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ABSTRACT

AN INVESTIGATION ON THE EFFECT OF AGING AND FATIGUE DAMAGE ON 
THE MECHANICAL PROPERTIES OF A GRAPHITE/BISMALEIMIDE

COMPOSITE

William M. Johnston Jr.
Old Dominion University, 1997 

Director; T. Gates

This investigation utilizes the open hole tension (OHT) specimen loaded in 

tension-tension fatigue under isothermal, fixed frequency conditions. A range of load 

levels and temperature levels where chosen to assess performance. These loads and 

temperatures ranged from relatively benign conditions (low stress, room temperature) up 

through aggressive conditions (high stress, high temperature). Measurements of stiffness, 

damage accumulation, residual strength, weight loss, and glass transition temperature 

(Tg) were made. Results from this work will help explain the roles of aging, load and 

fatigue in the performance of elevated temperature OHT specimens as well as provide 

insights to the individual and synergistic contributions of each process.

Co-Chairs of Thesis Committee: Dr. R. Prabhakaran
Dr. Y. Mikata
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CHAPTER I 

INTRODUCTION

New polymer matrix composites (PMCs) are being developed for high 

temperature applications in both civilian and military aerospace vehicles. The issue of 

long term durability at elevated temperature is crucial for material selection for these 

critical structural applications. To address the problems presented by these new 

materials at elevated temperature, accelerated test methods and associated life 

prediction models must be developed that provide the means for predicting long term 

behavior from short term test data. Before these predictive models and accelerated test 

methods can be developed, a basic understanding of the effects of elevated 

temperatures and varied load histories on a PMC’s mechanical properties is needed.

Predicting the response of a composite laminate to fatigue loading requires an 

understanding of the basic processes that change the mechanical performance of the 

material. Once these processes are identified they can be accounted for in modeling. 

Many attempts have been made to model fatigue in PMCs which have varied from 

empirical relationships to mechanics based models[l-7].

Mechanics based modeling has the ability to account for much more 

complicated material responses than empirical models. Some of the more 

comprehensive models include the continuum damage mechanics models introduced 

by Harris, Allen and Coats[l-5] and Talreja [6 ,7]. These models use representative 

volumes to model PMCs. The volume element’s stiffness is computed from

i
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constituent mechanical properties and a collection of internal state variables that 

represent damage. The accumulated damage is averaged over representative volumes 

and then related to properties such as strength and stiffness. The internal state 

variables are dependent on the damage propagation laws for the different damage 

modes (e.g. matrix cracking and delamination).

Most of these models have not been applied to elevated temperature situations. 

As temperatures increase, the process of aging will play a more critical role in the 

fatigue performance of PMCs. It is important to understand the interactions of the 

processes of aging and damage accumulation so they can be modeled. The research 

herein contributes to this understanding.

Motivation and Objective

Three potential processes contribute to degradation of mechanical performance

during a fatigue/aging study. These processes are: chemical aging, physical aging, and 

damage development [8, 9, 10] Physical aging is a thermo-reversible process believed 

to depend on the free volume evolution of the polymer, whereas chemical aging is a 

thermo-irreversible process caused by continued crosslinking in the matrix and 

oxidative breakdown [8]. Both types of aging are temperature dependent. In general, 

chemical aging and physical aging are processes that cause the polymer matrix to 

become stiffer and more brittle, and cause the creep and the stress relaxation rates to be 

reduced[8]. The damage accumulation during fatigue is a process that will cause the 

laminate stiffness and strength to decrease due to cracking[7].

JL?
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These processes are not independent and can be additive or subtractive 

depending on the test material and the resultant performance property being 

considered. The continuation of the crosslinking reaction portion of chemical aging 

results in continued cure in the matrix. Mechanical performance of composite 

materials have been shown to be dependent on the extent of cure[l 1-14]. The resulting 

changes in the matrix materials mechanical properties cause changes in the 

accumulation and extent of damage. Damage in turn increases the rate of chemical 

change by increasing the reactive surface area available for oxidative breakdown. 

Therefore, to correctly model long term elevated temperature behavior of such PMCs 

from short term testing, the individual effects and interactions of aging and damage 

accumulation must be accounted for.

The objective of this research was to determine the effects of elevated 

temperature and fatigue loading on a graphite/bismaleimide composite. A fatigue and 

aging study was performed on a graphite/bismaleimide (GR/BMI) composite. Testing 

was designed to determine the individual and synergistic combinations of responses 

caused by the loading and the elevated temperature. These responses were then related 

to physical processes known to cause changes in the mechanical performance of 

PMCs. The effect of the temperature and fatigue loading on the PMCs were quantified 

by measurements of stiffness, glass transition temperature (Tg), weight loss, fatigue 

damage, and residual strength.

JU
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Overview

The remaining chapters of the text are constructed as follows. Chapter two 

contains background information. The composite material used is discussed. 

Information on the chemical aging of fatigue damage of polymer matrix composites is 

given. Fatigue of composites, damage propagation and damage development are 

discussed. Chapter three explains the experimental program. Experimental methods 

and equipment used for the fatigue and aging work are discussed. Specimen 

preparations and diagrams of the specimens used are presented. Next, this chapter 

covers initial testing and setup. Equipment alignment and calibration are considered. 

All testing procedures, data reduction and analysis techniques are explained. Chapter 

four presents the experimental results of fatigue and isothermal aging investigations. 

Presentation order is developed so conclusions can be drawn in a logical manner. 

Chapter five starts with a discussion of all results and their relation to each other and 

ends with conclusions.

The effects of temperature and loading during fatigue on the mechanical 

properties are explained. The implications and connections to the processes of aging 

and damage accumulations are discussed. Final conclusions are also drawn to develop 

an understanding of fatigue damage and aging that occurred during this elevated 

temperature fatigue.

I

i
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CHAPTER II 

BACKGROUND

Although polymer matrix composites have many advantages for use in critical 

components on aero-structures, certain properties related to damage tolerance, damage 

resistance, and unknown long term durability play a critical role in limiting their 

application. Both processes of aging and fatigue damage accumulation play roles in 

determining the long term performance of a PMC.

Material Information
Material system

Tests were performed on a G40-800/5260 composite material system. This 

system consisted of a high strength, intermediate modulus carbon fiber produced by 

Celion in a toughened bismaieimide (BMI) matrix that was produced by BASF. Test 

panels were produced at NASA Langley Research Center with a [45,0,-45,90] t s  

quasi-isotropic lay-up and a nominal thickness of 2.16 mm (0.085 in) after cure.

Cure Cycle

The panels were cured using the manufacturer’s recommended procedure. A 

two step cure cycle was used. The temperature was raised from room temperature to 

149°C at l.6°C/min. and held for thirty minutes under vacuum. After this first stage 

the pressure was increased to 586 kPa (85 psi.) in the autoclave and the temperature 

was raised to 191°C at l.6°C/min. These conditions were maintained for four hours. 

Finally, the specimens were cooled to room temperature and pressure was released.
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Interleaving

Delamination failures, where the laminate disbonds or cracks occur between 

laminae, can initiate from small impact areas[15, 16, 17] fatigue[7, 18-25], edge 

effects[26], holes[26-30], manufacturing defects[15], environmental effects [31, 32], 

and synergistic combinations of any of these factors. These problems have led to the 

development of a technique know as interleaving.

