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ABSTRACT 

MOLECULAR DYNAMICS STUDY OF SINGLE STRANDED PEPTIDE 
NUCLEIC ACIDS 

Anna K. Manukyan 
Old Dominion University, 2009 
Director: Dr. Jennifer Poutsma 

A PNA molecule is a DNA strand where the sugar-phosphate backbone has been 

replaced by a structurally homomorphous pseudopeptide chain consisting of ./V(2-amino-

ethyl)-glycine units. PNA binds strongly to both DNA and RNA. However, an analysis of 

the X-ray and NMR data show that the dihedral angles of PNA/DNA or PNA/RNA 

complexes are very different from those of DNA:DNA or RNA:RNA complexes. In 

addition, the PNA strand is very flexible. One way to improve the binding affinity of 

PNA for DNA/RNA is to design a more pre-organized PNA structure. An effective way 

to rigidify the PNA strand is to introduce ring structures into the backbone. In several 

experimental studies, the ethylenediamine portion of aminoethylglycine peptide nucleic 

acids (aegPNA) has been replaced with one or more (S,S)-trans cyclopentyl (cpPNA) 

units. This substitution has met with varied success in terms of DNA/RNA recognition. 

In the present work, molecular modeling studies were performed to investigate 

PNA and modified PNA analogs. Molecular dynamics (MD) simulations is a principal 

tool in the theoretical study of biological molecules. This computational method 

calculates the time dependent behavior of a molecular system and provides detailed 

information on the fluctuations and conformational changes. The MD simulation uses an 

empirical parameterized energy functions. These parameters play an important role in the 

quality of the simulations. Therefore, novel empirical force field parameters were 

developed for cyclopentane modified PNA analogs. We demonstrate that our 

parameterization can accurately reproduce high level quantum mechanical calculations. 

Detailed investigations on the conformational and dynamical properties of single 

stranded aegPNA and cpPNA were undertaken to determine how the cyclopentane ring 

will improve binding and to determine the contributions of both entropy and dihedral 



angle preference to the observed stronger binding. The effects of single and multiple 

modifications of the PNA backbone were also analyzed to understand changes in 

conformational and dynamical properties. 
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CHAPTER I 

INTRODUCTION 

The importance of nucleic acids in such processes as growth, reproduction, 

heredity and viral infection led to the establishment of oligonucleotide therapeutics. The 

two types of nucleic acid molecules known as ribonucleic acid, or RNA, and 

deoxyribonucleic acid, or DNA, perform different functions in these vital processes. 

DNA contains genetic code necessary for the development and function of living 

organisms and is considered as the most important biomolecule since its structure was 

determined by Watson and Crick.1 The storage and transmission of the genetic 

information is facilitated via replication, transcription and translation, mechanisms that 

involve nucleic acid-protein regulatory interactions. This observation suggests that in all 

domains of life these two polymers are strongly dependent on each other; DNA sequence 

encodes the amino acid content of proteins, while proteins are required for the 

maintenance and replication of the genome. The active communication between DNA 

and proteins is carried out by RNA. The DNA/RNA/protein central dogma of molecular 

biology is very complicated as it requires both nucleic acids and proteins to be formed 

from simple organic molecules. 

Early investigations into the structure of oligonucleotides led to the proposal of 

the double stranded model of DNA (Figure 1), a helical structure composed of a sugar-

phosphate backbone and four different nitrogenous bases stacked in the center of the 

chains. Both helical polynucleotide strands of the complex are right-handed, but run in 

opposite directions. The DNA bases consist of planar, aromatic, heterocyclic molecules 

that are divided into two groups: purine bases, adenine (A) and guanine (G), and 

pyrimidine bases, cytosine (C) and thymine (T). Within the DNA double helix, one base 

from each strand forms a coplanar base pair. Adenine pairs with thymine via two 

hydrogen bonds, and guanine forms three hydrogen bonds with cytosine (Figure 2) to 

form the standard complementary Watson-Crick base pairs. 

The citations on the following pages follow the style of the Journal of Chemical Theory and Computation. 



CO 
H 1 I H 

Adenine I 

J-/ 
l <xx NH uuamne 

o H (| ^ N |Cytosine 
0 = P — 0 

I 
0, 

0 = P — O ' 

I 
o. 

yH I Thymine] 

O=P—o-

o-

CN\ 

Figure 1. Structural representation of the DNA molecule 

Hoogsteen base pairing 

^

H Hoogsteen base pairing 

/ \ / 
HN / )—N ^ 

ft H, * ^ I 

° H- V^vH V N 
% t>«tt' // ^ 

Watson-Crick base pairing 
\ 

Watson-Crick base pairing 

Figure 2. Base triplets that can form with PNA (Watson-Crick and Hoogsteen) 



3 

Hydrophobic interactions between nucleotide bases and the aqueous environment 

of the cell induce base stacking that minimizes their contact with water. The stability of 

the DNA molecule is governed by various non-covalent interactions that maintain its 

secondary structure in aqueous solution.3 Among these, Watson-Crick hydrogen bonding 

and base stacking are always stabilizing. On the other hand, electrostatic repulsion 

between adjacent phosphate groups is always destabilizing. Steric effects vary in their 

contribution depending on the nature of the interacting bases. The inherent plasticity of 

the DNA molecule allows formation of right-handed B-DNA and A-DNA helices and 

left-handed Z-DNA,4'5 as well as parallel and anti-parallel orientations of binding and 

multi-stranded complexes. 

NUCLEIC ACID ANALOGS 

The ability of certain regulatory proteins and nucleic acids to recognize and bind 

specific nucleotide sequences has led to their widespread applications in research. 

Although natural molecules have a high affinity to complementary RNA and DNA 

strands, their phosphodiester backbone is extremely susceptible to degradation by cellular 

nucleases. Furthermore, the products of degradation are cytotoxic and inhibit cell growth 
ft 7 

in living cells. ' To improve upon these shortcomings, which prevent their widespread 

application, chemists developed the ability to synthesize nucleic acid analogues. 

Synthetic oligonucleotides have been of considerable interest not only from the biological 

viewpoint, but also as simplified models for the study of nucleic acid chemistry. For a 

successful application of such polynucleotides in DNA diagnostics and genetic therapy, 

high sequence-specificity and binding affinity are crucial. To date approaches to the 

design of oligomers have included modifications of the sugar-phosphate backbone or the 

nucleobase (Figure 3). 

The first generation of analogues involved alteration of the internucleotide 

linkages with the purpose of enhancing enzymatic resistance. The earliest used and most 

extensively tested analogues of natural phosphates are phosphorothioate 

oligodeoxynucleotides developed by Eckstein and coworkers.8 In these molecules, one of 
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the non-bridge phosphate oxygen atoms is replaced by sulfur. Phoshorothioates are more 

resistant to nucleases9 and show improvements in their pharmacokinetic properties with 

increased in vivo half-life.10 However, anticancer and antiviral applications revealed 

major drawbacks, namely low affinity of binding and non-sequence specific interactions 

under certain circumstances.11 Since charged molecules have a relatively poor ability to 

penetrate cell membranes, much effort has been concentrated on introducing charge-

neutral phosphate backbones.12 Methylphosphonates13 and phosphoramidates14' 15 are 

examples of nonionic analogues of olionucleotides (Figure 4). Both are highly resistant to 

exonucleases, form very stable duplexes with complementary sequences, and 
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demonstrate effective sequence-specific inhibition of gene expression, but lack the ability 

to recruit RNase H activity.16 The RNase H mode of action involves the recognition of 

the heteroduplex (RNA: oligonucleotide) by this intracellular nuclease which cleaves the 

target RNA strand thereby preventing translation of mRNA into protein and leaving the 

antisense oligonucleotide strand intact. 

A variety of heterocyclic base modifications were designed as novel purine and 

pyrimidine mimics with the expectation that their properties would be improved. 

Molecules containing base analogues were shown to be modified in thermal stability, 

double-helical conformation or base-pairing arrangements. The resulting oligonucleotides 

displayed different hybridization strength and protein recognition patterns. Examples of 

such modifications include thiothymine,17 2,4-dithiopyrimidine,18 N4-

methyloxycytosine,19 xanthine,20 06-methylguanine21 and 8-hydroxyguanine22 (Figure 

5). These nucleosides containing non-natural nucleobases demonstrated significant 

antiviral, antibacterial and anticancer activity. 

The incorporation of functional groups has been further extended to include the 

sugar ring of DNA. Most experiments are carried out with DNA, because RNA 

molecules are easily degraded by RNases due to the free C2'-OH group.23' 24 

Interestingly, modification at the C2'- position leads to steric hindrance, which increases 

the nuclease resistance of the RNA.25 Moreover, the C2' position of a nucleoside can be 

easily chemically modified and is more tolerant towards changes in size and structure 

because of its location on the exterior of the helix.26 A significant number of such sugar 

modifications are reported in the literature.27 The most prominent ones, shown in Figure 

5, are 2'-0-methyl and 2'-0-methoxyethyl RNA. These oligonucleotides are significantly 

more stable against nucleases than unmodified ones, have slightly enhanced affinity for 

their complementary RNA target, show potent antisense effects and are less toxic. 



6 

Thiothymine 2,4-dithiopyrimidine N-methyloxycytosine 

xx>...jto...xx>-u P| | H2N N N H2N N 

Xanthine 06-methylguanine 

O - i Base O—I 

H 
O O 

0 = P — O " M e 

2'-0-methyl RNA 2'-0-methoxy-ethyl RNA 

8-hydroxyguanine 

i 
o - i Base 

OMe 
O 

0 = P — O r 

Locked nucleic acid 

Figure 5. Examples of nucleobase and sugar modifications in oligonucleosides 

An alternative strategy for sugar modification has been introduced with the aim of 

inducing high binding affinity via a rigid structural pre-organization. Locked nucleic 

acids (LNA), " also known as bridged nucleic acids (BNA), are RNA analogues that 

represent a very elegant and simple modification of the pentose sugar. They contain a 

methylene linkage that connects the 2'-hydroxyl and 4' -carbon of the ribose ring. The 

conformational flexibility is reduced by the presence of the bridge that confers a C3'-

endo (P-D-LNA) or QT-endo (a-D-LNA) conformation to the sugar.31 This design 

yields oligomers that exhibit remarkably increased nucleic acid recognition and 

outstanding binding affinity to complementary DNA with melting temperature increases 

of up to 10°C per substitution.29 The constrained conformation (or conformational 
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restriction) of LNA nucleotides in LNA/DNA complexes organizes the phosphate 

backbone in a way that leads to a higher population of the CV-endo conformation. These 

changes extensively reduce the loss of entropy upon hybridization and present a favorable 

enthalpy associated with the improved stacking of bases. Because of their unprecedented 

hybridization properties and resistance to nucleolytic degradation, LNA proved to be 

suitable for a wide variety of biological applications.32 However, recent studies of their 

effects as antisense agents in liver tissue suggest that the observed hepatoxicity can be a 

limiting factor in the future medicinal use of LNA. 

Because of their potential in many research areas, a diversity of modified 

oligomers has been developed. Such alterations not only affect the affinity and specificity 

of binding, but also possess acceptable pharmacokinetic properties. Both DNA and RNA 

were further modified dramatically by substituting the entire phosphate and furanose ring 

with completely different components while still preserving the nucleobases for 

hybridization properties. Replacement of the negatively charged phosphates with neutral 

groups can reduce the repulsion between DNA strands and enhance duplex stability. The 

resulting novel oligonucleotide analogues (Figure 6) were carefully tested for their 

biological activity. Although these molecules are not degraded by nucleases, they suffer 

from serious problems such as low solubility in aqueous solution and poor membrane 

penetration.34 
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Figure 6. Alternatives to the phosphodiester backbone 



PEPTIDE NUCLEIC ACIDS 

Nucleic acid analogues were designed with the aim of improving upon molecular 

recognition and biophysical properties and/or developing novel properties that are unique 

from those of their natural counterparts. Peptide nucleic acids (PNAs), developed by 

Nielsen and coworkers,35 were the first successful example of oligomers in which the 

entire sugar-phosphate scaffold of DNA/RNA has been replaced with an acyclic 

polyamide backbone (Figure 7). Its original design has been developed by means of 

computer-aided atom by atom replacement of DNA. These oligomers were created as a 

reagent to sequence-specifically target double stranded DNA to form a triplex via 

Hoogsteen base pairing in the major groove. 36 

u° 

•<s\ 
> " 

DNA 

Figure 7. Comparison of the DNA and PNA structures 
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PHYSICAL PROPERTIES AND HYBRIDIZATION OF PNA 

PNA is a synthetic DNA/RNA mimic consisting of 7V-(2-aminoethyl) glycine 

units (aegPNA). The four natural nucleobases are attached to the glycine amino group of 

the backbone via methylene carbonyl linkages.37 Geometric analysis of PNA and DNA 

backbones reveal that these molecules share a common "6+3" bond spacing motif. Each 

backbone unit is separated from the next by six bonds while the distance between the 

nucleobase and the backbone is three bonds. The conservation of this bond spacing motif 

has been suggested to contribute to the DNA mimicking properties of PNA. In analogy 

with regular peptides, PNA molecules are written in the N- to C- terminal direction. 
I D 

Egholm et al. suggested terminology where the amino terminus of PNA corresponds to 

the 5'-terminus of DNA and the carboxyl terminus of PNA corresponds to the 3'-end of 

DNA. 

The lack of the phosphate groups creates a neutral charge, and due to this 

neutrality PNA molecules are less soluble in water. To confer added solubility, a lysine 

moiety is often conjugated at the end. The non-standard, pseudo-peptide backbone of 
i n 

PNA exhibits increased resistance to nucleases that damage DNA samples thereby, 

conferring advantages for its in vivo applications.40 Also of significant importance is its 

stability to strong acids and weak bases.41 

In general, single-stranded DNA/RNA can form complexes through Watson-

Crick hydrogen bonding with any oligonucleotide bearing the correct sequence of 

complementary bases. Thus, duplex formation, or hybridization, is not limited to 

DNA:DNA or RNA:RNA complexes, but can involve RNA and artificial oligomers such 

as PNA. The synthetic backbone provides PNA with unique hybridization characteristics. 

It binds to complementary DNA, RNA and PNA in a sequence-dependent manner to 

form duplexes. Interestingly, PNA:PNA duplexes are even more stable than PNA:DNA 

duplexes of the same sequence. The higher stability of the complexes is reflected in the 

higher Tm values (Table l).26 The melting temperature (Tm) of the DNA molecule is 

defined as the temperature at which half of the DNA strands are in the double-helical 

state and half are in the "random-coil" state. The melting temperature is assayed by 

measuring changes in absorption in the UV range. The Tm values of PNA containing 
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duplexes follow the order PNA:PNA>PNA:RNA>PNA:DNA>DNA:DNA. Melting 

temperatures were shown to be dependent on G-C content and strand length,42 and 

provided useful information about structural transitions. 

Table 1. Comparison of the melting temperatures of the duplexes 

Complex 

DNA:DNA 

antiparallel 

PNA:DNA 

parallel 

PNA:DNA 

antiparallel 

Tm(°Q 

53.3 

56.1 

69.5 

PNA:PNA 

antiparallel 

PNA:RNA 

parallel 

PNA:RNA 

antiparallel 

Tm(°C) 

78.6 

51.2 

72.3 

PNA oligomers containing only thymine and cytosine (i.e. polypyrimidines) and 

polyadenine DNA can form very stable (PNA)2:DNA triplexes by means of Watson-

Crick-Hoogsteen base pairing. The stability of the PNA2:DNA triplexes is enhanced 

further when the cytosine residues are replaced with a protonated cytosine mimic, such as 

pseudo-isocytosine.43 The triplex formation can be used by PNA to invade double-

stranded homopurine/homopyrimidine DNA targets by a P-loop strand displacement 

mechanism (Figure S).44 PNAs were also observed to form PNA3 triplex, PNA445'46 and 

PNA2:DNA247 quadruplex structures. 

DNA complex formation is highly dependent on the concentration of the salt in 

the solution, which shields the charges on the sugar-phosphate backbone, and allows 

access to all available binding sites on the sequence of interest. Contrary to that of 

double-stranded DNA, the structure of PNA lacks the destabilizing electrostatic 

repulsions resulting in a greater binding constant at low to medium ionic strengths.38 

However, (PNA)2:DNA triplex formation proved to be dependent on the ionic strength 

of the solution.50 
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(DNA)2:PNA triplex 

Figure 8. Schematic model of strand displacement and triplex formation 

Structure of the PNA complexes 

Due to the potential of PNA as a drug or a diagnostic tool, the structures of PNA-

containing complexes are of great interest. Data is available on the NMR structures of the 

PNA:RNA,51 PNA:DNA48' 52 and PNA:PNA duplexes,53 and the crystallographic 

structures of the (PNA)2:DNA triplex54 and PNA:PNA duplex.55 Complexes involving 

PNA are helical in nature, with the PNA strand able to adapt to its nucleic acid partner. 

The PNA:RNA duplex was found to be a right-handed helix of "A"-form with structural 

features reminiscent of RNA:RNA duplexes. The primary amide bonds were in the trans 
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conformation with the carbonyl groups of the PNA directed towards the C-terminus. 

From the spectroscopic data collected on the RNA strand, the ribose ring adopted a C3'-

endo conformation as in RNA and had puckered glycosidic bonds. NMR studies of the 

PNA:DNA duplexes revealed that they have elements of both A- and B-form DNA:DNA 

duplexes, demonstrating the conformational flexibility of PNA. Comparison of the 

PNA:DNA duplex structure with standard A- and B-DNA by superposition of the helical 

axes showed that while the lateral positioning of the base pairs was A-like, the backbone 

curvature, base-pair inclination, and helical rise were all B-like. 

The X-ray structures of the (PNA)2:DNA triplex and PNA:PNA duplex revealed 

an unusual helix, named a P-helix after PNA, characterized by a small twist angle, a large 

base-displacement, and a wide, deep major groove. In contrast to natural nucleic acids, 

PNA contains no asymmetric centers. It can form either right- or left-handed helices, 

depending on the chirality of the amino acid at the carboxylic end of the molecule.56 The 

finding that PNA prefers a helical structure that is very different from those of the 

PNA:RNA and PNA:DNA helices indicates that PNA, despite its favorable hybridization 

properties, is not an optimal DNA mimic, leaving ample room for improvements in its 

design. 

With the availability of NMR and X-ray crystallography data, a few 

computational studies were performed for further characterization of the peptide nucleic 

acid structures.57"61 Nilsson et al. investigated the structural and dynamical properties of 

duplexes involving PNA molecules, as well as single stranded PNA, RNA and DNA 

oligomers by using molecular dynamics techniques. The obtained results were in 

excellent agreement with the available experimental data. Using energetic analyses, the 

molecular dynamics simulation studies of a PNA:DNA duplex and a (PNA)2:DNA triplex 

in aqueous solution concluded that the hybrid PNA:DNA complexes have a characteristic 

helicity that is quite different from the actual DNA counterpart. The reason is not simply 

the replacement of the sugar phosphate backbone with a PNA backbone, but some 

definite conformational preference of the PNA strand that affects the conformational 

flexibility. These computational (modeling) studies were based on predicted structures 

and intended to explain why PNA never forms very B-like structures. 
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APPLICATIONS OF PNA 

By virtue of its unique properties, PNA has found wide application in molecular 

biology, gene therapeutics, biosensors and nucleic acid purification. Recent progress on 

the studies of PNA properties and applications has been reviewed.62"66'67 Applications of 

particular interest and of considerable promise include antigene and antisense 

biotechnologies, biosensor detection via nucleic acid hybridization and plasmid 

purification for pharmaceutical development. 

Inhibition of gene expression (antisense and antigene) 

Protein biosynthesis consists of transcription and translation processes. In the 

transcription step of protein production, DNA is used as a template to produce an RNA 

molecule, called precursor messenger RNA (pre-mRNA). During the maturation phase, 

the non-coding (introns) portion of the pre-mRNA is removed (splicing), leaving only the 

coding sequences (exons). To initiate translation, mRNA travels to the cytoplasm and 

forms a complex with a ribosome that assembles proteins based on the instructions 

contained in the mRNA. In principle, the disruption of gene expression is possible at any 

of these stages via antigene and antisense agents (Figure 9). 

Most natural diseases such as cancer are a result of inappropriate protein 

production due to over-expression, silencing or absence of a particular gene. While 

traditional drug therapies consist of compounds that block or inhibit deficient proteins, 

antisense therapies focus on preventing their production. Antisense drugs are based on 

small oligonucleotide molecules that bind to the protein-coding portion of mRNA, 

preventing the translation of the disease-causing protein. By binding to a specific genetic 

segment of mRNA, antisense drugs prevent the genetic code from being read by the 

ribosome (translational arrest via steric blocking). Additionally, the bound 

antisense/mRNA complex is enzymatically degraded so the protein cannot be 

synthesized. This mechanism involves activation of RNase H that specifically cleaves the 

mRNA strand of the complex by means of its exo- and endonuclease activities. 
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Figure 9. Potential mechanisms of antisense and antigene oligonucleotides 

Due to its RNA and DNA binding capabilities, PNA has obvious potential for use 

in a variety of genetic procedures. Antisense PNA selectively inhibits the expression of 

brain proteins. The design of anticancer " and antiviral ' drugs based on PNA 

seems to be a very promising approach. Some PNA derivatives manifest antibacterial and 

antisense activities towards eukaryotic cells and animal organisms.74"78 

PNA effectively inhibits gene expression primarily through steric blockage of 
70 

translation, but fails to invoke RNase H activity. There are many examples of the use of 

duplex and triplex forming PNA to block translation in mammalian cells. Most of the 

research in this area is in cell-free systems, and in vitro translation experiments indicate 

that regions around the translation initiation codon (AUG) site of mRNA are very 

sensitive to inhibition by triplex forming PNA.80'81 The potent antisense effects of PNA 

are due to the high specificities and stabilities of the triplex (PNA)2:RNA. The 

translational arrest of mRNA occurs even upon addition of short (6-mer) homopyrimidine 
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PNA strands. The antisense efficiencies of duplex-forming PNA are lower than those of 

triplex-forming ones because longer PNA chains are required for the inhibition. Duplex-

forming PNA can inhibit translation, being specifically directed against the binding sites 

of ribosomes, whereas triplex forming PNA are more specific against polypurine sites 

located below the translation initiation point. 

In order to develop a strategy to inhibit gene transcription, antigene PNAs were 

synthesized and characterized.82 One of the most important studies in this regard has 

been reported by Corey and coworkers. PNA-mediated inhibition of gene transcription 

probably occurs via a process that involves (PNA)2:DNA triplex formation, strand 

invasion of the target DNA, and formation of a PNA:DNA hybrid or strand displacement 

with generation of a (DNA)2:PNA complex. The manner in which PNA interacts with 

double stranded DNA depends on the sequence composition.83 

Several in vitro studies demonstrated that PNA:DNA strand displacement 

complexes are efficient inhibitors of transcription and hinder the binding of proteins such 

as transcription factors that trigger transcription initiation. Although PNA gene targeting 

forms stable complexes, the invasion process under physiological conditions is slow, 

therefore, PNA demonstrates a weak cellular antigene action. The presence of various 

cations that have a stabilizing effect on the DNA helix reduce the rate of duplex invasion 

in v/vo.84'85 The strand invasion process of polypyrimidine PNAs can be facilitated by 

attaching short cationic peptides, introducing pH-independent pseudoisocytosines, or 

using 6/s-PNA in which the two hybridizing chains are connected by a flexible linker.43 

It should be noted, however, that helix invasion does not necessarily lead to inhibition of 

transcription. As already stated above, the initiation of transcription involves formation of 

an open complex, equivalent to a P-loop structure of the PNA triple helix. During strand 

displacement, RNA polymerase can recognize this complex and initiate transcription in 

vitro. Therefore, in addition to inhibiting transcription, PNAs can be considered as 

possible "artificial promoters". 
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PNA in diagnostics 

The diagnosis of human diseases relies on the examination of a DNA sample for 

the presence of known genetic anomalies. Therefore, detection of DNA sequences for 

aberrant genes via nucleic acid hybridization forms the basis of research, medical 

diagnosis and treatment of genetic diseases. Consequently, much effort has been devoted 

to the development of DNA sensing methods.87 The most popular methods to determine 

specific genetic sequences through hybridization are based on biosensor type platforms 

(DNA microarray). A typical DNA microarray is comprised of single-stranded DNA 

probes covalently attached to a transducer surface such as glass indium tin oxide, gold, 

carbon or silver. Target strands are modified with fluorescent or radio labels and those 

with complementary sequences to the immobilized DNA form double stranded 

complexes on the surface. The capture of a complementary strand on the array is coupled 

with a change in the properties of the duplex and is transduced into a useful electrical 

signal, usually in the form of light, mass (frequency) or an electrochemical change.88,89 

Due to their high binding affinity and specificity, PNAs can be used in hybridization 

applications as an alternative to natural nucleotide probes. PNA-based biosensors were 

developed for improved mismatch-sensitive hybridization detection of nucleic acids, with 

applications ranging from single nucleotide polymorphism detection to nucleic acid 

sequencing.39'90"97 Moreover, hairpin forming PNA98 with fluorescent and quencher 

moieties at opposite termini of the PNA oligomer, termed "molecular beacons", found 

applications in biomolecular assays by binding to designated DNA and RNA targets.99"104 

Upon binding the target sequence, the molecular beacon opens and forms a complex with 

RNA/DNA as a single stranded PNA probe, thereby separating the fluorescent and 

quenching moieties in the process (Figure 10). 
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Figure 10. Strategies for detecting gene expression: fiuorescently labeled PNA probes 

(top) and molecular beacons (bottom) 

PNA oligomers can also be used to silence polymerase chain reaction (PCR) 

amplifications in single mutation analyses.105 The PCR clamping method for the 

detection of point mutations is based on the ability of PNAs to bind more strongly to 

complementary nucleic acids combined with its inability to act as a primer for DNA 

polymerases. Targeting of the PNA oligomer against the primer binding site can block 

the formation of the PCR product. The procedure is so powerful that the expert choice of 

the primer length can allow discrimination of alleles which differ only in one base pair 

(single point mutation) 106-108 

LIMITING FACTORS FOR PNA APPLICATIONS 

Despite the many appealing properties of PNA, there are limitations for the use 

of PNA as sequence specific binding agents that have not been resolved. The unique 

helix invasion process is highly dependent on salt concentration. ' ' ' ' The 

pronounced inhibitory effect at moderate salt levels (>50mM NaCl) is due to the 

neutralization of the DNA backbone by monovalent cations that decreases DNA 
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breathing dynamics (transient openings of base pairs i.e. local unzipping).84'111 Hence, 

even though PNA exhibits a high degree of sequence specificity, the rate of PNA strand 

invasion is too slow in high salt concentrations. Kurakin and coworkers, however, 

reported that the presence of a preformed PNA strand-displacement complex near the 

target facilitates the binding of the second PNA at physiologically relevant ionic 

strengths. Subsequent experimental results illustrated and support the hypothesis that 

creating distortions or openings in the DNA duplex will accelerate PNA binding 

dramatically in the presence of salts. 

The efficacy of oligonucleotides in various biological applications as in vitro and 

in vivo reagents relies on the ability to traverse the cellular membrane, and for PNA, this 

requirement represents a major challenge.112 Ideally, the intracellular transport should be 

accomplished by simple exogenous delivery. PNA oligomers, however, are poorly taken 

up this way and require additional means of transportation for efficient cellular uptake. 

Consequently, a great deal of effort has been invested into developing alternate methods 

for improved intracellular delivery. The most frequently used approaches include 

covalent attachment of cell-penetrating peptides, conjugation with targeting ligands, 

incorporation into liposomes and backbone modifications.113"117 Another simple strategy 

for cellular delivery involves hybridization of PNA to a short DNA molecule followed by 

complexation with cationic lipid-based agents.118 These agents deliver DNA inside the 

cell where PNA is released to carry out its task such as hybridization to mRNA. This 

method has been successfully used to deliver PNA to endothelial and different types of 

mammalian cells.119 The ability of the aforementioned conjugates to move through the 

membrane presumably relies merely on their physical properties. Nevertheless, an 

instance of increased receptor-dependent delivery of PNA has also been reported, in 

which a D-peptide derived from the insulin-like growth factor has been attached to 

PNA.120 However, this type of uptake only occurs in cells that express the specific 

receptor for insulin-like growth factor making this type of delivery specific to particular 

191 

cells or tissue. 

Over the last decade, considerable effort has been devoted towards developing 

and improving different means to deliver PNA into cells, and of the many approaches 

described, the method of peptide conjugation has been extensively used. However, most 
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cell-penetrating peptides have amphipathic character or lead to formation of amphiphilic 

moieties via conjugation to PNA that destabilize or disrupt cellular membranes and are 

thus toxic to cells.122 Recognizing the challenges, many strategies have been developed to 

design PNA analogues with improved solubility, increased ability for nonspecific binding 

to natural oligomers and increased transport across cellular membranes. The relatively 

simple structure of PNA allows for various modifications of the basic architecture as one 

way to improve its physical properties. The following sections summarize some of the 

recently reported PNA derivatives. 

STRATEGIES FOR PNA MODIFICATIONS 

From a chemical standpoint, PNA represents a hybrid of an oligonucleotide and a 

peptide, and this structural-and-functional duality of PNA determines its unique 

properties. Indeed, these molecules combine the inherent recognizing ability of nucleic 

acids with the flexibility and stability of proteins. Despite its desirable characteristics, the 

lack of charge and polar groups in the backbone reduces their performance in in vivo 

applications. Therefore, efforts have been made to synthesize new PNA analogues 

comprised of modifications at the nucleobase, nucleobase-backbone linker and backbone 

(Figure 11). 

Ethylene 
diamine 

O^V 

Figure 11. Potential sites for the modification of the PNA backbone 
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Nucleobase modifications 

Inhibition of gene expression by antisense and antigene approaches relies on the 

stability of the oligonucleotide complex. In this context, the use of modified nucleobases 

represents an efficient way to enhance the biomolecular recognition and hybridization 

through increased hydrogen bonding and/or base stacking interactions. Several PNA 

analogues bearing nonstandard nucleobases have been studied, and some representative 

examples are shown in Figure 12. Haaima et al. reported that substitution of adenine 

with 2,6-aminopurine (D) increases the thermal stability of the PNA:DNA duplex. This 

improvement is probably due to an increased affinity for thymine, since diaminopurine-

thymine base pairing involves an additional hydrogen bond and extends the inter-base 

stacking. 

N ^ - N 

V
IM .Nn2 IN - N - N H 2 I n ' f 

°Y o Y ° T ° 
2-aminopurine 2,6-diaminopurine 2-thiouracil E-base 

NH 2 

X 
N<!^NH 

N ^O 

HN- ^ N ^ A ^ - v J ^ y /^^JUy i H I 

N4-benzoylcytosine Pseudoisocytosine G-clamp 

Figure 12. Examples of modified PNA nucleobase moieties 
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Moreover, it displayed greater mismatch discrimination compared to adenine. 2-

Thiouracil along with 2,6-diaminopurine have been used in PNA-DNA recognition and 

have been shown to form stable complexes with DNA by so-called "double duplex 

invasion" (Figure 13). Pseudoisocytosine is another example of a modified nucleobase 

that forms an extraordinarily stable triplex by mimicking a protonated cytosine at neutral 

or alkaline conditions 43 

K 
PNA I I PNA 

Figure 13. Double duplex invasion 

Incorporation of N4-benzoyl cytosine causes inhibition of triple helix formation 
1 7S 

due to steric interference, whereas E-base proved to be a more useful substitution when 
1 Oft 

forming triplexes. The unique design of E-base allows for specific A-T base pair 

recognition in the major groove and has been found to bind more strongly to thymine 

than guanine. In fact, PNA2:DNA triplex formation at neutral pH is restricted to purine 

rich sequences. Homopyrimidine strands rich in cytosine require an acidic environment to 

combine into a DNA2:PNA complex that is of limited stability. In order to increase the 

stability of hybridized triplexes, pyrimidine bases that possess aromatic moieties with 

extended 7i-surface area for greater hydrophobic/stacking interactions were synthesized. 

Two groups worked separately on one of the most pronounced nucleobase analogues 
termed G-clamp 127,128 This modification led to increased stabilization through the 

formation of extra hydrogen bonds as well as enhanced stacking due to a larger surface 
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area. Moreover, it maintained an excellent sequence discrimination ability. Modified 

nucleobases that are capable of selective binding and possess intrinsic fluorescence were 

used to study interactions between different classes of biopolymers. 2-Aminopurine is the 

first analogue to be prepared for this purpose, whereas thiazole orange exhibits a 

remarkable base stacking ability combined with a sensitivity for single base-pair 

mismatches.129"132 

Nucleobase-backbone linker modifications 

Free PNA oligomers are shown to be composed of an equilibrium mixture of E 

and Z rotamers about the linker amide. Upon hybridization to a complementary sequence 

of PNA, RNA or DNA, the amide bonds of PNA are mostly in the Z conformation. With 

the aim of understanding the role of the nucleobase-backbone linker in the binding 

process, new PNA analogues were synthesized in which a tertiary amide bond between 

the base and the backbone is replaced by an olefin (Figure 14).133 It has been speculated 

that freezing the nucleobase-backbone bond in the correct conformation (Z or E) would 

result in improved affinity and specificity of binding. Experimental results using olefinic 

peptide nucleic acids (OPA) showed that both E and Z isomers can bind to 

complementary DNA, but with decreased thermal stability when compared to aegPNA. 

is-OPA oligomers prefer the parallel binding mode over the antiparallel one, however, 

unlike aegPNA, homopyrimidine OP As are not able to form triplexes. Incorporation of a 

fluorine atom on the linker double bond (F-OPA) appears to stabilize the resulting 

complex with complementary DNA compared to unmodified aegPNA.134 F-OPA can 

also hybridize with DNA in a parallel fashion although with lower affinity. Like with 

OP As, there appears to be a sequence dependence on the thermal stability of F-OPAs. 

Despite the observed destabilization of duplexes, locking the base in aconformation 

suitable for hybridization results in increased binding selectivity compared to aegPNA. 
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Figure 14. Olefinic peptide nucleic acids (OPA) 

Backbone modifications 

In addition to the aforementioned modifications, a large number of backbone 

derivatives were investigated in order to improve some of the limitations of the PNA 

structure and its use in therapeutic and diagnostic applications. The PNA backbone can 

be modified in several ways: (i) extension of the backbone by one or more atoms, (ii) 

rigidification of the backbone via conformational constraint in order to pre-organize the 

PNA and (iii) introduction of cationic functional groups. 

In an attempt to understand if retaining the same number of bonds as in DNA 

influences hybridization properties, oligomers with an increased number of methylenes in 

the backbone were synthesized (Figure 15).135"137 It was reasoned that in addition to 

imposing unfavorable steric or structural constraints, these changes would also increase 

the flexibility of the molecules. The binding properties of different analogues were 

studied by experiment using UV melting techniques. Extended backbone PNA oligomers 

resulted in decreased melting temperatures of PNA:DNA duplexes, demonstrating that 

correct inter-base distance is crucial for stable duplex formation. Modified oligomers 

with the correct number of bonds in the backbone, such as oxy-PNA, C-PNA and retro-

inverse PNA, have decreased melting temperatures, but high sequence selectivity and 

improved solubility profiles over original PNA.138"140 ct-Helical PNA is another example 

of a PNA analogue, which has a true peptide backbone composed of Ser-Ala2-Lys 

tetrapeptide units organized into an a-helix.141 The formation by a-PNA of very stable 
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duplexes with DNA in a sequence-specific manner suggests that structural organization 

of the backbone is essential for hybridization. 

/HN^N^A, V1 

Ethyl glycine Propyl glycine Ethyl-p-alanine Propionyl linker 

Base 
Base Base 

tJ^Jy A^YV ^VV* 
O R 0 

oxyPNA Retro-lverso PNA a-PNA 

Figure 15. Examples of modified PNA backbone moieties 

Introduction of charged moieties into the PNA backbone presents an important 

strategy that has led to PNA oligomers with improved physicochemical characteristics. 

Cationic groups, such as lysines, are usually used to increase solubility, decrease self-

aggregation, improve cellular uptake and increase binding affinity with DNA/RNA. 

However, these groups can only be introduced at the terminal ends of the PNA chain. 

Several classes of cationic PNA analogues that bind to DNA/RNA strands with high 

affinity have been reported.142"145 This stabilization is most likely due to the electrostatic 

interactions between the positively charged backbone of PNA and the negatively charged 

DNA backbone. However, detailed information on the structure of these analogues is 

needed to allow the design of new analogues with favorable features. 

The relatively high binding affinity of PNAs toward natural oligonucleotides is 

attributed to the lack of electrostatic repulsion between the uncharged PNA backbone and 

the negatively charged sugar-phosphate backbone of DNA/RNA. The stability of duplex 
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structures in solution can be interpreted in terms of enthalpy-entropy compensation. The 

hybridization of the PNA strand with DNA/RNA increases enthalpy while decreasing 

entropy. The effect of introducing a modification can be explained in terms of a change in 

the free energy of the backbone torsions (AGt) and the free energy related to base 

stacking (AGS). The change in the base stacking free energy is dominated by an enthalpy 

change (AGS ~AHS), whereas the change in the backbone torsion free energy is affected 

by both entropy and enthalpy. The single-stranded PNA, being acyclic, is 

conformationally more flexible in its different structural segments. Consequently, 

formation of the PNA:DNA/RNA complex is accompanied by conformational changes in 

the PNA in order to gain enthalpic advantage of hydrogen bonds and base-stacking 

interactions. This gain is accompanied by an undesirable entropy loss, and possible 

undesirable enthalpy loss due to increased torsional strain. The decrease in entropy upon 

hybrid formation is due to the formation of a highly ordered and fairly rigid duplex 

structure from two flexible and less ordered single strands. Therefore, constraining the 

single stranded PNA in a conformation identical to or close to that found in the hybrid 

should greatly reduce the entropy and enthalpy losses and increase the free energy of 

binding. 

Any favorable structural pre-organization of PNA that facilitates binding should 

allow the strand to assume the preferred range of dihedral angles observed in 

PNA:DNA/RNA complexes. With this in mind, numerous attempts have been made to 

modify the aminoethylglycine PNA backbone through introducing alkyl and cyclic 

substituents to improve oligonucleotide selectivity and binding affinity.146'147 The 

presence of rotamers around the tertiary amide bond interferes with the hybridization 

process. Thus, in order to hinder the rotation, the nucleobase was connected to a cyclic 

system. Examples of conformationally blocked PNA are represented by aminoprolyl 

(opPNA),148*149 aminoethylprolyl (aepPNA),150"152 pyrrolidinone (pyrPNA),153'154 

piperidinone (p/pPNA),155 pyrrolidine,156'157 cyclopropane (cprPNA),158 cyclopentyl 

(c/?PNA)159"164 and cyclohexyl PNA (c/zPNA)165167(Figure 16). These monomers are 

obtained by bridging atoms in the backbone or atoms of the backbone and base-backbone 

linker. Interestingly, apPNA, aepPNA and #yrPNA are all synthesized utilizing a 

hydroxyproline derivative as a precursor. In the 4-aminoproline derived PNA, the two 
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chiral centers at C2 and C3 result in two diastereoisomers. PNA molecules having a 

single chiral L-?ra«,s-4-aminoprolyl monomer bind to DNA with high affinity, whereas 

PNAs with the other three diastereoisomers do not stabilize PNA:DNA duplexes.149 

Additionally, the stereochemistry of the monomer affects the preference for parallel or 

antiparallel binding. Homochiral thymine apPNA does not bind to DNA strands due to 

the high rigidity of the backbone, which results in structural incompatibility.168 However, 

incorporation of L-trans aminoprolyl units alternating with aminoethyl glycine units has 

been found to improve binding to DNA. 
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Figure 16. Examples of PNA backbone modifications with cyclic moieties 

The replacement of the tertiary amide carbonyl on the backbone by a methylene 

group yields aepPNA that retains the flexibility of the aminoethyl segment, but restricts 

the rotamers through a methylene bridge between the glycine and the side chain.150"152 In 

these derivatives, the nucleobase is attached directly to the positively charged pyrrolidine 
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ring. When hybridized to DNA, aepPNA has a higher affinity than aegPNA, owing to the 

presence of the protonated ring nitrogen. In general, the antiparallel binding mode is 

preferred over the parallel one. Furthermore, aepFNA exhibits excellent sequence 

discrimination and forms aepPNA2:DNA triplexes. However, under physiological 

conditions (pKa 6.8) the protonation can influence ring puckering and alter the 

conformation of certain nucleobases, thereby reducing duplex stability. 

An alternative to pre-organizing the methylcarbonyl linker is to introduce a ring 

between the amide carbonyl and the backbone restoring the amide character of the 

pyrrolidine ring nitrogen (pyrPNA).153 Of all the four stereoisomers of pyrPNA, the 

(3S,5R) isomer has been found to be the most efficient in binding to complementary 

RNA. It is also better able to discriminate between RNA and DNA. A slightly lowered 

thermal stability is observed when comparing the binding of (SS^R^/TyrPNA with RNA 

to that of unmodified PNA with RNA. Taken altogether, these results suggest that, of the 

four isomers, the (3S,5R) stereoisomer best approximates the conformation of PNA in a 

PNA: RNA double helix. In addition, the five-membered ring may not be the optimal 

conformational restraint modification, because it causes a reduced thermal stability when 

compared to aegPNA. 

A reduced version of pyrPNA called pyrrolidine PNA has also been synthesized 

by Nielsen and Vilaivan via two different methods.155'169'170 Incorporation of a single 

(2R,4S) pyrrolidine monomer into an aegPNA mixed sequence resulted in an increase in 

binding affinity to both DNA and RNA, and protonation of the nitrogen did not seem to 

affect the stability of the hybrids. On the contrary, the (25,4/?) isomers do not stabilize the 

formation of hybrids with DNA/RNA. However, a homoadenylate pyrrolidine decamer 

exhibited an increase in binding affinity compared to an isosequential unmodified PNA. 

PNA variants containing six-membered structures received much attention due to 

their unique conformational preferences and sequence recognition abilities. Molecular 

modeling studies suggested that conformations of the rigid six-membered piperidinone 

PNA would allow formation of hybridization-competent oligomers. However, significant 

destabilization of the piperidinone PNA:DNA duplexes was observed compared to 

aegPNA.155 The CI of the glycyl unit and the C6 of the nucleobase linker are bridged by 
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a two-carbon ethylene to form the aminoethylpipecolyl PNA (aepipPNA).171'172 This 

chiral six-membered analogue has been found to stabilize PNA2:DNA triplexes. 

Although there are many different PNAs employing cyclic constraints, monomers 

with carbocyclic backbone modifications of the C2-C3 bond represent a particularly 

promising group of cyclic PNAs. The ethylene diamine portion of the PNA backbone is 

the most flexible part; therefore, restricting the bond rotation will reduce the flexibility 

and pre-organize PNA oligomers for binding. Moreover, when nucleobases are directly 

attached to the ring of the cyclic PNA, they constrain the ring in specific conformations 

leading to distinct differences in binding properties. The earliest example of backbone 

modification was reported by Nielsen and co-workers who replaced the flexible 

aminoethyl segment at the Cp and Cy positions of the PNA backbone with a 1,2-

diaminocyclohexyl moiety. Both enantiomers of trans cyclohexyl PNA (c/zPNA) were 

inserted into mixed base sequences and their hybridization to DNA/RNA complementary 

strands was analyzed. Unfortunately, neither the (S,S) nor the (R,R) isomer of c/zPNA 

improved the stability of the complexes formed, however, introduction of (R,R) isomers 

resulted in a dramatic destabilization of the PNA:DNA or RNA complexes. It should be 

noted that the (S,S) enantiomer decreased entropy as expected, but this was compensated 

for by a reduced enthalpy gain.165 Following Nielsen's study, Ganesh and Kumar 

reported synthesis of cis-(lR, 2S) and (IS, 2i?)-cyclohexylthyminyl PNA monomers.173'174 

The cis cyclohexane modification reduced the stability of the triplexes and duplexes of 

poly-T PNA.175 PNA containing the (R,S) isomer exhibited higher hybrid stability in the 

PNA:DNA complexes than the (S,R) isomer. In the case of RNA complexes, cis-(R,S)-

c/zPNA monomers seem to be better tolerated in the duplex structure than (S,R).m 

However, when incorporated into mixed base sequences, c/s-c/zPNAs showed high 

selectivity for RNA over DNA. While this structural discrimination emphasizes the 

potential of PNA for antisense applications, the cis cyclohexane modification does not 

induce optimal conformations for DNA hybridization. 
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Figure 17. Definition of the PNA backbone dihedral angles 

Analysis of the hybrid structures revealed that the dihedral angle values were 

restricted to a specific range in the PNA:DNA/RNA duplexes (Figure 17 and Table 

2).51'177 In an attempt to adjust the dihedral angles for improved hybridization, Ganesh 

and coworkers replaced the cyclohexyl unit with cyclopentane and synthesized cis-

(IR,2S) and (IS^-cyclopentyl PNA monomers (cpPNA).159'160 Q?PNAs carry a five-

membered ring bridging the C(3 and Cy of the aminoethyl moiety. The substituted 

cyclopentane ring system is an interesting modification due to its inherent flexibility. 

