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ABSTRACT

FINITE ELEMENT MODAL FORMULATION FOR PANEL FLUTTER 
AT HYPERSONIC SPEEDS AND ELEVATED TEMPERATURES

Guangfeng Cheng 
Old Dominion University, 2002 

Director: Dr. Chuh Mei

A finite element time domain modal formulation for analyzing flutter behavior of 

aircraft surface panels in hypersonic airflow has been developed and presented for the 

first time. Von Karman large deflection plate theory is used for description of the 

structural nonlinearity and third order piston theory is employed to account for the 

aerodynamic nonlinearity. The thermal loadings of uniformly distributed temperature and 

temperature gradients across the panel thickness are incorporated into the finite element 

formulation. By applying the modal reduction technique, the number of governing 

equations of motion is reduced dramatically so that the computational time of direct 

numerical integration is dropped significantly. All possible types of panel behavior, 

including flat, buckled but dynamically stable, limit cycle oscillation (LCO), periodic 

motion, and chaotic motion can be observed and analyzed. As examples of the 

applications of the proposed methodology, flutter responses of isotropic, specially 

orthotropic and laminated composite panels are investigated. Special emphasis is put on 

the boundary between LCO and chaos, as well as the routes to chaos. A systematic mode 

filtering procedure that helps mode selection without specific knowledge of the complex 

mode shapes is presented and illustrated. Influences of aerodynamic parameters, 

including aerodynamic damping and Mach number, on the panel flutter responses are 

studied. The importance of nonlinear aerodynamic terms is examined in detail. The
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supporting conditions and panel aspect ratio on the onset condition of chaos are also 

investigated as an illustration of optimization among different design options.

Several mathematical tools, including the time history, phase plane plot, Poincard 

map, and bifurcation diagram are employed in the chaos study. The largest Lyapunov 

exponent is also evaluated to assist in detection of chaos. It is found that at low or 

moderately high nondimensional dynamic pressures, the fluttering panel typically takes a 

period-doubling route to evolve into chaos, whereas at high nondimensional dynamic 

pressure, the route to chaos generally involves bursts of chaos and rejuvenations of 

periodic motions. Various bifurcation behaviors, such as the Hopf bifurcation, pitchfork 

bifurcation, and transcritical bifurcation, are observed.

On the basis of the successful applications presented, the proposed finite element time 

domain modal formulation and the mode filtering procedure have proven to be an 

efficient and practical design tool for designers of hypersonic vehicles.
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1

CHAPTER I 

INTRODUCTION

1.1 Preview of Panel Flutter

The very first observation of panel flutter can be traced back: to the mid-1940s. The 

German V-2 rockets encountered flutter problems that resulted in shaking off of the metal 

skin when the rockets flew at supersonic speed. Structural failures due to flutter have 

been reported extensively in aircraft, space shuttles, missiles, rockets, and bridges, 

whenever high speed airflow is involved.

The panel flutter phenomenon is typically self-excited or self-sustained oscillations of 

the external skin of a flight vehicle when exposed to airflow along its surface. The origin 

of this kind of structural instability is the interaction between a fluid, the airflow, and a 

solid, the panel. The unsteady aerodynamic pressure does work on the structure and this 

leads to frequency coalescence, a specific symbol of flutter, between certain vibration 

modes of the panel. Resonance of the coalesced modes amplifies the vibration amplitude 

of the panel so that the panel is fluttering by way of limit cycle oscillations (LCO) or 

chaotically.

Study of panel flutter falls into the domain of aeroelasticity (Bisplinghoff et al.[l]) in 

sense that it results from the interactions among inertial, aerodynamic, and elastic forces. 

Besides panel flutter, there exists another flutter behavior, called wing flutter, which

The journal model used for this dissertation is the AIAA Journal.
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addresses flutter of thin panel/shell wing due to aerodynamic pressure on both sides of 

the structure. Panel flutter occurs in structures like aircraft and spacecraft skin panels that 

experience aerodynamic pressure at one side with the other side adjacent to a cavity, as 

shown in Fig. 1.1. Fundamental theories and physical understanding of panel flutter can 

be found in many books, such as Dowell [2], Librescu [3], and some of the review and 

survey papers in literature that followed.

Prevention or suppression of flutter has long been recognized as an essential design 

criterion in high speed flight vehicles, such as the High-Speed Civil Transport (HSCT), 

the National Aero-Space Plane (NASP), the X-33 Advanced Technology Demonstrator, 

the Reusable Launch Vehicle (RLV), the Joint Strike Fighter (JSF), the X-38 Spacecraft, 

the X-43 Hyper-X program and recently the Quiet Supersonic Platform (QSP) program 

sponsored by DARPA. Extensive research on flutter analyses and related experiments 

have provided a series of tools for designers. Nowadays, due to dramatic advances in 

computer hardware and software, designers depend more and more on

Deformed panel shape

< / / / / / / / / / / / / / / / / / / / / / % ,
Fig. 1.1 Illustration of panel flutter
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analytical/numerical tools. The strong demand for more powerful, accurate and efficient 

numerical computational methods for flutter analysis initiated resurgent research 

activities.

From transonic to supersonic, from supersonic to hypersonic, the enhancement in 

flight speed is an ultimate goal of aircraft/spacecraft design. For panel flutter analysis of a 

vehicle flying at hypersonic speed, most of the experiences and expertise accumulated by 

generations of aeroelasticians through supersonic panel flutter analyses can be inherited 

and exploited. The major topics, such as choices of aerodynamic theory, linear/nonlinear 

structural dynamics model, analytical/numerical approach to apply, considerations of 

effects from system parameters, and so on, remain the same for hypersonic flutter 

analysis as for supersonic flutter analysis. The literature survey following serves as a 

brief summary of pertinent research and also exposes the necessity of the work carried 

out in the rest of this dissertation research.

1.2 Literature Survey

1.2.1 Flutter Analysis

Theoretical and experimental studies of panel flutter started in the 1950s. Research 

and findings conducted in the early stage were summarized by Fung [4] and Johns [5, 6]. 

hi a later survey paper by Dowell [7], the author grouped a voluminous theoretical 

literature on panel flutter into four basic categories based upon the structural and 

aerodynamic theories employed, as shown in Table 1.1. The table is taken from a recent 

review paper by Mei et al. [8]. Augmentation of the fifth type of analysis is attributed to 

Gary and Mei [9] on consideration of hypersonic panel flutter analysis theory proposed
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4

by McIntosh [10]. A review on the specific topic of hypersonic panel flutter analysis was 

given by Reed et al. [11] in support of the NASP program. There are also review papers 

about certain types of flutter analysis listed in Table 1.1, such as the review papers 

concerning application of the finite element method to type 3 and type 3 panel flutter 

analysis by Bismarc-Nasr [12,13] and a review of various analytical methods including 

the finite element approach for nonlinear supersonic panel flutter type 3 analysis by Zhou 

etal. [14].

Table 1.1 Panel Flutter Analysis Categories

Type Structure Theory Aerodynamic Theory Range of Mach No.

I Linear Linear Piston V2<M„ <5

2 Linear Linearized Potential Flow 1 < < 5

3 Nonlinear Linear Piston V2<M„ <5

4 Nonlinear Linearized Potential Flow 1 <M„ <5

5 Nonlinear Nonlinear Piston M„ >5

6 Nonlinear
Euler or Navier-Stokes 

Equations

Transonic, Supersonic, 

and Hypersonic

Because of the mathematical simplicity of linear structural theory, the majority of 

preliminary flutter analysis belongs to linear panel flutter analysis of type 1 or type 2. 

Representative works are Hedgepeth [15], Dugundji [16], and Cunningham [17]. Clearly, 

as indicated in the review paper by Dowell [7], panel flutter analysis using linear 

structural theory is incapable of accounting for structural nonlinearities. Linear structural
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5

theory indicates that there is a critical dynamic pressure above which the panel motion 

becomes unstable and grows exponentially with time. In reality, when the vibration 

amplitude of the panel gets large, the panel extends also. This in-plane stretching 

introduces significant membrane tensile forces (Woinowsky-Krieger [18]) so that the 

bending of the panel is restrained within a limited range, which is termed as limit cycle 

oscillation. This stabilizing effect due to nonlinear membrane stresses must be addressed 

when the amplitude of LCOs is of interest. Linear panel flutter analysis usually is only 

used to predict flutter boundary and frequency. Some researchers, such as Eisley [19], 

Houboult [20], Fung [21], and Bolotin [22], employed nonlinear structural theory in the 

determination of flutter boundaries. Since LCO is not involved, such analysis is actually 

partial nonlinear. Full nonlinear panel flutter analysis can be found in a vast amount of 

literature. The von Karman large deflection theory [23] is widely used to account for 

geometric nonlinearity, and has been successfully applied to the nonlinear panel flutter 

problem. Despite the comparative consistency on which nonlinear structural theory to 

use, various linear aerodynamic theories have been employed. The most popularly 

adopted is the quasi-steady first order piston theory [24], which is applicable for flow

speed of Mach number greater than V2. Dowell [25-27] applied the full linearized 

potential flow aerodynamics for LCO behavior of plates in airflow with Mach number 

close to one. The quasi-static Ackeret aerodynamic theory, also known as the static strip 

theory (Cunningham [17]), was applied to nonlinear supersonic flutter analysis by Fralich 

[28].

Linear flutter analysis generally solves for the stability boundary through 

eigenanalysis, whereas nonlinear flutter analysis needs special treatment. The prevailing
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6

analysis approaches include direct numerical integration, the harmonic balance method 

and the pertubation method. The very first application of direct numerical integration was 

due to Dowell [26, 27] in study of nonlinear oscillations of simply supported, in-plane 

elastically restrained, fluttering plates. Ventres [29] investigated the nonlinear flutter 

behavior of clamped plates also by direct numerical integration. The procedures of this 

approach include first applying the Galerkin’s method in the spatial domain to the 

nonlinear partial differential equations of motion to yield a set of coupled nonlinear 

ordinary differential equations in time. Then the time numerical integration is conducted 

to simulate the flutter response. The Rayleigh-Ritz method, which requires that the 

assumed modes satisfy only the geometric boundary conditions, is another approach for 

approximate spatial expansion of the plate deflection. The harmonic balance method has 

also been successfully applied to nonlinear flutter analysis by some investigators [30-33], 

This method, compared to direct numerical integration, requires less computation time 

but it is extremely tedious to implement. The perturbation method was introduced to 

nonlinear flutter analysis by Morino et al. [34-36]. Good agreement between the results 

obtained by perturbation methods and those by the harmonic balance method was found 

by Kuo et al. [37]. In general, for both harmonic balance and perturbation methods, the 

panel deflection is represented in terms of two to six normal modes.

Some intrinsic limitations obstruct the application of the abovementioned analytical 

approaches to more extensive analysis practices. For instance, Galerkin’s method or the 

Ralyeigh-Ritz method requires reasonable assumptions about normal mode shape 

functions, which must satisfy the boundary conditions of the panel. Generally, panels 

with simple support conditions, such as simply supported or clamped boundaries, are
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mathematically easy to deal with. For complex support conditions, even for a 

combination of simple support conditions, suitable displacement functions may not exist 

or are too complicated to manipulate. The anisotropic material properties of composite 

materials that have extensive engineering applications also make it difficult to analyze 

nonlinear flutter using analytical methods. In view of these problems, researchers have 

resorted to numerical methods such as the finite element method (FEM). Extension of 

FEM to linear panel flutter analysis was initiated by Olson [38] and followed by many 

researchers [39-42]. The application of FEM to nonlinear panel flutter started in 1977 by 

Mei [43] in study of 2-D panel flutter with membrane inertia neglected. The FEM for 

nonlinear flutter analysis can be further categorized as the finite element frequency 

domain formulation and the time domain formulation. The frequency domain formulation 

is well developed and widely applied in solving the flutter boundary (eigenanalysis) and 

studying harmonic LCO. Mei and Rogers [44] incorporated the supersonic flutter analysis 

module for a 2-D panel into the NASTRAN code. Rao and Rao [45] investigated the 

supersonic flutter of 2-D panels with ends restrained elastically against rotation. Mei and 

Weidman [46] were the first to extend the study to the 3-D panel LCO. Effects of 

damping, aspect ratios, initial in-plane forces, and boundary conditions were examined. 

Flutter of a 3-D panel was further investigated by Mei and Wang [47], and Han and Yang 

[48] using triangular plate finite elements. For study of harmonic LCO, a linearized 

updated mode with a nonlinear time function (LUMZNTF) approximation solution 

procedure proposed by Gray and Mei [9] is usually employed [49-51]. In comparison, the 

time domain formulation that involves numerical integration is less documented in 

nonlinear panel flutter analysis. The major obstacles to implementation of the time
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domain formulation are (Green and Killey [52] and Robinson [53]): (i) the large number 

of degrees of freedom (DOF) of the system, (ii) the nonlinear stiffness matrices have to 

be assembled and updated from the element nonlinear stiffness matrices at each time step, 

and (iii) the time step of integration has to be extremely small. Zhou et al. [54] presented 

a finite element time domain modal formulation making use of the modal truncation 

technique in nonlinear panel flutter analysis. Butter responses of isotropic and composite 

panels under combined supersonic aerodynamic pressure and thermal loading were 

investigated. Five types of panel behavior -  flat, buckled, LCO, periodic but 

nonharmonic, and chaotic motions -  were determined through numerical integration of 

governing equations of motion in modal coordinates.

As mentioned earlier, nonlinearities involved with panel flutter arise from two 

aspects: the structural and aerodynamic points of view. For flight vehicles operating in 

the hypersonic regime, unsteady nonlinear aerodynamic theories are more applicable to 

the problem. Aerodynamic nonlinearity was first considered in conjunction with 

structural nonlinearity by Mcintosh [10, 55] and Eastep and McIntosh [56] in panel flutter 

analysis of simply supported 2-D and 3-D panels in hypersonic airflow. The von Karman 

large deflection theory was used to address structural nonlineraity. Two nonlinear 

aerodynamic terms, (8w/dx)2 and ((3w/8x)(3w/dt)), taken from the 3rd order piston 

theory, were added to the linear piston theory to address the aerodynamic nonlinearity. 

The Rayleigh-Ritz approximation is employed in a modal representation of the panel 

transverse deflection. The nonlinear modal equations of motion are then integrated in the 

time domain until observation of LCO. Major findings include: (1) the two nonlinear 

terms proved to be the most important sources of aerodynamic nonlinearity, (2) the
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nonlinear aerodynamic loading introduced a bias of panel motion toward the cavity that 

could be attributed to the overpressurization effects of the additional nonlinear pressure 

terms, (3) aerodynamic loading has no effects on limit cycle frequency and little effect on 

panel stress, (4) contrary to the stabilizing effect from the structural nonlinear membrane 

stress on panel motion, nonlinear aerodynamic loading plays a destabilizing role. The 

interplay between these two mechanisms distinguishes panel flutter at hypersonic speeds 

from that at supersonic speeds. For some system parameters, aerodynamic nonlinearities 

decrease the critical dynamic pressure for panel flutter hence produce a “soft spring” 

effect on the prediction of the stability boundary. A rather later study on 2-D panel flutter 

in hypersonic flow by Gray and Mei [57] using FEM confirmed conclusions 1, 2, and 4. 

The third order piston theory was used for aerodynamic pressure and the significance of 

the nonlinear terms was investigated in detail. Gray and Mei developed the LUM/NTF 

method, which is a generic finite element frequency domain LCO solver. The same 

solution procedure was then extended to panel flutter analysis of a 3-D composite panel 

at hypersonic speeds in their later work [9]. Effects of panel support conditions, panel 

thickness to length ratio, panel aspect ratio, and number of laminate layers on LCO 

amplitude were studied. Good agreement between the flutter analysis by the proposed 

finite element frequency domain approach and the existing analytical methods was found.

A few more contributions on hypersonic flow panel flutter analysis have been made 

by other groups of investigators. Bein et al. [58] studied the hypersonic flutter of simply 

support curved shallow orthotropic panels with uniform temperature distribution due to 

aerodynamic heating. Coupled nonlinear panel flutter modal equations were obtained 

using Galerkin's mehod, and direct time numerical integration was conducted to compute
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the LCO amplitudes. The unsteady aerodynamic pressure from third order piston theory 

was compared to that from the solutions of Euler equations and good agreement was 

found. Nydick et al. [59] continued the study on hypersonic flutter of curved panels by 

considerations of more comprehensive temperature distributions (temperature is a 

function of all three coordinates, x, y, and z), presence of shocks in the flow, and an 

alternative representation of aerodynamic loading. The aerodynamic load is given by 

third order piston theory and it is compared with pressure distributions solved from the 

Euler equations and from the Navier-Stokes equations in light of the viscosity presented 

in practical hypersonic flow fields. The comparisons show that the second and third order 

piston theory compared very well with the aerodynamic load from the unsteady Euler 

equations, however, the Navier-Stokes solutions predict a much lower (up to 60% lower) 

surface pressure than the Euler equations and piston theory. However, the LCO 

amplitudes obtained by Nydick et al compared well with the results by Gray and Mei [9] 

for the case of hypersonic flutter of orthotropic panels. The most recent work by this 

group, Thuruthimattam et al. [60], further extended hypersonic flutter analysis to a 

double wedge airfoil and a 3-D generic hypersonic vehicle. The flutter analysis is 

conducted on basis of an integrated procedure that couples the computational fluid 

dynamics (CFD) solution with structural finite element analysis. Euler and Navier-Stokes 

aerodynamics were primarily used for the aerodynamic loading. However, the aeroelastic 

responses were validated by comparison with results from an independently developed 

aeroelastic code based on third order piston theory. The paper concluded that in a large 

portion of the flight envelope, good agreement is found between the double wedge airfoil 

flutter responses from calculations based on piston theory and those from Euler solutions.
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Only in certain portions of the flight envelope, significant differences are observed 

between Euler based results and Navier-Stokes based solution. As to the 3-D generic 

hypersonic vehicle model, the difference between viscous (Navier-Stokes) and inviscid 

(Euler, piston) solutions on the vehicle is substantially smaller than on the double wedge 

foil.

Another group of studies on nonlinear panel flutter considering aerodynamic 

nonlinearity were given by Chandiramani et al. [61] and Chandiramani and Librescu [62]. 

Panel flutter in high supersonic flow of shear-deformable composite panels was 

investigated. High-order shear deformation theory and aerodynamic loads based on third 

order piston theory were used, and the panel flutter equations were derived using 

Galerkin’s method. The arc length continuation method was used to determine the static 

equilibrium state and its dynamic stability was subsequently examined. Effects of small 

geometrical panel imperfection, airflow direction, uniform in-plane compression on 

flutter boundary were investigated. It was concluded that for moderately thick composite 

panel, shear deformation theory and nonlinear aerodynamic theory are required for 

determination of the flutter boundary. The post-flutter motion of such composite panels 

was also investigated by applying a predictor and Newton-Raphson type corrector 

technique for periodic solution and numerical integration for quasi-periodic or chaotic 

flutter solutions. Results showed that edge constraints normal to the flow appear to 

stabilize the panel, whereas those parallel to the flow do not noticeably affect the flutter 

speed and the immediate post-critical response. Chaotic motions were obtained for 

imperfect panels via the period-doubling scenario and for perfect panels where a sudden 

transition from the buckled state to one of chaos (followed by complicated periodic
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motion) occurred. The near critical points bifurcation behavior of a simply supported 

isotropic panel was recently studied by Sri Namachchivaya and Lee [63]. Third-order 

piston theory and Galerkin’s method were employed. It is found that inclusion of 

nonlinear aerodynamic terms could completely change the bifurcation behavior of the 

panel.

The applicability of various hypersonic aerodynamic theories is still a subject of 

active research. A few examples of such work are listed here for review purposes. One 

effort made by Chen and Liu [64], Chavez and Liu [65], and Liu et al. [66] was to 

develop a unified method for computation of the flow field of hypersonic/supersonic 

airflow that could be applied to aeroelastic problems. Two methods, the perturbed Euler 

characteristics (PEC) method and the unified hypersonic-supersonic lifting surface 

method, were developed. The PEC method is virtually an Euler approximation to the 

hypersonic flow. The method is developed to account for the effect of unsteady Mach 

wave/shock wave interaction and, hence, the rotationality and thickness effects. The 

lifting surface method is intended to generalize the exact three-dimensional linear theory 

for treatments of lifting surfaces in unsteady supersonic flow (Chen and Liu [64]) and to 

include the effects of nonlinear thickness and upstream influence in a unified supersonic- 

hypersonic flow regime. Both methods are proposed for panel flutter applications to 

extend the applicable range of piston theory. However, neither of the two methods could 

ultimately supersede the piston theory. As indicated by Liu et al. [66], because of the 

limitation in available measured data, further validation and applicability assessment of 

the proposed method are warranted. Another concern from the fluid mechanics point of 

view is the influence of boundary layers on panel flutter. Analysis and experimental
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that determination of critical dynamic pressure with numerical accuracy of less than one 

unit could be considerably costly in computation time.

In a summary, the Euler aerodynamics (or its variations) and piston theory are 

applicable for unsteady, inviscid flow and Navier-Stokes equations for viscous fluids. 

Good agreement exists between panel flutter analyses using Euler equations and by 

piston theory. For panel flutter at hypersonic flow, viscosity effects can be neglected and 

nonlinear aerodynamic theory must be employed. This gives the reason for applying the 

third order piston theory in the present study of panel flutter of composite panels in 

hypersonic flow.

There are several system parameters that affect the panel flutter characteristics as 

reviewed by Mei et al. [8]. Among these influential parameters, the thermal effect is 

highlighted in the present work since the temperature of surface panels of any vehicle 

operating at hypersonic flow is raised by aerodynamic heating. Few investigations of 

panel flutter have dealt directly with thermal effects. Houboult [20] was the first to study 

the thermal buckling stability and flutter boundary for two-dimensional (2-D) plates 

subjected to uniform temperature distribution. Yang and Han [74] studied the linear 

flutter of thermally buckled 2-D panels using FEM. More recent research has extended to 

nonlinear flutter of panels under various temperature distributions. Xue and Mei [50,75] 

investigated the flutter boundaries of thermally buckled plates under non-uniform 

temperature distributions using FEM and von Karman large deflection plate theory for 

structural nonlinearity. Liaw [76] included geometrical nonlinearities in a finite element 

formulation and studied supersonic flutter of laminated composite plates. High 

temperature brings another structural instability phenomenon into concern —  thermal
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buckling. Therefore, for a typical surface panel of a hypersonic vehicle, two types of 

instability mechanisms, panel flutter and thermal buckling, may cause structural failure 

and damage. The coexistence of these two nonlinear phenomena could give rise to a 

complicated panel motion, chaos, which has been observed and investigated by 

researchers in many cases. The chaotic motion is also a focus of the present study and a 

brief review of pertinent research work is given in the next section.

