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ABSTRACT

SHAPE MEMORY ALLOY APPLICATIONS ON CONTROL OF THERMAL 

BUCKLING, PANEL FLUTTER AND RANDOM VIBRATION OF COMPOSITE

PANELS

Xinyun Guo 
Old Dominion University, 2005 

Director: Dr. Chuh Mei

Shape Memory Alloy (SMA) has a unique ability to recover large prestrain (up to 

8-10% elongation for Nitinol, a typical SMA material) completely when the alloy is 

heated (e.g. aerodynamic heating) above the austenite finish temperature Af. An 

innovative concept is to utilize the large recovery stress by embedding the prestrained 

SMA in a traditional fiber-reinforced laminated composite plate, which is called SMA 

hybrid composite (SMAHC) plate. In this research, static thermal and aerothermal 

deflections, dynamic panel flutter and random response are investigated for traditional 

composite plates and SMAHC plates under combined aerodynamic, random and thermal 

loads by employing nonlinear finite element method. System equations are derived and 

based on classical laminated plate theory, von Karman nonlinear strain-displacement 

relation, first-order piston theory aerodynamics and quasi-steady thermal stress theory. 

Newton-Raphson iterative method is adopted for solving the static thermal and 

aerothermal buckling deflections. Both normal modes and new proposed aeroelastic 

modes are employed separately in solution procedures to transform the equations of
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motion in structural node degree-of-freedom (DOF) into modal equations of motion. 

Time domain numerical integration technique is adopted for the dynamic analysis under 

the combined aerodynamic, random and thermal loads.

Numerical results of isotropic, traditional composite plates and SMAHC plates are 

determined, compared and discussed. Various plate behaviors are studied in detail. It is 

demonstrated that SMAHC plates can greatly suppress or reduce thermal buckling and 

panel flutter as compared with the traditional composite plates. While the SMAHC plates 

exhibit better performance at low levels of acoustic excitations, however, the SMAHC 

plates do not effectively suppress random response at high levels of acoustic excitations.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



ACKNOWLEDGMENTS 

1 would like to express my greatest gratitude and appreciation to my academic 

advisor Dr. Chuh Mei for his priceless guidance, inspiration and encouragement. He has 

kept showing me a splendid and fantastic academic prospect, in which world he has kept 

working for more than 40 years. During countless lectures and discussions with him, 

what I have learned is not only in academic research, but also in the attitudes of life and 

working. I would not be writing this dissertation with him.

I also want to extend my deepest thanks to my committee members, Dr. Osama A. 

Kand.il and Dr. Gene Hou, for their guidance and suggestions on the dissertation research, 

and their patience on reviewing the draft. I appreciate all the other faculty and staff 

members at the Department of Aerospace Engineering for their excellent work and 

contributions. I’m thankful to the Department of Aerospace Engineering for financial 

support for my Ph.D. research and study. Great thanks are also given to Adam Przekop 

and Mohamed S. Azzouz for their friendship and kind help in four years.

I do not know how to express my deepest love to my parents. Memories with my 

family are always my priceless treasure. The best way to pay back their greatest love is 

to make successes in my life.

Last but not the least, I want to express my deepest love to my wife, Weining Xu, 

and my new bom daughter, Emily. I am so lucky to have her as my wife, a lovely, 

considerate and open-minded woman who will share with me the happiness and success, 

and will ease me when I encounter difficulties and losses.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



TABLE OF CONTENTS

ABSTRACT ......................... ................ ................ .......... ........... ......................... .

ACKNOWLEDGMENTS.    .......... ................. ....... ............................... .

Table of contents................................................        i

List of figures....................       iv

List of tables  ..........            x

LIST OF SYMBOLS..............       ...xii

LIST OF SYMBOLS...............            xii

Greek symbols................................           xiv

Subscripts..................................................................     xiv

CHAPTER I INTRODUCTION...................    1

1.1 Motivations...........................           1

1.2 Shape Memory Alloys .....        5

1.3 Dissertation Scope  ........................      9

CHAPTER II Literature survey  .......          12

2.1 Thermal Buckling and Postbuckling  .....        12

2.2 Nonlinear Panel Flutter  ...................      15

2.3 Random Vibration  ..........          20

2.4 Combined Aerodynamic, Acoustic and Thermal Loads..............  22

2.5 SMA Applications  ......................      24

CHAPTER III Formulation.....  .....  26

3.1 Introduction  .....         26

3.2 Constitutive Relations of an SMAHC Lamina .....  27

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



ii

3.2.1 Stress-Strain Relation in 1 -Direction (Fiber Direction)................................... 28

3.2.2 Stress-Stain Relation in 2-Direction   30

3.2.3 Two-Dimensional Stress-Strain Relation  .............................       32

3.3 Constitutive Relations of an SMAHC plate............................................................ 34

3.4 Quasisteady First-Order Piston Aerodynamic Theory  .....................     37

3.5 Random Pressure Generation................................................    39

3.6 Equations of Motion in Finite Element Formulation................................       42

3.6.1 Finite Element Expressions...................................................        42

3.6.2 Element Equations of Motion....  ...................................     46

3.6.3 System Equations of Motion and Physical Problems...................................... 53

3.6.4 Condensed System Equations of Motion....................     56

CHAPTER IV SOLUTION PROCEDURES .....   59

4.1 Introduction...................                 59

4.2 Static Aerothermal Buckling in Structural Node DOF  .................................  59

4.3 Dynamic Response Using Modal Equations in Normal Modes  ....   64

4.4 Dynamic Response Using Modal Equations in Aeroelastic Modes ....................... 69

4.5 Strain Calculation  .......................        74

CHAPTER V Static Thermal and aerothermal Response  ......    76

5.1 Static Thermal Buckling and Postbuckling Response .....       78

5.2 Static Aerothermal Buckling Deflections ..........       82

CHAPTER VI Panel Flutter at Elevated Temperatures ..........................         .87

6.1 Validation of AE Modal method..............    88

6.1.1 Zero Flow Angle (A = 0°) Case.......................    88

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



6.1.2 Nonzero Flow Angie (A &  0°) Case............................    92

6.1.3 Nonzero Flow Angle (A ^ 0°) with Thermal Load...........    95

6.2 Flatter and Stability Regions  ..       97

6.2.1 Traditional Composite Plate..............  .        98

6.2.2 SMAHC plates..........  ..................................   105

CHAPTER VII Random Vibration at Elevated Temperatures ............... . 110

7.1 Traditional Composite Plate  ............ ........... .............................................. . 112

7.2 SMAHC Plates  ................................................           121

CHAPTER VIII Panel Response under Combined Thermal, Aerodynamic and Acoustic 

Loads ..................          128

8.1 Traditional Composite Plates............................................................................   129

8.2 SMAHC Plates  ........................               135

CHAPTER IX CONCLUSIONS  ...........................................       141

REFERENCES  .........................................................                       145

CURRICULUM VITA................................................... .............. .......................... . 153

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



iv

LIST OF FIGURES

Fig. 1.1 Various loads on surface panels of supersonic/hypersonic flight vehicles1.......... 2

Fig. 1.2 Panel flutter: theory and experiment2..........................     3

Fig. 1.3 Schematic of panel flutter deflection shape and airflow yaw angle ....   3

Fig. 1.4 Temperature-driven phase transformation of SMA................      6

Fig. 1.5 Schematic of shape memory effect (T < As)  ....   7

Fig. 1.6 Variation of As with nickel content4 .....      7

Fig. 1.7 Young’s modulus of Nifinol versus temperature4  .....  8

Fig. 1.8 Recovery stress ofNitinol versus temperature with various prestrain levels4 ...... 9

Fig. 3.1 A representative SMAHC lamina..............         28

Fig. 3.2 Schematic of an SMAHC lamina under stress in 1-drection..............       28

Fig. 3.3 Schematic of an SMAHC lamina under the stress in 2-drection...  ............... 31

Fig. 3.4 A representative SMAHC plate with 3 layers of lamina...  ....     34

Fig. 3.5 Schematic of a general n layer SMAHC plate..................................................... 35

Fig. 3.6 Simulation of Band-Limited White Noise with SPL = 100 dB and fu = 1024 Hz

  ....           41

Fig. 3.7 Nodal degrees of freedom of a BFS C1 conforming rectangular element........... 42

Fig. 4.1 Eigenvalues K versus dynamic pressure for a simply supported isotropic square

plate at A = 0°. ....         70

Fig. 4.2 LCO amplitudes versus dynamic pressure for a simply supported isotropic square

plate at A = 0 °. .....  71

Fig. 4.3 LCO deflections of Wmax/h = 0.6 and 1.2 at y = b/2 for a simply supported 

isotropic square plate at A = 0°...........    71

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



V

Fig. 4.4 Normalized AEMs at A0 =510 for a simply supported isotropic square plate at A

= 0°.............          .72

Fig. 5.1 The maximum thermal buckling deflection for traditional composite plates...... 79

Fig. 5.2 The maximum thermal buckling deflection of a clamped traditional composite

plate (vs = 0) and the clamped SMAHC plates (vs =£ 0). ....   80

Fig. 5.3 Fundamental natural frequency of a clamped traditional composite plate and

clamped SMAHC plates  ........               83

Fig. 5.4 Weights versus the critical temperatures for the clamped titanium, traditional

composite and SMAHC plates  .....   83

Fig. 5.5 Square of aerothermal deflections versus temperature for a clamped traditional

composite plate at various dynamic pressure and A = 0°.......................................... 85

Fig. 5.6 Aerothermal deflection shape for a clamped traditional composite plate at X  =

120, A = 0° and AT = 150°F...................................       86

Fig. 5.7 Square of aerothermal deflections versus temperature for a clamped traditional

composite plate at A = 45°.........           86

Fig. 6.1 Comparison of LCO amplitudes between Dowell2' and finite element modal 

method using 2 AEMs and 6 NMs for a simply supported isotropic square plate at A

= 0°.. ......          89

Fig. 6.2 Time history and phase plot using 2 AEMs for a simply supported isotropic

square plate at X  -  890 and A = 0°.....       89

Fig. 6.3 Convergence of LCO amplitude using AEMs for a simply supported isotropic 

square plate at A = 0°.........      90

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Fig. 6.4 LCO amplitudes for a simply supported isotropic square plate at A = 0° using

AEMs selected at different X 0 . ....            92

Fig. 6.5 Comparison of LCO amplitudes using 2, 4 or 6AEMs ( X 0 = 245) and 36 NMs for

a clamped rectangular [-40/40/-40] composite plate at A = 0°. ..........  93

Fig. 6.6 Comparison of LCO amplitudes using 2 or 6 AEMs ( k 0 = 515) and 36 NMs for a

simply supported isotropic square plate at A = 15°. ....       93

Fig. 6.7 Comparison of LCO amplitudes using 6 AEMs (X Q = 200) and 36 NMs for a

clamped rectangular [-40/40/-40] composite plate at A = 15°........ ... ... . 94

Fig. 6.8 Comparison of aerothermal deflection and LCO amplitude using 16 NMs and 6 

AEMs for a simply supported square aluminum plate at AT/ATcr =1.5 and A = 15°.

  ....................         96

Fig. 6.9 Comparison of aerothermal deflection and LCO amplitude using 25 NMs and 6 

AEMs for a clamped traditional [0/-45/45/90]s composite plate at AT = 50°F and A

= 0°........           98

Fig. 6.10 Simple harmonic LCO of a clamped traditional [0/-45/45/90]s composite plate

at X  = 500, A = 0° and AT/ATcr= 1.0...........       101

Fig. 6.11 Periodic LCO of a clamped traditional [0/-45/45/90]s composite plate at X  =

275, A = 0° and AT/ATcr= 2.0.....         101

Fig. 6.12 Non-periodic oscillation of a clamped traditional [0/-45/45/90]s composite plate

a t l  =  200, A = 0° and AT/ATcr= 3.0. ......  102

Fig. 6.13 Chaotic oscillation of a clamped traditional [0/-45/45/90]s composite plate at X  

= 325, A = 0° and AI/AIcr= 4.0. .............    102

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Fig, 6.14 Aerothermal deflection and LCO amplitude versus dynamic pressure A of a

clamped traditional [0/-45/45/90]s composite plate at A = 0°....................  104

Fig. 6.15 Stability regions in temperature ~ dynamic pressure (AT-A) domain of the 

clamped traditional [0/-45/45/90]s composite plate at A = 0°. ............................... 104

Fig. 6.16 Stability regions in temperature - dynamic pressure (AT-A.) domain of the

clamped traditional [0/-45/45/90]s composite plate at A = 45°. ............ 105

Fig. 6.17 Stability regions in temperature - dynamic pressure (AT-A) domain of the

clamped SMAHC (vs= 10% and £r= 3%) plate at A = 0°............      107

Fig. 6.18 Wmax/h versus dynamic pressure A and temperature AT of a clamped SMAHC

(vs= 10% and £r= 5%) plate at A = 0°.......               108

Fig. 6.19 Wmax/h versus dynamic pressure A and temperature AT of a clamped SMAHC

(vs = 10% and er = 3%) plate at A = 45°.................................   108

Fig. 6.20 Wmax/h versus dynamic pressure A and temperature AT of a clamped SMAHC

(vs= 10% and £r= 5%) plate at A = 45°...................     109

Fig. 7.1 Frequencies of the lowest 8 symmetric modes versus temperature for the

thermally pre-buckled or postbuckled traditional composite plate................  113

Fig. 7.2 Random response of a clamped traditional [0/-45/45/90]s composite plate at SPL

= 90 dB and AT = 0°F. ..... ............................................. ............................ 115

Fig. 7.3 Random response of a clamped traditional [G/-45/45/90]s composite plate at SPL

= 110dBandAT = 0°F.............................................    116

Fig. 7.4 Random response of a clamped traditional [0/-45/45/90]s composite plate at SPL 

= 130 dB and AT = 0°F..  .... ............................................. 117

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Fig- 7.5 Random response of a clamped traditional [0/-45/45/90]s composite plate at SPL

= 90 dB and AT = 160°F. .........     118

Fig. 7.6 Random response of a clamped traditional [0/-45/45/90]s composite plate at SPL

= 110 dB and AT = 120°F..................     119

Fig. 7.7 Random response of a clamped traditional [0/'~45/45/90]s composite plate at SPL

= 130 dB and AT = 160°F..... ........ ................. ,................. .......................... 119

Fig. 7.8 Random response of a clamped traditional composite plate at SPL = 90 dB and

AT = 39.3°F.....                     120

Fig. 7.9 Random response Wmax/h versus temperature and sound pressure level of a

clamped traditional [0/-45/45/90]s composite plate.  ..........................................122

Fig. 7.10 Frequencies of the lowest 8 symmetric modes versus temperature for an

SMAFIC plate with vs = 10% and er= 3%.......         123

Fig. 7.11 Frequencies of the lowest 8 symmetric modes versus temperature for an

SMAHC plate with vs = 10% and er= 5%.......................       123

Fig. 7.12 Random response Wmax/h versus temperature and sound pressure level for an

SMAHC plate with vs = 10% and er = 3%.....................   124

Fig. 7.13 Random response Wmax/h versus temperature and sound pressure level for an

SMAHC plate with vs= 10% and er= 5%. ..............  125

Fig. 7.14 Random response Wmax/h versus temperature for traditional [0/-45/45/90]

composite and SMAHC plates at SPL =110 dB  .....................  126

Fig. 7.15 Random response Wmax/h versus temperature for traditional [0/-45/45/90] 

composite and SMAHC plates at SPL = 130 dB. ......  127

S

S

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



IX

Fig. 8.1 Comparison of RMS Wmax/h for a clamped traditional [0/«45/45/90]s composite 

plate at AT = 80°F, X  = 400 and A = 0° using 36 NMs and 6 AEMs, respectively. 130 

Fig. 8.2 Response of a clamped traditional [0/-45/45/90]s composite plate at AT = 60°F, X

= 100, A = 0° and SPL = 90 dB. ....       131

Fig. 8.3 Response of a clamped traditional [0/-45/45/90]s composite plate at AT = 80°F, X

=  100, A = 0° and SPL = 110 dB. ......         132

Fig. 8.4 Response of a clamped traditional [0/-45/45/90]s composite plate at AT = 80°F, X

=  100, A = 0° and SPL = 130 dB. ............         132

Fig. 8.5 RMS Wmax/h versus A, of a clamped [0/-45/45/90]s composite plate at A = 0°. 134 

Fig. 8.6 RMS Wmax/li versus X  for a clamped [0/-45/45/90]s composite plate at A = 45°.

  ......................................................................       135

Fig. 8.7 RMS Wmax/h versus X  for a clamped SMAHC plate (vs = 10% and er= 3%) at A

= 0°..............          136

Fig. 8.8 RMS Wmax/h versus X  for a clamped SMAHC plate (vs = 10% and er = 5%) at A

= 0°...................               137

Fig. 8.9 Comparison of RMS Wmax/h between a traditional composite [0/-45/45/9O]s plate

and the clamped SMAHC plates at SPL = 110 dB. .....     139

Fig. 8.10 Comparison of RMS Wmax/h between a traditional composite [0/-45/45/90]s 

plate and the clamped SMAHC plates at SPL = 130 dB . ....     140

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



X

LIST OF TABLES

Table 2.1 Panel flutter theories26 .................   16

Table 5.1 Material properties of Nitinol, graphite-epoxy composite lamina and titanium?? 

Table 5.2 Critical buckling temperatures of the clamped titanium, traditional composite

and SMAHC plates ....     80

Table 6.1 Comparison of MP of 6 AEMs ( k 0 = 510) and 6 NMs for the simply supported

isotropic square plate at A = 0°..........          90

Table 6.2 MP of 6 AEMs (A,0 = 245) for a clamped traditional composite plate at A = 0°

  ......               91

Table 6.3 MP of 6 AEMs ( X 0 = 515) for a simply supported isotropic square plate at A =

15°...................................         94

Table 6.4 MP of 6 AEMs (A,0 = 200) for a clamped [-40/40/-40] composite plate at A =

15°.................................................................................      95

Table 6.5 MP of 6 AEMs (A0 = 515) for a simply supported isotropic square plate at A =

15° and AT/ATcr =1 .5  ......     96

Table 6.6 MP of 6 AEMs (X0 = 464) for a clamped traditional [0/-45/45/90]s composite

plate at A = 0° and AT = 50°F  .............  99

Table 7.1 Comparison of RMS Wmas/h of linear analysis between analytical and FE 

results for a simply-supported 15x12x0.040 in. isotropic plate ............................. I l l

Table 7.2 Comparison of RMS Wmax/h of nonlinear analysis between FPK and FE results 

for a simply-supported 15x12x0.040 in. isotropic plate...  .....  112

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Table 7.3 Natural frequencies (Hz) of a clamped traditional [0/-45/45/90]s composite

plate..  ........              113

Table 7.4 Modal convergence of RMS Wmax/fa for a clamped traditional [0/-45/45/90]s 

composite plate at SPL = 130 dB and AT = 0°F..................................................... 114

Table 8.1 MP of 10 AEMs for a clamped [0/-45/45/90]s composite plate at AT = 80°F, X  

= 400, A = 0° and SPL = 130 dB .....               130

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



L IS T  O F  SY M BO LS

{a}, {b} generalized coordinates

A element area

As austenite start temperature

Ass, Am cross section area of SMA fibers and composite matrix

[A] laminate in-plane stiffness matrix

[aa], [Aa] element and system aerodynamic influence matrices

[B] laminate coupling stiffness matrix

[C] interpolation function matrix

[D] laminate bending stiffness matrix

E Young’s modulus

ga nondimensional aerodynamic damping coefficient

G shear modulus

[g], [G] element and system aerodynamic damping matrices

[G] modal aerodynamic damping matrix

h plate thickness

[H] displacement function matrix

[k], [K] element and system stiffness matrices

[Kjin] combined system linear stiffness matrix

[Kj], [ K z ]  combined system first- and second-order nonlinear stiffness matrices 

[Ktan] system tangent stiffness matrix

[K] modal linear stiffness matrix

[Kq], [Kqq] modal nonlinear stiffness matrices

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Is, Itn width of SMA fibers and composite matrix

L panel length

Moo free stream Mach number

[m], [M] element and system mass matrices

[M] modal mass matrix

{N}, {M} force and moment resultant vectors

M , [Nt] element and system first-order nonlinear incremental stiffness matrices

M , [N2] element and system second-order nonlinear incremental stiffness matrices

Pa aerodynamic pressure

q dynamic pressure / natural coordinate

{?}, {P} element and system force vectors

{P} modal force vector

[Q] lamina reduced stiffness matrix

[Q] transformed lamina reduced stiffness matrix

T temperature

[T] transformation matrix

u, V in-plane displacements

Vs, Vm volume fractions of SMA fibers and composite matrix

V airflow velocity

w transverse displacement

{w}, {W} element and system node degree-of-freedom vectors

x, y, z Cartesian coordinates

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Greek symbols

a coefficient of thermal expansion (Cl

P 4 mI-i
A increase value

{£} strain vector

fiber orientation angle

w ,  m element and system eigenvectors

m system eigenvector or modal matrix

{K} bending curvature vector

1 nondimensional dynamic pressure

A flow yawed angle

air-panel mass ratio

V, V12, V21 Poisson’s ratios

[6] slope matrix

P mass density

{0} stress vector

CO frequency

e structural modal damping ratio

Subscripts 

a air

abs total

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



XV

b bending

cr critical

m membrane / composite matrix

NB stiffness matrices due to in-plane force component {Mb}

Nm stiffness matrices due to in-plane force component {Nm}

NAT stiffness matrices due to in-plane force component {NAT}

r recovery stress of SMA

s static / quantity related to SMA

t time dependent

u, v, w in-plane and transverse displacements

AT thermal

£ strain

X  aerodynamic load

<T stress

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



1

CHAPTER I INTRODUCTION

1.1 Motivations

High-speed flight vehicles cruise at supersonic speeds, causing skin-panel 

temperatures to potentially reach several hundred degrees due to aerodynamic heating, 

e.g. maximum 350°F for High Speed Commercial Transport (HSCT) cruising at Mach

2.4 proposed in 1990. The aircraft structure must withstand high thermal load. Large 

thermal deflections of the skin panels may occur. This would alter the vehicle's 

configuration and affect its aerodynamic characteristics, leading to poor flight 

performance. In addition, when the surface area is exposed to engine noise, jet exhaust or 

shock boundary layer interaction, the skin panels will endure very high acoustic pressure. 