Cyclopentane has two preferred conformations: half-chair and envelope. These 

conformations have several energy minima and the barrier for interconversion is low, 

which implies that cyclopentane modified PNA should be flexible enough to adopt the 

necessary dihedral angles for stable complex formation. On the contrary, trans-

cyclohexane PNAs have two chair conformations: diaxial and diequatorial. The diaxial 

conformation is unfavored and makes the cyclohexane a rigid modification that forbids 

structural readjustments during hybridization. 
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Table 2. Backbone dihedral angles for the modified PNA structures 

Compound 

PNA/PNAa 

DNA/DNA* 

RNA/RNA° 

PNA/DNA* 

PNA/RNA* 

(S,R)-chmka,c 

(R,S)-chPNha'c 

(S,R)-cpmAa'c 

(R-S)-cpPNAac 

a 

-107 

71 

-81 

105 

170 

128 

-129 

84 

-84 

P 
62 

-165 

174 

141 

67 

-63 

66 

-24 

25 

Y 

74 

49 

66 

78 

79 

76 

-78 

86 

-86 

5 

96 

110 

95 

139 

84 

119 

-119 

90 

-90 

Data obtained from X-ray or NMR. Monomer crystal structures 

Czs-cyclopentyl modified PNAs exhibit higher affinity towards RNA than DNA: 

the (R,S)-cpPNA enantiomer formed higher stability duplexes with DNA than the (S,R)-

cpPNA monomer. For polyribonucleotides (rA) the reverse trend has been observed. In 

all cases the PNA:RNA hybrids are more stable than the corresponding PNA:DNA 

duplexes. In comparison to cis-c/zPNA, cis-cpPNA oligomers had much higher Tm values; 

however, stereochemical discrimination of DNA and RNA was expressed better by the 

c/zPNA oligomers.176 

Based on molecular modeling studies and published NMR data, the (S,S)-

cyclopentadiamine ring was used for conformational restraint of the C2-C3 dihedral 

angle of the PNA backbone.164 Appella et al. first reported the incorporation of trans-

(5,iS)-cpPNA monomers into polythymine heptamers through standard solid-phase 

synthesis and tested the ability of the strands to hybridize with DNA utilizing UV thermal 

denaturation techniques.178'179 The (S,S) enantiomer was chosen because this 

stereochemistry can promote right-handed helix formation. On the contrary, introduction 

of the (R,R) monomer had a serious adverse effect on duplex stability. The cpPNA 

monomers were also incorporated into a number of PNA strands containing a mixed-base 

sequence that was extensively studied by Nielsen.165 The effect of the addition of the 

trans-cpFNA modification on the binding affinity to complementary DNA is summarized 

in Table 3. The addition of a single trans-cp?'HA monomer increased the Tm by 
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approximately 5°C. The effect was independent of the position in the PNA strand and the 

nucleobase attached to the modified monomer. The influence of the cyclopentane 

modification was also additive, in that the Tm continued to increase as multiple residues 

were incorporated.180 Moreover, incorporation of a single cyclopentane monomer showed 

an improvement for discriminating against mismatches. The results of thermal 

denaturation studies also provided an excellent basis for the development of PNA 

microarrays.181 

Table 3. Tm data for PNA:DNA duplexes 

PNA sequence Tm(°C) 

GTAGATCACT-Lys 48.9 

GTAGAT*CACT-Lys 54.9 

GTAGATCA*CT-Lys 54.5 

GTAGATC*ACT-Lys 54.2 

GTAGAT*C*ACT-Lys 60.2 

GTAGA*T*C*ACT-Lys 64.4 

*= trans-cp residue, Cyclopentane stereochemistry is (S,S) 

Summary 

The design of cpPNA is an outcome of optimization of the dihedral angles that 

constrain the PNA backbone for differential DNA/RNA binding and discrimination via 

pre-organization. The flexible frans-cyclopentane modification, which changes 

conformation easily, allows reorganization of the ring puckering, which leads to high 

affinity binding to both DNA and RNA, but does not improve binding selectivity. The 

goal of our research is to explore and analyze the structure and dynamics of rigidified 

PNAs containing one or multiple trans cyclopentyl groups in the backbone in order to 

determine distinctive structural features and preferences. We advance the hypothesis that 

the restriction of the aegPNA backbone dihedral angles will lead to increased binding 

affinity and oligonucleotide selectivity based on correct PNA pre-organization. Due to 

their properties c/?PNAs can provide deep insight into the interplay between the various 



32 

interactions which stabilize oligonucleotide systems. To exploit this advantage, however, 

more detailed information about their geometrical arrangements and stability are needed 

in combination with a critical test of the torsion angles. It is the goal of the present work 

to provide such information with the help of theoretical approaches. 
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CHAPTER II 

THEORETICAL BACKGROUND 

The basis of computational chemistry relies on the assumption that chemical 

behavior can be predicted by solving mathematical equations that describe the chemical 

system. The main goal of computational methods is the consistent and accurate 

investigation of the chemical properties and the dynamical behavior of molecular systems 

using theoretical approaches. Theoretical investigations can be carried out at two 

different levels, quantum mechanical " and empirical (molecular mechanics). 

Quantum mechanical methods deal with the electronic structure of molecules, and such 

computational results can reach the accuracy of experimental data. However, these 

calculations are time-consuming and limited to only small systems. On the other hand, 

for complex biomolecules such as nucleic acids and proteins, molecular mechanical or 

force field methods are used as an effective alternative. This approach, however, suffers 

from the limitation that experimental or ab initio data is required for parameterization; 

information that is not generally available for novel types of compounds. As a 

consequence, parameterization of empirical force fields to accurately describe these 

systems becomes an important concern, and is the focus of the work presented in this 

chapter. 

EMPIRICAL FORCE FIELDS 

Molecular mechanics (MM) methods are developed by empirically fitting 

experimental parameters to classical mechanical models of molecules. The simplest 

representation of an atom is a sphere of fixed radius, with a mass and charge located at 

the center of the sphere. MM calculations model molecules with a set of classical 

potential energy functions that define the force field.187 These equations describe the 
1 RS 1 RQ 

dependence of a molecule's energy on the coordinates of its constituent atoms. ' The 

nature of these functions is chosen to provide a good approximation to the real systems. 
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At the same time the calculations require little computational effort. The molecules are 

modeled as a collection of atoms of different sizes and softness and bonds of different 

stiffness.190 The expression for the total potential energy (E) of a molecule has 

contributions from each of the major internal valence coordinates (terms for distortion of 

bond lengths Ej,, bond angles Ea, and torsion angles Et), and intra- and intermolecular 

non-bonded interactions (van der Waals forces Evdw; and electrostatic interactions Eei). 

The total potential energy is then given by the contribution of the different terms: 

E = Eb + Ea + Et + Evdw + Eel (1) 

Force fields employ various functional forms for the terms in equation (1) as well 

as sets of parameters for bonding and non-bonding interactions. Each force field was 

developed to solve specific problems, thus there is no single "best" force field for the 

accurate description of all molecular systems.191 Methods based on empirical force fields 

can be used to calculate both the static and dynamical properties of molecules. The first 

group includes minimum energy structures, conformational energies, rotational barriers, 

vibrational frequencies, etc. The evolution of a molecular structure in time (trajectories) 

and time averages of structural and thermodynamic properties can be calculated using 

molecular dynamics simulations. Force field methods, however, are unable to describe 

systems and processes where an extensive rearrangement of the electron density takes 

place (bond breaking events, excited states, etc.) Also, most currently available force 

fields are pairwise-additive, thus limiting their accuracy for systems where polarization of 

the molecular charge distribution is important.192'193 

There are several MM force fields available for performing simulations of 

biomolecules including AMBER,194 GROMOS195 and others.196'197 CHARMM198,199 

(acronym for Chemistry at HARvard Macromolecular Mechanics) is a molecular 

mechanics and dynamics program developed in the laboratory of Martin Karplus, and is 

one of the most widely used force fields in the simulation of large biomolecules. It 

possesses the necessary parameters for the common nucleosides and amino acids. The 

CHARMM force field includes the following terms (Figure 18): 
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Etotal — L,bonds^rir ~ro) + Wangles Kg (Q ~ #o) + 

laihearals ^ [1 + COs(nO) - y)] + £ « , ( ^ " ¥ ) + !i<j 7T (2) 
\Tij lij/ krij 

The first MM energy component in the form of a simple harmonic potential, is the 

stretching term that describes the bonds. The stretching energy increases when the bond 

is deformed (compressed or elongated) from its equilibrium position. It obeys Hooke's 

law, which considers both the magnitude of deformation and the stretch constant 

(stiffness) of the bond. In order to do this in MM, an equilibrium bond length, ro, needs to 

be determined from experiment or ab initio calculations. A second parameter, the 

quadratic stretch constant, Kr, must be assigned to each bond to model the stiffness (or 

strength) of the bond. This factor is important for primarily determining the vibrational 

frequency of a bond, although it will indirectly affect the bond length. Besides bond 

stretching, angle bending is an important feature of polyatomic systems and can be 

modeled classically in an analogous manner. It is also described by a simple harmonic 

function, where Kg is the force constant for bending the angle formed by three atoms 

bonded to each other and 60 is the equilibrium angle for the arrangement. 

Figure 18. Schematic representation of force field energy terms. Figure adapted from 
Jensen, F. Introduction to Computational Chemistry, John Wiley, 2007 
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Figure 19. Atom orientation in the torsion angle 

The next term in Equation 2 is the torsion angle potential, which represents the 

change in energy due to internal bond rotation. For four atoms bound in sequence ABCD, 

the clockwise angle from A to D while looking down the CB bond represents the torsion 

angle, a), between atoms A and D (Figure 19). Although this is also commonly referred to 

as a dihedral angle, it should be noted that a dihedral is actually the complement of a 

torsion angle with a value of 180°- a>. The torsion potential is assumed to be periodic and 

is modeled with a truncated Fourier series. In the torsion angle term, KQ is the constant 

associated with the height of the torsional barrier, n is the periodicity, which dictates the 

number of minima a bond of a given chemical type has as it rotates through 360°, co is the 

torsion angle, and y is an angle that determines the phase of the function. The last term in 

Equation 2 contains two potentials describing the non-bonded interactions. The Lennard-

Jones potential accounts for both the attractive (negative term which is proportional to r~6) 

and repulsive interactions (positive term proportional to r"12). Atj and Btj are the 

associated parameters which depend on the pair of atoms / and ;'. In addition to potential 

energy steric interactions, the presence of charges and polar groups requires incorporation 

of electrostatic interaction terms. Since the electrostatic charges are relatively constant for 

a particular functional group, each atom is assigned a partial charge. The potential energy 

of interaction between the two terms is then written in the form of a standard Coulomb 

interaction, where qt and qj are partial atomic charges, rtj is the distance between the 

charges, and s is the dielectric constant of the medium. 

V) 
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As mentioned above, these potential functions define the force field and the total 

potential energy of the system is defined as the sum of all the contributing energy terms. 

However, the quality of the MM force field depends strongly on the adjustable 

parameters. In order to obtain meaningful and reliable results, the parameters must 

reproduce the desired structural and energetic properties. This goal is achieved by fitting 

them to experimentally determined data or high level ab initio calculations on small 

molecules with similar chemical properties. For example, equilibrium bond and angle 

values can be taken from X-ray structural data and the corresponding force constants 

determined from vibrational spectral data. This kind of approach allows for parameter 

interpolation, i.e. force field parameters for a particular class of compounds or functional 

groups can be used to calculate the structures of other similar classes of compounds. 

However, the CHARMM force field has been parameterized only for proteins, 

carbohydrates and naturally occurring nucleic acids. To the best of our knowledge, only 

two sets of parameters for regular aegPNA have been reported.58'59 Therefore, all 

parameters related to the cyclopentane ring modification needed to be assigned in the 

present work. Since high level quantum calculations have an accuracy comparable with 

experiments, the parameters in this study were determined solely from first principle 

calculations of molecular geometries and their energies. 

QUANTUM CHEMICAL METHODS 

Electronic structure methods avoid many limitations of the empirical force fields, 

but their major restriction is the maximum size of the molecular system that can be 

treated (about 100 atoms). These techniques are based on the concept that electrons are 

not localized at particular points in space but behave like waves. The probability of 

finding an electron within a region of space, or probability density, is given by Equation 

3, where H1 is the electronic wave function. With H* normalized, the probability of finding 

the particle in all space must be 1. Although the wave function itself does not have a 

physical meaning, it is postulated to contain all the information about the system. The 

wavefunction depends on both the position of the particle and its spin states. 
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P = J°V(x)V(x)dx (3) 

In quantum mechanical or ab initio calculations, the Schrodinger differential 

wave equation (Equation 4) for an electronic system is formulated and solved by 

approximations .200'20 x 

WV = EW (4) 

Central to this equation is the linear Hamiltonian operator H, which acts upon the wave 

function to give the total energy of the system. The Hamiltonian is made up of the sum of 

the kinetic and potential energy contributions of the nuclei and electrons in the system. 

The £"s are the discrete eigenvalues of the different stationary states. The solutions (the 

wavefunctions, ¥ ) of the time-independent Schrodinger equation correspond to various 

stationary states of the system (the solutions are called stationary-state wave functions 

because they are independent of time); the lowest energy solution is called the ground 

state. An accurate solution to this equation can be obtained for the hydrogen atom only; 

therefore, for molecular systems, various mathematical approximations are introduced. 

The Born-Oppenheimer approximation assumes that the electronic and nuclear wave 

functions can be separated and treated independently due to the fact that the nuclei are 

much heavier than electrons and, therefore, move more slowly. Specifically, one is 

assuming that the motion of an electron is instantaneous relative to the fixed nuclei. 

Quantitatively, the Born-Oppenheimer approximation may be formulated by writing 

down the Schrodinger equation for electrons in the field of fixed nuclei, i.e. fnuclei= o, 

H = felec + V (5) 

where felec is the electronic kinetic energy, and V is the coulomb potential energy. 

The resulting molecular Hamiltonian is a sum of the electronic and nuclear kinetic 

terms, plus the potential applied to the electrons and nuclei. Then, the wave function 
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becomes a product of electronic and nuclear components. The final goal of most quantum 

chemistry calculations is to determine the molecular wave function, which is accurate 

enough to calculate the desired properties to an acceptable degree of uncertainty. The 

multi-electron Hamiltonian is a difficult entity with which to work because of the 

mathematical complexity involved in the electron-electron repulsion term. Using the 

orbital approximation, in which each electron occupies an orbital, the wave function is 

separated into a product of several one-electron functions: 

^ = 0 1 0 2 0 3 - 0 n (6) 

The wave function must remain antisymmetric with respect to exchange of electrons due 

to the Pauli Exclusion Principle. This condition is a consequence of the fact that electrons 

are fermions having Vi spins. In order to give a correct description of the state of a many-

electron atom, the correct wave function describing the state of the electron must be the 

product of spatial orbital functions and spin functions. Then, the many-electron molecular 

wave function can be written as a Slater determinant,202 with each column representing a 

one spin orbital and each row representing one electron. Since exchange of any two rows 

in a determinant changes its sign (multiplication by -1), the Slater determinant satisfies 

the antisymmetry requirements of the wavefunction. Moreover, the determinant, which 

mixes all electrons and orbitals, can be varied easily to determine the wave function that 

provides the lowest energy eigenvalues. 

By introducing a set of known spatial functions, the Schrodinger equation for the 

many-electron problem can be transformed into a set of equations and solved by matrix 

methods. Each of the molecular orbital functions in Equation 6 is expressed as a linear 

combination of atomic orbital functions: 

0i=Efc=iQ f c** (7) 

Here 0; is a molecular orbital and n is the number of the atomic orbital (basis set) 

function Xk, which can be selected to be a Slater-type, a Gaussian or any other function. 

The expansion coefficients Cik are variational parameters. In theory, an accurate orbital 
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description is attained using an infinite number of basis functions. However, this type of 

representation is impossible for computers. Therefore, practical concerns limit the 

description of a molecular system to a finite number of basis functions. Two types of 

atomic basis functions received widespread use. Slater-type orbitals (STO) provide a very 

good description of the orbital space, however, since they are computationally too 

expensive, their use in practical calculations is limited. As an alternative, Gaussian-type 

atomic functions have been commonly used for orbital approximation. The advantage to 

using these functions is that all of the integrals in the computations can be evaluated 

explicitly without the use of numerical integration. However, it should be noted that they 

decay faster at large r (distance from the nucleus) and, therefore, give poor representation 

of atomic orbitals. As a consequence, several Gaussian functions (or primitives) are 

needed to adequately describe an orbital. Primitives are multiplied by an angular function 

to give orbitals the proper symmetry and orientation. 

Two popular basis sets that are used in ab initio calculations are the minimal basis 

set and the split-valence basis set. Minimal basis sets, such as STO-nG, are 

computationally inexpensive, but may not give reliable results. The most commonly used 

basis sets are the split-valence basis sets developed by John Pople's group.204 These basis 

sets have a common notation of KMN-G, where K denotes the number of primitive 

gaussians for the core orbital basis function; M and N indicate the linear combination of 

primitive gaussians for the valence orbitals. For biological applications, which deal 

predominantly with first-row elements, satisfactory results can be obtained using a 

Pople-style split-valence basis set of the form 6-31G*. This basis set uses two basis 

functions with different orbital exponents (composed of three and one primitive, 

respectively) to represent each valence atomic orbital, and one contracted function 

(composed of six primitives) for inner-shell atomic orbitals. A single "*" indicates the 

use of one set of polarization functions on non-hydrogen atoms. A polarization function 

is an orbital with an angular momentum quantum number (I) greater than necessary 

(specifically three p-type functions on hydrogen and five or six J-type functions on first 

row atoms such as carbon and nitrogen). Use of polarization functions is important for 

the accurate representation of molecular electron density distribution, that is, the orbital 

polarization. Additionally, diffuse functions (s or p type) indicated by a "+" symbol may 
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be employed to allow electron density at a significant distance from the nuclear center. 

These functions are most useful for anions, molecules with lone pairs or systems where 

long-range electronic interactions are of interest.205 

Ab initio methods solve the Schrodinger equation and solely depend on the 

fundamentals of quantum mechanics. In principle, they can be applied to any geometry, 

but for systems with more than two electrons it leads to the TV-body problem, and the 

computational cost scales as a factor of TV factorially. Therefore, these methods are only 

realistic for smaller molecular systems with less than 100 atoms.206 There are two major 

methods for dealing with chemical bonding: Molecular Orbital (MO) theory and Valence 

Bond (VB) theory. The current computational approaches in quantum chemistry are 

based almost entirely on MO theory. The simplest type of ab initio calculation is the 

Hartree-Fock method (HF), in which an electron is considered to move in the field of the 

electron cloud caused by other electrons. This reduces the many electron equation to a set 

of one-electron HF equations (Equation 8), 

Fi<t>i = et<t>t (8) 

where 0j is the wavefunction, st is the energy of the orbital, and Ft is the Fock operator. 

When an HF calculation is started, neither the Ft nor 0 j are known. An initial guess is 

made for the 0; , which in turn allows calculation of the Ft. Hartree utilized the notion 

that the wave function may be optimized by an iterative process in response to the 

influence of the total electric field potential. Since the solution of each HF equation 

affects the overall probability distribution, the equations are solved until convergence in 

electron density and energy is achieved. Therefore, the HF method is called a self-

consistent field (SCF) calculation. This method uses the variational principle; therefore, 

the calculated energy will be equal to or greater than the true energy of the system. 

HF calculations are perhaps the most common ab initio method used and it is 

important to understand their limitations. There are two approximations made in the 

method that lead to an error in the calculated energies. First, the Schrodinger equation 

does not take into account relativistic effects, and these play an important role as the 

number of core electrons increase. An assumption is made that the electrons have the 
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same mass regardless of how fast they travel. For heavy atoms, the core electrons begin 

traveling at speeds approaching the speed of light and their masses become non-

negligible. However, since most biological applications only involve first and second row 

elements, the relativistic effects are of minor significance. 

Despite its utility, the Hartree-Fock theory has the limitation that the 

interelectronic potential is an averaged field approximation; it calculates the electron-

electron repulsion of electron 'a ' with regards to the average field of electron 'b ' . As a 

consequence, it does not take into account the fact that in reality the motions of electrons 

'a ' and 'b ' are correlated and the probability of finding electrons 'a ' and 'b ' on the same 

side of the nuclei is less than that of finding them on opposite sides. When considering 

conformational energies, errors due to dynamical correlation effects become of 

considerable importance since they can vary strongly with local changes in angles and 

torsions. There exist a number of techniques that improve upon this lack and include the 

calculation of electron correlation, or explicit instantaneous interactions between 

electrons (start from HF wave function and then correct for the correlation). The most 

common routine is based on many-body perturbation theory. The ab initio calculations 

done in this study utilize second-order M0ller-Plesset perturbation (MP2) in which two 

electrons are excited from occupied orbitals to virtual ones.207 If relativistic contributions 

are not included, the correlation energy is the difference between the exact energy and the 

HF energy. In MP2 calculations, electron correlation is added as a perturbation to the 

calculated HF ground-state wave function. In MP theory, the Hamiltonian operator of a 

molecule is the sum of the HF Hamiltonian (zero-order operator) and a "perturbed" 

Hamiltonian that is modified by an arbitrary X parameter. Hence, the unknown 

eigenvalues and eigenfunctions of the perturbed system are related to the known 

eigenvalues and eigenfunctions of the unperturbed system. The perturbation H ^ is the 

difference between the true electronic Hamiltonian and the zero-order operator. 

H = H<°> + AH« (9) 

Since the perturbed and unperturbed systems are similar and the perturbed wave 

function and energy are continuous functions of the variable parameter A, it is assumed 
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that both can be expanded in a Taylor series to include first and second order corrections. 

The series are assumed to converge for X — 1. The sum of the unperturbed and first order 

energies is equal to the HF energy, and the second-order correction introduces electron 

correlation. The second-order term has the form: 

£(2) = ^unocc^oc^ jyrf (10) 

where (tu| |rs) is the two-electron integral over the particular MOs, esr and stu are the 

orbital energies of the occupied (r, s) and unoccupied (t, u) MOs, respectively. It has 

been shown that the main contribution (>90 %) to the correlation energy of an isolated 

system comes from the doubly excited states, third and higher order corrections are 

typically an order of magnitude smaller than those of the second order. This result 

suggests that the expansion can be truncated. The higher orders of Moller-Plesset theory 

perturbation are denoted as MPn, where n is the order of perturbation. The MP1 energy is 

the same as the Hartree-Fock energy; MP2 includes the effects of double excitation and is 

the most practical treatment for electron correlation. ' Third, fourth, and higher orders 

of perturbation are derived similarly to the second-order. Although the use of energy 

corrections of the third or fourth-order from MP3 and MP4 calculations may improve the 

quality of the calculations, they require more CPU time and become extremely 

computationally expensive. 

Geometry optimizations and frequency calculations 

The potential energy function, derived either from empirical methods or from 

solving the electronic Schrodinger equation, can be used to calculate relative energies, 

equilibrium geometries and vibrational frequencies. In principle, the function can be 

applied to any geometry in the ground or excited state on the potential energy surface. 

Geometry optimization is aimed at finding stationary points of the function where the 

first derivatives are zero.210 In the majority of cases, it is of interest to find a 

configuration that corresponds to a minimum energy or ground-state structure, i.e. all the 

second derivatives are positive. In some cases, the desired structures are first-order saddle 
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points (transition structures), i.e. the second derivative is negative in one direction and 

positive in all other directions. Most optimization methods determine the nearest 

stationary point, but a multi-dimensional function may contain a large number of 

stationary points of the same kind (local minima). The task of finding the global energy 

minimum in an energy landscape with many minima separated by high energy barriers is 

not trivial. 

Most approaches to the multiple minima problem that have been developed so far 

are based on gradient techniques.211 All commonly used methods assume that the first 

derivative of the function with respect to all variables, the gradient g, can be calculated 

analytically. The gradient vector points in the direction of the largest increase in the 

function, therefore, the function value can be lowered by following in the direction 

opposite the gradient (steepest descent). It is also possible to arrive at a multi-dimensional 

local energy minimum by performing function evaluations along the line that is conjugate 

to the previous search direction, i.e. choosing gradients conjugate to each other. In 

addition to the first derivative techniques, some methods also use the second derivative 

matrix, the Hessian H,. Analytical gradients are computed at each point, and the matrix is 

updated based on the gradients from previous points. At the energy minimum, the 

diagonal eigenvalues of the Hessian matrix are all positive, and the step direction is 

opposite to the gradient direction. However, if one of the Hessian eigenvalues is negative, 

the step direction is along the gradient component (function increases), and thus the 

optimization may end up at a stationary point with one negative Hessian eigenvalue, i.e. a 

first-order saddle point. For successful optimization, the quality of the initial Hessian is 

very important. Therefore, calculation of an exact Hessian (rather than an approximate 

Hessian) at the first point often gives better convergence. Usually, gradient optimizations 

allow the intra- and intermolecular degrees of freedom to relax simultaneously so that a 

fully optimized structure can be obtained. However, subsequent evaluation of the 

vibrational frequencies is needed to verify the nature of the optimized structure. 

Stationary points are identified as local minima by the absence of imaginary frequencies, 

whereas transition structures are recognized by the presence of one imaginary frequency. 

Harmonic vibrational frequencies are calculated from the analytical second 

derivatives of the energy with respect to the nuclear coordinates, and to be meaningful, 
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they must be evaluated at an equilibrium geometry. It is important to remember that both 

the optimized structure and the shape of the energy surface depend on the theoretical 

method and basis set used. Changes in frequencies are partly due to changes in the 

geometry, since the force constant decreases with increasing bond length. Moreover, ab 

initio calculations determine bond lengths at the theoretical bottom of the atomic 

interaction well (absolute zero) and do not include the effect of zero-point vibrational 

motion on bond length. As a result, the calculated bond lengths are generally shorter than 

experimentally determined values. One source of error in the vibrational frequencies is 

from the harmonic approximation used in their determination.212"214 In the harmonic 

potential, energy levels are evenly spaced. Due to anharmonicity in the potential, the 

vibrational levels are actually condensing, which leads to an overestimation of the 

vibrational frequencies. Calculated HF frequencies are usually higher by about 7-10% 

relative to the experimental values. This overestimation is also due to the incorrect 

dissociation and the bond lengths being too short. The inclusion of electron correlation 

normally lowers the force constants (i.e. frequencies decrease) since the correlation 

energy increases as a function of bond length. In order to partly compensate for such 

systematic errors, calculated frequencies are often scaled by factors derived from 

benchmarking calculations. 

PARAMETERIZATION STRATEGY 

The success of empirical molecular modeling is critically dependent on both the 

potential functions and the accuracy and continued refinement of the parameters used. To 

obtain reliable results, it is crucial to develop force field parameters that correctly 

describe molecular systems and adequately reproduce desired energetic and structural 

properties. Developing such parameters can be a formidable task for various reasons 

where the inadequacy of the experimental data and the contradictory nature of 

experimental observations (more than one value exists for some experimentally 

determined properties) are just two examples. Therefore, theoretical results from ab initio 

calculations are increasingly used in parameter development. The quality of a molecular 
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mechanics calculation performed with a particular force field is based on the methods and 

target data used to optimize the parameters. Biomolecules, such as nucleic acids and 

proteins, are made up of smaller organic subunits that are used as the initial targets for 

data collection in force field development. 

The mathematical terms in the CHARMM force field that describe the intra- and 

intermolecular forces in biomolecules are relatively simple; the intermolecular 

component consists of electrostatic and vdW terms and the intramolecular component 

includes terms for bond stretching, angle bending and torsional energies. The parameters 

needed to extend the force field for a particular class of compounds are generally 

optimized using different sources. The geometry parameters such as standard bond 

lengths and bond angles are often optimized to reproduce gas-phase geometries of simple 

model compounds obtained from quantum mechanical calculations, electron diffraction, 

or microwave experiments. The internal force constants used for stretch and bend 

deformations are usually optimized to fit vibrational spectra (calculated or experimental), 

which contain individual frequencies and their assignments. Torsional energy parameters 

are optimized to fit the rotational barriers about single bonds in simple molecules. The 

parameters used for nonbonded interactions are undoubtedly the most difficult part of the 

parameter optimization. The optimization of the electrostatic parameters is based on the 

reproduction of target data from QM calculations, in particular, the partial atomic charges 

should be able to reproduce the electrostatic field of the molecule. The vdW parameters 

are optimized by reproducing experimental heats of vaporization, molecular volumes and 

free energies of hydration.215 

Parameter optimization approaches differ for various force fields such as 

CHARMM, AMBER and OPLS. If the force field must be extended to treat a new class 

of compounds, the optimization method used must be consistent with the original method 

used to develop the force field. The procedure used to parameterize the force field in this 

work was developed by MacKerell et al. and is summarized in Figure 20.216 This multi-

step iterative optimization scheme allows for a balanced optimization between the inter-

and intramolecular parts of the force field. 

The parameterization of the CHARMM force field presented in this work is based 

on ab initio data for small molecules, as well as macromolecular simulation data, which 
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capture the condensed phase properties. The methods of ab initio quantum mechanics are 

not yet applicable to large biomolecules, therefore, in parameter optimization the 

macromolecule is divided into smaller model compounds, and target data is collected on 

the different geometries of these compounds. 

Model compound 
selection — > 

Target data 
preparation — > 

Topology construction 
and initial parameter 

assignment 

NT 

Non-bonded 
parameterization 

Partial atomic charges 
VdW parameters 

Bonded 
parameterization 

Bonds, angles, 
torsions 

Condensed phase 
simulations 

NT 

Nonbonded and 
bonded changes 

~~ < conv .crit 
Parameterization is complete 

Figure 20. Parameter optimization cycle 

A model compound should include all relevant functional groups required to 

properly describe the local environment (e.g., dihedrals) but be small enough to be 

studied computationally. In the present study, the initial parameters assigned to the model 

compound are extracted directly from the CHARMM parameter set. Empirical force field 

calculations are performed on the model compound and the computed properties are 

compared with the target data. Then, the parameters are manually adjusted to better 

reproduce the target data. The entire parameterization process involves iterative steps 

since changing certain parameters may affect previously optimized parameters and 

require additional iterations to bring the parameters closer to the target data. The 

optimization process is considered complete when all sets of parameters satisfy the 
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convergence criteria associated with the target data for the model compounds. Then, the 

resultant parameters can be used to perform simulations of macromolecules. 

When parameterizing the force field for a new set of compounds, it should be 

noted that the force field is "empirical". Even if the same form of the potential energy 

function is used, the quality and results of the force field can differ if different target data 

are utilized. A great amount of correlation exists between the different parameters of the 

force field, and therefore, different combinations of parameters can reproduce the same 

set of target data. Thus, the iterative optimization process is extremely important to the 

quality and results of the force field. Even though automatic parameterization procedures 

have been attempted, a significant amount of manual work is still required. 
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CHAPTER III 

FORCE FIELD PARAMETERS FOR CYCLOPENTYL PNA 

COMPUTATIONAL METHODS 

The cyclopentane structure is not implemented in the standard version of the 

CHARMM27 force field. Thus, it is essential to parameterize this structure in order to 

investigate all experimentally tested cpPNA oligomers. This goal will be achieved by 

adding the missing parameters to the CHARMM force field. Parameterization occurs in 

two stages. In the first phase, we optimized the non-bonded partial charge parameters, 

and in the second, we optimized the bond, angle and dihedral parameters. All parameters 

developed in this work were based on ab initio results from a training set of small 

molecules that represented the desired target systems. The data necessary for these 

parameterizations included bond lengths, bond angles, torsion angles, dipole moments, 

and vibrational frequencies. 

Quantum mechanical calculations were carried out with the Gaussian' 03217 

program and are described below. The investigation started with the construction of a 

model structure followed by location of all of its possible conformations. Optimized 

geometries for the model conformers and their complexes with water were obtained by 

HF-6-31G(d) and MP2/6-31G(d) calculations. All optimized geometries were identified 

as local minima by the absence of imaginary normal mode frequencies. To correct for the 

harmonic nature of the ab initio calculations, all QM frequencies where adjusted using a 

scaling factor of 0.94. In order to obtain the potential energy surfaces (PES) for 

selected backbone torsion angles, torsion energies were calculated by holding the selected 

torsion angle fixed at different increments (30° increments from -180° to 180°) at the 

MP2/6-31G(d) level of theory. For the cyclopentane ring, the torsion angle range was 

limited to -40° to 40°. 

Empirical force field calculations on model geometries were performed using the 

CHARMM program and the CHARMM27 force field. This newer force field was chosen 
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over CHARMM22, because it provides an improved description of the conformational 

properties of nucleic acids. Unfortunately, the topology and parameters for PNA residues 

were not directly available in the standard molecular dynamics package. To the best of 

our knowledge, only two sets of parameters for PNA have been published in the 

literature.59'222 We obtained one set from Dr. Lennart Nilsson (Karolinska Institutet, 

Sweden). The initial parameters for the ZPC residues in cpPNA were obtained from 

existing similar molecules, such as proline, already parameterized in the force field. The 

atom types were assigned based on CHARMM atom type definitions. This effort makes 

most of the initial bonded and non-bonded parameters directly available from the 

CHARMM parameter set. Any missing parameters were assigned by employing values 

for chemically similar bonds and angles. 

Full geometry minimizations of all model conformers were performed with the 

CHARMM force field in vacuum using the conjugate gradient minimization algorithm 

(CG). For the model compound calculations, no truncation of the van der Waals or 

Coulomb interactions was performed. Starting geometries for the minimizations were 

taken directly from the QM results and read into CHARMM. MM vibrational frequencies 

were calculated using the VIBRAN module in CHARMM. Constrained minimizations 

were employed for the calculation of the torsional profiles. A torsional constraint with a 

large (10,000 kcal/mol/rad) force constant was set for the dihedral angle of interest, 

whereas the other degrees of freedom were set to their minimum energy values. A fifteen 

degree increment and 2000 steps of CG minimization were used for all PES calculations. 

The parameterization procedure was begun by optimizing the partial charges. 

Partial atomic charges were based on the CHarges from the Electrostatic Potentials using 

a Grid method (CHelpG) algorithm. ' which fits atomic centered point charges to the 

molecular electrostatic potential. This method, which uses a grid of point charges to 

represent the electrostatic potential near the van der Waals surface, is widely used and 

regarded as a superior method for determining atomic charges. It is often used to obtain 

input charges for molecular mechanics calculations. However, a shortcoming inherent to 

this method is that the assignment of grid points does not reach buried (sp3-hybridized) 

atoms well enough,51 possibly causing inaccuracies in sterically crowded environments. 

Moreover, the CHelpG method does not sample points far enough away from the vdW 
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surface. Despite these limitations, electrostatically derived partial charges are 

significantly better in quality than those calculated by the default Mulliken method. A 

particular advantage of CHelpG compared to other electrostatic methods is its rotational 

invariance. Because a uniform grid of probe points is used to sample the electrostatic 

potential, the resulting charges are not dependent upon the molecule's orientation in the 

coordinate system. 

The HF/6-31G(d) CHelpG charges were subsequently modified to be consistent 

with the original force field and further adjustments were made to the charges for polar 

and nonpolar hydrogens in accordance with the original parameterization procedure: the 

charges of all nonpolar hydrogens were set to a value of 0.09 e and the excessive positive 

charge was added into the adjacent carbon atoms. As in the original CHARMM27 force 

field, transferring charges from the small model compounds to the PNA fragments was 

accomplished by adding the charge of the removed hydrogen atom to the heavy atom 

from which it was deleted. Finally the charges on the polar groups were adjusted to better 

reproduce scaled HF/6-31G(d) water interaction energies. 

The CHelpG charges used in the present work are different from the Mulliken 

charges that were used as a starting point for optimization of the original CHARMM27 

force field. In general, the CHelpG charges are larger in magnitude and are better able to 

preserve the molecular dipole moments. The Mulliken charges on the other hand are 

considerably basis-set dependent, particularly when diffuse functions are used, and 

generally smaller in magnitude. It should be emphasized that the Mulliken charges used 

as a starting point for parameter optimization of CHARMM27 were often significantly 

altered upon optimization to obtain appropriate energies for intermolecular interactions 

with TIP3P221 water molecules. The final charges in many cases were actually closer to 

the CHelpG charges. 

Once the partial charge optimization was complete, equilibrium geometry 

parameters and force constants were optimized iteratively until satisfactory fitting to the 

target data was achieved. After this, iterative adjustment of the charges was coupled with 

adjustment of the internal parameters, until overall convergence was reached. 
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MD simulations for testing of the c/»PNA parameters 

In general, a molecular dynamics simulation comprises four steps: minimization, 

heating, equilibration, and production. In the first phase, the initial configuration of the 

system (which may be obtained from crystallographic data or a graphically built model) 

is subjected to energy minimization to relieve any major stresses. Velocities are then 

assigned to each atom and increased slowly until the target temperature is achieved. 

Equilibration follows, in which velocities corresponding to the target temperature are 

reassigned constantly, and finally one enters the production stage of the simulation. 

The initial coordinates of the atoms were taken from the quantum chemical 

calculations. Next, each molecule to be studied was embedded into a box of 3108 TIP3P 

water molecules. A minimization that allowed the positions of the water molecules to 

vary, but kept the model structure fixed was performed. 

The investigated systems consisted of 36 heavy atoms plus 486 water. Molecular 

dynamics was performed for 20 ps while the temperature was raised from 60 K to 298 K. 

The SHAKEZZJ procedure was applied to all hydrogen atoms so that a time step of 2 fs 

was possible. A cutoff of 13 A was applied to the non-bonding Lennard-Jones 

interactions and the Particle Mesh Ewald method226 was used to account for long-range 

interactions. The simulations were performed at constant NVE. 

After heating, the equilibration (80 ps) and production steps were carried out. For 

a statistically meaningful representation, long simulation times on the order of 

nanoseconds are essential. Our simulations were carried out for 10 ns. We used VMD, 

version 1.8.6227 for visualization. 
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RESULTS AND DISCUSSION 

In order to increase the PNA binding affinity for complementary oligonucleotides, 

numerous PNA backbone modifications have been investigated during the last decade. To 

enhance the oligonucleotide binding affinity, fr-a«s-l,2-cyclopentane units were 

introduced into the PNA backbone. It was demonstrated that the sensitivity of these new 
1 SI 

PNA structures to binding DNA/RNA was improved by three orders of magnitude. 

Because of their biological importance and potential therapeutic uses, it is of interest to 

understand the conformational (particularly the dihedral angles) and dynamical properties 

of these novel cpPNAs at the molecular level. Molecular dynamics simulations are a 

powerful tool for elucidating the atomistic details of biomolecular systems; however, the 

empirical force field parameters used must be optimized so that they accurately treat the 

class of compounds that one is attempting to model. In this work we focused on 

developing new CHARMM force field parameters for cyclopentane, namely partial 

atomic charges, equilibrium bond lengths, angles and dihedrals. The determination of 

force field parameters for modeling a cyclic ring structure is rather complicated. 

Numerous aspects have to be taken into consideration. Development of an appropriate 

force field will enable us to run MD simulations on cpPNA oligonucleotides and to better 

understand the conformational dynamics of these systems. 

Optimization of force field parameters 

In CHARMM, every atom must be assigned an atom type. Each atom type is 

given a number that is used, along with its connectivity to other atoms, to assign it 

molecular parameters from the parameter table. Some elements have multiple possible 

atom types to account for a variety of chemical environments. For example, carbon is 

described by 27 different definitions ranging from alkane carbons to carbons in heme 

prosthetic groups. In our study, we needed to add four new atom definitions to 

CHARMM for the ring moieties and amide nitrogens in the backbone. The respective 

CHARMM atom types of the atoms in our model system, which are used in the tables 

and the text, are depicted in Figure 21. 
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Figure 21. CHARMM atom types assigned to the model compound. The parameters in 

Table 6 and 4 are given in terms of the atom types defined here 

Parameter development for empirical force fields such as CHARMM is 

accelerated by the modular character of these force fields. Following standardized 

protocols based on the original development of these force fields ensures the 

transferability of parameters for new chemical compounds. A detailed description of the 

parameterization procedures and its motivations were previously described. As in the 

original force field parameterization, a self-consistent step-wise optimization approach 

was taken that involved the iterative adjustments of internal and external parameters until 

convergence was obtained. 

To begin this study, a representative model compound was designed and 

subjected to ab initio geometry optimization at the HF/6-31G(d) and MP2/6-31G(d) 

levels of theory (Figure 22). In addition, various configurations of the model structure 

were generated in order to study the local conformational behavior of the trans-

cyclopentyl moiety. These ab intio structures were then fully optimized in CHARMM 

with the initial parameter set described above and vibrational frequencies were 

calculated. 

file:///--NHCP
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AE=0.89 kcal/mol AE=1.9kcal/mol AE=0.16kcal/mol 

AE=l.lkcal/mol AE=0.15 kcal/mol AE=0.0 kcal/mol AE=0.15 kcal/mol 

Figure 22. Chemical structure and optimized geometries of the model compound at the 

HF/6-31G(d) level of theory 

PARTIAL CHARGES 

The accurate representation of the partial charges involved in electrostatic 

interactions is an important element in any force field. The more accurate the charge 

model, the better the quality of the force field. It is necessary to obtain a partial charge set 

from a number of different conformations to avoid, as much as possible, any 

conformational dependency. To derive new atomic partial charges for the cpPNA 

molecule, seven different conformations of the model compound were obtained and 

optimized using the HF level of theory. CHelpG charges were then calculated for the 

atoms of the optimized structures. Since it was important to determine high quality 

charges, the CHelpG method was chosen.220 

Adjustments were made to create charges more consistent with the CHARMM 

force field parameters. For instance, in the CHARMM force field, all non-polar 

hydrogens are constrained to have a charge of 0.09 e, while polar hydroxyl hydrogens are 
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assigned a charge of 0.43 e. Thus, the hydrogens were given the appropriate CHARMM 

partial charges and the difference created with the CHelpG charges was added to the 

adjoining heavy atoms. Charges on equivalent atom types were averaged. 

Water-solute interactions are of major importance, and it is necessary to scale the 

charges of the solute to reproduce the quantum mechanically obtained interaction 

energies. For this purpose, four independent water molecules were placed within 

hydrogen bonding distance of the polar groups (Figure 23). HF/6-31G(d) geometry 

optimizations were performed on the initial water positions while fixing the position of 

the model molecule. The original CHARMM van der Waals parameters have been kept 

for all atoms. Thus, since the vdW parameters were not adjusted, it was not necessary to 

move the individual water molecules to various positions. Interaction energies between 

an individual water molecule and the system were calculated as the difference between 

the energy of the model-water complex and the sum of the individual monomers, water 

and the model compound. For neutral hydrogen bonded complexes, HF/6-31G(d) 

calculations generally give geometries and interaction energies in good accord with very 

high level ab initio calculations, owing to cancellations of errors from the basis-set 

extension and correlation energy. " In addition, HF/6-31G(d) interaction energies 

were used to adjust some of the partial charges already in CHARMM in order to maintain 

consistency among the partial charges of the force field. 

