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ABSTRACT

COMPUTATIONAL MODELING OF AIRBORNE NOISE 

DEMONSTRATED VIA BENCHMARKS, SUPERSONIC JET, AND 

RAILWAY BARRIER
Moumen Idres 

Old Dominion University 
Director. Dr. Oktay Baysal

In the last several years, there has been a growing demand for mobility to cope with 

the increasing population. All kinds of transportation have responded to this demand by 

expanding their networks and introducing new ideas. Rail transportation introduced the 

idea of high-speed trains and air transportation introduced the idea of high-speed civil 

transport (HSCT). In this expanding world, the noise legislation is felt to inhibit these 

plans. Accurate computational methods for noise prediction are in great demand.

In the current research, two computational methods are developed to predict noise 

propagation in air. The first method is based on the finite differencing technique on 

generalized curvilinear coordinates and it is used to solve linear and nonlinear Euler 

equations. The dispersion-relation-preserving scheme is adopted for spatial discretization. 

For temporal integration, either the dispersion-relation-preserving scheme or the Iow- 

dispersion-and-dissipation Runge-Kutta scheme is used. Both characteristic and 

asymptotic nonreflective boundary conditions are studied. Ghost points are employed to 

satisfy the wall boundary condition. A number of benchmark problems are solved to 

validate different components of the present method. These include initial pulse in free 

space, initial pulse reflected from a flat or curved wall, time-periodic train o f waves 

reflected from a flat wall, and oscillatory sink flow. The computed results are compared
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with the analytical solutions and good agreements are obtained. Using the method 

developed, the noise of Mach 2.1, perfectly expanded, two-dimensional supersonic jet is 

computed. The Reynolds-averaged Navier-Stokes equations are solved for the jet mean 

flow. The instability waves, which are used to excite the jet, are obtained from the 

solution of the compressible Rayleigh equation. Then, the linearized Euler equations are 

solved for jet noise. To improve computational efficiency, flow-adapted grid and a multi

block time integration technique are developed. The computations are compared with the 

experimental results for both the mean flow and the jet noise. Good agreement is 

obtained. The method proved to be fast and efficient.

The second computational method is based on the boundary element technique. The 

Helmholtz equation is solved for the sound field around a railway noise barrier. Linear 

elements are used to discretize the barrier surface. Frequency-dependent grids are 

employed for efficiency. The train noise is represented by a point source located above 

the nearest rail. The source parameters are estimated from a typical field measurement of 

train noise spectrum. Both elevated and ground-level train decks are considered. The 

performance of the noise barrier at low and high frequencies is investigated. Moreover, 

A-weighted sound pressure levels are calculated. The computed results are successfully 

compared with field measurements.
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V

NOMENCLATURE

English Symbols

C Speed of sound

Cp Specific heat constant

Dj Jet Diameter

e, E, e ' Energy; total, mean, and perturbation

f frequency

h : Hankel function of the nth kind and order m

h, H Enthalpy; static and stagnation

J Jacobian

Jm Bessel function of the first kind and order m

k Thermal Conductivity

Mj Jet Mach number

n Helical wave numer

P> P .P ' Pressure; total, mean, and perturbation

Pr, PrT Prandtl number; laminar {pi Cp/k), Turbulent {jiT Cp/k)

r Radial distance

Re Reynolds number

Rg Gas constant

SPL Sound pressure level; 10 log(p^g /  p ]ef)

St Strouhal number, fD /U j
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Vi

t time

T, Tfji) T '  Temperature; total, mean, and perturbation

u, U, u '  Axial velocity; total, mean, and perturbation

v, V ,v ' Radial velocity; total, mean, and perturbation

Vg Group velocity of acoustic waves

w, W ,w ' Azimuthal velocity; total, mean, and perturbation

x  Axial distance

Ym Bessel function of the second kind and order m

Greek Symbols

9 Azimuthal angle

a  Axial wave number

I Mixing length

8  Fractional time step

QJ Angular frequency; 2kf

*F Stream function

A P m ,p '  Density; total, mean, and perturbation

A P t, P a Viscosity; laminar, turbulent and artificial

£77 Curvilinear coordinates

A  Dirac delta function at point 7’
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vii

Vector Quantities

D Dissipation vector

F Flux vector in x-direction.

G Flux vector in r-direction

H Flux vector in 0-direction

Q Conservative flow variables vector; \p ' (pu ) ' (pv)' (pw)' {pe) 'J

*1 Primitive flow variables vector; \p u v w p T

S Source vector

x Position vector

Subscripts

00 Free stream conditions, or far field

/  Jet exit conditions, or grid point number

t Derivative with respect to time

r  Derivative with respect to r

x  Derivative with respect to x

y  Derivative with respect to y

Superscripts

* Dimensional quantity or fundamental solution
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1

CHAPTER I 

INTRODUCTION*

1.1 Computational Aeroacoustics

The year 1952 was a very special year for aerodynamic sound research, for it was this 

year when Sir James Lighthill published the first of his two-part paper (Lighthill 1952, 

1954) on aerodynamic sound. This paper has since been regarded as marking the birth of 

the discipline known as “Aeroacoustics.” Lighthill’s approach was to consider the exact 

Navier-Stokes equations and to recast them into an inhomogeneous wave equation for the 

fluctuations in density. The physical interpretation of Lighthill’s equation is expressed as 

an acoustic analogy, whereby the complete flow field is replaced by an equivalent 

distribution of acoustic sources in an otherwise uniform medium at rest having a density 

and speed of sound equal to that in the uniform external flow.

Twenty years later, computational aeroacoustics (CAA) has emerged as an essential 

element in the study of aerodynamic sound. It is concerned with the application of 

computational methods to those flow problems that involve acoustic wave generation or 

propagation. The nature, characteristics and objectives of aeroacoustic problems are quite 

different from the commonly encountered aerodynamics problems. There are 

computational issues that are unique to aeroacoustics. These issues are:

1. Most aerodynamic problems are time independent whereas aeroacoustic problems 

are, by definition, time dependent. The frequency scales in aeroacoustic problems are 

extremely sparse. This is true due to the fact that the audible frequency range is from

* This manuscript is based on the style o f Journal o f  Fluids Engineering.
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20Hz to 20kHz. To resolve these scales accurately, severe limitations on both mesh 

resolution and the time integration step have to be imposed.

2. The amplitude of the fluctuations associated with the radiated sound is usually quite 

small compared to that of the mean flow. This large disparity presents a severe 

challenge to direct numerical simulation. The small magnitude of the acoustic 

disturbances can, perhaps, be better appreciated by noting that it is usually smaller 

than the error incurred in the mean flow computations. There is a fear that the 

acoustic solutions may be hopelessly corrupted by computational noise. This issue 

raises the question of whether it is more appropriate to solve for the perturbations 

after the mean flow has first been determined or solve the full nonlinear equations to 

capture the sound field directly.

3. The quantities of interest in aeroacoustics problems are the directivity and spectrum 

of the radiated sound in the far field. Thus, the computed solution must be accurate 

throughout the entire computational domain. This is in sharp contrast to aerodynamics 

problems where the primary interest is in determining the loads and moments acting 

on an airfoil or aerodynamic body. In this class of problems, a solution, which is 

accurate only in the vicinity around the airfoil or body, would be sufficient.

4. The distance from the noise source to the boundary of the computational domain is 

usually quite long. To ensure that the computed solution is uniformly accurate over 

such long propagation distance, the numerical scheme must be almost free of 

numerical dispersion, dissipation and anisotropy. If a large number of mesh points per 

wavelength is used, this is not difficult to accomplish but the computational cost is 

high.
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5. A computational domain is finite in size. Because of this, radiation and outflow 

boundary conditions are required at its artificial boundaries. These boundary 

conditions allow the acoustic and flow disturbances to leave the domain with minimal 

reflection. It is well-known that the Euler equations support three types of small 

amplitude disturbances. These are the acoustic, the vorticity and entropy waves. 

Locally, the acoustic waves propagate at a velocity equal to the vector sum of the 

sound speed and the mean flow velocity. The vorticity and entropy waves, on the 

other hand, are convected downstream at the same speed and direction as the mean 

flow. Radiation boundary conditions are required along boundaries with inflow to 

allow the acoustic waves to propagate out without spurious reflections. Along outflow 

boundaries, a set of outflow boundary conditions is required to facilitate the exit of 

the acoustic, vorticity and entropy disturbances.

6. The imposition of wall boundary conditions is necessary whenever there are solid 

surfaces present in a flow or sound field. For high-order schemes, the order of the 

resulting finite difference equations would be higher than the original partial 

differential equations. The set of physical boundary conditions, appropriate for the 

original partial differential equations, is no longer sufficient. Thus, additional 

boundary conditions are needed. Also, the use of high-order scheme implies the 

generation of spurious numerical solutions near the wall boundaries.

1.2 Motivation and Objectives

In the last several years, the noise pollution due to automobiles on motorways, trains

on railways, and airplanes landing or taking-off has become an important problem in
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densely populated, urban areas. An increasing need for an environmentally friendly 

means of transport to cope with the growing demand for mobility has been established. 

The railways have responded to this need by building new lines and extending their 

existing networks and by introducing new concepts, such as high-speed passenger 

transports. Also, air transportation has introduced the idea of high-speed civilian 

transports (HSCT). In this expanding world, noise legislation is felt to inhibit these plans.

The primary goal o f the present work is to develop efficient computational methods 

to predict noise and evaluate noise suppression methods based on the current advances of 

CAA. The computational aspects mentioned in the previous section are considered 

thoroughly in these methods. Both finite-difference-based and boundary-element-based 

methods are developed. The notion is application orientation, i.e., use of the best method 

for a given application. Present study includes: benchmarking of computational 

aeroacoustics methods, supersonic jet noise prediction, and railway noise barrier 

evaluation.

1.3 Overview of the Current Work

Since the birth of computational aeroacoustics, benchmarking is used as a way to test 

and develop both schemes and boundary conditions. The idea is to use a number of model 

problems that mimic the real aeroacoustic problems in certain aspects. Usually, low 

computational effort is needed to solve such problems. In that way, different issues can 

be tested separately or collectively. For example, the nonreflective boundary conditions 

can be tested with or without the existence of nonuniformity in the mean flow. These 

simulations give clear cause-effect combinations, hi the current work, various benchmark
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problems are considered. These problems are used to investigate initial or time-periodic 

problems, uniform or nonuniform mean flow, wall boundary conditions, cartesian or 

curvilinear coordinates, and linear or nonlinear waves.

For supersonic jet noise, present study focuses on a perfectly expanded supersonic 

round je t issuing into a quiescent ambient environment. It has been observed 

experimentally that the acoustic radiation from such jets is dominated by Mach waves. 

Turbulent structures travelling at supersonic speeds within the jet are generally thought to 

be responsible for these waves. Particularly, large-scale structures are identified as the 

major source of noise in such jets. A way to model this mechanism mathematically is to 

use the instability waves to perturb the jet flow at nozzle exit. Many methods have been 

used to solve this problem using different equations. These include the instability wave 

analysis, linearized Euler, full Euler, large eddy simulation, and direct numerical 

simulation approaches. In the present work, the linearized Euler equation (LEE) approach 

is adopted. This approach is computationally less demanding. It is based on neglecting 

both viscosity and nonlinear effects. The viscous effects can be neglected since the large 

scale dynamics in free shear flows are essentially inviscid. In this approach, it is assumed 

that the mean flow is obtained using another method. The Reynolds averaged Navier- 

Stokes equations are used to obtain the turbulent mean flow. An iterative implicit 

procedure is employed to solve this set of equations. This flow/acoustic coupling 

approach has many advantages as it provides both freedom and relief for each step. The 

mean flow is obtained by implicit solver and relieved from the high accuracy requirement 

of the acoustic part. For the acoustic part, the explicit dispersion-relation-preserving 

(DRP) scheme is used for spatial discretization in curvilinear coordinates. For the same
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size of computational stencil, this scheme has higher spectral resolution compared with 

other classical schemes. Consequently, it is capable o f resolving high frequencies using a 

minimum number of grid points. For the temporal integration, the DRP time integration 

is used. The multi-block time integration technique is employed on a flow-adapted grid. 

This methodology achieves the best strategy both for grid demands of the mean flow and 

for the acoustic computations.

Since noise radiation and scattering mostly involve solutions over finite radiators or 

scatterers in an infinite domain, boundary element method (BEM) is the almost perfect 

methodology for solving such problems. This method has emerged as a powerful 

alternative to the finite element method (FEM), particularly in cases where better 

accuracy is required on the surface or where the domain extends to infinity. The most 

important feature of the boundary element method is that it only requires discretization of 

the surface rather than the volume. Hence, boundary element method mesh generation is 

greatly simplified compared with finite element method. This advantage is particularly 

important for designing, as the process usually involves a series of modifications which 

are more difficult to carry out using finite elements. In the present research, the boundary 

element method is used to determine the acoustic field around arbitrary-shaped finite 

structure in an infinite, two-dimensional, acoustic medium. The aim is to find acoustic 

radiation and scattering patterns for complex structures. This problem is of interest to 

workers in a number of areas including underwater acoustics, aeronautics, and civil 

engineers. BEM has two advantages over FDM for such a problem. First, there is no need 

for grid generation inside the solution domain since only the boundaries are discretized. 

Second, the wall boundary condition is straightforward and even absorptive walls can be
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considered without difficulty (compared to the tedious effort required to achieve grid 

orthogonality at the wall, which is needed for wall boundary condition in the finite 

difference method). BEM is used to solve the Helmholtz equation for the acoustic field 

around railway noise barrier. Linear elements are used with at least six elements per 

wavelength. Frequency-dependent grids are used. The effect of the elevation of the train 

deck is investigated.

1.4 Outline of the Dissertation

In chapter 2, the current status of the research on computational aeroacoustics is 

reviewed. This includes both schemes and boundary conditions. Previous experimental 

and numerical investigations on supersonic jet noise are reviewed. Various numerical 

approaches are discussed. Finally, experimental, theoretical and numerical studies of 

noise barriers are reviewed.

The finite difference method is established in chapter 3. The generalized coordinates 

formulation is adopted. Assuming uniform mean flow, the conservative form of the 

linearized Euler equations is obtained. The full Euler equations are also considered with 

isentropic source terms. Nonreflecting and wall boundary conditions equations are 

presented. The finite difference method is validated through a series of benchmark 

problems. These include initial value problems and time periodic problems. A Gaussian 

curve is used to represent the acoustic source amplitude. The efficiency of nonreflecting 

boundary conditions is tested in the presence of mean flow. Straight and curved walls are 

introduced to test the wall boundary conditions in Cartesian and generalized coordinates.
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The numerical results are studied and compared with the analytical or theoretical 

solutions.

Chapter 4 is devoted to supersonic jets. The boundary layer approximation of the 

Reynolds averaged Navier-Stokes equations is introduced. The resulting equations are 

transformed to the stream function coordinates. An iterative implicit method is proposed 

to solve the mean flow equations. Jet stability analysis is based on the compressible 

Rayleigh equation. This equation is solved in an iterative manner using Runge-Kutta 

method. A flow-adapted grid technique is proposed. A multi-block time integration is 

also demonstrated. The conservative form of the linearized Euler equations is considered 

to compute noise propagation. Characteristic boundary conditions are used along the jet 

inlet. Outflow boundary condition is used at the downstream boundary, radiation 

boundary condition is used at far field boundary, and symmetry boundary condition is 

implemented at centerline. Mach 2.1 jet simulation is presented. The calculated mean 

flow is compared with the experimental/analytical results. Then, Rayleigh equation is 

solved for the axisymmetric and helical instability waves. These waves are used to excite 

the jet. The predicted sound field is compared with the experimental results.

The analysis of railway noise barrier is introduced in chapter 5. The boundary 

element method is formulated based on linear elements. The train noise spectrum is used 

to estimate the source strength and frequency content. Both zero elevation and elevated 

structures are considered. Surface discretization is based on the frequency of the source. 

Elements of varying length are used to avoid a steep change in element lengths at comers. 

Contours of the sound pressure levels and insertion loss are presented.
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Finally, chapter 6 concludes the present study with general remarks 

recommendations for future work.
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CHAPTER II 

LITERATURE SURVEY

2.1 Computational Aeroacoustics

Computational aeroacoustics are concerned with the application of the computational 

methods to compute sound generation and propagation. Since the early seventies, this 

field has been constantly growing. The special characteristics of the acoustic waves, 

being o f small amplitude, non-dispersive, and non-disspative, represent a tough 

challenge for any computational method. A special family of schemes and boundary 

conditions has been developed to tackle these problems. The resurgence of the noise 

problem due to the expansion in transportation networks has encouraged different 

researchers to contribute to this field. In this section a review o f the current status of the 

CAA is introduced. This includes both schemes and boundary conditions.

2.1.1 Schemes

2.1.1.1 Spatial Discretization

It has been recognized that numerical schemes that have minimal dispersion and 

dissipation errors are desirable, since the acoustic waves are non-dispersive and non- 

dissipative in their propagation. In this regard, it has appeared that high-order schemes 

would be more suitable for computational acoustics than lower-order schemes since the 

former are usually less dispersive and less dissipative. In recent years, a number of high- 

order schemes have been developed. These include the 2-4 MacCormack scheme by 

Gottleib and Turkel (1976), high-order essentially non-oscillatory (ENO) schemes by
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Atkins (1991), compact finite difference schemes by Lele (1992), and explicit dispersion- 

relation-preserving (DRP) scheme by Tam and Webb (1993).

The most commonly used approach to construct a highly accurate finite difference 

scheme is to use Taylor expansion on a large stencil and then increase the order of the 

truncation errors. However, recent studies expose a conflict between the order of 

accuracy of a high-order finite difference scheme and its resolution capability. Lele 

(1992) was one of the first investigators to improve the resolution capability of a high- 

order compact difference scheme at the cost of its order of accuracy. However, his wave 

number fit approach is somewhat empirical. Later, Tam and Webb (1993) modified finite 

difference schemes by an integrated error minimization method. Kim and Lee (1996) 

further extended this least-square-type technique to compact difference schemes, Li 

(1997) to upwind-biased difference schemes, Lockard et al. (1995) to ENO schemes, and 

Hixon (1997) to MacCormack schemes. As a result, these so-called optimized difference 

schemes have better spectral resolution property than high-order conventional difference 

schemes with the same stencil size.

The philosophy behind the DRP schemes is that the dispersion relations of the partial 

differential equations are reproduced in the discretized problem. Tam and Webb (1993) 

have developed a discretization method based on this idea. They used the Fourier 

transform to find the dispersion characteristics of the finite difference approximation. 

Then, the error defined as the difference between the numerical wave number and the 

exact wave number was minimized over a specified range of wavelengths. They applied 

this methodology to obtain the fourth-order DRP scheme, which has a 7-point stencil. A 

sequence of numerical simulations has been carried out to test the effectiveness of this
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scheme. This includes an initial acoustic pulse, vorticity pulse, or entropy pulse in 

uniform flow. The computed solutions agree very favorably with the exact solutions.

Baysal et al. (1994) investigated the use of a second-order scheme to solve wave 

propagation problems. They evaluated various methods to suppress cavity noise. In 1996, 

Kaushik and Baysal used DRP scheme to solve linearized, two-dimensional, Euler and 

Navier-Stokes equations for the acoustic wave propagation. They investigated the effects 

of the choice of the boundary conditions, effects of viscosity and low-storage time 

integration. Baysal and Kaushik (1996) solved the wave scattering problem using the 

DRP scheme. They considered the sound field generated by a propeller scattered off by 

the fuselage of an aircraft. To idealize the problem, the fuselage was assumed to be a 

circular cylinder and the noise generation by the propeller was represented by a line 

source. Vanel and Baysal (1997) used the DRP scheme to solve wave propagation 

problems. They investigated different methods to obtain the spectral characteristics of the 

time-domain data. They concluded that the spectral method had a significant effect on the 

frequency spectrum.

Compact finite difference schemes offer a means of obtaining high-order 

approximations to differential operators using narrow stencils. This is achieved by 

treating the sought derivatives as unknowns and solving a system of equations for them. 

Typically, the resulting matrices are tridiagonal or pentadiagonal and can be efficiently 

solved. A detailed exposition of compact schemes and derivation can be found in 

Vichenevetsy and Bowles (1982). Lele (1992) developed compact finite difference 

stencils for the first-, second-, and higher-order derivatives. He successfully applied his

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



13

schemes to solve the shock wave problem and the compressible mixing layer evolution 

problem.

