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ABSTRACT

SETPOINT TRACKING PREDICTIVE CONTROL IN CHEMICAL 
PROCESSES BASED ON SYSTEM IDENTIFICATION

Sinchai Chinvorarat 
Old Dominion University, 1999 
Director : Dr. Jen-Kuang Huang

A Kraft recovery boiler in a pulp-paper mill provides a means for recovery of the 

heat energy in spent liquor and recovery of inorganic chemicals while controlling emis

sions. These processes are carried out in a combined chemical recovery unit and steam 

boiler that is fired with concentrated black liquor and which produces molten smelt. Since 

the recovery boiler is considered to be an essential part o f the pulp-paper mill in terms of 

energy resources, the performance of the recovery boiler has to be controlled to achieve 

the highest efficiency under unexpected disturbances.

This dissertation presents a new approach for combining system identification 

technique with predictive control strategy. System identification is the process of building 

mathematical models of dynamical systems based on the available input and output data 

from the system. Predictive control is a strategy where the current control action is based 

upon a prediction of the system response at some number of time steps into the future. A 

new algorithm uses an /-step-ahead predictor integrated with the least-square technique to 

build the new control law. Based on the receding horizon predictive control approach, the 

tracking predictive control law is achieved and performs successfully on the recovery 

boiler of the pulp-paper mill. This predictive controller is designed from ARX coefficients 

that are computed directly from input and output data. The character of this controller is 

governed by two parameters. One parameter is the prediction horizon as in traditional pre

dictive control and the other parameter is the order of the ARX model. A recursive version 

of the developed algorithm can be evolved for real-time implementation. It includes adap

tive tuning of these two design parameters for optimal performance. The new predictive 

control is proven to be a significant improvement compared to a conventional PID con

troller, especially when the system is subjected to noise and disturbances.
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CHAPTER I 

INTRODUCTION

1.1 Background and Problem Statement

It has been projected that the world consumption of paper will triple by the year

2000 *. About 90% of the raw material for paper manufacture primarily comes from tree 

boles, the bark-free trunk. Bark that constitutes about 15% of a mature tree is considered 

one of the most serious contaminants in wood chips used for the manufacture of most

pulp2. Black liquor is produced in the manufacture of the pulp by the Kraft pulping pro

cess using coniferous wood which contains lignins, carbohydrates, and other organic mat

ter from the processed wood along with the pulping chemical used in processing. The 

amount of organic material dissolved in the spent pulping liquors has been estimated to be

45 million tons per year3 and thus represents an enormous source of fuel.

Since the energy crisis, the American Paper Institute has started conducting annual 

surveys of the sources of energy used by the U.S. pulp and paper industry. The survey 

indicated that spent pulping liquors provided 32%, fuel oils 22%, natural gas 21%, coal 

12%, electricity 5%, bark 5% , and hogged wood 2% of the industry total BTU

requirements4. It is encouraging to note the growing use of wood wastes and processing 

wastes as a source of fuel in the pulp and paper industry.

Industrial processes in general are quite different; they are highly multivariable 

systems. Perturbations affect the plant structure more often than the measurement vari

ables. Industrial processes have their own performance criteria and reliability require

ments. The economic and psychological environments required for a successful 

implementation are often not met in practices. Many constraints prevent the implementa

tion of on-line control schemes on production plant.

Kraft recovery technology is a mature, fairly well standardized, technology. The 

last major innovation was the introduction of the Tomlinson recovery boiler in the 1930’s.

The journal mode adapted for this Dissertation is JGCD
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2

Since then, there has been a gradual evolution toward larger, more efficient systems, but 

the basic technology has remained essentially the same. A Kraft recovery boiler in a pulp- 

paper mill provides a means o f recovery of the heat energy in spent liquor and recovery of 

inorganic chemicals while controlling emissions. These processes are carried out in a 

combined chemical recovery unit and steam boiler that is fired with concentrated black 

liquor, and produces molten smelt. An acceptable operation of the Kraft recovery boiler 

requires simultaneous satisfaction of a number of objectives: high steam efficiency, stable 

operation, low emission and disturbance rejections due to the change of heating potential 

o f black liquor.

Black liquor is a complex mixture of organic and inorganic material. The organic 

components of the black liquor are derived from the wood chips and will burn to produce 

a considerable quantity of heat. The inorganic materials from the cooking liquor are 

burned, undergo chemical changes, and are discharged from the furnace hearth as smelt.

Ideally there are three things that have control over black liquor as a fuel. They are 

flow rate, percentage solids, and heating value. In practice the solids and flow rate of 

black liquor are controlled. The third variable, the BTU value of the liquor changes 

depending on the type and properties of the wood being pulped and is beyond the control 

of the operator. Normally, the black liquor averages about 5,800 BTU’s per pound of 

black liquor solids. This is an average figure and can change from about 5,000 to 6,500 

BTU’s per pound. Because of the changes in the heating potential of the black liquor, that 

comes from the property of wood from different seasons, the heat from the furnace can 

change even if the flow rate and percentage solids remain constant. However, changing 

liquor BTU values can be compensated by adjusting the quantity of air admitted to the 

boiler. The Proportional-Integral-Derivative (PID) control is the common commercial 

controller used today for Kraft recovery boilers in pulp-paper mills. However, the perfor

mance of the controller primarily depends on the controller gains. These gains are deter

mined experientially by operators, and need to be improved due to the complexity of the 

processes. As new technology is developed, it is hoped that the resources of pulp-paper 

mills will be utilized more efficiently

System identification is the process of building mathematical models of dynamical 

systems based on the available input and output data from the systems5'6. This technique
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is also important in many other disciplines, such as economics, communication, and sys

tem dynamics. Mathematical models allow researchers to understand more about the prop

erties o f the system, so that they can explain, predict or control the behavior of the system. 

For an unknown system, the system model must be identified before performing the con

trol design. There are many system identification techniques regarding to different kinds 

of need such as the nature o f the system and the purpose o f identification. The system 

identification process normally begins by selecting a suitable model structure and then 

choosing the model parameters to minimize a defined cost objective that indicates the fit

ness of the model to the input and output data.

The concept of predictive control originated in the late seventies and has evolved 

to a mature level7. Predictive control belongs to the class o f model-based controller design 

concepts which have remarkable features. It can be used to control a wide variety of pro

cesses, among which are non-minimum phase and unstable processes, without the 

designer having to take special precautions. Predictive controller design was developed

specifically to address the non-minimum phase problem8. There are "three" principle 

design parameters: the control weight, the predictive horizon and the control horizon that 

guarantees stability of the predictive control law. Since predictive controllers belong to the 

class of model-based controller design methods, a model of the process must be available. 

In general, two phases in designing a control system can be distinguished as modeling and 

controller design. A model of a process normally can be constructed by the system identi

fication technique. Therefore, combining the system identification technique and the con

troller design might be the best way to reduce the complexity o f designing control system.

1.2 Objective

This dissertation combines the system identification and the predictive control 

law into one formulation and makes it suitable for the system engineer to implement the 

algorithm for a real time tracking control problem.

First, the concept of system identification is shown for both open-loop and closed- 

loop systems. By using the selecting model, one can realize mathematical model in a state 

space form that represents the dynamic behavior of the unknown system.

Second, the concept of predictive control is introduced. It starts with process mod

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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els and prediction. Disturbances for both deterministic and stochastic are shown to incor

porate in the model. Criterion function is formed in order to build the predictive control 

law with transient and steady state arguments.

Finally, by using a multi-step-ahead output prediction, the new predictive control 

law  is derived from the identified matrices through a recursive Least-Square technique. 

The identified matrices minimize the output error between the estimated and real outputs. 

The algorithm computes the predictive control command directly from input/output time 

histories without explicitly identifying the system parameters. This approach has "two" 

design parameters: control horizon and the Auto Regressive with eXogeneous input 

(ARX) model order that related to the order o f the system. By appropriate adjusting these 

two parameters, the predictive tracking controller can be achieved and implemented in 

real time.

1.3 Dissertation Outline

Chapter 2 shows the details o f the pulp-paper mill process starting with a general 

description of the mill, and a detailed description of the function of the recovery boiler 

unit. Later, the recovery boiler is used as a model to investigate the performance of the 

developed controller.

Chapter 3 introduces the existing open-loop and closed-loop system identification 

techniques. The chapter starts by introducing several kinds of mathematical models used 

in the identification processes. By analyzing a sufficient quantity of input and output data 

through the system identification technique, a state space representation can be obtained 

by using an eigen-value realization technique. When the system is unstable, the closed- 

loop system identification that required to have a feedback control is the other technique 

to make the overall system stable before identifying. In addition, the Least-Squares tech

nique for both batch and recursive solutions is also presented in this chapter.

Chapter 4 presents the general concept of predictive control design. By solving the 

Diophantine equation, an i-steps-ahead predictor with or without disturbances is obtained. 

This long range prediction form is suitable for building a predictive control law for unsta

ble an non-minimal system. The predictive control law that minimizes a criteria function 

is also presented.
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Chapter 5 proposes the tracking predictive control technique that implements sys

tem identification and predictive control into one formulation. First, an i-step-ahead pre

diction output is derived by using the Auto Regressive with eXogeneous input (ARX) 

model. By using the principle of a receding horizon, the new predictive control law can be 

obtained by integrating the predictive output equation through the system identification 

algorithm. The control law can be obtained by either off-line calculations or on-line oper

ation, using the recursive Least-Squares technique.

Chapter 6 verifies the new control design algorithm by numerical simulation. Con

ventional Proportional-Integral-Derivative (PED) controller results are shown first, fol

lowed by the results o f the new predictive tracking control. Comparison and evaluation of 

these two controllers performances are presented with and without external disturbances.

Finally, chapter 7 provides conclusions and prospects for the extension o f this 

research.
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CHAPTER II 

PULP-PAPER MILL

2.1 Introduction

Paper is manufactured from wood9, a naturally renewable resource, by a large 

industry with significant economic impact on the world economy. The manufacture of 

pulp and paper products is particularly challenging, as it is large in scale, highly non-lin

ear, highly stochastic, and dominated by time delay. Wood consists mainly of fibers and 

lignin. The fibers give wood flexibility and strength, while the lignin acts as a cement or 

blinder. In order to make paper, the lignin must be dissolved from the fibers. This process 

employs white liquor (caustic soda and sodium sulfide) as the lignin dissolving agent 

under high temperature and pressure. During pulping about one half of the dry weight of 

wood is dissolved by the white liquor. The combination of spent white liquor and dis

solved organic compound from the wood is called black liquor. Black liquor is removed 

from the pulp fibers at the washing and screening process.

At the time the black liquor is extracted from the pulp, it contains about 15% solids 

or fifteen pounds of solids and eighty-five pounds of water per one hundred pounds. This 

weak black liquor is concentrated in the multiple effect evaporators to about 50% solids. 

After concentration, the heavy black liquor is further concentrated in the cascade evapora

tors at a recovery boiler to about 65% solids. About 50% of wood are dissolved in the 

pulping process. The organic material in the wood and inorganic cooking chemicals used 

to cook the wood add up to about 3,300 pounds per ton of pulp produced.

With the black liquor concentrated to the desired level, the liquor is burned in the 

recovery boiler to produce heat and chemical smelt. The heat is used to generate steam and 

the smelt is added to water in the smelt dissolving tank to form green liquor. The green 

liquor contains nearly all of chemicals required for cooking process. These chemicals are 

not in the form to be used for cooking. The green liquor is converted to white liquor in the 

caustic room and can be used again in the cooking process.
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7

2.2 Pulp-Paper Mill

The system blocks diagram is shown in Fig 2.1. Included in the pulp paper mill are 

Chemical Receiving, Chlorine Dioxide Plant, Wood Yard, Digesters, Washing and 

Screening, Bleach Plant, Evaporator Sets, Slakers and Causticizers, Lime Kilns, Recovery 

Boilers, Power Boilers, Boiler Feed-water, Turbine Generator, and Bleached Pulp Stor

age. The blocks and process arrows shown in heavy lines show the principle process flow 

in the pulp-paper mill. The following are brief descriptions of each block.

C hem icals Chemical CLO.
Receiving Plant

Unblcched Unbleached

41

Lime
Kilns

Lime

Lime
Mud

White
Liquor

Slackers & 
Causticizers

Wood Digesters
Pulp Washing Pulp Bleach

Yard Screening Plant
Weak Black 

Liquor

Evaporator
Sets

Oil

H eaw  Black
I  Liquor

Recovery
Boilers

Coal

Wells • Boilers
Feed Water

Power
Boilers ♦

S uperheat 
Steam Turbine

Generators

Electrical
Power

Process
Steam

Paper Making 
Processes

Fig 2.1 Simplified Block Diagram of a Pulp-Paper Mill

- Chemical Receiving

The inputs are various chemicals in bulk form. The bulk chemicals are prepared 

for use in suitable form and sent to the digesters, C L02 plant, and to the bleach plant.

- Chlorine Dioxide Plant

The chemicals react to produce chlorine dioxide and some of the chlorine used in 

the bleach plant.

- Wood Yard

The wood yard receives pine and hardwood pulpwood logs, unscreened pine and 

hardwood chips, sawdust from sawmills, and whole tree hardwood chips. Pulpwood logs
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are debarked and reduced to chips. All chips and sawdust are screened to remove fines and 

oversized pieces. Wood yard outputs to the pulp mill are screen pine and hardwood chips, 

screened whole tree chips, and screened hardwood and pine sawdust. Outputs to the power 

boiler wood fuel system are bark, and fines screened from the chips and sawdust.

- Digesters.

Screened chips and sawdust are combined with heated cooking chemicals in the 

digesters. These produce unscreened unbleached wood pulp that is sent to the washing and 

screening system.

- Washing and Screening

Unscreened, unbleached pulp is washed and screened to remove weak black 

liquor, undigested knots, and fiber bundles. Weak black liquor is made up o f resinous 

wood residue and spent cooking liquors. Fiber bundles are fibers adhering to each other. 

The accepted washed pulp is sent to the bleach plant, the weak black liquor goes to the 

evaporator set, and the undigested knots and fiber bundles are recycled back to the digest

ers.

- Bleach Plant

The plant combines chemicals from the chlorine dioxide and chemical receiving 

plant, and unbleached pulp from the washing and screening system to produces bleached 

pulp.

- Lime Kiln

Lime mud is heated by burning fuel oil in the kiln. This converts it into lime for 

reuse in the slakers and causticizers.

- Slakers and Causticizers

The inputs consist o f dissolved smelt (green liquor) from the recovery boiler, lime, 

and process water. A chemical reaction produces recovered cooking liquor (white liquor) 

for the digesters and lime mud that is sent to the lime kilns.

- Evaporator sets

Using 60 psi steam, the evaporators thicken the weak black liquor. The output is 

heavy black liquor that is the fuel input to the recovery boilers.
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- Recovery Boilers

These recovery boilers receive heavy black liquor that is burned as fuel. Other 

inputs are boiler feedwater and air. The outputs are 1500 and 600 psi steam to the main 

steam headers and to the turbine generators, and dissolved smelt (molten chemical salts, 

dissolved in water) to the slakers and causticizers.

