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ABSTRACT

REDUCTION OF THERMAL DEFLECTION AND RANDOM RESPONSE OF 
COMPOSITE STRUCTURES WITH EMBEDDED SHAPE MEMORY ALLOY AT

ELEVATED TEMPERATURE

ZHIWEI ZHONG 
Old Dominion University, 1998 

Director: Dr. Chuh Mei

A feasibility study on the reduction of thermal deflection and random response of 

the composite structures using shape memory alloys (SMA) at elevated temperatures is 

presented in this dissertation. The characteristics of SMA are introduced and the 

structural problems, static and dynamic, of SMA fiber reinforced composites are 

investigated. The stress-strain relations are developed for a composite lamina with 

embedded SMA fibers. The finite element system equations including shape memory 

effect are derived. A consistent two-step solution procedure is developed for solving the 

static and dynamic problems of composite structures with embedded SMA fibers subjected 

to combined acoustic and thermal loads. With the consideration of nonlinear material 

properties of SMA and geometrically nonlinear deflection, an incremental technique and 

the Newton-Raphson iteration method have been employed to determine the static 

response of the SMA embedded composite structures.

Thermal buckling behavior of composite plates with and without embedded SMA 

has been studied first. The results show that the change of the austenite start temperature 

of SMA results in the increase of the critical buckling temperature of composite structures 

with embedded SMA. The study of thermal deflection of SMA hybrid composite
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structures has revealed that the thermal deflection can be reduced by changing the volume 

fraction, prestrain, austenite start temperature of SMA, as well as stacking sequence and 

boundary condition of structures.

The random response analysis of SMA hybrid composite structures indicates that 

the random response of composite structure with embedded SMA can be significantly 

reduced by combining proper percentages of SMA volume fraction and prestrain and also 

altering the austenite start temperature. Thus the benefits of using SMA will maintain the 

originally designed optimal aerodynamic efficiency at high temperatures during cruise and 

result in lower noise and longer service life.
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1

CHAPTER I 

INTRODUCTION AND LITERATURE REVIEW

The characteristics of Shape Memory Alloys (SMA) are introduced in this chapter. 

The structural problems, static and dynamic, of SMA fiber reinforced composite structures 

are investigated. Based on the results from analysis, the potential applications on 

aerospace vehicles using SMA are revealed.

1.1 Introduction

Many alloys are known to exhibit the shape memory effect. These alloys include 

the copper alloy family of Cu-Zn, Cu-Zn-Si, Cu-Zn-Sn, Cu-Zn-Al, Cu-Zn-Ga, Cu-Al-Ni, 

Cu-Au-Zn, the alloys of Ag-Cd, Ni-Al, Fe-Pt and others. Nickel-Titanium alloys (Ni-Ti) 

are the most common Shape Memory Alloys (SMA). The Ni-Ti alloy series was 

developed in 1965 by metallurgists Buehler and Wiley of the U.S. Naval Ordinance 

Laboratory with a United States Patent. The generic name given to this series of alloys 

was 55-Nitinol, derived from Ni (Nickel)-Ti (Titanium)-NOL (US Naval Ordinance 

Laboratory now known as the Naval Surface Weapons Center). The 55 refers to the 

nickel content (weight percent) in the material composition although it can change 

between 49 and 57 percent. Several other laboratories made early significant 

contributions to the understanding of the Nitinol, in particular the Battelle Memorial 

Institute and NASA

Shape memory alloys exhibit a characteristic phase transformation from martensite 

to austenite, initiating at the austenite start temperature T. or A. and asymptotically ending

The journal model for this dissertation is AIAA Journal.
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2

at austenite finish temperature Tt A shape memory alloy in the low temperature 

martensitic condition (T<T«), when plastically deformed and the external stresses removed, 

will regain its original (memory) shape when heated. This characteristic is called the 

Shape Memory Effect (SME). Shape memory effect is attributed to the material which 

undergoes a change in crystal structure known as a reversible austenite to martensite 

phase transformation. For example, strains of typically up to six percent can be 

completely recovered by heating the Nhinol above the austenite finish temperature.

The transformation temperature of SMA can be altered by changing the 

composition of the alloy as shown in Fig.1.1 [1]. It is explicit that with only three weight 

percent change of Nickel, the transformation temperatures can vary from

-50°C to \15°C  for Nhinol. This characteristic enables the designers to determine the

composition of Nickel much more flexibly to satisfy the requirements of applications. The 

solid-solid phase transformation also gives an increase in Young’s modulus by a factor of 

three or four and an increase in yielding strength approximately ten times as shown in 

Fig. 1.2 [2],

Shape memory applications for structures can generally be divided into four 

groups: free recovery, constrained recovery, work production (actuators) and 

superelasticity. These groupings are made according to the primary function of the 

memory element, but are useful in defining common product screening criteria, pitfalls and 

engineering design parameters. The Free recovery group includes applications in which 

the sole function of the memory element is to cause motion or strain. For example, one 

could cool a wire into the martensite regime, bend it to a new shape, then heat to recover 

the original shape.
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The constrained recovery group includes applications in which the memory element is 

prevented from changing shape and thereby generates a stress. In this case there may be 

some free recovery before contact is made, but the primary function of the memory 

element is to generate or induce a stress. The actuator or work production group includes 

applications that are those in which there is motion against a stress and thus work is being 

done. The ideal case would be a wire or spring which lifts a weight when heated (and 

perhaps drops the weight again when cooled). More often, the memory element works 

against a biasing spring. The superelastic or pseudoelastic group includes applications 

that are isothermal in nature and involve the storage of potential energy.

Many studies have contributed to the development of the products and 

applications using different characteristics of SMA. These studies will be reviewed in the 

next section entitled Literature Survey. Generally, the behaviors of SMA are dependent 

on temperature. Thus temperature becomes a very important factor when discussing the 

applications of SMA. Since the expected aerodynamic heating on the skin panels of the 

future high-performance flight vehicles, such as the High Speed Civil Transport (HSCT), 

Advanced Tactical Fighter (ATF) and Reusable Launch Vehicle (RLV), will cause the 

panel temperature to exceed the austenite finish temperature during supersonic/ 

hypersonic cruise, SMA will be ideal for such an application. Meanwhile the high panel 

temperature will result in large geometrically nonlinear deflections of the skin structure. It 

is expected that SMA can play an important role in the reduction of deflection of panel 

structures at elevated temperatures. This research extends the study of SMA 

characteristics and applications on using the nonlinear material properties of SMA as well 

as reducing large geometrically nonlinear deflections of structures by the use of SMA.
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Shape memory effect employed in this study belongs to the category of constrained 

recovery which can be obtained by embedding initially elongated SMA fibers or wires at 

low temperature (T<T.) in conventional fiber-reinforced advanced composite panels such 

as graphite-epoxy. Hence the SMA is constrained and prevented from changing length 

when heated. The strain due to the initial elongation is called prestrain Thus, after the 

SMA is heated above Ts a large tensile stress is generated in the SMA from the tendency 

to recover its initial elongation. This tensile stress is called recovery stress as shown in 

Fig. 1.3 [2]. It is explicit that the recovery stress is a nonlinear function of prestrain and 

temperature. The established constitutive relations and computational methods are to be 

employed in the presented aerospace application

1.2 Literature Survey

1.2.1 Characteristics of Shane Memory Alloys

Since shape memory alloys were first revealed in 1965, a great deal of effort was 

expended over the next ten years in characterizing the material and developing new 

applications to exploit its remarkable shape memory effect and its unusual mechanical 

properties. Basically, shape memory effect can be described as follows: an object in the 

low-temperature martensitic condition, when plastically deformed and the external stress 

removed, will regain its original (memory) shape when heated. The process, or 

phenomenon, is the result of a martensitic transformation taking place during heating. 

Although the exact mechanism by which the shape recovery takes place is a subject of 

controversy, a great deal has been learned about the unique properties of this class of 

materials in the past twenty years [3-5]. It is clear, however, that the process of regaining
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the original shape is associated with a reverse transformation of the deformed martensitic 

phase to the higher temperature austenite phase.

Of the many alloys that demonstrate the shape memory effect, Nitinol has been 

investigated predominantly. For this reason, the properties of Nitinol will be used as the 

generic SMA properties in this study. The unusual memory behavior is limited to Nitinol 

having near-equiatomic composition. Plastic strains of typically six percent may be 

completely recovered by heating the material so as to transform it to its austenite phase. 

Restraining the material from regaining its memory shape can create stresses o f60,000 psi 

with the yield strength of martensitic Nitinol being approximately 12,000 psi [2]. It is 

these force and displacement capabilities that are exploited for electromechanical actuators

In ­

substantial progress has been made in understanding the nature of the shape 

memory effect. A lot of literature has been published over the past twenty years 

presenting detailed thermal, electrical, magnetic, and mechanical characteristics of this 

unusual alloy [7-11], Because of the unique characteristics of SMA material properties, it 

is expected that numerous advantages can be gained by using SMA in smart structural 

applications.

1.2.2 SMA Fiber-Reinforced Composite Structure

Since the characteristics of SMA have been widely used in scientific areas, only the 

applications corresponding to the second group are reviewed here. SMA fiber-reinforced 

hybrid composites are defined as the conventional advanced composite materials such as 

graphite/epoxy that contain embedded SMA fibers or wires which have been aligned in the
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same direction as the graphite fibers. Various aspects of integrating SMA elements into 

host composite materials and desired properties has been developed [12-20],

As mentioned previously, the application of SMA corresponding to the second 

group is constrained recovery which means that the SMA elements are prevented from the 

shape change even though the external condition such as temperature is increased. A 

large tensile stress is generated in the SMA due to the constraint. This stress can be used 

to alter the static and dynamic behaviors of composite structures with embedded SMA 

fibers. For static analysis, several methods as well as solutions have been proposed to 

solve the thermal buckling and deflection control problems.

1.2.2.1 Buckling Control

The static characteristics of SMA fiber-reinforced composite structures are 

primarily governed by their stiffiiess. The SMA are prestrained and activated to generate 

significant phase recovery forces in order to increase the in-plane strain energy which in 

turn increases the critical buckling load of the SMA reinforced composite structures. A 

finite element model of Nitinol reinforced plates [21] has been developed to describe the 

interaction between the external loads, operating conditions and the geometrical and 

physical parameters of the composite plate and the Nitinol fibers. This model predicted 

the critical buckling loads of Nitinol reinforced plates and then was used to study the 

buckling characteristics of Nitinol reinforced composites. It was found that reinforcing 

composite plates with Nitinol fibers can dramatically enhance  their critical buckling loads 

even when these plates are clamped on all their edges. The mathematical models had been 

developed [22] to enhance the critical buckling loads of long slender beams by using shape 

memory actuators which are mounted externally on the beam. Based on these developed
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mathematical models, a closed-loop, computer-controlled system was designed and 

implemented to control the buckling of simple beams. The testing of a computer- 

controlled system demonstrated the feasibility of the active control system in preventing 

the buckling of a flexible beam. The results of an experimental study of buckling of 

composite beams with embedded Nitinol fibers in resin sleeves have been presented [23, 

24]. In these experiments, SMA fibers were electrically activated and heated in response 

to pre-set deflections of the beam indicating buckling. Tensile recovery forces induced in 

the SMA brought the buckled beam back to the straight position. It was shown that the 

buckling load could be increased by a factor of three, as a result of activation of SMA. 

Experimental results were found to be in close agreement with the finite element solution.

Application of SMA fibers in resin sleeves to control lateral buckling of composite 

beams has been reported [25], The results obtained by the finite element analysis were in 

an excellent agreement with experiment data. Consequently, some theoretical and 

experimental methods of solving structural buckling problems have been developed, and 

the results were shown for a particular group [21-25]. But the dependence of the material 

properties of SMA on the temperature and the thermal effects of the structures due to the 

change of temperature were not considered in their finite element analysis. Thus, 

improvement of the finite element model is needed when the SMA fiber-reinforced hybrid 

composite structure is subjected to a combination of acoustic and thermal loads. As 

follows from the studies in [21-25], SMA fibers can successfully control lateral buckling 

of beams. A classical model for processing buckling analysis of SMA embedded 

composite rectangular plates had been proposed [26]. The results revealed that SMA 

fibers are stiffened within a composite to alter the critical buckling load of the structure.
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However, they considered only the effects of SMA recovery stress but neither the 

temperature effect of the composite matrix nor the temperature dependent material 

properties o f SMA. It is more likely that this classical model can not be used for the 

applications of SMA in high- performance flight vehicles.

1.2.2.2 Deflection and Shape Control of SMA Embedded Composite Structures

As one of the important characteristics, the shape memory alloy embedded in 

conventional composite materials will generate the recovery stress when it activates. The 

recovery stress can return a structure to its original shape after being deformed by a load. 

In the deflection control area using SMA, the deflection control concept has been 

proposed [27], The deflections of a centrally loaded clamped-clamped SMA hybrid 

graphite/epoxy plate (10x10x0.03 in.) with a 15% volume fraction of Nitinol prestrained 

to 3% were measured. When activated, the SMA elements can reduce the deflection by as 

much as 30%. The recovery stress induced from SMA reduces the beam’s deflection 

similar to pretensioning a loaded cable in order to reduce the cable’s deflection.

The theory of hybrid composite plates using micromechanics based on the 

mechanics of materials approach (rule of mixtures) has been presented [28], The 

temperature effect of the composite matrix and the temperature dependent material 

properties of SMA were ignored. The solution of the bending problem was obtained for a 

simply supported symmetrically laminated plate by the Rayleigh-Ritz method. In addition 

to bending, the paper presented results illustrating that SMA fibers can affect natural 

frequencies, mode shapes of free vibrations, acoustic transmission, and buckling loads of 

composite plates.
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The use of SMA wires to reduce radial expansion of an internally pressurized 

composite cylinder has been investigated [29], In the cylinder deflection control concept, 

SMA wire is continuously wrapped around or within a composite cylinder much like 

filament winding the composite reinforcing fibers. The SMA is anchored only at the wire 

ends. When heated, the SMA attempts to recover against the inner composite layers and 

internal pressure which constrain the shape recovery. Consequently, the SMA recovery 

force effectively applies an external pressure to the cylinder reducing the internal pressure 

induced radial expansion. However, the previous work [27-29] dealing with the deflection 

control using SMA is not concerned about the temperature effects on matrix material 

which may play a very important role.

The one-dimensional constitutive theory of modeling the behavior of SMA [11] 

has been employed to solve the problem of control of geometrically linear and nonlinear 

deformations of beams using SMA actuators [30], Cylindrical bending of a laminate 

consisting of outer piezoceramic layers and an inner SMA (Nitinol) layer was studied [31], 

It was shown that energy is lost during the cycle of the applied electric field as a result of 

the stress-induced martensitic transformation. The investigation of tension/compression, 

bending and torsional deformations of composite beams, as a result of activation of SMA 

wires, using a simple analytical model and experiments has been reported [32].

