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ABSTRACT

INTERACTIONS AMONG MURINE CYTOMEGALOVIRUS US22 FAMILY GENE 
PRODUCTS THAT INFLUENCE VIRAL PATHOGENESIS

Zaruhi Karabekian 
Eastern Virginia Medical School and Old Dominion University, 2001 

Director: Dr. Ann E. Campbell

Cytomegalovirus (CMV) is a complex, ubiquitous herpesvirus that is 

characterized by acute, chronic, and latent infections. Monocytes-macrophages are the 

key target cell type involved in pathogenesis, which is most effectively studied using the 

murine model o f CMV infection. Previously three murine CMV (MCMV) genes (M l 39, 

M140, and M141) were identified to regulate viral expression in cultured macrophages 

and in mice. These genes are members o f the US22 gene family with respect to HCMV 

homology. There is no function assigned to the proteins encoded by these genes. 

However, deletion o f M l 39, M140, and M141 significantly curtails growth o f MCMV in 

macrophages in vitro and in macrophage-dense target organs in vivo (Hanson et al. 1999, 

J.Virol. 73(7): 5970-80). Therefore, M139, MHO, and/or M141 gene products likely 

affect tissue specific viral infectivity.

The purpose o f this study was to characterize these proteins (pM139, pM140, and 

pM141) and interaction among them. The M l39, gene encodes two protein o f 75 and 61 

kD; M l40 encodes a single protein o f 56 kD, and M141 encodes a 52 kD protein. Most 

interestingly, when infected cell lysates were immunoprecipitated with anti-M139 

antibody under non-denaturing (but not denaturing) conditions, five bands o f98-, 75-, 

61-, 56-, and 52-kD proteins were co-precipitated. Likewise, anti-M140 antisera co-
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precipitated two bands o f 56- and 52-kD, and anti-M14l antibody precipitated a less 

abundant 56- and an abundant 52-kD band. The co-precipitating bands were identified as 

products o f M l 39, M l 40, and M141 genes in experiments employing mutant viruses 

deleted o f each gene. Complex formation between the M l 40 and M141 proteins (pM140 

and pM141) was confirmed by sequential immunoprecipitations and combined 

immunoprecipitation and western blotting. These two proteins also formed a complex in 

the absence o f other viral proteins. At least one function o f the pM 140/pM 141 complex 

is to stabilize expression o f pM141, which is unstable in the absence o f pM140.

Given the complexity o f viral pathogenesis and the fact that pM139, pM140, and 

pM141 proteins are dispensable for viral replication in tissue culture, it is possible that 

each single protein as well as the complex(s) they form may have a distinct function 

which influences tissue specific infectivity.
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CHAPTER I

INTRODUCTION 

Cytomegaloviruses

The cytomegaloviruses (CMV) are ubiquitous double-stranded DNA viruses that 

belong to the betaherpesvirus subfamily o f the Herpesviridae family. Cytomegaloviruses 

infect a wide variety o f rodents, domestic animals and primates. Human cytomegalovirus 

(HCMV) is the prototype for the betaherpesvirus subfamily. Viruses within this 

subfamily are distinguished by strict species specificity, a relatively long replication 

cycle, ordered and sequential gene expression, and slowly developing cytopathology 

depicted as an enlargement o f the infected cell, or cytomegaly. Human cytomegalovirus 

is characterized by complex pathogenicity, which involves acute, chronic, and latent 

infections (reviewed by Mocarski, in press, 2001).

Human cytomegalovirus diseases

Epidemiology o f primary infections 

Between 50-80% o f the adult population is seropositive for HCMV. Primary 

acute infection occurs early in life as a result o f direct contact with infectious secretions 

(predominantly saliva) from an infected individual, usually a child or toddler. Typically 

primary infection starts with viral replication in the mucosal epithelium followed by a 

systemic phase in which viremia develops and virus disseminates within the host. CMV 

viremia is accompanied by constant viral shedding in the urine, saliva, breast milk, a” d 

genital secretions (reviewed by Mocarski, in press, 2001). HCMV is transferred by these

The model journal for this dissertation is Virology
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bodily f|ui^ 5, as well as by bone marrow and solid organ transplants. Although CMV can 

be d e te c t *n blood o f acutely infected individuals for several months, primary 

infection \$ formally inapparent in healthy individuals (Zanghellini et al., 1999). Rarely, 

HCMV infcct'0n o f normal hosts results in the development o f a mononucleosis 

syndrornCt Cbaracterized by persistent fever and myalgia (reviewed by Britt and Alford, 

1996). \^ <̂i'e0ver, unnoticed asymptomatic primary infection in a pregnant woman can 

result in ŝ vere defects in the newborn child such as blindness, mental retardation and 

others, hec^USe CMV can cross placenta and infect the immunologically immature fetus 

(review^ Ii l  Britt and Alford, 1996).

Diseases accnriatpH with reactivated human cytomegalovirus

In individuals, an acute infection is normally cleared from all target

organs in ^ ju n c tio n  with a slowly developing cell-mediated specific immune response. 

Howev^ following primary infection, CMV persists in the host for life. It remains 

controver$ i^  whether the virus exists as a chronic infection, or as a true viral latency, 

because v'rus has an ability to Uve *n equilibrium with the host’s immune system. 

Chronic j^ f^ o n  is characterized by low-level viral replication, and results in continuous 

viral prQdbtft'°n ^ d  minimal release o f infectious virus. During true latency the virus 

remains in ^ descent non-replicative state and infectious virus is undetectable. Latent 

virus re^ct ivates uPon differentiation o f the infected host cell, or following 

immunoslifP resst°n  or immunodeficiency (Mocarski et al., 1990). It is also possible that 

the vin^ £0u*d simultaneously persist within a host as a chronic infection in particular 

tissues and be latent in others (Campbell, 1999).
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A series o f diseases is associated with reactivation o f latent HCMV jn 

immunocompromised individuals, when the antiviral immune defenses fail to a

chronic or reactivated infection. Specifically, HCMV is the most frequent v jr^  ^^ °g e n  

causing clinical complications in organ transplant recipients because o f a c c o rftf^ ^ g  

immunosuppressive therapies, and the influx o f monocytes/macrophages into ^  ^raft 

tissues. This was illustrated in studies with the rat CMV model where CMV o f

the recipient led to histological damage o f MHC class I-mismatched allograft** ^  to an 

increased perivascular influx o f monocytes/macrophages early after transplant^I10‘a (L i et 

al., 1998). Interestingly, reactivation o f CMV following solid organ transpia0t^tlOtl 

predominantly results in CMV pneumonia and host-versus-graft disease (N g u ^  et aL, 

1999; Ljungman et al., 1998), whereas in bone marrow allografts recipients 

reactivation augments graft-versus-host disease (Griffiths et al., 2000).

The immunosuppressed state in acquired immunodeficiency syndrom6 

patients also creates ideal conditions for latent HCMV reactivation. In te re$ tiri^ ’ lhese 

individuals predominantly develop CMV retinitis and colitis (reviewed by 

Alford, 1996).

Organs and cells infected by human cytomegalovirus

The diversity o f HCMV associated diseases is explained by the wide v^fletV o f 

organs infected by HCMV in vivo. These organs include the bone marrow, \ \ ^ '  ^driey, 

lung, spleen and salivary glands (reviewed by Campbell, 1999). Infection 0f  ̂  O livary 

glands is a hallmark o f CMV infection. The virus exhibits a well-established for

this organ. The salivary gland remains chronically infected for long periods and

as a result represents a primary source o f high-titer virus shedding into the sal iva *he
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principle route by which the virus spreads in a population. Within these organs HCMV 

infects epithelial cells, endothelial cells, monocytes/macrophages, hematopoietic 

progenitor cells, and immature dendritic cells (Jahn et al., 1999). Infected cells are 

characterized by cytomegaly, nuclear swelling, a reduction o f cytoplasm, migration o f 

chromatin, and formation o f intranuclear and intracytoplasmic inclusions (Staczek, 1990). 

Prior isolation o f the causative agent, these kinds o f changes seen in tissues o f patients 

led to designation o f “ cytomegalic inclusion disease”  diagnosis. Peripheral blood 

mononuclear cells (monocyte/macrophages in particular) are thought to be the principle 

cell types responsible for disseminating CMV throughout the host (Michelson, 1997).