- Power Boilers

The inputs to the power boilers are feedwater, air, wood, coal or oil fuel. The out

put from the power boilers is 600 psi superheated steam to the main steam header and to 

the turbine generator.

- Turbine Generators

These turbine generators receive 600 psi steam from power boilers and 600 psi and 

1500 psi steam from the recovery boilers. Steam is converted into electricity for use 

throughout the mill. Reduced pressure steam at 150 psi and 60 psi is extracted from the 

generators for use in all process operations.

- Boiler Feedwater

Input to the boiler feedwater is water from an artesian well and from a river. After 

screening, the water is used for selected process water. Water is demineralized in ion 

exchange units, and has oxygen removed by deaerators and chemical treatment. After

wards it is suitable for use as boiler feedwater.

2.3 Recovery Boiler Operation

The recovery boiler has three primary functions. The first is to bum the organic 

material from the black liquor and form an inorganic chemical smelt. The second function 

is to utilize the heating potential of the organic matter in the black liquor to generate 

steam. Third, when operated correctly, the recovery boiler allows black liquor to be used 

in a way that is virtually harmless to the environment.
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SmeltAir

Black liquor 
 ► Heat

Figure 2.2 Furnace Unit in the Recovery Boiler

The recovery boilers are initially fired using fuel oil and are brought up to a fur

nace temperature of about 3,000 degree Fahrenheit. When the black liquor is injected and 

starts burning, the fuel oil is cut off. In the boiler, the high temperature from the steam 

evaporates the remaining water from the black liquor. By proper control of air, the carbon 

in the black liquor is burned to release heat. Oxygen in air provided by a fan and the high 

temperature causes the dried organic material in the black liquor to bum and sustain com

bustion. This burning mass forms a bed on the furnace hearth. The heat of combustion is 

used to convert feedwater into steam and to superheat steam.

The second major function of the recovery boiler is to generate steam. As men

tioned previously, for each ton of pulp about 3,300 pounds o f black liquor solids is pro

duced. Of these 3,300 pounds, about 1,600-1,800 pounds are organic compounds derived 

from the wood and 1,500-1,700 pounds are chemicals that come from the white liquor. 

Due to the woody or organic content of the black liquor, the liquor has a heating potential 

o f about 5,800 BTU per pound o f black liquor solids. The chemical reaction of black 

liquor is shown as follow:

Chemical used in Recovery Boilers

Black Liquor + Oxygen = >  Smelt + Heat

Sodium Lignates

It takes about 1,000 BTU’s to make one pound of 600 psig steam. Thus with per

fect utilization of all the heat from each pound of black liquor solids, it would be possible 

to produce about six pounds o f steam. However, in practice, heat is lost in a number of
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places. It requires a considerable quantity of heat to evaporate the remaining water from 

the black liquor. Good recovery operation can achieve over 3 pounds of steam per pound 

o f the black liquor solids.

2.4 Recovery Boilers Control

A recovery boiler can be controlled to obtain optimum performance of both steam 

generation and chemical recovery. In its simplest form a recovery boiler can be thought of 

as a device that takes black liquor and air and converts them into steam and green liquor.

2.4.1 Black Liquor

Black liquor is a complex mixture of organic and inorganic material. The organic 

components of the black liquor are derived from the wood chips and will be burned to pro

duce a considerable quantity of heat. The inorganic materials from the cooking liquor are 

burned, undergo chemical changes, and are discharged from the furnace hearth as smelt.

Ideally there are three things that have control over black liquor as a fuel. They are 

flow rate, percentage solids, and heating value. In practice, the solids and flow rate o f 

black liquor are controlled. The third variable, BTU value o f the liquor, changes depend

ing on the type of wood being pulped and is beyond the control of the operator. Normally 

the black liquor averages about 5,800 BTU’s per pound of black liquor solids. This is an 

average figure and can change from about 5,000 to 6,500 BTU’s per pound. Because the 

changes of heating potential o f the black liquor, the heat from the furnace can change 

even if  the flow rate and percentage solids remain constant. However, changing liquor 

BTU values can be compensated by adjusting the quantity o f air admitted to the boiler.

2.4.2 Air

About five pounds of air are required for each pound of black liquor solids burned. 

The control of air is critical for optimum performance of the recovery boiler. At each fir

ing rate a certain quantity of air is required to bum the black liquor. The air requirement 

has been determined by experience and is set within determined limits. During normal 

operations at a given firing rate, few adjustments are made to the total air flow. However, 

adjustments are necessary if the feed rate of black liquor solids changes or if the BTU 

value of the liquor changes. Too little air will cause incompletely burned furnace gases to 

escape and the bed to build up in size. By not completely burning all the fuel, the maxi-
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mum heating potential o f the liquor is not utilized and steam production per pound of 

black liquor solids is decreased. Too much air, on the other hand, causes an increased load 

of relatively cold air to enter the furnace and thus cools off the hot furnace gases which 

also can cause a decrease in the production of steam per pound of fuel.

2.5 Conclusion

Due to the complexity of paper making process, this chapter presents a general 

view of a pulp-paper mill and more specifically in the recovery boiler that is used as a 

model in Chapter 6. For more details of the recovery boiler operation, see reference 9.
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CHAPTER III 

SYSTEM IDENTIFICATION ALGORITHM

3.1 Introduction

There are normally two ways to obtain a model for a dynamics system. The first is 

an analytical approach. It normally starts from deriving governing equations based on 

physical laws, and then simplifies and/or solves the equations and transforms them into a 

desired form. One example is the finite element method. The second is an experimental 

approach. It processes the measured input and output data obtained from experiments or 

operations to find a model directly, such as some testing techniques. In general, the mod

els obtained through analytical ways need further confirmation and refinement using 

experimental results before they are used for control design.

System identification is the technique that deals with building mathematical mod

els for a dynamic system based on their input and output data10. Besides control, this tech

nique is also important in many other disciplines, such as economics, communication, and 

system dynamics. Mathematical models allow researchers to understand more about the 

properties of the system, so that they can explain, predict or control the behavior of the 

system.

The system identification was first coined by Lotfi Zadeh in 1962. He defined sys

tem identification as:

Identification is the determination, on the basis on input and output, o f a system 

within a specified class o f  systems, to which the system under test is equivalent.

This definition is highly systems oriented, and does not reflect a strong statistical 

flavor of system identification techniques. Nevertheless, the term caught on and soon 

become the standard terminology in a control community. In statistics, econometrics, geo

physics, signal processing, etc., where models of dynamic systems are also built based on 

observed input output data. The choice of an identification method depends on the nature 

of the system and the purpose of identification. Most existing system identification meth
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ods apply for a stable system without requiring feedback terms for identification purposes. 

For identifying marginally stable or unstable systems, however, feedback control is 

required to ensure overall system stability. In many cases, a system, although stable, may 

be operated in closed loop and it is impossible to remove the existing feedback controller 

for security or production reasons. In other cases, such as economic and biological sys

tems, the feedback effect may be inherent. Consequently, identification has to performed 

on a system operating in closed-loop.

There are basically two classes of system identification methods, the nonparamet- 

ric system identification methods and the parametric system identification methods. The 

nonparametric methods were developed from the classical control theory. The frequency 

analysis technique plays a major role for this development. This methodology made it pos

sible to determine the transfer function accurately, in a format that could be used for the 

control design. The parametric methods, however, are developed from modem control 

theory. Problems are introduced with these parametric models such as the identification 

processes have to solve parameter estimations and other related techniques. This develop

ment introduced a renewed interest in the field of parameter estimation techniques.

There are generally three ways to apply the identification methods11*12. One way 

that can always be applied is to treat the bounded plant input/output data exactly as if they 

were obtained from an open-loop experiment. This is called direct identification. Another 

is to treat the closed-loop system as a whole, and its dynamics can first be identified by 

some common methods. Then the open-loop plant dynamics may be determined from the 

identification closed-loop system dynamics using the knowledge of the feedback control

ler. This approach is called indirect identification. The third approach is called joindy 

input-output identification where the feedback controller may be considered as part of 

what is to be identified and then the input and output are considered as a joint process and 

the output of a system driven by noise only.

3.2 Type of Model Structure

A model of a system is a description of its properties, suitable for a certain pur

pose. The model need not have a true and accurate description of the system, nor need the 

users have to believe so, in order to serve its purpose. System identification deals with the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



15

problem of building the mathematical models of dynamical systems relating to the input 

and output data. A crucial point in the process of identifying a system is the selection of a 

candidate model. The choice o f the model structure will greatly influence the identifica

tion process and its results. The criterion of model equality is normally based on how well 

the model could perform when attempting to fit the measured data. A prior knowledge 

regarding the system would be very helpful in choosing model structure, although some 

information may be learned from analyzing measured data, if  they are not a prior given.

The following, four different types of model structures will be briefly discussed, 

although, only one will be use later in this work, but it is worthwhile to introduce the dif

ferences and characteristics o f the other models.

3.2.1 AR Model

In general, the AR model is a linear discrete time filter, which is excited by ran

dom impulse. AR means Auto-Regressive. The output is an autoregressive by itself. The 

model can be described as follows

p
yk= JLaiyk-i+ek O - 1 )

I

where y k are output at time k, y k_,- are the autoregressive part, at- are the AR model 

parameter and ek is a random, white noise process.

3.2.2 ARX Model

The ARX means the Auto-Regressive with exogenous input. This model is an 

extension of the AR model by additional the exogenous input which is commonly used in 

developing recursive system identification technique. The model can be described as fol

lows

yk = Z  a#k  -  i + X  biltk -  i + ek (3 -2)
= I / = I

where y k are output at time k,  y k _ are the autoregressive part, uk_i are the exogenous 

part, ai and bt are the AR model parameter and ek is a random, whitenoise process.
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3.2.3 MA Model

The MA model represents the Moving-Average term. The model can be described 

as follows

p

T , aiek - i +ek (3-3)
i  = 1

where at are the moving average parameters and eh_f are w hite , gaussian noise term.

3.2.4 ARMAX Model

The ARMAX model includes the same extension as the AR model to an ARX 

m odel. The ARMAX means the AutoRegressive Moving Average with eXogeneous input 

model, the model can be described as

yk = Z a,yk -,-+ Z biuk - r+ Z ciek - *+ek (3 -4)
/• = 1 /• = 1 1 = 1

where a /5 b -t  and cj are AR1V1AX parameters. The model contains the moving average

terms of noise dynamic which are difference from ARX model.

3.3 Least-Square Method

The Least-Squares method is a basic technique for parameter estimation. The 

method is particularly simple if  the model has the property of being linear in the parame

ters. Karl Friedrich Gauss formulated the principle of Least-Squares at the end of the eigh

teenth century and used it to determine the orbits of planets and asteroids13. Guass stated 

th a t, according to this principle, the unknown parameters o f a mathematical model should 

be chosen in such a way that

The sum o f  the squares o f  the differences between the actually observed and the 

computed values, multiplied by numbers that measure the degree o f  precision, is a mini

mum.

In great many different fields including the system identification applications, the 

Least-Squares method reached a significant achievement, and was modified according to 

different requirements.
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3.3.1 Batch Least-Square Solution

The Batch Least-Square estimation is the technique to determine the parameters in 

such a way that the outputs computed from the model agree as closely as possible with the 

measured variables y(i) in the sense of Least-Square.

For a mathematical model that can be written in the form

yU)  = <p i (0 © i + <p2 O' ) 0 2  + --- + «pll(O0 n = <pr (O 0  (3-5)

where y  is the observed variable, 0 l5 0 2 , 0 „ are parameters of the model to be deter

mined, and cpj, cp2, —, cp/f are known functions that may depend on other known variable.

The Batch Least-Square solution can be obtained by minimizing the Least-Square 

lost function

0 (e .  0  =  i  Z  0 ( 0  -  <pr (0 9 )2 (3.6)
“ /  = I

which results in

0 = (O r O )_1cI)r r  (3.7)

3.3.2 Recursive Least-Square Estimation

In many cases it may be necessary to estimate a model on-line while the process is 

in operation. The model will be updated when the new observations are available. Hence 

for computing efficiency, it is desirable to arrange the algorithms in such a way that the 

results obtained previously can be used for on-line updating. This way of computing the 

estimates is called recursive.

TAssume that the matrix O(Z) has gull rank, that is O ( 0 ^ ( 0  is nonsingular, for

7* - 1
all t > tQ. Given 0 (/0) and W(tQ) =  (O (/0 )O (/0)) , the Least-Squares estimate 0(7) 

then satisfies the recursive equations

Z(l+  1) = W(l+ l)<p(/+ I ) 7  = --------------------------   (3.8)
[ l + q>(/ + I )F r(0 < p ( /+ I) ‘ ]

W(t+ 1 ) = 0 r( / ) [ / -< p ( /+ l) Z ( /+  I)] (3.9)
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0 (7 + 1 ) = 0 (f) +  Z ( /+  l)Ly(Ar+ 1) - y ( k +  1 )] (3.10)

where y (k+  1) and y(k  + 1) are the observation and predicted values, respectively. Here 

no matrix inversion is needed and no approximation has been made in the derivation of the 

Recursive Least-Square. Therefore, the Recursive Least-Squares estimate and the off

line estimate are theoretically identical. This is the advantage of the Least-Squares 

method. The updating of W(t+ 1 ) is not always numerically robust. Rounding errors 

may accumulate and make the computed W(t + 1 ) indefinite, even though it is theoreti

cally always positive. When W(J + 1 )  becomes indefinite, the parameter estimates tend to 

diverge. A way to overcome this difficulty is to use a square root algorithm. Define 

bs (/ + 1 ) through

FF(/+ 1) = K ( / +  1 ) N( /+  i f  (3.11)

and update K ( / +  1) instead of W(i+ 1). The initial values W(0) and 0(0)  can be 

obtained by the off-line Least-Squares method.

3.4 Open-Loop System Identification Algorithm

When the open-loop system needs to be identified, one normally excites a system 

directly by a random signal without a controller, and identifies the system from input and

output data. Chen et al. 14' 13 used the finite difference model named AutoRegressive with 

eXogeneous input (ARX) to identify a state space model from an open-loop system. This 

model, however, is derived through Kalman filter theories. The method requires a large 

number of the ARX model order which consumes a lot of computational time. Juang et

al. 15 also developed a technique o f implementing a state observer so that the ARX model 

order can be reduced.

3.4.1 Algorithm for Open-Loop System Identification

Given a linear, stochastic, finite dimensional, discrete-time , time invariance sys

tem . The system can be expressed by

xk+ 1 = Axk + Buk + Kk ( 3 •12)

Vk = Cxk + »k C3-13)
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where xk e  R"xl is the state vector, tik e  Rsxl is the input vector, y k e  Rmxl is the output 

vector, [A, B ,C]  are the state-space system matrices. The sequence o f the process noise 

Kk and the measurement noise uk are assumed to be Gaussian , white, zero-mean, and

stationary with covariance O and R  respectively.