The concept of interleaving is simple; it only requires the introduction of an 

advantageous (tough) material between laminates. The purpose of this layer is 

twofold. First, the presence of the inter laminar layer reduces the magnitude of the 

inter-laminar stresses, and may locally strengthen the ply interface. Second, if 

delamination does occur the tough layer requires more energy than a conventional 

laminate to propagate the damage[33]. Attainment of delamination resistance and 

requirements for higher use temperatures has lead to interleave toughened matrix 

materials such as 5260.

The addition of an interleave complicates the process of modeling. Interleaves 

add another phase of material to the matrix increasing the complexity required to 

predict the response of the final material accurately. Aging models need to contend 

with multiple chemically distinct materials with distinct responses to time at elevated 

temperature.

Chemical Aging Process
Two significant mechanisms contribute to the degradation of the mechanical

properties of the interleaved graphite/BMI fatigue specimens during elevated
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temperature fatigue loading. These mechanisms are chemical aging and fatigue 

damage.

Chemical aging is a thermo irreversible process that is dependent on 

environment and temperature. Chemical aging includes processes such as continued 

curing and oxidative breakdown and is driven by exposure to elevated temperature[8]. 

These two aspects of chemical aging will be discussed in the following pages, as will 

previous research on the 5260 matrix that demonstrate changes due to continued 

curing and oxidative breakdown.

Continued Cure Effects

Chemical aging includes continuation of the crosslinking reaction and is

considered an extension of the curing. Much work has been done to understand the 

curing of BMI materials[l 1-14]. This work relates directly to factors that become 

evident in elevated temperature testing. Development of damage[3l, 32], residual 

stresses[34, 35], shrinkage[l I, 34], and changes in elastic properties[l 1-14] have been 

related to cure. It is believed that these changes will affect the fatigue performance of 

the material.

Insight can be gained into continued curing during elevated temperature testing 

by explaining the cure cycle the PMC goes through during manufacture. The standard 

cure cycle for PMC’s usually consists of a two step cure cycle[12]. The first dwell is 

used to consolidate the material into a cohesive solid. The temperature for the second 

dwell is increased to facilitate crosslinking. Crosslinking is the key to the development 

of the final properties of the matrix.

A*
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The purpose of the second dwell period is to allow the crosslinking reaction of 

the matrix to occur, thus developing its strength and material properties. The speed, 

extent of cure, and the properties of the resulting material is highly dependent on the 

temperature during cure. The higher the temperature, the quicker the crosslinking 

reaction occurs and the greater the extent of cure. Lower temperature adds to ease of 

processing but leads to uneconomical cure times. In addition, lower temperatures 

might not allow the composite to reach as complete a state of cure as higher 

temperatures.

White and Hahn [11-14] found that for graphite/BMI systems, matrix 

dominated laminate properties were highly dependent on extent of cure and fiber 

dominated laminate properties increased moderately with extent of cure. In addition, 

postcure was shown to increase transverse modulus and strength[l 1].

However as cure temperature increases so do residual stresses which can cause 

matrix cracking [13, 34] resulting in decreased strength of the material. In addition, 

extensive contraction of thermoset matrixes has been reported during the curing 

cycle[ll, 34].

Residual stresses from curing have been determined by analyzing curvature of 

unsymmetric laminates[13] and by ply separation methods[34]. Studies have related 

the residual thermal stresses to the extent of cure[ll-14, 34-36] and to varying cure 

temperatures and cycles. These residual stresses can be reduced through the 

application of pressure during the second phase of cure, although care must be taken 

not to damage the laminate with this pressure.

ill
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Oxidative Breakdown

Elevated temperature studies have demonstrated the tendency of BMI materials

to experience oxidative breakdown[34-39]. This breakdown is indicated by continual

weight loss during the exposure to elevated temperatures[38]. Because of the ease of

the weight loss measurement, attempts have been made to relate it to material

performance, although no direct link to material properties is possible[38, 39].

Development of damage due to isothermal aging and thermal cycling is not

unusual. Studies of thermo-oxidative stability of the BMI materials at elevated

temperatures[34-38] have demonstrated development of edge cracks during elevated

temperature exposure. Edge damage provides a site for the damage to initiate and

provides more surface area for the oxidative breakdown to occur. Oxidative break

down also reduces the toughness of polymeric materials [39]. Changes in the

toughness of the interleave region reduce delamination resistance which may result in

lower performance in compression after impact (CAI) strength tests. Conversely,

increases in the interleave toughness of this region are related to improvement in

delamination resistance[15] and CAI response[40]. It is also believed that oxidative

breakdown causes the development of damage and changes in the material properties

which could increase the damage accumulation during fatigue.

Known responses of the 5260 Matrix

Boyd et al. [41] presented results that show the effect of postcure on the

strength on different 5260 systems. The effect of a six hour post cure on compression

after impact and open hole compression strength was shown to improve material

properties until the aging temperature was raised above 215°C [41]. Martin et al. [42]

JU
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showed an increase in Eu during the first 1000 hours of aging and an increase in E22 

until microcracks began to develop. The longitudinal modulus of a [±45]2s laminate 

was also shown to increase. In another study Tuttle et al. [43] demonstrated an 

increase in axial stiffness of [0]g specimens after isothermal aging under load.

Not only can exposure to temperature change the mechanical properties of the 

material, but it can also cause shrinkage of the material. Martin et al.[42] showed that 

shrinkage occurred during unloaded isothermal aging. A strain gaged [30°] 12 specimen 

of IM7/5260 shrank during isothermal unloaded aging at 175°C. Tuttle et ai.[43] has 

also noticed the development of surface damage that appeared as matrix regions in the 

surface plies shrinking in isothermal long term tests. Composite materials containing 

5260 as the matrix material, when exposed to elevated temperature, show changes in 

material properties and shrinkage as demonstrated by other BMIs during cure.

The 5260 matrix has shown signs of oxidative breakdown after aging at 

elevated temperatures. Martin et. al.[42] reported extensive cracking of a cross ply 

laminate after a long-term exposure to a temperature of 175°C after 5000 hours and 

moderate damage after aging 5000 hours at 125°C. Weight loss was also shown to 

continually increase during aging at 175°C [42].

The 5260 matrix has demonstrated characteristic effects of curing and oxidative 

breakdown when exposed to elevated temperatures for extended time periods. These 

studies on 5260 demonstrated that the process of chemical aging causes changes in the 

mechanical performance of the PMC when exposed to elevated temperature. It is

V
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believed that these changes will influence the fatigue performance of the OHT 

specimens.

Fatigue Damage Accumulation Process
The mechanism that is expected to play the greatest role in the degradation in

performance during fatigue testing is damage accumulation. As damage accumulates, 

the stiffness and strength of a laminate will decrease. The damage will accumulate until 

the stress in the load bearing plies causes fibers to fail, resulting in failure of the 

laminate. Lower loads will result in longer fatigue lives but also cause greater amounts 

of damage before failure [19].

There are four basic mechanisms of damage considered in the literature: matrix 

cracking, delamination, fiber failure, and fiber break with interface debonding. During 

the majority of the fatigue life of a composite, the dominant damage modes are limited to 

delamination and matrix cracking[19]. Delamination occurs early in the fatigue life of 

the composite[32], and is seen as a failure between the laminae when the interface fails. 

It is caused by the high inter-laminar stresses present in these materials due to their 

anisotropy. These stresses can be estimated from analytical models[32] and depend 

highly on the material’s properties, stacking sequence, and applied loading. The matrix 

in a single ply can fail in two different ways, parallel to the fiber and normal to the fiber. 