The problem of an optimal distribution of SMA stiffeners-actuators to reduce 

static bending of sandwich panels was addressed [33], An optimum design was based on 

the requirement of minimal transverse deflections of the panel subject to a constraint on 

the volume of the SMA material.
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Deformations and local stresses in a SMA hybrid composite consisting of Nitinol 

fibers embedded within an elastic matrix were considered [34], The solution utilized the 

multi-cell micromechanical method, a constitutive theory for SMA, and a three-phase 

concentric cylinder model for evaluation of local stresses. The results illustrated that 

substantial longitudinal strains may be induced in a SMA composite, even if the volume 

fraction of SMA fibers remains rather small (30%). The magnitude, and even the sign of 

local stress, were shown very sensitive to the martensitic fraction in SMA fibers.

A distribution of temperature in hybrid composites with SMA fibers activated 

represents an important issue. The investigation on deformation of SMA fiber reinforced 

composite structures arises for the possible applications such as high-performance flight 

vehicle under the combined thermal and dynamic mechanical loads. To the best 

knowledge of the author, there is no literature existing in solving thermal deflection or 

thermal postbuckling of SMA embedded composite structures.

1.2.2.3 Dynamic Response Control of SMA Reinforced Composite Structures

The dynamic response of composite structures with SMA can be changed by the 

variation of SMA volume fraction, SMA prestrain, or external condition such as 

temperature and load. A lot of contributions have been made to address the applications 

of SMA in this area. One analytical approach was formulated and results were generated 

[26, 35-39], Generally, the activation of SMA fibers resulted in the changes of overall 

stiffness of the hybrid composite as well as the modification of its natural frequencies and 

mode shapes. It was shown that the natural frequencies of a quasi-isotropic hybrid 

composite plate of graphite/epoxy and Nitinol/epoxy lamina could be increased by 73% as 

a result of the activation [37], This solution was based on an assumption that the
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recovery tensile stress in embedded SMA fibers was equal to 280 MPa, while thermal 

effects on the composite material (thermally-induced stress and a degradation of the 

properties) could be disregarded. In an experimental study [40], the natural frequency of a 

graphite/epoxy beam was increased by 200% as a result of the activation of Nitinol wires 

that constituted only 15% of the beam volume fraction. A beneficial effect of SMA fibers 

on dynamic characteristics of beams was shown [41], The problems associated with an 

application of SMA for an active vibration control in flexible structures were discussed 

[42], SMA fibers were applied to control flexible linkage mechanisms using temperature 

controlled variations of the elasticity modulus of SMA [43], One-dimensional constitutive 

theory o f modeling the behavior of SMA and the first thermodynamic law were employed 

to illustrate that SMA wires can effectively reduce vibrations of a cantilever beam [44],

A novel design of SMA actuators for hybrid composites has been introduced [45], 

The SMA wire (fiber) was placed in a resin sleeve eliminating a direct contact and bonding 

between the active material and the composite medium. The concept was applied to the 

active control of vibrations of composite beams. The solution incorporated thermal 

effects due to heating of SMA fibers. Finite element procedures have been developed and 

accounted for both thermal and mechanical effects and their interaction. Analytical results 

that were in a close agreement with experiments illustrated a potential for the control of 

natural frequencies. A utilization of both the stiffening and the energy-dissipation 

mechanisms of SMA fibers has been considered [46]. This enabled them to control 

vibrations of composite beams over a broad frequency spectrum optimally. Experimental 

and analytical research on dynamics of composite beams reinforced by Nitinol fibers 

embedded within resin sleeves have been continued [47]. In particular, the problem of an
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unintentional thermal activation of Nitinol fibers, as a result of the activation of selected 

fibers, and the consequences for dynamic characteristics of the structure has been 

discussed [48], However, in the dynamic analysis of the particular team [46-48], the 

dependence of the material properties of SMA on the temperature and the thermal effects 

due to the change of temperature were not paid enough attention.

The active control of rotating open profile beams using SMA has been considered 

[49]. The beams considered in [49] included composite and SMA layers, the latter being 

constructed of SMA fibers embedded within a resin matrix (thermal effects on the 

composite material and thermally-induced compressive stresses were disregarded). As 

was indicated in the paper, even 13% volume fraction of SMA changed the fundamental 

frequency of a clamped graphite/epoxy beam by 34%. In addition, it was shown that 

SMA can guarantee constant frequencies of graphite/epoxy I-beams in the broad range of 

rotational velocities.

The experimental results for plates with SMA actuators mounted on the edges has 

been presented [50], Such mounts suggested as an alternative to embedded SMA 

actuators represent an interesting approach that many enhance a feasibility of practical 

applications of SMA. One of the advantages of mounts is a possibility to reduce thermal 

effects on the main structure, while providing an easy access to SMA elements. The 

results presented for three different types of boundary conditions illustrated that the 

natural frequencies can be significantly increased as a result of the activation of the edge 

mounts. In particular, the fundamental frequencies increased in the range from 26% to 

51%, dependent on the boundary conditions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



16

An effect of SMA fibers in silica tubes on the natural frequencies of composite 

beams has considered [51], The analytical frequency solution that employed the stress- 

strain curves obtained experimentally was in a close agreement with experimental 

frequency results. The conclusions included a necessity to cycle SMA wires to achieve 

their stable performance as actuators. The fundamental frequency was increased by 22% 

even as a result of the activation of a single 22-mil diameter wire. The activation of 25 

wires of the same diameter resulted in a 276% increase in the natural frequency.

The reduction of vibrations of rotating machinery by a “stiffness scheduling” 

achieved by changing the stiffness of SMA wires has been proposed [52]. The 

transmissibilrty of Nitinol springs and a utilization of their high intrinsic damping have 

recently been considered [53], Experimental evidence reported in the paper indicates that 

significantly improved properties can be achieved in SMA springs compared to their 

counterparts manufactured from steel or INCONEL. The vibrations of a sandwich panel 

with SMA fibers embedded within resin sleeves and positioned at the middle plane has 

been considered [54], It was shown that the fundamental frequency can be kept equal to 

or above the frequency at room temperature. An optimized nonuniform distribution of 

SMA fibers was even more beneficial for the control of the frequencies.

SMA material can be used in changing the dynamic characteristic of the structures. 

This makes SMA widely applied to various areas. However, for high-performance flight 

vehicles and aerospace sonic fatigue applications [55], the structures in most case 

undertake thermal and random loads. Thus the dynamic response of such structures 

subjected to the thermal and random loads becomes most important in evaluation of 

dynamic behavior of these structures. In the author’s view, there is no literature existing
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to solve the dynamic problems for SMA fiber-reinforced composite structures under the 

thermal and random loads.

1.2 .3  N n n lin gar M ateria l P rop erties

The material properties of SMA are nonlinear functions of temperature and 

prestrain. Large recovery stresses are induced in the constrained structures when SMA 

fibers are embedded and activated under a certain condition. This induced stress is also a 

nonlinear function of temperatures and prestrains. Thus approaches to solve structural 

problems with nonlinear material properties are needed when dealing with SMA 

applications. Many research results dealing with the deflection control using nonlinear 

material properties exist in the literature [56-61], A finite element analysis procedure of 

large elastic-plastic transient deformations of simple structures has been proposed [56-58], 

The assumed-displacement finite element approach, which is based on the principle of 

virtual work (displacement) and D’Alembert’s principle, is applied to analyze the large- 

displacement, elastic-plastic, strain-harding, transient, KirchhofF-type responses of general 

curved beam and the dynamic responses of cylindrical shells to transient loading. The finite 

element method has been applied to obtain solutions for two-dimensional (axisymmetric or 

plane) wave propagation problems including the effects of finite strain and material 

nonlinearities [59], The finite element method which employs a convected co-ordinate 

technique and a direct nodal force computational scheme of considerable efficiency has 

been developed for the transient analysis of large-displacement, small-strain problems with 

material nonlinearities [60], The detailed formulations were given for a plane, constant 

strain triangular element and a Euler-Bemoulli beam element. Several solution techniques 

such as Newton-Raphson method, direct minimization of the total potential, incremental
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stiffness procedure and static perturbation method have been discussed to apply on the 

nonlinear problems [61]. These methods and techniques are very helpful in the analysis of 

SMA applications.

1.3 Objective and Scope

The major objective of this dissertation is to investigate analytically the feasibility 

of using shape memory alloys to reduce the thermal deflection and random response at 

elevated temperatures for a hybrid composite laminate under thermal and acoustic loads.

The documentation o f the present research is organized as follows. Chapter I 

presents an overview of characteristics of SMA and provides a review of using SMA to 

improve structural behaviors performed by other researchers. Chapter II presents the 

development of the constitutive relations for a SMA fiber reinforced lamina. These 

relations include the factors o f SMA material properties and temperature effects on both 

SMA fibers and matrix materials. Also in Chapter II, the finite element formulation with 

the effects of nonlinear material properties is derived based on von Karman large 

deflection theory and the first order shear deformation theory. Chapter HI presents a 

consistent two-step solution procedure for structural response for thermal and random 

excitation loads. This procedure results in solving two sets of equations, a set of nonlinear 

static equilibrium equations and a set of linear dynamic equations. For nonlinear material 

properties, the incremental method is used, that is the material properties are treated as 

constant within each small increment in temperature. The Newton-Raphson iterative 

method for solving nonlinear algebraic equation is employed for thermal deflection in each 

temperature increment. Chapter IV presents the numerical results and discussions for four 

types of analysis: thermal buckling, thermal deflection or postbuckling, vibrations about
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thermally buckled position, and random responses under acoustic excitation and thermal 

load. Chapter V presents conclusions and future work from this study.
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CHAPTERII 

FINITE ELEMENT FORMULATION

In this chapter, the equations of motion with consideration of large deflection and 

nonlinear material property are derived for a composite plate with embedded SMA 

subjected to a combined thermal and random excitation loads. The thermal load accounts 

for an arbitrary spatial distribution and steady-state temperature rise, i.e, AT=AT(x, y, z). 

The random load is considered as a uniformly distributed stationary band-limited white 

noise. For the combined thermal and acoustic loads, a consistent two-step solution 

procedure is employed. In addition, because of the nonlinear material properties of SMA, 

the incremental method is used for the equilibrium equations in determining thermal 

deflections. For each small temperature increment, the thermal deflection and 

corresponding stress are first determined with the material properties which are 

approximated as constant. Then the thermal deflection and stress are updated and treated 

as initial deflection and stress for the next increment. Thus, the initial deflection and stress 

resultants are to be taken into account. The following theories are used and assumptions 

are made in deriving the equations:

1) Initial state of deformation, which consists of initial transverse deflection w<>(x, y) and 

in-plane deflections u«(x, y), vo(x, y),

2) Initial state o f stress {<r«}, {to},

3) In-plane recovery stress from SMA, {<r*},

4) Arbitrary temperature distribution AT(x, y, z),

5) von Karman large deflection theory, and

6) Composite materials with transverse shear deformation.
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The three-node triangular Mmdlin plate dement (MIN3) with improved transverse 

shear is employed in this study. The linear stiffness and mass matrices for the MEN3 

element were developed by Tessler and Hughes [62],

2.1 Displacement Functions 

A typical MIN3 element is shown in Fig. 2.1. Generally, for a plate structure, the 

node displacement vector {w} consists of transverse bending, rotation, and membrane 

displacement components. In MIN3 element, the displacement functions of the middle 

surface are u, v, w and the normal rotations are vj/x and vj/y about x and y axes due to

bending only. The displacement field can be written in the following form

u = u(x,y,t)+zifry(x,y,t)
v = v(x,y,t) +zyx(z,y,t) (2.1)
w = w(x,y,t)

Thus, the nodal displacement vector is defined

{ w } T = [K  ],OLl>J]

where the subscripts b and m denote transverse bending deflection and in-plane deflection 

components, respectively.

The displacement distribution within an element is described by interpolation 

functions and can be written in the form [62]

=  6 ,■§]{'•’»>+C4 . 4 . 4  ( 2 3 )
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^ (* ,:M ) =14 A  A  A0,0]{^}

M*^') = [*„Kr> = [<W«i,4.4]{r>
U(x,y,t) = [tfJ O O  = [4 ,4 ,4 ,0 ,0 ,0 ]{*O
K*»^»0 = t^v]{w-} = [o,o,o,£,£,4]{w j

(2.4)

where A 4 .A  316 the 3762 coordinates, and the transformation between x, y and £i is

1 i i " 4
X ► =

* 1 *2 * 3 4 '

y. yx y2 y3_ A

and hence, (2.5)

'4

l miiA
.

^ 3 - ^ 2 y2- y 3

l-----*Ni Y

A x ^ - x y / j y3-yx x ,- x 3 X

A. y i - y 2 X j - X , y

where A is the area of the triangular element, (rs y ) are the coordinates of the node i, and

2 A =  ( x 2 - x,)(y3 - y ) - ( x 3 -x,)Q ;2 - y x)

A = -A^,), A = -  AAr4)

A = |(A A r.-*.A f,).

M i= j(a ,N ,-a ,N ,) ,  M, = ^ a ,N , - a 2Nt )

at4 = 4A A . = ft, =4 4 , 4 ,

a i  =  * 3 2  > a 2  =  *13  > **3 =  * 2 1  

^ 1  = J / 23> ^ 2  = J / 31> ^ 3  = ^ I 2

xi, = xi - xj ’ y,  =y. - y j

k\l\m\

(2.6)

\ g £ g d A  = 2A (2+k+ l+w)! (2.7)
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2.2 Nonlinear Strain-Displacement Relations

The strain-displacement relations in the von Karman sense are given as

M - = {e°}+z{K} (2.8)

where {e°} is the in-plane strain vector and {k} is the change in curvature vector such 

that

w j /  2

V,v ► +  * W Zy /  2 ► +  « W .y W o.y

+ v w * w .y . W ^ W o.y + W o ^ . y

= « > + { < } + « } (2.9)

M  =
Yy*

(2 .10)

where the displacement functions of the middle surface, u, v, w, are measured from the 

initial deflection position shown in Fig. 2.2, and the subscripts m, b, and o denote the in­

plane strain components due to membrane, bending, and initial deflection, respectively. 

The transverse shear strain-displacement relations are given by

Vx
Vy.

(2.11)

where the denotes derivative with respect to the next subscript.

By using finite element displacement functions for MIN3 element, the membrane 

strain and curvature vectors can be expressed in terms of the nodal displacements. The 

linear membrane strains become
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Node 
(xi, yi)

x

Fig. 2.1 A Mindlin Triangular Plate Element (MIN3)

{<*«,}, {To}

{w}

{w„}

Fig. 2.2 An Initial Deflected and Stressed Plate
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The nonlinear membrane strains become

0
0 w . .

