

as window points. For instance, when a basis shape, such as a circle is used, the points 

which fall within the circle are the points whose absolute distance from the center o f the 

circle is less than the radius of the circle. The window points are allowed to be adapted 

from one time step to the next. The next search is for the mesh points which are connected 

to the outermost window points. These points are flagged as "window fram e" points. 

Mesh points exterior to the window and the window frame points are spatially fixed in 

time.

For problems in which the body has small or no translational movement, creation of the 

window takes place only once. However, for problems in which large movements are 

encountered, the window may need to be constructed on several occasions during the 

body's trajectory. Thus, window construction must be a quick, reliable, and automated 

process. In the present work, a basis shape is used to specify the window, and a critical 

displacement is chosen to determine when a new window is needed.

3.4 Functional Overall Methodology

Until now the solution algorithms for the fluid dynamics equations, rigid body 

dynamics equations, and the dynamic mesh equations have been stated. In the present 

section, an outline of the overall solution methodology is explained. The flowchart of the 

methodology is presented in Fig. 3.3.

The salient steps of the solution methodology can be itemized as follows:

(1) Generate a fixed mesh.

(2) Define a window around the body.
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(3) Obtain the steady state solution.

(4) Given an initial value of the grid speed, the governing equations of flow (2.1) are 

solved to obtain the instantaneous force and moment fields.

(5) These forces and moments are transformed to the non-inertial frame of reference 

and used in the rigid body dynamics equations Eqs. (2.11 and 2.13) to solve for the 

translational and rotational velocity fields.

(6) Using the translational velocities and the angular velocities, the velocities of the 

surface points are found from

v = r = R + coxx (3.48)

The above equation is obtained using the rigid body assumption, and eliminating 

the relative velocity term in Eq. (2.9). However, the velocities of the off-surface 

mesh points are calculated by the full Eq. (2.9) with the relative velocity term being 

included. This is because the rigid body assumption is no longer valid in this 

region.

(7) With the velocity field at the current time step, the coordinates o f the grid points and 

the center of mass are updated.

(8) Then, the position of the body is checked to see if a new window is needed. If so, a 

new window is created about the body in the current position.

(9) Once the window criteria has been evaluated, the mesh is then adapted to the body 

movement.

(10) The solution is advanced time accurately by one time step.

(11) If the target position has not been reached, steps (4) to (10) are repeated.
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Step 1 
mesh for 

fixed bodies

Step 2 
window for 

moving bodies

Step 3 
steady state 

flow analysis

Step 7 
unsteady flow 

analysis 
(one dt)

Step 6 
adaptation / Step 5

Step 4 
rigid-body 
dynamics

adaptation 
I window

target

t = t + n dt

Fig. 3.3 Flow chart of 3D dynamic unstructured method.
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Chapter 4

DEMONSTRATION OF ELEMENTS OF METHODOLOGY

Prior to presenting the results of the present study, components of the developed 

methodology (Fig. 3.3) are tested and demonstrated in this chapter. With this impetus, the 

baseline flow solver for the steady flow past a static configuration, and the grid adaptation 

in a window are applied to three problems. Then the trajectory is validated.

4.1 B aseline Flow Solver

The configuration for this computational model consists of a cone-nosed and flare- 

based cylinder (35 inches long and 6 inches in diameter) as the carrier and an ogive-nosed 

cylinder (9.5 inches long and 0.4 inches in diameter) as the projectile. The angles of attack 

were zero degrees for the carrier and ten degrees for the projectile (Fig. 4.1) This 

configuration is called herein the aft-launched projectile (ALP). The computational grid 

was generated using an unstructured background grid and consisted of 266,000 cells and

46,000 nodes. A blow-up view of the surface grid for the projectile is shown in Fig. 4.2. 

The computational domain for this case extended 30d streamwise, 24d normally, and 16d 

laterally (d denotes the carrier diameter). The steady state soluiton at Moo of 1.5 was 

obtained by using the 3D, static, Euler flow solver called USM3D [38]. The solver served 

as the baseline to the present investigation which resulted in the 3D, unsteady flow solver 

for moving boundary problems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fi
g.

 4
.1 

Su
rf

ac
e 

gr
id 

on 
ca

rr
ier

 
an

d 
pr

oj
ec

til
e



48

Fig. 4.2 Blow-up view of the surface grid for the projectile

Pmin =  ° -122
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Wi JW.V/I l̂ jWVTAVk̂l I? ViViVifiV/i ̂V
:-i rATi> v.-:̂  VW W  v*v*V4V Ŷ:

Fig. 4.3 Off-surface pressure contours at plane of symmetry for carrier
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Fig. 4.4 Pressure contours on projectile at 3 longitudinal cross sections (ALP)