The most common form of matrix cracking is the cracking of a layer parallel to the 

fibers. This is caused by loading perpendicular to the fiber direction or by 

mismatching Poisson’s ratio between layers. Damage can also accumulate normal to

t
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the fiber orientation in the form of micro-cracking and fiber failure. Fiber failure 

occurs near the end of the fatigue life before the whole laminate failure.

The process of room temperature fatigue failure of an unnotched specimen is 

explained in many other sources [27, 28], but the general process can be explained as 

follows. First ply failure is the initial cracking of the weakest ply and usually signifies 

the initiation of fatigue damage. Next, matrix cracks form parallel to the fiber 

orientation. These transverse matrix cracks continue to accumulate in the weakest ply 

until a characteristic crack density is reached. After or during this crack accumulation 

in the weakest ply, more cracks can begin to develop in the next weakest ply. Cracks 

in adjacent plies or the same ply can be joined by delamination. Delamination may 

also form along free edges. Matrix cracks can grow into adjoining layers along free 

edges and initiate new cracking. The cracks and delaminations continue to multiply. 

This is continued until some limit of damage is reached and the fibers in the loading 

direction break causing the failure of the laminate.

The damage results in loss of stiffness. Models have been proposed that relate 

laminate stiffness to the development of damage [44, 45]. Because of this reduction, 

stiffness of a laminate has been used to quantify the level of damage in test specimens [7, 

19]. Researchers have used techniques such as edge replicate to determine the extent of 

external damage[l]. By monitoring stiffness and damage along the exposed edges, 

inferences of internal damage states can be made.

Room temperature effects of damage in open hole specimens are well 

understood[27,28]. When a stress concentration such as a notch is added, the process is

A

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



13

similar to the unnoched laminate fatigue although the stress concentration will cause 

damage to propagate faster. This leads to an interesting effect for open hole specimens. 

As damage increases, delamination and matrix cracking reduce the stress concentration 

around the hole. This causes an effective “blunting” of the notch resulting in an increase 

in strength of the specimen from the un-fatigued state.

When fatigue testing is performed on an interleave toughened composite, the 

toughened material slows damage accumulation. The addition of an interleave slows the 

initiation and propagation of delamination. Matrix cracking is slowed in its propagation 

from ply to ply. Since the interleaves slow the accumulation of damage, when an 

interleaved material contains a stress concentration, the reduction in stress concentration, 

caused by “blunting”, occurs at a slower rate and to a lesser degree[29]. This results in a 

reduced strength when compared to the non-interleaved composite.

It is believed that the process of aging will interact with the damage accumulation 

process. These interactions should visible in the residual strength although it is unknown 

how aging will affect the reduction is the stress concentration caused by damage 

accumulation.

if
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CHAPTER HI 

TEST PROCEDURE AND EQUIPMENT 

Experimental Program
One type of specimen configuration that has been used to assess mechanical

performance of PMCs is the open hole tension (OHT). This is a common specimen 

configuration which is well suited to studies in which fatigue damage accumulates. 

One of the advantages of the OHT specimen is that damage accumulates around the 

area of the strain concentration adjacent to the central open hole. Previous 

investigations using the OHT test have typically focused on the room temperature 

fatigue and static behavior, with little data being generated on the interaction of 

temperature and stress[18,26-30].

To develop an understanding of the individual effects of temperature and 

fatigue loading, the experimentation investigation was divided into two parts. The first 

part consisted of an investigation to determine the effects of elevated temperature and 

fatigue loading on the response of OHT specimens. The loads and temperatures were 

varied from relatively benign conditions (low stress, room temperature) up through 

aggressive conditions (high stress, high temperature). The OHT fatigue investigation 

provided information on changes in the PMC’s stiffness, damage accumulation, and 

residual properties. The isothermal aging of unloaded OHT specimens allowed 

comparison of changes in damage accumulation and residual properties caused by the 

fatigue loading and provided insight into the individual effect of temperature. The 

second portion of the investigation was an unloaded physical properties study. This
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investigation provided information on how unloaded isothermal aging would effect 

weight loss and the glass transition temperature of the PMC.

Three approaches were used to determine the effect of elevated temperature 

fatigue on the OHT specimens. First, the stiffness of a gage section centered around 

the open hole provided information on the mechanical properties of the OHT specimen 

during the fatigue tests. The monitoring of this stiffness provided insight into the 

combined effects of damage and aging. Second, the specimen was nondestructively 

evaluated after the fatigue test to determine the damage accumulation due to fatigue 

loading or isothermal aging. Careful monitoring of the load induced damage could 

account for any observed stiffness loss. Finally, the previously fatigued OHT 

specimens were failed statically to determine effects of fatigue damage and aging on 

stiffness and residual strength. In order to understand the differences from room 

temperature OHT fatigue results found in the literature, special emphasis was paid to 

understanding the individual effects of temperature and stress.

While the OHT investigation provided information on the combined effects of 

fatigue loading and elevated temperature on the performance of the OHT specimens, 

the physical properties investigation provided information on how exposure to elevated 

temperature alone would change the graphite/BMI material during the fatigue tests. 

The physical properties investigation measured weight loss and changes in glass 

transition temperature (Tg) as the result of isothermal aging. Measurements to 

determine the glass transition temperatures were made using thermo mechanical 

analysis (TMA) and dynamic mechanical analysis (DMA). As outlined in [46], the

JL'
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I measurement of weight loss and Tg can provide information on oxidative stability and

chemical aging.

The OHT and physical property investigations provide information on the 

processes of aging and fatigue damage accumulation. Results from this work will help 

explain the roles of aging and fatigue damage in the elevated temperature performance 

of the OHT specimens as well as provide insights into the individual and synergistic 

contributions of each process.

Test Specimen

Based on ultrasonic C-scans performed at NASA Langley Research Center, the 

cured panels were determined to be free of manufacturing flaws before machining. 

Test panels were cured using the manufacturer’s recommended procedure. As shown 

in figure 1, the panels were machined into three specimen types: open-hole tension 

(OHT), thermal-mechanical analysis (TMA), and dynamic-mechanical analysis 

(DMA). The DMA specimens were also used to measure weight loss. The OHT 

specimens were 203.2 mm (8.0 in.) long and 38.1 mm (1.5 in.) wide with a 6.35 mm 

(0.25 in.) center hole. These specimens were polished on one edge to enhance visual 

inspection. DMA specimens were 12.7 mm (0.5 in.) wide by 50.8 mm (2.0 in.) long 

and the TMA specimens were 6.35 mm (0.25 in.) on each side.

After the specimens were machined (and the OHT polished) they were dried for 

24 hours at 110°C and kept desiccated until test time.

Strain Field Investigations

The goal of the research was to determine the individual and combined effects

of elevated temperature and loading on the OHT specimens. The experimental

i
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program was developed and adjusted to meet this goal. Prior to initiating the fatigue 

tests, investigations were made into the effect of the center hole on the strain field of 

the OHT specimen.

Strain field investigations provided information on the strain field around the 

center hole and how temperature affected this strain field. Two strain field studies 

were conducted to understand the strain concentration around the center hole of the 

specimen. The effect of temperature on the stain distribution and stiffness of the 

laminate was measured in a strain gage study. A full field strain measurement was 

made at room temperature using a Moire technique.

Strain Gage

Strain gages were mounted on an OHT specimen as shown in figure 2. In 

addition, an extensometer, as used in the fatigue tests, was mounted on the edge to 

understand the relation between the strain measured at the specimen edge and the 

strain across the width. The 25.4 mm (1 in.) gage length extensometer was mounted 

centered on the 6.35 mm (.25 in.) hole.