By introducing a typical Kalman filter, equation (3.12) and (3.13) can be rewritten 

in the form

where sk is the residual output and ek -  y k - y k, xk and y k are the estimated state vector

and output vector respectively, K  is the steady state Kalman filter gain. At steady-state, 

the error covariance, x , reaches a constant value which satisfies the steady state algebraic 

Riccati equation

= Axk + Buk + AKek (3.14)

h  =  C i k  +  * k (3.15)

X = A x A T- A XCT[R + CxCT] lCXA T+ 0 (3.16)

The steady-state Kalman filter gain matrix is

K  = A x C t [R + C%Ct ]~' . (3.17)

I ^The existence of K  is guaranteed if the system is detectable and (A, O ~) is sta-

bilizable.

The system in equation (3.14) can be expressed in the form 

xk +l = ( A -  AKC)xk + Buk + AKyk

h  = C h  + Zk

The z-transform of the open- loop state space equation (3.18) and (3.19) are

(3.19)

(3.18)

x(z) = ( z - A ) ~ l[AKy(z)+Bu(z)] 

y{z) = Cx{z) + s (j)

By inserting (3.21) in (3.20), one gets

(3.20)

(3.21)

y(z) = C ( z - A ) ~ l [AKy(z) + Bu(z)]+s(z) (3.22)
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00
Taking the inverse z-transform of equation (3.22) with (z - A )  = ^  A‘ ~ lz~‘.

i=  i
The new relation between the input and output with zero initial condition can be described 

as

00 00 

h  = p -23)
/  =  I ( = 1

where A = A - A K C  , however, one can use the Kalman filter gain K  to make A be

asymptotically stable (A' 1 = 0 ) for a sufficiently large number of p , y k approaches y k . 

Thus equation (3.23) becomes

P P

y t  -  Z  c * ~  W - ,  + Z  c l ‘~ + h  P -24)
< =  I / =  1

by comparing with the typical form of ARX model described by equation (3.2), one can 

get

ai = CA‘~ lAK  and bi = CA‘~ lB i=.1,2,............ ,p (3.25)

The model described by equation (3.24) is the ARX model, which directly repre

sents the relationship between the input and output of the open-loop system. The coeffi

cient ai and bi can be estimated through the Least-Squares methods from random

excitation input uk and the corresponding output y k . For a number of data points N,  the 

Batch Least-Square solution is

®okid = Y<$okjd ( O ^ y O ^  ) (3.26)

where

Y = \yoy \: .yp- y N- i \  , Qokid = V>xa x...bpap\

and
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cDok id

0  u Q . . .  Up _ x

o y 0 -  yP~ i

o o o Ur
0  0  0  y Q

ui V - 2  

^V - 2

UN —p  -  1

y  <v-p - ij
k -  1The open-loop system Markov parameters Ys(k) = CA B and Kalman filter

, k -1Markov parameters YK(k)  = CA AK  can be obtained from the coefficients at- and b{ 

as

and

W  = K + Y . a i Ys ^ - 0
i= 1 

k

i= 1

(3.27)

(3.28)

However, since the system Markov parameters are uniquely determined for each 

system, one can realize system matrices (A, B, C) directly from the open-loop system 

Markov parameters and the Kalman filter gain K  from the Kalman filter Markov parame

ters which will be shown next section.

3.4.2 Realization of Open-Loop Plant and Kalman Filter Gain
In mathematical terms, realization can be thought of as a factorization of a param

eter sequence of the open-loop system Markov parameters Ys (Jc) = CAk~ XB to obtain 

a set of (C, A, B) that preserves the prescribed relationship between the parameters in the 

sequence. The eigen system realization algorithm (ERA) can be applied to the combined 

system Markov parameters sequence to compute a realization of the open-loop plant 

matrices and Kalman filter gain. This can be done by first forming the Hankel matrix of 

Ys(k) as
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H ( k -  1) =

Ys(k) Ys( k + \ )  ... Ys (k + s)
F5 (At+1) Ys(k + 2 ) ... r s (fc + j + l )

Ys(k + r) Ys(k +  r  + 1) ... Ys(k + r + s)

(3.29)

Using the singular value decomposition , the Hankel matrix H(0) is factorized as

H(  0) = (TLVT (3.30)

A realization for n -  th order discrete state space model can be shown to be

_ i _\

*  =  2

B = ! 2V TX  ■ii w n ni

C  =  x„o

(3-31)

(3.32)

(3.33)

where S;| is the upper left hand nxn partition of E containing the n largest singular val

ues which are in the monotonically non-increasing order along the diagonal. Un and VH

are the matrices formed by the first n columns of singular vectors associated with the n

Tsingular values from U and V  respectively. X ni = , and

TXno = [f„o0/to. . .0 „ J  while ni are the number of inputs, and no are the number of 

outputs.

The Kalman filter gain can also retrieved from the open-loop Kalman filter 

Markov parameters YK(k\ and A, C matrices through the Least-Square as follows

T  -1  T
K  = (0  0 )  O

w
W ) (3.34)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



23

CA

where

CAk

3.4.3 Computational Steps for Open-Loop System Identification

1. Collect all input u and output y  data from the experiment.

2. Form an information matrix and the output vector. Use the Least-Square tech

nique to estimate the ARX model parameters a t-, bi and the observer Markov parameters

by choosing the appropriate ARX model order p  from equation 3.26.

3. Obtain the open-loop system Markov parameters Ys(k) and the Kalman filter 

Markov parameters YK(k) from equation 3.27 and 3.28 respectively.

4. Realize the system matrices from the open-loop system Markov parameters by 

using eigensystem realization method from equation 3.31, 3.32, and 3.33 , and the Kal

man filter gain from the Kalman filter Markov parameters and matrices A, C from equa

tion 3.34.

3.5 CIosed-Loop System Identification Algorithm

The closed-loop system and Kalman filter Markov parameters are first calculated 

from the estimated coefficient matrices of the ARX model. The open-loop system and 

Kalman filter Markov parameters are then derived from the closed-loop system, Kalman 

filter Markov parameters, and known controller Markov parameters. The open-loop state- 

space model is realized by using singular-value decomposition of a Hankel matrix formed 

by the open-loop system Markov parameters. Finally, an open-loop Kalman filter gain is 

calculated from the realized state-space model and open-loop Kalman filter Markov 

parameters through the Least-Square method.

3.5.1 Algorithm for Closed-Loop System Identification

Given a linear, stochastic, finite dimensional, discrete-time ,and time invariance 

system, the system can be expressed by

xt+i  = Axk + Buk + K/, (3.35)
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yk = Cxk + u* (3.36)

where xk s  R"x 1 is the state vector, uk e  Rsx[ is the input vector, y k e  R mxX is the output 

vector,and [A,B, C] are the state-space system matrices. The sequence of the process

noise Kk and the measurement noise v k are assumed to be Gaussian , white, zero-mean,

and stationary with covariance O and R  respectively.

One can derive a steady-state filter innovation model

xk + ! = Axk + Buk + A Kek (3.3 7)

y k = Cxk + zk (3-38)
where x k is the priori estimated state, K  is the steady-state Kalman filter gain, and ek is

the residual after filtering ( ek = y k -  Cxk ). The existence of K  is guaranteed if  the sys

tem is detectable and (A, Q 1 2 ) is stabilizable.

On the other hand, any kind of dynamic output feedback controller can be modeled

as

Pk+\ = AdPk+Bdyk C3-39)

“k = c dPk+Ddyk+rk (3-4°)

where Ad, Bd, Cd and Dd are the system matrices of the dynamic output feedback control

ler, p k is the controller state, and rk is the reference input to the closed-loop system.

From equation (3.37) to (3.40), the augment closed-loop system dynamics 

becomes

TU + 1 = A c r\k  +  B cr k  + A cK cH  (3 -4 0

yk = CcVk + *k (3-42)

where

*1* = x k II A + B D dC BCd
. B C =

B

Pk BdC Ad^ 0
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Ac K  =
A K  + BDC 

B ,
C„ ==  [co] (3.43)

Kc can be considered as the Kalman filter gain for the closed-loop system and the exist

ence of the steady-state Kc is guaranteed when the closed-loop system matrix Ac is nons

ingular. Substitute equation (3.42) into (3.41) yields

tifc+i = Ar\k + Bcrk + AeKcyk (3.44)

where A -  Ac - A cKcCc is guaranteed to be asymptotically stable because the steady- 

state Kalman filter gain Kc exists. The 2  transform of equation (3.42) and (3.44) yields

— .  - l ,

q(z) = ( r - ^ )  [AcKcy(z) + Bcr(z)] 

y(?) = Ccr\{z) + z{z)

Substituting equation (3.45) into (3.46), one has

X ~) = Cc( z - A ) ~ X[AeK j ( z )  + B s iz ) ]  + 6 (2 ) 

The inverse 2  transform of equation (3.47) with

( z - A ) - 1 = Z * ' " 1-" '

(3.45)

(3.46)

(3.47)

i  =  1

with zero initial condition yields

y k =  Z c cA‘ AcKcy'k-i+ Z c cAi Bcrk~i + zk
1 = 1 (•=1

(3.48)

Since A is asymptotically stable, A 1« 0 if i > p for a sufficient large number p . 

Thus equation (3.48) becomes

yk * Z c^k - i + Z dirk - i +ek
i = 1 1 = 1

(3.49)

where

C<- ^ C ' A ' - ' A ' K ,  , di = CcA i~ lBc (3.50)

The model described by equation (3.49) is the ARX model , which directly repre-
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sents the relationship between the input and output of the closed-loop system. The coeffi

cient matrices cf and di which are the closed-loop ARX model parameters can be

estimated through Least-Square methods from random excitation input rk and the corre

sponding output y k . For a number o f  data point M, the Batch Least-Square solution is

where

® clid  ~  Y '& c lid  ( ®  c l id ®  cl id  )

Y = D W - V - ^ v - i l  ’ Qdid = [d ic i---dPcp]

(3-51)

® c lid  ~

0  rQ ... rp _ l

o y 0 ••• y P~i

0  0  0  r,o

N  -  2

y N -  2

' N - p -  1

y x - p - \0  0  0  y Q

The z transform of the open-loop state-space model (3.37) can be used to derived 

u(z) an d y (r) as

x(z) =  ( z - A T l [Bu{z)+AKs(z)] (3.52)

Substituting equation (3.52) to the z transform of equation (3.38) produces

,-iy(z) = C ( z - A )  l[Bu(z)+AKe(z)] + s(z)

OO 00

= £  r s (.k):-ku(.z) + £  r K(k)z-t e(z)
k = 1 k = 0

t k - I

(3.53)

again where Ys(k) = CA B  is the open-loop system Markov parameters,

YK(k) = CAk XAK is Kalman filter Markov parameters, and YK(0) = /  is an identity

matrix. Similarly, substituting the dynamic output feedback controller equation (3.39) into 

(3.40), and the closed-loop state-space model equation (3.41) to (3.42) produces

u(z) = ]T  YD(k)z ky (z )+r(z)  
k = 0

(3.54)
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y(z)  = 2  Ys c (k)z ku(z) + Y ,  YKCik)z  L'e(z) (3.55)
k =  I k =  0

A r-lwhere YD(Jk) = CdAd ~ B d is the controller Markov parameter,

Ys c (k) = CcA k l Bc is the closed-loop system Markov parameters, and 

Yxc(k) ~ CcAk-  lAcK c is the closed-loop Kalman filter Markov parameters. Note that 

r D(0) = Dd and Ykc(0) = I.

The z transform of the ARX model equation (3.49) yields

(3.56)l ~  Z C i Z  =  Z d iZ  ' ' ' ( - )  + s ( z )

v  i  =  1 '  i  =  1

Applying long division to equation (3.55) 

y(z) = { d ^ 1+(d2 + c ld l)z~2 + [d3 + c l(d2 -t-cld l) + c2d l]z~J + ...}r(z)

_ l  _3
+ { I + c {z + ( c lc l + c 2)z ~ + [cl (c lc l +c2) + c 2c l + c3]z + ...} s (z )

After comparing with equation (3.54), the closed-loop system and Kalman filter 

Markov parameters can be recursively calculated from the estimated coefficient matrices 

of the ARX model:

~  dk + Z  ci ^ s c ( k ~ 0
i  =  I

k

V )  “  Z ^ / E C * * " ')
i =  1

(3.57)

(3.58)

Note that Ysc(0) = 0, T /^ O )  = / ,  and c;. = dt- = 0, when i > p .

The open-loop system Markov parameters Ys(k) , and the Kalman filter Markov 

parameters YK(k) can be obtained by substituting equation (3.54) into (3.55), yields

y(z)  =
f  oo N/'oo \  oo oo

Z  W - ' l  Z  + z  J s W ^ G O  + Z  W 1'! - )
\ t  =  1 '  \ t  =  0  '  A- =  1 A- =  0
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= X 5^ z + Z *r(z)+ Z rA-(̂ )- *■£(-)
A- =  1 A- =  1 A- =  0

-A- (3.59)

where 5k = ]T  Ys(OYD( k - i )  .
i= 1

Rearranging equation (3.59) in the form

f  °o \  oo oo

/ -  Z  5a-"A T (-) = Z  r sW -~ A/‘(“) + z Yd k)z ~k^ z ) (3-6°)
^  A- =  1 '  A -=  1 A- =  0

By applying long division to equation (3.60) , and comparing it with equation 

(3.55) . The closed-loop system Markov parameters can be described recursively in the

open-loop system and the controller Markov parameter YD(k) = C j A j -  lB d 

J j  A-

YscV) = YsV) +  Z  h Ys c U - k )  =  YsO)+ Z  Z  Ys « ) YDV c - i ) Y s c ( j - k ) (3.61)
A- =  1 A- =  1 1 =  1

The closed-loop Kalman filter Markov parameters can be recursively expressed in 

terms of the open-loop system and Kalman filter Markov parameters, and controller 

Markov parameters

y k c 01  -  y k O ) +  Z  ^ k YK c O ~ k ) 
k = 1

J A-
ykV ) + Z Z^C O W -or^-zt)

v A- = 1 / = 1
Finally, rearranging equation (3.61) and (3.62), yields

j  a-
Ys(f) = YscU)-  z Z Ys{i)YD{k-i)Ysc(J-k)

A- = 1 / = 1 
j  A-

(3.62)

(3.63)

(3.64)W  = Ykc01-  Z Z YsO)YD(k-i)YKC( j -k )
A- = 1 / = 1

The open-loop state-space model can be realized by using singular-value decom

position for a Hankel matrix formed by the open-loop system Markov parameters. In addi

tion, the open-loop Kalman filter gain can be formed from the open-loop Kalman filter
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Markov parameters and state-space matrices A, C as described in section 3.4.2.

3.5.2 Computational Steps for Closed-Loop System Identification

1.Collect the reference input r and the corresponding output y  data from the 

experiment.