1.2.2 Chaos Study

The first observation of chaotic motion was due to Lorenz [77] while developing a 

three-dimensional atmospheric dynamics model. The chaotic motion is typically 

irregular, unpredictable, never repeating and sensitive to initial conditions. Chaos is also 

termed as strange attractor in the sense that in phase space, chaos takes on the appearance 

of a fractal set, whereas the classical attractors, such as equilibrium, periodic motion, and 

LCO, have a shape of a point or closed curve. Chaotic motion is random-like but it is not 

random motion since the motion is controlled by deterministic governing equations of 

motion and it remains in a bounded region in phase space. The fundamental theories and 

physical understanding of chaos can be found in a series of published books [78-82].

Observation and investigation of chaos have been documented in a substantial body 

of literature and in a broad region of disciplines. It was found that chaotic vibration 

occurs when some strong nonlinearity exists in the system. A brief review of a few such 

studies in the nonlinear dynamics domain is given below.

One dynamic system that has been under concentrated study as a demonstration of 

chaos is a cantilevered beam buckled by magnetic forces undergoing nonlinear forced
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vibration. Such adynamic system possesses multiple equilibrium positions. This fact plus 

the high nonlinearity give rise to non-periodic and chaotic motion. The first experimental 

investigation of chaotic motion of a  magnetically buckled beam system was given by 

Moon and Holmes [83]. Both experimental and theoretical evidence of the existence of a 

strange attractor in such a deterministic system is presented. The governing Partial 

Differential Equations (PDE) of motion were reduced to one Duffing-type Ordinary 

Differential Equation (ODE) by applying Galerkin’s method. Fine agreement between the 

chaotic solutions from the ODE and the experiment observations was achieved. Moon 

[84] then extended the study on magnetically buckled beams to establish both 

experimental and theoretical threshold criteria for chaotic motions. Experimental 

Poincare plots were used to assist in detecting the strange attractor. A heuristic semi- 

analytical criterion based in part on a perturbation solution for forced vibration and 

experimental observation was proposed. It is observed that at a fixed excitation 

frequency, changing excitation amplitude could Tesult in periods one, two, three, four, or 

more times the driving period motion as well as chaotic motion. But, such motions might 

not persist since the chaotic motion might decay to the periodic motion. A review of 

theoretical and experimental studies of strange attractors and chaos in the field of 

nonlinear mechanics up to 1983 was given by Holmes and Moon [85]. Chaos or strange 

attractors observed in mechanical systems, electrical circuits, dynamos, feedback control 

systems, and chemical systems were reviewed and proposed analytical methods and 

criteria for chaos were summarized. It is pointed out that the demand of criteria for 

determining when a system may become chaotic and analytical methods to predict the 

spectral properties of the motion called for future work. Brunsden et al. [86] then
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developed a theory that provides first order predictions of power spectra of single degree 

of freedom non-linear oscillators undergoing chaotic motions near homoclinic orbits 

based upon the assumption that the displacement of the oscillator can be represented by 

the random superposition, in time, of deterministic structures. The prediction approach 

was validated by comparing the predicted power spectra with numerical simulation of 

Duffing’s equation and experimental spectra observed from a cantilever beam buckled by 

magnetic forces. It is well accepted that Duffing’s equation has provided a useful 

paradigm for studies in non-linear oscillations hence attracted extensive analytical and 

numerical investigations. In view of this, Gottwald et al. [87] built an experimental set­

up, with a ball rolling on a double-well potential energy surface, to mimic the behavior of 

Duffing’s equation. With this elaborately designed experiment apparatus, nonlinear 

dynamics features, such as competing steady state attractors, hysteresis, sensitivity to 

initial conditions, subharmonic oscillations, and chaos, can be illustrated.

Nonlinear aeroelasticity is a rich source of static and dynamic instability and 

associated LCO or even chaotic motions [88]. Panel flutter, induced by the highly 

nonlinear fluid-structure interaction, has long been recognized as a source of chaotic 

motion [79, 80]. Study of chaotic motions associated with flutter of a buckled simply 

supported plate was conducted by Dowell [89]. Two control parameters, dynamic 

pressure (flow velocity) and in-plane compressive load, were changed systematically to 

observe chaotic motion in the phase plane. For the isotropic simply supported plate 

under study, it was found that chaos occured at moderate to large dynamic pressure and 

sufficiently large in-plane compressive force. A later paper by Dowell [90] illustrated 

four important chaos indicators, time histories, phase plane portraits, power spectra
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densities, and Poincare maps, with emphasis on the latter two. The method of 

construction of the Poincare map was adopted in the present study with slight 

modifications. A survey on how numerical methods can be used to solve nonlinear 

aeroelasticity problems and various types of complicated behavior typically encountered 

in nonlinear aeroelastic systems was due to Virgin and Dowell [91]. In the field of panel 

flutter analysis using nonlinear aerodynamic theory, few efforts were made to study 

chaos. Two such papers reviewed earlier, Chandiramani et al. [61] and Nydick et al. [59], 

touched upon the topic of the possible occurrence of nonperiodic or chaotic motions for 

panel flutter in high supersonic or hypersonic flow.

One frequently used concept in chaos study is bifurcation. Literarily, bifurcation 

means splitting into two parts. The term bifurcation is commonly used in the study of 

nonlinear dynamics to describe any sudden change in the behavior of the system as some 

control parameter changes. Mathematically, bifurcation is defined as when a physical 

parameter in the system under study changes by a small amount, the solution curve 

branches out to family of curves. More extensive mathematical description of bifurcation 

theory can be found in many books, such as Mittelmann and Weber [92], Bruter et al. 

[93], and more recently Chen and Leung [94]. Applications of bifurcation theory to panel 

flutter analysis to yield qualitative bifurcation solutions to governing PDE or ODE were 

outlined by Holmes [95] and Holmes and Marsden [96]. The application of bifurcation 

theory to explain the results shown in the bifurcation diagram is one of the emphases of 

the current study. An excellent investigation of chaos in supersonic panel flutter by 

observation of bifurcation was performed by Bolotin et al. [97]. Two control parameters, 

the compressive in-plane force and the dynamic pressure, are varied independently and
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continuously along both backward and forward paths to observe chaos and demonstrate 

the hysteretic behavior. A number of bifurcations were found and various pertinent 

patterns of transition among divergence, symmetric flutter, asymmetric flutter, and 

chaotic motion were observed, as well as several hysteretic phenomenon. One previously 

referenced paper, Sri Namachchivaya and Lee [63], analyzed the bifurcation behavior of 

fluttering panels using nonlinear aerodynamic theory.

The panel flutter problem under study is intrinsically deterministic in the sense that 

the time response of the panel is numerically simulated on the basis of a given set of 

governing equations of motion. The chaotic motion of such a system is also termed as 

deterministic chaos, which denotes the irregular or chaotic motion that is generated by 

nonlinear systems whose dynamical laws uniquely determine the time evolution of a state 

of the system from a knowledge of its previous history (Schuster [98]). Naturally, there 

must exist “deterministic” quantities to characterize a chaotic motion other than the 

qualitative tools like the phase plane plot and Poincare map. It is expected that these 

quantities should be able to define critical boundaries of chaos in terms of control 

parameters and to tell what extent the chaos has reached. Two well accepted quantitative 

measures have been developed and applied widely in study of chaos: the Lyapunov 

exponent and the fractal dimension. Approaches for calculation of the Lyapunov 

exponent of dynamical systems were presented by a few pioneer researchers. Shimada 

and Nagashima [99] and Benettin et al. [100, 101] presented numerical methods for 

computing the Lyapunov exponent of systems whose equations of motion are explicitly 

known. As an extension of these methods, Wolf et al. [102] proposed an algorithm to 

estimate non-negative Lyapunov exponents from an experimental time series. Review of
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the concept of Lyapunov exponents and discussion on their calculation from observed 

data were given by Abarbanel et al. [103]. Pezeshi and Dowell [104] used the computer 

program from Wolf et al. [102] to calculate the Lyapunov exponent spectrum of a 

magnetically buckled beam on basis of the one, two, three, and four-mode projections of 

the governing PDE, which was derived by Tang and Dowell [105] in study of the 

threshold force for chaotic motion in such a buckled beam system. Pezeshi and Dowell 

[104] also successfully compared the largest Lyapunov exponent calculated from the 

governing PDEs to that computed from the experimental time history using another 

algorithm from Wolf [102]. More recently, Fermen-Coker and Johnson [106] also 

adopted the algorithms from Wolf [102] to investigate the thermal effects on the onset of 

chaotic vibrations of simply supported isotropic plates by computing the largest 

Lyapunov exponent. A single mode Duffing’s equation was derived as the governing 

equation of motion. Three types of thermal loading, uniform temperature increase at the 

panel midplane, a parabolic temperature variation over the panel, and a temperature 

gradient across the thickness of the panel are considered. Although the paper aimed to 

provide a design tool for external panels of hypersonic vehicles, the effects of 

aerodynamic forces were not included in the analysis. Chandiramani et al. [61] 

considered the aerodynamic force effects while computing Lyapunov exponents to study 

the nonperiodic/chaotic motion of composite panels under in-plane compression. 

However, their method possessed some limitations of analytical approach and in effect, 

some special cases of thermal loading on surface panels of hypersonic vehicles cannot be 

approximated by uniformly distributed in-plane compression. As mentioned at the 

beginning of this section, the fractal dimension is another qualitative measure of chaos.
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The Lyapunov spectrum is closely related to the fractal dimension. The relationship 

between fractal dimension, information entropy and Lyapunov spectrum was made by 

Kalplan and Yorke [107]. The fractal dimension is not among the interests of the present 

study.

1.3 Objectives and Scope

The primary goal of the present study is to develop a finite element time domain 

modal formulation applied to panel flutter analysis of isotropic or composite thin panels 

in hypersonic airflow. Such a modal formulation is intended to be a practical design tool 

for hypersonic vehicle surface panel design. “Practical” herein is understood as cost 

(computation time) effective without losing much accuracy and simple enough for 

application without sophisticated mathematical manipulations. “Practical” also means 

that as much as possible real design considerations, such as application of composites and 

thermal loading must be incorporated into the algorithm. It is also anticipated that such 

formulation will assist in fatigue analysis and flutter suppression controller design during 

the development of hypersonic vehicles.

The time domain formulation is a complement to existing frequency domain panel 

flutter approaches, which, as reviewed before, are incapable of investigating panel motion 

types other than harmonic or periodic LCO. However, solving the governing equations of 

motion in physical coordinates by direct numerical integration [52, 53] could be 

extremely costly, especially when fine meshes are required due to the high nonlinearity 

inherent to the analyzed fluttering panel structure. To avoid, the waste of computer 

resources and the necessity of producing huge amounts of time history data, a modal
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truncation technique, which has already been applied successfully to supersonic panel 

flutter analysis, is introduced to simplify the work. Subsequently, issues such as selection 

of modes to be used, validation of computational accuracy, etc., have to be addressed.

Verification of the proposed time domain modal formulation will be conducted 

through comparing the flutter results with limited available results in the literature. Then, 

the method can be applied to flutter analysis of othotropic/composite panels under 

combined hypersonic aerodynamic pressure and thermal loading due to aerodynamic 

heating. It is the thermal loading that makes all types of complicated panel motions more 

likely to occur with low amplitude of control parameters. Of these motions, chaos is the 

most highlighted. The scenario for commencement of chaotic motion, rather than the 

severity of chaos, is the major concern. This means that the “boundary” between LCO 

and chaos is of interest since design of surface panels could be guided so that chaotic 

motion is avoided. All diagnosis and inspection tools for complicated motions are taken 

for direct use. Studies of the algorithms behind these tools are beyond the scope of 

present study.

In Chapter 2, a detailed finite element formulation is given. The governing equation 

of motion in physical coordiqates is derived based on the principle of virtual work. As 

explained before, von Karman large deflection plate theory is employed to address 

structural nonliearity and hill third order piston theory is used to consider the 

aerodynamic nonlinearity. The C1 conforming Bogner-Fox-Schmit (BFS) finite element 

is utilized to discretize the panel. Modal transformation is performed on the assembled 

system governing equations of motion in physical coordinates. Evaluation procedures of
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ail nonlinear stiffness matrices, and nonlinear aerodynamic damping matrices are 

presented.

In Chapter 3, the governing equations of motion in modal coordinates are further 

transformed into a state space representation to ease the implementation of direct 

numerical integration. The fourth order Runge-Kutta integration scheme is then applied 

to generate the time histories and other useful data sets. Applications of time histories, 

phase plane plots, Poincare maps, bifurcation diagrams, and Lyapunov exponents in 

detection and analysis of various panel motions are also overviewed.

An effective procedure for filtering out influential modes to be used in the time 

integration is explained in detail. The procedure is on basis of the concept of a modal 

participation factor. Some programming know-how on how to achieve the goal of 

reducing computation cost is also highlighted. The entire solution procedure is 

summarized by a detailed flow chart for better understanding.

Chapter 4 presents the numerical results and corresponding discussion. LCO 

amplitudes of an isotropic/orthotropic panel are compared to existing results from 

analytical methods and finite element frequency domain methods for verification 

purpose. Evolution of chaos for isotropic/orthotropic panels is observed with the 

assistance of phase plane plots and Poincare maps. Global bifurcation behavior of an 

isotropic/orthotropic panel is examined by construction of bifurcation diagrams.

There are two ways to establish the “boundary” between LCO and chaos when the 

two system control parameters changed continuously. One is using bifurcation diagrams 

in conjunction with phase plane plots and/or Poincare maps. Another way is computing 

the largest Lyapunov exponent. The former approach is applied to the isotropic
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/orthotropic panels and the Lyapunov exponent approach is first illustrated with isotropic 

panels and then applied to the composite panel cases. Effects of aerodynamic damping 

coefficients and temperature gradient on such boundaries are examined in detail. A few 

conclusions according to all analyses are presented in Chapter 5.
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CHAPTER H 

FINITE ELEMENT FORMULATION

In this chapter, the governing equation of motion (EOM) for a three dimensional 

panel under both aerodynamic and thermal loading will be developed. The EOM is firstly 

expressed in terms of structural degrees of freedom (DOF), or in physical coordinates. 

Then the system level EOM is transformed into modal coordinates based upon the 

expansion theorem [108].

The plate is subjected in a combined aerodynamic and thermal environment. High 

temperature and hypersonic airflow result in highly nonlinear vibration of the plate. The 

von Karman large deflection plate theory [23, 109] is herein employed to describe the 

nonlinear strain and displacement relationships. The third order piston theory [24] is used 

for aerodynamic pressure distribution. Current work falls into the category 5 analysis 

defined by Mei et al. [8], that is, flutter analysis using nonlinear structural theory and 

nonlinear aerodynamic theory.

2.1 Problem Description

Depicted in Fig 2.1 is a sketch of the 3-D panel. The panel could be isotropic, 

othotropic or laminated. The panel has geometrical dimensions of length a ,  width 6 , and

thickness h .  In present work, only thin panels (a t h  > 50) is under consideration in light

of aerospace applications. Therefore, the effects of transverse shear are neglected.

The airflow is assumed to be parallel to panel length and takes the direction of 

positive x coordinate. The positive transverse deflection of the panel is toward the cavity
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on one side of the panel. The family of piston theory [24] gives the relationship between 

the local point function pressure generated by the panel’s motion and the local normal 

component of the flow velocity. Basic assumptions include: (1) the local motion of the 

panel can be simulated by a moving piston, (2) the air is ideal and it has a constant 

specific heat, the piston generates only simple waves and produces no entropy changes, 

(3) the local panel motion velocity is much smaller than the air flow velocity, and (4) the 

air flow is parallel to the panel surface. The first order piston theory gives a linear 

relationship that is generally applicable to supersonic speed. The second and third order 

piston theories depict the nonlinear (quadratic, cubic) relationships between local 

pressure fluctuation and local motion of the panel. Since present flutter analysis mainly 

concerns panel motion under high supersonic or hypersonic airflow, the nonlinear piston 

theory is applied. Of the two nonlinear piston theories, the third order piston theory is in a 

complete form that incorporates contributions from the second and third order terms. The 

aerodynamic pressure given by the third order piston theory is [9]

To investigate the contributions from first, second and third order terms in Eq. (2.1), 

switch flags or variables are introduced to enable/disable related terms, as expressed in 

following equation

.2

(2.1)

AP=P‘ - P-  M
M —C„w  , t C j .w ,  

vv
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Clearly, by setting Cii, Cu, C2t, Ĉ x, C3t and C3X to 1/0 could switch on/off contributions 

from corresponding terms in Eq. (2.2). The symbols involved are defined as:

pa Aerodynamic pressure

p„ Undisturbed pressure of the perfect gas

q = paV2/2 Dynamic pressure 

M Mach number

y Specific-heat ratio of air ( =1.4)

V flow velocity

w transverse panel deflection.

For thin-walled structures that have extensive applications in aircraft, the close to 

reality steady-state temperature field is a function of all three coordinates, i.e., AT(x, y, 

z). As suggested by some earlier researchers [110, 111], the temperature variation can be 

assumed to be linearly distributed across the plate thickness as AT = To + zTi/h (Fig. 

2.1b), where To is the average temperature of the plate and Ti is the temperature gradient 

through the plate thickness. By setting Ti = 0.0, a special case of uniform temperature 

distribution is reached. Temperature induced in-plane thermal stresses and transverse 

bending moments may weaken or stiffen the panel. Interactions between thermal and 

aerodynamic effects result in complicated motions of the panel: limit cycle oscillation, 

periodic motion, non-periodic motion, and chaos. The main goal of present work is to 

develop a cost effective methodology for high supersonic/hypersonic flutter analysis and 

apply it to investigation of the post-transient motions of thin panels.
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Fig. 2.1 Thermal and aerodynamic environment 

for a three-dimensional panel
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2.2 Governing EOM in Structure DOF

As stated before, flutter of isotropic, orthortropic, and laminated panels will be 

studied. Since the isotropic, orthotropic and symmetrical laminates can be treated as 

special cases of general laminates, only the EOM for general laminates are formulated in 

detail.

2.2.1 Finite element

The 24-DOF Bogner-Fox-Schmit Cl conforming rectangular plate element is used for 

the finite element model. Figure 2.2 shows one finite element for laminated panel. The 

displacement vector at each node includes the in-plane displacement vector {u v} and

{ dw dw dw 1w —— —— -------> . Therefore, the nodal
ax ay axayj

displacement vector of the entire element is

«-{::} a 3 )  

in which {wb} and {wm} are collections of bending displacements and in-plane 

displacements at the four nodes. The panel is discretized by modeling it as a series of 

finite elements. The field quantities (i.e., the in-plane/bending displacements) within the 

element domain are then interpolated from corresponding nodal vectors. A detailed 

formulation for the interpolation functions and element matrices of the rectangular plate 

element is given in Appendix A. In a brief form, the displacements at an arbitrary point in 

the element can be expressed as follows
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Fig. 2.2 Bogner-Fox-Schmit C1 conforming rectangular 

plate element for a laminate
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w = [HwlTb][wb} 

u ^ H J T . J w J  

v = [H jT mKwm}
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(2.4)

(2.5)

(2.6)

2.2.2 Strain-Displacement Relationships and Constitutive Equations

While undergoing large amplitude deflection, which means the transverse 

displacement of the panel is of the same order of magnitude as the panel thickness, the in­

plane membrane response becomes coupled to the transverse bending. As the plate bends, 

the middle surface stretches and significant membrane forces develop. The load- 

transverse deflection response becomes nonlinear. The von Karman plate theory 

addresses above in-plane extension effects by introducing additional quadratic terms to 

the strains developed in a vibrating plate. The nonlinear strain-displacement relationship 

is given as

< - w «
{e}=- v.y

1
M— 2 w*y ► + z< - W.VY

U.v+V 2w _w vI »* t f  j 1 IS> £ 5

=  fem }+& K zM  (2.7)

where {e° } = the first term, linear membrane strain vector

{e“ } = the second term, von Karman nonlinear membrane strain vector 

z { k }  = the last term, bending strain vector 

By substitution of Eqs. (2.4), (2.5) and (2.6) into Eq. (2.7), the strain components can 

be expressed in terms of finite element nodal displacement vectors.
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Noted that matrices [Tb] and [T„J are constant and interpolation functions [Hw], [Hu] 

and [Hv] are functions of x ,  y  coordinates, the linear membrane strain {eJJ,} can be

expressed as

f c H
U

,u.y+ v .x

5 W
[TmKwm}=[CmXwm}

The von Karman nonlinear membrane strain {e®} can be expressed as

(2.8)

f c l - i
w i* 0

w.» 
w . w

ay [Hw]
[Tb][wb}=^[0][C9]{wb} (2.9)

The matrix [0] and vector {G} are called slope matrix and slope vector, respectively. 

Similarly, the bending curvature {k} can be expressed as

t o —
w
w

.XX

yy
2w .*Y

ax2
a2

ay

i J L
dxdy

[H j

J H . ]

[H.]

t U w .M C . I w .}  (2.10)
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2.2.3 Stress-Strain Relationships and Constitutive Equations

For an isotropic thin panel in plane stress, the stress-strain relationship is defined by 

Hooke’s law as

<*« "E 0 0" e*
<Ty ► = 0 vE 0 ey '
.V 0 0 G 7*Y.

where E is the Young’s modulus of the material and G = E/2(l+v); v is the Possion’s 

ratio of the isotropic material.

For a general orthotropic lamina, because of the anisotropic material properties, the 

stress-strain relationships are derived with a coordinate transformation from the material 

coordinates (Fig. 2.2) to the x, y coordinates [112]

Q l 1 Q « Q «
*

{ a } = . ° Y . = Q 22 0 2 . £ y
II $ ( 2 .1 2 )

Q « Q 2. Q « Y*y

in which the entries for the transformed reduced lamina stiffness matrix [q ] are

Q„ = Q „ co s4 8+2(Q12 +2Q 6e)sin2 9 co s2 0 + Q a  sin4 6

=(Qii +Q 22-4 Q 6S)sin20 co s20+ Q 12(cos40 + sin4 e)

Q a  = Q n  sin4 6+2(Q12 +2Q M)sin20cos2 Q-hQjj c o s *  0  
_  (2.13)
Q1S = (Qni - Q 12 - 2 Q m ) c o s 3 9 s in e -(Q 22 - Q 12 -2 Q M)cos0sin3 0

Qm = (Q ,,-Q 12-2 Q M) sin3 6 c o s e - (Q  2 2 - Q12-2 Q M )cos39 sine

Qm =(Q1t +Q a  -2 Q 12 -2 Q M)cos2 0sin20 + Q M(sin4 e + c o s 4 e)

The Qij’s are the reduced stiffness in the material coordinate systems. For the orthotropic 

lamina, Qij’s are evaluated as
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Qn

Q

•11

22

(1 v12vM)

■ ^22 
( 1 - v 12v 21) ’

*12
V 12^22

(1 v12v21)
(2.14)

Q « = G 12

The subscripts i, j =1,2,6 denote the material principal coordinates shown in Fig. 2.2. By 

setting Ei t = E22 = E, G12 = G, and V12 = V21 = v, the isotropic case is reached.

