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ABSTRACT

SETPOINT TRACKING PREDICTIVE CONTROL IN CHEMICAL
PROCESSES BASED ON SYSTEM IDENTIFICATION

Sinchai Chinvorarat
Old Dominion University, 1999
Director : Dr. Jen-Kuang Huang

A Kiraft recovery boiler in a pulp-paper mill provides a means for recovery of the
heat energy in spent liquor and recovery of inorganic chemicals while controlling emis-
sions. These processes are carried out in a combined chemical recovery unit and steam
boiler that is fired with concentrated black liquor and which produces molten smelt. Since
the recovery boiler is considered to be an essential part of the pulp-paper mill in terms of
energy resources, the performance of the recovery boiler has to be controlled to achieve
the highest efficiency under unexpected disturbances.

This dissertation presents a new approach for combining system identification
technique with predictive control strategy. System identification is the process of building
mathematical models of dynamical systems based on the available input and output data
from the system. Predictive control is a strategy where the current control action is based
upon a prediction of the system response at some number of time steps into the future. A
new algorithm uses an /-step-ahead predictor integrated with the least-square technique to
build the new control law. Based on the receding horizon predictive control approach, the
tracking predictive control law is achieved and performs successfully on the recovery
boiler of the pulp-paper mill. This predictive controller is designed from ARX coefficients
that are computed directly from input and output data. The character of this controller is
governed by two parameters. One parameter is the prediction horizon as in traditional pre-
dictive control and the other parameter is the order of the ARX model. A recursive version
of the developed algorithm can be evolved for real-time implementation. It includes adap-
tive tuning of these two design parameters for optimal performance. The new predictive
control is proven to be a significant improvement compared to a conventional PID con-

troller, especially when the system is subjected to noise and disturbances.
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CHAPTERI

INTRODUCTION

1.1 Background and Problem Statement
It has been projected that the world consumption of paper will triple by the year

2000!. About 90% of the raw material for paper manufacture primarily comes from tree
boles, the bark-free trunk. Bark that constitutes about 15% of a mature tree is considered

one of the most serious contaminants in wood chips used for the manufacture of most

pulp?. Black liquor is produced in the manufacture of the pulp by the Kraft pulping pro-
cess using coniferous wood which contains lignins, carbohydrates, and other organic mat-
ter from the processed wood along with the pulping chemical used in processing. The

amount of organic material dissolved in the spent pulping liquors has been estimated to be

45 million tons per year3 and thus represents an enormous source of fuel.

Since the energy crisis, the American Paper Institute has started conducting annual
surveys of the sources of energy used by the U.S. pulp and paper industry. The survey
indicated that spent pulping liquors provided 32%, fuel oils 22%, natural gas 21%, coal
12%, electricity 5%, bark 5% , and hogged wood 2% of the industry total BTU
requirements““ It is encouraging to note the growing use of wood wastes and processing
wastes as a source of fuel in the pulp and paper industry.

Industrial processes in general are quite different; they are highly multivariable
systems. Perturbations affect the plant structure more often than the measurement vari-
ables. Industrial processes have their own performance criteria and reliability require-
ments. The economic and psychological environments required for a successful
implementation are often not met in praétices. Many constraints prevent the implementa-
tion of on-line control schemes on production plant.

Kraft recovery technology is a mature, fairly well standardized, technology. The

last major innovation was the introduction of the Tomlinson recovery boiler in the 1930’s.

The journal mode adapted for this Dissertation is JGCD
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Since then, there has been a gradual evolution toward larger, more efficient systems, but
the basic technology has remained essentially the same. A Kraft recovery boilerin a pulp-
paper mill provides a means of recovery of the heat energy in spent liquor and recovery of
inorganic chemicals while controlling emissions. These processes are carried out in a
combined chemical recovery unit and steam boiler that is fired with concentrated black
liquor, and produces molten smelt. An acceptable operation of the Kraft recovery boiler
requires simultaneous satisfaction of a number of objectives: high steam efficiency, stable
operation, low emission and disturbance rejections due to the change of heating potential
of black liquor.

Black liquor is a complex mixture of organic and inorganic material. The organic
components of the black liquor are derived from the wood chips and will burn to produce
a considerable quantity of heat. The inorganic materials from the cooking liquor are
burmed, undergo chemical changes, and are discharged from the furnace hearth as smelt.

[deally there are three things that have control over black liquor as a fuel. They are
flow rate, percentage solids, and heating value. In practice the solids and flow rate of
black liquor are controlled. The third variable, the BTU value of the liquor changes
depending on the type and properties of the wood being pulped and is beyond the control
of the operator. Normally, the black liquor averages about 5,800 BTU’s per pound of
black liquor solids. This is an average figure and can change from about 5,000 to 6,500
BTU’s per pound. Because of the changes in the heating potential of the black liquor, that
comes from the property of wood from different seasons, the heat from the furnace can
change even if the flow rate and percentage solids remain constant. However, changing
liquor BTU values can be compensated by adjusting the quantity of air admitted to the
boiler. The Proportional-Integral-Derivative (PID) control is the common commercial
controller used today for Kraft recovery boilers in pulp-paper mills. However, the perfor-
mance of the controller primarily depends on the controller gains. These gains are deter-
mined experientially by operators, and need to be improved due to the complexity of the
processes. As new technology is developed, it is hoped that the resources of pulp-paper
mills will be utilized more efficiently

System identification is the process of building mathematical models of dynamical

systems based on the available input and output data from the systems>°. This technique
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is also important in many other disciplines, such as economics, communication, and sys-
tem dynamics. Mathematical models allow researchers to understand more about the prop-
erties of the system, so that they can explain, predict or control the behavior of the system.
For an unknown system, the system model must be identified before performing the con-
trol design. There are many system identification techniques regarding to different kinds
of need such as the nature of the system and the purpose of identification. The system
identification process normally begins by selecting a suitable model structure and then
choosing the model parameters to minimize a defined cost objective that indicates the fit-
ness of the madel to the input and output data.

The concept of predictive control originated in the late seventies and has evolved

to a mature level’. Predictive control belongs to the class of model-based controller design
concepts which have remarkable features. It can be used to control a wide variety of pro-
cesses, among which are non-minimum phase and unstable processes, without the

designer having to take special precautions. Predictive controller design was developed

specifically to address the non-minimum phase problems. There are "three" principle
design parameters: the control weight, the predictive horizon and the control horizon that
guarantees stability of the predictive control law. Since predictive controllers belong to the
class of model-based controller design methods, a model of the process must be available.
In general, two phases in designing a control system can be distinguished as modeling and
controller design. A model of a process normally can be constructed by the system identi-
fication technique. Therefore, combining the system identification technique and the con-
troller design might be the best way to reduce the complexity of designing control system.

1.2 Objective

This dissertation combines the system identification and the predictive control
law into one formulation and makes it suitable for the system engineer to implement the
algorithm for a real time tracking control problem.

First, the concept of system identification is shown for both open-loop and closed-
loop systems. By using the selecting model, one can realize mathematical model in a state
space form that represents the dynamic behavior of the unknown system.

Second, the concept of predictive control is introduced. It starts with process mod-
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els and prediction. Disturbances for both deterministic and stochastic are shown to incor-
porate in the model. Criterion function is formed in order to build the predictive control
law with transient and steady state arguments.

Finally, by using a multi-step-ahead output prediction, the new predictive control
law is derived from the identified matrices through a recursive Least-Square technique.
The identified matrices minimize the output error between the estimated and real outputs.
The algorithm computes the predictive control command directly from input/output time
histories without explicitly identifying the system parameters. This approach has "two"
design parameters: control horizon and the Auto Regressive with eXogeneous input
(ARX) model order that related to the order of the system. By appropriate adjusting these
two parameters, the predictive tracking controller can be achieved and implemented in
real time.

1.3 Dissertation QOutline

Chapter 2 shows the details of the pulp-paper mill process starting with a general
description of the mill, and a detailed description of the function of the recovery boiler
unit. Later, the recovery boiler is used as a model to investigate the performance of the
developed controller.

Chapter 3 introduces the existing open-loop and closed-loop system identification
techniques. The chapter starts by introducing several kinds of mathematical models used
in the identification processes. By analyzing a sufficient quantity of input and output data
through the system identification technique, a state space representation can be obtained
by using an eigen-value realization technique. When the system is unstable, the closed-
loop system identification that required to have a feedback control is the other technique
to make the overall system stable before identifying. In addition, the Least-Squares tech-
nique for both batch and recursive solutions is also presented in this chapter.

Chapter 4 presents the general concept of predictive control design. By solving the
Diophantine equation, an i-steps-ahead predictor with or without disturbances is obtained.
This long range prediction form is suitable for building a predictive control law for unsta-
ble an non-minimal system. The predictive control law that minimizes a criteria function

is also presented.
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Chapter S proposes the tracking predictive control technique that implements sys-
tem identification and predictive control into one formulation. First, an i-step-ahead pre-
diction output is derived by using the Auto Regressive with eXogeneous input (ARX)
model. By using the principle of a receding horizon, the new predictive control law can be
obtained by integrating the predictive output equation through the system identification
algorithm. The control law can be obtained by either off-line calculations or on-line oper-
ation, using the recursive Least-Squares technique.

Chapter 6 verifies the new control design algorithm by numerical simulation. Con-
ventional Proportional-Integral-Derivative (PID) controller results are shown first, fol-
lowed by the results of the new predictive tracking control. Comparison and evaluation of
these two controllers performances are presented with and without external disturbances.

Finally, chapter 7 provides conclusions and prospects for the extension of this

research.
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CHAPTER II

PULP-PAPER MILL

2.1 Introeduction

Paper is manufactured from wood’, a naturally renewable resource, by a large
industry with significant economic impact on the world economy. The manufacture of
pulp and paper products is particularly challenging, as it is large in scale, highly non-lin-
ear, highly stochastic, and dominated by time delay. Wood consists mainly of fibers and
lignin. The fibers give wood flexibility and strength, while the lignin acts as a cement or
blinder. In order to make paper, the lignin must be dissolved from the fibers. This process
employs white liquor (caustic soda and sodium sulfide) as the lignin dissolving agent
under high temperature and pressure. During pulping about one half of the dry weight of
wood is dissolved by the white liquor. The combination of spent white liquor and dis-
solved organic compound from the wood is called black liquor. Black liquor is removed
from the pulp fibers at the washing and screening process.

At the time the black liquor is extracted from the pulp, it contains about 15% solids
or fifteen pounds of solids and eighty-five pounds of water per one hundred pounds. This
weak black liquor is concentrated in the multiple effect evaporators to about 50% solids.
After concentration, the heavy black liquor is further concentrated in the cascade evapora-
tors at a recovery boiler to about 65% solids. About 50% of wood are dissolved in the
pulping process. The organic material in the wood and inorganic cooking chemicals used
to cook the wood add up to about 3,300 pounds per ton of pulp produced.

With the black liquor concentrated to the desired level, the liquor is burmed in the
recovery boiler to produce heat and chemical smelt. The heat is used to generate steam and
the smelt is added to water in the smelt dissolving tank to form green liquor. The green
liquor contains nearly all of chemicals required for cooking process. These chemicals are
not in the form to be used for cooking. The green liquor is converted to white liquor in the

caustic room and can be used again in the cooking process.
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2.2 Pulp-Paper Mill

The system blocks diagram is shown in Fig 2.1. Included in the pulp paper mill are
Chemical Receiving, Chlorine Dioxide Plant, Wood Yard, Digesters, Washing and
Screening, Bleach Plant, Evaporator Sets, Slakers and Causticizers, Lime Kilns, Recovery
Boilers, Power Boilers, Boiler Feed-water, Turbine Generator, and Bleached Pulp Stor-
age. The blocks and process arrows shown in heavy lines show the principle process flow

in the pulp-paper mill. The following are brief descriptions of each block.

Chemicals Chemical CLO,
Receiving Plant
Chi l Unbleched Unbleached
ps Pulp - Pulp -
Wood Digesters Washing Bleach
Yard Screening Plant
! White Weak Black
Liquor Liquor
: Lime
Lime Slackers & Evaporator .
~ _ | LKilns —1 Causticizers Sets =
£73 Lime £
22 Mud Heavy Black o
- {  Liquor 2
Recovery Superheat Electrical i—}
oil Rotlers Steam M bine Power =
Generators
Process
> Power Steam
Coal — | Boilers
Wells —————»] Boilers Paper Making — 1
Feed Water! Processes

Fig 2.1 Simplified Block Diagram of a Pulp-Paper Mill
- Chemical Receiving

The inputs are various chemicals in bulk form. The bulk chemicals are prepared
for use in suitable form and sent to the digesters, CLO2 plant, and to the bleach plant.
- Chlorine Dioxide Plant

The chemicals react to produce chlorine dioxide and some of the chlorine used in

the bleach plant.
- Wood Yard

The wood yard receives pine and hardwood pulpwood logs, unscreened pine and

hardwood chips, sawdust from sawmills, and whole tree hardwood chips. Pulpwood logs
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are debarked and reduced to chips. All chips and sawdust are screened to remove fines and
oversized pieces. Wood yard outputs to the pulp mill are screen pine and hardwood chips,
screened whole tree chips, and screened hardwood and pine sawdust. Outputs to the power
boiler wood fuel system are bark, and fines screened from the chips and sawdust.

- Digesters.

Screened chips and sawdust are combined with heated cooking chemicals in the
digesters. These produce unscreened unbleached wood pulp that is sent to the washing and
screening system.

- Washing and Screening

Unscreened, unbleached pulp is washed and screened to remove weak black
liquor, undigested knots, and fiber bundles. Weak black liquor is made up of resinous
wood residue and spent cooking liquors. Fiber bundles are fibers adhering to each other.
The accepted washed pulp is sent to the bleach plant, the weak black liquor goes to the
evaporator set, and the undigested knots and fiber bundles are recycled back to the digest-
ers.

- Bleach Plant

The plant combines chemicals from the chlorine dioxide and chemical receiving
plant, and unbleached pulp from the washing and screening system to produces bleached
pulp.

- Lime Kiln

Lime mud is heated by burning fuel oil in the kiln. This converts it into lime for
reuse in the slakers and causticizers.
- Slakers and Causticizers

The inputs consist of dissolved smelt (green liquor) from the recovery boiler, lime,
and process water. A chemical reaction produces recovered cooking liquor (white liquor)
for the digesters and lime mud that is sent to the lime kilns.