Pmin _  0.122  

Pmax=1.78

PinUrYd = 0‘006

Fig. 4.5 Surface pressure contours over projectile (ALP)
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Fig. 4.5 Pressure coefficient distribution for carrier 
at plane of symmetry, Mcra = 1.5, ao = 0°.
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Presented in Fig 4.3 and 4.4 are the surface grid for the carrier, along with the 

normalized pressure contours at the longitudinal symmetry plane and three cross-sectional 

planes, respectively. The nose shock of the carrier is attached. After the expansion at the 

forebody junction a shock surface is formed at the body-base junction. These are better 

seen in Fig. 4.5 which displays the surface pressure contours. The pressure coefficient 

distribution on the carrier at the longitudinal plane of symmetry is shown in Fig. 4.6 and 

delineates the shock and expansion structure on the carrier. Fig. 4 .4  displays the 

longitudinal cross sectional pressure contours at three locations over the subpack. The 

wake region is slightly non-axisymmetric, which can be attributed to the presence of the 

subpack cylinder. The wake starts with a strong base shock which extends to impinge on 

the subpack cylinder. The base pressure drops to a low non-dimensional value of 0.1.

4.2 2D Adaptation

Two examples illustrating the adaptive window method for moving body problems are 

presented. The first example is for an NACA 0012 airfoil oscillating sinusoidally about the 

quarter chord with an amplitude of 35 degrees. The window constructed about this airfoil 

is shown in Fig. 4.7. This mesh contains 1,577 nodes and 3,042 cells; however, the 

adaptation window contains 569 nodes and 1,180 cells. Hence, only about 30% of the 

original mesh is being adapted. Detailed views of the adapted mesh for three different 

angles of attack are given in Fig. 4.8. To ensure the integrity of the m esh around the 

airfoil, the stiffness of the springs in this region are increased by increasing p  from a value 

of unity to 1.8 in Eq. (3.42)

A second example demonstrates the applicability of the adaptive window procedure to 

multiple-body problems. This example illustrates how the adaptive window procedure may
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Fig. 4.7 Adaptive window for NACA 0012 airfoil.
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Fig . 4.8 (a) In itia l m esh  fo r NACA0012 a irfo il.
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Fig. 4.8 Adaptive m esh  fo r NACA 0012 a irfo il (b) +35 degs. 
(c) -35 degs.
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4.9 M ultielem ent airfoil mesh
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Fig. 4.10 A d ap tive  w indow fo r m u ltie lem en t airfoil.
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be used to confine the adaptation region around different or multiple components in a four- 

element airfoil. This four-element airfoil has a double-slotted flap and a leading edge slat. 

The mesh and a  window about the vane are shown in Figs. 4.9 and 4.10, respectively. 

Notice that the adaptation window is confined to a circular region around the vane and that 

it intersects the airfoil and the main flap. Regions of the mesh outside this window, for 

example, in the vicinity of the leading edge slat, are not affected by the movement o f the 

vane and the subsequent grid adaptation. Conceivably, each element can be given different 

prescribed motions and the window region for each moving element can be adapted 

independently.

4.3 3D Adaptation

The primary focus of this work was to develop a reliable three-dimensional dynamic 

unstructured methodology that can handle unsteady moving boundary problems. One of 

the challenges posed by this class of problems is the development of a robust three- 

dimensional adaptation routine, which should ensure the integrity of grid cells and limit the 

formation of skewed cells. Hence, before embarking on the task o f solving unsteady 

moving boundary problems, the dynamic three-dimensional mesh algorithm needs to be 

tested. To accomplish this, an ONERA M6 wing was considered; the wing had a leading 

edge sweep angle of 30 degrees, an aspect ratio of 3.8, and a taper ratio of 0.562. The 

three-dimensional coarse grid generated for the wing, was comprised of 35,000 cells and

6,000 nodes. The adaptive window used for the adaptation was a half ellipsoid. The 

spanwise displacement of the grid points in the plane of symmetry was enforced to be zero.

The ONERA M6 wing was given a prescribed one degree-of-freedom sinusoidal 

motion in angle of attack. Initially, to check the robustness of the adaptive window and
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dynamic mesh algorithm, the wing was given large amplitude oscillations ranging from 

+30 degrees to -30 degrees. To ensure the integrity of the grid cells near the body surface, 

the spring stiffness parameter, p, was increased to the value of 2.2 whereas the value of 

p=1.8 was used for the adaptations elsewhere. Shown in Figs. 4.11 and 4.12 are a cross- 

section grid and the surface grid of the wing at the two extreme positions. One of the 

important factors, while generating a window around the body of interest, was that the 

window size was selected such that it encompassed the body completely, and the window 

frame points did not lie extremely close to the surface of the body. For instance, if the span 

of the wing was one unit, a window size of at least 1.5 units was appropriate. Also, as 

deciphered from Fig. 4.12, even at large motions, the adaptation has not altered the 

integrity o f the surface grid and, therefore, the surface definition.