In consideration of thermal effects, the stress resultants can be evaluated as [113, 114]

A B 
B D

I®* 
I K

[N
|M

AT

AT J

where, extensional matrix A„ = k+1 Zk)k=1

extensional-bending ® ij = X X  (P'i )k (Zk+1 “  z k)2 k=i

flexural matrix
J  k=1

in-plane thermal loads {NAT} = J*^[Q] k{a }k AT(x, y,z)dz 

thermal bending moment {MAT} = f /2 [q ] k{a}k AT (x, y, z)zdz*-h/2

U = 1,2,6

k the k-th layer

n total number of layers

h thickness of the plate

{a}k thermal expansion vector of the k-th layer

AT temperature change

(2.15)

(2.16a)

(2.16b)

(2.16c)

(2.16d)

(2.16e)
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For isotropic and symmetrically laminated panels, the extensional-bending coupling 

matrix vanishes. The extensional matrix [A] and flexural matrix [D] for isotropic panel 

are simply

[A] =
1 - v 2

1 v 
V 1 
0 0

0
1 - v

[D] = Eh3
12(1- v 2)

1 v 
v 1 
0 0

0
1 - v

(2.17)

According to the strain-displacement relationships given in section 2.2.2, the stress 

resultants can be expressed in terms of finite element nodal displacement vectors as 

{N }=[A ]{ei + e;}+ [B]{K>-{NaT}

= [ A ][C „]{w „}+ I[A  ][8 ][C.]{wb}+[B][Cb]{wb}-{NaT} (2.18)

={N„}+{N,}+{N,}-{N4T}

{M }=[B]{ei+ej}+[D ]{K )-{M iT}

= [B ][C „]{w „}+ i[B ][8 ][C e]{wb}+[D][Ct ]{wl }-{iyi1T} (2.19)

={M„}+{M,}+{Mb}-{MAI}

Here {Nm},{Mm},{Ne},{Me}, {Nb}, and {Mb} are stress resultants induced by inpalne or 

membrane (subscript m) stresses, stresses due to large deflection effects (subscript 0) and 

bending stresses (subscript b). {Nat} and {Mat} are thermal stress resultants as evaluated 

with Eq. (2.16).

2.2.4 Governing EOM

The governing EOM is derived using the principle of virtual work (or virtual 

displacements) with incorporation of D’Alambert’s principle. The principle of virtual
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work states that for a body in equilibrium, the total virtual work done due to virtual 

displacement is zero. The virtual work is classified as internal virtual work 8Wint, which 

is attributed to internal forces (herein stress resultants), and the external virtual work 

5WexI, which is done by applied external forces (herein the aerodynamic pressure) and 

body forces (herein the inertia forces). Therefore, the principle of virtual work enforces 

that

SW =S(W ,„-W „)=0 (2.20)

Virtual Work Done bv Internal Stresses

The virtual work done by internal stresses is

SW„ = /i(o1|Sel|dV = | i ({Se, }T{N}+{SK}T{M})dA (2.21)

The variations of in-plane membrane strain {8e0} and curvature {5k} can be 

expanded in view of Eqs. (2.7) -  (2.10) as

{8e °}T ={5e“ }T + f e } T = {8w JT[Cm]T+ {5wb}T[Ce]T[ e r  (2.22)

{5k}t ={5wb}T[Cbf  (2.23)

Note that it is easy to p rove5^[0  ]{G } = [0 ]{5G }.

Substituting the stress resultants given in Eqs. (2.18) and (2.19), as well as strain, 

curvature variations given in Eqs. (2.22), (2.23) into Eq. (2.21), the internal virtual work 

can be expressed in terms of nodal displacement vectors as

SWw = |^({5w m}T[ C j T4-{Swb}T[ C j [ e r ) f [ A ] [ C j{ w J +I[A ][0][C 9]{w„} 

+tBl[Cb]{wB }-{N„})+({8wB}T[C „r) ([B ][C„]{wm}
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+ i[B ][9 ][C ,K w 1}+[Dj[Cb]{wB}-{M aT}'
V -I

dA

Further expansion of Eq. (2.24) produces 12 terms as listed following

1st {Swm}T[Cm]T[A][Cm]{wJb}

2nd i{Sw,,}T[ C j T[A][9 ][C8]{wb}

3rd {Sw„}T[Cm]T[B ][C„]{wb}

4 * -{Swm}T[Cm]T{NiT}

5th {Sw#}T[C .r [9 r [ A ] [ C j { w J

6th f{ 8wb}T[Ce] '[9 r [A ] [0 ][C,]{wb}

»jih {swb}T[cbr [ 0 r [ B ] [ c bKwb}

8th - t s w . r t c . r ^ r t N ^ }

gth {5wb}T[Cbr[B][C„]{w„}

10th I{8wb}T[Cbr[B ][0 ][C 8]{wb}

11th {8w b}T[C„r [D ][cb]{wb}

12th - { 5wb}T[Cb7 {MAT}

Terms 1,3,9, and 11 can be written in the matrix form as

5wb
Sw Lk mb K

which gives the definition of linear stiffness matrices as

lk»] = JA[Cbr[D ] [C b]dA

37

(2.24)

(2.25a)

(2.25b)

(2.25c)

(2.25d)

(2.25e)

(2.25f)

(2.25g)

(2.25h)

(2.251)

(2.25j)

(2.25k)

(2.251)

(2.26)

(2.27)
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tl«m] = /A[C „]T[A][C„]dA (2.28)

[Uml>]= [k « ]T = JA[ C j T[B][Cb]dA (2.29)

Terms 2 and 5 can be written as 

Term 2 + Term 5

= j{ 8 w .} TtC . ] T[A ][9 ][C .]{w „M 8wB}T[C .r [9 r  [ a  ][C .]{ w .}

= i { 5 w J T[C,„]’ [A ][9][C 9]{w1,}+ I{ 8 w B}T[C8r [ e r [ A ] [ C j { w J

4 {«wB}T[c .r [ e r [A ] [c j { w j

= i{Swn,}TtC j'[A ][9 ][C ,K w B}+I{ 8 w B}T[C .r[6 ]T[A ][C j{ w J  

+ |{8'»»}T[C .r[N n,][C, ]{wB } 

= ^ { S w J[n 1 „J{ w B}+ i{S w B}[n1BJ { w J + i { S w B}[n1,J{w B}

l f S w b 
2 i5wm

n U  nib, 
n1mb 0 Iw (2.30)

Note that following transformation based on Eqs. (2.9) and (2.18) is utilized to achieve 

the symmetry ([nlmb] = [nlbm]T) of the nonlinear stiffness matrix

[8jr [A ][C j{w B,}=[9F {N„}=

8w 0 aw 
ax ay 
_ aw aw

3y dx

N„m
• Nym . =<
N•'xym

awM aw..-r—N,m + - r —  N__3X wn g y  xyn
aw awN 
ay ym + ax *vm

N
N*ym N,

d W
dx

* aw ~
3y

= [Nm]{G}=[Nm][Ce]{wb } (2.31)

where matrix [NnJ is constructed from vector {Nm} per following definitions
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Therefore, the components of the first order nonlinear stiffness matrices are defined as

| m . w m . ] T =JA[ C j T[A][e][C.]dA (2.34)

[n1™,l = fAtC .r[N „][C .]dA  (2.35)

From the definitions of [6 ] and [Nm], it is seen that [nlnnJ is linearly dependent on {wm} 

and [nlrob] is linearly dependent on {Wb}.

Terms 7 and 10 can be combined and written as 

Term 7 + Term 10

={8wt }T[C ,r[0 r tB ][C bKw.}+I{SwB}T[C1]T[B][0][C,]{w,}

=i{8w1}T[c8r[ertBi[cBKwbKi{sw1}T[c8n0r[B][c>Kwb}

+i{S w b}TtCbr[B][0][C e]{wb}

= i{ S w b}TtC ,rtN b][C.]{wb}+ i{ S w B}r[C .r [0 ]T[B][Cb][wb}

+^{8wb}T[Cbr[B][0][C e]{wb}

= ̂ {S**b}[n1 nb ]{«>}

Another transformation also derived from Eqs, (2.9) and (2.18) is performed to simplify 

the expression of the complement matrix to the first order nonlinear stiffness matrix.
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[e r[B ][c„ ]{w b}=[e]T {n,}=

dw dw
dx dy
0 9w dw 

dy dx

N * ]

4 N yb II

dw.,  dw ..
dsrN“ + ^ 7 N«
3w ., dw .. 
3 7 N>b+— Nw

X ,  Nwb
^*yb ^yb

dW

d x
dW

dy

= [NB]{G}=[Nb][C,]{wB} (2.37)

Similar to the evaluation of [Nm] given in Eq. (2.32), the matrix [Nb] is constructed from 

vector {Nb} per following definitions

{N„}=
N“ 1
N* =[B][CbKWb),
Nxyb

[Nb] =
N*b 

_Nxyb ^yb
(2.38)

From Eq. (2.36), the complement stiffness matrix to the first order nonlinear stiffness 

matrix is defined as

["1*] = JA(tcertN B][C9]+[C8r[er [B ][C B]+[Cbr[B][eKC9])dA (2.39)

The second order nonlinear stiffness can be derived from the 6 th term:

^ { 8  wb}T[Ce]T[0 Y [A ] [ 8  ][C9]{wb}=i{5w b}T[n2 ]{wb} (2.40)

where [n2] = f  JA[B9H 8r[A ][e][B 9] dA (2.41)

It is seen that [n2] is a quadratic function of {wb}.

The rest three terms, terms 4, 8  and 12, are thermal effects terms. Term 8  gives the 

thermal effect stiffness matrix.

dw

{8wB}T[C9]T[6]T{N4r}=-{6wB}t [C9r
0

dx dy 
Q dw dw

dy dx

NSAT

NyAT

NxyAT
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= -{ sw b}T[ c er

3w  M d w . .
* t  “ T + 3 7 N w t 
3w m dw
dy yAT -5v

=-{5w b}T[ c er
[N^t N,
| n «*t N

xyAT
yAT

dw
a x«
dW

.3 y .

= -{SwB}T[C ,r[N 4T]{G}=-{8wb}r[C ,r[N aT][C„]{wb} (2.42)

Thus, the thermal effect stiffness matrix can be defined as

H w W J C . r t N j t C j d A

where [nat]= N*at ^«»iT 
N«yAT Ny4T

(2.43)

(2.44)

Terms 4 and 12 give the thermal load vectors as

{P «r}= -J4[C„]r{NaT}dA (2.45)

{ Pmt }= “ JA [®b ] T{®̂ at } ̂  (2.46)

Now, the expression of internal virtual work can be rewritten in terms of above 

defined stiffness matrices as

i T

M l": K

ilJC

. J * M T N̂AT O'
k« . l* -J

1

f 3 0 0 I w .

5w r4 '
2 l 8 w,

+  l ( 5^ l T3l5wmJ

n1 nm nlbm K l U l f * M T nlnh O'
n1 mb 0 2 I s w J 0 0

(2.47)

n 2  0  
0  0

rw bi r ^ r r p ^ r i
Wmj l5wmJ Ip ^ tJ
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Virtual Work Done bv External Forces

SW„ = Jv B,5u,dV + Jsurt̂ T,5u,dS

= I . [ 8w( - ph^ +t-Ap(x,y,t) + 8u . 3 u
- p h 3 F

2, t \  r + 8v . a V  
- p h a F /-J

(2.48)
dA

where Bi is the body or inertial forces per volume and Ti is the surface traction per area. 

In present work, the inertia forces and aerodynamic pressure Ap(x,y,t) take effects, p is 

the mass density per unit area of the panel and h is the panel thickness.

Note that

8w=[H.lTb][8wB} 8w = 8wT = {Sw}T [T„ f [H„ f
The first term of Eq. (2.48) can be expressed as

l , 8w
. a2w

- p  I F
dA =-{Sw ,}Tph[Ti r | A[H.]r [H.]dA [T„]{w,}

= - { S w b} T J _ [ m t ] { w 0}
0)n

(2.49)

So that the mass matrix in bending can be defined as

[mB] = <0Sph[T„ Y J,[H.]T[H»] dA[Tb]=̂ J!-[T>]r J[H.]T[H.]dA [T„] (2.50)

where the reference frequency coo is defined as

to. =  E Z\pha4 (2.51)

Duo is the first entry of the laminate flexural stiffness [D] calculated when all of the 

fibers of the composite layers are aligned in the x-direction.
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Simlilarly, the in-plane mass matrix can be acquired from the third and fourth terms 

in Eq. (2.48):

= -{Sw „ }T ph [T„ ]T JA ([Hu f  [H J  [H. f  [H, ]) d A [T„ ]{w „ } (2.52)

O

thus

[m »] = ̂ f [ T „ r j , ( [ H j T[H j+ [H <]T[H>])dA[Tm] (2.53)

The most important term in Eq. (2.48), obviously, is the second term that embodies 

the effects of airflow on the panel motion. The airflow applies significant damping effects 

by introducing a series of aerodynamic damping matrices into the governing EOM. By 

substituting the aerodynamic pressure given in Eq. (2.2), the second term of Eq. (2.48) 

becomes

JASwAp(x,y,t) dA

(2.54)

Note that

w „ « [ H j [ , E l J W . }  w ,  =[H .lTjw J
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Equation (2.54) can be further expanded into 9 terms so that 

JA8wAp(x,y,t) dA

= {Sw„ }T C„ | i [ T b r J, [H. r [H, ] dA [T„ ]{\ wb} (2.55a)

+ {5w B }T C „  [TB r  JA [H» r  [H.  d A [Tb ] {w . } (2.55b)

+{8wb}t C1, 9^111[T b r |A (w, )[H„ r  [H. ]dA [T„ ]{w„ } (2.55c)

+ {8w„ }TC!tC!B 5 k ± l)  [tb r  Ja (w, )[H„ r  [H. ],, dA [T„ ]{w„ } (2.55d)

+{8w„ }TC=B 3 ^ [ T B r  jA (w )[H. f[H . ]A dA [T„ ]{wB } (2.55c)

+{8wB}TCjt ^ i i M [ T Br j A(wf,)[H>r[H.]dAtTB]{wB} (2.550

+{SwB}TC|,CJ,^ i^ M [ T Br / A(w ,w A)[Hwr[H»]dA[TB]{*B} (2.55g)

+{8wB}TC|xCll3^i!lM [T Br J A(wBtw,t)[H.F[H.]J,dA[TB]{w>} (2.55h)

+{SwB}Tc ;B3 ^ M [ T Br J A(wi)[H.r[Hw)J,dA[TB]{wB} (2.551)

Equation (2.55) is nondimensionalized with reference to the following parameters

Nondimensional dynamic pressure

Air-plate mass ratio

Aerodynamic damping coefficient

2 q a 3 
MD110

P .aLt = — —p h

C . - i ,  tor M » 1

(2.56a)

(2.56b)

(2.56c)
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p,V(M2 -2 ) -------------
Aerodynamic damping g , = pha)~̂ j | 2  _ ^ a /2  * VXC.

Plate thickness-width ratio r = —
a

Conduct the nondimensionalization and collect similar terms, Eq. (2.55) becomes

J  8 wAp(x,y,t)dA = -{5w JT^ ( [g ]+ [g lJ + [g 2 j+ [g 2 j){ w b}
JA  <o0

-{ 8 w J TX( [a]+[a1 t ]+ [a1 b ]+ [a2 „, ]-i-[a2 „ ] ){wb} 

in which the matrices are defined as

[9] = c „ ̂ r -  [Tb r  j ,  [H. r [H. ]dA [T„ ]

[s1J  = C‘, «*r 5jJi[TB f  J. (w,, )[H. F [H. ]dA [T„ ]

fe2 «] = Cj,C). ^ l - 1| l t ( M r ) l ^ ! - [T Br j A(wJ[w ,,)[H .r[H .]dA [TB] 

f e I = C 3 , 1 2 ^ l M (M^ l F t T “ I T / . ( w ^ [ H ” r t H j d A [ T “ 1 

[a] = C1,% ^ [T Br J A[H .r[H .]J,dA[TB]
a

[a1 t ]=C K, C „ ^ l M r ^ i ^ 2 -[TBr j A(w.l)[H .r[H .]AdA[TBl 

[a1B]=C l, r t l M r ^ f [ T or  JA(w J [ H . f [H . ],dA  [Tb ]

ta2 Bt]=C f,C M^ - ^ l i ( M r ) i Ha!>.[TBr j AK v * ,t )[H .rtH .]J,dA[TB]

45

(2.56c)

(2.56d)

(2.57)

(2.58a)

(2.58b)

(2.58c)

(2.58d)

(2.58e)

(2.58f)

(2.58g)

(2.58h)
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[a2B]= C j, Mr)! 5 ^ -  [T„ F  JA (w ,  )J [H„ F  K  ].,dA [Tb ] (2.58i)

Collecting the terms given in Eqs. (2.49), (2.52) and (2.57), the external virtual work 

can be expressed in matrix form as

8W = _ J L /5M T mb 0 ¥ Wbl_ShLf8w5l Tr[g]+[g1t]+[g2bt]+[g2t] 0]fw t 
Mt °>o I8wmj  |_ 0 m J |w mJ co0 |8wmJ L  0 Oj(w

f5w b l > ] + [a1, ] +  [a1b] +  [a2 t t ] + [a2b] 0 ] f w b l 

I S w J  . 0 O .iw J  (259)

m

Governing Equation of Motion

Applying the principle of virtual work with the matrix form expressions of virtual 

works, the equation that reflects the equilibrium of the finite element can be established 

as

1 mb 0 ' 9. 'fa]+fal,]+fa2i«]+[g2|] o '
«s i 0

 

3 3 1 I w J  <o. 0 o j w m.

r "[a]+[a1t ]+ [a1 b]+ [ a 2 M]+ [ a 2 b] O') f k b k ^ ' k NAT 0

V 0  ° J  Lk mb K . 0  0

f[n 1 „J+ [n 1 „b ] [n lb m ]^  1 [n 2 0] Y w b ] _ fp bAT'. i f " 2  °1Y W«>1J 
SLO O J H J  I

(2.60)K J  0 j 3 L« ojjLwmj [PmATj 

Assembling all the elements and applying the boundary conditions, the system level 

equation of motion can be written as

- P
* 1 1

Mb 0.
CD* 0 M

[GMG1tM G 2 j+ [G 2 ,]  oMw.

1A.M A1,]+[A1b]+[A2„1]+[A2„] 0^ 
0  0

w,

J<mb
NAT u  

0  0
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f[N 1.J+[N lJ [N1.JY 1[N2 0 ]Y W J_ JP m t1 
[N O  0 J 3 [ o  O j j w J  1P„TJ

or simply

i[M ]{ w } + ^ [G NL]{w}+ fx[ANL]+ [K j-[K NAT]+ I[N l]+ i[N2]j{W}={P1T}

(2.61)

2.3 EOM in Modal Coordinates

2.3.1 Transform into Modal Coordinates

The expansion theorem states that any possible motion of the system can be described 

as a linear combination of the modal vectors. Therefore, the real deflection of the panel 

can be assumed as

{W }= (M  = j W * '  1 = £ q r(t)fo,}= M fl} (2.62)
l w m j 1=1 LH m rJ r=l 

In Eq. (2.62), qr(t) is the modal coordinates of the r-th mode, which reflects the 

contribution to the ensemble deflection from the r-th mode. And [<&] = [{<j>t}, {ife}, ..., 

{<M> ••• {<M1 is the modal matrix, where {<f>r} is the mode shape of the r-th mode. The 

linear mode shapes are constructed from following linear eigenanalysis

(2.63)
© 0

The transformation of system governing EOM, Eq. (2.61), into modal coordinates is 

achieved by substituting Eq. (2.62) into Eq. (2.61) and pre-multiplying the whole 

equation by [d>]T. The transformed EOM in modal coordinates can be written in a brief 

form as follows
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1
^ M + ^ ^ f e } + f 4 A H L ] + W + i [ N i ] + i N W = t < t > r { p 1T} (2.64a)

where

M - W N M  G U - W B t M (2.64b)

([a*.], [k], [ni], [n2])=[<*.]t ([Anl], [K .] - [K „ ] , [Ml], [N2])[o] (2.64c)

2.3.2 Evaluation of Nonlinear Matrices

As noted from the definitions, the first/second order nonlinear stiffness matrices, the 

aerodynamic stiffness matrices, and aerodynamic damping matrices are dependent on the 

nodal displacement vectors {Wb} or {Wm}. While transferred into modal coordinates, all 

these nonlinear matrices can be evaluated with modal coordinates.

The first and second order nonlinear stiffness matrices, [Nl] and [N2], can be 

evaluated as

The superscript r  denotes that {<(>,-} is used in evaluation of the first-order nonlinear 

modal stiffness matrix. Similarly, the superscript r s  denotes that {$r} and {<J>S} are used in 

evaluation of the second-order nonlinear modal stiffness matrix. The nonlinear modal

[Nl] = X q t[Nl]<,) [ N 2 ] = £ £ q rq.[N2](,,) (2.65)
r=1 r=1 s=1

where

[N2](r,)= y ,  0ft ftall atemants 0 0
+bdy. conds.
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stiffness matrices, [Nl](r) and [N2](fS), are constant. The corresponding transformed 

matrices, [n i] and N .  are computed from definitions given in Eqs. (2.64b) and 

(2.64c).

The nonlinear matrices appeared in aerodynamic stiffness matrix [Anl] and

aerodynamic damping matrix [Gnl] are functions of w or^-^-. From an early
d X a  t

definition given in Eq. (2.4), it is inferred that 

w ,  = [H. I  [T. K  } = £  qr [H. I  [Tb ]{<(.„,}
r=l

(2 .6 6 a)

(2.66b)
r=1

W i n  .  I l l '  l i t  —
,xw ,t “  w ,*w ,t —

W  r .

Sq,[H .],,[T„]{K } £ q .[H .][T b]{*,»}
M J  ^ * .1

Y i q j H . i i T j K }
r=1 A * ' 1

= t i( q ,q .^ } I[TbrtH.r.[H.][TB]{*M})

f  n
(2.67c)

r=1 i=1

w i = i i ( q , q . { K } T[Tbn H.r ,[H .] ,[T b]{0l.})
r=1 «=1

wf, = w j W tt =XXUrq.{<l>br}T[Tbf [Hwr[H w][Tb]{<!>„,})

(2.67d)

(2.67e)
r=1 «=1

The above quantities are all that is needed for evaluation of element level 

aerodynamic pressure induced matrices, [a1t], [a1b], [a2bt], [a2b], [g1t], [g2w],

and[g2t]. Attention must be paid that the mode shapes, {0^} or {0te}, are bending
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related entries in the entire mode shape eigenvectors in Eq. (2.62). This is on basis of 

following relationship

{wb}=({ob1} k J  ... k J )
qi
q2

q„

= t«>l. K«l}= X *lr {<(>«}= S > <2-68>
r=1 r=1

Generally, during the time integration, the modal coordinate qr and corresponding 

velocity qrare generated simultaneously. Hence, they are available at each time step for 

updating the nonlinear matrices. Resembling the evaluation procedure for [Nl] and [N2], 

the nonlinear aerodynamic effects matrices can be evaluated as

[G1t] = £q ,[G 1t]‘"
r=1

[G2M] = i X q rq.[G2bt](«)
r=1 «=1

[G2 t] = X 2 ^ q .[G 2 j (r
r=1 «=1

[A1,]=£q,[A1,] ( 0

r=1

[A 1.]=£q ,[A 1,] (r)

r=1

[A2 bt]= X S q rq ,[A 2 w](«)
r=1 *=1

[ * 2 > ]  =  ± ± W . [ * 2 j n )

(2.69a)

(2.69b)

(2.69c)

(2.69d)

(2.69e)

(2.69f)

(2.69g)
r=1 «=1
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Again, constant matrices [G1t](r), [G2W](,S\  [G2t](rs), [A1t](r), [A1bp ,  [A2bt](,3), and

[A2b ace constructed by assembling contributions from all elements and the kinematic 

boundary conditions.