Typically, the surface thermal protection system (TPS) composed by the skin panels will 

be exposed to a severe aerodynamic, acoustic and thermal environment. High 

temperature resistant composite materials with light weight, high stiffness, high structural 

damping ratio, and high fatigue life are therefore adopted in the TPS. The flight vehicles 

such as HSCT, X-33 Advanced Technology Demonstrator, the Reusable Launch Vehicle 

(RLV), and the Joint Strike Fighter (JSF) all will operate at supersonic/hypersonic 

speeds. The severe flight environment leads to various loads1, including aerodynamic 

pressure, acoustic excitation and thermal load, etc. (Fig. 1.1).

The journal model used for this dissertation is AIAA Journal
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a c o u s t i c  passsoai

'i»i—

THERMAL HEATI

itiPLAIfE LOADS

Fig. 1.1 Various loads on surface panels of supersonic/hypersonic flight vehicles1

It is also well known that panel flutter occurs resulting from airflow acting on only 

one side of the surface panel. There exists a critical non-dimensional dynamic pressure 

Acr as shown in Fig. 1.2 2 Below X CT, the panel undergoes linear random vibration with 

small amplitudes. The dominant frequency is observed near the lowest natural frequency 

of the panel. Neglecting structural nonlinearity, linear theory indicates that beyond X CJ, 

the panel motion becomes unstable and grows exponentially with time. Therefore, 

nonlinear effect must be considered in vibration analysis beyond X cr. In fact, the effect of 

in-plane forces will be significant, and in-plane displacement is coupled with transverse 

displacement when vibration amplitude becomes large. So the plate motion becomes a 

bounded limit cycle oscillation (LCO).
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Fig. 1.3 Schematic of panel flutter deflection shape and airflow yaw angle
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Another effect of the supersonic flow at A = 0 is that the deflection shape is no 

longer symmetric with respect to the mid-span of the plate. Furthermore, the airflow can 

be yawed, that is the direction of airflow has a nonzero angle with respect to the panel x- 

directions as shown in Fig. 1.3.

It could be expected that the skin panel will undergo various complex types of 

motion with the combined thermal, aerodynamic and acoustic loads. It is well known 

that a skin panel with immovable boundary conditions will become thermally buckled if 

the temperature rise is high; the panel will flutter if airflow speed is high; and the panel 

will undergo large amplitude nonlinear random vibration at high level acoustic pressure. 

However, a survey of the literature shows that very few analytical works have been 

reported on the study of panel response under the three combined loads. Reliable 

experimental data are difficult and costly to acquire due to difficulties with combined 

loads of temperature, high Mach number and high acoustic intensity. Thus, it is desirable 

to develop an improved mathematical and computational prediction method.

Study of panel flutter usually involves the methods of transforming Partial 

Differential Equations (PDE) into Ordinary Differential Equations (ODE) by using 

Galerkin’s approach or finite element modal method. However, it is still time consuming 

to acquire a converged solution because a large number of modes have to be used for 

nonlinear panel flutter analysis with airflow yaw angles involved. Aeroelastic modes are 

thus developed to reduce the number of modes used in flutter related analysis. This is 

another motivation of this dissertation.

The investigation of shape memory alloys, which will be introduced in the next 

section, for the control of thermal buckling, panel flutter and random response under
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combined aerodynamic, acoustic and thermal loads is the third motivation of this 

dissertation.

1.2 Shape Memory Alloys

The term Shape .Memory Alloys (SMA) is applied to a group of metallic alloys that 

can demonstrate the ability to return to some previously defined shape or size when 

subjected to the appropriate thermal procedure. Generally speaking, these materials can 

be plastically deformed at some relatively low temperature, and upon exposure to some 

higher temperature will return to their shape prior to the deformation. It is so called 

shape memory effect (SME). SME can be described as follows: an object in the low- 

temperature martensitic phase, when plastically deformed and the external stresses 

removed, will regain (memorize) its original shape when heated.

A relatively wide variety of alloys are known to exhibit the SME. They are the 

nickel-titanium alloys and copper-base alloys such as Cu-Al-Ni, Cu-Zn, Cu-Zn-Al, Cu- 

Zn-Ga, Au-Cd, Ni-Al and Fe-Pt, etc. One of the most common SMA materials is nickel- 

titanium alloy known as Nitinol (Ni: nickel, ti: titanium, nol: Naval Ordinance 

Laboratory, now Naval Surface Weapons Center).3 The advantage of Nitinol is that the 

prestrain could reach as high as 8-10%, compared with 4-5% of copper-based alloys.

The SME phenomenon is due to the internal crystalline transformations from the low 

temperature martensite phase to the high temperature austenite phase. The 

transformation does not occur at a single temperature but over a range of temperatures 

that varies with each alloy system. The transformation also exhibits hysteresis in that the 

transformations on heating and on cooling do not overlap. A schematic of the
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cooling/heating phase transformation phenomenon is shown in Fig. 1.4. Since this phase 

transformation is gradual and reversible, a very important state variable in the process is 

the martensite fraction There are four temperatures Mf, Ms, As, Af denoting martensite 

finish, martensite start, austenite start and austenite finish, respectively.

HeatingMartensite

Phase Transformation

Cooling Austenite

Mf Ms As Af T

Fig. 1.4 Temperature-driven phase transformation of SMA

The mechanical properties of SMA materials vary greatly over the temperature range 

spanning their transformation. The martensite is easily deformed to several percent

strains at quite a low stress, whereas the austenite has much higher yield stress. During 

the martensite phase, the internal stress in the SMA changes only slightly and a 

significant plastic strain is achieved. At T < As, during the stress-induced martensite 

phase transformation, a large residual strain er remains after unloading, as shown 

schematically in Fig. 1.5. This strain can be recovered by heating SMA to temperature T 

>  Af. No such shape recovery is found in the austenite phase upon straining and heating, 

because no phase change occurs.
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Fig. 1.5 Schematic of shape memory effect (T < As)

The transformation temperatures of SMA can be varied by the percentage of alloy 

content.4 Nitinol As temperature versus nickel content is shown in Fig. 1.6. It is seen 

that with only three percent change of nickel, As varies from -50°C to 175°C. This 

characteristic enables the designers to adjust As more flexibly to satisfy the application 

requirements. One of the characteristics accompanying the phase transformation of 

Nitinol is Young’s modulus.4 A factor of 3 or 4 of Young’s modulus at high temperature 

over the low temperature is as shown in Fig. 1.7.

200
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I
4)H

-50

54.553.5 54 55 55.5 56 56.5
Nickel Content (%)

Fig. 1.6 Variation of As with nickel content4
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Fig. 1.7 Young’s modulus of Nitinol versus temperature4

An innovative concept is to utilize the large recovery stress by embedding the 

prestrained SMA in a fiber-reinforced laminated composite plate.5 If SMA fibers are 

loaded and plastically elongated at low temperature (T < As) during the training process, 

the fibers will generate martensite residual strain (prestrain er) upon unloading. The 

treated SMA fibers with prestrain are then embedded inside a traditional composite 

laminate. The plate is turned into an SMAHC plate. The traditional composite laminate 

is considered as composite matrix. When the SMA fibers are heated above temperature 

As, since the fibers are restrained by the composite matrix, the tendency of the fibers to 

return to their normal or memorized length generates a large tensile stress (recovery 

stress). This stiffening behavior has been experimentally demonstrated with SMAHC 

beams.4 The experimental data of recovery stress of Nitinol fibers with various prestrain 

levels is shown in Fig. 1.8. It is seen that a large recovery stress about 20-80 Ksi (138
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MPa-551 MPa) can be generated with prestrain varying from 1% to 10%. The large 

recovery stress serves as a stiffened in-plane force for the composite structure, therefore 

plays a key role in the suppression of thermal buckling and vibration. Prestrain of 

1 %~5% is normally used because the fatigue life of SMA fiber will be quickly reduced at 

higher prestrains.

80

7 0
geo
1 50

8%

7%

3%

2%
1%

15070 110 190 230 270 350310

Temperature (F)

Fig. 1.8 Recovery stress of Nitinol versus temperature with various prestrain levels4

1.3 Dissertation Scope 

In this dissertation, the static and dynamic response of traditional composite plates 

and SMAHC plates subjected to the combined aerodynamic, acoustic and thermal loads 

are studied. Different types of problems are addressed such as thermal bucking and 

postbuckling, static aerothermal buckling, panel flutter under combined aerodynamic and 

thermal loads, random response under combined acoustic and thermal loads, and dynamic 

response under three combined loads.
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The documentation of this dissertation is organized as follows. In Chapter I, the 

general introduction is given about problem description and SMA. Chapter II is the 

literature survey on static and dynamic problems associated with thermal buckling, flutter 

and random response of plates. In. Chapter III, the constitutive relations for an SMAHC 

lamina are developed. The stress-strain relations considering thermal effects are derived. 

The highly nonlinear material properties of SMA obtained from experimental data are 

taken into consideration. The finite element system governing equations are then derived 

based on von Karman nonlinear strain-displacement relations and virtual work principle. 

In Chapter IV, the solution procedures are developed. Newton-Raphson iterative 

procedure is employed for solving thermal and aerothermal buckling deflections. Two 

types of modal equations of motion are derived based on normal modes and aeroelastic 

modes, respectively. In panel flutter problems, dynamic responses are determined by 

employing an aeroelastic modal method. In random problems, random responses are 

characterized by Monte Carlo numerical simulation using the traditional normal modes. 

In chapters V to VIII, examples are presented with numerical results and discussions for 

thermal and aerothermal buckling (Chapter V), nonlinear panel flutter (Chapter VI), 

random vibration (Chapter VII), and dynamic response under combined aerodynamic, 

acoustic and thermal loads (Chapter VIII). They include: i) static thermal buckling 

deflections due to thermal load only, ii) static aerothermal buckling deflections due to 

combined aerodynamic and thermal loads, iii) nonlinear panel flutter under combined 

aerodynamic and thermal loads, iv) random vibration under combined acoustic and 

thermal loads, and v) dynamic response under combined aerodynamic, acoustic and 

thermal loads. The results obtained for SMAHC plates are compared with those for
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traditional composite panels without SMA fibers. Finally, the concluding remarks and 

recommendation for fixture work are presented in Chapter IX.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



12

CHAPTER II LITERATURE SURVEY

2.1 Thermal Buckling and Postbuckling

Thornton6 did a thorough survey on the works on thermal budding and postbuckling 

of plates and shells from the 1950s to 1993. Chia7 also reviewed the geometrical 

nonlinear behaviors of composite plates, and addressed the results in static large 

deflection and postbuckling problems.

Several researchers studied thermal static stability. Hilburger et al. determined the 

stable equilibrium of structures after the static snap-through occurred using a transient 

analysis. An initial disturbance was applied to the structure at an unstable equilibrium 

point so that a new stable equilibrium was obtained after the disturbance was damped out. 

Irschik9 presented a Berger-type approximation for large deflections of a thermally 

loaded and initially curved plate. Bifurcation and snap-through phenomenon was shown 

and stability of the equilibrium solution was discussed. Birman and Bert10 considered the 

thermal response of composite cylindrical shells subjected to compressive axial loads and 

elevated temperatures. It is showed that the increase of temperature at a constant 

compressive load could result in a snap-through of the shell to a new equilibrium 

position. Conditions for the snap-through were also presented.
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Since the material properties of SMA are largely dependent on the variation of 

temperatures, the study of temperature-dependent (TD) material property effects is an 

important issue. Some researchers studied the effect of TD material properties on 

thermal buckling and postbuckling. Noor and Peters11 studied the effects of variation of 

the elastic moduli, coefficients of thermal expansion (CTE) and fiber orientations of 

composite lamina on the postbuckling response of composite plates. Noor and Burton12 

reviewed the computational models for high temperature multi-layered composite plates 

and shells in the applications of heat transfer, thermal stress, bifurcation buckling, large 

deflection and postbuckling, etc. Effects of temperature-dependence of material 

properties, and sensitivity of the thermo-mechanical response were discussed in detail.
1 o

Kamiya and Fukui investigated the finite deflection and postbuckling of square 

isotropic plates with TD material properties. The finite difference method was employed 

with iteration solutions for plates in both simply supported and clamped boundary 

conditions. They concluded that TD material properties would lower the critical buckling 

temperature, and reduce the postbuckling stiffness and increase the deflection at 

increased temperatures. Chen and Chen14’13 proposed a finite element method for thermal 

buckling and postbuckling behavior of laminated composite plates. Noor and Burton16 

studied the effect of TD material properties on the prebuckling stresses, critical 

temperatures and their sensitivity derivatives of antisymmetric angle-ply plates using the 

three-dimensional thermo-elasticity solutions. Numerical results showed that the 

influence of prebuckling stresses on critical temperature was less significant than the 

temperature-independent (TI) material property case. Lee and Lee17 studied the thermal 

effect for stiffened composite plates with the material degradation on the buckling,
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vibration and flutter characteristics using finite element method. It is interesting to note 

that the above authors11-17 all assumed a linear relation between material property and 

temperature, which leads to simpler formulations.

Lee and Choi18, and Lee, et ah19 studied the thermal buckling and postbuckling of 

composite beams and shells with embedded SMA actuators, respectively. Based on the 

one-dimensional thermo-mechanical constitutive equation of SMA wire actuators, a 

simple formula was suggested to calculate the critical buckling temperature of a beam 

once SMA actuator is activated18. This constitutive equation of SMA was also 

incorporated into a finite element model as an ABAQUS subroutine to determine the 

thermal postbuckling lateral deflections of the beam18, plate and shell19. The results 

showed an increased critical buckling temperature and reduced lateral deflection. It is 

also mentioned that the Austenite start temperature is significant in determine the critical 

temperature. However, the recovery stresses calculated from the theoretical constitutive 

equation were greatly different as compared with the experimental data. Thompson and 

Loughlan20 did manufacturing and experiments of SMA wires embedded laminated 

panels, as well as a numerical structural finite element analysis using MSC/NASTRAN. 

The manufacturing methodology of the hybrid SMA carbon/epoxy panel was considered 

in detail. The panel studied was embedded with 23 0.3mm (0.012 in.) diameter SMA 

actuators with an initial prestrain 6%. Both experiments and numerical analysis showed 

that the out-of-plane displacement of the postbuckled laminated panel could be reduced, 

by utilizing the recovery forces generated from a small SMA actuator volume fraction.

Zheng21 and Mei et al.22 utilized an iteration method for the predication of critical 

temperature with TD material properties. An eigenvalue problem was first formed, and
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the calculation was then iterated upon by updating the material properties at the updated 

temperature until the lowest eigenvalue was converged to 1. By doing so, the 

dependency of the critical temperature on the initial guess was eliminated. However, this 

method is not suitable for highly nonlinear or suddenly changed material properties such

'J'Xas SMA. Duan et al. developed an increment-updated Lagrangian method to determine 

the critical temperature and postbuckling deflection of SMAHC plates. Due to the highly 

nonlinear dependency of SMA material properties on temperature, the temperature 

increment began at the reference temperature, at which the plate was assumed to be in a 

stress-free state (zero initial deflection and stresses). For each small temperature 

increment, the material properties of the SMA fibers and composite matrix were assumed 

constant, and the incremental deflection was solved using the Newton-Raphson iteration 

method. The total deflection was then obtained by adding the incremental deflection to 

the initial deflection obtained from the previous temperature increment. The initial 

deflection and initial stresses were then updated and considered in the formulation, and 

the next temperature increment was introduced. At a temperature that the first large 

deflection appeared, the plate was therefore becoming thermally buckled. The drawback 

of this method is that the formulation and solution procedures are quite complicated and 

computationally time-consuming.

2.2 Nonlinear Panel Flutter

Dowell2 had an excellent review on both analytical and experimental research 

aspects of panel flutter in 1975. He grouped the vast amount of theoretical literature on 

linear and nonlinear panel flutter into four categories. Gary and Mei24 added the fifth 

category for hypersonic flow flutter analysis. In 1999, Mei et al.23 gave a most recent

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



16

review of nonlinear panel flutter at supersonic and hypersonic speeds. Cheng26 pointed, 

out the sixth category would be applying directly the Euler or the Navier-Stoke equations 

in spite of transonic, supersonic or hypersonic environments. The different categories of 

linear and nonlinear panel flutter are shown in Table 2.1.

Table 2.1 Panel flutter theories',26

Type Structure Aerodynamic Theory

Theory

1 Linear Linear Piston

2 Linear Linearized Potential Flow

3 Nonlinear Linear Piston

4 Nonlinear Linearized Potential Flow

5 Nonlinear Nonlinear Piston

6 Nonlinear Euler or Navier-Stokes

Equations

Range of Mach No.

V2<M^<5

1< Moc<5 

42 <Moo<5 

1< lVLo<5 

M L>5

Transonic, Supersonic or

Hypersonic

Various classical analysis methods have been employed to study panel flutter. 

PDE/Galerkin method was the mostly used to reduce the governing partial differential 

equations to a set of coupled ordinary differential equations by assuming a set of 

predefined modes which satisfy the geometrical conditions. For the nonlinear flutter of 

isotropic plate, Dowell27,28 used the direct numerical integration approach and determined 

that 6 linear normal modes are required to obtain the converged limit cycle solution. For 

the flutter analysis of a cantilever plate, Ye and Dowell employed a Rayleigh-Ritz 

approach with the direct numerical integration and found that the length-to-width ratio of 

the cantilever plate was a significant factor on flutter vibration. One of the classical 

analytical methods is harmonic balance method, which needs less computational time
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than direct integration, but it is extremely tedious to implement. Kuo et al. , Yuen and 

Lau31, Eastep and Macintosh32 applied this method in their studies. The perturbation 

method is another method adopted by Merino33 and Kuo et al.fl0

All the classical studies in nonlinear panel flutter have some limitations: they only 

can treat isotropic or orthotropic rectangular plates and simple boundary conditions, 

because it is nearly impossible to make a suitable assumption on shape functions for 

general composite plates of arbitrary geometry. With the development of finite element 

techniques, applying finite element method on study of linear panel flutter was first due 

to Olson.34,35 He used a frequency domain eigen-solution. Liaw and Yang36 used a 48 

DOF high-order rectangular element and investigated the structural uncertainties 

occurring during the fabrication process on nonlinear supersonic flutter of laminated 

composite plates. Han and Yang37 employed a 54 DOF high-order triangular plate 

element to study the nonlinear panel flutter of three-dimensional rectangular plates. 

Dixon and Mei38 studied the nonlinear flutter of rectangular composite panels. The LCO 

response was obtained using an extended 24 DOF Bogner-Fox-Schmit (BFS) rectangular 

plate element and a linearized updated mode with nonlinear time function (LUM/NTF) 

approximate solution procedure. They found that coalescence may occur between the 

eigenvalues of the first and third modes, rather than the first and the second modes, for 

some composite laminates. The LUM/NTF solution procedure in frequency domain was 

developed by Gray39. Xue40 applied an extended Discrete Kirchhoff theory (DKT) 

triangular plate element to study nonlinear panel flutter with non-uniform temperature 

effects. Abdel-Motagaly et al.41 employed an extended 15 DOF MINS triangular element
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and studied composite panels subjected to the combined aerodynamic and acoustic 

pressures.

Flow yaw angle is another issue on flutter analysis. We know that a minimum of six 

(or 6x 1) in-vacuo linear normal modes (NMs) is required for converged LCO of isotropic 

rectangular plates at supersonic flow speed at zero yaw angle.27 It is then expected that 

6^6 or 36 NMs are needed for isotropic rectangular plates for converged LCO at an 

arbitrary yawed supersonic flow.42 Few investigations on LCO have dealt with yawed 

airflow. Friedmann and Hanin43 were the first to study nonlinear flutter of rectangular 

isotropic or orthotropic panels with arbitrary supersonic flow directions. They used the 

first-order quasisteady aerodynamic theory and Galerkin’s method with a 4x2 or eight 

NMs (four in the x-direction and two in the y-direction) model for panels of simply 

supported edges. Then numerical integration was employed for the LCO response. 

Chandiramani et al.44,45 used the third-order piston theory aerodynamics and the higher- 

order shear deformation theory and investigated nonperiodic flutter of a buckled 

composite panel. The yawing of flow was considered, and Galerkin’s method with a 2x2 

or 4 modes model was employed for simply supported rectangular laminated composite 

panel. The numerical integration was used for quasi-periodic/chaotic flutter motion. For 

arbitrary laminated anisotropic composite rectangular plates, Abdel-Motagaly et al.41 

have shown that 36 or less NMs of the lowest natural frequencies are needed for accurate 

LCO even at zero yaw angle. An efficient iterative eigen-solution procedure was 

employed for the first time in determination of LCO from the coupled nonlinear modal 

equations. They have introduced a modal participation value for the selection of those 

NMs contributing the most to LCO. For nonlinear flutter suppression in controller
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design, this would certainly cause complexity and difficulty in dealing with such a large 

number of NMs 46,47 This leads to the investigation of whether it is possible to analyze 

nonlinear panel flutter using some reduced base modeling with fewer number of degrees- 

of-freedom (DOF), particularly much fewer than the number of NMs. Guo and Mei48 

presented an innovative reduced base method that it is feasible to use a small number of 

aeroelastic modes (AEMs) for isotropic and composite rectangular plates at zero or 

arbitrary flow yaw angle for flutter LCO response.

Thermal effects and in-plane loads also play important roles in panel flutter analysis. 