The ENO method is able to capture shock waves and remain formally high order in 

smooth regions of the flow through a stencil-shifting process. Hence, a complete set of 

stencils, varying from fully-left-shifted to fully-right-shifted, should be available to 

represent the derivative. The algorithm that chooses the stencil is designed to select a 

preferred stencil whenever the solution is smooth. Lockard et al. (1995) developed high- 

bandwidth operators to be used with the ENO method. The spatial operator of a standard 

sixth-order scheme was replaced by a third-order high-bandwidth operator. They 

compared numerical and analytical solutions for the model problems of plane-wave 

propagation and sound generation by an oscillating sphere. They discovered that the 

high-bandwidth operator performs better than the standard operator with the same stencil 

size primarily when the propagation distance is long relative to the wave length.

Sankar et al. (1993) evaluated several schemes for use in CAA. The performance of 

the fourth-order MacCormack scheme was considered satisfactory because of its 

accuracy, speed, and simplicity. The scheme is an extension by Gottlieb and Turkel 

(1976) of the classical second-order accurate MacCormack (1969) scheme. It is second- 

order accurate in time, but fourth-order accurate in space. In this scheme, the operator is 

split into several one-dimensional operators and applied in a symmetric way to avoid 

biasing of the solution. Hixon et al. (1995a, 1995b, 1997) and Mankbadi et al. (1995, 

1998) have used this scheme to compute jet noise successfully.
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2.1.1.2 Temporal Integration

It turns out that the requirement o f minimum numerical damping to the physical 

acoustic wave solution sometimes imposes an even more stringent condition on the size 

of the time marching step than numerical stability. Since implicit time integration 

methods are usually used for the benefit o f large time steps, these methods are rarely used 

in computational aeroacoustics. Also, the computational cost per time step for implicit 

time integration is larger than that for explicit method.

Rather than using the classical explicit schemes, a family of optimized schemes has 

been developed to reduce the dispersion and dissipation errors of the propagating waves. 

These include the DRP time integration scheme developed by Tam and Webb (1993), and 

the low dissipation and dispersion Runge-Kutta (LDDRK) schemes developed by Hu et 

al. (1994).

Tam and Webb (1993) optimized the Adam-Bashforth type multi-step time 

integration scheme to develop a third-order time integration scheme. The optimization 

was carried out to preserve the numerical frequency of the original partial differential 

equation. The effective frequency of the numerical scheme is obtained by the Laplace 

transformation of the discretized equation. They conducted a series of numerical 

simulations of an initial pulse in uniform flow to demonstrate the effectiveness of this 

scheme.

Hu et al. (1994) have shown that when the classical Runge-Kutta schemes are used in 

wave propagation problems using high-order spatial finite difference, time steps much 

smaller than that allowed by the stability limit are necessary in the long time integrations. 

They chose the coefficients of the Runge-Kutta schemes so as to minimize the dissipation
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and dispersion errors of the propagating waves. Using this method, larger time steps are 

attainable without suffering dispersion or dissipation. Optimization of both single-step 

and two-step alternating schemes were considered. They demonstrated the capability of 

their scheme through a sequence of benchmark problems. The scheme proved to be 

effective and accurate.

2.1.2 Boundary Conditions

In a typical CAA problem, one often encounters two types of boundaries. Because a 

finite computational domain is used, there are external boundaries. On these boundaries, 

boundary conditions simulating the solution outside the computational domain are to be 

imposed. These are typically either the nonreflecting or the outflow boundary conditions. 

Inside the computational domain, there may be internal boundaries. On these boundaries, 

boundary conditions simulating the presence of an object or surface with specific acoustic 

characteristics are to be applied. The solid wall boundary condition belongs to this 

category.

The development of numerical boundary conditions for CAA has continued for many 

years. A recent review was given by Givoli (1991) for the wave equation, and by Tam 

(1997) and Lele (1997) for Euler and Navier-Stokes equations.

2.1.2.1 Nonreflecting Inflow and Outflow Boundary Conditions

It is well known that in a uniform mean flow the linearized Euler equations support 

three types of disturbances. They are the acoustic waves, the vorticity waves and the 

entropy waves. The acoustic waves propagate at sound speed relative to the mean flow.
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The vorticity as well as the entropy waves are convected downstream by the mean flow. 

At an inflow boundary, the only outgoing disturbances are acoustic waves. At an outflow 

boundary, in addition to the acoustic waves, both vorticity and entropy waves are 

convected out by the mean flow. Due to this distinctive difference, the inflow and 

outflow boundaries have different types of boundary conditions. There have been many 

proposed nonreflecting boundary conditions based on different ideas. These could be 

summarized as follows:

1. Characteristic Based Boundary Conditions

Thompson (1987, 1990) and Poinsat and Lele (1992) proposed to treat the problem as 

one-dimensional near the boundary of the computational domain. The coordinate in the 

direction normal to the boundary is taken as the spatial coordinate. For Euler equations in 

one dimension, a full set of characteristics can easily be found. They used these 

characteristics to form boundary conditions involving only outgoing waves. However, in 

two- or three-dimensional problems, there are no true characteristics. The characteristics 

boundary conditions work well for acoustic disturbances incident nearly normal on the 

boundary. They do not give good results at grazing angle of incidence or when there is a 

strong mean flow tangential to the boundary.

2. Boundary Conditions Derived from Asymptotic Solutions

Bayliss and Turkel (1982), Hagstrom and Hariharan (1988), and Tam and Webb 

(1993) derived radiation and outflow boundary conditions by means o f the asymptotic 

solutions o f the governing equations. Numerical experiments have shown that these
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boundary conditions are extremely effective, provided that the sources are sufficiently far 

from the boundary of the computational domain.

3. Absorbing Boundary Conditions

A different idea to deal with exterior boundary conditions is to use an absorbing 

layer. An absorbing layer usually consists of 10 to 20 mesh points in which damping 

terms are introduced to damp out the incident waves. The development of absorbing 

boundary conditions has been pursued by many investigators including Engquist and 

Majda (1977), Higdon (1986), and Kosloff and Kosloff (1986). In a more recent work, 

the idea of absorbing the incident wave was extended and refined by Colonius et al. 

(1993) into a sponge and exit zone with grid stretching and filtering. A somewhat 

different approach was suggested by Ta’asan and Nark (1995). They artificially modified 

the governing equations in a buffer zone so that the mean flow becomes supersonic in the 

outward direction. This idea was further extended by Hayder and Turkel (1996) to the 

full Euler equations in conservation form. Most recently Freund (1997) proposed a zonal 

approach combining the absorbing boundary idea and the technique of Ta’asan and Nark 

(1995).

4. Perfectly Matched Layer

In an absorbing layer, the addition of artificial damping terms to the governing 

equations for the purpose of damping out the incidence disturbances also can lead to 

substantial reflections at the interface. Berenger (1994), in his work on computational 

electromagnetics, found that it is possible to formulate an absorbing layer without
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reflection. Such a layer has come to be known as a perfectly matched layer (PML). Hu 

(1996a) was the first to apply PML to acoustic problems governed by the linearized Euler 

equations with uniform mean flow. He has since extended his work to nonuniform flow 

and for the fully nonlinear Euler equations (Hu 1996b). One advantage of the PML 

method is that if the mean flow is uniform, the boundary can be put very close to the 

acoustic sources. If the mean flow is nonuniform, the PML equations are unstable and 

damping terms are added to suppress spurious waves.

2.1.2.2 Wall Boundary Conditions

For high-order finite difference schemes, the order o f the finite difference equation is 

higher than the original partial differential equation. Spurious solutions, which have no 

relationship to the original partial differential equation, are supported by the difference 

equation. These spurious solutions are unavoidably excited at the wall. There are two 

major difficulties in developing wall boundary conditions for high-order finite difference 

schemes. First, high-order finite difference equations require additional boundary 

conditions, beyond the physical boundary conditions of the original problem, to define a 

unique solution. Second, in the discretized system, each flow variable at either an interior 

or boundary mesh point is governed by an algebraic equation (discretized form of the 

partial differential equation). The number of unknowns is exactly equal to the number of 

equations. Thus, there will be too many equations and not enough unknowns if it is 

insisted that the boundary conditions at the wall mesh points are satisfied also.

Tam and Dong (1994) have suggested a method that uses ghost point to construct a 

wall boundary condition. They proposed to use backward difference stencils as the wall is
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approached. This eliminates the need for extra boundary conditions. To provide enough 

unknowns to enforce the physical wall boundary conditions as well as to allow the 

discretized governing equations to be satisfied at mesh points on the wall, they suggested 

including ghost values at ghost points. Ghost points are mesh points immediately outside 

the computational domain. The number of the ghost values to be included is equal to the 

number of physical wall boundary conditions. The effectiveness of these numerical 

boundary conditions, in simulating the presence of a solid wall adjacent to an inviscid or 

viscous fluid, was tested by comparing the results of numerical simulations with the exact 

solutions. They considered the reflection of an acoustic source by a solid wall, oscillating 

viscous boundary layer adjacent to a solid wall and diffraction of acoustic waves around a 

thin, flat plate. Good agreement was reported for all the test cases.

Chung and Morris (1995) proposed an Impedance Mismatched Method (IMM) to 

enforce the wall boundary condition. In this method, solid bodies are replaced by a new 

fluid medium with a large characteristic impedance, p  C. When the characteristic 

impedance of the new fluid medium is infinite, it can be shown that the incident waves 

are completely reflected. The advantage of the IMM method is that the entire 

computational domain including the solid bodies can be regarded as a continuous fluid 

region making the programming very simple. However, unlike the ghost point method, 

the IMM can not be used for viscous problems.

2.2 Supersonic Jet Noise

Supersonic jet noise consists o f three main components: turbulent mixing noise, 

screech tones, and broadband shock associated noise, the latter two occurring in
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imperfectly expanded jets. Figure 2.1 shows the flow field structure for imperfectly 

expanded supersonic jet. Expansion fans and oblique shocks form the shock cell structure 

shown in this figure. At high speed, mixing noise is dominated by Mach wave emission 

which arise when turbulent eddies in the jet travel with a velocity which is supersonic 

relative to the surrounding medium. Screech is a discrete tone emitted by imperfectly 

expanded jets. It has a significant upstream propagation component and thus can cause 

damage to the engine nozzle structure. Screech is thought to be generated and sustained 

by a resonant feedback loop that comprises the following elements: (a) sound generated 

by passage of eddies through shock cells; (b) upstream propagation of the sound towards 

the nozzle; and (c) coupling of the sound with the shear-layer instability.

out«r h h  or m xing lover 
Inner Kgc of n u in g  lover

snock cell
Sonic line

transition 
— zone—

Figure 2.1 Imperfectly expanded supersonic jet.

2.2.1 Numerical Studies

The prediction of the sound, which is generated by jet flows, has been extensively 

researched since Lighthill (1952, 1954) first proposed the acoustic analogy for turbulent 

jets. In his acoustic analogy, the jet flow is replaced by a distribution of acoustic sources
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(stationary or convected) in an ambient fluid at rest. Lighthill’s equation is ‘exact’ (it is 

rearrangement of the Navier-Stokes and continuity equations) but it is a single equation 

in several dependent variables, and only yields predictions if the source terms are known 

a priori. Detailed experimental measurements of the source term and its retarded time 

would be very difficult and have never been performed. Thus, simplifying assumptions 

about the forms of the source terms have been used to predict scaling lows and the 

directivity of the acoustic field. The mathematical difficulty stems in part from the 

inability o f the acoustic analogy to extract the sound generation problem from the 

interaction of acoustic waves with turbulence and the mean flow. It is possible to 

overcome some of these difficulties by moving certain terms from Lighthill’s source term 

to the left-hand side of the equation, as was done by Lilley (1974). Since the acoustic far 

field depends on a global solution to the problem, this approach does not lead to a 

rigorous first-principles method for calculating the sound field as pointed out by 

Goldstein (1984). In that case, one must again regard the source term as independently 

known.

Other approaches to the prediction of jet noise have been developed based on 

utilizing different forms of the governing equations. This includes the instability wave 

analysis (Liu 1974, Morris and Tam 1979, Tam and Burton 1984a, 1984b, and Crighton 

and Huerre 1990), the linearized Euler equations (LEE) approach (Hixon et al. 1995a, 

1995b, 1996, and Mankbadi et al. 1995a, 1998), non-linear disturbance equation (NLDE) 

approach (Bangalore et al. 1996, and Morris et al. 1998), full Euler equations approach 

(Viswanathan and Sankar 1995), large eddy simulation (LES) approach (Mankbadi et al.
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1994, 1995, and Shih et al. 1998), and direct numerical simulation (DNS) approach (Lele 

1989, Scott 1991,1992, Mitchell et al. 1996, and Colonius et al. 1997).

Tam and Burton (1984a) used the method of matched asymptotic expansion to solve 

the linearized stability equations of a supersonic two-dimensional mixing layer. In the 

second part of their work (Tam and Burton 1984b), they applied this technique to predict 

the mixing noise of an axisymmetric jet. To test the validity of the theory, numerical 

results of the solution were compared with the experimental measurements of Trout 

(1978) and Trout & McLaughlin (1982). Two series of comparisons at Strouhal number 

0.2 and 0.4 for a Mach-number 2.1 cold supersonic jet were conducted. Good overall 

agreements between the calculated results and the experimental measurements were 

found.

Mankbadi et al. (1995a) used the linearized Euler equations approach to predict 

supersonic jet noise. The mean flow was obtained by analytical curve fitting of the 

experimental results of Troutt & McLaughlin (1982). The 2-4 MacCormack scheme is 

used to solve the linearized Euler equations. At the inlet, the jet was excited by the 

instability waves which were obtained from the solution of the Orr-Sommerfeld equation. 

A comparison of the numerical results with the experimental data of Mach-number 2.1 jet 

at Strouhal number of 0.2 showed good agreement. Parametric studies have been 

performed to investigate the effects of jet temperature by Hixon et al. (1995b). It was 

concluded that as the core temperature of the jet is increased, the angle of emission 

becomes steeper. The effect of random disturbances has been studied by Hixon et 

al.(1996). It was found that the random input disturbance results were closer to the 

experimental data than the instability-wave model.
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Moms et al. (1997) used the nonlinear disturbance equations in conservative form to 

predict jet noise. The mean flow was obtained by the solution of the Reynolds averaged 

Navier-Stokes (RANS) equations. The fourth-order DRP scheme was used for spatial 

discretization and the fourth-order classical Runge-Kutta scheme for temporal 

integration. A parallel programming technique was employed. Acoustic results were 

presented for a perfectly expanded supersonic axisymmetric jet (Troutt & McLaughlin 

1982 case) under harmonic and random inlet excitations. Although good agreement 

between the predictions and experimental data was reported, the effect of the nonlinear 

terms was not identified. Moreover, they dropped the mean flow source terms in the 

nonlinear disturbance equations. Morris et al. (1998) applied the same technique to 

circular and rectangular supersonic jet noise predictions. They conducted simulations of 

two circular jets at Mj= 1.66 and 2.1 and a rectangular jet at Af,=l.66 and with an aspect 

ratio of 2. The predictions were compared with the Kirchhoff method results and with 

experimental measurements. The simulations overpredicted the sound pressure levels by 

4 to 5 dB. The relative changes were well predicted. When the simulations were 

performed on coarser grids, the predicted noise was consistent with the measured noise. 

They argued that the specification of the inflow disturbances and their introduction into 

grids of different refinements could affect the noise field.

Viswanathan and Sankar (1995) used a fluid/acoustic coupling approach to predict 

noise radiated from axisymmetric supersonic jets. The mean flow was established with 

the solution of the Reynolds averaged Navier-Stokes equations in the first step. 

Subsequently, the flow was excited using instability waves and the acoustic field was 

captured through the solution of full Euler equation. They used an implicit scheme for the
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mean flow calculations and the 2-4 MacCormack scheme for the noise calculations. A 

finite volume technique was adopted. They considered a supersonic jet at Mach 2 and 

different temperatures. The effect of the jet temperature on the peak directivity was 

correctly demonstrated; i.e. as the jet temperature increases, the peaks are shifted up.

A large eddy simulation (LES) approach was used by Mankbadi et al. (1994) to 

predict the near field noise source for a supersonic jet. In this approach, the Navier- 

Stokes equations are filtered into large-scale components, which are calculated directly, 

and small-scale components, which are modeled. The Smagorinsky’s model was used to 

represent the effect of the subgrid-scale turbulence stresses. The 2-4 MacCormack sheme 

was used. The time-dependent near field was then used to calculate the far field noise 

using Lighthill’s theory. They considered a supersonic jet at Mach number 1.5 with 

harmonic or random excitation (St from 0 to 1) at the inlet. The difficulties that arise from 

the nonconvergence of the integrals, in the Lighthill’s formula, due to noncompactness of 

the source were discussed. In a subsequent work, Mankbadi et al. (1995) used LES 

technique to capture the near and far field noise directly. They considered a supersonic jet 

at Mach number 2.1 excited at Strouhal number 0.2. The predicted acoustic field was in 

qualitative agreement with the observation. They pointed out that the small-scale 

modeling needs crucial attention, not only for adequate spreading of the jet, but also for 

extension to acoustic predictions. Recently, Shih et al. (1998) replaced the Lighthill’s 

formula by Kirchhoffs method to capture the far field noise from the time-dependent 

data of the near field. The nonlinear sound source in the near field was identified using 

the LES approach. A full three-dimensional computation was carried out for Mach 2 

heated supersonic jet. Qualitative agreement with the experimental data was reported.
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Lele (1989) performed direct numerical simulation of the time-dependent Navier- 

Stokes equations to compute jet noise. He used the sixth-order accurate compact 

differencing schemes to investigate certain properties of unsteady shear layers and sound 

generation. In particular, the behavior of isolated vortex structures and interacting 

vortices have been examined. Later, Scott (1991, 1992) considered the time-dependent 

Navier-Stokes equations for jet noise calculations. He used a 2-2 MacCormack scheme. 

Particular attention has been directed toward specific unsteady flow features that are 

known to be among major contributors to noise production in supersonic jets. These 

include production and subsequent interaction of large-scale coherent structures, the 

presence of shocks and their interaction with the shear layer, and the turbulent behavior 

of jet flow. Both high subsonic and supersonic jets were considered. Comparison of the 

computed results with the experimental data have demonstrated that the numerical 

procedure gives a reasonable representation of the unsteady flow features which have 

been identified as noise source mechanism.

Colonius et al. (1997) used the direct numerical simulation of the Navier-Stokes 

equations to compute both the near field region and a portion of the acoustic far field of a 

plane mixing layer. The acoustic analogy due to Lilley (1974) was solved with acoustic 

sources determined from the near field data. They considered two streams of Mach 

numbers 0.5 and 0.25 at low Reynolds number. The predictions from the acoustic 

analogy were found to be in good agreement with the acoustic field from DNS. It was 

concluded that the acoustic sources have the form of modulated wave packets that is best 

represented by a  quadrupole terms. They pointed out that the presence of flow-acoustic
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interactions in the computed source terms causes the acoustic field predicted by the 

acoustic analogy to be very sensitive to small changes in the description of the source.

Recently, Owis (1999) used a coupled approach to compute the noise from subsonic 

and supersonic jets. The near field was obtained using the unsteady Navier-Stokes 

equations. The propagation of the acoustic waves in the far field was captured using the 

wave equation. The MacCormack scheme was adopted. It was shown that the perfectly 

matching layer method is the best type of non-reflecting boundary condition. He 

considered five cases at different Mach numbers and Reynolds numbers. The results were 

compared with other methods and showed a good agreement.

2.2.2 Experimental Studies

Lau et al. (1979) have conducted a survey of the jet flow field at Mach 0.28, 0.9, and 

1.37 under ambient temperature conditions. Radial and centerline distributions of the 

axial and radial, mean and fluctuating velocities were obtained. The distributions 

indicated a decrease in the spreading rate of the mixing layer with increasing Mach 

number and a corresponding lengthening of the potential core. The results further 

indicated that these two parameters vary with the square of the jet Mach number.