2.4 EOM for Isotropic, Symmetrically Laminated Panels

For symmetrically laminated composite and isotropic panels, the extensional-bending 

coupling matrix [B] vanishes. Examining definitions given in Eqs. (2.29) and (2.39) tells 

that matrices [Kmbl. [Kbm], and [N1ni>] become null. This fact helps to simplify the 

governing EOM of Eq. (2.61). Since the in-plane vibration is typically of high frequency, 

which needs more energy to activate than lower frequency bending modes, and the modes 

in concern are principally low order bending modes, in-plane inertia terms can be 

neglected. With this approximation, the in-plane displacement vector {Wm} could be 

expressed as a function of bending displacement vector {Wb} as follows

{w„ }=[Km r  {?„,}-I[K„ r [N1„b ]{w„ }= {W, }„ + {W„ },
(2.70)

{w„}„ =[K „r'{P^T}. {W J, = ~ t K „ r [ N 1 „.]{WB}

note that {Wm }0 is constant and (Wm } 2  is actually a quadratic function of {Wb} because 

[Nimbi is linearly dependent on {Wb}.

Now, by substituting {Wm} given in Eq. (2.70) into the Eq. (2.61), the system EOM 

for isotropic and symmetrically laminated composite can be written in terms of bending 

displacement vector {Wb} only

4-[M b]R } + 5 s-[G M.]K } + f^ A « L]+[K1 ]-[K HaT]+i[N1M„]
CO© (0© ^
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+ ^[N2] -  ][Km r '  [N l^ ] j[W# }+IfM I^ ][K„ r  {P^, } = {P.«t } (2-71)

The in-plane motion affects the panel stiffness through an additional quadratic nonlinear 

stiffness term and through the load vector term that is linearly dependent on {Wb}.

To transform into modal coordinates, a previous assumption stated in Eq. (2.68) is 

employed to conduct the transformation. Executing the same procedure applied to 

achieve Eq. (2.64), Eq. (2.71) becomes

(q}+ (̂ -[a nl]+ [k ]+[k w ] ){q } = {F} (2.72a)

where

i w - f o r M ® , ] .  {p}=[<».r{pMT} (2 .7 2 b)

f ^ ] = [ « Br f [ G ] + i q r[ 6 lJ ('>+it(q ,q .[C ffl„ ]< "> + qrq.[G 2,](' '> ) K ]  (2.72c)
^ r=1 r=l »=1 J

[AKL]=[4>trf[A.]+i(q,[A1t]'”+qr[A1t]<'>)
V r=1

+ S Z ( c*rqq[A2bt] (r,)+ q rq i [A2b](,,)) \ o b] (2.72d)
r=1 «=1 J

[k ] = [-K#F ^ K . ] - [K„.r j[<t>„] (2.72e)

= K r f i i ( q , q . [ K j ' “ > ) K ]  (2.72f)

The superscript r  denotes that { ^ c} is used and the superscript r s  denotes that {<|>br} and 

{<t>bs} are used in evaluation of the matrices.
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Li Eq. (2.72), the nonlinear stiffness matrix {NlNm] is split into two parts: [NlNnJo 

and [NlNmh- The reason for doing so is that in Eq. (2.70), {Wm} consists of a constant 

part, {Wro}0, and a second order part, {Wra}2. Subsequently, [NlNm] 0 is evaluated with

{Wm}0, and the [N1Nm ]̂  is computed fromjW,,,}^, which is expressed in modal

coordinates as

{ W J ' " 1 (2.73)

Clearly, [NlNm]o is constant and [NIniiJo is a quadratic function of nodal displacement 

vector {Wb}.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



54

CHAPTER III 

SOLUTION PROCEDURES

In this chapter, the system governing EOM, Eq. (2.64) or (2.72), is solved in time 

domain through numerical integration. Based upon the time history computed, flutter 

response as well as possible chaotic motions of the panel are investigated with the 

assistance of numerical diagnosis tools. Some practical issues pertinent to 

implementation of the computation work are discussed in detail.

3.1 Flutter Response

Evaluation of the response of nonlinear systems almost inevitably involves some type 

of numerical integration. Therefore, the most straightforward approach to study flutter 

response of panels is to examine the time history response generated from numerical 

integration of the governing EOM. The proposed application of the modal reduction 

technique into hypersonic flutter analysis makes it feasible and affordable to explore the 

panel motion through a large amount of numerical integration experiments.

3.1.1 Time Integration

On performing the direct integration of the equilibrium equation, many time 

integration methods are available [115], such as the central difference method, the 

Houbolt method, the Newmark method, etc. Herein, the fourth order Runge-Kutta 

method is adopted.
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Numerical integration is carried out most conveniently in terms of first-order 

equations, so that the dynamic equations of motion must be recast in state-space form. 

Another benefit is that the modal coordinate velocity qrthat is required for evaluation of 

nonlinear aerodynamic effect matrices is included in the state vector directly.

Pre-multiply Eq. (2.64a) with [m]~1 cd*,

{q}+g.co0[Mr^Iq}+<o:[M]‘,^ ^ ] +[K]+i[Nl]+i[R2]|[q}=<o:[M]-’[or{PaT}
(3.1)

the state vector can be defined as

'{X,}]
{x}=- m \

I M
r«i
L«H

(3.2)

Thus, the state space representation of governing EOM is 

= f({x},t) = 0  [1] ] ' o '
[k J  - [ c j itxjr .[ If

(3.3)

in which, the system stiffness and damping matrices are defined as

[KTO]=o>j[M}-, (>.[A-L]+[K]+ i[N l]+ i[N 2]'1 (3.4)

[ c J - B A W n e U  (3.5)

{F.„}=^[M r[< t>r{P„} (3.6)

Matrix [I] is the identity matrix.

The basic steps for performing fourth order Runge-Kutta (RK4) integration scheme 

can be found in many books [116]. Observing the fundamental theory of RK4, following 

computation steps should be executed to produce the time response history of the panel 

Step 1. Given initial condition {Xo} and nondimensional dynamic pressure X.
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Step 2. Prepare the system stiffness matrix [Ksys], damping matrix [Csys] and load 

vector {Fsys}. Start from iteration i = 0.

Step 3. Construct the nonlinear aerodynamic effect matrices and nonlinear 

structure stiffness matrices using state vector {Xi},

Step 4. Compute the coefficients needed for evaluation of the 

state vector {Xj+i}.

for classical RK4, a.2 i -  0.5, a $ i = 0.0, a .iz  -  0.5, a4 i = 0.0, 8 4 2  = 0.0 and 

843= 1 .0 .

Step 5. Compute the state vector at time instant ti+i.

For classical RK4, oq = 1/6, a 2  = 1/3, a 3 = 1/3 and ou = 1/6.

Step 6 . Recover the real response of the structure through the relationship given 

by Eq. (2.62), {W} = [<J>]{q} and output the time history as well as other 

quantities if needed.

Step 7. Check: if i > NPT, if not, let i = i+L and go to step 3, otherwise stop.

(3.7a)

k2 = A tf tx lj+ a 21K1, t l + - A t (3.7b)

(3.7c)

k4 =  Atf ({X ,}+a41 k, + a 42 k2 k3,t, +  At) (3.7d)

{X,+J =  { X j+ ^ k ,  + a 2k2 + a 3k3 + a 4k4 (3.8)
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3.1.2 Critical Buckling Temperature

The high temperature that the surface panel experiences gives highly possible rise to the 

structure instability due to thermal buckling. Thermal buckling only happens when 

isotropic or symmetrically laminated plates are heated uniformly. But for any plate acted 

by thermal moments, the plate will deform. For the latter case, there is neither buckling 

phenomenon nor an associated critical buckling temperature. For the current study, the 

critical buckling temperature is used as a reference for the case of a plate with thermal 

moments. The procedure to determine the critical buckling temperature can be found in 

related literature, such as Yang and Han [74] and Shi and Mei [117]. For an isotropic or 

symmetrically laminated plate heated uniformly, the critical buckling temperature is (see 

Appendix B for detailed formulation)

ATCf =mATIn( (3.9)

where ATjni is an arbitrary initial temperature change and |Xi is the lowest eigenvalue of 

thermal buckling found from the eigenproblem

[Kb !&.}= ] -  [M1„m ]){<(>} (3.10)

where {<()} is the corresponding buckling mode shape.

3.2 Motion Types - Observation and Diagnosis

The aerodynamic pressure and the temperature are two control parameters that 

determine the final category of the panel motion. The present hypersonic flutter analysis 

is not focused on the flutter boundary, which conventionally can be determined with 

supersonic flutter analysis using linear aerodynamics theory [127]. Beyond the 

commencement of flutter, when the flow speed increases to the hypersonic region, the
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motion of the panel could be either large amplitude LCO (simple harmonic, periodic) or 

chaos. Hence, issues like the amplitude of LCO, the boundary marks the start of chaos 

and various evolution routes of chaos will be highlighted.

3.2.1 Diagnosis Tools

As suggested by Dowell [90] and Moon [79], the following diagnosis tools are 

necessary for detecting chaotic motion.

1. Time histories

2. Phase plane plot

3. Power spectral densities (PSD) or Fourier spectrum of the signal

4. Poincard maps

Of the four descriptors, time history is the most straightforward means to attain an 

impression of the motion style. However, it is tricky to detect long-period or quasi- 

periodic vibration where two or more incommensurate periodic signals are present 

through the time history only. Phase plane plot is more informative upon this point, but, 

the trajectory of the orbits will tend to fill up the phase plane so that information about 

the attractors is submerged inside. The use of Poincare map, which is a snapshot of the 

phase plane plot triggered by a certain event, will “develop” portraits of the attractors 

easily. The PSD or Fourier spectrum provides information about frequency spectrum of 

the time history. For system of low dimension (one to three DOF), broaden of frequency 

spectrum is easy to recognize so that beginning of chaos is tracked. But, for system of 

high dimension, the frequency spectrum is broad (many spikes for various frequency 

components) even though periodic vibration is ongoing.
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The motion of a specific point on the panel, the node located at the cross of % length 

(x direction) line and mid-width (y direction) line, is monitored as a representative of the 

entire plate motion. The time history of the transverse deflection, w, at this node is 

recorded. The phase plane plot is constructed with w as one axis and its corresponding 

velocity, w , as the other axis.

The motive of using Poincare map is to acquire certain qualitative and quantitative 

information about the system by studying the evolution of state variables at discrete 

times, which is different from the phase plane plot that records the changes of state 

variables at continuous time instants. In an n-state variable problem, one can obtain a 

Poincard section by measuring the n-1 variables when the nth variable reaches some 

particular value or when the phase space trajectory crosses some arbitrary plane in phase 

space. The specific node under study possesses six DOF. It is possible to recover the 

velocities for each DOF from those of each modal coordinates using a relationship 

derived from Eq. (2.62)

In fact, Eq. (3.11) is used for constructing phase plane plot. Therefore, there are 13 state 

variables, including time t, available for plotting a 12-dimension Poincare map. However, 

it is not necessary to build such a complicate and abstract map since the pair of transverse 

displacement w and transverse velocity w can be treated as a good representative of the 

rest. That means actually a 3-dimensional state space, (w, w , t ) , is taken as example to 

build a 2-dimensional Poincare map, which is mathematically referred to as a reduced 

map [118].

(3.11)
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The crucial question for constructing Poincare map is the choice of the discrete 

instants of time, or the occasion for penetrating a plane into the phase space. For a 

nonautonomous system, the system is generally driven by a force with a prescribed 

period T. Obviously and reasonably, the stroboscope is switched on at an interval of mT 

(m = 0, 1,2,3, ...) to intercept desired Poincare map. Whereas for an autonomous system 

that the flutter problem belongs to, the period of the driving force is unascertainable. It is 

suggested [79,90] that an event, instead of a fixed time interval, should be defined so that 

the occurrence of this event will trigger the stroboscope to capture a portrait of the state 

space. In general, these events will not occur at equal time intervals. Indeed they may 

occur at chaotic time intervals. Actually, a successful choice for a nonautonomous system 

can be understood as an event defined as whenever the periodic driving force achieves its 

maximum magnitude. The specific event for present instance is defined as being the 

passage of the velocity of the plate at the % length node through zero from the positive 

direction. At the occurrence of the defined event, the transverse deflection at the Va length 

node and the deflection at plate center node are recorded for sketching the Poincare map. 

This is not the unique acceptable event definition. Choice of an suitable event is highly 

pertinent to the problem under study and purpose of such study.

The pattern of Poincare maps reflect the motion type of the system. As classified by 

Moon [90], following mapping relationships can be taken as criteria for further 

judgement:
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Finite number of points periodic or subhannonic oscillations

Closed curve quasiperiodic, two incommensurate frequencies present

Open curve suggest modeling as a one-dimensional map; try plotting

x(t) versus x(t+T)

Fractal collection of points Strange attractor in three phase-space dimensions

Fuzzv collection of points (i) dynamical systems with too much random or noisy input;

(ii) strange attractor but system has very small dissipation- 

use Lyapunov exponent; (iii) strange attractor in phase 

space with more than three dimensions —  try multiple 

Poincare; (iv) quasiperiodic motion with three or more 

dimension incommensurate frequencies

3.2.2 Bifurcation Diagram

A widely used technique for examining the prechaotic and postchaotic changes in a 

dynamic system under parameter variations is the bifurcation diagram. Phase plane plot, 

Poincard map, time series and power spectra provide information about the dynamics of 

the system for specific values of the system control parameters, herein the 

nondimensional dynamic pressure A. and the temperature AT. The dynamics may also be 

viewed more globally over a range of parameter values, thereby allowing simultaneous 

comparison of periodic and chaotic behavior. The bifurcation diagram provides a 

summary of the essential dynamics and is therefore a useful method of acquiring this 

overview.
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Despite that the theories about bifurcation are somewhat profound, the construction of 

the bifurcation diagram is rather simple. There is an internal relationship between 

Poincare map and bifurcation diagram. The event defined for Poincare map is also 

utilized to activate recording the maximum plate deflection at the % length node. Another 

axis of the bifurcation diagram, the control parameter axis, is taken as either the 

nondimensional pressure X  or the temperature AT. Therefore, the bifurcation behavior of 

the fluttering plate is studied along two paths: one is bifurcation at certain flow speed 

value versus variations of plate temperature, the other case is bifurcation of a plate heated 

up to a specific temperature level versus changes of flow speed.

The typical types of bifurcation that can be observed from bifurcation diagram are: 

the saddle-node (or fold, tangent) bifurcation, the Hopf bifurcation, the pitchfork 

bifurcation and the period-doubling (or flip) bifurcation. Nice illustrations of above 

bifurcations in phase plane portraits, Poincare map and bifurcation diagram can be found 

in plenty of books [80, 81, 119-121]. An illustrated guide to above bifurcations without 

any mathematical support is given by Abraham and Shaw [119] and Abraham, Abraham 

and Shaw [120]. Illustrations and typical examples of each type of bifurcation can be 

found in the book by Thompson and Stewart [80]. Some related research findings are 

collected by Thompson and Bishop [81]. Extensive mathematical treatments of some or 

all of abovementioned bifurcations are given in Guckeheimer and Holems [118], Chen 

and Leung [94] and Hale and Ko^ak [121]. The four types of bifurcation belong to the 

local bifurcations that concerns primarily about the bifurcations of fixed points of vector 

fields and maps. There exist global bifurcations [82, 122] that describe qualitative 

changes in the orbit structure of an extended region of the phase plane. The associate
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theories and tools are not as sophisticated as those for the local bifurcations yet. The local 

bifurcations are mainly investigated herein to explore various routes to chaos.

The most important information about the evolution of chaos that can be probed by 

using of bifurcation diagram is the various routes to chaos. Since the discovery of the 

strange attractor by Lorenz in 1963 [77], four typical routes leading to chaos have been 

discovered [79,94].

(1) Period doubling route to chaos. The most celebrated scenario for chaotic 

vibration. The typical bifurcation phenomenon belongs to this category is the 

period-doubling (flip) bifurcation, which shows the transition from period one 

motion to period two motion.

(2) Quasiperiodic route (also named as secondary Hopf bifurcation route) to chaos. 

Occurrence of the Hopf bifurcation symbolizes such this route. Two or more 

closed curves, indicating two or more incommensurate periods, are the typical 

image shown in the corresponding Poincare map.

(3) Intermittent transition route to chaos. Long periods of periodic motion with 

bursts of chaos observed. The behavior of the system seems to switch back and 

forth between two qualitatively different behaviors even though all the control 

parameters remain constant. Two major types of intermittence are that system 

behavior switches between periodic and chaotic motion for the first type, 

whereas, between periodic and quasiperiodic for the second.

(4) Breaking of the KAM fKolmogorov-Amold-Mosof) torus route to chaos. The 

typical observation is that according to the KAM theorem [94], the phase space 

portraits of the quasi-Hamiltonian system are distributed on two KAM tori
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(one embedded in the other), but between the two tori there exists a chaotic 

region. Unlike the first three routes, the mechanisms for this route remains to 

be solved. This fourth route will not be in consideration herein because chaos 

due to broken KAM torus exists for two-dimensional system only.

As stated above, mechanisms for the first three routes to chaos have all been clear in 

theory. Thus, identifying a particular prechaotic pattern matching these well-developed 

models with assistance of Poincare map and bifurcation diagram will help with a better 

mathematical and physical understanding of the chaotic phenomena.

3.2.3 Lyapunov Exponent

The defining feature of chaos is its sensitive dependence upon initial conditions 

(SDIC). The Lyapunov exponent is a measure of the sensitivity of the system to changes 

in initial conditions. A straightforward understanding of this exponent can be illustrated 

through the definition of Lyapunov exponent for one-dimensional map. Given the time

series x(to), x(ti), x(t2), ..., which can be labeled as x0, xi, x2  If the system is

behaving chaotically, the divergence of nearby trajectories in phase space will manifest 

itself in an exponentially increasing way. Assume x; is an arbitrarily selected value from 

the sequences of x’s, and Xj is another value in the sequence that is close (theoretically, 

should be infinitesimally close) to X|. The distances are defined as
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Then, the exponential increase is described as

dn = d 0e M (3.13)

The divergence rate, V  is defined as Lyapunov exponent

(3.14)= “ *°92n
J

where subscript 2  means base 2  logarithm.

For a n-dimensional system, there exists a spectrum of n Lyapunov exponents. The 

long-term evolution of an infinitesimal n-sphere of initial conditions is monitored to 

evaluate the Lyapunov exponents for deformed principal axes. The initial sphere will 

become ellipsoid due to the expanding and extracting along the principal axes. The i-th 

one-dimensional Lyapunov exponent is defined in terms of the length of the ellipsoidal 

principal axis pj(t) (Wolf et al. [102])

(3 1 5 )

Usually, the V s  are ordered so that Xi > V >....

The signs of the Lyapunov exponents indicate what kind of motion the system is 

undergoing. For the motion described by one-dimensional map, there is only one 

Lyapunov exponent. A negative exponent corresponds to a  periodic limit cycle motion or
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fixed point, null exponent means a marginal stable motion or two-torus, and positive 

exponent indicates chaotic motion. For an n-dimensional system, the largest Lyapunov 

exponent, A.|, is used as an indicator of chaos. Again, positive X \  indicates chaos. Some 

sign patterns of multi-dimensional dissipative system Lyapunov exponent spectrum could 

provide more detailed information about the type of attractor, such as for a three- 

dimensional spectrum, sign pattern (+, 0 , -) corresponds to a strange attractor (chaos); (0 , 

0, -) is for a two-torus; (0, -, -) means a LCO and (-, -, -) stands for a fixed point.

In present study, only the largest Lyapunov exponent X i  is of interest to find the 

boundary values of control parameters that cause chaos. As mentioned before, the time 

series used for calculation is actually a one-dimensional map. A program for computing 

the largest Lyapunov exponent from a time series given in a paper by Wolf et al. [102] is 

employed. The detailed algorithm, which is not among the scope of current study, is also 

given in the paper. All components of a Lyapunov exponent spectrum could be computed 

from governing equations of motion like Eq. (2.64). However, herein it is not necessary 

to compute all Lyapunov exponents in the spectrum (if n modes are used, there will be n 

Lyapunov exponents in the spectrum) since the sign of the largest exponent is sufficient 

for chaos diagnosis purpose.

3.3 Computation Considerations

3.3.1 Convergence Study and Mode Selection Strategy

There are two essential issues prior to the commencement of all computation efforts. 

The first issue is the convergence study. Convergence studies must be conducted to 

reveal the effects of mesh sizes and the number of modes on accuracy of time integration.
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The final selection of mesh size and mode number will be made on a converged time 

response of the panel in representative working environment.

Another important issue that accompanies the mode number convergence study is the 

selection of modes. When airflow is parallel to the length of the panel as shown in Fig. 

2.1(a), theoretically, infinite number of modes are activated. For analytical approaches, 

such as the popularly used Galerkin’s method for flutter analysis, and finite element 

modal formulation, in essence certain mode shape functions/vectors are assumed. 

Especially if the assumed mode shapes are sine wave or sine-wave like, mode (m, n) 

means that the mode shape is a compound of m half sine waves along the panel length 

and n half sine wave along the width. Choice of modes is generally in language of such 

integer pairs. The guideline of choice is to keep those dominant modes so that the number 

of modes to be kept to a minimum with reasonable accurate response.

There are some discussions about this issue in the literature. Dowell [7, 123] 

indicated that six linear modes, (1,1), (2,1) to (6,1), give quite accurate results for LCO in 

supersonic panel flutter analysis. More recent research has unveiled the complexity of 

mode selection. Weiliang and Dowell [124] found that more than one spanwise mode is 

required for sufficient analysis of LCO response for the cantilever isotropic plate. Lee et 

al. [125] encountered difficulty of tracking frequency coalescing modes when 

temperature effects are involved. They adopted a mode tracking scheme to follow modes 

that will coalesce. Chandirmani and Librescu [62], in their study of laminated nonlinear 

panel flutter using third order piston theory, used 4x1 modes (4 chordwise modes and 1 

spanwise mode) for the case of airflow parallel to the panel chord, and 2 x2  modes for the 

case of in-plane angularity. Their work is primarily to search for the flutter boundary that
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the phenomenon of frequency coalescence is utilized. Therefore, only the modes that are 

possible to be involved with frequency coalescence are concerned. Whereas, Nydick et 

al. [59] stated that for hypersonic flutter analysis of an orthotropic panel using numerical 

integration, which is the approach employed in present study, up to 8 x 1 modes are 

necessary to achieve modal convergence at high flow speed. Their conclusion was made 

on basis of a careful modal convergence study and is highly advisable to present study.