- Evaporator sets
Using 60 psi steam, the evaporators thicken the weak black liquor. The output is

heavy black liquor that is the fuel input to the recovery boilers.
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- Recovery Boilers

These recovery boilers receive heavy black liquor that is burned as fuel. Other
inputs are boiler feedwater and air. The outputs are 1500 and 600 psi steam to the main
steam headers and to the turbine generators, and dissolved smelt (molten chemical salts,
dissolved in water) to the slakers and causticizers.
- Power Boilers

The inputs to the power boilers are feedwater, air, wood, coal or oil fuel. The out-
put from the power boilers is 600 psi superheated steam to the main steam header and to
the turbine generator.
- Turbine Generators

These turbine generators receive 600 psi steam from power boilers and 600 psi and
1500 psi steam from the recovery boilers. Steam is converted into electricity for use
throughout the mill. Reduced pressure steam at 150 psi and 60 psi is extracted from the
generators for use in all process operations.
- Boiler Feedwater

Input to the boiler feedwater is water from an artesian well and from a river. After
screening, the water is used for selected process water. Water is demineralized in ion
exchange units, and has oxygen removed by deaerators and chemical treatment. After-
wards it is suitable for use as boiler feedwater.
2.3 Recovery Boiler Operation

The recovery boiler has three primary functions. The first is to bumn the organic
material from the black liquor and form an inorganic chemical smelt. The second function
is to utilize the heating potential of the organic matter in the black liquor to generate
steam. Third, when operated correctly, the recovery boiler allows black liquor to be used

in a way that is virtually harmless to the environment.
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Air

™

Black liquor
—_—

Figure 2.2 Furnace Unit in the Recovery Boiler

The recovery boilers are initially fired using fuel oil and are brought up to a fur-
nace temperature of about 3,000 degree Fahrenheit. When the black liquor is injected and
starts burning, the fuel oil is cut off. In the boiler, the high temperature from the steam
evaporates the remaining water from the black liquor. By proper control of air, the carbon
in the black liquor is burned to release heat. Oxygen in air provided by a fan and the high
temperature causes the dried organic material in the black liquor to burn and sustain com-
bustion. This burning mass forms a bed on the furnace hearth. The heat of combustion is
used to convert feedwater into steam and to superheat steam.

The second major function of the recovery boiler is to generate steam. As men-
tioned previously, for each ton of pulp about 3,300 pounds of black liquor solids is pro-
duced. Of these 3,300 pounds, about 1,600-1,800 pounds are organic compounds derived
from the wood and 1,500-1,700 pounds are chemicals that come from the white liquor.
Due to the woody or organic content of the black liquor, the liquor has a heating potential
of about 5,800 BTU per pound of black liquor solids. The chemical reaction of black
liquor is shown as follow:

Chemical used in Recovery Boilers
Black Liquor + Oxygen ===> Smelt + Heat

Sodium Lignates

It takes about 1,000 BTU’s to make one pound of 600 psig steam. Thus with per-
fect utilization of all the heat from each pound of black liquor solids, it would be possible

to produce about six pounds of steam. However, in practice, heat is lost in a number of
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places. It requires a considerable quantity of heat to evaporate the remaining water from
the black liquor. Good recovery operation can achieve over 3 pounds of steam per pound
of the black liquor solids.

2.4 Recovery Boilers Control

A recovery boiler can be controlled to obtain optimum performance of both steam
generation and chemical recovery. Inits simplest form a recovery boiler can be thought of
as a device that takes black liquor and air and converts them into steam and green liquor.

2.4.1 Black Liquor

Black liquor is a complex mixture of organic and inorganic material. The organic
components of the black liquor are derived from the wood chips and will be burned to pro-
duce a considerable quantity of heat. The inorganic materials from the cooking liquor are
burned, undergo chemical changes, and are discharged from the furnace hearth as smelt.

Ideally there are three things that have control over black liquor as a fuel. They are
flow rate, percentage solids, and heating value. In practice, the solids and flow rate of
black liquor are controlled. The third variable, BTU value of the liquor, changes depend-
ing on the type of wood being pulped and is beyond the control of the operator. Normally
the black liquor averages about 5,800 BTU’s per pound of black liquor solids. This is an
average figure and can change from about 5,000 to 6,500 BTU’s per pound. Because the
changes of heating potential of the black liquor, the heat from the fumnace can change
even if the flow rate and percentage solids remain constant. However, changing liquor
BTU values can be compensated by adjusting the quantity of air admitted to the boiler.
2.4.2 Air

About five pounds of air are required for each pound of black liquor solids burned.
The control of air is critical for optimum performance of the recovery boiler. At each fir-
ing rate a certain quantity of air is required to burn the black liquor. The air requirement
has been determined by experience and is set within determined limits. During normal
operations at a given firing rate, few adjustments are made to the total air flow. However,
adjustments are necessary if the feed rate of black liquor solids changes or if the BTU
value of the liquor changes. Too little air will cause incompletely burned furnace gases to

escape and the bed to build up in size. By not completely burning all the fuel, the maxi-
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mum heating potential of the liquor is not utilized and steam production per pound of
black liquor solids is decreased. Too much air, on the other hand, causes an increased load
of relatively cold air to enter the furnace and thus cools off the hot furnace gases which
also can cause a decrease in the production of steam per pound of fuel.
2.5 Conclusion

Due to the complexity of paper making process, this chapter presents a general
view of a pulp-paper mill and more specifically in the recovery boiler that is used as a

model in Chapter 6. For more details of the recovery boiler operation, see reference 9.
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CHAPTER III

SYSTEM IDENTIFICATION ALGORITHM

3.1 Introduction

There are normally two ways to obtain a model for a dynamics system. The first is
an analytical approach. It normally starts from deriving governing equations based on
physical laws, and then simplifies and/or solves the equations and transforms them into a
desired form. One example is the finite element method. The second is an experimental
approach. It processes the measured input and output data obtained from experiments or
operations to find a model directly, such as some testing techniques. In general, the mod-
els obtained through analytical ways need further confirmation and refinement using
experimental results before they are used for control design.

System identification is the technique that deals with building mathematical mod-

els for a dynamic system based on their input and output data'®. Besides control, this tech-
nique is also important in many other disciplines, such as economics, communication, and
system dynamics. Mathematical models allow researchers to understand more about the
properties of the system, so that they can explain, predict or control the behavior of the
system.

The system identification was first coined by Lotfi Zadeh in 1962. He defined sys-
tem identification as:

[dentification is the determination, on the basis on input and output, of a system
within a specified class of systems, to which the system under test is equivalent.

This definition is highly systems oriented, and does not reflect a strong statistical
flavor of system identification techniques. Nevertheless, the term caught on and soon
become the standard terminology in a control community. In statistics, econometrics, geo-
physics, signal processing, etc., where models of dynamic systems are also built based on
observed input output data. The choice of an identification method depends on the nature

of the system and the purpose of identification. Most existing system identification meth-
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ods apply for a stable system without requiring feedback terms for identification purposes.
For identifying marginally stable or unstable systems, however, feedback control is
required to ensure overall system stability. In many cases, a system, although stable, may
be operated in closed loop and it is impossible to remove the existing feedback controller
for security or production reasons. In other cases, such as economic and biological sys-
tems, the feedback effect may be inherent. Consequently, identification has to performed
on a system operating in closed-loop.

There are basically two classes of system identification methods, the nonparamet-
ric system identification methods and the parametric system identification methods. The
nonparametric methods were developed from the classical control theory. The frequency
analysis technique plays a major role for this development. This methodology made it pos-
sible to determine the transfer function accurately, in a format that could be used for the
control design. The parametric methods, however, are developed from modern control
theory. Problems are introduced with these parametric models such as the identification
processes have to solve parameter estimations and other related techniques. This develop-
ment introduced a renewed interest in the field of parameter estimation techniques.

H-12 Ope way

There are generally three ways to apply the identification methods
that can always be applied is to treat the bounded plant input/output data exactly as if they
were obtained from an open-loop experiment. This is called direct identification. Another
is to treat the closed-loop system as a whole, and its dynamics can first be identified by
some common methods. Then the open-loop plant dynamics may be determined from the
identification closed-loop system dynamics using the knowledge of the feedback control-
ler. This approach is called indirect identification. The third approach is called jointly
input-output identification where the feedback controller may be considered as part of
what is to be identified and then the input and output are considered as a joint process and
the output of a system driven by noise only.

3.2 Type of Model Structure

A model of a system is a description of its properties, suitable for a certain pur-
pose. The model need not have a true and accurate description of the system, nor need the

users have to believe so, in order to serve its purpose. System identification deals with the
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problem of building the mathematical models of dynamical systems relating to the input
and output data. A crucial point in the process of identifying a system is the selection of a
candidate model. The choice of the model structure will greatly influence the identifica-
tion process and its results. The criterion of model equality is normally based on how well
the model could perform when attempting to fit the measured data. A prior knowledge
regarding the system would be very helpful in choosing model structure, although some
information may be learned from analyzing measured data, if they are not a prior given.

The following, four different types of model structures will be briefly discussed,
although, only one will be use later in this work, but it is worthwhile to introduce the dif-
ferences and characteristics of the other models.
3.2.1 AR Model

In general, the AR model is a linear discrete time filter, which is excited by ran-
dom impulse. AR means Auto-Regressive. The output is an autoregressive by itself. The
model can be described as follows

P
Ve = D ayg_ite; (.1)

i=1

where y, are output at time &, y, _, are the autoregressive part, a; are the AR model

parameter and e, is a random, white noise process.

3.2.2 ARX Model
The ARX means the Auto-Regressive with eXogenous input. This model is an

extension of the AR model by additional the exogenous input which is commonly used in

developing recursive system identification technique. The model can be described as fol-

lows

P p
Ve = 2 aye_it D by _;teg G2)
i=1 i=1

where y;. are output at time &, y, _; are the autoregressive part, u, _,are the exogenous

part, a; and b, are the AR model parameter and e, is a random, whitenoise process.
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3.2.3 MA Model

The MA model represents the Moving-Average term. The model can be described
as follows

i
Ve = D ag_;te (3.3)

i=1
where a; are the moving average parameters and e, _; are white , gaussian noise term.

3.2.4 ARMAX Model
The ARMAX model includes the same extension as the AR model to an ARX

model . The ARMAX means the AutoRegressive Moving Average with eXogeneous input

model, the model can be described as

P P P
Ye = Z aye_;t Z biup_;+ Z Cier_;te (3.4)

i=1 i=1 i=1
where a;, b; and c¢; are ARMAX parameters. The model contains the moving average

terms of noise dynamic which are difference from ARX model.
3.3 Least-Square Method

The Least-Squares method is a basic technique for parameter estimation. The
method is particularly simple if the model has the property of being linear in the parame-

ters. Karl Friedrich Gauss formulated the principle of Least-Squares at the end of the eigh-

teenth century and used it to determine the orbits of planets and asteroids'?. Guass stated
that , according to this principle, the unknown parameters of a mathematical model should
be chosen in such a way that
The sum of the squares of the differences between the actually observed and the
computed values, multiplied by numbers that measure the degree of precision, is a mini-
mum.
In great many different fields including the system identification applications, the
Least-Squares method reached a significant achievement, and was modified according to

different requirements.
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3.3.1 Batch Least-Square Solution

The Batch Least-Square estimation is the technique to determine the parameters in

such a way that the outputs computed from the model agree as closely as possible with the

measured variables y(7) in the sense of Least-Square.

For a mathematical model that can be written in the form
. . . : T,.
Y(@) = (N8 +93(N8, + ... +¢,(N0, = ¢ ()0 (3-5)
where y is the observed variable, 8, 9,, ..., 8, are parameters of the model to be deter-

mined, and @,, @, ..., ¢, are known functions that may depend on other known variable.

The Batch Least-Square solution can be obtained by minimizing the Least-Square

lost function

0, =

9

> () -7 ()8)’ 3.6)
i=1

which results in

-~

6 = (@@ o'y G.7)
3.3.2 Recursive Least-Square Estimation

In many cases it may be necessary to estimate a model on-line while the process is
in operation. The model will be updated when the new observations are available. Hence
for computing efficiency, it is desirable to arrange the algorithms in such a way that the
results obtained previously can be used for on-line updating. This way of computing the

estimates is called recursive.