An experimental investigation of the flow and acoustic properties of a moderate 

Reynolds-number (Re=70000), Mach number 2.1, axisymmetric je t has been performed 

by Troutt and McLaughlin (1982). The results of the flow-field measurements 

demonstrated that the jet shear annulus was unstable over a broad frequency range. The 

initial growth rates and wavelengths of these instabilities, as measured by a hot wire, 

were found to be in reasonable agreement with linear stability theory predictions. This
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conclusion was previously established in a series of low-Reynolds-number supersonic jet 

experiments by McLaughlin et al. (1975, 1977). The potential core of the jet was found to 

be most responsive to excitation at frequencies near a Strouhal number of 0.3. The 

acoustic near field was characterized in terms of sound pressure levels and directivity for 

both natural and excited jets. It was determined that the large-scale flow disturbances 

radiate noise in a directional pattern centered about 30° from the jet axis. It was also 

determined that the large-scale components of the near field sound are made up 

predominately of axisymmetric and helical modes. The dominant noise generation 

mechanism was described to be a combination of Mach-wave generation and a process 

associated with the saturation and disintegration of large-scale instability.

Oertel (1979, 1982) carried out a series of experimental studies on the instability 

waves of high-speed jets. In his experiments, the jets formed by hot or cold gases issued 

through convergent-divergent nozzles mounted at the end of a shock tube. By using a 

novel optical technique, he was able to identify three families of waves in his jets. Each 

family o f waves had its distinct characteristics and propagation speed. Associated with 

the first set of waves was a strong acoustic near field. In the region immediately outside 

the jet, the waves appeared as nearly parallel lines trailing the flow of the jet. The second 

family of waves had a near acoustic field in which the wavefronts are almost normal to 

the jet boundary. The propagation speed of this set of waves was found to be less than 

that of the first set. The third family of waves, unlike the first two sets of waves, appeared 

to have no near field. The waves seemed to be confined primarily inside the jet. Within 

the jet the waves displayed a characteristic cross-hatched pattern.
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Panda et al. (1997) investigated the screech characteristics of unheated, supersonic, 

underexpanded jets issuing from a circular, a 5:1 aspect ratio rectangular, and a 3:1 aspect 

ratio elliptic nozzle over the nominal range, 1.1< My < 1.9. The shock spacing in the jet 

shear layer was measured using the light scattering properties from a narrow laser beam. 

The shock spacing was compared with the wavelength of the standing wave system that 

wraps around the jet. It was found that the two length scales (shock spacing and standing 

wavelength) are close for all the nozzle geometries and the jet operating conditions. For a 

given nozzle geometry, the shock spacing and standing wavelength increased when My 

was increased. It was concluded that the difference between the standing wavelength and 

the shock spacing would be dictating the efficiency of the feedback loop in generating 

sound.

Recently, Debiasi and Papamoschou (1999) studied the noise characteristics of 

perfectly and imperfectly expanded, low-density supersonic jets. Application of a 

subsonic coflow at conditions designed to prevent emission of Mach waves from the jet 

was also investigated. The fully expanded jet velocity ranged from 400 m/s to 1010 m/s 

and the fully expanded jet Mach number ranged from 1.25 to 1.75. The coflow was 

supplied at 200 m/s or 400 m/s, depending on the test case, and was designed for Mach 

wave elimination condition. Noise spectra were obtained at many radial and polar 

positions around the jet exit. They concluded that the peak noise emission in the far field 

is insensitive to nozzle exit pressure and depends solely on the values of the fully 

expanded velocity and Mach number, hi the near field, imperfect expansion created 

screech and broadband shock noise. Addition of the coflow reduced the near field screech 

peaks by 5-10 dB. The coflow suppressed Mach wave emission most effectively in jets
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with fully expanded velocity in the range of 600-700 m/s, providing reductions as much 

as 18 dB in the mid- and high-frequency spectral components of the far field.

2.3 Noise Barrier

Many investigations have been carried out for the purpose of predicting sound levels 

behind barriers. The numerous publications on diffraction and noise reduction by barriers 

can be roughly divided into three categories. The first deals with experiments measuring 

either scaled models or barriers under normal environmental conditions. The second 

comprises theoretical studies presenting analytical expressions or asymptotic expansions 

for the sound pressure. The third gives results of the numerical approximations of the 

complete initial-boundary value problem.

2.3.1 Experimental Studies

May and Osman (1980) have studied the relative acoustical performances established 

by scale model testing of barriers in typical highway situations. They considered barriers 

of different shapes; thin, wide, T-profile, cylindrical top, corrugated, inclined, Y-profile, 

and arrow-profile. The effect of sound absorptive material was also studied. The 

highway situations involved a single barrier with a receiver on the opposite side of the 

highway, and parallel barriers, one on each side of the highway. Higher noise reduction 

was found for wide-top barrier, especially those of T-profile. Absorptive side treatment 

was found to have a small effect.

More recently, Duhamel et al. (1998) measured the active noise control efficiency 

around noise barriers in an outdoor experiment around a real wall. The study was limited
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to stationary noise, either harmonic or pink noise, created by a loudspeaker and 

controlled with the help of loudspeakers as secondary sources. The purpose of their 

experiment was to find the space and frequency domains over which the control is 

efficient. They compared their results with values calculated by the boundary element 

method. They concluded that the controlled space domain can extend on distances as 

large as 40m on the axis perpendicular to the barrier. This domain looked like an angular 

sector with an opening angle function of the frequency. So the control can be more 

efficient on very large zones if we go far enough from the barrier.

Certainly, these measurements give the most objective results, but in many cases they 

are influenced by the environment (temperature, wind speed, and turbulence) at which the 

experiment is performed. Moreover, it has been discovered that the instrumentation and 

the measurement technique can also produce errors.

2.3.2 Theoretical Studies

In order to obtain more generality, e.g. different barrier geometries, several theories 

have been developed differing mainly in the theoretical approach to diffraction and in the 

model for ground impedance. Among the many existing works in this field are Keller’s 

geometrical theory (Keller 1962), Kirchhoff-Fresnel diffraction theory (Elmore and 

Heald 1969), Thomasson’s theory based on Babinet’s principle (Thomasson 1977), the 

edge-integral diffraction theory based on the Young-Rubinowicz formula (Embleton 

1980) and a modification of MacDonald’s diffraction theory (Isei 1980). From these 

theories, relatively simple analytical expressions are derived which approximate the 

diffracted field in the shadow region behind the barrier.
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Isei et al. (1980) have compared the results of these five theories with each other and 

with the field measurements. They found that these theories agree reasonably well with 

each other and with point source measurements. In particular, the calculated interference 

spectra of barrier attenuation exhibit the expected changes in shape and frequency as the 

obliquity of incidence and acoustical properties of the ground and barrier are changed.

The applicability of the approximating analytical expressions in an actual situation is 

not very obvious, and, all these analytical expressions lead only to approximate solutions 

with unknown accuracy. Moreover, since these formulae contain only a small number of 

parameters, more complicated situations can not be analyzed.

2.3.3 Numerical Studies

It is well known that the propagation of acoustic waves is governed by the scalar 

wave equation or, if harmonic excitations are considered, by the Helmholtz equation, 

where reflections, scattering and diffractions are correctly characterized by boundary 

conditions. Since noise radiation or scattering mostly involves solutions over finite 

radiators or scatterers in infinite domains of homogeneous media, boundary integral 

equations are the almost perfect methodology for solving such problems. Several review 

articles on the application of boundary element method to solve noise problems are 

available, e.g. Shaw (1988) and Shaw (1991). A more general theory for the integral 

equations was introduced by Farassat (1996). He used generalized functions to develop 

aerodynamics and aeroacoustics governing equations. One of the most useful aspects of 

this theory is that discontinuous functions can be handled as easily as continuous or 

differentiable functions.
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For time harmonic acoustic wave propagation problems, the first paper using 

numerical solutions based on a boundary integral equation, i.e. the Helmholtz equation, 

was that of Banaugh and Goldsmith (1963). Among the many existing papers in this 

field, only a few, concerned with acoustic radiation problems and related to this work, 

will be mentioned here.

Habault (1985) presented the solution of some diffraction problems, e.g. the 

diffraction of sound due to cylindrical and spherical sources by an inhomogeneous plane. 

Amini and Wilton (1986) investigated the efficient determination of acoustic fields 

around arbitrary-shaped, finite structures in an infinite three-dimensional acoustic 

medium. They discussed the different ways to overcome the non-existence and non

uniqueness problems associated with classical integral equation formulations of this 

problem. A class of numerical approximation schemes was developed. They applied their 

schemes to a number of test problems. The choice of the parameters of the method was 

critically considered, in particular, the use of higher-order approximations to the 

unknown boundary function. They concluded that increasing the order of the polynomial 

approximation is generally the most efficient method of obtaining more accurate results.

Hothersall et al. (1991) used the boundary element approach to obtain the insertion 

loss for T-, Y- and arrow-profile barriers. The effect of absorptive coating was 

considered. Results for the mean insertion loss over a range of receiver positions for a 

broadband source were presented. They concluded that the introduction of absorbing 

upper surfaces produces a significant increase in insertion loss. Also, the Y- and arrow- 

profiles perform less efficiently than the T-profile in most conditions.
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Antes (1991) investigated several two- and three-dimensional environmental noise 

problems using time domain and frequency domain boundary element methods. 

Particularly, he successfully predicted the noise from moving noise sources like that of 

single cars or flying airplanes. He modeled the noise of the vehicle engine and tires by 

uniform intensity line source. The numerical modeling used linear approximation 

functions and elements of equal length, but the discretization, i.e. the number and length 

of elements was made dependent on the wavelengths of the sound. Six elements per 

wavelength were used. A 2-D edge and wedge-shaped barriers were considered. It was 

shown that the insertion loss of the barrier is higher for higher frequencies. When the 

ground behind the barrier was assumed to be absorbent, the noise intensity near the 

ground was reduced.
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CHAPTER m  

BENCHMARK CASES

3.1 Introduction

Benchmark problems are “model problems” where methods can be tested and 

validated through rigorous comparisons with analytical or theoretical solutions. A 

number of these problems are considered (refer to figure 3.1). This includes an initial 

pulse in free space, an initial pulse reflected from a flat or a curved wall, a time-periodic 

train of waves reflected from a flat wall, and an oscillatory sink flow. In section 3.2, 

linear and nonlinear Euler equations are considered in generalized curvilinear 

coordinates. Boundary conditions are discussed in section 3.3. Discretized forms of the 

governing equations are developed in section 3.4. Sound source modeling is discussed in 

section 3.5. The results for linear and nonlinear cases are demonstrated in section 3.6 and 

section 3.7 respectively.

3.2 Governing Equations

The governing equations for the acoustic perturbations can be derived from the 

unsteady compressible Euler equations. Let p , and p '  denote the density, velocity

components, and pressure respectively. Let p ^  C„ denote the free stream density and 

speed of sound, respectively, and Lrtf  be a reference length dimension in the flow. The 

various flow variables are nondimensionalized as follows:

*  *  y * * \  ✓ * * \  •

P p   ̂ , x C* ) tP = — , P = - ^ >  (u ,v)=  — - , U , y ) = - , * t = -----------
A . p C y  C . Lnf Lrrf/C.
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Radiation B.C. Radiation B.C.

uea
§
1at

Sound Source

Acoustic pulse in free space

Sound Source

y.

Wall B.C.

Reflection of an acoustic pulse 
(or incident wave train) from flat wall

Sound Source

Wall B.C.
>  s  /  /  /  s'-7-/  /  s /  ;

Reflection o f an acoustic pulse
(or incident wave train) from flat wall with bump

Flow and Sound Source

Acoustic radiation from an oscillatory 
sink flow

Figure 3.1 Benchmark cases

The two-dimensional unsteady Euler equations can be written in generalized 

curvilinear coordinates (£  rf) as follows:

l r +A 5 7 +B| 1 = s  <3' [>dr d£ Btj

where
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<1 =  1

> fu P L O' fv p th P*7, O' y
u

•, A =
0

Au 0 fj.
Pt , B =

0 V 0 il.
p , S =<

 ̂2 ~ >
V 0 0 u 22.P 0 0 V 1r

p
.p. 0 7PL TPty U 0

v. m x TPVy V
/ .V

(3.2)

and the contravariant velocities (u,v) are defined as:

u = 4 xu +4yv> v = 7jxu + n yv (3.3)

The complete Euler equations can be perturbed about a steady mean flow, first by 

substituting

(3.4)

and then by subtracting the steady equations governing the mean flow. Here the prime 

denotes the acoustic perturbation quantities. Further, if the nonlinear terms are neglected 

and a uniform mean flow is assumed, the linearized, two-dimensional, conservative Euler 

equations in generalized coordinates are obtained as (where primes are dropped):

P Pm
u< > =3

U
« +  >

fu
>

V V /V

.p. P /
. p .

3q 3F 8G * 
dt drj

(3.5)

where

p u + U  p ’  v + V p y
1 u

►, F = y U u + £ xp I
’ G = ~

Vu +  T}t p o 1
S a = —

s2
/ V J U v + £ yp / Vv+rjyp J *3

.p. u + U  p v + V  p

(3.6)

v =  Tjzu+TjyVj U = % zU + £ yV, V=TjzU + n yV (3.7)
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3.3 Boundary Conditions

3.3.1 Radiation Boundary Condition

At boundaries where there are only outgoing acoustic waves, a set of radiation 

boundary conditions can be derived based on the asymptotic solution of the linearized 

Euler equations. In the present work, the radiation boundary condition due to Tam and 

Webb (1993) is used in generalized curvilinear coordinates as,

3.3.2 Outflow Boundary Condition

At the outflow region the outgoing disturbances, in general, consist of a combination 

of acoustic, entropy, and vorticity waves. The pressure disturbance is an acoustic 

fluctuation alone, while the density and velocity disturbances are due to the combined 

effect of the three types of waves at the boundary. For these last two variables, Euler 

equations are used. This yields the following set of boundary conditions (Tam and Webb

(3.8)

Vg is the group velocity of wave propagation, which is defined by,

(3.9)

where

R = ,]x 2 + y 2

1993):

(in ~ Tin ~ fin 1 Tin ~  tin  ~  Pin
(3.10)
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3.3.3 Characteristic Boundary Condition

As an alternative to the asymptotic radiation boundary condition and/or the outflow

boundary condition, the characteristic boundary conditions could be used. Assuming

locally one-dimensional flow, the Euler equations are written in the characteristic form,

^ r + p C ^ + r ;3 = 0 , and ^ - - C 2 ^ + n = 0  (3.14)
dt dt ' dt dt

where the characteristic waves r,‘3 andH are defined by,

r i , = ( i ' :F C K ^ -:FpCjjr), and (3.15)

For boundary in ^-direction (i.e. the normal to the boundary is in ^-direction), 4' -  4 

and u ‘ = u .  For boundary in ^-direction (i.e. the normal to the boundary is in rj- 

direction), 4 ‘ =7} and u‘ = v . The incoming characteristic waves (to computational 

domain) are set to zero, while outgoing characteristic waves are computed by a one-sided 

scheme that only includes points inside the computational domain. Then, the time 

derivatives of the flow variables can be obtained.
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3.3.4 Wall Boundary Condition

For inviscid flows, the boundary condition at a solid wall is that the velocity 

component normal to the wall is zero. For a high-order finite difference scheme, the order 

of the difference equations is higher than that of the Euler equations. Thus, the zero 

normal velocity boundary condition is insufficient to define a unique solution. Extra 

conditions must be imposed. These conditions can be satisfied if ghost values are 

introduced as extra unknowns. The number of ghost values is arbitrary but the minimum 

number must be equal to the number of boundary conditions. For an inviscid flow, the 

condition of no flux through the wall requires a minimum of one ghost value per 

boundary point on the wall. Physically, the wall exerts a pressure on the fluid to make the 

normal velocity vanish. This suggests that one may use a ghost value of "p’ (pressure) at 

the ghost point immediately below the wall to simulate the pressure of the wall.

For orthogonal generalized curvilinear coordinates, assuming that the wall lies across 

^constant curve, the no-flux condition is v = 0 .  To impose this condition, the two 

momentum equations are combined to obtain the following equation for the normal 

pressure gradient:

+ ^ )] (316 )

At the wall, using one-point-backward discretization for the /7-derivative of the 

pressure, the ghost pressure is obtained as,

a-i(*?x+*7y) d# d#
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Inside the boundary region, the quantities J^-,and are all calculated using 

values of the variables lying inside the physical domain. For J^-, the stencils extend to the

ghost point below the wall.

3.4 Discretized Equations

Boundary point

Boundary Region

Interior point

Interior Region

Boundary Region

Ghost line ( p^ is calculated along this line to enforce wall B.C.)

Figure 3.2 Computational Domain.

The 7-point stencil, dispersion-relation-preserving (DRP) scheme of Tam and Webb 

(1993) is used for the spatial derivatives. The time integration is performed by optimized 

Runge-Kutta algorithm developed by Hu et al. (1996) or the DRP time integration of
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Tam and Webb (1993). The computational domain is shown in figure 3.2. Since 7-point 

stencil is used, the computational boundary layer extends over three mesh points.

In some cases, it is necessary to remove spurious numerical oscillations due to 

nonlinearities or mismatches with the boundary conditions or the initial conditions. These 

short waves can be filtered by an artificial selective damping proposed by Tam and Shen 

(1993). The damping terms are added to the right side of the equations in the form:

where the derivatives are discretized using selective damping coefficients dt to obtain.

where £,m are the indices of the mesh points and the superscript n is the time level.

3.4.1 Linearized Euler Equations

(3.18)

(3.19)

(3.20)

where

(3.21)

(p)Ln ~ f (Q<+*̂ n +<Ljn+* ) (3.22)

3.4.2 Nonlinear Euler
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3 q T  = _ a ;  f a q y
dt Jt,m a#

-B L .
3q
077 + (s L + ( d L (3.23)

v ' yf-m

where

f v  aq
i a # #/

=  — V /7 n nA * £ i UkHl+kjn '
r d q V  

Kdr>J'-
(3.24)

(3.25)
4 = -3

3.4.3 Fully Discretized Equations

For DRP time integration:

4=0
q £  =<>;..+ * 5 > .

For LDDRK time integration:

3 dq

v ^ a *
(3.26)

t  * .3 q w
q-  ; k  ° ^ 2’3«4 ( 3 2 7 )  

q " +l = q .4*il,m  M t jn

Numerical values of the coefficients bk and dt are given in Appendix A. The boundary 

conditions equations are discretized using the same method. But in this case, 

unsymmetric stencils that include only points inside the physical domain are used. These 

are also listed in Appendix A.

3.5 Sound Source

The acoustic perturbations are introduced by an initial Gaussian pulse or time- 

periodic source term. This is explained as follows:
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(1) Acoustic Pulse:

For initial value problems, the source vector S is nullified. An acoustic pulse is 

generated by an initial Gaussian pressure and density distributions,

p  =  p  =  e e a (U-x-)2+(y~y-)2) (3.28)

In 2
where e  is the pulse amplitude , a = —— , b is the half-width of the pulse, and (xs,ys) is

b~

source location.

(2) Periodic source:

The periodic source is introduced in the energy equation and the source vector has the 

following form:

S(;t, y,t)  =  fsin(tWf)e'ar((x-x,)2+(y"y' )J) |o 0 0 i f  (3.29)

where a) is the angular frequency of the source.

(3) Oscillatory sink flow:

To test the effectiveness of the computational method for non-uniform mean flow, 

consider Euler’s equations with source terms added in a way that the isentropic condition 

( p / p . )  =  ( p / p . ) r is satisfied. The source vector is:

where 

s = s + s ' ,

J  = - e e -aa*-I')lHy-y‘)2), s ' = e e -°«x-*S«y-ys^ Cos(<ur), a = ^ , a n d  c r = - ^ f .
b b~

(3.30)
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Table 3.1 summarizes the test cases. In what follows, benchmark cases are 

categorized according to the governing equations used to solve the problem.