Houbolt49 was the first to study the buckling stability and flutter boundaries for two- 

dimensional panels with uniform temperature distribution. Two linear modes were used 

for the thermal postbuckling deflection. Dowell27,28 found that the critical dynamic 

pressure was reduced and chaotic oscillation might occur with the presence of 

temperature in establishing the temperature-dynamic pressure stability regions. With the 

presence of temperature, there are four types of panel behaviors: static flat and stable, 

aero-thermally buckled but dynamically stable, LCO and chaos. Xue and Mei50 studied 

the non-uniform temperature effects on the two- and three-dimensional isotropic panels 

in arbitrary shapes using DKT element. Yuen and Lauji studied the effect of in-plane 

load on the nonlinear panel flutter with an incremental harmonic balance method. They 

stated that several LCO at a certain dynamic pressure were possible for a moderately high 

postbuckling load. Liaw51 used a 48 DOF rectangular thin-plate finite element to study

52nonlinear panel flutter under sinusoidal temperature distributions. Zhou transformed 

the finite element system dynamic equations from the structural node DOF to normal 

modal coordinates with temperature effects and the results agreed very well with classical
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PDE/Gelarkin methods.27 Nonlinear finite element modal method has gained popularity 

gradually because it makes it possible using time integration with less computational cost 

as compared with huge number of structural node DOF.

2.3 Random Vibration

In 1983, Crandall and Zhu53 published a review article on the progress in random 

process and random fields, source of excitations, predication of random responses and 

reliability. Recently, resurgent interest in high-speed flight vehicles necessitates further 

development of sonic fatigue technology.54,53 The surface TPS panels of advanced high

speed aircraft and spacecraft would exhibit large displacements under high acoustic 

loads, and possibly display buckling at elevated temperatures. Both of these effects are 

nonlinear in nature, and make prediction of fatigue life extremely difficult.54'56 

Experiments were performed to study thermally loaded panels under random excitation 

by Istenes et al.,56 Ng and Clevenson57 and Murphy et al..58 Snap-through phenomenon 

and frequency shifting due to nonlinear large amplitude vibration were observed. But 

reliable experimental data is difficult to acquire at high acoustic intensity and elevated 

temperature due to costly instrumentation.59

There are five major analysis methods: (a) perturbation, (b) Fokker-Plank- 

Kolmogorov (FPK equation), (c) Monte Carlo, (d) equivalent linearization (EL), and (e) 

finite element (FE) numerical integration, for the prediction of nonlinear random 

response of panels.

Perturbation method60 has been limited to very weak geometric nonlinear problems, 

thus not suitable for large nonlinear random vibration. FPK method6' can lead to exact 

solutions only for single DOF systems. Heuer et al.62 extended the application of FPK
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approach to multi DOF by utilizing a multi-modal projection method. They investigated 

the nonlinear random vibration of thermally buckled skew plates. The probability of first 

occurrence of snap-through was determined. The method is tedious to implement. EL 

method has been widely used because of its ability to accurately capture the response 

statistics over a wide range of problems while maintaining a relatively low computational 

burden.63’04 Ng65 presented a single-mode method for the analysis of snap-through. He 

divided the random response with the compressive load larger than the critical value into 

three regions: no snap-through, intermittent snap-through and persistent snap-through. 

Lee66 investigated the effects of thermal variation and thermal moment on the panel 

response. Locke and Mei,67 and Mei and Chen68 extended the finite element method to 

nonlinear random vibration analysis. The EL method was adopted to the nonlinear finite 

element modal equations (FE/EL) to determine RMS deflections and strains at different 

sound pressure levels. The application of EL method depends on the assumption of 

Gaussian distribution over the response, thus it cannot predict the occurrence of snap- 

through since snap-through is non-Gaussian in nature.
z :q  "7A "71 ~7'y

Monte Carlo simulation ’ was employed by Arnold and Vaicaitis,' Vaicaitis, 

Vaicaitis and Kavallieratos1 to study the nonlinear panel response and fatigue life 

subjected to acoustic excitation. The PDE/Galerkin method was employed and numerical 

integration was used to obtain time history of the panel response. Green and Killey73 

studied similar problem, but a narrow-band acoustic loads was used and initial 

imperfection were considered in the model. The use of PDE/Galerkin approach limits its 

applicability to rather simple structures. 71’a
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The fifth method is the finite element numerical integration approach, which actually 

combines the finite element and Monte Carlo simulation method.73,74 One disadvantage 

is the computational cost, because the finite element model often includes hundreds, if 

not thousands, number of physical structural node DOF, and the nonlinear terms are 

updated and reassembled at each time step. Abdel-Motagaly et al.41 used finite element 

numerical integration to study nonlinear panel response under combined aerodynamic 

and acoustic loads. Finite element system equations of motion were transferred to modal 

coordinates to reduce the large number of structural node DOF. Dfaainaut et al.75 adopted 

the same approach, and studied the random response to the acoustic loads at elevated 

temperatures environment. All the three types of motion can be predicted, which are (i) 

linear random vibration about one of the two thermally buckled positions, (ii) snap- 

through between the two buckled positions, and (iii) nonlinear random vibration over the

7 f\two thermally buckled positions. Przekop extended it to curved panels.

2.4 Combined Aerodynamic, Acoustic and Thermal Loads 

For the effects of random acoustic pressure on a nonlinear fluttered plate at 

supersonic flow, there are very few publications addressing the problem. Eastep and 

McIntoch3/ studied the panel response under supersonic aerodynamic load, compressive 

end load (which is similar to thermal load) and random pressure using harmonic balance 

method and a two-mode approximation. Static deflection and LCO to varying dynamic 

pressure and compressive end load were studied on the nonlinear behavior from the 

interaction of the buckling and flutter phenomena. But they did not further investigate 

chaotic motion. Only small random load was then added into the system, and the panel 

motion was considered to be a superposition of a previously determined flutter motion
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and a small random motion about the flutter motion. Superposition is not suitable for 

nonlinear analysis. Abdel-Motagaly et al.41 studied the nonlinear panel response 

subjected to the combined aerodynamic and acoustic loads using nonlinear finite element 

modal and time domain integration methods. They showed that only the acoustic 

pressure needed to be considered if dynamic pressure is much lower than the critical 

value, whereas the combined loads have to be considered for the dynamic pressure higher 

than the critical dynamic pressure.

Duan77 was the first one considered the nonlinear panel response under the combined 

aerodynamic, acoustic and thermal loads. He used two cases of formulations and 

solution procedures for panel response of an SMAHC plate. In case 1, the problem was 

defined for combined thermal load and dynamic pressure only. The Incremental Updated 

Lagrangian (IUL) method was employed. The drawback is that chaotic motion could not 

be determined due to a diverged static solution in the chaotic region. In case 2, the 

problem was for three combined loads, and the time domain integration was employed 

directly to the system modal equations of motion. The linear normal modes used in the 

modal reduction procedure.

In this dissertation, the IUL method mentioned above is discarded because of its 

tedious and time-consuming procedure and the failure in prediction of chaotic motion. 

The stress-strain constitutive relation is reexamined and expressed by considering the 

nonlinearity of thermal expansion effect and recovery stress of SMA. A new concept of 

transforming the system equation of motion into modal coordinated is proposed and 

validated in introducing aeroelastic modes (AEMs), which can further reduce the number 

of modes used in the panel flutter analysis.
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2,5 SMA Applications 

In 1997, Birman78 reviewed three control concepts in an excellent review article on 

SMA structures and applications: active property tuning, active energy tuning and active 

shape control. Rogers et al.79 studied thermal buckling and postbuckling of the SMAHC 

plates. They showed that the critical buckling temperature could be greatly increased and 

the postbuckling deflection could be reduced, by embedding SMA fibers in composite 

plates. Baz and Tampe,80 and Baz et al.81 used SMA in a different way. They placed the 

Nitinol fibers in resin sleeves, by which the fibers could slide along the sleeve surface. 

Once the SMA fibers were activated, a pair of concentrated axial force was applied at the 

two ends of the beam.

On the area of vibration control with SMA, Rogers et al.82 studied the active strain 

energy tuning of plates using SMA fibers. Active modal modification was achieved by 

utilizing stiffness shifting of SMA during temperature activation. Active strain energy
oi

tuning utilizes large recovery stresses of SMA. Rogers et al. also studied the structural 

acoustic control using SMA. Duan et al.84 studied the frequency variation of the SMAHC 

plates at elevated temperatures. The results showed that the natural frequencies of 

SMAHC plates increased greatly compared with the same traditional composite plates 

without SMA. In addition, modal crossings between the second and the third lowest 

modes were observed. Suzuki and Degaki83 studied the suppression of supersonic panel 

flutter using SMA where an SMA panel was attached on an aluminum base panel. It was 

demonstrated that the critical air speed or dynamic pressure could be greatly increased. 

Tawfik et al.8° investigated the stability regions for the SMAHC plates with various SMA 

volume fractions and prestrain levels. An enlarged flat and stable region was achieved.
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Turner87 performed both finite element analysis and experiments on random response of 

an SMAHC beam, and found out that the response could be reduced greatly when SMA 

fibers were activated.
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CHAPTER II! FORMULATION

3.1 Introduction

The finite element governing equations for thermal buckling and postbuckling, 

nonlinear panel flutter and random vibration under the combined thermal, aerodynamic, 

and acoustic loadings to an SMAHC plate are derived in this chapter.

SMA undergoes phase transformation from martensite to austenite with the increase 

of temperature, and the process is inversed with the decrease of temperature. 

Accompanied with this, material properties are greatly varied and large recovery stresses 

can be generated if SMA fibers are constrained, which can be taken advantage to stiffen 

the composite plate. The approach is based on the understandings that, first, the thermal 

strain or deformation is a cumulative physical quantity, because thermal strain or 

displacement accrues with the increase of temperature; second, stress or force is an 

instant physical quantity, which can be measured and effective at that particular instant. 

Therefore, the thermal strain should be an integral of coefficient of thermal expansion 

(CTE) with respect to temperature, if CTE is a function of temperature. In case CTE is 

constant, the thermal strain is just the product of CTE and temperature change. However, 

stress or resultant force and moment is always evaluated with the instant elastic modulus 

and the total recovery stresses at a given temperature.
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To analyze thermal buckling and postbuckling, nonlinear panel flutter problems 

under the influence of temperature, and random vibration under the three combined 

loadings, the finite element formulation and solution procedure, which account for the 

nonlinear properties of SMA as well as temperature-dependent material properties of 

composite matrix, have been developed and presented.

The following assumptions are considered throughout the derivation:

(1) The panel is thin (L/h > 40). Thus in-plane inertia, rotatory inertia and 

transverse shear deformation effects are negligible;

(2) von Karman nonlinear strain-displacement relations are valid (|Wmax/h| < 5);

(3) General Hooke’s law (elastic range) is valid;

(4) SMA fibers in each lamina are aligned the same direction as the fibers of 

the traditional composite lamina;

(5) SMA recovery stresses are functions of temperature only, i.e. not functions

of internal stresses;

(6) The panel is in a supersonic airflow (M„ >V2 ), and the aerodynamic first- 

order piston theory is valid; and

(7) The quasi-steady state thermal stress theory with uniform temperature 

distribution is applied.

3.2 Constitutive Relations of an SMAHC Lamina

An SMAHC lamina is composed of traditional composites as matrix and prestrained 

SMA fibers, as shown in Fig. 3.1.
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A

i /  /
— A-....-..-..

A ™ , / / y

X
\Traditional Composites as  Matrix 

(e.g. Graphite-Epoxy)

Fig. 3.1 A representative SMAHC lamina

3.2.1 Stress-Straln Relation in 1-Direction (Fiber Direction)

In order to derive the relation in 1-direction, it is assumed that the stress Oi acts alone 

on the lamina with the stress 0 2  = 0 and the SMA fibers and the composite matrix are 

strained by the same amount e \ ,  as shown in Fig. 3.2.

(7i( J 1

Fig. 3.2 Schematic of an SMAHC lamina under stress In 1-drection

The 1 -direction stress-strain relation of the SMA fibers can be described as:
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T  >  A (3.1)

(3.2)

where As is the austenite start temperature, Es is the Young’s modulus, <5r is the recovery 

stress, Os is the CTE of SMA fibers, and subscript s denotes the SMA fibers. An integral 

is used to account for thermal strain since the CTE is a function of the temperature. In

case CTE is constant, I a s d f  = a s A T . It is seen that when T > As, the recovery stress

o> is activated. The SMA fibers are restrained not to return to their original length, and 

thermal expansion effect is included in the test data of Gr. The value of o r depends on the 

temperature and SMA prestrain. When T < As, the SMA fibers have the same behavior 

as those of common alloys. Es and or are temperature-dependent, and Gr is also 

dependent on the prestrain er.

The 1-direction stress-strain relation for the composite matrix can be expressed as:

where the subscript m denotes the composite matrix.

The resultant force in 1 -direction is distributed over the SMA fibers and the 

composite matrix, which can be written as:

where (<% Ai), (0 is, Ass) and (Gim, Am) are the stress and cross section area of the 

SMAHC lamina, the SMA fibers, and the composite matrix, respectively. Thus, the 

average stress G j  is:

(3-3)

d i A , = < J ] sA s s + a l m A m (3-4)
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where vs = Ass/A], vm = Am/Aj are the volume fractions of the SMA fibers and the 

composite matrix, respectively.

When T > As, by substituting Eqs. (3.1, 3.3) into Eq. (3.5), Oi becomes:

3.2.2 Stress-Stain Relation in 2-Direction

Assume there is no large volume change representative of diffusion phase changes 

and therefore no effect on the dimension in directions other than fiber direction beyond 

Poisson’s contractions. Similarly, for an SMAHC lamina under the stress in 2-drection,

as shown in Fig. 3.3, the stress-strain relations in 2-direction for the SMA fibers and the 

composite matrix become:

(3.6)

where the Young’s modulus of the SMAHC lamina in 1-direction is:

E i  = E s v s + E , mv m (3.7)

When T < As, by substituting Eq. (3.2) into Eq. (3.5), Oi becomes:

v,m

(3.8)
=  E x{ e j - a xm )

where the average combined CTE of the SMAHC lamina between T ref and T is:

E A T
(3.9)

(3-10)
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a s

Fig. 3.3 Schematic of an SMAHC lamina under the stress in 2-drection

The total elongation of the composite lamina in 2-direction is the summation of the 

elongation of the SMA fibers and the composite matrix:

le2=ls£2s+lm€2m (3.12)

where 1, ls and lm are the widths in 2-direction of the SMAHC lamina, the SMA fibers and 

the composite matrix, respectively. Equation (3.12) can be written as:

e 2 = £ 2J s / t  +  e 2J m / l  (3.13)

Then the total strain in 2-direction becomes:

£2 =  e 2sv s + e 2mv m (3-14)
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( T
Since a 2 -  cj2s = Es ( e 2s -  a s d r ) ,  Eqs. (3.13, 2.14) can be substituted into Eq. (3.10) to"Tr„r

give:

~  ^ 2 ! £ 2 J r   ̂ {<~-s ■ sa . v .  +  a 2mvm)dt 1.15)

where the combined Young’s modulus of the SMAHC lamina in 2-direction is: 

E E ,s  2mE 2 =
E v + E, vs  m 2m s

(3.16)

We can define a 2 as the average combined CTE of the SMAHC lamina in 2-direction 

between Tref and T, and it is given as:

f  {ocs v s + a 2mv m ) d t
* re f

AT
(3.17)

3.2.3 Two-Dimensional Stress-Strain Relation

The two-dimensional stress-strain relation for an SMAHC lamina can be derived and 

expressed as two parts, one for T < As and the other for T > As. The reason is that when 

T > As, the recovery stress cjr is activated and accounted separately. When T < As, the

SMA fibers is treated to have the same behavior as those of common alloys and thus 

accounted for by mixing with composite lamina.

< ■Q, 0 1 2 0  ' *1 <7, 0 1 1 m 0 1 2 m 0 "

<cx2 . =
Q l 2 0 2 2 0 < £i >+• 0 ’K - 0 1 2 m 0 2 2 m 0

0 « 2  m d tv m, T>AS
t12_ 0 0 0 5 6  . Yn. ° 0 0 0 6 6 m  _

rcj

. 0 .
(3.18)

=y  { e}+{ar }vs - \ Q j [  {am}dr vm
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' < r , ' Q n Q n 0 1 f
' a i '

\

<£T2 > = Q n Q n 0 ' £ 2 > ----  < a 2 •AT

TI2. 0 0 Q q6 J \ 7X2 , . 0 J
(3-19)

= y<{*}-{«jA r)

where [Q] and [QmJ are the reduced stiffness matrices of the SMAHC lamina and the 

matrix, respectively. It is noticed that the CTEs oq and «2 in Eq. (3.19) are the averaged 

value determined by Eqs. (3.9) and (3.17), respectively. The terms in [Q] can be
OQ

evaluated as:

0H =  -----
1 f l I2f l 21

Q  _  M-12^2 _  P-21^1

1  ~  f t n H - 2 1  I  ~  ^ 1 2 ^ 2 1

Q  j2 = ---- —-----

Q 6 6 = G I2 (3.20)

E ,  = E s v s + E l m v m

M l2  ~  M s V s ^  M l2 m V m

E  E 7 _____ s 2m____

E sv m +  E 2mv s

Q . G s G U m

G.7 m + G !2mV,s

where p ’s are Possiors’s ratios, and G’s are the shear moduli.
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3.3 Constitutive Relations of an SMAHC plate

An SMAHC plate is composed of many layers of lamina as shown in Fig. 3.4. Each 

lamina has one orientation angle (j), which is the angle between the principle 1 -direction 

of the lamina and the plate coordinate axis x.

Fig. 3.4 A representative SMAHC plate with 3 layers of lamina 

For the SMAHC lamina with an orientation angle § ,  the stress and strain

transformation relations from the principal directions 1, 2 to the x, y directions are:

where

(3-21)
V '  £ ,  ' V

<£T, ' = [TO{0 )\ > j £2 ■ A m ) \

7 1 2 . Txy 7,2. y*y.

c 2 s 2 2 s c [" c 2 s 2 s c
s 2 c 2 - 2  s c [Te ( 0 ) h \  s 2 c 2 - s c

- s c  s c  c 2 -  s 2 1 -2 s c  2 s c  c 2 - s 2L

where c=cos<J>, s-sin<j).

The transformed reduced stiffness matrices are:

l e j = [ n ( « t ’ [ e ] h ( « ] .  l a A h w r t e J h w l

(3.22)
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G xr
(
0). a™

r
a x ra x'

° y r 0 v  • a ym - =  [ T M V ' &2m > -i > =  f c ( # a 2

T *yr_ o . . 0 0

(3.23)

h / 2

Z
\

nth layer

kth layer XorY
--------------- ----------------------------------------------------

2nd layer
1st layer

-h/2

Fig. 3.5 Schematic of a general n layer SMAHC plate 
Thus, the stress-strain relation for a general kth lamina as shown in Fig. 3.5 with an

orientation angle <|> becomes:

£ r 0 _ r
X X I

£ y > +  - a yr

7 Ti  xyV J  J xyr

a .
® vm f d r v m, T  >  As (3.24)
a .xytn

a x
G„

' f A

• d e l « Cy > --- < ► A T

, k V / x y _ t. j

T < A„ 5.25)

where subscript k denotes the general kth layer; [Gxr, <V> Txyrjic1 are the recovery stress 

vector.

In the derivation of equations of motion, it is assumed that the panel is thin, i.e., the 

ratio of length or width over thickness is greater than 50. The rotary inertia and
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transverse shear deformation effects are thus negligible. The relation between the total 

strain vector {£}, and in-plane strains {£0} and curvatures {k} based on classical plate 

theory is given by;

(3.26)

The in-plane strain vector {e°} consists of two parts: mid-surface inplane strain and von 

Karman large deflection strain:

du
dx
dv
dy 

du + dv
By dy

K -

'dwY
{ d x )

f d w ' 2 
[ d y  

^ dw dw 
dx dy

5.27)

and the bending curvature vector {k} is:

{ * } =

d 2w
dx2
d 2w
dy 2

- 2 d 2w
dxdy

(3.28)

where u, v, w are in-plane and bending displacements, respectively.

The resultant force and moment vectors per unit length are defined as:

5.29)

or

\ N \ 
U r I

A B 
B D £ ° \ A NrK  1m.

N A T

\M
(3.30)

where [A], [B], and [D] are the laminate stiffness matrices. They are defined as:
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A u  =  L n ^ \ d z> i J  =  U , 6

B v = t u i ^  l z d z ’ *’■/ = 7’2’^ (3-31)

D ij =  t ^ 2 &? )kz 2dz, h  j  =  1, 2 ,6

The vectors {Nr}, {Mr}, { N a t}  and { M a t}  are the resultant force and moment vectors per

unit length, which are due to the recovery stress and thermal stress, respectively. They

can be expressed as:

( R } . R } ) =  £  

= 0,

12
h/2 >’r

xyr

Vsk(l,  z ) d z ,  T  >  A

T  <  A„

(3.32)

( R r } . K r })= 0 e . L £ a .ym

a xym

d T V m (1, z ) d z ,  T > A S

/ 2

•A/2
AT(1, z)riz, T<

(3.33)

3.4 Quasisteady First-Order Piston Aerodynamic Theory

Quasisteady first-order piston theory is a verified aerodynamic model,2 which has 

been successfully applied to panel flutter studies. This theory describes the aerodynamic 

pressure on a skin panel of a flight vehicle at supersonic airflow. The theory is based on 

the assumption that: a) the local motion of the panel acts as a piston; b) the air is ideal 

and it has a constant specific heat; the process of the airflow is isentropic; c) the local 

panel motion velocity is much smaller than the airflow velocity; d) The airflow is parallel
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to the panel surface; and e) the effect of any air entrapped below the panel (cavity) is 

neglected.

The first-order piston theory considering flow yaw7 angle is:

2 q
f t ,  =  - -

f t

d w  , d w  . . M i  - 2  1 d w— cos A h-sin A h  -----------------
d x  d y  M l - l  V  d t

(3.34)

where Pa is the aerodynamic pressure, V is the airflow velocity, IVL is the Mach number,

1 7q ~  —  p a V  is the dynamic pressure, A is the flow yaw angle with respect to plate x-

direction, pa is the air mass density, f t  -  - J m I  - 1 , w is the panel transverse displacement.