Usually, the best correspondence between MM and ab initio interaction energies 

is achieved if the former is scaled by a factor of 1.16. This adjustment corrects for the 

absence of polarization and attractive Lennard-Jones contributions in the HF calculations. 

Thus, the scaled interaction energies were employed when comparing the CHARMM 

results to the ab initio results. Hydrogen bond lengths are uniformly 0.2-0.3 A shorter 

from the force field based calculations than from the HF/6-31G(d) optimizations.232 

Without this contraction in the CHARMM bond length parameters, the computed liquid, 

density of water would be too low. 
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P Wat2 

Figure 23. Locations of the model-water interaction sites 

A comparison of the force field dimer interaction energies and the ab initio target 

data is presented in Table 4, while Figure 24 contains the optimized geometries of the 

lowest energy complex for each interaction site. To estimate how well the optimized 

CHARMM parameters reproduce the total interaction energy of the four waters, we 

compared the HF/6-31G (d) and the CHARMM values. The sum of the individual water-

model interaction energies shown in Table 5 is -31.19 kcal/mol for the optimized 

CHARMM calculations and -31.66 kcal/mol for the HF/6-31G(d) calculations, yielding a 

difference in overall interaction energies of 0.47 kcal/mol. Averaging over only one water 

position gives differences below 0.2 kcal/mol for all four water locations. 

The hydrogen bond distance between the model and the water molecules is given 

in Table 4. The average QM and MM values for (OH) distances are 1.88 A and 1.80 A, 

respectively. Interactions 1 and 3 are unsymmetrical with CO...H distances of 2.04 and 

1.87 A; the hydrogen bonding OH bond is in the plane of the ring, while the other water 

hydrogen is perpendicular to this plane. Interaction 4, where the oxygen of water acts as a 

hydrogen bond acceptor, has the N-C=0 plane coplanar with the plane of the water 

molecule (Figure 24). 
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Table 4. Model compound-water interaction energies and distances. The numbers 

indicate the water location for which data is being presented 

Energy (kcal/mol) Distance (A) 
1)02..H 

OH 
Confl 
Conf2 
Conf3 
Conf4 
Conf5 
Conf6 
Conf7 

Average 
2)02..H 

OH 
Confl 
Conf2 
Conf3 
Conf4 
Conf5 
Conf6 
Conf7 

Average 
3)02..H 

OH 
Confl 
Conf2 
Conf3 
Conf4 
Conf 5 
Conf6 
Conf 7 

Average 
4)NH..O 

HH 
Confl 
Conf 2 
Conf 3 
Conf 4 
Conf 5 
Conf 6 
Conf 7 

Average 

HF/6-
31G(d)a 

-10.2 
-10 
-7.8 
-9.4 
-7.8 
-7.8 
-7.7 

-12.2 
-5.5 
-6.6 
-6.6 
-7.7 
-7.9 
-7.2 

-9.3 
-8.6 
-8 

-9.2 
-8 

-8.3 
-9.5 

N/A 
N/A 
-6 

-6.6 
-6.2 
-8.3 
-6 

MM 
Initial 
-10.7 
-10.2 
-7.8 
-9.6 
-7.7 
-11 
-7.8 

-13.9 
-7.5 
-8.9 
-8 

-8.5 
-9 

-8.5 

-10.9 
-12.5 
-9.5 
-10.3 
-9.5 

-12.9 
-10.2 

N/A 
N/A 
-6.8 
-8 
-11 

-12.9 
-6.8 

Differ
ence 
-0.5 
-0.2 

0 
-0.2 
0.1 
-3.2 
-0.1 
-0.59 

-1.7 
-2 

-2.3 
-1.4 
-0.8 
-1.1 
-1.3 
-1.51 

-1.6 
-3.9 
-1.5 
-1.1 
-1.5 
-4.6 
-0.7 

-2.13 

N/A 
N/A 
-0.8 
-1.4 
-4.8 
-4.6 
-0.8 

-2.48 

MM 
Optimized 

-10.8 
-10.1 
-7.3 
-9.9 
-7.3 
-7.3 
-7.3 

-11.1 
-5.8 
-6.5 
-6.1 
-7.8 
-7.6 
-7.8 

-9.3 
-10.4 

-8 
-8.8 
-8 

-7.3 
-8.5 

N/A 
N/A 
-6.2 
-6.1 
-6.5 
-7.4 
-6.2 

Differ
ence 
-0.6 
-0.1 
0.5 
-0.5 
0.5 
0.5 
0.4 
0.1 

1.1 
-0.3 
0.1 
0.5 
-0.1 
0.3 
-0.6 
0.14 

0 
-1.8 

0 
0.4 
0 
1 
1 

0.09 

N/A 
N/A 
-0.2 
0.5 
-0.3 
0.9 
-0.2 
0.14 

HF/6-
31G(d) 

1.8 
2.03 
1.93 
1.83 
1.94 
1.79 
1.94 

1.72 
1.84 
1.82 
1.78 
2.01 
1.81 
2.04 

1.85 
1.75 
1.81 
1.87 
1.81 
1.75 
1.8 

N/A 
N/A 
1.95 
1.88 
1.93 
1.95 
1.95 

Optimi 
zed 
1.73 
1.76 
1.71 
1.7 

1.77 
1.69 
1.71 

1.75 
1.75 
1.82 
1.75 
1.79 
1.77 
1.82 

1.75 
1.69 
1.73 
1.75 
1.69 
1.73 
1.74 

N/A 
N/A 

2 
1.98 
1.96 
1.91 
1.9 

Differ
ence 
-0.07 
-0.27 
-0.22 
-0.13 
-0.17 
-0.1 

-0.23 
-0.17 

0.03 
-0.09 

0 
-0.03 
-0.22 
-0.04 
-0.22 
-0.08 

-0.1 
-0.06 
-0.08 
-0.12 
-0.12 
-0.02 
-0.06 
-0.08 

N/A 
N/A 
0.05 
0.01 
0.03 
-0.04 
-0.05 
0.06 

HF target energies were scaled by 1.16 and distances were shortened by 0.20 A. 
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Table 5. Average interaction energies (kcal/mol) between water and the model 

compound 

Position 
Watl 

Wat 2 
Wat 3 

Wat 4 

CHARMM 
Optimized 

-8.57 

-7.53 
-8.61 
-6.48 

HF/6-31G(d) 

-8.67 

-7.67 

-8.7 
-6.62 

Difference 

0.1 
0.14 
0.09 

0.14 

Watl Wat2 

Wat3 

Figure 24. The lowest energy QM structures for the model-water complexes. The dashed 

lines represent the hydrogen bonding distances 
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Despite an excellent agreement between the ab initio values and CHARMM values for 

the interaction energies and target distances, the partial charges for the model compound 

were modified to achieve an even better agreement between the two sets of data. The 

convergence criterion for charges was a <5% difference between the CHARMM and QM 

energies. The newly modified CHARMM parameters exhibited distance and energy 

deviations of 0.038 A and 0.6 kcal/mol, respectively. 

The final partial atomic charge parameters are shown in Table 6. The adjacent 

electronegative N-H and amide groups induce a large positive charge in the CP3 atom of 

the ring. On the other hand, the electron donation of the adjacent C=0 group creates a 

negative charge on the CT2 atom of the methylene group. It should be noted that 

constraints were used on the charge fitting to create groups within the model compound 

that had a total charge of zero. 

Table 6. Atom types and assigned partial charges for the trans-cpPNA model 

Name 
C 

or 
C2' 

H2VH2" 
N2' 
C5' 
H5' 
C6' 
H6' 
N 

HI' 
C3' 
03 ' 
C4' 

H37H3" 
CT 

H77H7" 
C8' 

H87H8" 
C9' 

H9VH9" 

Type 
C 
O 

CT2 
HB 

NCP 
CP3 
HB 
CP3 
HB 

NHCP 
H 
C 
0 

CT3 
HB 
CP2 
HB 
CP2 
HB 
CP2 
HB 

Initial 
0.95 
-0.7 
-0.3 
0.09 
-0.52 
0.3 

0.09 
0.64 
0.09 
-1.04 
0.31 
0.82 
-0.65 
-0.35 
0.09 
-0.18 
0.09 
-0.18 
0.09 
-0.18 
0.09 

Optimized 
0.95 
-0.64 
-0.2 
0.09 
-0.45 
0.32 
0.09 
0.49 
0.09 
-1.01 
0.4 

0.58 
-0.47 
-0.38 
0.09 
-0.26 
0.09 
-0.24 
0.09 
-0.08 
0.09 
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GEOMETRIC FACTORS 

Optimization of the bond length and valence angle parameters was based on the 

geometric target data from the QM calculations. The conformations of the model 

compound were optimized at the MP2/6-31G(d) level of theory in order to obtain more 

accurate geometries. The new parameter set was initially built from existing parameters, 

since these values have been tested over a wide range of molecules. Missing bond 

stretching and angle bending parameters were extrapolated from related types in the 

CHARMM library. Using the CHARMM force field, each model compound 

conformation was energy minimized with steepest descent followed by Newton-Raphson. 

Then, the CHARMM parameters were modified to yield a good agreement between the 

quantum mechanical results and CHARMM. In cases where the bond and angle 

deviations between the original CHARMM force field and the QM structure were larger 

than 0.05 A or 60°, the minimized bond lengths and angles obtained from the HF 

optimized structures were used as the equilibrium bond lengths and equilibrium angles 

for the new CHARMM parameters. When a choice had to be made between matching a 

skeletal bond angle formed by heavy atoms versus another bond angle, preference was 

given to the skeletal bond angle. 

Table 7 compares the geometries of the model compound determined by 

CHARMM and QM. The reported values are averages over the different conformations. 

The MM geometries for the model are in excellent agreement with the MP2 results. The 

average error between CHARMM and ab initio is 0.02 A for the bond distances and 

0.28° for the angles. The MM C-N and ring C-C bond lengths and the N-C-C and ring C-

C-C bond angles are within 0.001 A and 0.15° of the ab initio values, respectively. 

Overall, the RMS deviations between the CHARMM and MP2 geometries are very good 

with values of 0.0018 A and 0.2° for the 12 bond distances and 27 angles, respectively. 

The most significant deviations in bond lengths are observed for the NHCP-CP3, 

CP3-CP2 and NHCP-C bonds. The QM bond length of the NCP-CP3 bond in 

conformation 2 is about 0.02 A longer than the average calculated length in all other 

conformations. This elongation, which may be due to steric effects, is not entirely 

reproduced by the molecular mechanics calculations. In CHARMM, the deviation of this 
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Table 7. Average bond length and angle parameters for the model compound. The bonds 

and angles are listed using atom types from Figure 21 

Bonds(A) 
NHCP -CP3 

CP3-CP2 
CP2-CP2 
CP3-CP3 
CP3-NCP 
NHCP-C 

O-C 
NCP-C 

NCP-CT2 
NHCP-H 
CP3-HB 
CP2-HB 

Ave. Difference 
Std. Deviation 

Angles (°) 
NHCP-CP3-CP2 
NHCP-CP3-CP3 
NCP-CP3-CP3 
CP2-CP2-CP2 
NCP-CP3-CP2 
C-NHCP-CP3 
CP3-NCP-C 

CP3-NCP-CT2 
CP3-CP3-CP2 
CP2-CP2-CP3 
H-NHCP-CP3 

NHCP-CP3-HB 
HB-CP3-CP3 
HB-CP3-CP2 
HB-CP2-CP3 
HB-CP2-CP2 
HB-CP2-HB 
H-NHCP-C 
O-C-NHCP 

NHCP-C-CT3 
C-NCP-CT2 

NCP-CT2-HB 
O-C-NCP 

NCP-C-CT3 
NCP-CP3-HB 
HB-CT3-HB 
HC-NH2-C 

Ave. Difference 
Std. Deviation 

QM 
1.45 
1.54 
1.54 
1.54 
1.46 
1.37 
1.22 
1.38 
1.45 

1 
1.09 
1.09 

114.6 
112.9 
114.8 
105.6 
115.9 
121.2 
120.2 
118.2 
104 
104 

117.5 
107 

108.3 
109.2 
110.6 
111.5 
108.4 
118.1 
122.9 
114.2 
112.4 
109.6 
121.8 
117 

105.5 
109.2 
119.5 

CHARMM 
Initial 

1.43 
1.53 
1.53 
1.5 

1.48 
1.34 
1.23 
1.37 
1.49 

1 
1.08 
1.08 

0.0267 
0.036 

110.5 
114 
108 
114 
108 
120 
117 
120 
111 
111 
117 
108 
111 
111 
110 
110 
115 
123 
123 
117 
110 
108 
123 
108 
108 
115 
111 

2.876 
3.729 

CHARMM 
Optimized 

1.437 
1.526 
1.538 
1.487 
1.408 
1.402 
1.22 
1.36 

1.371 
1 

1.09 
1.09 

0.0019 
0.0018 

120 
109 

106.8 
113.1 
113.2 
123 

125.5 
124.4 
105.1 
105.9 
114.5 
102.8 
112 

113.1 
110.1 
110.1 
108.9 
120.2 
127.5 
116.4 

97 
108.3 
122.8 
105.4 
104 

108.5 
125.6 

0.2785 
0.1972 

Force Constant 
Initial 

320 
222.5 
222.5 
222.5 
220 
370 
620 
463 
261 
440 
330 
330 

70 
70 

67.7 
58.35 
67.7 
50 
50 
35 

53.35 
53.35 

35 
48 
35 
35 
35 
35 
36 
34 
80 
80 
50 

51.5 
80 
50 

51.5 
36 
50 

(kcal mol"' A"2) 
Optimized 

320 
222.5 
222.5 
410 
320 
320 
620 
463 
320 
440 
330 
330 

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
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bond length from the average of the other NCP-CP3 bonds is only 0.014 A. For the 

NHCP-H bond, the agreement between ab initio and CHARMM calculated bond lengths 

is quite good, with an absolute average difference of 0.004 A and an RMSD of 0.0078 A. 

The only conformation which exhibits a moderate error is number 7, where the N-H bond 

lengths are 0.008 A too long in CHARMM. However, because the r0 values are assigned 

to provide reasonable results over all conformations, it is occasionally necessary to accept 

error in one member of a series of conformations to maintain agreement with the other 

conformers. 

The key geometric features for this parameterization, the CP3-CP3, CP2-CP2 and 

CP3-CP2 bond lengths, are well reproduced by molecular mechanics; deviations are 

primarily observed in conformations 1 and 7. If we look directly at the RMSD for just the 

CP2-CP2 bond, the result is quite small (0.064 A), for a bond length that varies by 0.14 

A. Overall, CHARMM gives slightly longer carbon-carbon single bonds (-0.02 A) than 

MP2 does. 

The absolute average bond length deviation for C-H bonds over all conformations 

is 0.001 A. This value includes hydrogens which are on carbons adjacent to nitrogens. 

Therefore, as might be expected, the most deviant C-H bond lengths are those far from 

the amide. In particular, the bonds on the terminal methyl groups show the largest 

deviations of 0.005 A. 

The most important bond angles in the new parameter set involve the new atom 

types: CP2-CP3-CP3, CP2-CP2-CP3, CP2-CP2-CP2, NCP-CP3-CP2 and NHCP-CP3-

CP2. Using the final optimized parameters, MM is in close agreement with the ab initio 

results for these angles with an average deviation of 0.35°. It is noteworthy that the 

angles vary significantly over the conformations of the model molecule. 

Other important skeletal bond angles are CP3-NCP-CT2, NCP-CP3-CP3 and 

NHCP-CP3-CP3. The absolute average angle deviations were 1.33° for CP3-NCP-CT2, 

1.93° for CP3-NCP-CT2 and 0.77° for NHCP-CP3-CP3. Conformation 6 had a deviation 

of 4.09° from the QM result for the CP3-NCP-CT2 angle. However, the error for this 

deviation was less than 3.5%, which is quite adequate for a parameterization scheme. 

Based on the RMSD analysis, in general, most deviations from the ab inito results were 

around 1°. As with the methyl C-H bond length, the CT2-C-0 bond angle was already 
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parameterized in CHARMM and we did not make any adjustments to the established 

parameters. These results for bond angles should be more than adequate for producing 

reasonable structures for larger cpPNA molecules. 

The vibrational frequencies for normal modes produced by CHARMM and ab 

initio values were compared and analyzed for accuracy. For the QM results, the 

qualitative assignment of the modes was done visually using the GaussView program. 

The different spectral regions correspond to different types of vibrations. Vibrational 

frequencies and their assignments for the model molecule in its lowest-energy 

conformation are listed in Table 8. These modes are distributed in a wide spectral range-

from 30 to 3700 cm"1. The region below 700 cm"1 involves torsions and angular motions 

of the heavy atoms (e.g. C-C-C, C-C-O). Vibrational modes in this region are highly 

coupled and a large number of internal coordinates have small contributions to the 

potential energy distribution. The vibrational modes associated with C-C torsions are 

located between 70 and200 cm'1, whereas the modes associated with C-NH torsions are 

higher than 200 cm"1. The region between 800 and 1200 cm"1 is characteristic of the 

heavy atom stretching modes. An exception is found for 1057 cm"1 and 1093 cm"1, which 

correspond to the N-C-H bending modes. The region between 1200 and 1500 cm"1 is 

characteristic of angular modes involving hydrogen atoms (C-C-H, H-C-H). The high 

frequency region (>2500 cm"1) is characterized by stretching modes. CH stretching 

vibrations were found between 2900 and 3058 cm"1, with the CT2-HB vibrational 

frequency lower than the CT3-HB frequency, which is lower than the CP2-HB frequency. 

To derive the force constants for the model molecule, 19 of the most prominent 

normal modes were chosen for the fitting procedure. The ab initio vibrational frequencies 

were scaled by 0.94 to account for the typical computational overestimation of frequency 

values/10 The accuracy of the results was assessed by performing a root-mean-square 

deviation (RMSD) statistical analysis on the differences between the MM and QM 

values. Then, an iterative fitting procedure was applied, where the parameters (force 

constants and distances) were varied until the difference between the vibrational 

frequencies calculated using the CHARMM force field and QM was minimal. For 

example, with a force constant of 320 kcal mol"1 A"2 for the CP3-NCP bond, the QM 

value of 1.46 A could be reproduced within 0.01 A by CHARMM. The equilibrium 
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values for CP3-NHCP and C-NCP were changed from 1.43 to 1.437 A and from 1.37 to 

1.36 A, respectively, but the CHARMM force constants were left unchanged. 

In the fitting procedure, the following requirements for the target force constants 

were considered: correspondence between the CHARMM and ab initio results, including 

the similarity of the structures, the similarity of the frequencies, the resemblance of the 

potential energy curves, and consistency with the other CHARMM force constants so that 

interactions with other parts of the system defined by original CHARMM parameters are 

appropriate. 

Table 8. Vibrational frequency assignments for the model molecule 

Assignment 

Asym. N—H str 
Sym. N—H str 
Sym. N—H str 

Asym. C—H str (Me) 
Asym. C—H str (ring) 
Asym. C—H str (CH2) 

Sym. C—H str (Me) 
Sym. C—H str (ring) 

C=0 str + H—N—C bend 
C=0 str + H—N—C bend 

H—N—H bend 
Sym. C—H str (ring) + C—N—H bend 

H—C—H bend (Me) 
H—C—H bend (CH2) 

Asym. N—C str 
N—C—H+C—N—C bend 
Asym. C—C stretch (ring) 

N—C—H bend 
Sym. N—C str 
Std. Deviation 

RMSD (all) 
Corr. Coefficient 

MP2°, cm"1 

3511.2 
3416.8 
3362.9 
3058.6 
3018.6 
2960.5 
2935.1 
2905.8 
1711.2 
1678.7 
1563.7 
1481.6 
1455.9 
1441.3 
1418.1 
1093.4 
1079.5 
1057.1 
847.1 

CHARMM 
Optimized, cm"1 

3472.5 
3380.5 
3328.8 
3020.4 
2987.2 
2923 

2901.4 
2872.1 
1747.2 
1704.8 
1602.3 
1509.7 
1466.4 
1450.8 
1439.6 
1068.6 
1051.5 
1042.6 
809.2 

Diff. 

-38.7 
-36.3 
-34.1 
-38.2 
-31.4 
-37.5 
-33.7 
-33.7 

36 
26.1 
38.6 
28.1 
10.5 
9.5 
21.5 
-24.8 
-28 

-14.5 
-37.9 
29.4 
39.04 
0.9982 

"Weighted by the factor of 0.9434 

The plot of VQM versus the optimized VMM for the model compound is shown in Figure 

25. The closer the points are to the diagonal, the better the fit. There were modes that 
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could not be matched properly by only adjusting bond and angle terms. The MM 

frequencies of those modes were -100 cm"1 higher than the corresponding QM vibration. 

There are several types of bending modes: twist, wag, umbrella and rocking 

modes as well as normal A-B-C bends. To further complicate matters, some bending 

modes are heavily coupled with other bending, stretching and torsional modes. For 

example, in Table 8, the frequency at 1093 cm'1 has at least two bending modes coupled 

together. As a reminder, the CHARMM bending energy does not account for any 

vibrational coupling as each angle is treated separately. Because only two adjustable 

parameters are used in CHARMM for each bending mode, the differences between the 

QM and MM results have a wide range of values. However, these deviations when taken 

as a whole are quite modest considering the number of internal coordinates involved in 

each QM vibration. 

CD 
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£ 2000 

8" 1500 

2 
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1000 2000 3000 
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4000 

Figure 25. Vibrational frequencies of the model molecule. The plotted line shows the 

ideal fit between QM and MM data. 

The average difference (VQM-VMM) for the 15 vibrational frequencies located 

between 1200 and 1400 cm"1 is about 17 cm"1. The standard deviation is about 9.6 cm"1 



67 

for the 58 frequencies between 800 and 3000 cm"1. The comparison of the results shows 

that the NHCP-H, CP3-NCP and CP2-CP2 stretching modes match quite well, with 

differences of 34, 38 and 28 cm-1, respectively. The QM vibrational frequency of the C-N 

stretch is identified to be the peak at 847 cm"1, while CHARMM had a value of 809 cm"1. 

The CT2-NCP and CT2-HB stretching modes have differences in frequencies of 21.5 and 

37.5 cm"1. The relatively small deviations observed for the vibrational frequencies are 

sufficient to validate the accuracy of our parameterization. 

The assignment of the frequencies between QM and MM was difficult due to 

vibrational mixing, different theoretical treatments, and slightly different final 

geometries. As a consequence, the resulting QM assignments for a few stretching modes 

are not in perfect agreement with CHARMM. However, the final RJVISD and correlation 

coefficient between CHARMM and QM are 39 cm"1 and 0.9982, respectively. Therefore, 

the developed force field gives a good performance when calculating the equilibrium 

geometry and vibrational properties of the molecule. 

Dipole moments 

To mimic the effect of electronic polarizability, which is not explicitly taken into 

account in fixed-charge additive force fields, atomic charges are overestimated purposely 

(15-30 %), which leads to an enhanced molecular dipole moment. In molecular 

mechanics, the dipole moments are calculated by summing any bond moment vectors 

present in the molecule. In contrast, the ab initio derived dipole moment is a one-electron 

operator property with both nuclear and electronic terms. In neutral molecules, where 

the number of protons and electrons is equal, \JL does not depend upon the position of the 

molecule within the coordinate system. 

The dipole moments from ab initio and molecular mechanics calculations are 

shown in Table 9. For conformation 3, the difference in the dipole moments is unusually 

large. The observed difference may be due to the limitation of not including electron 

density shifts in molecular mechanics calculations. Comparing only the deviation in 

magnitudes, close agreement to the QM calculated molecular dipoles was obtained with 

an average error of 18.1%. The average absolute difference between ab initio and 
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CHARMM dipole moments is 0.98 D, with the average QM gas-phase dipole moment 

being 5.42 D and the MM value 6.4 D. 

Table 9. Dipole moments for the seven conformers of the model 

Molecule 
Confl 
Conf2 
Confi 
Conf4 
Conf5 
Conf6 
Conf7 
Ave. 

MP2a 

5.27 
7.06 
4.26 
5.08 
5.36 
5.09 
5.87 

CHARMM" 
5.94 
7.27 
6.64 
6.04 
6.34 
6.00 
6.63 

Deviation 
0.67 
0.21 
2.38 
0.96 
0.98 
0.91 
0.76 
0.98 

All values are in Debye 

TORSIONAL PROFILES 

In addition to bonds and angles, the torsional terms were also parameterized. The 

torsion parameters, in conjunction with the atomic charges and vdW parameters are the 

primary determinants of the relative conformational energies of the molecule. The most 

flexible areas of the polypeptide are along the backbone where the heterocyclic bases are 

connected to the amide. The polypeptide will have to rotate around these bonds in order 

to optimize interactions with DNA/RNA. The bases themselves are aromatic, so the rings 

will remain planar. 

The CHARMM force field uses the rotational barrier height, the dihedral phase 

angle and the periodicity to define the torsional potential energy function. Therefore, each 

bonded series of atoms A-B-C-D must have at least one set of these dihedral parameters 

in the force field. The dihedral parameters are derived by the "fitting philosophy", i.e., 

the quantum potential was compared to the molecular mechanics potential and the 

parameters were adjusted until the MM potential reproduced the quantum potential. 

The QM potential was generated by rotating the side-chain dihedral angles by 30° 

increments and optimizing the other degrees of freedom at the MP2/6-31G(d) level of 
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theory. This scheme provides an energy profile as a function of the dihedral angle and is 

recommended by the developers of CHARMM for the derivation of the torsional 

parameters. The lowest energy conformer is set to zero and the energies of the other 

conformers are given relative to it, since we are interested only in the conformational 

component of the total energy. The CHARMM potential was generated by using a 15° 

increment to generate structures and minimizing each of these conformers in CHARMM 

with the selected torsion angle held fixed. Here, the dihedral term was deliberately set to 

zero, and we obtained the second curve. If the CHARMM potential did not match the 

MP2 results, the multiplicity, phase shift, or force constant were adjusted as necessary. 

O 

Figure 26. Backbone dihedral angles used for parameterization 

Many different torsional profiles were calculated to evaluate the model structure. 

Initially, six backbone/side-chain dihedrals were selected for parameterization: the 

rotation of the methyl carbonyl group and the rotation of the two amide groups on the 

ring (Figure 26). When a specific dihedral angle is altered, many MM energy components 

may also change (the vdW energy, other torsional energies, and the stretching and 
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bending energy). All of these terms contribute to the total energy and the overall shape of 

the torsional energy profile. In initial calculations only the dihedral under examination 

was kept constant, while the rest of the molecule was allowed to relax. This method, 

however, produces very complex energy profiles as variation of the dihedrals examined 

induces large distortions in the rest of the molecule. Therefore, to accurately model a 

specific dihedral potential, it was necessary to constrain the remaining five dihedral 

angles to their values in the global energy minimum structure. 

The initial CHARMM parameters for the dihedrals needing parameterization did 

not agree with the MP2/6-31G(d) potential energy surfaces (Figure 7). For example, the 

C-NHCP (a) dihedral has a minimum at 150° instead of 190°, and the energy barrier is 

~3.5 kcal/mol too high. The large barrier at 120° illustrates that rotation about the C-N 

bond is restricted. For the first amide group (P), the CHARMM curve does not have the 

correct phase; the MP2 plot has a barrier at 150°, whereas CHARMM has a minimum at 

that location. The second amide rotation (y) does not give the lowest energy at 240° and 

has energy barriers that are too high (-3.6 kcal/mol). The (cj)) torsion has energy barriers 

that are ~4.1 kcal/mol too high, but the minimum at 180° does match the MP2 curve. The 

CHARMM results are in reasonable agreement with the MP2 results for the 8 dihedral; 

however, for the CHARMM curve, the location of the maximum is 30° out of phase. 

Rotation around C-CT2 (s) should have a maximum at 270° and 60°; instead there is one 

maximum at 60°. 

To accomplish the necessary parameterization of the torsions, an automated 

dihedral matching method234 or Monte Carlo simulated annealing (MCSA) protocol was 

employed, which optimizes the MM parameter set until the best fit with the QM 

reference set is obtained. In this procedure, the quantum mechanical energies derived 

from the rotational profile analysis are used as target data which provide the dihedral 

parameters by minimizing the squared difference between the MM and QM energies. 

Initially, all 12 KQ parameters were set to zero and then randomly sampled and selected 

based on the Metropolis criteria235 where the target function was the difference between 

the empirical and MP2/6-31G* energy surfaces. Dihedral multiplicities («) of 1, 2, and 3 

were included for each dihedral, and the corresponding K values, constrained in the range 
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of -3 to 3 kcal/mol, were optimized to minimize the root-mean-square error (RMSE) 

between the empirical and QM energetics. The merit function is given by 

£ t ( g ' / ' + C ) , (11) 
Li 1 

where £,QM and E™M are the QM and MM energies of conformation i and c is a constant 

that aligns the QM and MM data to minimize the RMSE (Equation 12). Although 

allowing the phase angles to vary during MCSA can yield a better fit, phase angle values 

were constrained to be either 0° or 180° in order to preserve the symmetry of the cosine 

function about 0°. Failure to do so will lead to different energies for a molecule and its 

mirror image, which is nonphysical. 

dRMSl=Q 

dc v ' 

In the MCSA calculation, the Boltzmann distribution temperature factor (RT) was 

lowered at the end of each MC cycle, and an exponential cooling schedule was used to 

decrease the value of RT 

r7n = r0exP(--^) (13) 

where To is the starting temperature, m is the current Monte Carlo step number, mmax is 

the maximum number of Monte Carlo steps, and T„, is the temperature at step m. E™M 

and c are recomputed and these values are then used to calculate RMSE,„ (RMSE at Monte 

Carlo step m). Acceptance or rejection of parameters is in accordance with the Metropolis 

criteria with AE = RMSEm - RMSEm.j. Refinement calculations consisted of multiple (5-

10) independent 5000-step MCSA runs with random initial values for the dihedral force 

constants and exponential cooling. Convergence was achieved when the values of the 

RMSE in all successive iterations of MCSA runs changed by less than 0.1%. Clearly, 

agreement between the empirical model and the QM data was improved via enhanced 
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sampling of the parameters via the MCSA approach. However, in some instances, 

empirical adjustment of these automatically generated parameters was undertaken to 

further refine the CHARMM potential energies. 

The final CHARMM parameters give correct rotation barriers and have the right 

multiplicity. Although the agreement between the QM and MM data is not perfect, the 

rather complex shapes are reproduced satisfactorily. During parameterization, special 

care was taken to reproduce as accurately as possible the low energy (<3 kcal/mol) 

regions. When these new parameters are fully incorporated and used to study large 

macromolecules, it is important to make sure we have the lowest energy conformer, 

which is paramount in studying fluctuations that could affect binding ability. 

Consequently, this feature is far more critical in parameterization than the barrier heights. 

Thus, the most important criteria for determining an acceptable torsional fit is whether or 

not the MM dihedral angle of the minimum energy structure matches that of the QM 

profile. 

For the dihedrals a and y, the reproduction of the high-energy regions was 

achieved at the expense of reproducing perfectly the low-energy regions (Figure 27). The 

CT3-C-NHCP-CP3 torsion curve (a) is a symmetrical curve with an energy maximum at 

300° and an energy minimum at 180°. CHARMM is able to fit this energy surface with a 

RMSD of 0.86 kcal/mol over the entire curve. In the case of y, the rotational barriers are 

overestimated. This discrepancy was deemed necessary since smaller dihedral constants 

which lower the barriers also shift the position of the MM minimum. The C-NHCP-CP3-

CP2 (P) torsion curve has a maximum at 120° and two minima at 60° and 270°. MM 

tends to overestimate the energy of this rotation by about 2 kcal/mol, but has the 

maximum and minima in approximately the correct locations. Concerning the CP3-NCP-

C-CT3 (())) torsion, the minimum energy wells for both ab initio and CHARMM occur at 

0° and 180°, and therefore are in very solid agreement. The barriers to rotation around the 

NCP-C bond are somewhat smaller compared to the ab initio ones: 18.6 and 23.5 

kcal/mol versus 19.1 and 28.2 kcal/mol, respectively. The 5 torsion shows a maximum at 

180° and a minimum at 270°. CHARMM shows correct phase and multiplicity but the 

barrier at 180° is 1.3 kcal/mol higher than with MP2. 
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Figure 27. Torsional energy plots for the model compound. Blue diamond (•), MP2/6-

31G(d); green short dash (-), initial CHARMM; red long dash (-), final CHARMM 
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Ab initio calculations of the model molecule reveal two energy minima for the 

torsion angle E: 0° and 150°, with the first minimum lower by 0.2 kcal/mol. In addition, 

the peaks have different widths, and the energy barriers separating the stationary states 

are 6.7 and 5.3 kcal/mol. Out of all six torsion curves, the torsional profile of the CP3-

NCP-C-CT3 dihedral (<|>) has the largest RMSD. CHARMM calculated the -90° energy to 

be lower than the QM energy by over 4.5 kcal/mol and this difference causes the large 

error. However, better agreement could not be obtained since alteration of this dihedral 

reduced the agreements found for the other dihedrals. 

Knowledge of the shape and the height of the energy barriers for the ring torsions 

of cyclopentane play a significant role in determining the configuration of the cpPNA 

macromolecule, and therefore, special care was taken to obtain excellent parameters for 

the equivalent dihedrals of the model system: co2 and 5: CP2-CP2-CP3-CP3 and co3 and 

4: CP3-CP2-CP2-CP2, although the parameters for all the dihedrals of the cyclopentane 

ring were optimized. Increments of 10° over the range from -40° to 40° were used to 

generate the conformational energy profiles of the ring dihedrals for both QM and MM. 

All of the ring torsions were incremented simultaneously and held fixed at each value, 

while the remaining geometric variables were optimized. In the CHARMM calculations, 

the force constants of the ring dihedrals were set to zero, so that they did not contribute to 

the energy. Only the torsional energy parameters for dihedral angles involving heavy 

atoms were modified in order to have the smallest possible impact on the original 

CHARMM force field. The lowest energy structures from CHARMM were compared to 

the ab initio calculations. The conformational energies versus dihedral angle are plotted 

in Figure 28. The data shows that even though the torsional parameters that are associated 

with the heavy atom ring dihedral angles were set to zero, the energy barriers are still 

greatly overestimated. The energy differences between the CHARMM potential energy 

curves and the corresponding ab initio energy curves was minimized via the MCSA 

procedure previously mentioned (Equation 11). 
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Figure 28. Structure (top) and five torsional energy plots for the model compound. Blue 

diamond (•),MP2/6-31G(d); green short dash (-), initial CHARMM; red long dash (-), 

final CHARMM 

New CHARMM ring torsional energies were calculated using the new set of 

parameters obtained from the MCSA optimization and compared to the MP2 energy 
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curves. It can be seen from Figure 28 that a significant improvement was made, 

particularly for the height of the barrier. However, the shapes of the energy curves were 

not always reproduced very well since the CHARMM torsional expression does not 

provide enough flexibility to account for the shape of the ab initio profiles. In spite of 

these differences, the maximum deviation of the fitted MM profile from the QM one does 

not exceed 0.5 kcal/mol and thus, the parameters should not lead to significantly different 

dynamical behaviors. The torsional parameters are summarized in Table 10. 

Table 10. Torsional parameter set for the cpPNA model molecule 

CHARMM CHARMM 
Initial Optimized 

Dihedral 

CT3 - C - NHCP - CP3 
CP3 - CP3 - NHCP - C 
CP3 - NCP - CT2 - C 
NCP - CT2 - C - NH2 
C - NCP - CP3 - CP2 

NHCP - CP3 - CP3 - NCP 
CP3 - CP2 - CP2 - CP2 
CP3 - CP3 - CP2 - CP2 
CP2 - CP3 - CP3 - CP2 

K^ 

1.6 
1.6 
0 
0 

0.14 
0.2 
0.16 
0.14 
0.2 

n 

1 
1 
6 
6 
3 
3 
3 
3 
3 

6(deg) 

0 
0 

180 
180 
0 
0 
0 
0 
0 

K<(, 

2.5 
1.8 

0.07 
1.83 
2.56 
1.63 
2.74 
1.4 
2.5 

n 

2 
2 
2 
1 
3 
3 
2 
2 
2 

5(deg) 
180 
180 
180 
180 
180 
0 

180 
180 
180 

Comparison of the three surfaces (col, co3 and co4) shows that they are all similar, 

with minor differences, as expected. All of the potential energy curves have a long 

narrow minimum energy region in the vicinity of 10-20°, since the five-membered ring 

places restraints upon the torsions. For example, the CP3-CP2-CP2-CP2 (co3 and 4) 

torsion curve has an energy maximum at -40° and an energy minimum at 10°. CHARMM 

does a good job at reproducing the entire curves of the co3 and co4 torsions, with RMSDs 

of 0.29 kcal/mol for both. For co4, there is some disagreement in the energies at the 

maximum, with a deviation of 0.8 kcal/mol for that point. For the CP2-CP2-CP3-CP3 

(co2 and 5) torsion, CHARMM matches the QM curve with a RMSD of 0.3 kcal/mol. The 

largest errors are at the -40° and 0° points with deviations of -0.8 kcal/mol for both. 

However, the error falls within the accepted error range for MP2 calculations. The final 
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curve, CP2-CP3-CP3-CP2 (col), has an energy maximum at -40° and a minimum at 20°. 

The RMSD between CHARMM and MP2 is 0.47 kcal/mol. Here again, the largest error 

associated with the CHARMM curve is 1.8 kcal/mol at -40°. 

PSEUDOROTATION AND STRUCTURAL NOMENCLATURE 

To assess the validity of the ring torsional parameters, a comparison was made 

between the QM conformational energies versus the pseudorotational angle, P and the 

CHARMM conformational energies. "Pseudorotation"236 was developed as a way to 

describe interconversion between different conformers of cyclopentane rings. The 

formula for calculating the pseudorotational coordinate P from values (po, cpi, q>2, q>3 and 

94 (Figure 29) is given in Equation 14. 

P = a r c t a n [ (»»+»4)-yi+«>3) ] ( 1 4 ) 
L2(p0(sinl440+sin72°) J v ' 

9 4 .Co <P0 

q>3 < V ^ cpl 

c 5 -^c 6 0 

\ / \ 

Figure 29. The position of the torsional angles on the cyclopentane ring. All <p torsional 

angles are used to calculate the pseudorotation angle and amplitude 

Puckering is a common phenomenon observed in all cycloalkanes. For example, 

if cyclopentane were forced to be completely planar then ten fully eclipsed hydrogens 
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create 10 kcal/mol of torsional strain which can only be alleviated by assuming one of 

the low energy conformers: envelope (E) or half-chair / twist (7). The envelope has one 

atom positioned out of the plane defined by the other four atoms. In the half-chair, three 

atoms form a plane and the two remaining atoms lie above or below this plane. The 

cyclopentane ring has five atoms, each of which can be either above or below the plane at 

different stages of the pseudorotation cycle, so there will be ten possible envelope 

conformations, with P values of 0,36, 72°, etc., alternating with ten twist conformations, 

with P values of 18, 54, 90°, etc.. It is important to note that every 36° ± 4° change in the 

phase angle alters one envelope conformation of the cyclopentane ring to another, i.e. a 

different atom emerges from the plane of the other four atoms. At half way between two 

adjacent envelope conformations along P, there exists a twisted conformation of the 

cyclopentane ring. Given a starting conformation, an increase of 360° in P takes us 

completely around the pseudorotation cycle, returning to the starting configuration. 

Figure 30 visualizes the geometries of the possible preferred puckered states for 

cyclopentane. 

Through pseudorotation, ring conformations having different out-of-plane atoms 

may interconvert without traversing a high energy planar structure. For cyclopentane, this 

process of pseudorotation has little or no energy barrier resulting in essentially "free" ring 

pucker motion. However, in nucleic acids pseudorotation is hindered because of the 

substituents on the ring. Five-membered rings are actually quite sensitive to the electronic 

effect of the substituents attached to it. Thus, the nucleobases cause a strong puckering 

effect on the sugar; hence, some of the conformers become more energetically favored 

than others. 

Correct representation of the cyclopentane ring pucker is essential for an accurate 

description of the dynamics of cyclopentane rings in the PNA molecules. To ensure that 

the torsional parameters correctly represent the relative energies of the pucker 

conformations, P was calculated for each QM structure and the corresponding 

CHARMM structure. The conformations of the rings were further analyzed in terms of 

whether they are envelopes or half-chair (Table 11). Given the limitation of the force 

field, the emphasis was on whether or not the trends in the ring conformation energetics 
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were reproduced overall. The MP2/6-31G(d) and MM pseudorotational potential energies 

are plotted in Figure 31. 

Figure 30. A common representation of the pseudorotation of five-membered rings 

CHARMM reproduces the QM surface and both curves have the same general 

trend with a global minimum twist conformation. The two low energy regions on the QM 

plot span 340° to 180° and are commonly referred to as North and East on the 

pseudorotation potential. The North family of conformations comprises three 

pseudorotamers (7T6, E6,
 5T6). The subscript and superscript refer to which atoms (atom 

numbers are given in Figure 29) are above or below the plane of the other atoms. The 

lowest energy North conformer adopts a 5hT6 shape with a puckering phase angle of P= 

40.7°. This conformation is the global minimum with an energy slightly lower than the 

East minimum at P= 126.9°, 5Tg (AE=0.107 kcal/mol). The East energy region contains 

four pseudorotamers, ranging from 5E to Eg. 
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Table 11. Puckering phase angles and relative energies from ab initio and CHARMM 

calculations 

MP2/6-31G(d) 

^(deg) 
3 

20 
57 
103 
145 
162 
177 
193 
199 
211 
223 
285 
304 
315 
323 
333 
344 
353 
358 

Conf.fl 

E6 
5T6 

5hT6 
5E 

5T8 
5hT8 

Eg 
9T8 

9hT8 
9E 
7T9 
8E 
8T9 

E9 
7T9 
7E 

7hT6 
7T6 

E6 

AE (kcal/mol) 
0.057 
0.023 
0.002 
0.052 
0.253 
0.419 
0.763 
1.354 
1.525 
1.851 
2.285 
4.242 
2.750 
1.642 
1.320 
0.662 
0.297 
0.117 
0.085 

CHARMM 

/'(deg) 
4 
20 
94 
160 
183 
199 
207 
220 
235 
244 
253 
262 
272 
287 
296 
310 
320 
335 
351 

Conf. AE 
5E 

5T6 

E6 
7T6 
7E 
7T9 

E9 
8T9 
8E 

8T5 

E5 
6T5 
6E 

E7 
9T7 
9E 
9 T ! 8 

E8 
5T8 

(kcal/mol) 
0.121 
0.010 
0.073 
0.196 
0.592 
0.833 
1.407 
1.970 
2.828 
2.725 
2.806 
2.670 
2.334 
1.750 
1.593 
1.886 
1.711 
1.249 
0.451 

The numbers in the upper 
above or below the plane, 

right and lower left corners 
respectively.(E), envelope 

correspond to the atom numbers located 
(T), twist; (hT), half-twist (Figure 30) 
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Figure 31. Energy profile along the pseudorotation angle, P. Blue diamond (•), MP2/6-

31G(d); green star (*), initial CHARMM; magenta triangle (A), final CHARMM 
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The conformers calculated with the CHARMM force field also have a strong 

energy preference towards the North and East regions with similar puckering phases. The 

MM North and East conformations include three (5E, 5T6 and Ee) and four (7T6, 7E, 7T9, 

E9) ring shapes, respectively. The force field calculations also indicate a preference for 

the North conformations. The most stable North conformation adopts a 5T6 form with 

P=23.5° and an energy difference of 0.152 kcal/mol when compared with the East 

minimum. The structural parameters of the 5T6 conformation optimized with both 

methods are shown in Table 12 and are similar for both methods. 

The energy profiles of CHARMM closely parallel their ab initio counterparts for 

similar conformations, with an absolute average difference of 0.33 kcal/mol. If the 

conformational change of the ring compound occurs on the one-dimensional potential 

surface along the pseudorotation path, the pseudorotation barrier can be directly defined 

by the energy difference between maximum and minimum. For the CHARMM curve, the 

maximum occurs at a point that has two conformations with the same P value. Thus, the 

barrier is calculated as the average energy of these two structures (3.43 and 2.22 

kcal/mol). The barriers obtained from the MP2 and CHARMM calculations are 4.24 and 

2.83 kcal/mol, respectively. 