Another difficulty in mode selection that is specific to flutter analysis of orthotropic 

or laminated panels is the identification of modes. For analytical approaches, the modes 

are pre-assumed so that employment of modes (m, n) means simply including the 

corresponding mode shape function into the expansion series. In finite element analysis, 

referring to the formulation in chapter two, the modes are solved from eigenanalysis. So, 

if the conclusions about mode selection from analytical approach are used as guidance, 

the first step is to identify the high order modes (m, n). Usually this is accomplished 

through plots of mode shapes, i.e., eigenvectors. The anisotropic properties of the panel 

make this procedure very difficult to perform since it is hard to count the number of 

modes along panel length and/or width.

The mode selection strategy adopted here is based upon the concept of modal 

participation factor (see also Abdel-Motaglay et al. [126]). The modal participation 

factor of r-th mode, T|r, is defined as

Vr

* = i

The basic idea is to filter out the trivial modes according to the value of modal 

participation factor. To avoid examining a large amount of modes at the same time, the

maxq.
z  (3.16)
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filtering procedure is conducted in a step by step way as described below (the modes are 

ordered by ascending of frequency as a result of eigenanalysis):

1. Choose several representative flow speed and temperatures. The simulated LCO 

amplitudes will be examined.

2. Use the first 20 modes for numerical integration.

3. Record the LCO amplitudes for each case (specific flow speed and temperature).

4. Check the modal participation factors for each mode and discard modes with 

contribution less than certain level, such as one percent. Introduce more modes (to 

make up the total number to be 2 0 ), which are of higher order than the tested 2 0  

modes, and repeat the numerical integration.

5. Record the LCO amplitudes and compare with previous results for convergence 

check.

6 . If the LCO amplitudes for all cases have converged, the modes used for most 

recent step should be the final choice. If not converged, go to step 4.

The above procedure assures that the selected modes include all influential modes and 

give converged LCO amplitude. Since at each round 20~25 modes are involved, it is 

fairly convenient to reach a final mode selection pattern in a few rounds. It is unnecessary 

to plot the mode shapes and identify the (m, n) pairs. Apparently, the above 20-mode- 

base procedure can be modified to be a 10-mode-base or 25-mode-base procedure if 

necessary.

3.3.2 Computation Cost Reduction

Modal reduction technique reduces the computation cost in the following aspects:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



71

3.4 Flowchart

A schematic flowchart summarizing abovementioned solution procedure is given in 

Fig. 3.1. There are some points need further explanation:

(1) The flowchart illustrates the integration route of changing average temperature 

T0 continuously with a fixed nondimensional dynamic pressure A,. It is very 

easy to be modified to the route of continuous changing A. and fixed 

temperature level. The second route is also employed in numerical study.

(2) The temperature distribution could be uniform (T| = 0 ) or with nonzero 

temperature gradient (Ti *  0). The temperature gradient is not changing 

continuously like the average temperature does.

(3) The transient response is filtered by a control parameter NPT1. All result data 

files record the truncated data sets that are after the NPT1 integration points 

(NPT1* At seconds).

(4) The programs used for Lyapunov exponent calculation is not from reference 

[102]. Instead, updated programs provided by Dr. Alan Wolf, BASGEN and 

FET, are used. BASGEN is for database generation and FET is for evaluation 

of the largest Lyapunov exponent with fixed evolution time.
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START

1 r

INITIALIZATION

Mesh size; Number of modes, n t ,  and modes to use;
Panel support boundary conditions; material properties; 

Nondimensional dynamic pressure A.; Temperature gradient; 
Aerodynamic damping coefficient;
Average temperature range: T0 = 0 ~ nTr * ATr;
For composite, specify lamination angles;
Time integration points NPT, transient response filtering points NPT 
Integration time step size At;
Switch variables for different order of the Piston’s theory

Construct [A], [B], [D] matrices.
Composite panel Isotropic panel
Use Eqs. (2.16a), (2.16b) and (2.16c) Use Eq. (2.17)

I
Assemble constant matrices:

[Kb], P U , [KU — Eqs. (2.27) ~ (2.29) 

[KNAT]— Eq. (2.243)

[G], [AJ,— Eqs. (2.58a), (2.58e)

[Mb], [M„J — Eqs. (2.50), (2.53)

©
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DO I = 1, nt

Normalize the mode shape matrix [4>] 
with maximum component set to one

Assemble [Gld(i), [AlJ(i) and [Alb](i) using 
Refer to Eq. (2.58b), (2.58f) and (2.58g). 

Save [d>]T( [G1J(0, [A1J®, [Alb](i))[ O].

Perform the linear eigenanalysis

4 mM = [K .M  (2-63) 

Construct the mode shape matrix [4>]

Assemble [Nl](i) using {<&}, refer to Eqs. (2.34), 

(2.35) and (2.39). Save [<&]T[N1 }(0[ <&].

For iso/sym panels, save [Nlbm](i)

For isotropic/symmetrically laminated panels: 
Solve the thermal buckling eigenproblem

NAT ]-[N1n„M0} (3.10)

for ATcr
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® ®

AT = AT0 + nTr * ATr

Given initial condition {X0}

DO 1=1, NPT

Assemble [Knat] and {Pat}, referring 
to Eqs. (2.43), (2.45) and (2.46).

Evaluate [k ] using Eq. (2.64c). For 

iso./sym. Panels, use Eq. (2.72c).

Extract modal coordinates {q} and velocity {q} from 

present state vector {X{}. Evaluate nonlinear matrices 

f t j .  [ g J ,  [NlJ and |.N2 j, see Eqs. (2.64), (2.65) 

and (2.69).
For iso/sym. panels, see Eqs. (2.72). Compute [Kqq] 
according to Eq. (2.72f).
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® ©

® ©

(3.4)

[ c J = w S * r ^ ]  0.5)

{f* } = « « W , W {P,t} (3.6)

k, =Atf({x,},t,) 

k a = A t f ^ { X ,} + l k 1lt t + l A t

k3 =Atf {Xr}+-£k2, t j+ jA t

k 4 = Atf ({X,}+k3 ,t|+At)

(3.7a)

(3.7b)

(3.7c)

(3.7d)

{ X m M x .K ^  + l k 2  + l k 3 + l k 4 (3.8)

The real response of the panel can be recovered as

{w}=M q} M =  M q}
where {q} and {q} are from {Xj+i}

<s>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



77

® ®
No I>  NPT1 ?

Export ( t i m e ,  W3 /4  /H) for time history.

Export ( W3 /4  / H, W3 /4  / H) for phase plane portrait.

Poincare event 
activated?

Export(W3 M/H, Wc/H ) forPoincar€ map. 

Export (AT, W3 /4  / H) for bifurcation diagram.

Store time history data for calculation of 
Lyapunov Exponent.

©

{Xi} == {XW}

1 r
Continue

®
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STOP

Continue

Calculate Lyapunov Exponent 
CALL BASGENO 
CALL FET( )

Fig. 3.1 Flow chart
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CHAPTER IV 

RESULTS AND DISCUSSION

The primary objective of this study is to develop a finite element time domain modal 

method for evaluation of panel flutter at hypersonic airflow. The formulation and 

corresponding solution procedure has been addressed in detail in prior chapters. This 

chapter is to present numerical results from implementation of the presented time domain 

modal method. The first step is taken to validate the finite element formulation through 

comparisons with available analytical or numerical panel flutter analysis results. The 

method is subsequently applied to the flutter analysis of six types (Table 4.1) of panels. 

Special attention is paid to practical implementation issues, which are the essential 

elements for proper application of the modal method. It is necessary to be noted that due 

to the advantage of finite element method, the proposed method is not limited to the 

material properties, supporting conditions, panel geometry (as long as it is a thin panel) 

and lamination layout that are quoted herein.

4.1 Validation of the Finite Element Formulation

As reviewed in the first chapter, a vast amount of literature has been focused on linear 

panel flutter analysis and nonlinear panel flutter analysis with linear aerodynamics. 

Among the major concerns of all studies, the dynamic pressure X  for flutter and LCO 

amplitudes are two fundamental topics since that the former directly provides design 

criteria and the latter is very helpful to panel fatigue life analysis. The first numerical 

study example is to compare X. and LCO amplitudes determined by present finite element
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approach with results cited from Dowell [26], Fig. 19. The switch variables, Cu, Cix, C2t, 

C;>x> C3t, and C3X, are set as 1 , 1 , 0 , 0 , 0 , 0  to achieve linear aerodynamic pressure 

described by the first order piston theory. There exists equivalence between the in-plane 

loads considered by Dowell [26] and the thermal loading considered here. When the 

panel is heated up uniformly to a temperature level of AT</ATcr, the uniform compressive 

force developed at mechanical supports is -R x/tr, as employed by Dowell [26] for bi­

plane compressive force. Observing this relationship, the X versus LCO amplitudes for a 

simply supported isotropic square panel at thermal loading of ATo/ATcr = 0.0, 1.0,2.0 are 

compared to corresponding results from Dowell [26] at in-plane force levels of Rx/tr  = 

0.0, -2.0, -4.0. Figure 4.1 shows the comparisons. Dowell [26] employed six modes along 

flow direction, (1, 1), (2,1), ..., (6 , I), for the direct numerical integration. The finite 

element approach used also six flow direction modes and a 1 2 x8  mesh size based upon a 

mesh convergence study, not shown here for brevity. For the case of no thermal loading 

ATo/ATcr = 0.0, RX/7T = 0.0, the critical dynamic pressure determined by Dowell is 540.5 

(as read from figure) and the finite element approach gives 542.0 when AX is taken to be

1.0. For the other two temperature levels, ATo/ATcr = 1.0, 2.0, finite element analyses 

give Xcr of 365.0 and 205.0, and values of 364.5 and 204.5 are read from Fig. 19 in the 

paper by Dowell [26]. It is seen that good agreement was reached. Since the accuracy of 

graph reading cannot be ensured, comparison up to digit accuracy is too foot to proceed. 

From Fig. 4.1, it is also concluded that using 12x8 meshes, and 6  linear vibration modes, 

finite element gives almost the same LCO amplitudes as given by Dowell’s six-mode 

analytical solution procedure.
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Incorporation of nonlinear aerodynamic terms into the panel flutter analysis results in 

flutter motions exhibit several unique characteristics that differ the hypersonic panel 

flutter from supersonic flutter. Instances of such identifying behavior for hypersonic 

panel flutter response were exposed early by Eastep and McIntosh [56] and their findings 

were summarized in the literature review section of Chapter I. Here, one visually 

straightforward example of these special characteristics, the bias of LCO into the cavity, 

is examined using the simply supported isotropic square panel as an object. Figure 4.2 

shows that at a high airflow speed, A. = 2 0 0 0  as quoted, using the first order piston theory, 

the panel moves the same amount away from its center plane (z = 0 ) into the flow as into 

the cavity, say W ^/H  = ± 2.34, as illustrated in Fig. 4.2(a). When third order piston 

theory is used, the bias of motion into the cavity can be observed clearly from Fig. 4.2(b), 

where in the airflow side, Wmax/H = 2.08, and in the cavity side, Wmax/H = -2.50. This 

observation of motion bias is a good evidence to say that nonlinear aerodynamic terms do 

make significant difference and the proposed finite element time domain modal 

formulation is capable of capturing such difference.

Although limited, there are some LCO amplitudes results from hypersonic panel 

flutter analysis available in literature. The second comparison was then made for LCO 

amplitudes of panel flutter in hypersonic flow between present finite element analysis 

results and selected results by Gray and Mei [9] using finite element frequency domain 

LUM/NTF method and by Nydick et al. [59] using analytical PDE Galerkin method and 

direct numerical integration. Figure 4.3 shows the comparisons. The LCO amplitudes for 

both single layer ( [0] ) and double layer ( [0/90]) B/Al square panels were obtained by 

Gray and Mei [9] using an 8 x8  mesh (8x4 half-plate mesh). Whereas, an 12x8 mesh is
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employed in present study based upon the mesh convergence study that will be set forth 

in a later paragraph. It is also noticed that the two-layer panel belongs to unsymmetrical 

lamination that has a nonzero bending-extension [B] matrix and the single layer panel is 

with a null [B] matrix. Evaluations of LCO amplitudes for these two panels of same 

material, same geometry, same support condition, different lamination scheme are then 

performed with different formulations put forth in sections 2.3 and 2.4. Figure 4.3 tells 

that very good agreements are found between the finite element frequency domain 

method and time domain modal approach for both the symmetrically laminated panel and 

the unsymmetrically laminated panel case. For the analytical approach adopted by 

Nydick et al. [59], it is necessary to choose which mode to be used for assuming the 

panel deflection in space domain using the Galerkin method. This is a common issue that 

is also encountered while applying the present finite element time domain modal 

approach. Nydick et al. [59] conducted elaborate comparisons for LCO amplitudes 

obtained from analyses using various numbers of modes and concluded that an 8 x 1 (i.e., 

eight flow direction modes, (1 ,1), (2 ,1 ), ..., (8 ,1), are used) mode selection pattern would 

give converged LCO amplitudes. A detailed mode convergence study based upon 

conclusions from mode filtering procedure is carried out as preparation work for the 

entire solution procedure suggests that for the single layer B/Al panel, up to 13 modes are 

needed for accurate LCO amplitude evaluation. Modes other than those along flow 

direction modes (i.e., mode mxl, m = 1,2, 3 ,...) may have significant contribution to the 

ensemble panel oscillation according to modal participation computation results. Details 

about the mode convergence study and implementation of mode filtering will be 

illustrated through two instances later in this chapter. In a summary, comparisons made in
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Fig. 4.3 proved that the finite element frequency domain method developed by Gray and 

Mei [9], the analytical approach used by Nydick et al. [59] and the finite element time 

domain modal formulation presented herein agree well with one another on solutions of 

LCO amplitudes of panel flutter at hypersonic airflow. The good agreement achieved also 

demonstrated the validity of the proposed strategy of mode selection through mode 

filtering procedure.

4.2 Flutter of Isotropic Panels

Thin panels made of isotropic materials, such as aluminum and its alloys, titanium 

and its alloys, have earned extensive applications in aircraft design since the very 

beginning of aerospace engineering. Besides their potential high strength and/or light 

weight, the simplicity of material properties greatly ease the corresponding analyses 

work. The main purpose of studying the flutter response of isotropic panels in hypersonic 

flow is to get a first impression on what the hypersonic airflow can do to the thin panels 

of the flight vehicles.

For all case studies followed, the 24-DOF Bogner-Fox-Schmit Cl conforming finite 

element is utilized for discretization of the panel since the formulation was based upon 

(but not limited to) this type of element. For curved panel or panel with initial 

imperfection, shell elements such as MIN6  finite element are suggested. The panels are 

assumed to be simply supported that implies boundary conditions of w(0 , y) = w(a, y) = 

w(x, 0) = w(x, b) = 0, w>xx(0, y) = w^fa, y) = w>yy(x, 0) = w,yy(x, b) = 0. The in-plane 

boundary conditions for all cases are assumed to be the so-called “immovable”
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denotes the product of Mach number and panel geometry constant r = h/a. It is seen that 

the thermal loading for the isotropic panel is ATo/ATcr = 1.3 > 1.0 but the panel motion is 

tranquilized by the airflow so that no buckling occurs. As temperature increases, the 

aerodynamic pressure becomes insufficient to repel the occurrence of buckling so that the 

panel is buckled into certain shape, and if aerodynamic pressure is not high, it is possible 

that the panel keeps its buckling shape without any vibration. This is the “buckled but 

dynamically stable” status, as termed by Dowell [26]. As the dynamic pressure (flow 

speed) increases further, flutter will take place and the rest three dynamically unstable 

motions run onto the stage. The simplest motion of these three is the simple harmonic 

LCO as shown in Fig. 4.5. Simple harmonic LCO is a type of sine wave like motion that 

has a single period, in the other word, one dominating nonlinear frequency. In the 

Poincard map, this single period is projected as one point (the Poincare map of “blown 

flat” behavior is also one point, but the point has null coordinates), hi the phase plane, a 

closed elliptic orbit represents the repeatability of this kind of motion. Figure 4.6 shows a 

period-2 motion that can be easily identified in its Poincare map (points A and B stand 

for the existence of two periods). Motions with more than two periods are also possible 

and usually increase of periods will finally cause chaos. Periodic motion owns more than 

one dominating vibration frequencies and they are not harmonics of one another. Both the 

simple harmonic motion and periodic motion are oscillations within a limited bound so 

that they are also termed as simple harmonic LCO and periodic LCO, respectively. The 

most complicated of the five types is obviously the chaos. As shown in Fig. 4.7, the time 

history of chaotic motion is highly random and its phase plane is crowded with non­

repeating orbits. Typical Poincare map shows a fractal pattern as shown in Fig. 4.7(c).
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Projections of all trails occupy an irregular domain of the map and there are no any hints 

of the existence of periods. It is worthy to clarify that even without in-plane 

thermal/mechanical loading effects, a fluttering panel could develop chaos when flow 

speed is high (see Nydick et al. [59]). However, it is true that thermal/mechanical loads 

could result in chaos at low flow speed since the snap-through phenomenon after 

buckling is also highly nonlinear and nonlinearity is among the major causes to chaos 

(Moon [79]).

4.2.2 Bifurcation and Routes to Chaos

Because of the high nonlinearity inherent with hypersonic panel flutter, chaos 

becomes inevitable as system control parameters, i.e., the temperature and the dynamic 

pressure, change. It is therefore interesting to observe the route that chaos evolve via 

bifurcation diagram, as introduced in Chapter HI. Figure 4.8 is the first example of 

bifurcation diagram chosen on purpose to observe the route to chaos for the simply 

supported aluminum panel. Figure 4.9 is a close view of the pitchfork bifurcation 

cascade. Apparently, at X  = 1100, the panel takes a period-doubling route (see previous 

section 3.2.2) to evolve into chaos. For a better understanding, the phase plane plots and 

Poincare maps for representative control parameter values, ATq/ATct = 3.0, 3.5, 4.5, 5.1, 

and 5.4, are presented in Fig. 4.10 and Fig. 4.11. Observed from Fig. 4.10 and Fig. 4.11, 

at ATo/ATcr = 3.0, the panel undergoes a period one LCO motion. As the temperature 

increases to AT(/ATcr = 3,5, in phase plane the closed single connection orbit in Fig. 

4.10(a) bifurcates into two orbits as shown in Fig. 4.10(b), correspondingly, the single 

point in Poincare of Fig. 4.11(a) bifurcates into two points as shown in Fig. 4.11(b). The
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pitchfork bifurcation continues as temperature amplitude increases. The period-2 motion 

bifurcates into period-4 motion, as shown in Fig. 4.10(c) and Fig. 4.11(c), and period-4 

motion then bifurcates into period- 8  motion, as shown in Fig. 4.10(d) and Fig. 4.11(d). In 

Fig. 4.10(d), the further bifurcated eight orbits are crowded at the right half plane that 

implies further bifurcation may cause disturbance between different orbits. Fig. 4.10(e) 

illustrates that bifurcation from the period- 8  motion results in diffusion of orbits in a 

finite area that is typical for chaotic motion. In Poincare maps shown in Fig. 4.11(d) and 

(e), the eight points grow into a fractal patch in the map as shown in Fig. 4.15(e). 

Pitchfork bifurcation is not the only bifurcation behavior observed during the chaos study 

undertaken here. Typically, the Hopf bifurcation is also encountered when A. changes 

from a value lower than Â r to X>Xcr, i.e., the panel undergoes the transition from flat 

panel to LCO motion.

Another phenomenon observed in Fig. 4.8 and Fig. 4.9 is the post-chaos 

characteristics. It is seen that at temperature ratio ATo/ATcr between 5.65 and 5.75, the 

matured chaos disappeared and periodic motion revives, as indicated in the phase plane 

plot of Fig. 4.10(f) and Poincare map Fig.4.11(f). Same phenomenon of transition from 

chaos to periodic motion was also observed by Dowell [90] while studying the chaotic 

motions of a buckled beam at supersonic flow. The rejuvenation of post-chaos periodic 

motion does not sustain long as temperature ration increases. It is observed that at 

AT</ATcr between 5.75 and 5.80, chaos appears again. The background principle 

governing this chaos to periodic motion and then return to chaos is not yet known exactly 

and needs further research.
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Period-doubling pitchfork bifurcation is not the only route. Figure 4.12 shows the 

bifurcation diagram for X  = 2500.0 and this type of bifurcation diagram is typical for high 

X  region. The chaos occurs at a ATo/ATcr value falls between 4.0 and 4.5 with a gradually 

broaden area in the bifurcation diagram. Visual judgement about at what specific value of 

temperature ratio chaos starts becomes very difficult, compared with the legible 

bifurcation points in Fig. 4.9. The evaluation of the largest Lyapunov exponent (refer to 

previous section 3.2.3) is then introduced for assistance of determining the start point of 

chaos. Figures 4.13 and 4.14 illustrate the Lyapunov exponent calculation results for 

selected ATo/ATcr ratios, i.e. X  = 1 1 0 0 .0 , ATo/ATcr = 5.0, 5.1 and 5.2, X  = 2500.0, 

ATo/ATcr = 4.1,4.2,4.3. Comparing the bifurcation diagram in Fig. 4.9 and the Lyapunov 

exponents in Fig. 4.13, it is easy to conclude that the chaos for aluminum panel at X  = 

1100.0 starts when temperature ratio reaches ATo/ATcr = 5.2 because the Lyapunov 

exponents at ATo/ATcr = 5.0, 5.1 are null, which denotes LCO, and for ATo/ATcr = 5.2 the 

Lyapunov exponent jumps to 28.0, which indicates chaotic motion. Similarly, review of 

bifurcation diagram given in Fig. 4.12 and Lyapunov exponents illustrated in Fig. 4.24 

tells that at X  = 2500.0, the chaos occur when the temperature ratio is ATo/ATcr = 4.3. 

Evidently, use of the largest Lyapunov exponent calculations in conjunction with 

bifurcation diagrams will provide an efficient and precise means to capture the critical 

points for chaos commencement and/or post-chaos periodic LCO. The compound use of 

bifurcation diagram and Lyapunov exponent is applied to all chaos study cases followed.
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4.3 Flutter of Orthotropic Panels

Over the years, orthotropic panels of various materials, geometries and supporting 

conditions have been chosen as an example to exploit the mechanisms, characteristics of 

the dynamic motions of fundamental structural components. The reason is two-fold. 

Firstly, orthotropic panels have extensive applications in many industries including 

aerospace structures and this makes related research very informative and meaningful. On 

the other hand, the simplicities (of course, more complicated than isotropic material) in 

material properties are preferable for convenient analytical or numerical analysis to be 

conducted. Strictly speaking, the B/Al Metal Matrix Composite (MMC) panel belongs to 

orthotropic panel and it had extensive applications in airplane surface panels, airframe 

struts design. Such an orthotropic panel is then taken as an example to demonstrate all 

types of complicate flutter behaviors of panels at hypersonic airflow.