3.6 Linear Cases

3.6.1 Pulse in Free Space

An acoustic pulse is generated by an initial pressure disturbance with a Gaussian 

spatial distribution centered at (0,0). The uniform H-grid with 141x71 points is shown in 

figure 3.3. Distances are normalized by the spatial step Ac. The pulse amplitude is 0.01 

and the Gaussian curve half-width is 6. Using LDDRK time integration scheme, the time 

step is 0.37. The computed pressure waveform along the x-axis at different times is 

plotted in figure 3.4. The exact solution is represented by solid circles. The exact and 

computed solutions are clearly almost identical. An important computational issue to be 

considered in initial value problems is the use of adequate grid points to represent the 

initial pulse. In this example, six grid points are used inside the half-width area of the 

Gaussian pulse, which is adequate number of grid points for the DRP scheme to capture 

the initial wave. Since the initial pulse is symmetric, using uniform mesh spacing at the 

source is important to ensure isotropy of the source. A distorted wave front is noticed 

when there is a large difference between grid spacing in x- and y-directions near the 

source. The time step can be increased as long as the numerical stability bounds are not 

reached; i.e, it does not affect the accuracy of the solution.
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Integration
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ns Pulse in free space LDDRK 0,0.01 0 .6 0,0 H 141x71 0, 0.37 -
Pulse reflected from flat 

wall
LDDRK 0, 0.01 0 .6 0,20 H 141x71 0, 0.37 -

Periodic source reflected 
from flat wall

DRP 0. 0.01 0 ,6 0,20 H 141x71 0,0.08

N
on

lin
ea

r
Eu

le
r

Eq
ua

tio
ns

Pulse in free space LDDRK 0. 1 0 ,6 0,0 H 141x71 0, 0.37 10 u«len.

Pulse reflected from bump 
on flat wall

LDDRK 0. 1 0,0.6 0 ,2 O 65x65 0,0.008 0.001

Oscillatory sink flow LDDRK 10.0,
0.001

6,3 0 ,0 H 101x101 0.2,0.08 0.1

Table 3.1 Benchmark cases.
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3.6.2 Pulse Reflected by a Flat Wall

Consider the reflection of a two-dimensional acoustic pulse by a plane wall located at 

y=0. The pulse is generated by a Gaussian curve centered at (0, 20) and of half-width 

equals 6. The pulse amplitude is 0.0L Figure 3.5 shows the calculated pressure contours 

associated with the acoustic pulse at 0, 60, 120, and 180 time steps. The corresponding 

contours of the exact solution, from Appendix B, are also plotted in this figure. To the 

accuracy given by the thickness of the contour lines, the two sets of contours are almost 

indistinguishable. At 60 time steps, the front part of the pulse reaches the wall. It is 

immediately reflected back. At 120 time steps, the entire pulse has effectively been 

reflected off the wall creating a double pulse pattern; one from the original source and the 

other from the image source below the wall. When characteristic boundary conditions 

are used, the solution exhibits minimum reflections up to 180 time steps (refer to figure 

3.6). After this instant the failure of these boundary conditions begins to appear 

gradually. This failure is due to the inability of the characteristic boundary condition to 

pass the waves, which have inclined incidence to the boundary, without reflection. This is 

clear in figure 3.6, where the waves are reflected from the comers. This supports the idea 

reported by many researchers of the failure of the characteristic boundary conditions if 

long time integration is pursued.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



47

x

Figure 3.3 H-grid (141x71 points) for initial value problems.

t=0.0
0.01 Numerical

Exact

0.005

(7.5
3

-0.005
x

Figure 3.4 Pressure waveforms of an acoustic pulse in free space along the line y=0; 

numerical solution of LEE compared with the exact solution.

(e=0.01, b=6, H-grid 141x71, At=0.37,pa=0)
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C urrent M ethod

(=45 (120 At) t=67 5 (180 At)

Figure 3.5 Pressure contours of an acoustic pulse reflected by a flat wall at y=0. 

(8=0.01, b=6, H-grid 141x71, At=0.37,^ia=0)

Asymptotic B.C. at 1=67.5 (180 At) Characteristic B.C. at 1=67.5 (180 At)

. Asymtotic B.C. at t=90 (240 At) Characteristic B.C. at t=90 (240 At)

Figure 3.6 Comparison of pressure contours computed using asymptotic boundary 

condition and characteristic boundary condition.

(Acoustic pulse reflected by a flat plate; 8=0.01, b=6, H-grid 141x71, At=0.37,|ia=0)
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3.6.3 Time Periodic Acoustic Wave Train Reflected by a Solid Wall

The acoustic wave train is assumed to be generated by a time periodic source in the 

energy equation. Physically, the source represents a heat source or sink. A uniform H- 

grid with 141x71 points is used. The center of the source is located at (0,20) and the 

angular frequency, to, is 0.2 7t. The time step is 0.08 using DRP time integration scheme. 

After the transient solution has propagated out of the computational domain, the pressure 

fluctuation is time periodic with angular frequency ct). The spatial pressure distribution 

has the form of an interference pattern created by the reflected wave train and the wave 

train generated directly by the source. Figure 3.7 shows the computed pressure contour 

patterns compared with the exact solution from Appendix B. Perfect matching is shown 

in the figure. For time periodic problems, three computational issues are to be considered. 

The first is the adequate representation of the amplitude of the source. For this example, 

six grid points are used inside the half-width region of the Gaussian amplitude. This 

number is enough to represent the Gaussian curve correctly. The second is the number of 

grid points per wavelength (PPW), since at least five points are needed for the DRP 

scheme to capture the wave correctly. For the current example, the period of the 

oscillation (2jt/co) is equal to 10. The corresponding acoustic wavelength is equal to 10 

mesh spacings. This exceeds the minimum required number of grid points. The third is 

the use of an adequate number of time steps per period of oscillation. This requirement is 

sometimes more stringent than the stability of the numerical scheme. For this example, 

125 time steps are used per period of oscillation. From numerical stability point of view, 

60 time steps per period of oscillation are enough. Usually, more than one hundred time 

steps per period o f oscillation are needed.
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NumericalExact

Figure 3.7 Pressure contour patterns adjacent to a solid wall generated by a time 

periodic acoustic source. (e=0.01, b=6, co=0.2 n, H-grid 141x71, At=0.08,(ia=0)
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Nonlinear
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Figure 3.8 Pressure waveforms of an acoustic pulse in free space along the line y=0;

linear and nonlinear solutions.
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3.7 Nonlinear Cases

3.7.1 Pulse in Free Space

For the purpose of comparing the linear solution with the nonlinear solution, a 

Gaussian pulse with unit amplitude and half-width of 6  is generated at the center of the 

domain (0,0). Both LEE and NLEE are solved to determine the wave propagation in free 

space. Figure 3.8 shows the waveform at different time instants. The waveform is highly 

distorted by the nonlinear steepening effect. Near the wave front, the nonlinear solution 

suffers from spurious oscillations. To alleviate this problem, the damping term is 

modified to (Tam and Shen, 1993) as follows:

the stencil.

Rsundi Is the stencil Reynolds number, which is taken to be 0.1.

3.7.2 Pulse Reflected by a Flat Wall with Bump

A unit pulse is generated by a Gaussian curve centered at (0,2) and of half-width 

equals 0.6. The bump is located at (0,0). Bump diameter is used to normalize length 

scales. The 65 by 65 O-grid is shown in figure 3.9. The grid is uniform in r-0 plane, but it 

is non-uniform in curvilinear coordinates £-77 plane. Along ^-direction, which is the 

clockwise peripheral direction, the spacing (rA0) is increasing as r  increases. Along 77- 

direction, which is the positive r-direction, the spacing is constant and equals to Ar. The

stencil

'stencil *= -3

(3.31)

where

ustencu = |Mma* ~ “ minh die difference between the maximum and minimum velocities in
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source isotropy is ensured by imposing uniform spacing at the source location. The grid 

resolution is determined by the conditions imax=l+Jtr/A£  and jmax=l+(rmax-0.5)/At]s, 

where A^=Ar]s=b/PPS; PPS is the number of grid points per half-width of the source 

(taken to be 6 herein). The Jacobian of the transformation is evaluated analytically as

y = M 2 > = [ >  ~ f )
[7 7 ,

Figure 3.10 shows the calculated pressure contours at 0, 100, 200, 300, 400, 500, 

600, and 700 time steps. The success of the curvilinear coordinates formulation is 

demonstrated by this example. A clean solution is obtained near the wall and at the outer 

boundaries.

3.7.3 Oscillatory Sink Flow

To assess the accuracy of the method for non-uniform mean flow cases, the simulation of 

oscillatory sink flow in two dimensions is performed for both the mean flow and 

acoustics. The sink flow is produced by a Gaussian curve of amplitude 10 and half-width 

6. The acoustic source is generated by Gaussian distribution of amplitude 0.001 and half

width 3. The angular frequency of the acoustic source is 0.2 7t. A uniform H-grid with 

101x101 points is used. The spatial step is used to normalize length scales. The LDDRK 

scheme is used for the time integration. The ratio between the acoustic perturbation and 

the mean flow amplitudes is 1:10000. This represents a tough challenge for any 

numerical method to compute both of them at the same time. Therefore, the simulations 

are carried out in two steps: the mean flow computation and the acoustic field 

computation.
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Figure 3.9 O-grid for flat wall with bump problem.

t=3.2 t=4.0

t=5.6

Figure 3.10 Pressure contours o f an acoustic pulse reflected by a flat wall with bump.

(e=l, b=0.6, At=0.008)
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3.7.3.1 Mean Flow Computation

For the first step, the acoustic source is turned off (e=0). The canceling-the-residual 

technique is used to accelerate the steady state convergence for the mean flow 

computation. Since the order of accuracy for the mean flow solution is different from 

that of the acoustic solution, further time marching calculation is a waste of effort once 

the residual reaches a level of the order 10'5. It is possible to add a term, which is equal in 

magnitude but opposite in sign to the residual, to the right side of each of the governing 

equations. These are terms of order 10'5 or less and would not affect the accuracy of the 

numerical solution. The consequence of adding these source terms is to cancel the 

residuals instantaneously to zero. For finite difference marching scheme, the residuals are 

greatly reduced in this way but they would not exactly equal zero. The procedure is 

repeated until machine accuracy is achieved.

Figure 3.11 shows the maximum residual Max{dql d t) . The arrows in this figure
•t.y

indicate when the canceling-the-residual technique is applied. It is clear that there is a 

dramatic decrease (of 4 or 5 orders of magnitude) in the residual immediately after each 

application of the method. The computed mean density and velocity are plotted along x- 

axis in figure 3.12 together with the exact results which are obtained by half-analytical 

and half-numerical method (refer to Appendix B). The numerical solution matches the 

exact solution almost perfectly.

3.7.3.2 Acoustic Field Computation

The time-dependent acoustic source is turned on after the steady state solution is 

computed. The time step is calculated to ensure accuracy of the time integration. The
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period of oscillation has 125 time steps. After a short transient, a periodic state is 

obtained. The spatial distributions of instantaneous density and velocity along x-axis are 

plotted in figure 3.13. Again, a perfect match with the exact solution is obtained.

One computational issue should be noted here. Although, LDDRK scheme allows 

larger time-steps to be used, the time accuracy consideration inhibits the use of such large 

time steps. In fact, for such problems the DRP time integration is more appropriate since 

it needs much less effort per time step (for DRP time integration dq/dt is calculated only 

once for each time step, while, n-stage LDDRK scheme needs (n-l)-times calculation of 

dq/dt for each time step). Unless a large period of oscillation is considered, which allows 

the use of the large time steps offered by the LDDRK scheme, the DRP time integration 

is recommended. In terms of storage, four levels of storage are required to store dq/dt and 

one level to store q for the DRP time integration, while one level of storage is required to 

store dq/dt and two levels to store q for the 5-stage LDDRK scheme.
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Figure 3.11 Time history of the maximum residual. Arrows indicate the application of 

the canceling-the-residual technique for accelerated convergence.
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Figure 3.12 Mean flow solution of sink, (a) Density along x-axis. (b) Velocity along x-

axis.
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Figure 3.13 Acoustic wave propagation along x-axis. (a) Acoustic density, (b) Acoustic

velocity.
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CHAPTER IV 

SUPERSONIC JET

4.1 Introduction

The analysis of supersonic jet is introduced in this chapter. Perfectly expanded 

supersonic jet is considered. Figure 4.1 is a schematic drawing of a perfectly expanded 

jet. Three streamwise regimes are identified. Those are the potential core, transitional, 

and fully developed regimes. The flow is uniform in the conical region near the centerline 

of the jet. The shear layer, or mixing layer, extends from the edges of the uniform core to 

the free stream region. In the developed region, the shear layer extends from the 

centerline to the free stream region. The sound waves are generated as a result of 

turbulent fluctuations of the mean flow.

Sound

Mixing layerUniform 
core flow

Nozzle

Core
region

Developed
region

Figure 4.1 Schematic drawing of perfectly expanded jet flow.
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In section 4.2, the parabolic Reynolds averaged Navier-stokes equations are solved 

for the mean flow. They are written in stream function coordinates. An iterative marching 

procedure is used to solve the system of equations obtained. The stability analysis is 

presented in section 4.3. Compressible Rayleigh equation is solved using Runge-Kutta 

scheme. For a given Strouhal number, St, the wave number, a, is obtained through an 

iterative procedure. Supersonic jet noise analysis is described in section 4.4. At jet inlet, 

the instability waves are used to perturb the mean flow. The linearized Euler equations 

are considered. Azimuthal mode decomposition is employed to treat the 9-derivatives. 

The resulting complex equations are solved. Flow-adapted grid and DRP time integration 

on multi-blocks are used. The computational method is used to simulate the noise 

generated by a Mach 2.1 supersonic cold jet (Troutt & Mclaughlin 1982). First, in section 

4.5, the mean flow solution is obtained. The results of laminar and turbulent calculations 

are presented and compared with the analytical solution. Second, the Rayleigh equation is 

solved for the eigen functions at the jet inlet for St=Q2. The results of these calculations 

are presented in section 4.6. Third, the linearized Euler equations are solved for the 

acoustic field. The results for the axisymmetric and helical modes are compared with the 

experimental data in section 4.7.

4.2 Mean Flow Analysis

4.2.1 Governing Equations

The compressible flow of a free je t is governed by the continuity, momentum, energy 

and state equations. The mean flow development of an axisymmetric free jet is governed 

by the Reynolds averaged boundary layer equations for compressible flow. The flow
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variables are decomposed into a time averaged or mean value part and a fluctuating or 

turbulent part as follows:

P = p m+ p \  u = U  + u', v = V + v', p = P + p', and T = Tm+ T'

With the jet static pressure matched to the ambient pressure and the density-velocity 

and density-enthalpy correlations neglected, the equations in axisymmetric coordinates 

reduce to the following:

Continuity:
3(rp .U )  | H r p .V )  Q

dx dr
(4.1)

Momentum: (4.2)

Energy:

p dH _  1 3 n m
dr r dr Pr dr

- p .  C pv 'T '+ U  uV)])
Pr dr

(4.3)

State: P = Pn RgTm (4.4)

where

V is a mass averaged quantity, defined as,

Pm

H  is the total specific enthalpy defined as H  =  CpTm + j U 2, 

-  p m u V  is the Reynolds stress,

V = — (p mV + p V ) (4.5)

-  p m v'T ' is the Reynolds heat flux
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The laminar viscosity is computed from Sutherland’s law,

^ = ^ (f )3' 2 7 T T  (4-6)i 0 i + *j 0

where 5o=l 10.3 , and fio is the viscosity at 7o=273° K ( fiQ = 17.1 x  10”6 Pa/s for air).

4.2.2 Turbulence Model

The mixing length model is used to model the Reynolds stress term -  p n u V  and

Reynolds heat flux term — p  mv'T' as follows:

/  /
- P m“ v =VT -^;

C, 37
-P .c , v~r = - * - HrPrr dr

where Prr is the turbulent Prandtl Number which is equal to 0.5 for free jets. 

The turbulent viscosity is calculated as:

dU

(4.7)

(4.8)

Pr ~  Pm^CxCil)
dr

(4.9)

where C/ is the incompressible mixing length constant, C2 is the compressible mixing 

length constant, and t  is the mixing length defined by,

A U£ =
d u
dr

(4.10)

where A U is the velocity difference across the shear layer. 

Using 4.7 and 4.8, the governing equations reduce to,

X r p j n  | 3(rp.V ) 0 
dx dr

(4.11)
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(4.15)

(4.16)

U]
= H —- U 2 

2
(4.17)

These equations are non-dimensionalized by the following reference values: spatial 

coordinates by R j , velocity by U ) , density by p j , pressure by p p ] , enthalpy by U ] ,

and viscosity by P jU jR y. The subscript 7 ’ is used to indicate jet exit conditions.

4.2.3 Equations in Stream Function Coordinates

The equations of motion are transformed to stream function coordinates using,

(4.18)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



63

These equations ensure that the continuity equation is satisfied. The derivatives of a

general function ‘f  in cylindrical coordinates (x, r) is transformed to stream function

coordinates (jc, *F) using,

= < L + < * !L jL  &  (4ri9)
3* dx dx dyr dr dr dyr 

Using 4.18 and 4.19, the governing equations become,

f u M  (4.20)
dyr dyr dx

dyr dyr dy/ dx

where

A = r 1p a p mU, B = r 1 ^ ~ —p m U, and C = r ! p mU l (p „  - £ « - )

4.2.4 Boundary Conditions

The boundary conditions at r=0 are derived based on the removal of the singularity 

from the governing equations 4.11-4.13 at the centerline. The continuity equation leads to

the condition V  = 0 .  The momentum equation has the singular term, j ( f i eJfd U fd r ) ,

which implies that dU I dr must vanish at the centerline. Similarly, from the energy 

equation, d H /d r  must vanish at the centerline. Since x  is independent of yralong the 

centerline, i.e. dx/dyt = 0 , the ^derivatives of U and H must vanish at the centerline,

dU
=  0 &

rdH_
= o (4.22)
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The outer boundary condition is simply that the U and H  values equal the free stream 

values; that is,

< P )~ m .= U . & (4.23)

where indicates free stream conditions.

4.2.5 Computational Method

Assuming uniform grid in x  and r  directions, the If'grid will not be uniform and A IP 

can be calculated as follows (see figure 4.2):

A r ,  - r ,  - r H  -  )
r/-i

= \ U r p . U ) , + ( . r p . U ) M W

(4.24)

• V,.,I
I
I
Vy,

%

v,,

&V,

Vi T

V,

Figure 4.2 The stream function grid for mean flow calculations.
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Using second order central discretization in ^direction and first order backward in x- 

direction, equations 4.20 and 4.21 become

U : ~ U ;
 - -------- [A. , ----- -— A. , —!■

Ayry +Ayry+I y+* A yrhl J~  Ayr
H u .  ■ - u . , ■UJ W 1-1. J

Ax
(4.25)

2 H j - H , . .  U M - U ,  Ui - U*  ,
 [fl .  '— B .^—L---^ + C .   - - C

[A yr+A yry+l '+5 Ayr+1 '*  Ayr y+r Ayry+1 Ayry

Ax

(4.26)

where A. = —(A, . +  A ...,) and similar forms for B . and C .
‘•J±i 2 ,,y 1 ‘•7 2 ‘'y 2

At r=0, the momentum equation is,

a ^ i  . m
[ 9yr  3 y r J u  { d x

The left side of this equation is differenced using half the grid spacing at the 

centerline (see figure 4.2):

Ayr2 dyr l+j  dyr
=0

Uu ~Uj-u  
Ax

From centerline boundary condition (equation 4.22), the second term in the left side is 

zero, thus

Ayr2 [AH  A yr2 1
Uu -U j-u  

Ax
(4.27)
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Similarly for the energy equation,

1 rn
Ayr2 L l+r Ayr2 + C>+4i  A ^ 2

H *
Ax

(4.28)

The outer boundary condition is represented by,

Uj,N+1 = UiM and H iN+l = H iN (4.29)

Equations 4.25-4.29 can be written in matrix form (for N+l  points in r-direction) as, 

( P ,« , - . + E ;< l i+ F i< l,.iJ ;= <l H J y =  >.2,3 N  (4.30)

where

q" = f e )

D =0‘•j

- W i -  
-A ~ B

1 j-i

7  =  1

J>  1
(4.32)

E  =
i.j

^  2AX 41-1 r \
A w l ^

2Ax
A i+4Ayr; ^  Ayr. 

1 +  A-A. , +A+:A. ,
1 > 7+4

A~C , +  A*C1 H  1 .

0

;+4 l +  A -5. t + A*-Z?. , 
i  j - 4 1 ;+4

7>1

(4.33)
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F =i.j

2 Ax 

2 Ax r

a ^ 22 ,+*

0

2Ax
Ayrl

~ * > a H  0
- a*c m  - a**

/  =  !

y > i

(4.34)

A'; =■
2Ax

A+; =-
2Ax

7 AiffjiAiffj +Ayrj+l) ' J A ^ +I(A ^ y + A(/y+1) 

A block tridiagonal system is formed as,

(4.35)

(  E 0 .... 0 \ r  >
q. q.