Understanding o f the molecular mechanisms o f HCMV pathogenesis is limited at 

this point due to many reasons. Several cell types, susceptible to HCMV infection in 

vivo, are mostly not susceptible in tissue culture. Conversely, tissue-culture propagated 

HCMV exhibit limited infectivity in terms o f its ability to replicate to high titers in 

cultured cells, or the cell types it is able to infect in vitro (Waldman et al., 1991). In 

addition, strict species specificity o f CMV makes it difficu lt to investigate HCMV 

pathogenesis and immunology in the natural host. Therefore, many animal CMV models 

were developed to overcome these obstacles.

Murine cytomegalovirus as a model for human cytomegalovirus disease

Murine cytomegalovirus (MCMV) serves as an appropriate model for HCMV 

disease because o f the striking similarities in pathogenesis, overall structure, genome 

organization, regulation o f gene expression, and the functions o f known gene products 

(Campbell, 1999). This gives a great advantage to study the functions o f viral proteins
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within genetically altered recombinant virus in the environment o f a natural host. In 

order to illustrate the suitability o f the MCMV model, we w ill draw parallels between the 

structures, replicative cycles and pathogenesis o f the two viruses.

Genome organization

A ll herpesviruses contain a double-stranded linear DNA genome. The genomes 

o f both HCMV and MCMV have been completely sequenced (Chee et al., 1990; 

Rawlinson et al., 1996). Both genomes are approximately 230 kilobase pairs (kb) in 

length, and are estimated to encode over 200 genes.

The HCMV genes are arranged as an assemblage o f two sequences, the unique 

long region (UL), surrounded by internal and terminal repeats (IRL and TRL), and the 

unique short region (US) flanked by shorter internal and terminal repeats (IRS and TRS) 

(Chee et al., 1990). The DNA sequence within the repeat elements is organized in a 

direct or inverted orientation with respect to each other. The presence o f these sequences 

promotes genome inversion, in which the Ul and Us regions can invert relative to each 

other during HCMV replication, giving rise to four genomic isomers. None o f the other 

animal cytomegaloviruses, including MCMV, contain these repeat sequences within the 

genome, and therefore do not isomerize (reviewed by Mocarski, in press, 2001). The fact 

that MCMV does not have isomers should be taken into consideration when one is 

looking for genes homologous to HCMV. This may affect their position within the 

genome, placing these genes on the opposite end o f either the Ul or the Us fragment. For 

example, members o f the US22 gene family (see section below) in MCMV are found on 

both ends o f its genome.
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Organization o f the genome defines the nomenclature o f the genes o f HCMV as a 

number following either the UL or US prefix. The MCMV nomenclature follows similar 

rules with the exception o f the prefix. A MCMV gene is designated by the “ M”  prefix if  

it is extensively homologous to the HCMV gene, or as “ m”  i f  there is no apparent 

homology found. Analysis o f the MCMV genome showed that genes residing in the 

central part o f the genome are essentially co-linear with those o f HCMV. There is also a 

very similar distribution o f G+C content across the two genomes (Rawlinson et al.,

1996). Many HCMV, MCMV and other betaherpesvirus genes are classified into 

families based on the: 1) homology o f DNA coding sequence, 2) presence o f 

characteristic motifs, and 3) structure and function o f expressed proteins.

Structure of the virion

HCMV and MCMV virion structure is prototypical for the Herpesviridae family, 

and consists o f an inner core surrounded by a tegument, which together is enclosed by a 

lipid bilayer envelope embedded with numerous viral glycoproteins. The inner core is 

composed o f a densely packed double-stranded DNA genome (Bhella et al., 2000) 

complexed with proteins, covered by a capsid shell. Capsids o f all herpesviruses are 

characterized by icosahedral architecture and are classified into three types. Type A 

capsids do not contain DNA and accumulate within the infected cell because o f a failure 

to package the viral genome; type B capsids also lack viral DNA, but contain the 

assembly protein and are found predominantly in the nucleus as precursors o f mature 

capsids; and lastly, type C capsids are fully mature nucleocapsids (reviewed by Mocarski, 

in press, 2001).
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A protein rich matrix surrounding the nucleocapsid in both HCMV and MCMV, 

called the tegument, contains many proteins, some o f which are phosphorylated. In CMV 

virions, the tegument is icosahedrally ordered and interacts with the underlying capsid 

(Chen et al., 1999). Although some proteins localized to the HCMV and MCMV 

tegument are transcriptional transactivators (ppUL82 [pM82], ppUL69 [pM69], pTRSl, 

pIRSl), the function o f most tegument proteins remains unclear. For example, the UL83 

gene product is a phosphorylated protein, designated pp65 that is a major tegument 

protein o f unknown function. The UL99 gene encodes another tegument phosphoprotein, 

pp28, which localizes to the endoplasmic reticulum-Golgi-intermediate compartment 

(ERGIC) around the infected cell nucleus (Sanchez et al., 2000). The MCMV homologs 

o f both pp65 (M83 and M84) and pp28 (M99) have been identified (Morello et al., 2000; 

Morello et al., 1999; Cranmer et al., 1994). The UL25 gene product, pUL25, was 

recently characterized as a novel late tegument protein o f HCMV. pUL25 colocalizes 

with pl!L99 in the typical condensed structures in the perinuclear region, suggesting its 

possible function in the process o f envelopment (Battista et al., 1999). Tegument 

proteins are highly conserved among the betaherpesvimses, but much less homologous 

among other herpesviruses (reviewed by Mocarski, in press, 2001).

The envelope o f herpesviruses contains viral proteins, which are embedded in the 

lipid bi layer and are derived from membrane structures o f an infected cell. There are 

three most prevalent herpesvirus-conserved glycoprotein complexes (gC-I, gC-II, and 

gC-in) present in the human cytomegalovirus envelope (Gretch et al., 1988).

The first most abundant complex, gC-I, is formed by glycoprotein B (gB) encoded 

by the UL55 gene (Kari et al., 1993). The full-length gB precursor is proteolytically
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cleaved into two products, which form a functional heterodimer. This major heparan 

sulfate proteoglycan-binding glycoprotein is a type I integral membrane protein that is 

responsible for the first step in anchoring a virus particle to the cell membrane (Compton 

et al., 1993). Treatment o f cells with heparinase, or the addition o f exogenouse heparin, 

can prevent viral infection, because the interaction between the gB heterodimer (gC-I) 

and cell surface heparan sulfate is necessary for the initial attachment o f the virion to the 

target cell (Compton, 1993). This interaction is characterized by low affinity and low 

specificity, but ensures the ability o f the virus to interact with a broad variety o f cells 

within the host as potential target cells (Britt and Mack, 1996). In MCMV, the M55 gene 

is homologous to UL55 and encodes a protein with similar functions (Rawlinson et al.,

1996)

The gB-heparan sulfate interaction is quickly followed by receptor-mediated, but 

heparin-independent, fusion o f the viral envelope to the cellular membrane and 

subsequent penetration. Two other major virion complexes, gM/gN (gC-II) and 

gH/gL/gO (gC-HI), are thought to be the viral receptors involved in these secondary, 

high-affinity interactions (Mach et al., 2000; Kaye et al., 1992).

Two glycoproteins, gM and gN, constitute the second characteristic complex of 

the HCMV and MCMV envelope, gC-II (Kari et al, 1994). These proteins are encoded 

by UL100 (M100) and UL73 (M73), respectively, and exhibit homology with other 

human herpesviruses. The UL100 gene product (gM) is a type III membrane protein 

containing multiple hydrophobic sequences, which forms a disulfide-linked complex with 

the UL73 gene product in HCMV virions (Mach et al, 2000; Rawlinson et al., 1996).
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The third prominent complex o f the CMV envelope, gC-III, is composed o f three 

proteins, gH/gL/gO, which are encoded by the UL75 (M75), UL115 (M l 15), and UL74 

(m74) genes, respectively. This heterotrimeric complex is involved in viral penetration, 

since anti-gH antibody can prevent cell-to-cell transmission o f the virus (reviewed by 

Mocarski, in press, 2001; Rawlinson et al., 1996).

Each one o f these complexes is essential for viral growth in tissue culture (Britt 

and Mack, 1996). The components o f these described complexes are highly antigenic 

and induce both humoral and cellular immune responses within the infected host, with gB 

being the most immunodominant (Gonczol et al., 1991).