The investigations on the effect of nonlinear aerodynamic terms that involved in 

piston theories are given to show the importance of including influential terms while 

doing hypersonic panel flutter analysis. Influences of some important system parameters, 

such as temperature gradient, aerodynamic damping, and Mach number, on the flutter 

response are also examined.

4.3.1 Mode Selection, Mode Convergence and Mesh Convergence

So far, the importance of mode selection and mode convergence study has been 

emphasized for several times. The essence of this issue is that any modal reduction 

technique assumes an approximation to the true solution of the physical problem. A good 

assumption on modes to use leads to an accurate simulation and a bad one causes loss of
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veracity. As a common sense in dynamics, structure vibration is usually dominated by 

low frequency modes. However, for a fluttering panel at hypersonic flow, the airflow 

provides the energy source for activating high order modes so that they may play a more 

significant role. The motive of proposing the mode filtering procedure as the guidance 

for mode selection is to identify those modes really contributes much to the vibration. 

The modal participation factor, as defined in Eq. (3.16), is the gauge to assist the 

judgement of influence of a certain mode on the ensemble motion. As one of the major 

objectives of current research, effort must be made on developing a practical tool for 

engineering application. Hence, a systematic scheme for mode selection for the finite 

element time domain modal formulation is highly demanded.

The mode filtering procedure for a simply supported, single layer [0], 12" x 12" x 

0.04", B/Al panel is executed by observing the general guidelines put forth in section

3.3.1. As the first step, an initial run with a broad range of nondimensional dynamic 

pressures, X  = 1 0 0 0 . 0  -  5000.0, has been conducted and the results showed that non­

periodic or chaotic motions possibly occur at the range of X  = 3000.0 -  5000.0. There are 

two ways to perform this initial run: (1) run with a finite element model in physical 

coordinates (without mode truncation), or (2 ) run with a large number of modes taken 

from the low frequency modes, such as mode 1~30, which was used in current study. 

Since the modal contributions of various linear vibration modes to the LCO amplitudes 

will be examined, three representative nondimensional dynamic pressure levels, X  —

1000.0, 1500.0, 2000.0, are chosen for further study. Caution must be taken while 

choosing such representatives. It is anticipated that high order modes to be more 

important at high LCO amplitudes. So, the sample nondimensional dynamic pressures
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should not be too low so that the influence of high order modes is underestimated. There 

are no precise criteria about how high is enough, however, by observing phase plane plot 

and time history, one can easily tells how good the LCO is. Apparently, X  should not be 

too high either so that the motion is not LCO any more. It is also possible to use Power 

Spectrum Density (PSD) plots in helping with the identification of those influential 

modes so that the sample motions are not restricted to LCOs. As will be explained later, 

the boundary from LCO to chaos is the focus of further study, so that the LCO is 

highlighted.

Table 4.2 lists details of the five runs performed to screen out the influential modes 

dominating the LCO flutter responses of the single layer orthotropic panel under study. 

The first run was executed with modes #1 ~ #20 ordered in sequence of increasing 

natural frequency. By inspection of the modal participation factors of these 20 modes, it 

is easy to tell that mode #2, #4, #8 , #9, #11, #13, #15, #19, and #20 have no contribution 

to the motion and naturally they are eliminated. Then, 9 more modes, mode #21 to #29, 

are incorporated into the second round. From the results of the 2nd run, mode #22, #24, 

#25, #26, #28, and #29 are found to be null or little contribution modes and are discarded. 

It is also noted that due to the appearance of new influential modes, mode #21, #23, and 

#27, some low order modes survived after the first run relinquished their shares to those 

newcomers. In consequence, mode #14 becomes unqualified for the next run. The 

participation factor of mode #L7 is also decreased from more than one percent in the first 

run down to less than one percent. However, mode #17 is also retained for further 

inspection. Seven new modes, mode #30 to #36, are complemented and the third run is 

conducted. Frustratingly, none of the newly introduced modes stands out so that even
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mode #17 seems safe to stay. The fourth run is carried out with a new set of modes 

augmented with mode #37 to #43. It is then found out that mode #37 is another important 

mode. Because of this, the role of mode #17 becomes trivial so that it is excluded 

together with mode #38, #39, #40, #41, #42 and #43. One more step is taken with mode 

#44 to #50 added to see if there are more important modes unexposed. The results of the 

fifth round showed that it is not very constructive. Only one mode of the seven newly 

introduced modes, mode #49, occupies a percentage of 0.3% for A. = 2000.0. This implies 

that further augmentation of modes is not worthy any more. Actually, from the LCO 

amplitudes calculated during each round, one can also decide whether further run is 

necessary. It is noted that from the first run to the second run, from the second run to the 

third run, there are noticeable changes to the LCO amplitudes corresponding to A, =

1000.0, 1500.0 and 2000.0. And the fifth run does not change LCO amplitudes obtained 

in the fourth run much that implies convergence is achieved. After all five runs, up to 14 

influential modes prove to be candidates for further modal convergence study. If ordered 

in ascending sequence based on the modal participation percentages (see Table 4.2) for 

the case of A. = 2000.0, the 14 modes are:

#3(34.14%), #1(29.79%), #6(15.27%), #12(4.36%), #18(3.77%), #7(3.32%), 

#10(2.36%), #5(1.88%), #27(1.4%), #16(1.1%), #21(0.84%), #23(0.68%), 

#37(0.63%), #49(0.33%)

What are these modes? Figure 4.15 shows the mode shapes for above fourteen 

candidate linear modes. With assistance of these plots, it is easy to tell the number of half 

sine waves along x- and y-coordinate directions for each mode:
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#3(2, I), #1(1, I), #6(3, 1), #12(4, 1), #18(5, 1), #7(2, 3), #10(3, 3), #5(1, 3), 

#27(6,1), #16(4,3), #21(3,5), #23(5, 3), #37(7,1), #49(8, 1)

It is noted that the eight modes along x-direction, mode #1(1, I), #3(2, I), ..., #49(8, 1), 

are included in the preliminarily selected 14 candidate modes. This also confirmed the 

mode convergence study conclusion from Nydick [59] that 8 x 1 modes are necessary to 

achieve a converged LCO amplitudes at hypersonic flow speed for an orthotropic, simply 

supported square panel. A careful investigation of these fourteen modes also indicates:

(1) mode #1(1, 1) and #3(2, 1) dominate the LCO since they contribute nearly 65% to the 

ensemble vibration of the panel, (2) as investigated by Gray and Mei [9], for the same 

panel, frequency coalescence occurs to mode # 1  and mode # 2  and coalescence is also 

expected between mode #3 and mode #4. However, mode #2 and mode #4 do not appear 

among the candidates. A possible explanation is that influences from mode #2 and mode 

#4 are “absorbed” by mode #1 and mode #3 due to frequency coalescence phenomena,

(3) although the x-direction modes, i.e. mode (n, I), n = I, 2, 3,..., are very important 

(actually the top five dominating modes are such modes), influences from modes other 

than x-direction modes can not be neglected, for an example, at X. = 2000.0, mode #7(2, 

3) takes up 3.32% modal participation so that it can not be ignored, (4) typically, the role 

of high frequency modes, such as mode #37(7,1) and mode #49(8, 1), is less important.

Although the conclusion is somewhat obvious for an orthotropic panel, but the mode 

selection procedure is really developed for anisotropic composite panels [126]. Further 

mode convergence study is conducted to examine if there are modes among the fourteen 

modes that can be neglected to save computation cost. Figure 4.16 shows the mode 

convergence study results of LCO amplitudes for X  = 500.0 -  2000.0. Here, 6 -mode
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solution means the top six important modes, i.e., #3(2, 1), #1(1, 1), #6(3, 1), #12(4, 1), 

#18(5, 1), and mode #7(2, 3), are used for time integration. Similarly, an eight-mode 

solution employs the top eight important modes, and so on. As expected, the 13-mode 

solution converged with 14-mode solution that indicates mode #49(8, 1) can be 

neglected. Attention must be paid when compare this conclusion with that by Nydick [59] 

since different panel material and geometry are used. The conclusion drawn here serves 

better as an advice than as a general rule. The 13 modes are selected for further numerical 

integration experiments.

Besides the mode convergence study, the mesh size is also optimized through a 

thorough mesh convergence study as illustrated in Fig. 4.17. It is concluded that a 12x8 

mesh scheme will give converged LCO amplitudes as a 16x8 mesh. This conclusion 

agrees with Gray and Mei [9] on mesh size selection when studying LCOs of the same 

panel. Based upon the investigations undertaken in this section, 12x8 mesh and 13 modes 

are chosen for future studies on the flutter characteristics of the simply supported square 

B/Al panel.

4.3.2 Effects of Nonlinear Aerodynamic Terms

The first numerical example is dedicated to investigate the effects of each nonlinear 

aerodynamic term in the full form piston theory on LCO amplitudes. By expanding the 

aerodynamic pressure expression given in Eq. (2.2), there are totally seven nonlinear 

aerodynamic terms, C^dw/dx)2, C2tC2x(3 w/dx)(3 w/dt), C 2t ( d w / d t ) 2 , C3X(dw/9 x)3, 

C3tC3X(8 w/9 x)2(9 w/9 t), C3tC3X(9 w/9 x)( d w / d t ) 2 , and C3t(9w/9t)3, that may affect the panel 

motion (power of switch variables were removed since they are valued as 1 or 0). Four of
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these seven terms, C2x(3 w/9 x)2, C2i(9 w/3 t)2, C3X(9 w/9 x)3, and C3t(9 w/9 t)3, possess 

specific physical meaning since dw/dt is the panel velocity and dw/dx is the slope. 

Therefore, the influences of these four terms on panel LCO are highlighted for a clear 

physical understanding. The roles of the 6  switch variables are very lucid —  switch 

on/off the influence of corresponding terms. Thus, if the switch variables are ordered as 

Cu, Cu, C2t, C2x, Cst, C3X, seven specific sets of value patterns can be designed to inspect 

the role of important terms:

110000 3w/9t and 3w/3x are functioning —  lsl order piston theory

111000 3w/9t, 9w/3x, (9w/9t)2 taking effects

110100 9w/9t, 3w/9x, (9w/9x)2 taking effects

111 100 9w/9t, 9w/9x, (9w/3t)2, (3w/9x)(9w/9x) and (3w/3x)2 are involved

— 2nd order piston theory

111110 2nd order piston theory with effect of term (9w/9t)3

111101 2nd order piston theory with effect of term (3w/9x)3

111111 3rd order piston theory, all 7 nonlinear terms included

Tables 4.3, 4.4, and 4.5 exhibit the effects of neglecting some or all of the

abovementioned nonlinear aerodynamic terms on LCO amplitudes of low (X = 500.0), 

moderately high (A. =1 0 0 0 .0 , 1500.0) and high (A. = 2 0 0 0 .0 , 2500.0) nondimensional 

dynamic pressure values. Panels without thermal loading (AT</ATcr = 0.0, Tt = 0.0, Table 

4.3), with uniform temperature distribution (ATo/ATcr = 2.0, Ti = 0.0, Table 4.4) and with 

moderate temperature gradient across panel thickness (ATo/ATcr = 2.0, Ti = 50.0, Table 

4.5) are considered. Several conclusions can be drawn on basis of a careful review of all
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results: (1) at low or moderately high X, LCO amplitudes obtained using second order 

piston theory notably differ from those using first order piston theory, however, almost 

agree with those obtained using third order piston theory, (2) at high X, LCO amplitudes 

obtained from first, second and third order theories are all different, (3) at all X value 

ranges, term (8w/dx)2 causes more difference than (dw/dt)2 and (dw/dx)3 is more 

influential than (dw/dt)3. Conclusion one was also observed by Eastep and McIntosh [56] 

on studying hypersonic panel flutter of a simply supported two-dimensional isotropic 

panel and by Gray and Mei [9] while studying LCO of same panel as quoted here at 

moderately high (the highest X considered was roughly 80 x 11.4356 * 915). The 

overwhelming effect of term (dw/dx)2 against (dw/dt)2 is also addressed by these 

researchers. Second conclusion is believed to be revealed for the first time and is specific 

to high values of nondimensional dynamic pressure, which is highly possible in the 

circumstance of hypersonic flow. A physical understanding of the third conclusion is that 

the slope related nonlinear terms, (dw/dx)2 and (dw/dx)3, when considered, will affect the 

geometry boundary of the flow, hence the pressure distribution, whereas, the velocity 

related terms, (dw/dt)2 and (dw/dt)3, do not have such effects. Observing all three 

conclusions, it is suggested that the full form 3rd order piston theory must be used in 

studying flutter response of panels at hypersonic airflow.

4.3.3 Illustrative Motion Map for Orthotropic Panel

It is well accepted that the stability boundaries of a fluttering panel can be established 

by applying linear aerodynamic theory. Many efforts have been made to depict a stability 

plot that marks regions of possible panel configurations and motions in supersonic flow,
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such as Fig. 3 of Dowell [89], Fig. 5.22-5.24 of Xue [49], and Fig. 1 of Zhou et al. [54]. 

All such plots are helpful for supersonic vehicle designers because that with information 

provided in such a map, cares can be taken to avoid the vehicle operates in dangerous 

parameter regions. However, due to the limitation of linear aerodynamic theory, the 

bounds of the region for LCO are usually either not well-defined or incomplete. The 

meaning for demarcating the LCO regions stems from the objective of studying LCO. 

One crucial concern in panel flutter designs is the fatigue life evaluation (Gray and Mei 

[9], Xue [49]). Fatigue failure of aircraft skin panel could be caused by LCO or chaotic 

motion. There exists different fatigue life evaluation algorithms for LCO or chaotic 

motions and their usage domain is object oriented. Therefore, one must be aware that 

under certain range of control parameter, what kind of motion the panel is participating 

so that applicable algorithm is employed.

The major types of motion that may encounter in flutter response analysis of a 

thermally/mechanically buckled panel have been summarized and illustrated in section

4.2.1. It is the mission of this section to determine and mark the boundaries between 

various types of motion for the orthotropic panels under study. Figure 4.18 shows a 

motion map for the simply supported, single layer (i.e., [0]), and double layer (i.e., 

[0/90]), 12"xl2"x0.04", B/Al panels. The critical buckling temperature AT,* for the [0] 

panel is 2.2186 °F (1.2326 °C). In Fig. 4.18, the boundaries distinguish the flat panel 

region and the LCO region, and the buckled but dynamically stable region, as well as the 

upper bound of the buckled panel region are determined by using of a finite element 

supersonic flutter analysis program used in one of the author’s previous work, see 

reference [127]. The rest of the bounds for LCO region is then obtained by direct
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numerical integration using the finite element time domain modal formulation for 

hypersonic panel flutter analysis developed in present work. For detection of the 

commencement of chaos, several chaos diagnosis tools introduced in Chapter m  have 

been employed. Observed from Fig. 4.18, the LCO region boundaries for both single 

layer and double layer panels are highly irregular. This fact reflects the complication of 

the interplay between the two prevailing instability mechanisms: panel flutter and thermal 

buckling. A few phenomena can be observed from Fig. 4.18: (1) the single layer panel 

possesses a larger area of LCO motion than the double layered panel, especially the upper 

bound of LCO region for single layer panel is much higher than the double layered panel,

(2 ) for the single layer panel, at moderately high nondimensional dynamic pressures, i.e., 

X = 500-1300, preliminary bifurcations create a “buffering” region preceding the first 

observation of chaos boundary, such buffering area also exists for the double layer panel 

at lower X values, (3) for the single layer panel, the pure LCO region narrows down 

quickly at high X values as X increases. Compared to the aforementioned stability region 

plots made by other researchers for isotropic/composite panels at supersonic flow, larger 

area of the map given in Fig. 4.18 is occupied by chaotic, non-periodic motions. 

Apparently, more cautions must be borne in mind while designing a vehicle that travels at 

hypersonic flow.

The boundary of LCO region is not a stability boundary since LCO itself is a 

nonlinear dynamical instability. The purpose of defining such LCO boundary is not to 

encourage engineers to design a vehicle with surface panels undergoing LCO. However, 

at certain extreme situations beyond the flutter boundary, one definitely expects regular
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motion like LCO, not the irregular motion like chaos, be on the spot. Therefore, it is 

worthy to know where the nightmare of chaos starts and how.

The motion map supplies an overview of relationships between system control 

parameters and motion types. During the process of accumulating points necessary for 

establishing the boundaries in the map, a large number of time integrations has been 

carried out and as the byproducts, a huge amount of time histories, phase plane plots, 

Poincare maps and bifurcation diagrams have been produced. These auxiliary data are 

helpful to understanding of the evolution of chaos and post-chaos motions. Figure 4.19 

gives one representative bifurcation diagram for X  = 1200, which falls into the 

“buffering” region in the motion map. Clearly, the route to chaos for moderately high X  is 

typically through the pitchfork bifurcation, i.e. period-doubling. Figure 4.20 shows the 

bifurcation diagram of high dynamic pressure value X  = 3200. It is seen that at high 

dynamic pressure, the route to chaos is accompanied with intermittency. These two 

typical routes to chaos were illustrated with Fig. 4.8 and Fig. 4.12 in section 4.2.

4.3.4 Effects of Aerodynamic Parameters

The typical aircraft takes off, cruises, and lands. The basic aerodynamic parameters 

keep changing as the flight altitude and vehicle speed changes. A complete aeroelasticity 

analysis must consider the effects of variations in related aerodynamic parameters.

There are two aerodynamic parameters pertinent to current study subject to changes 

induced by various flight situations: Mr and Ca, which is the aerodynamic damping 

coefficient. According to Dowell [7], the typical aerodynamic damping ranges from Ca = 

0.01 to Ca — 0.1. The flow parameter Mr was first used in hypersonic panel flutter
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analysis by Eastep and McIntosh [56] and the typical values are Mr = 0.05, 0.1 for low 

and high Mach numbers. The influence of Mr and aerodynamic damping on the LCO 

region boundary of the single layer panel is then iavestigated with various combinations 

of abovementioned typical values. Results are grouped according to equivalent Mc and Ca 

values and shown in Fig. 4.21 and Fig. 4.22. From results shown in Fig. 4.21, at both low 

aerodynamic damping, Ca = 0.01 and high aerodynamic damping Ca = 0.1, increasing Mr 

will result in decrease of the area for LCO. From Fig. 4.22, it is seen that aerodynamic 

damping has a more significant effects on LCO region bounds at both low and high Mr 

values. As a summary of all cases, when Mr = 0.05 and Ca = 0.1, the area of the pure 

LCO region is the largest and when Mr = 0.1 and Ca = 0.01, the LCO region is the 

smallest of all four cases. This can also be interpreted as that at low Mach number and 

high aerodynamic damping, LCO region takes up a larger area in the motion map than the 

other cases. The set of aerodynamic parameters, Mr = 0.05, Ca = 0.1, are used for all case 

studies that followed.

4.3.5 Effects of Temperature Gradients

A temperature gradient (TO introduces thermal moments that cause bending to the 

plate. Generally speaking, the bending induced by thermal moments exerts a stiffening 

effect on the panel, whereas, the thermal expansion due to the elevated average 

temperature (T0) plays a softening role. Co-existence of these two opposite actions causes 

noticeable changes to the stability boundary of a fluttering panel, as discussed in Cheng 

et al. [127]. It is concluded that temperature gradient benefits the panel motion with 

lifting up the linear flutter stability boundary and delaying its descending as average
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temperature increases. It is the interest of the study carrying on in this section to 

investigate the influence of temperature gradient on the boundary of the pure LCO 

region.

The range of temperature gradients, which is typical for aerospace vehicles, is 

selected with reference to Moorthy [110] and Thornton [113]. Representative low 

temperature gradient, Ti = 20.0 °F, moderate temperature gradient, Ti = 50.0 °F and high 

temperature gradient, Ti = 100.0 °F, are considered. The motion maps for the single layer 

orthotropic panel with above three temperature gradient levels are shown in Fig. 4.23. 

Figure 4.24 is an overview of temperature gradient effects on the boundary of LCO 

region through comparisons of various LCO boundaries.

From Fig. 4.23, it is noted that increasing temperature gradient lowers the up-limit of 

X ,  at which chaos appears, and slightly defers the commencement of chaos as average 

temperature increases. In another word, large temperature gradient makes chaos more 

possible to occur at high X. From Fig. 4.24, it is seen that low temperature gradient 

actually causes little effect on the LCO region since the shape of LCO region boundary 

for Ti = 20.0 °F resembles that for Ti = 0.0 °F. A tendency of lowering and broadening 

LCO region boundary as temperature gradient increases can be observed from the 

comparisons among boundary curves.

4.4 Flutter of Composite Panels

High thermal performance and light weight are among the principal goals for design 

choices of advanced materials for flight vehicle surface panels. Besides the Metal Matrix 

Composites (MMC), with B/Al as a special example, polymeric-based composite
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materials also have been used extensively in aerospace designs. As a representative of 

this family of composites, the Graphite/Epoxy laminated composite is among the 

commonly used material in aerospace engineering. To the aircraft designers, the beauty 

of fiber-reinforced composites is to allow them tailoring the strength of the structure 

component in the direction most needed by strategic orientation of the fibers. The variety 

of fiber orientations, also termed as lamination angles, leads to the varieties in material 

mechanical/thermal properties. Therefore, dynamical/thermal-mechanical behaviors have 

long been the major topics of mechanics of composite materials.

To achieve generic conclusions on composite panel dynamics via a thorough study of 

composites with various fiber and matrix materials, stacking sequences, number of layers 

is a mission impossible. Thus, present study is focused on panels made of one special 

type of Graphite/Epoxy composite, the 8 -layer, [0/45/-45/90]s, symmetrically laminated 

composite. Topics general to all composite panel designs, such as effect from the 

boundary support conditions and the aspect ratio effect, will be addressed in view of the 

coexistence of thermal loading and aerodynamic pressure applied in hypersonic airflow.

4.4.1 Flutter of a Clamped Square Panel

Mode Filtering. Mode Convergence and Mesh Convergence

The first example panel under study is an all four edges clamped, 12"xl2"x0.048", 

Graphite/Epoxy 8 -layer composite panel. The thermal/mechanical material properties are 

listed in Table 4.1. In panel flutter analyses of clamped panel using analytical methods, 

such as Ventres [29] and Kobayashi [31], to satisfy the clamped geometrical boundary 

conditions, the mode shapes have to be assumed as a combination of functions involving
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sin, cos, sinh, cosh. This indicates that the mode shapes for a clamped panel is not exactly 

in half sine wave shapes as for the simply supported and in sense of finite element 

analysis, a reasonable scheme of mode selection is required. The mode filtering 

procedure proposed in section 3.3.1 and illustrated in section 4.2.2 was then applied to 

the clamped composite panel and results are shown in Table 4.6. Three representative 

nondimensional dynamic pressure values, X = 600.0, 800.0, 1 0 0 0 .0 , are selected on basis 

of an initial run for motion types at various X values with the lowest 30 modes employed. 

In convenience of discussion, the mode shapes of related modes are shown in Fig. 4.2S.