Equation (3.34) can also be written as:

P. . = - z D n o
f t

d w  dw . .— cosA + —-sin  A 
dx dy

+
J

g g  A 10 ^  
(0„ f t  dt

(3.35)

where Duo is the first element in the laminate bending stiffness matrix [D] calculated 

when all the fibers of the SMAHC plate are aligned in the x-direction; L is the panel 

length; non-dimensional dynamic pressure X ,  mass flow fi, non-dimensional aerodynamic 

damping ga and its coefficient Ca, and reference frequency £fib are given respectively by:

2 q f tA  =  

M  =

C, =

f t P no

p h

r  M l - i f  p

g a

M i - 1 )  f t

P j P l - 2 )  f - r  
p p h m 0 ^  "

(3.36)

A 10

\\phft
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For an SMAHC panel, the values of p, Duo and ©0 will change with different 

volume fractions of SMA. The parameters p, Duo and ©0 are only served to transfer the 

coefficients in Eq. (3.34) into non-dimensional ones. For the purpose of comparison, 

dynamic pressure should be consistent for plate with or without SMA. Therefore, the 

parameters p, Duo and ®0 are taken to be the values when the panel is a traditional 

composite (vm = 1) with no SMA (vs = 0). The comparison between composite plates 

with and without SMA is therefore meaningful.

3.5 Random Pressure Generation

When a vehicle flights at supersonic speeds, the skin panels will be exposed not only 

to temperature elevation and the aerodynamic pressure that lead to flutter, but also to the 

intense non-stationary pressures, such as turbulent boundary layer flow, engine noise and 

shocks, etc. These loads are usually accounted for in the form of random excitation 

pressures.

In this study, the random loads are assumed as stationary and Gaussian, and 

uniformly distributed over the panel surface. The random input is also assumed acting 

normally to the panel surface. Actually, for the time domain numerical integration 

method employed in this study, there is no restriction on the random input excitation. It 

can be Gaussian or non-Gaussian, as long as the time history is available.

The random pressure P(x,y,t) is characterized by a cross-spectrum density function 

Sp(^,rj,f), where t , = xi - X2, rj = yj - y2 are the spectral separations, and f is frequency in 

Hz. Sp can be obtained utilizing experimental data. By assumption, the cross-spectrum 

density of a truncated Gaussian white noise pressure uniformly distributed with spatial 

coordinates x and y is:
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(3.39)

where S0 is a constant, p0 is a reference pressure, p0 = 2.9020x1 O'9 Psi (20 fiPa), SPL is 

sound pressure level in decibels, and fu is upper cutoff frequency in Hz.

random pressure P(t) (assumed uniform distribution on the panel, independent on x and 

y) for the given S0 and fu by writing P(t) as a series of cosine functions with weighted 

amplitudes, almost evenly spaced frequencies, and random phase angles. The generated 

P(t) is treated as input. The Runge-Kutta integration is employed to obtain the 

displacement response. Utilizing Fortran or Matlab, Gaussian random pressure can be 

easily generated by calling functions. For Matlab, the Gaussian random pressure P with 

zero mean and power PW is expressed as:

where r a n d n  is Gaussian random number generation function, n is the amount of random 

number need to be generated. For numerical integration, it is equal to time duration 

divided by time step. The power can be calculated from auto-spectrum density S0 and 

upper cutoff frequency fu as

Accordingly, the overall SPL (OASPL) is just the power in the unit of dB and 

expressed as the summation of SPL and 10(log fu). The time history, PSD and PDF of a 

typical simulated random load are shown in Fig. 3.6 with a cut-off frequency of 1024 Hz 

and SPL of 100 dB, which correspond to an OASPL of 130 dB.

Shinozuka and Jan,69 and Vaicaitis7z utilized Fourier transformation to obtain

P  = s q r t ( P W )  ■ r a n d n ( [ n ,  1]) (3-40)

r w - s . f . (3.41)
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The cutoff frequency fu should be selected so that it not only covers the highest 

natural frequency in the simulation, but also considers the frequency shifting effect due to 

nonlinear large vibration. Generally speaking, the fu should be selected at least twice the 

highest linear frequency.

o
£ -50
c l - 1 0 0  

£ -150 
-200

0.4
y_ 0.3 
Q
a  0.2

0.1 

0
- 4 - 3 - 2 - 1 0 1 2 3 4  

Normalized Distr ibution Range

Fig. 3.6 Simulation of Band-Limited White Noise with SPL = 100 dB and fu = 1024 Hz

Time,sec

500 1000
Frequency, Hz

1 500
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3.6 Equations of Motion in Finite Element Formulation

3.6.1 Finite Element Expressions

Bogner-Fox-Schmit (BFS)89 C1 conforming rectangular element is extended and 

adopted in the study. As shown in Fig. 3.7, there are 16 bending degrees of freedom 

(DOF), {wb> 16x1? and 8 iii-plssnc DOF? {Wrn} gxi? in each element. They arc expressed hsi

k H wi w2 w4 N*, 1% w,l3 w„4 w,_V] w,„2 W,J3 w,y4w,i7j w,xyj W ,XJ T

(3-42)

kJ=k U 2  l h  U 4  V l V 2  V 3 V4  Y

W ,xyl

W1
► x

111 ijv

Fig. 3.7 Nodal degrees of freedom of a BFS C1 conforming rectangular element

The element transverse displacement w and the in-plane displacements u and v can 

be approximated as a bi-cubic and a bilinear polynomial function of x, y, which can be 

expressed as:

w ( x ,  y ,  z )  -  a x +  a 2x  +  a 3y  +  a 4x 2 +  a s x y  +  a 6y 2 + a 7x "  +  a s x 2y  +  a gx y 2 + a loy J

+  a n x 3 y  +  a n x 2 y 2 + a u x y 3 + o l4x i y 2 + a l5x z y J + a u x 3y 3 (3.43)

=  [ H w ( x , y ) } { a ( f ) }
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u { x , y , t )  =  bx + b 2x +  b3y  + b4xy~  \HU( x , y)]{b{f)}  (3.46)

where

[Hu{ x , y ) \  =  { l  x y  xy 0 0 0 0}  (3.47)

{ b } = { b ;  b 2 b 3 b 4 b 5 b6 b 7 b8f  (3.48)

v(x,y,t) = b5 + b 6x  +  b 7y  +  b s x y = { H v ( x , y ) ] { b ( t )} (3.49)

where

\Hv(x , >’) ] = {0  0 0 0 1 x y  xy}  (3.50)

The generalized coordinates {a} and {b} are related to the nodal DOF vectors by 

their respective transformation matrices as:

(3 .5 1 )

M = [ r J K }

The element displacement functions then can be expressed in terms of nodal 

displacement vectors as:

w = [Hw(x, y)]{a}= [Hw(x, y)][  Tb ] {  wb}

u = {Hu(x,y)]{b}= (3.52)

v = [Hv(x ,y ) ] {b }=  [Hv(x,y)][Tm }{wm }
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By using the finite element displacement functions, the in-piane strain 

components and the curvature vector components can be expressed in terms 

element nodal displacement vectors as follows:

{ < } = [ c J [ r „ ] k J = [ s J K }
where

[ C m ] =

d x
d _

d y
[ H v ( x , y ) \

~  [ H u ( x , j ) ]  + —  [ H v ( x ,  y ) \  
d y  d x

0  1 0 y  0 0 0 0
0 0 0 0 0 0 1 x
0 0 1 x 0 1 0 j

dw
d x
d w

where

W =

h r  o
d x
0  h r

d y
dw d w  
d y  d x

[c j  = d x
d_

d y

0 1 0 2x y  0 3xz 2 x y  y  0 3x2y 2 x $  y 3 3 x d y 2 2 x y  2 x y
0 0 1 0 x 2 y  0 x2 2' x y  By2 x3 2- 2 y  3 x $  2ry 3 ^ y 2 3x ' y 2

M h c M K M . s J K }

where
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[ C j = ^ 2  L w  

\2
' H '

0 0 0 2 0 0 6x n . . 0 0 6 x y 2 / 0 6xj/ 2y1 6 x y '
0 0 0 0 0 2 0 0 2x 6 y 0 2x2 S x y 2 x 6 x 2y 6 x 3 y
0 0 0 0 2 0 0 4x 4y 0 6xi %xy 6 y 2 12x:2j 12jcj3 i& y

(3.59)

Substituting Eqs. (3.53, 3.55 and 3.58) into Eq. (3.30), the resultant force vector {N}

M = M h ”}+ W {*-}+ R }-fc}= {A ',}+ K }+ {A 'i!} + R E { A '„ }

{M}=[B]{s"}+[D]{K}+{Mr}-{MSI}={M„}+{M,}+{MD}+{Mr}-{M„}

where

K E M A ]  K ,} (3.62)

(3.63)

K } = [ s ] [ s J K } (3.64)

{m „ H b ][b„] k ; (3.65)

W = ( [ i l « l 8 , ] { » r l } (3.66)

{A/0 }=[£>] W k } (3.67)

Substituting Eq. (3.52) into Eq. (3.35), noticing that w is the transverse displacement,

Pa | ^ [ i / J c o s A  + ̂ - [ i /J s in A  [ T j [ w b } - ^ ^ [ H j [ T b ] { w b }  (3.68)
U  I o x
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3.6.2 Element Equations of Motion

In this study, the governing equations are derived utilizing the principle of virtual 

work. This method states that the total work done by internal and external forces 

(including inertia forces) on an infinitesimal virtual displacement is zero:

S W  =  S t ¥ m t - S W exl = 0  (3.69)

The virtual work of the internal forces on a plate element is given by:

<K, = j){ * T M + { & f W})<« (3.70)

where A is the element area. The virtual in-plane strain and curvature vectors can be 

expressed as:

{&" }= p ( <  +?;)}= «sfu>. I K  } + \ { s ][b ,  ] K }] (3-71)

where

<S(K1K .} )= K ]{K }  (3.72)

(  M b, ] k })= ) [®1K 1K }+  )  M b, ] K JJ 2* L
= \M.B, ]{ k  }+ \  M b,}{Sw„ } (3.73)

= M K K k }

Therefore, Eq. (3.71) becomes:

{&”}= [S„ ]{<K}+ MB.]{S»h} (3.74)

We also have:

{SK}=SdB, JK}) = k ] { K }  (3.75)

Substituting Eqs. (3.60, 3.61, 3.74 and 3.75) into Eq. (3.70), it yields:
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i 1
’e i k } + M k i k } + R } - { iv 4r} \ d t

J

+

+ J. ( k  } { H  })r ■ f M k ,  ]{w„}+4  W M k J k }+[ o i k  1 K I + K }-
A \  z.

\
-{MAr} d A

= [ \ S * J \ B j [ A ] [ B m ] { w . } d AdA ( 3 . 7 6 - 1 )

(3.76-2)

+ ( { k F k . r k i k i k } ^ (3.76-3)

+ [ { S w J [ B j { N r } d A (3.76-4)

~  \A { S " J [ B j { N A T } d A (3.76-5)

+  [ { S x ’J M l e r  [ A } [ B m ] { w m } d A (3.76-6)

(3.76-7)

+ ( { k F k f W  [ B } [ B t } { w t } d A (3.76-8)

+  { X , } d A (3.76-9)

(3.76-10)

+ j > J k J  { B ] [ B m ] { « , } d A (3.76-11)

+  [ ~ 2 { S « J [ B j { B M \ B e ] { w t } d A (3.76-12)

+ [{<k}r k J [ o ] k J k } < M  .s (3.76-13)

+ |  { 8 * h } T [ B j { M r } d A (3.76-14)
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( 3 .7 6 - 1 5 )

There are 15 terms, Eqs. (3.76-1) to (3.76-15), for the virtual work of internal forces. 

Equations. (3.76-1, -3, -11, -13) can be expressed as:

\ Swb

\ Swm
K  K m

K b  k m

W ,
I W „ .

(3.77)

where the linear stiffness matrices are:

fe ]=  { U r j M f e t a

I K M K J  =  { { B j [ B \ [ B h ] J A

(3.78)

(3.79)

[ k m ] = l l B j U ] [ B m \ d A  (3.80)

It is noticed that [kmb] = [kbm]T = 0 for isotropic plates and symmetric laminate due to [B] 

= 0; and also

W r K , } =

h ?  o
d x
0 ^

d y
d w  d w

X * '
dw

■ = X r l = [W„][S, ]{»',} 5.81)

d y  d x

where the thermal force matrix is written as:

[ « A T h
^ a Tx  ^  ATxy

^  A Txy N ATy
5.82)

Substituting Eq. (3.81) into Eq. (3.76-10), we have:

I Swb 

\ Sw„
k ATb 0  

0  0
w .

l W r,
(3.83)

where the thermal stiffness matrix is:
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K » I  =  i{Bg\T[NAT][B,}dA

Similarly, Eqs. (3.76-9) becomes:

\&vbY (  
I Sw,m  J

k rb 0
0 0

w.
I W

where the stiffness matrix due to SMA fiber recovery stress c r is:

K l =  I W I n I b M

and the recovery force matrix is:

N„ N„:x ?xv

N rx}, N r}

Notice that:

W  U ] [ B „  I K } = w  K  }= K  I K  I K }

where the force matrix due to in-plane displacement vector {wm} is:

K l  =
N mx N nay
N  Nm x y  m y

Hence, Eqs. (3.76-2, -6) become:

Y S w b 
2 1 Swm

n lN m  n lbm
Imb

W,
w „

(3.84)

5.85)

(3.86)

5.87)

(3.88)

(3.89)

(3.90)

where the first-order nonlinear incremental stiffness matrices linearly dependent on {w}

are:

]= [ [ e , f K ( K } ) ] [ s . l ^

h  J  = K J  =

(3.91)

(3.92)

Notice that:
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where the force matrix due to transverse displacement vector {wb} is:

5 0

(3.93)

[ N , h
* *  N B,y
N Bxy N Bv

(3.94)

Thus, Eqs. (3.76-8, -12) become:

l _ \ 3 w b

2 \ S w „
n i m  ®

0  0
'w j
! w_

(3.95)

where the first-order nonlinear incremental stiffness matrix linearly dependent on {wb}

is:

[«,»]= (3.96)

Equation (3.76-7) can be written as:

i  f«K 
3\Swm

n 2b 0
0  0

w.
(3.97)

where the second-order nonlinear incremental stiffness matrix quadratically dependent on 

{wb} is:

k J = t  [ \ b , ] t [e t(n  })F U M k  } ) ] { b , } m2  “A

Equations (3.76-4, -14) can be expressed as:

(3.98)

\ 5 w b

S w „
| P r o  

[Pnn.
(3.99)

where the element bending and in-plane force vectors due to SMA recovery stress are: 

fe ,} =  l l B j { M , } d A  (3.100)

k ,„}=  \ , [ B j { N r } d A 5.101)
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Equations (3.76-5, -15) become:

\ S w ,

T  r
b 1 j PATb

l (3.102)
1 m  J  [_ P  A T m  j

where the element bending and in-plane force vectors due to thermal expansion are:

(3.io3)

{p.r.}=  j > „ ] r K r }<M (3.104)

Hence, the virtual work of the internal forces on a plate element becomes:

S W m
\ 8 » b
I S w m

T /
k b Km

t  ]rmb m

k Arh 0 
0 0

+ Kb o 
o o

1-f--- n XNm + n iNB n \bm 1+ - n 2 b 0"A

2 n i mb 0 _ 3 _ 0 0 J

w.
5.105)

\ ^ b Y f
+ l*>,

P rb

P r
I PATb

y P  ATm

The virtual work of the external forces on a plate element, considering inertia,

aerodynamic and random pressure excitations, is:

Sffl^ = ^ \Sw{- phw +  P a + P { t ) )  + Su{- p h i i )  + Sv(- p h v ) ] d A  (3.106)

where Pa is the aerodynamic pressure, P(t) is the random excitation. By Eq. (3.52), the 

following expressions can be obtained:

*  = K ] [ r J f c }

< 5 M w „ fc  K k }  (3-107)

« = [«.,] I x l E J
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M t f . f c l k , }

Substituting Eqs. (3.68 and 3.107) into Eq. (3.106), the finite element form of the 

virtual work of the external forces on an element becomes:

=  I

r
{<**'»Y f a Y [ H , ] r - /* fa „ ] fa ]{*>»}-.t

D,no
\

v V
r t -  [ H w ] c o s A + —  [if,JsinA [Tb ] { w h } 
o x  d y y

g a  At'  [H..][rJK}+P(0 + {«*„}r fa ,Y[h,]r ( - ph[H,]fa„]{wm})

dA  (2.108)

/L 4

= J S w b 

[ S w m

A i

m b 0 
0 m „

w .
w„

\ Svh)

\ d w „
g  0 

0 0
w .

a a (A) 0 
0 0

w,b \ \ S w b \  \ P t

[wm\ \Swm J [0

where mass matrices [m j and [mm], aerodynamic damping matrix [g], aerodynamic

stiffness matrix [aa], and random force vector (pt) are defined as:

[«,] = [ p h l T j l H j l H ^ l T ^ d A

f A i
*  L3 dx f - id y

b l = l
8  a ASO [ T j [ H j [ H wlT b]dA
m n L

{ p , } = [ [ T b}T[ H j  P(t)dA

Combining Eqs. (3.105, 3.108), the element equation of motion is expressed as:

] ) d A

(3.109)

(3.110)

\
A fa]<M (3.111)

3

(3.112)

(3.113)
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mb 0 ' I'M -0 K J
g i ^ C J  0 ) i w h 
. 0 Oj [ w m

■ +

f
i ' a a (A) 0^ 1 k h 

+ | k-bm

V 0 0 \4rnb s 1

k  ATb ®
+

L.

0 ‘ 1+  —
n \ N m  +  n \ N B »1 b m 1

+ - n 2 b 0

oo
i .  0 0. ' 2 n i  m b 0 . 3 .  0 0

w b 1
W . f (3.114)

L0 J {P&Tm j { P rm.

or simply

M { w}+ [ g ] {  w } +  4 a a (A)] + [ k ]  -  [ k m T  } +  [ K \ + \ \ n \ ]  +  \  [ n 2 jl { w }  
v 1 5 )

(3.115)

= W + W } - f e - l

where {w} is element nodal displacement vector; [m] and [g] are element mass and 

aerodynamic damping matrices, respectively; [aa], [k], [kNAi], and [kr]are element 

stiffness matrices: [aa] is due to aerodynamic loading, which is a function of flow yaw

angle A; [kNAx] is due to thermal stress generated by AT; [kr] is due to SMA fiber 

recovery stress a r. [nj] is element first-order nonlinear incremental stiffness matrix, 

which is linearly dependent on {w}; [n2] is element second-order nonlinear incremental 

stiffness matrix, which is quadratically dependent on {wb}. The element force vectors 

{Pat}, {pt}, {pt} are due to thermal stress generated by AT, {dr} and random excitations, 

respectively.

3.6.3 System Equations of Motion and Physical Problems

Assembling the element equations of motion to system level by summing up the 

contributions from all elements and applying the boundary conditions, the system 

equations of motion become
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= f w } + f e } - W
(3.117)

Equation (3.117) is a set of nonlinear differential equations describing the panel 

motion under the combined thermal, aerodynamic and random loads. Generally 

speaking, the physical problems associated with the system equations of motion can be 

categorized into two types: static and dynamic problems. For static problems, inertial 

term and damping term are dropped as well as random excitation (Pt(t)}. Therefore, for 

static thermal buckling problem, Eq. (3.117) becomes:

For static aerothermal buckling problem, accordingly, Eq. (3.117) becomes:

4 j„ ( A ) ] + M - f c „ ] + K ] + i[ A ]({ir})]+hA'2( W .{ 1 0 ) ] V } = f e } - { / : )  (3-119)v 1 5 )

By considering various combinations of applied loads in several groups, the dynamic 

problem can be further divided into: (i) panel flutter problem with the thermal effect, (ii)
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random vibration problem with thermal effect, and (Hi) random-flutter vibration problem 

under combined three loads: thermal, aerodynamic and random loads.

Among the dynamic problems, pane! flutter problem with thermal effect Is well
ry £

Investigated in the literature. Equation (3.117) becomes:

[M){r}+[aAcj]{4̂ 4v(A)]+W-[x„r]+[v]+)[v(m)]diw!(i»-}.!»’})]j{»'l

(3.120)

The plate could have four different behaviors: flat and stable (static), buckled but 

dynamically stable, LCO flutter and chaotic motion.

Random vibration problem with thermal effect is also investigated a great deal in the 

literature. Equation (3.117) becomes:

[Af]{ ft}+ [c]{ f [A-] -  ]+ [A-J+A [JV, ({W-})] H-1 [W2 ( .  {fn )]J{ »"}

(3.121)

= { w ) } + te d - M

Random response characteristics can be displayed by time history, phase plane, power 

spectrum density (PSD), and probability distribution function (PDF). The plate could 

demonstrate three types of random vibrations: (i) small random vibration about one of the 

two thermal BEPs, (ii) snap-through between the two BEPs (intermittent snap-through), 

and (111) large random vibration over the two BEPs (persistent snap-through). However, 

investigation of plate response under all of the three loads simultaneously has seldom 

been found in the literature.
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3.6.4 Condensed System Equations of Motion

Equation (3.116) can be condensed through separating {Wb} and {Wm}. Rewrite Eq.

(3.116) in the full expression in a simplified format as:

1

0  " It*'l + ~ G O'
r + 1 X 0 '

+

1 Y _1
bm 1 K & Th 0

+ X , 0"

0 M r,trl _ W r n 1 0 0_ K , 1 V 0 0_ mb 1 O O 1 -  0 0

^ I N m  K\m K]bm
4 .