Assume that the matrix ©(¢) has gull rank, that is (DT(1)<D(t) is nonsingular, for
all t1>1¢,. Given 8 (¢y) and W(ty) = (CI)T(tO)CD(tO))_l , the Least-Squares estimate 0 (¢)
then satisfies the recursive equations

e+ 1)
[1+o(+1)W(D)e(+1)]
Wie+1)=WI-oo(@+1)Z(\+1)] (3.9

Z(t+1) = Wi+ Do+ 1) = (3.8)
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O(c+ 1) = B(0)+ Z(t+ DIy(k+ 1) =§k+1)] (3.10)
where y(k + 1) and y(k+ 1) are the observation and predicted values, respectively. Here
no matrix inversion is needed and no approximation has been made in the derivation of the
Recursive Least-Square. Therefore, the Recursive Least-Squares estimate and the off-

line estimate are theoretically identical. This is the advantage of the Least-Squares
method. The updating of W(z+ 1) is not always numerically robust. Rounding errors
may accumulate and make the computed W(¢ + 1) indefinite, even though it is theoreti-
cally always positive. When (¢ + 1) becomes indefinite, the parameter estimates tend to
diverge. A way to overcome this difficulty is to use a square root algorithm. Define

N(r+1) through
We+1) = Ne+ DN+’ (.11)

and update N(z+ 1) instead of W(¢+ 1). The initial values #(0) and é(O) can be
obtained by the off-line Least-Squares method.
3.4 Open-Loop System Identification Algorithm

When the open-loop system needs to be identified, one normally excites a system
directly by a random signal without a controller, and identifies the system from input and
output data. Chen et al.!*"1> used the finite difference model named AutoRegressive with
eXogeneous input (ARX) to identify a state space model from an open-loop system. This
model, however, is derived through Kalman filter theories. The method requires a large
number of the ARX model order which consumes a lot of computational time. Juang et
al.'® also developed a technique of implementing a state observer so that the ARX model
order can be reduced.
3.4.1 Algorithm for Open-Loop System Identification

Given a linear, stochastic, finite dimensional, discrete-time , time invariance sys-
tem . The system can be expressed by

X+ = Ax + Bu +x, (3.12)

Vi = Cxptyg (.13)
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where x; € R"*! is the state vector, u, € R**! is the input vector, y, € R™*! is the output
vector, [4, B, C] are the state-space system matrices. The sequence of the process noise

K, and the measurement noise v, are assumed to be Gaussian , white, zero-mean, and

stationary with covariance Q and R respectively.
By introducing a typical Kalman filter, equation (3.12) and (3.13) can be rewritten
in the form
X, = A%+ Bu + AKe, (3.14)
j}k = ka'*'sk (315)
where €, is the residual output and €, = y, —J,, %, and J, are the estimated state vector
and output vector respectively, K is the steady state Kalman filter gain. At steady-state,
the error covariance, ¥ , reaches a constant value which satisfies the steady state algebraic
Riccati equation
x = AxAT - Ay CT[R+CxCT] ' Cx AT+ O (3.16)
The steady-state Kalman filter gain matrix is

K = AxCT[R+CxCT]™" . (.17)

. ) . ) 172, .
The existence of K is guaranteed if the system is detectable and (4,0 7) is sta-

bilizable.
The system in equation (3.14) can be expressed in the form
Yoo = (A-AKC)xp+Bu+ AKy, (3.18)
Ve = Ck+eg, (3.19)

The z-transform of the open- loop state space equation (3.18) and (3.19) are

x(z) = (z=4) ' [4Ky(2) + Bu(2)] (3.20)
y(z) = Cx(z) +e(2) (3.21)
By inserting (3.21) in (3.20) , one gets

¥(z) = C(z—A) ' [AKy(z) + Bu(z)] +&(2) (3.22)
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> o]
Taking the inverse z-transform of equation (3.22) with (z —Z)_l = Z AT

i=1
The new relation between the input and output with zero initial condition can be described

as
e r—1 ° f—1
W= CA  AKy,_;+ > CA'~ Buy_;+g, (3.23)
i=1 i=1

where A = A — AKC , however, one can use the Kalman filter gain K to make A be

asymptotically stable (Z[- b 0) for a sufficiently large number of p, y, approaches y,..

Thus equation (3.23) becomes

P P .
i = ZCA’ [AKyk_i%- ZCA' lBuk_,-*i-s,c (3.24)

i=1 i=1
by comparing with the typical form of ARX model described by equation (3.2), one can
get
a,=CA' 'AKandb, = CA' " 'B i=12,p (3.25)

The model described by equation (3.24) is the ARX model, which directly repre-

sents the relationship between the input and output of the open-loop system. The coeffi-

cient a; and b; can be estimated through the Least-Squares methods from random
excitation input «, and the corresponding output y,. For a number of data points ¥, the
Batch Least-Square solution is
0., =ro, f@ o, 1) 3.26
okid okid (PotiaPotia ) (3.26)
where
Y = D}()yl“'yp"'y.'\’—l] s eok,-d = [blal...bpap]

and
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0 0 0 wuy ... Uy _p-]

0 00 Yo --- yl\r—-p—-[_

The open-loop system Markov parameters Yg(k) = CA*"'B and Kalman filter

Markov parameters Y (k) = CA* "' 4K can be obtained from the coefficients a; and b;

as

k
Yo(k) = b+ S a;¥s(h—1) (327)

i=1

k
and Ye(k) = ap+ 3 a;Yi(k—1i) (3.28)

i=1
However, since the system Markov parameters are uniquely determined for each
system, one can realize system matrices (4, B, C) directly from the open-loop system
Markov parameters and the Kalman filter gain K from the Kalman filter Markov parame-
ters which will be shown next section.
3.4.2 Realization of Open-Loop Plant and Kalman Filter Gain

In mathematical terms, realization can be thought of as a factorization of a param-

eter sequence of the open-loop system Markov parameters  Ys(k) = CA*"'B to obtain
a set of (C, 4, B) that preserves the prescribed relationship between the parameters in the
sequence. The eigen system realization algorithm (ERA) can be applied to the combined
system Markov parameters sequence to compute a realization of the open-loop plant

matrices and Kalman filter gain. This can be done by first forming the Hankel matrix of

(k) as
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[ Pek)  Yg(k+1) ... Yy(k+s)

Yo(k+1) Yq(k+2) ... Yslk+s+1)

H(k-1) = (3.29)

Yo(k+r) Yo(k+r+1) ... Ys(k+r+s)J
Using the singular value decomposition , the Hankel matrix /(0) is factorized as
H(0) = UV’ (3.30)

A realization for # —th order discrete state space model can be shown to be

1

A=z U HO)Y,E,? (331)
1
B=32v"x. (3.32)
1
c=xus’ (3.33)

where X, is the upper left hand nxn partition of £ containing the n largest singular val-
ues which are in the monotonically non-increasing order along the diagonal. U, and V),

are the matrices formed by the first # columns of singular vectors associated with the »

singular values from U and V respectively. X,“-T = [/,9,:-.0,;], and
X,,OT =[1,,0,,---0,,] while ni are the number of inputs, and no are the number of
outputs.

The Kalman filter gain can also retrieved from the open-loop Kalman filter
Markov parameters Y (k. and 4, C matrices through the Least-Square as follows
V(D)
K =0y o[ YD) (3.34)

i (&)
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where O =

3.4.3 Computational Steps for Open-Loop System Identification

1. Collect all input # and output y data from the experiment.

2. Form an information matrix and the output vector. Use the Least-Square tech-

nique to estimate the ARX model parameters a;, b, and the observer Markov parameters

by choosing the appropriate ARX model order p from equation 3.26.

3. Obtain the open-loop system Markov parameters Y(k) and the Kalman filter

Markov parameters Y (k) from equation 3.27 and 3.28 respectively.

4. Realize the system matrices from the open-loop system Markov parameters by
using eigensystem realization method from equation 3.31, 3.32, and 3.33 , and the Kal-
man filter gain from the Kalman filter Markov parameters and matrices 4, C from equa-
tion 3.34.

3.5 Closed-Loop System Identification Algorithm

The closed-loop system and Kalman filter Markov parameters are first calculated
from the estimated coefficient matrices of the ARX model. The open-loop system and
Kalman filter Markov parameters are then derived from the closed-loop system, Kalman
filter Markov parameters, and known controller Markov parameters. The open-loop state-
space model is realized by using singular-value decomposition of a Hankel matrix formed
by the open-loop system Markov parameters. Finally, an open-loop Kalman filter gain is
calculated from the realized state-space model and open-loop Kalman filter Markov
parameters through the Least-Square method.

3.5.1 Algorithm for Closed-Loop System Identification

Given a linear, stochastic, finite dimensional, discrete-time ,and time invariance
system, the system can be expressed by

Xpoy = Axp+Bup+x, (3.35)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



24

Vi = Cxp+vo, (3.36)
where x; € R**! is the state vector, 1, € R**! is the input vector, y, € R™*! is the output

vector,and [A,‘B, C] are the state-space system matrices. The sequence of the process

noise Kk, and the measurement noise v, are assumed to be Gaussian , white, zero-mean,

and stationary with covariance Q and R respectively.

One can derive a steady-state filter innovation model
%p.) = AR +Bu,+AKe, (3.37)
Y = Cx, +g, (3.38)
where ¥, is the priori estimated state, K is the steady-state Kalman filter gain, and g, is
the residual after filtering (€, = y, —CX; ). The existence of X is guaranteed if the sys-
tem is detectable and (4, QI /2) is stabilizable.

On the other hand, any kind of dynamic output feedback controller can be modeled

as

Pr1 = Aappt By (3:39)

u, = Cypp+Dyyp+r, (3.40)

where 44, B, C; and D, are the system matrices of the dynamic output feedback control-
ler, p,. is the controller state, and r, is the reference input to the closed-loop system.

From equation (3.37) to (3.40), the augment closed-loop system dynamics
becomes

Neey = AT Borp+A K g, (3.41)

Yp=Cnpte (3.42)

where

) +
no= |5 4= [rrBDCBC) o B
BC 4,
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AK+BD
AK, = 4, C, = (3.43)
[ 5, J [C o]

K, can be considered as the Kalman filter gain for the closed-loop system and the exist-

ence of the steady-state K_ is guaranteed when the closed-loop system matrix 4_ is nons-
ingular. Substitute equation (3.42) into (3.41) yields

Meey = ANt Bore + 4Ky, (3.44)
where 4 = 4_~4 K.C. is guaranteed to be asymptotically stable because the steady-

state Kalman filter gain K_ exists. The z transform of equation (3.42) and (3.44) yields

N@) = (z—4) " [4.K.p(z) + B.r(z)] (3.45)
¥z) = C.n(z) +&(2) (3.46)

Substituting equation (3.45) into (3.46) , one has
— -1 .
(i) = C(z-4) [AKy(z)+B.r(z)] +&() (3.47)

The inverse z transform of equation (3.47) with

*x

(Z—Z)_l = > Ai-7

i=1
with zero initial condition yields

Ye= CA'4.K y,_;+ > CA'B.r._;+e; (3.48)
i=1 i=1

Since 4 is asymptotically stable, 4°~ 0 if i > p for a sufficient large number p.

Thus equation (3.48) becomes

P p
V= D kit 2 it e (3.49)
i=1 i=1
where
c,;=CA4K, , d =CA"'B, (3.50)

The model described by equation (3.49) is the ARX model , which directly repre-
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sents the relationship between the input and output of the closed-loop system. The coeffi-

cient matrices ¢; and d; which are the closed-loop ARX model parameters can be
estimated through Least-Square methods from random excitation input », and the corre-

sponding output y,.. For a number of data point N, the Batch Least-Square solution is

T -1
Octia = YPriia (PofiuPeria ) (3.51)
where

Y = Djoyl"'yp"'y.l\r—ll ) eClid = [dlcl"'dpcp]

O rg ..orp_y - ry_s

Q Yo -oeVpo1 oo Yynoa

Djig =

.........

0 00 rg ory_py

-O 0 0 yO . y;\’—p—L

The = transform of the open-loop state-space model (3.37) can be used to derived
u(z) and y(z) as
#(z) = (z-A)"[Bu(z) + AKe(z)] (3.52)
Substituting equation (3.52) to the z transform of equation (3.38) produces

y(z) = C(z—A) ' [Bu(z) + AKe(z)] + £(2)

- -k - -k N g1
> Ys(h)z"u(z) + D Yr(k)z " e(2) (3.53)
k=1 k=0

again where Y(k) = CA*'B is the open-loop system Markov parameters,

k

Ye(k) = C4 ~'4K is Kalman filter Markov parameters, and Y;(0) = [ is an identity

matrix. Similarly, substituting the dynamic output feedback controller equation (3.39) into

(3.40), and the closed-loop state-space model equation (3.41) to (3.42) produces

u(@z) = 3 YpB)z"y(@) +r(z) (3.54)
k=0
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¥@) = X Y@z u@) + ¥ Yeclh)z"e(2)

(3.55)
k=1 k=0

where Yp(k) = C4 dk—le is the controller Markov parameter,

Yoo(k) = CcAck_lBC is the closed-loop system Markov parameters, and
Yic(k) = CL.ACI"_ ‘4 K, 1s the closed-loop Kalman filter Markov parameters. Note that

¥Yp(0) = D, and Yi(~(0) = 1.

The z transform of the ARX model equation (3.49) yields

4 P .
[[— Z ciz_l]y(z) = Z dz"'r(z) +e(z) (3.56)

i=1 =1

Applying long division to equation (3.55)
y(2) = {dyz"" +(dy+eyd))z + [dy +e(dy + oy d)) +ead 127 + . 31 (2)

- -2 -3
+{[+cz l~!-(clcI +cy)z T+ [ei(cic, toy) Foae Feslz T+ e(2)

After comparing with equation (3.54), the closed-loop system and Kalman filter

Markov parameters can be recursively calculated from the estimated coefficient matrices

of the ARX model:
k
Ysc(k) = dp+ 3 c;¥sc(k-1) (3.57)
i=1
k
Yie(k) = Z ciYKc(k‘i) (3.58)

i=1

Note that Y5-(0) = 0, ¥Y~(0) = 7,and ¢; = d; = 0, when i>p.

The open-loop system Markov parameters Y¢(k), and the Kalman filter Markov

parameters Y-(k) can be obtained by substituting equation (3.54) into (3.55), yields

y(2) = [ Ys(k)z“']( > YD(k)z“'y(z)] + 3 V(0 r@) + 3 Ve e ()
k=1 k=0

c= 1 k=0
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= Z 8(k)z " y(2) + Z Ys(B)z " r(z) + Z Ye()="e(2) (3.59)

k=1 k=1 k=

k
where &, = Z Yo(i)Yp(k—1i).

i=1

Rearranging equation (3.59) in the form

(I— T J () = Z Yo(k)z"*r(z) + Z Y (k)2 *e(z) (3.60)

k=1 k=1
By applying long division to equation (3.60) , and comparing it with equation

(3.55) . The closed-loop system Markov parameters can be described recursively in the

open-loop system and the controller Markov parameter Y,(k) = C 4 dk- '

Ysc() = Ys(D+ Z 5:VscU—k) = Ys() + Z Z Ys(DYp(k-D)Y (G- k) (361)

k=1 k=1i=1
The closed-loop Kalman filter Markov parameters can be recursively expressed in
terms of the open-loop system and Kalman filter Markov parameters, and controller

Markov parameters

J
Yec() = Y+ D 8, e —k)

k=1

J k
= (YK(/)+ >y YS(i)YD(k—i)YKC(/'—-k)) (3.62)

k=1li=1
Finally, rearranging equation (3.61) and (3.62), yields

ik
Ys() = Ysc) = 3 3 Vo) Y pk— )Y G~ k) (3.63)

k=1i=1

ik
Yel) = YeeW) = 3 3 Y5 Y plk= )Y p(oG —F) (3.64)

k=1li=1
The open-loop state-space model can be realized by using singular-value decom-
position for a Hankel matrix formed by the open-loop system Markov parameters. In addi-

tion, the open-loop Kalman filter gain can be formed from the open-loop Kalman filter
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Markov parameters and state-space matrices 4, C as described in section 3.4.2.