2. Form an information matrix and the output vector using the Least-Square tech

nique to estimate the ARX model parameters cjt di by choosing the appropriate ARX

model order p  from equation 3.51.

3.Compute the closed-loop system Ysc(k) and Kalman filter Markov parameters 

YKC(k) from the estimated coefficient matrices of the ARX model from equation 3.57 

and 3.58.

4.Compute the open-loop system Ys(k) and Kalman filter Markov parameters 

YK(k) from the closed-loop system Ysc(k) , Kalman filter Markov parameters YKC(k) ,

and controller Markov parameters YD(k) calculated from the known controller dynamics

from equation 3.62, 3.63 and 3.64.

5.Realize the open-loop state-space system matrices from the open-loop system 

Markov parameters by using the Singular-Value Decomposition method from equation 

3.31,3.32 and 3.33.

6 .Estimate the open-loop Kalman filter gain from the open-loop Kalman filter 

Markov parameters and realized system matrices A, C from equation 3.34.

3.6 Coordinate Transformation

For any dynamic system, the realized state-space model is not unique even though 

its system Markov parameter is unique. The state-space model needs to be compared with 

the analytical model in the same coordinate. A unique transformation matrix is derived to 

transform any realized state-space model in a form usually used for a structural dynamic 

system; therefore, any identified system parameter can be compared with the correspond

ing analytical parameter. This kind of transformation will exist only when one-half of the 

states are measured directly. If this condition is not satisfied, other transformation matri

ces may exist, but they usually are not unique.
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Consider a structural dynamic system

Mv + Dv + Sv = Q.u (3.65)

where v is displacement, u control force, H control influence matrix and M, D and S  are 

m ass, damping and stiffness matrices, respectively. The state-space model can be 

described as

*  =  A moX +  B m ou

y  = c mox

where x = 0  I  
1 x

B

rO1

> mo
)j m  ln

(3.66)

, and Cmo is the out

put matrix. If half of the states can be measured directly, then Cmo = [/ o] • Convert the

realized discrete-time system ^4  q  (fj to a continuous-time system |~AC Bc (fj - If A is 

diagonalized by matrix ¥ ,  then

*¥ lA*¥ = A

Ac =

Bc = ( A - I )  ACB 

where Ts is a sampling time. It is also assumed that the matrix 

Let the transformation matrix T be

r  = [r, r,] =

c
CA,

is full rank.

C
CA,

-1

(3.67)

then the following transformation are

11 ’ c ’ II1 r.' 
, >?,

c r l c r 2 _ 1 0

CAc c a cy 1 c a j 2 0 /
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T_1/1CT = c
^ [ Y i t 2] =

C A J l CAc y 2 _ 0 /

9 A c c a ; r l CATc Y2 J  T

CT = [cY t CT2] = [ / o]

Note that CY = Cmo. Finally, the identified continuous-time model jA c Bc (fj

can be transformed in the triple form Y_l/4CY Y' lBc CY Rewrite the transformation

result in the state-space form, so both the identified and analytical models are in the same 

coordinate.
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CHAPTER IV 

PREDICTIVE CONTROL

4.1 Introduction

The concept of predictive control was introduced simultaneously by Richalet and

Cutler and Ramaker in the late seventies17. Predictive control belongs to the class of 

model-based controller design concepts. That process model is explicitly used to design 

the controller. Predictive control is not the only model-based controller design method. 

Others are pole-placement control and linear quadratic (LQ) control. In Figure 4.1, u 

denotes the controller output, y  denotes the process output and w denotes the desired out

put.

Design
Parameters Model

Controller
Param eters

Controller

Controller
Design

Process

Figure 4.1 Model-Based Control

If the process is linear and there are no constraints and the desired process output is 

simple, then all of the above -mentioned model-based controllers can yield approximately 

the same results. This can be explained by the fact that these controller design methods 

yield linear controllers which after some manipulation are of the same structure and have a 

sufficient number of degrees of freedom. The controller parameters are, however, deter

mined using a different design methodology, or philosophy. From a designer’s point of
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view the methods differ in the design parameters that are used to obtain the desired behav

ior of the control system.

Section 4.2 starts with the process models and prediction that the Diophentine 

equation is used to derived an /-step-ahead predictor. In section 4.3, disturbance models 

are presented. Two types o f disturbances are “deterministic” and “stochastic” distur

bances. Section 4.4 explains an approach to process modeling and prediction. The / -step- 

ahead predictor can be written in matrix form which has prediction horizon as a parameter. 

In section 4.5, criterion functions in terms of controller output weighting and structuring 

the controller output are explained. Section 4.6 explains the predictive control law deriva

tion and the computational steps are also explained in section 4.7.

4.2 Process Models and Prediction

In order to predict the process output over the prediction horizon, an /-step-ahead 
1 8predictor is required . An /-step-ahead prediction of the process output must be a func

tion o f all data up to / = k  (defined as the vector ip), the future controller output

sequence a and a model of the process P . Such an i -step-ahead predictor can thus be 

described by

y{k + /) = /(« ,v i/ ,P )  (4.1)

where f  is the function. Clearly, /-step-ahead predictors depend on the model of the pro

cess. A general process model is the transfer-function model

q~dB J q ~ l)
y{k)  =  -/ - '  » ( * - ! )  (4.2)

A p Cq~ )

where d  is the time delay of the process in samples (d  > 0) and the polynomials Ap and 

Bp are given by

AP(<rl) = l + a i q~x + ■■■+ a,lAq~,'A

Bp(q~l) = b0 + b {q - 1 + . . .+ b llBq-"°

where nA and nB are the degrees of the polynomials Ap and Bp respectively.

The transfer-function models have the following advantages. First, a minimal
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number of parameters are required to describe a linear process. Second, stable and unsta

ble processes can be described by using transfer-function models. The main disadvantages 

are an assumption about the order o f the process must be made, and the prediction of the 

output of a process described by a transfer-function model is very complicated.

The process output at t = k + i based on model (4.2) can be obtained by substi

tuting fc + i for k  in equation (4.2)

q~dBn(q~[)
y tk  + i) = '  P + . - u ( k  + i - l )  (4.3)

Apia )

Using the Certainly Equivalence principle, and replacing the true d , Ap and Bp by

their estimates d ,A p and BP yields

q-dB C q~l)
y ( k  + i) = — *---------u(Jc + / — 1) (4.4)

A P(q~l)

where the symbol A denotes estimation. Equation (4.4) can be rewritten as

y (k  + /) = q~dBp (< r* M *  + i -  I ) -  q(AP -  \ ) y ( k +  i -  1) (4.5)

^ A

Note that q(Ap -  I) = a x +ci2q~x + ... +an q~>,A+ 1 since A P is assumed to be

monic. N o w , y ( k  + /) for / > 1 can be computed recursively using equation (4.5). It also 

notes that the /-step-ahead predictor (4.5) runs independently o f the process. One way to 

improve the prediction is to compute the predictions using equation (4.4) and (4.5) with 

y{k)  replaced by the measured process output y ( k ) . Rewrite equation (4.4) as

A P(q~l)y(k  + 0  = q~dBp 0j~l)u(k  + / -  1 ) (4.6)

Introducing the following identity

4 -  = £ , + r ' £ L= » ^ f =  i - r ' p ,  (4.7)
A p A p

where has a degree less than or equal to / -  1 and F t- is of degree nA -  1 . Equation 

(4.7) is so called a Diophantine equation whose solution can be computed manually using
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long division or a recursive algorithm by a computer. Note that if nA > 0 , Ei contains the

first / elements of the impulse response of 1 /  A p .

Multiplying equation (4.6) by Ei and using (4.7) yields

y (k  + /) = q~dEtB p(q~x)u(k + / - ! ) +  Fjy(k) (4.8)

Using equation (4.5) with y(k) replaced by y(k)  to correct the model for differ

ences between the model and the process yields

y (k  + i) = q-dEfB p(q-[)u(k + i -  I ) +  F,y(k) (4.9)

Multiply equation (4.7) by B P

EiB p = ^ - q ~ i^ E  (4.10)
Ap Ap

Substituting the factor EtB p in equation (4.9) by the right-hand side of (4.10) 

yields the following predictor-corrector model

X k  + i) = cC ^ -P tl(<k  + i - \ ) + F i[y(<k ) -y { k ) ]  (4.11)
^p

4.3 Disturbance Models

In order to take disturbances into account when predicting the output of the pro

cess, the disturbances must also be modeled. For this purpose, the model equation (4.2) is 

extended with a disturbance term £(&) that represents the totality of all disturbances and 

is assumed to be located at the output of the process

q-dB X q - x)
y W  =  ,  r u  < k ~ O + 5(*) (4-12)Ap(q~l)

The disturbance £(£) may in general be a sum of deterministic and stochastic dis

turbances. Prediction of the process output at t = k + / is realized by

q~dB ( q ~ x)
y(k  + i) = L  + + + (4.13)

Ap{q-X)
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4.3.1 Deterministic disturbances

Deterministic disturbances mostly can be characterized by

= 0 (4.14)

where <j>£(<7-1) is a polynomial. Note that only the class o f the disturbances characterized

need to be known and not its exact waveform. The /-step-ahead prediction characterized

by equation (4.14) is given by

h ( q - l) W + 0  = 0 (4.15)

Because the /-step-ahead prediction for the process output must be a function of u 

and o f all data up to time t = k , the following Diophantine equation is used in order to 

write £ ( £ +  /) as a function of data up to time t = k

= £,. + <?-'£ => £ , 4  = 1 -  q- 'F ,  (4.16)

Multiply equation (4.15) by Ei yields using equation (4.16)

W  + i) = F £(k)  (4.17)

Note that ^(k) in equation (4.17) can be computed from

€(*) = 1) (4.18)
A p

The /-step-ahead predictor for the process (4.12) and the disturbances described

by equation (4.14), become (using equation (4.16) and (4.18) and after applying the cer

tainty equivalence principle):

y(k  + /) = + / - ! )  + F,[y(k) - X * ) ]  (4-19)
Ap(q~l)

4.3.2 Stochastic disturbances

A stochastic disturbance appearing on the output of the process is assumed to be

= & « (* ) (4-20)
P
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where e(k) is a discrete white noise sequence with zero mean and variance a 2 . Cp and 

D are monic polynomials with degree nc  and nD respectively. The prediction of the dis

turbance at / = k  + / is given by

C„
(4.21)

Separation of future and past terms is realized by using Diophantine equation

C FZE = £.  + q-i—L
Dn ' 1 Dp p

where Ei and Fi are polynomials with degrees

(4.22)

nE = / - I if nD> 0 ,

nE = m i n ( i -  1 , nc ) if  nD = 0  and nF = max(nc -  i, nD -  1 )

F :
Equation (4.22) becomes £,(k + i) = Eie(k + i) + jj-e^k) 

Recall equation (4.12) with £(£) given by (4.21)

(4.23)

q~dBp(q~l)
A D(q~{)

yW) = 1 , u(k ~ l ) + Q Le(k) (4.24)

Multiplying (4.23) by Fi / Cp and rearranging the result yields

F,- F,

t l n  = i .

q~dB n

A P
(4.25)

Equation (4.25) shows that the second term in (4.23) can be computed from data 

available at l = k  and is thus known. The /-step-ahead predictor for the process output 

(4.12) now becomes, using (4.17), (4.23) and (4.25)

q~dBn F:
y (k + i )  = i _ ^ , ( £ + / - l )  + - i

a p  s

q~dBn 
y(k) - ——Zu(k -  1 )

Ap
+ Ete(k + /) (4.26)

This predictor, however, contains a term that is unknown (Eie(k+ / )).  The best /'-

step-ahead predictor can be obtained by taking the conditional expectation 8  o f y (k  + i) 

given K ( all data up to / = k)  and the future controller output sequence u
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j>(£ + /) = £\y(k+i) \u,  Ns]

F, r  a~dB i
(4.27)

c fdBn F-
-£*/(£+ /'- l )  + —

a p c p A p

The prediction error e(k + /) for the / th predictor is given by

s(it + /') = y(k  + i ) —y(Jc+ /) = E ^ ^ k  + i) (4.28)

Since this prediction error consists o f future noise only, and because e(k) is

assumed to be white noise with zero mean, the variance of the prediction error is minimal.

For this reason equation (4.27) will be called the minimum-variance (MV) /-step-ahead 

predictor. Applying the certainty equivalence principle finally yields

j>(* + /) = £ t!L lu (k  + i -  1 ) + ^ [ y ( k ) - X k ) ]  (4.29)
Ap Cp

where y(k)  is given by

q~d Bn
y(k) = L - P u( k - \ )  (4.30)

A p

Remarks

1. The polynomials A , 5  and the estimated time delay d  can either be esti

mated by a suitable identification method or can be based on the true transfer function of 

the continuous process.

2 . The polynomials Cp and Dp in the disturbance model are often used as design

parameters which provides an easy and efficient way to tune the regulator behavior and 

the robustness of the control system.

3. If T = Cp = Dp, equation (4.22) shows that, for all / ,  = 1 and Ft- = 0. 

As a result (4.29) is no longer corrected for modeling errors and disturbances. Note that

the choice T =  Cp — Dp corresponds to an assumption that the process output is dis

turbed by white noise only.
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In order to split up the /' -step-ahead predictor in parts that are known at time t — k  

and future signals, another Diophantine equation is introduced

(4.31)

where, G{ and Hi are polynomials. The degree of G-t is less than or equal to i — d  -  1 and 

the degree of H-t equals max(/zs  — i + d,  n ( -  1). Also note that the coefficients of Gt are

equal to the first i - d  coefficients o f the impulse response of the model. This implies that 

g i + i j  = S i j  making it unnecessary to distinguish separate coefficients for Gi . There

fore, G-t can be simplified into

Using equation (4.31) the / -step-ahead predictor (4.29) becomes (with / > d  + 1):

Because the degree of Gt- is less than or equal to i — d  -  I ,  the term

G(u{k + i - d  -  I) involves future controller output only. The other terms in (4.33) do not

depend on future controller outputs and hence are fully determined at t = k.

4.4 Approach to Process Modeling and Prediction

It was shown in the previous section that the transfer-function model can be used 

to model a wide variety of processes. This is due to the fact that the degree o f Ap and Bp

in equation (4.2) can be chosen arbitrarily. Also, the stochastic disturbance model (4.20) 

can be used to describe all stationary random processes with rational spectral density. It 

can also be used to derived /-step-ahead predictors for deterministic disturbances charac

terized by <j>̂(<7-1 )!;(&) = 0 . The stochastic disturbance model (4.20) is quite general and 

hence suited for predictive controller design. Another argument for using (4.20) to

(4.32)

(4.33)
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describe the disturbance is that if Cp and Dp can be chosen by the designer of the control

system, one will obtain a powerful tool for tuning the robustness and regulator behavior of 

the close-loop system. The above-mentioned considerations have resulted in the subse

quent use of the following process model for deriving the i -step-ahead predictors

q~dBn Cn
y ik )  = — r+ u ik  -  1) + -A>(£) (4.34)

A p  u p

where the degrees of the polynomials are arbitrary and the disturbance model polynomials 

Cp and Dp can be chosen by the designer. The MV /-step-ahead predictor based on this 

model after applying the certainty equivalence principle is given by

H,- F,
y(k  + /) = GjUQk-t- i - d  -  I) + ^ L u( k - I )  + — \y(fe)-y(k)]  (4-35)

A TA p

where y(k)  is given by (4.30) and T by definition equal to Cp . G,-, H( are obtained by

solving (4.31) and F( is obtained by solving (4.22) with Cp and Dp replaced by T and

Dp respectively. Table 4.1 shows how the parameters of the general process model (4.34)

must be selected to obtain the model that is used in some well-known predictive control

lers.