1

t-o <3- O '
\

K 0 _ . 0 0
)
\w_

(3.122)

where

K[Nm +  ^INB Kxhm _  1 + N\Nm ' - v \NB Nlbm~
K {mh 0 _ ~ 2 N lmb 0

K 2b 0 _ 1 X 0
0 0 _ 3 0 0

(3.123)

(3.124)

(3.125)

(3.126)

k k k M n d - k J

k .  }= k i r * { C m }

First, separate Eq. (3.122) into two equations as:

!w ]{k}+[<?]M}+ u k  ] ■+ k J~ {nm\+ k* 1+k*,, F k,® 1 ■+ k21 ])R}
(3.127)

4 [ K j + l K u J { w J = { P b }

k j R } + ( k „ J + k . J ) k . } + k , J K . } = : e , }  (3 .1 2 8 )

For a thin plate, neglecting the in-plane inertia term \ M m } § V m } will not bring significant

error, because in-plane natural frequencies usually are 2 to 3 order higher than bending 

ones. Therefore, the in-plane displacement vector {Wm} can be expressed in terms of 

bending displacement vector {Wb} as:
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R „ } = K  ]'' [ R  i -  ( K ,  1 + [* «  D R  B
( 3 .1 2 9 )

= [JcJHR } - R r ,K 1Iw'l } - K n x i , „ j r 1} = { w j 0 - { w j ,  - r „ , } 2

where {Wra}o is a constant, {Wm}] is linearly dependent on {Wb}, and {Wm }2 is 

quadratically dependent on {Wb}. Thus, the matrix [KiNm({Wj,})] is evaluated by 

algebraic sum of three components: [K1Nm({Wm}0)], [K,Nn5({Wm}i>] and [KlNra({Wm}2)], 

which are independent, linearly dependent and quadratically dependent on {Wb}, 

respectively.

According to Eq. (3.88),

W J W J M hM }  (3-130)

similarly,

R J l U o  = { K i m ( ¥ , l ) \ w t }  (3.131)

Substituting Eq. (3.131) into Eq. (3.127) and reorganizing it, the transformed system 

equation in functions of {Wb} only can be expressed as:

WM„}+[ o ] R }+ W ,  1 + R 1 + A  D R  }= {p, s (3-i 32)
where the combined linear stiffness matrix [Kun] is:

K  ] = C- k  1+ A  ] - W m \ +  \ K rk ] -  R J K  f  K ,  ]+ 2[K,,.„ ( W M )  (3.133)

the combined nonlinear stiffness matrices [K|] and [K2] are:

[ X ] = [ X , » J - h , A . » ( i R S , ) j - [ R j R t ' f e . J - A J f c , r f c , J  (3.134)

f c ] =  [KM K .  ] [R  V U t J -  K -v, ) 2 )1 (3-135)

The matrices [Kj] and [K2] are linearly and quadratically dependent on bending 

displacement vector {Wb}, respectively; and the combined force vector {Pc} is
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CHAPTER IV SOLUTION PROCEDURES 

4.1 Introduction

For any approach adopted for solving thermal buckling and postbuckling, nonlinear 

panel flutter and random response problems of SMAHC plates, the nonlinear 

temperature-dependent material properties of SMA and/or composite matrix must be 

considered. In this chapter, detailed solution procedures are presented for solving all the 

physical problems described in Chapter II. Basically, for the static thermal buckling or 

aerothermal buckling problems, the system equations could be solved directly by 

Newton-Raphson method in structural node DOF; for dynamic panel flutter or random 

vibration under the influence of thermal load, the system equations of motion are first 

transferred into modal equations using either normal or aeroelastic modes, followed by 

time domain numerical method.

4.2 Static Aerothermal Buckling in Structural Node DOF

For thermal buckling and postbuckling problem under the influence of aerodynamic 

flow, the panel static response is the so-called aerothermal buckling. The inertia, 

damping and the random load {Pt} are thus removed for this problem. Therefore, Eq. 

(3.119) becomes
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U

+  —  
2

X (A ) 0“
+ [ * ‘

l K mb

K A n 0'
+ X * 0"

0 0_ 0 0 _ 0 0_

f j  0 - JsJ JsJ
1 N m  1 i y \ N B  a V '

N ,I mb

Ibm

0
1 ~ N lh O'\-j---
3 _  0 0 J

(4.1)
- A 7 'b

' A T m  _

j J rb

i P,„,

Newton-Raphson method is employed to determine the aerothermal deflections for the 

whole temperature range investigated. The advantages are that, first it is a general- 

purposed method in the sense that it is applicable to all cases, e.g. symmetrical or 

asymmetrical lamination, uniform temperature or temperature gradient across the plate 

thickness, and single or multiple critical temperatures (which is possible when SMA is
on

activated well above the reference temperature ); and second it yields aerothermal 

postbuckling deflection solutions. It is observed that thermal buckling and postbuckling 

is a special case of aerothermal buckling with X = 0 in Eq. (4.1).

In order for Newton-Raphson iteration method to be capable of solving nonlinear 

algebraic equation, Eq. (4.1) is expressed as Taylor expansion:

m j ¥  +  A W ) = ^ ( W )  +  - ^ { A W } + 0 ( A W ) 2 =0 (4.2)

where

4 . ( » f ) = h k ] + [ x ] - f c l r ] + K ] + i [ w 1]+i[A-! ] l{r } -{ /> „ }+ { i; .}  (4.3)

m w )  d  \ (
d W  ~ d W  | A \ A , } + [ K } -  [JC^r ] ■+ f e  ] ■+ ( [JV,! + ( tV  ] I { W }

1  J  J dW [ f c H v E  <4.4)

d O ( W )The slope -----—- needs to be evaluated for a given initial guess {W}. Analyzing Eq.
d W

(4.4), the system aerodynamic stiffness matrix and linear stiffness matrices are 

independent of {W}, and thus it yields
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d W
P l 4  ] + [ K ] ~  [ K n a t  } +  [ K r ] ) { W } ]  = Z [ A a ] + [ * ] - [ K m r  ] + [ K r } (4.5)

The nonlinear stiffness matrices [Nj] and [N2] are linearly and quadratically dependent on 

{W}, respectively, and the derivatives are:

I ' h v l + h v l l W ^ — ^ t V l + h ^ ^ W + f h v l + h A ' , ] ]  (4.6)
d w \ d W

The fust term in above equation can be further broken down as:

p ] + p i j M = r f
p J + p J + p ]  p J  

i K J  o

I K  
I w.

(4.7)

\ 4 N , J W t } + \ A N „ \ W b } + ^ 2 M } + \ A N ibJ W „ }

The terms in the above equation can be deduced from their corresponding element

matrices as:

d [ n Wm f w b } = I  [ B ,  f  d [ N m \ B g } d A { w b }= |  [ B 0 f  d [ o f  U ] [ B m } d A  { w m }

= I  [ B e  f  ¥ f  U ] [ B m ] d A  \ d w m } = [nUm \ d w m }

4%,, K  } = |  [ B 0 F  d [ 9 j  [ A ] [ B m ] d A \ w m }  = [  [ B ,  f  K  \ B 0 \ d A  { d w h}

=  \ P x m \ d w b }

4 « « M  = l [ B j U W \ B e \ d A { y » b } =  [ [ B m J [ A ] [ B l B e ] d A { d w b }

W , J l d w h \

(4.8)

(4.9)

(4.10)
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(4.1!)

in \NBi\y*ryh \

4 « » K ) = |  i k r ^ r M M K i ^ k ) " 2 !  [ [ b j w u ] a o I b . m ^ }

=  2 ~ l { B j [ e } T U M B ^ d A { d w b } =  2 [ ^ d w t }

The terms d [ o \  • -]{w4} = \ o \  • - ] { d w b } and d ^ O f  (y4][#]) = l \ 0 j  [a ] d \ 8 \  in Eqs. 

(4.10) -  (4.12) can be derived from their definitions using simple matrix manipulations. 

Assembling the above terms in Eqs. (4.8) -  (4.12) into their system level, the following 

relation holds:

d

d W 3f r A 'J + t f r J  M = 4 f r ] + ! f r ]  <4.13)2

Substituting Eq. (4.13) into Eq. (4.6), the latter becomes

d VI
;2 k l+ T K ll f r } = [iV1]+[lV2] (4.14)

Since force vector { P a t }  and {Pr} are independent on {W}, then

J - [ k r } - k } ]  = 0d w  ^ AT-

Combining Eqs. (4.5), (4.14), and (4.15), can be expressed as:
d W

J  =  A l A a ] + [ K \ - [ K n &t  ] + [ K r ] + [.N , ] + [ N 2 ] (4.16)
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The object is to find {W} such that #(W) = 0. At a given AT, for the ito iteration, 

Newton-Raphson iteration method can be written in the incremental form:

A J A f L  ={AP}, (4.18)

where the tangent stiffness matrix [Ktan]j is

K J , =  4 N + M - f c „ M v ] + [ v l + f r ] ,  (4.i»)

and {AP}; is the imbalanced force vector, which is expressed as:

{AP}, = { P „ } - { P j - f f k ] + M - [ A : w ]+[xJ+t[Af,], + i[ jv J ,  W }, (4.20)

The subscript i denotes that the nonlinear stiffness matrices are evaluated with the 

displacement of ith iteration {W ff. The increment displacement vector (AW }i+i can be 

calculated from Eq. (4.18), then {W} is updated as:

f r L  = W  + {A » 'L  (4.21)

The solution procedure seeks to reduce the imbalanced force vector {AP} and 

consequently {AW} to a specified small quantity: max|{AW}|/h < 10‘3 in this study.

To start the procedure, an initial non-zero trial of {W} is needed. In this paper, it is 

given as:

{if}=0.!/?[_! 1 ... l j  (4.22)

where h is the plate thickness. For the additional temperatures, the initial trial employed 

is the {W} from the previous temperature.

With the participation of aerodynamic load, the stability of Eq. (4.18) using Newton- 

Raphson method could be a problem. This is due to the skew-symmetric matrix [Aa], 

which contributes to the instability of the system. Numerically, it is found that the
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iterative solution will lose convergence when the plate goes near the chaotic region. It 

may be explained as: in a chaotic region, no equilibrium exists.

Once the static BEP {W} is obtained for a certain AT, the linear vibration frequency 

of the plate about this BEP {W} can be determined. By adding the inertia terms, the 

linear equation of vibration about a BEP {W} Is:

where {W}t is the dynamic response of transverse displacement and [Kton] is just the 

tangent matrix determined in the last iteration using Eq. (4.19).40

Equation (4.23) can be solved as a standard linear eigenvalue problem to determine 

the vibration frequencies and mode shapes of a thermally loaded plate about the BEP. 

The characteristics obtained here can be used in selection of random excitation frequency 

range fu in Eqs. (3.39) and (3.41) for numerical simulation.

4.3 Dynamic Response Using Modal Equations in Normal Modes 

Rewrite the condensed system equations of motion, Eqs. (3.128) -  (3.132), as

f r J  = - l k ] + f c , ] - K r J + f c 3 - f r J [ V j ' ‘K J + 2 f r fc ( r , ! o ) ]  (4.25) 

b, ]=[k-, IvT k J  - K, ] k k,„ „] (4.26)

(4.23)

\Mb ] f r  }+ [G}{W„}+ ([£,J  + [K, ] + [K2 ]){)f„ }={/)} (4.24)

where

(4.27)

(4.28)
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where {Pi,} is defined in Eq. (3.125). For a given set of T, X ,  A and Ca (or g a = ),

Eq. (4.24) can be solved by numerical integration in the structural node DOF. This 

approach turns out to be computationally costly because:

(1) At each time step, the element nonlinear stiffness matrices have to be evaluated and 

the system nonlinear stiffness matrices have to be assembled and updated,

(2) The number of structure bending DOF {Wb} is usually very large, and

(3) The time step of the integration should be extremely small in order to make the 

solution accurate and stable.

An alternative and effective solution procedure is to transform Eq. (4.24) into the 

modal coordinates using reduced system normal modes (described in this section) or 

aeroelastic modes (next section 3.4). By expressing the system bending displacement 

{Wb} as a linear combination of some known base functions (mode shapes) as:

K } - S ? , f e } = [ 4 ' f e }  (4.29)
J-=l

where the rth normal mode (NM) {$•} and the corresponding linear frequency oy are 

obtained from the linear vibration of the system:

(4.30)

Based on NMs, it is necessary to transform all the matrices in Eq. (4.24) into the modal 

coordinates. Those element nonlinear stiffness matrices are evaluated with the 

corresponding element components {wy}, which in turn is obtained from the known 

system linear mode {$.}.
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The nonlinear stiffness matrices, which are directly related to {Wb}, can be 

expressed as the summation of the products of NM amplitudes qr (r =1 to n) and 

nonlinear modal stiffness matrices as:

f c * ]>  I x J .  h , J w . h , J w ) <4.3i)
r= i

= (4.32)
r = l  ,y= l

where the super indices of those nonlinear modal stiffness matrices denote that they are 

assembled from the corresponding element nonlinear stiffness matrices.

The in-plane displacement {Wm}, Eq. (3.129), is expressed as

}= K, r  {P„ } -  [ K , ]"' l w „}- [Km P [ K \mb l w , }

= i K  h  -  [ K .  ]■' [W , £  qr i t } - K  r f  £  q ,  p i ® ]  {q}
r=1 V  r = l

( 4 3 3 )

r = 1 j-= l s-=l

= W J 0 - { w j l - { W m}2

where the in-plane modes corresponding to the bending modes {$.} and {$5} are
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m „ = v <4-34) 

{#»}„ (4.35)

Therefore, [K,„m{{WJ,j\ and can be expressed as:

!,)] = E  ?, [«,*„ ({<Pr i „)] = Z 4 , [£,»„ V  (4-36)
r=l r —1

a  re re re

= £  £ M , I * . .  ((A . !,.)] = Z Z 9 , q , F ’ (4.37)
r = i  5=1 r = l  5=1

and the first constant { W m } o term in Eq. (4.33) has been considered in (Kiin] matrix in Eq. 

(4.25). The system dynamic equation is then transformed into the modal coordinates as:

IT* J{?}+ |g J{«}+ 2 f c > ,  ] |S * te } +  ( H +  [ A  J+ [ A , !){«}= {P«} (4.38)

where the modal mass, modal aerodynamic damping and modal linear stiffness matrices 

[.M b ] , [ G ] , [ K ] are given by:

( [ M h u G U K ] ) = m T m h u G ] , [ K Un] m  (4 .3 9 )

The first-order and second-order nonlinear modal stiffness matrices [j^jand j^w ]are:

[ T ] q ® r i > ( k J w - W ’ (4.40)
r=\

f a h M i i q A K j ' ” - i K ^ r  - h , tJ <',K ] - ,h 1- F ))[*] (4 .41)
r=! .?=]

The modal force vector {/h-} is given by:

{p c} = [« fte}  (4-42)

A modal structural damping matrix r m r \ M b \  has been added to Eq. (4.38) to 

account for the structural damping effect on the system. The coefficient £̂r is modal
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damping ratio for the rtn mode. It can be determined experimentally, and fly is the rtn 

modal natural frequency.

With the given combined thermal, aerodynamic, and acoustic loadings, all the 

matrices and coefficients in Eq. (4.38) are defined and can be obtained utilizing the 

previously derived equations. Given the initial values of modal coordinates {g}and {q}, 

Eq. (4.38) can be solved numerically for {q}, and the system nodal displacements {Wb} 

and {Wm} can then be obtained using Eqs. (4.29) and (4.33), respectively.

A small number of most contributing modes to the total response can be determined 

from their modal participation (MP) values, and it is defined as:

' R M S ( q T)

P a r t i c i p a t i o n  o f  r ‘h mode =

i f  r a n d o m  i n v o l v e d

'=1 , , (4.43)max \ q \  ,
---------------------  otherwisen

X maxK  i
,V=I

where RMS stands for root-mean-square value. Those modes with significant 

participation values can be identified and they should be retained In the analysis.

The benefits of using the time domain numerical integration method to solve the 

system dynamic equations of Eq. (4.38) are:

(1) Compared with methods In structural node DOF, the computational cost is reduced 

dramatically;

(2) For panel flutter analysis under thermal load, compared with frequency domain 

method, all four types of panel behaviors can be determined: static flat and stable, 

buckled but dynamically stable, LCO and periodic/chaotic motion;
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(3) For nonlinear random vibration problem, it does not need to assume that the random 

response distribution is Gaussian as using the equivalent linearization method, and 

the snap-through phenomenon can be determined; and

(4) It is by now the only efficient method to study the panel behavior under the 

combined thermal, aerodynamic and acoustic loadings.

4.4 Dynamic Response Using Modal Equations in Aeroelastic Modes

Traditionally, there are two distinct analysis methods in supersonic nonlinear panel 

flutter: the time domain and the frequency domain. In time domain approach, the 

coupled nonlinear modal (in NMs) equations are formulated from the governing partial 

differential equations (PDE’s) in conjunction with Galerkin’s method in the spatial 

domain,27'29’30,31,33’43'45 or from the finite element modal formulation.46,47 LCO responses 

are then determined from the nonlinear modal equations using techniques including 

numerical integration, harmonic balance, or perturbation method in the time domain. In 

frequency domain approaches, the coupled nonlinear equations of motion are formulated 

using finite element methods and expressed in the structural node DOF40 or normal 

modal coordinates.42 The panel responses are determined by an iterative linearized 

eigen-solution using the linearized updated mode with a nonlinear time function 

(LUM/NTF) approximation method.40,50 It is found that six in-vacuo NMs (1,1) to (6,1) 

are needed for accurate analysis for a simply supported isotropic square plate at zero flow 

yaw angle.27

In the frequency domain analysis using the six in-vacuo NMs (1,1) to (6,1), shown in 

Fig. 4.1, for a simply supported isotropic square plate at A = 0°. It is noticed that the six

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



70

NMs are located on the vertical axis at X  = 0. The linear (Wmax/fa = 0.0) eigenvalues for 

modes (1,1) and (2,1) coalesce at the critical dynamic pressure X CT =  512. Using the 

LUM/MTF method, the converged iterative linearized eigenvalues K versus X  for two 

typical large amplitudes at Wmax/h = 0.6 and 1.2 are shown, and they coalesce at the 

flutter dynamic pressures % n  and X q ,  respectively. The variation of LCO amplitude 

Wmax/h versus dynamic pressure is thus determined and shown in Fig. 4.2. The LCO 

deflections at Wraax/h = 0.6 and 1.2 are shown in Fig. 4.3.

7000

6000

Wmax/h=1.2
" .5000

4000

iax/h=0.6
3000

Wmax/h=0.0
2000

1000
e r

200 400
Nondimensional Dynamic Pressure X

600 800 1000
Pressure

Fig. 4.1 Eigenvalues K  versus dynamic pressure for a simply supported isotropic square
plate at A = 0°.
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Nondimensional Dynamic Pressure X
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Fig. 4.2 LCO amplitudes versus dynamic pressure for a simply supported isotropic square
plate at A = 0°.

 Wmax/h=1.2
—  Wmax/h=0.6

0.8

I 0”6
j§ 0.4

0.2

- 0.2
0.2

Nondimensional Length x/a
0.4 0.6

Length
0.8

Nondimensional

Fig. 4.3 LCO deflections of Wmax/h = 0.6 and 1.2 at y = b/2 for a simply supported
isotropic square plate at A = 0°.

Re-examining of Fig. 4.1, the LCO occurs at X  >  X cr; while the six base NMs are 

located far away at X  = 0. Why does one not consider using the linear aeroelastic modes
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(AEMs) that reside near the LCO in the k-L plot of Fig. 4.1. The AEMs48 are the linear 

panel vibration modes under the influence of dynamic pressure 0 < X  < /tcr. A plot of the 

lowest two normalized AEMs at X  =  510 is shown in Fig. 4.4. By comparing the LCO 

deflection shapes in Fig. 4.3 and the AEMs in Fig. 4.4, it is now much certain that the use 

of AEMs will reduce the number of DOF for the limit-cycie analysis since the LCO 

deflections and the AEMs have great similarities in shape.

—  1st AEM
•— 2nd AEM0.8

0.6
sz
lo 0.4 
E
5

0.2

- 0.2
0 0.2 0.4 0.6 0.8 1

Nondimensional length x/a

Fig. 4.4 Normalized AEMs at X 0 = 510 for a simply supported isotropic square plate at A
=  0°.

The system bending displacement vector {Wb} can now be expressed as a linear 

combination of some known base functions (modal transformation) as:

(4.44)
r = 1

where the number of retained linear aeroelastic modes, n, is much smaller than the 

number of structural node DOF in bending {Wb} as well as the number of NMs. The rth
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A E M  is  a  r ig h t e ig e n v e c to r90 a n d  n o rm a liz e d  w ith  th e  m a x im u m  c o m p o n e n t to  unity 

as  sh o w n  in  F ig . 4 .4 . T h e  m a tr ix  o f  se le c te d  A E M s  [ # ] ,  w h ic h  is  th e  m a tr ix  o f  r ig h t 

e ig e n v e c to rs , a n d  th e  c o rre sp o n d in g  lin e a r  f re q u e n c ie s  (s\ a re  o b ta in e d  f ro m  th e  lin e a r  

v ib ra tio n  o f  th e  sy s te m  w ith  th e  in f lu e n c e  o f  a e ro d y n a m ic  in f lu e n c e  m a tr ix  te rm

0>l [M t > = U , k l +  A  F  ] f c.  F  [ A  h r  S (4 .45)

w h e re  X0 is  a  c e r ta in  s e le c te d  d y n a m ic  p re s su re  v a lu e . T h e  a e ro d y n a m ic  m a tr ix  [Aa] is 

skew-symmetric and thus th e  combined matrix {Xn [ A a ] + ]  -  \K hm \ K m ]-1 \ K mb ]) is 

a sy m m e tr ic a l. H e n c e , th e  d e s ira b le  p ro p e r tie s  o f  th e  e ig e n v a lu e s  a n d  e ig e n v e c to rs  

associated w ith  symmetric matrices n o  longer exist. In particular, for X Q <  X ct, the 

eigenvalues and eigenvectors are real, but the eigenvectors are no longer orthogonal. 

Here we utilize the concept of right and left eigenvectors90 in order to transform the 

system equations into modal coordinates.