W . y W jc

= ^ K t c - K n i+ [ c „ ] { r } )

and the membrane strains due to w and wa are

w 0ojc

0 w °.y

w W°.y

w
w .{<}=

= [«J([C^]K)+[C„]W)

where the slope matrices [0] and [0.] and the slope vector {G} are

M -

{G} =

W  , 0
JC

0

w w  r
■y

W 1
JC 1 =

w |
•y j

[«.] =

K)i{".\ 
i \ n . \

It is clear that the following relation exists

K](C} =
o

0 w„
W° .y  " V

W OJC 0

0 w „o.y

VV„ W„o,y ojc

ax
IJ

Wf w

0
O'

*\y
=[e]{G0}
= [«I([C^]{^}+[Cr r ]{ ^ »

(2 .12)

(2.13)

(2.14)

(2.15)

(2.16)
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The change in curvatures are

3_
Sc ’K

M  =
a_
&

+ - £ -&

(2.17)

The transverse shear strains become

{/} = i l H A
M H.

ww
wW

H_
H.

M  = [C ^]K >+[C rr]M  (2.18)

where the strain interpolation matrices [Cw],[C^],[Cr r ],[C6],[Cj6] and [C^] are

related to the area coordinates and the nodal coordinates. These matrices are given in 

Appendix A.

2.3 Stress-Strain Relations of a SMA Embedded Composite Lamina

A representative volume element of a SMA fiber-reinforced composite lamina is 

shown in Fig. 2.3. The element is taken to be in the plane of the plate. The composite 

matrix, for example graphite/epoxy, has the principal material directions 1 and 2, and the 

SMA fiber is embedded in the 1-direction.

In order to derive the constitutive relation for the 1-direction, it is assumed that a 

stress cr, acts alone on the element (<?2 = 0) and that the SMA fiber and composite 

matrix are strained by the same amount, ex (i.e., plane sections remain plane). The 1- 

direction stress-strain relation of the SMA fiber can be described as

T> T (2.19)

or
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Fig. 2.3 Representative volume element for SMA 
fiber-reinforced composite lamina
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cr„ = E 'M  -  a,AT), T < Ts (2.20)

where Ts is the austenite start temperature and a* is the thermal expansion coefficient. 

The Young’s Modulus E* and the recovery stress o '  are temperature dependent, 

indicated by superscript (*). The recovery stress o* is also dependent on the prestrain sr 

which relates to the recovery strain of SMA. For Nitinol, cr* and E* can be determined 

from Figs. 1.2 and 1.3, respectively. Similarly, the one-dimensional stress-strain relation 

in the 1-direction for the composite matrix can be expressed as

o-.m = Elm (ex -  almAT) (2.21)

The resultant force in the 1-direction (cr2 = 0) is distributed over the SMA fiber 

and composite matrix and can be written as

C\A\ = &\sAss +<T\mAm (2.22)

where(trx,Ax), (aXl,Aa) and are the (stress, cross section area) of the entire

element, SMA fiber, and composite matrix, respectively. Thus, the average stress cr, is

=crlsvt +almvm (2.23)

where v, =Aa /Ax and vm = Am/ Ax are the volume fractions of SMA and composite 

matrix, respectively. When T>Ts, the SMA effect is activated and the one-dimensional 

stress-strain relation in the 1-direction becomes

cr, = (£,*£, + o’*)v, +£,„(£, -  cclmAT)vm
(2.24)

= Exs,+ o rvs -  E,ma,mvmAT

where

E l= E Xmvm+E]v, (2.25)
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When T<TS the SMA effect is not activated and the stress cr, is

ax =  Els, + E lMa,mvm)AT
r ;  ‘a t ,  <2-26>= £ , ( « , - a ,  AT)

where

. (E i*>ax«v« +E> ,v ,)  ocx — g ,  (2.27)

A similar constitutive relation may be derived for the 2-direction by assuming that 

the applied stress cr2 acts upon both the fiber and the matrix (cr, = 0). Thus, the one­

dimensional stress-strain relations in the 2-direction for the SMA fiber and the composite 

matrix become

o-2, =cr2 = E\ -  a , AT) (2.28)

and

° i .  = -  < h .m  (2.29)

respectively. The recovery stress does not appear in Eq. (2.28), since the SMA fiber 

prestrain er and recovery stress cr* are considered to be a 1-direction effect only.

The total elongation is due to strain in the composite matrix and the SMA fiber 

and may be written in the form

A\S1 = Am£2m + As,£2z (2-30)

Thus, the total strain becomes

2̂ = £2mVm + e2sVs (2-31)

Since cr2 = £*(s^ -  a,AT), Eqs. (2.28) and (2.29) may be substituted into Eq. (2.31) to 

give
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** = ^  + a 2Ar
(2 .32)cr7vr cr,v_

= + («*v* + a* ,* . )A7*

Therefore, the modulus and thermal expansion coefficient in the 2-direction become

=a2mV«+<*,Vs (2-34)

Expressions for the hybrid composite Poisson’s ratios and shear moduli follow from 

similar derivations.

The constitutive relations for a thin composite lamina with embedded SMA fibers 

can be derived using a similar engineering approach to give

<7 ~Qu q ;2 0  " «i
• *

<rr <*x
. = Ql> O n 0 ► +  - 0 >v* ~[Q]m « 2 - vmA T , T > T J

J u . 0 0

---1
• 

S
O

) 7 l2 . 0 0 m

Qu Q u 0 "f
*1

f \

► — Q» Q n 0 «
* 2

► — 4 «2

kr<!

.r !2. 0 0

----1
• sOi VX 1 2. 0 V

I*"23!  _  2*4 0 [V23]
1̂ 13 J _ 0 Qss.lfaj

where [Q\m and [Q*] are the reduced stiffness matrices of the composite matrix and the 

composite lamina, respectively. The [Q*] matrix is temperature dependent and is 

evaluated using the previously derived relations as
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£?n = y r
Mnfhx

q - PnK  _ VixK 
1 ~ fhtfhi 1— fhifhi

Q* = JZ
K
Miifhx

QL = g;2

q;s = g;3

( £ ‘ . M 2 )  =  ( ^ t m > f^ Y lm K  +  , t* s  K (2.37)

and

(e ; ,g;2,g '23,g ;3) =
(e ^ e ;, g X2mg;, g^ g ;, g ^ g d

(2.38)[ ( £ * . , + ( £ , * , G > J  

where the p’s are Poisson’s ratios and the G’s are the shear moduli. The thermal 

expansion coefficients a* and a 2are derived in Eqs. (2.27) and (2.34).

The stress-strain relationships for a general orthotropic lamina with embedded 

SMA in nonprincipal coordinates such as x and y  can be obtained using an engineering 

approach. The stress transformation equations for the stress in the xy-coordinate system 

can be written as

(2.39)
O* cos2 9 sin2 6 -2cos0sin0 o, Oi

‘ °v • = sin2 0 cos2 9 2 cos 0 sin 0 o2 0-2
.V cos0sin0 -cos0sin0 cos2 0 -s in 2 9 ,ri2. J\2.

where 0 is the lamina orientation angle.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



32

The strain transformation equations for the strain in the xy-coordinate system can 

be written as

cos2 9 sin2 9 -2  cos# sin# *1
£ y - = sin2 9 cos2 9 2cos#sin# *2

Y  x y ' 2 cos# sin# -cos# sin# cos2 # -  sin2 # .7 12 /  2
= m -i

7 .2 /2

(2.40)

thus

<7c 0i, S2 0.6
' = [T Y \Q 'W \ £y ► — 0« 022 0L

.V r J  2 0,6 0L 0L 7

(2.41)

yz <& a ;  
ois q ;, j

1723 I

L7»J

where the Qrj are the components of the reduced transformed lamina stiffness matrix 

—•
[Q ], which are defined as follows:

0 . 1 = 0i*i cos4 0 + 022 sin4 0+2(0*2 + 2Q") sin2 0cos2 9 

Qn = (0i* + 0 2 2  “  4QL) sin2 #cos2 9 + 0,*2(cos4 9 + sin4 9)

0i3 = 0i*3cos2 0 + 0 a  sin2 9

S« = (0 n - 0*2 - 2^ )c o s 3^ s in ^ -(0 i  - 0 *2 - 2 0 ^ ) cos# sin39 

~022 = 0* sin4 0 + QnCos4 9+ 2(Q[2 + 2Q^) sin2 0cos19 

023 = 0*3 sin2 9 + Q^ cos2 #

026 = (0i* “ 01*2 - 2(&)cos0 sin30 - ( (2£2 -0,*2 -2£&)cos3#sin#

S 3 = 03*3

036 = (023 -0,*3)sin#cos#
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0 45 = (QL -  05*5)sin#cos#

Qss = 0u sin2 0+05*5 cos2 0 (2.42)

OL = (0u + 0* -  20,*2 -  2& )sin2 #cos2 # + e&(sin4 # + cos4 #)

Q„ = f iU =  0 M =  025 =  034 =  5 s  =  046 = =  0

or

C 0*]=[7i1[0*]m -r (2.43)

Similarly,

a,. -
a

cos2 # 
sin2 9 

2 cos# sin#

sin2# -cos#sin#
cos2 # cos#sin#

2cos#sin# cos2# -s in 2#
«z*
0

(2.44)

2.4 Constitutive Relations and Resultant Laminate Forces and Moments

Consider a thin composite lamina; for example, graphite-epoxy, having an arbitrary 

orientation angle 8 and with SMA fibers embedded in the same direction as the graphite 

fibers. The stress-strain relations for such a lamina in the principal material directions are 

derived in Section 2.3. The stress-strain relations for a general k-th layer with an 

orientation angle 0, become

A T J > T t (2.45)=[<r](
£x r • i

0 -x
r

« x
\

£ y « +  • • - P L - * v «

T  . .V t m J

and
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M *  -  =

r
**

•
a*

•
£ y

•  ----  4 ► AT

V y

. 
fr * kJ k '

T< T (2.46)

M k - { r 0}k = OL q;5
_q:5 q;,j

V ” =[& •], ir i (2.47)

where [O*], [0*] and [Q]m are the transformed reduced stiffness matrices of the 

composite lamina and the composite matrix, and and {tc} are the initial stress 

vectors, respectively.

The resultant force and moment vectors of the SMA fiber-reinforced composite 

plate are defined as

({#},{ M}) = £2{<r},(l,z)<£t
(2.48)

or

\N] 
I Ml

A* B * 
B* D*

jjv .
M,AT. A/„

(2.49)

{R} = [< ]{/}+

where the laminate stiffness [A*], [B*], [D*] and shear stiffness [A',] are all temperature 

dependent. The elements of these matrices, assuming midplane as the reference surface, 

are defined as

4 = 0 # ) . * .  < J = 1A6

B' = i , j  = 12,6
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o ' = f " 2( ^ ) t z’dz, /,y = U ,6

',7  = 4,5 (2.50)

The recovery in-plane force {#*} and moment {M*r} vectors are dependent on 

temperature and prestrain (see Fig. 1.3). The vectors {A^}, {Ma} and {/?„} are the

force, moment, and shear force vectors due to initial stress {o«}, respectively. The 

recovery and the thermal in-plane forces and moments due to the SMA recovery stress 

and the temperature change, respectively, are

(2.51)

=o

r a*** x

f  r o n

2.5 The Principle of Virtual Work

The virtual work done by internal and external forces is written as

(2.54)

and

&K* = \A t) -  phwn) +du(-phua ) + dv{-phv^ )]c£4 (2.55)
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where p(x, y, t) is the external force, p is the mass density of the laminate and P is a shear 

correction factor which is defined later.

As mentioned in Section 2.3, superscript (*) indicates temperature dependent. The 

laminate stiffness [A*], [B*], [D*] and [A*] are all temperature dependent. In the 

following deductive procedure, the (*) is dropped for convenience. The virtual in-plane 

strains, curvature and shear strains can be expressed as

{«n= |[0 ](G > , {Set) = !*([0]{G » = m S G }  (2.56)

(&“} = {S»„)ri c j r +{d»b}riC't ]r[0]r +{Sw)Tlc„Yief
+{<*•■» >r[c*n0„]r +{Sv)T[c„Y[e,Y (257)

(AT) = + [£]{*:} -  {Na ) + <JV;> + {N J

= M l t c .H w j  + ^ M [ e ] ( [ c - ] K ) + [ c „ ] ( r »  + M [ 0 ] [ c , j { > n j ( 2  58)

+(if][cj{r) -  (Jv„>+« f +<jv„>

{Sk )t =[SV }TlCt f  (2.59)

{M) = +[C]{/c) -  + (AC) + {M„)

= O T C J K .)  + ̂ [fi][S]([C ^]K } + [C „,]M ) (2.60)

+ [*M C „,K w ,}+ [C ][Q ]{r}  -  <w„} + {Ml) + M O

(Srf ^ ^ Y I C ^ Y  + {SV}T[C„Y (2.6i)

{R} = [^ ](C „]K }+ [^ ][C ^ ]{^ } + {/?,} (2.62)

The virtual work principle gives

5W^ = SW^ (2.63)
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where after substituting the appropriate expressions the following results are obtained: 

\A{{Se‘ \T{N} + {SK}r {M}+P{Sr)T{R))dA

+[S][Q K r> -  {*«•)+ W > + < fl.»  

+f*»4)r[c„,]r[e]r ([^[C.]{W.}+ |M ][e][c- ] K } +i[^][«l[c„,]{r( 

+[-4][«][c^]{wk,}+[/i][e][CTO]{^ i +[B][c»]{r> -  (w„)+(wr‘} + ( ^ i )  

+ MOTC„ ] { ^  } + [A m iC „  ]{</„) + [5][C, ]<r  } -  {JV„ } + {AC } + {N .  » 

+ {S»i }, lCfl,ne.Y<lA]lCml{wm) +±lA]mC<,}{'«’i )+^lA]m C„]{y}  

* M P [ C J { » J t M |9 |[ C „ ] W  + M C J M  -  {JV„) + {JVr-} + {AT,})

+ {Svf{c„ ]r[e jr([^][C.](^„ 1+ I+^[/4M C „ Hr!
+ [^ M C „ ](*v,l +M [0][C„,]{(0 +[5][C, W ) -  {Na } + in; i + { N , ))

+{Sv)T{cj(iB}[cj(wj+±iBm\c«\{»l)+\mmc„\{y) (2 64)
+[B][0][C„ ]{*■„> + [B \m c „  ){</,} +[K][C,]{r) -  {M„} + « }  +{Ma})
+ P i ^ V i C *  ]r (M,][C„ ]{w„ } + [^ ,][C „]{r( + {*„ »
+ m v  (r i c „  Y (I A, HC* ] K } + [A, ][C„ ]{r } + {R„ })}dA

and

= \A [8»(p(x,y* 0  -  phw.n ) + 8u(-phu a) + dv{-phva )]fit4 

= £  «{<K }r {H J  + {<V}r „r  -  ph([HJ{wb} + }{*})) (2.65)
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2.6 Element Equation of Motion and System Finite Element Equation

Using virtual work principle Eqs. (2.54), (2.55), (2.63), the equation of motion for 

the MIN3 plate element can be derived as

- r  ^ (

V
."V \

l>Lr 0 
[™U [m \  0

. 0 0 [«L

[^jvatIs f̂ iVArlfcr ®
[̂ jvarV ® 

0 0 0

0 0 0

o [*v [*U
0 [k]mr [kl,

i K i  [k ; \w O'
[*;*, o 

0 0 0

[ K l [K l ¥
[ K U W r
lk.U [*o]«r

' [ K l

IKU
0 0

i™
n

»*
*

t-
1

s ---
--

1V

[ * .U 4 ¥
0 / Wm I m J

YV

1
2

[wl0l  [«10U  0 "m M r o' \

["U* [«Ur o +fi [KU 0 ¥
V 0 0 0 0 0 0 / .w«.