Table 12. Geometric data (°) at the energy minimum 

Method P <p0 

Twist conformation, 5T6 

MP2 19.6 10.0 

CHARMM 23.5 10.0 

<Pi 

-33.4 

-31.4 

cp2 

-62.2 

-66.5 

<P3 

-38.1 

-33.8 

q>4 

17.2 

14.7 

The fit can be further analyzed by looking at the pathways for conformational 

changes. For each energy minimum on the potential energy surface, the conformational 

energies along the pseudorotation pathway were calculated using QM and MM methods. 

The interconversion between two different twist conformations can proceed along the 

pseudorotation pathway passing through the envelope form. The barrier for this path is 

defined as the difference between the averaged energies of the twist conformers and the 
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averaged energies of the envelope forms. The calculated barriers are summarized in 

Table 13. Some of the barrier heights could not be reproduced exactly by CHARMM. In 

general, the CHARMM energies are lower compared to the ab initio results. The 

CHARMM energy barrier for the half-chair to envelope interconversion was 0.35 

kcal/mol. Conformational exchange in the opposite direction gave a barrier of 0.27 

kcal/mol. The MP2 value for the envelope-half-chair exchange was 0.52 kcal/mol, which 

is approximately twice as large as the value obtained by CHARMM. The energy barrier 

for the reverse process was determined to be 0.68 kcal/mol. The MP2 barriers are 

estimated to be 1.05 kcal/mol for the E-E path and 0.78 kcal/mol for the T-Jpath. 

Table 13. The barriers to interconversion obtained by QM and MM methods 

Energy (kcal/mol) 

Path MP2 CHARMM Diff. 

EtoE 1.05 0.58 -0.47 

TtoT 0.78 0.63 -0.15 

EtoT 0.52 0.27 -0.25 

TtoE 0.68 0.35 -0.33 

In conclusion, it is important to note that all parameterization was done in a self-

consistent fashion. Whenever any bonded or nonbonded parameter was changed, all the 

targeted properties were recalculated so as to determine whether or not they were within 

the desired tolerance. If not, other parameters were adjusted as required, and all the 

targeted properties were calculated again, and so on, to converge to a set of final 

parameters. The presented data reflect this final self-consistently optimized parameter set. 

TESTING OF THE PARAMETERIZATION 

It is obvious that the validity of the simulation depends on the accuracy of the 

force field parameters of the potential energy function. These parameters were refined 
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based on calculations on the electronic structure of different conformations of the model 

compound. However, the question arises how well these parameters will perform when 

applied to a larger macromolecular system. To inspect the validity of the force field for 

cpPNA, CHARMM was used to perform energy minimization and MD simulations in 

explicit water and the results were compared with the ab initio data. 

The quality of the generated parameters was checked by comparison of force-

field-derived geometries with ab initio minimized structures. In addition to our initial 

model compound, we also used a smaller model compound with N-methyl amine and 

N,N-dimethyl amine ring substituents. All seventeen conformations of both models were 

minimized once with the original CHARMM using the initial parameters, and a second 

time using the modified CHARMM parameters. Regarding the geometry, the structure 

minimized with the modified force field fit the ab initio minimized structure significantly 

better than the molecule optimized with the original version. The cyclopentane rings are 

in different conformations for three structures (out of 17 studied): the QM optimized 

structures show one envelope and two different half-chair conformations for the ring, 

while CHARMM gives two different envelope and one half-chair conformations, 

respectively (Table 14). 

Table 14. Conformer types found by ab initio and MM calculations 

Conformer 

C6 up, C7 down half-chair 
C6 up, C5 down half-chair 
C5 up, C6 down half-chair 
C9 up, C7 down half-chair 

C5 down envelope 
C6 down envelope 
C7 down envelope 

C5 up envelope 
C6 up envelope 
C8 up envelope 

Number of confs. 

QM 

3 
4 
0 
1 
1 
4 
3 
0 
1 
0 

MM Initial 

1 
1 
2 
1 
2 
2 
3 
0 
4 
1 

identified 

MM Final 

2 
5 
1 
1 
1 
3 
2 
1 
1 
0 
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In principle the quality of the parameters should be tested by comparing relative 

energies of different conformations of a molecule against ab initio results. In total, 57 

conformations were studied and the results are presented in Figure 32. These 

conformations were generated by changing various side-chain dihedrals of the original 

model. The new parameter set turned out to reproduce the ab initio relative energies to a 

reasonable precision, in contrast to the previous parameter set. The relative energies of 

the various conformers are reproduced within 2.2 kcal/mol. The RMS relative energies to 

QM are 4.1 1.32 and kcal/mol for the initial and modified CHARMM parameter sets, 

respectively. The correlation between the relative QM and CHARMM energies is an 

acceptable 0.88 (Figure 33). 

0 10 20 30 40 50 
Conformation 

Figure 32. QM and MM relative energies of the model compound. Blue line (—), 

MP2/6-31G(d); green short dash (--), initial CHARMM; purple long dash (--), final 

CHARMM 
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MM 

Solvation effects play a significant role in determining the spatial structures and 

dynamics of molecules.242 Therefore, it is interesting to check the force field in 

simulations with explicit solvent. With this aim in view, a 10 ns MD simulation of the 

model molecule in a box of explicit water was calculated. The average structure was 

calculated from the 5,000,000 trajectory coordinate sets and overlapped with the initial 

structure. The mass-weighted root mean square difference between the average and 

starting structures was calculated and is an important indicator of the conformational 

flexibility of the molecule. 

Analysis of the resulting MD trajectory shows stable behavior of the cpPNA since 

no significant distortions of the structure were observed: all bond lengths and bond angles 

fluctuated near their equilibrium values. The average RMSD of the simulation was 0.86 

A, as shown in Figure 34. A good parameter set should yield a small RMS difference 

from the X-ray structure; however a good value is not sufficient to conclude that a 

parameter set is acceptable. Exploration of the differences between the simulated and 

starting structures was done by examining the RMSDs of the cyclopentane ring and 
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peptide backbone (side-chain). It was found that the backbone region moves more than 

any other region during the simulation. The backbone has the largest contribution to the 

RJVISD with an average value of 0.76 A. As expected, the ring contributes the least to the 

RMSD with an average value of 0.39 A. 

T 

— 
— 
— 

Backbone 
Ring 
All 

Figure 34. RMSD plot for the model compound relative to its initial structure. The ring 

region (red) has a stable RMSD while the backbone (black) shows greater mobility 

To further characterize the structures adopted by the model molecule in the 

simulations, we performed conformational cluster analysis based on the backbone 

dihedral angles. Several conformations of the model molecule were identified and 

compared to the structures and corresponding relative energies obtained by QM 

optimizations. The more populated conformations are most likely separated from each 
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other by barriers and the population ratios of the clusters are proportional to the free-

energy differences. The resultant clusters could give intuitive information about the 

underlying free-energy surface. Using a radius of 35° for clustering resulted in the 

location of 9 clusters. The mean dihedral angles of the different clusters along with their 

populations are given in Table 15. Clusters T1-T6 had higher memberships, which 

suggests that they are energy basins with lower energies. The molecule is in a T5 type 

conformer nearly 20% of the trajectory, indicating that it represents a deep basin. T7, T8 

and T9 have the lowest populations, and they may be separated from other conformations 

by a higher barrier. The lowest-energy conformations generated by the QM procedure 

were compared to representatives of the most populated clusters. Table 16 shows the 

similarity between the computed torsion angles in the low energy conformations and the 

torsion angles for the clusters with occupancy >13%. The a dihedral angle is 

significantly different between the two sets. Consequently, in the simulation the model 

molecule was able to explore similar but not identical conformational regions as obtained 

by the ab initio calculations. 

Table 15. Dihedral angles of the central conformation of each cluster 

Cluster 

Tl 

T2 

T3 

T4 

T5 

T6 

T7 

T8 

T9 

No. of members 

7604 

7757 

6701 

8553 

10227 

6462 

2497 

141 

58 

a 

-49.80 

-61.42 

-59.08 

-61.26 

-70.11 

-74.88 

-87.80 

-162.34 

150.83 

P 
-61.32 

-67.87 

-62.76 

-55.44 

-58.53 

-57.55 

-57.01 

-60.85 

-63.06 

7 

-59.40 

-66.50 

-53.95 

-67.24 

-57.24 

-69.56 

-61.66 

-63.37 

-63.80 

8 

-97.27 

-97.09 

-109.08 

-92.13 

-101.42 

-92.69 

-99.73 

-96.90 

-97.14 

Taken together, the minimization and MD results demonstrate quite a reasonable 

behavior of the model molecule, and, therefore, provide strong grounds to believe in the 

validity of the developed force field. How well will the results obtained for a simple 
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model system apply to biologically relevant compounds? To answer this question, we 

converted the force field parameters for the model compound into parameters for .YPC 

residues (where X represents one of the four bases) and then ran explicit solvent MD 

simulations on cpPNA molecules. 

Table 16. Selected dihedrals and relative energies of the model compound 

conformations obtained by ab initio calculations at the HF/6-31G(d) level of theory 

AE(kcal/mol) 

0.899 

1.904 

0.155 

1.102 

0.155 

0.000 

0.156 

a 

85.25 

89.11 

139.7 

162.7 

100.36 

112.2 

100.3 

P 
-59.14 

-96.55 

-76.68 

-65.12 

-89.83 

-61.93 

-89.86 

Y 

-75.31 

-71.16 

9.615 

-86.25 

-61.89 

116.77 

-61.84 

5 

-90.43 

-85.14 

-76.81 

-84.32 

-100.82 

-81.31 

-100.86 

Summary 

The increased role of PNA in various biological applications provides an 

important demand for the development of force field parameters for cyclopentyl modified 

PNA molecules suitable for use with the well established CHARMM force field. In order 

to use molecular dynamics simulations to determine the effects that govern the flexibility 

of cpPNA molecules, this class of compounds has been explicitly parameterized. An 

iterative process of refinement was used to develop the parameters for cyclopentyl PNAs, 

while remaining compatible with the regular PNA parameters. A complete set of the 

CHARMM force field parameters was developed for cpPNA molecules based on ab 

initio calculations, which properly account for the five-membered ring modification 

present in the backbone of these compounds. The reliability of this new force field was 

proved by molecular mechanics calculations and MD simulations. 
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CHAPTER IV 

STUDIES WITH SINGLE STRANDED PNAs 

INTRODUCTION AND MOTIVATION 

Rationally designed PNAs that show complementary binding exclusively to RNA 

or DNA will aid in the discovery of new molecular biology applications, and drug 

candidates. The rules governing PNA:DNA/RNA complexes are not well understood 

because the interplay between the hydrogen bonding, stacking and conformational 

mobility has yet to be defined. However, limited progress in creating PNAs with 

improved binding and better selectivity for RNA and DNA was achieved by correctly 

pre-organizing the PNA structure using synthetically accessible modifications.244 In order 

to increase the PNA binding affinity for complementary oligonucleotides, numerous PNA 

backbone modifications have been investigated during the last decade. Recently, 

Appella's group reported a novel modified PNA for detection purposes.164 To enhance 

the oligonucleotide binding affinity, the authors introduced a fra«s-l,2-cyclopentane 

diamine into the PNA backbone. The thermal denaturation studies revealed that the 

sensitivity of these new PNA structures to binding DNA/RNA was improved by three 

orders of magnitude. The cpPNA strands showed improved binding affinity regardless 

of nucleobase or position modified. In contrast to singly modified strands, PNAs with 

numerously modified residues showed better binding affinity toward DNA, suggesting 

that the effect of increased Tm was additive from a single favorable modification to 

quadruply modified oligomer sequences. The toms-cyclopentane modification was the 

first and, to date, only modification that provided a consistent additive increase in thermal 

stability when incorporated into PNA oligomers. The thermodynamic properties of 

aegPNA:DNA and c/?PNA:DNA duplexes were also investigated. Van't Hoff enthalpies 

and extrapolated AG values determined from the UV melting studies on the duplexes 

indicated that the increased thermodynamic stability of the cpPNA:DNA hybrid is due to 

an entropic contribution.158,161'163 
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Our calculations extend these studies, and the results have provided a picture of 

the flexibility of single strands in explicit water on the nanosecond time scale and a 

physical interpretation for the origins of the relative stabilities of the PNA:DNA/RNA 

hybrids. They also provide insight into the changes in PNA structures, induced by the 

cyclopentane backbone modifications, which might be important for understanding the 

improved binding of this chemically modified oligonucleotide to complementary 

DNA/RNA. 

Q?PNA was designed to optimize the dihedral angles of the PNA backbone for 

duplex formation. When a modification is made to PNA to make the backbone more 

rigid, helix formation should now be more entropically favorable (ASt). However, the 

modification could also change the conformational preferences of the strand (AHt). The 

modifications to PNA that improve its binding obviously have decreased the 

unfavorability of the entropy. As long as the modification doesn't make the torsional 

strain worse, the increased rigidity will make the binding better. The question is: have 

they also improved the torsional potential energy surface (AHt)? 

The torsion angles around the bonds of the sugar-phosphate DNA/RNA backbone 

greatly influence the secondary structure as well as base-base recognition during the 

double helix formation. From the inspection of the backbone dihedrals, one can ascertain 

if the modified PNAs should be sufficiently malleable for efficient stacking and Watson-

Crick base pairing. The more the nucleotide is pre-organized in a helical conformer 

closely resembling that of a bound natural oligomer (DNA/DNA or RNA/RNA), the 

higher should be the stability of the duplex formed between the modified oligomer and its 

DNA/RNA complement. The stability of partly modified PNA:DNA/RNA duplexes may 

be explained as follows. The constrained conformation of the PNA nucleotide locally 

organizes the peptide backbone (decreased loss of entropy upon duplex formation) in the 

direction of a favorable conformation for efficient stacking of the nucleobases in the 

duplex (increase in enthalpy upon formation). Thus, the formation of a PNA:DNA/RNA 

duplex should be favored by both enthalpy and entropy compared to the corresponding 

DNA/DNA or RNA/RNA duplex. A straightforward consequence of this binding pattern 

is that the increase in the stability of modified PNA:DNA/RNA duplexes should not 

saturate as the number of modifications increases. 
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In the study presented here, we performed detailed investigations on the torsional 

preferences of aegPNA and trans-cp¥NA monomers using molecular dynamic 

techniques which gave insights into the effect of the rings on the PNA's behavior. This 

work will reveal if these modifications induce pre-organization of the PNA oligomers 

into a helix for optimal DNA/RNA binding, and whether these modifications cause 

changes in conformational entropy. This dissertation focuses on several aspects of PNA 

structure and dynamics: (i) the stability of the MD simulations, (ii) the conformational 

sampling of the modified regions and their flexibility, (iii) the characterization of 

monomer dynamics and the changes due to the presence of a charged terminal Lys 

residue, (iv) single and (v) multiple cyclopentane modifications at various positions in the 

strand. 

Since in RNA/DNA chemistry, stabilization is greatly influenced by the sequence 

composition, it is important to take into account the effects of nucleobase composition. 

To assess this both the energetics and flexibility of the classical and modified PNA 

backbones, were studied for two sequences: polythymine (T1-T2-T3-T4-T5-T6-T7-T8) and 

mixed base (G1-T2-A3-G4-A5-T6-C7-A8-C9-T10). These are the two most common 

sequences used to study PNA modifications experimentally.102,129,144"152'156"163'173"181 

Chiral PNAs containing positively charged residues, such as D- or Z-Lys-based 

monomers, can be used for modulating the directionality of the binding, the preferential 

handedness of the helices and the stability of the PNA:DNA duplexes.91,92 Based on 

circular dichroism studies and melting experiments, it was proposed that D-Lys 

containing PNAs promote the formation of right-handed structures when bound in the 

antiparallel mode, whereas Z-Lys containing PNAs give rise to left-handed structures.245 

In parallel PNA:PNA duplexes, the reversed helicities were observed.246 In agreement 

with this preference, the D-Lys containing chiral PNAs were found to form more stable 

complexes than their L counterparts when bound to antiparallel DNA,247 which is always 

right-handed. Therefore, we tested the effect of the lysine residue on aegPNA and cpPNA 

conformations, and its ability to govern the trends in preferential binding to 

complementary DNA strands. Last, the effect of single and multiple ring modifications at 

various positions was also analyzed. The complete list of structures studied is presented 

in Table 17. 
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Molecular dynamics simulations are a special discipline of molecular modeling. It 

is used as an important tool for structural determination and refinement in crystallography 

and NMR. However, more significantly, just as its name implies, MD can be used to 

provide dynamic information, in other words, time-dependent properties of molecular 

systems. This type of information is not available from experimental structures. 

Conformational transitions are the usual subject of molecular dynamics studies. 

Therefore, in this work, we utilized molecular dynamics simulations to facilitate our 

study on classical and modified PNAs. 

Table 17. The numbering scheme and the modified oligonucleotides used 

Name 

aegPNAl 

cpPNA2 

aegPNA3 

cpPNA4 

cpPNA4a 

c/?PNA5 

cpPNA6 

cpPNA7 

cpPNA8 

cpPNA9 

cpPNAlO 

cpPNAll 

Sequence (PNA-T8) 

T-T-T-T-T-T-T-T 

T_T-T_T*_T_T-T-T 

T-T-T-T-T-T-T-T-Lys 

T-T-T-T*-T-T-T-T-Lys 

T-T-T-T*-T-T-T-T-(D)-Lys 

T*-T-T-T-T-T-T-T-Lys 

T-T-T-T-T-T-T-T*-Lys 

T*-T-T-T*-T-T-T-T*-Lys 

T*-T-T-T-T-T-T-T*-Lys 

T-T-T-T*-T-T-T-T*-Lys 

T*-T-T-T*-T-T-T-T-Lys 

T ,*_T ,*_'T*_T ,*_T'*-T*-T*-T*-LvS 

Name 

aegPNA12 

cpPNA13 

aegPNA14 

cpPNA15 

cpPNA15a 

cpPNA16 

cpPNA17 

cpPNA18 

cpPNA19 

cpPNA20 

cpPNA21 

C/7PNA22 

Sequence (PNA-MB10) 

G-T-A-G-A-T-C-A-C-T 

G-T-A-G-A-T*-C-A-C-T 

G-T-A-G-A-T-C-A-C-T-Lys 

G-T-A-G-A-T*-C-A-C-T-Lys 

G-T-A-G-A-T*-C-A-C-T-(D)-Lys 

G-T-A-G*-A-T-C-A-C-T-Lys 

G-T-A-G-A-T-C*-A-C-T-Lys 

G-T-A-G-A-T-C-A*-C-T-Lys 

G-T-A-G-A-T*-C*-A-C-T-Lys 

G-T-A-G-A-T*-C-A*-C-T-Lys 

G-T-A-G-A-T-C*-A*-C-T-Lys 

G-T-A-G-A-T*-C*-A*-C-T-Lys 

* indicates residue with ?ra«s-(S,S)-cyclopentane modification 

One of the objectives of this study is to understand the differences in 

conformations and conformational dynamics between single stranded aegPNA and 

cyclopentyl PNAs in various sequence contexts. To investigate these, the backbone 

dihedral angles were examined (Figure 35). As already briefly described in Chapter 2, 

statistical clustering based on dihedral angles was performed. For each sequence and 

modified variant, the conformational space is explored during the simulation. Analysis of 

the percentage of cluster occupancies provides information on the stable conformation for 
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each sequence/modification. Conformational cluster analysis will show if the 

modifications to the backbone cause the single-stranded PNA to pre-organize into a 

helical structure that closely resembles the PNA conformation in PNA/DNA or 

PNA/RNA double helix. Additionally, whether the pre-organization correlates with high 

binding affinity to DNA/RNA can be determined. 

o ^ N H ° 

BASE 

BASE 

Figure 35. Notations for the backbone torsion angles 

THEORY AND METHODOLOGY 

Conformational diversity concept 

Conformational analysis is the characterization of the structures that a molecule 

can adopt and how these influence its properties. A key component of a conformational 

analysis is a conformational search, the object of which is to identify the preferred 

conformations of a molecule, which usually are minima on the potential energy surface. 
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Due to PNA's high conformational flexibility, it has such a large number of minima that 

it is impractical to characterize them all. This conundrum is known as the multiple 

minima problem248 and is the main difficulty in structurally characterizing a peptide. 

Specifically, most of the peptides under physiological conditions exist as a mixture of 

interchangeable conformations with similar energies, populated according to the 

Boltzmann distribution. The conformation with the lowest potential energy is referred to 

as the global minimum. Although the global minimum exhibits the lowest energy value, 

it may not be highly populated because of the contribution of the vibrational entropy to 

the statistical weight of each structure. Moreover, the global minimum may not be the 

active (i.e. the functional) structure. Indeed, in some cases, the active conformation may 

not correspond to any minimum on the energy surface of the molecule. 

Experimentally the crystal structure represents only a snapshot of the average 

structure of the most populated ensemble in the solid state, which may or may not 

correspond to the lowest energy conformer. Computational methods constitute an 

alternative approach to determine the active conformation. The more populated this 

conformation, the lower the configurational entropy loss upon binding, since the loss in 

flexibility upon binding will be smaller. This conclusion is supported by the fact that 

conformationally constrained analogs exhibit higher affinity than more flexible 

compounds. 

Computational conformational search methods can be divided into the following 

categories: systematic search algorithms, model-building methods, random approaches, 

distance geometry and MD. Independent from the strategy selected, four key elements are 

needed to carry out the exploration of the conformational space of an oligonucleotide. 

The first consists of employing a peptide/nucleic acid model description based on classic 

mechanics, i.e. a force field that permits the calculation of the energy of a conformation. 

The second is to find a method capable of generating different conformations in order to 

explore all the low energy regions of the conformational space. The third key element 

consists of minimizing the different conformations, whereas the fourth and last element is 

to find a convergence criterion to assess if the conformational space has been sufficiently 

explored. However, in many biopolymer applications, conformational space cannot be 
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exhaustively searched and a representative subset of conformational space is sampled 

instead. 

Sampling conformations of biomolecules through computational techniques is a 

key step toward understanding molecular function. Computational methods based on 

molecular dynamics can now routinely identify energetically predominant polymer 

structures evident over nanosecond (ns) to microsecond (us) trajectories. Unfortunately 

representative sets of structural conformations for large biomolecules are not sampled 

completely by these trajectories due to the complexity of the configuration space and 

energetic barriers that localize sampling. Elevated temperature simulations provide a 

higher probability that these energy barriers will be surpassed; however the resulting 

energy surface is not necessarily representative of the biologically relevant lower 

temperature regime. 

Cluster analysis 

Computational techniques produce large numbers of conformations of a given 

chemical structure and are used to find a particular quantity of interest (e.g., the lowest-

energy conformation or the free energy of the system). After performing a 

conformational search, it is of interest to know whether the conformations found form 

groupings of structurally related clusters or if they are distributed randomly throughout 

conformational space. Following a dynamics simulation, one can investigate how many 

structurally distinct classes were visited during the simulation, as well as the time 

sequence. The conformations sampled are usually sorted according to two properties: the 

potential energy associated with the conformation and its distance from other molecular 

conformations. The clustering method is presented in detail in Ref. 243 and in Chapter 2. 

System setup and computational procedures 

All the calculations and analyses were carried out within the CHARMM package 

and the newly developed force field parameters for PNAs which are summarized in 
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Chapter 2. To model the water molecules the TIP3P model was used, one of the most 

widely used water models in biomolecular simulations. A summary of simulated systems 

and sequences is reported in Table 17. The crystal structure of PDBID:1PUP was used 

for the starting structure of the poly-Tg PNA simulations. The initial configurations for 

the mixed base decamer simulations were taken from the PDBID:1NR8 structure. The 

initial solute conformations of all the systems containing cyclopentane fragments were 

built in silico using the SYBYL program. The system setup procedure was started by 

adding hydrogen atoms using the HBUILD algorithm. The structure was minimized using 

500 cycles of steepest descent followed by minimization with the conjugate gradient 

method. For each simulation the solute was placed at the center of a periodic truncated 

octahedral box large enough to avoid any interactions between mirror images of the PNA 

strand. The solvent box was built from a cubic periodic configuration of a smaller box of 

pre-equilibrated water molecules. Then, the system was minimized fixing the coordinates 

of the PNA and allowing the water molecules to move. 

MD simulations were initialized from the energy-minimized configurations with 

atomic velocities taken from the Maxwell-Boltzmann distribution at 60 K, while the PNA 

atoms were restrained using a harmonic potential. Each system was then gradually 

brought to the desired temperature of 298 K during 100 ps of MD simulations. The 

electrostatic interactions were calculated by the Particle Mesh Ewald (PME) algorithm, 

with an interpolation order of 4 and a grid spacing of 1.0 A. All simulations were run 

under periodic boundary conditions in the NVE ensemble. The SHAKE algorithm with a 

tolerance of 10"5A was applied to constrain the stretching of all bonds containing 

hydrogen atoms. The time step for the simulations was 2 fs and the trajectory coordinates 

were stored every 0.2 ps for analysis. The van der Waals (vdW) forces were treated by 

using a cutoff of 11 A and a switching function. The neighborlist was generated up to a 

cutoff of 13 A and updated whenever any atom had moved more than 1 A since the last 

update. 

The trajectories were first analyzed by evaluating the root-mean-square 

fluctuations (RMSF) and deviations from the crystal structure (RMSD) for the backbone. 

The neural network based clustering algorithm ART-2 included with the CHARMM 

distribution was used for cluster analysis of the trajectory. A cluster analysis allows one 
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to classify the frames of the MD trajectory formally into a number of groups which 

physically correspond to local minima on the potential energy surface. The MD trajectory 

could be represented therefore as travelling a pathway through potential energy 'basins'. 

In the cluster analysis, a set of descriptors is chosen to describe the clusters, in this case, 

the backbone torsion angles. Then, the MD trajectory is used to calculate a time series of 

the backbone torsion angles. Finally, the trajectory structures are clustered into batches of 

similar configurations using the backbone RMSD of the dihedral angles as similarity 

criterion. 

Our clustering plan began with a pair of parameters: the set of torsion angles and 

a cluster radius. For the results presented in this section, three clustering schemes were 

chosen after evaluation of the dependence of the cluster populations and the total number 

of clusters on these two criteria. Due to complexity of the dihedral space sampled, 

convergence among the clustering schemes was not observed. Thus, results from three 

different schemes are presented. The following three clustering schemes were employed: 

(1) a cutoff radius of 55°, use of every other backbone dihedral excluding the terminal 

residues, and use of every 500-th frame of the trajectory (10000 frames total, Scheme I), 

(2) a cutoff radius of 50°, every other backbone dihedral excluding the terminal residues, 

and every 1000-th frame of the trajectory (5000 frames total, Scheme II); and (3) a cutoff 

radius of 55°, all the backbone dihedrals excluding the terminal residues, and every 500-

th frame of the trajectory (10000 frames total, Scheme III). The clusters from each 

scheme are checked for uniqueness. Those for which all backbone dihedral angles are 

different by less than 55° with respect to a cluster from another scheme are not 

considered unique. The clusters that were located by more than one scheme are listed in a 

separate table along with the population percentages and Scheme I cluster numbers. A 

structural snapshot that is closest to the final cluster center was selected as a 

representative of each cluster. For each PNA strand, the dihedral angle values from the 

most populated clusters were compared with the average dihedral values of native DNA 

and RNA duplexes. 
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Results and discussion: stability of the simulations 

The MD of single helical aegPNA and modified cpPNA monomers with and 

without a terminal lysine residue were simulated for 10 ns each. To assess the stability of 

all the MD simulations, a collection of properties was monitored as a function of time. 

The atom-positional root mean square deviations with respect to the initial structure as a 

function of simulation time are shown in Figures 36 and 37. 
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function of time for the PNA-MBio simulations 

The RMSD of the atomic positions was calculated according to the expression: 

RMSD = g IJLi<Art
2>) 

1/2 
(15) 

where TV is the number of atoms, Ar, is the difference between the instantaneous and 

starting position for the /th atom, and the angular brackets indicate a time average over 

the simulation time. Because PNA is a flexible molecule, it can adopt several important 

conformations or conformational families. This is confirmed by the high RMSD between 

the starting X-ray and NMR configurations, which was calculated to be -10 A. 
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The radius of gyration (RGYR) was also calculated throughout the MD 

trajectories. The variation in the RGYR reports on molecular compactness. The RGYR of 

a group of atoms is defined as the root-mean-square distance from each atom of the 

molecule to their centroid 

RGYR = £ (I,U(rJ-rmean)2)1/2 (16) 

where r7 is the position coordinate of atoms j , rmean is the mean position of the atoms and 

./Vis the number of atoms. 

Figures 38 and 39 show RGYR plotted against time. For most of the systems 

these values are stable along the 10 ns periods and fluctuate in the range of 8-15 A. The 

largest RGYR, 14.85, was observed for the cpPNA19 simulation at time point 5 ns. The 

obtained results and analysis of the trajectories show that the RGYR values for some 

extended states are similar to that of the "folded" molecule (~8 A). This indicates that the 

folded and some extended states are similarly compact; therefore, RGYR per se is a 

necessary, but not sufficient requirement, for a folded structure. 
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EFFECT OF A SINGLE CYCLOPENTANE MODIFICATION 

PNA-T8 sequence: aegPNAl and c/?PNA2 

The ability to adopt a particular secondary structure is important in the binding 

process of biopolymers. The possibility that the free, single-stranded structure pre-

organizes into the bound conformation before binding to its complement, which affects 

the affinity and rate of oligonucleotide hybridization, must also be considered. Thus, we 

examined the simulation trajectories in the context of structural features (e.g. turn, helix, 

loop, knot, coil, hairpin, etc.) and backbone conformations (Figure 40). Such properties 

were assigned to each cluster. Helical structures represent one of the most common 

structural motifs and recognition sites in nucleic acids. Therefore, we focused on 

identifying helical elements because the monomer needs to adopt a helix to bind 

DNA/RNA. 

/~y-r\ ^ - 0 | knot 

^ ( ^ ^ loop S-coil 

hairpin loop helix 

Figure 40. Some representative backbone structures observed 

The 10 ns MD trajectory of aegPNAl was analyzed. We computed the RMSD 

deviation over the course of the MD simulation, relative to the first set of coordinates 

from the production MD simulation. During the first 3 ns, the RMSD values increased to 
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~5 A (Figure 36). During this time, the molecule underwent conformational changes, but 

remained relatively stable for the rest of the simulation. These RMSD fluctuations 

indicate the significant flexibility of the structure. The process of conformational change 

of the PNA can be analyzed in view of the evolution of patterns sampled along time. 

Since the simulation started from the helical conformation from the PNA/DNA duplex, 

the first patterns sampled correspond to structures with no conformational motifs or adopt 

the dihedral angles of a helix. 

To characterize the conformational states of the molecule, cluster analysis was 

conducted using the three criteria mentioned previously and the data is summarized in 

Tables 18 and 19. We first present properties of the entire ensemble of structures 

sampled, followed by a more detailed discussion of specific preferred conformations. The 

process yielded sixteen distinct clusters. There are no significant differences in the 

predominant structures obtained using all three criteria. Four clusters were identical 

between Schemes I and II, and the remaining three clusters from Scheme I were replaced 

by six new clusters in Scheme II. Cluster 3, the most populous cluster of the three was 

similar to cluster 10, the most populous cluster of the six. Five of the clusters from 

Scheme I were also located using the parameters of Scheme III, though the population 

percentage of cluster 3 was much lower using Scheme III. The remaining clusters of 

Scheme I were replaced by three new clusters in Scheme III. None of the new clusters 

from Scheme II matched those of Scheme III. 

Cluster 1 (11.6 % of the total number of structures), which was also located with 

Schemes II and III, contains a single pattern that exhibits no conformational motifs, 

though remnants of the starting helical structure remain. The remaining clusters (2, 3, 4, 

5, 6, 7) from Scheme I, correspond to a conformation representing an S-type coil. The 

matching clusters in Schemes II and III as well as clusters 11, 12 and 15 also have an S-

type coil structure. Cluster 10 (18.7%) exhibits a hairpin-like motif running from residues 

3 to 8. The remaining clusters have low populations and most likely do not contribute 

significantly to the conformational preference of the molecule. Figure 41 shows some 

characteristic conformations of the 8-mer. 
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Table 19. Similar clusters identified from the different clustering Schemes for aegPNAl 

/-i * XT f 0/ Scheme I Cluster No. of mem % _,. ^a 
Cluster # 

Scheme II 
A 541 10.8 1 
B 875 17.5 4 
C 391 7.8 6 
D 694 13.9 7 

Total number of clusters 10 

/-i * XT e o/ Scheme I Cluster No. of mem % _, na 
Cluster # 

Scheme III 

A 1063 10.6 1 

B 761 7.6 2 

C 593 5.9 4 

D 855 8.6 5 

E 875 8.8 6 

8 

numbers correspond to identical cluster from Table 18 

CI C3 C4 C5 C6 

C7 C10 C l l C12 C15 

Figure 41. Representative structures of the most populated clusters from the MD 

simulation of aegPNAl using the different clustering Schemes. Residues are colored by 

position: Tl-red, T2-dark grey, T3-orange, T4-yellow, T5-dark yellow, T6-grey, T7-

green, and T8-white. The structures are positioned with Tl on top and T9 on bottom 
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Therefore, the conformational state of the aegPNAl is not entirely random and is 

represented by a few stable conformational ensembles. The results also show that the 

aegPNA conformation is very flexible and not pre-formed for oligonucleotide binding, 

since none of the observed conformers are remotely helical in nature. 

A more detailed description of the flexibility of the aegPNAl residues was 

investigated by calculating the root mean square fluctuation (RJV1SF) of each backbone 

dihedral (Table 20). RMSF is a good measure of the flexibility of the system during a 

given time period, and can provide valuable information about the deviations of the 

torsions involved in binding and about variations in the secondary structure with respect 

to the starting conditions. We also averaged the RMSFs over all residues including the 

terminal residues. However, this method is a very qualitative measure of PNA flexibility, 

but it can give us a view of the conformational dynamics. 

Table 20. Average dihedral values (°) and RMSF (bold, °) of the simulated aegPNAl 

Residue 

Tl 

T2 

T3 

T4 

T5 

T6 

T7 

T8 

a 

— 

— 

166.1 

21 
166.6 

21 
-178.0 

22 
-169.3 

23 
-175.8 

27 
-178.7 

29 
178.6 

28 

P 
— 

— 

-166.9 

18 
-48.8 

34 
-178.7 

13 
87.2 

40 

155.9 

41 

176.5 

52 
177.6 

13 

y 

9.4 
91 

-95.7 

83 
102.7 

13 
71.5 

54 
90.2 

11 
-45.7 

79 
93.1 

17 
40.3 

83 

8 

109.7 

21 
89.6 

18 
95.3 

16 
101.3 

24 

-151.3 

80 
-64.0 

73 
136.7 

79 
— 

— 

8 

86.6 

48 
57.0 

33 
68.5 

84 

-37.0 

64 
10.0 

62 

133.7 

143 
18.9 

118 
— 

— 

Total 
RMSF 

160 

173 

168 

177 

216 

363 

295 

123 

Average 
RMSF 

53 

35 

34 

35 

43 

73 

59 

41 
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In aegPNAl, T6 and T7 which are the least involved in base stacking interactions, 

were the most flexible of all the residues. The stacking interactions between Ti, T2, T4 

and T5 are present for most of the simulation time and are also present in the central 

structures of the most populated clusters. The simulation yielded mean values in the 

range of 155 to 177° for p (excluding T3 and T5), 70 tolOO0 for y (excluding Ti, T2, T6 

and Tg), 90 to 130° for 8 (excluding T5 and Te), and 166 to -178° for a. The s torsion 

varied greatly during the simulation and no specific range could be identified. 

Starting from the conformation found in the PNA:DNA duplex, a 10 ns MD 

simulation of c/?PNA2 was conducted to address the effect of a single cyclopentane 

modification on the conformational dynamics (structural sampling). It appears that the 

PNA fluctuated around an average until it underwent a significant conformational change 

at ~8 ns. The RMSD remained at ~4 A during the first 9 ns, before increasing to 7 A 

(Figure 36). Apparently, modification in the backbone restricts the conformational 

dynamics of the entire oligonucleotide. At the beginning of the trajectory, there is a 

sampling of extended conformation structures. Then (at 1 ns), the molecule adopts a bend 

conformation with a loop at the N-terminus (C5, Figure 42). At 1.3 ns, the 

oligonucleotide falls into a more coiled conformation (C12). The central turn motif 

appears again at 5.7 ns and becomes wider (CI5). As a result, the molecule adopts a bend 

conformation that lasts for 3.5 ns. Finally, the last 0.8 ns correspond to the sampling of 

coiled motifs (residues 2 to 9) together with the two central turns in the molecule (C3). In 

summary, the simulation points to the tendency of cpPNA2 to attain a coiled structure; 

however, this pattern is not very stable and the molecule fluctuates around an ensemble 

of two conformations (coil and bend). 

As in the simulation with aegPNAl, the simulation trajectory was clustered using 

the backbone dihedral angles. To compare the results between two simulations, the same 

clustering plan was used (Tables 21 and 22). Six clusters were identical between Schemes 

I and II. The remaining four clusters from Scheme I were replaced by five new clusters in 

Scheme II. Five of the clusters from Scheme I were also located using the criteria of 

Scheme III, though the population percentages of all clusters, except cluster 8 were 

higher using Scheme III. The remaining Scheme I clusters were replaced by one cluster 

in Scheme III. Only one cluster from Scheme III was identical to a cluster in Scheme II. 
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C2 C3 C5 C7 

C12 C13 C15 C16 

Figure 42. Representative structures of the most populated clusters from the MD 

simulation of cpPNA2 using the different clustering Schemes. Residues are colored by 

position: Tl-red, T2- dark grey, T3-orange, T4-yellow, T5-dark yellow, T6-grey, T7-

green, and T8-white. The structures are positioned with Tl on top and T8 on bottom 
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Table 22. Similar clusters identified from the different clustering Schemes for cpPNA2 

/-i * XT t 0/ Scheme I Cluster No. of mem % „,, „a 
Cluster # 

Scheme II 
A 678 13.6 2 
B 229 4.6 10 
C 287 5.7 4 
D 180 3.6 1 
E 418 8.4 3 
F 737 14.7 7 

Total number of clusters 11 

Cluster No. of mem % _,, ^a 

Cluster # 
Scheme III 

A 1588 15.9 8 
B 1100 11.0 2 
C 2094 20.9 13 
D 2967 29.7 7 
E 934 9.3 4 
F 432 4.3 10 

7 
numbers correspond to identical cluster from Table 21 

Using the three criteria, sixteen distinct clusters remained (Figure 42). The most 

populated clusters obtained from all three Schemes have very similar dihedral angle 

values. The results show that the most populated conformation, cluster 7, contains an N-

terminal loop and bend motifs and the structure resembles that of cluster 11 from Scheme 

II. The second most abundant pattern represented by clusters 2, 3 and 5 from Scheme I, 

cluster 15 from Scheme II and cluster 16 from Scheme III, groups structures having a coil 

with a helical motif from residues 4 to 6. The major difference between the clusters is the 

orientation of the terminal residues. The rest of the clusters have low populations and 

exhibit less frequent structural features or do not present any conformational motifs. 

Conformations obtained from clustering of aegPNAl trajectories are 

predominantly coil-like in comparison to those from cpPNA2, which exist in a bent 

conformation most of the simulation time. One of the clusters in cpPNA2 that accounts 

for only 9% of the total number of structures, has a coil conformation, however upon 

comparison of the dihedral angles between aegPNAl and c/?PNA2, differences are 

observed for the residues at and around the modification. Thus, these two structures are 

significantly different from each other. 

Compared to aegPNAl, the single modification at residue T4 has a large effect on 

the flexibility of the structure (i.e. less flexible). The number of clusters from these two 

trajectories is approximately the same, which seems unexpected at first, since the 

modification should induce rigidity and thereby, reduce the number of conformations. 
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/4egPNAl has many clusters with approximately the same energy, which is proportional 

to the population number; while cpPNA2 has one to two very low energy conformers, a 

couple of low energy conformers and the rest are high energy (except in Scheme II). 

Thus, cpPNA2 is less flexible as it will spend most of its time in the very low and low 

energy conformers while aegPNAl will be moving among many similar energy 

conformers. 

According to the RMSFs of the backbone dihedrals, residues T3 and T4 in 

c/?PNA2 (over which the cyclopentane is introduced) are less flexible than T3 and T4 in 

aegPNA, while the non-terminal residues T5 and T7, have approximately the same 

flexibility. Ti and Tg show higher flexibility when compared to the unmodified aegPNAl 

simulation. In summary, the modification resulted in decreased flexibility of the two 

residues at the modification site but increased RMSF values for Ti and T8. The data in 

Table 23 show that the dihedral flexibility distribution is different for the cpPNA2 

molecule compared to aegPNAl. These results are in agreement with the clustering data. 

Table 23.Average dihedrals (°) and RMSF (bold, °) from cluster analysis of cpPNA2 

Residue 

TI 

T2 

T3 

T4 

T5 

T6 

T7 

T8 

a 

— 

176.8 
23 
176.3 
21 

-107.0 
17 

-170.7 
31 

-179.1 
27 

177.3 
26 

-177.3 
25 

P 
— 

-70.3 
65 
163.6 
32 
74.6 
24 
38.2 
59 

161.6 
52 
7.4 
62 

-94.5 
71 

Y 

-51.4 
84 

-58.6 
76 
97.0 
15 
68.0 
20 
84.0 
18 
72.6 
54 

90.9 
17 

-30.5 
84 

8 

105.1 
53 

102.3 
17 
92.1 
14 

102.5 
12 

101.5 
23 
91.3 
20 

90.9 
17 

— 

8 

49.0 
72 

85.1 
28 

-132.2 
37 
81.3 
48 

-140.9 
135 
25.1 
65 

-40.5 
169 

— 

Total 
RMSF 

209 

209 

119 

121 

266 

218 

291 

180 

Average 
RMSF 

70 

42 

24 

24 

53 

44 

58 

60 
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The consequences on the mean dihedral angle distributions are also shown in 

Table 23. The most significant change is that the backbone P angles are more broadly 

distributed than those for the original aegPNAl. The y and 5 torsions over the central 

residues (3 to 7) become restricted to a narrower range: 70-90° and 90-110°, respectively. 

The range of variations for the terminal y torsions (residues 1, 2 and 8) is 30-70°. Similar 

to the aegPNAl, the s torsion still does not have a preferred range of values. However, 

the 8 dihedrals do differ significantly between aegPNAl and cpPNA2. Thus, the 

cyclopentane modification has had a significant effect on the dihedral profile of the 

backbone and on its flexibility. These alterations could have significant effects on the 

ability of cpPNA2 to bind to RNA or DNA. 

PNA-Tg sequence with Lys: aegPNA3 and c/?PNA4 

In the simulation of aegPNA3, the RMSD plot with respect to the starting 

structure shows that the system is relatively stable, with the RMSD in the range of 4-5 A 

for most of the simulation trajectory. As in the case of the aegPNAl MD trajectory, the 

first patterns sampled correspond to structures that exhibit no secondary structure or 

exhibit some residues with dihedral angles corresponding to a helix, since the simulation 

was started in a helical conformation. A bend motif appears at residue 1 at 400 ps, and 

disappears and reappears during the rest of the simulation. The central region 

alternatively exhibits turns and loops extending from residues 2 to 7, and sporadically 

unfolds. Subsequently, PNA adopts a hairpin-like conformation (~4 ns) that folds later 

into a knot (~7 ns). 