3.5.2 Computational Steps for Closed-Loop System Identification

1.Collect the reference input r and the corresponding output y data from the

experiment.

2. Form an information matrix and the output vector using the Least-Square tech-

nique to estimate the ARX model parameters ¢, d; by choosing the appropriate ARX

model order p from equation 3.51.

3.Compute the closed-loop system Y-~(k) and Kalman filter Markov parameters
Yic(k) from the estimated coefficient matrices of the ARX model from equation 3.57

and 3.58.

4.Compute the open-loop system Y (k) and Kalman filter Markov parameters
Y (k) from the closed-loop system Y¢-~(k) , Kalman filter Markov parameters Yy (4),

and controller Markov parameters Y (k) calculated from the known controller dynamics

from equation 3.62, 3.63 and 3.64.

5.Realize the open-loop state-space system matrices from the open-loop system
Markov parameters by using the Singular-Value Decomposition method from equation
3.31,3.32 and 3.33.

6.Estimate the open-loop Kalman filter gain from the open-loop Kalman filter
Markov parameters and realized system matrices 4, C from equation 3.34.

3.6 Coordinate Transformation

For any dynamic system, the realized state-space model is not unique even though
its system Markov parameter is unique. The state-space model needs to be compared with
the analytical model in the same coordinate. A unique transformation matrix is derived to
transform any realized state-space model in a form usually used for a structural dynamic
system; therefore, any identified system parameter can be compared with the correspond-
ing analytical parameter. This kind of transformation will exist only when one-half of the
states are measured directly. If this condition is not satisfied, other transformation matri-

ces may exist, but they usually are not unique.
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Consider a structural dynamic system
My +Dv+8v = Qu (3.65)
where v is displacement, u control force,  control influence matrix and A;[, D and S are

mass , damping and stiffness matrices, respectively. The state-space model can be

described as
x = Amox+ B”IOU

y=C,ox (3.66)

[
where x = H , Ao = .O_h et Bmo = ~_0[ ,and C,, is the out-
d -M S-M D M Q

put matrix. If half of the states can be measured directly, then C,,, = [[ 0] . Convert the

realized discrete-time system [A B C:' to a continuous-time system [Ac B. C] IfA4 is

diagonalized by matrix ¥, then

glay = A
_ wln(A) g1
4, = vy

5

B, =(4-1)"'4.B

where T is a sampling time. It is also assumed that the matrix {
c

¢ } is full rank.
A

Let the transformation matrix Y be

-1
X =[r )= [Ci] (3.67)

then the following transformation are

i} cY, CY,
Yy = C[YIY.,]= ‘ 21 = L0
A, A cax, cax, o
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c

i} CA.Y, CA.Y,
CA.Y, CACY, Ty

s

v o] = [
Note that CY = C, . Finally, the identified continuous-time model [:Ac B, C]

can be transformed in the triple form [Y_l AY y! B, CY] . Rewrite the transformation

result in the state-space form, so both the identified and analytical models are in the same

coordinate.
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CHAPTER IV

PREDICTIVE CONTROL

4.1 Introduction
The concept of predictive control was introduced simultaneously by Richalet and
Cutler and Ramaker in the late seventies!’”. Predictive control belongs to the class of

model-based controller design concepts. That process model is explicitly used to design

the controller. Predictive control is not the only model-based controller design method.
Others are pole-placement control and linear quadratic (LQ) control. In Figure 4.1, «
denotes the controller output, y denotes the process output and w denotes the desired out-
put.

Design
Parameters

Model
\d

Controfler
Design

Controfler
Parameters

W u y
—  Controller Process

il

Figure 4.1 Model-Based Control

v

-«

If the process is linear and there are no constraints and the desired process output is
simple, then all of the above -mentioned model-based controllers can yield approximately
the same results. This can be explained by the fact that these controller design methods
yield linear controllers which after some manipulation are of the same structure and have a
sufficient number of degrees of freedom. The controller parameters are, however, deter-

mined using a different design methodology, or philosophy. From a designer’s point of
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view the methods differ in the design parameters that are used to obtain the desired behav-
ior of the control system.

Section 4.2 starts with the process models and prediction that the Diophentine
equation is used to derived an /-step-ahead predictor. In section 4.3, disturbance models
are presented. Two types of disturbances are “deterministic” and “stochastic” distur-
bances. Section 4.4 explains an approach to process modeling and prediction. The /-step-
ahead predictor can be written in matrix form which has prediction horizon as a parameter.
In section 4.5, criterion functions in terms of controller output weighting and structuring
the controller output are explained. Section 4.6 explains the predictive control law deriva-

tion and the computational steps are also explained in section 4.7.
4.2 Process Models and Prediction

In order to predict the process output over the prediction horizon, an 7 -step-ahead
predictor is required'®. An /-step-ahead prediction of the process output must be a func-
tion of all data up to ¢+ = k£ (defined as the vector ), the future controller output
sequence « and a model of the process P.Suchan i -step-ahead predictor can thus be
described by

ylk+i) = flu, v, P) @.1)

where £ is the function. Clearly, 7-step-ahead predictors depend on the model of the pro-

cess. A general process model is the transfer-function model

qB,(q7")
A,(q™h)

where d is the time delay of the process in samples (d 2 0) and the polynomials 4 » and

yk) = u(k-1) 4.2)

B, are given by
Ap(q—l) =1+ alq—l + ... +a"'4q"’.4

B,(g™)) = bo+bygl ... +b, g7

where 1, and ng are the degrees of the polynomials A, and B, respectively.

The transfer-function models have the following advantages. First, a minimal
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number of parameters are required to describe a linear process. Second, stable and unsta-
ble processes can be described by using transfer-function models. The main disadvantages
are an assumption about the order of the process must be made, and the prediction of the

output of a process described by a transfer-function model is very complicated.

The process output at 1 = 4+ based on model (4.2) can be obtained by substi-
tuting k + i for k in equation (4.2)

qaB,(q7")

yNe=D w(k+i—1) (4.3)

yk+i) =

Using the Certainly Equivalence principle , and replacing the true d, 4 » and Bp by

- ~ -~

their estimates d, A, and B, yields

—dp (ol
yl+i) = g——.ﬁ’—’-(q—)u(k-l»i-l) (4.4)
Ap(qh)

where the symbol ~ denotes estimation. Equation (4.4) can be rewritten as

y(k+i) = q-‘}é[, (g Duk+i-1) —q(;Ip -yk+i-1) (4.5)

1

Note that g(4p = 1) = a; +a,q~' +... +a, g7 """ since 4 is assumed to be

monic. Now , y(k+ i) for i > 1 can be computed recursively using equation (4.5). It also

notes that the /-step-ahead predictor (4.5) runs independently of the process. One way to

improve the prediction is to compute the predictions using equation (4.4) and (4.5) with

y(k) replaced by the measured process output y (k). Rewrite equation (4.4) as

Apq P+ D) = ¢ 9B, (g uk+i-1) (4.6)
Introducing the following identity
1 _ —i Fi | = -1
—=Eqit s EA,=1-¢'F, 4.7)
Ap Ap

where E; has a degree less than or equal to /— 1 and F; is of degree n—~ 1. Equation

(4.7) is so called a Diophantine equation whose solution can be computed manually using
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long division or a recursive algorithm by a computer. Note that if 7, >0, E; contains the

-~

first / elements of the impulse response of 174 .

Multiplying equation (4.6) by £; and using (4.7) yields

ylk+i) = q“}E,.B p(ﬂq“)u(k-i- i—-1)+Fy(k) (4.8)

Using equation (4.5) with y(k) replaced by y(k) to correct the model for differ-

ences between the model and the process yields
h+i) = qAEB y(qYulk+i— 1)+ Fy(k) (4.9)

Multiply equation (4.7) by B p

~ -~

N F.B
EB,=22_gili (4.10)
A4y A4,

Substituting the factor 5, in equation (4.9) by the right-hand side of (4.10)

yields the following predictor-corrector model

pk+i) = q—d,B”u(kH— 1) + F,[y(k) - y(k)] (4.11)
A

p

4.3 Disturbance Models

In order to take disturbances into account when predicting the output of the pro-
cess, the disturbances must also be modeled. For this purpose, the model equation (4.2) is
extended with a disturbance term &(k) that represents the totality of all disturbances and
is assumed to be located at the output of the process
79B,(q7")

A,(q7")

The disturbance £(k) may in general be a sum of deterministic and stochastic dis-

y(b) = u(k—1) +E(k) (4.12)

turbances. Prediction of the process output at ¢ = k + i is realized by

-d -
q9B,(q7")

N u(k+i—1)+Ek+ 1) (4.13)

yk+i) =
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4.3.1 Deterministic disturbances
Deterministic disturbances mostly can be characterized by
b(g™)E®K) = 0 (4.14)
where ¢ E‘(q“) is a polynomial. Note that only the class of the disturbances characterized
need to be known and not its exact waveform. The /-step-ahead prediction characterized
by equation (4.14) is given by
d:(g"EK+1) = 0 (4.15)
Because the /-step-ahead prediction for the process output must be a function of u
and of all data up to time ¢ = £, the following Diophantine equation is used in order to

write £(k+ 1) as afunction of data up to time 7 = &

F. ~
s By =1, @19

1

I

Multiply equation (4.15) by E; yields using equation (4.16)
E(k+1i) = FE(k) (4.17)

Note that £(4) in equation (4.17) can be computed from

-d
E) = vk - L 2eati- 1) (4.18)

4p

The /-step-ahead predictor for the process (4.12) and the disturbances described

by equation (4.14), become (using equation (4.16) and (4.18) and after applying the cer-

tainty equivalence principle):

~

pe+iy = CLD v 1y+ Fpmy 501 419)
Ap,(qgh)

4.3.2 Stochastic disturbances

A stochastic disturbance appearing on the output of the process is assumed to be

C
E(k) = D—pe(k) (4.20)
4
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where e(k) is a discrete white noise sequence with zero mean and variance c=>. C , and
D, are monic polynomials with degree n. and nj, respectively. The prediction of the dis-

turbance at 1 = £+ is given by

E(hk+ i) = Z%e(/cw) (4.21)
P

Separation of future and past terms is realized by using Diophantine equation

gg = E'.-*- q—iﬁ (4.22)
P DP

where £; and F; are polynomials with degrees

ng = i-1 if np>0,

ng = min(i—1,n-) if np =0 and ng = max(ne—i,np—1)

F.
Equation (4.22) becomes E(k+i) = Ee(k+i)+ ZT'e(k) (4.23)
p
Recall equation (4.12) with (k) given by (4.21)
qB,(g7") C
yk) = —F—=—u(k-1)+=Le(k) (4.24)

Multiplying (4.23) by F,;/ Cp and rearranging the result yields

qB,

14

Foy = Ll k-1 4.25
D;e()"c—p[y()' u(le-D)] (4.25)

Equation (4.25) shows that the second term in (4.23) can be computed from data

available at 1 = k and is thus known. The /-step-ahead predictor for the process output

(4.12) now becomes, using (4.17), (4.23) and (4.25)

qB,

4,

kriy = TBeuces i1y + Hif
Ay = Tbuther 1= 1)+ 200 -

w(k~1 )} + Ee(k+1) (4.26)

This predictor, however, contains a term that is unknown (£,e(k +{)). The best /-

step-ahead predictor can be obtained by taking the conditional expectation € of y(k +7)

given N (all data up to ¢+ = k) and the future controller output sequence u
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Plk+i) = Ey(k+ i)|u, N]

qB, i F; q9B
= w(k+i-1) +——[y(k)— 2yl — 1)] (4.27)
Ap CP AP

The prediction error €(k + /) for the /th predictor is given by
ek+i) = y(k+i)—p(k+i) = Ee(k+i) (4.28)
Since this prediction error consists of future noise only, and because e(k) is
assumed to be white noise with zero mean, the variance of the prediction error is minimal.

For this reason equation (4.27) will be called the minimum-variance (MV) 7 -step-ahead

predictor. Applying the certainty equivalence principle finally yields

Pk +i) = q_dABPu(k +i-1)+ i[y(k) - (8] (4.29)
4, Cp

5t = L 00— 1y (4.30)

Remarks
1. The polynomials A; , ép and the estimated time delay d can either be esti-

mated by a suitable identification method or can be based on the true transfer function of

the continuous process.

-~ -~

2. The polynomials C ) and D, in the disturbance model are often used as design

parameters which provides an easy and efficient way to tune the regulator behavior and

the robustness of the control system.

3.)If T = (3,, = bp, equation (4.22) shows that, forall /, £, = 1 and F; = 0.

As a result (4.29) is no longer corrected for modeling errors and disturbances. Note that

-~ -~

the choice 7 = C, = D, corresponds to an assumption that the process output is dis-

turbed by white noise only.
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In order to split up the i -step-ahead predictor in parts that are known attime 1 = &

and future signals, another Diophantine equation is introduced

~

£ =G+ q—f+JZi (4.31)
AP AP

-~

where, G; and H; are polynomials. The degree of G; is less than orequal to /i —d — 1 and

the degree of H; equals max(ng—i+d, n, ~1). Also note that the coefficients of G; are

equal to the first / —d coefficients of the impulse response of the model. This implies that

8i+1,; = &;; making it unnecessary to distinguish separate coefficients for G;. There-

fore, G; can be simplified into
GgY =g+t qg'+...+g_ 1! (4.32)

Using equation (4.3 1) the / -step-ahead predictor (4.29) becomes (with 7 > d+1 ):

F

Ph+i) = Gulk+i-d — 1)+iu(k- 1) + T"[y(k) — (K] (4.33)

Ap

-~

Because the degree of G, is less than or equal to /—d —1, the term

-~

Gu(k+i-d -1) involves future controller output only. The other terms in (4.33) do not
depend on future controller outputs and hence are fully determined at ¢ = %.
4.4 Approach to Process Modeling and Prediction

It was shown in the previous section that the transfer-function model can be used

to model a wide variety of processes. This is due to the fact that the degree of 4 p and B,

in equation (4.2) can be chosen arbitrarily. Also, the stochastic disturbance model (4.20)
can be used to describe all stationary random processes with rational spectral density. It

can also be used to derived /-step-ahead predictors for deterministic disturbances charac-
terized by ¢ é(q'I JE(k) = 0. The stochastic disturbance model (4.20) is quite general and

hence suited for predictive controller design. Another argument for using (4.20) to
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describe the disturbance is that if C, and D, can be chosen by the designer of the control

system, one will obtain a powerful tool for tuning the robustness and regulator behavior of

the close-loop system. The above-mentioned considerations have resulted in the subse-

quent use of the following process model for deriving the / -step-ahead predictors

~dB C
? Pulk-1)+ Bﬁe(k) (4.34)
P P

y(k) =

where the degrees of the polynomials are arbitrary and the disturbance model polynomials
C, and D, canbe chosen by the designer. The MV /-step-ahead predictor based on this

model after applying the certainty equivalence principle is given by

-~

Jk+i) = Gu(k+i-d — 1)+iu(k— 1) +%Ly(k) -y(K)]
AP

(4.35)

where y(k) is given by (4.30) and T by definition equal to C b - G,, H; are obtained by

solving (4.31) and F’; is obtained by solving (4.22) with C » and Dp replaced by 7 and

{

-~

DIJ respectively. Table 4.1 shows how the parameters of the general process model (4.34)

must be selected to obtain the model that is used in some well-known predictive control-

lers.