1
+ — 

2

1
+ — 3

0

0
Nivjr- 0w

0 0

[ » l » l r  °' 0 [ " U r [ " U *
\

+ [n N̂b [» U ]r  0 + [«!/U [WU [«1/U 4 ¥
0 0 0 K U [«1/U 0 / Wm.

[/I2]* [n l\¥ 0
[«2]^ [n2\ 0

0 0 0

wv

¥
w _

{pp{t)}b 0 0 0 \ p X [P\To)b { p j b {Pao)b
[Pp(t)}¥► + «{Par)¥ > ___ 4

{#>;>r
► _  4 {pa}¥ >-p {p<)¥ ►+* [P&To\ ¥► ___ 4 (P'J¥> ----- 4 iPoo)¥0 . (Pat } m. _{pAm. 0 0 0 0

(2.66)

or in the compact form
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[m]{w} +  ([* ]+ [* „ ]-  [*w ] + [*r*] +  [ka]+±[nlo]+/P ,] ){ w }

+ ±a»liJ+[»l»]+[»l,D{i«'} +i[«2]{w} (2.67)

= {Pp(0} + (Pat) -  {P*> ~ ( /U  ~  ( p j  + IPaTo} " { P 'J  ~  {Poo} 

where [m], [k] and {p} denote the element mass, linear stiffness matrices and load vector, 

respectively, and [nl»], [n l^ ], [nlro], [nli] and [n2] denote the first- and second-order 

nonlinear stiffness matrices, respectively. The subscripts b, \|/ and m denote the 

transverse, rotation and in-plane components, respectively. The subscripts s, x, o, a, r, 

NAT and AT, Nm. Nb, l and p denote the stiffness matrices and load vectors which are 

related to transverse shear, initial shear stress {x0}, w0(x,_y), {<r0}, {cr*}, {N^}  and AT,

{iVm}(= {#£,}(= [5] {*■}), and distributed load p(x, y, t), respectively. The

shear correction factor is defined as [62]

/ > = — 4 c  ( 2 6 8 )

I+(U2 t
irn

It is assumed that the rotary inertia effect is negligible for relatively thin plate (a/h>50). 

The expressions for element linear and nonlinear stiffness and mass matrices and load 

vectors are given in Appendix B.

Summing or assembly of the contributions from all elements (matrices with lower 

case letter) results in the global matrices (denoted by capital letter). The system finite 

element equations after applying the kinematic boundary conditions can be written as
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[MLr 0 X
/ 0 0 0 [Kl [Kir \Wi[AH* [M]r 0 - + 0 [*l [*U + [KU [Kl [KU **0 0 W l. X. \ 0 [*u [*L_ [KU [KLW 0 JJk

' [ ^ l  [ ^ . v a t W  o ' ' [ K l  [ K U  o' ' [ K l  [ K i r  o ’

V

X
[**rU  [ K t r l  0 - [<U [K\r o - [ K U  [ K l  o 4

0 0 0 0 0 0 0 0 0 f K.

[*U o' [Kl [Kir o' X
[tfl.U WWr 0 + [KU [Kl 0 4

0 0 0
1

O O o X.

1H---
2

[ * U U o’ [ ^ jn» tr o'
W » m]r 0 + W U U 0 4

0 0 0 0 0 0. /

wb

W _

0 m u X 1
r + ~

' [ N i l  [N 2 lw o' X

m u [ N i l m u [N2U [N21 0
m u m u 0 X .
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0 0 0 X .

’W 0 }*'
{ P p { t ) ) r

-  +  -

0

{ P * r K
► _  4

0

( P r X
► ----  4

0

{ P J r
* — «

I P r ) r
► + «

{ P & T o ) b

{ P & T o } r  * ~ ' { P X

► —  4

0
A P * r U . { P X .

0 0 0

c

{ P a o ) b

{PaoK
0

(2-69)

or it can be written as

(<D <W,W)}
= [ m m + m + [ K 0\- [ K N̂ [ K ; \ + [ K a] ^ M W )
+ i[^ l]{F n  + i[^2]{FF} (2.70)

-  { P p ( t ) }  -  W >  +  { P r ' }  +  { P J  +  { P t } ~  {P * T o }  +  & }  +  { P o o )

=  0

where [W}T = U K ^ ^ X ]  and the other subscripts have been specified. The transverse 

shear [K. ] and the first order nonlinear [Nl] stiffness matrices can be written in the form

as
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(2.71)

(2.72)
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CHAPTER m  

SOLUTION PROCEDURE

In this chapter, the governing equations for the four types of analyses are derived 

from the system equations of motion, Eq. (2.70), and they are solved in sequence. The 

four types of analyses are: 1) thermal buckling; 2) thermal postbuckling deflection; 3) 

vibration of buckled plate, and 4) random response about the buckled position.

3.1 Static and Dynamic Equations 

The system of equations, Eq. (2.70), is a set of nonlinear ordinary differential 

equations with respect to time t. A novel solution procedure is presented in the following 

to determine thermal postbuckling deflection and random vibration of thermally buckled 

composite plates with embedded SMA fibers. The solution of a set of differential 

equations, Eq. (2.70), is thus assumed as the sum of a time-dependent solution and a time- 

independent solution, that is

m  = v n , + m t ) } '  (3.1)

where (W(t)}t is the time-dependent solution whose physical meaning is the small 

oscillations about the thermal postbuckled position {W}„ where {W}» is the time- 

independent solution whose physical meaning is the large thermal postbuckled deflection. 

Substituting Eq. (3.1) into Eq. (2.70) and neglecting the higher order terms of {W(t)}t for 

small amplitude random vibration, the following two sets of equations are obtained as

( m +[ * j  -  + t<  ]+ t o w ,+ ! [ /« ] ,  w , + ̂ 2], m ,

(/>;> - { p j -  {/*„„> -  { /o  -  (/>„(

and
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[ m m t + ( m + [ ^ j - [ ^ w ] + [ < ] + [ ^ j+ [ ^ D ( ^ > t + { N \ i m ,  + [N 2-\,m t 
=  { ^ ( 0 ) 1

where the nonlinear stiffness matrices, [Nl]. and [N2], depend linearly and quadratically

upon the thermal static displacement {W}„. The detailed derivations to obtain Eqs. (3.2)

and (3.3) are given in Appendix C.

The total plate response is at any time t the sum of {W}. and {W}t according to

Eqs. (2.70) and (3.1). A close examination of Eqs. (3.2) and (3.3) reveals three aspects of

the solution process. First, Eq. (3.2) is a set of nonlinear algebraic equations which

represents a time-independent solution for the governing equation, Eq. (2.70). Second,

Eq. (3.3) is a set of linear differential equations which represents a time-dependent

solution for the governing equation, Eq. (2.70). Finally, Eq. (3.2) has to be solved first to

determine the thermal postbuckling deflection {W}s. The dynamic response (W}t can be

obtained from solving Eq. (3.3).

3.2 Increment Stability Equations 

It is necessary to study the stability of the composite plates with embedded SMA 

because the temperature effects cause a stability problem in the plates. The adjacent- 

equilibrium criterion [63] can be used to investigate the stability of a given equilibrium 

configuration, {We}. For given small increments to the adjacent equilibrium position

{W}—»{WC}+{AW} (3.4)

{<h(We+AW)} can be expanded by using a truncated Taylor series as

{®(Wt + AW)}

= <4>TO) + (3.5)

=  0
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where the incremental quantities {AW} are arbitrarily small and {<I>(We)}, Eq. (2.70), is in 

an equilibrium configuration. From Eq. (2.70), the total differential of (0(W)} is

{dtoQV))

The term d(^[N \\ {W} + -^[W2]{W}) had been proven to have the following form [63]

d(±[Nl]{W} +^[N2]{W}) = ([jin] + [JV 2D W  (3.7)

Thus based on Taylor expansion, the stability equation for the system equation, Eq. (3.5) 

of equilibrium can be derived as

m  + [ * .] -  [Kn&t] + [< ]  + [K J+ [K,J){AW} + ([tfl], + {N2\){AW} = 0 (3.8)

or

[^ L { A fn = 0  (3.9)

where the tangent stiffness matrix is

l ^ L  = O T +[A ;]-[A :w ]+[<]+[A ^]+[A ;]+[ivi].+[iV 2i) 

and the tangent stiffness matrix [Nl]e and [N2]e are evaluated at the equilibrium

configuration {W}e.

3.3 Thermal Buckling

A linear thermal buckling analysis is carried out first to determine the critical 

buckling temperature = A7̂ . + T0 , where To is the reference or ambient temperature. 

Equations governing the thermal buckling are obtained by first neglecting the extension- 

bending coupling, the nonlinear bending force, the initial deflection and the initial stress 

terms from Eq. (3.8), thereby giving
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(3.10)

‘0 0 ■

0 K w » ]* —
*n>

Furthermore, from the linear system equation in membrane (see Eqs. (2.69) and (3.2)), the 

following relationship is established

[KM]{Wm} = {P^}m-{P;}m (3.11)

where

[ K b ]  =

The first-order nonlinear stifihess matrix [NInJ c is linearly dependent upon the in­

plane displacement {We} which can be expressed from Eq. (3.11) at a given AT(x, y) as

w - K r d i s , . . - ^  ( 3 1 2 )

= iK(AT)} -  {WJC

where {Wm(kT)} =[-^m] l{-fAr}nf is linearly dependent upon AT, and 

{Wm)c =[KmT'{P;}m is a constant vector, and it is independent of temperature change. 

Thus the matrix [N l^le is the difference of two matrices. The first matrix [iVly,*]^, 

which is linearly dependent upon AT, is evaluated with {Wm(AT)}, and the second matrix 

(WlVm]c, which is a constant matrix and independent o f temperature change, is evaluated 

with { W m } c  as

(3.13)

Since both matrices [ATyir] and depend linearly upon AT, Eq. (3.10)

can be expressed as an eigen-problem

(K ]+ [< ]-[A 'l„ .] . +[*,]»){«>} = *(£*»*■]-[tfU L rX fl (3.14)
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The critical temperature change corresponds to the lowest eigenvalue X and is 

given by A7̂ . = AAT, and {<j>} is the corresponding thermal buckling mode. The 

following items are directed for special attention: 1) Since the matrices in Eq. (3.14) are 

all temperature dependent, an iterative scheme has to be implemented to achieve a 

converged AT<* at X=1.000+0.001; 2) For antisymmetric angle-ply and symmetrically 

laminated composite plates with non-zero thermal bending load, and unsymmetrically 

laminated composite plates, the solution from Eq. (3.14) is referred to as a reference 

critical temperature, (AT J )^ .

3.4 Thermal Postbuckling/Deflection

Equation (3.5) is the governing equation to determine the thermal postbuckling or 

thermal deflection with a certain thermal load for AT>ATCT or (ATerW, and it contains both 

temperature dependent material effects due to SMA and geometrical nonlinearity due to 

large thermal deflection. With consideration of nonlinear material properties of SMA, the 

incremental computational method is employed. That is, in each small temperature 

increment, the material properties of SMA are considered as constant. The initial 

deflection and stress are updated shown in Table 3.1.

Table 3.1 Incremental solution procedure for thermal deflection

Increment
number

Initial deflection 
{ W o }

Initial stress
{ d o }

Newton-
Raphson
Process

Converged 
deflection {W}

Stress in 
increment

{<*}
1 0 0 -> (W}x {o}i
2 {W}t —> (W}2 { 0 > 2

3 {W},+{W}2 { 0 } l + { d } 2 —> {W}3 {0>3
• : : : •

k {W}1+...+{W}k.l { a } i + . . . + { a } k - i -> {W}k {o}k
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With the consideration of large thermal deflection, the nonlinear stiffness matrices, 

[Nl], and [N2]„ linearly and quadratically depend upon the thermal displacement. One 

effective approach involves the application of Newton-Raphson iterative method within 

each small temperature increment. Thus, for i-th iteration, the Newton form of Eq. (3.2) 

or Eq. (3.5) can be written as

(315)

then [Kx*n]i+i and {AP};+i are updated by using

( w ,) ,+1 = ( m x  + ({ A * n x , (3-i6)

The solution process seeks to reduce the imbalance load vector {AP}, and consequently 

{AW}„ to a specified small quantity (10"*). The iteration tangent stiffness matrix and the 

imbalance load vector are

= [* ]+ [* „ ]-  [KNaT ]+ [<  ]+[£■„ ]+ [* ,]+ (wi]„ + [^ 2 L  (3.17)

and

{ap}, = {pST) -  {p;} -  {p.} -{p ,}+ { p „ j -  { /o  -  (p„i

-  ([*] + [ ^ . ] - t ^ ]  + [< ]  + [K„]+[*,]){»n* (3.18)

The linear buckling mode shape, Eqs. (3.12) and (3.14), normalized by a scale 

factor for symmetric laminates, or the linear thermal deflection (by dropping the nonlinear 

terms) from Eq. (3.2) for unsymmetric laminates is usually taken to be the initial trial 

solution for Eq. (3.15). A flowchart for determining the thermal postbuckling deflection is 

shown in Fig. 3.2.
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NO

YES

YES

NO

W}k converge?

Stop

Start

Increment temperature

Update {<t0}, {t0} and {WQ}

Output the deflection {W}k

Reconstruct [K^n] and {AP}

Apply Newton-Raphson to obtain {W}k

Implement temperature increment 
Do k = 1, T(elevated), ntp

Fig. 3.2 Computational Method for Determining Thermal Deflection.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



49

3 .5  Vibration o f Buckled/Deformed Plate

Equation (3.3) is the governing equation for dynamic response of composite plates 

with embedded SMA fibers. It can be seen that the converged tangent stiffness matrix 

[Ktn] as shown in Eq. (3.17) is exactly identical to the sum of stiffness matrices in the 

dynamic equation, Eq. (3.3). Thus the vibration equation about the thermally buckled 

position {W}„ becomes

[ M \ m t = {Pp(t)} (3.19)

This feature gives a great advantage of solving the dynamic equation, Eq. (3.19), only the 

mass matrix [M] needs to be formed. There is no need to assemble system stiffness 

matrices by considering the effects of SMA recovery stress, thermal stress and thermal 

deflection from each element using the conventional approach. The computational time is 

greatly reduced. For free vibration, dynamic equation, Eq. (3.19), is a generalized linear 

eigenvalue problem and can be written as

=[**.]{£} (320)

where to. and {<(>,} are the natural frequencies and mode shapes of vibration. Thus the 

natural frequencies of vibration and mode shapes about the thermally buckled/deformed 

position (W), are obtained from the solution of Eq. (3.20).