Controller Model Ap B p c p D p

DMC FSR 1 Arbitrarily 1 A

PCA FIR I Arbitrarily 1 A

MAC FIR 1 Arbitrarily 1 A

GPC ARIMAX Arbitrarily Arbitrarily Arbitrarily V

EPSAC ARIMAX Arbitrarily Arbitrarily Arbitrarily V

EHAC ARIX Arbitrarily Arbitrarily 1 V

Table 4.1 Process models used by some well-known predictive controllers
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Note that DMC is Dynamic Matrix Control, PCA is Predictive Control Algorithm,

MAC is Model Algorithmic Control, GPC is Generalized Predictive Control19'21, EPSAC 

is Extended Prediction Self-Adaptive Control, EELAC is Extended Horizon Adaptive Con

trol, FIR is Finite Impulse Response model, ARIMAX is Auto-Regressive Integrated 

Moving-Average exogenous model, and ARIX is Auto-Regressive Integrated exogenous 

model.

Matrix Notation

For convenience, the /-step-ahead predictors (4.35) for i = d  + 1,.. . ,  hp can be 

written in matrix notation

[y] = [G][u] +  [ / f ] t f ]  + [F][c] (4.36)

where

[y] = [y(k + d + I ) ,  . . . ,y (k  + hp)]r  

[u] = [u(k ) , . . . ,u (k  + hp - d -  l ) ] r

[u] = [ u ( k - l ) , u ( k - 2 ) , . . . ] r 

[c] = [c(it), c {k — 1 ), . . . ] r

with u(k) =
Ap

C ( k )  =  y < -k )  - y ( k )

T

and the dimensions of [y], [2/], [2/] and [c] are given by 

[y] = h p - d  x  1

[m] — hp — d  y. 1 

[22] = mcix(tiH ) + 1 x 1 

[c] = maxQip) + 1 x 1 

The matrices [G], [H] and [F] are built up of the elements of the polynomials
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Gj, Ht, Fj respectively

So 0  . . 0

[G] = Si So ■. 0

S Hp- d - \ ... . ■ So

m  =

H-
d+ I

Hi

[F] =

F-
d +■ I

F,

F,.

Note : hp is called prediction horizon.

4.5 Criterion Functions

Criterion functions for use in predictive controllers are discussed in this section. 

Predictive controllers are obtained by the minimization of a criterion function that yields 

the predictive control law. Design objectives such as overshoot, rise time, settling time 

and damping ratio can be easily understood and specified. However, it is difficult to mini

mize criterion functions based on such objectives, because the relationship between the 

controller parameters and these criteria is in general highly nonlinear. Analytical solutions 

are seldom available. This is why mathematically convenient criterion functions are often 

used.

4.5.1 Controller Output Weighting

The foremost method of resolving problems with minimum-variance control 

results is to use the following criterion function
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hp
S  \y(k + i ) - w ( k  + i)]2 + pn(k + i - \ ) 2 (4.37)
/ = i

where p is a weighting factor (p > 0 ). Here two conflicting objectives arise, the minimi

zation of the tracking error and the minimization of the controller output. The weighting 

factor p is introduced and employed as a trade-off between these objectives. Increasing 

the weighting factor makes the controller output variance more important in the criterion 

function. Minimization of the criterion function results in a less active controller output. 

However, tracking of the trajectory by the process output becomes less important resulting 

in a slower process output.

The use o f the weighting factor p as proposed in equation (4.37) has two major 

disadvantages.

1. Although the effect of p on the close-Ioop system is clear, it is hard to choose 

p such that the system behaves as desired because p depends on the process and must 

usually be determined by simulation in combination with the often-used trial-and-error 

method.

2. The use of p yields a steady-state error which is a function of p for type 0 pro

cesses. This is caused by the fact that for type 0 process, z/(Ar) is constant and nonzero in 

the steady state if the set point and disturbances are constant. Consequently, p affects the 

criterion function in the steady state and hence the steady-state controller output that is 

obtained by minimization of the criterion function.

4.5.2 Structuring the Controller Output

The second way to overcome the problem with minimum-variance control is by 

using prior information about the structure of the controller output required to drive the 

process output to the reference trajectory . An appropriate structure for the future control

ler outputs can be built from the relationship between the controller output and the output 

o f the process.
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4.5.2.1 Structuring the Controller Output using Steady State Arguments 

Corollary 4.1 I f  a stable and linear closed-loop system is driven by a disturbance

E,(k) and a reference trajectory w (Jc) which in the steady state satisfy § f q ~ {)£>(k) = 0

and § w(q~x)w(k) =  0  respectively, then y{k) andn(Jk) in the steady state satisfy1

<K <r‘ M * )  =  o

§(q~x)u(k) = 0 (4.38)

where <j>07-1) is the minimal polynomial o f  <j>=(<7-1) and §w(q~l) : ({) = min{§-_, <f>w} . 

Further, i f  Bp and (j) are coprime and (j).( is a factor o f Ap and (j), then the controller out

puts satisfies in the steady state §u(k)  = 0  where <j) = <b .* P

Using this a priori information with respect to the controller output in the steady 

state, one can minimize the criterion function

hp
J =  'YJ [y(k + i ) - w ( k  + / ) ] 2 (4.39)

/ = l

Under the constraint that the future controller outputs satisfy (4.38), and taking 

into account the following equality constraint:

<j)(<7-t )*/(£ + / ' -  1) = 0 1 < i< hp (4.40)

The dimension of the optimization problem is reduced from hp to 1. Once u(k) is

known, u(k + i -  1) for / > 1 can be computed using equation (4.40). Minimization of 

equation (4.39), taking into account equation (4.40), ensure that equation (4.38) is satis

fied.

Thus, the controller outputs are structured using a priori information about the 

controller output in the steady state. This yields the desired steady state behavior. The 

transient behavior; however, is also a major importance. One can use the relationship 

between the controller output and the process output to determine the transient behavior.

4.5.2.2 Structuring the Controller Output using Transient Arguments 

The control of the output o f the process (4.34) in the absence of disturbances can

be driven to a constant reference trajectory in nB + 1 samples and nA + 1 different con-
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trailer outputs are required. In addition, for /> /? . +- 1, u(k + i — 1) is constant. Hence,
AP

the output of a controller satisfies

Au(k + i -  1) = 0  / > n . + 1
P

and the process output satisfies:

y ( k + i ) = w(k + i) i t . n B + 1

A predictive controller with the same behavior can be realized by minimization

of

hP
J =  ^  [ y ( k + i ) - w ( k  +i)]2 (4.41)

i  = nB +  L

under the constraint

A?/(£ + / ' - l )  = 0 nA + l < i < h p and hp —> oo (4.42)

Comparing equation (4.41) and (4.42) with equation (4.39) and (4.40), the tracking 

error for / = 1 ,..., nB is not included in equation (4.41) and Au(k + i - l )  is not

assumed to be zero for / = 2 , . . . ,  nA + 1. In order to have both possibilities, two extra 

parameters must be introduced into equation (4.41) and (4.42), yields

hp
J =  ^  [y(£ + /)-vy (£  + / ) ] 2 (4.43)

‘ = hm

and

&.u(<k + i - \ )  = 0 hc < i< h p (4.44)

where hm is the minimum-cost horizon and 

hc is the control horizon 

Hence , one can state that if  hp —>■ oo , hm = nB + I and hc = n4 + 1 , the pre

dictive controller minimizing equation (4.43) and taking equation (4.44) into account, will

cause the process output to settle to a constant reference trajectory in nB + 1 samples
P

using n .  + 1  distinct controller outputs.
P

In order to generalize the predictive controller results, the following criterion func-
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tion can be considered

hP

j =  X  \y{k + i ) - w ( k  + i)\2 (4.45)
i  -  hm

which is minimized under the following constraint

§u(k  +  / -  1) = 0 hc <i <hp (4.46)

The following theorem can be stated.

Theorem 4.1: i f  hp >nA + nB + d  + n^ , hm = nB + d +  1 , hc = n4 + n^ d i s 

turbances are absent and the input/output behavior o f  the process is correctly estimated, 

then minimization o f  (4.45), taking (4.46) into account, yields a controller that drives the 

process output y{k) in nB + d  + 1 samples to a reference trajectory specified by

<j>,irvi'(£ + /) = 0  for i> I 22.

Remarks

The condition mentioned in the theorem 4.1 ensures that the sampled process out

put tracks the reference trajectory in nB +d+  I samples. However, the process output
p

between the samples cannot in general track a non-constant reference trajectory because 

the controller output between the samples is in general constant.

Hence, hp , hm , and hc can be selected such that the process output settles in

nB +d+  1 samples at a reference trajectory described by (jw(£ + /) = 0. A disadvan

tage is that the response time can only be influenced by changing the sample time. How

ever, the servo behavior can be tuned by introducing two auxiliary signals, y'(k) and

u'(k) defined by

y(k) = - p y '(k) (4.47)
Pp( r ' f

»(*) = ^ T n" 'W  <44 8 >

where Pp(q~l) is a monic polynomial in q~x. If criterion function (4.45) is minimized, 

and taking equation (4.46) into account with y(k)  and u{k) replaced by y \k )  and u \k )
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respectively. Because the use o f Pp is important for tuning the servo behavior of the con

trol system, Pp will be incorporated directly in criterion function (4.45) and (4.46) yield

ing

hP
J = ' Z l P py i k  + 0 - P p( l )w{k+  / ) ] 2 (4.49)

/ -  hm

and $Ppu(k + i — 1) = 0 hc < i < h p (4.50)

Criterion function (4.49) shows that P ^ i k  + i) must be predicted instead of

y (k  + /) . It can be shown that the /'-step-ahead predictor predicting P ^ { k  + i) is given

by

crdB P ( q ~ [) F,
Ppy{k + i) = — u(k + i - l )  + A[y{k ) - y ( k ) ]  (4.51)

A p ( r l) t

where y(k)  is given by (4.30) and Fi is solved from

P T F-
Ar -  = E ^ q - ' - A  (4.52)
D P D p

where nF  ̂ = mcix(np + n T—i, nD -  1). Separation o f future and past can be realized by 

using

B P  * H **
-A t1- = G ^ q r ^ d-4  i > d  + 1 (4.53)

Ap Ap

where nG </ ' -d  - 1  and nH = mcix(nB + np - i  + d , n 4 — 1) . Equation (4.51) can be 

rewritten as

Ppy(k + i) = G f i i i k + i - d - l )  + % ( k - l )  + ^ [ y ( k ) - K k ) ]  (4 .5 4 )
A TAp

Finally, collecting the /-step-ahead predictors in a matrix notation for 

/ = hm, . . . ,hp yields
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[y*] = [G][u] + [H][u] + [F][c] + ^ e, (4.55)

where

L v * l  =  \.PpyHk + hm) , . . . ,p ^ k  + hpW

[«] = [u(k) u(k + hp - d -  l ) ] r

[ i ]  = [!* ,(* -I), ...J7-

[c] -  [ c ( k) , c ( k -

and

c(k) =
T

The dimensions of [z/], [u] and [c] are given by

[y*l = hp - h m + 1 x 1

[m] = h p - d  x 1

. i

[zz] = max(j7H)  + 1 x 1 

[c] = mcix(nF ) +  1 x 1

Note that [G] is not square if hm > d  + 1 and also t,det describes the effect of

deterministic disturbances on P ^ { k  + /).

In order to select and examine different criterion functions, the following unified 

criterion function is used

hP hp -  d q

J=  Z  [ V ( * +/>-ppO)“,(*-+')]2+P Z
i = hm i = 1

— u(k + i -  1 ) (4.56)

where On and Od are monic polynomial with no common factors. This criterion function 

is minimized under the constraint
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<j)Ppu(k  + / - 1) = 0 1 <hc <i <hp — d (4.57)

The controller output weighting On and Od are introduced into the criterion func-

4.6 Predictive Control Law

The optimal control law can be derived by the minimization of criterion function 

(4.56) subject to equation (4.57) with respect to the controller output sequence over the 

control horizon hc : zz(£j,..., u(Jc + hc — 1) . In this section, the criterion function can be 

minimize analytically by assuming that there are no constraints.

4.6.1 Derivation of the Predictive Control Law

If the criterion function J  is optimized with respect to the vector zz, then any local 

optimum zz satisfies

where g  denotes the gradient. If the Hessian Hh is given by

is positive definite Vzz, then any local optimum is the global minimum.

In order to calculate the gradient o f equation (4.56) with respect to zz, the criterion 

function (4.56) is rewritten in matrix notation

tion because it is quite useful to choose whereas p o f (4.37) is difficult to choose.

J  = ([y*] -  I>*Dr([y*] “  O *]) + p [ u * ] T[ u *] (4.58)

where

[«'*] “  [PpO)^( . t  + hm), + hp)]T

0*1 = I P f K k  + h J  Ppy ( k  + hp ) f

T On
[zz*] = [z/*(£),..., u*(fc + hp - d  - 1 )] , u*(k) = — u(k)

Introduce the vector [zz]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



50

[zz] = [zz(Ar), . . . ,a(k + hc - l ) ] r  (4.59)

Note that [zz] contains only those elements o f the controller output sequence that 

must be calculated. The other elements over the prediction horizon must satisfy (4.57). 