The system dynamic equation, Eq. (4.24), is transformed into the reduced AEM 

coordinates by using the similar manipulations as:

\m„ j{ ?}+ |g]{ j}+ 2 k > r ]|iF  Jfe}+ (H+ [I, J+ [A  {{<?}= {p<} (4.46)

w h e re  th e  m o d a l m a s s  m a tr ix , m o d a l a e ro d y n a m ic  d a m p in g  m a tr ix  a n d  m o d a l lin e a r  

s tif fn e ss  m a tr ix  a re  g iv e n  by :

( [ M J , [ G ] , f f l )  =  [ 0 J I' ( [ M J t[ G ] , [ ^ ftl] ) [ 0 ]  (4 .4 7 )

T h e  f irs t-o rd e r  a n d  se c o n d -o rd e r  n o n lin e a r  m o d a l  s t if fn e s s  m a tr ic e s  [ id ^ Ja n d  \K qq\m t :

T l= [® jr E « . k „ r >- M J w - A J <' , [ x j y x , j - A J F j y x , i],' ))[4'] (4.4s>
r=l
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The modal force vectors {pf} is given by:

(4.50)

where [ # J  is the matrix of left eigenvectors corresponding to the selected AEMs, which 

are the selected right eigenvectors. Because the original whole square matrix of left 

eigenvectors is related with the original whole square matrix of right eigenvectors 

[ # ’] by [# h ]T = f # ’]"1? [0£] is obtained by extracting the corresponding parts from the

Equation (4.46) is identical with Eq. (4.38) in format, while the difference lies on the 

modes they used and how the modal mass and stiffness matrices are evaluated. It will be 

demonstrated that with AEMs, the number of modes used can be greatly reduced 

compared with using NMs. AEMs can be used whenever there exists dynamic pressure, 

such as flutter with thermal load and flutter-random response under three combined 

loadings.

4.5 Strain Calculation

After the system nodal displacement vectors {Wb} and {Wm} are obtained in each 

time step, the strain vector for each element can be calculated from:

For a displacement-based finite element method, one expects the strain to be less accurate

(4.51)

than the displacement. However, at Barlow points91,92 inside the element, the accuracy of
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the strain is equal to that of the displacement, or even higher. For the BFS C1 rectangular 

element, the stiffness matrix is approximated by the area integration of a 6tn-order 

polynomial, so that 4lh-order Gauss quadrature can be used to exactly compute the area 

integration numerically. Barlow points are actually one order less Gauss points. 

Therefore, for BFS C! rectangular element, 3rd-order Gauss points are adopted as Barlow 

points. In this study, the strain values at Barlow points are calculated from Eq. (4.51), 

the results are then extrapolated to the element node points. The strain values at a certain 

global node point are averaged from different element node values, which share the same 

global node number.
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CHAPTER V STATIC THERMAL AND AEROTHERMAL

RESPONSE

Examples are presented for an isotropic plate, a traditional composite plate, and three 

configurations of SMAHC plates. The numerical results and discussions include five 

sections: i) static thermal buckling and postbuckling due to thermal load only (Chapter 

V), ii) static aerothermal buckling and postbuckling due to combined aerodynamic and 

thermal loads (Chapter V), iii) panel flutter due to combined aerodynamic and thermal 

loads (Chapter VI), iv) random vibration due to combined acoustic and thermal loads 

(Chapter VII), and v) dynamic response due to combined aerodynamic, acoustic and 

thermal loads (Chapter VIII).

The static or dynamic response is investigated and displayed in various domains: i) 

the temperature-dynamic pressure (ATA) region for combined thermal and aerodynamic 

loads, ii) the temperature-acoustic sound pressure level (AT-SPL) domain due to 

combined thermal and acoustic loads, and iii) the temperature-dynamic pressure-sound 

pressure level (ATA-SPL) domain. The results determined for the SMAHC plates are 

compared with those for the isotropic and traditional composite plates.

For the purpose of comparison, the rectangular traditional composite plate and the 

SMAHC plates studied here have the identical dimensions, laminations and matrices. 

The plate dimension is 15x12x0.05 in. (38.1x30.5x0.13 cm), the lamination is eight 

layered with a stacking sequence [Q/-45/45/90]s, and the composition is Graphite-Epoxy.
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Nitinol is chosen as the SMA fibers in the SMAHC plates. The Nitinol fibers are 

embedded in all eight layers and are along the same direction as the graphite fibers due to 

manufacture restrictions. The Young’s modulus versus temperature, and recovery 

stresses versus temperature of Nitinol are testing data from Cross et a l4 The phase 

transformation is activated at the room temperature 70°F (reference temperature). The 

other properties of Nitinol are given in Table 5.1. The material properties of graphite- 

epoxy are also considered as temperature dependent as shown in Table 5.1. The 

aluminum and titanium plates with the same configuration are included for comparisons.

Table 5.1 Material properties of Nitinol, graphite-epoxy composite lamina and
titanium

Nitinol Graphite-epoxy Titanium

See Figs.l and 2 for El 22.5x10s (l-3.53xlO'4-AT) psi E 14.94x106 psi
Yonnn’s modulus /KC n r  tina ftPntYoung’s modulus
and recovery stresses

G 3.604x10s psi,
T<AS (24.9
GPa)

3.712x10s psi,
T>AS (25.6
GPa)

P 0.6067x10'31b-
s2/in 4 (6450
Kg/m3)

p 0.3

a 5.7x10'6/°F
(10.26xl0's/°C)

(155 (1-6.35x10 -AT) GPa)

E2 1.17x10s (1-4.27x1 O'4-AT) psi 
(8.07 (1-7.69x10‘4-AT) GPa)

G12 0.66x10s (1-6.06x10'4-AT) psi 
(4.55 (1-1.09x10'3-AT) GPa)

p  0.1458x10'3 ]b-s2/in.4 (1550
Kg/m3)

fJL] 2 0.22

«! -0.04x 10'6( 1 -1,25x 10'3 • AT)/°F
(-0.07xl0'6(l-0.69xl0'3-AT)
/°C)

a 2 16.7xl0‘6(l+0.41xl0’4-ATy°F
(40.6x 10"6( 1 +0.2 8x 1 O'4- AT) /°C)

(103 GPa)

p 0.424x10'31b-
s2/in4 (4510
Kg/m3)

f1 0.37

a  4.78xl0'6/°F 
(8.6x10‘6/°C)
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5.1 Static Thermal Buckling and Postbuckling Response

In this section, the effects of SMA recovery stress on the reduction of static thermal 

deflection of SMAHC plates are studied. Rewrite Eq. (3.118) for static thermal buckling 

of a plate,

The thermal load is assumed to be uniformly distributed without temperature gradient 

across the thickness of the plate. Thermal deflection and the lowest natural frequency 

versus temperature are investigated.

The full plate is modeled with a 12x12 mesh or 144 BFS rectangular elements. All 

the four edges are all simply supported or all clamped. The in-plane support conditions 

are immovable as u(0,y) = u(a,y) = v(x,0) = v(x,b) = 0.

The Newton-Raphson iterative method is employed to determine the thermal 

deflections from the governing equations expressed in structural node DOF. Figure 5.1 

shows the maximum thermal deflections for both simply supported and clamped 

composite plates. To simplify the comparisons between the traditional composite plate 

and the SMAHC plates, unless otherwise specified, only clamped cases are studied and 

presented.

The non-dimensional maximum thermal deflection versus temperature for the

SMAHC plates with three configurations in volume fraction and prestrain of SMA: (vs = 

10% and £r = 3%), (vs = 10% and £,- = 5%) and (vs = 15% and er = 3%) are shown in Fig. 

5.2. The temperature range investigated is AT = 0°F - 430°F (T = 70°F - 500°F) or AT =

/
M -[^ ]+ [A rJ + t[A ’ (W )]+hA r2({^aT F))]V }={X r }-{^}2 3

(5.1)
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0°C - 239°C . The thermal deflection for the traditional composite plate is also drawn in 

Fig. 5.2 for comparison. The critical temperatures for the titanium, traditional composite 

and SMAHC plates are shown in Table 5.2. It is seen that the higher the values of 

volume fraction and prestrain are, the higher the critical temperature is. The results 

clearly indicate that the large recovery stress introduced by the SMA results in a more 

stiffened plate for a wide range of temperature and thus a higher critical buckling 

temperature.

Simply Supported

ClampedJC

£
Is

0.5

100 120 14040
AT, °F

Fig. 5.1 The maximum thermal buckling deflection for traditional composite plates.
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3.5

JC
1
E
$

0.5

200
AT, °F

300100 400

Fig. 5.2 The maximum thermal buckling deflection of a clamped traditional composite 
plate (vs = 0) and the clamped SMAHC plates (vs * 0).

Table 5.2 Critical buckling temperatures of the clamped titanium, traditional composite
and SMAHC plates

Vs £r ATcr(°F)

Titanium - - 79.8

Graphite-Epoxy - - 39.3

10% 3% 245

SMAHC 10% 5% 355

15% 3% 410

The natural frequencies and mode shapes of linear vibration about the buckled 

equilibrium position (BEP) or the flat but pre-stressed (before buckling) plate can be 

determined by the eigenvalue problem described in Eq. (4.23). The fundamental natural 

frequency versus temperature for the SMAHC plates with three configurations of volume
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fraction vs and prestrain er are shown in Fig. 5.3, It is seen from the figure that the 

fundamental frequencies go to zero at Tcr for all the plates. For the traditional composite 

plate, the frequency decreases all the way from Tref through ATcr purely due to the 

thermal expansion effect. At ATcr, the plate loses the static stability and the bifurcation 

deflection happens. The frequency increases after passing ATcr because of the 

geometrical nonlinearity of the buckled plate. For two of the three configurations of 

SMAHC plates, except (vs = 10% and er = 5%), the frequency first increases, then 

decreases before reach ATcr. This is due to the counteraction between the SMA recovery 

stress and the thermal expansion effect. When the temperature is in the relatively low 

region, the SMA recovery tensile stress increases faster than the compressive stress due 

to the thermal expansion, and results in a more stiffened plate. After the recovery 

stresses increase slower at the moderate temperature region, the thermal expansion 

gradually becomes dominant, the plate becomes softer and the natural frequency begins 

to decrease. For the SMAHC (vs = 10% and er = 5%) plate, the recovery stress just 

increases not as fast as that due to the thermal expansion at the very beginning.

The mass density of graphite-epoxy is 1550 kg/m3. Nitinol and titanium are much 

heavier. The savings in weight based on critical temperatures are presented in Fig. 5.4. 

For titanium and traditional composites plates, the thickness of the plates is varied 

through a multiple of the base thickness h = 0.05 in. It is shown that to achieve a given 

ATcr, for example 350°F (Tcr = 420°F), the weight of a clamped SMAHC (vs= 10% and er 

= 5%) plate is about 0.53 lb (0.24 kg), while the weight is 1.2 lb (0.54 kg) for a 

traditional composite plate of thickness 3h (0.15 in.). It is obviously that the weight of
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titanium plate is the heaviest and other means such as adding stiffeners and frames should 

be done for titanium plate to reach such a critical temperature value.

5.2 Static Aerothermal Buckling Deflections

Under the combined thermal and aerodynamic loads, if the airflow speed is low, the 

flutter will not occur. The plate may keep flat and stable, or becomes thermally buckled 

but dynamically stable under the influence of airflow. Rewrite the equation governing 

static aerothermal buckling of a plate, or Eq. (3.119)

(5-2)
V l  5  J

Notice that the airflow influence matrix A [ A a (A)] is added to the stiffness terms. Since 

aerothermal buckling is still a static problem, Newton-Raphson iterative method is used 

here. The full plate is modeled with a 12x12 mesh or 144 BPS rectangular elements, 

which is accurate enough. All the four edges are clamped. The in-plane support 

conditions are immovable as aforementioned.
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Fig. 5.3 Fundamental natural frequency of a clamped traditional composite plate and
clamped SMAHC plates.

2.5
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 g  Composite vg=0

• vs=10%,e =3%
0  vs=10%,e=5%
ii v =15%,£ =3%

1.5h
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2h0.5h
0.5

ATcr, °F
Fig. 5.4 Weights versus the critical temperatures for the clamped titanium, traditional

composite and SMAHC plates.
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The presence of airflow makes the panel stiffened so that the aerothermal deflection 

decreases as airflow dynamic pressure X  increases. This is demonstrated in Fig. 5.5, 

where the square of the deflections is plotted versus temperature40,44 for the clamped 

traditional composite plate at A = 0° and A = 0, 90, 150, 160 and 170, respectively. It is 

found the convergence can’t be achieved once X  Is beyond 170, which indicates that a 

statically unstable region is reached. Figure 5.6 shows the shape of the aerothermal 

deflection at X  =  120, A = 0° and AT = 150°F. It is seen that the front part of the plate is 

“blow” to a dent with the maximum deflection position moving to the back part. 

Moreover, the dent is also not symmetrical about y-axis. This can be explained as: the 

[0/-45/45/90]s composite plate is much softer and tends to deform easily in the direction 

of 0 = 45° than the direction of 0 = - 45°.

At a flow angle A = 45°, as shown in Fig. 5.7, the statically unstable region is 

reached much earlier than at A = 0°, and X  can not be beyond 90 for a stable converged 

solution, which verified once more that the composite plate is much softer in the direction 

of 0 = 45°. This shows that the flow yaw angle A = 45° results in a smaller aerothermal 

buckling region.

In this iterative procedure, the convergence often fails if the flow dynamic pressure 

is close enough or already getting into flutter or chaotic regions, which become a 

dynamic problem. Since the difficulty for the Newton-Raphson iteration method of 

obtaining a converged buckling deflection prevents a full investigation over the 

temperature-dynamic pressure (AT-A) domain, the comparison between the SMAHC
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plates and the traditional composite plate is described in the following section using 

numerical integration in time domain.

150
180
170

css

Unstable

100 150 
at, °F

200 250 300

Fig. 5.5 Square of aerothermal deflections versus temperature for a clamped traditional 
composite plate at various dynamic pressure and A = 0°.

o o
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Fig. 5.6 Aerothermal deflection shape for a clamped traditional composite plate at % -
120, A = 0° and AT = 150°F.

ArO

—Q— QQ

Unstable

150 200 250 300
aT,°f

100

Fig. 5.7 Square of aerothermal deflections versus temperature for a clamped traditional
composite plate at A = 45°.
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CHAPTER VI PANEL FLUTTER AT ELEVATED

TEMPERATURES

Once the plate falls into the flutter or dynamic regions, the Newton-Raphson iterative 

method used in Chapter V fails to yield converged aerothermal deflection. Therefore, 

numerical integration in time domain is used here to investigate the panel response in the 

entire temperature - dynamic pressure (AT-A,) domain. The system dynamic equation of 

motion in the reduced AEM coordinates is rewritten as

(6 .1)

where

(6.2)

J (r> - [ K m m r  - k t  (6.3)
r=1

L } =  [4>t F A r »  } -  fo , } -  K .  } [ K m ]“' {/>„}) (6.5)

and the modal matrix of AEMs [#] is obtained from

[ M t  k , } = (v  k l + f c  1 -  k „  l k . r  f r -  I k . ) (6.6)

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



88

6.1 Validation of AE Modal method

Either normal modes (NMs) or aeroelastic modes (AEMs) can be used in the finite 

element modal method. However, the newly introduced AEMs can greatly reduce the 

number of modes used in flutter analysis 48 To validate the present modal formulation 

using AEMs. the LCO results for an aluminum square plate and a rectangular composite 

plate are determined and compared with LCO results using the NMs. LCO results are 

studied and presented for the plates at a zero flow angle (A = 0°) and then followed by 

the nonzero flow angles (A ^ 0°).

Three cases are considered. For a simply supported square aluminum plate of 

12x12x0.050 in. (30.5x30.5x0.127 cm) at A = 0°, a 12x3 mesh, or 36 BFS elements in a 

half plate model is used; at A ^ 0°, a 12x12 mesh, or 144 BFS elements of the full plate 

model is used. The aerodynamic damping Ca is set as 0.01. For the simply supported 

isotropic rectangular plate of 15x12x0.050 in. (38.1x30.5x0.13 cm) at A ^  0°, a 12x12 

mesh full plate model is employed. A clamped three-layered [-40/40/-40] Graphite- 

Epoxy composite plate of 15x12x0.048 in. (38.1x30.5x0.12 cm) is also investigated. 

The foil plate is modeled with 12x12 mesh or 144 BFS elements for both A = 0° and A =£ 

0° .

6.1.1 Zero Flow Angle (A = 0°) Case

For the simply supported isotropic square plate, it is known that X c t =  512.27’40 First, 

the LCO amplitudes using 2 AEMs ( k 0 =  510, see Fig. 4.4) are determined and compared 

with results using 6 NMs shown in Fig. 6.1. The present modal formulation using AEMs 

gives very accurate LCO response. The time history and phase plot of LCO using 2 

AEMs a t X  =  890 are shown in Fig. 6.2, which show a clear harmonic type of LCO.
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Fig. 6.1 Comparison of LCO amplitudes between Dowell27 and finite element modal 
method using 2 AEMs and 6 NMs for a simply supported isotropic square plate at A = 0C
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Fig. 6.2 Time history and phase plot using 2 AEMs for a simply supported isotropic
square plate at X = 890 and A = 0°.

The convergence of LCO amplitudes using various numbers of AEMs at X 0 =  510 is 

investigated and shown in Fig. 6.3. It can be seen clearly that the LCO converges fast. It 

can be also seen in Table 6.1, which shows the modal participation (MP) percentage 

values for the 6 AEMs, where the first and second AEMs are dominant. Table 6.1 also
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lists the MP values for 6 NMs, which show that the method using AEMs converges faster 

than NMs.

Table 6.1 Comparison of MP of 6 AEMs ( k 0 = 510) and 6 NMs for the simply supported
isotropic square plate at A = 0°

Wmax/h

Modal Participation, %

Mode

No.

ql q2 q3 q4 q5 q6

0.24 AEM 53.18 46.35 0.36 0.05 0.03 0.01

NM 42.37 41.82 11.87 2.46 1.03 4.31

0.51 AEM 63.93 34.83 0.91 0.21 0.08 0.03

NM 59.86 30.50 5.96 2.28 0.88 0.46

1.02 AEM 67.32 29.43 1.51 1.16 0.44 0.14

NM 29.33 45.76 15.23 7.49 0.80 1.38

1.4 

12  

1

§ 0 .8  
co
1 0.6 

0.4

0.2

§00 600 700 800 900
Nondimensional Dynamic Pressure X

Fig. 6.3 Convergence of LCO amplitude using AEMs for a simply supported isotropic
square plate at A = 0°.
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One question arises in this procedure: where should the AEMs be selected? This is 

because the mode shapes of AEMs depend on dynamic pressure X. Intuitively, X0 should 

be selected near the onset of flutter. We know Wcr =512 for a simply supported isotropic 

square plate. So all the results obtained above are based on AEMs at X 0 -  510. To find 

out the effect of different X0 values on LCO results, Fig. 6.4 shows the difference of LCO 

amplitudes using 2 AEMs at three different X0 values. The largest difference of LCO 

amplitudes between X0 = 400 and 510 is about 10%. This indicates that AEMs selection 

is not much sensitive to LCO results, but the closer to the coalescence A.cr, the more 

accurate the result will be.

For the clamped rectangular laminated [-40/40/-40] composite plate, Fig. 6.5 shows 

the convergence and accuracy of LCO results using 2, 4 and 6 AEMs ( k 0 = 245), 

respectively, and comparing with as many as 36 NMs. The MP values in Table 6.2 

shows that higher modes gradually contributed more at larger LCO amplitudes and they 

should be included.

Table 6.2 MP of 6 AEMs ( k 0 =  245) for a clamped traditional composite plate at A = 0°

Wraax/h

Modal Participation, %

ql q 2 q3 q4 q5 q6

0.22 42.26 47.38 1.21 6.91 1.22 1.00

0.57 40.23 43.88 2.80 8.95 1.34 2.77

1.04 35.42 38.47 7.89 10.38 1.66 6.18
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6,1.2 Nonzero Flow Angle (A # 0°) Case

For a particular flow yaw angle, the AEMs are selected and generated with respect to 

that flow angle, and then determine the LCO response of the specified flow angle. Figure 

6.6 shows the LCO amplitudes of the simply supported isotropic square plate at A = 15° 

using 2 and 6 AEMs (A,0 =515) and compared with those using 36 NMs. The results 

show that even using 2 AEMs it is in good agreement with those using 36 NMs. It is 

seen from Table 6.3 that the first two AEMs are the most dominant with all others having 

very small contribution.

1 ,4r  

1.2 

1

|  0.6 

0.4 

0.2 J
2

i i
2

I
i

i
I 1

o A, =510
A X  =450

♦ X  =4000

I 600 700 800 900
Nondimensional Dynamic Pressure A,

Fig. 6.4 LCO amplitudes for a simply supported isotropic square plate at A = 0° using 2
AEMs selected at different X 0 .
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Fig. 6.5 Comparison of LCO amplitudes using 2, 4 or 6AEMs (k0 = 245) and 36 NMs for 
a clamped rectangular [-40/40/-40] composite plate at A = 0°.
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Fig. 6.6 Comparison of LCO amplitudes using 2 or 6 AEMs ( X 0 =  5 1 5 )  and 36 NMs for a 
simply supported isotropic square plate at A = 15°.
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Table 6.3 MP of 6 AEMs ( X 0 = 515) for a simply supported isotropic square plate at A =
15°

Wmax/h

Modal Participation, %

ql q2 q3 q4 q5 q6

0.08 50.69 48.49 0.04 0.36 0.32 0.09

0.48 60.68 38.23 0.07 0.28 0.53 0.21

1.01 60.32 37.32 0.13 0.64 1.04 0.56

For the clamped rectangular [-40/40/-40] composite plate, the results are shown in 

Fig. 6.7 and Table 6.4. Again, it is observed that higher frequency AEMs gradually 

contribute more at larger amplitudes. Hence it is necessary to use more AEMs for large 

amplitude flutter analysis.

1.4 

1.2 

1

f a s t

g O . 6

f

0.4 • D 2 AEMs
• a 6 AEMs

0.2 -a o 38 NMs

100 300 400 500
Nondimensional Dynamic Pressure X

Fig. 6.7 Comparison of LCO amplitudes using 6 AEMs 200) and 36 NMs for a 
clamped rectangular [-40/40/-40] composite plate at A = 15°.
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Table 6.4 MP of 6 AEMs ( k 0  =  200) for a clamped [-40/40/-40] composite plate at A =
15°

Wmax
Modal Participation, %

h ql q2 q3 q4 q5 q6

0.18 51.50 45.90 0.27 1.41 0.24 0.68

0.55 53.93 38.54 0.58 4.55 0.43 1.96

0.96 46.44 38.39 2.52 7.25 0.78 4.61

6.1.3 Nonzero Flow Angle (A &  0°) with Thermal Load

It is necessary to investigate whether AEMs can be used for panels under combined 

thermal and aerodynamic loads. For a given temperature and a particular flow angle, 

AEMs are first selected and generated with respect to the flow angle only (without the 

presence of aerothermal load), then the thermal buckling deflection and LCO response at 

the specified flow angle and temperature are determined.