Controller Model 4, B, C, D,

DMC FSR 1 Arbitrarily 1 A

PCA FIR 1 Arbitrarily 1 A

MAC FIR 1 Arbitrarily 1 A
GPC ARIMAX Arbitrarily Arbitrarily Arbitrarily Ap A
EPSAC ARIMAX Arbitrarily | Arbitrarily Arbitrarily 4,4
EHAC ARIX Arbitrarily | Arbitrarily 1 A,A

Table 4.1 Process models used by some well-known predictive controllers
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Note that DMC is Dynamic Matrix Control, PCA is Predictive Control Algorithm,

MAC is Model Algorithmic Control, GPC is Generalized Predictive Control'*2!, EPSAC
is Extended Prediction Self-Adaptive Control, EHAC is Extended Horizon Adaptive Con-
trol, FIR is Finite Impulse Response model, ARIMAX is Auto-Regressive Integrated
Moving-Average eXogenous model, and ARIX is Auto-Regressive Integrated eXogenous
model.

Matrix Notation

For convenience, the /-step-ahead predictors (4.35) for / = d + 1, ..., hp can be

written in matrix notation

[y] = [Gu] + [H]1[u] + [F[c] (4.36)

where
D] = Dle+d+1), ..., pk+hp)]"
[u] = [w(h)s ..., uChk+hp—d = 1)]"
[u] = [u(k-1), u(k-2),...]1"
[c] = [c(k), c(k—1),...]T

with  u(k) = 4K
AP

c(k) = y(k) _}A’(k)
T

and the dimensions of [y], [#], [u] and [c] are given by
V] = hp—d x 1

[u] = hp—d x 1

[ZAI] = max(ng)+1x1
[c] = max(nF‘_) +1x1

The matrices [G], [A] and [F] are built up of the elements of the polynomials
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G, H,, F; respectively

[G] =

I
S

(4]

i
ol

[F]

Note : 4p is called prediction horizon.

4.5 Criterion Functions

Criterion functions for use in predictive controllers are discussed in this section.
Predictive controllers are obtained by the minimization of a criterion function that yields
the predictive control law. Design objectives such as overshoot, rise time, settling time
and damping ratio can be easily understood and specified. However, it is difficult to mini-
mize criterion functions based on such objectives, because the relationship between the
controller parameters and these criteria is in general highly nonlinear. Analytical solutions
are seldom available. This is why mathematically convenient criterion functions are often
used.

4.5.1 Controller Output Weighting

The foremost method of resolving problems with minimum-variance control

results is to use the following criterion function
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hp
J= > Dlk+i~wk+ D] +pu(k+i-1)> (4.37)

i=1

where p is a weighting factor (p > 0). Here two conflicting objectives arise, the minimi-
zation of the tracking error and the minimization of the controller output. The weighting
factor p is introduced and employed as a trade-off between these objectives. Increasing
the weighting factor makes the controller output variance more important in the criterion
function. Minimization of the criterion function results in a less active controller output.
However, tracking of the trajectory by the process output becomes less important resulting
in a slower process output.

The use of the weighting factor p as proposed in equation (4.37) has two major
disadvantages.

1. Although the effect of p on the close-loop system is clear, it is hard to choose

p such that the system behaves as desired because p depends on the process and must
usually be determined by simulation in combination with the often-used trial-and-error
method.

2. The use of p yields a steady-state error which is a function of p for type O pro-
cesses. This is caused by the fact that for type O process, u(k) is constant and nonzero in

the steady state if the set point and disturbances are constant. Consequently, p affects the
criterion function in the steady state and hence the steady-state controller output that is
obtained by minimization of the criterion function.
4.5.2 Structuring the Controller Output

The second way to overcome the problem with minimum-variance control is by
using prior information about the structure of the controller output required to drive the
process output to the reference trajectory . An appropriate structure for the future control-
ler outputs can be built from the relationship between the controller output and the output

of the process.
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4.5.2.1 Structuring the Controller Output using Steady State Arguments
Corollary 4.1 If a stable and linear closed-loop system is driven by a disturbance

E(k) and a reference trajectory w (k) which in the steady state satisfy $z(q")E(k) = 0

and $,,(q71)w(k) = O respectively, then y(k) and u(k) in the steady state satisﬁrz2

(g Ny(k) = 0
(g u(k) = 0 (4.38)
where $(q~") is the minimal polynomial of ¢§(q—l) and ¢ (qg7') 1 ¢ = min{s, ¢} .

Further, if B, and ¢ are coprime and ¢, Is a factor of A p and &, then the controller out-

puts satisfies in the steady state d~)u(k) = 0 where ¢ = ¢, d;
4

Using this a priori information with respect to the controller output in the steady
state, one can minimize the criterion function

hp
J =3 lh+ i) —wlk+ )] (4.39)

i=1
Under the constraint that the future controller outputs satisfy (4.38), and taking

into account the following equality constraint:
d(g Nu(k+i—1) =0 l<i<h, (4.40)

The dimension of the optimization problem is reduced from %, to 1. Once u(k) is

known, u(k+i-1) for i>1 can be computed using equation (4.40). Minimization of
equation (4.39), taking into account equation (4.40), ensure that equation (4.38) is satis-
fied.

Thus, the controller outputs are structured using a priori information about the
controller output in the steady state. This yields the desired steady state behavior. The
transient behavior; however, is also a major importance. One can use the relationship
between the controller output and the process output to determine the transient behavior.

4.5.2.2 Structuring the Controller Output using Transient Arguments
The control of the output of the process (4.34) in the absence of disturbances can

be driven to a constant reference trajectory in ng + 1 samples and n, + 1 different con-
P P
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troller outputs are required. In addition, for i>n, +1,u(k+i—1) is constant. Hence,
“*p

the output of a controller satisfies

Au(k+i-1) =0 i>n  +1
i

and the process output satisfies:

yk+i)y = wlk+i) izng +1
P

A predictive controller with the same behavior can be realized by minimization

of
hp
J= Z e+ D) -wlk+D]* (4.41)
i=ng+1
under the constraint
Au(bk+i-1) =0 ny +1<i<hp and hp — (4.42)

Comparing equation (4.41) and (4.42) with equation (4.39) and (4.40), the tracking

error for / = 1,...,ng is not included in equation (4.41) and Au(k+i-1) is not
P
assumed to be zero for / = 2, ...,n,; +1.In order to have both possibilities, two extra
e

parameters must be introduced into equation (4.41) and (4.42), yields

hp
J= > t+iy-wk+n]? (4.43)
i=h,
and
Au(k+i~1) =0 h.<i<hp (4.44)

where h_ is the minimum-cost horizon and

m

h. is the control horizon
Hence , one can state that if Ap—wo, A, = ng +1 and h, = ny +1, the pre-
dictive controller minimizing equation (4.43) and taking equation (4.44) into account, will
cause the process output to settle to a constant reference trajectory in ng +1 samples
4

using » 4+ 1 distinct controller outputs.

In order to generalize the predictive controller results, the following criterion func-
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tion can be considered

hp
J=Y Dk+i)-wlk+N)]? (4.45)

i=h,
which is minimized under the following constraint
dulk+i-1) =0 h.<i<hp (4.46)
The following theorem can be stated.
Theorem 4.1: if hp 2 ny +an +d+n¢ , h, = ng, +d+1,h = ny +ny, dis-
turbances are absent and the input/output behavior of the process is correctly estimated,
then minimization of (4.43), taking (4.46) into account, yields a controller that drives the

process output y(k) in 113p+d+1 samples to a reference trajectory specified by

o w(k+i) =0 fori>1%2
Remarks
The condition mentioned in the theorem 4.1 ensures that the sampled process out-

put tracks the reference trajectory in ng +d+ 1 samples. However, the process output
P

between the samples cannot in general track a non-constant reference trajectory because
the controller output between the samples is in general constant.

Hence, hp,h, , and h_ can be selected such that the process output settles in

m?

ng, +d+ 1 samples at a reference trajectory described by ¢w(k+7) = 0. A disadvan-

tage is that the response time can only be influenced by changing the sample time. How-
ever, the servo behavior can be tuned by introducing two auxiliary signals, y'(k) and
u'(k) defined by

PP( 1) 1

k) = k 4.47

y(k) Pp(q_l)y( ) (4.47)
= £

u(k) Plg )u (k) (4.48)

where Pp(cr‘) is a monic polynomial in g~!. If criterion function (4.45) is minimized,

and taking equation (4.46) into account with y(k) and u(k) replaced by y'(k) and u'(k)
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respectively. Because the use of P » is important for tuning the servo behavior of the con-

trol system, PP will be incorporated directly in criterion function (4.45) and (4.46) yield-

ing
hp
J=> [Pp}(k+ ) =P, (Lyw(k+ N3 (4.49)
i=h,
and d)Ppu(k-i-i— 1) =0 h.<i<hp (4.50)

Criterion function (4.49) shows that P, y(k + i) must be predicted instead of

y(k+1i) . It can be shown that the /-step-ahead predictor predicting ijz(k+ i) is given

by
ap -1
Pylk+i) = 1 lf” £l )u(k+1'— 1)+f-"[y(k) —P(k)] (4.51)
Ap(q7h) T

where p(k) is given by (4.30) and F; is solved from

pP,T F;
= =E+ql= (4.52)
Dp D,

where ng = max(n P, +np—1, np = 1). Separation of future and past can be realized by

using
P A, :
BP =G +qivdt i>d +1 (4.53)
4, P

~

where ng < i—d -1 and Ny = max(an + np = i+d, ny = 1). Equation (4.51) can be
rewritten as

F

Py(k+i) = Gulk+i-d - 1)+iu(k— 1) + T"[y(k)- ()] (4.54)

Ap
Finally, collecting the i-step-ahead predictors in a matrix notation for

i =h,, .. hp yields
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*] = (GIlu] + [H1[a] + [Flc] +E 4, (4.55)
where

[*1 = [P 3k +h,), ... P ok +hp))]T

[u] = [u(k), ..., u(k+hp-d —1)]"

[u] = [u(k—1), u(k-2),...]"

[c] = [c(h), c(k~1),...]7

and

The dimensions of [J*], [«], [17] and [c] are given by
U*1 = hp—h, +1x1
[u] = hp —c} x 1
[17] = max(nH‘_) +1x1
[c] = max(n,,-‘) +1x1
Note that [G] is not square if A, >d +1 and also € 4e: describes the effect of

deterministic disturbances on P P}“J(k +1i).
In order to select and examine different criterion functions, the following unified

criterion function is used

hp fip — c;
J= 3 [P lk+i) =P (Dwlk+i))2+p Z ["'"u(k-*-z—l)] (4.56)
i=h,

where 0, and O, are monic polynomial with no common factors. This criterion function

i1s minimized under the constraint
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-~

P u(k+i-1) =0 Il<h <i<hp-d (4.57)
The controller output weighting O, and O, are introduced into the criterion func-
tion because it is quite useful to choose whereas p of (4.37) is difficult to choose.
4.6 Predictive Control Law

The optimal control law can be derived by the minimization of criterion function
(4.56) subject to equation (4.57) with respect to the controller output sequence over the

control horizon A, : u(k), ..., u(k+h_—1) . In this section, the criterion function can be

minimize analytically by assuming that there are no constraints.

4.6.1 Derivation of the Predictive Control Law
If the criterion function J is optimized with respect to the vector «, then any local

optimum u satisfies

12

g= =0

QD

1

where g denotes the gradient . If the Hessian A, is given by

2

_8J

ou?

Hy

is positive definite Vu, then any local optimum is the global minimum.
In order to calculate the gradient of equation (4.56) with respect to u, the criterion

function (4.56) is rewritten in matrix notation

J = (] = Do) (*] - [w*]) + ple*] [*] (4.58)

where

[w*] = [Pp(l)w(k-i-hm), ...,Pp(l)w(k-*-hp)]T

D*] = [Pk +hy), ... Pk +hp)]

" T OII
[w¥] = [w*(k), ..., u*(k+hp—-d -1)] , u*(k) = 5—14(/()
=Zd

Introduce the vector [u]
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(4] = [u(k), ..., utk+h —1)]" (4.59)

Note that [#] contains only those elements of the controller output sequence that

must be calculated. The other elements over the prediction horizon must satisfy (4.57).

The gradient of (4.58) with respect to [#] becomes

& _ 0] ot s 3w,
S = 25 U1 + 202 e] (4.60)

The relationship between [«] and [ir] can be derived by solving

-~

utk+h,) ... , u(k+hp—d —1) from (4.57)
P u(k+i-1) =0 lshc<ishP—c} (4.61)
The required relationship can be obtained by using the following Diophantine
equation
1 _,--T;,Fi—hc ~i+h
4)—10,, =E;,_, tq CE =>¢PE;_, = 1-¢q i, (4.62)

where the degree of F;,_j is given by ny+thnp—1. Using equation (4.61); equation

(4.62) becomes

utk+i~1) = F;_, u(k+h_~1) l<h.<ishp-d (4.63)

!

Separation of future and past terms is realized by using

F,_, =G,_ ,,c+q-"cH,._ i (4.64)

i-h, .

in which the degree of G, _, are given by ng = min(h,,n,+np)—1 and

e

and H;_,

Ry = ny+np—h_—1 respectively. Using (4.64), equation (4.63) becomes

utk+i-1) = G;

!