Di Ei F, 0 q 2 q 2
0 \ 0 ► = • * >

En-\ F*., q^-i q̂v-i
0V

... 0 En q* t qw — F.y q oo

(4.36)

i - t

This is a 2x2 block tridiagonal system for/= /  to N. It can be solved by any standard 

block tridiagonal routine (e.g. Thomas Algorithm). The marching technique is used to 

solve the governing parabolic equations. The solution procedure for each station ‘F is as 

follows

1. Use Ui-ij and H u j  as an initial guess for Ujj and H ij , respectively.

2. Solve for p m, p eff , and PrfJf profiles.

3. Calculate A ytUI using equation 4.24.

4. Solve the block tridiagonal system for new values of U and H. Also, new values of 

p nt, p eff , and PrfJf are calculated.

5. If the difference between the new solution and the previous solution is smaller than

some convergence criterion, then the axial step is completed. Otherwise, the iteration

process continues at step 3.
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42.6 Initial Profile

The jet exit velocity and enthalpy profiles are represented by

tanh(/?(r —r05)] (4.37)

H = [
H j+ H "  H j - H„

(4.38)
2 2

where

Hj is the jet exit enthalpy at the centerline,

Ho. are free stream values,

P,P* are parameters that determine the shape of the velocity and enthalpy profiles,

r05, r0‘5 are the radial locations where U=(I+U„)/2 and H=(Hj+H«,)/2 , respectively.

4.3 Stability Analysis

4.3.1 Governing Equations

Using parallel flow assumption V = (U(r),0,0) and constant mean pressure, the 

linearized Euler equations in cylindrical coordinates are:

<*£.+ U !>P+ 0  du , 1 d(rAnV) , P > . Q
dt dx dx r dr r d6

(4.39)

du du dU 
— + U — +V— 1 dp 

Pm dx
(4.40)

1 dp 

P m dr
(4.41)

1 dp 

rP n dO
(4.42)
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dp TTdp n,du 1 9(rv) 1 9vt/ .J L + V g + r p (  + - ± 1 +  ) = 0  (4.43)
at ax ax r ar r do

Substitute [fi u v w u v w p \  e ,(ac+n6~aM) and rearrange to obtain all

variables as function of p,

dp m
_  Pm  dr_

M ] i (m - a  U )
 “L v (4.44)

dU i a
 V H p
dr p

u = ---------- ^ 2—  (4.45)
i { ( o - a U )

dp_ 
dr

i p m ( Q )-a U )
v =   -------—--------  (4.46)

n p
w = ----------------------------------    (4.47)

r p n ( c o -a U  )

Using these relations in the energy equation, the compressible Rayleigh equation is 

obtained as,

d 2p  f 1 I dp 2a  d U \ d p  [  2 , n! ,1 _
— T  + \  -  + ------------------ \— + \ p mM ‘ ( o ) - a U y  - a - \  p =  0
dr1 1 r p n dr (D -a U  dr \ d r  \ Hn ’ r l J F

(4.48)

4.3.2 Boundary Conditions

Since the Rayleigh equation is singular at r=0, a new form is obtained at the 

centerline using Taylor series expansion for p  and dp/dr to remove the singularity as 

follows:
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The Rayleigh equation at r=0 reduces to

The conditions to remove the singularity at r -0  are:

(1) for n =0:

The first derivative must vanish; that is, {dp / dr)0 = 0, and the equation reduces to,

(2) for I n 1= I :

The centerline pressure must vanish; that is, p 0 = 0 , and the equation reduces to,

(3) for I rt 1= 2:

The second-order derivative disappears from the equation {{d2p / d r 2)0 * 0 ) and both 

the centerline pressure and the first derivative must vanish; that is, p Q = 0  and 

(dp/dr)0 = 0.

(4) for In l> 2:

(4.52)

(4.53)
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Both the centerline pressure and the first derivative must vanish; that is, p0 = 0  and 

(dp / dr)Q =  0 , and the equation reduces to,

( d 2c '
dr1

=  0
Jo

Thus, the boundary conditions are

For n =0

For I n 1= I :

For I n l> 2:

dp
= 0 & (p)

(P )r=0 =0 & (p),

=  0

=  0

(p L o =o ,
' d p '

\ d r  Jr=0
= o  & (p \->~ = 0

(4.54)

(4.55)-a

(4.55)-b

(4.55)-c

It is noted here that the second boundary condition at r=0 for I n l> 2 will replace the 

governing equation at the centerline, i.e. this equation is no longer needed at r=0.

4.3.3 Computational Method

Rayleigh equation is solved using fourth-order Runge-Kutta scheme as follows: 

Defining F =  \_p d p / dr J, the Rayleigh equation can be written as

dF_
dr a, a2

where

a\ =
~ [ p mM 2( Q ) - a U ) 2 - a 2]f (2~— ) r  = 0 & n ± 2  

- { p mM 2( ( Q - a U ) 2 r *  0

(4.56)

(4.57)
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«2  =

r P

1 dpm 
Pm dr 

1 dP„

2 a  dU 1 n \
------------ ] / ( 2 ------------) r  = 0  & n *  2
(D -aU  dr 2

2 a  dU
(4.58)

dr (Q—a U  dr ]

For n=0 or lnl=/, starting at r=0, either dp/dr or p  is known (refer to equation 4.55). 

The unknown variable at the centerline, i.e. p for n- 0 and dp/dr for Irzl=7, is used as 

normalization constant. For I n l> 2, starting at r=rmax, p is known (refer to equation 

4.55). The unknown variable at r=rmax, i.e. dp/dr, is used as normalization constant. 

Thus, the solution vector, F, is initialized as follows:

At r=0: F = j ^ j  for n=0 Or F = j  for lnl=i (4.59)

„  [0 .00001] „
At r=rmax: F = -j >• for I n l> 2 (4.60)

Assuming both co and a  are known, the solution proceeds along r-direction using 

Runge-Kutta integration formula:

F = F 0 + - ( k , + 2 k , + 2 k 3 + k 4)Ar (4.61)
6

where

F0 is the value at r,

F is the value at r+Ar,
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ki =

k2 =

k3 =

K  =

fdE'

< dr JrS0 
r dE^

dr

dr

( d $ \

r+jAr,F0+j<Vk,

V — yr+̂ -Ar ,F0+4a* j

V ^  r̂+Ar.Fo+AHtj

Since only 6) is given, the solution has an iterative nature where a  is guessed and 

refined aiming at the satisfaction of the other boundary conditions.

4.4 Acoustic Field Analysis

4.4.1 Governing Equations

For the acoustic field, the linearized Euler equations are considered in conservation 

form and in the cylindrical coordinates:

where

3Q 3F 1 d(rG) ( 1 3H S 
3r dx r dr r 36 r

Q=

f
p P'
u (puY
V (pvY
w (pwY
e S p e ) \

F=

u
( u —p U ) U + U  u + p '

(v - p V ) U + V u  
(w—p W ) U  +Wu  

U ( p ' + e ) H u - p U ) { E + P f p n )

(4.62)

(4.63)

(4.64)
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G=

H=

(iu - p U ) V+ Uv  
( v - p V ) V + V v + p '  

(w—p W) V+Wv  
y ( p + e ) + ( v - p V ) ( E + P / p m)

w
(u —p(J )W+U w 
( v - p V ) W + V w  

( i v - p W ) W + W w + p ' 
W ( p ' + e ) H w ~ p W ) ( E + P / p n )

(4.65)

(4.66)

and

S=

0

0

(w - p W ) W + W w + p '  
( w - p W )  V+ W v  

0

(4.67)

All the velocities are normalized by the centerline velocity at the jet exit plane Uj, 

time by R/Uj, density by the jet centerline value pj, and pressure by pj Uj2. For the sake of 

computational efficiency, the flow variables are decomposed in the azimuthal direction 

as,

r p(x ,r,r) \

u u(x,r,t)
r

V •=Re * v(x,r,t) >emB
w w(x,r,r)

f
. p . \ p(x,r,t) i

(4.68)

where p,u,v,w  and p are complex variables. This yields a set of equations that includes 

all three components o f the acoustic velocity field, but the partial derivatives are only in 

the axial and the radial directions:
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3Q 3F 1 afrG) in *  S
1 7 + a 7 + 7  V + 7 H  = 7

(4.69)

where Q, F, G, and S are similar to those in equation 4.62 except that all primes are now 

removed, i.e., the variables are complex. These equations are then transformed into the 

generalized curvilinear coordinates,

3Q 3F 3G S
■ +  — + ■ (4.70)

dt drj r

where Q is the vector of conserved complex variables, F and G are the contravariant 

fluxes, and S contains the azimuthal flux and the source terms:

Q
/

r w  * 

p P

1
n <

J

it
_  1 
~  I

Pm u + p U
V Pm v + p V

<J
w

« /

Pm w + p W
e .Pm e + p E

(4.71)

+ # ,G ) = y

G = y ( ^ F  + /?rG ) = y

u
(iu - p U ) U  + Uu + €xp  
( v - p V ) U  + V u + £ rp  

wU
(p + e)U + (u — p U ) ( E +  P / p m)

( u—p U ) V  + U v + f]xp  
( v - p V ) V  + V v  + rjrp 

ivV
( p + e ) V  + ( v - p V ) ( E  + P / p m)

(4.72)

(4.73)
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v + i n w

S =— (S—G -in H ) = —-< 
/  / ]

(u — p U ) V + U  (v+i nw)
(2 v — p V ) V  + i n V  w 

in p
(p + e ) V + (v—p V  + iniv)(E + P /  p m)

(4.74)

p = ( y - l )  e - ( u U  + v V ) + - p ( U 2 + V 2) (4.75)

P = ( y - l ) p  e - - ( U 2+ v 2) (4.76)

u=4xu+4rv, 
v=nxu+Tjrv,

V =  TlxU +  T)r V

(4.77)

4.4.2 Computational Method

By virtue of the transformation 4.68, equation 4.70 could be solved in the x-r plane 

only. Note that the mean flow considered herein is axisymmetric. The linearized Euler 

equations are solved using the fourth-order DRP scheme. The present central-difference 

scheme includes artificial dissipation to overcome the expected spurious oscillations. The 

discretized form of equation 4.70 is
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I  and m are the spatial indices and n indicates the time level. The coefficients a* and dk 

are given in Appendix A.

4.4.3 Flow Adapted Grid

A Flow adapted grid is generated using the transformations:

£ = x  and rj =  r + N  Arj ( l —U)  (4.80)

where N  is the number of grid points inside the mixing layer and U is the analytical

functions obtained by curve fitting of the mean flow axial velocity. The ‘tanh’ function is

used for curve fitting in the form,

U = a ,-a ita n h C ^ fr-O j))  (4.81)

where the coefficients a, are obtained using least-squares fitting technique after applying 

Gauss-Newton method to linearize the tanh equation. The resulting system of equations 

is,

[Z]r[Z]{AA}=[Z]r {U -U ) (4.82)

where

{AA} = [Aa1 Aa2 Aa3 Aa4f ,

U =  ̂ 7, U2 Ujmu\  is the actual velocity profile vector,

U = ^  U2 -  Ujma r  is the fitted velocity profile vector,
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dU * dU  ,
—  = l, - —  = —tanh(a3 ( r —a4)),
3at daz
dU _  — a2( r - a 4) dU _  a2a3

3a3 cosh 2(a3( r - a 4) ) ’ da4 cosh 2(a3( r - a 4))

and jmax is the number of points in the velocity profile (number of grid points in r- 

direction).

Starting with an initial guess of the coefficients a„ equation 4.82 is solved for the 

incremental change of these coefficients and the new values are obtained. The process is 

repeated until convergence. The procedure starts at the jet inlet, where the velocity profile 

is imposed as tanh function. Moving downstream, the initial guess of the tanh function 

coefficients is taken from the previous station. The procedure is fast and takes only 

minutes to generate the complete set of tanh functions that represent the axial mean flow 

velocity. The coefficients, a„ are then smoothed in x-direction and used to obtain the 

Jacobian of the transformation:

J  = d^JD_ = 
3(x,r) -  I (4-83)

ox dr

where

dU dat da, r x 3a, w - ,
—  = — ^ ta n h ( a 3( r - a 4) ) - a 2( - ^ - ( r - a 4) - a 3-^4-)/cosh (a3( r - a j ) ,

=  - a 2a3 /cosh2 (a3 (r -  a4) ) ,

3a,
—— are obtained using the fourth-order DRP scheme. 
dx
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4.4.4 Multiple Time Scales

For the present computations, which require rather long time integration, computational 

time savings are accomplished by extending the methodology for multiblock grids with 

multiple time scales. Shown in figure 4.3 is a representative multiblock grid, where four 

levels of time steps are used. A buffer zone is defined as the transition region between 

any two time-step blocks. As such, a modified DRP scheme (Webb, 1993) is 

implemented to update the buffer zones as follows:

+ 6At) = f ( t )  + A t f  b f  (4.84)
*=o ot

where are given in appendix A, 8=m/M; m is the fractional time step index 

(m=I,2,...,M), and M  is the ratio of the time steps across the buffer.

Boundary Zone

Radiation Boundary Condition

Buffer Zone

Symmetry B.C.

x/Rj

Figure 4.3 Multi-block time integration zones.
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The calculation cycle is determined by maximum time step, At. During each cycle, a 

block with a time step equalling At/n is updated n-times, so that, at the end of the cycle 

all blocks are at the same time level. The buffer zone is updated with the minimum of the 

time steps for the block sharing that zone.

4.4.5 Boundary Conditions

Four types of boundary conditions are used for the boundaries shown in figure 4.3: 

characteristic inflow, radiation, centerline, and outflow. All the boundary conditions are 

written in terms of the primitive perturbation variables, p, u, v, w, and p. Once the time 

derivatives of these variables are determined, the transformation equations (derived later) 

are used to obtain the conservative variables at the boundaries.

4.4.5.1 Characteristic Inflow Boundary Condition

In the fluid disturbance region of the upstream boundary, the input disturbance,

Q dimrbana ls introduced into the acoustic field using the following equation

A A A

boundary Q  computed Q  disturbance (4.85)

where Q computed is obtained using the one-dimensional characteristic inflow boundary

A

condition in the curvilinear coordinates. The time derivative of Q at the inflow boundary 

is decomposed into its components:

Q, = - f f - 6 ,+ ®  = (Q ,)I{ + (Q ,)I, +(Q ,)I, (4.86)

The ^-operator is decomposed into five locally one-dimensional characteristics. The 

eigenvalues which determine the wave propagation direction are given by,
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U - C
u

k=\ u 
u 

u+c

and the eigenvectors which represent the characteristic relations are,

(4.87)

L =

A (Pt)\f-PnC(u,)\4

w c2(p,)|#-(p,)|<,
A
u (w,)|̂
A. U)|f+A.C(ar)|r

(4.88)

The five characteristic relations are solved together to obtain the time derivatives of 

the variables at the inflow boundary,

'  1
-(

1

( i . t  =

U V

( « 4

II

i p '%.

(L,+-H L5+£,,))

r tf -s -A ) 

k
i t f s + A )

(4.89)

Then, the conserved variables (Q,)| are assembled as follows:

< Q . i =

P t

P m U t  +  P A  

p mvr + p y  
P m W t

(4.90)

P t

7 -1
H U u l + V v t ) - ^ ( [ / I + V 2) p e
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For a nonreflecting boundary condition, all the incoming waves are set to zero. For 

supersonic inflow (U>Q , all characteristics are incoming and thus all Li are set to zero. 

For subsonic flow (U<Q , the first wave is outgoing, thus, Li is computed using the 

internal scheme, where the time derivatives of the conservative variables are calculated 

first. Then, the time derivative of the primitive variables are obtained by,

p, p
( u - U Pl) / Pm

► n  < ( y - v p , ) / p m

Pm
,pt . ( r - $ - ( . u u t + V V ' ) + H u 2 + v 2)P']

The other four waves are incoming, so, Lz-Li=L4=Ls=0.

4.4.S.2 Radiation Boundary Condition

For the remainder of the upstream boundary and the far field boundary, the radiation 

boundary condition is used in the following form:

* L +Yl
dt R

( * # *  +  r £  (x t}x +rT}r ) ^ - + q  
o g  dT]

=  0 (4.92)

where

V = - [ / + - V  + J C 2- ( - V - h - U )
R R R R

(4.93)

and q =  [p  u v w p Y , R - V-t2 + r 2 and C is the mean flow speed of sound.

4.4.5.3 Outflow Boundary Condition

The outflow boundary treatment, used for the downstream boundary, is based on the 

asymptotic analysis of the linearized equations. They are obtained in cylindrical
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coordinates (.x,r,d), by first substituting the mean flow velocity vector for the 

axisymmetric jet V =(U,V,0) and the perturbation velocity vector v'= (u ',v ', w') into 

the governing equations. Then, using the mode decomposition, the following equations 

are obtained:

^ +(y | £ + v | £  '
dt d% dt] C dt d£ dt]

(4.94)

* L + U *!L + V * L  = - L t f  i £ - +rj *L) 
dt d4 dt] P m ^ x d£  ^  3/7

(4.95)

*L+u * L + v ^ = - L ( ^  i )
dt d t  dv  p „ ' d §  ^ d t ] }

(4.96)

dw - dw - dw V w in p + (j + v  —  + ----- =  Z-
dt d% dt] r r p m

(4.97)

*p +Yl  
dt r

(*& + ) ^ 7 + &7X + rt]ry ^ -  + p
d£ dt]

= 0 (4.98)

4.4.5.4 Centerline Boundary Condition

Due to the helical pattern of the disturbances, only half of the domain needs to be 

considered. Then, a centerline treatment should be invoked. As the central spatial 

derivative stencil uses three points on each side, computing 7 -derivatives along the 

centerline requires data values at three points below the centerline. For the axisymmetric 

mode calculations, the centerline boundary condition for j=  1,2,3 is,

p ( i - j )  = P ( i - j l  P( i~ j )  = 1
> (4.99)

« ( W )  =  «(f\ j )  =  v(i, j )  j

For the helical mode calculations, the centerline boundary condition for j= l,2,3  is,

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



P( i~ j )  = ~ p ( i ~ j )  P i i - j )  =  -pO\ j)  
u ( i - j )  =  -u(i, j ) v (i,- j)  = v(i, j )
w (i,-j) = w(i,j)

84

(4.100)

4.S Mean Flow Results

Troutt and Mclaughlin (T&M) used a jet of 0.01 m diameter. Jet exit conditions were 

Mach number, Mj =2.1, Reynolds number, /?e/=70000, and stagnation temperature, 

7(5=294° k. In Appendix C, Gaussian curves are used to fit the axial velocity profiles. 

Measured data and conservation of axial momentum are used to calculate the Gaussian 

curve parameters. These empirical results will be compared with the present 

computations.

The marching procedure described in section 4.2.5 is used to obtain the mean flow 

field. The initial velocity profile is a tanh curve with /J=10 and roj=0.95. The inlet 

enthalpy is uniform and equals the product Cp To. The computational domain extends 

axially to 70 radii and radially to 40 radii. A uniform grid of 3500x2000 points is used. 

This gives a mesh size of 0.02 Rj in both directions.

Figure 4.4 shows the empirical and computed Mach numbers at different axial 

locations (x/Rj =0, 10, 20, 30,40,60). The empirical solution is described in Appendix C. 

Also shown in this figure are the centerline velocity variations with the axial distance. 

The radial velocity at the same axial locations is plotted in figure 4.5. Both laminar and 

turbulent calculations are conducted. The turbulence model parameters are due to Dahl 

and Morris (1997).

For the current example, the turbulent viscosity has much stronger effect than the 

laminar viscosity. The laminar centerline velocity is approximately constant and can not
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represent the actual variation of the centerline velocity. Also, a slow spreading rate is 

observed for the laminar solution. The turbulent solution is in good agreement with the 

experimental results.

(d) GataiineVdcdty
Laninr

Tutulert

x/R,

Figure 4.4 Mach number and centerline velocity of T&M Mach 2.1 jet.
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(a) Empirical Solution

-8.02 •0.01 0.01 0.02
V/U,

(b) Laminar Solution

0.01.02 -0.01 0.02
V/U,

(c) Turbulent Solution

-0.01 0.020.01
V/U.