The gradient o f (4.58) with respect to [zz] becomes

■Jpr “  2 ^ J ( L P * ]  -  [«■*]) + 2P” ~ [«*] (4.60)J <3[zz] 5[zz]

The relationship between [zz] and [z7] can be derived by solving 

u(k + hc) ,........ , ii(k + hp - d - \ )  from (4.57)

$Ppu(k + i -  1) =  0 1 <hc < i < h p —d  (4.61)

The required relationship can be obtained by using the following Diophantine 

equation

p r - E , - , .  + -  1 (4.62)

where the degree of F;_H is given by n^ + np -  1. Using equation (4.61); equation 

(4.62) becomes

u(k + i - 1 ) = Fi_h u(k + hc - 1) \ < h c < i < h P - d  (4.63)

Separation of future and past terms is realized by using

F t/ -/l.

in which the degree of Gi_h and Hi_h are given by nG -  min(hc,n^+ np) -  1 and

n H =  n i> +  np ~ hc ~ 1 respectively. Using (4.64), equation (4.63) becomes

zz(£ + z -  1 ) = Gi _h u(Jc + hc - \ ) + H i _h u(Jc- l )  (4.65)

with 1 <hc <i <hp - d  . Note that if <j> = A and P = I,  then Gi_lt = 1 and

# /- / , ,  = 0  •

Now the relationship between [zz] and [zz] becomes in a matrix notation
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[zz] = [zV/][zz] + [iV][1?

is a matrix of dimension hp - d  x h c

1 0 .........................  0
0 1 ................................

m  = 0 ..................... 0 1

0 ••• 0 g \ , n G - S l . o

0  • • •  0  g j,n a -  g j ,  0

(4.66)

and [iV] is a matrix of dimension (hp -  d ) x (/z  ̂+ np -  hc)

[N ]  =

0  ... 0

0  ... 0

^ 1,0 ••• ^1  ,nH
where j  = hp - h c - d

h  o -  hi«n

[zz(/r- 1), ..., u(k + hc - n ^ - n p )]T (4.67)

Note that if hc = hp - d  , then [M\ = I  and [iV] = 0 

The relationship between [zz] and [zz*] is required

Q nu*(k+ i — 1 ) = - u ( k  + i -  1 ) 1 < / < hp - d
Qd

Separation of future and past elements is realized by using

~Ii = Q. + g - 'h  
Qd ' q Qd

(4.68)

(4.69)

where <2>,- and Lt are polynomials of degree / -  1 and max(ji0 -  i, n0 -  1) if nQ > 0  . If 

nQj = 0 , the degrees of ,• and are given by min(i  — 1 , n0 ) and nQ -  i respectively. 

Note that, because On and Od are monic, 0 (. is also monic.
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Using (4.69), (4.68) becomes

u*(k + i — 1 ) = Otzz(£ + / —! ) +  ^
0 /

Collecting u*(k + i — 1 ) for / = 1, . . . ,  hp - d  in matrix notation yields

[zz*] = [<&][«] + [£][w] (4.70)

where [O] is a lower triangular matrix of dimension (hp — d ) x (hp - d ) and [ I]  is a

matrix of dimension (hp - d )  x n L with nL = mcix(n0 , nQj) . The vector [f?] is given 

by

~ u ( k - 1 ) « ( k - n L)-[zz] =
Qd 0 ,

(4.71)

Using (4.66) and (4.70, the relationship between [zz] and [zz*] is given by

[«*] = + [ m u ] + m m r n  (4 .7 2 )

The partial derivative now becomes ——  ̂ = [A7]r [OJr
8[u] 3[u]

grp*l
The partial derivative — — can be calculated by using the unified prediction

5[u]

model (4.55). Utilizing (4.55) and (4.66), the relationship between [j>*] and [zz] is given 

by

[?*] = [G ] [ A ^ ] [ r / ]+ [ /7 ] M + [ F ] [ c ] + ^ ( + [G ][A q[ir] (4.73)

The gradient (4.60) becomes

-  2[A^r a G ] r [ C ] + p m r [X ])[iW ][,-;]+ 2M r {[G ]r ([ /^ [8 ]  + [F][c]

+ U ,  + [G ltM [ 'S 'W » '* ])  + p[<l>]r ([i][r<l +[X][W ][1T])} (4.74)

and the Hessian becomes

Hh = 2[M\T{[Gf[G]  + p [ 0 ] r [0 ])[M ] (4.75)

Note that the Hessian is independent of [zz] and, when singular, is positive defi-
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nite. If p > 0, the Hessian is always positive definite. If, however, p = 0 , the Hessian can 

in some special cases, be nonsingular. Assuming that the Hessian is singular, a global min

imum of J  with respect to [u ] can be obtained by setting the gradient equal zero and solv

ing for [tf]

[si -  {[iW]r a G ] r [c ]+ p [< t)]r [4 > ])M } " 1M r { [ G ] ( [ » '* ] - [ ^ [ i ; ]

Note that the matrix to be inverted is of dimension hc x hc . The first element of

u(= n(k)) is used to control the process. All other elements are not used and need not to 

be calculated.

4.7 Computational Steps for Predictive Control Law

1. From the model parameters, determine the prediction horizon hp , the mini

mum-cost horizon hm , the control horizons hc , polynomial in criteria function 

P p > Q d, Q n .

2 . Compute the matrices [G], [F], [H] in the prediction model equation (4.55).

3. Compute the matrices [M\, [iV] from equation (4.66) and matrices [d>], [L] 

from equation (4.70).

4. From the past and future input output data Solve for the first element of control

u from equation (4.76).

5. Compute the feed-back control to get the output response.
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CHAPTER V

PREDICTIVE CONTROL IN SYSTEM 
IDENTIFICATION APPROACH

5.1 Introduction

The state-space model has long been a fundamental element of modem control 

theory. In a state-space model, the relationship between the input and output variable is

described in terms of an intermediate quantity called the state vector23. The state-space 

models can be derived analytically from the equations of motion or identified from exper

imental input-output data using system identification. Concurrent with the development 

of state-space based control methods are adaptive and predictive control (which are based 

on input-output models). A typical input-output model describes the current outputs as a 

linear combination of past input and output measurements. One such model is the Auto 

Regressive with exogenous input model (ARX). An attractive feature of an ARX model is 

that its coefficients can be identified from input and output measurement. The identifica

tion process can be carried out recursively in real time if necessary.

Most of the researches that have been carried out in adaptive control are concerned 

with two classes of systems called Model Reference Adaptive Systems (MARS) and Self

Tuning Regulators (STR)24'26. While the former evolved from deterministic servo prob

lems, the latter arose in the context of stochastic regulation problems. The conventional 

approach for control system design of dynamic system normally can be distinguished into 

two phases: system modeling and controller design. For the system with unknown distur

bances and considerable uncertainties, the conventional approach is not quick enough to 

catch up with the system changes. Therefore, on-line system identification and adaptive
*)7 OScontroller design become the significant solution for the controlled system .

Juang29 ' 30 proposed a deadbeat control design using an ARX model which 

showed the successful results to suppress the noise of dynamical system. This chapter will
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propose the extension of the deadbeat control design to the tracking control design with 

and without system disturbances input to the system.

Section 5.2 starts with multi-step output predictor that can be derived from ARX 

model. The observer Markov parameters (OMP) or ARX parameters can be calculated by 

the recursive formulation. In section 5.3, a receding horizon predictive control concept is 

shown which uses the first element o f controller output sequence to control the dynamic 

process . Section 5.4 shows the predictive control design which uses the algorithm derived 

from section 5.2 to form the control law. This approach still needs to calculate the OMP 

and ARX parameters first before forming the control step. In section 5.5, the standard 

Recursive Least-Square formulation is presented and able to combine system identifica

tion and predictive control in one formulation. The control parameters are updated in 

every sampling period. Since there is no matrix inversion needed to compute the control 

parameters, the method is applicable in real-time. Section 5.6 shows the extension of pre

dictive control algorithm when feedback and feedforward for disturbance inputs are taken 

into consideration.

5.2 Multi-Step Output Prediction

A linear finite difference model for the m x 1 output y(k)  and the s x I input u(Jk) 

at time k  is described by:

y(k)  =  cixy ( k -  \ )  + a^y{k-  2 ) + ... + apy ( k - p )

+ bQu(k) + b{u ( k -  1) + b~,u{k — 2) +- ... + bpu{k—p') (5.1)
This represents the relationship between the input and output and also means that

the current output can be computed by the time series of the past input and past output. 

The finite difference model is also referred to as the ARX model as in (2.1). The coeffi

cient matrices, a ;(/ = I, 2 , .. .,/? )  o f m x m and b f i  = 0 , 1, 2 , . . . , p ) of m x s ,  are

referred to as the observer Markov parameters (OMP) or ARX parameters. The matrix bQ

is the direct transmission term.

By shifting one time step ahead, one obtains

y ( £ + l )  = a [y ( k )+ a 2y ( k - \ )  + ...+cipy ( k - p  + 1 )

+ b0u(k+ I) + b^u^k) + b2u ( k -  1) + ... + bpu ( k —p  + 1) (5.2)
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Lets define the following quantities

flj1) = a xcix + a 2 =  a xb x + b2

a = a xa2 + a3 b P  =  a xbi + b3

=  a i a P - i + a p t y h  =  a \ b p - \ + b P

a J l) =  a \ a P b p l)  =  a \ b P ( 5 -3 )

and b =  a xbQ + b x (5.4)

Substituting y(k)  from (5.1) to (5.2) yields

y (k+  1) = c i p y ( k -  1) + l^ y ( k - 2 ) + ... + a p y ( k —p)

+  bQit(k+ I )  + b^lhi(k) 4- b[lhi(k — I )  + bt,lh i ( k - 2 )  +  ... + b(lh i ( k - p )  (5.5) 

The output measurement at time step k+  1 can be expressed as the sum of past 

input and output data with the absence o f the output measurement at time step k . For the 

/-step ahead, one can express the output measurement at the time step k+ i by: 

y ( k  + /) = a\*>y(Jk -  1) +  a (̂ y(Jc  — 2) + ... +  a ^ y ( k  -  p)

+ bQu(k + /) + b ^ u ( k  + i — I) + ... + btfhi(k')

(5-6)

where

+ b[‘hi(k- 1) +  bS>‘hi(k - 2 ) +  ... + b & u (k -p )

«s° Cly +  Cl~) 4° = ci~x ^bx + b̂ ‘ I)

4° = a\" Cl*y * £7̂ 4° = a(- r l)b2 + b « - I)

=  a\‘~V . - r - -  a \ bP - \ + b p
- I )

-  “ 1 > A
-  a l bp (5.7)

4°and *o = b0 + b\ ' (5.8)

Note that a j0) = cij and by0) = bj for any possible integer 1,2, including 0 if

applicable.

With some algebraic operation, Equation (5.8) becomes

A(°) _ L
^ 0  ~ bQ
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k

6oA) = b k +  Z  aj b o ~ ‘} for k  = l »
y - 1

60A) = Z  ^ o A_7) f0r k = P + 1* •••’ 00 (5-9)
j =  I

Similar to (5.9) cff* = a^ ^  can also be written as

„a , -  a l

k

a f ] = cik + t aja\k ' ,] for k  = 1 , 1

y - i

p

a \ k  ̂ =  ']£J aj a \k ~ ^  f ° r k  =  p ,  00 (5-10)
7 “ l

and also = ~ l) can be written as

(0)
< V i  a/; - i

A-
I = - i + Z  a7apA-~i° for k  = 1, . .. ,p  -  1

7 “  1

a pk)-  I =  Z  a7a?-~i° f o r  k  =  p , . . . , c c  (5.11)
j =  1

The quantities bg} ( / = 0, 1, . ..)  are the pulse response sequence which and c£p

(J = 0, 1, . . .)  are the observer gain Markov parameters that can be used to compute an 

observer for state estimation.

Let the in d ex / 'be / '=  1, 2 , . . . ,  hp, hp + 1 , . . . , / -  1. and equation (5.7) can be 

written in matrix form.

yfik)  = V<j(k) + a.yp( k - p )  + §up( k - p )  (5.12)

where
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# ) u(k)
y ( k+  1) u(k + 1 )

y ( k + h p) , « /* )  = u(k + hp)
y ( k  + hp + 1) u(k + hp + 1 )

_ y ( k + f - 1 ) , _u (k + f— 1)_

y ( . k-p) u ( k - p )

yp( k - p )  = y ( k - p + \ )
. Up (k -P )  =

u(k—p  + 1 )

. y ( k - \ )  _ _  « ( * - ! )  _

uo

>(1)'0

7 = ,CV

ba,p'Un
i)

cA„-n

( V
° 0

Av - n  lC7-2) AT-l'p-U .V-l'p- 2) On On

P =

p P ~ I

( I)
P ~ I

, (*„)

11 c ; 0

4 a - o  Acr-i)
. P P ~ l

u \

>\n

b?’*

s y "

s.cr-1)

(5.13)
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a

a

,0 )

aP'p+ u

(5.14)

a.i f- 1)

The quantity yj(k) represents the future output with a total o f f  data points from 

the time step k  to k  + / -  1 , where yp(k - p)  represent the past output/with the p  data

point from the time step k - p  to k — 1 .

Similarly, iij(k) has /  future input data points starting from the time step k  to 

k + f -  1 , where up( k - p )  has past output with the p  data point from the time step k - p  

to k -  1. The matrix y is commonly called the Toeplitz matrix which is formed from the 

parameters, bQ, bQl\  ..., b^ ~ 1} (the pulse response sequence).

The vector yj{k) consists of three terms. The first term is the future input vector 

Uj(k) including inputs from time step k  to k + f — 1 . Relative to the same time k,  the sec

ond and third terms , np(k - p)  and yp(k - p ) , are past input and output vectors respec

tively, which past known data from k - p  to k — 1 .

5.3 Receding Horizon Predictive Control

Consider figure 5.1-b and 5.1-d and suppose that the current time is denoted by 

sample k  which corresponds to the absolute time t. u(k),y(k)  and w(k)  denote the con

troller output, the process output and the desired process output at sample k,  respectively.
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fl

!  !  1  I  I  I  i  1  I  

k ‘ 1 k  k+1

past

n !—i—i—i—r
.  »  t  i  i 

M  1 t+ 1

*•1 k  + 1
past  -----     U t f e

I  i  »

M  1 1+1

Figure 5.1 Receding Horizon Predictive Control. Parts b and d  Denote the 

Situation a t time t while Parts a and c Denote the Situation a t tim e t + 1

Define:

u = [u(k), u(k + hp -  l ) ] r

y  = [K*)»
T

vi/ = [w(k), . . . ,w(k + hp)\

where hp is the predictive horizon and symbol denotes estimation. A predictive con

troller calculates such a future controller output sequence u , that predicted output of the 

process y  is “close” to the desired process output w . The desired process output is often

called the reference trajectory and it can be an arbitrary sequence of points31.