It is easy to see from Fig. 4.25 that the mode shapes for the clamped panel are more 

complex than those of simply supported panel (Fig. 4.8). Although there are no precise 

half sine waves in the mode shapes, for convenience, the mode shapes are still termed as 

mode (m, n), with m and n denoting the number of half sine wave like curves. As Fig. 

4.25 shows, not every mode can be clearly defined as having certain number of half sine 

wave like curves; hence, “x” is assigned to mode shape curves that are difficult to 

classify. The first run shown in Table 4.6 indicates that each mode of the lowest 20 

modes cited shows its participation to the entire motion, i.e., there is no null contribution 

as happened in the case of simply supported orthotropic panel (see Table 4.2). However, 

there are some minor modes with modal participation factors far less than one percent. 

Elimination proceeds with focus on such modes, with careful inspection of their 

participation at all three X values. Six modes, mode #9(0.52%), #11(0.37%), #16(0.41%), 

#18(0.46%), #19(0.36%), and #20(0.18%), are discarded (all percentages cited from X =

1 0 0 0 .0 ). Note that mode # 1 0  (0.58% at X = 1 0 0 0 .0 ) is retained because it has 1.39% 

contribution at X = 600.0 and this implies mode # 1 0  might be important at low X values.
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It is also noted that during the first run, four x-direction modes, mode #1(1, 1), mode 

#3(2, 1), mode #8(3, 1), and mode #15(4, 1), have played important roles. In fact, 

according to the participation percentages for X  = 1 0 0 0 .0 , these four modes are the top 

four contributors. The second run is carried out with six modes, mode 21-26, being 

added. It is found that mode #24(5,1) is a new discovery that takes up 2.61% contribution 

at X  =  1000.0. Subsequently, mode #17 that was kept after the first run has given up some 

shares. The remaining five of the six modes just added did not show any noticeable 

contributions to the motion so that they are deleted together with mode #17. The third ran 

continued with modes 27-32 introduced into the game and then they are subsequently 

proved to be trivial modes. Then the fourth ran exposed another important x-direction 

mode, mode #35(6, 1). Mode #34 also shows its contribution to the motion, although that 

is actually neglectable, mode #34 is retained for further inspection. The fifth ran finalizes 

the whole mode filtering procedure since all four newly added mode are not outstanding 

and the convergence of LCO amplitudes are reached at all three X  values. As a final result 

of the mode filtering procedure, 16 modes are selected as candidates for further mode 

convergence study (ordered according to percentages at X  -  1 0 0 0 .0 ):

#1(32.68%), #3(28.48%), #8(11.02%), #2(4.47%), #15(4.2%), #4(2.88%), 

#5(2.58%), #14(2.39%), #24(2.40%), #6(1.84%), #7(1.54%), #12(1.29%), 

#35(1.10%), #10(1.08%), #34(0.79%), #13(0.72%)

The modes in bold face are the x-direction modes that were expected to be important 

modes. If nonzero flow angularity is of concern (in real design, definitely yes), as 

discussed in Cheng et al. [127], it is anticipated that more y-direction modes as well as
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hybrid x- and y-direction modes will be important modes and a systematic mode 

selection strategy like the mode filtering procedure proposed herein is highly demanded.

Figure 4.26 shows the results of mode convergence study for the clamped Gr/Ep 

panel. Fourteen out of the sixteen candidate modes are chosen for further study. It is 

noticed that with eight modes, at X = 1000.0, a LCO is not reached. This phenomenon is 

apparently caused by insufficient number of modes, similar abnormalities were also 

reported by Nydick et al. [59] (see Fig. 8  of their paper) when four or six modes were 

used for calculation of LCO amplitudes for a simply supported orthotropic panel at high 

nondimensional dynamic pressures of A. = 2400-3200. Increasing the number of modes 

then overcame this deficiency. Figure 4.27 gives the results for mesh convergence study 

and it shows a mesh of 12x8 is good enough. Fourteen modes and 12x8 mesh are 

employed for the rest of studies related to the clamped, 12"xl2"x0.048", [0/45/-45/90]s, 

Graphite/Epoxy panel.

Motion Map

A substantial quantity of direct time integrations are implemented to plot the motion 

map for the clamped, square, eight-layer, Gr/Ep panel, the resulting motion map is shown 

in Fig. 4.28. The motion map shows that the clamped composite panel is apt to chaotic 

motion at high nondimensional dynamic pressures. The possible explanation is that the 

highly anisotropic material properties of the composite panel provide more branches of 

trails for the panel to follow. These branches interweave one another in an irregular 

pattern that leads to chaos.
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It is also observed during the data collection procedure that at low nondimensional 

dynamic pressures, X < 800.0, pre-chaos pitchfork bifurcation is a typical passage to 

chaotic motions. Whereas, at moderately high and high X values, the route to chaos 

usually does not contain obvious pitchfork bifurcation behaviors, as shown in Fig. 4.29. 

This sudden burst of chaos from period-one LCO brings difficulties in detecting the start 

point of chaos. As being exploited in previous studies on orthotropic panels, the largest 

Lyapunov exponent is evaluated through programs provided by Wolf et al. [102]. The 

newest versions of their Lyapunov exponent evaluation programs are used and minor 

modifications were made to the interface between Wolfs program and the author’s panel 

flutter analysis codes. Figure 4.30 shows the Lyapunov exponents for the clamped Gr/Ep 

square panel at X = 1 0 0 0 . 0  and temperature ratios ATo/AT  ̂= 0 . 0  ~ 5.0. Comparison of 

the Lyapunov exponents shown in Fig. 4.30 and the bifurcation diagram given in Fig. 

4.29 leads to a complete understanding of the route to chaos that was taken. At low 

temperature ratios of ATo/ATcr=0.0 ~ 1.50, period-one LCO is the major type of motion. 

Then the chaos starts as temperature ratio increases until ATo/ATcr = 1.76, post-chaos 

period-two motion appears and lasts for a short range of temperature ratios between 

ATo/ATcr = 1.76 and ATo/ATcr = 1.83. Another burst of chaos starts at temperature ratio 

ATo/ATcr = 1.84 and lasts until ATo/ATcr = 2.52, when periodic LCO revives and sustains 

for a wider range of temperature ratios between 2.52 and 3.08. The panel finally goes into 

fierce chaotic motions with Lyapunov exponent amplitudes greater than 600, which 

implies the chaos is matured. Based upon above observations of the interchanges between 

periodic LCOs and chaotic motions, at X = 1000.0, the panel actually takes the 

intermittent transition route to chaos as defined in section 3.2.2. It is found that at higher
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X  values, the intermittency that involves switches of chaos and periodic LCO is not 

obviously observed. However, in essence, the panel is thought to go through the 

intermittent transition route since the high dynamic pressure could make bursts of 

periodic motion occur in a wider range of control parameters so that simulation in a long 

run may be necessary.

Effects of Insufficient Modes

The detriment of insufficient number of modes to be used for modal truncation was 

revealed during the mode convergence study. In order to gain a profound understanding 

of the differences arising from the responses obtained using insufficient number of 

modes, bifurcation diagrams for the clamped composite panel at a selected 

nondimensional dynamic pressure, X  =  1600.0, are plotted using six, eight, ten, and 

fourteen modes and presented in Fig. 4.31. It is seen that using six modes, chaos is 

predicted to occur beyond the temperature ratio of 2.0. The eight-mode solution denied 

this conclusion with a prediction of chaos exists even if there is no thermal loading. 

However, the beautiful shadows of pitchfork bifurcation in the bifurcation diagram 

obtained using a 10-mode simulation implies the situation may not be that bad. Finally, 

the 14-mode solution tells that chaos actually commences when the temperature ratio 

increases over ATo/ATcr = 0.2. Obviously, the six-mode prediction is too optimistic and 

the eight-mode, 10-mode predictions are too pessimistic. Careful selection of mode 

numbers is crucial to obtaining correct predictions of the onset of chaos.
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4.4.2 Effect of Boundary Condition— Flutter of a Simply Supported Panel

The influence of boundary supporting conditions on the linear panel flutter boundary 

and LCO amplitudes have been investigated by several researchers, such as Xue and Mei 

[SO] on supersonic panel flutter boundaries, Gray and Mei [9, 57] on LCO amplitudes at 

hypersonic flow. The simply supported boundary condition and the clamped boundary 

condition are two basic support conditions that are encountered in engineering design 

practices. Generally speaking, the clamped boundary stiffens the panel and simply 

supported panel possesses more flexibility. To investigate to what extent the boundary 

supporting condition could affect the LCO region of the composite panels, a simply 

supported, 12"xl2"x0.048", [0/45/-45/90]s, Graphite/Epoxy panel is taken into 

consideration.

The analysis is initiated by the routine work of mode filtering procedure, mode 

convergence and mesh convergence studies. For brevity, the conclusions and results are 

reviewed. Fourteen candidate modes, mode #1(1,1), #2, #3(2,1) #4 -  #7, #8(3,1), #9, 

#11, #12, #14(4, 1), #23(5, 1), and #33(6, 1), were chosen for the mode convergence 

study and mode #9 is eliminated in consequence. The mesh scheme 12x8 again proved to 

be reasonably good for discretizing the simply supported Gr/Ep square panel under study. 

Numerical integrations are then conducted and a motion map is plotted and presented in 

Fig. 4.32. As observed from the motion map, the linear flutter stability boundary of the 

simply supported composite panel is much lower than that of the clamped panel, 

especially at the portion that defines the boundary between “flat” panel and “LCO” 

region. Compared to the clamped panel, the upper limit of the LCO region for the simply 

supported panel is lower.
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Difference is also showed on the routes to chaos. For simply supported panel, at 

X<1 1 0 0 .0 , typically the route to chaos contains pitchfork bifurcations and at high X  

values, intermittent transitions symbolized as bursts of chaos followed by periodic LCO 

are observed. The bifurcation diagram and Lyapunov exponents of simply supported 

composite panel are shown in Fig. 4.33 and Fig. 4.34 for comparison with those for the 

clamped panel (Fig. 4.29 and 4.30). The bifurcation diagram and the Lyapunov exponents 

announce that at temperature ratio of ATo/ATcr = 3.20, the chaos starts. However, the 

discontinuities of the bifurcation diagram and the tortuous shape in Fig. 4.30 after the 

first observation of chaos imply that quasi-periodicity may exist (Moon [79]). Compared 

to the clamped square panel, within the same range of temperature ratios, the Lyapunov 

exponents after chaos are at a lower level, with the highest value less than 400.0, which 

indicates that chaos is less severe for the simply supported panel in this range of 

temperatures.

As an interim summary of the evolution of chaos that have been observed so far, 

two “classical” routes to chaos are typical to a fluttering panel at supersonic/hypersonic 

flow: the period-doubling (pitchfork bifurcations) route and the intermittency (sudden 

bursts of chaos followed by periodic LCOs) route. They are mathematically described 

well (phase plane portraits, the Poincare map, bifurcation diagram), however, physically 

mysterious. There is one general, but not final, explanation to the complicated behaviors 

arisen along various routes to chaos as quoted by Bolotin et al. [97] and Hilbom [82]: it is 

the coexistence of several attractors (LCO, chaos, etc.) in a dynamic system within a 

given range of control parameter values that gives rise to the complex transitions of 

system behavior since the characters of the attractors are changing as control parameter

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



110

varies. It is typically observed in present hypersonic panel flutter study that route 

involving pitchfork bifurcations takes place when the dynamic pressure is low or 

moderately high and intermittency is more or less related to high dynamic pressures. 

Thus, in engineering sense, the pitchfork bifurcation route is mild and the intermittency 

way is violent. Like Moon [79] said, “The period-doubling model for the route to chaos is 

an elegant, aesthetic model and has been described in many popular articles.” This 

elegant pitchfork bifurcation route seems to be a potential good wish of the hypersonic 

flight vehicle designers since sudden burst of chaos without precursor is more difficult to 

predict and prevent. As illustrated herein, loosening the stiff supports is among feasible 

design options.

4.4.3 Effect of Aspect Ratio— Flutter of a Rectangular Panel

Besides the square panels, rectangular panels of various length to width ratios also 

have extensive applications in aircraft surface panel designs. To complete the 

comparisons of the effects on stability boundaries and LCO region boundary from design 

parameters, the flutter responses of a clamped, rectangular panel with aspect ratio of 1.25 

are analyzed. The x-coordinate, or the flow parallel direction, is selected to be along the 

longer edge of the panel so that the weaker case between the two options is investigated.

Mode filtering procedure for the rectangular panel shows that 16 modes, including 

#1(1, 1), #2, #3(2, 1), #4, #5, #6(3, 1), #7, #10, #12(4, 1), #13, #15 -  #19(5, 1), #27(6,1), 

are possible important modes. Mode #13 and #16 are neglected on basis of results of the 

mode convergence study and a 1 2 x8  mesh is shown to be reasonably fine to the 

rectangular case. The motion map is then obtained through numerical integrations and the
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resulting map is shown as Fig. 4.35. From Fig. 4.35, it is seen that compared to the 

clamped square panel, the linear flutter stability boundary of the rectangular panel 

experiences slight effect (without thermal loading, the critical dynamic pressure for the 

rectangular panel is Xcr = 569.0 and X cr for the clamped panel without thermal effect is

523.0). However, the LCO region for the rectangular panel is quite limited. The chaos 

shows up at moderately high dynamic pressures and a temperature ratio greater than 3.0 

could result in chaotic motion at low or high dynamic pressures. It is very clear that 

increasing flow direction flexibility will make the panel more possible to step into chaos.

4.4.4 Summary of Different Designs

For non-dimensionalization purposes, the thermal loading is expressed in temperature 

ratios with the critical thermal buckling temperature, ATcr, as references. However, ATo-is 

highly related to the panel material properties, geometry and supporting conditions. 

Therefore, an accurate comparison of above panel designs must be based upon the 

absolute temperature. The critical thermal buckling temperatures for the clamped square 

panel, simply supported square panel and clamped rectangular panel are listed in Table 

4.7. The clamped square panel has the highest ATcrandthe simply supported square panel 

has the lowest ATcr.

With the thermal buckling temperatures given in Table 4.7, the motion maps of the 

three designs can be compared in a uniform coordinate system after a simple coordinate 

transformation, as shown in Fig. 4.36. Remarks on the three designs can be made through 

several aspects:
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1) If the thermal performance is the only concern, i.e., aerodynamic loading is 

neglectable, the clamped square panel is the best choice because of its high 

ATCr.

2) If linear flutter stability boundary with thermal effects is the primary concern, 

the clamped rectangular panel is the best as it owns the biggest stable region 

in the motion map.

3) If thermal effects, linear stability boundary and the area of LCO region are 

considered together, the clamped square panel is relatively better than the 

other two designs since it has a larger area of LCO region and the linear 

stability boundary is moderately high.

Of all three designs, none is able to immunize from chaotic motion when the 

temperature increase is higher than 180 °F, even if the dynamic pressure is low. This 

implies all three designs are not suitable to advanced supersonic/hypersonic aircraft 

because that for the supersonic aircraft, the temperature at the surface panel could be as 

high as 350 °F, and for the hypersonic aircraft, a temperature range of 1800 °F ~ 3000 °F 

is possible. Obviously, new material and/or innovative structural designs [128, 129] are 

in demand. Whatever the material is used and no matter what type of elaborate designs 

are proposed, the finite element time domain modal formulation presented herein can be 

applied as a general purpose design assistance tool for evaluation and optimization of the 

design options with low cost, which is the original goal of this study.
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Table 4.1 Material properties, geometry, and boundary conditions of panels under study

Items 1 2 3 4 5 6

Material Aluminum B/Af B/Al Gr/Ep Gr/Ep Gr/Ep

Geometry 12x12x0.05 12x12x0.04 12x12x0.04 12x12x0.048 12x12x0.048 15x12x0.048

Lamination [0] [0] [0/90] [0/45/-45/90]s [0/45/-45/90] s [0/45/-45/90] s

Support
Simply

Supported

Simply

Supported

Simply
Supported

Clamped
Simply

Supported
Clamped

En,Msi 10.0 31.0 31,0 22.5 22.5 22.5

E22, Msi 10.0 20.0 20.0 1.17 1.17 1,17

G12, Msi 3.84 8.40 8,40 0.66 0.66 0.66

V| 2 0.3 0.27 0.27 0.22 0,22 0.22

Density,
lb-sec2/in,4

2,6x1 O'4 2.46x1 O'4 2.46x1 O'4 1.458X10"4 1.458X10-4 1.458X10-4

1.25xl0'5 3.22xl0'6 3.22X10-6 -0.04x1 O'6 -0.04x10*6 -0,04x1 O'6

0L2 1.25xl0'5 1.06xl0'5 1,06x10 s 1.67xl0’5 1.67xl0'5 1.67xl0'5

Boron /Aluminum 

Graphite/Epoxy
* Thermal expansion coefficients along material principal directions
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Table 4.2 Mode filtering procedure for simply supported, [0], B/AI square panel

X 1* 2V 3 4 5 6 7 8 9 10 u 12 J3 14 15 16 17 18 12 20 W ^ /h

r 1000 35,54 0.0 34,23 0.0 2,03 13.06 3.01 0.0 0.0 1.72 0.0 6.69 0.0 0.25 0.0 0.72 0.54 2.18 0.0 0.0 1.3641

run 1500 32,19 0.0 35,02 0.0 1,75 15.17 2,91 0.0 0.0 2.25 0.0 5.06 0.0 0.56 0.0 1.91 1.03 2,15 0.0 0.0 1.7791

2000 26,45 0,0 32,28 0.0 1,68 15.03 4.09 0.0 0,0 3.41 0.0 6.25 0.0 0.68 0.0 1,93 1.16 7.05 0.0 0.0 2,0704

X 1 3 5 6 7 10 12 14 16 17 18 21 22 23 24 25 26 27 28 29 Wnu,/h
2«d 1000 35,34 33,73 2,05 12,66 2,97 1,72 6.57 0.21 0.70 0.43 2,04 0.23 0.0 0.57 0.0 0.14 0,0 0.63 0.0 0.0 1.3855

run 1500 32,70 34.92 1.79 14.67 2.75 1,95 4,97 0,29 1.40 0.65 1.64 0.42 0.0 0.62 0.0 0.25 0.0 0.97 0.0 0.0 1.8258

2000 30,07 34.23 1,79 15,22 3.26 2.30 4.39 0,32 1.18 0.54 3.75 0.60 0.0 0.64 0.0 0.35 0.0 1.54 0.0 0.0 2.0942

X 1 3 5 6 7 10 12 16 17 18 21 23 27 30 31 32 33 34 35 36 W ^ /h
3rd 1000 35,33 33,73 2,04 12.66 2,97 1.70 6,57 0.70 0.44 2.04 0.28 0.51 0.63 0.01 0.25 0,11 0.0 0.01 0.0 0.02 1.3876

run 1500 32,74 34,96 1,76 14.68 2,75 1.92 4,97 1.39 0.64 1.65 0.51 0.54 0.95 0.02 0.26 0.19 0.0 0.04 0.0 0.04 1.8283

2000 30,07 34,23 1.70 15.21 3,23 2,23 4.39 1.16 0.54 3.55 0,70 0.52 1.56 0.03 0.40 0.37 0.0 0.05 0.0 0.07 2.0893

X 1 3 5 6 7 10 12 16 12 18 21 23 27 37 38 39 40 41 42 43 Wm»/h

4* 1000 35,25 33,77 2,03 12,73 2,93 1.71 6,53 0,70 0,45 2.03 0.28 0,56 0.60 0.29 0.0 0.0 0.04 0.01 0.10 0.0 1.3779

run 1500 32,59 34,93 1,80 14,74 2.74 1,93 4.94 1,32 0.66 1.62 0.51 0.60 0,93 0.41 0.0 0.0 0.10 0.04 0.16 0.0 1.8249

2000 29.41 33,82 1,87 15,17 3,33 2.43 4.30 1.09 0.55 3.98 0.70 0,71 1.46 0,73 0.0 0.0 0.17 0.05 0.23 0.0 2.0586

X 1 3 5 6 7 10 12 16 18 21 23 27 37 44 45 46 47 48 49 50 W ^ /h

5* 1000 35,45 33,92 2,03 12,75 2,94 1.70 6.54 0.72 2.03 0.27 0.56 0.60 0.28 0.0 0.0 0.0 0.01 0.0 0.17 0.02 1.3815

run 1500 32.86 35.19 1.83 14.81 2,75 1.91 4,96 1.32 1,62 0.56 0,60 0.93 0.38 0.0 0.0 0,0 0.03 0.0 0.19 0.06 1,8158

2000 29,79 34.14 1,88 15,27 3.32 2.36 4,36 1.10 3.77 0,84 0.68 | 1.40 0.63 0.0 0.0 0,0 0.03 | 0.0 0.33 0.09 2.0602

’Mode number in bold face indicates influential mode that is kept for next run 

^Mode number underlined indicates trivial mode that is filtered out 

All modal participation factors are expressed in percentage %
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Table 4.3 Effects on limit cycle amplitude by neglecting higher order terms in

Case c,t C,x c2, C2* c3t c3*
Dynamic Pressure, X

500 1 0 0 0 1500 2 0 0 0 2500
1 1 1 0 0 0 0 0.2837 1.3293 1.7267 2.0025 2.2665
2 1 1 1 0 0 0 0.2837 1.3293 1.7267 2.0025 2.2665
3 I 1 0 1 0 0 0.2863 1.3752 1.8004 2.0312 2.4259
4 1 1 1 1 0 0 0.2862 1.3704 1.8043 2.0279 2.4259
5 1 1 1 1 1 0 0.2862 1.3704 1.8042 2.0279 2.4259
6 1 1 1 1 0 1 0.2863 1.3721 1.8046 2.0162 2.2763
7 1 1 1 1 1 1 0.2863 1.3723 1.8046 2.0162 2.2726

Table 4.4 Effects on limit cycle amplitude by neglecting higher order terms in 
aerodynamic piston theory for single layer B/Al panel with uniform

temperature distribution (ATp/ATcr-2.0)________________

Case c,t Cu C2t Czx c3t c3x
Dynamic Pressure, X

500 1 0 0 0 1500 2 0 0 0 2500
1 1 1 0 0 0 0 1.0453 1.6218 1.9529 2 . 2 0 1 0 2.3865
2 1 1 1 0 0 0 1.0453 1.6218 1.9529 2 . 2 0 1 0 2.3865
3 1 1 0 1 0 0 1.0866 1.6787 2.0767 2.2093 2.6430
4 1 1 1 1 0 0 1.0849 1.6591 2.0487 2.2063 2.4645
5 1 1 I 1 1 0 1.0849 1.6591 2.0487 2.2063 2.4645
6 1 1 I 1 0 1 1.0838 1.6585 2.0633 2.2054 2.4733
7 1 1 1 1 1 1 1.0838 1.6587 2.0637 2.2008 2.4730

Table 4.5 Effects on limit cycle amplitude by neglecting higher order terms in 
aerodynamic piston theory for single layer B/Al panel with moderate temperature