Several other viral glycoproteins have been characterized and are likely to be 

minor envelope proteins, but none o f them are apparently associated with these major 

complexes or are known to form additional, previously undetected complexes (reviewed 

by Mocarski, in press, 2001). It is possible that additional, and as yet undefined, viral 

glycoproteins determine the full repertoire o f cell/tissue specific CMV infectivity.

Despite extensive studies, the cellular counterparts for these viral receptors are poorly 

defined, although they are widely distributed, considering the diversity o f the cells 

naturally susceptible to CMV infection.

In addition, in order to create the circumstances needed for the earliest events in 

the virus replication cycle, an attachment step (specifically gB binding) initiates a 

signaling cascade. Signaling results in up-regulation o f immediate early gene 

transcription and, subsequently, expression o f other viral genes during replication within 

a target cell (Boldogh et. al., 1991; Boyle et. al., 1999; Yurochko et. al., 1995; Zhu et. al.,

1997).
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Viral replication

A productive CMV infection occurs in permissive cells and results in the 

generation o f infectious viral progeny. The replicative cycle o f cytomegaloviruses 

consists o f several sequential steps. Initial attachment and subsequent fusion o f the virus 

particle to the target cell is ensured by the abundant envelope glycoproteins, which 

interact with cellular receptors. This is followed by the penetration o f the viral genomic 

material into the cell nucleus, where the viral DNA undergo es replication. Then newly 

synthesized viral DNA is integrated with packaging proteins and is combined with the 

structural components o f the virion, which result in new progeny that egress from the 

cell. I f  any o f these steps is disrupted, the infection w ill be abortive. An abortive 

infection can occur due to following reasons. One is when an infected cell is 

nonpermissive and only a limited number o f viral genes are expressed, and the other is 

when the cell is infected with a defective viral particle, which lacks genes essential for 

viral replication (reviewed by Roizman, 1996).

Viral DNA localizes to the nucleus soon after penetration. CMV gene expression 

occurs in an ordered and sequential manner, which is typical for all herpesviruses. Viral 

genes are classified into immediate-early (IE), early (E), and late (L) categories based on 

their expression kinetics during the replication cycle. Betaherpesviruses are 

characterized by a relatively slow replication cycle. Although the general replicative 

cycles o f HCMV and MCMV are essentially identical, the kinetics o f IE, E, and L genes 

expression are slightly different (see Table 1)
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TABLE 1

Kinetics of HCMV and MCMV gene expression

HCMV MCMV

Immediate Early 0-12 h 0-3 h

Early 12-24 h 3-12 h

Late 24-72 h 12-48 h

Regulation and expression o f the immediate-earlv genes

The immediate early genes are expressed instantly following penetration o f the 

viral DNA into the target cell nucleus, and do not require any prior de novo viral protein 

synthesis. Genes expressed at IE times are found dispersed throughout the HCMV and 

MCMV genomes. Currently, four immediate-early gene regions within the HCMV 

genome have been identified. These regions are UL36-38, UL122-123 (iel/ie2), TRSl- 

IRS1, and US3 (Colberg-Poley, 1996). C/s-acting DNA elements, composed o f 

promoter-enhancer sequences localized upstream o f the IE genes, enable the binding o f 

cellular transcription factors and viral regulatory proteins, introduced into the cell as a 

part o f the tegument, for the initiation o f IE transcription.

The best characterized regulatory element in the HCMV genome is the regulatory 

DNA sequence upstream o f the gene locus encoding for the major immediate early (MIE) 

proteins. This region, composed o f promoter and enhancer sequences, is one o f the 

strongest transcriptional enhancers identified in mammalian biology (Meier and Stinski, 

1996). There are two repressor elements within this MIE regulatory sequence. The 

modulator (or silencer) is located upstream o f the enhancer, and the c£s-repression 

sequence (crs) is immediately downstream o f the iel/ie2 start site. A functionally
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analogous enhancer has also been identified upstream o f the major immediate-early gene 

promoter in both the murine and simian cytomegaloviruses (Dorsch-Hasler et al., 1985; 

Chang et al., 1993). Moreover, chimeric murine cytomegaloviruses, containing the 

human CMV enhancer in place o f the MCMV enhancer, demonstrated kinetics o f 

infection similar to that o f wild type MCMV (Angulo et al., 1998). These findings 

further proved functional homologies between HCMV and MCMV major immediate- 

early enhancers. The MIE promoter-enhancer is characterized by the presence o f 

repetitive consensus binding sites for host transcription factors, such as CREB/ATF, NF- 

tcB/REL, Spl, API, NF-1, ELK-l, C/EBP, p53, G fi-l, retinoic acid receptor, and serum 

response factor (reviewed by Mocarski, 2001). Some o f these transcription factors are 

influenced by virion transactivators, which consequently contribute to the up-regulation 

o f MIE protein expression. For example, ppUL82 (the upper matrix protein) 

transactivates promoters containing upstream ATF or AP-1 binding sites, and possibly 

regulate o f other viral genes in a more general way (Liu and Stinski, 1992). The UL69 

gene encodes a minor tegument phosphoprotein ppUL69, which transactivates expression 

from the iel/ie2 promoter-enhancer, particularly when accompanied with ppUL82 

(Winkler and Staminger, 1996).

Two immediate-early proteins 1 and 2 (IE1 and IE2) are the most prominent gene 

products expressed at immediate-early times post-infection in both viruses. In HCMV 

their transcripts originate from the UL 122-123 gene region, which encodes a family o f 

regulatory proteins called the major immediate early (M IE) proteins as a result o f 

alternative splicing (Stenberg RM, 1996). Therefore the IE1 and IE2 proteins share 

amino acid sequences present in common exons. Homologous genes (M l22 and M l23)
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are identified in MCMV. The encoded proteins are designated as IE1 and IE3 

respectively (Keil et al., 1987). The iel gene is expressed more abundantly compared to 

ie2 gene in both viruses, and encodes a protein with a molecular weight o f 72-kD in 

HCMV and 89-kD in MCMV (Stenberg et al., 1989; Keil et al., 1987). The ie2 gene o f 

HCMV encodes a second regulatory protein (IE2) with a molecular weight o f 86-kD 

(Stenberg et al., 1989). Its MCMV counterpart (IE3), encoded by the ie3 gene, has a 

molecular weight o f 88-kD (Messerle et al., 1992). In both viruses these proteins are 

phosphorylated nuclear proteins, and both function to transactivate cellular and viral 

promoters. The MCMV ie2 gene is unique to this virus. It is located at the opposite end 

o f the enhancer sequence and is transcribed from a separate promoter in the opposite 

direction (Messerle et al., 1991). The MCMV ie2 gene encodes a regulatory protein o f 

43-kD, which is dispensable for viral replication in cultured fibroblasts as well as for 

replication and latency in the mouse (Cardin et al., 1995). Additional minor immediate 

early proteins expressed from the HCMV MIE region via differential splicing are 55-kD 

(IE55) and 18-kD (IE 18). These proteins are differentially expressed in non-fibroblast 

cells (Kerry et al., 1995). The last protein expressed from the HCMV MIE gene locus is 

actually expressed at late times post-infection and encodes a protein with a molecular 

weight o f 40-kD (IE2-L40). The IE2-L40 protein contains a DNA binding domain 

identical to the IE86 functional domain, and has a trans-acting function in gene 

regulation (Puchtler and Stamminger, 1991) (Jenkins et al., 1994).

The regulatory functions o f the nuclear phosphoproteins IE1 and IE2 o f HCMV 

have been extensively studied. These proteins exhibit both positive and negative 

regulation o f viral gene expression. The IE1 (IE72) protein has two major functions,
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including activation o f the iel/ie2 promoter-enhancer (Mocarski et al., 1996), and 

regulation o f early and late viral genes (Greaves and Mocarski, 1998). The IE2 (IE86) 

protein carries out two distinct major functions. It represses MIE promoter function as 

well as the function o f the US3 regulatory unit, and it controls the switch from immediate 

early to early and late gene expression (reviewed by Mocarski, in press, 2001). IE I 

(IE72) and IE2 (IE86) cooperate with each other to transactivate the subsequent cascade 

o f viral gene expression. IE2 is a sequence-specific DNA binding protein defined as a 

promiscuous transactivator (Hagameier et al., 1992). It is able to activate homologous 

and heterologous promoters containing a TATA box. Direct interaction between IE86 

and TFIID may play a role in this effect; however, upstream transcription factors are 

essential for this activation (Jupp et al., 1993). IE86 also interacts with other components 

o f the basic cellular transcription machinery, such as TFIIB (Caswell et al., 1993), as well 

as other transcription factors, such as CREB (Lang et al., 1995), CBP (Schwartz et al., 

1996), and c-jun (Scully et al., 1995).