4.4 6-DOF Trajectory Validation

An attempt has been made to test the present six-DOF trajectory method (Eqs. 2.11, 

2.13 and 2.15) as follows. The separation of the store from the wing in the quasi-steady 

mode had been wind-tunnel tested and reported by Heim [54]. By quasi-steady mode, it is 

meant that a sequence of steady-state measurements were taken of the positions on a 

trajectory, which was computed based on these steady measurements of the forces and 

moments. The experimental configuration (Fig. 4.13) consisted of a clipped delta wing 

with leading edge sweep of forty-five degrees and a NACA-64A010 airfoil section. 

Connected to the wing is an ogive-flat-plate-ogive pylon, which was located 0.7d (store 

diameter) above an ogive-cylinder-ogive store when in carriage position. The parameters 

for store dynamics are given in Table 1. The freestream conditions for the experiment were 

M o o  = 1.2, p „  = 0.5564, and T o o  =430.60°R. The axis system used in this case was 

defined with the x-axis pointing forward, y-axis pointing inboard, and z-axis pointing 

downward.
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Fig. 4.11 Adapted mesh for plane of symmetry (0-M 6 wing) (a) +30 degrees
(b) -30  degrees.
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(a)

(b)

Fig. 4.12 Adapted surface grid for 0-M 6 wing (a) +30 degrees (b) -30 degrees.
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Fig. 4.13 (a) Schem atic of the  w ing/pylon/finned s to re  configu ration .
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By using the experimentally measured forces and moments as the input, the trajectory 

was computed. Then, the present trajectory was compared with the trajectory reported in

[54] for the wind-tunnel tests as seen in Fig. 4.14. It should be noted, however, that the 

manner in which the store was ejected from its carrier position was not available, hence, a 

guessed value was used herein; an estimated ejector force was applied until the store 

dropped a specified distance, after which it was released to free fall. Three of the 

translational components and two of the rotational components compared very well. The 

trend of the third rotational component was also in agreement, however, the magnitudes 

differed by a maximum of 3 degrees. The discrepancies in the results can be attributed to 

the fact that the ejector characteristics were not computationally simulated. In the present 

case the ejector force was applied until the store dropped a certain specified distance, after 

which it was released to perform a six degrees-of-freedom free fall.

Ejector

force

(Newton)

Mass

(Kg)

Weight

(Newton)

Ixx

(Kg-m2)

lyy

(Kg-m2)

Izz

(Kg-m2)

53416.71 905.2 8880.00 27.13 488.28 488.28

Table 4.1 Store parameters for trajectory validation
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Chapter 5

VALIDATION OF METHODOLOGY FOR MOVING- 

BOUNDARY PROBLEMS

5.1 Sinusoidally Oscillating Airfoil (SOA)

To validate the present adaptive window method and dynamic solution algorithm, a 

case where published experimental data [48] was available. This case was comprised of a 

NACA 0012 airfoil sinusoidally oscillating about its quarter chord at a mean incidence of 

a 0 = 4.86°. The pitching motion in angle of attack was given by

a (t)  =  a 0 + a j  sin(M00k'c) (5.1)

The amplitude, reduced frequency, and freestream Mach number of this oscillatory 

motion are a ,  = 2.44°, k =  0.0810, and M „ = 0.6, respectively. A grid dependency 

study was performed by comparing the solutions obtained on grids with 6,000 cells and

11,000 cells. The initial conditions for the unsteady problem was a fully converged steady 

state solution. For this case, the Roe’s flux difference splitting method was used. The 

original mesh and the steady state pressure contours are shown in Fig. 5.1. The time step 

used for the case was 0.002, which allows to complete one cycle in 64,642 iterations and 6 

hours o f CPU time on a Cray Y-MP. Since the time step used was smaller than those used 

in other published results [4, 50], a temporal accuracy study was not performed. 

Illustrated in Fig. 5.2 are the instantaneous grids and the off-surface pressure contours at 

six positions during the airfoil’s motion. In Fig. 5.3 the computed surface pressure 

coefficient distributions for the same six positions are compared with the experimental data.
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Note that in Fig. 5.3, the pressure coefficient distribution obtained for both these grids 

are almost identical and confirms that the solution is practically grid-independent. A shock 

was formed on the upper-surface, which migrated towards the leading edge as the angle of 

attack was increased. With the decrease in angle of attack, the shock migrated away from 

the leading edge, and it disappeared as the angle approached the mean incidence and at all 

the subsequent angles of attack below mean incidence. Good agreement was observed 

between the computed and experimental results at all six positions. Small discrepancies 

over the first 5-10% of the airfoil’s upper-surface were believed to be related to the viscous 

effects neglected with these Euler computations. The maximum disparity occured at angles 

3.49>1 and 2 .43i  degrees, respectively. Similar discrepancies between the computed 

results of [44] and the experimental data of [55] had been reported. The overprediction of 

pressures at lower airfoil surface for all cases suggested that an angle of attack correction 

may be needed. Presented in Fig. 5.4 are the variation of the normal force coefficient with 

the angle-of-attack. As would be expected from an inviscid computation, the agreement 

improved at lower angles of attack. The plot of normal force coefficient versus angle of 

attack for both these grids, Fig. 5.4 further confirmed the adequacy of these grids.