3 .6  Random Response of Buckled Plate

3.6.1 R an d om  Displacement Response

The random displacement analysis of a thermally buckled plate with embedded 

SMA is performed to determine the root-mean-square (RMS) maximum deflection and
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power spectral density (PSD) functions. The dynamic equation is shown in Eq. (3.19),

and the natural frequencies <Dr and mode shapes {<j>r} of vibration are obtained from the

eigenvalue problem, Eq. (3.20). The truncated modal transformation form, using the 

lowest N modes, can be written in the following form

m ,  = f d\A}qr = m q )  (3.21)
r=l

Substituting Eq. (3.21) into Eq. (3.19) and considering the modal damping simultaneously, 

a set of uncoupled modal equations with reduced degrees of freedom can thus be derived 

as

qr +2gra>rqr + azrqr = f„  r = 1,2 ,..., AT (3.22)

where the modal mass, stiffness and force are

K  = {*>r[J U fc >  (3-23)
fr= {trV {P p(t)}/mr

and gr is the modal damping ratio which can be obtained experimentally or estimated from 

similarly supported structures.

The plate is assumed to be subjected to Gaussian white noise uniform random load 

Pp(t), the cross-correlation of modal amplitudes can be determined from Eq. (3.22) as

(3.24)
= jG ,( /) f f , ( / ) # , ( - / ) #

where Sp(to) and Gp( j )  are the two-sided and one-sided spectral density functions of 

the uniformly distributed acoustic excitation Pp(t) , respectively, and the relation is
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GP(J)  =  4tzSp(<b), for a> = 2qf ( / > 0) (3.25)

The one-sided spectral density function of the acoustic excitation Pp (t) has a 

transformation from a sound spectral level (SSL) as

GP(J)  = 8.4216 x 10<— " “ > (3.26)

where the unit for sound spectral level is dB and the unit for Gp(f) is (psi)2/Hz.

The complex frequency response function is

Hr(a>) = — — 5-----------   (3.27)
mr{a>r -Q> +2igra>reo)

The cross-correlation of modal amplitudes from Eq. (3.24) is

_________________ Gp(J)(grcor +gstos)________________
q A l ™rms {(o>2 - m ] f  + 4 [grgsa>ra>s(a>r2 + g>)) +  (g 2 +g?)a>?a>?]}

and the correlation matrix of the system nodal amplitude becomes

= [m .{q}{q)Tm T (3-29)

The root-mean-square nodal deflection can be obtained from the diagonal value of the 

above correlation matrix, and the root-mean-square maximum deflection is determined 

from

S M S P O  = max.(1/4 T O ;]) (3 30)

where E[(Wt )2 ] are the diagonal terms of Eq. (3.29).

The power/deflection spectrum density can be determined from the following

equation
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(3-31)

3.6.2 R andom  S tra in  Response

As the displacement random response is determined in Section 3.6.1 for a given 

combination of thermal and random loads, the element strains can be obtained using Eqs. 

(2.8), (2.9), (2.10) and (2.11). For a linear random vibration of thermally buckled plate, 

the strain-displacement relations can be expressed as

where the strain interpolation matrices [C„], [C6], [C^] and [C ^] are defined in 

Appendix A.

"x n.x
{ * }  =  V.y > +  Z' Vx.y ’ =u -I-V W,y dc jy*y txjc

(3.32)

(3.33)
=[q6]K)+[c/r]{H

By using truncated modal transformation, the modal equations for element strain

can be derived as

M = [C. ]{«■-}+ 4Q 1W  = +4Ct ]{«s,)>r
(3 34)y

r= l
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AT

r=  I

N (3.35)

= Z ^ ? r
r = l

where the modal vectors {^}r, {<j>w}r and {$_}rcan be obtained from the r-th mode {<j)r}

shown in Eq. (3.20).

Thus the random response of element strains can be determined as

£{<*> M rl = z l > U * } , r £)«,?,] (3.36)
r= 1 j= l  

ff N
= (3.37)

r= 1 j=l
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CHAPTER IV  

NUMERICAL RESULTS AND DISCUSSION

4.1 Computer Program Validation and Mesh Convergence

4.1.1 Thermal Buckling and Thermal Deflection

For the computational test, an eight-layer simply supported rectangular graphite/ 

epoxy composite plate with stacking sequence (0/90/90/0), is considered. The dimension 

of the plate is 15x12x0.048 in., and the ambient temperature is 70°F. The critical buckling 

temperature and postbuckling deflections are compared with the results in [64]. The same 

data are obtained.

For thermal buckling: ATcr=12.36°F

For maximum thermal postbuckling deflection: ------ = 1.13 —— = 0.244
ATcr

A r =1.46 = 0.451
ATcr

AT =1.62 ^  = 0.524
AT

4.1.2 R andom  R esp o n se  an d  Strain  Validation

The plate used in [65] was analyzed as a validation example. The dimension of the 

plate is 15x12x0.04 in., and the material properties are:

Young’s modulus E=10.5x 106 psi

Mass density p=0.2588xl0‘3 Ib-sec2/in.4

Damping ratio £=0.01

Poisson’s ratio v=0.33
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The results obtained by the present study and in [65] are shown in Table 4.1. The 

random results from [65] are shown for comparison. Because different elements are 

used, there are small differences between the results for maximum transverse deflections. 

However, it is demonstrated that the computer program for thermal buckling, deflection 

and random response analyses is valid.

4.1.3 Mesh Convergence

In order to guarantee the accuracy of the result in computation, mesh convergence 

is studied. A quarter plate model of the eight-layer simply supported rectangular 

orthotropic laminate (15x12x0.048 in.) with the stacking sequence of (0/90/90/0), is 

considered. The ambient temperature is 70°F. The results of critical buckling 

temperature, maximum thermal deflection, and the lowest two natural frequencies at 

170°F are shown in Table 4.2. It can be seen that the results are very close and the 

difference is less than 5% for 4x4, 5x5 and 6x6 mesh.

4.2 Thermal Buckling and Postbnckling/Deflection Results 

The results shown in this dissertation were generated for an SMA fiber-reinforced 

composite laminate, where the graphite/epoxy composite was treated as the matrix. The 

in-plane support boundary conditions are that the in-plane displacements, u and v, are 

equal to zero on all edges of the rectangular and triangular plates. The following material 

properties were used in the analysis:
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SMA-NrtinoI T21 Graphite/Epoxv

Ts I00°F (37.78°C) E* 22.5 (155)

Tf 145°F (62.78) Ez 1.17(8.07)

E' From Fig. 1.2 g 12 0.66 (4.55); G* 0.40 (2.76)

G' 3.604Msi (24.86 GPa), T<T  
3.712(25.6), T>TS

V12 0.22

V 0.3 P 0.1458 x 10”3(1550.07)

P 0.6067 x 1Q~*lb — s2 / in.* (6450fe7/if3) «. -0.04x10^ (-0.07 xlO-6)

a 5.7 x IQ-6 1° F(1026 x 10~* r  C) 16.7 xlO-6(30.1x10^)

4.2.1 Thermal Buckling

The thermal buckling problems for the composite plate with and without SMA 

have been solved first. The eight-layer simply supported rectangular orthotropic laminate 

(15x 12x0.048 in.) with the stacking sequence of (0/90/90/0)* is considered. The full-plate 

is modeled with a 10x8x2 mesh (160 MIN3 elements) as shown in Fig 4.1. Results shown 

in Table 4.3 are presented for a laminate with no SMA fibers (v*=0) and for three SMA 

prestrain values er=3, 4 and 5% for each nonzero SMA volume fraction (v*=10, 20 and 

30%). It is seen that when the austenite start temperature T*is 100°F, the critical buckling 

temperatures of the plate with SMA fibers are lower than the plate without SMA This is 

caused by the relatively low modulus of the SMA fibers in relation to the graphite/epoxy 

matrix they are replacing, and the SMA fibers are not activated when the temperature is 

lower than T*. However, the austenite start temperature can be altered to 70°F by 

changing the Nickel composition in the SMA fibers as shown in Figure 1.1. Thus the
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critical buckling temperature of the plate with SMA becomes higher than the plate without 

SMA. This is due to the activation of SMA The results show that the shape memory 

effect has a great influence on the critical buckling temperatures of composite structures.

4 .2 .2  Thermal P o sth n ck lin g  Deflection

The thermal postbuckling deflections of the composite structures with and without 

SMA have also been investigated in this section. The composite plates with different 

stacking sequences, volume fractions of SMA, prestrains of SMA and boundary 

conditions are studied.

4.2.2.1 Orthotropic laminate

The simply supported eight-layer graphite/epoxy orthotropic rectangular laminate 

with the stacking sequence of (0/90/90/0), is considered first. The dimension of the plate 

is 15x12x0.048 in. The plate is simulated with 10x8x2 mesh (160 MIN3 elements). The 

austenite start temperature is 100°F. Figure 4.2 shows the maximum thermal postbuckling 

deflection behavior of the composite plate without SMA It is seen that the maximum 

normalized deflection fWmJhl reaches about 1.923 at 200°F. The maximum deflection 

results presented in Figs. 4.3, 4.4 and 4.5 are for a laminate with three prestrain values 

Er=3, 4, 5% for each nonzero SMA volume fraction (v,=10, 20 and 30%). Comparing to 

the plate without SMA, the thermal deflections of the plate with SMA are much smaller. 

The WmJh is 0.672 for v,=10% and 0.193 for v,=30% at 200°F while the prestrain is 3%.

4.2.2.2 Non-Orthotropic Laminate

The simply supported rectangular 15x12x0.048 in. laminate with a stacking 

sequence (0/45/-45/90), is considered. The full plate is modeled with 10x8x2 mesh or 160 

MIN3 elements. The austenite start temperature is 100°F. The maximum plate deflection
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versus temperature of the plate without SMA is presented in Fig. 4.6. In Fig. 4.7, the 

maximum thermal deflection versus temperature for a laminate with prestrain Sr-3% and 

SMA volume v,=10% is presented. It is seen that the thermal deflection of the plate with 

SMA has much reduction after the SMA is activated.

4.2.23 Unsymmetric lam inate

For unsymmetric laminates ([B];*0), the linear stiffness and the first-order 

nonlinear stiffness matrices due to [B] and the thermal and recovery bending loads are 

taken into account. The thermal deflection curves are no longer bifurcation for the plates 

with or without SMA. These are demonstrated clearly in Fig. 4.8 for the (0/90) laminate. 

The simply supported rectangular plate is modeled with 10x8x2 mesh, and the dimension 

of the plate is 15x12x0.048 in. The austenite start temperature o f SMA is 100°F.

43.2.4 Boundary Conditions

In this section, the rectangular laminates are modeled with 10x8x2 mesh and the 

austenite start temperature of SMA is 100°F. Figure 4.9 shows the maximum thermal 

deflection versus temperature for a 15x12x0.048 in. rectangular (0/90/90/0), laminate in 

clamped and simply supported boundary conditions. The clamped plate is stiffer than a 

simply supported plate. The critical buckling temperature for the clamped plate is higher, 

and the thermal deflection is smaller. Maximum deflections for the same plate with SMA 

in clamped condition are shown in Fig. 4.10. It is noticed that the deflection peaks for the 

simply supported plates around 100°F shown in Figs.4.3, 4.4, and 4.5 no longer exist for 

the clamped case. In addition, the critical buckling temperatures for the clamped laminates 

with SMA are much higher as shown in Fig 4.10. For the High-Speed Civil Transport 

(HSCT) presently under development, the skin panel temperatures would potentially reach
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350°F at cruising. It is thus clear from Fig. 4.10 that the thermal deflection can be 

completely eliminated with v,=10% and er=5% (or vs=20% and £r=3% which has a critical 

buckling temperature Tcr= 456.42°F).

Figures 4.11 and 4.12 show the maximum thermal deflection versus temperature 

for a 15x12x0.048 in. rectangular (0/45/-45/90), laminate in simply supported and 

clamped boundary conditions, respectively. Compared to the simply supported condition 

in which there is a deflection peak at Ts for the plate with SMA, there is no deflection 

peak shown in Fig. 4.12 for the case of clamped plate with and without SMA The case of 

the SMA embedded plate with 3% prestrain and 20% volume fraction is also studied. The 

critical buckling temperature is so high that the thermal deflection does not exist when the 

temperature is below 350°F.

4.2.2.S Isosceles Triangle

The isosceles right triangles with stacking sequence of (0/45/-45/90)s with all 

edges simply supported and all edges clamped are studied. The plate is simulated with 

144 MIN3 elements as shown in Fig. 4.13, and the austenite start temperature is 100°F. 

For simply supported edges, the critical buckling temperatures are 40.5 and 230.5°F for 

the laminate with no SMA, and 10% SMA fibers and 3% prestrain, respectively. The 

critical buckling temperatures are 130.9 and 320.6 °F, respectively, for the clamped 

boundary condition. The maximum thermal deflections versus temperature are shown in 

Figs. 4.14 and 4.15. Thermal deflections do not appear for temperature below 300 and 

390 °F for the simply supported and clamped cases, respectively.
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4.2.2.6 Effect o f SMA Transformation Temperature T,

In Section 4.2.2.1, the thermal postbuckling behaviors of the SMA embedded 

orthotropic rectangular laminate with stacking sequence of (0/90/90/0)s and simply 

supported boundary condition have been presented. It is seen that the existing thermal 

deflection peaks around 100°F limits the application of the SMA hybrid composite 

structures for the high speed flight vehicles subjected to combined acoustic and thermal 

loads between ambient and 350°F (use HSCT as an example). However, those deflection 

peaks can be eliminated.

As mentioned earlier, the transformation temperature T, (austenite temperature) 

can be altered with the changing of the weight percentage of Nickel in SMA. From Fig. 

2.1, when the weight percentage of Nickel is at 55.625%, the transformation temperature 

is shifted to 70°F. The alter of transformation temperature results in the change of critical 

buckling temperature. Thus the thermal deflection behavior is affected. Figure 4.16 

shows the maximum thermal deflections versus temperature for the simply supported 

rectangular (0/90/90/0)* SMA embedded plate with the prestrain er=3, 4 and 5% for the 

SMA volume fraction v,=10%. The dimension of the plate and the mesh size are the same 

as in the Section 4.2.2.1. The transformation temperature is 70°F rather than 100°F. The 

thermal deflection peaks around 100°F as shown in Figs. 4.3, 4.4 and 4.5 have been 

completely eliminated here. The cases in which SMA prestrains are 3, 4 and 5% and the 

volume fraction is 20% have also been studied, and the critical buckling temperatures are 

much higher than 350°F (see Table 4.3), and the thermal deflections disappear in these 

cases when the operating temperature is lower than 350°F. Thus, the SMA which 

contains 55.625% Nickel, has the potential use in the applications for HSCT.
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4.3 Vibration o f Thermal Buckled Plate 

4 3 .1  S im p ly  Supported R ectan gu lar  la m in a t e

A simply supported 15x12x0.048 in., rectangular (0/90/90/0)s laminate with and 

without SMA fibers is studied in detail. The mesh size is 10x8x2 for the full plate and the 

transformation temperature is 100°F. Figure 4.17 shows the first two natural frequencies 

versus temperature for a laminate without SMA Between the ambient and the critical 

buckling temperature, the plate remains flat and the two natural frequencies decrease. The 

fundamental frequency reaches zero at the critical buckling temperature where the plate 

losses the stiffness. When the temperature is higher than the critical buckling temperature, 

the thermal deflection increase in bifurcation form and the first two natural frequencies 

also increase. There is a crosspoint of the natural frequencies between 120 and 125°F, and 

the frequency corresponding to mode (2,1) becomes the lowest frequency. Higher 

frequencies and modes can also be obtained from the Eq. (3.20).