Ten clusters were identical between the Schemes I and II, and the remaining six 

clusters from Scheme I were replaced by four new clusters in Scheme II. Nine of the 

clusters from Scheme I were also identified in Scheme III with similar cluster 

memberships. The remaining five clusters of Scheme I were replaced by only one new 

cluster in Scheme III. One of the new clusters identified in Scheme II matched that of 

Scheme III. Thus, twenty one distinct clusters were identified and most of them are 

representatives of different folded conformations (Figure 43, Tables 24 and 25). 
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C2 C6 C7 C8 C9 

CIO Cll C20 C21 

Figure 43. Visualization of the most populated molecular structures corresponding to 

aegPNA3 cluster averages. Residues are colored by position: Tl-red, T2- dark grey, T3-

orange, T4-yellow, T5-dark yellow, T6-grey, T7-green, T8-white, and K9-pink. The 

structures are positioned with Tl residue on top and K9 on bottom 
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Table 25. Similar clusters identified from the different clustering Schemes for aegPNA3 

Cluster No. of mem 

Scheme II 
A 
B 

C 
D 
E 
F 

G 
H 

I 
J 

146 
760 
601 

240 
268 
79 

577 
320 
474 

581 

% 

2.9 
15.2 
12.0 
4.8 
5.4 

1.6 
11.5 
6.4 

9.5 
11.6 

Total number of clusters 

Scheme I 
Cluster #a 

1 
7 

6 
4 

5 
12 

8 
9 
10 
11 

14 

Cluster No. of mem 

Scheme III 
A 
B 

C 
D 
E 

F 

G 
H 
I 

J 
K 

280 
288 
605 
282 
1513 

1478 
1285 
469 
727 

655 
1596 

% 

3 

3 
6 
3 

15 
15 
13 
5 
7 
7 

16 

Scheme I 
Cluster #° 

1 
17 
4 

5 
6 
7 

8 
15 

9 
10 
11 

12 

numbers correspond to an identical cluster from Table 24 

There are no significant differences in the predominant structures obtained using 

the parameters of Schemes I and II. However, the most populous structure from Scheme 

III differs from the predominant clusters of Schemes I and II in the values of the T38, T4y, 

T58 and T6Y dihedrals. The structures in the three most abundant clusters for all three 

schemes (6, 7 and 8) contain a hairpin loop running from residues 1 to 8. The second 

group of most populated clusters, again across all three schemes, (9, 10 and 11) is 

characterized by a knot, expanding from residues 2 to 7, and a C-terminal bend. The 

remaining clusters from Schemes I, II and III, have low populations and thus, these 

structural motifs are less important. Cluster 4 from Scheme I (4.85 %) exhibits an N-

terminal bend and a turn from residues 5 to 7. Clusters 13 (1.1%) and 15 (3.5%) from 

Scheme I, and cluster 19 (4.1%) from Scheme II, exhibit a combination of turns and 

loops for the region covering residues 2 to 7. These structures represent rare events and 

occur when the PNA is fluctuating between the two most probable conformations. 

Finally, cluster 1 from Scheme I (2.9%), has no conformational motifs, while cluster 2 

from Scheme I (8.8%) and 20 (6.7%) from Scheme II have an overall bend in the 
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structure. The clustering shows that aegPNA3 is a very flexible molecule with many 

shallow minima. 

Like cpPNA2, cpPNA4 has a cyclopentane modification at residue 4. The RMSD 

of cpPNA4 is higher than that of c/?PNA2, but it follows a similar pattern of fluctuation. 

A loop appears at the modification site at 400 ps. This loop continues to widen and fold 

until 4.8 ns at which point the PNA reaches a folded state which exists for the remainder 

of the simulation. 

The most populated clusters from the three schemes have very similar dihedral 

angle values. Eight clusters from Scheme II and three clusters from Scheme III matched 

those of Scheme I. The remaining one cluster from Scheme I was replaced by three new 

clusters in Scheme II and 6 clusters of Scheme I were replaced by thirteen new clusters in 

Scheme III. Thus, the structures of cpPNA4 were classified into twenty five distinct 

clusters (Figure 44, Tables 26 and 27). Scheme II had a lower population for cluster 5 but 

a higher one for cluster 9. None of the new clusters from Scheme II matched those of 

Scheme III. The most populated cluster for all three Schemes, 7, accounts for 42% of the 

structures, and has a G-type fold over residues 2 to 8. A similar structure was observed 

for cluster 23 with a population of 13% and cluster 16 from Scheme III. Cluster 5 from 

Scheme I and cluster 24 from Scheme III, have a wide loop motif from residues 2 to 7. 

The rest of the clusters have lower memberships. Cluster 2 (Scheme I), cluster 11 

(Scheme II) and cluster 13 (Scheme III), show an extended conformation with a small 

bulge formed at the modification site. 

For Schemes I and II, cpPNA4 had fewer clusters than aegPNA3. For Scheme III, 

cpPNA4 had five more clusters than aegPNA3, but six of the clusters had a population of 

1% or less (none of the aegPNA3 Scheme III clusters were lower than 3%). In addition, 

there is a cluster with a very large population in all Schemes for c/>PNA4, but aegPNA3 

has several clusters with similar populations. These results all suggest that the addition of 

the cyclopentane ring decreased the flexibility of the oligonucleotide. The most populated 

clusters of aegPNA3 and cpPNA4 also differ in their conformations and structural motifs, 

since the modification produces a kink at the site of modification that gives rise to a turn. 

The clusters exhibit different types of folded structures (hairpin vs. G-type), and the 
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terminal regions of the unmodified strand form loops, which was not observed for 

cpPNA4. 

C2 C3 C5 C6 C7 

C8 Cll C13 C16 C24 

Figure 44. Conformation of the central members of the most populated clusters in the 

simulations of cpPNA4. Residues are colored by position: Tl-red, T2- dark grey, T3-

orange, T4-yellow, T5-dark yellow, T6-grey, T7-green, T8-white, and K9-pink. The 

structures are positioned with Tl residue on top and K9 on bottom 
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Table 27. Similar clusters identified from the different clustering Schemes for cpPNA4 

Cluster No. of mem % _, „a 

Cluster # 
Scheme II 

A 145 2.9 1 
B 425 8.5 3 
C 200 4.0 4 
D 339 6.8 5 
E 353 7.1 6 
F 2100 42.0 7 
G 412 8.2 8 
H 311 6.3 9 

Total number of clusters 11 

Cluster No. of mem % _, ^a 

Cluster # 
Scheme III 

A 3630 36.4 7 
B 753 7.5 8 
C 759 7.6 6 

16 
numbers correspond to identical cluster from Table 26 

Table 28. Average dihedrals (°) and RMSF (bold, °) of the simulated aegPNA3 

Residue 

Tl 

T2 

T3 

T4 

T5 

T6 

T7 

T8 

a 

— 
— 

176.2 
23 

176.3 
26 

-169.1 
29 

-176.7 
34 

-176.9 
28 

177.2 
27 

-178.0 
29 

P 
— 
— 

175.4 
30 

-26.0 
95 

-166.4 
65 

171.5 
63 

160.9 
52 

-158.0 
128 

170.3 
59 

Y 

-63.9 
69 

-31.9 
87 

94.2 
19 

92.7 
20 

91.1 
15 

91.0 
15 

91.5 
16 

48.7 
79 

8 

-88.0 
36 

-97.6 
31 

-125.1 
51 

-2.1 
94 

84.8 
17 

113.9 
50 

123.7 
71 
— 

— 

E 

-75.1 
47 

-112.8 
68 

55.3 
125 
16.4 
75 

175.7 
118 
33.0 
87 

-82.5 
148 
— 

— 

Total 
RMSF 

152 

239 

316 

283 

247 

232 

390 

167 

Average 
RMSF 

51 

48 

63 

57 

49 

46 

78 

56 

The RMSF values show that residues T3 and T7 are the most flexible in aegPNA3 

(Tables 28 and 29). During the MD simulation, the T5 and T6 residues tend to have the 

most stacking interactions and have moderate flexibility. The cpPNA4 simulation shows 

that T4, which has the modification, is the least flexible, while residues Ti, T2, T7 are the 
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most flexible. In fact, T4 is very inflexible in the cpPNA4 simulation. Residues T5 and T6 

undergo minimal changes in their secondary structure during the simulation and, 

therefore, are able to establish stacking interactions and have low flexibility. Comparison 

between aegPNA3 and c/?PNA4 shows that the fluctuations of residues 3, 4, 5, 6 and 8 

are reduced with the addition of the cyclopentane modification. As with cpPNA2, the 

modification leads to decreased flexibility, particularly at the modification site, together 

with increased mobility of other residues, though not the same ones (Ti and Ts, cpPNA2; 

Ti and T2, c/?PNA4). 

Table 29. Average dihedrals (°) and RMSF (bold, °) of the simulated c/?PNA4 

Residue 

TI 

T2 

T3 

T4 

T5 

T6 

T7 

T8 

a 

— 
— 

179.4 
21 

-177.8 
26 

-104.9 
19 

-167.6 
20 

168.8 
28 

172.6 
28 

-176.1 
22 

P 
— 
— 

31.1 
59 

162.5 
36 
68.5 
13 

-100.6 
48 
87.4 
33 

-74.9 
92 

-146.2 
66 

Y 

13.9 
91 
92.2 
18 
83.8 
13 
57.9 
16 
87.7 
32 
90.9 
12 
99.6 
19 
96.1 
16 

5 

90.0 
28 

-145.0 
76 

140.4 
58 

107.5 
11 
95.9 
25 
88.8 
21 

-26.5 
86 
— 

— 

8 

-89.4 
124 

-122.3 
136 
157.1 
58 

165.7 
29 
38.0 
53 
13.7 
55 

-53.9 
109 
— 

— 

Total 
RMSF 

243 

310 

191 

88 

178 

149 

334 

104 

Average 
RMSF 

81 

62 

38 

18 

36 

30 

67 

35 

Comparing aegPNA3 and cpPNA4, the cyclic constraint caused a decrease in the 

fluctuations of the P, y and 5 torsions, while the fluctuations of the a and £ dihedrals 

remained about the same. The flexibility of the a torsions is small and approximately 

equivalent for all investigated molecules and thus is not mentioned further. The e torsion 

has the highest fluctuations for all four simulations, which means that the modification 

has no impact on the flexibility of this dihedral. The modification produces significant 

changes in the preferred conformations of the molecule as well as in the overall 
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flexibility. The most significant changes in the cpPNA4 strand are that the P dihedrals 

vary significantly along the chain, rather than having values around 170°, which is what 

was observed in aegPNA3. On the contrary, the 8 torsion, which has a large range of 

values in aegPNA3, covers a range of 90-140° in cpPNA4. Thus, introduction of the 

constraint considerably changed the behavior of these dihedral angles. The y torsion 

remains primarily at its original value of 90° for both simulations. 

Overall, these results indicate that aegPNA has various conformational ensembles 

and therefore higher conformational entropy, while cpPNA is more conformationally 

restricted and thus, has lower conformational entropy. The conformational constraint of 

the strand caused by cpPNA was evidenced by the differences in the dihedral fluctuations 

and the reduced numbers of highly populated clusters for cpPNA. In addition, the 

modification affected the distributions of average dihedrals, restricting them into a 

specific range of preferred values. The P angles were adjusted to be in the range of those 

for typical DNA/DNA and RNA/RNA duplexes. Consequently, cpPNA should have a 

stronger duplex forming ability than unmodified PNA. 

PNA-MBio sequence: aegPNA12 and cpPNA13 

In the simulations of aegPNA12, the RMSD stays below 4 A, but there is a great 

amount of fluctuation at ~5 ns (Figure 37). Analysis of the trajectory structures shows 

that this movement corresponds to formation of a bend in the molecule. After 6 ns, the 

RMS deviations start to converge to around 6 A. The evolution of new conformations 

during the simulation was examined. At the beginning of the trajectory, the 

oligonucleotide is still in its starting conformation. At 2.5 ns, many conformations appear 

which have different structural motifs. At 3 ns, a wide loop, from residues 4 to 8 is 

observed. This structure lasts for a nanosecond and becomes an co-loop. At 5ns, the 

conformation changes to a wide bend in the middle portion of the strand that eventually 

becomes a coil. At 9.2 ns, the strand folds again into an co-loop. In summary, the 

simulation points to the tendency of the PNA molecule to attain different conformations, 

however the structures seem to be similar in energy and the molecule fluctuates around 

an ensemble of conformations characterized by the presence of various motifs. 
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Conformations obtained from clustering were classified into twenty two unique 

patterns (Tables 30 and 31). Six of the clusters from Scheme I were also located using the 

parameters of Schemes II and III. Four additional clusters were identical between 

Schemes I and II. The remaining cluster from Scheme I was substituted by seven new 

clusters in Scheme II. Four clusters of Scheme I were replaced by four new clusters in 

Scheme III. Only cluster 17 of Scheme II was found to be identical to a cluster in Scheme 

III. There are no significant differences in the predominant structures between Schemes I 

and III. Most of the conformations are coil-like, but there are also clusters with an 

extended structure, as shown in Figure 45. The backbone structures are very diverse; 

hence, a stable structure could not be detected. 

The most abundant cluster for Schemes I and III, 6, exhibits a wide bend with a 

slight helical turn. The second most abundant pattern in Scheme I, but also present in 

Schemes II and III, 10, exhibits an co-loop. The third most populated cluster in Scheme I, 

7, has a C-terminal loop and is a coiled structure. Cluster 5 (Scheme I) contains structures 

with a wide loop, amounting for 8% of the total number of structures. Finally, cluster 1, 

observed for all three Schemes, resembles the initial helical conformation. The clusters 

located only by Schemes II and III have low population numbers, and, therefore, are not 

considered to be significant. As in the aegPNAl simulations, the predominant structures 

from different clustering schemes are very similar. As demonstrated by the RMSD plot, 

the molecule remains in the helical-like extended conformation of the starting structure 

for a smaller period of time. 
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CI C2 C5 C6 C7 

C8 CIO C14 C15 

Figure 45. The most populated conformers observed in MD simulations of aegPNA12. 

Residues are colored by name: APN-blue, CPN-orange, TPN-green, and GPN-red. The 

structures are positioned with GPN1 on top and TPN10 on bottom (see Table 17 for the 

MB io sequence) 
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Table 31. Similar clusters identified from the different clustering Schemes for aegPNA12 

Cluster No. of mem % _, ^ „0 

Cluster # 
Scheme II 

A 485 10 1 
B 88 2 11 
C 404 8 2 
D 41 1 3 
E 308 6 5 
F 1345 27 7 
G 352 7 8 
H 140 3 9 
I 574 11 10 
J 321 6 4 

Total number of clusters 17 

„, . XT ^ o/ Scheme I, II Cluster No. of mem % _, ^a 
Cluster # 

Scheme III 

A 953 9 1 

B 1012 10 2 

C 1122 11 5 

D 2188 22 6 

E 1261 13 7 

F 739 7 8 

G 981 10 10 

H 592 6 17 

12 

numbers correspond to identical cluster from Table 30 

The calculated RMSF profile provides a more detailed view of residue flexibility 

(Table 32). The N-terminal residues, G\ and T2, have large RMSF values, indicating that 

the N-terminal region in classical PNA is very flexible. Of the non-terminal residues, 6 

and 7, which are turn residues, showed the most flexibility. The central residue G4 had 

the lowest RMSF. The p and s torsion angles had larger fluctuations than the other 

angles. The y dihedral also exhibited significant fluctuations, except for the residues 

involved in base stacking, G4 and C9. The a dihedrals have the lowest fluctuations 

followed by the 8 dihedrals for residues 4-10. Conformational analysis indicates that the 

P torsions lie in the range 130-170° (except for G4 and C9). As seen in Table 27, nearly 

all values seem to be possible for the 8 torsion. The 8 dihedrals in the central region 

remain constant at 60-90°. In contrast, three different ranges of y values were observed: 

70-90° (residues 1, 2, 4, 9), 20-40° (residues 3, 6, 8) and -15 to -50° (residues 5, 7, 10). 
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Table 32. Average dihedrals (°) and RMSF (bold, °) of the simulated aegPNA12 

Residue 

Gl 

T2 

A3 

G4 

A5 

T6 

C7 

A8 

C9 

T10 

a 

— 

177.8 
26 

-177.4 
24 

169.0 
26 

176.4 
26 

178.4 
34 

166.9 
27 

179.6 
31 

173.8 
29 

172.5 
25 

P 
— 

-41.9 
151 
142.1 
53 

69.3 
24 

149.4 
53 
156.5 
51 
159.1 
51 
129.9 
65 
40.9 
85 

173.7 
31 

Y 

70.1 
63 
77.2 
47 
36.2 
81 

85.7 
12 

-15.0 
93 
21.9 
87 

-28.7 
90 
27.8 
87 
92.7 
15 

-49.5 
79 

5 

169.7 
83 

-79.4 
107 

56.0 
62 

95.0 
20 

89.5 
20 
90.7 
19 
51.5 
69 

91.1 
21 
96.4 
19 
— 

E 

161.9 
77 

-83.9 
108 

58.5 
49 
7.1 
66 
34.1 
67 
11.4 
117 

148.3 
153 
11.2 
74 
74.8 
61 
— 

Total 
RMSF 

223 

439 

269 

148 

259 

308 

390 

278 

209 

135 

Average 
RMSF 

74 

88 

54 

30 

52 

62 

78 

56 

42 

45 

The cpPNA13 has the cyclopentane modification at the T6 residue. The RMSDs 

with respect to the starting conformation of cpPNA13 are characterized by fluctuations of 

up to 6 A (Figure 37). Since the simulation started from a helical conformation, the first 

conformations sampled correspond to similar, helical structures. Subsequently, PNA 

adopts an S-type coil (1.8 ns) that unfolds (6.8 ns) and then reaches the final, coil 

conformation (7.5 ns). 

The clustering procedure identified twelve distinct clusters (Tables 33 and 34). 

Four clusters were identical between Schemes I and II, and only two clusters from 

Scheme I matched those of Scheme III, though the population percentage of the cluster 

similar to cluster 4 was much lower. Two clusters from Scheme I were substituted by 

four new clusters in Scheme II, while four clusters from Scheme I were replaced by two 

clusters in Scheme III. In Figure 46, the typical structures from each cluster are shown. 
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û  
SO 

i 

10
6 

Os 

•* 
i 

10
3 

• * 

so 

, t 
<N 
i 

00 
00 

o 
so 

t-~ 
o 
1 

Os 
w-i 

O 
1-H 

i 
10
51
 

o 

m t~-

• * 

oo 

(N 
t~-

m 
Os 

Os 
OS 

00 

SO 
00 

t~ 

1 

so 
Os 

00 
so 

-4
3 

Csl 
00 

OS 
SO 

-̂  SO 

Os 
SO 

fN 
00 

Os 
t~ 

SO 
00 

<N 
t^ 

V) 

t^ 

Sc
he

m
e 

II
I 

17
52
 

^̂  

so 

i 

SO 
SO 

SO 
SO 

1^ 
t^ 

17
9 

-2
5 

• * 

oo 

Ĥ 
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Table 34. Similar clusters identified from the different clustering Schemes for cpPNA13 

/-i * XT f 0/ Scheme I Cluster No. of mem % _, „„ 
Cluster # 

Scheme II 
A 581 11.6 1 
B 2348 47.0 4 
C 269 5.4 5 
D 138 2.8 6 

Total number of clusters 8 

Cluster No. of mem % _, ,,a 

Cluster # 
Scheme III 

A 711 7.1 6 

B 1935 19.4 4 

4 
anumbers correspond to identical cluster from Table 33 

The most populous and presumably lowest energy clusters are clearly enriched in 

conformations containing turns and loops. Cluster 12 from Scheme III has the highest 

population for that Scheme and differs from cluster 4, which has the highest population 

for Schemes I and II, only in the value of the C78 dihedral. The most abundant pattern 

from Scheme I and II, cluster 4, contains a series of loops involving residues 1 to 4, 5 to 6 

and 7 to 9. Clusters 2 (Scheme I) and 12 (Scheme III) exhibit an S-type coil 

conformation. PNA seems to prefer this pattern and it can be combined with a C-terminal 

loop or turn motifs. Cluster 10 from Scheme II has a bent backbone with N- and C-

terminal loops. Cluster 1, which is observed for Scheme II as well, contains helical motifs 

which resemble the initial conformation. A comparison of the clustered conformations of 

aegPNA12 and those of cpPNA13 shows major differences. The unmodified PNA strand 

does not have a preferred structure and numerous conformations with various structural 

motifs were observed. On the contrary, the most probable conformations of the modified 

c/?PNA13 have a single coil pattern. In addition, the number of clusters is greatly reduced 

upon addition of the cyclopentane ring and one cluster with a very large population is 

observed for cpPNA13, unlike the numerous clusters with similar populations observed 

for aegPNA12. Therefore, the cyclopentane-modified strand has reduced flexibility and 

should bind stronger to DNA due to a reduction of the entropy penalty. 
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C7 Cl l C12 

Figure 46. Central members of the most populated clusters of structures from c/?PNA13 

simulations. Residues are colored by name: APN-blue, CPN-orange, TPN-green, TPC-

light blue and GPN-red. The structures are positioned with GPN1 on top and TPN10 on 

bottom (see Table 17 for the MBio sequence) 

The analysis of the cpPNA13 RMSFs show that the C9 residue has the largest 

fluctuations, which can be attributed to the mobility of the turn over residues C7 to C9. In 

addition to G4, which had the lowest fluctuations in the unmodified PNA, the T6 and C7 

residues, where the modification is located, have low fluctuations in cpPNA13. It is 



immediately apparent that the RMSF values for aegPNA12 are much larger in magnitude 

than for cpPNA13. This reduction in flexibility is assumed to be largely a consequence of 

the modification. Similar to aegPNA12, in c/?PNA13 the largest dynamical motion was 

observed for the torsion angle s. However, the RMSF values for s are much lower for the 

strand with the modification, particularly for residues 1, 2, 6 and 7. Even though the 

modification is at residue 6, the flexibility of the whole strand is reduced. The lower 

dihedral flexibility agrees with the clustering results. Modification of the backbone of the 

decamer seems to have a greater effect on stability than was observed for the 

polythymine monomers. 

Table 35. Average dihedrals (°) and RMSF (bold, °) of the simulated cpPNA13 

Residue 

Gl 

T2 

A3 

G4 

A5 

T6 

C7 

A8 

C9 

T10 

a 

— 

— 

172.3 

21 
-167.5 

25 
178.6 

25 
-160.3 

26 
-111.8 

19 
-172.1 

22 
-175.1 

31 
-171.1 

27 
175.1 

22 

P 
— 

— 

54.1 

31 
156.4 

44 
65.1 

22 
134.8 

39 
65.5 

7 
165.8 

27 
165.1 

40 
50.9 

129 
32.2 

66 

Y 

24.5 

93 
85.0 

12 
87.8 

12 
80.4 

14 
100.4 

16 
61.8 

18 
85.5 

13 
90.9 

21 
72.1 

30 
93.2 

17 

5 

83.6 

16 
-131.4 

73 
87.1 

19 
99.0 

20 
-123.0 

71 
106.8 

14 
95.3 

17 
82.2 

17 
61.9 

45 
— 

— 

E 

61.3 

26 
3.2 
59 

-72.3 

86 
-48.1 

60 
-98.9 

41 
13.8 

35 
-35.1 

63 
-56.8 

71 
-68.7 

84 
— 

— 

Total 
RMSF 

135 

196 

186 

141 

193 

93 

142 

180 

315 

105 

Average 
RMSF 

45 

39 

37 

28 

39 

19 

28 

36 

63 

35 

To further analyze the character of the fluctuations caused by the presence of the 

cyclopentane ring, the average dihedral angles were examined (Table 35). Although the 
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backbone p angles still have values in the 140-160° region, many residues now have 

values of -60° (2, 4, 6 and 10). The y and 5 torsions become restricted to a narrower 

range and with the exception of certain residues (1,6 and 2, 5, respectively), adopt values 

around 90°. The range of variations for the s torsions (except T2 and T6) is from -40 to -

70°. The largest differences in the average angle ranges are observed for the y and s 

dihedrals. The modification also had a small influence on the p and 8 torsions in residues 

2, 6, 10 and 1, 2, 5, respectively. Overall, the modification has reduced the flexibility and 

altered the conformational preference of the strand. 

PNA-MBio sequence with Lys: aegPNA14 and cpPNA15 

For the aegPNA14 simulation, the RMSDs over time compared to the starting X-

ray structure are under 5 A (Figure 36). At the beginning of the simulation, the 

aegPNA14 is still in an extended conformation. Subsequently, the molecule forms a 

stable, closed loop structure at 1.7 ns and undergoes a very limited number of structural 

fluctuations for the next 4 ns. Then, the molecule stays in an alternate conformation for 

the rest of the MD trajectory (6-10 ns), and no new conformations are observed. 

^4egPNA14 was classified into seventeen clusters (Figure 47, Tables 36 and 37). 

The predominant structures obtained using all three criteria have similar dihedral angles. 

Eight clusters from Scheme II were similar to the clusters obtained from Scheme I. The 

other three clusters from Scheme I were replaced by four new clusters in Scheme II. Four 

of the clusters from Scheme I were also identified in Scheme III, though with higher 

population percentages. The remaining seven clusters were substituted with three 

clusters, one of which matched a cluster in Scheme II. Only three clusters matched 

between all three Schemes. 

Cluster 6 from Schemes I and II, cluster 17 from Scheme III and cluster 8 from all 

three Schemes represent the most abundant pattern and suggest that most of the structures 

are grouped in only three clusters. These patterns are characterized by a G-type loop from 

residues 1 to 7. Cluster 4, which exists in all three Schemes, has a closed loop structure 

(residues 1 to 10). Cluster 1 has helical dihedral angles from residues 3 to 7. In summary, 
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the simulation shows that the PNA folds in the first 2 ns, to adopt a fold that is fairly well 

maintained for the rest of the MD trajectory. 

Cl C4 C6 C7 

C8 C14 C17 

Figure 47. Structures of central cluster members of the simulation of oegPNA14. 

Residues are colored by name: APN-blue, CPN-orange, TPN-green, GPN-red and K-

purple. The structures are positioned with GPN1 on top and K l l on bottom (see Table 17 

for the sequence) 



135 

a 

1 
< 

<D 

-S3 
+-» 

s 
«§ 
Si 
<u 
=3 

J3 o 
c« 
<U 
Si 

«s 

a 
c3 
CI 

_o 
Si 
O 

-4-» 

U 
oB 
c3 
Si 
<U > 
< 

ON 

U 

so 
•< 

vo 

3 

ci 

CN 

H 

to 

K 

« 

<o 

«a. 

to 

K 

5i 

Hi 

^ 

to 

^ 

« 

<-o 

«J. 

to 

^ 

a 

K> 

<^ 

S 

d E 
Z 5 

3 

u 

ON 

in 

ci 
00 

CN 
VO 

oo 
VO 

00 

oo 

00 

in 
vo 

in 
VO 

ci 
00 

vo 

ON 

oo 
vo 

VO 

(N 
OO 

ON 

• 

00 

00 
vo 

ci 
ci 

CN 
^^ Cl 

£ 

3 

o 

ON 

00 
1 

vo 

t~ 

00 
vo 

ci 
VO 

CN 
00 

ON 

VO 

NO 

00 

ON 

ON 
OO 

NO 

ON 

00 
(N 

CN 

O 

© 

o 

o 

00 

ON 

NO 

ON 

00 

00 

• * 

1 

VO 

• * 

r^ 

oo 

ON 
m 

ci 
VO 

VO 
OO 

O 
OO 
1 

VO 
ON 

m 
vo 

© 
c4 

ci 
O 
CN 

ci 

• 

in 
ON 

C I 

ON 

<N 
VO 

m 

CN 
ON 
I 

vo 

m 
00 

ON 

• 

vo 
00 

00 

r~ 

ON 
ON 

VO 

CN 
vo 

ON 
OO 

vo 

1 

<N 

o 
VO 

V) 
vO 

CN 
m 
VO 

ON 

ON 

oo 

t~ 

00 

ON 

ON 
ON 

in 
© 

© 
m 

VO 
© 

VO 
VO 

t~ 

ci 
© 

m 

CN 
oo 

ON 

ci 
vo 

in 
ON 

vo 

O 

I-; 

m 
vo 

m 

11
4 

ON 

00 

in 
ON 

in 

• 

ON 

ON 

VO 

(N 
00 

• 

00 

in 
oo 

© 
00 

© 

ON 
vo 

00 
m 

OO 

in 

ON 

© 
vo 

e 

© 
(N 

VO 

12
7 

© 

© 
00 

00 
ON 

1^ 

in 
in 

© 

i 

00 
in 

•<* 
00 

VO 

in 

in 
ON 

in 
vo 

00 

in 

(N 
t--

• 

oo 
00 

00 

vo 

o 
© 
1-H 

© 
© 

VO 

in 

i 

vo 
ON 

VO 

vo 

VO 

in 
1-

ON 
ON 
I 

vo 

ON 

VO 
VO 

r̂  

s 
in 
vo 

00 
00 

in 

oo 

-3-
ON 

ON 

ON 

ON 
ON 
m 
tN 

OO 

© 
00 

© 

t~ 

in 
oo 

00 
in 

i 

rn 
vo 

i 

VO 
00 

o 

VO 

ON 
vo 

<N 
OO 

in 

in 
VO 

VO 
VO 

ON 
OO 

i 

© 

vo 

ri 

© 

ON 

-1
35

 

ON 

in 

ON 

ON 

VO 

vo 
© 

in 
oo 

vo 

© 

vo 
vo 

© 
r--

oo 
00 

(N 

vo 
ON 

in 
vo 

VO 
in 

00 

m 

00 
in 

vo 

in 
in 

© 

in 
ON 

in 
© 

(N 

ON 
00 

00 
VO 

VO 
CI 

00 

© 

00 

VO 

CN 
VO 

in 
oo 

© 
00 

ON 

ON 
in 

VO 

oo 

CI 

ON 
© 

in 
in 

vq 

oo 

© 

00 
00 

CI 

1 

© 

1 

© 
00 

Cl 
oo 

in 
vo 

in 
vo 

Cl 
00 

in 

VO 
VO 

vo 

-3" 
00 

ON 

in 
ON 

VO 

VO 
•<*• 

p~ --i 
in K_ ro 
"̂ - ^ <N 

5 
-a 
% 

VO 
© 
1 

ON 

VO 

C) 
ON 

VO 

ON 

O 

i 

VO 

Cl 
© 

VO 

ON 

ON 

© 
© 

t~ 

VO 

00 

1-
in 

© 

in 

ON 

in 

Cl 

11
0 

vo 
© 

00 

ON 

in 
VO 

i 

CN 
in 

ON 
I 

in 
in 

Cl 
00 

in 

00 

Cl 
00 

© 
oo 

in 
ON 

Cl 

in 
VO 

Cl 
00 

in 

vo 
oo 

© 
VO 

© 
VO 
Cl 

-1
37

 

ON 

in 
vo 

oo 
CN 

1 

CN 
ON 
1 

Cl 
ON 

• 

© 

Cl 
oo 

m 
vo 

© 

in 
© 

© 

00 

r-
• 

vo 

vo 
ON 

Cl 
ON 

vo 

c-4 

ON 
ON 

© 
ON 

OO 
VO 

Cl 
00 

ON 

r^ 

o 
1 

ON 
in 

VO 
© 

VO 

CN 

VO 
© 

CN 
in 

© 

VO 

VO 

Cl 

I 

00 

• 

in 
© 

in 
in 

t-; 

ON Cl 
© t? r^ 
— 15! C N 

ta 

S 

•* ^ VO 

12
0 

in 

o 

ON 

00 
ON 

ON 
VO 

I 

CN 
in 

VO 
ON 
1 

in 
in 

00 

© 
Cl 

00 

ON 

00 

• * r^ 

vo 
ON 

© 

i 

in 
oo 

ON 

I 

VO 
OO 

Cl 
in 

e 

in 
© 
© 
CN 



136 

Table 37. Similar clusters identified from the different clustering Schemes for egPNA14 

Cluster No. of mem % „,, ^ „a 

Cluster # 
Scheme II 

A 891 17.8 1 
B 101 2.0 3 
C 144 2.9 10 
D 101 2.0 5 
E 730 14.6 4 
F 475 9.5 7 
G 941 18.8 8 
H 670 13.4 6 

Total number of clusters 12 

Cluster No. of mem % „, ,.<, 
Cluster # 

Scheme III 
A 1669 16.7 1 
B 1059 10.6 11 
C 544 5.4 13 
D 2290 22.9 4 
E 2160 21.6 8 

7 
numbers correspond to identical cluster from Table 36 

The cpPNA15 strand has a cyclopentane modification at residue T6. The RMSD 

over time is under 5 A. The conformation of the strand evolves from the starting helical 

structure to a hairpin loop (1.6 ns). This structure exists interchangeably with a closed 

loop form for the remainder of the simulation (2-10 ns). The simulation of cpPNA15 

yielded thirteen clusters (Tables 38 and 39). Scheme I only provided three clusters. Two 

of them were also located with Scheme II and III. The remaining cluster from Scheme I 

was replaced by five new clusters in Scheme II and nine new clusters in Scheme III. 

Three of the new clusters from Scheme III matched those of Scheme II. Cluster 2 from 

Scheme I and cluster 3 from all three Schemes have a closed loop conformation (residues 

lto 10) (Figure 48). Cluster 5 from Scheme II has a similar conformation. Clusters 6 and 

8 from Scheme II along with cluster 10 from Scheme III contain structures with a hairpin 

loop involving residues 1 to 8. Cluster 1 (Scheme I), 4 and 7 (Scheme II) feature helical 

turns from residues 3 to 8. 

For Schemes I and II, the number of clusters was greatly reduced indicating the 

decreased flexibility of the cpPNA15 strand. In addition, clusters with an increased 

population were observed for all three Schemes of cpPNA15. Taken together, the 

simulations of aegPNA14 and cpPNA15 show that the conformation of the decamer is 

significantly changed by modification. The aegPNA14 simulations sample a set of 

conformers, none of which are very dominant and the conformers exhibit various 

secondary structural elements. On the other hand, the most common backbone 
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conformations identified for c/?PNA15 are restricted to hairpin-like and closed loop 

conformations. 

Cl C2 C3 C4 C5 

C6 C7 C8 CIO 

Figure 48. Structures of central cluster members of the simulation of cpPNA15. Residues 

are colored by name: APN-blue, CPN-orange, TPN-green, TPC- light blue, GPN-red 

and K-purple. The structures are positioned with GPN1 on top and K l l on bottom (see 

Table 17 for the sequence) 
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Table 39. Similar clusters identified from the different clustering Schemes for cpPNA15 

Cluster No. of mem % _, „„ 
Cluster # 

Scheme II 
A 1362 27.2 3 
B 426 8.5 1 

Total number of clusters 7 

„, . XT x- o/ Scheme I, II Cluster No. of mem % _, „0 
Cluster # 

Scheme III 
A 1258 12.6 7 
B 4026 40.3 3 
C 423 4.2 5 
D 283 2.8 1 
E 847 8.5 4 
F 1119 11.2 8 

12 

numbers correspond to identical cluster from Table 38 

Table 40. Average dihedrals (°) and RMSF (bold, °) of the simulated aegPNA14 

Residue 

Gl 

T2 

A3 

G4 

A5 

T6 

C7 

A8 

C9 

T10 

a 

— 

-171.4 
27 

-179.4 
29 

171.8 
27 

175.5 
31 

176.8 
23 

169.3 
27 

171.5 
34 

178.1 
23 

-179.4 
24 

P 
— 

59.4 
20 

145.5 
44 

101.6 
55 

28.5 
66 

30.7 
58 

165.8 
46 

93.7 
173 
63.6 
95 

154.6 
53 

Y 

70.2 
60 

83.8 
12 

84.4 
27 

43.7 
78 

89.9 
15 

91.2 
15 

-65.1 
120 

159.4 
86 

94.7 
18 

100.8 
41 

5 

103.4 
21 

97.5 
22 

83.9 
21 

91.3 
20 

86.3 
16 

87.0 
18 

91.9 
23 

98.0 
21 

94.9 
21 
— 

E 

-38.2 
57 

63.3 
42 

48.0 
54 
5.7 
66 

72.0 
28 

45.8 
86 

145.4 
131 
61.1 
56 

42.4 
113 
— 

Total 
RMSF 

138 

123 

175 

246 

156 

200 

347 

370 

270 

118 

Average 
RMSF 

46 

25 

35 

49 

31 

40 

69 

74 

54 

39 

To further address the effect of the single cyclopentane modification, the RMSF 

profiles of aegPNA14, and cpPNA15 were compared. According to Tables 40 and 41, the 

dynamics of many regions were affected by the modification. Most notably, residues G4 



140 

to Ag, except for A5 are more rigid in c/?PNA15. The reduced flexibility of the modified 

T6 residue is not surprising but the increased flexibility of the immediate neighboring 

residue A5 is unexpected. The change in overall flexibility is not as pronounced as was 

observed for the strands without lysine. Most likely, the already reduced flexibility of the 

lysine containing aegPNA accounts for this discrepancy. 

The two simulations were also compared by analyzing the average dihedral 

angles. Initially, it seems that the presence of the ring did not affect the average values 

since all the dihedrals, except for s, stayed close to the values observed for the 

aegPNA14. In particular, the 5 torsion remains fixed in its preferred value of -100°. 

However, upon detailed examination, a significant contrast was found when comparing 

the P, y and s dihedrals of residues 5-9. The values of the 8 dihedrals are more consistent 

in cpPNA15 and new values are observed for the P and s angles. 

Table 41. Average dihedrals (°) and RMSF (bold, °) of the simulated cpPNA15 

Residue 

Gl 

T2 

A3 

G4 

A5 

T6 

C7 

A8 

C9 

a 

— 
— 

177.3 
17 

-164.8 
21 

-169.5 
29 

169.2 
29 

-124.4 
23 

-169.1 
27 

172.0 
18 

-175.7 
25 

P 
— 
— 

66.6 
26 

152.1 
34 

95.3 
45 

160.7 
43 

114.1 
32 

66.3 
24 

58.6 
11 

-95.8 
111 

Y 

78.6 
55 

78.3 
10 

96.0 
15 

90.6 
12 

157.7 
82 

89.0 
14 

76.0 
10 

79.8 
11 

95.6 
17 

5 

87.7 
15 

107.2 
17 

93.9 
29 

87.9 
17 

87.9 
16 

98.5 
9 

80.9 
15 

93.7 
20 

-152.3 
86 

8 

58.6 
32 

61.9 
62 

50.2 
48 

-45.7 
38 

-93.5 
69 

48.7 
31 

-72.0 
16 

-66.3 
56 
9.4 
93 

Total 
RMSF 

102 

132 

147 

141 

239 

109 

92 

116 

332 

Average 
RMSF 

34 

26 

29 

28 

48 

22 

18 

23 

66 
-179.7 -179.2 39.5 — — 

32 31 86 — — 149 50 
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The overall results show that as far as the structural properties are concerned, 

aegPNA and cpPNA are very different. Reduction in the number of conformations 

indicates a clear modification in the dynamical properties of the PNA strand. Evidence of 

the greater stiffness with respect to the unmodified form is revealed by analysis of the 

backbone dihedral RJVISF, and is also confirmed by the clustering data. Such findings 

suggest that the cyclopentane ring plays an important role in determining the flexibility of 

PNA. The present simulation studies indicate that the cyclopentane modification caused 

changes in the average values of the backbone torsion angles (p\ y, s) around the residue 

with the modification. We suggest that a single cyclopentane ring in PNA functions as an 

entropic regulator, which reduces the conformational entropy of PNA and increases the 

binding to DNA. The modification also affects the torsional potential energy surface 

which could also have consequences on the DNA binding energy. 

THE EFFECT OF THE TERMINAL LYSINE 

PNA-Tg sequence 

The RMSF results were used to estimate the effect of the terminal lysine on the 

strand flexibility; therefore, comparisons of the flexibility profiles of aegPNAl vs. 

aegPNA3 and cpPNA2 vs. cpPNA4/4a were performed. v4egPNA3 and cpPNA4 contain 

a Lys residue attached at the C-terminus. The backbone dihedral fluctuations of the 

residues in «egPNA3 were significantly larger than those in aegPNAl. Generally, the N-

terminal exhibited larger fluctuations during the aegPNA3 simulation. Two other regions, 

residues 3 and 4, and the C-terminal residues 7 and 8 had considerably larger fluctuations 

in aegPNA3 than in aegPNAl. At the same time, central residue 6 showed moderate but 

decreased flexibility in aegPNA3. In general, the distributions of the average values tend 

to be somewhat narrower for aegPNA3 than for aegPNAl. This difference is particularly 

noticeable for the y torsion (90-95°). Some major changes are observed for the N-

terminal dihedrals yl and y2 which change from 9 to -64° and from -32 to -96°, 

respectively. The P torsion primarily remains in its original range of 160 - 178° with the 
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exception of residue 3 which has a value of-35° in both simulations. The 8 dihedrals of 

all residues but T7 change significantly when the Lys is attached to the C-terminus. 

A comparative analysis of c/?PNA2 and cpPNA4 was also performed. The N-

terminal residues, 1 to 3, in cpPNA4 have greater RMSF values than in cpPNA2, 

indicating that the N-terminal region is more flexible. Just as in aegPNA3, this change in 

residue flexibility is assumed to be largely a consequence of the lysine, even though the 

lysine is attached at the C-terminus. Residue 7 also had higher RMSF values. A similar 

pattern of enhanced flexibility was also observed for aegPNAl and aegPNA3. Residues 4 

to 6 and 8 were less flexible than the corresponding residues in aegPNAl. While the 

flexibility of some residues was slightly altered; overall, the flexibility of the strands 

remained the same. Further examination revealed marked differences in the y and 

S dihedral fluctuations, with y being less flexible and 5 more flexible in cpPNA4. These 

results provide additional evidence that the lysine has an impact on flexibility. In 

particular, the y6 and 83 dihedrals are commonly affected by Lys. 

The Lys attachment produces significant changes in the average values of the P 

and s torsion angles. Even though a particular range could not be identified for either of 

the torsions, large differences exist in the respective angle values for the two strands. 

However, the four angles 03, pM, s6 and e7 remain essentially unchanged despite the 

changes in the other dihedrals. The most significant changes occur at the termini where 

yl, y2 and y8 adopt values of-51°, -59° and -30°, respectively, rather than values of 13°, 

92° and 84°, which are the corresponding angles in cpPNA4. The two strands have 

similar average values for the y torsion in the central region of the strand. 

The results show that the terminal lysine, although only slightly altering the 

structure, significantly affects the thermodynamic stability of the molecule. The number 

of clusters is increased when comparing aegPNAl to aegPNA3, but approximately the 

same for cpPNA2 and c/?PNA4. However, the RMSFs are significantly increased for both 

strands containing the lysine. This increase in total conformers and RMSFs shows the 

higher conformational variability of the strands with the lysine. In spite of the presence of 

the cyclopentane ring, the cpPNA4 strand has greater flexibility than the cpPNA2 strand, 

except at the modified T4 residue. This result is surprising, because modified PNA 

strands usually have smaller fluctuations, and could be an indication that lysine is 
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involved in determining the flexibility and dynamical features of PNA. Also, we note 

comparatively higher fluctuations at the N-terminal region and differences in the y and 5 

average values. Overall, the results indicate that the introduction of the Z-Lys at the C-

terminus of PNA dramatically increases its inherent flexibility and impacts the entropy of 

binding. 

The effect of the stereochemistry of the lysine 

D-lysine is thought to add stereochemistry to the PNA strand, which causes an 

increase in the strength of binding to DNA and also creates a preference for right-handed 

helices. Therefore, incorporation of a ZMysine vs. 1-lysine should alter the interaction 

with DNA and its helical preference. In order to evaluate the impact of D-Lys on the 

conformational behavior, an MD simulation of 10 ns was run. RMSDs from the starting 

structure were calculated for c/?PNA4a.The trajectory stabilized after 6 ns with an 

average RMSD of 4.0 A (Figure 2). During the simulations, the secondary structure 

elements are stable during the 10 ns period, albeit the number of helical elements 

decreases and the formation of bend and loop elements increases. 

Conformational cluster analysis shows that the trajectories of the simulations 

yield twenty nine distinct clusters (Tables 42 and 43). Fourteen clusters were identical 

between Schemes I and II and eight clusters were found to be similar between Schemes I 

and III. The other five clusters from Scheme I were replaced by four new clusters in 

Schemes II, while the remaining thirteen clusters of Scheme I were replaced with five 

clusters in Scheme III. One of the clusters from Scheme II was also located using the 

parameters of Scheme III. A detailed analysis was performed on the most representative 

structures. The central members of the most populated, clusters are shown in Figure 49. 