_putk+h, -1)+H,_j,u(k-1) (4.65)

with 1<h <i<hp—d . Note that if ¢ = A and P, =1, then G,_, =1 and

Now the relationship between [«] and [#] becomes in a matrix notation
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[w] = [M][a] + [N][] (4.66)

in which [M] is a matrix of dimension h,—d xh,

1 0. 0
01
M =10 ... .. 0 1

o . A
0O ... 0 - - .
[N] = h h where j = hp—h_—d and [u] is given by
O = “"Lng
_hjro . hjv"HJ
(7] = [u(k=1), .., ulk+h —ny—np)]" (4.67)

-

Note thatif h, = hAp~d ,then [M] = [ and [N] = 0

The relationship between [«] and [«*] is required

O ~
w¥(k+i-1) = Z”)ﬁu(kﬂ-l) l<i<hp-d (4.68)
Ya
Separation of future and past elements is realized by using
On ~iL;
=@ +qg =L 4.69
0, ", &6

where ®; and ; are polynomials of degree i — 1 and max(ng —i,ng - 1) if ng >0.1If
ng, = 0, the degrees of ;and L; are given by min(i— 1, n, ) and n, —i respectively.

Note that, because O,, and O, are monic, ®; is also monic.
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Using (4.69) , (4.68) becomes

u(k—1)

w*k+i—-1) = Qutk+i-1)+L;
Q4

~

Collecting u*(k+i—1) for i = 1,..., hp —d in matrix notation yields
[1*] = [@][a] + [L][u] (4.70)
where [®] is a lower triangular matrix of dimension (/, -c; ) x (hp —c; ) and [L] is a
matrix of dimension (/p —c; ) xn; with n; = max(ng , ng,) - The vector [«] is given

by

- _ [u(k=1) u(k—n 0T
(4] [ Ty ] 4.71)

Using (4.66) and (4.70, the relationship between [«] and [«*] is given by
[w*] = [@IIM][u] + [L1[a] + [PIN][ 7] (4.72)

A1 ow becomes S21 = = My [@]”

The partial derivative ——
o[u] olu]

A %
The partial derivative 0“_?-7] can be calculated by using the unified prediction
ol

model (4.55) . Utilizing (4.55) and (4.66), the relationship between [§*] and [«] is given

by
D*] = [GlM][&] + [H][u] + [F]lc] + &4, + [G1IN][ 7] (4.73)
The gradient (4.60) becomes
afJ] 2[M]([G1'[G] + o [K1 KD IMI[a] + 2[M1 7 {[G1 ([H1[2] + [F1[e]

+ &g + [GUINILZ]-1w*]) + p[ @) (L1 [#] + [KIINI[T]) } (4.74)

and the Hessian becomes
= 2[M) ([G17[G] + p[@] [®])[M] (4.75)

Note that the Hessian is independent of [«] and, when singular, is positive defi-
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nite. If p >0, the Hessian is always positive definite. If, however, p = 0, the Hessian can

in some special cases, be nonsingular. Assuming that the Hessian is singular, a global min-
imum of J with respect to [«] can be obtained by setting the gradient equal zero and solv-

ing for [u]

[ = (M1 ((G1'IG] +p[@1 [®DMI} ™ IMIT{IGI([w*] - [H][i1]
—[F1[c] - & 4, — [GIINI[®]) - p[®N(LI[] + [OIINI[ T}  (4.76)

Note that the matrix to be inverted is of dimension #4_ x A_ . The first element of

u(= u(k)) is used to control the process. All other elements are not used and need not to
be calculated.

4.7 Computational Steps for Predictive Control Law
1. From the model parameters, determine the prediction horizon #4p, the mini-

mum-cost horizon A, , the control horizons /4. , polynomial in criteria function

m?

P, 040

=n-

N

. Compute the matrices [G], [F], [H] in the prediction model equation (4.55).
. Compute the matrices [M], [N] from equation (4.66) and matrices [P], [L]

(V5]

from equation (4.70).

4. From the past and future input output data Solve for the first element of control

u from equation (4.76).

5. Compute the feed-back control to get the output response.
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CHAPTER V

PREDICTIVE CONTROL IN SYSTEM
IDENTIFICATION APPROACH

5.1 Introduction

The state-space model has long been a fundamental element of modern control

theory. In a state-space model, the relationship between the input and output variable is

described in terms of an intermediate quantity called the state vector”>. The state-space
models can be derived analytically from the equations of motion or identified from exper-
imental input-output data using system identification. Concurrent with the development
of state-space based control methods are adaptive and predictive control (which are based
on input-output models). A typical input-output model describes the current outputs as a
linear combination of past input and output measurements. One such model is the Auto
Regressive with eXogenous input model (ARX). An attractive feature of an ARX model is
that its coefficients can be identified from input and output measurement. The identifica-
tion process can be carried out recursively in real time if necessary.

Most of the researches that have been carried out in adaptive control are concerned

with two classes of systems called Model Reference Adaptive Systems (MARS) and Self

Tuning Regulators (STR)**2®. While the former evolved from deterministic servo prob-
lems, the latter arose in the context of stochastic regulation problems. The conventional
approach for control system design of dynamic system normally can be distinguished into
two phases: system modeling and controller design. For the system with unknown distur-
bances and considerable uncertainties, the conventional approach is not quick enough to
catch up with the system changes. Therefore, on-line system identification and adaptive

controller design become the significant solution for the controlled system27'28.

29-30

Juang proposed a deadbeat control design using an ARX model which

showed the successful results to suppress the noise of dynamical system. This chapter will

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



55

propose the extension of the deadbeat control design to the tracking control design with
and without system disturbances input to the system.

Section 5.2 starts with multi-step output predictor that can be derived from ARX
model. The observer Markov parameters (OMP) or ARX parameters can be calculated by
the recursive formulation. In section 5.3, a receding horizon predictive control concept is
shown which uses the first element of controller output sequence to control the dynamic
process . Section 5.4 shows the predictive control design which uses the algorithm derived
from section 5.2 to form the control law. This approach still needs to calculate the OMP
and ARX parameters first before forming the control step. In section 5.5, the standard
Recursive Least-Square formulation is presented and able to combine system identifica-
tion and predictive control in one formulation. The control parameters are updated in
every sampling period. Since there is no matrix inversion needed to compute the control
parameters, the method is applicable in real-time. Section 5.6 shows the extension of pre-
dictive control algorithm when feedback and feedforward for disturbance inputs are taken
into consideration.

5.2 Multi-Step Output Prediction
A linear finite difference model for the m x 1 output y(k) and the s x 1 input u(k)
at time & is described by:
y(k) = aylb-1)+ay(k-2)+... +a,y(k-p)

+ bou(k) + byu(k— 1)+ bou(k=2)+ ...+ bpu(k -p) (5.1)
This represents the relationship between the input and output and also means that

the current output can be computed by the time series of the past input and past output.

The finite difference model is also referred to as the ARX model as in (2.1). The coeffi-
cient matrices, a;(i =1,2,...,p) of mxm and 6,(i=0,1,2,...,p) of mxs, are
referred to as the observer Markov parameters (OMP) or ARX parameters. The matrix b,

is the direct transmission term.

By shifting one time step ahead, one obtains
yk+1) = ayk)+aytk-1)+...+taylk-p+1)
+ bou(k+ 1)+ bju(k) +byu(k—1)+... + bpu(k—p +1) (5.2)
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Lets define the following quantities

afl) = aja; +a, bV =a b, +b,
all) = a,a, + a; b§Y = a b, + b,
) = ) =
= 1) = n
all) = aja, b = ab, (5.3)
and bV = aby+b, (5.9)

Substituting y(k) from (5.1) to (5.2) yields
Y+ 1) = afly(k-1)+afly(k-2) + ... +alVy(k-p)
+ bou(k + 1)+ b{Du(k) + b{Vu(k - 1) + biDu(k-2) + ... + b[(,”u(k—p) (5.5)
The output measurement at time step £+ 1 can be expressed as the sum of past
input and output data with the absence of the output measurement at time step k. For the
i -step ahead, one can express the output measurement at the time step &+ i/ by:
ylk+i) = aidy(k~1) +afly(k-2) + ... +aPy(k - p)

+ bou(k+i)+b§u(k+i-1)+ ... +b§u(k)

+ b{u(k~1)+b5Pu(k—-2)+ ... +b[(,")u(k—p) (5.6)
where
a(li) _ a([i—l)al+ag:'—l) b(li) _ a([i—l)bl +b(zi—l)
ag‘) - a(li-l)az+a(3i-1) (2:') _ a(li—l)bz_*_bgi—[)
0 _ @-1) (-1 " _ -1 (-1
M _  G-1) 0 _ -1
a, =a; a, bp = a, bp 6.7
and by = o Vpy + Y (5.8)
) _ 0) _ oy . . .
Note that a; = a; and bj = bj for any possible integer 1,2,....... including 0 if
applicable.

With some algebraic operation, Equation (5.8) becomes

bf)o) = by
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k ¢ e
bg) =b.+ Zajbg‘-') fork=1,...,p
=1

y P .
by = > aby for k= p+1,..,0  (59)
Jj=1

(i-1)

. . ; -1 .
Similar to (5.9) a\” = a'"Pa, +a{ ™" can also be written as

) _
a = a
*) ke
a =a,‘.+l-!-z:ajav(l D fork=1,..,p-1
Jj=1
B _ < (kD
a;’ = Z a;a, for k=p,.. (5.10)
j=1
' -1 - :
and also af,')_[ = a{f )ap_l+a1(,' Y can be written as
0 _
-1 = -1
k) _ (k-1) =
Ay, | = A, t Y aa, fork=1,...,p-1
Jj=1
(k) 2 (k-1)
a,’| = Z:ajap_1 fork=p,..., < (5.11)

j=1
The quantities bg ) (G =0,1,...) are the pulse response sequence which and a(l’)

(=0, 1,...) are the observer gain Markov parameters that can be used to compute an

observer for state estimation.

Lettheindex i be 7/ = 1,2, ...,hp, hp +1,...,/—1. andequation (5.7) can be

written in matrix form.

YAKR) = yu k) + oy, (k- p) + Bu,(k—p) (5.12)

where
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YAk) =
Yp(k—p)
and
bO
(1)
bO bO
Y= b(()/lp) b(()/lp -1)
h, +
bézp 1) béhp)
-0 -2)
| bo by

GO BTG EE
ye+1) u(k+ 1)
y(k+ hp) , u/(/c) = u(k+hp)

y(k+h,+1) u(k+h,+1)

| y(k+f-1) | | u(k+f-1) |
y(k-p) u(k - p)
= )’(k"p'i_ 1) up(k__p) = ”(k_p+ 1)
y(k-1) u(k—1) |
bO
(1)
bO bO
bé/’—/:p—l) b(()f-/,p-z)
- -
b, b, b,
() (1) (1)
b, b, by
= | L) ) )
b, b,7 b,
b;/xp+1) bl(;h_,,:n b(lizp+l)
U-1 L U-D /-1
2 by by ™|

58

(5.13)
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a, a, a,
(1 (1) (n
a, a,_ ay
= I / I/
a=| g g (5.14)
h,+1) (h,+1) (h,+1)
P" ap_"l .ooa’
-1 -0 =N
_(lp ap_l .. CI[ J

The quantity y/(k) represents the future output with a total of f data points from
the time step &£ to £ +f~— 1, where yp(k — p) represent the past output.with the p data
point from the time step k—p to k- 1.

Similarly, u (k) has f future input data points starting from the time step £ to
k+f—1, where u,(k—p) has past output with the p data point from the time step £—p
to k— 1. The matrix y is commonly called the Toeplitz matrix which is formed from the

- b((,f -b (the pulse response sequence).

1
parameters, b, bé L
The vector y (k) consists of three terms. The first term is the future input vector
u k) including inputs from time step £ to £+ f— 1 . Relative to the same time &, the sec-

ond and third terms , #,(k - p) and Yp(k—p), are past input and output vectors respec-

tively, which past known data from k—p to k— 1.
5.3 Receding Horizon Predictive Control

Consider figure 5.1-b and 5.1-d and suppose that the current time is denoted by
sample & which corresponds to the absolute time ¢. u(k), y(k) and w (k) denote the con-

troller output, the process output and the desired process output at sample £, respectively.
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Figure 5.1 Receding Horizon Predictive Control. Parts 5 and d Denote the
Situation at time ¢ while Parts @ and ¢ Denote the Situation at time ¢ + 1

Define:

u = [u(k), ..., u(k+h,~ 1)]T

D), ... yk+h)]"

y
w = [w(k), ...,w(k-l-hp)]T

where hp is the predictive horizon and symbol  denotes estimation. A predictive con-

troller calculates such a future controller output sequence u, that predicted output of the

process y is “close” to the desired process output w . The desired process output is often

called the reference trajectory and it can be an arbitrary sequence of points’".

Rather than using the controller output sequence determined to control the process
in the next /2, samples, only the first element of this controller output sequence is used to
control the process. At the next sample (hence, at # + 1), the whole procedure is repeated
using the latest measured information. Assuming that there are no disturbances and no
modeling error, the predicted process output y(k + 1) predicted at time ¢ is exactly equal

to the process output y(k) measured at ¢+ 1. Again, a future controller output sequence is

calculated such that the predicted process output is “close” to the reference trajectory.
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Assume that the close loop control action starts at time step k. The system before

time k is open loop. When the control action is turn on at time £ and end at time &£ + hp ,

the control steps beyond the step & + A, are all zero. Equation (5.12) becomes:

ylk+h,) = Yulk)+ay,(k-p)+Bu,lk-p)

(1)
bO

p& D

where
y(k+hp)
_ | ytk+h,+1)
YAk+h,) P
y(k+h,+p- )
and
b(()h,,) bg’” -1)
' béllp+ 1) b(()hp)
-\/ =
b(()/rpi‘p—l) bé/zp+p—-2)
i (h,) (1)
b[J £ bpfl
(h,+ 1) (,+ 1)
Bl . bp P bpf[

~

(k)
aP
(h,+1)

' a,”

o' = p

(hy+p-1)
Tp

Let ¥' be partitioned into two parts then equation (5.15) becomes

(h,+p=-1) ,(h,+p-1) (h,+p-1
_bp bp_l ... b

(/1))
p-1
(h,+ 1)
(lp__l

(h,+p-1)
p-1

by

by~

)
J

(1)
a

(IIP +1)
a;

(h,+p—1)
ay
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ylle+hy) = vl hy) +Yu00) + oy, (k= p) + Bu, (k- p)

where
u(k+h,)
ulle+h,) = u(k+h,+1)
u(k+hp+p—1)
and
(1
b b
v, = 0 0
p-b (p-2)
b(()hp) béhp -1)
h,+ /
/e
b(()lxp+p—l) béhp?~p-2)

, uj(k) =

u(k)
u(k+1)

u(k+lzp -1)

()
bO

%

(p)
bo
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(5.17)

(5.18)

Both vy, and v, are formed by system pulse response (system markov parame-

ters). By the given input and output sequence, equation (5.17) must satisfied and be able to

identify coefficient matrices v,, y., ', and f'.