Static tests were performed at different test temperatures to understand the 

effect of temperature on the strain field. The specimen was loaded at a rate of 

22.2N/sec to 13300N (3000 lbs.). Strain measurements were taken every 20 seconds. 

Tests were performed at nine temperatures from 23°C to 204°C. (23, 38, 66, 93, 121, 

149, 163, 177,204°C)

Strains measured at the extensometer and those measured by strain gages at 

locations 1, 4, 6 were found to agree to within 8% over the entire temperature range.
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All strains gages away from the hole (I, 4, 5, 7) were also found to be linearly 

proportional to strain measured by the extensometer. This demonstrated that the 

extensometer gave good strain readings in the gage section that were representative of 

strains away from the center hole.

Moire

The Moire technique was used to provide visualization of the strain field 

around the center hole. An array with a frequency of 2400 lines/mm was applied to the 

surface of the specimen. Load was applied at room temperature to the specimen using 

a screw driven load stand. Pictures of the Moire fringe pattern were produced with a 

35mm camera that allowed calculation of the axial strain field using equation 1.

e = ± ( * » y ] (i)
A  Ay

where: f  = frequency of array

ANy = Change in fringe number (i.e. number of fringes)

Ay = Change in axial distance (distance covered by ANy fringes)

A more detailed explanation of the theory and procedure used for Moire can be 

found in reference[47]. Figure 3 shows the fringe pattern for a OHT specimen loaded 

to 81.1 MPa. The fringe pattern in figure 3 indicates that the effects of the stress 

concentration are minimal at the specimen edge and that the strain field at the edge is 

almost uniform. Therefore, it was assumed that the strain measurement taken from the 

extensometer, which attaches to the edge, will not be adversely effected by the stress 

concentration. The fringe pattern of figure 3 also shows that the effects of the stress 

concentration caused by the notch are all contained in the 25.4 mm (lin.) gage section.

JE
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Therefore is was further assumed that most of damage induced by the stress 

concentration would occur in the gage section.

Open Hole Tension Testing

Tests were performed to determine the effect of elevated temperature on the

fatigue and static residual properties. A range of load levels and test temperature were

used to evaluate the material's performance.

The tension fatigue tests were performed on a 222 kN (50 KIP) capacity servo-

hydraulic test stand. Load, strain, actuator displacement and time were recorded using

an automated digital data acquisition system. An environmental chamber equipped

with a viewing window maintained the temperature of the grips and specimen. A long

focal length microscope allowed inspection of the specimen through the oven window.

Alignment and Calibration

Before testing, the servo hydraulic test stand was aligned and calibrated using

standard laboratory practices. Measurements were taken to insure proper alignment of

the test stand. Alignment was checked using a strain gaged aluminum specimen. The

load cell was calibrated for numerous ranges before testing began. This provided a

resolution of 51b for the 12-bit data acquisition board. The extensometer was also

calibrated for a .01 in. range before testing. This provided a resolution of 5 micro-

strain (pe) for the 12-bit data acquisition board.

OHT Testing Conditions

All open hole tension fatigue tests were performed under load control at a

frequency of 1 Hz. with a min./max. stress ratio of R=0.1 and a triangular wave form.

i f
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A minimum of two tests were performed at each condition and tests were concluded 

after 400,000 cycles. This test matrix is summarized in table 1.

In addition to the fatigue load tests, a set of tests were conducted on open hole 

specimens that were aged without load in a oven at the fatigue test temperatures for 

120 hours. This aging time was equivalent to the fatigue time. These tests provided 

information on how the properties of the OHT specimens were affected by elevated 

temperature without load. The specimens were subjected to the same residual property 

tests and damage investigation as the fatigued specimens.

Fatigue loads were chosen to represent a moderate and an aggressive 

condition. Two maximum far field stresses were used, Gmax = 119 MPa (17.25 ksi.) 

and CTmax = 238 MPa (34.5 ksi.) which corresponded to 23% and 46% of ultimate 

strength, respectively. Stresses were calculated using the area of the unnotched cross 

section. These stress levels also corresponded to far field strains of 0.2% and 0.4% 

strain respectively. The 0.4% is the maximum allowable design strain for many of 

these new composite materials[48].

Test temperatures were chosen to represent a range from benign to aggressively 

high temperatures. Tests were performed at 23°C (room temperature), 177°C (350°F), 

191°C (375°F), 204°C (400°F), and 218°C (425°F). The room temperature tests 

provided baseline information. The next highest temperature, 177°C, was chosen to 

correspond to a high use temperature. The 191°C temperature corresponded to the 

temperature during the second step of the cure cycle. The higher temperatures were 

chosen to provide information on accelerated test conditions. It is also interesting to
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note that the highest temperature chosen corresponds to the temperature suggested by

the manufacturer for the six hour recommended post cure cycle.

Mechanical Properties Procedure

Prior to testing, the specimen was centered and squared in the mechanical grips

using preset alignment guides. A 101.6 mm (4 in.) gauge section between grips was

used with 50.8 mm (2.0 in.) in each grip. The specimen was oriented in the

environmental chamber to allow visual inspection of the polished edge using the long

focal distance microscope. A 25.4 mm (1.0 in.) gauge length, high temperature,

capacitance extensometer was centered on the 6.35 mm (0.25 in.) hole and edge

mounted on the unpolished side. Specimens were heated to test temperature and held

for 30 minutes before cycling started to allow for thermal equilibrium.

The measurement of strain and load occurred during specified cycles of the

fatigue test and allowed determination of longitudinal stiffness changes. Readings

occurred logarithmically (1,2,5,10,20...) until 100,000 cycles were reached and then

every 100,000 cycles until the end of the test at 400,000 cycles. During some of the

later tests readings were taken logarithmically until 5,000 or 10,000 cycles and then

continued every 5,000 or 10,000 cycles.

Mechanical Properties Analysis

The effect of fatiguing on the mechanical properties of the specimens was

determined from the load and strain test data mentioned above. Stiffness changes have

been used as an indicator of internal damage [7, 19]. For the current work the stiffness

changes reflected the effect of damage and aging over the one inch gage section.

£
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Stiffness calculations were performed by making a least squares linear fit to the 

stress and strain data as shown in figure 4. Stress was calculated using the unnotched 

specimen area and the load from the data acquisition system. Strain was taken from 

the extensometer attached to the gage section. The fit was performed on the loading 

and unloading data between 5% and 95% of the maximum load for that fatigue cycle. 

This provided an effective stiffness for the notched gauge section.

Once the stiffness had been calculated, it could be plotted as a function of 

cycle counts or aging time for each fatigue test. To aid in comparison of data, all 

fatigue stiffness data was normalized with respect to the initial stiffness (i.e. the 

stiffness at cycle count, N=l). This allowed comparison of fatigue tests over a range 

of temperatures which would have otherwise masked the small changes induced by 

damage and aging. The strain gage study showed that the laminate stiffness decreased 

7.9% when the temperature was raised from 23°C to 204°C. This change was of the 

same magnitude as any changes due to damage or aging during a single isothermal 

fatigue test.

Plotting the normalized stiffness gave an indication of the change in stiffness 

over the duration of the fatigue test as shown in figure 5 and figure 6 Both of these 

figures show the results for a single fatigue test conducted at a temperature of 218°C 

with a maximum load of 119 MPa. Both plots show the normalized stiffness of the 

gage section plotted against the cycle count. Figure 6 shows this on a linear scale. 