Other HCMV immediate-early proteins exhibit regulatory functions. The 

IRS1/TRS1 proteins augment activation o f viral gene expression by IE1 and IE2, as well 

as co-operating with ppUL69 in activating the MIE and IRS/TRS promoters 

(Romanowski and Shenk, 1997). The UL36-38 gene cluster encodes a number o f 

proteins translated from differentially spliced transcripts (Tenney and Colberg-Poley, 

1991). These proteins regulate transcription o f the hsp70 gene synergistically with 

another regulatory immediate early protein US3. They are also required for lytic 

replication o f the virus (Colberg-Poley, 1996). The UL37 protein contributes to the 

activation o f the viral early genes (Colberg-Poley et al., 1998). The positional and
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functional homologues o f these regulatory proteins have been identified within the 

MCMV genome, with the exception o f the US3 transcription unit. In addition, the m l 42- 

ml43 immediate-early genes have been recently identified within the MCMV genome. 

The pml42 and pml43 proteins are function as transcriptional transactivators o f the 

MCMV MIE promoter. They also cooperate with the MCMV IE1 and IE3 proteins to 

activate the early el promoter. (Dalton et al., manuscript in preparation). Many o f these 

IE regulatory proteins are expressed in significant amounts again at late times post­

infection, and are packaged as part o f the tegument o f progeny virions. This pattern o f 

expression ensures the availability o f these necessary viral regulatory proteins for the 

next round o f progeny virus replication.

Regulation and expression o f the early genes and replication o f viral DNA

Once the immediate-early proteins are expressed and are functional, they initiate 

and regulate the expression o f early genes. Multiple studies on the regulation o f early 

CMV promoters have demonstrated that both the IE I and IE2 proteins are required for 

maximal promoter activation (Chang et al., 1989; Depto and Stenberg, 1989; Staprans et 

al., 1988; Stenberg et al., 1990; Garcia-Ramirez et al., 2000). In addition, many cellular 

proteins, such as ATF (Kerry et al., 1997), USF (Klucher and Spector, 1988), CREB 

(Lang, et al., 1995), AP-1 (Wade et al., 1992), and E2F (Staprans and Spector, 1986) in 

combination with the IE1/IE2 proteins regulate the expression o f HCMV early promoters. 

The early genes are further divided into three subclasses based on the regulation o f 

mRNA expression relative to the time o f viral DNA synthesis (Stenberg, 1993). The first 

subclass comprises those genes that are transcribed early and repressed at late times after 

infection, the second subclass represents those genes that are expressed at equal levels at
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early and late times, and the last subclass designates those genes that are expressed at low 

levels at early times and upregulated after viral DNA synthesis is completed (reviewed by 

Mocarski, in press, 2001).

Many HCMV and homologous MCMV early gene products are involved in the 

replication o f viral DNA. These include the DNA polymerase (UL54 and M54), the 

single-stranded DNA binding protein (UL57 and M57), the DNA polymerase 

processivity factor (UL 44 and M44), and three subunits o f the helicase-primase complex 

(UL105 [M105], UL102 [M102], and UL70 [M70]) (Anders and McCue, 1996), 

(Rawlinson et al., 1996).

O f the homologies that have been currently identified between HCMV and 

MCMV, one group has been extensively characterized. A family o f early 

phosphoproteins, indirectly involved in DNA replication, is expressed from the HCMV 

UL 112-113 gene region. Differentially spliced transcripts o f 2.1-, 2.2-, 2.5-, and 2.6-kb 

arise from a single promoter, and are translated into four phosphoproteins o f 50-, 43-, 84- 

and 34-kD, respectively (Spector, 1996). These proteins are regulating the expression o f 

core DNA replication genes (Iskendarian et al., 1996; (Pari and Anders, 1993; Pari, 

Kacica et al., 1993) and organizing viral DNA replication compartments (Penfold and 

Mocarski, 1997). The MCMV M l 12-113 gene region encodes a homologous family o f 

proteins. One fully spliced transcript o f 2.6-kb is expressed at early times from this gene 

region, called el. This transcript generates three antigenically related proteins o f 36-, 37- 

, and 38-kD in size (Buhler et al., 1990). These proteins are homologous HCMV UL 112- 

113 gene products, which are required for ori-Lyt dependent viral DNA replication (Pari 

and Anders, 1993). Two additional early proteins o f 33- and 87-kD are expressed from
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unspliced and alternatively spliced transcripts, respectively, and are detected by 

polyclonal antisera (Ciocco-Schmitt et al., manuscript in preparation). Once all the 

proteins required for replication o f viral DNA are expressed and functional, viral DNA is 

replicated by a rolling circle mechanism, and results in concatamers o f unit-length viral 

DNA.

Expression o f late genes, assembly and egress 

Viral DNA replication denotes a transition in the replication cycle from the early 

to the late phase. Genes that are expressed upon completion o f viral DNA replication are 

designated late genes. The majority o f late genes encode structural proteins o f the virion, 

including those o f the capsid, tegument, and envelope described above. Only a small 

number o f late gene products have been characterized. Among those are the UL94 true 

late gene o f HCMV (Wing et al., 1996), as well as the IE2-L40 protein expressed from 

the MIE region, both o f which have suggested regulatory functions. Further studies are 

needed to conclusively address the functions o f these proteins.

A group o f late proteins whose function has been better defined includes the 

structural glycoproteins o f the viral envelope. Although the UL55 gene is transcribed at 

early-late times post-infection, its protein product, gB, is synthesized at late times. True 

late time kinetics is characteristic o f the UL75 (gH), U Ll 15 (gL), UL74 (gO), UL100 

(gM), and UL73 (gN) gene products. Functional and positional homologs o f these late 

structural glycoproteins have been identified in MCMV (Rawlinson et al., 1996).
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During the late phase o f CMV infection, newly synthesized capsid proteins are 

transported back into the nucleus and form empty capsids there (Kasamatsu and 

Nakanishi, 1998). Replicated viral DNA is then cleaved from concatamers and is 

packaged into these pre-formed nucleocapsids. Several studies have showed that many 

tegument proteins, including ppl50, pp28, pp65, and some envelope glycoproteins gB, 

and gH, accumulate in a stable juxtanuclear virally induced structure, suggesting a 

cytoplasmic site o f viral assembly (Sanchez, Greis, et al., 2000). However, the site o f 

intracellular trafficking and final envelopment remains highly controversial. Two recent 

studies have demonstrated the presence o f viral RNA (Bresnahan and Shenk, 2000), as 

well as cellular RNA (Greijer et al., 2000) in the tegument, but not in the nucleocapsid 

fraction o f progeny virions. These findings again indicate that only nucleocapsids are 

fully assembled in the nucleus. Furthermore, these studies indicate that the incorporation 

o f cytoplasmic components, such as viral and cellular RNA molecules, into the viral 

tegument is non-specific. It is believed that viral progeny receive their envelopes at the 

nuclear membrane, de-envelope in the cytoplasm and then re-envelope by Golgi-derived 

membranes (Roizman, 2000). Whether the virus follows a single pathway o f 

envelopment at the nuclear membrane and egress, or i f  it acquires its envelope from other 

intracellular membranous structures is still unclear.

Murine cytomegalovirus pathogenesis

Susceptibility to murine cytomegalovirus 

The pathogenicity o f MCMV infection depends on the strain, the age and the 

immune status o f the animal, as well as the preparation o f the virus, and its dose and
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route o f administration. Inbred mouse strains exhibit different levels o f susceptibility to 

MCMV infection. This susceptibility is partially determined by the genes o f the major 

histocompatibility complex (MHC), called H-2 genes in mice. Mice o f H-2dand H-2b 

haplotypes, such as BALB/c and C57BL/6 respectively, develop severe morbidity and 

mortality upon MCMV infection, where strains o f mice with H-2k haplotypes (C3H and 

CBA) are more resistant to MCMV (Merser and Spector, 1986; Scalzo et al., 1990). 

Non-H-2 genes are also implicated as determinants in MCMV susceptibility. These can 

include genes encoding cell surface molecules influencing the MCMV 

attachment/penetration step, or factors affecting early, innate immune responses 

(Lathbury et al., 1996).