Rather than using the controller output sequence determined to control the process 

in the next hp samples, only the first element of this controller output sequence is used to

control the process. At the next sample (hence, at t +  1), the whole procedure is repeated 

using the latest measured information. Assuming that there are no disturbances and no 

modeling error, the predicted process output y ( k  + 1 ) predicted at time t is exactly equal 

to the process output y(k)  measured at t + 1. Again, a future controller output sequence is 

calculated such that the predicted process output is “close” to the reference trajectory.
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5.4 Predictive Control Design

Assume that the close loop control action starts at time step k.  The system before 

time k  is open loop. When the control action is turn on at time k  and end at time k + hp , 

the control steps beyond the step k + hp are all zero. Equation (5.12) becomes:

y { k  + hp) = Y'ujik ) + t iyp( k - p )  + $u p{ k - p )  (5.15)

where

yj(k  + hp) =

y(k  + hp)
y (k  + hp + 1) 

y (k  + h + p -  1 )

and

i  =

, 0‘p ■ i)
°o

,0<P - p -  n  A h p - P - 2 )

UQ

j (1)J0

’<J>- 1) 
'0

• i p - 2 )

P' =

4<v

■S!,p' I)

b ihp + p - \ )  b ihp + p - \ )
L P p - I

S’’,*'')

bi y P- 1)

a  =

U ‘p ) a

ci„

U>p) 
P - 1

(/i.+ l) (//„ + 1)
ap - i

a ihp)
I

( / ;  + / 7 - I )  ill ~rp-  1 )
L P P ~ l

a.i hp+p- l )

Let y' be partitioned into two parts then equation (5.15) becomes

(5.16)
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y jik  + hp) = y0u/Jc + hp) + r ctfy(Ar) +a'yp ( k - p )  + $up( k - p )  (5.17)

where

u(k + hp) u(k)

Ujik + hp) = u(k + hp + 1) IIST u(k+ 1)

u(k + hp + p - l ) u (k + hp -  1)

and

Vo =

0

bn

0

0

b(p- 1) u(P-2)
°o ° 0

c v
° 0

(/<„- I) 
°Q

(1) 
0

( 2 ) 
0

(ftp + p - 1) Otp + p - 2 )  
On Or

dp)

(5.18)

70 47 0 • • •  47 0

Both yG and ye are formed by system pulse response (system markov parame

ters). By the given input and output sequence, equation (5.17) must satisfied and be able to 

identify coefficient matrices yQ , yc , a ' , and P '.

By the idea of receding horizon control, equation (5.17) provides multiple solution 

for Uj{k) with the minimum-norm solution expressed by

« /* )  =  v^yj^k + h p)-VcVouj^k + h p ) - V c CL'yp(<k - p ) - V c ^ up^k -p')  (5-19) 

or in the matrix form
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» /* )  = [_y^ '  -y ctp ' y t  -y ^ ty j

yP( k - p )
up ( k - p )

y f t + h p )  
Uj(k + hp)

To simplify equation (5.20), the following notation is defined

(5.20)

Pc = - y / a '  -y cfp ] and PQ = - Y t Y^

p) =
y P(k ~ p ) and q> ( k + h ) = y / k +  hP)

?p(k ~ p \
r r Uj(k + hp)_

(5.21)

(5.22)

Equation (5.20) becomes

» /* )  -  [pc p ] Vp( k - P )
Vp(k + hp)

(5.23)

Equation (5.23) is another form of finite difference model for system identifica

tion. For any given input and output data, there exists a set of Pc and Pa satisfying equa

tion (5.23).

In order to develop the predictive control law, equation (5.20) will give the control 

vector by setting y j(k  + hp) (which is the future output equal to the reference tra

jectory \v(k)) and setting the future control vector iij(k + hp) to zero. Hence the 

($>j(k + hp) will be in the form

<Pj(k + hp)

and equation (5.23) can be rewritten as

w(k)
0

(5.24)

» /* ) ■1'/°' - V P '  V  - V ^ o

yp ( k - p ) 

up (k ~P)

\v(k)
0

(5.25)
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The first element o f the control action at u(k) will be in the form

it(k) =  (the first m rows of [P P Q]) < P p (  k ~P)  

(Py<  ̂+ V

P  P c l  r o l
Vp ( k - p )

(5.26)
<P' f k + hP)

where the first m rows o f uj^k) is the input vector u(k) at time k.  PQ  ̂ and Q j are the

first m rows of P and PQ , respectively.

Let us form the following matrices

U(k) = [w(£) u(k+  1 ) ... u ( N - p  ~hp -r 1)J ,

®p (k - p )

<&j(k + hp)

y i k - p ) y (k - p +  1) ... y ( N - 2 p - h p + 1)

u ( k - p ) z/(Ar- p +  1) ... 1 to 1

y ( k - 1 ) y{k)  ... y ( N - p - h p)
>

n ( k -  1) u(k) u ( N —p — hp)

y & + V y( k  + hp + 1) ... y ( N - p  + 1)
u(k +V u(k + hp + 1 ) ... u(N’- p  + 1)

y ( k  + hp + p -  1 ) y(k  + hp +p ) 

u(k  + hp + p -  1) u(k + hp +p)
y W
u(N)

(5.27)

where N  is the data length used for estimation of coefficient matrices Pc  ̂ and P Qy  

Equation (5.26) can be solved by corroborating equation (5.27) in the form

u m  = p  p  c l  r o l (5.28)
* j tk  + hp)

In order to be able to solve Least-Squares solution, the data length N  must be cho

sen large enough such that the matrix U(k) of m x ( N - p  — hp -  k  + 2) has rank m,both
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<&p(Jc-p) o f p ( m + s ) x ( N - p - h p - k  + 2) and <&j(k + hp) of

p(m  + s) x ( N - p  -  hp — k  + 2) have rank pm  + n . Equation (5.28) produces the follow

ing Least-Squares solution.

5.5 Recursive Least-Square Algorithm

Recursive Least-Square technique can be used to solve the Least-Square problem 

in equation (5.29). For computation efficiency, it is desirable to arrange the algorithms in 

such a way that the results obtained previously can be used for on-line updating. There are 

many recursive algorithms available to solve a Least-Square problem. The classical Least- 

Square method is the most straightforward approach32. The classical recursive method is 

briefly described as follows:

Rewriting equation (5.28) in a compact matrix form

f

(5.29)

= Pq>(k- 1 ) (5.30)

where

. < p «  =
u(k)

cp ( k - p )

(5.31)

<$>(k + hp + p - \ )  

First, define the following quantities
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w  -  * W ( * - i )  (532)
1 +cp (k)W(k-\)<v(jc)

ii(k + 1) = P(k)q(k)  (5.33)

Then compute the following quantities

(.k) = W { k - \ ) [ I - v ( k ) Z ( k ) }  (5.34)

P{k+ 1) = P{k) + [u(k+ l)-ii<jc+  1)]Z(£) (5.35)

Here, no matrix inversion is needed and no approximation has been made in the 

derivation o f the Recursive Least-Square. Therefore, the Recursive Least-Squares esti

mate and the off-line estimate are theoretically identical. The initial values of W(0) and

P( 1) can be either obtained from performing a Batch Least-Squares after collecting a suf

ficient number of data or assigned as ^^2p(m  + s)  and °m x 2p(m +s ) of 1)

(where & is a large positive number).

5.6 Feedback and Feedforward for Disturbance Input

In addition to the control input, there might be other disturbance inputs applied to

the system. Some of the types of disturbances come from known sources that can be mea

sured. Another type of disturbance is not known, but its correlation is known. This section 

presents the predictive feedback control design including feedforward from the measur

able disturbance inputs.

With the disturbance input involved, the finite difference model in equation (5.1) 

becomes

y(/c) =  a {y (k  -  1) +  a -yik  -  2 ) + . . .  +  a ^ f j c - p )

+ bcQuc(k) + bc\uc ( k -  1 ) + bc2“c ( k ~ 2) + . . .  +bcpuc( k - p )

+ bdolld(k) + bdiud(k~  1) + bd2ud( k - 2 )  + ... + bdpud{ k - p )  (5.36)

where the subscripts c and d  are used to signify the corresponding quantities associated 

with the control input and the disturbance input, respectively. From section 5.2 , Equation 

(5.36) can be rewritten in the form

y f k  + hp) = y 0ucf k  + hp) + ycucJ(k) + i dud{hp +p)(k) + a'yp( k - p )
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+  & c Uc p ( k ~ P )  +  P 'du dP ( k ~ P ) (5.37)

where

y (k  + hp) “ d ( k )

yPik + hp) = y(k  + hp + 1 )
* Ud{hp + P ) ( . k )  “

ud(k+  1)

y ( k  + hp + p -  1 ) ud(k + hp + p - l ) _

11c(k  + hP) uc(k)

ucjik + hP) = uc(k + hp + l) llST uc(k + 1 )

uc(k + hp + p - l )_ ue(k + hp - l )_

(5.38)

The form of matrix y'd associated with the disturbances ud is similar to Y 

defined in equation (5.16). The matrix y'c is a ps  x hpmc matrix where mc is the number 

of control inputs and y'd is a p s  x hpmd matrix where md is the number of disturbance 

inputs. The form of (3'c and $'d are also similar but corresponding to different type of 

forces. yc , yQ, and $'c are quantities associated with the control force uc(k) .

Similar to equation (5.19), one can derive control force ucf k )  as

u c A k )  =  r  c - y j i k + h p ) ~  y c ^ ( o l i c j i k + V  -  y / y  ' d l l d U lp  ~ p ) ( k )

- '{2tiyp(.k - p ) - y J $ ' cuCp ( k - p ) - y f $ dudp( k - p )  (5.39)

or in matrix form

U ' f k )  ’  - y cr a ' - y / P ' j  - y t  - y J y o - y l y ^

yp{ k - p )  

Ucpik ~ P ) 

udPik - P )  
y j i k + hP)

ucAk  + hP)

udVt +P)(k )

(5.40)

To simplify equation (5.40) define the following notation
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P'e = [ -y /a*  - y / P 'c - y / P ’j  

p ,co = [-yct  -y cty0]  , 

and F d = [_Yct y j (5.41)

and

yPik ~ p )
( P ^ - P )  = ucp( k - p )  and cpcp(Ar + //p) = 

?dp(k ~P \

y f k  + hp) 

ltcj i k + h p\
(5.42)

where P'c is a hpmc xp ( s  + mc + md) matrix, P'co is a hpmc x p ( s  + mc) matrix. The 

quantity cpp( k - p )  is a p ( f + m c + md) x  1 column vector whereas <Pcp(k + hp) is a 

p( f+ mc) x 1 column vector. Equation (5.40) becomes

For any given input and output data, there exists a set of P'c , P’co and P'd satisfy

ing equation (5.43). By using the same approach as mentioned in section 5.4, the predic

tive control law, equation (5.40) will give the control vector ucj i k ) by setting y ^ k  + hp)

which is the future output equal to the reference trajectory w (k) and the future control 

vector Uj(k + hp) is equal to zero. However the term udyt ~ p)(k) which is the future dis

turbance can be known only if  the disturbance is measurable and known beforehand. Oth

erwise, the equadon (5.40) will not be true.

Equation (5.40) can be rewritten as

(5.43)
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u c f k ') -  [-Ycra' -Yct p 'e - y j  - y ch Q -Y cV  j

yP( k - p )

Uc p ( k ~ P ) 

udp(k ~p)
w{k)

0

dU‘p+P)(k)

(5.44)

The first element of the control action at m(£) will be in the form

m(At) = (the first m rows of [P'c P’0 P'd])
<Pp(k~P)
<pj(k + hp) 

udV,p+P)(k)

where

= [-P'c! P'o[ P'rfl]

= Pip(k— 1)

t p ( A r -  1 )  =

V p( k -p )  

Vjtk + hp)

Vp ( k - P )

9) / k + kP)
u

dO'p P) (*)

(5.45)

(5.46)

where the first /n rows of ucj(k)  is the input vector u(k)  at time k. P'cl , P'o l , and 

F dj are the first m rov/s of P'c , P'Q and P'd , respectively.

Forming the following matrices

U{k) = [kc(£) uc(k+  1 ) ... uc( N - p - h p + 1 )] ,
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®n ( k ~ P )  =

y ( k ~p) y ( k - p  + 1) 

uc(k ~P) uc(k - P + l ) 
u ^ k - P )  ud(k ~ P + l )

y ( k ~ i )  y{k )

uc( k -  1) Uc (fe)

ud( k -  I) ud(k)

y ( N - 2 p - h p + \) 
ue{ N - 2 p - h p +\ )  
u / N - 2 p - h p + \)

y ( M - p - h p)

uc( N - p - h p)
i‘d ( N - p - h p)

y ( k  + hp)

u c ( k + h p )

y ( k  + hp + I) 

UeVc + hp + l )

y ( k  + hp +p -  1) y ( k  + hp +p)  

l‘c(k  +  hp + P ~  1 )  “e(k  +  hP + P )

y ( N - p  + 1 ) 

uc( N - p +  i)

y (  AO 

«C(A0

U.d0*P ^p) (k) =
ied ( k ) ud(k + 1 ) i(d( N - p - h  + 1 )

u d(-k  + hp + P ~  0  u d ( k  + hp + P)  — «^(A0

(5.47)

p tr -/ " a v  -p

The following equation can be obtained similar to what was done ifor (5.29)

Qp ik -P )
= U{k) 0 / £  + hp) (5.48)

5.7 Computational Steps for New Predictive Control

The following is the computational steps for predictive control design.

1. From some sufficient the input output data, form the vector cp( k -  1) as shown 

in equation (5.31) (in the case of no disturbances input) or equation (5.46) when system 

has disturbances in p u t.

2. Using the Recursive Least-Square algorithm equation (5.32)-(5.35) to compute 

the matrix P .

3. From the reference trajectory w(k) , form the vector cpy(£ + hp) from equation

(5.24).
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4. Compute the predictive control vector from the equation (5.26) (in case of no 

disturbances input) or equation (5.45) when system has disturbances input.
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CHAPTER VI 

NUMERICAL VALIDATIONS

6.1 Introduction

Industrial processes generally are highly multivariable systems where perturba

tions affect the plant structure more often than the measured variables. Industrial pro

cesses have their performance criteria and reliability requirements. The economic and 

psychological environment required for a successful implementation is often not met in 

practice. Many constraints will prevent the implementation of on-line control schemes in 

production plant. An acceptable operation of a Kraft recovery boiler requires simulta

neous satisfaction of a number of objectives : high steam efficiency, stable operation, low 

emission and disturbance rejection due to the changes in heating potentiaJ in black liquor.

This chapter will present numerical results that show the performance of the Kraft 

recovery boiler, particularly the output response from the boiler furnace. The sets of input 

output data are available from a simulator that simulates the actual operation of the recov

ery boiler. There are seven parts of simulator: the feedwater system, black liquor system, 

smelt spout cooling water, auxiliary oil burners, rapid drain system, combustion air and 

fuel gas system, and the green liquor system. The recovery boiler furnace is used as a 

model to demonstrate the feasibility of system identification and controller design.

Since the objective is to use a set of input output data to perform the new close- 

loop controller for the furnace at a steady state condition and to obtain the desired output 

as setting points, random inputs will be used to excite the furnace model to obtain the out

put data. There are mainly two inputs for the furnace, the air flow and black liquor flow 

and two corresponding outputs: the smelt flow and the heat. The conventional PID con

troller is initially used under the condition that the furnace model is derived from the sys

tem identification technique. The predictive control however, is applied to control the 

furnace by exciting the system at the first stage and perform the close-loop control by 

using a Least-Square technique.
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6.2 Numerical Results

The numerical results for both PED controller and predictive controller are shown 

in this section. System disturbance is another input of the system to investigate the system 

disturbance rejection capability o f both controllers.