5.2 Oscillating Rectangular W ing

The present methodology was developed for a multibody configuration in relative 

motion; but first, its validation was attempted using a case for which careful experimental 

data existed: a rectangular half-wing with NACA 64A010 airfoil sections and a complete 

aspect ratio of 4, in forced sinusoidal pitching motion, placed in Mach 0.8 flow (just 

supercritical) at zero incidence [56]. The angle of attack varied periodically according to 

expression given below:
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a (t)  = -(*! sin(M00kx) (5.2)

where

(5.3)

and the amplitude a ,  and the reduced frequency k of the motion were 1 and 0.27 degrees, 

respectively. It is important to note that the reduced frequency k is the measure of the 

unsteadiness o f the flow and is given by the Eq. (5.3), where f  is the circular frequency, c 

is the speed o f  sound, and Uoo is the freestream velocity o f  the fluid. The domain 

boundaries for the unstructured mesh generated for the wing extended 12 chords normally 

and chordwise and 4 chords spanwise, and had 40,533 cells and 7,775 nodes (Fig. 5.5). 

After obtaining the initial steady-state solution, time-accurate calculations were performed 

for three cycles, and the third was deemed as the limiting cycle (Fig. 5.6). The time step 

used for the time-accurate calculations was 0.0018. Present results required 48 Megabytes, 

and 0.5 and 7.7 C PU  hours on a Cray Y -M P computer for steady and one-cycle unsteady 

computations, respectively. The corresponding unit processing times were about 21 and 

42 microseconds per time step per cell, respectively.

To describe the harmonic variations, two quantities are needed, namely, magnitude and 

phase shift with respect to the oscillating body. An alternative method of describing this is 

by the complex number notation, which presumes that the fluid particle's response to a 

sinusoidal excitation is also sinusoidal. Here, the real part of the pressure perturbation is in 

phase with the oscillating body, and the imaginary part is out o f phase with it. The real part 

of the pressure perturbation can also be considered as a measure of the actual pressure 

perturbation at the instant the oscillating body reaches its maximum positive deflection 

whereas the imaginary part of pressure perturbation is the measure of the pressure
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perturbation at the instant the oscillating body passes its m id position in the positive 

direction.

For the harmonic motion considered here for validation, pressure coefficient histories 

computed in the time-domain were Fourier decomposed into their complex components,

Reai{ Cp } = —  ----- - j f c p(T)-{ s in (M J a )  }d t]
P a 1(t2 - t 1) t,L p J

(5.4)

Im aginar>’{ Cp } = —  ----- “ • j [C „ ( t) -{  COS(M Mk T ) }dt]
P a,(t2 - t i )  t, J

to distinguish the in-phase from out-of-phase pressures [56]. In Eq. (5.4), , t2- t j , Moo

and k denote, respectively, the pitching magnitude, cycle time, freestream Mach number, 

and the reduced frequency.

After obtaining the steady-state flow solution, the unsteady computations were 

performed and the results compared with the experimental data [38]. Fig. 5.6 shows the 

surface grid over the rectangular wing used for the flowfield computations. Figure 5.7 

shows a comparison between the steady Euler pressure coefficients with the experimental 

values at 50%, 77%, and 94% semispan locations. The results compared very well except 

the fact that the shock appears smeared. This might be due to the use of a coarse grid. 

Comparisons of the present unsteady computations with the data (three spanwise stations 

presented in Figs. 5.8-5.10; two supercritical and one fully-subsonic critical) were by and 

large successful. At the 50 % spanwise location (Fig. 5.8), there is supersonic flow for a 

wide extent of the chord.
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The curve for imaginary pressure coefficient distribution has a lowered maxima and 

minima and is attributed to the supercritical flowfield. At the 77% spanwise location (Fig 

5.9), the extent of supersonic flow is reduced and the oscillating pressures are less effected 

compared to that of 50% spanwise location. Finally, subsonic flow is observed 

everywhere for the outboard section at 94% spanwise location (Fig 5.10). Hence, real and 

imaginary pressure coefficient distribution are found to be subcritical in characteristics.

The figures clearly indicate that the shock traverses 25% of the chord length in one 

complete cycle. Some discrepancy in the out-of-phase pressures w'as observed, even 

amongst the second and third cycle computations, which might be attributed to a number of 

factors, such as: pressure oscillations with differing phases on upper and lower surfaces, 

overprediction by the inviscid equations, relatively coarse grid resolution in shock- 

excursion region, discrepant representation of the wing tip between computation (round) 

and experiment (flat), and, certainly, the truncation error.
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Chapter 6

DEMONSTRATION OF OVERALL METHODOLOGY

6.1 3-DOF Airfoil Motion

This case also involves a prescribed motion of a NACA 0012 airfoil as in section 5.1, 

but this time the airfoil traverses a 3-DOF trajectory. This motion assumes that the x- 

position of the center of gravity (quarter chord) and the angle-of-attack of the body vary 

linearly with time, whereas, the y-position is given a parabolic relationship. For this case 

the freestream Mach number and angle-of-attack are 0.8 and 1.25 degrees, respectively. 