Figure 5 shows the same data on a semi-log representation where the normalized 

stiffness is plotted against the log of the cycle count.

J0
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Stiffness measurements were grouped into three regions depending on the rate 

of change of stiffness. The first two linear regions are easily visible on the semi-log 

plot. While third linear region is most easily seen on the linear plot. Fits were 

performed to these regions to aid in the visualization of data. The first two fits were 

conducted by performing least squares reduction (LSR) fits to the semi-log data. The 

third fit was conducted by performing a linear LSR fit to the normalized stiffness vs. 

cycle count. Fatigue data will be presented in the results section with three fits on the 

semi-log plot.

Average results for each test temperature and loading were needed to compare 

the effects of the different test variables. This was complicated by irregular sampling 

rates during the execution of the test matrix. The fits facilitated average results 

calculations for each set of test conditions. Once regions were selected, these three fits 

represented each test by the same number of variables. Average test results were then 

calculated by taking the average of the fits for each range. Results from three fatigue 

tests for one set of testing conditions are shown in figure 7 along with the average for 

the condition (plotted as a solid line). Calculating the average of the fits resulted in the 

equal weighting of each individual fatigue test independent of the sampling rate.

Fatigue Damage Investigation Procedure

The damage investigation of the fatigued specimens consisted of two portions:

an in-situ investigation and a post test examination. The in-situ investigation was 

performed to provide information on the extent of damage as the fatigue tests 

progressed. A monitoring technique was developed to provide visual inspection of

SLi
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damage in the environmental chamber. After the completion of the fatigue test, a 

detailed investigation of the damage was made. The post-test damage investigation 

was performed to determine the extent of damage without affecting the residual 

mechanical properties of the fatigue specimens. This detailed investigation included 

inspection of edge replicates, x-ray radiographs and photo micrographs.

During the test, inspections of the polished edge of the test specimen were 

made periodically with a long focal length microscope to access damage. These 

inspections were performed with the oven closed; the glass window in the oven door 

provided a viewing port. Fiber optic light sources mounted in the oven were adjusted 

for proper lighting. The output from the microscope’s CDC camera was recorded 

using a VCR to provide a record of observations. Before each test was started, base 

line images were taken to determine any initial damage.

Video recordings of the edge were performed on the one inch gauge section. 

This allowed inspection for transverse matrix cracking and delamination to be 

performed during the test. These recordings were made after the data acquisition 

system had taken a stiffness reading which allowed correlation of stiffness with edge 

damage. Due to the extent and nature of the damage, this procedure did not provide 

the useful information expected (explained in the results section). The in-situ damage 

investigation procedure was not performed during the later tests which allowed for 

greater sampling frequency. This was possible because the data acquisition was 

automated and did not require a person to perform data collection.

JL>
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The post-damage evaluation included three inspection procedures. The first 

inspection consisted of making an edge replicate of the gauge section to determine the 

extent of matrix cracks and to compare crack density to the video image made during 

in-situ inspections. The edge replicates were performed on the polished edge of the 

unloaded test specimens. A small amount of acetone was placed on the polished edge. 

A piece of replicate material (acetate) was then placed over the gage section. This 

provided an accurate reproduction of the edge that could be viewed in a microfiche 

reader or microscope. The number of transverse matrix cracks in each ply along the 

gauge section were recorded.

The second inspection, a visual investigation, was made of the polished edge 

using a microscope. This investigation was made to find characteristic damage 

patterns or surface characteristics that might be associated with the temperature and/or 

loading conditions. Magnifications raged from 60X to 1500X. Photographs were 

taken using Polaroid Type 53 Instamatic Land camera film at different magnifications. 

Damage measurements of transverse matrix cracks in each ply were again recorded for 

the entire gage section.

Finally, X-ray radiographs, were made to investigate the internal damage. A 

zinc iodine die penetrant was used with the composite specimen. This penetrant was 

placed on the edge of the specimen and the specimen was gently flexed and then 

allowed to set. Then the specimen was placed on Polaroid Type 53 Instamatic Land 

camera film and the x-ray radiographs were made under no load. These radiographs 

were inspected for evidence of possible delamination and depth of matrix cracking.

£
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Fatigue and Isothermal Aging Damage Analysis

This investigation of the OHT specimens was made to find damage associated

with the temperature and/or loading conditions. The in-situ damage investigation

allowed observation of general laminate edge condition. Attempts were made to

correlate this with internal damage. Edge replicates provided basic post-test damage

estimates. Total cracks per inch and cracks per ply orientation per inch were

calculated. The edge replicate allowed easy measurement of matrix cracking.

Although the edge replicates showed edge damage, a microscope was also used

to view the edges of specimens. It was found that microscopic inspection provide a

clearer picture of damage than the edge replicates. A sample picture from the

microscope and an edge replicate are shown in figure 8. The microscopic inspection

not only provided more accurate information on edge matrix cracking but also showed

changes in the surface characteristics due to temperature and loading.

The x-ray radiographs were the most useful measurement of damage since they

allowed insight into the internal damage state of the laminate. Information was

provided on general matrix cracking in the laminate and damage located around the

center hole. Matrix cracking, delamination and axial splitting could all be measured

from the x-rays. The extent of damage provided insight into changes in stiffness and

residual properties.

Residual Properties Procedure

After investigation for post-fatigue damage, the specimens were loaded in static

tension until failure at room temperature. This allowed a comparison of the different
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fatigue or isothermal aging conditions on the remaining strength, stiffness and ultimate

strain of the material.

The static tests were performed on a 88 kN (20 KIP) servo-hydraulic test stand

equipped with an automated data acquisition system. The specimen was centered and

squared in the hydraulic wedge grips using preset alignment guides. A 127.0 mm (5

in.) gauge section between grips was used with 38.1 mm (1.5 in.) in each grip. Tests

were performed in stroke control at a ramp rate of 1 mm/min (.025 in./min). This

speed was chosen to insure an entire test time between I and 10 min. for all tests. Two

25.4 mm (I in.) gauge length extensometers were mounted on the edges and centered

with respect to the hole to provide strain data. Load and strain were recorded on half

second intervals during the test. All static tests were performed at room temperature

and continued to failure.

Residual Properties Analysis

Residual properties calculations and analysis are illustrated in figure 9.

Residual properties calculations consisted of ultimate strength, ultimate strain, and

secant modulus. Ultimate stress was calculated using the area of the unnotched cross-

section and the highest load carried by the laminate. Ultimate strain was measured as

the largest strain carried before failure. The secant modulus was calculated between

the values of 10 0 0 ^  and 3000pe.

Physical Properties Testing

The effects of aging at temperature on the composite material during the

fatigue testing was determined through a physical property investigation. The physical

i
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properties that were measured consisted of weight loss and glass transition temperature 

(Tg).

Physical Properties Test Conditions

Physical property measurements were performed after every 24 hours of aging

for five days at all fatigue testing temperatures. Tests were performed at 23°C (70°F),

177°C (350°F), 191°C (375°F), 204°C (400°F), and 218°C (425°F). Two TMA and

DMA specimens were used for each time and temperature condition. Test conditions

are summarized in the test matrix shown as table 2. TMA and DMA were both used to

determine Tg before and after aging. Glass transition temperature tests were run on

specimens that had been dried but not exposed to any additional thermal history to

provide unaged Tg measurements.