The predominant clusters from Scheme I match those of Scheme II. On the contrary, the 

highly populated cluster from Scheme III (45%) is similar to cluster 3 from Scheme I, 

which contains only 2% of the structures. 
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Table 43. Similar clusters identified from the different clustering Schemes for c/?PNA4a 

Cluster No. of mem 

Scheme II 
A 

B 

C 

D 

E 

F 

G 
H 

I 

J 

K 

L 
M 

N 

162 

428 

474 

652 

104 

482 

94 

124 

337 
138 

465 

439 

113 
44 

% 

3.2 

8.6 

9.5 

13.0 
2.1 

9.6 

1.9 
2.5 

6.7 

2.8 

9.3 

8.8 

2.3 

0.9 

Total number of clusters 

Scheme I 
Cluster if 

1 

13 

18 
2 

3 

4 

5 

6 

8 

10 

14 

15 

21 

9 

18 

Cluster 

A 

B 

C 

D 

E 

F 

G 
H 

I 

No. of mem 

Scheme III 

409 

4533 

1460 
1148 

644 

296 
594 

44 

144 

% 

4.1 
45.3 
14.6 
11.5 
6.4 
3.0 
5.9 
0.4 
1.4 

Scheme I, II 
Cluster #a 

1 

3 
14 

4 

7 

6 

9 

13 

22 

13 
numbers correspond to identical cluster from Table 42 

In the three most representative clusters from Scheme I (cluster 12, 15 and 18), 

which are equally populated, residues 2 to 4 form an inner loop. Cluster 4 from Scheme I 

and cluster 24 from Scheme II group structures that exhibit a wide hairpin loop. Cluster 2 

contains structures that adopt an Q-loop conformation spanning residues 2 to 7. Cluster 

13 that was also identified in Schemes II and III very closely resembles the starting 

conformation. The number of conformations sampled is larger in the simulation of the 

cpPNA4a single strand than in the simulation of the cpPNA4 with Z-Lys for Scheme I 

and II and is similar for Scheme III. In addition, the largest population of cpPNA4a is 

-10%, except for Scheme HI (45%), while cpPNA4 has a highly populated cluster 

(~40%>) for all three Schemes. Comparison of the conformations of the most populated 

clusters revealed that the stereochemistry of lysine also has an effect on the shape of the 

PNA molecule. In the presence of D-Lys, PNA assumes a hairpin-like conformation 

while with Z-Lys the main structure has a G-type fold. 
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C14 C15 C18 C20 C24 

Figure 49. Representative structures of the most populated clusters from the MD 

simulation of cpPNA4a. Residues are colored by position: Tl-red, T2-dark grey, T3-

orange, T4-yellow, T5-dark yellow, T6-grey, T7-green, T8-white, and K9-pink. The 

structures are positioned with Tl on top and K9 on bottom 
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As noted previously for cpPNA4, cpPNA4a also has a rigid central region that is 

surrounded by flexible residues (Table 44). In particular, residues 1 to 3 along with the C-

terminal residue 8 exhibit significant flexibility. However, unlike cpPNA4, the flexibility 

of residue 4 is slightly increased due to large fluctuations in the e dihedral. On the whole, 

the flexibility of the c/?PNA4 strand is about the same as that of cpPNA4a. 

Table 44. Average dihedrals (°) and RMSF (bold, °) of the simulated cpPNA4a 

Residue 

Tl 

T2 

T3 

T4 

T5 

T6 

T7 

T8 

a 

— 

178.7 
21 

-175.9 
26 

-108.4 
21 

-176.1 
30 
172.1 
28 
175.1 
23 

-179.7 
25 

P 
— 

-83.2 
38 
175.1 
50 

68.1 
8 

159.9 
41 

155.5 
44 

-29.4 
67 
-93.5 
66 

Y 

10.3 
93 

90.4 
41 

93.5 
15 

71.9 
11 

94.8 
14 

87.0 
12 

95.7 
15 
67.1 
71 

6 

118.5 
56 

117.1 
59 
89.4 
17 

105.9 
11 
88.9 
17 
85.4 
16 

92.6 
20 

— 

8 

30.6 
76 

74.8 
86 

21.0 
130 

65.5 
118 
42.0 
42 

63.0 
36 

41.7 
73 
— 

Total 
RMSF 

225 

245 

238 

169 

144 

136 

198 

162 

Average 
RMSF 

75 

49 

48 

34 

29 

27 

40 

54 

An initial analysis of the average angles yields distributions of torsions very 

similar to those found for the cpPNA2 molecule. Thus, y varies from 70 to 95°, 5 assumes 

values in the range of 90-120°, 8 is restricted to values in the range of 20-70°, and for the 

p torsion, various values are observed. There are, however, differences in the averages of 

several angles: P5, P7, yl, y2, y8, e3 and E5. Thus, the D-Lys strand has different 

preferences for the P, 8 and s dihedrals when compared to the Z-Lys strand. In summary, 

the D-Lys has a milder influence on the average angle distributions in comparison to the 

L configuration. Nevertheless, both cause a similar change in the pattern of the y torsions. 



148 

For the modified strands, it can be concluded that the stereochemistry of the 

terminal Lys has a small impact on the flexibility and a large impact on the 

conformational dynamics of PNA. Q?PNA4 (L-Lys) single strand conformations sampled 

a larger conformational space, i.e. broader dihedral angle distribution and more 

conformers than cpPNA4a. Thus, the torsional PES is different between the two strands. 

On the other hand, the presented results suggest that the entropic contribution to the DNA 

binding energy will be approximately the same for L- and -D-Lys. 

PNA-MBio sequence: aegPNA12 and aegPNA14 

To address the role of the terminal lysine in the mixed base strand, the RMSF 

profiles of aegPNA12 and oegPNAH were compared. According to the results, there are 

many regions where residue mobility appears to be affected by the presence of the Lys. 

The most noticeable one is the increased rigidity of the Ti to T3 residues, and to a lesser 

extent the residues from T5 to T7. More surprising is that the neighboring residues, 4, 8 

and 9, become more mobile. The change in overall flexibility due to the presence of the 

lysine is very pronounced and the lysine causes a reduction in the flexibility of the strand. 

While the average values of the p torsion were shifted and this dihedral experienced 

increased fluctuations at certain residues (4, 8 and 9) in aegPNA14, the y, 8 and e 

dihedrals (residues 2, 3, 5, 6 and 7) exhibited lower RMSF values in comparison to 

aegPNA12. Comparison of the clustering shows that Schemes II and III gave fewer 

clusters for aegPNA14, while Scheme I gave the same number of clusters. However, the 

main aegPNA14 clusters had slightly higher populations. This data is in agreement with 

the RMSF results. 

Variations in the average torsion angles were also examined. The significant 

changes in the average values of the p and y dihedrals were most likely caused by the 

Lys. The two strands have similar average values for the P torsion in residues 1, 3, 7, 9 

and 10, but different values for the remainder of the residues. The largest difference 

between the two strands is the alteration in the y average values. In the strand with Lys, 

all of the y torsions are around 90°, whereas a range of values was seen for aegPNA12. 
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The average 8 and e backbone dihedral angles had similar values to the corresponding 

ones from aegPNA12, showing changes only for a few residues. 

PNA-MBio sequence: c/?PNA13 and cpPNA15 

The average residue fluctuations of the c/?PNA13 and cpPNA15 were examined 

and compared to further assess the effect of the lysine. When the lysine is added, the 

region at and around the modification site (residues 6, 7 and 8), remained fairly rigid, 

with even lower RMSFs for residues 7 and 8 in cpPNA15. Except for the C-terminal 

region (residues 9 and 10) and T4-T6, all residues showed lower flexibility in cpPNA15 

compared to cpPNA13. As a consequence, the cpPNA15 is somewhat more constrained 

than cpPNA13, though a small increase in flexibility was observed for residues 9 and 10. 

These changes in chain mobility reflect the influence of the lysine and suggest that 

residues 1 to 3 of the N-terminus experience lower fluctuations whenever a Lys is 

attached at the C-terminus. Thus, the lysine affects the dynamics of the entire strand and 

not just the residue to which it is attached. Evaluation of the dihedral RMSFs shows that 

the reduced fluctuations of specific dihedrals (83, 87, s2 and s5) are largely a 

consequence of the Lys attached at the terminus. The clustering seems to show that the 

two strands have equivalent flexibility since fewer clusters were observed for Scheme I 

for cpPNA15 but more clusters were observed for Scheme III. This data reinforces the 

RMSF results which show only a slight decrease in flexibility for c/?PNA15. 

Analysis of the average values reveals a wider distribution of the P dihedral as 

opposed to y, 8 or s, which have similar ranges to the dihedrals in cpPNA13. Major 

changes for the P dihedrals are only observed in the central or C-terminal regions 

(residues 6-10). The y torsion exists in its original range of 80-90°. Likewise, 8 stays 

close to its preferred values of -100°, while s is either around -60° or 60°, except in 

residue 9. 

Computation of the conformational properties of aegPNA12, aegPNA14, 

c/?PNA13 and cpPNA15 gives a picture on the effect of the lysine residue at the C-

terminus. The attachment of Z-Lys had a pronounced influence on the average values of 

the P torsions. The conformational constraint of the PNA strand by the L-Lys was 
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evidenced by the differences in RMSFs as well as cluster numbers, though the effect was 

much more pronounced for the unmodified strand. In addition, dihedral angle fluctuation 

changes were distinct for specific 8 and s torsions. The lower number of clusters and 

RMSF values found for aegPNA14 and cpPNA15 indicate that in the presence of the L-

Lys the flexibility of the strand is reduced which could counterbalance entropy loss upon 

binding. 

The effect of the stereochemistry of the lysine 

The RMSD plot from the simulation of the mixed base strand containing D-Lys, 

cpPNA15a, provides insight into the dynamical behavior of the system. The graph clearly 

shows that the major structural deviations occur in the 3-5 ns range, and unlike in 

c/?PNA4a, the RMSD does not go above 7 A. After 3 ns the helical geometry is lost in 

favor of a more turn-like geometry. This conformational change is paralleled by an 

increase in the RMSD value with respect to the NMR starting geometry. A hairpin loop 

over the residues near the N-terminal region is formed at 3.5 ns of this simulation. At 7 ns 

another coiled structure is observed that is stable for the rest of the simulation time. 

Clustering was applied to define the most populated structures during the long MD 

simulation (Tables 45 and 46, Figure 50). 

Cluster analysis yielded fourteen distinct clusters. There are no significant 

differences in the most abundant structures obtained from the three Schemes. Four 

clusters were identical between Schemes I and II and three Scheme I clusters were 

located with Scheme III. The remaining clusters from Scheme 1 were replaced by six 

new clusters in Scheme II and two new clusters in Scheme III. The population of the top 

two clusters from Scheme I (3 and 6) represents 63% of the total number of 

conformations. 
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CI C2 C3 C4 

C5 C6 Cll C14 

Figure 50. Representative structures of the most populated clusters from the MD 

simulation of cpPNA15a. Residues are colored by name: APN-blue, CPN-orange, TPN-

green, TPC- light blue, GPN-red and K-purple. The structures are positioned with GPN1 

on top and K l l on bottom (see Table 17 for the sequence) 
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Comparison of the cluster analysis obtained from cpPNA15 and cpPNA15a, 

suggests that the cpPNA15a explores a greater diversity of structures. More clusters were 

characterized for cpPNA15a than for cpPNA15 using Schemes I and II. The reverse is 

observed for Scheme III though six of the cpPNA15 clusters have populations less than 

5%. On the other hand, comparison of the cpPNAlS conformations with the cpPNA15a 

conformations from the dominant clusters shows that similar hairpin-like structures were 

adopted in the simulations of both strands. Therefore, the configuration of lysine does not 

appear to have an effect on the overall shape of the cpPNA molecule. 

A residue-based description of the strand flexibility was obtained by calculating 

the RJVISF values for c/?PNA15a (Table 47). The peptide has a rigid central core that is 

surrounded by flexible residues. In particular, residues 2, 4, 9 and 10 exhibit significant 

flexibility. The data in Table 47 indicates that when the .D-Lys is present the N- and C-

terminal regions (residues 1 to 4) are more flexible than in the case when the amino acid 

is absent. We also see a significant decrease in the flexibility at the modification site, 

residues 6 to 8. The switch from L-Lys to D-Lys also has an effect on the flexibility of 

the strand. For example, when Lys is in the D configuration (cpPNA15a), the resultant 

RMSF values for the central residues are lower or approximately the same. On the other 

hand, the flexibility of the cpPNA15a C-terminus region has significantly increased. The 

overall flexibility of the strand is enhanced considerably by D-Lys compared to Z-Lys 

and a strand with no lysine (cpPNA13). 

Comparison of the average angles shows that the y and 5 torsions have values 

very similar to those found in c/?PNA15. Thus, y varies from 70 to 100° and 5 from 80° 

to 100°, except for 82, 84, yl and ylO, which have differences in their average values. As 

for the P and e torsions, they are found to have broadly distributed values with 8 having 

an increased distribution over cpPNA15. To conclude, the presence of the D-Lys has a 

stronger effect on the average angle values than the L isomer since the L isomer had 

almost no effect. Nevertheless, both show a similar pattern of changes in the 8 torsion 

values. 
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Table 47. Average dihedrals (°) and RMSF (bold, °) of the simulated cpPNA15a 

Residue 

Gl 

T2 

A3 

G4 

A5 

T6 

C7 

A8 

C9 

T10 

a 

— 
— 

-176.1 
22 

-167.5 
27 

174.1 
19 

179.1 
30 

-109.9 
17 

177.3 
25 

-155.3 
28 

172.5 
26 

-175.9 
31 

P 
— 
— 

-160.9 
73 

-86.6 
141 

-25.6 
62 

75.5 
37 

67.9 
8 

-178.8 
17 

155.3 
43 

-36.2 
99 

173.5 
32 

Y 

82.6 
44 

96.9 
17 

90.6 
13 

105.9 
26 

71.7 
32 

74.6 
13 

90.1 
15 

94.5 
14 

90.2 
13 

26.3 
89 

8 

94.2 
18 

-34.6 
125 
78.4 
20 
3.5 
86 

80.6 
22 

103.4 
11 

78.1 
16 

91.4 
20 

88.9 
18 
— 
— 

E 

103.2 
81 

-54.2 
64 

64.8 
32 

122.2 
94 

-161.3 
44 
8.1 
23 

-81.3 
51 

37.1 
56 

-104.7 
125 
— 
— 

Total 
RMSF 

143 

301 

233 

287 

165 

72 

124 

161 

281 

152 

Average 
RMSF 

48 

60 

47 

57 

33 

14 

25 

32 

56 

51 

In summary, the simulations on the mixed base strands show that in the presence 

of the C-terminal L-Lys, the mobility of the entire strand is reduced. This is correlated 

with the clustering data where the decreased number of clusters also indicates a lower 

conformational freedom of PNA. On the contrary, attachment of £)-Lys has the opposite 

effect and enhanced fluctuations are observed along with a higher variability in the 

structures from clustering. This indicates that the terminal lysine can also play a role in 

stabilizing (or destabilizing) the duplexes. These results differ significantly from the 

polythymine studies where the Lys either increased or had no effect on the flexibility. 

The Lys also had an effect on the sampled conformational space for both MBio and Tg 

sequences, though no consistent effect could be detected. 
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THE EFFECT OF THE POSITION 

To investigate the effect of the location of the modified cyclopentane on the 

structural properties, a comparative analysis of oligomers having a single modification at 

various positions was performed. 

PNA-Tg sequence: cpPNA5 and cpPNA6 

The RMSD for the cpPNA5, which has the modification at Ti, showed that large 

fluctuations were occurring during the simulation and the RMSD continually increased to 

10 A until 5 ns. Then, the RMSD value stabilized and ranged from 9.0 to 10.5 A for the 

remainder of the simulation. Twenty four different clusters were characterized, but there 

were only two distinct patterns (Tables 48 and 49). The structures are provided in Figure 

51. The most populated clusters obtained using all three criteria have very similar 

dihedral angle values. Fourteen clusters from Scheme II were identical to those from 

Scheme I and the remaining three clusters from Scheme I were replaced by three new 

clusters in Scheme II. Five of the clusters from Scheme I were also identified in Scheme 

III. The twelve clusters of Scheme I were replaced by only four new clusters in Scheme 

III. 

The most abundant pattern from Scheme I, clusters 3, 4, 6 and 7 that were also 

located with Schemes II and III, exhibit a hairpin motif with two loops, one in the N-

terminal and one in the C-terminal region. Cluster 20 from Scheme II and cluster 22 from 

Scheme III also have a hairpin like structure. The second most abundant clusters from 

Scheme I (6, 7) represent a knot expanding from residues 4 to 6. Similar conformations, 

although with lower cluster memberships, were located with Schemes II and III and are 

represented by clusters 19 and 23, respectively. 
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C3 C4 C6 C7 C8 

C20 C22 C23 

Figure 51. Structures of cluster centers of most populated clusters from cpPNA5 

simulations. Residues are colored by position: Tl-red, T2- dark grey, T3-orange, T4-

yellow, T5-dark yellow, T6-grey, T7-green, T8-white, and K9-pink. The structures are 

positioned with Tl on top and K9 on bottom 

C9 C19 
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Table 49. Similar clusters identified from the different clustering Schemes for cpPNA5 

Cluster No. of members % _, „a 

Cluster # 
Scheme II 

A 44 0.9 1 

B 107 2.1 2 

C 126 2.5 13 

D 558 11.2 3 

E 263 5.3 8 

F 109 2.2 17 

G 313 6.3 4 

H 324 6.5 7 

I 1353 27.1 9 

J 40 0.8 10 

K 62 1.2 11 

L 133 2.7 16 

M 152 3.0 5 

N 314 6.3 6 

Total number of clusters 17 

Cluster No. of members % _,, „a 

Cluster # 
Scheme III 

A 305 3.1 16 

B 1979 19.8 3 

C 3829 38.3 9 

D 102 1.0 10 

E 66 0.7 12 

9 

numbers correspond to identical cluster from Table 48 

For cpPNA5, the number of clusters obtained is higher than for cpPNA4 for 

Schemes I and II, but both have a similar number of highly populated clusters; though, 

the most populated cluster for cpPNA4 has a slightly larger population. This finding 

suggests that the flexibility of the oligonucleotide is increased or approximately the same 

for cpPNA5. Comparing to aegPNA3, the number of clusters are approximately the 

same, but cpPNA5 has a highly populated cluster, which aegPNA3 lacks. Thus, the Ti 

modification seems to have slightly reduced the flexibility of the strand. The comparison 

between cluster conformations of c/?PNA4 and cpPNA5 reveals that modification at the 

N-terminal region affects the backbone structure as well, since hairpin-like conformations 

are sampled instead of wide G-type loops. 

By analyzing the RMSF values of the modified Ti residue and other nearby bases, 

important changes in the flexibility are observed (Table 50). For example, the RMSF 

values of Ti and T2 are clearly lower than those observed for the aegPNA3 and cpPNA4 

simulations. Several distant residues also have decreased fluctuations (4, 6 and 7). On the 
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other hand, T3, T5 and Tg have a similar flexibility as in the unmodified strand 

(aegPNA3) (see Table 12). The residues with the larger RMSF values in the cpPNA5 

strand correspond to the larger fluctuations in the RMSD relative to the crystal structure 

as it is alterations in this section of the strand that leads to the high RMSD. Thus, both 

modification sites caused a decrease in dynamics around the modification site and at 

distant locations from the modification, so that the overall strand flexibility was greatly 

reduced from aegPNA3. 

Table 50. Average dihedrals (°) and RMSF (bold, °) of the simulated cpPNA5 

Residue 

Tl 

T2 

T3 

T4 

T5 

T6 

T7 

T8 

a 

— 

— 

173.3 

22 
165.9 

28 
176.4 

22 
176.2 

22 
-170.7 

37 
178.6 

22 
179.6 

23 

P 
— 

— 

50.7 

34 
-39.6 

95 
174.2 

17 
-99.5 

61 
-179.6 

34 
174.6 

28 
156.2 

47 

Y 

-89.3 

21 
75.9 

15 
13.0 

102 
19.4 

89 
-29.2 

83 
94.9 

16 
100.9 

14 
13.2 

93 

S 

90.2 

12 
73.4 

35 
90.1 

21 
97.7 

16 
92.5 

28 
85.4 

20 
-104.4 

38 
— 

— 

s 

39.0 

29 
86.1 

46 
64.2 

65 
60.0 

48 
-43.2 

71 
-126.7 

60 
-172.5 

97 
— 

— 

Total 
RMSF 

62 

152 

311 

192 

265 

167 

199 

163 

Average 
RMSF 

21 

30 

62 

38 

53 

33 

40 

54 

As in aegPNA3 and c/?PNA4, the largest fluctuations were recorded for the s 

dihedrals, but they were also much smaller in cpPNA5. Some of the flexible residues (3 

to 5) that occasionally participate in base stacking interactions had y torsions with 

increased fluctuations when compared to the unmodified aegPNA3 and cpPNA4. Unlike 

aegPNA3, but similar to cpPNA4, the lowest fluctuations are observed for the P and 8 

torsions, though the 8 fluctuations are significantly lower in cpPNA5. The angles that 
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were affected by the modification in a similar way to cpPNA4 include (34, y2 and 54. 

These changes in the conformational mobility reflect the influence of the ring 

modification at this specific position. Thus, the location of the ring does not appear to 

matter for some changes in dynamics but does matter for others. 

Evaluation of the average angles of aegPNA3 and cpPNA5 shows considerable 

change in the 02 and P5 values, 175 to 51° and 171 to -99°, respectively. Most of the 

residues have p values in the 155-175° range (except for 2, 3 and 5). For the y dihedrals, 

two ranges of average values were observed: 80-100° (residues 2, 6, 7) and 13-20° 

(residues 3, 4, 8). The 8 and s torsions did not stay within a specific range. Consequently, 

the chief differences between aegP~NA3 and cpPNA5 are in the 8 and e angles and the 

previously mentioned P angles. In addition, the y angles in residues 3 to 5 undergo 

particularly large changes in their average values. When the modification is at T4 

(c/?PNA4), the p and 8 torsions show changes in average values compared to the 

unmodified PNA. On the other hand, P angles remain intact in cpPNA5 and changes are 

observed mainly for 8 and 8 torsions. 

Analysis of the cpPNA6 trajectory, with the modification at residue 8, showed 

that at 4.5 ns the RMSD value jumped from 3.5 to 6.2 A. After 5 ns, the RMSD value 

ranged from 3.0 to 5 A. Formation of a hairpin structure in the backbone together with 

the formation of a turn in the C-terminal region was observed during the first 5.1 ns of the 

simulation, analogous to the observations for the cpPNA5 simulations. Using cluster 

analysis, the structures were classified into twelve distinct clusters (Figure 52, Tables 51 

and 52). The most populated clusters from Schemes I and II have similar structures and 

dihedrals. However, the second predominant cluster from Scheme III has very different 

dihedral angle values. Five clusters were similar between Schemes I and II and five 

clusters from Scheme III were identical to those of Scheme I. The remaining two clusters 

from Scheme I were replaced by three new clusters in Scheme II. Analogously, two of 

the clusters from Scheme I were substituted by four new clusters in Scheme III. One of 

the new clusters from Scheme III was similar to a new cluster in Scheme II. The most 

abundant clusters from Scheme I (4 and 5) that were also located with Schemes II and III 

group structures with a hairpin motif. The second most populated conformation adopts an 

extended, helical form and is represented by clusters 2 and 3 from Scheme I. Cluster 11 
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from Scheme III also exhibits a similar conformation, though with a higher population 

percentage. 

A different number of clusters were found for the different simulations. AegP~NA3 

and cpPNA5 have a similar number of clusters, while cpPNA4 has less clusters and 

cpPNA6 has even fewer clusters. However, the cpPNA6 most populous cluster has a 

higher membership than the clusters of the other singly modified PNA strands. This result 

indicates that the addition of the cyclopentane ring at the C-terminus decreased the 

flexibility of the strand more than modification at the two other locations tested. The 

PNA conformations sampled in both simulations of cpPNA5 and cpPNA6 resemble 

hairpin-like structures. Consequently, the modification at either of the termini has a 

similar effect on the overall shape of the structure. 

C2 C3 C4 C5 C l l 

Figure 52. Representative structures of the most populated clusters from the MD 

simulation of cpPNA6. Residues are colored by position: Tl-red, T2- dark grey, T3-

orange, T4-yellow, T5-dark yellow, T6-grey, T7-green, T8-white, and K9-pink. The 

structures are positioned with Tl on top and K9 on bottom 
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Table 52. Similar clusters identified from the different clustering Schemes for c/?PNA6 

„. No. of 0 / Scheme I 
members Cluster #a 

Scheme II 
A 274 5.5 1 
B 346 6.9 3 
C 2699 54.0 4 
D 673 13.5 5 
E 201 4.0 7 

Total number of clusters 8 

Cluster No. of 0 / Scheme I 
I members Cluster #a 

Scheme III 
A 598 6.0 1 
B 4994 49.9 4 
C 748 7.5 5 
D 405 4.1 7 
E 265 2.7 10 
F 563 5.6 5 

9 
numbers correspond to identical cluster from Table 51 

A residue-based description of the local flexibility was obtained by calculating the 

RMSF values (Table 53). Examination of the RMSFs showed that residues 1, 2 and 3 are 

the most flexible. The residues with the smallest dynamical motions are 4 and 5, which 

are closely associated with stacking, and 8. The RMSF values in Table 53 indicate that 

when Tg is modified, residue Ti becomes more flexible compared to its counterpart in 

unmodified aegPNA3. Moreover, the cpPNA6 simulation yields a larger region (residues 

4 to 8) of less flexible residues than is observed for aegPNA3. As with aegPNA3 and 

cpPNA5, the T3 residue exhibits significant flexibility. This observation was found to be 

relatively constant over all calculations, unless T4 was modified. The strand flexibility 

was essentially the same for cpPNA4, c/?PNA5 and cpPNA6, with cpPNA4 having 

slightly higher fluctuations; though, the individual residue dynamics are dependent on the 

location of the modification. The reduced flexibilities of cpPNA4, cpPNA5 and cpPNA6 

indicate that modification at residues 1, 4 or 8 should lead to tighter binding to 

DNA/RNA, provided the modifications do not restrict the strand to dihedrals that would 

prevent binding. 
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Table 53. Average dihedrals (°) and RMSF (bold, °) of the simulated cpPNA6 

Residue 

Tl 

T2 

T3 

T4 

T5 

T6 

T7 

T8 

a 

— 

179.8 

22 

173.6 

28 

168.5 

22 

175.6 

19 

-179.5 

24 

177.3 

27 

-108.4 

18 

P 
— 

169.1 

31 

24.1 

156 

-36.4 

70 

60.3 

12 

114.4 

51 

165.3 

70 

73.1 

18 

Y 

-140.9 

161 

87.6 

14 

-59.5 

81 

99.5 

14 

79.4 

11 

81.4 

12 

91.1 

17 

58.5 

21 

8 

93.7 

23 

29.5 

87 

89.7 

19 

77.7 

14 

98.8 

27 

91.5 

22 

84.6 

19 

— 

E 

-149.7 

95 

-110.8 

79 

47.9 

45 

71.1 

18 

65.0 

41 

-54.0 

82 

-128.4 

49 

— 

Total 
RMSF 

279 

233 

329 

138 

110 

191 

182 

57 

Average 
RMSF 

93 

47 

66 

28 

22 

38 

36 

19 

The s torsion shows the greatest variability in c/?PNA6, while the p torsions of the 

central region exhibit larger flexibilities in comparison to the terminal p torsions. This is 

partly consistent with the results for PNA3-5. The torsion angles y (except Ti and T3) 

and 5 (except T2) exhibited very low RMSF values. When compared to the unmodified 

strand, reduced fluctuations are observed for the P, 8 and e dihedrals of the central 

residues (except T6). The p and 8 dihedrals have even lower RMSFs than in cpPNA4 or 

cpPNA5, whereas the y torsions have higher fluctuations. The specific angles that were 

influenced similarly as in cpYNAA and cpPNA6 are y2, y8, 82, 84 and P7, y2, y3, 83, 84, 

respectively. In summary, the two angles whose dynamics were most affected by a 

constraint, irrespective of the modification position, were y2 and 84. 

The torsional angle data for c/?PNA6 shows that aside from residue 8, the a 

dihedral adopts various values between 168° and -179°. Restriction of the torsion angle 8 

(60-90°) can be noticed when compared to aegPNA3. The s dihedral angle also changes 
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somewhat; it now lies at -60° in the central region and assumes values from -110 to -

150° for the terminal residues. In addition, the preferred dihedral values for p differ 

between the aegPNA3 and cpPNA6 strands. The average values of the P dihedrals were 

affected in both the cpPNA4 and the cpPNA6 strands. Changes in averages were 

observed for s in cpPNA5 and cpPNA6. Thus, the addition of a cyclopentane ring does 

cause changes in the torsional PES, but the types of alterations are location dependent. 

For productive binding to DNA/RNA, the modified strands should assume backbone 

dihedrals that allow for standard Watson-Crick base pairing without major strain. A more 

detailed comparison between these strands and DNA/RNA is performed in a later section. 

PNA-MBio sequence: cpPNA16, cpPNA17 and c/?PNA18 

In the case of c/?PNA16, which has the modification at residue G4, the RMSD was 

around 3 A for the initial 3 ns, then continually increased to over 8 A and finally 

stabilized at ~7 ns. In comparison to cpPNA15, the secondary structure content is 

relatively stable: a coil structure involving residues 2 to 8 appears several times (1.1 ns 

and 6.7 ns) during the simulation, while the N-and C-terminal regions remain mostly 

disordered. Clustering resulted in three highly populated clusters for Schemes I and II and 

two highly populated clusters for Scheme III (Figure 53, Tables 54 and 55). There are no 

major differences in the predominant structures located with Schemes I and III. On the 

contrary, most populated clusters from Schemes I and II show very different dihedral 

angle values. Only two clusters were found to be similar between Schemes I and II. The 

remaining nine clusters from Scheme I were substituted by three new clusters in Scheme 

II. Two clusters from Scheme III matched those of Scheme I and only one cluster was 

located using the parameters of Scheme II. Even though limited sampling of the potential 

energy surface occurred during this simulation, many backbone states appear to be 

possible. The most abundant pattern from Schemes I and II, clusters 1,10, 12 and 13, has 

a bent hairpin loop that appears at 3.3 ns. The second (clusters 2 and 4) and third (cluster 

9) most populated patterns of Scheme I represent two different coil structures expanding 

from residues 2 to 8 and 4 to 10, respectively. The geometry of cluster 9 is very similar to 

that observed in the NMR structure of the PNA:DNA complex. 
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CI C2 C9 CIO 

C12 C13 C14 

Figure 53. Representative structures of the most populated clusters from the MD 

simulation of cpPNA16. Residues are colored by name: APN-blue, CPN-orange, TPN-

green, GPC- light green, GPN-red and K-purple 
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Table 55. Similar clusters identified from the different clustering Schemes for cpPNA16 

Cluster No. of members % _, „a 

Cluster # 
Scheme II 

A 307 6.1 7 

B 97 1.9 11 

Total number of clusters 5 

Cluster No. of members % _, 'a 

Cluster # 
Scheme III 

A 607 6.1 3 

B 6522 65.2 12 

C 2871 28.7 2 

3 

numbers correspond to identical cluster from Table 54 

The distribution of conformations is different for cpPNA16 not only in comparison 

with the unmodified PNA but also in comparison with cpPNA15. The number of 

conformations sampled is larger for Scheme I in the simulation of the cpPNA16 single 

strand than in the simulation of the modified c/?PNA15, but c/?PNA16 has fewer clusters 

for Schemes II and III. A comparison of conformations between cpPNA15 and cpPNA16 

shows that both adopt similar hairpin-like structures, but for cpPNA16 coil conformations 

were also observed. Q?PNA16 had fewer clusters than #egPNA14 for all three Schemes. 

Thus, this modification has also reduced the flexibility of the strand. 

To assess the importance of the modification position, the residue mobility was 

examined by comparing the average RMSF values per residue (Table 56). The terminal 

residue Ti has the highest fluctuations. Some other residues, including residues 3 and 9, 

are also flexible. On the whole, however, the lowest deviations are found in the region 

covering residues 4 to 8. This marked decrease in flexibility is most likely due to the 

specific location of the cyclic constraint at residue G4. Differences between the RMSF 

values of the unmodified strand and cpPNA16 are evident over the entire chain except for 

residues T2, T3, T9 and T]0, and the overall flexibility of the strand is reduced. In 

cpPNA15, the modification also caused a decrease in the overall flexibility, but the 

decrease is larger for cpPNAlS. Therefore, a strand containing a modification at T6 

should bind slightly tighter to DNA than a strand with a modification at G4. 

The RMSF values of most torsion angles are widely distributed with y(Gi, Ag, 

C9), 8 (Gi, T6, C7) and s (Gi, A3, C9) dihedrals having the highest values. In comparison 

to the reference structure aegPNA14, the fluctuations observed for the P and e dihedrals 
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are significantly reduced in the central residues located around the cyclopentane 

modification at residue G4. Additionally, the 8 dihedrals showed enhanced fluctuations 

not only for the residue of the N-terminus (Gi) but for the central region as well (Tt). 

Interestingly, enhanced fluctuations were observed for both the 5 and the y dihedrals 

compared to cpPNA15. Finally, both strands (cpPNA15 and cpPNA16) share a common 

(reduced) effect on the fluctuations of several angles, namely 08, P9, y4, y7, 

E6, E7 and s9. Both modifications cause a decrease in flexibility at the modification site 

but also cause reduced fluctuations at similar sites on the strand. 

Table 56. Average dihedrals (°) and RMSF (bold, °) of the simulated cpPNA16 

Residue 

Gl 

T2 

A3 

G4 

A5 

T6 

C7 

A8 

C9 

T10 

a 

— 

— 

-178.5 

31 
-175.5 

22 
-161.3 

26 
-173.1 

29 
177.8 

17 
-177.3 

16 
-171.7 

25 
-174.2 

22 
174.0 

28 

P 
— 

— 

63.1 

52 
-27.0 

104 
66.7 

7 
56.6 

16 
-36.8 

35 
-80.5 

39 
164.8 

17 
112.6 

84 
161.6 

41 

Y 

-170.1 

156 
87.0 

12 
86.2 

16 
67.7 

10 
75.7 

11 
119.8 

15 
109.1 

12 
45.6 

84 
32.2 

81 
82.4 

40 

5 

150.7 

88 
93.1 

15 
89.2 

18 
105.4 

9 
110.7 

21 
-77.8 

52 
-118.8 

40 
-80.1 

18 
91.6 

18 
— 

— 

8 

-167.1 

106 
76.8 

25 
65.5 

94 
62.7 

32 
92.7 

32 
74.0 

36 
64.6 

37 
60.9 

23 
33.9 

71 
— 

— 

Total 
RMSF 

350 

135 

254 

84 

109 

155 

144 

167 

276 

109 

Average 
RMSF 

117 

27 

51 

17 

22 

31 

29 

33 

55 

36 

Table 56 contains the average dihedral angles as well. Let us consider the various 

angles in turn: the P angle has different values along the chain and undergoes transitions 



170 

at a number of residues when the modification is introduced. Both y and 5 remain in the 

70-120° and ±90-100° regions, respectively, except for yl, 81, y8, y9 which are centered 

around 35° or 180°. For the 8 angle, the range of 60-70°, which was observed in the 

unmodified PNA, is maintained except for residues 1 and 9. Consequently, the major 

differences between aegPNA14 and cpPNA16 are in the P angles. Additionally, y 

(residues 7 to 9) and 8 (residues 6 to 8) angles show particularly large changes in their 

average values. In comparison to cpPNA16, differences were observed in the average 

values of P (residues 3, 5, 6 and 8) and y (residues 1, 5, 6, 9 and 10) dihedrals. 

There is a large jump in RMSD for the c/?PNA17, which has a cyclopentane ring 

at C7, at ~ 5.8 ns. This jump is due to a large structural distortion. The trajectory data was 

classified into nineteen clusters of similar members (Tables 57 and 58, Figure 54). First, 

the molecule persists in the potential energy basin corresponding to cluster 19 from 

Scheme 3 (1.3-3 ns). Then, a transition to another state occurs and the strand fluctuates 

between clusters 2 , 15 and 17 for approximately 4 ns, and the last 2.7 ns of the MD 

simulation are spent within cluster 3, with a final jump to the state represented by cluster 

4. Clusters 1 and 16 turn out to be more or less short-lived transient states, with the 

second cluster corresponding (as usual) to the starting structure. Thus, the main low-

energy states of cpPNA17 differ from each other solely in orientation of the N-terminal 

residues. 

The most populated cluster from Scheme I was also located with both Schemes II 

and III; however, in Scheme II the population percentage was much lower. Four clusters 

were identical between Schemes I and II and the remaining eleven clusters from Scheme 

I were replaced by only four new clusters in Scheme II. Two of the clusters from Scheme 

I and two clusters from Scheme II were located using the criteria of Scheme III, though 

the population percentage for clusters 19 and 3 were significantly higher when using 

Scheme III. The most populated pattern from the three schemes (3,19) has an inner loop 

motif with an N-terminal bend and 4 little turns. The second most populated pattern from 

Scheme II (18) adopts a coiled conformation. The rest of the clusters are equally 

populated and exhibit an Q-loop expanding from residues 4 to 9, and an N-terminal loop. 
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CI C2 C3 C4 

C15 C16 C17 C19 

Figure 54. Cluster centroid structures obtained from simulations of cpPNA17. Residues 

are colored by name: APN-blue, CPN-orange, TPN-green, CPC- pink, GPN-red and K-

purple. The structures are positioned with GPN1 on top and K l l on bottom (see Table 17 

for the sequence) 



172 

*+-» 

1 
< 

u 
43 

eg 

c/3 

3 

43 o 
e8 
<U 

c 
c3 
CI 

_o 
O 
-^ 
(D 
00 a 
i-
> 

«-> 

•ft 

ON 

U 

00 

NO 
-< 

«n 
O 

CO 

CN 

H 

<0 

^ 

a 

<-o 

«SJ. 

to 

^ 

« 

<<5 

^ 

to 

^ 

B 

*0 

«a. 

to 

^ 

a 

<o 

<*5. 

s» 

N
o
.
 o
f
 

M
e
m
b
e
r
s
 

3 
u 

„ 
NO 
1 

co 
oo 

co 
t~ 

<N 
00 

ON 
in 

NO 

00 
NO 

ON 

1 

NO 
00 

CO 
NO 

00 
I/I 

o 
00 

CN 
r~ 

ON 
r~ 

r̂  

ON 

co 

i 

NO 
00 

17
0
 

t-~ 

o 

he
m

e 
I 10
73
 

# 
—' 

NO 
m 
i 

r̂  
ON 

NO 
NO 

co 
T 

CN 
00 
1 

m 

m 
r̂  

o 
CO 
1 

in 
oo 

CO 
NO 

NO 
NO 

r̂  
r~-

r-
r̂  

„ 
00 

ON 

i 

ON 

•<*• 

i 

00 

17
1 

« 
o 

10
64
 

CN 

r̂  
in 
• 

r~ 
00 

o 
oo 

00 

r̂  

m 
in 

i 

in 

CO 
NO 

ON 
O 

i 

TT 
00 

NO 

I 

rs 
CO 

in 
ON 

in 
r~ 

in 

i 

-6
0
 

10
9
 

10
0
 

NO 

I 

NO 

17
8
 

co 
NO 

26
25
 

CO 

CN 
NO 
I 
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Table 58. Similar clusters identified from the different clustering Schemes for cpPNA17 

Cluster No. of members % _. „0 

Cluster # 
Scheme 11 

A 1203 24.1 1 

B 627 12.5 15 

C 639 12.8 3 

D 566 11.3 4 

Total number of clusters 8 

Cluster No. of members % „, 'a 

Cluster # 
Scheme 111 

A 792 7.9 16 

B 3763 37.6 3 

C 1279 12.8 15 

D 4166 41.7 19 

4 

numbers correspond to identical cluster from Table 57 

For Schemes II and III, c/?PNA17 had fewer clusters than aegPNA14. For 

Schemes I and II, cpPNA17 had five more clusters than cpPNA15. On the contrary, the 

number of clusters is increased when comparing cpPNA17 to cpPNA16. This increase in 

total number of conformers shows that the strands with the modification at G4 exhibit 

higher flexibility. Consequently, cpPNA17 will form more stable duplexes with DNA 

than aegPNA14, cpPNA15, but the binding affinity will be lower compared to c/?PNA16. 

The position of the cyclopentane also imparts preferences for the backbone 

conformation, since Q-coils were sampled instead of hairpin-like structures. 

The RMSF data is given in Table 59. The largest values in the RMSF profile 

correspond to residues 1 and 4. Residues 7 to 10, (modification is at C7) have the lowest 

RMSF values and are extremely stable whereas the G1T2A3G4A5T6 region shows 

significant flexibility. Residues 2 and 4-6 have much higher RMSF values in c/?PNA17 

than in cpPNAlS, cpPNA16 and cpPNA18 (see below), though the overall flexibility is 

still lower than in oegPNA14. As in cpPNA16, the highest fluctuations were observed for 

the p and s dihedrals, whereas y and 5 showed the lowest deviations. In general, the 

cpPNA17 exhibits patterns of flexibility that are very similar to cpPNA16, although less 

pronounced. When compared to the unmodified PNA strand, reduced fluctuations are 

registered for the p and y dihedrals of the C-terminal residues (7 to 10). The p, y and s 

dihedrals have higher RMSF values than in cpPNA15 or cpPNA18, whereas the y 

torsions have lower fluctuations in comparison to cpPNA16 and cpPNA18. The specific 
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angles that were affected in cpPNA15 and c/?PNA16 are 08, 09, y4, y7, y8, e7, s9 and 08, 

(39, yl, y4, y7, 81, s7, s9, respectively. 

Table 59. Average dihedrals (°) and RMSF (bold, °) of the simulated cpPNA17 

Gl 

T2 

A3 

G4 

A5 

T6 

C7 

A8 

C9 

T10 

a 

— 

179.8 

22 

-154.6 

33 

177.4 

24 

178.3 

23 

-176.1 

26 

-168.6 

24 

173.9 

26 

-179.1 

23 

-177.9 

20 

P 
— 

153.7 

39 

169.0 

35 

-145.5 

58 

-32.0 

118 

-25.0 

99 

69.2 

8 

-51.5 

34 

173.5 

21 

165.0 

30 

Y 

-29.3 

89 

-88.2 

52 

96.3 

14 

98.9 

19 

89.0 

16 

93.3 

14 

64.4 

20 

104.9 

15 

86.6 

14 

86.5 

11 

8 

-100.4 

51 

86.4 

28 

20.7 

85 

16.2 

87 

84.6 

18 

86.2 

17 

101.2 

13 

79.9 

23 

82.7 

16 

— 

E 

-59.9 

44 

-69.0 

55 

84.6 

77 

-126.9 

96 

41.5 

54 

128.0 

107 

17.4 

34 

80.0 

35 

-128.1 

69 

— 

Total 
RMSF 

184 

196 

244 

284 

229 

263 

99 

133 

143 

61 

Average 
RMSF 

61 

39 

49 

57 

46 

53 

20 

27 

29 

20 

Examination of the torsion angle data for cpPNA17 shows that the 0 and 

s dihedrals adopt various values in different residues. The torsion angles y and 5 remain 

almost exclusively in the region centered around 90° with an occasional tendency to have 

a negative value. The aegPNA14 and cpPNA17 strands differ from one another in their 

respective preferences for the 0 and s dihedrals. Changes in average values at the 

modification site are seen for most 0, s and even y (Ag) torsions. The 8 dihedral 

undergoes a transition only for the central A3 and G4 residues. When comparing to 
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cpPNA15, the major changes were observed for the p (residues 2 to 6 and 9) and s 

(residues 4 to 10) dihedrals. Differences between cpPNA17 and c/?PNA16 were recorded 

for the p (residues 2 to 5) and y (residues 7 to 9) torsions. 