For this case, flux vector splitting of van Leer is used.

Unsteady solutions about this moving body are presented in Fig. 6.1 via the 

instantaneous grids and off surface pressure contours for the body at three positions along 

its trajectory. The initial position has the center-of-gravity at the origin with a zero degree 

angle of attack, whereas position 3 relocates the center of gravity at 1.5 chords below and 

1.25 chords aft the origin with a -15 degrees angle of attack. It should be noted that the 

abscissa and ordinate are at different scales for each position in order to closely view the 

flow field characteristics near the body. The initial position corresponds to the initial 

condition for this case, which is a fully converged time accurate solution. As the airfoil 

begins to plunge down, the strong upper surface shock moves forward and the weak lower 

surface shock strengthens and moves aft. By the time the airfoil reaches position 3, only a 

strong lower surface shock exists with a mild expansion on the upper surface. This case
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serves as a test of the robustness of the adaptive window procedure and the flow solver for 

large displacements.

6.2 2D S to re  Separation

The primary focus of this research is the development o f a dynamic unstructured 

solution method which can aerodynamically determine the free-fall motion of released 

bodies. Even though the methodology has been developed for three-dimensional flows and 

for six-DOF motion, (as will be demonstrated later) initially a two-dimensional test case 

that limits the trajectory to a three-DOF motion has been chosen for computational 

efficiency. This case simulates the unsteady flow about an airfoil/store (AS) configuration 

where the store has been released and its position is determined by the aerodynamic forces 

and the force of gravity. This configuration has been adapted from the three-dimensional 

store separation problem detailed in [54] and [57], which will be discussed in section 6.3. 

The grid and the initial adaptive window for AS configuration are shown in Fig. 6.2. The 

grid contains 19,707 cells and 10,073 nodes and the computational domain is 50 store 

diameters long. The NACA 64A010 airfoil represents a cross-section of the wing reported 

in [54, 57, 58]. The store has an ogive-cylinder-ogive cross section. All dimensions in 

this study are normalized by the store diameter. Time has been non-dimensionalized using 

local speed of sound and store diameter. The time step used for this case is 0.001 and it 

takes 2.5 Cray Y-MP hours (CPU time) to perform the store separation sequence.

Depicted in Fig. 6.3 are the off-surface pressure contours for the initial condition 

(steady-state flow of static AS at Moo= 0.3) and three selected positions from the separation 

sequence. Position 1 displays the beginning of a compression region near the store's lower 

surface. This compression is caused by the moving-store-induced force and the 

subsequent flow. It should be noted that this simulation is two-dimensional, which does 

not allow the lateral relieving effect of axisymmetric or three-dimensional flows. Hence, a
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nozzle-like flow behavior is observed between the airfoil and the store. At position 2, a 

strong compression is developed between the airfoil and the store. Furthermore, near the 

store's trailing edge, a vortex is formed. By the time the store drops to position 3, the 

compression region between the store and the wing develops into a strong normal shock, 

the trailing edge vortex is enlarged and moved downstream, and the store-induced 

downward flow is strengthened.

Displayed in Fig. 6.4 are the pressure coefficient distributions on the store and the 

airfoil surfaces. In order to compare the change in the pressure distributions as a result of 

the separation, initial steady-state distributions are superimposed on the instantaneous 

distribution at position 3. As expected, there is little change on the upper airfoil surface. 

However, the lower airfoil surface indicates an expansion terminated by a shock. The 

upper store surface also displays the effect of the shock and the following compression. 

The lower store surface experiences a significant distribution change in time; from  a 

predominantly constant distribution, it transforms to a large compression at the leading 

edge followed by an expansion extending to the trailing edge.

This separation sequence was also simulated using the Roe flux-difference splitting 

method. It can be observed, through the sample comparison of position 3 in Fig. 6.5a 

using van Leer’s scheme with the same position in Fig. 6.5b using Roe’s scheme, that 

almost identical results are obtained with a slightly better shock resolution of shock with 

Roe's scheme as expected.

The aerodynamically determined three-DOF trajectory is shown in Fig. 6.6. The 

translational motion is primarily downward with a small axial displacement. The rotational 

motion is an initially gradual, but then significantly increasing, pitch-down motion. It 

should be noted that no unsteady experimental data exists for this configuration.
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6.4 Three Dimensional Store Separation

Finally, the present method was demonstrated using a 3D wing-and-store configuration 

which was derived by simplifying the wing/pylon/fm/store configuration given in [57, 58]. 