The genetic background o f the mouse also influences the levels and profiles o f 

MCMV-induced cytokines with direct or indirect antiviral activities. For example, partial 

resistance to MCMV is determined by the autosomal dominant cmv-1 mouse gene, whose 

protein product restricts the level o f MCMV replication in the spleen, by enhancing 

cytolytic activity o f natural killer (NK) cells (reviewed by Campbell, 1999). NK cells 

represent a major component o f innate immunity, controlling early HCMV and MCMV 

replication in vivo. In order to surpass this defense mechanism, both HCMV and MCMV 

encode MHC class I homologs, which couple with the NK cell receptor and serve as 

negative stimuli o f NK cytolytic activity (Kleijnen et al., 1997).

MCMV is highly pathogenic in newborn mice (up to three weeks old) with 

immature immune systems (Fitzgerald et al., 1990). It also causes severe disease in 

immunosuppressed mice such as that induced by y-irradiation, or mice with genetically
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altered immune responses such as those with severe combined immunodeficiency (SCID) 

syndrome (Schmader et al., 1995).

Preparation o f infectious virus stocks also influences its virulence. Tissue- 

culture-passaged virus is dramatically less virulent compared to salivary-gland-passaged 

MCMV. This can be partially explained by the fact that MCMV grown in cultured 

fibroblasts consists primarily o f multi-capsidated virions, which are enveloped infectious 

particles containing from 2 to 20 capsids (Weiland et al., 1986), (Cavanaugh, unpubl 

data). It is assumed these large aggregates are probably phagocytized (especially when 

infecting macrophages) and are not able to deliver infection into the target cell whereas 

salivary gland-passaged MCMV consists o f predominantly single capsid enveloped 

virions, successfully delivering viral DNA into the cell for a fully productive infection.

Acute murine cytomegalovirus infections and clearance mechanisms

Acute MCMV infection quickly disseminates to the spleen and liver o f the 

susceptible mice. Hepatocytes are the primary cell type replicating the virus in liver, and 

splenic macrophages are the major primary cells o f the spleen supporting MCMV 

replication (Papadimitrou et al., 1984; Reynolds et al., 1993). A ll other organs (salivary 

gland, lung, bone marrow) o f infected animals represent secondary sites o f viral 

replication, and become infected as a result o f virus spreading via the blood (Stoddart et 

al., 1994).

Antiviral cytokines, directly or indirectly, control early MCMV (as well as 

HCMV) infection until a specific T-cell response develops to clear CMV from target 

organs. An early inflammatory response is provided mainly by activated macrophages
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and, subsequently, by natural killer (NK) cells (Heise and Virgin, 1995; Orange and 

Biron, 1996a,b). It is not fully understood whether tissue monocytes/macrophages 

represent the first barrier in CMV organ infection, and primary CMV infection induces 

their activation and subsequent involvement in the early inflammatory responses, or 

whether monocytes become infected as they infiltrate primary sites o f infection, where 

they maturate and differentiate and thus create more permissive conditions for CMV 

replication. Regardless, activated macrophages produce interferon alpha/beta (IFN 

ot/(3), which enhances the cytotoxicity o f natural killer (NK) cells, as well as tumor 

necrosis factor alpha (TNF-a) and interleukin-12 (IL-12), which induce interferon 

gamma (IFN-y) production by NK cells. IL-6, also produced by macrophages, has direct 

antiviral activity (reviewed by Campbell, 1999).

In addition, investigation o f intraperitoneal MCMV infection demonstrated an 

increase in CD3+ CD4- CD8- (double negative; DN) T cell receptor alpha/beta (TCR 

a/p) cells in the peritoneal cavity, spleen and liver o f infected animals. The peritoneal 

DN TCR a/p T cells expressed IFN-y, TNF-a, early T cell activation-1 (Eta-1), and 

monocyte chemoattractant protein 1 (MCP-1) on day five postinfection in all three tested 

organs (Hossain et al., 2000). This suggests that DN TCR a/p T cells were activated and 

may have an antiviral effect through producing IFN-y and some macrophage-activating 

factors during the early phase o f MCMV infection. Together these early innate immune 

reactions lim it initial viral replication, and provide time for the development o f an 

acquired immune response.

In order to completely resolve an acute CMV infection, the host (human or 

mouse) must develop a specific T lymphocyte mediated response (Koszinowski et al.,
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1990). MCMV is usually cleared by four weeks after infection mainly as the result o f 

robust specific CD8+ T-cell (CTL) response from all organs except the salivary glands 

(Koszinowski, 1991). Studies with inbred mice have demonstrated that the CD8+ T cell 

response is required for direct cytotoxicity in susceptible strains o f mice, whereas in non- 

susceptible mouse strains, natural killer (NK) cells appear to have this function (Lathbury 

et al., 1996). However, independent o f genetic background CD4+ T cells are responsible 

for the delayed type hypersensitivity and antibody responses, as well as for virus 

clearance in the salivary glands (Lathbury et al., 1996). Adoptive transfer o f CD8+ T 

cells specific for two immunodominant nonapeptides, originating from the MCMV IE1 

(M123) protein and the MCMV gp34 (m04) early protein, provide protection from lethal 

challenge, greatly reducing viral replication in the lungs and other organs (Fernandez et 

al., 1999; Holtappels et al., 2000). Both CD4+ and CD8+ T lymphocytes are responsible 

for IFN-y production, which occurs early after acute infection and persists for about one 

year in the spleen o f infected animals (Shanley et al., 2001).

Clearance o f the virus from the salivary glands is significantly delayed and relies 

largely on the presence o f functional CD4+ T-cells (Koszinowski et al., 1993). These 

CD4+ specific T-cells o f the Thl subset eliminate MCMV from the salivary glands by 

direct cytotoxicity and by release o f antiviral cytokines, IFN-y and TNF-a (Lathbury et 

al., 1996; Lucin et al., 1994; Lucin et al., 1992). Antibodies play an insignificant role in 

clearing primary viral infection, however, they lim it spread o f the virus in vivo once it 

reactivates from latency (Jonjic et al., 1994).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



23

Cytomegalovirus latency

Following primary infection MCMV and HCMV establish latency. Extensive 

studies have been done to understand reactivation mechanisms o f both latent HCMV and 

MCMV (reviewed by Mocarski, in press, 2001). In vivo studies o f latently infected mice 

demonstrated that latent DNA was harbored in the salivary glands, adrenal glands, 

spleen, kidney, heart, and lungs (Balthesen et al., 1993), with a particularly high load o f 

latent viral genome and higher rate o f recurrence in the lungs (Kruz et al., 1997).

A variety o f cells within these organs is known to harbor latent HCMV and 

MCMV genomes. Monocyte/macrophage and bone marrow hematopoietic cells harbor 

latent MCMV DNA (Mitchell et al., 1996; Pollock et al., 1997). Recent studies by 

Reddehase et al. (1999) demonstrated that during latency, focal and stochastic MIEP 

activity is found to selectively generate IE1, but not IE3 transcripts in the lungs. 

Moreover, reactivation was triggered upon hematoablative, immunoreductive treatment, 

but recurrence o f the virus was reached only in a few foci o f latently infected lungs, 

indicating the existence o f several control points in the transition from MCMV latency to 

recurrence (Kurz and Reddehase, 1999).

Latent HCMV DNA is carried by granulocyte-macrophage progenitors 

(Maciejewski et al., 1992; Kondo et al., 199S). Recent studies have demonstrated that 

both CD34+ progenitor cells and monocytes could be infected with HCMV, and virus 

can be recovered when these cells were induced to terminally differentiate (Maciejewski 

and Jeor, 1999). These results were further confirmed when HCMV DNA and a limited 

number o f viral transcripts were detected in in vivo infected hematopoietic progenitors, 

and infectious virus was obtained from macrophages originating from monocytes o f
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normal seropositive blood donors upon in vitro differentiation (Maciejewski and Jeor,

1999).