Weight Loss and Glass Transition Procedure

After drying and prior to testing, DMA specimens were removed from the

desiccator and weighed to within ±.0000 Ig using an analytic balance. The ovens were

open for the period of time required to remove the specimens and then closed

immediately, causing only a minor temperature fluctuation. After completion of the

aging, the DMA specimens weighed to determine weight loss. After weight loss was

measured, the TMA and DMA tests were performed to calculate Tg. Weight loss was

calculated using equation 2 and was plotted as a function of aging time for all test

temperatures.

Winirial —1 W final .  _  / a \
w ioss = --------------------- -—  x 100% (2)

W inirial
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TMA tests were conducted with a 50.0 mN load. The material was heated from 

room temperature to 400°C at a rate of 10°C/min. Glass transition was taken as the 

point were the coefficient of thermal expansion (CTE) of the material changed. The 

Tg was taken at the first major inflection point on the deflection vs. temperature plot. 

Figure 10 shows TMA results for T= 191°C and t=72 hours. Tg was calculated to 

occur at 3 17.75°C in figure 10. In addition to Tg, CTE was calculated for the material 

between the temperatures of 75°C and 175°C.

DMA tests were also conducted to determine Tg. DMA tests were performed 

from room temperature to 400°C at a rate of 5°C/min. Glass transition temperature 

was taken as the peek of the tan delta curve. Figure 11 shows DMA results for T= 

219°C and t=96 hours indicating that the Tg occurred at 293.7°C.
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Table 1. Number of fatigue tests at each condition.

Temperature
Stress Level

CTma x  = 119 Mpa C T m a x  = 228 Mpa
Base Line

No Load 
Aged 120 Hours

2 ? C 2 2 2
177° C 2 2 2
191°C 2 2 2
204° C 2 2 2
218TC 2 2 2

Table 2. Number of physical property tests at each condition.

Time
(Hours)

Test
TMA DMA Weight

Loss
0 2 2 -

24 2 2 2
48 2 2 2
72 2 2 2
96 2 2 2
120 2 2 2

Jtf
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6.35 mm 
(0.25 in)

TMA Specimen
203.2 mm 
(8.00 in)

6.35 mm DIA HOLE 
(.250 in)

12.7 mm 
(0.5 in)

r ■

101.6 mm 
(4.00 in)

50.8 mm 
(2.00 in)

DMA/Weight Loss Specimen38.1 mm. 
(1.50 in)

Open Hole Tension Specimen

Figure 1. Specimen configurations.
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Mounted on center hole edge

22.4
mm

22.4 mm gage length 
extensometer centered 

on 6.35 mm hole
6.35 mm

Mounted on back side

Figure 2. Strain gage and extensometer placement on OHT specimen 
used for strain field study.
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Figure 5. Normalized fatigue stiffness of OHT specimens plotted as a function of 
the log of the cycle count.
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CHAPTER IV 

EXPERIMENTAL RESULTS 

Physical Properties Investigation
Weight Loss

Measurements of weight change after isothermal aging without mechanical 

load were made at all test temperatures to determine the extent of oxidation or loss of 

volatiles occurring over the 120 hour test period.

The results, shown in figure 12, indicate that weight loss does indeed occur at 

all temperatures and that there are distinct differences due to aging temperature. The 

figure shows the percent weight loss as a function of the aging time for each of the four 

elevated testing temperatures. Two replicates were used for each measurement. 

Figure 12 indicates that very little scatter was observed in the weight loss data.

As temperature is increased so is the weight loss which is demonstrated by 

comparing the final values shown for each temperature. For the lower test 

temperatures, 177°C and 19l°C, a constant level of weight loss was obtained after the 

first 24 hours of aging and maintained for the remaining portion of the 120 hour test. 

At 204°C and 218°C the amount of weight loss continued to increase throughout the 

duration of the test.

Tg Results

Further evidence of material property changes due to aging was given by 

measurements of changes in Tg of the composite after 120 hours of isothermal aging. 

Figures 13 and 14 show the measured values for Tg during aging for the 120 hour test
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duration. The first shows the glass transition temperatures provided by the DMA tests, 

and the second shows the glass transition temperature measured from the TMA tests. 

Although the specific values change depending on the testing measurement (higher for 

DMA as expected) the trends are similar.

As shown by the DMA results in figure 13, the Tg increased after aging at all 

of the fatigue test temperatures. Glass transition results for the DMA were taken as the 

peak in the tan delta curve. Unfortunately, the 204°C and the 177°C specimens were 

exposed to ambient conditions for several days prior to measuring the Tg. The 

moisture gain during this time may have caused the Tg of the material to decrease.

Open Hole Tension Investigation
The open hole tension investigation consisted of three areas of investigations

for the aged and fatigued OUT specimens. The first area was the extensive post 

fatigue/aging damage investigation and the in situ damage investigation. 

Unfortunately, the in-situ investigation yielded very little useful information. The 

second area of investigation was determining the mechanical condition of the OHT 

specimen during the tests. As mentioned in the procedures, the mechanical properties 

of the OHT specimen were monitored by stiffness measurements of the gage section. 

The third area of investigation was the effect of the aging/fatigue time on the residual 

properties of the material.

The results are presented in this order so that damage information can be used 

to help explain later fatigue results and residual properties results.
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Damage Investigation Results

The post aging/fatigue damage investigation consisted of two parts: a visual

inspection of the edge of the laminate that provided information on matrix cracking

and an x-ray radiograph that provided information on internal damage. In addition to

an investigation for damage, a visual study of the aged OHT specimens was made to

determine the effects of temperature

Edge damage was measured optically over the 25.4 mm (1 in.) gage section of

the fatigued and aged specimens. The post-test damage investigation revealed that

most visible edge damage consisted of cracks in the 90° plies. The extent of edge

damage (crack density) in these plies are summarized in figure 15. This plot shows the

average number of cracks per millimeter in 90° plies of the gage section. The data is

presented for all three loading conditions, (no load, 119 MPa, and 238 MPa) and all

five test temperatures.

For the no load condition, matrix cracks were not detected for aging

temperatures below 191°C. Despite the absence of load, edge cracks developed at

204°C and 218°C. The room temperature specimens fatigued at the low stress level

also showed little or no matrix cracking. For all three loading conditions it was

observed that as test temperature was raised the number of cracks per millimeter

increased. The highest crack density occurred at the highest stress level and highest

temperature. At the higher temperatures, (204°C and 218°C) extensive matrix cracking

was present for isothermal aging and both fatigue loading conditions.

i
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X-rays were performed on the OHT specimens after they were fatigued or 

isothermally aged. The internal damage is shown in x-ray radiographs in figures 16- 

20. Each of these figures shows the x-ray results for one test temperature. The high(a) 

and low(b) fatigue load tests are both shown in each figure. The radiographs of the 

isothermally aged specimen which showed no internal damage are not shown.

The specimens that experienced the higher fatigue stress showed the most 

extensive internal damage. Matrix cracking, axial splitting and delamination were all 

visible in x-rays of the high stress case. Internal damage did not increase with the 

increase of test temperature as the edge damage implied. The most extensive damage 

was visible in the specimen tested at room temperature. At room temperature, the 

matrix cracks extended from the free edge towards the center hole and from the center 

hole to the edge. The length of these cracks decreased as temperature increased (Fig. 

I6a-20a).

The unloaded and low fatigue stress level tests produced very little internal 

damage that could be detected from the radiographs. The unloaded specimens showed 

no internal damage. The low load damage did not vary noticeably with temperature 

and consisted mainly of a very small area of matrix cracking and delamination around 

the center hole (Fig. 16b-20b).