It consisted o f a clipped delta wing with a 45 deg leading-edge sweep and NACA-64A010 

airfoil sections, and directly below this wing, an ogive-cylinder-ogive store. Both the wing 

and the store were at 0 deg yaw and angle of attack. The oncoming freestream Mach 

number was 0.95. A computational domain stretching 60d*16.5d*60d (d denotes store 

diameter) in the three directions, was discretized by a relatively coarse unstructured mesh, 

with 115,864 cells and 21,515 nodes (Fig. 6.7) due to scarce computational resources. 

The adaptation window placed around the store included less than 30% of the total cells. 

For the rigid-body dynamics, the store’s mass, weight, and the non-zero elements of its 

moment of inertia tensor are assumed to take the values in Table 2. Also given in this table 

is the impulsive ejection force, w'hich was applied until O.ld drop was achieved. The three 

dimensional unsteady flow simulation is computationally very expensive and moreover, the 

time step restriction for an explicit scheme further increases the computational cost. Hence, 

to reduce the computational cost, the store was imparted a strong ejection force to make the 

store drop faster (exaggerated by 40 times). The objective o f the present case was to 

demonstrate that the present dynamic unstructured methodology can handle moving 

boundary problems engaged in relative motion.

First, the steady-state solution was obtained for the carriage position using local time steps. 

The steady-state offsurface pressure contours at the mid-span plane are shown in Fig. 6.8. 

The freestream flow impinges on the nose of the store and the leading edge of the wing and 

subsequently expands to supersonic speeds. Near the trailing edges of the wing and store, 

shock waves are formed. The shock on the upper surface of the store reflects from the 

lower surface of the wing and merges with the shock emanating from the lower surface of
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the wing. The normalized pressure contours for the wing and store surfaces are presented 

in Fig. 6.9. The computations were continued using time-accurate (global) steps of 0.001 

normalized time units ( t = t • a„ /  d), with corresponding maximum Courant number of 

about 3.

Fig. 6.10 shows the offsurface pressure contours at midspan plane for the three 

selected positions (0.2d, 0.4d, 0.65d). The computations were performed by using the 

flux difference splitting of Roe. Fig. 6.10a shows the pressure contours at position 1, 

which is after 1.3t of separation (equivalent to 0.2d store drop). It can be clearly seen from 

the figure that a compression region below the surface of the store is beginning to form. 

The upper surface shock of the store impinges on the lower surface of the wing, then 

reflects down and coalesces with the shock emanating from the lower surface of the wing. 

Fig. 6.10b displays the same phenomena after the store has dropped 0.4d, however the 

compression region appears to be more pronounced and the suction pressure near the store 

trailing edge has strengthened owing to the pitching down motion of the store. The 

unsteady flow after 2t of separation (store dropped 0.65d) is depicted via its instantaneous 

pressure contours Fig. 6.10c. As compared to the carriage position Fig. 6.8, there were 

hardly any differences on the upper surface flow (hence upper surface not shown). 

However, the dynamic, mutual interference manifested itself in a time-varying footprint of 

the store on the wing's lower surface. This transient effects were more accentuated on the 

store, as evidenced by the pressure coefficient distributions on the store surface Fig. 6.11. 

The pressure difference between the upper and lower surfaces at 2t was much smaller than 

it was at the carriage position. This was attributed to: first, elevated lower surface 

pressures due to pitching down of the store; and secondly, the widening gap between the 

store and wing diminished the interference effect.

The computed 6-DOF trajectory for the store's center of gravity is shown in Fig. 6.12. 

The translational motion was mainly in the downward direction, but small displacements
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were also observed aft and toward the wing root. The store's nose pitched down with a 

gradual yawing toward the wing outboard. The sideslip and rolling were not quite 

expected for this axisymmetric store. However, apparently due to the wing-tip effect and 

the impulsive ejection, some non-symmetry was introduced into the flowfield. The 

unsteady load (pressure integration only) histories resulting from the store motion are 

shown in Fig. 6.13. The normal force changed direction abruptly as the ejection force was 

lifted, and kept on increasing. The magnitudes and the temporal changes of the axial and 

side forces were small. The moments also displayed relatively very small temporal 

changes, but their magnitudes were appreciable and quite disparate. A finite value of the 

rolling moment has been observed, which may be largely due to an error in integrating the 

pressures on the store. The coarseness of a surface grid can easily result in the numerical 

directions of the pressures being skewed from the center-line. Finally, the present dynamic 

simulation for 2t and 0.65d required 8.3 C PU  hours (including 1.64 h for steady-state 

solution) and 104 Megabytes of memory on a Cray Y-M P computer. The unit processing 

time for the method was 17 and 103 ms per time step per cell for steady and moving- 

boundary computations, respectively.
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(d f =20 d =0.508 m, pTC =0.776 kg/m3, a M =322.3 m/s)