6.2.1 Mathematical Model of Recovery Boiler Furnace

The model of the recovery boiler furnace is derived from the simulator that simu

lates the actual operation of the recovery boiler. Random signals of 3000 data points are 

used to be the input signal to the boiler furnace. By using the system identification tech

nique (as described in Chapter 3), the state space model of the recovery boiler furnace is 

derived in the form:

A =

0.2785 -0.0512 0.0342 0.0670 0.0034 0.0015
0.1131 0.2085 0.0880 0.0528 -0.0154 -0.0007
0.0373 0.0876 0.3086 0.1423
0.0865 -0.0163 0.0677 0.2527

-0.0022 0.0140 0.0075 0.0829

0.0306 -0.0038 
0.0225 -0.0192 
0.2189 -0.0539

0.0001 0.0009 0.0079 -0.0174 -0.0026 0.2468

B =

1.4042
-0.2551
0.0327

-0.0383
0.0012

- 0.0001

-0.2065
-0.0590
0.3035

-0.0254
-0.0064
- 0.0011

0.2717
1.0597

-0.0093
-0.0284
-0.0032
-0.0004

C =
0.4732 1.0291 -0.0713 -0.0097 0.0033 0.0001
1.3595 -0.3494 0.0106 -0.0364 -0.0011 -0.0006

-0.0551 0.1826 0.2979 -0.0569 0.0020 0.0005

D =
0 0 0 
0 0 0 
0 0 0

Figure 6.1 shows the original random input and output data from the model of 

recovery furnace respectively. Figure 6.2 illustrates the identified signal that corresponds 

to the output o f the model at the first 1,500 data points. Figure 6.3 shows the predicted out-
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put from the verified model that is tested by the rest 1,500 data points output.

0 1000 2000 3000
c

0 1000 2000 3000

0 1000 2000 3000

0 1000 2000 3000
d

0 1000 2000 3000
f

1000 2000 3000

Figure 6.1 a,c, and e Shown the Random Signal Used to Excite the Simulator 

Model. b,d, and f  are the Outputs from the Simulator (Smelt Flow, 

Heat Flow, and Steam Flow Respectively)
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1500

1000 1500

500 1000 1500

Figure 6.2 a,b, and c Illustrates the Identified Signals (dash line) which Fit 

to the Actual Outputs of the Simulator (Smelt Flow, Heat Flow, 

and Steam Flow Respectively) at the First 1,500 Data Points
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Figure 6.3 a,b, and c Illustrates the Signals (dash line) Predicted from the 

Identified Model which Correspond to the Actual Outputs of the 

Simulator (Smelt Flow, Heat Flow, and Steam Flow Respectively) by 

Using the Later 1,500 Data Points to Verify the Result
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6.2.2 Result for Conventional PID Control

The proportional-integral-derivative (PID) controller is the most popular and com

mercially available controller used in the process industry. The integral controller 

increases the system type, which reduces steady state error. The derivative controller 

increases the damping and, hence, the stability o f the system. Most of the recovery boilers 

used in pulp-paper mill still use a PID controller to control the boiler operation. As men

tioned in Chapter n, the PID controller gains normally come from the experience of the 

operators and can be set to automatic or manual operation mode depending on the situa

tion.

There are three inputs-outputs from the recovery boiler furnace according to the 

simulator. The inputs are the black liquor flow, the total air flow, and the steam flow (in 

units of pound per second, respectively). The outputs are the smelt flow (in units of pound 

per second), the heat (in unit of BTU per second), and the steam flow. The internal process 

inside the recovery boiler furnace is described in Chapter 2. The only inputs and outputs 

used to evaluate the performances of the controller in this chapter are the black liquor, the 

total air flow, the smelt flow, and the heat.

This section presents the simulation results of the PID controller that is used suc

cessfully to control the boiler parameters. The PID gains used for this simulation are based 

on the simulator that are not unique. The proportional (KP ), integral (Kf ), and derivative

(Kd ) gains are 2, 1.5, and 0.8 respectively. At the steady state operation, the black liquor

and the total air flow act as the inputs o f the recovery boiler furnace at the rate about 20- 

22 and 100-102 pound per second respectively. These are converted to the heat at the rate 

about 60,000-61,000 BTU per second. The smelt flow acts as another output and is 

approximately 38-42 percent of the black liquor flow.

By using the identified state space model of the recovery boiler furnace, the PID 

controller performance shows the outputs o f the recovery boiler furnace in terms of smelt 

flows and heat flows respectively (see figure 6.4 and 6.5). Figure 6.6 and 6.7 shows the 

control inputs (black liquor flow and total air flow) of the boiler furnace.
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Figure 6.4 Output of the Recovery Boiler Furnace as Smelt Flow 

by Using the PED Controller ( K p = 2, K L=  1.5, K D = Q.%)
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Figure 6.5 Output of the Recovery Boiler Furnace as Heat Flow 

by Using the PED Controller ( K p = 2, K { = 1.5, K D = 0.8)
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Figure 6.6 Input of the Recovery Boiler Furnace as Black Liquor Flow 

by Using the PID Controller ( Kp = 2, K[ — 1.5, KD= 0.8)
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Figure 6,7 Input of the Recovery Boiler Furnace as Total A ir Flow 

by Using the PED Controller ( Kp = 2, T̂/ = 1.5, KD = 0.8)
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6.2.3 Result for Predictive Control
The new tracking predictive control is applied to the recovery boiler furnace in 

order to verify the performance o f this controller and compare to the conventional PED 

controller in the previous section. By assuming that one does not know the mathematical 

model of the boiler furnace, the system parameters need to be first identified by choosing 

the appropriate value of the ARX model order, as well as the prediction horizon. The con

troller is performed after the identifying process of some proper data points is completed.

For a single-output system, it is known that the order of an ARX model is the same 

as its equivalent state-space, p  = n.  However for multiple-outputs, a state-space model of 

order n for the recovery boiler furnace, the relation of p minhp > n can be used for the 

controller to bring the output to the desired values. In addition, the identification accuracy 

will be improved as p  increases. Figure 6.8 and 6.9 show the tracking output of the new 

controller in terms of heat and smelt flows respectively while using the minimum predic

tion horizon (hp ) as 1 and the ARX model (p)  as 6. Figure 6.10 and 6.11 depict the con

trol input in term of Black liquor flow and Total Airflow respectively. Figure 6.12 and 

6.13 show the output of the recovery boiler furnace when prediction horizon {hp ) is

increased to 6 while the ARX model (p ) remaines at 6. Figure 6.14 and 6.15 are the input 

o f the recovery boiler furnace corresponding to the output in Figure 6.12 and 6.13. Finally, 

the prediction horizon ( hp ) is increased to 20 while the ARX model ( p ) remaines at 6

and the output and input of the recovery boiler furnace are shown in Figure 6.16, 6.17, 

6.18 and 6.19 respectively.
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Figure 6.8 O utpu t of the Recovery Boiler Furnace as Smelt Flow 

by the Predictive Controller when hp = 1 and p  = 6
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Figure 6.9 O utput of the Recovery Boiler Furnace as Heat Flow 

by the Predictive Controller when hp = 1 and p = 6
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Figure 6.10 Input of the Recovery Boiler Furnace as Black Liquor Flow 

by the Predictive Controller when h p  = 1 and p  = 6
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Figure 6.11 Input of the Recovery Boiler Furnace as Total Air Flow 

by the Predictive Controller when h p = 1 and p  = 6
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Figure 6.12 Output of the Recovery Boiler Furnace as Smelt Flow 

by the Predictive Controller when h p = 6 and p  = 6
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Figure 6.13 Output of the Recovery Boiler Furnace as Heat Flow 

by the Predictive Controller when h p = 6 and p  = 6 .
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Figure 6.14 Input of the Recovery Boiler Furnace as Black Liquor Flow 

by the Predictive Controller when h p = 6 and p  = 6
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Figure 6.15 Input of the Recovery Boiler Furnace as Total Air Flow 

by the Predictive Controller when hp  = 6 and p  — 6
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Figure 6.16 O utput of the Recovery Boiler Furnace as Sm elt Flow 

by the Predictive Controller when hp = 20 and  p  = 6
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Figure 6.17 O utput of the Recovery Boiler Furnace as H ea t Flow 

by the Predictive Controller when hp = 20 and  p  = 6
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Figure 6.18 Input of the Recovery Boiler Furnace as Black Liquor Flow 

by the Predictive Controller when h p = 20 and p  = 6
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Figure 6.19 Input of the Recovery Boiler Furnace as Total Air Flow 

by the Predictive Controller when h p  = 20 and p  = 6
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As mentioned in Chapter 2, the heat potential of black liquor varies from the qual

ity o f the wood. A disturbance in Figure 6.20 is generated in terms o f the percentage devi

ate from the standard heat potential value. This is accomplished in order to test the 

disturbance rejection capability of the predictive controller compared with the PID con

troller when the system is disturbed by some unknown input. Figure 6.21 and 6.22 show 

the outputs of the boiler furnace as the smelt flow and the heat flow respectively. By using 

the same PID gains as in previous section, the PID controller can reject the disturbances 

well. The control inputs o f the furnace that are changed to maintain the desired outputs 

also are shown in figure 6.23 and 6.24.

The same disturbance shown in Figure 6.20 is injected into the system to investi

gate the disturbance rejection capability of this predictive controller. Note that the predic

tive horizon in this case is 1 while the ARX model is 6. One cannot use the predictive 

horizon greater than 1 because the disturbances are always random and cannot be pre

dicted. Figure 6.25 and 6.26 show the output of the boiler furnace as the smelt flow and 

the heat flow respectively. Figure 6.27 and 6.28 depict the change in control input which 

attempt to maintain the desired value.
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Figure 6.20 Disturbances in Terms of Percentage Changes of 

Heat Potential Value
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Figure 6.21 Output of the Recovery Boiler Furnace as Smelt Flow, Subjected to

a Disturbance by Using the PED Controller ( K p = 2, K {= 1.5, K D = 0.8)
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Figure 6.22 Output of the Recovery Boiler Furnace as Heat Flow, Subjected to

a Disturbance by Using the PED Controller ( K p = 2, K {= 1.5, ££,= 0.8)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



89

20

a

100 
T im e  s t e p s

1 5 0 200

Figure 6.23 Input of the Recovery Boiler Furnace as Black Liquor Flow, 

Subjected to a Disturbance by Using the PED Controller ( K p = 2, K r = 1.5, K D = 0.8)
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Figure 6.24 Input of the Recovery Boiler Furnace as Total Air Flow, Subjected to 

a Disturbance by Using the PED Controller ( K p -  2, K f = 1.5, K D = 0.8)
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Figure 6.25 O utput of the Recovery Boiler Furnace as Smelt Flow, Subjected to 

a Disturbance by the Predictive C ontroller when hP = 1 and p  = 6
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Figure 6.26 O utput of the Recovery Boiler Furnace as H eat Flow, Subjected to 

a Disturbance by the Predictive C ontroller when hp = 1 and p = 6
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Figure 6.27 Input of the Recovery Boiler Furnace as Black Liquor Flow, 

Subjected to a Disturbance by the Predictive Controller when hp = 1 and p  = 6
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Figure 6.28 Inpu t of the Recovery Boiler Furnace as Total Air Flow, Subjected to 

a Disturbance by the Predictive C ontroller when hp = 1 and p  = 6
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6.3 Conclusion Remarks

This chapter shows the result of the PID controller and the new predictive control

ler to control the recovery boiler furnace. By performing the new predictive controller, a 

better result is shown in terms of tracking performance as well as the disturbance rejec

tion. However, the control inputs of the predictive controller are larger than the conven

tional PID controller especially when performing the minimum prediction horizon. A 

smaller value of hp implies a shorter prediction horizon, and more control energy is 

needed to bring the state o f the system to the desired value in shorter time. A large value of 

hp implies a longer prediction horizon, and less control energy is required. The predictive

control also shows the dominant results of the disturbances rejection over the PID control

ler. The system responses is both robust and stable when these two controllers are sub

jected to the same disturbances.
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CHAPTER VII 

CONCLUSIONS

7.1 Summary

Industrial processes in general are highly multivariable systems, where perturba

tions affect the plant structure more often than measured variables. In the control engi

neering field, a conventional PID controller is commercially used most in industries. 

However, each have their performance criteria and reliability requirements. The multivari

able system like that of the recovery boiler of pulp-paper mill, can be controlled by the 

conventional PID controller. However, performing PID controller requires a skill from 

the operators on an individual basis and the controller performance can not be adapted to 

compensate for all disturbances significantly, especially the long time delay system.

The setpoint tracking predictive control by system identification approach is pro

posed in this dissertation. The new algorithm uses the / -step-ahead predictor integrated 

with the least-square technique to build the new control law. Based on the receding hori

zon predictive control principle, the tracking predictive control law is achieved and per

forms successfully on the recovery boiler plant o f a pulp-paper mill. This predictive 

controller is basically designed from ARX coefficients, which are computed direcdy from 

input and output data. The character of this controller is governed by two parameters. One 

parameter is the prediction horizon as in traditional predictive control. The other parame

ter is the order o f the ARX model.

When the order of the ARX model is at a minimum, the identification is sensitive 

to the noise. The identification accuracy will be improved as the order of the ARX model 

increases. However the order o f the ARX model for a multiple output system can be less 

than the order of the system. In addition, as the prediction horizon increases, the system 

response will move from the minimum time solution toward the minimum energy solu

tion, making it less susceptible to the noise. In the predictive control, the control input at 

any time step is part o f a sequence of minimum-norm control actions; therefore, the result
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ant control sequence is only an approximation o f the truly energy-optimal solution.

The predictive controller formulated in this dissertation is an interesting combina

tion o f both a feedforward and a feedback control. The controller is feedforward in that at 

each time step it determines its action to bring the future output to the desired value in a 

finite number of time steps. The predictive component is a feedforward action, which 

takes advantage of the knowledge of the system to guide its control action by looking 

ahead. On the other hand, the form of the controller is clearly feedback because the cur

rent control input is a linear combination of actual input and output measurements. This 

feedback feature gives the controller the ability to handle unexpected disturbance as well 

as a certain degree o f robustness with respect to both noises and modeling errors. In addi

tion, this feedback action compensates for the inherent sensitivity of the feedforward 

action.

The design of the predictive controller depends on both parameters: the prediction 

horizon and the order of the ARX model. This controller is essentially designed from the 

input output model, that can be identified directly from input output data. The calculation 

can be carried out in real time by recursive least square technique if necessary. In addition, 

the prediction horizon and the order of the ARX model parameters can also be tuned in 

real time. However, this predictive controller is not optimum in the sense of traditional 

predictive control which satisfies a variety of design objectives and constraints. This type 

of design is useful in engineering applications where trade-off between design simplicity 

versus optimality is an issue.

7.2 Further Extension of The Research

Unlike the traditional state-space dynamic compensator designs satisfying a vari

ety of design objective and constraints, the tracking predictive control that is developed in 

this dissertation does not integrate the design objective into the algorithm. The controller 

behaves from the minimum time control to minimum energy control solution depending 

on the control horizon value. Even though the control inputs, in general, are larger than the 

conventional PID controller, the control inputs of this predictive control are smaller than 

PID controller when system disturbances are taken into account. Therefore, incorporating 

the design objective into the algorithm will be an interesting extension of this work.
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