The example given here is the simply supported isotropic square plate at a flow angle 

A = 15° and temperature AT/ATcr = 1.5. Both the static aerothermal deflection and the 

dynamic LCO response are determined and drawn versus dynamic pressure X  in Fig. 6.8 

using 16 NMs and 6 AEMs ( X 0 = 515), respectively. It is seen that the results are very 

close to each other. In Table 6.5, the MP values also show that the first two AEMs are 

the most dominant modes with all others having very small contribution except at X  = 

200, where Wmax/h = 0 and the MP values are meaningless.
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Table 6.5 MP of 6 AEMs ( X 0 =  515) for a simply supported isotropic square plate at A =
15° and AT/ATcr = 1 . 5

X Wmax/h
Modal Participation, %

ql q2 q3 q4 q5 q6

0 0.62 50.74 48.12 0.25 0.37 0.49 0.04

100 0.53 52.01 47.46 0.21 0.15 0.14 0.03

200 - 0 22.21 26.87 0.41 0.64 25.19 24.68

300 0.32 62.82 35.29 0.06 0.93 0.67 0.12

400 0.69 56.99 39.69 0.12 0.92 1.84 0.43

500 0.92 26.93 64.88 0.18 2.85 3.76 1.38

600 1.10 82.58 11.69 0.99 3.17 0.16 1.40

16 NMs 
a-  6 AEMs

0.4

0.2

100 200 300 400 500 600
Dynamic Pressure, X

Fig. 6.8 Comparison of aerothermal deflection and LCO amplitude using 16 NMs and 6 
AEMs for a simply supported square aluminum plate at AT/ATcr =1.5 and A = 15°.
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Through the above validation, numerically, as long as the airflow aerodynamics is 

involved, the usually needed 25 or 36 NMs for flutter analysis could be reduced to 6 

AEMs or less. The computational time is thus reduced greatly. For any case, of course, 

modal convergence study should be conducted first to determine the proper number of 

AEMs needed.

6.2 Flutter and Stability Regions

There are four types of panel behavior: flat and stable, buckled but dynamically 

stable, LCO and chaos. The plate’s dynamic behaviors, i.e., LCO and chaotic motions, 

can be cataloged further into 4 types: nearly simple harmonic LCO, periodic LCO, non

periodic oscillation and chaotic oscillation. The clamped [Q/-45/45/90]s composite plate, 

with the critical temperature ATcr = 39.3°F (21.8°C), is investigated with AT varying 

from 0 to 280°F or 155.6° C (Tref=70°F, so T is 70°F to 350°F) and I  from 0 to 800, and 

two flow angles A = 0° and 45° are considered. The time responses at maximum 

deflection are obtained and analyzed with varying AT and X .
AT

A two-dimensional Poincare map is employed to identify various types of motion. 

Compared with a normal phase plot, which is displacement versus velocity for all 

continuous instants of time, Poincare map plots two coordinates versus each other at the 

time instants when an event occurs. In present study, the two coordinates are selected as 

the displacements at maximum point and plate center. The event is defined as the 

velocity at maximum point reduces to zero from positive, indicating the point reaches the 

local maximum position. At the time instant that the event happens, plot the
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displacement at maximum point versus the displacement at plate center (Wc in Poincare 

map).

6.2.1 Traditional Composite Plate

It is found that 6 AEMs are enough to obtain a converged solution for the traditional 

[0/-45/45/90]s composite plate, as shown in Fig. 6.9 and Table 6.6. Wmax/h versus 

dynamic pressure is plotted in Fig. 6.9 for the traditional composite plate at A = 0° and 

AT = 50°F (AT/ATcr = 1.26) using 25 NMs and 6 AEMs, respectively. The comparison 

Indicates that 6 AEMs result has excellent agreement with that of 25 NMs. Table 6.6 

shows a fast convergence of solution with very small contributions from higher modes, 

e.g. the contribution form the fifth and sixth are all less than 2%.

2.5

-e - 25 NMs 
■A —  6 AEMs

0.5

200 400
Dynamic Pressure, a,

800
X

800

Fig. 6.9 Comparison of aerothermal deflection and LCO amplitude using 25 NMs and 6 
AEMs for a clamped traditional [0/-45/45/90]s composite plate at AT = 50°F and A = 0°.
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Table 6.6 MP of 6  AEMs ( X q - 4 6 4 )  for a clamped traditional [Q/~45/45/90]s composite
plate at A = 0° and AT = 5CPF

X Wmax/h

Modal Participation, %

ql q2 q3 q4 q5 q6

0 0.61 49.68 48.05 1.70 0.19 0.24 0.13

100 0.41 52.41 25.00 11.61 9.27 1.19 0.51

200 0.72 53.54 36.46 4.92 3.57 1.09 0.04

300 0.97 52.76 43.32 1.19 1.97 0.53 0.60

400 1.13 47.76 50.36 1.32 0.30 0.26 0.11

500 1.39 40.53 55.92 0.51 1.61 1.28 1.44

600 1.79 63.42 26.82 3.27 3.71 1.93 0.83

700 1.98 60.11 31.62 2.80 2.66 1.76 1.03

800 2.14 53.93 41.67 2.04 1.50 0.74 0.11

The four typical types of motions are shown in Figs. 6.10 - 6.13 using 6 AEMs, 

represented with time history, phase plot, power spectrum density (PSD) plot and 

Poincare map.

At X  =  500, A = 0° and AT/ATcr = 1.0, as shown in Fig. 6.10, the closed phase plot 

and one dominant frequency in the PSD plot clearly indicate a simple harmonic LCO. 

There is only one point in Poincare map, standing for when the maximum point reaches 

the local maximum value, the plate center has just one position corresponding to it. This 

one-one correlation indicates periodic motion.

At X  =  2 1 5 ,  A = 0° and AT/ATcr = 2.0, the vibration type changes to periodic, as 

shown in Fig. 6.11. The phase plot comprises a small orbit about each buckled state and 

a large orbit. The PSD plot indicates three or four dominant frequencies. In general, one 

point in a Poincare map expresses the recurrent behavior of a motion, which in turn, 

stands for a periodic motion.
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The plate may also show a more complex periodic motion at X  = 200, A = 0° and 

AT/ATcr = 3.0, as shown in Fig. 6.12. At such a combination of high AT/ATcr and 

moderate A, the plate motion evolves from periodic oscillation to non-periodic 

oscillation. The Poincare map shows a cluster of points gathering in the upper right and 

lower left section of the plot, indicating that when the maximum point reaches the local 

maximum position, plate center can vibrate somewhere on a straight line position but 

shows no recurrence.

At the combination of medium dynamic pressure and high temperature, such as X  = 

325, A = 0° and AT/ATcr= 4.0 as shown in Fig. 6.13, the plate is likely to undergo chaotic 

oscillation. Compared with non-periodic oscillation in Fig. 6.12, chaos shows diffusion 

on phase plot that almost fills the entire region from minima to maxima, and the 

broadening of power spectrum peaks in the PSD plot. In Poincare map, the cluster of 

points stretches over the entire region from negative and positive, indicating when the 

maximum point reaches the local maximum, plate center can vibrate anywhere, which 

leads to the unpredictability of the motion. The phase plot indistinctly shows the strange 

attractors at about Wmax/h = -1.8 and 1.8, which is not seen in non-periodic oscillation.
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Fig. 6.10 Simple harmonic LCO of a clamped traditional [0/-45/45/90]s composite plate
at A, = 500, A = 0° and AT/ATcr = 1.0.
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Fig. 6.11 Periodic LCO of a clamped traditional [0/-45/45/90]s composite plate at X  -
2 7 5 ,  A  =  0 °  and AT/ATcr= 2.0.
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Fig. 6.12 Non-periodic oscillation of a clamped traditional [0/-45/45/90]s composite plate
at X  = 200, A = 0° and AT/ATcr = 3.0.
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Fig. 6.13 Chaotic oscillation of a clamped traditional [0/-45/45/90]s composite plate at A,
= 325, A  =  0 °  and AT/ATcr= 4.0.
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T h e  p l a t e ’s a e ro th e rm a l d e f le c tio n  a n d  L C O  a m p litu d e  a t  th e  m a x im u m  p o in t  v e rsu s  

dynamic p re s s u re  a t v a r io u s  te m p e ra tu re s  a re  sh o w n  in  F ig , 6 .1 4  (se e  F ig . 6 .9  fo r  A T  =  

50°F). T h e  le f t  s id e  c u rv e s  sh o w  th e  a e ro th e rm a l d e f le c tio n , b e fo re  X h a s  y e t  to  r e a c h  th e  

c r itic a l v a lu e  (Acr) fo r  flu tte r . T h e  r ig h t  s id e  c u rv e s  a re  th e  L C O  a m p li tu d e s  a t d if fe re n t  

A T. I t is s e e n  th a t, w ith  th e  in c re a se  of X , a e ro th e rm a l d e f le c tio n  d e c re a se s . T h e  d e c re a s e  

is  a c c re d ite d  to  s tif fe n e d  p la te  w ith  th e  in c re a se  o f  X . A t A T  > 60°F, th e  p la te  c a n n o t  b e  

blown to flat and begins periodic f lu tte r  a t  X  > 150, which is in b e tw e e n  the le f t side and 

the right side curves. It is noticed that at low temperature, the LCO amplitudes increase 

smoothly with the increase of X . This is where harmonic oscillation occurs. As 

temperature goes up, shown in dashed lines, the irregular motion begins to occur, 

indicating that the flutter has either periodic LCO, non-periodic or chaotic motions.

Figure 6.15 expresses the stability regions in the temperature - dynamic pressure 

(AT-A,) domain. There are essentially four regions: flat and stable, buckled but 

dynamically stable, LCO flutter (including harmonic, periodic and non-periodic motions), 

and chaos. The boundary between the LCO region and chaos region can be determined 

precisely using the bifurcation diagram and the Lyapunov exponent,14 however, this is 

not the interest of this research. The periodic, non-periodic motions lie in between 

harmonic LCO and chaos. With the increase of AT and X , the nearly simple harmonic 

LCO has the tendency to evolve into periodic LCO, the periodic region therefore resides 

in the lower right of LCO region, between LCO and Chaos. Figure 6.15 also shows the 

lines inside the LCO region on which the flutters have the same amplitudes, and the lines 

inside the buckling region on which the plate has the same maximum aerothermal 

deflections.
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Fig. 6.14 Aerothermal deflection and LCO amplitude versus dynamic pressure X  of a 
clamped traditional [G/-45/45/90]s composite plate at A = 0°.
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Fig, 6.15 Stability regions in temperature - dynamic pressure (AT-A) domain of the 
clamped traditional [0/-45/45/90]s composite plate at A = 0°.
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At flow angle A = 45°, the stability regions are plotted in temperature and dynamic 

pressure (AT-X.) domain as shown in Fig. 6.16. Compared with zero flow angle in Fig. 

6.15, both the flat and buckled regions are decreased due to a weaker stiffness in the 45° 

direction, e.g., X cr is 344 at A = 45° versus 532 at A = 0°, and buckled region is up 

bounded at A = 90 versus 170 at A = 0°.
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Fig. 6.16 Stability regions in temperature - dynamic pressure (AT-A) domain of the 
clamped traditional [0/-45/45/90]s composite plate at A = 45°.

6.2.2 SMAHC plates

With the embedding of SMA, the flutter response of the SMAHC plates can be 

improved drastically. It is found that using 6 AEMs are more than enough to obtain a

converged solution for SMAHC plates. Figure 6.17 shows the stability regions for an 

SMAHC plate with (vs = 10% and er = 3%) at A = 0°. Compared with the traditional
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composite plate shown in Fig. 6.15, the flat and stable region of the SMAHC plate is 

increased greatly. The critical thermal buckling temperature ATcr is increased to 245°F at 

a = 0. It is interesting to note that the boundary between the flat and stable region and 

LCO flutter region first goes up as temperature increases, then goes down. This is due to 

the counteraction between thermal expansion effect of the composite matrix and the 

recovery force of SMA. Thermal expansion has the tendency to soften the plate and 

reduce Xcr, while the SMA recovery force stiffens the plate and increases Xcr. At low 

temperature, the SMA recovery force overcomes thermal expansion, the plate is stiffened, 

and ?tcr is increased. With the increasing temperature, the SMA recovery force saturates 

and thermal expansion effect gradually becomes dominant, and the plate displays the 

reduced stiffness and reduced Xcr. It is seen that at AT = 280°F, the plate is buckled and 

the A,cr is lower than that at Tref. Therefore, SMA volume fraction vs and prestrain er can 

be further adjusted to suppress the buckling completely and increase the A,cr at high 

temperature.
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Fig. 6.17 Stability regions in temperature - dynamic pressure (AT-X) domain of the 
clamped SMAHC (vs = 10% and er = 3%) plate at A = 0°.

For the SMAHC plate with (vs = 10% and er = 5%), which increases er from 3% to 

5% only, as shown in Fig. 6.18, it is seen that the flat and stable region occupies most of 

the area. Compared with Fig. 6.17, the flat and stable region is further increased and the 

buckled region is completely suppressed and disappeared from the AT-X domain 

investigated. Moreover, Xcr at AT = 280°F is almost the same as that at Tref.

What is the effect of flow yaw angle on stability region? Figures 6.19 and 6.20 

display the stability regions at flow angle A = 45° for the SMAHC plates with (vs = 10% 

and £r — 3%) and (vs = 10% and £r= 5%), respectively. Compared with the corresponding 

plots for flow angle A = 0°, the flat and stable region is smaller.
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Fig. 6.18 Wmax/h versus dynamic pressure X  and temperature AT of a clamped SMAHC
(vs = 10% and £r = 5%) plate at A = 0°.
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Fig. 6.19 Wmax/h versus dynamic pressure X  and temperature AT of a clamped SMAHC
(vs = 10% and £,- = 3%) plate at A = 45°.
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Fig. 6.20 Wmax/h versus dynamic pressure X  and temperature AT of a clamped SMAHC
(vs = 10% and er = 5%) plate at A = 45°.
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CHAPTER VII RANDOM VIBRATION AT ELEVATED

TEMPERATURES

In this section, the response of traditional composite and SMAHC panels under 

combined acoustic pressure and thermal loads is investigated. The system dynamic 

equation of motion in modal coordinates is rewritten as

]{(/}+ 2fe>, ]|a7» fe+ |f  J+ If, J+ |f  „ j){?}= {p,} (7.1)

where

m b ] , [ ? ] ) = m T ( w b (7 .2 )

- k , J w - K J H M d i U - k J k . r !«„]<")[*] (7.3)
r~\

[ A ] = M Y L q , q , - K„ , r  - K .F K J" 'K *F *)W  (7.4)
r—l 5—1

{p, }= W r (k « }+ k OT } - k , }- A ,  I K  I"' k , }) (7.5)

and the rth normal mode (NM) {A} is determined from

a ]  w t  ] a ) = (K , ] ■- K „  I K ,  f  K *  I k  > (7.6)

The clamped rectangular [0/-45/45/90]s traditional composite plate and SMAHC 

plates with immovable in-plane boundary conditions u(0,y) = u(a,y) = v(x,0) = v(x,b) = 0 

are studied. A quarter of the plate is modeled with a 10x10 mesh (100 BPS elements) by
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taking advantage of geometrical symmetry for uniformly distributed acoustic and thermal 

loads. A proportional damping ratio of lyOr = ^s0)s is used with the fundamental modal 

damping coefficient equal to 0.02. The FE modal formulation based on NMs is used 

here because no aerodynamic pressure is involved.

The accuracy of the nonlinear stiffness matrices in modal coordinates has been 

verified by Azzouz et a!.93 in comparison of the equation coefficients of 3-mode modal 

equations using finite element modal method and classical PDE/Gierkin method. The 

validation of simulated random loads is by comparison of the linear displacements with 

linear analytical results96 for a simply supported 15x12x0.040 in. (38.1x30.5x0.1 cm) 

aluminum plate shown in Table 7.1.

The Fokker-Plank-Kolmogorov (FPK) method is an exact solution61 to the single 

DOF forced Duffing equation under stationary, Gaussian excitations. The present time 

domain numerical simulation results are shown in Table 7.2. Although FPK method is 

applied with white noise, while finite element simulation has to use band-limited white 

noise, they showed good agreement, especially between FPK and FE 4-mode results.

Table 7.1 Comparison of RMS Wraax/h of linear analysis between analytical and FE 
results for a simply-supported 15x12x0.040 in. isotropic plate

SPL Linear Analytical Linear FE Err.

DB 4 modes 4 modes %

90 0.2759 0.2760 0.0362

100 0.8725 0.8728 0.0362

110 2.7590 2.7600 0.0362

120 8.7248 8.7281 0.0362
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Table 7.2 Comparison of RMS W m sx/ b  of nonlinear analysis between FPK and FE results 
for a simply-supported 15x12x0.040 in. isotropic plate

SPL FPK6 r FE

dB 1 mode 1 mode 4 modes

90 0.249 0.174 0.266

100 0.592 0.556 0.578

110 1.187 1.101 1.432

120 2.200 1.914 2.572

7.1 Traditional Composite Plate

In order to select the cut-off frequency used in the random load generation 

procedure, the frequencies in the whole range of temperature should be investigated. 

Figure 7.1 shows the lowest 8 frequencies of symmetric normal modes versus 

temperature. The lowest eight natural frequencies at Tref for the traditional composite 

plate are also listed in Table 7.3. It is found that the highest natural frequency is 1245.6 

Hz, the 8th mode (5,3) at Tref for the whole temperature range of 0°F < AT < 280°F. A 

cut-off frequency of 2048 Hz is thus selected for this simulation, which is large enough to 

cover the frequency shifting due to nonlinear effects and SMA stiffening effect at high 

temperatures.
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Fig. 7.1 Frequencies of the lowest 8 symmetric modes versus temperature for the 
thermally pre-buckled or postbuckled traditional composite plate.

In order to eliminate the effect from initial transient response, the first 0.25 sec out of 

a total period of 2 sec time history is excluded out of the statistical process. To obtain 

more accurate statistical results, the ensemble average is taken from 5 samples for the 

present example.

Table 7.3 Natural frequencies (Hz) of a clamped traditional [0/-45/45/90]s composite
plate

Mode shape (1,1) (1,3) (3,1) (3,3) (1,5) (5,1) (3,5) (5,3)

Frequency 106.3 344.7 432.9 642.5 799.7 1028.6 1062.2 1245.6

The number of modal coordinates to be included in the analyses for converged 

deflection solutions is also studied. The Root Mean Square (RMS) maximum non- 

dimensional deflection (RMS Wmax/h) versus numbers of modes at SPL =130 dB and AT
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= 0°F using 4, 5, 6, 7 and 8 modes are shown in Table 7.4. The results show that 5-8 

modes are all to give converged deflection solutions, and six modes are used in the 

following calculations.

Table 7.4 Modal convergence of RMS Wmax/h for a clamped traditional [0/-45/45/90]s 
composite plate at SPL = 130 dB and AT = 0°F

Number of Modes Used 4 5 6 7 8

RMS Wmax/h 1.8985 1.9601 1.9754 1.9824 1.9869

Two other studies for accurate and converged response predictions are also 

performed. They are the finite element mesh sizes and the integration time steps. For a 

six-mode solution it was found that a quarter plate model with a 10x10 mesh is adequate. 

A time step of integration 1/16384 = 6.1036x1 O'5 sec was first selected, than the time step 

was cut into one-half. The time histories from the two time steps were found to be 

identical. Thus, the time step of 1/16384 sec is used. The maximum strain (£y) occurs at 

the middle point along the x-edge.

The time histories, probability density function (PDF) and power spectral density 

(PSD) of maximum deflection and strain are determined for at SPL = 90 -  130 dB, and 

AT = 0 -  280°F (T = 70 -  350°F). ATcr is 39.3°F for the clamped traditional composite 

plate.
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Fig. 7.2 Random response of a clamped traditional [0/-45/45/90L composite plate at SPL
= 90 dB and AT = 0°F.

For AT = 0°F, Figs. 7.2, 7.3 and 7.4 show the time history, PDF and PSD of the plate

response at SPL = 90, 110 and 130 dB, respectively. At the low 90 dB SPL, the plate 

behaves basically small deflection (RMS Wmax/h = 0.0598) random vibration dominated 

by the fundamental (1,1) mode as shown in the PSD plots of Fig. 7.2. All the six modes 

can be identified and they are close to frequencies obtained by eigen-solution shown in 

Table 7.1. The probability distributions for deflection and strain are both close to 

Gaussian. The time history at the high 130 dB SPL in Fig. 7.4 is clearly at large 

deflection (Wmax/h > 1.0) nonlinear random vibration. This is demonstrated by the peaks
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in PSD plot that they are broadening and shifting to the higher frequency, and by the 

presence of a non-zero mean in-piane strain shown in the strain plots. The large 

deviation from the Gaussian is shown by the strain PDF, which shows dearly a positive 

mean. The tensional in-plane stresses induced by large deflection always lead to a 

positive in-plain strain, which are in turn coupled with bending strain. At SPL = 110 dB 

in Fig. 7.3, RMS Wmax/h is around 1.0 with six modes just identifiable and shifted to the 

right slightly (five modes is identified for strain). No snap-through was found in the AT 

= 0°F results.
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Fig. 7.3 Random response of a damped traditional [0/-45/45/9G]s composite plate at SPL
= 110 dB and AT = 0°F.
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Fig. 7.4 Random response of a clamped traditional [0/-45/45/9Q]s composite plate at SPL
= 130 dB and AT = 0°F.