Figure 4.5 Radial velocity of T&M Mach 2.1 jet.

4.6 Stability Results

The purpose of the stability analysis is to obtain the eigenfunctions for a given 

Strouhal number. Since these functions are only needed at jet inlet, the inlet tanh profile 

is only considered. The grid extends to 20 radii with 300 points. It is clustered near the 

critical layer, r - l .  Figure 4.6 shows the variation of growth rate and phase speed with 

Strouhal number. The amplitude of the eigen functions for St=0.2 are also shown in this 

figure. The computations are performed for two azimuthal wave numbers, n=0 and n=I. 

The growth rate of the helical mode is larger than that of the axisymmetric mode. For a
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given initial disturbance, the helical instability waves will have larger amplitude at the 

same axial location.

(a) Growth Rale (-imag(a))

0.4

03

0.1

0.1 0.2 03 0.4Strouhal No. (fD/Up 0-5 0.6

(b) Phase Speed (Re/oVa))

0.9

n=0
0.7

0.6

0.1 0.2 0.3 0.4 0.5Strouhal No. (f D/Up 0.6

(c) Instability Waves n=0

a.S
<

r/R,

(cl) Instability Waves n=l

w
•a is

r/R,

Figure 4.6 Instability wave solution, (a) Growth rate (-im(a)). (b) Phase speed 

Re(cu/a). (c) Radial distribution of waves amplitude for axisymmetric mode, (d) Radial 

distribution of waves amplitude for helical mode.

The phase speed determines the velocity at which the instability waves are moving. A 

dominant portion of supersonic jet noise is thought to be caused by the propagation of 

turbulent eddies with a convective velocity, which is supersonic with respect to the
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surrounding air stream. It has been discovered that there is a remarkable similarity 

between the behavior of these eddies and the instability waves. Consequently, supersonic 

phase speed relative to free stream indicates a strong emission of noise. The normalized

free stream speed of sound is ■sjyRT^ IU y =0.65 . The phase speed of the axisymmetric

mode is above this value for most of the Strouhal number range. For the helical mode, the 

phase speed is highly subsonic (about 0.6). This suggests that the axisymmetric mode is 

more effective in noise generation. Large variations of the amplitude of the eigen 

functions are shown near the nozzle lip, r= l. The amplitude reduces gradually with the 

radial distance.

4.7 Acoustic Field Results

For the acoustic solution, the computational domain is 65x40 jet radii starting from 

x=5 axial location. The grid has 131x89 points. It has uniform distribution in x-direction 

with Ax-0.5. In r-direction, the grid is clustered inside the shear layer and is stretched 

away from it, until it becomes uniform with Ar=Ax. For St=0.2 (based on jet diameter), 

the nondimensional wavelength (A,) =10. Thus, the number of points per wavelength 

(PPW) in far field is 20 points, which is more than adequate for the DRP scheme. Also, 

the mean flow nature has to be considered to determine the mesh resolution. A fine mesh 

is required in high gradient regions to capture the mean flow variations correctly. 

Usually, this constraint is more restrictive than wave resolution requirement for jet noise 

computations in near field region. Figure 4.7 demonstrates the multi-block grid used for 

multiple scale time integration scheme. Approximately half of the domain is covered with 

uniform grid with the largest time integration step, At=0.047. With four levels of time
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steps, the computational time is dramatically reduced. The reduction is estimated to be as 

much as three-fourth of the original required time for single block grid.

Boundary Zone

20

Radiation Boundary Condition

ymmetry n.

Buffer Zone

Figure 4.7 Flow adapted multi-block grid for multiple time scales.

This grid is used for both axisymmetric (n=0) and helical mode (n=l) calculations. 

The eigen functions used to excite the jet are extracted from figure 4.6. The complex 

form of linearized Euler equation (equation 4.70) is solved with the appropriate mode 

number.
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Figure 4.8 Time history of the density signal at nine monitoring points for the

axisymmetric case.

To check the convergence of the solution, the time history of the density signal is 

tracked through nine monitoring points with (i, j) combinations: (10,10), (imax/2 , 10), 

(imax-10, 10), ( 10, jmax/2 ), (imax/2 , jmax/2 ), (imax-10, jmax/2 ), ( 10, jmax-10), (imax/2 , 

jmax-10), and (imax-10, jmax-10). These points represent a three-by-three test matrix to 

check the periodicity of the signal. For the axisymmetric case, the time history of these 

signals is shown in figure 4.8. At near field, the solution becomes periodic faster than at 

far field. This is true since the solution procedure is time-marching where the instability
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waves are introduced at the jet exit. The influence of these waves is felt earlier at near 

field point (10,10), (imax/2, 10), and (10, jmax/2). The figure shows the relative 

amplitude of the signal. The amplitude is small at the left and right portions of the 

domain. This suggests a directive character of the solution as will be discussed later.

02 (a)Density Signal at Near Field (i=l0,j=l0)

0.01
o■a
3
=  0.00 s <

- 0.01 -

-0 . 02 , 100Time (tU,/D)

(b) Spectrum of Near Field Data

-5 10'

I0'‘ 10"Stouhal Number (f D/U)

0.002
(c)Density Signal at Far Field (i=12I,j=79)

o.ooi

= 0.000

-0.001

-0 .002 , 50Time (tU/D)

,(d) Spectrum of Far Field Data

io‘

Srouhal Number (f D/U.)

Figure 4.9 Density history and its spectra at two fixed field points for the axisymmetric

case. (a)-(b) Near field, (c)-(d) Far field.

Figure 4.9 shows the time history of the density signal and the power spectral 

densities (PSD) at two points. The spectra are calculated by applying fast Fourier 

transforms to the time history data. Since the governing equations are linear and the
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excitation disturbance has single frequency, it is expected that only this frequency mode 

will appear in the spectra. If any other modes existed, they would have to be nonphysical 

and a result of numerical errors. Each PSD has a peak at the imposed frequency (the 

fundamental mode), followed by a sharp drop. All nonfundamental modes are at least two 

orders of magnitude lower than the imposed one. This indicated that the solution is 

practically free from spurious modes.

The acoustic solutions for the two mode calculations are presented in figures 4.10 and 

4.11. The solution exhibits the wavy nature of the acoustic fields with little or no 

dispersion. There are hardly any reflections from the boundaries. No boundary buffers or 

sponge layers are required for the current boundary treatment, which meant no wasted 

computational domain. Note the oscillatory nature of the sound source in the near field 

region. The radiated sound peaks at an angle 43.65 degrees. The SPL contours resemble 

that of a  quadrupole with preferred forward emission.

Presented in figure 4.12 are the comparisons of the computed sound-pressure-Ievels 

(SPL) with the experimental data of Trout and Mclaughlin (1982) and the asymptotic 

expansion results of Tam and Burton (1984b). Trout and Mclaughlin attempted to excite 

a 2.1 Mach jet with a single axisymmetric disturbance at St=0.2. However, other 

axisymmetric and three-dimensional modes were present, and the initial excitation level 

was not well defined. Because the governing equations are linear, the calculated results 

have an unknown multiplicative constant and the absolute pressure level can not be 

predicted. To compare with experimental results, the magnitude of this constant is tuned 

so that the calculated pressure level at a chosen field point, say at (34,20), matches the 

corresponding experimental value. Once this constant is determined, it is used to scale all
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the calculated data. The entire calculated data are moved about four jet diameters 

downstream as suggested by Tam and Burton (1984b). The results are in good qualitative 

agreement with the experiment. The lobed nature of the contours, the direction of the lobe 

and the spacing of the contours are correctly predicted. The direction of the peak sound 

radiation as defined by the lobe of the calculated contours and that of the measurements 

is practically the same. The percentage error in SPL peak location is presented in table 

4.1. The helical mode agrees favorably with the experimental data, while the 

axisymmetric mode has larger errors.

Mode Type SPL=150 SPL=148 SPL=146 SPL=144

Axisymmetric mode (n=0) 8% 6.4% 11% 16%

Helical mode (n=l) 2% 4.6% 1% 3.7%

Table 4.1 Percentage error in SPL peak location.
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(c) Density (d) Axial Velocity 
40i" — v i|A\"vvr

(e) Radial Velocity

x/Rj *

Figure 4.10 Simulation o f axisymmetric instability generated jet noise, (a) Instantaneous 

pressure, (b) SPL. (c) Instantaneous density, (d) Instantaneous axial velocity, (e) 

Instantaneous radial velocity. (Dashed lines indicate negative values.)
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(a) Pressure
1 '

(b) SPL

(c) Density (d) Axial Velocity

(e) Radial Velocity

2 2

i[f) Azimuthal Velocity

0.

Figure 4.11 Simulation o f helical instability generated jet noise, (a) Instantaneous 

pressure, (b) SPL. (c) Instantaneous density, (d) Instantaneous axial velocity, (e) 

Instantaneous radial velocity, (f) Instantaneous azimuthal velocity. 

(Dashed lines indicate negative values.)
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> Experimental (T&M 1982) Present Method (n=0) Tam & Burton Present Method (n=0)

30 -

f 20

10

. Experimental (T&M 1982) Present Method (n=l) Present Method (n=l) Present Method (n=0)

Figure 4.12 Comparison of sound-pressure-level contours, (a) Axisymmetric mode Vs. 

experimental data, (b) Axisymmetric mode Vs. Tam & Burton (1984b) results. (c) 

Helical mode Vs. experimental data, (d) Helical mode Vs. axisymmetric mode.
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CHAPTER V 

RAILWAY NOISE BARRIER

5.1 Introduction

The most commonly used passive mechanism for noise reduction in the neighborhood 

of highways, railways, airports, etc. is to build a wall or a barrier along the highway or 

around parts of the airport or the industrial building, respectively, in order to intercept the 

line-of-sight from the noise source to a receiver. Such barriers reduce the noise that is 

transmitted. However, some of the acoustic energy is diffracted over the barrier top and 

around its ends or scattered by other objects so that part of the noise is deflected to 

inhabited areas behind the barrier (refer to figure 5.1). The shadow zone is defined as the 

region where only diffracted sound exists. In the interference zone, incident waves are 

combined with the diffracted and/or reflected waves. Barriers can be constructed from 

natural materials, such as earth and wood, or from man-made materials, such as concrete, 

aluminum and fiber glass, and must shield against the predominant portion of the sound 

energy radiated from the source and directed toward the reception point. The 

effectiveness of such a barrier depends on its height, its shape, and whether it has sound 

absorbing coverage. Moreover, it is dependent on the type of the noise, i.e. its frequency 

content.

The finite difference method has several drawbacks for such problems. The grid 

generation procedure would have to cope with the complicated geometry of the barrier 

with steep comers, which is an extremely difficult task for structured grid codes. The grid 

orthogonality condition at the wall would be a difficult issue. Without this orthogonality
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condition, the wall boundary condition cannot be imposed. If frequency domain 

calculations are pursued, the grid size would have to be fine enough to capture the wave. 

Consequently, the computational time will increase significantly as the source frequency 

increases. Boundary element method eliminates those problems by simply requiring only 

surface discretization, i.e., no grid generation is required in the domain.

Diffracted + Incident Sound
(Interference Zone)

(Interference Zone)
Diffracted + Incident +Reflected Sound

Diffracted Sound
(Shadow Zone)

Sound Source

Ground

Figure 5.1 Acoustic zones around a barrier.

The noise sources of a railway system are discussed in section 5.2. The governing 

equation in frequency domain is introduced in section 5.3. Section 5.4 is devoted to the 

Boundary element method formulation. The sound source calculated from a typical noise 

spectrum of a train is presented in section 5.5. Barrier geometry and surface grids are 

demonstrated in section 5.6. The results o f the zero-elevation case are introduced in 

section 5.7. Elevated deck simulations are presented in section 5.8. The results are 

compared with the experiment in section 5.9.
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5.2 Railway Noise

For a rail system, the principal sources of noise are: (1) the interaction between 

wheels and rails, (2) the propulsion system of the railcars and locomotives, (3) auxiliary 

equipment, and (4) in the case of high-speed trains, aerodynamic noise. The noise sources 

are usually described in terms of A-weighted sound pressure levels (SPLa) at a standard 

distance from the track and a standard height above the ground.

S

of -to

-15

-20

-25 -

-30

Figure 5.2 Average relative octave-band spectra for railcars and rubber-tired transit cars 

in the open electrically powered passenger railcars.

The dominant source of noise for railcars over most of their speed range is the 

interaction between the wheels and rails. For railcars traveling on a tangent straight track, 

the A-weighted sound level (at 100 ft from the track centerline and 5 ft above the ground) 

due to wheel/rail interaction can be obtained from the following formula (Hanson et al. 

1994):
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SPLa = 75 + 301og(WV0) dBA  (5.1)

where V  is the railcar speed in mph and Vo is a reference speed of 37 mph. A typical 

frequency spectrum of the sound source is shown in figure 5.2. This figure demonstrates 

the wide frequency range included in the noise source (62.5 Hz to 8000 Hz), which 

complicate the task of any computational method.

5.3 Governing Equation

Domain

Body

Figure 5.3 Acoustic domain.

A mathematical model for the propagation of small-amplitude acoustic waves through 

a homogeneous acoustic medium at rest is the linear wave equation,

V2p ( x ,f ) - - L2 d- g f o r) =.y(x,r) for x e Q ,  r > 0  (5.2)
C of
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The scalar function p(x,t)  is the excess acoustic pressure at a point x=(.t,y) at time t, 

C is the speed of sound and s is the sound source. Assuming homogeneous initial 

conditions, i.e., a quiescent past for the acoustic domain, the determination of the sound 

distribution in the region (refer to figure 5.3), interior or exterior to the boundary 

surface T, means finding the unique solution of equation 5.1 which satisfy the boundary 

conditions,

where n is the outward normal to the boundary, q=Q for perfectly hard surface, and 

q*  0 for radiation by the surface.

(A) Surface B.C.: for x € r , f > 0  (5.3)

(B) Far field Sommerfeld Radiation B.C.: lim [r (— + —— )] = 0  for x e  T .  (5.4)
dr C dt

Assuming time dependence with the angular frequency ct),

p(x, y,t)  = Re(p(x, y)e ' ia ), s(x, y, t ) = Re(5(x, y)e_'“ ) (5.5)

Equation 5.2 becomes the Helmholtz equation,

V 2p + k zp = s (5.6)

where k - m i c  is the acoustic wave number. The boundary conditions are

Surface B.C.: (5.7)

Far field Sommerfeld Radiation B.C.: lim [r —ik p(x)] = 0 for x e  (5.8)
r-*~ dr
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5.4 Boundary Element Method

5.4.1 Formulation

The boundary integral equation required by the method can be deduced in a simple 

way based on the weighted residual method. An approximate solution p is assumed and, 

hence, the governing equation and the boundary conditions are not satisfied exactly, i.e.,

Residual: R = V 2p(x) + k 2p ( x ) - s ( x ) * 0 for x e  £2

R, = - ~ ^ - - q ( x )  9s 0  for x e f
dn

R-, = ~ i k p * 0  for X€ f -
dn

The above residuals are forced to be zero in an average sense by the weighted residual 

formula,

f (V2p + k 2p - s ) p ' d Q  = \  ( |& - ikp) p d T - f {%!— q) p 'dT  (5.9)
o ---------- “----------   r_ dn , • r

P.D.E. Residual SommerfietdR.B.C. Residual Surface B.C. Residual

where p '  is a fundamental solution of the original P.D.E., i.e,

V 2p + k 2p = -A t. (5.10)

where A, is the Dirac delta function. The fundamental solution used here is,

p = ^ H l0( k r ) = U j 0(kr) + iY0(kr)) (5.11)
4 4

dp* ik  dr i k , t x ,w dr dr ,
= - — H l —  = - — Ui(kr) + iYl (kr))(— nx +— n v) (5.12)

dn 4 dn 4 dx dy

where
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r  =1 x -  x ( I x is a field point and x, is the source point,

H\ is the n-order Hankel function of the first kind,

J n and Yn are the n-order Bessel functions of the first and second kind, respectively.

This solution represents the field generated by a concentrated unit source acting at point

I)

Integrating the Laplacian term twice yields,

J(V 2p)p'dQ. =  J V *(Vp p )dS2 -JV p  • Vp'dQ
a a a

= |  p* Vp dT" -J  p* Vp d f - jV p V p * d Q
r. r q

=  J P’ Vp d f . - J p *  Vp d f - J p  Vp'
n. r r.

+ J p V p * - d f + J p ( V 2p ‘ )dQ
r q

= JCVp p* - p  Vp*) d f„  -J(V p  p* - p  Vp*) d f + J p ( V 2p*)dn
n,

where

df_ =ndT„ and dT=-ndT (refer to figure 5.1)

Hence,

J(V2p)p-dn= J(|P p --p |P  )<r _ +J(|Pp--p |p  )dr+|p(v!p'wQ
dn dn °° I  dn dn

Substitute in equation 5.9, and rearrange terms

ancep saiisfiies SommerfieldB.C 
=0

j ( V 2p + k 2p m) p d Q =  j p  - i k p ' )  - p ^ - ) d T
q  I* uft p  O/l 0/1

+\sp*dQ
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Hence,

\ ( y 2p* + k 2p*)p dQ = - U ^ - p *  — p —  ) d T + [ s p d Q .  
a r dn °n a

Using equation 5.9,

J (V 2 p ’ + k 2p ’) pdCl = J (-A,.) pdQ. -  - c i p.
a n

where

c( =1 X' e  Q

- ( 1 - 4 )  x , e r

where 0 , is the corner angle at point “f  ’

Thus,

C‘^ ‘ = -N)n ^ ~ ^ d n

Assume the source function in the form

* = X  Site) # ( * -  X1 )
“ i ^ ^source strength source locution

Hence,

Ft — J i p ’Cfclx-x, I) d Q = - £ g t (k) p \ k lx, -x,. I)
i=i

Finally,

CiPi = |(? p * (A :lx -x ). l)-p<?’ (fclx-x,. l))dT+F4
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It should be noted that equation 5.17 applies for the case of a concentrated source at 

T  and, consequently, the values of p  and q are those corresponding to that particular 

position of source. For each other x, position one will obtain a new integral equation.

5.4.2 Computational Method

To obtain an accurate discrete matrix representation of the boundary integral equation 

(equation 5.17), there are essentially three approximation problems: (i) the approximation 

of the geometry of the boundary surface T, (ii) the representation of the unknown 

boundary function p , (iii) the treatment of the integrals that arise. Notice that it is 

assumed throughout that the fundamental solution is applied at a particular node ‘f ,  

although this is not explicitly indicated in the p'and q'  notation to avoid proliferation of 

indices.

5.4.2.1 Surface Approximation

If the boundary is divided into “A/” segments or elements as shown in figure 5.4, 

equation 5.15 can be discretized for a given point T  as follows

The point T  is one of the boundary nodes. r) is element j  of the boundary. In this 

equation, there are two basic integrals to be carried out over the elements, i.e. those of the 

following types,

(5.18)

and (5.19)
r, r.
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S+i

node #  i

i+l

Figure 5.4 Surface discretization.

Nodal value of p or qNodal value of p or q

Figure 5.5 Linear element definitions.
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Tj is assumed to be linear elements (see figure 5.5) as follows,

x=<t>lx l +<f>2x2, y=<ply l +$2y 2 (5.20)

where

(xi.yi) and {x^yi) are the end points or nodes of element j,

0 , = y ( l - £ )  and $2 = y (1 +  £) are the linear shape functions,

£ is the element natural coordinate [-1,1]

5.4.2.2 Solution Approximation

For linear elements, a linear variation of p  and q is assumed along the element,

5.4.2.3 Evaluation of Integrals

The integrals defined in equation 5.17 represent the effect of the node ‘f  where the 

fundamental solution is acting on any other node j. Hence, their resulting values are 

sometimes called influence coefficients. For linear elements, these integrals are evaluated 

as follows,

P=<t>\P\ +</>2p 2,and q = $lql +<l>2q2 (5.21)

where

(5.22)
f  A >

where

(5.23)
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Similarly,

where

/ , - U i  «;J ( *

s \  = J  0i P'dTj • s l  = j  fc .pdTj (5.24)

Equation 5.15 becomes,

^ P .+ X l A S  *g2J
i= i

' P i '
p .