The vibration behavior of the same composite plate with SMA has been studied in 

three cases which include 3% prestrain with 10% volume fraction, 4% prestrain with 20% 

volume fraction and 5% prestrain with 30% volume fraction. The austenite start 

temperature is 100°F. The first two natural frequencies versus temperature are shown in 

Figs. 4.18, 4.19 and 4.20. It is observed that the thermal deflection of the plate, prestrain 

and volume fraction of SMA, Young’s modulus and recovery stress of SMA and 

temperature all play a very important role in the dynamic response of the structures. 

When the in-plane force, which is affected by the above factors, becomes tensile, the 

stiffness of the structure increases and so do the frequencies. Otherwise the stiffness and 

the frequencies of the structure decrease. In addition, during the complete temperature
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range studied, the lowest frequency is always corresponding to mode (1,1) rather than 

mode (2,1) for plate without SMA.

0 . 2  fla m p g rf R w fam m lar l a m in a t e

The thermal deflections versus temperature for the clamped 15x12x0.048 in. 

rectangular (0/90/90/0), laminate have been shown in Figs. 4.9 and 4.10. The austenite 

start temperature is 100°F. It is clear that the clamped plate is more stiff than the simply 

supported. The critical buckling temperature is much higher and the thermal deflection is 

smaller for clamped case. The first two lowest natural frequencies versus temperature for 

the clamped plate without SMA and with 10% SMA fibers and 3% prestrain are shown in 

Figs. 4.21 and 4.22. For plate with SMA, it is seen that the lowest natural frequency 

never goes to zero before T„ since the tensile in-plane force induced by the SMA recovery 

stress can overcome the compressive in-plane force induced by the change of temperature 

at T,. Both natural frequencies increase when the temperature is greater than T, until the 

in-plane compressive force from the change of temperature becomes dominant. The 

overwhelming compressive in-plane force causes the decrease of the natural frequencies 

until the critical buckling temperature is reached. For the plate without SMA, the mode 

corresponding to the lowest frequency has changed from mode (1,1) to mode (2,1) 

between 150 and 175°F.

4.3 .3  Isosceles T rianyle  la m in a t e

Dynamic response for an isosceles right triangle 12x12x0.048 in. plate with 

stacking sequence of (0/45/-45/90), shown in Fig. 4.13 is studied. The full plate is 

modeled with 144 MIN3 dements. All three edges with simply supported and all three 

edges with damped boundary conditions are considered.
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Figures 4.23 and 4.24 show the first two natural frequencies versus temperature 

for the simply supported laminate without SMA and with 10% SMA fibers and 3% 

prestrain. It can be seen that there is no crosspoint of the two lowest frequencies during 

the complete temperature range. For the plate with SMA fibers, the lowest natural 

frequency does not go to zero before and at T,=100°F.

The natural frequencies for the clamped case are shown in Figs. 4.25 and 4.26. 

Because of the rather high critical buckling temperature for the plate with SMA, the 

lowest natural frequency never goes to zero during the complete temperature range 

studied. This implies that the plate is rather stiff with the SMA effect. Thus the dynamic 

response of the plate from external excitation would be greatly reduced within the 

temperature range.

4.4 Random Response

4.4.1 Effect of Number of Modes

In order to evaluate the convergence characteristics of the present modal analysis 

formulation and determine the required number of modes for accurate random response 

predictions, an eight-layer simply supported graphite/epoxy rectangular laminate with the 

stacking sequence of (0/90/90/0), is analyzed. The dimension of the laminate is 

15x12x0.048 in. The mode numbers N=l, N=2 and N=4 are used in study. Because the 

uniformly distributed pressure load p(x, y, t)=p(t) is applied to the plate, the anti­

symmetric modes are not included. The quarter plate is modeled with 5x4x2 mesh or 40 

MEN3 elements. The material properties, mass density and damping ratio used in the 

study are:
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Young’s moduli

Shear moduli

Ei=22.5xl06, E2=1.17xl06psi 

Gi2=G23=Gi3=0.66xl06 psi

Poisson’s ratio Vi2=0.22

mass density p=l.45x1c4 lb-sec2/in.4

damping ratio C=0.02

The RMS(Wmax/h) at lOOdB are shown in Table. 4.4. The first 10 frequencies and 

corresponding mode shapes are shown in Table 4.5. The result shows that the use of four 

modes obtains converged displacement and strain results. Therefore, four modes are used 

in the following analysis.

4.4.2 S im n lv  Sunnorted  R er ta n w ila r  I-am inate

The random response of a simply supported rectangular laminate with a 

graphite/epoxy matrix is investigated. The dimension of the laminate is 15x12x0.048 in., 

and the layup is symmetric (0/90/90/0)*. The SMA transformation temperature is 100°F. 

The full plate is modeled with 10x8x2 meshes. For the plates with SMA, the dynamic 

response is affected by the components of stiffness due to SMA ([AT]) and due to recovery 

stress of SMA ([£*]). The test data shown in Fig. 1.2 indicate that the Young’s modulus 

of SMA is lower than that of the composite matrix. This results in the plate becoming less 

stiff when SMA fibers are embedded. The increase in the dynamic response, observed in 

some cases, is due to the relatively lower modulus and higher mass density of the SMA. 

On the other hand, large in-plane tensile forces are induced by the recovery stress of SMA, 

and this effect will reduce the dynamic response of the plate. For the simply supported 

rectangular plate with SMA discussed here, the minimum thermal deflections occur at
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about 170°F (see Figs. 4.3 to 4.5). Thus the random response of plates at 170 °F may 

become more important for the potential use of the SMA. The root-mean-square (RMS) 

of the maximum deflection versus sound spectrum level (SSL) for the plate without SMA, 

with 3%, 4% and 5% prestrain and 10%, 20% and 30% volume fraction of SMA are 

shown in Figs. 4.27, 4.28 and 4.29. It is seen that the dynamic response Wmax/h of the 

plate with some of the lower SMA volume fractions and prestrain, such as the case with 

10% volume fraction and 3%, 4% and 5% prestrain of SMA, is actually greater than that 

of the plate without SMA . In these cases, the recovery forces induced by SMA are not 

sufficient to overcome the loss of stiffness due to the lower modulus and higher mass 

density of SMA fibers. However, the plate with 20% and 30% SMA fibers and 3%, 4% 

and 5% prestrain provide ample recovery forces to significantly reduce the dynamic 

response of the plate. It is shown that significant dynamic response attenuation can be 

achieved with SMA volume fraction of twenty percent or more.

The power spectral density (PSD) of the maximum deflections and strains at 170°F 

and lOOdB are shown in Figs. 4.30-4.35 for ten cases: no SMA, 3% prestrain with 10%, 

20% and 30% SMA, 4% prestrain with 10%, 20% and 30%, and 5% prestrain with 10%, 

20% and 30% SMA. Although the plate with SMA is less stiff than the plate without 

SMA at temperature less than T,, the modes of the SMA fiber-reinforced plate exhibit the 

amplitude reduction gradually and have shifted to high frequencies at temperature higher 

thanT,.

Figure 4.36 shows the total maximum deflection of plate with no SMA fibers and 

for three SMA prestrain values Sr=3, 4, and 5% for each nonzero SMA volume fraction 

(v,=10, 20 and 30%) at 170°F and SSL=100 dB. It clearly indicates that the six
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graphite/epoxy plate with SMA volume fraction of either 20%  or 30% and Et=3, 4, and 

5% are all acceptable designs. Compared to the plate with no SM A fibers, those plates all 

give smaller amount of maximum RM S random deflections as well as thermal deflections. 

4.4.3 Effect of Transformation Temperature T.

As indicated in Section 4.2.2.5, the alter of the transformation temperature results 

in the critical buckling temperature change and affects the thermal deflection behavior of 

the plate. It is thus expected that the behavior of dynamic response of the plate with SMA 

will be affected also. Figures 4.37, 4.38 and 4.39 show the RMS maximum deflections 

versus temperature at 300°F for the simply supported rectangular (0/90/90/0), SMA 

embedded plate with the prestrain value Et=3, 4, and 5% for the SMA volume fraction 

v,=10 and 20%. The dimension of the plate is the same as the one in previous section. 

The transformation temperature is 70°F rather than 100°F. It is seen that the plate without 

SMA fibers exhibits significantly reduction of dynamics response because of the additional 

stiffness due to the fact that the plate is thermally buckled. Adding 10% SMA with 3, 4 

and 5% prestrain to the plate increases the dynamic response since the recovery forces can 

not make compensation on the loss of stiffness due to the modulus deficiency of SMA 

However, addition of the 20% SMA provides ample recovery forces to reduce 

significantly the dynamic response, even though the plate is no longer thermally buckled.

The power spectral density (PSD) of the maximum deflections and strains at 

300°F and lOOdB are shown in Figs. 4.40-4.45 for seven cases: no SMA and prestrain 3,4 

and 5% for 10 and 20% SMA fiber. It is seen that the SMA finer-reinforced plates tend to 

reduce the amplitude of dynamic response gradually and shift the response to high 

frequencies.
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The total maximum deflection o f plate with no SMA fibers and for three SMA 

prestrain values Er=3,4, and 5% for each nonzero SMA volume fraction (v,=10 and 20%) 

at 300°F and SSL=100 dB is shown in Fig. 4.46. Although the large thermal buckling 

deflection of the plate without SMA results in the enhancing of the stiffness of the plate, 

the continuously increased thermal deflection, however, limits many aerospace 

applications. With 20% SMA are embedded in the composite plate, it not only completely 

eliminates the thermal deflection and also significantly reduces the dynamics response with 

5% SMA prestrain at this temperature. It is shown that the composite structures with 

twenty or more percent of SMA fibers can greatly reduce the random response due to 

acoustic excitations. Thus it can enhance the service life of high speed flight vehicles.

The applications of composite structure with embedded SMA are dependent on the 

volume fraction, prestrain, and temperature range of SMA. In most general cases, the 

change of volume fraction and prestrain of SMA can improve the behavior of SMA hybrid 

composite structures and thus alter the application range. The RMS of the maximum 

deflection versus temperature at 100 dB for the plate without SMA, with 3% prestrain and 

10% volume fraction, and with 5% prestrain and 20% volume fraction of SMA are shown 

in Figs. 4.47 and 4.48. The transformation temperature is 70°F and the dimension of the 

plate is 15x12x0.048 inch. It is seen that the RMS of the maximum deflection of the plate 

with 3% prestrain and 10% volume fraction of SMA is larger than that of the plate 

without SMA in most temperature ranges. This is due to the difference of the modulus 

between matrix and SMA material and the recovery stresses induced from SMA fibers are 

not enough to make compensation. The appearance of the peak of the RMS of the 

maximum deflection limits the application range only between ambient temperature and
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120°F. However, for the plate with 5% prestrain and 20% volume fraction of SMA, the 

RMS (Wmax/h) is smaller than that of the plate without SMA within the entire operating 

temperature range. There is no peak of RMS (Wmax/h) and thermal deflection existing 

within the operating temperature range. Thus this optimal configuration can be potently 

used for high-performance flight vehicles.
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Table 4.1 RMS (Wmax/h) and maximum Micro-strain for simply supported
isotropic plate

SSL N=1 N=2 N=4

(dB)
Wmax/h

Max.
Micro-
strain

Max. 
Wmax/h Micro­

strain
Wmax/h

Max.
Micro-strain

110 1.04 64.5 1.04 80.5 1.07 77.7 [65]

1.03 87.4 ------ ------ 1.03 112.0 present

120 1.89 213.2 1.89 274.5 1.96 259.2 [65]

1.90 256.5 ------ ------ 1.91 361.0 present

N=number of lowest modes

Table 4.2 Mesh convergence study for the simply supported (0/90/90/0), plate 
(at 170°F for thermal deflection and frequencies)

mesh 3x3 4x4 5x5 6x6

AT„ 12.431 12.367 12.332 12.311

WAT/h 1.283 1.671 1.796 1.839

©i 179.38 167.38 167.42 172.80

©2 277.70 272.60 273.36 273.54
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Table 4.3 Critical buckling temperatures ATCT for the simply support (0/90/90/0), plate

V* % er.%
100

T„ °F
70

0 0 12.36 12.36

3 10.36 179.1

10 4 10.36 214.2

5 10.36 269.8

3 8.78 390.2

20 4 8.78 466.4

5 8.78 591.4

3 7.52 ------

30 4 7.52 ------

5 7.52 ____

Table 4.4 Convergence of RMS (Wmax/h) and maximum micro-strain at lOOdB with 
number of modes for simply supported (0/90/90/0), plate

No. of Modes N=1 N=2 N=4

RMS(Wmax/h) 0.9648 0.9484 0.9484

Max. Micro-strain 87.69 84.82 84.82
RMS S n u x
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Table 4.5 Natural Frequencies (Hz) and mode shapes for simply supported (0/90/90/0),
plate

1st 2nd 3rd 4th 5th

47.988 273.22 355.32 467.82 616.61

(1,1) (2,1) (U ) (2,2) (3,1)

6th 7th 8th 9th 10th

765.15 799.67 906.23 1065.2 1144.9

(3,2) (2,3) 0 , 3 ) (3, 3) (1, 5)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



72

12 in.

15 in.

Fig 4.1 Mesh Size for Rectangular Plate
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CHAPTER V 

CONCLUSIONS

A feasibility study of the use of shape memory alloys on changing the behaviors of 

the thermal buckling, thermal postbuckling deflection, vibration and random vibration of 

composite structures subjected to a combined acoustic/thermal loading has been 

presented. The constitutive relations for a composite lamina with embedded SMA fibers 

have been developed. These relations include the factors of SMA material properties and 

temperature effects of both SMA fibers and matrix material. Based on von Karman large 

deflection theory and the first-order, shear-deformation theory, the finite element 

governing equations with the effects of nonlinear material properties of SMA are derived. 

The three-node Mindlin plate element with improved shear deformation has been used in 

the computational solutions.