Feiect* Weight* **m T „*** 
troll

***
fpitch

T *** 
*va\v

102.4 0.43 8,016.2 1,032.8 18,591.9 18,591.9

normalized by: * P J 2J 2( , **, p^d’ *** p j i J

Table 6.1 S to re  param eters  fo r 3D s to re  separation
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Fig. 6.7 Surface grid on w ing-store (\VS) configuration

Prrift = 0.29o 

Prcax = 1-11 

PmiaiYai -  0.03

Fig. 6.S Off-surface pressure contours at steady state (\VS)
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Fig. 6.9 Steady state normalized pressure contours for (WS) 
(a) wing upper surface (b) wing lower surface
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Pitui = °.2&6

P m a = l H  
Pktaval= 008

Putin = &296 

Pm* = 1-11 
Pint aval = 0.08

Fig. 6.10 OfF-surface pressure contours (WS) (a) 0.20d (b) 0.40d 
(c) 0.65d store drop.
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Fig. 6.10 Concluded
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Chapter 7

CONCLUSIONS AND RECOMMENDATIONS

7.1 On Adaptation and Trajectory Validation

An efficient unstructured grid adaptation procedure has been developed to allow the 

grid to m ove with a moving boundary and to limit the computational costs. The grid 

adaptation was performed within windows put around the moving boundaries. This 

approach is more efficient than, for example, an adaptation applied to the entire domain or a 

remeshing method. For instance, without the window, the adaptation procedure took about

1.5 hours on a Cray 2 for one complete cycle of motion for the sinusoidally oscillating 

airfoil, whereas it took 0.6 hrs on a Cray 2 while restricting the adaptation to points inside 

the window. This was because only 30 percent of the total nodes was being adapted inside 

the window as opposed to performing the adaptation for the whole domain. For problems 

in which a  body has small or no translational motion, creation of the window takes place 

only once. Otherwise, the window would be constructed at several instants during the 

body’s motion. However, for very large amplitude motions, the window adaptation would 

require highly dense meshes for the major portion of the domain, otherwise, a partial 

remeshing procedure would be necessary.

The grid adaptation as reported earlier, was based on the spring analogy where each 

edge of the cell was represented by a tension spring. For the present study, spring 

stiffness was assumed inversely proportional to the length of the edge. Also, spring
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stiffness inversely proportional to normalized length was investigated and applied to the 

three-dimensional store separation problem.

The three-dimensional adaptation method was first tested on a coarse mesh around an 

ONERA M6 wing by prescribing a large sinusoidal motion to the wing and subsequently 

inspecting the grid quality.

One of the major objectives of the present work was to develop a 6-DOF trajectory' 

algorithm in order to solve for moving boundary problems where the trajectory of the 

moving body is governed by aerodynamic forces and moments. The experimentally 

determined force and moment fields were used to compute the 6-DOF trajectory of a store 

separating from a wing. The rotational and translational equations of motion (Eqs. (3.41) 

and (3.42)) along with the Euler rate equations (Eq. (2.15)) were used to compute the six- 

degrees-of-freedom trajectory of the store. The results compared well with the trajectory 

measured in the wind-tunnel tests. Some discrepancies in the results, especially in the pitch 

component of the rotation, can be attributed the inconsistent ejector characteristics used in 

the trajectory code. However, the three translational and two rotational displacements 

matched very well with the experimental data.

A fter having accomplished the trajectory validation, the trajectory code was 

successfully coupled with the flow solver to solve for aerodynamically determined moving 

boundary problems.

7.2 O n U nsteady Flow Solver V alidation

The two-dimensional unsteady flow solver and the dynamic mesh algorithm was 

validated by computing the flow past a sinusoidally oscillating airfoil for which 

experimental data was available. The computed unsteady pressure coefficients compared

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1 0 2

well with experimental results. Comparison of the computed results with that o f the 

experimental results was observed to be better for lower angle-of-attack instants. The 

slight discrepancies in the results, mostly at higher angles-of-attack, can be attributed to the 

neglect of viscous effects, since at higher angles-of-attack viscous effects become important 

and should be accounted for.

A grid independence study was also performed by simulating the unsteady flowfield 

using a fine grid and a finer grid, which almost doubled the number of cells. The matching 

of the solutions from both of the grids confirmed the adequacy of the fine cell grid. Also, a 

comparative study between the present dynamic unstructured methodology and an 

independently developed structured methodology using dynamic overlapped grids [4, 5, 

53] was performed. The results from both methodologies matched very well.

After having validated the methodology in two-dimensions, the next step was to extend 

this methodology to three-dimensions. The three-dimensional flow solver and adaptation 

scheme were validated by simulating the transonic, unsteady flow around a rigid 

rectangular wing undergoing a forced, periodic pitching motion for which experimental 

results existed. The computed real and imaginary pressure coefficients compared fairly 

well with the experimental data. The minor discrepancies in results were due to the 

neglected viscous terms and the use of a relatively coarse mesh. However, the results from 

the Euler computations were comparable with the Euler computations done with structured 

grid approach [53].