\  r  *■ J  along eUmnt j
= x k  » ; / * ]

j /-> v *2 b
+ F, (5.25)

Won# elemnt j

Using continuity condition for both p and dp /dn,  this equation becomes,

ciP ,+ X /l.yP>=X ^ +Fi
j=i j =i

where

Or, in matrix form,

where

h u = h l + h l j - 1. S „  = s l + s l j - ,

[H](p} =[G]{q} + {F}

H a ~ ciSa +flu . Gij=Sij

where 3 ..is the Kronecker delta.

(5.26)

(5.27)

(5.28)

(5.29)

In order to evaluate htj, ht j , g tj, andgi jt  a change of coordinates can be performed

from (x,y) to the element natural coordinate system (£ ,n). The Jacobian of the 

transformation J  is calculated as follows:
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dT2 _  dx2 ( dy2 
d$T ~ d f T + d f 2

dT = ̂ ( x 2 - x l)1+ (y2 - y l)2 d% = J  dg (5.30)

Hence,

j /Cx,y)<ir  = j f ( 4 ) J J 4 (5.31)
-1

In this way, the above expressions can be calculated using numerical integration 

formulae (such as Gauss quadrature rules) for the case fcj. In the case where i and j  are 

on the same element (i.e. /=/), the presence on that element of the singularity due to the 

fundamental solution requires a more accurate integration. For these integrals it is 

recommended to use higher-order integration rules or a special formula that cancels the 

singularity. If a hard wall is considered, i.e. q=0 along the surface, I2 is always zero (no

need to calculate gl  or g 2) .  So, only h.f , h 2j are needed:

(5.32)

where

r = ̂ ( x - Xi)2 + ( y - y . ) 2 ,

*Lj±zxd tmdlLj2zyA
dx r dy r
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n
' X

(Xj, y l ) and (x2, y 2) are the end points (nodes) of element j.

Similar expressions can be deduced for hf j . It is noted here that since H\ (kr) is

singular at r=0, a problem occurs when point 7’ is a node of the element i.e., for the 

integral over element 7’ and 7 - /’ (refer to figure 5.4). To address this singularity 

problem, consider the expansion of the first-order Hankel function of first kind, 

Hl(kr)  =-/'■£-(2/£>•) + *••. As r-»0, H[(kr) behaves as 1/r-function. Since the integrand 

in (5.32) has r.n term, which behaves as linear r-function as r-»0, this term cancels the 

singularity at r=0 and hence h\ = hj: -  0  and = 0  since r.n = 0  for elements

7’ and 7 - /’ (refer to figure 5.4). If g ‘j and g* were to be calculated, a higher-order 

shape function or special formula should be used to cancel the singularity.

5.5 Noise Source Modeling

From the train noise spectrum shown in figure 5.2, the source term on the right hand 

side o f equation 5.6 can be deduced. The idea is to consider the total acoustic pressure as 

a linear summation of the pressures produced by the octave frequency sources:

(5.33)

Defining the average squared pressure as,

(5.34)

For large T, the total average squared pressure is,
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Using the definition of the sound pressure level,

SPLm = m \ o g Q l !  p 2nf) (5.36)

The average squared pressure components /?* can be obtained from noise spectrum. 

Assuming that the source amplitude is proportional to acoustic pressure, i.e. sm «  Am, the 

following relation is obtained:

r, . s2 . £3 y = -yjPy :- y j . -yjp3 . • • • :*yjpM (5.37)

In this way, the ratio of the components of the sound source is known. Still one 

constant remains to be determined from scaling to match the absolute SPLA calculated 

from equation 5.1. The final form of the source term is,

* = « £ » .  (5.38)
m=l

where sm is the source strength at octave frequency f m , and a is a scaling factor

determined by the absolute value of SPLA at given point. The train velocity is assumed 

to be 60 mph. Summarized in table 5.1 are the results of source strength calculations.

Frequency (Hz) SPLob-SPLa SPLob
62.5 -7.049 74.249 1.000
125 -5.082 76.216 1.254
250 -4.754 76.544 1.302
500 -4.098 77.200 1.404
1000 -3.770 77.528 1.459
2000 -7.049 74.249 1.000
4000 -12.951 68.348 0.507

Table 5.1 Train noise source parameters.
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5.6 Geometry and Grid

The numerical modeling uses linear approximation functions and elements of varying 

length. The number and the length of elements depend on the wavelength of the sound. A 

smooth change in element lengths is highly recommended to avoid kinks in the numerical 

solution. To represent a wave, a minimum of 3 elements per wavelength is needed. Since 

a low-order shape function is used, this number should be increased. The ground is 

represented in the model by considering the images of the source and the barrier, 

symmetric with respect to the plane of the ground.

In this study, both zero-elevation and elevated straight single track trains are 

considered. The term elevated means tracks are mounted on an elevated guideways. 

Figure 5.6 shows the geometry of the barrier and the deck. For track-on-ground case 

(zero-elevation), the source is located 54" away from the barrier and 12.27" above 

ground. The calibration point is 100 ft away from the center of track and 5 ft above 

ground. The sound level at that point is 81.3 dBA (using equation 5.1). For a train on an 

elevated track, the wayside A-weighted sound levels can be as much as 20 dBA greater 

than corresponding levels when the train runs on track at grade. This is primarily because 

of the radiation of sound from the vibration components of the elevated structure. For a 

concrete deck, a 3 dBA increase is assumed for the sound level. The calibration point is 

100 ft away from the elevated structure and at the rail height. The sound level at that 

point is 84.3 dBA (adding 3 dBA to equation 5.1 output). The following reference 

parameters are used for non-dimensionalization: maximum barrier width (7.875") for 

length, free stream speed of sound, (C» = i 140 ft/s) for velocity, and free stream density
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(p ^ l.2 2 5  kg/m ) for density. Using these scales, the non-dimensional frequencies are 

0.036,0.072,0.144,0.288,0.576, 1.151, and 2.303.

Surface and domain discretizations are demonstrated in figure 5.7. To enhance the 

efficiency of the computation, the surface grid is changed so that only a sufficient number 

of nodes is utilized for each frequency. This achieved a substantial reduction in the 

computer run times, since the covered frequency range is very wide (62.5 Hz to 4000 Hz) 

and the computational demands in terms of the number of surface nodes are very sparse. 

On the other hand, the domain grid is kept fixed for all frequencies to avoid 

interpolations. It should be noted that the smoothness of the change in element lengths is 

an important parameter to determine surface grid resolution. This is achieved using 

elements of varying length along each surface segment to match the element lengths in 

the adjacent surface segments.

A grid refinement study is conducted to determine the required number of surface 

grid points for each frequency. Figure 5.8 shows the results of this study for on-ground 

configuration at/==125 Hz. For this case, 48 points per wavelength are required (128 total 

grid points). One reason for this high PPW is the Iow-order approximation functions used 

(linear functions). Another reason is the smoothness requirement of the change in 

element length. The existence of a small comer in the right side of the barrier (refer to 

figure 5.7) makes a restriction on the grid resolution in the neighboring segments. Table

5.2 presents the results o f the grid refinement study for on-ground configuration.
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(a) Straight Single Track at Zero-EIevatioa

Barrier

Source

0x (inches)

(b) Straight Single Track on Elevated Deck (No Barrier)

Source
ioo

3j:
Train Deck

-50•too too 150x (inches)

(c) Straight Single Track on Elevated Deck (with Barrier)
150

BarrierBarrier

Source

Train Deck

-50?150 -100 100 150x (inches)

Figure 5.6 Geometry of barrier and train deck, (a) Track-on-ground case, (b) & (c)

Elevated track.
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Barrier

- 3 0

x (inches)
(a)

1250

Elevated Track
150

BarrierBarrier

Source

>v

Train Deck

-50-100 too 150x (inches)
(C)

1250

Figure 5.7 Surface and domain grids, (a) & (b) Zero-elevation case; (c) & (d) Elevated

case.

Frequency 62.5 Hz 125 Hz 250 Hz 500 Hz 1000 Hz 2000 Hz 4000 Hz

PPW 48 48 30 28 20 12 8

N 76 128 152 260 356 420 548

Table 5.2 Results o f grid refinement study for on-ground configuration.
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Distance along surface 

Figure 5.8 Grid refinement study for on-ground barrier at f=l25 Hz.

5.7 Straight Single Track at Zero-Elevation

Demonstrated in figure 5.9 is the dependence of the noise reduction effectiveness of the 

barrier on the frequency of the noise. Shown in this figure is the insertion loss (IL), which 

is defined by,

IL=SPL without bamer-SPL with barrier (5.39)

In front of the barrier (negative-x region), the interference between the incident and the 

reflected waves is strong. As a result of this interference, the pressure magnitude may 

increase (negative insertion loss) or decrease (positive insertion loss). It is obvious that 

the insertion loss has higher values for ̂ =1000 Hz case. This indicates that the barrier is 

more effective at higher frequencies. This is a general trend and is not limited to the
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current example. This may be explained by the ability of the large wavelength waves 

(larger than barrier top) to bend over the top of the barrier. Thus, much of their energy is 

transferred to the shadow zone. For small wavelength waves (smaller than barrier top), 

the shadow zone has only the scattered waves which suffers from scattering energy loss.

A-weighted sound pressure levels are shown in figure 5.10. The level at the 

calibration point (obtained by equation 5.1) is used to adjust the free constant in the 

source term. In the far field inside the shadow zone, the insertion loss approximately 

equals 15 dBA. Negative values in the interference zone indicate higher noise intensity, 

which is reflected back to the train after the barrier is inserted.

5.8 Straight Single Track on Elevated Deck

With barriers inserted, pressure contours for low and high frequency cases are shown in 

figure 5.11. Between the two barriers, strong interference occurs among three types of 

waves: incident, reflected, and scattered waves. This process may enhance or decrease 

sound energy depending on the surface geometry and source location. For the high 

frequency case, there is a sharp border between the shadow zone and the interference 

zone, indicating that the sound energy is well-contained inside the interference zone. 

Similar to track-on-ground, this figure suggests a higher insertion loss for higher 

frequencies.
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(a) Pressure Contours (f=250 Hz)

x (inches)

(b) Insertion Loss (f=250 Hz)

x (inches)

[c) Pressure Contours (f=1000 Hz]

x (inches)

(d) Insertion Loss (f=1000 Hz)

500 
x (inches)

1000

Figure 5.9 Straight single track at zero-elevation. Pressure contours and insertion loss in 

dB; (a) & (b)y==250 Hz; (c) & (d),/=1000 Hz. (dashed lines indicate negative values)
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(a) SPL. without Barrier

500 
x (inches)

1250

(b) SPL. with Barrier
3°°ir^ ® r

37

500 
x (inches)

1250

(c) Insertion Loss (dBA)

500 
x (inches)

1000 1250

Figure 5.10 Straight single track at zero-elevation. Sound pressure levels in dBA 

without and with barrier and insertion loss in dBA: (a) SPLA without barrier, (b) SPLA 

with barrier, (c) Insertion loss, (dashed lines indicate negative values)
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(a) Pressure Contours (f=250 Hz)

u 200

500  
x (inches)

1250

(b) Pressure Contours (f=1000 Hz)

u 200

500 
x (inches)

750 1250

Figure 5.11 Straight single track on elevated deck. Pressure contours: (a) f=250 Hz, (b)

/=1000 Hz.

A-weighted sound pressure levels are shown in figure 5.12. The insertion loss can be 

obtained from this figure by subtracting the values in figure 5.12-b from these in figure 

(5.12)-a. In the shadow zone, the insertion loss fluctuates around 4 dBA. This represents 

a significant reduction in the barrier efficiency as compared with track-on-ground case. A 

possible reason is the energy enhancement process inside the cavity-shaped space 

between the two barriers. Inside this space, the reflected waves from the deck surface and 

the two barriers are interfered with the source-emitted waves and the scattered waves 

from the barrier tops. Sound energy build-up is the outcome of this interference. Thus, 

the effective strength of the sound source is increased when the barriers are erected. In 

other words, the source strength that is felt by the barrier is a magnified version of the 

original source.
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(a) SPLa without Barrier

(b) SPLa with Barrier
200

-250 250 500
x (inches)

1000 1250750

Figure 5.12 Straight single track on elevated deck. Sound pressure levels in dBA: (a)

Without barrier, (b) With barrier.
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Figure 5.13 Measured sound pressure levels for white noise source, 

(from Baysal et al. 2000)
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5.9 Comparison with Experiment

The sound pressure level at a fixed point in the shadow zone (50 feet from barrier and 

5 feet above ground or train deck) was measured by Baysal et al. (2000). Both tonal 

source at octave frequencies (125 Hz to 1000 Hz) and white noise source were 

considered. The white noise results are shown in figure 5.13. The equivalent A-weighted 

sound pressure levels are calculated from these data. For zero-elevation track, the 

measured A-weighted insertion loss is 10.3 dBA compared with the computed value of

15.5 dBA extracted from the contours in figure 5.10. For the elevated deck case, the 

measured A-weighted insertion loss is 10.1 dBA compared with the computed value of

8.4 dBA extracted from the contours in figure 5.12. The agreement is deemed reasonable, 

considering that the experiment was conducted in an open field, which is subjected to all 

kinds of hazards (wind speed, background noise, reflection from various objects). Also, 

the train noise spectrum used in the calculations is different from the white noise source 

used in the experiment.
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CHAPTER VI 

CONCLUSIONS

6.1 Summary of the Present Work

The main focus in this research has been the computational modeling of noise- 

producing systems. Efficient CAA codes are developed using both finite difference and 

finite element methods. Dispersion-relation-preserving finite difference scheme is 

considered for the solution of the linear and nonlinear Euler equations. The boundary 

element technique is employed to solve the Helmholtz equation. Benchmark problems are 

considered to validate the finite difference method. Then, the method is employed to 

predict the supersonic jet noise. A railway noise barrier is analyzed using the boundary 

element method. The results compared favorably with available data. The results of this 

work are published in Baysal, Kaushik, and Idres (1997), Baysal and Idres (1998), and 

Baysal, Idres, and Kelly (2000).

The benchmark problems include propagation of initial pulse, reflection of pulse by a 

flat or a curved wall, reflection of time-periodic train of waves by a flat wall, and the 

solution of an oscillatory sink flow. The theoretical solutions for these problems are also 

developed. Both the nonreflecting and characteristic boundary conditions are tested. The 

wall boundary condition based on the ghost points concept is successfully implemented. 

The numerical results are compared with the theoretical solution and a complete 

matching is demonstrated.
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The noise from the Mach 2.1 perfectly expanded two-dimensional supersonic jet 

(Troutt and McLaughlin, 1982) is computed using the finite difference method. The 

turbulent Reynolds averaged Navier-Stokes equations are used to obtain the mean flow. 

An implicit iterative procedure is employed. At the jet inlet, the instability waves, for 

Strouhal number of 0.2, are calculated using the compressible Rayleigh equation. Both 

the axisymmetric and the helical modes are considered. Azimuthal mode decomposition 

is used to eliminate 0-derivative from the linearized Euler equations. The resulting 

complex equations are solved for the complex perturbations. The grid is generated based 

on the curve fitting of the velocity profile. Multi-block time integration technique is 

developed. Laminar and turbulent mean flow predictions are compared with the 

experimental/theoretical results. The laminar equations failed to predict the actual growth 

of the shear layer. The turbulent solution was in good agreement with the 

experimental/theoretical solution. Discrete Fourier transform analysis of the acoustic field 

data showed that the numerical solution is free from spurious modes. The sound pressure 

levels are compared with the experimental data and the computation of Tam and Burton 

(1984b). Good qualitative agreement is obtained. The axisymmetric mode shows larger 

peaks of SPL than the helical mode. The multiple time scale integration technique has 

effectively reduced the computational time. The reduction is estimated to be as much as 

75% of the single-block case.

The performance of a railway noise barrier is evaluated using the boundary element 

technique. First, the integral formulation of the Helmholtz equation is introduced. Linear 

elements on frequency-dependent surface meshes are used. At least six elements per 

wavelength are used. The Gauss quadrature method is used to calculate the integrals. The
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sound source is modeled as a combination of single frequency point sources at the octave 

values. The amplitudes of these sources are determined from a typical noise spectrum of 

trains. The elevated and ground-level tracks are analyzed. The barrier insertion loss is 

computed for the octave frequencies. Moreover, A-weighted sound pressure levels are 

computed (this weighting is used to calibrate the noise according to human ear 

sensitivity). As the sound source frequency increases, the insertion loss of the barrier 

decreases, indicating lower barrier efficiency in reducing noise. For the barrier 

configuration used in this study, an insertion loss of 15 dBA for the zero-elevation case 

and 4 dBA for the elevated case are obtained.

6.2 Concluding Remarks

• The resolution of the computational grid is dictated by three factors: (I) accurate 

representation of the mean flow, i.e., more grid points in high gradient regions; (2 ) 

number of grid points per wavelength (PPW), which should be more than 5 points; 

(3) sufficient resolution and isotropy of the acoustic source, which is ensured by using 

a sufficient number of grid points to represent the source (more than 6 points) and 

enforcing a uniform grid near the source.

• For periodic problems, time step is usually determined by the accuracy requirements 

rather than the stability limits of the numerical scheme. At least 100 time steps per 

period of oscillation should be used to ensure accurate solution. These small time 

steps call for the use of the DRP time integration scheme instead of the LDDRK 

scheme since the first has lower computational cost per time step.
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• The failure of the non-reflecting characteristic boundary condition is noticed at the 

corners of the computational domain. This is due to the incompetence of these 

boundary conditions when the wave direction is inclined to the boundary.

• When both the mean flow and acoustic perturbations are calculated using the same set 

of equations, canceling-the-residual technique is recommended. First, the mean flow 

is obtained to an acceptable accuracy. Second, negatives of the residuals are added to 

the right hand side of the equations to reduce the residuals to machine zero. Third, the 

acoustic calculations are turned on.

• Turbulent calculations are important for accurate calculation of the mean flow of the 

supersonic jet. The laminar solution cannot predict the actual growth rate of the 

mixing layer.

•  Non-axisymmetric mode noise calculations are made possible using the azimuthal 

mode decomposition technique. Only grids in the axisymmetric plane are required.

• The two-step strategy, based on separating the mean flow calculation from noise 

computation, has given flexibility and freedom for both steps. In the current work, an 

implicit low-order scheme is used for jet mean flow calculation, while, an explicit 

high-order scheme is used to compute the sound field.

•  For mean flow with strong gradients, such as jet flow, generalized curvilinear 

coordinates formulation has given the flexibility and freedom for grid generation.

• For acoustic computations, where both the acoustic far and near fields are captured 

using the same set of equations, the multiple scales time integration algorithm has a 

substantial effect on the computational time. Approximately 75% of the single-block 

computational time has been eliminated in the jet noise problem.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



127

• For problems with complex geometry, such as a noise barrier problem, the use o f the 

boundary element method is the perfect choice. This method does not need domain 

grid generation and the wall boundary condition is implemented very easily. Without 

this method, it would be extremely difficult to calculate A-weighted sound pressure 

levels for the barrier problem.

6.3 Recommendations and Future Work

For the supersonic jet case, the centerline treatment is based on the symmetry 

boundary condition that requires the exclusion of the centerline grid line, which is the 

source of singularity in the cylindrical coordinate system. This weak treatment is a source 

of spurious waves that has to be damped as soon as they are generated. More rigorous 

treatments are based on the asymptotic form of the governing equations as r  —> 0, where 

the singularity is removed through the use of L’Hopital’s rule. The radial derivatives at 

the centerline are evaluated using one-sided finite difference formulae. This method was 

suggested by Griffin et al. (1979). They used this technique to simulate the flow field 

inside an internal combustion engine. The behavior near the centerline was studied by 

Shih et al. (1995) for three-dimensional supersonic jet calculations. They used three 

approaches: asymptotic, averaging and interior point. Mohseni and Colonius (1997) 

wrote a recent article on this subject. They used coordinate transformation to avoid the 

singularity at the centerline.

hi the current research, only the noise from a perfectly expanded supersonic je t is 

considered. As discussed in section 2.2, there are two other sources of noise for an 

imperfectly expanded jet, namely, screech tones and broadband shock associated noise.
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For such jets, ENO method has great advantages (refer to section 2.1.1.1). It is able to 

capture shock waves and remain high order in smooth regions of the flow. Several 

articles are available for consultation including Atkins (1991), Meadows et al. (1994), 

and Lockard et al. (1995).