Case C,t Cu c2t Qu C3t C3x
Dynamic Pressure, X

1 0 0 0 1 2 0 0 1500 1800 2 0 0 0

1 1 1 0 0 0 0 1.3100 1.3306 1.5853 1.7710 1.8414
2 1 1 1 0 0 0 1.3100 1.3306 1.5853 1.7710 1.8414
3 1 1 0 1 0 0 1.3191 1.4986 1.7327 1.8721 1.9511
4 1 1 I 1 0 0 1.2960 1.4881 1.7279 1.8707 1.9485
5 1 1 1 1 1 0 1.2960 1.4881 1.7279 1.8707 1.9485
6 1 1 1 1 0 1 1.3032 1.4931 1.7262 1.8713 1.9472
7 1 1 1 1 1 t 1.3031 1.4925 1.7268 1.8714 1.9474
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Table 4.6 Mode filtering procedure for clamped, [0/45/-45/90]s, Gr/Ep square panel

X 1* 2 3 4 5 6 7 8 9 10 12 13 14 15 16 17 18 19 20 W ^ /h

1M 600 34.18 9,92 29.24 2.65 5,83 0,94 0.64 8.79 0.44 1.39 0.19 0.42 0.55 1,38 2,49 0.53 0.13 0.12 0,11 0.05 0.8460

run 800 35,04 5,09 30.11 2.81 2,99 1,66 1.42 10.58 031 0.80 0.25 0.80 0.75 2.11 3,73 0.57 0.38 0.15 0,20 0.07 1.6899

1000 34.30 3.67 29,19 2,80 2,16 1,92 15,7 10.97 0.52 0,58 0,37 1.20 0.95 2.69 4,73 0.41 0,97 0.46 0.36 0.18 2.2657

X 1 2 3 4 5 6 7 8 10 12 13 14 15 17 21 22 23 24 25 26 W ^ /h
2nd 600 33.56 10,79 28,62 2,83 6.24 0.85 0,71 8.64 1.71 0,35 0.58 1.27 2.21 0.13 0.11 0.03 0.03 1.12 0.08 0.15 0.7736

run 800 33,50 6.39 29,01 2.81 3,71 1.54 1.26 10,45 1.24 0.80 0.69 1.82 3.77 0.40 0.27 0.09 0.05 1.91 0.10 0,20 1.5388

1000 32,24 4.78 28,38 2,90 2.86 1.83 1.54 11,19 1.23 1,25 0.76 2.32 4.23 0.89 0,34 0.20 0,11 2.61 0.10 0.24 1.9971

X 1 2 3 4 5 6 7 8 10 12 13 14 15 24 27 28 29 20 31 32 Wnuj/h
3rd 600 33,67 10,77 28.75 2,82 6.28 0.85 0.70 8,69 1.71 0,35 0.60 1,29 2.21 1.12 0.03 0.06 0.01 0.03 0.02 0,03 0,7736

run 800 33.82 6,26 29,34 2,80 3.67 1,56 1,25 10.58 1.22 0.81 0.67 1.98 3.75 1.93 0.03 0.07 0.08 0.07 0.05 0.08 1.5509

1000 32,78 4.71 28.92 2.90 2.76 1.87 1,52 11.41 1.18 1.27 0,75 2.42 4.28 2.65 0.08 0.12 0.09 0.09 0.08 0.11 1.9972

X 1 2 3 4 5 6 7 8 10 12 13 14 15 24 33 34 35 36 32 38 Wm»/h

4* 600 33,55 10,59 28,60 2,79 6.15 0.85 0,71 8,67 1.66 0.36 0.61 1.28 2.20 1.07 0.03 0.30 0.44 0.03 0.09 0.04 0.7850

run 800 33,67 6,00 29,15 2,78 3.46 1.55 1.27 10,49 1.16 0.79 0.68 1.95 3.63 1.75 0.05 0.59 0.83 0.03 0.13 0.04 1.5807

1000 32,76 4,45 28,59 ’2,85 2,56 1.84 1.52 11.07 1.06 1.28 0,76 2.40 4.21 2.41 0.07 0.81 1.09 0.05 0.15 0.06 2.0644

X 1 2 3 4 5 6 7 8 10 12 13 14 15 24 34 35 39 40 41 42 W ^ /h

5 * 600 33,58 10,62 28,61 2,79 6.16 0,85 0,71 8,67 1.68 0.35 0.61 1.28 2.20 1,07 0.30 0,44 0.03 0.01 0.01 0.02 0,7850

run 800 33,63 6.05 29,09 2.79 3,49 1,56 1,28 10,46 1.17 0.79 0.69 1.94 3.64 1.75 0.58 0.83 0.08 0.05 0,04 0,09 1.5790

1000 32.68 4,47 28,48 2,88 2,58 1.84 1.54 11.02 1,08 1.29 0.78 | 2.39 4.20 2.40 0,79 1.10 0.12 0.10 0.06 0.20 2.0635

Mode number in bold face indicates influential mode that is kept for next run 

^Mode number underlined indicates trivial mode that is filtered out 

All modal participation factors are expressed in percentage %
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Table 4.7 Critical thermal buckling temperatures for 
[0/45/-45/90]*, Graphite/Epoxy panels

Panel Description
Critical Thermal Buckling Temperature 

ATcr (°F)

Clamped, 12" xl2" x0.048" 54.55
Simply Supported, 12" xl2" x0.048" 19.71
Clamped, 15" xl2" x0.048" 36.48
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Simply Supported Isotropic Square Plate (Ca = 0.1)
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Fig. 4.1 Comparison of dynamic pressure and LCO amplitudes for 
a simply supported isotropic square panel.
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(b)
Fig. 4.2 Observation bias of motion into the cavity when nonlinear 

aerodynamic theory is employed
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Fig. 4.3 Comparison of LCO amplitudes of simply supported B/Al square
panels at hypersonic airflow
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Fig. 4.4 The blown flat isotropic panel as a demonstration 
of flat and stable panel condition

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



122

5lm pii HwiMfile Mo6on— H im  HMwy 
C . ■ 0,10, 1 ,  •  0 .06. X •  360 , AT/ATy  ■  1.0, T,» 0

0.1

0.06

•0.05

0.0 0.61 0.62 0.650.63 0.64

(a) Time history

S tap lt HMmonteMoOon— PhMO Plano Rtet 
C , . 0 . 1 0 0 6 . i . «J60. AT/AT. -  lO .T ,.  0

100

•100
•0.06 0.05 0.1

(b) Phase plane plot

SJRtpte Hannonfe UoOen— PotosMvinap 
C ,« 0 .1 0 .l* r«0 .0 6 . A ..360 . AT/AT. ■ 1.0, T , . 0

I
!u*a.a.
%

mO

Maximum Defection of Pantl, WJH

(c) Poincare map

Fig. 4.5 Demonstration of simple harmonic LCO of isotropic panel
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Fig. 4.6 Demonstration of periodic motion of isotropic panel
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Fig. 4.7 Demonstration of chaotic motion of isotropic panel

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



M
ax

im
um

 
De

fle
cti

on
, 

W
mM

/H

125

Bifurcation Diagram 
C. = 0.10, Mr= 0.05, X= 1100, Tt= 0

0 1 2 3 4 5 6  7 8

Control Parameter, AT

Fig. 4.8 Bifurcation diagram for a simply supported, 
12"x 12"x 0.05" aluminum panel at X  -1100.0
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B ifurcation D ia g ra m — W indow  Vieyv
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Fig. 4.9 Observation of pitchfork bifurcation and period doubling route to chaos 
for a simply supported, 12"x 12"x 0.05"aluminum panel at X  =  1100.0
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Fig. 4.10 Observation and evolution of chaos In phase plane for a simply supported, 
12"x 12"x 0.05" aluminum panel at X = 1100.0
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Fig. 4.12 Bifurcation diagram for a simply supported, 
12"x 12"x 0.05" aluminum panel at X. = 2500.0

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Ly
ap

un
ov

 
Ex

po
ne

nt

130

600

500

400

300

200

1 0 0

-100

- —  —  at/at„* 5.0000
- ----------at/at.* 5.1000
- 5.2000
'

Lyapunov Exponent 
C. s  0.10, Mr= 0.05, X  =1100, T,= 0

_ |_______ i_______ I_______ i_ J— L
0 10000 20000 30000
Location Within Reconstructed Orbit (# Data Points)

Fig. 4.13 Lyapunov components at the vicinity of first chaos observation 
for a simply supported, 12"x 12"x 0.05" aluminum panel at A. = 1100.0
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L yapunov  E x p o n e n t
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Fig. 4.14 Lyapunov components at the vicinity of first chaos observation 
for a simply supported, 12"x 12"x 0.05" aluminum panel at X  = 2500.0
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(a) Mode #1(1, 1) (b) Mode #3(2, I)

(c) Mode #5(1,3) (d) Mode #6(3,1)
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(i) Mode #18(5,1) 0) Mode #21(3,5)

(k) Mode #23(5,3) G) Mode #27(6,1)
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(m) Mode #37(7,1)

ICT"!--1--!--r ^ ^ r -ty v  xar
* r

(n) Mode #49(8,1)

Fig. 4.15 Linear vibration mode shapes for a simply supported, 
12"x 12"x 0.04", single layer B/Al panel
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1000 1500
Dynamic Pressure, X
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Fig. 4.17 Mesh convergence study for a simply supported, 
12"x 12"x 0.04", single layer B/Al panel
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Simply Supported B/Al Panel 
Mrs  0.05, Ca 3  0.1, T, s  0.0
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Chaotic, Nonperiodic or Periodic Motions4000
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1 st observation of chaos
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Temperature Ratio, ATJAT^

Fig. 4.18 Motion map for simply supported, [0] and [0/90], 
12"x 12"x 0.04"B/A1 panels
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Fig. 4.19 Bifurcation diagram for a simply supported, [0], 12"x 12"x 0.04" 
B/Al panels at moderately high dynamic pressure
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Fig. 4.20 Bifurcation diagram for a simply supported, [0], 
12"x 12"x 0.04", B/Al panel at high dynamic pressure
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Fig. 4.21 Effects of Mach number on LCO region boundary 

for simply supported, [0], 12"x 12"x 0.04"B/A1 panel
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Fig. 4.22 Effects of aerodynamic damping on LCO region boundary 

for simply supported, [0], 12"x 12"x 0.04"B/A1 panel
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Fig. 4.23 Motion maps for simply supported, [0], 12"x 12"x 0.04"B/A1 panel 

with various temperature gradients across thickness
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Fig. 4.24 Temperature gradient effects on boundary LCO region for 
simply supported, [0], 12"x 12"x 0.04"B/A1 panel
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(a) Mode #1(1, 1) (b) Mode #2(1,2)

(c) Mode #3(2, 1) (d) Mode #4(1,3)
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(e) Mode #5(2,2) (f) Mode #6(2,3)

(g) Mode #7(2, x) * (h) Mode #8(3, 1)
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Y

(i) Mode #10(3, 2) 0) Mode #12(3, 3)

(k) Mode #13(x, x) (1) Mode #14(3, x)
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(m) Mode #15(4, 1) (n) Mode #24(5, 1)

^  ~  _

(o) Mode #34(x, x) (p) Mode #35(6,1)

Fig. 4.25 Linear vibration mode shapes for a clamped, 
1 2 "x 1 2 "x 0.048", [0/45/-45/90],, Gr/Ep panel
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Fig. 4.26 Mode convergence study for a clamped, 
1 2 "x 1 2 "x 0.048", [0/45/-45/90],, Gr/Ep panel
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Fig. 4.27 Mesh convergence study for a clamped, 
1 2 "x 1 2 "x 0.048", [0/45/-45/90]s, Gr/Ep panel
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Fig. 4.28 Motion map for a clamped, [0/45/-45/90],, 
1 2 "x 1 2 "x 0.04", Gr/Ep panel
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Lyapunov Exponent for Clam ped Square Gr/Ep Panel
C. a 0.10, Mrs  0.05, 1000, T> 0
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Fig. 4.30 Lyapunov exponents for a clamped, 12"x 12"x0.048", 
[0/45/-45/90]*, Graphite/Epoxy panel at X  = 1000.0
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Fig. 4.31 Effects of insufficient modes on chaos evolution of a clamped, 
12"x 12"x0.048", [0/45/-45/90]*, Graphite/Epoxy panel at X = 1600.0
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Fig. 4.32 Motion map for a simply supported, [0/45/-45/90]s, 
1 2 "x 1 2 "x 0.04", Gr/Ep panel
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Bifurcation Diagram for Simply Supported Gr/Ep Square Panel 
C. = 0.10, Mr= 0.05, X -  1000, T1= 0

. 1  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 > > 1 
2 2.5 3 3.5 4 4.5 5

Control Parameter, AT

Fig. 4.33 Bifurcation diagram for a simply supported, 12"x 12"x0.048", 
[0/45/-45/90],, Graphite/Epoxy panel at X  = 1000.0
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Lyapunov Exponent for Simply Supported Square Gr/Ep Panel 
C . = 0.10, Mr = 0.05.X  = 1 0 0 0 , T1= 0
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Fig. 4.34 Lyapunov exponents for a simply supported, 12"x 12"x0.048", 
[0/45/-45/90],, Graphite/Epoxy panel at A. = 1000.0
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Fig. 4.35 Motion map for a clamped, [0/45/-45/90],, 
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CHAPTER V 

SUMMARY AND CONCLUSIONS

The primary objective of this dissertation is to develop a finite element time domain 

modal formulation that could be applied to analyze the panel flutter problems arisen in 

high supersonic/hypersonic flight vehicle design. There exist analytical and finite element 

frequency domain methods for hypersonic panel flutter analysis in the literature. The 

analytical method has intrinsic limitations on processable panel material properties, 

supporting conditions, etc., so that it is very difficult or almost impossible to apply to 

advanced composite panels with complicated boundary conditions and/or anisotropic 

composite properties. The frequency domain method is limited to the LCO response 

analysis and since it is developed in physical coordinates, the large number of governing 

equations of motions makes it quite costly in computation time. Since aerodynamic 

heating is unavoidable in any supersonic/hypersonic vehicle, two types of thermal 

loading are incorporated into current formulation: the uniform temperature distribution 

and the temperature gradient across the panel thickness. High temperature induces 

another structural instability, i.e., thermal buckling, into concern for some panel designs. 

The two instability mechanisms, thermal buckling and panel flutter, interact with each 

other so that the panel could experience mainly five types of behavior: flat, buckled but 

dynamically stable, simple harmonic LCO, periodic LCO, and chaos. The time domain 

modal formulation presented is capable of identifying and investigating all possible panel 

behavior in a cost effective way. The efficiency comes from the dramatic reduction on 

the number of equations to be solved without losing too much accuracy.
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In a practical point of view, the issue of mode selection must be clarified for any 

modal reduction approach. This is an easy task while using analytical methods since the 

modes are assumed by the analyst. However, the modes for finite, element procedures are 

from eigenanalysis and complexity of material properties and supporting conditions cause 

a lot of confusions in mode selection. The mode filtering procedure proposed in present 

work is an initiative try to provide a systematic means to screen out the influential modes 

based upon the well-defined modal participation factor concept. This procedure is 

illustrated with examples of specially orthotropic panels and composite panels. For a 20- 

mode-base mode filtering procedure, typically within five or six runs, the important 

modes will stand out. Conclusions on mode selection for orthotropic panels by use of the 

finite element mode filtering procedure agree with conclusions made by applying 

analytical methods on at least one point, that is the flow direction modes, i.e., mode (n,l), 

n = 1, 2, 3,..., are important modes when flow angularity is not considered. However, the 

mode filtering procedure also suggests that modes other than the (n, 1) modes may 

contribute to the panel motion and are not neglectable, especially when composite panel 

is studied. Cautions must be taken while making decisions about which mode and how 

many modes to use while analyzing flutter response at high nondimensional dynamic 

pressure because higher order modes usually play important roles. The detriment of 

unwise mode selection scheme is also demonstrated.

Chaos is inevitable no matter there does/does not exist thermal loading. With the 

efficient finite element modal formulation, it is easy to detect and inspect chaos in many 

ways, such as time history, phase plane plot, Poincare map and bifurcation diagram. The 

largest Lyapunov exponent can be evaluated on basis of data from direct time integration.
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APPENDIX A 

DISPLACEMENT FUNCTIONS FOR BFS PLATE ELEMENT

A BFS plate element (refer to section 2.2.1) has a total of 24 nodal DOFs including 

16 transverse bending related DOFs and 8  in-plane DOFs. The DOFs were illustrated in 

Fig. 2.2. At an arbitrary point in the element, the transverse displacement, w, and the in­

plane movements, u and v, can be interpolated from the nodal bending, in-plane 

displacements through bi-cubic and bi-linear interpolation functions as:

w  =  a ,  + a 2x + a 3y + a 4x 2 + a 5x y + a 6y 2 + a 7x 3 + a sx 2y + a , x y 2 + a 10y 3
(A.1)

+  a 11x 3y + a 12x 2y 2 + a 13x y 3 + a u x 3y 2 + a 15x 2y 3 + a 16x 3y 3 

u  =  b , + b 2x + b 3y  +  b 4xy (A.2)

v = b 5 + b 6x + b 7y + b 8xy  (A.3)

Define the generalized coordinates as

{ a } = ( a 1 a 2 a 3 a 4 a 5 a s a 7 a s a ,  a 10 a t1 a 12 a 13 a 14 a 15 a 16)T

(A.4)

( b } = ( b 1 b 2 b 3 b 4 b 5 b ,  b 7 b e )T (A.5)

Then Eqs. (A.l) ~ (A.2) can be rewritten as

w = (l x y x2 xy y2 x3 x2y xy2 y3 x3y x2y2 xy3 x3y2 x2y3 x3y3){a}

=[Hw(x,y)]M,{a}18x1
(A.6 )

u  =  [1 x  y  x y  0  0  0  0 ] { b }
r i  (A.7)

=  [H uL . { b ) ajt1 

v  =  [ 0  0  0  0  1 x  y  x y ] { b }
r , (A.8 )= [H,L. {»>>.*
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From Eq. (A.6 ), the other three bending related displacements, w^, w,y and wAy, at the 

arbitrary point can be evaluated as

w ^= ^[H w(x,y)Ka} (A.9)

w ,y = ^ [ H w(x,y)Ka} (A. 10)

W . ¥ = —-  
dX 9y

[Hw(x,y)][a} (A .ll)

Then, the bending related displacements can be expressed in full form as

’ w ' *1 X y X* xy y2 X* x*y xy1 y* x*y x*y* xy* x*y* x2y* x V
W.x 0 1 0 2x y 0 3x2 2xy y* 0 3x*y 2xy* y* 3xJy* 2xy* 3x2y*
w .y 0 0 1 0 X 2y 0 xl 2xy 3y* X* 2x*y 3xy* 2x*y 3xV 3xV
W.*Y 0 0 0 0 1 0 0 2x 2y 0 3x* 4xy 3y* 6x*y 6xy* 9xY

The displacement functions in terms of generalized coordinates, {a} and {b}, applies 

to any point in the element. Therefore, relationships given in Eqs. (A.7), (A.8 ), and 

(A.12) could be applied to the four comer nodes shown in Fig. 2.2. This relates the nodal 

displacement vector to the generalized coordinates as

'1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 '
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ■»

w.., 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 ■a
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 ■a
1 a 0 r 0 0 a* 0 0 0 0 0 0 0 0 0 ■»
0 1 0 2a 0 0 3a* 0 0 0 0 0 0 0 0 0 a .

W».T 0 0 1 0 a 0 0 r 0 0 r 0 0 0 0 0 •r
0 0 0 0 1 0 0 2a 0 0 3a* 0 0 0 0 0 *•

W, 1 a b I* ab b2 r i*b ab* b* a*b i*b* lb* i*b* i*b* i*b* ••
0 1 0 2a b 0 3a* 21b b* 0 3a*b 21b* b* 3i*b* 2lb* 3i*b* a,.

wl.y 0 0 1 0 a 2b 0 i* 2ab 3b* r 2i*b 31b* 2l*b 3i*b* 3i*b* ■it
0 0 0 0 1 0 0 2a 2b 0 31* 41b 3b* 6i*b 61b* 9i*b2 •«

* . 1 0 b 0 0 b* 0 0 0 b* 0 0 0 0 0 0
0 1 0 0 b 0 0 0 b* 0 0 0 b* 0 0 0 ■14

w*., 0 0 1 0 0 2b 0 0 0 3b* 0 0 0 0 0 0 ■1*
0 0 0 0 1 0 0 0 2b 0 0 0 3b* 0 0 0 .■«

(A. 13a)
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or in a brief form

{**»}=[T„r {a} (A. 13b)

For the in-plane nodal displacements

V 1 0 0 0 0 0 0 0 ' K
V, 0 0 0 0 1 0 0 0 b2

1 a 0 0 0 0 0 0 b3
V2 0 0 0 0 1 a 0 0 b4

► — - *U3 1 a b ab 0 0 0 0 b5
V3 0 0 0 0 1 a b ab b.
U4 1 0 b 0 0 0 0 0 b7
.V 0 0 0 0 1 0 b 0 bSj

or { '0 = [ T „ r 1 {b} (A. 14b)

Clearly, the generalized coordinates, {a} and {b}, can be expressed in terms of nodal 

displacements as

W=[T,]{w,} (A.15)

{b}=[Tj{wJ (A. 16)

The relationships between nodal displacement vectors and displacement vectors at an 

arbitrary point can be established by substituting Eqs. (A.15) and (A. 16) into Eqs. (A.6 ) -  

(A.8 ).

w = [H.lTbKwb} (A. 17)

u=[HblTb,Kwm} (A.18)

v=tH,lT„,Kwb,} (A. 19)

Eqs. (A.17), (A.18), and (A.19) are used in Chapter two as Eqs. (2.4), (2.5), and (2.6), 

respectively.
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APPENDIX B 

DETERMINATION OF CRITICAL BUCKLING TEMPERATURE

For an isotropic/symmetrically laminated composite panel with uniform temperature 

distribution, the governing equations of motion for static thermal buckling can be 

obtained from Eq. (2.61) by dropping the dynamic terms, aerodynamic terms, and 

bending-extension coupling terms (because [B] = 0):

Kb 0 
0 Km J »J *Li[MU]

bm

o H * '

Wb
w„ (B.l)

m A T .

Prior to buckling, the panel is flat. That means all nonlinear stiffness matrices due to 

large bending deformations should vanish. Therefore, Eq. (B.l) can be separated as

[Kb]-[KB4T]+i[N1N„ (W „ )]W }= 0 (B.2)

[K„KW„}={P„I } (B.3)

Matrix [NInrJ is a linear function of in-plane displacement {Wm}, which depends on 

temperature. The truncated Taylor expansion of the left-hand side of Eq. (B.2) leads to

([KB]-[K NaT]+[l«Hm]){AWb} = 0 (B.4)

The eigenanalysis equation to solve for critical temperature is 

[Kb]{<Sb}=ti([KMbT]-[M1Bnl]){4»b} 
and the critical buckling temperature is 

ATcr = m AT|fI|

(B.5)

(B.6 )

where [ii is the lowest eigenvalue and ATtni is the assumed arbitrary initial temperature. 

Eqs. (B.5) and (B.6 ) are used as Eqs. (3.10) and (3.9) in Chapter Three.
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