Cells o f myeloid lineage (particularly macrophages expressing dendritic cell 

markers) are also known to carry latent viral DNA, and reactivate HCMV upon 

allogeneic stimulation (Soderberg-Naucler et al. 1997). The generation o f HCMV- 

permissive allogeneically-stimulated monocyte-derived macrophages is dependent on 

appropriate stimuli from both CD4+ and CD8+ T cells. Particularly the presence o f IFN- 

y, but net o f IL-1, IL-2, TNF-a, or granulocyte-macrophage colony stimulating factor 

(GM-CSF), is critical for the generation o f these macrophages (Soderberg-Naucler et al., 

1998). Cytokine-induced reactivation likely occurs naturally in selective tissues during 

normal immune responses. However, human monocyte-like lymphocytes (U937) and 

peripheral blood cells (HL60) did not reactivate HCMV upon stimulation with 12-0- 

tetradacanoyl phorbol 13-acetate (TPA) (Lee et al., 1999). Likewise, mature 

unstimulated macrophages treated with IFN-y were incapable o f reactivating latent 

HCMV. Therefore, relative degrees o f monocyte cell differentiation appear to be another 

important factor for reactivation o f latent HCMV and its ability to start a fully productive 

infection.

In addition, macrophages generated upon allogeneic stimulation o f HCMV 

latently infected monocytes, actively express a specific type o f MHC molecules, called 

HLA-G (Onno et al., 2000). While HLA-G surface expression is upregulated, classical 

MHC class I molecules are partially downregulated by HCMV. The same pattern o f 

MHC class I expression was found in vivo, expressed by bronchoalveolar macrophages 

collected from patients suffering from acute HCMV pneumonitis. The correlation
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between macrophage activation (due to primary infection or reactivated latent infection) 

and modulated expression o f MHC class I molecules could be an additional mechanism 

that helps HCMV to subvert host defenses. Taken together, these studies indicate that 

monocyte/macrophage cells are important for CMV pathogenesis and, particularly, for 

viral latency (Sinzger et al., 1996).

Genetic approaches to assessing mechanisms of cytomegalovirus pathogenesis

In spite o f the advances in our overall understanding o f CMV pathogenesis, a 

limited number o f molecular mechanisms have been well defined for identifying how the 

virus regulates cell or tissue tropism. The HCMV and MCMV genes are classified into 

two groups: essential and non-essential based on their requirement for replication o f the 

virus in cultured fibroblasts. Essential genes are those genes which affect one o f the 

necessary steps in viral replication, such as attachment, fusion, penetration, replication o f 

viral DNA, assembly o f the infectious viral particle or egress. Mutations within these 

genes are detrimental for the ability o f the virus to propagate both in vitro and in vivo.

On the contrary, non-essential genes can be deleted or mutated in the virus, but 

have no effect on the ability o f the virus to grow in cultured fibroblasts. This 

phenomenon allows one to genetically manipulate these genes and to study their effects 

on the in vitro and in vivo replication o f the virus (Sweet, 1999). Many o f the identified 

non-essential genes are highly conserved among different herpesviruses and can be 

further divided based on their involvement in either regulation o f host-virus interactions 

and immune evasion or in tissue and organ specific infectivity.
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Non-essential cytomegalovirus genes regulating viral-specific immunity

The CMV genes that function to regulate viral-specific immunity do so in many 

different ways. They can interfere with cytokine/chemokine-mediated events in antiviral 

immunity, alter the expression o f cell surface recognition molecules, or regulate immune 

surveillance mechanisms.

Chemokine and chemokine receptor homologs

Functional homologs o f cellular chemokines or chemokine receptors are 

identified in a number o f herpesviruses, suggesting that the subversion o f the host’s 

chemokine response contributes to the pathogenesis o f these viruses. Chemokines 

(chemoattractant cytokines) are small secreted proteins, which play a major role in 

mobilization and activation o f blood leukocytes. Chemokines differ from classical 

chemoattractants and most other cytokines by remarkably conserved sequences, 

indicating their common origin. Chemokines are divided into two families based on the 

content o f the conserved motif. The alpha (a)-chemokine family members contain 

conserved cysteine residues separated by an intervening amino acid (CXC). Alpha 

chemokines are largely produced by activated mononuclear phagocytes, as well as some 

tissue cells such as endothelial cells and fibroblasts, and are responsible for neutrophils 

attraction. Beta (P)-chemokines are characterized by the presence o f two adjacent 

cysteine residues (CC). This group o f chemokines is produced mainly by activated T 

cells and acts upon mononuclear inflammatory cells, attracting monocytes, basophils, and 

eosinophils. Chemokines bind to specific receptors on the target cells. The receptors 

belong to the family o f seven trans-membrane alpha-helical proteins. There is no cross-
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competition for binding between the two different classes o f chemokines (reviewed by 

Horuk, 1994; reviewed by Murphy, 1994).

Homologs for both types o f chemokines, as well as the chemokine receptors, are 

identified in herpesviruses. For example, the HCMV UL146 gene encodes a potent alpha 

(CXC) chemokine, which binds with high affinity to CXC receptor 1 (CXCR1) but not 

CXCR2 (Penfold et al., 1999). The UL146 protein induces calcium mobilization, 

chemotaxis, and degranulation o f neutrophils. In addition, the UL146 protein attracts 

neutrophils, which may provide efficient additional dissemination mechanisms during 

HCMV acute infection.

Two related proteins encoded by the m 131 and m l 29 genes o f MCMV with high 

homology to the CC (p) family chemokines, arise from alternatively spliced late 

transcripts (Fleming et al., 1999). Those proteins, called murine cytomegalovirus 

chemokine 1 and 2 (MCK-1 and MCK-2), induce calcium signaling and adherence in 

murine peritoneal macrophages. Mutant MCMV deleted o f m 131 and m l29 replicated 

similarly to wild type MCMV in cultured fibroblasts and during the first 2 to 3 days 

following in vivo infection. However the inflammatory response elicited by m l31/m 129 

mutant MCMV was significantly reduced compare to wild type MCMV infection. This 

mutant also failed to establish a high-titer infection in salivary glands, suggesting that 

MCK-1 and MCK-2 possess pro-inflammatory properties in vivo and are important for 

the dissemination o f MCMV to the salivary gland or for the infection within this organ 

(Fleming et al., 1999). In addition, cells expressing human chemokine receptor CCR3 

and the human macrophage THP1 cell line are also responsive to MCK-1. This suggests 

that MCK-1 may act as an agonist promoting leukocyte migration to initial sites o f
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infection and attracting monocytes or macrophages, which efficiently disseminate virus 

in the host (MacDonald et al., 1997; MacDonald et al., 1999; Saederup et al., 1999).

The US28 non-essential early gene encodes a beta-chemokine receptor that 

induces calcium influx in HCMV-infected cells upon ligand binding (Vieira et al., 1998). 

This causes a significant reduction in concentration o f RANTES in the medium o f 

infected cells. Expression o f US28 in the presence o f CC chemokines including 

RANTES or MCP-1 is sufficient to promote migration o f smooth muscle cells (SMCs) by 

both chemokinesis and chemotaxis, indicating the possible involvement o f the US28 gene 

product in the development o f vascular disease associated with HCMV infection 

(Streblow et al., 1999). Similar functions are described for the beta-chemokine receptor 

homolog encoded by the U51 gene o f human herpesvirus-6 (HHV-6). The U51 gene 

stably expressed in cell lines shows specific binding o f the CC chemokine RANTES and 

competitive binding to other beta-chemokines (Milne et al., 2000). In epithelial cells 

secreting RANTES, U51 expression results in transcriptional down-regulation o f that 

chemokine secretion. This kind o f chemokine regulation can modulate a protective 

inflammatory response to aid the spread o f the virus by immune evasion.

Regulation of major histocompatibility complex expression

At least four HCMV and three MCMV gene products that regulate MHC class I 

molecule expression have been identified to date. HCMV US2 and US 11 act similarly by 

dislocating the MHC class I heavy chain from the endoplasmic reticulum (ER) and 

transferring it through the Sec61 complex to the proteosome for destruction (Wiertz et al., 

1996; Wiertz, Tortorella et al., 1996; Jones and Sun, 1997). US3 o f HCMV impairs the
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maturation and transport o f MHC class 1 molecules to the surface o f infected cells at 

immediate early times post-infection (Jones et al., 1996). The HCMV US6 gene encodes 

an ER resident protein that inhibits peptide translocation into the ER for MHC class I 

assembly by binding to the TAP1/TAP2 translocation complex (Hengel et al., 1996). In 

MCMV, the m l52 gene encodes a glycoprotein named gp40, which prevents the 

transport o f the MHC class I molecule through the Golgi to the surface o f the cell 

(Ziegler et al., 1997). Transmembrane glycoprotein o f 48 kilodaltons (gp48), encoded by 

the MCMV m06 gene, forms a tight complex with (32-microglobulin-associated MHC 

class I molecules in the ER through its cytoplasmic domain, and reroutes MHC class 1 

complex into the endolysosome for rapid proteolytic degradation (Reusch et al., 1999). 