In order to solve the system equation of motion, the total response is assumed to 

be the sum of static and dynamic components. Substituting the total displacements into 

the system equation of motion and regrouping the terms, the equation is of the form 

F({W}s)=G({W}t). The left hand side of the equation is time independent while the right 

hand side is dependent of time. Therefore, the only possibility for both F and G to exist is 

that both F and G equal to zero. Thus, the two equations are obtained.

A consistent two-step solution procedure has been developed for solving the static 

and dynamic problems of composite structures with embedded SMA fibers subjected to 

combined acoustic and thermal loads. With the consideration of nonlinear material 

properties of SMA and geometrically nonlinear deflection, an incremental technique and 

the Newton-Raphson iteration method have been employed to determine the static
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responses of the SMA embedded composite structures. For the solution of dynamic 

equation, a modal transformation is used to reduce the number of equations and uncouple 

the equation of motion.

Thermal buckling behavior of composite plates with and without embedded SMA 

fibers has been studied first. The critical buckling temperature of the plate with SMA 

fibers is slightly lower than that of the plate without SMA while the austenite start 

temperature of SMA is 100°F. This is because that the SMA fibers have relatively low 

modulus compared to the matrix material and the shape memory effects are not active 

when temperature is lower than Ts. However, by changing the Nickel composition in 

SMA, the austenite start temperature of SMA can be altered to 70°F. The change of the 

austenite start temperature results in the increase of the critical buckling temperature of 

composite structures with embedded SMA and creates the optimal design area for the 

composite structures which can potentially be used for high speed flight vehicles.

As one of the most significant contributions to the present research, the study of 

the thermal postbuckling deflection of SMA hybrid composite structures has revealed the 

possibility to reduce the thermal deflection of structures at elevated temperatures by 

changing the volume fraction, prestrain, austenite start temperature of SMA, as well as 

stacking sequence and boundary condition of structures. The results indicate that the 

thermal deflection can be completely eliminated for the plate with proper prestrain and 

volume fraction of SMA In addition, with the change of austenite start temperature from 

100°F to 70°F, the critical buckling temperature can be shifted well above the operating 

temperature (300°F) in most cases and thus the thermal deflection can be totally eliminated 

within the entire operating temperature range. This effect could be useful in practical
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applications by maintaining optimal aerodynamic configuration and eliminating snap- 

through motions.

Vibrations about the thermally buckled position of the SMA hybrid composite 

structures has been studied. The purpose of this study is to understand the vibration 

behavior of the composite structures with embedded SMA fibers and to obtain the natural 

frequencies and mode shapes which can be used in the solution procedure for random 

vibration analysis. The results reveal that the characteristic of SMA plays an important 

role in the dynamic response of structures. The mode shape corresponding to the lowest 

natural frequency can be changed from (1,1) to (2,1) for the plate without SMA, however, 

this never happened for the SMA fiber-reinforced composite structures.

The random response analysis of SMA hybrid composite structures is a significant 

contribution to the present research. An ideal SMA fiber-reinforced composite structure, 

which can be used for the application to high performance flight vehicles, is to have no 

thermal deflection at all and very small dynamic response subjected to the combined 

thermal and acoustic loads. The present investigation of random response provides a 

design methodology for the SMA hybrid composite structures to meet the application 

requirements. Although the dynamic response of plate with some of the lower SMA 

volume fractions and prestrains is actually greater than that of the plate without SMA 

fibers, significant dynamic response attenuation may be achieved with SMA volume 

fractions of thirty percent or more when the austenite start temperature of SMA is 100°F. 

The RMS maximum deflection increases for some SMA volume fractions because of two 

factors: the modulus of the SMA fibers is relatively low, even at high temperatures; and 

the recovery forces induced by small volume fraction of SMA fibers is not sufficient to
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overcome the loss of the buckling stiffiiess. The other effective method to eliminate the 

thermal deflection and reduce the random response of SMA hybrid composite structures is 

to alter the austenite start temperature. The results indicate that with the change of 

austenite start temperature from 100°F to 70°F, the thermal deflection can be completely 

eliminated and the random response can be greatly reduced within the entire operating 

temperature range considered, even with a small volume fraction of SMA. These benefits 

will: 1) maintain the originally designed optimal aerodynamic efficiency at high 

temperatures during cruise, and 2)result in lower interior noise and longer service life.

The applications of SMA fiber-reinforced composite structures create a lot of 

research area. Following the present research, the investigation on panel flutter using 

SMA hybrid composite structures and the study on superelastic characteristic of SMA 

material and its application are the open topics for future research.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



124

REFERENCES

1. Bueher, W. J. and Wang, F. E., “A Summary of Recent Research On The Nitinol 
Alloys and Their Potential Application In Ocean Engineering,” Ocean Engineering, 
Vol. 1, 1967, pp. 105-120.

2. Cross, W. B., Kariotis, A. H. and Stimler, F. J., “Nitinol Characterization Study,” 
NASA CR-1433, 1970.

3. Jackson, C. M., Wagner, H. J. and Wasilewski, R  J., “55-Nitinol - The Alloy with a 
Memory: Its Physical Metallurgy, Properties, and Applications,” NASA-SP-5110, p. 
91, 1972.

4. Schetky, F., “Shape Memory Alloys,” Scientific American, Vol. 241, 1979, p. 74.

5. Wayman, C. M. and Shimizu, K., “The Shape Memory (‘Marmem’) Effect in Alloys,” 
Metal Science Journal, Vol. 6,1972, p. 175.

6. Liang, C. and Rogers, C. A, “One-Dimensional Thermomechanical Constitutive 
Relations for Shape Memory Materials,” Journal o f Intelligent Material Systems and 
Structures, Vol. 1. No. 2, 1990, pp. 207-234.

7. Goldstein, D., “A Source Manual for Information on Nitinol and NiTi,” Naval Surface 
Weapons Center, Silver Spring, MD, 1978, Report NSWC/WOL TR 78-26.

8. Achenbach, M., “A Model for an Alloy with Shape Memory,” International Journal 
of Plasticity, Vol. 5, 1989, pp. 371-395.

9. Tanaka, K., “A Thermomechanical Sketch of Shape Memory Effect: One-dimensional 
Tensile Behavior,” ResearchMechanica, Vol. 18, 1986, pp. 251-263.

10. Liang, C. and Rogers, C. A., “The Multi-Dimensional Constitutive Relations of Shape 
Memory Alloys,” Proceedings of 32nd Structures, Structural Dynamics and Materials 
Conference, Baltimore, MD, April 8-10, 1991, AIAA-91-1165-CP, pp. 178-185.

11. Brinson, L. C., “Constitutive Behavior of Shape Memory Alloys: One Dimensional 
Thermomechanical Derivation with Non-Constant Material Functions and Redefined 
Martensite Internal Variable,” Journal o f Intelligent Material Systems and Structures, 
Vol. 4, 1993, pp. 229-242.

12. Hebda, D. A, Whitlock, M. E., Ditman, J. B. and White, S. R., “Manufacturing of 
Adaptive Graphite/Epoxy Structures with Embedded Nitinol Wires,” Journal o f 
Intelligent Material Systems and Structures, Vol. 6, March 1995, pp. 220-228.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



125

13. Mooi, H., “Active Control of Structural Paramenters of a Composite Strip Using 
Embedded Shape Memory Alloy Wires”, DLR Report IB 232-92 J02, 1992.

14. Maclean, B. J., Carpenter, B. F., Draper, J. L. and Misra, M. S., “A Shape Memory 
Actuated Compliant Control Surface,” Proceedings of Smart Structures and Intelligent 
Systems Conference, Feb. 1-4, 1993, Albuquerque, MN, SPEE Vol. 1917, pp. 809- 
818.

15. Baz, A. and Chen, T., “Performance of Nitinol Reinforced Drive Shaft,” Proceedings 
of Smart Structures and Intelligent Systems Conference, Feb. 1-4, 1993, Albuquerque, 
MN, SPIE Vol. 1917, pp. 791-808.

16. Chandra, R_, “Active Strain Energy Turning of Composite Beams Using Shape 
Memory Alloy Actuators,” Proceedings of Smart Structures and Intelligent Systems 
Conference, Feb. 1-4, 1993, Albuquerque, MN, SPEE Vol. 1917, pp. 267-283.

17. Chaudhry, Z. and Rogers, C. A., “Response of Composite Beams to an Internal 
Actuator Force,” Journal of Mechanical Desifpi, Vol. 114, No. 3, 1992, pp. 343-348.

18. Paine, J. S. N., Jones, W. M  and Rogers, C. A., “Nitinol Actuator-Host Composite 
Interfacial Adhesion in Adaptive Hybrid Composites,” Proceedings of 33rd Structures, 
Structural Dynamics and Materials Conference, Dallas, TX, April 12-16, 1992, AIAA- 
92-2405-CP, Part 2, pp. 556-565.

19. Paine, J. S. N. and Rogers, C. A., “Characterization of Interficial Shear Strength 
Between SMA Actuators and Host Composite Material in Adaptive Composite 
Material Systems,” Adaptive Structures and Material Systems, AD-Vol. 35, 1993, 
ASME Winter Annual Meeting, pp. 63-70.

20. White, S. R., Whitlock, M. E., Ditman, J. B. and Hebda, D. A., “Manufacturing of 
Adaptive Graphite/Epoxy Structures with Embedded Nitinol Wires,” Adaptive 
Structures and Material Systems, AD-Vol. 35, 1993, ASME Winter Annual Meeting, 
pp.71-79.

21. Ro, J. and Baz, A , “Nitinol-Reinforced Plates: Part n. Static and Buckling 
Characteristics,” Composites Engineering, Vol. 5, No. 1, 1995, pp. 77-90.

22. Baz, A  and Tempe, L., “Active Control of Buckling of Flexible Beams,” ASME DE- 
Vol. 16, Proceedings of 8th Biennial Conference on Failure Prevention and Reliability, 
Montreal, Canada, ASME, NY, 1989, pp. 211-218.

23. Baz, A., Ro, J., Mutua, M. and Gilheany, J., “Active Control of Buckling of 
N ITINOL-Reinforced Composite Beams,” Active Materials and Adaptive Structures 
Conference, Arlington, VA, 1991, pp. 167-176.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



126

24. Baz, A., Poh, S., Ro, J., Mutua, M and Gilheany, J., “Active Control of Nitinol- 
Reinforced Composite Beam,” Intelligent Structural Systems, Eds. Tzou, H. S. and 
Anderson, G. L., Kluver Academic Publishers, Dordrecht, Netherlands, 1992, pp. 169- 
212.

25. Baz, A. and Chen, T., “Active Control of the Lateral Buckling of Nitinol-Reinforced 
Composite Beams,” Active Materials and Structures, Eds. Anderson, G. L. and 
Lagoudas, D. C., Proceedings of the Symposium held as part of the 31st Annual 
Technical Meeting of the Society of Engineering Science, SPIE, Vol. 2427, 1994, pp. 
30-48.

26. Liang, C., Jia, J. and Rogers, C.A, “Behavior of Shape Memory Alloy Reinforced 
Composite Plates-Part II: Results,” Proceedings of 30th Structures, Structural 
Dynamics and Materials Conference, Mobile, Alabama, April 3-5, 1989, AIAA 89- 
1389-CP, pp. 1504-1513.

27. Paine, J. S. N. and Rogers, C. A , “Characterization of Interfacial Sheer Strength 
Between SMA Actuators and Host Composite Material in Adaptive Composite 
Material Systems,” Adaptive Structures and Material System, AD-Vol. 35, 1993 
ASME Winter Annual Meeting, pp. 63-70.

28. Rogers, C. A , Liang. C. and Jia, J., “Structural Modification of Simply-supported 
Laminated Plates Using Embedded Shape Memory Alloy Fibers,” Computers and 
Structures, Vol. 38, No. 5/6, 1991, pp. 569-580.

29. Paine, J. S. N., Rogers, C. A  and Smith, R  A , “Adaptive Composite Materials with 
Shape Memory Alloy Actuators for Cylinders and Pressure Vessels,” Journal of 
Intelligent Material Systems and Structures, Vol. 6, 1995, pp. 210-219.

30. Brand, W., Boiler, C., Huang, M. S. and Brinson, L. C., “Introducing the Constitutive 
Behavior of Shape Memory Alloys into Adaptive Engineering Structures,” Mechanics 
o f Phase Transformations and Shape Memory Alloys, Eds. Brinson, L. C. and Moran, 
B., ASME, New York, 1994, pp. 179-193.

31. Lagoudas, D. C. and Bo, Z., “The Cylindrical Bending of Composite Plates with 
Piezoelectric and SMA Layers,” Smart Materials and Structures, Vol. 3, 1994, pp. 
309-317.

32. Yoshida, H., “Creation of Environmentally Responsive Composites with Embedded 
Ti-Ni Alloy as Effectors,” Advances in Composite Materials, Vol. 5,1995, pp. 1-16.

33. Birman, V. and Simonyan, A , “Optimum Design of Sandwich Panels with 
Piezoelectric or Shape Memory Alloy Actuators,” Proceedings of the 1995 Design 
Engineering Technical Conferences, Vol. 3, Part C, Vibration Control Analysis and 
Identification, Eds. Wang, K. W. et al., ASME, New York, 1995, pp. 627-637.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



127

34. Birman, V., Saravanos, D. A. and Hopkins, D. A., “Micromechanics of Composites 
with Shape Memory Alloy Fibers in Uniform Thermal Fields,” NASA TM-106611, 
1995.

35. Rogers, C. A., Liang, C. and Jia, J., “Behavior of Shape Memory Alloy Reinforced 
Composite Plates. Part I: Model Formulation and Control Concepts,” Proceedings of 
the 30th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and 
Materials Conference, 1989, pp. 2011-2017, AIAA Paper AIAA-89-1389-CP.

36. Rogers, C. A., “Active Vibration and Structural Acoustic Control of Shape Memory 
Alloy Hybrid Composites: Experimental Results,” Journal o f Acoustical Society o f 
America, Vol. 88, 1990, pp. 2803-2811.

37. Rogers, C. A., Liang, C. and Fuller, C. R , “Modeling of Shape Memory Alloy Hybrid 
Composite for Structural Acoustic Control,” Journal o f Acoustical Society o f 
America, Vol. 89, No.l, 1991, pp. 210-220.

38. Anders, W. S., Rogers, C. A. and Fuller, C. R , “Control of Sound Radiation from 
Shape Memory Alloy Hybrid Composite Panels by Adaptive Alternate Resonance 
Tuning,” Proceedings of the 32nd AIAA/ASME/ASCE/AHS/ASC Structural 
Dynamics and Materials Conference, Part 1, 1991, pp. 159-168. AIAA Paper AIAA- 
91-1163-CP.

39. Anders, W. S., Rogers, C. A. and Fuller, C. R , “Vibration and Low Frequency 
Acoustic Analysis of Piecewise-Activated Adaptive Composite Panels,” Journal of 
Composite Materials, Vol. 26, No. 1, 1992, pp. 103-120.