At combined acoustic and thermal loads, the panel responses indicate that there exist 

three distinct types of motion: (i) small deflection random vibration about one of the two 

buckled equilibrium positions (BEPs) as shown in Fig. 7.5, (ii) snap-through or oil- 

canning phenomenon between the two BEPs as shown in Fig. 7.6, and (iii) large 

amplitude nonlinear random vibration covering both BEPs shown in Fig. 7.7. At low 90 

dB SPL and AT = 160°F (AT/ATcr = 4.07), the time histories in Fig. 7.5 show clearly the 

linear random responses about one BEP: (Wmax/h)AT = -2.02. The deflection PSD plot 

shows the domination of the fundamental mode, and the strain PSD plot shows the large
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contribution from the fifth mode (1,5). Note the identified six modes are corresponding 

to panel vibration frequencies shown in Fig. 7.1 at AT = 160°F. At moderate 110 dB SPL 

and AT = 120°F (AT/ATcr= 3.05), the deflection time histories and PDF in Fig. 7.6 show 

a very clear snap-through motion and the deflection PDF shows highly non-Gaussian 

distribution. The six modes are also roughly identified. At high 130 dB SPL and AT = 

160°F (AT/ATcr = 4.07), shown in Fig. 7.7, the large deflection RMS Wmax/h is 2.18 

which covers both BEPs of (Wmax/h)AT = ±2.02. All the six modes are smeared and can’t 

be identified. Nonlinearity is further observed due to the broadening and shifting of the 

peaks in the PSD plots.
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Fig. 7.5 Random response of a clamped traditional [0/-45/45/90]s composite plate at SPL
= 90 dB and AT = 160°F.
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Fig. 7.6 Random response of a clamped traditional [0/-45/45/90]s composite plate at SPL
= 110 dB and AT = 120°F.
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Fig. 7.7 Random response of a clamped traditional [0/-45/45/90]s composite plate at SPL
= 130 dB and AT = 160°F.
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It is quite interesting to see what would happen at AT = 39.3°F (AT/ATcr = 1.0) 

because the fundamental frequency at this temperature is zero theoretically. Figure 7.8 

shows that the first mode is identified very close to zero under a small SPL = 90 dB 

acoustic load. The plate becomes very flexible at this temperature: RMS Wmax/h = 0.186, 

which is much large than RMS Wmax/h = 0.0598 at SPL = 90 dB and AT = 0°F.
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Fig. 7.8 Random response of a clamped traditional composite plate at SPL = 90 dB and
AT = 39.3°F.

What is the relation between RMS Wmax/h and the two loading parameters: AT and 

SPL? Figure 7.9 plots RMS Wmax/h versus AT and SPL, respectively. It is seen that 

when SPL is low, e.g. 90 dB, RMS Wmax/h increases very fast with the increase of AT. 

Since Wmax/h is actually the combination of static thermal deflection and dynamic
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random vibration, the thermal static deflection is dominant at low SPLs and the dynamic 

response is the small random vibration about one of the two BEP’s. At low SPLs it is 

also seen that RMS Wmax/h decreases at high temperatures, but increases at low 

temperatures. It is known that thermally buckled panel would have asymmetric 

amplitudes, which will be more severe at high temperatures. It Is the asymmetric 

amplitudes whose deflection is close to zero and thus is reason for the RMS to decrease at 

high temperatures. Figure 7.9 also shows that RMS Wmax/h at different temperatures are 

close to each other for SPL = 130 dB. Although the plate is much stiffened as 

temperature increases, when snap-through or large random vibration over two BEP’s 

occur, the compressive in-plane force induced by both the thermal effect is also very 

large. The compressive in-plane force tends to reduce the stiffness. The interaction of 

stiffening and softening leads to a temperature-irrelevant response at high SPLs.

7.2 SMAHC Plates

Two configurations of the SMAHC plates are studied here: (vs = 10% and er = 3%) 

and (vs = 10% and er = 5%). The natural frequencies of the SMAHC plates are different 

from the traditional [Q/-45/45/90]s composite plate and thus should be investigated again. 

Figures 7.10 and 7.11 show the frequencies of the lowest 8 symmetric natural modes 

versus temperature for the two plates, respectively. It is decided that the same cut-off 

frequency 2048 Hz for both plates is high enough to cover the shifted frequency due to 

nonlinear large deflection. Repeat the previous procedures, six-mode solution was found 

giving converged RMS deflection and thus used; a quarter plate model with a 10x10 

mesh and time step of 1/16384 sec is used as before.
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Fig. 7.9 Random response W max/h versus temperature and sound pressure level of a 
clamped traditional [0/-45/45/90]s composite plate.
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Fig. 7.10 Frequencies of the lowest 8 symmetric modes versus temperature for an 
SMAHC plate with Vg  ̂10% and £r= 3%.
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Fig. 7.11 Frequencies of the lowest 8 symmetric modes versus temperature for an 
SMAHC plate with vs = 10% and er= 5%.
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Figures 7.12 and 7.13 plot RMS Wmax/li versus AT and SPL for the SMAHC plates 

with (vs = 10% and er= 3%) and (vs= 10% and er= 5%), respectively. It is found that at 

low and medium SPLs, the random response is almost temperature-irrelevant with a flat 

curve in the plot of RMS Wmax/h versus AT, which is due to tuning of natural frequencies 

and delaying of critical buckling temperatures for the SMAHC plates.
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Fig. 7.12 Random response Wmax/h versus temperature and sound pressure level for an
SMAHC plate with vs = 10% and er = 3%.
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Fig. 7.13 Random response W max/h  versus temperature and sound pressure level for an 

SMAHC plate with vs= 10% and e r =  5%.

At low and medium SPLs, e.g. SPL =110 dB, as shown in Fig. 7.14, RMS W max/h  of 

SMAHC plates turns out to be very small as temperature goes up as compared with the 

traditional [0/-45/45/90]s composite plate. This is because the thermal budding is

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



126

suppressed partly (for vs = 10% and er= 3%) or completely (for v3 = 10% and er = 5%). 

Compared with the traditional composite plate at high SPL, e.g. SPL = 130dB, as shown 

in Fig, 7.15, RMS Wmax/h do not show that much differences. This is because the 

contribution of the acoustic load at high SPLs becomes dominated, and natural 

frequencies of the SMAHC or traditional composite plates are almost same, as shown in 

Figs. 7.1, 7.10 and 7.11.

The conclusion is therefore that, at low and medium SPLs, the SMAHC plates can 

reduce the RMS Wmax/h greatly due to suppressing of the thermal buckling and tuning of 

the natural frequencies. It is also found that SMAHC plates can only reduce RMS 

Wmax/h slightly at high SPLs, e.g. SPL = 130 dB, whereas the dominant factor is large 

random vibration. Increasing volume fraction or prestrain will not contribute much in 

controlling large random vibrations under combined acoustic and thermal loads.
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Fig. 7.14 Random response Wmax/h versus temperature for traditional [0/-45/45/90]s 
composite and SMAHC plates at SPL =110 dB.
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Fig. 7.15 Random response Wmax/h versus temperature for traditional [0/-45/45/90]s 
composite and SMAHC plates at SPL = 130 dB.
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CHAPTER VIII PANEL RESPONSE UNDER COMBINED 

THERMAL, AERODYNAMIC AND ACOUSTIC LOADS

The plate’s dynamic behavior is investigated with three combined aerodynamic, 

acoustic and thermal loads, and the results are presented and compared for the traditional 

[0/-45/45/90]s composite and the SMAHC plates. The system dynamic equation of 

motion in modal coordinates can be rewritten as

[S ,]{ ? } + [G j{ < j} + 2 [f ,ffl,]lM i |{ j} H - f lx |+ lx ,J + [ x , , ] ) { ? } = ^ }  (8.1)

where

mX[GUK})  = [^Lf  (8.2)

E L = [® J 'L A » ]W - f c J " ’ ~ K J r > <8.3)
r~l

L A i ®  J s L U f c J " ’ (s-4)
r=\ .v=l

L  } - [ * ,  r  ({/; (<)}+{ p , n } - f c } - f c j f c  v  & } )  (8.5)

and the matrix of AEMs [«Pj are obtained from

«AvJ«u A k l+ fc H v JfrJ^ Jk i (8.0
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The plate dynamic behaviors are investigated with four parameters in the study: AT, 

A, A and SPL: AT varying from 0 -  280°F (T = 70 -  350°F), A from 0 -  800, A from 0 -  

45° and SPL from 90 -  130 dB. The full plate is modeled with a 12x12 mesh, or 144 

BPS rectangular elements. The structural modal damping ^r©r = ^sct̂  remains constant 

for all the modes with the fundamental damping coefficient cq equal to 0.02. The 

aerodynamic damping coefficient Ca is set to 0.1.

8.1 Traditional Composite Plates 

The FE modal formulation based on AEMs is validated first as the follows. First, 

modal convergence is studied by utilizing concept of modal participations. The 

procedure starts with using more than enough number of modes with increasing 

frequencies for a typical case and checks their MP, and then retain those modes only with 

significant MP values. Table 8.1 gives MP values of 10 AEMs (A0 =  530 at A = 0°) for a 

typical case: AT = 80°F, A, = 400, A = 0° and SPL = 130 dB. It can be seen that the MP 

values of the first six AEMs are all greater than 1% and they would be enough for a 

converged solution. Secondly, RMS Wmax/h obtained using six AEMs of the lowest 

frequencies are compared with those using as many as 36 NMs for this typical case: AT = 

80°F, A = 400, A = 0°, as shown in Fig. 8.1. It is seen they agree very well. Therefore, 

six AEMs will yield accurate and converged response, and six AEMs will be used in all 

examples.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



130

Table 8.1 MF’ of 10 AEMs for a clam] 
= 400, A =

)ed [0/~45/45/90]s composite plate 
0° and SPL = 130 dB

at AT = 80°F, X

Modes # 1 2 3 4 5 6 7 8 9 10

MP (%) 48.0 40.4 4.69 1.47 1.46 2.14 0.81 0.25 0.27 0.49

AT = 80°F 
1 = 400

£  1.3

- a -  6 AEMs 
—©— 36 NMs0.9

90 100 120110 130
SPL

Fig. 8.1 Comparison of RMS W max/ h  for a clamped traditional [0/-45/45/90]s composite 
plate at AT = 80°F, X =  400 and A = 0° using 36 NMs and 6 AEMs, respectively.

Three types of plate behaviors can be observed for a traditional [0/-45/45/90]s 

composite plate: random vibration about the flat or buckled position, snap-through 

vibration, and large random vibration. The representative plot for each type are shown in 

Figs. 8.2 -  8.4 with time history, probability density function, and power spectrum 

density for the non-dimensional displacement Wmax/h-

The time history, the Gaussian-iike probability density, and first mode dominant 

PSD shown in Fig. 8.2 clearly indicate the small random vibration about the BEP (Wmax/h
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= 0.75) at AT = 60°F, X  = 100, A = 0° and SPL = 90 dB. The time history and PDF 

shown in Fig. 8.3 give a snap-through image at AT = 80°F, X  =  100, A = 0° and SPL = 

110 dB. In Fig. 8.4, the time history, the peak’s broadening and right-shifting 

demonstrate the large nonlinear random vibration at AT = 80°F, X  =  100, A = 0° and SPL 

= 130 dB.

. 0.9 r

■S 0 .8

f  0.7 
E I
^  0.6'-0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Frequency, Fk

0.4
LL 
2  0.2

A
AT

| [ j

0.6 0.65 0.7 0.75 0.8 0.85
Wrrsa^h Distribilion Fringe

0.9

Fig. 8.2 Response of a clamped traditional [0/-45/45/90]s composite plate at AT == 60°F, X
= 100, A = 0° and SPL = 90 dB.
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Fig. 8.3 Response of a clamped traditional [0/-45/45/90]s composite plate at AT = 80°F, X
= 100, A = 0° and SPL = 110 dB.
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Fig. 8.4 Response of a clamped traditional [0/-45/45/90]s composite plate at AT = 80°F, X
= 100, A = 0° and SPL = 130 dB.
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RMS Wmax/h versus dynamic pressure X  at A = 0° are shown in Fig. 8.5 with a set of 

plots at different temperatures. One can see that at AT = 0°F, the figure shows that RMS 

Wmax/h decreases first and then increases as X  goes up. This because at low dynamic 

pressure, the plate is stiffened due to the influence of airflow, and the piate is more like a 

pure random response. At high dynamic pressure, however, the flutter begins to occur 

and contributes to the total RMS Wmax/h. One also sees that at low SPLs range, e.g. SPL 

< 110 dB, RMS Wmax/h nearly coincides with each other at very large dynamic pressure, 

because the flutter response is the dominant factor and the total response is in nature 

highly nonlinear.

As temperature increases, it is seen that thermal effect plays an important role in the 

total response from Fig. 8.5. Generally speaking, RMS Wmax/h goes much larger at high 

temperatures. RMS Wmax/h at AT = 200°F is much higher than that at AT = 80°F because 

the thermal buckling effects are accounted for. Another trend is that the spaces between 

the curves at various SPLs are getting closer and closer at high temperatures, especially 

for the lower two figures of AT = 200°F and 280°F in Fig. 8.5. It is also seen that RMS 

Wmax/h drops sharply at some points such as AT = 200°F, X  = 600 and 700, and SPL = 

100 and 110 dB. Analyzing the time history shows that snap-through occurs, which 

lower the values of RMS Wmax/h.
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Fig. 8.5 RMS Wmax/h versus A, of a clamped [0/-45/45/90]s composite plate at A = 0C

It is seen that the response at A = 45° as shown in Fig. 8.6 is very similar to that at A 

= 0°, although it is found before that the plate has a lower critical dynamic pressure Acr at 

A = 45° than that at A = 0°.
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Fig. 8.6 RMS Wmax/h versus X  for a clamped [0/-45/45/90]s composite plate at A = 45°

8.2 SMAHC Plates

The SMAHC plates are investigated with three configurations: (vs = 10% and er = 

3%), (vs = 10% and £r = 5%) and (vs = 15% and &- = 3%). The first configuration is for 

low volume fraction and small prestrain, whereas the second increases the prestrain, and 

the third increases only the volume fraction. Six AEMs are still used ( k 0 = 510 at A = 

0°). The responses for the configurations (vs = 10% and £r = 3%) and (vs = 10% and £r = 

5%) at A = 0° are shown in Figs. 8.7 and 8.8, respectively. The third configuration (vs =
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15% and £,- = 5%) has similar results with the first two and thus it is not be plotted to 

avoid repetition.

AT = 0°F 80°F
2.5

0.5

600 800 200 400 800

e -  90dB 
Ar- 100dB 
+ - 110dB 

120dB 
9— 130dB

200°F 280°F
§  2.5 2.5

0.5< 0.5

200 400 600 800
1

400
X

800

Fig. 8.7 RMS Wmax/h versus X  for a clamped SMAHC plate ( \ ,s =  10% and er= 3%) at A
=  0°.

For the SMAHC plate with (vs = 10% and £r = 3%), as shown in Fig. 8.7, it is seen 

that RMS Wmax/b was reduced greatly for most of the temperature range, especially at 

low SPLs, as compared with the traditional composite plate shown in Fig. 8.5. This is 

because the plate is more stiffened, and thermal buckling is eliminated as temperature
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goes up until a quite high value. At AT = 200°F, the response is almost the same with 

that at AT = 0°F. This shows the ability of SMA to keep the stiffness within a given 

temperature range. At AT = 280°F, the plate is buckled and the response at low SPLs 

becomes larger. But it is seen RMS Wmax/h at SPL = 130 dB and X  =  0 is 2.0, which is 

still lower than 2.7 for the traditional composite plate.

AT = 0°F 80°F

fgf-------

200 400 600 800

200°F

200 400 600 800

od 3

“ 0 “ 90dB
100dB
110dB

™ 4 ) ~ 120dB
—B ~ 130dB

280°F

0 200 400 600 800
X

200 400 600 800
X

Fig. 8.8 RMS Wmax/h versus X  for a clamped SMAHC plate (vs= 10% and £ T =  5%) at A
=  0° .
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We can control the response of the SMAHC plates further by increasing either the 

prestrain or the volume fraction. For the second configuration (vs= 10% and er= 5%), as 

shown in Fig. 8.8, the response is decreased for the whole temperature range. The part of 

response that is flutter dominant was suppressed at some medium temperatures, e.g. AT = 

80°F and AT = 200°F. It is also found that the thermal buckling is removed for the 

temperature range considered, which certainly benefits the control of the response. The 

results obtained show that the SMAHC plates have the ability to keep the dynamic 

responses irrelevant of temperature for a wide temperature range.

The comparisons of SMAHC plates with the traditional composite plate at SPL = 

110 dB and 130 dB are shown in Figs. 8.9 and 8.10, respectively. It is seen that at low 

and medium SPLs, e.g. SPL = 110 dB in Fig. 8.9, the responses of the SMAHC plates are 

much lower than the traditional composite plate. In another words, SMA can reduce the 

response under three combined loads effectively and greatly. However, at high SPLs, 

e.g. SPL = 130 dB as shown in Fig. 8.10, the capability of SMA deteriorates although 

their responses are still lower than the traditional composite plate. This is because the 

recovery stress of SMA at high temperature saturates gradually and could not keep 

increasing. There are also some limitations for the volume fraction and prestrain of 

SMAHC, because of delamination and fatigue life considerations. The responses for the 

SMAHC plates at A = 45° are also Investigated and compared with the traditional 

composite plate at A = 45°, similar conclusions could be drawn as above mentioned.
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Fig. 8.9 Comparison of RMS Wmax/h between a traditional composite [0/-45/45/90]s plate 
and the clamped SMAHC plates at SPL =110 dB.
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Fig. 8.10 Comparison of RMS Wmax/h between a traditional composite [0/-45/45/90]s 
plate and the clamped SMAHC plates at SPL = 130 dB.
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CHAPTER IX CONCLUSIONS

This dissertation research studies the static and dynamic behavior of traditional 

composite plates and SMAHC plates subjected to the combined thermal, aerodynamic 

and random acoustic loadings. The investigations include five categories: thermal 

buckling, aerothermal buckling, nonlinear panel flutter at elevated temperatures, random 

vibration under thermal effect, and flutter-random response under combined thermal, 

aerodynamic and acoustic loads. The TD material properties of composite matrix and 

SMA fibers are considered and employed into the formulation. The static response is 

determined using Newton-Raphson iterative scheme. The dynamic behavior is 

investigated numerically by time domain method. The finite element modal formulations 

and solution procedures are developed for time domain method. Two types of modes,

i.e., normal modes and aeroelastic modes, are introduced to transform the system 

dynamic equations into modal coordinates. Numerical integration is employed to 

determine the displacement response time history, and Monte Carlo simulation method is 

used to determine the statistical parameters of random response.

Thermal buckling and postbuclding of a traditional composite plate and SMAHC 

plates are investigated first. The results show that the critical buckling temperature of the 

plate is greatly increased and thus thermal postbuckling deflection is greatly reduced for
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the given temperature range. The shifting and crossings of the natural frequencies with 

temperature are also presented for the SMAHC plates with various configurations of 

SMA volume fraction vs and prestrain er.

Aerothermal deflections can be determined using same Newton-Raphson iterative 

scheme for the case before the flutter happens. The aerothermal deflection shapes is 

asymmetric due to the disturbance of airflow for traditional composite plates or SMAHC 

plates. It is also found that convergence could not be achieved when the combinations of 

temperature and dynamic pressure are close to the dynamic region.

Nonlinear panel flutter responses at elevated temperatures of traditional composite 

plates and SMAHC plates are investigated. The stability regions of a clamped traditional 

composite plate are studied. Four types of plate behaviors are found: flat and statically 

stable, buckled but dynamically stable, LCO and chaos. The plate’s dynamic behaviors, 

besides generally defined LCO and chaotic motion, can be further cataloged in more 

detail as four types: nearly simple harmonic LCO, periodic LCO, non-periodic oscillation 

and chaotic oscillation. The finite element modal formulation that employs aeroelastic 

modes can reduce the number of modes greatly. The results also show that the LCO is 

very likely to evolve into chaos at combinations of moderate dynamic pressure and 

moderate or high temperatures. At higher dynamic pressure, with the increase of 

temperature, the motion is much likely to evolve from simple harmonic or periodic 

motion to non-periodic or chaotic motion. The SMAHC plates with various 

configurations of volume fractions and prestrains displayed their advantages: the increase 

of critical dynamic pressure, enlargement of static flat and stable region, and decrease of 

all the other regions, i.e. buckled, LCO and chaotic regions.
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Random responses at elevated temperatures of a traditional composite plate and the 

SMAHC plates are investigated. Time domain numerical simulation Is employed using 

finite element modal equations In normal modes. Three types of vibration can be 

identified in simulation results: linear small random vibration about one o f  two buckled 

equilibrium positions, snap-through, and large nonlinear random vibration over both 

buckled equilibrium positions. The RMS values of displacement responses are studied 

and compared for a traditional composite plate and SMAHC plates.

The responses under the combined aerodynamic, acoustic and thermal loads for a 

traditional composite plate and the SMAHC plates are also investigated. The aeroelastic 

modes are used to greatly reduce the number of modes used in the nonlinear modal 

equations. The RMS values of displacement responses of a traditional composite plate in 

temperature-dynamic pressure-SPL domain are studied. The results show that the airflow 

has the tendency to stiffen the plate when X  <  X CI, and thus RMS (Wmax/h) reduces with 

the increase of dynamic pressure. In postbuckling region, at certain dynamic pressure 

with the increase of temperature, the vibration motion is likely starting from vibration 

oscillation about the flat position then evolving to snap-through to vibration about one 

buckled position; while at certain temperature and with increasing dynamic pressure, the 

evolution of the vibration motion is reversed. At X  =  X a , panel flutter motion gradually 

becomes dominant with the increasing dynamic pressure. Compared with traditional 

composite plates, SMAHC plates are found to be able to reduce RMS values and prompt 

the evolution of vibration about buckled position and snap-through to vibration on flat 

position.
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Further additional studies need to be carried out continuously. First, the experiments 

are needed to verify the analytical results, although it would be a difficult task. Second, 

all the above studies was for flat plates only. The finite element procedures need to be 

extended to imperfect plates, shallow shells and other structures. Third, for supersonic 

environments, higb-temperature composite materials need to be studied and selected as 

the matrix for SMAHC. Last, the SMA fatigue analysis and service life estimation 

should be studied because of thermal cyclic load for the SMAHC plates.
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