Interestingly, the m04 gene product o f MCMV, glycoprotein o f 34 kilodalton (gp34), 

counteracts the MHC class I retention function o f m l 52 and m06-directed degradation o f 

mature MHC class I complexes by escorting these complexes to the surface o f infected 

cells. This can possibly decrease the susceptibility o f the infected cells to recognition by 

natural killer cells at the early stages o f infection (Kleijnen et al., 1996).

Both human and murine CMV encode class I MHC heavy-chain homologs (UL18 

and m l44 respectively). The well-characterized HCMV UL18 gene product contains a 

groove analogous to a similar structure in MHC molecules that function as the binding 

site for peptides derived from both endogenous and foreign proteins (Fahnestock et a., 

1995). However, the m l44 gene contains a substantial deletion within the sequence 

encoding the groove domain, and therefore is incapable o f peptide binding (Chapman and 

Bjorkman, 1998). Nevertheless, the stable heavy chain-(32-microglobuiin complex
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formed by the m l44 protein confers protection from NK cell effector function in the 

absence o f target cell MHC class I expression (Cretney et al., 1999).

Regulation o f MHC class II molecule expression by MCMV was discovered 

during the studies o f inefficient MCMV clearance from the salivary glands (Heise et al.,

1998). Clearance o f MCMV from the salivary glands is significantly delayed compared 

to other organs and it requires specific CD4+ T cells and IFN-y. The MCMV infection 

apparently inhibits IFN-y-induced presentation o f the MHC class Il-restricted peptides by 

the differentiated macrophages to CD4+ T cells via impairment o f MHC class II cell 

surface expression. Similarly, HCMV US2 protein causes degradation o f two essential 

proteins in the MHC class II antigen presentation pathway: HLA-DR-alpha and DM- 

alpha (Tomazin et al., 1999). More specifically, studies by M iller et al. (1998) revealed a 

defect in IFN-y signal transduction, which was associated with a striking decrease in 

Janus kinase I (Jakl) levels (M iller et al., 1998). This modulation o f antigen presentation 

may contribute to the capacity o f MCMV to evade immune control and persist in the 

salivary glands o f the infected host for prolonged periods o f time.

Non-essential cytomegalovirus genes influencing viral tropism

Furthermore there are non-essential genes influencing viral tropism. Recently 

two distinct functions were described for the MCMV M45 gene product. Lembo et al. 

(2000) showed that M45 encodes a homolog o f the R1 subunit o f the cellular 

ribonucleotide reductase (RNR). RNR activity is essential for the replication o f either 

viral or cellular DNA in infected cells. Interestingly, in MCMV infected cells the cellular 

R2 subunit preferentially complexing with the R1 subunit encoded by the MCMV M45
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gene to reconstitute a new RNR activity (Lembo et al., 2000). Intriguingly, the M45 

mutant MCMV replicates like wild type virus in fibroblasts, but poorly in macrophages 

and does not replicate in endothelial cells (Brune et al., 2000). Specifically, endothelial 

cells infected with the M45 mutant virus rapidly undergo apoptosis. The inability o f the 

M45 mutant to grow in endothelial cells suggests that the M45 gene product encodes, or 

activates, an inhibitor o f apoptosis, and that its physiological expression is essential for 

virus replication in endothelial cells.

The MCMV M33 gene, which is co-linear with HCMV UL33 as well as U12 o f 

human herpesvirus 6 and 7 (HHV6 and HHV7), encodes a G protein-coupled receptor 

(GCR) homolog that plays an important role in the dissemination to or replication in the 

salivary glands (Davis-Poynter et al., 1997). A similar function was assigned to the R33 

gene product o f rat CMV (Beisser et al., 1998). Another non-essential gene influencing 

MCMV pathogenesis in the salivary glands is the sggl (M133) gene, which is critical for 

high levels o f viral replication in this organ (Lagenaur et al., 1994). The MCMV M83 

and M84 genes are the putative homologs o f the HCMV tegument phosphoprotein pp65 

(UL83). Mutations in these genes cause attenuated growth o f MCMV in spleen, liver, 

and kidney. In addition, growth o f a recombinant MCMV deleted o f M83 is severely 

restricted in the salivary glands and lungs (Morello et al., 1999). The MCMV M43 gene 

belongs to the US22 gene family and encodes a protein whose function is dispensable for 

viral growth in cultured fibroblasts in vitro as well as in the lungs, spleen, liver, and 

kidneys o f susceptible mice. However, M43 is a determinant for MCMV growth in the 

salivary gland (Xiao et al., 2000).
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Apparently, many non-essential gene products influence dissemination to or 

replication in certain organs; however, the molecular mechanisms causing these effects 

are largely unknown. Thus, study o f non-essential genes and the function o f their protein 

products w ill lead to a better understanding o f viral pathogenesis. This knowledge w ill 

expedite the development o f preventive vaccines against primary CMV infection and/or 

drugs suppressing reactivation o f the virus from a latent stage.

US22 Gene family

The US22 family o f genes is found in all betaherpesviruses, particularly in 

HCMV (Chee et al., 1990), MCMV (Rawlinson et al., 1996), HHV-6 (Efstathiou et al., 

1992), and HHV-7 (Nicholas, 1996). Table 2 shows known homologies o f the MCMV 

genes to their HCMV counterparts.

TABLE 2

Homology between MCMV and HCMV US22 family genes

MCMV HCMV

M23a UL23b
m23.1
M24 UL24
m25.1 UL23
m25.2 UL22

M36 UL36
M36Ex2 UL36Ex2
M36Exl UL36Exl

M43 UL43 (P)c

M 128Ex3 US22 * M and m denote MCMV homologous
-----------------------------------------------  genes with or without sequence
M 13 9 US22 similarity, respectively.
M 140 US23 b UL and US indicate HCMV genes
M 141 US24 within unique long and unique short
m 142 US26 regions of the genome.
m [43 US23 c Positional homolog.
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Members o f the US22 gene family are characterized by short stretches o f 

hydrophobic and charged residues within four conserved motifs (Kouzarides et al., 1988; 

Nicholas, 1996). The functions o f most o f the US22 family genes are unknown; however 

the products o f certain genes such as HCMV TRS 1/IRS 1 (Iskenderian et al., 1996) 

HCMV UL36 (Colberg-Poley et al., 1992), MCMV M128 (Cardin et al., 1995), ml42- 

ml43 (Dalton, unpubl. data), and some genes within the US22 homology region in HHV- 

6 (Nicholas et al., 1994), are transcriptional transactivators. Some o f the US22 genes are 

non-essential for viral replication in tissue culture, like TRSl/IRSl o f HCMV, M l 28, 

M43 and M139-M141 o f MCMV (Jones et al., 1992; Cardin et al., 1995; Xiao et al., 

2000; Cavanaugh et al., 1995). This suggests that the proteins encoded by those genes 

are either involved in regulation o f viral pathogenesis or their function is compensated by 

another viral protein(s), most likely the other member(s) o f the same gene family.

MCMV contains twelve US22 family genes that are localized in two clusters 

toward the left (M23, M24, M25.1, and m25.2) and right (M139-ml43) ends o f the 

genome (F ig.l).

MCMV Hind m  Map

N A  B M H D  C G F KLJ  I OP E

ff MB  1-------------- 1----------1-----------M23 VC6 MI3
mZ3.1 VG6Ex2
M24 M36Exl
m25.1

ml28 M139 
M140 
M141 
ml42 
ml43

H  - US22 family genes.

FIG. 1. Map of MCMV (strain Smith). The HindiII restriction fragments are indicated. The 
location of the US22 family genes within the genome are indicated as shaded boxes.
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The remaining three US22 family genes are distributed throughout the genome (M36, 

M43, and M128).

Long-term interest in our laboratory concentrates on the MCMV US22 family 

genes. We analyzed the expression o f most o f these MCMV US22 genes in NIH 3T3 

fibroblasts. The results showed that M23, M24, M25.1, m25.2, and M36 are not 

expressed to detectable levels by northern blot analysis (Karabekian, unpubl. data). 