The present dynamic unstructured methodology was successfully validated for 

simulating three-dimensional unsteady flowfield and proves to be a viable alternative to 

dynamic-structured-overlapped methods [4, 5]. Among the observations made in 

comparison with the implicit, structured, domain-decomposition methods [9, 10,48], were 

the following: 1) second-order temporal accuracy not compromised by time-linearization, 

or approximate factorization, or diagonalization, or interpolations, 2) less number of cells
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needed in the grid (about one-fifth), 3) this advantage off-set by the smaller time-step 

(about 20 times) requirement due to the present explicit time marching.

7.3 On Methodology Demonstrations

The overall methodology was demonstrated through a two-dimensional example: the 

carriage, separation, and the free-fall of a store from a wing section (airfoil). The motion 

and its trajectory were entirely determined by the force of gravity and the instantaneous 

aerodynamic coefficients provided by the unsteady flowfield computations. Although no 

experim ental results are available for this case, the flow solution looks physically 

reasonable. A comparative study for this case had been previously done [59] by 

performing computations using the present methodology and the dynamic overlapped 

structured grid approach, and almost identical results had been obtained. Thus this study 

suggests that the present dynamic, unstructured method is a viable alternative to the 

dynamic, overlapped-structured-grids approaches [4, 5, 9, 15, 21].

To further demonstrate the applicability of this method, a NACA 0012 airfoil was given 

a three-DOF motion immersed in a transonic freestream flow. This case was chosen to test 

the adaptation scheme and also the flow solver for complex and large amplitude motions. 

This case demonstrated the robustness of the adaptive window procedure for large 

displacements as well as the flow solver to capture strong moving shock waves.

Among the noteworthy observations made from the present investigation were the 

following:

1) A dynamic unstructured method has been developed for prescribed and 

aerodynamically determined relative moving boundary problems. This was accomplished 

by developing and testing a six-degree-of-freedom trajectory algorithm, an efficient
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dynamic and adaptive mesh method for small or large amplitude motions, and a time 

accurate, second-order method for unsteady flow equations.

2) The methodology has shown to be accurate, automated, easy for dynamic gridding, 

and relatively efficient for the required man-hours. It would take in the order of one to two 

weeks time to perform an unsteady flow simulation beginning with the case set-up.

3) Determining the trajectory of a free-falling object aerodynamically requires a 

multidisciplinary analysis, using not only adequately accurate but also computationally 

efficient algorithms.

4) As a cost saving measure, such simulations may be restricted to the duration of the 

mutual interference effects between the objects.

5) It has shown that neither the flow physics nor the unsteady aerodynamics need to be 

compromised since unsteady flow simulations for relative moving boundary problems 

(level 4) is possible with the current computational costs.

6) It has been demonstrated that the present methodology can capture the time 

dependent aerodynamic interference between relative moving bodies or components.

7) The computational efficiency (by further optimizing the coding and/or implicit time- 

marching) was deemed as the last issue to be investigated prior to proposing the method for 

practical and realistic applications.

7.4 R ecom m endations fo r F u tu re  W ork

The dynamic unstructured methodology has proven to be a very promising approach. 

However, there are avenues available to extend and strengthen its capabilities. Some of the 

options may be listed as follows:
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1. Unsteady problems require large amounts of computer time, and the use of the explicit 

scheme amplifies the computational time requirement. Hence, an implicit scheme or a 

subiterative scheme needs to be incorporated to reduce the required computational tim e. 

This should bring the times down to levels comparable with implicit dynamic, overlapped 

approaches [9, 10].

2. Another alternative and probably the best choice to model the unsteady moving boundary 

problems is the implementation of a massively parallel algorithm along with an explicit 

scheme. This would model the physics of the problem better owing to the small time step, 

thereby enhancing the temporal accuracy, and also the use o f parallel algorithm which 

should make the computation more efficient and viable.

3. An adaptive remeshing routine should be implemented. For moving boundary 

problems, especially for bodies in relative motion, grid distortions are likely to occur and in 

order to counter that, a remeshing methodology (e.g. H-refinem ent) needs to be 

incorporated.

4. Flow adaptation, not only to the boundary motion as it is done here, but also to the 

solution as it evolves, should be added to capture the flow physics accurately. For 

instance, for moving shock problems, a flow adaptive scheme can be useful to capture the 

moving shock with better resolution.

5. Viscous effects and turbulence modeling may be incorporated for the type of problems 

where these effects are non-negligible, contingent upon vast computer resources 

improvements. Although some improvements are needed for superior viscous grids [60], 

presently, viscous grids are available and the implementation of unsteady Navier-Stokes 

equations, with the appropriate turbulence modeling, could extend the capability and the 

applicability of the present method.
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6. The approach has the potential to handle flexible bodies, i.e., aereoelastic problems. 

The method needs to be extended for handling complex aeroelastic problems.
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