40. Barker, D. K., “Active Dynamic Response Tuning of Adaptive Composites Using 
Embedded Nitinol Actuators,” M.S. Thesis, 1989, Department of Mechanical 
Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia.

41. Baz, A., Iman, K. and McCoy, J., “Active Vibration Control of Flexible Beams Using 
Shape Memory Actuators,” Journal o f Sound and Vibration, Vol. 140, No. 3, 1990, 
pp. 437-456.

42. Srinivasan, A. V., Cutts, D. G. and Schetky, L. M., “Thermal and Mechanical 
Considerations in Using Shape Memory Alloys to Control Vibrations in Flexible 
Structures,” Metallurgical Transactions, Vol. 22A, 1991, pp. 623-627.

43. Venkatesh, A. Hilbom, J. -E. and Gotthardt, R, “Active Vibration Control of Linkage 
Mechanisms Using Shape Memory Alloy Fiber-Reinforced Composites,” Proceedings 
of the First European Conference on Smart Structures and Materials, Eds. Culshaw, 
B., Gardiner, P. T. and McDonach, A., IP Publishing and EOS/SPIE, SPIE, Vol. 
1777, 1992, pp. 185-188.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



128

44. Shahin, A. R., MeckL, P. H. and Jones, J. D., “Vibration Control Using Shape Memory 
Alloy Wires,” Adaptive Structures and Composite Materials: Analysis and 
Application, AD-Vol. 45/MD-Vol.54, ASME, 1994, pp. 227-234.

45. Baz, A. and Ro, J., “Thermo-dynamic Characteristics of Nitinol-Reinforced Composite 
Beams,” Composite Engineering, Vol. 2, No. 5-7, 1992, pp. 527-542.

46. Baz, A. and Ro, J., “Optimal Vibration Control of Nitinol-Remforced Composites,” 
Composites Engineering, Vol. 4,1994, pp. 567-576.

47. Baz, A., Poh, S., Ro, J. and Gilheany, J., “Control of the Natural Frequencies of 
Nitinol-Reinforced Composite Beams,” Journal o f Sound and Vibration, Vol. 185, 
No. 1, 1995, pp. 171-185.

48. Ro, J. and Baz, A., “Nitinol-Reinforced Plates: Part HL Dynamic Characteristics,” 
Composites Engineering, Vol. 5, No.l, 1995, pp. 91-106.

49. Chandra, R., “Active Strain Energy Tuning Using Shape Memory Alloy Actuators,” 
Proceedings of the 1993 Smart Structures and Materials Conference, Smart Structures 
and Intelligent Systems, Eds. Hagood, N. W. and Knowles, G. J., SPEE Vol, 1917, 
1993, pp. 267-284.

50. Schetky, L. McD., Liang, C. and Rogers, C. A., “Hybrid Composite Materials Using 
Shape Memory Alloy Actuators to Provide Vibration and Acoustic Control,” 
Proceedings of the 1994 SPEE Smart Structures and Materials Symposium, Smart 
Structures and Intelligent Systems, Ed. Hagood, N. W., SPIE Vol. 2190, 1994, pp. 
422-433.

51. Epps, J. and Chandra, R., “Shape Memory Alloy Actuation for Active Tuning of 
Composite Beams,” Presented at the 1995 SPIE’s North American Conference on 
Smart Materials and Structures, February 26-March 3, 1995.

52. Segalman, D. J., Parker, G. G. and Tntnan, D. J., “Vibration Suppression by 
Modulation of Elastic Modulus using Shape Memory Alloys,” Intelligent Structures, 
Materials and Vibrations, ASME, New York, 1993, pp. 1-5.

53. Graesser, E. J., “Effect of Intrinsic Damping on Vibration Transmissibility of Nickel- 
Titanium Shape Memory Alloy Springs,” Metallurgical and Material Transactions, 
VoL 26A, 1995, pp. 2791-2796.

54. Birman, V., “Optimum Design of Hybrid Shape Memory Alloy Sandwich Panels for 
Maximum Natural Frequencies,” Proceedings of the 1996 Smart Structures and 
Materials Conference, Industrial and Commercial Applications of Smart Structures 
Technologies, Ed. Crowe, C. R_, SPIE VoL 2721, 1996, pp. 263-272.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



129

55. Clarkson, B. L., “Review of Sonic Fatigue Technology,” NASA CR-4587, NASA 
Langley Research Center, April, 1994.

56. Wu, W. -H. and Witmer, E. A , “Finite-Element Analysis of Large Elastic-Plastic 
Transient Deformations of Simple Structures,” AIAA Journal, Vol. 9, No. 9, 1971, pp. 
1719-1724.

57. Wu, W. -H. and Witmer, E. A., “The Dynamic Responses of Cylindrical Shells 
Including Geometric and Material Nonlinearities,” International Journal o f Solids and 
Structures, Vol. 10, 1974, pp. 243-260.

58. Wu, W. -H. and Witmer, E. A , “Nonlinear Transient Responses of Structures by the 
Spatial Finite-Element Method,” AIAA Journal, Vol. 11, No. 8, 1973, pp. 1110-1117.

59. Heifitz, J. H. and Costantino, C. J., “Dynamic Response of Nonlinear Media at Large 
Strains, Journal of the Engineering Mechanics Division,” Proceedings of the American 
Society of Civil Engineering, December, 1972, pp. 1511-1528.

60. Belytschko, T. and Hsieh, B. J., “Non-Linear Transient Finite Element Analysis with 
Convected Co-ordinates, ” International Journal fo r Numerical Methods m 
Engineering, Vol. 7, 1973, pp. 255-271.

61. Tillerson, J. R_, Stricklin, J. A  and Haisler, W. E., “Numerical Methods for the 
Solution of Nonlinear Problems in Structural Analysis,” Proceedings of the Winter 
Annual Meeting of the American Society of Mechanical Engineers, AMD-Vol. 6, 
1973, pp. 67-101.

62. Tessler, A  and Hughes, T. J. R_, “A Three-Node Mindlin Plate Element with 
Improved Transverse Shear,” Computer Methods in Applied Mechanics and 
Engineering, Vol. 50, 1985, pp. 71-101.

63. Xue, David., “Finite Element Frequency D omain Solution of Nonlinear Panel Flutter 
with Temperature Effects and Fatigue Life Analysis,” Ph.D. Dissertation, 1991, Old 
Dominion University, Norfolk, Virginia.

64. Chen, R , “Finite Element Nonlinear Random Response of Composite Panels of 
Arbitrary Shape to Acoustic and Thermal Loads,” Ph D. Dissertation, 1995, Old 
Dominion University, Norfolk, Virginia.

65. Chiang, C. K., “A Finite Element Large Deflection Multiple-Mode Random Response 
Analysis of Complex Panels with Initial Stress Subjected to Acoustic Loading,” PhD. 
Dissertation, 1988, Old Dominion University, Norfolk, Virginia.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



130

APPENDIX A

FORMULATIONS FOR STRAIN INTERPOLATION MATRICES
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APPENDIX B 

THE ELEMENT MATRICES

Linear stiffness matrix
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Linear stiffness matrix due to w<>(x, y)
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Linear stiffness matrix due to {N^}
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Stiffness matrix due to {Af*}
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Stiffness Matrices due to {Na}

[* A = J,[C - .f[^J[C *]< M  (B.21)

I*. W = lAl C + n t f . I C „ y U  (B.22)

[*. U  = / ,  I X  ]r [AT. I X  V*  (B-23)

[*.]„ = jAlC „ lTl K H X W  (B.24)

First-order nonlinear stiffiiess matrix

l » h ] * = i . i c + f l 6 f m c t i u  (B.25)
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l"\1.=L<LC„\TmI{A}[CmyA 

[ » l ,u  = \ AlCt lT[B tff\[C ^W  

[nl, ]. = jA[ C „ n B m iC „ W  + jAlC „  ]r[e]r[B][C, VA

t» i ,u  = L lc „ n e f lA V .c .y u  

= l i c . r i A m i c ^ y u

[ » i ,u  = l i c . n * m c „ v *

First-order nonlinear stiffness matrix due to {wa}

[«1„ ]„=l [C„ ]TifffiA]iq, ][c„)dA+1  [c* m  fM M C* va 

[»■.]*, = ljC „ f[0]rlA ]m iC „ V A +lAlC„]rm rlA]mC„}clA 

=jAic„ri0iriAimic„yA+iic„]rm riAmic„vA

[«i„ i , = jAic„  rie]riA][0j[c„ w +\ j c „  \Tm T{* \m c „  w

First-order nonlinear stiffness matrix due to {Nm}(= [A] {s°})

[ni».L  = \Alc « \T[Nmyc + y A

[ni.v.Lr = I j c j r i N . i c ^ y u .

= \AlC „ n > f.} lC „ W

[«!».], = !AIC„ Y W .tc„Y A
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(B.26)

(B.27)

(B.28)

(B.29)

(B.30)

(B-31)

(B-32)

(B.33)

(B-34)

(B-35)

(B-36)

(B.37)

(B.38)

(B.39)
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First-order nonlinear stiffiiess matrix due to (iV* }(=[.#]{*■})

K »J»  = !dic+n*rtic+*i*

[»1»W ={,[C# r[AT.IC„]<M 

["U U  = S , l c „ f [ N t ][C^yu  

[« !» ]. = { jc „ f lN > K C „ y u

Second-order nonlinear stifihess matrix

w \ = \ \ A[c*]Tm T[A\m.c«,w 

m t r =lLic*n<nriAmic„vA  

m *  = \\£ c„ n « ? m m c* vA  

m r = |  \A[c„n«\T[Amic„vA

Linear stifihess matrix due to shear

\.k,\ = P[a[CJ{A,][C^VA

t*,W = p \t \c j[A ,\\C „ ¥ A

t*,U = P\}C„f[A\\cf W

[*,], = PjAlC„nA,llC„VA

Mass Matrix

tH  = 1AIH.]T fiHH.VA
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(B.40)

(B-41)

(B.42)

(B.43)

(B.44)

(B.45)

(B.46)

(B.47)

(B.48)

(B.49)

CB-50)

(B51)

(B.52)



[”>L , = \ A{Hw]r pH L H ^m  

[m]„ pHLH.VA

M , }TpHH.r W

[”>], = f , ([« .]+ [W. ])Tm H .  \+[H,])dA 

Load vectors due to distributed force p(x, y, t)

{Pp('))b = j jH jp (x ,y , l ) d A

lP,(<))r p(x,y,l)dA

Load vectors due to { N a t }

(Par), = l i c j  {Ma }M

Load vectors due to recovery stress {cr*}

Ip X  = f j c j  {M-r }dA

( p x =L i c . r  m < u

Load vectors due to initial stress {a0} and {t0}

{p„)r =llCj{M„)dA  

{ p X  =LlCJr{NJdA 

{pX=P\[.Cj{R„)dA
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(B-53)

(B-54)

(B.55)

(B-56)

(B.57)

(B-58)

(B-59)

(B.60)

(B.61)

(B.62)

(B-63)

(B.64)

(B.65)
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M r  = P \^ Cr ^  (B.66)

Load vectors due to coupling between {NAT} and wD

{ P c r X ^ l j C + n e . f i N ^ c U  (B.67)

{ /W , = \j .C „ \T{e,]r {Na )dA (6.68)

Load vectors due to coupling between {cr*} and wQ

UO* = J ,[c„]rrc,]r [n ;)cu (b.69)

(p '„K = i / c ^ n z f  I K W  (B.7o)

Load vectors due to coupling between {oQ} and w»

0 » .} . = L i c + f t o . f w . w  (B.7i)

= f [C„]r[9„f (Ar„)<M (B.72)
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APPENDIX C

DERIVATION OF SYSTEM STATIC AND DYNAMIC EQUATIONS

The solution of the system equation of motion, Eq. (2.70), can be assumed to be 

the sum of a time-independent solution (W}s and a time-independent solution (W}t

m = m , + m .  (c.i>

Substituting Eq. (C. 1) into Eq. (2.70) leads to

+i[^ii+f( m , +m.)+y.N2i+xm,+m ,)  w
= {Pp(0) + {P*} -  {P^ -  {PJ -  {Pr} + {P«ro) -  iK )  -  {Poo)

where subscripts s and t, [ ], and [ ],, denote that the corresponding nonlinear stiffness 

matrix is evaluated by using {W}, and (W}t, respectively.

In Eq. (C.2), the nonlinear stiffness matrices [Nl]*^ and [N2]^, are evaluated in 

Appendix B, and they can be separated as [64]

[tfiLr = [AnL+[tfi], (c.3)

[JV2],., = [^2], + [N2], + [W2]„+[tf2], (C.4)

then. Eq. (C.2) can be reatranged as

+ i([^ i],{ ir} t +[ivi]f {if} ,)+ t([^2l  + IJV 2 1 JW ,

+ m  + [K J-[K s&r] + [K;]+[Ka] + [K M W ),

= (^ (0 }  + {P*} -  {Pr'} -  (P J  -  {Pt} + {P*To) -  -  {Poo)
(C.5)
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From the rearrangement of element level equation shown in Appendix B, the following 

relations are established and proved

(c.6>

(C.7)

[ N 2 \m ,= [ N 2 \ztm t (C.8)

= (C.9)

Substituting Eqs. (C.6), (C.7), (C.8) and (C.9) into Eq. (C.5) leads to

f ( w , ) = m )  (c.io)

where

F ( m , ) = (m + [A :j- [^ „ „ ]+ [ /C ]+ [^ J + [0 (< n ,

( « i )

-{/>„(+{/;•}+{/>„)+{p,} -  + t o +{p j

G (W ,)  = [A ^{#},+([X ]+[«„]-[icAair]+[Js:;]+[A:„]+tis:,])W ,

m ,  +xA N 2 \ ,m ,

-

In Eq. (C.10), function F({W},} is independent o f time while function G({W}t} is time 

dependent. Therefore, the only possible solution for F({W}S} and G({W}t} to exist is that

both F({W},} and G({W}t} equal to zero. Thus the following complete static and

dynamic equations are obtained.

(C.12)
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(Ijq + [* „ ]-r^ „ „ ]+ [0 + [A :j+ IKDf fn .  

(c .u )  

= (/> „!- (/>/} -  {/>„} -(/>,! + (/>„.! -  ( O  -  y>„>

and

[M] m ,  + ([*] + [* J  -  [ ^ « r l+ [< ] + [ * J  + [O O T *

+ [tflL0P>. +[*2],{lF}f
(C. 14)

-4[A n],{fn,

= w o >

where the subscript [ ], denotes that the corresponding stifihess matrix is evaluated with 

static deflection, [ ]* is determined by static deflection and dynamic deflection and [ ]t is 

evaluated with dynamic deflection. Neglecting the higher order terms of {W}t in Eq. 

(C.14) for small amplitude random vibrations, the simply dynamic equation can be 

obtained as

+([•£] + [*.] -  [* « ,]  + [K]  + [ * J  + W ,

+ [N\l{W}t + [ N 2 i m t (C l 5)

= W O }
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