Matrix cracking was not visible on the x-rays (Fig. I6b-20b) even though it 

was highly visible during the edge investigation. Internal matrix cracking was visible 

on other x-ray radiographs when they were of relatively short lengths.

£
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The in-situ damage investigation was conduced to correlate stiffness loss with 

damage. This was based on the premise that edge damage would provide information 

on the internal matrix cracking and this could explain any loss in stiffness. This 

research could have been used correlate experimental data with a damage mechanics 

model such as the one developed by Harris, Allen and Coats[l-5]. Since it was found 

that edge damage did not represent internal damage, the in-situ damage investigation 

was abandoned. The matrix cracking in the video image was usually slightly visible 

after the after 48 to 72 hours. As the testing continued the edge damage became more 

and more defined. This damage did not correlate well with internal damage, loading, 

or changes in stiffness.

Fatigue Stiffness Results

Using the isothermal stiffness measurements taken during the fatigue tests, the

effects of stress level and test temperature were examined. The format for presenting 

all of these results are plots of normalized longitudinal modulus versus the log of cycle 

count. Each data set represents an average of a least two replicates. The test data for 

individual tests is show in the appendix-1. To facilitate examination of the effects of 

temperature on stiffness changes during fatigue, condition averages for all 

temperatures were plotted for each stress level. Figure 21, was for the low stress level 

cases while figure 22 was for the higher stress case.

The low stress level cases shown in figure 21 illustrate the dependence of 

stiffness on test temperature. In a manner similar to the room temperature data of [1], 

the lower two test temperatures show a total net loss in stiffness over the fatigue test
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duration. As the temperature was raised, the rate of stiffness change (after the first 

1000 cycles) increased. The data in figure 21 indicates that as the temperature is 

increased so is the rate of stiffness change. The largest rate and total increase in 

stiffness was associated with the highest test temperature, 218°C.

For the high stress case, the data given in figure 22 also indicates that as the 

temperature is increased so is the rate of stiffness increase. The lower two test 

temperatures show a total change in stiffness similar to the low stress condition. The 

lower two test temperatures show a loss in stiffness as expected by traditional fatigue 

results during the first 1000 cycles. However, by the end of the test the stiffness had 

almost returned to its initial value. Until the last segment of the test, the 177°C 

specimens yielded a higher normalized stiffness throughout the test than the room 

temperature specimens. As the temperature was raised above 177°C the rate of 

stiffness change continued to increase. The largest net increase (and lowest initial 

drop) in stiffness occurred during the 218°C test due to the effects of aging.

Figures 23-27 show the high and low load level results for each test 

temperature. The effects of stress level during fatigue are shown in table 3. Results of 

the test that was conducted at the highest test temperature, 218°C, illustrate the effect 

of fatigue load level and are given in figure 23. Comparing the results for the two 

stress levels reveals that the higher stress resulted in an increased rate of stiffness loss 

during the initial 1000 cycles and increased rate of stiffness gain during the final 

portion of the fatigue test.

JU
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Residual Properties Results

Residual property static measurements were made after the completion of the

fatigue tests to determine the effects of temperature and fatigue loading on the

remaining specimen strength and stiffness. All of these tests were conducted at room

temperature and included the isothermally aged baseline (not fatigued) specimens for

comparison. Data is plotted for all five test temperatures and all load cases.

Residual strength was taken as the maximum load carrying capability of the

laminate during the course of the static test and is explained in the procedure section.

Examination of the data in figure 28 reveals that the highest strength was associated

with the room temperature, high stress case, while the lowest strength was associated

with the high stress, next to highest temperature case. Both high and low stress cases

show decreasing strength with an increase in fatigue test temperature. The baseline

strength values were unaffected by temperature and slightly lower than most of the

strength values for the fatigue tests. These changes in strength due to stress and

temperature are similar to results found by Boyde[41] while researching post cure

cycles for the 5260 matrix material.

Residual stiffness in the gage section was unaffected by the fatigue stress level

or temperature (Fig. 29). The results for all cases were similar to the baseline test

values.

*
£
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Table 3. Rate of stiffness change in age section for different fatigue load and
temperatures

Temperature

d r n a x  = 119 MPa

% increase in 
normalized 
stiffness per 

decade increase 
in cycles

(T rnax  = 238 MPa

% increase in 
normalized 
stiffness per 

decade increase 
in cycles

CTmax = H 9

MPa 
% increase in 
normalized 
stiffness per 

100,000 cycles

(T m ax  = 238 MPa

% increase in 
normalized 
stiffness per 

100,000 cycles

23°C -0.16 -0.20 0.02 0.17
17TC -0.07 -0.08 0.03 0.06
191°C -0.08 -0.15 0.16 0.13
204*0 0.12 -0.02 0.06 0.19
218TC 0.08 -0.20 -0.08 0.55
range AT <2000 100.000 £ AT

£
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CHAPTER V 

SUMMARY AND CONCLUSIONS

Summary

Physical Properties

Chemical aging consisted of two distinct mechanisms that are inter related. 

Chemical aging includes continuation of the cure and oxidative break down. While 

the curing effect is present at all of the elevated test temperatures the oxidative 

breakdown only appears above 19l°C. The 177°C and 191°C aging tests experienced 

an initial weight loss during the first 24 hours which then stabilized. The 204°C and 

218°C aging tests showed weight loss that continued to increase during the entire 120 

hour aging times. This increasing weight loss trend was most extensive at the highest 

test temperature. These results demonstrate problems with the materials thermal 

oxidative stability. Exposure to elevated temperature also caused shifts in Tg which 

were indicated by both the TMA and DMA data. These shifts indicate that the 

material continued to cure during aging at all elevated test temperatures.

The changes in the glass transition temperature increase with aging 

temperature. The 218°C data showed a greater increase in Tg than the 19l°C data, and 

the 204°C data showed a greater increase in Tg than the 177°C data. Since the 191°C 

and the 204°C data set specimens were exposed to ambient conditions and allowed to 

absorb moisture, the Tg measured for these temperatures is lower. No direct 

comparison can be made between the specimens that were exposed to ambient 

conditions and those that were not since the magnitude of the effect caused by the

i
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moisture absorption is unknown. Although no direct comparison is possible, it was 

evident that increasing aging temperature increases the effects of aging (indicated by 

increases in Tg) which is shown by both TMA and DMA data.

Laminate Damage

The level of internal damage was primarily governed by the stress level and not 

temperature. Radiographs of the higher load showed substantial internal damage at all 

test temperatures while the low load condition showed minimal damage. At the higher 

load, where significant levels of damage were present, increasing the test temperature 

actually decreased the length and number of internal matrix cracks. The decrease of 

damage as the temperature increased could have been dependent on the behavior of the 

matrix material. As the temperature is increased, the stiffness of the matrix decreases 

and so does its tendency to crack. This resulted in the worst internal damage occurring 

at the high stress, room temperature case.

Increasing the test temperature produced increased levels of edge cracking. 

The highest amount of edge damage occurred at the highest load level and highest 

temperature. At the higher temperatures, 204°C and 218°C, extensive matrix cracking 

was present at all of the loading conditions including the unloaded aging. The edge 

cracking is deceptive if taken alone to represent extensive internal damage since the 

high and rather constant level of matrix cracking at the highest temperature could be 

taken as a point where some characteristic damage state, or matrix crack saturation has 

occurred [7, 19]. A saturated internal damage state was not demonstrated in the x-ray 

radiographs. These results demonstrated that for the elevated temperature OHT test,
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edge damage alone can not be used as a clear indication of the extent of internal 

damage.