The RMSD of the cpPNA18, which has a modification at residue As, shows initial 

fluctuations, but appears to stabilize at ~7 ns. Using conformational cluster analysis, eight 

distinct clusters were obtained (Figure 55, Tables 60 and 61). The most populated cluster 

from Scheme I was also located with Schemes II and III. Two clusters were found to be 

similar between the Schemes I and II and only one cluster from Scheme III matched that 

of Scheme I. The remaining cluster from Scheme I was substituted by three new clusters 

in Scheme II and two new clusters from Scheme III replaced two other clusters from 

Scheme I. Here again, none of the new clusters from Scheme II were identical with those 

of Scheme III. 

One of the most abundant patterns (6.2-10 ns) found in Scheme I (cluster 3) 

contains a wide bend with a helical motif running from residues 5 to 7. The matching 

clusters in Schemes II and III along with 4 and 8 also exhibit a similar structure. Cluster 6 

from Scheme II and cluster 7 from Scheme 3 represent another abundant pattern that 

corresponds to a coil conformation with a helical element involving residues 4 to 7. 

Finally, clusters 2 (Scheme I) and 5 (Scheme II) group structures that have a hairpin loop 

extending from residues 1 to 6 together with a helical motif. At the beginning of the 

simulations, the molecule exists in cluster 1 which resembles the starting helical 

geometry (~1 ns). Then, it interchanges between the hairpin and coiled structures for 4.5 

ns and finally falls into the cluster 8 conformation. 
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CI C2 C3 C4 

C5 C6 C7 C8 

Figure 55. Representative structures of the most populated clusters from the MD 

simulation of cpPNA18. Residues are colored by name: APN-blue, CPN-orange, TPN-

green, APC- light brown, GPN-red and K-purple. The structures are positioned with 

GPN1 on top and Kl l on bottom (see Table 17 for the sequence) 
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Table 61. Similar clusters identified from the different clustering 

Schemes for cpPNA18 

Cluster No. of members % _, „a Cluster # 
Scheme II 

A 1041 20.8 1 

B 1984 39.7 3 

Scheme III 

A 4441 444 3 

Total number of clusters: Schemes II - 5; Scheme III-3 

numbers correspond to identical cluster from Table 60 

For Schemes II and III, cpPNA18 had fewer clusters than aegPNA14, c/?PNA15 

(Te) and cpPNA17 (C7), but a similar number of clusters to cpPNA16 (G4). On the other 

hand, for Scheme I, qoPNA18 and cpPNA15 had the same number of clusters, but the 

number of clusters for cpPNA18 was still lower than aegPNA14, cpPNA16 and 

cpPNA17. These results all suggest that the addition of the cyclopentane ring at position 

Tg significantly decreased the flexibility of the strand when compared to the unmodified 

PNA and systems with single modifications at T6 and C7. However, it exhibits a similar 

level of flexibility as cpPNA with the cyclopentane at G4. The highly populated clusters 

of C/7PNAI8 differ from the unmodified and other singly modified cpPNAs in the 

backbone conformations and structural motifs. The clusters of aegPNA14 (G-type), 

c/?PNA15-cpPNA16 (hairpin), cpPNA17 (Q-loop) exhibit different types of coils and 

folded conformations, while the modification at Tg leads to structures that assume helical 

conformations and maintain the helical element during the entire simulation time. 

Examining the RMSF profile for the cpPNA18 simulation, we see that the 

terminal residue torsions have relatively large flexibilities in comparison to the rest of the 

chain (Table 62). Stacking interactions are observed for all residues except T10. The 

residues Gi and Tiohave increased flexibility compared to the flexibility of these residues 

in the aegPNA14 simulation, while the flexibility of residues T6 to C9 is considerably 

reduced. A slight increase in flexibility of residue A3 is also observed. The RMSF values 

of the three systems (cpPNA16-18) showed similar patterns for residues 7 to 9. The 
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fluctuations of modified residues were more reduced in cpPNA16 (G4) and cpPNA18 

(Ag) than in cpPNA15 (T^) or cpPNA17 (C7). Addition of the ring at T6 had distinct local 

effects and small effects on the residues, very distant from the modification site. In the 

case of cpPNA16 and cpPNA17, decreased RMSF values were seen for all residues 

located downstream (toward the C-terminus) from the altered residue. On the other hand, 

in cpPNA18 most residues showed reduced fluctuations, although residues closer to the 

site of the modification had the largest changes in RJVISFs. The biggest effect on the 

overall chain flexibility was observed for cpPNA15 and c/?PNA18; thus, the 

modifications at T6 or Ag significantly impaired the mobility of the strand. This finding 

partially agrees with the clustering results, where cpPNA18 had the lowest 

conformational flexibility. Finally, the cpPNA16 and c/?PNA17 strands have comparable 

flexibility. 

Table 62. Average dihedrals (°) and RMSF (bold, °) of the simulated c/?PNA18 

Residue 

Gl 

T2 

A3 

G4 

A5 

T6 

C7 

A8 

C9 

T10 

a 

— 

— 

-177.3 

23 
-173.7 

20 
178.7 

21 
178.1 

32 
-175.8 

25 
174.5 

21 
-109.0 

20 
-169.2 

29 
170.1 

27 

P 
— 

— 

63.0 

22 
63.6 

31 
150.5 

48 
79.3 

36 
114.5 

50 
11.7 

60 
67.7 

9 
65.8 

12 
162.4 

53 

Y 

-153.2 

155 
84.6 

12 
74.4 

13 
64.2 

56 
86.2 

13 
85.8 

12 
94.5 

14 
74.1 

9 
79.9 

10 
-28.6 

85 

5 

81.9 

18 
89.8 

17 
-135.5 

65 
90.2 

25 
90.2 

22 
90.2 

20 
93.0 

17 
101.5 

9 
93.4 

18 
— 

— 

E 

50.1 

35 
61.0 

43 
-27.9 

60 
13.4 

65 
-5.1 

69 
74.7 

35 
46.0 

46 
41.6 

30 
21.1 

83 
— 

— 

Total 
RMSF 

208 

117 

189 

215 

172 

142 

158 

77 

152 

165 

Average 
RMSF 

69 

23 

38 

43 

34 

28 

32 

15 

30 

55 
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When compared to the reference aegPNA strand, the RMSF values of p, y and s 

indicate a reduction in flexibility while fluctuations observed for 8 are quite similar with 

the exception of residue 3 where an increase in fluctuation is recorded. As observed in 

c/?PNA16 and cpPNA17 simulations, the y torsion has the lowest RMSF values whereas 

in cpPNA15 it is the highest. Furthermore, in all mixed base sequences examined 

(aegPNA14 and cpPNA15-18) the 8 torsion shows the lowest fluctuations. Similar to 

cpPNA17 but unlike cpPNA16, the highest fluctuations were seen for the s dihedral. As 

for the P dihedral, it demonstrates higher fluctuations in all systems except for c/?PNA15 

where it has the lowest RJVISFs. Lastly, the dihedrals that were identified as the most 

influenced by the constraint, regardless of its position, are P8, P9, y4, y7, s7 and s9. 

Table 62 also contains the average dihedral angles of the decamer backbone. The 

average P values remain predominantly in the 60-80° range for most of the nucleotides, 

though a few trans (-160°) values are also observed (residues 4, 6 and 10). Most residues 

have average values in the 60-90° range for y. The average 8 torsion stays in its original 

range of 80-100°. Interestingly, the £ dihedral assumes a range of values from -30° to 

75°. This observation is in contrast to the corresponding results on the unmodified 

oligomer where values in the 50-70° range were seen. Along with p and s, the y dihedral 

showed differences in average values compared with the regular aegPNA strand. The 

preferred dihedral values for p and 8 differ between the singly modified cpPNA strands 

as well. 

The following conclusions emerge on the dynamics of the 10-mer cpPNAs 

bearing cyclopentane at various positions. First, the conformational space sampled shows 

a sizable reduction in the presence of the cyclopentane. The lowest number of clusters 

was obtained for cpPNA18 and the highest for cpPNA17 and aegPNA14. Second, the 

conformational sampling of the cpPNA18 is sizably reduced when quantified by 

analyzing backbone flexibility and the distributions of the dihedral spaces accessed by the 

residues. Unlike cpPNA16 and cpPNA17, but similar to c/?PNA15, the effect on strand 

flexibility was not local and covered more residues located far from the modification site. 

The tendency of the strands to adopt a helical structure was seen only for cpPNA18. For 

cpPNA15 and cpPNA16, the most prevalent structures observed were hairpin 
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conformations. In all cpPNAs, the average dihedrals in the modified residues were 

limited to certain ranges of values: <x=-170°, (3=60-70°, y=70-85°, 8=90-100°, 8=45-60°. 

These effects are determinants of PNA binding thermodynamics and should result in 

significantly different conformational enthalpies for the modified strands. Owing to the 

flexibility, the stability of the cpPNA:DNA complexes is strongly influenced by entropic 

contributions. More specifically, the alterations at T6 or A8 restricted the flexibility of 

PNA more than those at C7 or G4 and, as a consequence, these strands should have a 

lower entropy penalty when binding to DNA. A comparison of results between 

polythymine and mixed base sequences revealed that in both systems, the position of the 

alteration changes the flexibility of the residue considerably. However, the effect of the 

modification position was more pronounced in poly-Tg sequences, since the reduced 

fluctuations were not localized to the site of the modification but also included the 

adjacent residues. This higher restriction of the cpPNA-Tg strands will result in higher 

binding affinity to target DNA/RNA. 

THE EFFECT OF MULTIPLE MODIFICATIONS 

PNA-T8 sequence: cpPNA7-cpPNAll 

In Figure 2, the RMSD between the trajectory structures of c/?PNA7, which has 

the modification at residues 1, 4 and 8, and the initial structure is shown as a function of 

time. For the initial 2 ns, the RMSD was at 4 A, and then continually increased to 7 A. 

After 4 ns, the RMSD values ranged from 5.2 to 6.8 A. Starting from a helical initial 

structure, the helix is lost after 2.5 ns and is not formed again during the remaining 7.5 

ns. The conformational space that is sampled in the MD simulation was analyzed using 

conformational cluster analysis and sixteen clusters were obtained (Tables 63 and 64). In 

Figure 56, the central member structure of each of the three most populated clusters is 

shown. 
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C5 C6 

C9 CIO C l l C15 

Figure 56. Representative structures of the most populated clusters from the MD 

simulation of cpPNA7. Residues are colored by position: Tl-red, T2- dark grey, T3-

orange, T4-yellow, T5-dark yellow, T6-grey, T7-green, T8-white, and K9-pink. The 

structures are positioned with Tl on top and K9 on bottom 
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Table 64. Similar clusters identified from the different clustering Schemes for cpPNA7 

Cluster No. of members % _, ,.„ 
Cluster # 

Scheme II 
A 340 6.8 2 
B 393 7.9 3 
C 145 2.9 7 
D 412 8.2 4 
E 1409 28.2 5 

Total number of clusters 10 

Cluster No. of members % _, 'a 

Cluster # 
Scheme III 

A 734 7.3 8 
B 1022 10.2 2 
C 3380 33.8 5 
D 774 7.7 4 
E 494 4.9 9 

9 
numbers correspond to identical cluster from Table 63 

The predominant structures identified in all three Schemes have similar dihedral 

angle values. Between Schemes I and II, five clusters had similar dihedrals. The other 

two clusters from Scheme I were replaced by five different clusters in Scheme II. Three 

of the clusters from Scheme I were also located with the Scheme III criteria. Four new 

clusters were identified in Scheme III, while two of the clusters from Scheme III matched 

those of Scheme II. Many of the most populated conformers from Schemes I and II (5, 6, 

10 and 11) have a coil structure with an N-terminal loop. Cluster 15 is another highly 

populated cluster located with Scheme III and contains extended structures with an N-

terminal loop. However, the lowly populated structures are of irregular character, 

showing a variety of structural motifs. They have no helical character. 

For cpPNA7, the number of clusters obtained is higher than for cpPNA6 for 

Schemes II and III but both have a similar number of clusters according to Scheme I. In 

comparison to the unmodified aegPNA3 and singly modified cpFNA4 (T4) and cpPNA5 

(Ti), the increased number of cyclopentane rings in cpPNA7 results in reduction of the 

clusters over all Schemes. Thus, the flexibility of the cpPNA7 oligonucleotide is higher 

or approximately the same as for c/?PNA6, but is significantly lower than for aegPNA3, 

c/?PNA4 or cpPNA5. The comparison between cluster conformations reveals that 

modifications at the C- and N-terminal residues along with the T4, affects the backbone 

conformations, since instead of hairpin-like or G-type folded structures, more extended 

coiled structures are sampled. Consequently, the cpPNA7:DNA complex stability will be 
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larger than the PNA:DNA duplex stability of the unmodified or cpPNA4 and cpPNA5 

strands. 

Table 65. Average dihedrals (°) and RMSF (bold, °) of the simulated cpPNA7 

Residue 

Tl 

T2 

T3 

T4 

T5 

T6 

T7 

T8 

a 

— 

— 

167.2 

40 

-173.9 

26 
-108.9 

27 
177.4 

26 
179.4 

22 

178.5 

22 
-118.4 

26 

P 
— 

— 

175.4 

26 

-116.3 

57 
101.7 

36 
-179.8 

14 

117.8 

60 
37.8 

51 
68.3 

8 

Y 

-87.6 

19 

-25.5 

92 

70.8 

75 

61.6 

27 
94.5 

14 

23.2 

87 

87.3 

14 

59.1 

24 

8 

93.7 

14 

-164.5 

94 

-100.5 

15 
99.7 

13 
77.3 

16 

84.7 

18 
92.3 

20 
— 

— 

E 

25.0 

37 

-131.9 

92 

-174.8 

156 
53.3 

57 

40.7 

72 
65.9 

31 
-10.1 

145 
— 

— 

Total 
RMSF 

70 

344 

329 

160 

142 

218 

252 

58 

Average 
RMSF 

23 

69 

66 

32 

28 

44 

50 

19 

By analyzing the RMSF profile of cpPNA7, we can see that the terminal residues 

1 and 8, as well as the central residue 5 have much lower RMSF values than in the 

unmodified strand, indicating that these regions are constrained by the modifications 

(Table 65). Residue 2 showed an increased RMSF in comparison to aegPNA3,which 

indicates increased flexibility. Residue 3 also showed greater flexibility than the other 

residues in the c/?PNA7 strand; however, it remains similar to the unmodified strand. In 

cpPNA7, residues 5 and 8 are more rigid than in c/?PNA4 and c/?PNA5. In comparison to 

c/?PNA5 and cpPNA6, higher RMSF values were seen for residues 2, 6 and 7. Based on 

RMSF data, the cpPNA7 and cpPNA5 strands had lower flexibility compared to cpPNA4 

but were more flexible than c/?PNA6. This is in line with the observations from the 

clustering analysis. The addition of multiple rings diminished the flexibility of c/?PNA7 
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and decreased the conformational entropy of the strand. Thus, cpPNA7 will favor 

association to DNA/RNA more than oegPNA3, c/?PNA4 and c/?PNA5, but less than 

cpPNA6. 

The greatest deviations are found for the s dihedral. The P torsions show 

moderate fluctuations that are slightly greater than the RMSFs of the y and 5 angles. The 

analysis of the average values shows that the p and s dihedrals are widely distributed. 

Consequently, significant changes in the average values are observed for the P and s 

dihedrals (residues 2, 3, 5, 6, 7) when compared to the unmodified and most cyclopentyl 

PNAs. In contrast, as in all multiple cyclopentane systems, flexibility of the y and 8 

angles is affected by the addition of the cyclopentane since values in the 60-90° and 80-

100° range are observed for these torsions, respectively. Exceptions include the y2 and 53 

dihedrals that show different averages and upon comparison to other sequences show 

similarity only with the unmodified aegPNA3 strand. 

When compared to #egPNA3, fluctuations of the P and 8 dihedrals were reduced 

the most. Moreover, in comparison to all molecules carrying modifications, the p torsion 

(central residues) is more rigid than in cpPNA4-6. The 8 dihedral showed a similar level 

of flexibility in all strands. Similarities between the RMSF values of cpPNA7 and the 

strands carrying a single cyclopentane are evident for certain dihedrals: P3, y8 and 84. 

The RJV1SD of the c/?PNA8 sequence with the modifications at residues 1 and 8, 

shows initial fluctuation, but appears to stabilize at ~2 ns (Figure 36). The initial helix is 

lost at 0.9 ns and no helix is formed within the remaining 9 ns. Cluster analysis of the 

simulation data resulted in the generation of fourteen different clusters (Figure 47, Tables 

66 and 67). The majority of the structures exhibit a hairpin motif, suggesting that this 

conformation is highly stable. All three highly populated clusters identified in Scheme I 

were also located with Schemes II and III. Six clusters were found to be identical in 

Schemes I and II and the remaining cluster from Scheme I was replaced by six new 

clusters in Scheme II. Also, five of the clusters from Scheme I were similar to those of 

Scheme III and only one of the new clusters from Scheme II was located with Scheme 

III. The remaining two clusters of Scheme I were substituted in Scheme III by a single 
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new cluster with a high number of members and by the aforementioned cluster identical 

to 12 from Scheme II. 

C2 C3 C5 

C6 C7 C14 

Figure 57. Representative structures of the most populated clusters from the MD 

simulation of cpPNA8. Residues are colored by position: Tl-red, T2- dark grey, T3-

orange, T4-yellow, T5-dark yellow, T6-grey, T7-green, T8-white, and K9-pink. The 

structures are positioned with Tl on top and K9 on bottom 
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Table 67. Similar clusters identified from the different clustering Schemes for c/?PNA8 

Cluster No. of members % _, „a 

Cluster # 
Scheme II 

A 134 2.7 1 

B 1165 23.3 2 

C 1015 20.3 3 

D 278 5.6 5 

E 439 8.8 6 

F 1125 22.5 7 

Total number of clusters 12 

Cluster No. of members % _,, ' a 

Cluster # 
Scheme III 

A 267 2.7 1 

B 2186 21.9 2 

C 999 10.0 5 

D 2365 23.7 7 

E 837 8.4 3 

F 685 6.9 12 

7 

numbers correspond to identical cluster from Table 66 

The clusters obtained from all Schemes for cpPNA8 were compared with the 

clustering results of the unmodified aegPNA3 and cyclopentyl PNAs having single 

modifications at similar locations: cpPNA5 (Ti) and cpPNA6 (Tg). For cpPNA8 and 

cpPNA6, a similar number of clusters was obtained by Scheme I, while Scheme II and III 

identified fewer clusters for cpPNA6 than for c/?PNA8. This result indicates that the 

addition of a single cyclopentane ring at the C-terminus decreased the flexibility of the 

strand more than two modifications at both the N- and C-terminals. However, cpPNA8 

has lower flexibility than aegPNA3 and c/?PNA5, since clustering resulted in a higher 

number of conformations for these strands than for the doubly modified strand. The 

conformations of cpPNA5 and cpPNA6 resemble hairpin-like structures. Consequently, 

modifications at both locations, although not altering the overall structure of the PNA, 

affect the thermodynamic stability of the molecule. The cpPNAS strand with Ti and T8 

modifications will show much enhanced duplex stability compared to the non-modified 

PNA and cpPNAS; however, the strand with only one modification at Tg (cpPNA6) will 

exhibit better DNA binding properties. 

The RMSFs of cpPNAS and oegPNA3 were compared in order to assess the 

effect of multiple modifications on the strand flexibility (Table 68). The most evident 

differences are found at the modification sites (at position 1 and 8) and at central residue 

4. Both the terminal residues and the T4 are no longer flexible, and thus, have low 
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deviation values. Further differences, directly ascribable to the modification sites, are 

noted for residue 6, for which the RJV1SF value is higher compared to the unmodified one. 

Table 68. Average dihedrals (°) and RMSF (bold, °) of the simulated cpPNA8 

Residue 

Tl 

T2 

T3 

T4 

T5 

T6 

T7 

T8 

a 

— 

-177.2 
21 

-176.2 
24 
179.2 
25 

172.1 
20 

-177.3 
30 
167.7 
20 

-113.4 
25 

P 
— 

-26.5 
60 
166.7 
40 

129.0 
53 
62.9 
15 

-89.9 
77 
34.4 
50 
101.7 
37 

Y 

-89.6 
16 
99.4 
17 
94.2 
13 
86.1 
13 
82.2 
12 

96.8 
15 
86.3 
16 
68.6 
32 

8 

87.2 
11 

93.1 
23 
-74.8 
58 
86.5 
17 

-177.1 
77 

80.1 
17 
92.7 
22 
— 

E 

43.5 
33 
4.6 
65 

-26.2 
127 

68.1 
23 
18.5 
64 
153.9 
135 

40.1 
156 
— 

Total 
RMSF 

60 

186 

262 

131 

188 

274 

264 

94 

Average 
RMSF 

20 

37 

52 

26 

38 

55 

53 

31 

Modification at the end of the strand caused a decrease in the RMSF for that 

residue and the neighboring residue regardless of whether the modification was at the N-

terminus or C-terminus. Reductions in RMSFs were seen for other residues in the strand 

with the addition of the modification, but the location of these residues was dependent on 

the location of the modification. When the modification is added to both the N-terminus 

and C-terminus, the RMSFs of the modified residues were comparable between cpPNA8 

and cpPNA6 or cpPNA5. However, the RMSF of residue 2 in cpPNA8 was comparable 

to that of cpPNA5, but the reduction in RMSF was much smaller for c/?PNA8 than for 

c/?PNA6. For the other residues, the RMSFs for residues 4 and 5 can be interpreted as 

additive effects from cpPNA5 and cpPNA6, but not for residues 6 and 7. For residue 4, 

both cpPNA5 and cpPNA6 had low RMSFs and this reduction could have caused the 

even further reduction in RMSF for this residue in cpPNA8. For residue 5, the RMSF in 

cpPNA8 is in between the RMSF of cpPNA5 and cpPNA6. Q?PNA8 has higher RMSFs 
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for residues 6 and 7 than both cpPNA5 and cpPNA6. Thus, while the modification had 

similar effects locally on the RMSF in the singly- and doubly-modified strands, the 

effects on the rest of the strand could not be predicted for cpPNA8 from cpPNA6 and 

cpPNAS. 

RMSF results indicate that the flexibility of cpPNA8 is lower compared to 

aegPNA3, cpPNA5 or cpPNA6, which only partially correlates with clustering data, 

where c/?PNA5 was found to be more flexible than cpPNA8. These results suggest that 

restrictions in the flexibility of cpPNA8 (compared to cpPNA6 and possibly c/?PNA5), 

caused by the introduction of a second cyclopentane modification, will result in larger 

contributions to the DNA/RNA binding free energy. 

A more detailed picture of the similarities and differences was obtained from the 

direct comparison of the dihedral RMSFs between the cpPNA8 and all other strands. The 

P, y and 8 torsions exhibit lower variability as compared to aegPNA3 and cpPNA4. In 

residues 1 to 5, the y dihedrals have lower RMSF values than in cpPNA5, 6 and 7. 

Significant changes in the s dihedral are only seen for the T4-T7 residues, for which 

increased fluctuations are observed compared to cpPNA5 and c/?PNA7. The strongest 

similarities between cpPNA8 and singly modified strands are observed only for three (07, 

(32 and 64) dihedrals. 

Analysis of the cpPNA8 structure shows that the P and s dihedrals spanned a 

significant portion of torsional space. The ranges for the y and 8 torsions were 70-100° 

and 80-95°, respectively. The major differences between the cpPNA8 and aegPNA3 

angles are seen for the P, 8 and e dihedrals. However, compared to other singly modified 

cyclopentyl PNAs, most changes in values are observed for the P and 8 dihedrals only 

(i.e. the modification affects the values of the p and £ dihedrals). 

The RMSD of the cpPNA9, which has modifications at T4 and Tg, shows a great 

amount of fluctuation during the simulation, with the most fluctuation at 5-7 ns. The 

initial helix was only maintained for 1.1 ns and was not formed again during the 

remaining 8.9 ns. Cluster selection criteria resulted in twelve distinct clusters. Relevant 

information on the clusters is given in Figure 58 and Tables 69 and 70. Five clusters from 

Scheme I were identified in Schemes II and III and one cluster from Scheme II was 
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located with Scheme III. The remaining three clusters from Scheme I were substituted 

with four new clusters in Scheme II. New patterns were not located with the Scheme III 

parameters. 

Cl C2 C3 

C6 C9 C l l 

Figure 58. Representative structures of the most populated clusters from the MD 

simulation of cpPNA9. Residues are colored by position: Tl-red, T2- dark grey, T3-

orange, T4-yellow, T5-dark yellow, T6-grey, T7-green, T8-white, and K9-pink. The 

structures are positioned with Tl on top and K9 on bottom 
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Table 70. Similar clusters identified from the different clustering Schemes for cpPNA9 

Cluster No. of members % _, „a 

Cluster # 
Scheme II 

A 1513 30.3 3 
B 1810 36.2 1 
C 189 3.8 7 
D 370 7.4 2 
E 34 0.7 8 

Total number of clusters 9 

Cluster No. of members % _,, \a 

Cluster # 
Scheme III 

A 1773 17.7 2 
B 3133 31.3 3 
C 3529 35.3 1 
D 50 0.5 5 
E 784 7.8 9 
F 731 7.3 6 

6 
numbers correspond to identical cluster from Table 69 

A comparison of the clustered conformations of cpPNA9 and those of aegPNA3, 

cpPNA4 and cpPNA6 shows major differences. The preferred structures of cpPNA4 

include wide loop and G-type conformations, while for c/?PNA6 hairpin-like structures 

are predominant. On the contrary, the most probable conformations of the doubly 

modified cpPNA9 have a Q-loop structure. The number of clusters located by all 

schemes is reduced when comparing c/?PNA9 to aegPNA3 and c/?PNA4 (T4). This 

decrease in the total number of conformers shows that the two cyclic constraints at T4 and 

Tg greatly affected the conformational flexibility. In spite of the presence of the multiple 

rings, the cpPNA9 strand has greater flexibility than the cpPNA6 strand, which is only 

restrained at the Tg residue. Thus, the introduction of the cyclopentane at both positions 

increased its inherent flexibility with respect to cpPNA6 and may substantially decrease 

the cpPNA:DNA complex stability. 

The dynamics of the cpPNA9 residues along the polypeptide chain were 

examined by means of the root mean square fluctuations (Table 71). Residues 2, 4, 7 and 

8 remained fairly rigid. Residues 5 and 6 showed higher flexibility, although the average 

values of the RMSFs were not as high as the most flexible regions of the strand (residues 

1 and 3). The N-terminus was found to be mostly unstructured and very flexible. In 

comparison to the unmodified PNA, cpPNA9 possessed regions with relatively decreased 

RMSF values (residues 2, 3, 4, 7, 8). Comparing to singly modified cpPNA4 (T4) and 

cpPNA6 (Tg), the N- and C-terminal residues (1, 2, 7 and 8) showed lower fluctuations, 

whereas central residues 3 to 6 had enhanced flexibility. RMSF data suggests that the 
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overall chain flexibility of cpPNA9 is lower than those of cpPNA4 or cpPNA6, which 

partially contradicts the clustering data. Thus, the entropic penalty incurred by restriction 

of cpPNA9 may result in higher affinity of binding. 

Table 71. Average dihedrals (°) and RMSF (bold, °) of the simulated cpPNA9 

Residue 

Tl 

T2 

T3 

T4 

T5 

T6 

T7 

T8 

a 

— 

— 

170.6 

23 
176.7 

21 
-127.8 

28 
-179.5 

31 
178.0 

24 
-175.8 

22 
-107.7 

16 

P 
— 

— 

-64.4 

41 
13.2 

65 
69.9 

19 
-76.8 

111 
-22.2 

62 
155.7 

40 
67.0 

7 

Y 

175.5 

135 
98.7 

14 
88.2 

13 
52.7 

28 
58.8 

74 
96.7 

15 
88.2 

14 
68.8 

13 

5 

91.6 

16 
82.0 

18 
85.0 

37 
102.8 

13 
93.0 

15 
95.9 

18 
81.4 

16 
— 

— 

E 

52.8 

44 
69.6 

25 
71.0 

145 
69.1 

68 
78.1 

25 
156.2 

119 
-138.0 

21 
— 

— 

Total 
RMSF 

195 

121 

281 

156 

256 

238 

113 

36 

Average 
RMSF 

65 

24 

56 

31 

51 

48 

23 

12 

Here again, the lowest variations are observed for the y and 8 dihedrals as well as 

for some of the p and s (residues 2, 4 and 7) angles. Residues 3 and 6 exhibit the highest 

fluctuations for the P and s torsions. Examination of the differences between unmodified 

aegPNA3 and c/>PNA9 revealed that the P, 8 and 6 torsions experienced the most changes 

and showed significant reductions in their RMSF values. For all systems considered, the 

least differences are observed in the fluctuations of the 8 dihedral as opposed to the p and 

y torsions, which exhibited the highest degree of differences. The flexibility of the y2 and 

84 dihedrals were similarly affected in all the singly modified strands. However, cpPNA9 

and cpPNA8, the strands with several modifications have more dihedrals in common 

when it comes to flexibility. In this case, the list of angles that showed similar changes 

included the P3, p7, y2, y8, 84, 87 and 85 dihedrals. Based on these observations, the 
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c/?PNA9 strand shares the most similarity with cpPNA5, which is unusual since the 

modification in this strand is at CI. 

Further investigation of the average backbone dihedral values was conducted and 

it was found that the P dihedral has a wide permissible range. Although free to change, 

the e torsions of residues 1 to 5 become restricted to the range of 50-80°. The y and 5 

torsions exhibit essentially the same behavior as in all cyclopentyl PNAs and stay within 

their ranges of 60-90° and 80-100°. In comparison to the unmodified PNA molecule, the 

fewest changes in average values were registered for the y torsions. However, when 

compared to the modified PNA strands, the averages differ mainly for the p and s 

torsions. On the contrary, y and 8 remain close to the values seen for the other strands, 

aside from the dihedrals yl-2, 83 and 85. 

Although the cpPNAlO simulation with modifications at Ti and T4 is very stable 

during the 10 ns simulation with an RMSD around 5.5 A, the conformational spaces 

sampled are quite different. Twelve clusters were obtained from cluster analysis (Tables 

72 and 73). Three highly populated clusters from Scheme I were also located with 

Scheme II. Cluster 11 from Scheme III is another abundant cluster that differs from the 

other three in the value of the T58 dihedral. All nine clusters in Scheme I were located 

with Scheme II, though an extra cluster was located with Scheme II. On the other hand, 

only three clusters from Scheme I were found to be similar with Scheme III and the 

remaining clusters were replaced by two new clusters in Scheme III. In Figure 59, we 

show representative structures for the top five clusters, each of which makes up 10-30% 

of the structures of cpPNAlO. This is unlike c/>PNA8, in which more than half of the 

entire ensemble is comprised of a single cluster. All of the cpPNAlO clusters contain S-

coil structures, except for clusters 4 and 5 from Schemes I and II, which have structures 

that are helical in the center (residues 4 to 6). Cluster 11 also represents an S-coil 

conformation. The smaller clusters appear to sample random coil and turn-like structures. 

For cpPNAlO, the number of conformations located with all three schemes is 

lower in comparison to the unmodified and the singly modified cpPNA4 (T4) and 

cpPNA5 (Ti) strands. Q?PNA10 mainly adopts S-coil conformations with a helical motif, 

while for c/?PNA4 and c/?PNA5 G-type and hairpin conformations were observed. Thus, 

the modifications at Ti and T4 not only reduced the flexibility of the strand, but also 
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induced helical structure. The thermodynamic stability of the cpPNA10:DNA complexes 

will increase due to larger decrease in unfavorable entropy since this oligonucleotide has 

an organized structure in its single-stranded state (therefore, low initial entropy). 

C4 C5 C l l 

Figure 59. Representative structures of the most populated clusters from the MD 

simulation of cpPNAlO. Residues are colored by position: Tl-red, T2- dark grey, T3-

orange, T4-yellow, T5-dark yellow, T6-grey, T7-green, T8-white, and K9-pink. The 

structures are positioned with Tl on top and K9 on bottom 
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Table 73. Similar clusters identified from the different clustering Schemes for cpPNAlO 

Cluster No. of members % _,, ..„ 
Cluster # 

Scheme II 
A 523 10.5 1 
B 330 6.6 7 
C 465 9.3 2 
D 654 13.1 3 
E 1155 23.1 4 
F 410 8.2 9 
G 875 17.5 5 
H 151 3.0 6 
I 274 5.5 8 

Total number of clusters 10 

Cluster No. of members % _,. ^a 

Cluster # 
Scheme III 

A 3070 30.7 2 
B 1462 14.6 3 
C 561 5.6 6 

5 
numbers correspond to identical cluster from Table 72 

RMSF values showed that the dihedral angles of the terminal residues 1 and 8 are 

the least flexible along with residues 3 and 4 (Table 74). Residues 2, 6 and 7 are 

characterized by higher RMSF values and are seen to engage in base stacking 

interactions. Differences between the RMSF values of the unmodified aegPNA3 and 

cpPNAlO indicate an overall decrease in strand flexibility. In comparison to cpPNA4, the 

N- and C-terminal residues (1, 2, 7 and 8) of cpPNAlO show decreased fluctuations, 

while residues 4 and 6 have enhanced flexibility. In the case of c/?PNA5, a decrease in the 

RMSF values was observed for residues in the central region (3 to 5). The overall strand 

flexibility of cpPNAlO is significantly lower than those of cpPNA4 and c/?PNA5. 

Therefore, this strand will have increased affinity toward DNA/RNA as a consequence of 

a lower entropic penalty. 

An interesting finding is that in all cases except for cpPNA9, the modification at 

position 4 results in increased flexibility of residue 2 compared to the unmodified PNA. 

When compared to classical PNA, strands with more than one modification exhibit an 

overall decrease in flexibility, however, in systems like cpPNA7 and cpPNA9 wide 

portions of the chain remain very flexible, meaning the effect of the modifications is 

local. 
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Table 74. Average dihedrals (°) and RMSF (bold, °) of the simulated cpPNAlO 

Residue 

Tl 

T2 

T3 

T4 

T5 

T6 

T7 

T8 

a 

— 

— 

-173.6 

22 

-174.6 

23 

-109.5 

17 

-166.9 

23 

-165.5 

39 

-179.1 

22 

-177.4 

27 

P 
— 

— 

-168.3 

91 

174.5 

21 

68.5 

14 

165.8 

29 
-179.6 

12 

152.2 

64 

168.1 

29 

y 

-85.0 

18 

96.9 

14 

96.8 

16 

69.8 

13 

93.4 

14 

58.6 

73 
84.2 

13 

88.7 

13 

8 

89.0 

13 

77.7 

28 
88.2 

17 

106.1 

10 

-102.8 

23 
84.4 

15 
89.9 

20 
— 

— 

E 

46.6 

28 

-51.1 

86 

-120.6 

27 

116.0 

66 

-5.6 

82 

149.8 

83 

-29.5 

82 

— 

— 

Total 
RMSF 

59 

241 

104 

120 

171 

222 

201 

69 

Average 
RMSF 

20 

48 

21 

24 

34 

44 

40 

23 

As with aegPNA3, cpPNA4 and cpPNA7-8, the highest fluctuations are recorded 

for the e dihedral whereas the least flexibility is seen for the y and 8 torsions. The p 

dihedral shows low fluctuations when compared to the above mentioned sequences. 

Nevertheless, the p, y and s angles show decreased fluctuations for the central residues in 

comparison to most systems studied. For example, in c/?PNA10, the p dihedral has a 

lower RMSF than in aegPNA3 and cpPNA6-9. The RMSF values of the y dihedral are 

lower than in aegPNA3, cpPNA5-7 and c/?PNA9. The s torsion in cpPNAlO has the 

lowest fluctuations when compared to all other strands. The strands with multiple rings 

share more similarities since seven dihedrals were influenced analogously: P3, P7, yl, y8, 

54, 87 and s5. 

Examination of the torsion values indicates that the modifications influenced the 

P dihedral substantially when compared to the unmodified strand. The constraint 

produced a clearer range of average values for the P dihedral with a shift to -170°. On the 
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other hand, the 8 dihedrals still vary significantly along the chain and differ from those of 

the unmodified and other cpPNA strands. It appears that the cyclopentane carrying 

residues help to pre-organize PNA by freezing both the y and 8 angles. The values of 

these angles range from 60° to 96° and from 80° to 100° for most residues. Departures of 

y and 8 from their respective preferred values are noted only in residues 1 and 5 for 

cpPNAlO. 

The structure of the cpPNAll octamer with modifications at all residues is 

remarkably stable, and no "folding" was observed in the simulations as one can see in 

Figures 36 and 38, where neither the RMSD nor the RGYR indicate a complete loss of 

the extended helix. Clustering of the structures shows that at a cutoff radius of 55° all the 

structures exist in only one cluster (Schemes I and III), while an RMS threshold of 50° 

(Scheme II) produced three new clusters (Tables 75 and 76, Figure 60). This indicates 

that the conformation of cpPNAll is very stable. 

Cl C2 C3 C4 

Figure 60. Representative structures of the most populated clusters from the MD 

simulation of cpPNAll. Residues are colored by sequence: Tl-red, T2- dark grey, T3-

orange, T4-yellow, T5-dark yellow, T6-grey, T7-green, T8-white, and K9-pink. The 

structures are positioned with Tl on top and K9 on bottom 



202 

Table 75.Torsion angle data for each cluster from simulation of cpPNAll 

„. No. of 
Cms . , 

Mem 

Scheme I 

1 10000 

Scheme II 

2 176 

3 1903 

4 88 

% 

100 

3.5 

38.1 

1.8 

T2 

P 

67 

66 

66 

65 

5 

89 

85 

94 

112 

T3 

a 

-130 

-140 

-126 

-146 

7 

40 

49 

21 

33 

e 

-169 

-154 

-144 

-83 

T4 

P 

70 

142 

66 

127 

5 

96 

90 

99 

92 

T5 

a 

-119 

-118 

-120 

-119 

7 

82 

80 

81 

85 

e 

6 

7 

6 

10 

T6 

P 

68 

70 

68 

66 

5 

97 

97 

97 

100 

T7 

a 

-118 

-118 

-118 

-118 

7 

79 

75 

79 

69 

e 

4 

6 

3 

-16 

Table 76. Similar clusters identified from the different 

clustering Schemes for cpPNAll 

Cluster No. of members 

Scheme II 
A 2833 

Scheme III 
A 10000 

Total number of clusters 

% 

56.7 

100 

Scheme II - 4; 

Scheme I 
Cluster #a 

1 

1 

Scheme III - 1 

numbers correspond to identical cluster from Table 75 

It appears that residues 1 to 3 are more flexible and this region of the molecule 

makes a loop motif. Cluster 1, which was also identified by Schemes II and III, together 

with clusters 2 and 3 contain a wide helical structure from residues 4 to 7. On the other 

hand, cluster 4 appears to be similar to the initial conformation, sampling an extended 

helix, but cluster 4 accounts for <2% of the structures. Therefore, it does not make a 

significant contribution to the ensemble average. 

From clustering analysis of the PNAs with multiple modifications, the highest 

number of clusters was located with Scheme II. For cpPNA7, the number of clusters 

obtained with Scheme I was lower than in Scheme III. On the other hand, Scheme III 

identified the lowest number of clusters for cpPNA9 and cpPNAlO. The lowest number 
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of clusters over the three Schemes was reported for cpPNAll. In comparison to all 

doubly modified strands, cpPNA8, cpPNA9 and cpPNAlO, cpPNA7 with three 

cyclopentane rings shows a higher degree of flexibility based on the clustering results. 

While the strands with rings at the N or C terminals and position 4 (cpPNA9 and 

cpPNAlO) show similar levels of flexibility, the cpPNA8 with constraints at both 

terminals has a slightly enhanced strand flexibility. Clearly, the clustering results indicate 

that cpPNAll is the least flexible strand. The greater restricted conformational freedom 

for cpPNAll enforces a decrease in the conformational entropy. 

The MD simulations of cpPNA7, cpPNA8 and cpPNA9, which start from a 

helical structure, predict that the cpPNA strand will neither maintain nor adopt a helical 

conformation. These strands have coil and hairpin-like conformations. However, the 

backbone conformations identified for cpPNAlO are S-type coils with some helical 

character and the PNA conformation corresponding to the helical strand is the most 

populous. If PNA is pre-organized for binding to DNA/RNA, then its conformations in 

solution should overlap with the conformation adopted in its complex with either DNA or 

RNA. Examination of structures from the predominant clusters of cpPNAll reveals that 

the lowest energy conformation does strongly resemble a helical structure. The 

calculations indicate that the fully modified cpPNAll does have an intrinsic tendency to 

assume the conformation found in native complexes even when it is free in solution; that 

is, the strand is significantly pre-organized. 

In cpPNAll, the overall stiffness of the chain results in low RMSF values (Table 

77). In comparison to all modified PNAs, the flexibility of the cpPNAll appears to be 

dramatically reduced, suggesting that the increase in stiffness of the structure is 

uniformly distributed along the backbone. Thus, structural pre-organization and the 

reduced flexibility of cpPNAll will contribute to the hybridization stability of PNA. Low 

RMSF values are found for cpPNA5, cpPNA8 and cpPNAlO around residues 1 and 2, 

indicating that the modification at position 1 alters the dynamics of the N-terminal region. 

As expected, all dihedrals, except for el and s2, exhibit low RMSF values for cpPNAll. 

In comparison to all systems, the p and s dihedrals have the lowest RMSF values for 

cpPNAll. Fluctuations of the 5 dihedral are lower relative to the ones seen in cpPNA4 
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and cpPNA9 while the y torsion has reduced fluctuations when compared to cpPNA5-7 

and c/?PNA9. 

Table 77. Average dihedrals (°) and RMSF (bold, °) of the simulated cpPNAll 

Residue 

Tl 

T2 

T3 

T4 

T5 

T6 

T7 

T8 

a 

— 
— 

-142.8 
24 

-130.1 
21 

-122.6 
20 

-118.9 
19 

-119.4 
18 

-117.9 
17 

-117.6 
18 

P 
— 
— 

66.7 
7 

68.7 
7 

70.1 
18 

68.3 
7 

68.3 
7 

68.3 
7 

68.3 
7 

Y 

-75.6 
18 

27.7 
22 

39.8 
25 

72.8 
21 

82.2 
11 

81.9 
11 

79.3 
11 

70.9 
11 

5 

104.8 
14 

89.0 
17 

91.5 
16 

96.1 
11 

96.1 
9 

96.4 
9 

98.3 
10 
— 
— 

s 

-37.1 
65 

158.9 
75 

-169.4 
32 

10.1 
21 

6.6 
19 
6.7 
19 

3.6 
20 
— 
— 

Total 
RMSF 

97 

145 

101 

91 

65 

64 

65 

36 

Average 
RMSF 

32 

29 

20 

18 

13 

13 

13 

12 

Evaluation of the torsion angle data yields y values in the ranges of 70-80° for the 

central residues 4 to 8, and 30-40° for residues 2 and 3. Likewise, the s dihedrals adopt a 

value of 10° in residues 4 to 7, but remain primarily at 180° for residues 2 and 3. 

Furthermore, for the p and 8 dihedrals the distribution is somewhat narrow; only values 

around 70° are observed for the p torsion and values around 90° for the 8 torsion. The 

chief differences between the unmodified strand and cpPNAll are in the preferences of 

the P, 8 and 8 dihedrals. In the unmodified aegPNA3 the p torsions occupy the trans 

region, whereas in cpPNAll, the average P values are restricted to -70°. The 8 dihedral 

assumes various values in the unmodified strand, but has a fixed value of -100° in 

cpPNAll. In the case of the y torsions, changes in the averages are evident only for 

residues 2 and 3. When compared to the cpPNAs with multiple modifications, different 

sampling of the a and 8 dihedrals is noted. The pre-organized structure of the fully 
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modified cpPNAll adopts dihedral values characteristic of RNA duplexes; therefore, is 

more compatible with RNA-type complexes. These results suggest that the increased 

stability of the duplexes with cpPNAll will be a result of large increases in favorable 

enthalpy of hybridization that is not compensated for by increases in unfavorable entropy 

(due to reduced flexibility). 