Another subject that needs to be investigated is that of jet noise suppression methods. 

Supersonic jet noise abatement techniques fall inside two main concepts: (1) Geometric 

concepts, such as multielement suppressors at the nozzle exit plane, ejectors surrounding 

the jet in the vicinity of the nozzle exit, annular plug, and tabs at the nozzle exit plane and 

(2) Aerothermodynamic concepts, such as inverted-velocity profile (i.e., a higher velocity 

jet surrounding a lower velocity jet), thermal acoustic shield (i.e., surrounding either fully 

or partially the main jet with a jet having a high static temperature and low velocity). 

Although, these concepts have been investigated by many researchers, these 

investigations are either experimental or with approximate numerical methods. Gleibe 

(1980) has studied the noise from multichute suppressors. He concluded that this method 

does not substantially reduce the mixing noise, while it has major effect on the shock-cell 

broadband noise component. Tabs are used as vortex generators. They are used to alter 

the jet flow structure. They can be used to eliminate the screech noise. The effect of tabs 

has been investigated by Samimy et al. (1993), Wishart et al. (1993), and Tam and 

Zaman (1999). Tam (1998) and Tam & Zaman (1999) studied the jet noise from different 

nozzle geometries. They concluded that nozzle geometry modification might not be an 

effective method for jet noise suppression. The reduction of noise by the introduction of 

moving fluid layer is investigated by Dosanjh et al. (1971), Tanna (1980), Papamoschou
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(1997), Dahl et al. (1998), Shih (1999), and Debiasi (1999). This method has shown great 

success. As much as 18 dB reduction could be obtained.

For the noise barrier problem, the train geometry is not considered. In more refined 

analysis, the train geometry should be included. The modeling o f noise source would be 

taken as a line source, instead of point source, with variable intensity. Evaluation of 

different barrier configurations is required. This includes inclined, T-profiled, Y-profiled, 

and arrow-profiled barriers. Also, the effect of sound absorptive material needs to be 

investigated. Higher-order shape functions are needed to treat the singularity problem for 

the case o f absorptive material coating since new singular integrals are introduced into 

the formulation.
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APPENDIX A 

FINITE DIFFERENCE SCHEME

A.1 Dispersion-Relation-Preserving Scheme

This scheme was introduced by Tam and Webb (1993). The following is a summary 

of the steps used to develop the scheme.

(1) Consider the approximation of the first derivative,

(A .odxV jt j=~*

(2) Apply Fourier transform,

(A.2)
Ax j-_N

(3) Define the effective wave number of the space discretization scheme as,

(A.3)
Ax £ v

(4) Coefficients, fly, are obtained as one-parameter family using the traditional Taylor 

series method (to insure desired accuracy). The remaining coefficient is obtained from 

minimizing the following integrated error

e
E  = Jl a  A x—a  Ax I d(aAx) (A.4)

e

where e = 2nA x/ is the shortest wavelength to be simulated. Since at least

five grid points are needed to represent a wave, > 4A r, i.e. £ < n .l  2 .  The 

coefficients o f the fourth-order DRP scheme is listed in table A. 1 for £ = 71 / 2 .
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A.1.2 Time Integration

(1) Consider four-level time integration,

q(t + A t)-q { t)  -  A t ^ b k - j - U (t - kAt) (A.5)

(2) Apply Laplace transform,

3

-  I ) ? = ( & £ ( > , )H<oq) (A.6 )

(3) Define the effective angular frequency of the time discretization scheme as,

_ i(e~ia6t — l)
(A.7)

(4) Coefficients, are obtained as one-parameter family using the traditional Taylor 

series method (to ensure desired accuracy). The remaining coefficient is obtained from 

minimizing the integrated error,

where ct is the weight on the real part. The coefficients of the 4-stage DRP time 

integration scheme are listed in table A.2.

A.2 The Low Dispersion and Dissipation Runge-Kutta Time Integration Scheme

Hu et al. (1996) developed this scheme by minimizing the dissipation and dispersion 

errors. For p-stage scheme,

E =  j[(J\Re(0) A t - 6)At)]2 +(l-<T)[ha(j5jAt-Q3At)]2}d((0At) (A.8 )
- 0. 5

^ = 0 ,1,2 ,..., p  —I
(A.9)
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where ba=Q and bt is obtained from

Cl=nv- k=2 ' - ' P  (a'iq)
m=2

where c* are obtained by dispersion error minimization in addition to the Taylor series 

conditions to assure accuracy. The coefficients of the 5-stage LDDRK scheme are listed 

in table A.2.

A.3 Numerical Stability

The CFL condition for DRP scheme is (Tam and Webb 1993)

A t<  - F̂  - (A .ll)
l .7 5 [ M + p  + ( f ) 2}

where

M  is the axial Mach number,

CFL =  f 0.4 DRP{0(Ax4),0 (A ti ))
[2.14 DRP{0{Ax4) ) and LDDRK{0(At2))

To minimize numerical damping introduced by time integration, the CFL number is 

reduced to,

C F L f0.19 DRP(0(Ax4 ), 0 (A t3))

[1.17 DRP{0(&x4)) and LDDRK(0(At2))

Damping coefficients, dt, and multiple time scales time integration coefficients, b f *, 

are listed in table A.3 and table A.4 respectively.
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N <*N o n +i « n +  2 On +3 O n +4 ON+5 On +6

-6  (Fully Backward) -2.192280 4.748611 -5,108852 4.461567 -2.833499 1.128329 -0.203876

-5 -0.209338 -1.084876 2.147776 -1.388928 0.768950 -0.281815 0.048230

-4 0.049042 -0.468840 -0.474761 1.273275 -0.518485 0.166139 -0.026369

-3 (Central) -0.026520 0.189413 -0.799266 0 . 0 0 0 0 0 0 0.799266 -0.189413 0.026520

-2 0.026369 -0.166139 0.518485 -1.273275 0.474761 0.468840 -0.049042

-1 -0,048230 0,281815 -0.768950 1.388928 -2.147776 1.084876 0.209338

0 (Fully Forward) 0.203876 -1.128329 2.833499 -4.461567 5.108852 -4.748611 2.192280

Table A. 1 DRP coefficients for 7-point stencil fourth-order scheme.

scheme b0 b, b2 b3 b4

DRP (0(4r*),0=0.36) 2.302558 -2.491007 1.574340 -0.385891 -

LDDRK {0(A?), 5-stage) 0 .000000 0.193492 0.242361 0.325994 0.500000

Table A.2 Time integration coefficients.



143

N ds

-1 4v+2 dtt+j dti+4 dff+s ds+6

-3 0.023853 0.106304 -0.226147 0.287393 -0.226147 0.106304 -0.023853

-2 - 0.0625 -0.25 0.375 -0.25 0.0625 -

-1 - -0.25 0.5 -0.25 - -

Table A.3 Selective damping coefficients.

s bo bi b2 b3

1/4 0.313198 -0.108864 0.059385 -0.013719

1/2 0.776002 -0.494674 0.286340 -0.067669

3/4 1.425785 -1.253919 0.761731 -0.183598

1 2.302558 -2.491007 1.574340 -0.385891

Table A.4 Multiple time integration coefficients.
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APPENDIX B 

EXACT SOLUTIONS OF THE LINEARIZED EULER EQUATIONS

B .l Gaussian pulse in uniform mean flow in x-direction

For the initial value problem:

At f = 0 : u = v  = 0 and p = p = £ e -aax-x')1+(y-y' )1) (B.l)

Where £ is the pulse amplitude, a  is the spreading parameter and {x„ys) is the pulse 

location. The exact solution of the linearized Euler equations is (Tam and Webb, 1993),

u = -£(* \ Ma- \ e  Aa sin(£f) / ,  (B.2)
2077 J0

* _ii
v = 4trsin (£ r)/I( ^ ) £ d £  (B.3)

2ariJo

p = p =  ̂ - J e 4“ cos(£r) J 0 {fri) £ d% (B.4)
2 CC g

where

n = l ( x - x , - M at)- + ( y - y , f ] ' n ,

Jo and / /  are Bessel functions,

Mo is the mean flow Mach number.

B.2 Gaussian pulse in uniform mean flow in x-direction reflected from flat wall

For an initial conditions as in B .l, and wall along >>=0 line, using image method, the 

exact solution of the linearized Euler equations is,
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sin(fl)(A(M+iiM )fllf (B.5)
2or { tj n

v =  ̂ j e « .m ( f r  (B.6)
2 a J  r/ tj

“ _i_
P = P = ~ j e 4“ c o s ( ^ ) ( /0( ^ )  +  / 0( # 7 7 ') ) ^  (B.7)

Zflf Q

where

^  = [ ( x - x , - M 0 r)2 + ( y - y I)2]l/1,and ^ [ ( x - x , - M 0 r)2 + (y  + y ,)2]2 i I / 2

B.3 Periodic Source Reflected from Flat Wall at y=0

For no mean flow and periodic source term added to the energy equation, the 

linearized Euler equations are,

dp du dv _
f  S  ^  (a8)

du dp
* + £ = °  ( B -9 )

3v dp
T < + i = °  <B10)

at dx By

where

s(x, y, t) = ee~a(!'x~z,)*Hy~y‘)Z) cos {at) (B. 12)
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By eliminating u and v, the wave equation for p  is,

B p  B p Bp _  Bs(x,y,t)
Bt2 Bx2 By2 Bt

= e e -a«x-x’)'+(y-y’)"> (-Q)sin((Ot))

=  im )

The solution for pressure, p, can be written as,

p(x, y,t) =  Im(p(x, >•)*"'“ ) (B. 13)

Thus, the wave equation becomes

rr4 -+ -^T  + co2p = -Q}£e~ai(x~x’yHy~y’r) (B.14)
Bx' By'

Equation B.14 is the non-homogeneous Helmholtz equation. To solve this equation,

we use polar coordinates (rs, ds) originated at source location. The equation reduces to the

non-homogeneous Bessel equation,

^—T'+ — -^r+ Q }1p --Q )£ e 'ar' (B.l 5)
dr; rs d r 2

We consider periodic source in free space (no solid boundaries) with radiation 

boundary condition as rs-><*> and bounded solution at /v=0. The Greens function for this 

system is

° / r’ S 4  (B.16)
l - i i 4 J 0{o>Z)Hl0{(Ors), £ < r s < -

where J0 and H la are the zeroth order Bessel and Hankel functions, respectively.

The solution for p(rs) is,

os
P(/*J = /G (rJ,^ ) ( - f f lC e ^ ) ^  (B.17)
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Using image method, the solution for periodic source near a solid wall at y=0 can be 

deduced as

OB

P(r ) = J  (G(rs,£) + G(rt',£))(-<aee_â i )d% (B.18)

where

r, = J ( x - x s)2+ ( y - y s)2 , and r'  = ̂ ( x - x s)2+(y + ys)2

B.4 Oscillatory Sink Flow

B.4.1 Steady Sink Flow

With respect to a polar coordinate system centered at (xI(yj), the

nondimensionalized Euler equations are,

- a--̂ r) = s (B.19)
r dr

i 3 ( £ p 2 + ap=0 (B20)
r  dr dr

V ^  + r p ~ ^ - = — s (B.21)
dr r dr p

where

-  [~Q r < r ss = \  , s (B.22)
r > rs

These equations are non-dimensionalized by the following reference parameters:

length by L (length scale) , velocity by C-, density by /?«, and pressure by p„C2. The

source term satisfies the isentropic condition p —^ p r and V is the radial velocity.
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Equation B.19 can be integrated to give,

pVr  = F(r) =

Qr2
—  r < r
2

- 1  ) + r,(-)*er/-(0 -5( r - r , ) ) ]  r  > r, 
2  0  O

(B.23)

where erfi) is the error function.

By substitution of B.23 into B.20, a single equation for p can be found. This equation can 

be written in the form,

( - £ = - - )  (B.24)
r~p dr p r ‘ dr r

For r<rs, equation B.24 can be integrated in closed form to give,

r 2 = -----— P \  + cp » (B.25)3(r+i) e2
where c is the constant of integration.

For r— equation B.24 can be integrated to yield the following asymptotic solution

F (°°)2
p  = l — (B. 26) 

2r

where Ff °°)=QJ2k.

To solve B.24 numerically for r>rj5 a straightforward way is to start at a large value 

of r using B.26 as the starting solution and integrate equation B.24 by Runge-Kutta 

method until r=rs is reached. Choose c of B.25 so that p  matches the value of the 

numerical solution at r=rs. With p determined, V  and p  can be found as,

V = ̂ -  and p = - p r (B.27)
rp y
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B.4.2 Acoustic wave solution associated with an oscillatory sink flow

Consider small amplitude acoustic disturbances generated by a time periodic source 

in the presence of a time independent sink flow. The governing equations are the 

linearized Euler equations. The solution may be written in the form

( p ' ) ( p ( r ) '
V' = Re- V(r) -itue >

U (r)J

(B.28)

where a prime denotes the perturbation variables and 0) is the angular frequency of the 

source. On denoting the mean sink flow variables by overbar, the disturbance equations 

written in polar coordinates centered at the source location are

. .  l , _ .  „lT. _ d v  - d p  ,d V■i(op+—(pv + pV)  + p — +V  —  + p ----- = ee
r dr dr dr

(B.29)

-  1 -

-  iojpv -  icoVp+ - ( 2  pVv + p V ‘) + 2 p V  — + 2 p v ^ ~  + 2Vv— + V 2 —  
r dr dr dr dr

+ 2V p ^ - i p ’- ' i t + p ^ A  (B.30) 
dr dr dr

In deriving these equations, the isentropic relation has been used to eliminate p in 

favor of p . Equations B.29 and B.30 are to be solved with the boundedness condition at 

r—>0 and the outgoing wave condition at r—»°o.

For r—*0, the mean flow solution can be expanded in a power series in the form,

V =v,rH—

P = Po+Pir2+ -  
P = Po+p2rZ+ -

(B.31)
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On substitution of B.31 into B.30, a power series solution of the acoustic disturbance 

which is bounded at r-»0 can be obtained in a straightforward way. The solution has the 

form

P ~ Pa "b P i ^  + ••• 1H  ̂ (B.32)
v = Alr + -  J

where /5b is arbitrary constant and

P2 = -{ (2 ^ 2 .p 2 -ifflv, + 3v f )P Q - i ( 6v, -iffl)[e +  (ifl, - 2 v l)i80]} -^ 2 -,
Pa 2  2 jp0

_ [£ + (ico -  2v, )p Q ]
2p 0

For r— the mean flow quantities in B.30 may be replaced by the asymptotic sink 

flow solution of B.26. In this limit, the following asymptotic outgoing wave solution of

B.29 and B.30 can be established after some algebra,

lim
r —>•«

V )

where

W  = f —  f  _  (B.34)
J t/( f ) 2

P = A [-!r  + ( - - ;- + F ( ~ ) ) - V  + 0 (-l-)l (B.35)
r i  8 0 )

i  ^ i  *

v = A[—  +  ( - ^  +  F (~ ))— + 0 (— )] (B.36)
r 2 O 0) r l

and A is arbitrary constant.
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To find the linearized acoustic wave solution numerically, one may use B.32 as a 

starting solution and integrate B.29 and B.30 outward using the Runge-Kutta method. 

Simultaneously use B.33-B.36 as the starting solution at r=rmax where is very large 

and integrate B.29 and B.30 inward. The two pieces of solution must match at some 

intermediate value of r. These matching conditions determine the two unknowns A and 

Pq. In this way, the exact numerical solution is found.
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APPENDIX C 

TROUTT & MCLAUGHLIN 2.1 MACH JET

Tam & Burton (1987) used analytical functions to fit the measured profile of the 

mean flow axial velocity in the three streamwise regimes of a supersonic jet: the potential 

core, transitional, and fully developed regimes. For the jet from Troutt & Mciaughlin 

(1982) experiment, the core region extends over the first five diameters of the jet. The 

developed region begins at about eight diameters downstream of the nozzle exit. A half- 

Gaussian curve is used to fit the velocity profile in the following form,

where U^x) is the centerline velocity, h(x) is the radius of the uniform core and b(x) is 

the half-width of the annular mixing layer, i.e. the radial distance from the outer edge of 

the uniform core to the half-velocity point. The velocity is normalized by the jet exit 

velocity U j .

Ue(x) r < h(x)
(C.1)

Spline curve fit
Troutt’s measurements (1978)

3

0 ,'0 10 20 30 40

Figure C. 1 Axial distribution of mean velocity profile parameter, b(x).
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In the core region, the mean flow is uniform in the central part of the jet with Uc(x)=\. 

for r<h(x). In the fully developed region, h(x)=0. As shown in figure C.l, a cubic spline 

curve is used to fit the axial distribution of b(x) measured by Troutt (1978).

The property of momentum-flux conservation is used in the following form,

where the density is normalized by the exit centerline density and distances by the nozzle 

radius. In the core region, since both Uc(x) and b(x) are known, this relation is used to 

obtain h(x). In the fully developed region, since both h(x) and b(x) are known, the 

constant axial flux equation is used to obtain Uc(x). For the transitional region, b(x) and 

h(x) are obtained using cubic spline fit that matches the values of b(x) and h(x) and their 

derivatives at the two ends of the region.

Invoking boundary-layer type approximation to the mean flow equations shows that 

mean flow pressure can be taken to be uniform in the jet. Under such assumption, the 

continuity equation for axisymmetric flow is,

i  0 i  j *

The total temperature is assumed constant, which is used to obtain the static 

temperature profile in terms of the velocity as follows:

0
(C.2)

(C.3)
dr r dx

From which, the radial velocity is obtained as,

(C.4)

y - 1
2

(C.5)
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where temperature and velocity is normalized by jet exit conditions. The equation of state 

is then used to obtain the density profile in terms of temperature profile,

P = J  (C.6)
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APPENDIX D 

TURBULENCE MODEL

The mixing length model constants C7 and Ci are given by the following relations 

(from Dahl and Morris, 1997),

.  A+B-Ja+ Ca (D 1}
( l+ V a )( l+ /5 v a )

where

a  =  p 2 1 p, is the density ratio across the shear layer, 

p = U 1IU l is the velocity ratio across the shear layer,

For 0 <\:  A = KT2x(6.5919 + 11.918/5-4.1855/52)

B —10-2 x  (10.88 -  2.3578p  + 6.564202)

C =  10"2 x (3.1013 +16.42/5 —5.8217/?2)

For 0  >1: A = 10"3 x(101.95 + 51.507y5-1.6/52)

B = 10-3 x  (60.287 + 75.16/5 +1.3818/52)

C = KT4 x  (723.97 + 753.34/5 -6.2101/52)

C2 =  1 + 0.4959 [exp(-1.4593M2 + 0.0427M3 -  0.3658A/t4) - 1] (D.2)

where

M c is the convective Mach number defined by,

(D.3)
1
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APPENDIX E 

ENVIRONMENTAL ACOUSTICS TERMINOLOGY

E.1 Sound Pressure Level

Although sound pressure amplitudes can be measured, it is customary in many 

contexts to measure and report a quantity varying linearly as the logarithm, base 10, of 

the mean squared pressure. This quantity is the sound pressure level and is defined by

The resulting number has the units of decibels (dB). The denominator factor p ref  

represents a reference pressure, which is usually taken as 2x  10"5 Pa for airborne sound.

E.2 A-weighted Sound Pressure Level

The simplest and probably most widely used measure of environmental noise is the 

A-weighted sound pressure level SPLa, expressed in dBA. A-weighting assigns to each 

frequency a “weight” that is related to the sensitivity of the ear at that frequency. The 

frequencies to which the human ear is less sensitive are weighted less than those to 

which the ear is more sensitive. This weighting is intended to be such that sounds of 

different frequencies giving the same decibel reading with A-weighting would be equally 

loud. The frequency-weighted mean squared pressure p A is obtained as,

SPL = 10 lo g -^ -
Pnf

(E.l)

If
(E.2 )
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where W( f n)is the weighting function at frequency /„ .  The weighting functions are

obtained from the curve in figure E .l ( the curve spans the audible frequency range from 

20 Hz to 20 kH z).

W( f )  = i 0 ^ (/)/I° (E.3)

..to
aa
-a

<

<'w*
90
c
*3

Frequency, Hz

Figure E. 1 Weighting function for A-weighted sound pressure level.
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