Chemical aging resulted in the breakdown of the composite as shown by the 

weight loss data. As stated in the physical properties section, the weight loss 

demonstrated problems with thermal oxidative stability. This chemical aging damage 

is a surface phenomena not observable on the x-rays due to its shallow depth of 

penetration. The high levels of edge damage at 218°C do not represent characteristic 

damage from the fatigue loading but represent an effect of chemical aging. This 

explains why the unloaded isothermally aged specimens showed similar levels of 

damage as the fatigued specimens.

Fatigue Stiffness

The effects of aging on stiffness during fatigue are most clearly demonstrated 

by the low stress level fatigue results (figure 20), since damage was not a major 

influence. The low stress level fatigue tests had minimal and equivalent damage for all 

temperatures tested. The changes in stiffness during fatigue follows trends expected 

from curing of BMI materials. As the temperature is increased so is the rate of cure 

and the final extent of cure[l 1-14], This was demonstrated in the fatigue stiffness and 

Tg results since stiffness and Tg are governed by the extent of cure.

As temperature was increased the effects of aging on stiffness increased up to 

191°C. This trend is easy to see in the figure of the low stress results (figure 20). This 

trend seems to change near 191°C and 204°C where the higher rate of stiffness increase 

occurred with the lower temperature (19l°C). The 191°C data and the 204°C data for
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the high and low load cases are plotted in figures 30 and 31, respectively. A plausible 

explanation results from an examination of edge damage. Although edge damage is 

not a good indicator of internal damage it is a good indicator of thermal oxidative 

breakdown. At 204°C the unloaded OHT specimens displayed extensive edge 

cracking while the 191°C specimens aged without load showed no cracks. In addition, 

at 204°C the specimens displayed continued weight loss throughout while the 191°C 

specimens did not. These changes, that occur at 204°C, indicate a temperature 

dependent breakdown of the material that could have influenced the trend of stiffness 

increase.

The high load stiffness results (figure 22) show the effects of both aging and 

damage. In contrast to the low load fatigue results, the high stress x-ray data illustrated 

extensive damage at all temperatures. The effect of damage at elevated temperature is 

shown in the high load data. When compared to the low load results the high load 

results show a greater stiffness loss during the first 1000 cycles and stiffness values 

were generally lower than during the low load results. In addition the high load result 

have a lower normalized stiffness during the fatigue tests than low lad results.

The complexity that occurs in interpreting stiffness data when the effects of 

aging and damage are combined are demonstrated by the 177°C data (figure 26). The 

high load case demonstrated much more damage than the low load case even though 

the stiffness during their respective fatigue lives are nearly identical. These results 

show that stiffness is not an effective metric for internal damage when aging effects are 

present.
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Residual Static Properties

Residual strength was taken as the maximum load carrying capability of the

laminate during the course of the static test as explained in the procedure section.

Examination of the data in figure 28 reveals that the highest strength was associated

with the room temperature high load fatigue case while the lowest strength was

associated with the high load fatigue and next to highest temperature. The baseline

strength values were lower than the strength values for most of the fatigue tests as

expected since there was no blunting of the stress concentration due to damage. At

room temperature an increase in fatigue load increases damage and results in increased

residual strength of the specimen. The high load, room temperature tests showed the

highest strength and greatest level of internal damage.

Both high and low stress fatigue data show decreasing strength with an increase

in test temperature. The decrease in strength with the increase in temperature for the

high fatigue load can be explained since the amount of internal damage decreases with

an increase in temperature. As temperature increased, the blunting caused by damage

decreased. At the low fatigue load, where minimal damage was present, the strength

also decreased with an increase in the temperature during fatigue testing. This

observation demonstrates that even when internal damage is minimal or undetectable,

aging can affect the specimens strength.

Small changes in residual static stiffness were observed during monotonic tests

of the previously fatigued specimens, as shown in figure 29. The highest stiffness was

associated with the 191°C, unloaded specimens while the lowest stiffness was

JL

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



67

associated with the unloaded baseline specimens at the highest aging temperature. The 

trends that are apparent in fatigue stiffness data are not apparent in the static stiffness 

data. This is because the static modulus results are based on only two tests, so the 

specimen to specimen could hide trends of a small magnitude. Since the fatigue test 

were performed on specimens from many different panels, unlike the unloaded aging 

study, small variations in static stiffness are expected. In addition, the placement and 

alignment of the extensometer could add to the uncertainty of each test. Because the 

fatigue data was normalization, many of these problems of alignment and specimen 

variation were not present in the fatigue results.

Conclusions

The objective of this research was to determine the effects of elevated 

temperature and fatigue loading on a graphite/bismaleimide composite. These 

responses were then related to physical processes known to cause changes in the 

mechanical performance of PMCs. Two processes that change the mechanical 

performance during elevated temperature fatigue were evident. These mechanisms 

were aging and fatigue damage accumulation.

The chemical aging consisted of two individual parts; continuation of cure and 

oxidative breakdown. The presence of chemical aging was shown by the physical 

properties tests. The continuation of cure was demonstrated by the shifts in Tg. The 

measured increases in glass transition temperature of the G40-800/5260 material 

demonstrated that over time the elevated test temperature advances the extent of cure 

in the matrix. The TMA and DMA data also established that higher test temperatures

if
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caused greater curing effects. Extended exposure to extreme environments also caused 

thermal oxidative breakdown. This was illustrated by continued weight loss over time 

and the presence of aging induced edge damage on the unloaded and fatigued OHT 

specimens.

Open hole tension fatigue tests of the composite at elevated temperatures 

produced stiffness changes in the gage section of the laminate which were dependent 

upon the relative contributions of damage development and aging. During the fatigue 

tests, aging of the polymer in the laminate induced a time and temperature dependent 

increase in stiffness which competed with decreases in stiffness due to load-dependent 

damage. The higher the temperature the higher the rate and level of stiffness gain. 

This phenomenon followed the curing trends in the physical property data.

The residual static properties were demonstrate effects caused by both aging 

and fatigue damage. Aging changed the residual strength of the composite laminate 

when damage was minimal or nonexistent. Increases in OHT static strength occurred 

with the increase in damage around the notch.

Edge damage was shown to be a poor indicator the extent of internal damage 

since the edge damage measurements included effects of chemical aging with the 

effects of internal damage. At elevated temperature the stiffness was also a poor 

indicator of internal damage. The stiffness gained during aging prevented isolation of 

the effects of damage during stiffness measurements.

Increases in Tg, continued weight loss, temperature dependent stiffness 

changes, damage dependent stiffness change, and possibly loading dependent stiffness

JP
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change all affected the mechanical performance. These factors demonstrate that the 

processes of aging and damage accumulation should not be considered separately in 

determining mechanical properties during high temperature testing since they are 

interdependent. Time and temperature dependent interactions are sometimes ignored 

for the sake of economical feasibility of testing but should be considered for accuracy.

It is apparent that use of the OHT test to characterize the elevated temperature 

fatigue performance of G40-800/5260 requires knowledge of the relative contributions 

of aging and damage to the fatigue and post-fatigue behavior. Synergistic 

contributions of effects caused by these processes may result in a net laminate stiffness 

increase for a given temperature and stress level. Properly modeling of the long term 

behavior of materials subjected to use where aging and damage accumulation play 

critical roles requires an understanding of the interactions of these processes.

£
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Figure 30. Detail of normalized stiffness of OHT specimens during the low load 

fatigue tests at 191°C and 204°C.
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