More generally, the overall results show that fluctuations in the central part 

(residues 4 and 5) of any polythymine strand containing cyclopentane at positions 1 or 8, 

regardless of other alterations, are reduced. Modifications at both the T4 and Tg positions 

affect the RMSFs of residue 3, resulting in a higher flexibility compared to the rest of the 

chain residues. For cpPNA7 (modified residues: Ti, T4 and Tg) and cpPNA9 (modified 

residues: T4 and Tg), the reduced conformational fluctuations are localized to the site of 

the modifications with only a small influence on the fluctuations of adjacent residues. 

According to clustering and RMSF data, among all cpPNAs with multiple modifications, 

the fully modified cpPNAll strand had the lowest flexibility, while cpPNA7 (Ti, T4 and 

Tg) exhibited the highest mobility. Q?PNA10 (Ti and T4) showed higher fluctuations in 

comparison to cpPNAll, but it had lower flexibility than c/?PNA7-9. Based on RMSF 

results, c/?PNA8 and c/?PNA9 had comparable flexibility. Analysis of average dihedral 

angles revealed that in strands with multiple modifications changes were observed the in 

P and s values. In cpPNA7 and cpPNAlO, the p angle is mostly in the trans 

conformation, while in cpPNA9 and cpPNAll it is in the gauche± conformation. 

Q?PNA18 adopts conformations where this torsion angle populates the gauche and trans 

conformations. The 8 dihedral values are centered around 90° in all cpPNAs. These 

results indicate that the number of modifications and the position have an effect on the 

torsional potential energy surface. 

Evidence of greater stiffness of the cyclopentyl modified PNAs with respect to the 

classical aegPNA strand suggests that the constraint plays an important role in 

determining the flexibility of the strand as well as the dynamics of certain regions of the 

molecular structure. The structures for single as well as multiple modifications suggest 

that the overall geometry attained by the molecule restricts the conformational of the 

strand. Again, this result can be attributed to the presence of the modification in the 

backbone of PNA, which in turn imparts some rigidity to the molecular geometry. Thus, 
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the constrained cpPNAs (cpPNAlO, cpPNAll) will bind with more favorable binding 

entropies than the flexible ones (c/?PNA7 or cpPNA8-9). 

PNA-MB10 sequence: cpPNA19-cpPNA22 

The cpPNA19 (modifications at T6 and C7) and c/?PNA20 (modifications at T6 

and Ag) simulations at 298 K are stable along the 10 ns periods. The RMSD suggests that 

the structures remain close to the helical structure. Overall, the RMSD and RGYR 

indicate that at least half of the structures populated by cpPNA19 have residual structural 

motifs from the initial conformation (Figures 37 and 39). The conformations of cpPNA19 

were grouped into sixteen distinct clusters (Figure 61, Tables 78 and 79). The highly 

populated clusters from Scheme I were also identified in Schemes II and III. Five clusters 

were found to be similar in Schemes I and II while only three were identical between 

Schemes I and III. The remaining clusters in Scheme I were replaced by seven and two 

new clusters in Schemes II and III, respectively. 

A stable helical motif is observed in the central region of the molecule and is 

present for 4 ns. Cluster analysis indicates that cpPNA19 samples significant populations 

of coil structures with helical content (cluster 7). Many structures in the ensemble of 

cpPNA19 have N- and C-terminal loops, which are represented by clusters 2 and 3 from 

Schemes I and III. However, in cluster 3 the loops become more bent and resemble two 

knots at the termini. Cluster 16 has a limited population of coil structures with two inner 

loops running from residues 3 to 6 and 8 to 10. 

Based on the Scheme I and III results, aegPNA14 has more clusters than 

cpPNA19. In comparison to cpPNA15, the cpPNA19 strand had a larger number of 

clusters in Schemes II and III, but it had fewer clusters with Scheme I. Similarly, when 

compared to cpPNA19, cpPNA17 had more conformations with Schemes I and II but a 

lower number was observed for Scheme III. The simulations also show that the 

conformation of the c/?PNA19 decamer is significantly changed by multiple 

modifications at these specific positions. Q?PNA15 and cpPNA17 exhibit hairpin-like 

and Q-loop conformations, while the predominant structures identified for c/?PNA19 

include coil conformations with helical content. These results suggest that the flexibility 



207 

of the cpPNA19 (T6, C7) strand with two modifications is higher or comparable to that of 

c/?PNA15 and cpPNA17, which contain a single cyclopentane at either T6 or C7 positions. 

Thus, the observed pre-organized structure for cpPNA19 indicates no significant entropic 

advantage to forming a duplex, but it may have an enthalpic advantage. However, the 

thermodynamic stability of the complexes with DNA will be increased compared to the 

non-modified aegPNA14. 

Cl C2 C3 C7 

Figure 61. Representative structures of the most populated clusters from the MD 

simulation of cpPNA19. Residues are colored by name: APN-blue, CPN-orange, TPN-

green, TPC-light blue, CPC-pink, GPN-red and K-purple (see Table 17 for sequence) 
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Table 79. Similar clusters identified from the different clustering Schemes for cpPNA19 

Cluster No. of members % _, „a 

Cluster # 
Scheme II 

A 1547 30.9 7 

B 973 19.5 1 

C 849 17.0 3 

D 84 1.7 4 

E 51 1.0 5 

Total number of clusters 12 

Cluster I No. of members % „,, „a 

Cluster # 
Scheme III 

A 1281 12.8 7 

B 2679 26.8 2 

C 1745 17.5 3 

5 

numbers correspond to identical cluster from Table 78 

The average RMSF per residue was calculated and the results are presented in 

Table 80. The most mobile residues are located on the termini, (residues 1 and 10), and at 

the two loops (residues 3, 8 and 9). A similar but less pronounced effect was observed for 

c/?PNA17 with modification at C7. The modification at two positions shows lower 

RMSFs for residues 6 to 8 but enhances the mobility of the N- and C-terminal residues (1 

to 3 and 10) when compared to the unmodified strand. This is in contrast to cpPNA15, 

where the flexibility of the N-terminal residues is reduced upon single modification at T6 

and only the C-terminal residues have increased motions. Moreover, the overall 

flexibility of the cpPNA19 is comparable to aegPNA and this strand is the most flexible 

strand for all sequences containing a cyclopentane modification. Consequently, the 

modified cpPNA19 will exhibit less favorable entropy of binding and will bind to DNA 

with lower affinity than the rigid cyclopentyl analogs. 

A range of RMSFs is seen for the four dihedrals: P, y, £ and 8. Nevertheless, 

most y (residues 3 to 7, 9) and 8 (residues 2, 5 to 8) torsions have low RMSFs. Similar 

observations were made for all sequences with modifications, irrespective of position or 

number. The fluctuations of the p and s torsions in residues 6 to 9 are smaller than the 

ones in aegPNA14. However, several p torsions in the central as well as terminal regions 

exhibit higher variability when compared to cpPNA15 or cpPNA17. The terminal residue 

y dihedrals have higher RMSF values than those in aegPNA14, cpPNA15 and cpPNA17. 

As for 8, it showed enhanced fluctuations in comparison to the rest of the PNA strands. 
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The cpPNA19 strand shares the strongest similarity with the cpPNA16 and cpPNA17. 

Consequently, five commonly affected dihedrals were identified: 08, 09, y7, s7 and s9. 

Table 80. Average dihedrals (°) and RMSF (bold, °) of the simulated c/?PNA19 

Residue 

Gl 

T2 

A3 

G4 

A5 

T6 

C7 

A8 

C9 

T10 

a 

— 
— 

172.5 
22 

-179.6 
25 

179.2 
23 

179.1 
26 

-135.1 
29 

-116.0 
16 

-162.4 
33 

179.3 
30 

172.4 
26 

P 
— 
— 

163.5 
50 

174.9 
69 

66.2 
26 

131.6 
56 

66.7 
8 

67.7 
7 

94.3 
49 

138.3 
88 

139.0 
61 

Y 

51.0 
102 

-19.3 
88 

98.1 
17 

82.6 
13 

93.1 
15 

83.5 
11 

74.2 
11 
1.8 
91 

90.4 
15 
2.4 
86 

8 

-18.0 
157 
96.0 
20 

-175.4 
111 

117.4 
63 

77.7 
16 

96.7 
10 

101.2 
10 

94.1 
26 

15.1 
124 
— 
— 

E 

77.1 
81 

62.9 
36 

-1.3 
73 

-37.3 
102 
27.4 
34 
4.5 
17 

37.8 
42 

27.7 
67 

57.7 
54 
— 
— 

Total 
RMSF 

340 

216 

295 

227 

147 

75 

86 

266 

311 

173 

Average 
RMSF 

113 

43 

59 

45 

29 

15 

17 

53 

62 

58 

Closer inspection of the average dihedral values revealed two ranges for the 

P torsions: 140-170° (residues 2, 3, 5, 9, 10) and 70-95° (residues 4, 6 to 8). As 

mentioned earlier, the y torsion assumes values in the 70-100° range, except for T2 and 

Ag, where the averages are 2° and -20°, respectively. Analogously, the 8 torsion varies 

from 80 to 100° throughout the simulations, except for A3 and C9. Finally, the average 

values for the s torsion vary from 30-60° in all nucleotides but A3, G4 and T6. The major 

differences between cpPNA19 and aegPNA14 angles are seen for the 0 and s dihedrals. 

A similar trend is observed when cyclopentyl PNAs are compared. One exception to this 
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exists: in the case of cpPNA16, with a modification at G4, the average values for all 

dihedrals have wider ranges. 

After conformational sampling, the resulting ensemble for cpPNA20 contained 

structures mostly in the closed loop conformation (Tables 81 and 82, Figure 62). Two of 

the highly populated clusters from Scheme I were located with Scheme III, but only one 

was found with Scheme II. All seven clusters of Scheme I were identified in Scheme III 

and six clusters matched those from Scheme II. Scheme II located two new clusters that 

were not similar to the additional clusters located with Scheme III. The termini are more 

flexible with approximately 40% of the structures from Scheme I containing an N-

terminal loop (cluster 3). The identical clusters in Schemes II and III as well as cluster 8 

also have similar conformations. Other types of secondary structural elements are less 

prevalent. Cluster 1 contained exclusively cpPNAs adopting conformations similar to the 

starting NMR structure. 

C/7PNA20 had fewer clusters than #egPNA14 for Schemes I and II. The number 

of conformations sampled is larger for Schemes I and II in the simulation of the 

cpPNA20 single strand than in the simulation the modified c/?PNA15, but c/?PNA20 has 

fewer clusters for Scheme III. The number of clusters across all three schemes was higher 

when comparing cpPNA20 to c/?PNA18. Both the c/?PNA20 (T6 and A8) and cpPNA15 

(T6) strands adopt similar closed-loop structures, but for c/?PNA18 (Ag) helical coil 

conformations were observed. Thus, multiple modifications reduce the flexibility of the 

PNA strand in comparison to the aegPNA14; however, the strands with single 

modification at either T6 or A§ show greater decrease in flexibility than that with both 

residues substituted. This finding suggests that the thermodynamic stability of the 

cpPNA20 complexes with DNA/RNA will not be greatly increased in comparison to the 

unmodified PNA. The higher flexibility of this strand will lead to larger entropic losses 

upon duplex formation and decreased binding affinity in comparison to singly modified 

cpPNA15 or cpPNA18. 
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CI C3 C4 

C5 C8 C9 

Figure 62. Representative structures of the most populated clusters from the MD 

simulation of cpPNA20. Residues are colored by name: APN-blue, CPN-orange, TPN-

green, TPC-light blue, APC-light brown, GPN-red and K-purple. The structures are 

positioned with GPN1 on top and K l l on bottom (see Table 17 for the sequence) 
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Table 82. Similar clusters identified from the different clustering Schemes for cpPNA20 

Cluster No. of members % _, _. „<, 
Cluster # 

Scheme II 
A 595 11.9 1 
B 320 6.4 6 
C 292 5.8 2 
D 1792 35.8 3 
E 439 8.8 5 
F 123 2.5 7 

Total number of clusters 8 

Cluster I No. of members % ,_,, „a 

Cluster # 
Scheme III 

A 1246 12.5 1 
B 583 5.8 6 
C 3223 32.2 3 
D 2467 24.7 4 
E 1089 10.9 5 
F 453 4.5 2 
G 398 4.0 7 

8 
numbers correspond to identical cluster from Table 81 

The RMSFs of cpPNA20 compared with the respective values from the 

unmodified strand show that modifications at positions 6 and 8, cause an increase in 

flexibility for residues 1 to 4 (Table 83). The mobility of the remaining part of the strand 

is significantly reduced. Overall, the flexibility of the strand is comparable to aegPNA14. 

A single modification at C7 (cpPNA17) produced a similar effect, although to a higher 

extent. The analysis of the RMSFs between cpPNA15 (modification at T6), cpPNA18 

(modification at A8) and cpPNA20 (modifications at T6 and A8) show differences in the 

mobility of the central residues. A single modification at either the T6 or Ag position has a 

profound effect on flexibility, spanning more residues in the central part than was 

observed for cpPNA20. Modifying both residues rigidifies the backbone only locally. 

Thus, weaker binding to DNA would be predicted for this strand. 

Here again, the P and £ torsional fluctuations dominate; whereas, the y and 5 

dihedrals only vary slightly. If compared to the unmodified sequence, the p, y and s 

dihedrals demonstrate decreased fluctuations for residues 6 to 9. Yet, as opposed to most 

cpPNA strands, the p, 5 and £ fluctuations are significantly higher in residues 2 to 4. 

The extent of the variations in the PNA average values suggests that possible 

conformational changes are caused by the modifications. The key conformational 

parameters, the y and 8 torsions, do not exhibit wide variations in the oligonucleotide 

structure. Regarding the distribution of the p and £ angles, there exist differences between 
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aegPNA14 and cpPNA20. Modification at T6 and Ag favors a broader distribution of 

these angles. In comparison to cpPNA15 and cpPNA18, the main differences are in the P, 

y and s dihedrals. 

Table 83. Average dihedrals (°) and RMSF (bold, °) of the simulated cpPNA20 

Residue 

Gl 

T2 

A3 

G4 

A5 

T6 

C7 

A8 

C9 

T10 

a 

— 

— 

177.8 

25 
177.7 

27 
179.1 

28 
179.0 

24 
-111.3 

27 
179.6 

28 
-116.7 

19 
177.6 

29 
176.5 

22 

P 
— 

— 

-84.6 

99 
-64.8 

123 
129.3 

63 
156.4 

41 
78.5 

22 
172.6 

50 
68.3 

7 
20.0 

54 
139.3 

72 

Y 

55.5 

73 
-49.5 

76 
89.6 

15 
-45.1 

81 
92.2 

14 
71.8 

15 
91.1 

14 
51.0 

24 
81.5 

26 
90.6 

14 

8 

110.3 

43 
105.2 

23 
1.2 
149 

-127.1 

70 
89.3 

19 
103.6 

10 
92.1 

14 
99.2 

15 
-161.1 

71 
— 

— 

8 

43.7 

72 
-110.4 

99 
-10.3 

94 
-109.3 

102 
-74.9 

66 
43.3 

32 
137.5 

67 
54.8 

46 
-42.2 

90 
— 

— 

Total 
RMSF 

188 

322 

408 

344 

164 

106 

173 

111 

270 

108 

Average 
RMSF 

63 

64 

82 

69 

33 

21 

35 

22 

54 

36 

There is a large jump in RMSD for cpPNA21 (modifications at C7 and Ag) at ~ 4 

ns, which corresponds to a further deviation from the NMR reference structure. The 

conformational behavior of cpPNA21 was studied by cluster analysis and thirteen distinct 

clusters were obtained (Tables 84 and 85, Figure 63). There are no differences between 

the highly populated clusters obtained by the three criteria. Nine identical clusters were 

located in Schemes I and II. The remaining cluster of Scheme I was substituted by a 

different cluster in Scheme II. On the contrary, only three clusters from Scheme I were 

found to be similar in Scheme III. The seven remaining clusters were replaced by only 
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two clusters with low percentages. The clusters were also analyzed from a 

conformational flexibility point of view. The conformations fit only two large families. 

During the first 4.2 ns, the molecule exists in a somewhat helical conformation (clusters 1 

and 10). The rest of the clusters represent a pattern with a more compact, S-coil 

conformation and accounts for 65% of the structures obtained with the parameters of 

Scheme I. 

C5 CIO C l l 

Figure 63. Representative structures of the most populated clusters from the MD 

simulation of cpPNA21. Residues are colored by name: APN-blue, CPN-orange, TPN-

green, CPC- pink, APC-light brown, GPN-red and K-purple. The structures are 

positioned with GPN1 on top and K l l on bottom (see Table 17 for the sequence) 
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Table 85. Similar clusters identified from the different clustering Schemes for cpPNA21 

„. x No. of n / Scheme I 
Cluster , % _, A Ma 

members Cluster # 
Scheme II 

A 922 18.4 1 
B 1049 21.0 2 
C 521 10.4 10 
D 362 7.2 4 
E 715 14.3 3 
F 529 10.6 5 
G 50 1.0 6 
H 64 1.3 7 
I 266 5.3 8 

Total number of clusters 10 

„, , No. of n. Scheme I 
Cluster , % _. ua 

members Cluster # 
Scheme III 

A 2103 21.0 1 
B 5520 55.2 2 
C 1837 18.4 9 

5 

numbers correspond to identical cluster from Table 84 

For Schemes II and III, cpPNA21 (C7 and Ag) had more clusters than c/?PNA17 

(C7) but the number of clusters from Scheme I was higher for cpPNA17. For all three 

schemes, c/?PNA21 had fewer clusters than aegPNA14 and cpPNA18 (Ag). These results 

all suggest that the addition of the cyclopentane ring decreased the flexibility of the 

strand in comparison to the unmodified PNA; however, the two modifications at C7 and 

Ag did not have as large of an effect on strand flexibility as single alterations at either 

position alone. A comparison of conformations between cpPNA21 and cpPNA17 or 

cpPNA18 shows that they adopt various coil conformations, but for cpPNA18 helical 

structure was also observed. Consequently, multiple rings at both locations only slightly 

altered the overall shape of the structure. 

The analysis of the RMSFs for c/?PNA21 shows a maximum for the N-terminal 

residue, which can be interpreted as higher mobility for the turn (Table 86). Residues 3, 

4, 7 and 8 have low RMSF values and are most often seen in base stacking interactions. 

Furthermore, high fluctuations are also found for residues 5 and 6, which belong to the 

central part of the strand and are located just above the modification. In contrast, the 

entire c/?PNA18 strand is rigidified as a consequence of the single modification at 

position 8. A similar increase in the flexibility of the N-terminal residues is observed for 

the strand carrying a single cyclopentane at residue C7 (cpPNA17). In comparison to 
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aegPNAH, the mobility of the chain was constrained in the regions of residues 3, 4 and 7 

to 10. Differences between the RMSF values of the C-terminal residues for cpPNA17, 18 

and 21 indicate that the limited mobility of this region is induced by modification at As. 

The overall strand flexibility of cpPNA21 is lower than those of cpPNA17, cpPNA19 and 

cpPNA20. However, it has higher flexibility in comparison to cpPNA15 and cpPNA18, 

which suggests that c/?PNA21 will lose more entropy upon binding to DNA. 

Table 86. Average dihedrals (°) and RMSF (bold, °) of the simulated cpPNA21 

Residue 

Gl 

T2 

A3 

G4 

A5 

T6 

C7 

A8 

C9 

T10 

a 

— 

— 

-170.58 

27 
162.34 

26 
172.60 

18 
-175.43 

20 
173.85 

34 
-124.23 

22 
-131.71 

28 
-170.54 

37 
-173.88 

22 

P 
— 

— 

160.77 

49 
-29.79 

27 
60.29 

15 
-5.83 

62 
123.13 

55 
67.27 

7 
65.66 

7 
68.12 

42 
107.98 

49 

Y 

68.06 

106 
-52.21 

79 
101.06 

13 
80.82 

10 
98.38 

19 
92.79 

17 
54.00 

27 
67.89 

17 
100.73 

12 
80.45 

12 

6 

92.44 

19 
87.13 

15 
85.77 

14 
90.60 

17 
86.49 

17 
81.99 

15 
93.71 

15 
102.82 

10 
88.00 

18 
— 

— 

8 

86.20 

44 
70.48 

34 
72.22 

21 
74.32 

18 
32.62 

52 
154.90 

92 
19.25 

32 
60.23 

35 
64.04 

55 
— 

— 

Total 
RMSF 

169 

204 

101 

78 

170 

213 

103 

97 

164 

83 

Average 
RMSF 

56 

41 

20 

16 

34 

43 

21 

19 

33 

28 

The lowest fluctuations are noticed for the y, 8 and some p and s dihedrals 

(residues 3, 4, 7 and 8). Upon comparison to the aegPNA and cpPNA strands, significant 

reductions in the RMSFs are noted for the (3, y and s torsions (residues 3, 4 and 7 to 9). In 

addition, the 8 dihedrals have a similar level of flexibility as in the unmodified reference 

PNA, but demonstrate considerable rigidity when compared to other cpPNAs. It is worth 
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noting that the modification-induced changes in the P and e fluctuations are registered 

mainly in residues carrying the cyclopentane. This finding suggests that the impact of the 

constraint on the flexibility of these dihedrals is limited to the site of the modification. 

Based on our observations, the cpPNA21 strand shares the most similarity with 

cpPNA16. As mentioned previously, the flexibility of the p8, p9, y7, s7 and e9 dihedrals 

was affected (reduced) in comparison to all PNAs with a single cyclopentane. It should 

be noted, however, that the strands with multiple rings have more similarities to each 

other since a larger number of dihedrals become restricted as a consequence of the 

modifications (P8, p9, y2, y7, y8, s7 and e9). 

The average backbone dihedral values are reported in Table 86. A number of 

residues have average P values in the 60-70° range. Exceptions are noted for T2, A3, A5 

and T6. The y torsions mainly range from 70 to 100° except in T2 where the average is -

52°. Similar average values observed for all cpPNAs were also seen for the 8 torsions 

(90-100°). The torsion values for s vary from 70 to 90° in most nucleotides, except for 

A5, T6 and C7. In comparison to the unmodified PNA molecule, the most changes in the 

average values were registered for the P and 8 torsions, whereas no significant differences 

are observed for 8. However, when compared to cpPNA strands, the averages vary 

mainly for the p and 8 torsions. By contrast, y along with 8 remain close to their 

predominant values. 

The structures sampled for cpPNA22 (modifications T6, C7 and Ag) are not very 

different from the initial helical reference, resulting in an RMSD of 4.3 A. Evaluation of 

the generated ensembles indicates that fast conformational changes are occurring within 

small domains. The cluster analysis shows that the two largest clusters from Scheme I 

account for -60% of the ensemble (Figure 64, Tables 87 and 88). One of the most 

populated clusters from Scheme I was identified in both Schemes II and III. The other 

highly populated cluster from Scheme I was only located with Scheme III. In Scheme II, 

the cluster with the highest membership differs from the aforementioned cluster in the 

value of the C98 torsion. Three clusters were identical between Schemes I, II and III. The 

remaining three clusters from Scheme I were replaced by two new clusters in Scheme II 

and only one new cluster in Scheme III. 



221 

CI C2 C3 C4 

C5 C6 C7 C8 

Figure 64. Representative structures of the most populated clusters from the MD 

simulation of cpPNA22. Residues are colored by name: APN-blue, CPN-orange, TPN-

green, TPC- light blue, CPC-pink, APC-light brown, GPN-red and K-purple. The 

structures are positioned with GPN1 on top and K l l on bottom (see Table 17 for the 

sequence) 
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Clusters 1 and 2 from Scheme I contain structures with helices from residues 2 to 

7. The matching clusters in Scheme II together with cluster 8 exhibit similar 

conformations. On examination of clusters 3 and 5, we found that the structures are more 

conformationally disordered, but retain helical motifs. Scheme II located clusters (6 and 

7) that contain helical conformations together with N- and C-terminal loops. The last 

significant cluster 4 from Scheme I is comprised of hairpin-like loop conformations that 

emerged at ~9 ns. This data seems to suggest that exhaustive sampling of the 

configurational space was not accomplished because the helical element did not remain 

for the entire simulation and disappeared around 9 ns. Thus, the simulations only 

captured a snapshot of the energy landscape. 

Due to conformational constraints imposed by the three cyclopentanes, the 

number of clusters obtained (all three schemes) from the simulations of cpPNA22 (T6, C7 

and Ag) was lower than for cpPNA17 (C7), c/?PNA19 (T6 and C7), cpPNA20 (T6 and A8) 

and cpPNA21 (C7 and Ag). For Schemes II and III cpPNA22 had fewer clusters than 

cpPNA15 while the number of conformers obtained by Scheme I was higher for 

cpPNA22. These results suggest that among these strands, cpPNA22 exhibits the lowest 

flexibility; therefore, the changes in overall binding free energy will be due to a smaller 

entropic penalty. Clustering of cpPNA18 (Ag) resulted in a lower number of groups in 

comparison to cpPNA22, which demonstrates that the dynamics of cpPNA18 are more 

restricted. The simulations sampled both helical and hairpin conformations for cpPNA22. 

Similar conformations were observed for cpPNA15 and cpPNA18 that have 

modifications at T6 and Ag, respectively. Thus, the cpPNA:DNA association process will 

be more entropically favorable for cpPNA18 than for cpPNA22. 

The effect of multiple cyclopentane modifications can be studied via analysis of 

the conformational properties of the 10-mer cpPNAs. Over the different cpPNA strands, a 

great variety of structural elements is present in different regions of the PNA. Indeed, 

c/?PNA19 has a significant number of structures with loops and turns. A coil 

conformation with a helical motif was also present. The c/?PNA22 strand with three rings 

retained an overall helical structure during the simulation. Thus, modifications at both T6 

and C7 or only at Ag induce a helical structure since all predominant structures obtained 

from clustering of cpPNA18 and cpPNA19 had a helical element. In addition, since the 
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number of strands having a helical character was higher for the PNA-Tg sequence, it can 

also be inferred that the polythymine sequences show a larger tendency toward helical 

elements than the mixed base sequence. 

To further investigate the influence of multiple modifications on the chain 

flexibility, the RMSF profile was analyzed (Table 89). The N-terminal residues 1, 2 and 3 

showed greater flexibility than the other residues. This is partly consistent with the results 

received for cpPNA17 (C7), cpPNA18 (A8), cpPNA19 (T6 and C7), c/?PNA20 (T6 and Ag) 

and cpPNA21 (C7 and Ag), which also had higher N-terminal flexibility. The region 

comprising the modifications (residues 6, 7 and 8) showed considerably lower 

fluctuations. By comparing the RMSF values between aegPNA14 and cpPNA22, 

important changes in the overall strand flexibility upon modification are onserved. The 

resultant RMSF values of residues 6 to 10 are clearly lower than those observed in the 

unmodified PNA simulation. On the other hand, residues 1 to 5 show enhanced 

flexibility. Similar to cpPNA15 (T6), c/?PNA16 (G4), cpPNA17 (C7) and c/?PNA21 (C7 

and A8), but unlike cpPNA18 (A8), cpPNA19 (T6 and C7) and cpPNA20 (T6 and A8), the 

residues located on the N-terminal side of the modifications were among the most mobile 

residues. Yet, the C-terminal side residue almost always showed reduced fluctuations. As 

noted previously for cpPNA16 and cpPNA20, the c/?PNA22 also has a moderately 

flexible C-terminal region (residues 9 and 10). In comparison to all the cpPNA strands, 

cpPNA22 had the lowest flexibility, and since the extent of immobilization is a decisive 

determinant for DNA binding, the greater restriction of mobility will contribute favorably 

to the free energy of binding. 

The reduced flexibilities of P, y and £ in the modified residues 6, 7 and 8 are 

assumed to translate into their reduced mobility. On the other hand, the RMSF values for 

s dihedral in residues 2 to 5 are larger in magnitude and demonstrate increased flexibility 

in comparison to the reference PNA. The y torsion underwent increased fluctuations at Gi 

and T2 upon introduction of the constraints. For the P and 8 dihedrals, a range of RMSF 

values was obtained. Normally, 5 is restricted upon modification, but in this case p was 

restricted and 8 experienced enhanced fluctuations in the terminal regions. Residues 

bearing the ring constraint had lower RMSFs for those dihedrals. A similar pattern of 
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dihedral flexibility was found in c/?PNA17 (C7), cpPNA19 (T6 and C7) and cpPNA20 (T6 

and As), although less pronounced. In comparison to all other systems, the p dihedrals of 

cpPNA22 have the lowest RMSF values. Fluctuations of the 8 and 8 dihedrals are greater 

relative to the ones seen for other cpPNAs, with the exception of cpPNA20, which had 

larger RMSFs. 

Table 89. Average dihedrals (°) and RMSF (bold, °) of the simulated cpPNA22 

Residue 

Gl 

T2 

A3 

G4 

A5 

T6 

C7 

A8 

C9 

T10 

a 

— 
— 

171.8 
22 

175.9 
23 

-178.7 
26 

169.7 
21 

-138.3 
30 

-119.4 
18 

-114.0 
15 

-176.1 
26 

-177.2 
21 

P 
— 
— 

-174.5 
34 

31.3 
50 

129.5 
57 

88.8 
50 

67.1 
12 

67.6 
7 

68.5 
7 

159.9 
39 

-0.6 
58 

Y 

30.7 
85 

50.8 
78 

92.6 
19 

78.2 
26 

45.5 
74 

76.6 
17 

77.5 
11 

75.0 
10 

96.4 
15 

99.3 
22 

8 

50.4 
145 
97.3 
55 

-12.3 
93 

85.4 
15 

80.6 
18 

97.8 
10 

99.5 
9 

104.4 
11 

-56.1 
66 
— 
— 

E 

56.9 
78 

43.0 
72 

-155.3 
119 
72.1 
23 

55.8 
75 
6.1 
21 
0.9 
17 

-80.5 
11 

11.6 
97 
— 
— 

Total 
RMSF 

308 

261 

304 

147 

238 

90 

62 

54 

243 

101 

Average 
RMSF 

62 

52 

61 

29 

48 

18 

12 

11 

49 

34 

The average p values vary from 70 to 80° in the central residues (5 to 8), while 

the rest of the residues assume various values. Likewise, the y dihedrals stay within the 

80-90° range in most residues, but vary around 40° for residues 1, 2 and 5. For the 

8 dihedrals, values around 90° are seen, while the 8 torsions are populated over a broad 

range. The major differences between the unmodified strand and cpPNA22 are in the 

preferences of the P and s dihedral values. In the case of the y and 8 torsions, changes in 
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the averages are apparent only for residues 2, 7, 8 and 3, 9, respectively. When 

comparing the two strands, the average values for the a and 5 dihedrals differ between 

c/?PNA19, cpPNA20 and cpPNA22. The c/?PNA strands with multiple modifications had 

the following approximate backbone torsion angles: a=170°, p=60° or 160°, y=60-90°, 

8=90-100° and 8=30-60°. The position of the modification had a significant effect on the 

average values of the P and s torsions. The y values were also shifted, though to a lesser 

extent. The effect these changes will have on the relative magnitudes of the enthalpies of 

binding cannot be evaluated. Nevertheless, the variations in the preferred torsion values 

indicate that structural factors will lead to differential binding enthalpies of the 

constrained PNAs. 

In summary, the modification effect can be local to the site of the alteration 

(cpPNA19 and cpPNA20) or very distant from the modification site. These varying 

results clearly indicate that the effect of the modification is position- and residue-specific. 

In addition, our calculations appear to be consistent with the experimental melting 

temperatures, in that there is a decrease in flexibility as the number of constraints is 

increased. In comparison to the polythymine sequences, the effects on the overall strand 

flexibility were less pronounced with the increased number of cyclopentanes for the 

MBio systems; however, in these systems, more distinct changes in fluctuations (i.e. 

rigidification) were observed depending on the location of the modified residues. The two 

sequences differ in the torsional preferences for the p dihedral, as more strands in Tg 

adopt gauche values than in MBio. These observations suggest that the cpPNA-Tg 

sequence, being more constrained, will bind to DNA/RNA with a binding entropy that is 

more favorable than the mixed base decamer. In addition, the restriction of the P 

dihedrals in the desirable range, will lead to stronger preferences for binding to RNA or 

DNA. 

Comparison to DNA and RNA duplexes 

We used the dihedral angles to evaluate the conformational similarity between the 

cpPNA single strands and DNA/RNA duplex structures. If we can find a cluster having 
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similar values to the native duplexes, its backbone conformation will not change 

appreciably during binding. In addition, this conformer is presumably a minimum on the 

PES of the strand. The lower the energy of this conformer, the more stable a duplex the 

strand should form with DNA or RNA. Essentially, the torsional strain of the duplex will 

have been reduced. This section describes a more direct comparison between calculation 

and experiment, in which computed backbone dihedral angles of the PNA single strands 

are compared with the corresponding values from NMR/X-ray studies of native DNA and 

RNA duplexes.249'250 

Table 90 lists the backbone dihedral angles of PNA:DNA, DNA and RNA 

duplexes averaged over residues. The experimental structures of DNA and RNA and the 

theoretically obtained conformations of PNA share similar a values (-180°), though the 

modified residue has an average value of-130°. A comparison of RNA dihedrals with 

aegPNA shows two major differences. First, the P torsion is fixed in a gauche (60°) 

region for the RNA conformations; but, in the calculations, this angle can be gauche+ (+ 

60°), gauche- (-60°), or trans (180°), prompting early speculation that PNA analogues 

that stabilize this torsion might exhibit an increased affinity towards RNA. Second, 

5 adopts values around ±90° in the calculations; but, prefers the trans (-180°) domain in 

the NMR and crystal structures. The similarity of the RNA conformation with aegPNA is 

also evident; the values of the a, y and E dihedral angles for aegPNAl, aegPNA12 and 

aegPNA14 are within 20° of the dihedrals of RNA. However, in the aegPNA3 strand 

with lysine, the majority of the e torsions adopt values in the 100-160° range. In addition, 

no clusters with a dihedral angle pattern similar to the mean dihedral angles of the DNA 

duplex could be located. 

Table 90. Dihedral angles in DNA and RNA duplexes249,250 

Compound a p y 8 
A-RNA249 

B-DNA250 

PNA:DNA54'177 

174 
-172 
105 

77 
59 
141 

80 
134 
78 

-159 
173 
148 

69 
-99 

_ 
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The cpPNA molecules were also compared to the DNA/RNA dihedrals. First, the 

polythymine sequence is analyzed, followed by the mixed base strands. Only the torsion 

angles of the most populated clusters were used for comparison. In all cases, the y 

dihedral angles were similar to the corresponding values for the natural RNA duplexes 

and the PNA:DNA duplexes. The largest difference between the modified PNAs and 

DNA/RNA is in the value of 5. The calculations yield values of roughly 95°, while the 

NMR refinement of duplex structures yielded a value of 160-170° for this angle. Thus, 

the PNA and the DNA/RNA appear to differ significantly in this regard. However, in the 

PNA:DNA duplex, the 8 value is closer to the calculated values. With respect to the 

dihedral angle value differences, modification(s) has the biggest effect on the p and s 

torsions. Modification at T4 (c/?PNA2, c/?PNA4 and cpPNA4a) favors values near -70° 

for the p dihedral, whereas values near 170° were observed in the aegPNA structures. 

Conversely, our calculations on the c/?PNA5 (Ti) and c/?PNA6 (Tg) conformations 

indicate that the p dihedrals prefer values in the 160-180° range, which agrees with the 

PNA:DNA duplex. However, gauche+ and gauche- P dihedral angles are also observed 

for these strands. The dihedral angle 8 displays a comparatively broader distribution and 

additionally accesses the dihedral space around 0°. The computed values for the cpPNA2, 

c/?PNA4a and c/?PNA6 strands lie between the DNA and RNA values for s, but are 

slightly closer to the RNA values. On the other hand, cpPNA4 and cpPNA5 display s 

dihedral angle distributions that are similar to the corresponding values found in the DNA 

duplex structure. Interestingly, an evident shift of about 65° is observed when the a 

dihedral values for the modified residues of all cpPNA strands are compared. With the 

exception of cpPNA5 and cpPNA6 structures, which bear a modification at either of the 

termini, the a angles in the modified residues adopt values of -100° and significantly 

deviate from the values in the RNA/DNA complex, but are in excellent agreement with 

values of the PNA:DNA complex. 

The detailed analyses of the monosubstituted cpPNA decamers shows that the 

vast majority of the residues in the data set have their torsion angle P in the gauche 

orientation, which matches with the RNA duplex dihedrals. The ranges of the a, y and 8 

dihedrals are similar to those observed for the polythymine strands. The configurational 



229 

spaces accessed upon modification undergo a pronounced reduction. However, the 

distributions of the s angles are different between the various cpPNA strands. The 

calculated dihedral values for cpPNA15 (T6), cpPNA16 (G4) and c/?PNA18 (Ag) match 

most of the trends seen in the RNA duplexes with the exception of a few residues. The 

c/?PNA13 (T6, no Lys) and c/?PNA15a (T6, D-Lys) display significantly broader 

distributions and overlap with the DNA and RNA values in several residues. Remarkably, 

cpPNA17 (C7) can access the 8 dihedral region (~-100°), characteristic of the DNA 

configuration in the duplex. 

Considering multiple-site modifications, all nucleotides in the cpPNA chains had 

the same combination of the three torsion angles a, y and 8. However, restrictions of the 

conformational space upon modification appeared for both the P and s torsions in 

c/?PNA8 (Ti and T8), cpPNAll (T,-T8) and cpPNA21 (C7 and A8). In these cpPNA 

chains, the residues had p and s torsions with values near those observed in the RNA 

duplex. In the remaining six strands with multiple modifications (polyT8 - cpPNA7, 

c/?PNA9, cpPNAlO and MB]0 - cpPNA19, cpPNA20, cpPNA22), both torsions were not 

able to assume these values at the same time. The P torsion shows two ranges of values 

and additionally samples the dihedral region around 170° in all cases. Thee backbone 

dihedral angles in cpPNA7 (Ti, T4 and T8) and cpPNA19 (T6 and C7) were similar to the 

corresponding values for the RNA duplexes, while in cpPNA9 (T4 and T8), cpPNAlO (Ti 

and T4), cpPNA20 (T6 and Ag) and cpPNA22 (C7 and A8) the corresponding values of 

certain clusters are close to the values found in the RNA or DNA complex. Furthermore, 

clusters with the correct values for RNA duplex formation, for the torsion angles p and s 

automatically have a and y torsion angles in the correct range for binding. However, the 5 

dihedrals still had a wide range of values and differed from the required ones. Although a 

strand can have p or £ values similar to those of RNA, the combination of both being near 

the RNA values seems to be the decisive factor in assuming a correct conformation. 

A PNA strand, which is able to adopt the dihedral values of native duplexes, will 

be able to bind stronger to DNA or DNA. As shown by MD simulations, this 

combination of angle values can be realized in a single-stranded cpPNA chain to some 

extent. Several cpPNA structures had restricted flexibility of the P and y torsion angles. 
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With the exception of cpPNA5, cpPNA6 and cpPNA17, the cpPNA strands favored 

P dihedral angles around 65° (between 60° and 70°), which seems to be an important 

criteria for RNA and DNA specificity. The present calculations suggest that cpPNA can 

pre-organize the strand into conformations that are better able to bind RNA or DNA. In 

particular, polythymine c/?PNA4a, c/?PNA7, cpPNA8 and mixed base cpPNA15, 

cpPNA16, cpPNA18, cpPNA19 and cpPNA21 have P and y dihedrals in the preferred 

range for RNA binding. On the other hand, cpPNA4, cpPNA5 and cpPNA17 have the 

corresponding values suitable for DNA binding. Thus, the rigidification of the PNA 

backbone by a cyclopentyl constraint may be suitable for imparting DNA/RNA 

discrimination properties. In addition, the cyclopentane modification should strengthen 

binding to RNA and experimental studies will need to be conducted to test this 

hypothesis. The cyclopentane modification also gave a and y values similar to the 

PNA:DNA duplex. This outcome is not surprising since the cyclopentane modification 

was designed to limit the strand to the dihedrals observed in the PNA:DNA duplex and 

probably helps contribute to the strong binding to DNA that is seen for this modification. 

The attachment of lysine (L and D) had an effect only on the 8 dihedral in the poly-T 

strands. In the future, computational results for the single strand could guide the design of 

a variety of modifications, which could improve the binding properties of PNA. In 

particular, designing modifications that reproduce the dihedrals of the native DNA and 

RNA duplexes instead of the PNA: DNA duplex could lead to improvements in binding 

strength. Simulations on the PNA:DNA/RNA duplex systems will also be needed to help 

further our understanding of the affinity and stability of these systems. 
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CHAPTER V 

SUMMARY 

Molecular dynamics simulations are a powerful theoretical tool for investigation 

of biological molecular systems. Simulations allow for the observation of structure at the 

level of individual molecules instead of the ensemble averages typically provided by 

experiments. Computational studies can also provide atomic level detail concerning 

specific interactions that may not be readily available from experimental studies of 

rapidly interconverting ensembles. This insight enhances our understanding of the 

mechanistic details of conformational behavior and structure. 

The first problem of study in this thesis concerned the development of force field 

parameters for PNA. The MD simulation uses parameterized empirical energy functions 

in its calculations. Development of good parameters sets is essential for the success of the 

MD simulation. Therefore, in this work we have also focused on developing new 

CHARMM force field parameters for cyclopentane modified PNA, namely partial atomic 

charges and equilibrium bond-lengths, angles and dihedrals. 

In the second problem, MD simulations were performed to study the 

conformation of aegPNA and a number of cyclopentyl modified structures and to reveal 

to what extent PNA structure, flexibility and dynamics are affected by the modification. 

It is generally assumed that pre-organizing a flexible molecule in a way that corresponds 

to the conformations they adopt upon binding to DNA/RNA, will lead to increased 

binding because the rigidified molecule will benefit from lower entropic penalty. This 

common assumption, however, ignores the important fact that pre-organization has both 

enthalpic and entropic components and obtaining a more favorable enthalpy of binding 

can be achieved by adopting conformations with similar torsional angles as in the target 

DNA/RNA. Therefore, we undertook a systematic analysis of the conformational 

properties of the single stranded cpPNA molecules bearing single and multiple 

constraints in the backbone. In particular, we set out to identify and compare the 

preferred conformations of these molecules as well as to map out the internal degrees of 
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freedom that govern their conformational flexibility. Clustering analysis was used for 

identifying the structural similarity between different conformers of the molecules and 

examining the cluster conformations were examined in detail. 

We have shown that the dominant configurations in solution can be successfully 

captured using clustering. Introduction of a single modification significantly affects the 

flexibility of the strand as shown by both RMSF values and cluster analysis. Results also 

indicate that the position of the modification plays an important role in determining the 

flexibility. Strong effects (rigidification) are also observed as the number of cyclopentyl 

groups increases. Overall, the results indicate the cyclopentane restricted the 

conformational freedom of PNA. Thus, the rigidified molecule will exhibit a higher 

affinity toward DNA or RNA due to lower entropic penalty. 

The cpPNA was designed to maximize pre-organization into a helical 

conformation. Simulations of singly modified PNAs predict that modifications are at 

specific positions in the strand can lead to a helical-like conformer. In addition, certain 

cpPNA strands with multiple modifications were more prone toward helical elements. 

Thus, the additional moiety in PNA is essential for helix stability. Our simulations 

support the general picture of a cyclopentane modification as a determinant of the pre-

organization and are in line with the experimental data that constrained PNA analogues 

form stable duplexes with DNA/RNA. When comparing PNA dihedral angle values 

calculated using the MD to the experimentally determined values from the RNA duplex, 

better agreement was found for the strands carrying multiple rings than for the singly 

modified strands, further supporting the fact that the modification alters the dihedral 

potential energy surface and does not just reduce flexibility. 

These results suggest that conformationally constrained cpPNAs have a high 

potential for selective binding to DNA since they exhibit profound effects on the 

backbone geometry. Future directions include the extension of this study to increase 

sampling of the PES and to perform double-stranded simulations. An additional 

development would be to relate the torsion angle values to conformational features, and 

seek correlations between the values of different torsion angles. The information about 

residue and dihedral flexibility can then be employed to study the effect of nucleobase 
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composition on the stability and propose improved modifications which will hopefully 

bind even stronger to DNA or RNA. 
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