By the idea of receding horizon control, equation (5.17) provides multiple solution

for uj(k) with the minimum-norm solution expressed by

ulk) = v Iylke+hn) -y v ulk+h)—v 'y, (k~p) -y Bu,(k-p)

or in the matnx form
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ufk) = [—*/)‘A' S ALRA —vc'fvo]

To simplity equation (5.20), the following notation is defined

[y, (k—p)
u,(k—p)
y/(k + hp)

e+ )

P c = |:_-YCTQ_' _-YCT Bil and P P [\CT _‘«{cT‘\{o]

k—
0, (k-p) = Yplk=p
u,(k—p)

Equation (5.20) becomes

u k) = [Pc Po] [m,,(k—p)}

o (k+h,)

) _ |YAk+h
d o (k+h) = P
]an @p (6 1p) L(thy
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(5.20)

(5.21)

(5.22)

(5.23)

Equation (5.23) is another form of finite difference model for system identifica-

tion. For any given input and output data, there exists a set of P, and P, satisfying equa-

tion (5.23).

In order to develop the predictive control law, equation (5.20) will give the control

vector "j(k) by setting y f(k-t- hp) (which is the future output equal to the reference tra-

jectory w(k)) and setting the future control vector uf(k+hp) to zero. Hence the

(pf(k + hp) will be in the form

(pf(k+hp) — |}Vg/c):| .

and equation (5.23) can be rewritten as

udky = [—*/cToa' AR —YC*YO]
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The first element of the control action at (k) will be in the form

k—
u(k) = (the first m rows of [P, P ]) ¢,k —P)
<Pf(k+hp)
ke —
cl ‘o o (k+h)

where the first m rows of u (k) is the input vector u(k) attime £. P, and are the
cl ol

first m rows of P c and P P respectively.

Let us form the following matrices

UG = [u(k) uk+1) ... u@W—-p—h,+1)] ,

r B
yk—p) ylk—p+1) ... y(N=2p—h,+1)
u(k—p) u(k—p+1) ... u(N—2p—hp+ 1)

O tk-p) = | . ;
yh=1)  yk) ... yWN-p-h)
-u(k— 1) u(k) .. uN-p- hp)
[ ylkth) Ytk D) L y(N-p 1)
u(k-i-hp) u(k+hp+ 1) ... u(N-p+1)
©k+h,) = (5.27)
yle+h,+p-1) ylk+h,+p) ... y(N)
}l(k+hp+p—1)ll(k+hp+p) u(N) J

where N is the data length used for estimation of coefficient matrices P o1 and P,
Equation (5.26) can be solved by corroborating equation (5.27) in the form

1|02

Uk = |P,, P, ok h)
)4

(5.28)

In order to be able to solve Least-Squares solution, the data length N must be cho-

sen large enough such that the matrix U(k) of m x (N —p —hp —k+ 2) has rank m,both
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(Dp(k-p) of pim+syx(N-p—h,—k+2) and (Df(k+hp) of
pim+syx(N-p -hp ~k+2) have rank pm + n. Equation (5.28) produces the follow-

ing Least-Squares solution.

'
<Dp(k—p)
) j(/c+hp)

[Pcl P, 1] = UK (5.29)

5.5 Recursive Least-Square Algorithm

Recursive Least-Square technique can be used to solve the Least-Square problem
in equation (5.29). For computation efficiency, it is desirable to arrange the algorithms in
such a way that the results obtained previously can be used for on-line updating. There are
many recursive algorithms available to solve a Least-Square problem. The classical Least-
Square method is the most straightforward approach’Z. The classical recursive method is
briefly described as follows:

Rewriting equation (5.28) in a compact matrix form

} (Pp(k_P)

u(k) = [Pcl Pol (pf(k+h )
P

= PG(k—1) (5.30)

where

= = (Y&
= ooy 7)) o = 2O,

o(k-p)

o(k-1) (5.31)

ok—1) =
(k1) olk+h,)

ok+h,+p-1)

First, define the following quantities
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5L (W (k—1)

(k) = - (5.32)
1+@ (K)W(k—1)o(k)
a(k+1) = P(k)3k) (5.33)
Then compute the following quantities
(k) = Wk-1)[I-o(k)Z(K)] (5.34)
Plk+1) = PCk) + [u(k+ 1)~ a(k+ 1)) Z(k) (5.35)

Here, no matrix inversion is needed and no approximation has been made in the

derivation of the Recursive Least-Square. Therefore, the Recursive Least-Squares esti-

mate and the off-line estimate are theoretically identical. The initial values of #(0) and

P(1) can be either obtained from performing a Batch Least-Squares after collecting a suf-

ficient number of data or assigned as 8[2 of W(0) and O of [D(l)

p(m+s) mx2p(m+s)
(where 9 is a large positive number).
5.6 Feedback and Feedforward for Disturbance Input

In addition to the control input, there might be other disturbance inputs applied to
the system. Some of the types of disturbances come from known sources that can be mea-
sured. Another type of disturbance is not known, but its correlation is known. This section

presents the predictive feedback control design including feedforward from the measur-

able disturbance inputs.

With the disturbance input involved, the finite difference model in equation (5.1)
becomes
y(k) = ayy(k—1)tay(k~2)+... +a,y(k-p)
+ b gu (k) +b ju(k—1)+bu (k-2)+... + bcpuc(k—p)
+ baou (k) +bu(k—1)+bpuy(k~2)+ ...+ bdpud(k—p) (5.36)
where the subscripts ¢ and & are used to signify the corresponding quantities associated

with the control input and the disturbance input, respectively. From section 5.2 , Equation

(5.36) can be rewritten in the form

YAk + hp) = YU Lk + hp) +yu Lk) + Y'dlld(lxp +p)(/c) + a’yp(k—p)
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+B' o, (k= p) + B ju g, (k ~p) (5.37)
where
y(k+hy,) u (k)
k+h,+ k+1
Ypkthy) = yEERED Uah, + py(R) = Uk + 1)
y(k+hp+p-1) ud(k+hp+p—1)
llc(k+hp) z{c(k)
uh+h) = | WEERTD Ny gy = HlETD) (5.38)
u(k+h,+p- D] -uc(k-i-hp— 1)

The form of matrix v', associated with the disturbances wu, is similar to v
defined in equation (5.16). The matrix ¥, isa ps x hpm . matrix where m_ is the number
of control inputs and v'; is a ps x h,m, matrix where m, is the number of disturbance
inputs. The form of B'. and B'; are also similar but corresponding to different type of
forces. v, , v,,and B', are quantities associated with the control force w (k).

Similar to equation (5.19), one can derive control force u (k) as

e = Yyt )= gt e+ ) =Y gt g, (6D
- vy, (k=p) =y B (k= p) = 1B yu 4, (k- p) (5.39)
or in matrix form
[ Y,(k—p)
u (k= p)
_ Uy (k-p)
u (k) = l:—*/cToc' =B = 1By vt —v. Iy, -YCT‘/";I ngk+ )y (5.40)
P
u c/(/c +h p)
_ud(/zp +p)(k)_

To simplify equation (5.40) define the following notation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



68

Fe= I:_YCTO'-' 1B -YcTB";I ’

P'co = [_YCT —'YCT'YOJ R
and P'd = [_YCTY'aZI (541)
and
Yp(k—p)
@ (k-p) = ”cp(k“P) and o, (k+ hp) = {yf(k'*'hp)J (5.42)
14, (k= p) AT )

where P'. isa h,m xp(s+m +m,) matrx, P'., isa h,m xp(s+m.) matrix. The

o

quantity (pp(k—p) isa p(f+m_+tmy) x 1 column vector whereas @,k + hp) is a

p(f+m_) x 1 column vector. Equation (5.40) becomes

¢,(k-p)
u (k) = [p-c P, P'd] ®cpk+hy) (5.43)
ud(/xp +p) (k)

For any given input and output data, there exists a setof P', , P'_ and P', satisfy-

ing equation (5.43). By using the same approach as mentioned in section 5.4, the predic-

tive control law, equation (5.40) will give the control vector u cj(k) by setting y f(k + hp)

which is the future output equal to the reference trajectory w(k) and the future control

vector uj(k +h,) is equal to zero. However the term w4 n, + p)(K) which is the future dis-

+p)
turbance can be known only if the disturbance is measurable and known beforehand. Oth-
erwise, the equation (5.40) will not be true.

Equation (5.40) can be rewritten as
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I Yp(k-p)
ucp (k ~p )
= ' ' ' ' u k -
uc_/(k) - [-Y cTa —YCTB c —YCTB d —YCT _Y(:TYO —YCTYLIZ' dp( p) (5’44)
w(k)
0
_u deh, + p)(k)_

The first element of the control action at (%) will be in the form
?p(k-p)
u(k) = (the first m rowsof [ P', P', P';]) (pf(k-i- h,)

ud(/lp '-p)(k)

0,k =p)
= [Py Poy P |0+ 1))
g, oy ()

= Pp(k-1) (5.45)

¢,(k~p)
where olk-1) = q)f(k+h1’) (5.46)

Udn, = p) (%)

where the first m rows of « C/(k) is the input vector #(k) at time k. P P ., and

1]
cl » ol>

Py arethefirst mrowsof P'. , P',

and P'; , respectively.

Forming the following matrices

UG = [u (k) u(k+1) .. u(N=p—h,+ D,
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@k +h,)

Uaeh, + py(K) =

u (k) u(k+1)

_ud(k+hp +p-1) ud(lc-*-hp +p) ...

[ yke=p) ylk—p+1) ... p(N-2p—h,+1)
u(k—p) u(k—-p+1) ... uC(N—2p—hp+ 1)
uyk—p) uk-p+1) ... uy(N-2p~h,+1)
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ye=1)  y(k) ... y(N-p-h)

u (k-1) u (k) uC(N—p—hp)

u, (k—-1) u (k) ud(N—p—hp)
ylk+h,)  ylkth,+1) ... y(N-p+1)
uc(k+hp) uc(k-i-hp-i'l) ot (N=-p+1)

yk+h,+p-1) ylk+h,+p) ...  y(N)

uc(k+hp +p-1) uc(k-i-hp +p) ... u (N)

. ud(N—p~hp+ 1)

e (5.47)
u (N)

The following equation can be obtained similar to what was done ifor (5.29)

Q,(k-p)

[[P'cl P'oI P’dljﬂ - U(k) (D/(k+hp)

Ud(hp —rp)(k)

T

(5.48)

5.7 Computational Steps for New Predictive Control

The following is the computational steps for predictive control design.

1. From some sufficient the input output data, form the vector (k- 1) as shown

in equation (5.31) (in the case of no disturbances input) or equation (5.46) when system

has disturbances input .

2. Using the Recursive Least-Square algorithm equation (5.32)-(5.35) to compute

the matrix P.

3. From the reference trajectory w(k), form the vector @ f(k+ hp) from equation

(5.24).
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4. Compute the predictive control vector from the equation (5.26) (in case of no

disturbances input) or equation (5.45) when system has disturbances input .
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CHAPTER VI

NUMERICAL VALIDATIONS

6.1 Introduction

Industrial processes generally are highly multivariable systems where perturba-
tions affect the plant structure more often than the measured variables. Industrial pro-
cesses have their performance criteria and reliability requirements. The economic and
psychological environment required for a successful implementation is often not met in
practice. Many constraints will prevent the implementation of on-line control schemes in
production plant. An acceptable operation of a Kraft recovery boiler requires simulta-
neous satisfaction of a number of objectives : high steam efficiency, stable operation, low
emission and disturbance rejection due to the changes in heating potential in black liquor.

This chapter will present numerical results that show the performance of the Kraft
recovery boiler, particularly the output response from the boiler furnace. The sets of input
output data are available from a simulator that simulates the actual operation of the recov-
ery boiler. There are seven parts of simulator: the feedwater system, black liquor system,
smelt spout cooling water, auxiliary oil burners, rapid drain system, combustion air and
fuel gas system, and the green liquor system. The recovery boiler furmace is used as a
model to demonstrate the feasibility of system identification and controller design.

Since the objective is to use a set of input output data to perform the new close-
loop controller for the furnace at a steady state condition and to obtain the desired output
as setting points, random inputs will be used to excite the furnace model to obtain the out-
put data. There are mainly two inputs for the fumnace, the air flow and black liquor flow
and two corresponding outputs: the smelt flow and the heat. The conventional PID con-
troller is initially used under the condition that the furnace model is derived from the sys-
tem identification technique. The predictive control however, is applied to control the
furnace by exciting the system at the first stage and perform the close-loop control by

using a Least-Square technique.
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6.2 Numerical Results

The numerical results for both PID controller and predictive controller are shown
in this section. System disturbance is another input of the system to investigate the system
disturbance rejection capability of both controllers.

6.2.1 Mathematical Model of Recovery Boiler Furnace

The model of the recovery boiler furnace is derived from the simulator that simu-
lates the actual operation of the recovery boiler. Random signals of 3000 data points are
used to be the input signal to the boiler furnace. By using the system identification tech-
nique (as described in Chapter 3), the state space model of the recovery boiler furnace is

derived in the form:

0.2785 -0.0512 0.0342 0.0670 0.0034 0.0015
0.1131 0.2085 0.0880 0.0528 -0.0154 -0.0007
0.0373 0.0876 0.3086 0.1423 0.0306 -0.0038
0.0865 -0.0163 0.0677 0.2527 0.0225 -0.0192
—-0.0022 0.0140 0.0075 0.0829 0.2189 -0.0539
| 0.0001 0.0009 0.0079 -0.0174 -0.0026 0.2468 |

1.4042 -0.2065 0.2717
—-0.2551 -0.0590 1.0597
B = | 0.0327 03035 -0.0093
—-0.0383 -0.0254 -0.0284
0.0012 -0.0064 -0.0032
|—0.0001 -0.0011 —0.0004]

[0.4732 1.0291 —0.0713 —0.0097 0.0033 0.0001
C = 113595 —0.3494 0.0106 —0.0364 —0.0011 —0.0006
-0.0551 0.1826 0.2979 ~0.0569 0.0020 0.0005

(000
D=1o000
000

Figure 6.1 shows the original random input and output data from the model of
recovery furnace respectively. Figure 6.2 illustrates the identified signal that corresponds

to the output of the model at the first 1,500 data points. Figure 6.3 shows the predicted out-
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put from the verified model that is tested by the rest 1,500 data points output.

-5
0 1000 2000 3000 0 1000 2000 3000
c d

10
0 1000 2000 3000 0 1000 2000 3000
e f

1
0 1000 2000 3000 0 1000 2000 3000

Figure 6.1 a,c, and e Shown the Random Signal Used to Excite the Simulator
Model. b,d, and f are the Outputs from the Simulator (Smelt Flow,
Heat Flow, and Steam Flow Respectively)
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Figure 6.2 a,b, and c Illustrates the Identified Signals (dash line) which Fit
to the Actual Outputs of the Simulator (Smelt Flow, Heat Flow,
and Steam Flow Respectively) at the First 1,500 Data Points
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Figure 6.3 a,b, and c Illustrates the Signals (dash line) Predicted from the
Identified Model which Correspond to the Actual Outputs of the
Simulator (Smelt Flow, Heat Flow, and Steam Flow Respectively) by
Using the Later 1,500 Data Points to Verify the Result
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6.2.2 Result for Conventional PID Control

The proportional-integral-derivative (PID) controller is the most popular and com-
mercially available controller used in the process industry. The integral controller
increases the system type, which reduces steady state error. The derivative controller
increases the damping and, hence, the stability of the system. Most of the recovery boilers
used in pulp-paper mill still use a PID controller to control the boiler operation. As men-
tioned in Chapter II, the PID controller gains normally come from the experience of the
operators and can be set to automatic or manual operation mode depending on the situa-
tion.

There are three inputs-outputs from the recovery boiler furnace according to the
simulator. The inputs are the black liquor flow, the total air flow, and the steam flow (in
units of pound per second, respectively). The outputs are the smelt flow (in units of pound
per second), the heat (in unit of BTU per second), and the steam flow. The internal process
inside the recovery boiler furnace is described in Chapter 2. The only inputs and outputs
used to evaluate the performances of the controller in this chapter are the black liquor, the
total air flow, the smelt flow, and the heat.

This section presents the simulation results of the PID controller that is used suc-

cessfully to control the boiler parameters. The PID gains used for this simulation are based

on the simulator that are not unique. The proportional (Kp), integral (X,), and derivative

(Kp) gains are 2, 1.5, and 0.8 respectively. At the steady state operation, the black liquor

and the total air flow act as the inputs of the recovery boiler furnace at the rate about 20-
22 and 100-102 pound per second respectively. These are converted to the heat at the rate
about 60,000-61,000 BTU per second. The smelt flow acts as another output and is
approximately 38-42 percent of the black liquor flow.

By using the identified state space model of the recovery boiler furnace, the PID
controller performance shows the outputs of the recovery boiler furnace in terms of smelt
flows and heat flows respectively (see figure 6.4 and 6.5). Figure 6.6 and 6.7 shows the

control inputs (black liquor flow and total air flow) of the boiler furnace.
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Figure 6.4 Output of the Recovery Boiler Furnace as Smelt Flow
by Using the PID Controller ( Kp=2, K,=1.5, K= 0.8)
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Figure 6.5 Output of the Recovery Boiler Furnace as Heat Flow
by Using the PID Controller ( Kp=2, K= 1.5, K= 0.8)
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Figure 6.6 Input of the Recovery Boiler Furnace as Black Liquor Flow
by Using the PID Controller (Kp=2, K,= 1.5, K= 0.8)
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Figure 6.7 Input of the Recovery Boiler Furnace as Total Air Flow

by Using the PID Controller ( Kp,=2, K;= 1.5, K5=0.8)
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6.2.3 Result for Predictive Control

The new tracking predictive control is applied to the recovery boiler furnace in
order to verify the performance of this controller and compare to the conventional PID
controller in the previous section. By assuming that one does not know the mathematical
model of the boiler furnace, the system parameters need to be first identified by choosing
the appropriate value of the ARX model order, as well as the prediction horizon. The con-
troller is performed after the identifying process of some proper data points is completed.

For a single-output system, it is known that the order of an ARX model is the same
as its equivalent state-space, p = 1. However for multiple-outputs, a state-space model of
order n for the recovery boiler furnace, the relation of p,,. Ap =71 can be used for the
controller to bring the output to the desired values. In addition, the identification accuracy
will be improved as p increases. Figure 6.8 and 6.9 show the tracking output of the new
controller in terms of heat and smelt flows respectively while using the minimum predic-
tion horizon (4p ) as 1 and the ARX model (p) as 6. Figure 6.10 and 6.11 depict the con-
trol input in term of Black liquor flow and Total Air flow respectively. Figure 6.12 and
6.13 show the output of the recovery boiler furnace when prediction horizon (4p ) is
increased to 6 while the ARX model (p) remaines at 6. Figure 6.14 and 6.15 are the input
of the recovery boiler furnace corresponding to the output in Figure 6.12 and 6.13. Finally,
the prediction horizon (4p ) is increased to 20 while the ARX model (p) remaines at 6

and the output and input of the recovery boiler furnace are shown in Figure 6.16, 6.17,

6.18 and 6.19 respectively.
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Figure 6.8 Output of the Recovery Boiler Furnace as Smelt Flow

by the Predictive Controller when 4, = | andp = 6
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Figure 6.9 Output of the Recovery Boiler Furnace as Heat Flow

by the Predictive Controller when 4, = 1 and p = 6
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Figure 6.10 Input of the Recovery Boiler Furnace as Black Liquor Flow

by the Predictive Controller when 2, = 1 and p = 6
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Figure 6.11 Input of the Recovery Boiler Furnace as Total Air Flow

by the Predictive Controller when 4, = | andp = 6
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Figure 6.12 Output of the Recovery Boiler Furnace as Smelt Flow

by the Predictive Controller when 4, = 6 and p = 6
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Figure 6.13 Output of the Recovery Boiler Furnace as Heat Flow

by the Predictive Controller when 4, = 6 and p = 6.
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Figure 6.14 Input of the Recovery Boiler Furnace as Black Liquor Flow

by the Predictive Controller when 4, = 6 and p = 6
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Figure 6.15 Input of the Recovery Boiler Furnace as Total Air Flow

by the Predictive Controller when 7, = 6 and p = 6
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Figure 6.16 Output of the Recovery Boiler Furnace as Smelt Flow

by the Predictive Controller when /2, = 20 andp = 6
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Figure 6.17 Qutput of the Recovery Boiler Furnace as Heat Flow
by the Predictive Controller when s, = 20 andp = 6
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Figure 6.18 Input of the Recovery Boiler Furnace as Black Liquor Flow

by the Predictive Controller when 4, = 20 and p = 6
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Figure 6.19 Input of the Recovery Boiler Furnace as Total Air Flow

by the Predictive Controller when 4, = 20 and p = 6
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As mentioned in Chapter 2, the heat potential of black liquor varies from the qual-
ity of the wood. A disturbance in Figure 6.20 is generated in terms of the percentage devi-
ate from the standard heat potential value. This is accomplished in order to test the
disturbance rejection capability of the predictive controller compared with the PID con-
troller when the system is disturbed by some unknown input. Figure 6.21 and 6.22 show
the outputs of the boiler furnace as the smelt flow and the heat flow respectively. By using
the same PID gains as in previous section, the PID controller can reject the disturbances
well. The control inputs of the furnace that are changed to maintain the desired outputs
also are shown in figure 6.23 and 6.24.

The same disturbance shown in Figure 6.20 is injected into the system to investi-
gate the disturbance rejection capability of this predictive controller. Note that the predic-
tive horizon in this case is 1 while the ARX model is 6. One cannot use the predictive
horizon greater than 1 because the disturbances are always random and cannot be pre-
dicted. Figure 6.25 and 6.26 show the output of the boiler furnace as the smelt flow and
the heat flow respectively. Figure 6.27 and 6.28 depict the change in control input which

attempt to maintain the desired value.
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Figure 6.20 Disturbances in Terms of Percentage Changes of

Heat Potential Value
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Figure 6.21 Output of the Recovery Boiler Furnace as Smelt Flow, Subjected to
a Disturbance by Using the PID Controller ( K,=2, K,= 1.5, K= 0.8)
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Figure 6.22 Output of the Recovery Boiler Furnace as Heat Flow, Subjected to
a Disturbance by Using the PID Controller ( Kp=2, K;= 1.5, K= 0.8)
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Figure 6.23 Input of the Recovery Boiler Furnace as Black Liquor Flow,
Subjected to a Disturbance by Using the PID Controller (Kp=2, K;,=1.5, K;=0.8)
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Figure 6.24 Input of the Recovery Boiler Furnace as Total Air Flow, Subjected to
a Disturbance by Using the PID Controller ( K,=2, K;= 1.5, K;=0.8)
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Figure 6.25 Output of the Recovery Boiler Furnace as Smelt Flow, Subjected to

a Disturbance by the Predictive Controller when 4, = 1 andp = 6
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Figure 6.26 Output of the Recovery Boiler Furnace as Heat Flow, Subjected to

a Disturbance by the Predictive Controller when 4 = 1 and p = 6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



91

30 . —
25¢
20} T —]
[«
a
215'
10}
5,
0 n " de,
0 50 100 150 200
Time steps

Figure 6.27 Input of the Recovery Boiler Furnace as Black Liquor Flow,

Subjected to a Disturbance by the Predictive Controller when 4, = | andp = 6
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Figure 6.28 Input of the Recovery Boiler Furnace as Total Air Flow, Subjected to

a Disturbance by the Predictive Controller when 4, = | andp = 6
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6.3 Conclusion Remarks

This chapter shows the result of the PID controller and the new predictive control-
ler to control the recovery boiler furnace. By performing the new predictive controller, a
better result is shown in terms of tracking performance as well as the disturbance rejec-
tion. However, the control inputs of the predictive controller are larger than the conven-

tional PID controller especially when performing the minimum prediction horizon. A

smaller value of 4, implies a shorter prediction horizon, and more control energy is

needed to bring the state of the system to the desired value in shorter time. A large value of

h, implies a longer prediction horizon, and less control energy is required. The predictive

control also shows the dominant results of the disturbances rejection over the PID control-
ler. The system responses is both robust and stable when these two controllers are sub-

jected to the same disturbances.
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CHAPTER VII

CONCLUSIONS

7.1 Summary

Industrial processes in general are highly multivariable systems, where perturba-
tions affect the plant structure more often than measured variables. In the control engi-
neering field, a conventional PID controller is commercially used most in industries.
However, each have their performance criteria and reliability requirements. The multivari-
able system like that of the recovery boiler of pulp-paper mill, can be controlled by the
conventional PID controller. However, performing PID controller requires a skill from
the operators on an individual basis and the controller performance can not be adapted to
compensate for all disturbances significantly, especially the long time delay system.

The setpoint tracking predictive control by system identification approach is pro-
posed in this dissertation. The new algorithm uses the /-step-ahead predictor integrated
with the least-square technique to build the new control law. Based on the receding hori-
zon predictive control principle, the tracking predictive control law is achieved and per-
forms successfully on the recovery boiler plant of a pulp-paper mill. This predictive
controller is basically designed from ARX coefficients, which are computed directly from
input and output data. The character of this controller is governed by two parameters. One
parameter is the prediction horizon as in traditional predictive control. The other parame-
ter is the order of the ARX model.

When the order of the ARX model is at 2 minimum, the identification is sensitive
to the noise. The identification accuracy will be improved as the order of the ARX model
increases. However the order of the ARX model for a multiple output system can be less
than the order of the system. In addition, as the prediction horizon increases, the system
response will move from the minimum time solution toward the minimum energy solu-
tion, making it less susceptible to the noise. In the predictive control, the control input at

any time step is part of a sequence of minimum-norm control actions; therefore, the result-
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ant control sequence is only an approximation of the truly energy-optimal solution.

The predictive controller formulated in this dissertation is an interesting combina-
tion of both a feedforward and a feedback control. The controlier is feedforward in that at
each time step it determines its action to bring the future output to the desired value in a
finite number of time steps. The predictive component is a feedforward action, which
takes advantage of the knowledge of the system to guide its control action by looking
ahead. On the other hand, the form of the controller is clearly feedback because the cur-
rent control input is a linear combination of actual input and output measurements. This
feedback feature gives the controller the ability to handle unexpected disturbance as well
as a certain degree of robustness with respect to both noises and modeling errors. In addi-
tion, this feedback action compensates for the inherent sensitivity of the feedforward
action.

The design of the predictive controller depends on both parameters: the prediction
horizon and the order of the ARX model. This controller is essentially designed from the
input output model, that can be identified directly from input output data. The calculation
can be carried out in real time by recursive least square technique if necessary. [n addition,
the prediction horizon and the order of the ARX model parameters can also be tuned in
real time. However, this predictive controller is not optimum in the sense of traditional
predictive control which satisfies a variety of design objectives and constraints. This type
of design is useful in engineering applications where trade-off between design simplicity
versus optimality is an issue.

7.2 Further Extension of The Research

Unlike the traditional state-space dynamic compensator designs satisfying a vari-
ety of design objective and constraints, the tracking predictive control that is developed in
this dissertation does not integrate the design objective into the algorithm. The controller
behaves from the minimum time control to minimum energy control solution depending
on the control horizon value. Even though the control inputs, in general, are larger than the
conventional PID controller, the control inputs of this predictive control are smaller than
PID controller when system disturbances are taken into account. Therefore, incorporating

the design objective into the algorithm will be an interesting extension of this work.
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