However, M139, MHO, M141, ml42, and ml43 genes are abundantly expressed in 

infected fibroblasts and macrophages. Characterization o f transcripts originating from 

these MCMV US22 genes revealed another similarity between HCMV and MCMV US22 

family genes. They are expressed with either immediate early (M128, m!42, ml43) or 

early kinetics (M139, MHO, M141) (Hanson, Dalton et al., 1999). Figure 2 shows the 

results o f transcript mapping o f the M139-M141 region.

« / /  MU8 , 4  ML22  « MUD 4___ MU1
3912 -1083 6016 6065 7516 7708 92311930001---------- 1-------------------  1------------------ 1-------1200000

7.0 kb l
5.4 kb C

3.8 kb 1 — .......   J E/L

3.0 kb I

6.0 kb I
“rr-------

/ /
 >y ■

FIG. 2. Transcripts originating from the MCMV M139-M141 gene region. The fragment of 
MCMV genome from 193000 to 200000 is depicted on the top with the arrows and numbers 
indicating the start and stop codons of M139-M141 ORFs. Detected transcripts are shown as 
open boxes. The predicted positions and sizes of early (E) and early/late (E/L) viral RNA are 
denoted (adapted from Hanson et al. 1999, Virol. 260:156-164). The kinetics o f the 3.0kb 
transcriDt is not vet determined.
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Three abundant and two less abundant 3’ co-terminal transcripts are expressed 

from the M139-M141 gene region with early or early-late kinetics. A ll five transcripts 

are expressed from right to left direction and share the same polyadenylation signal 

located within the M l38 gene. However, the stop codons within large readthrough 

transcripts are probably utilized during translation to yield proteins o f the sizes predicted 

by the ORFs.

The 3.8- and 3.0-kb transcripts map to the M139 region with no evidence o f 

splicing. The 3.8 kb transcript is predicted to start at the position 196016 (Rawlinson et 

al., 1996). The presence o f two potential start sites with an ATG at position 195766 and 

an ATG at position 195667 supports the hypothesis that the smaller transcript is 

expressed from a separate promoter within the larger ORF. In addition, DNA sequence 

analysis showed the presence o f a potential TATA box within the proximity o f those start 

sites, although expression o f M139, M140, and M141 genes are controlled by TATA-less 

promoters (Hanson et al., in press). There is one abundant transcript o f 5.4-kb 

corresponding to the MHO gene. The two largest transcripts o f 7-kb and 6-kb originate 

within the M 141 gene region. The 7-kb abundant transcript contains the sequence for 

expression o f the fu ll length M141 protein, and the less abundant 6-kb transcript covers 

about a third o f the M141 coding sequence and may represent either a splice variant o f 

M 141, or use o f an alternative start site (Hanson, Dalton et al., 1999).

Sequence analysis o f M139-M141 ORFs reveled the presence o f all four US22 

characteristic motifs in each one o f these genes (Fig. 3).
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M138
•

3942 4085 6016 | 6065 7516 | 7708 9231 |
1

iv in  h i iv m m  iv m m

US22 family motifs

FIG. 3. Map of the M139-M141 gene region and predicted protein products. The fragment of 
MCMV is depicted on the top with the arrows and numbers indicating the start and stop codons of 
M139-M141 ORFs. Corresponding predicted protein products are shown as open boxes. The 
positions of US22 family motifs (I, II, III, IV) are indicated.

To proceed with characterization o f translated proteins, rabbit polyclonal antisera 

specific for each gene product were generated (see Materials and Methods). Western blot 

analysis o f MCMV infected fibroblasts and macrophages demonstrated that two proteins 

o f 72- and 6l-kD  are detected by the anti-M139 (a-M139) antisera, a 56-kD protein is 

identified by anti-M140 (a-M140) antisera, and a 52-kD protein is recognized by anti- 

M141 (a-M141) antisera. Kinetics o f expression o f M l 39, M l 40 and M141 proteins 

demonstrated that all detected proteins were expressed at early times and accumulated 

through late times postinfection similar to the kinetics o f transcription within this gene 

region (Hanson et al., in press). This correlated expression o f both the transcripts and the 

proteins suggests a cooperative function that is consistent with the phenotype o f deletion 

viruses as described below. The M139, M140 and M141 gene products localize to both 

the nucleus and cytoplasm in wild-type infected cells. Table 3 summarizes the results of 

transcript mapping and western blot analysis.
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TABLE 3
Characterization of transcripts and translational products of the MCMV M139,

M140. and M14I eenes.

Gene Sizes of specific 
transcripts (in kb)

Protein size(s) 
predicted by the 
ORFs (in kD)

Observed protein 
size(s) in western 
blot analysis (in kD)

M139 3.8 71.8 72
3.0 61

MHO 5.4 55.8 56

M141 7.0 57.2 52
6.0

Our laboratory found unique phenotypes associated with mutations within M l 39- 

ml43 genes. One or both o f ml 42 and ml 43 immediate early genes are essential for 

viral replication even in NIH 3T3 fibroblasts (Cavanaugh et al., 1996; Menard et al,

2000). However, deletion o f M139-M141 alters replication o f the virus in macrophages 

in vitro and macrophage-rich organs in vivo (Cavanaugh et al., 1996; Hanson et al.,

1999).

More specifically, recombinant MCMV RV10, lacking genes M139, MHO, and 

M141, replicates up to 1,000-fold less efficiently in immortalized IC-21 macrophages 

compared to wild type virus in one- or multi-step growth curves. Expression o f IE genes 

in macrophages upon RV10 (AM139-141) infection is significantly reduced which 

suggests that the block in replication o f this mutant virus in macrophages occurs at the 

earliest stages in the virus life cycle: virus entry or immediate early gene expression 

(Hanson et al., 1999). When tested in vivo, RV10 (AM139-141) replicated poorly ( if  at 

all) in spleens o f intact immunocompetent Balb/c mice, signifying that M139-M141 

proteins are required for MCMV replication in the spleen. In this organ, tissue
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macrophages are a site o f MCMV replication (Stoddart et al., 1994). Indeed, when 

splenic macrophages were depleted in vivo prior to RV10 infection, the mutant virus 

replicated to near wild-type levels, indicating replication competency in other cell types.

A high degree o f attenuation due to deletion o f M139-M141 is demonstrated by the fact 

that RV10 does not k ill (within 100 days) SCID mice that are devoid o f mature, 

functional T and B cells (Hanson et al., 1999). Therefore, the M139-M141 gene products 

influence macrophage specific early events in the replication cycle o f MCMV.

Additional viral mutants containing mutations within M l39, MHO, and M141 

genes alone or in combination were generated to assess the effect o f a single gene on 

growth o f the virus (Fig. 4). The mutations within M l 39 and MHO genes were 

generated by deletion o f a coding fragment and insertion o f an el-fi glucuronidase 

cassette (e/-p-glu) at the same site, and resulting viruses were named RV13 (AM 139) and 

RV14 (AM140) respectively. The M141 gene was mutated by insertion o f the P-glu 

reporter cassette into M141 coding region, generating RV11 (AM 141) recombinant 

MCMV. The RV12 (AM139-140) virus lacks both M139 and MHO genes, which are 

replaced with e/-P-glu.

Because messages expressed from the M139-M141 gene region are 3’ co­

terminal, it was important to determine i f  a mutation within a single gene alter the 

transcription o f the neighboring genes. Northern blot analysis verified that transcription 

o f a mutated gene was ablated in the cells infected with corresponding recombinant 

MCMV. However transcription from the neighboring genes in the same cells was not 

altered (Hanson et al., in press). Subsequent protein analysis demonstrated that steady 

state levels o f both M l 39 proteins, p75M139 and p61M!39, were not affected by
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mutations in either the MHO or M141 gene (Hanson et al., in press). Similarly, deletion 

o f M139 did not alter the steady state levels o f MHO or M141 proteins (pMHO and 

p M H l respectively). Interestingly, deletion o f MHO resulted in a significant decrease in 

steady state levels o f p M H l in both fibroblasts and macrophages (Hanson et al., in 

press).

Growth properties o f all recombinant MCMV were assessed both in vitro, in 

multiple- and single-step growth analysis in NIH3T3 fibroblasts and IC-21 macrophages, 

and in vivo, in the spleen and liver o f BALB/c mice (Hanson et al., in press). RV12 

(AM 139-140) grew like the triple deletion mutant virus both in vitro and in vivo. 

Interestingly, the RV13 (AM 139), which lacks expression o f both M139 proteins, but has 

unaltered expression o f the pMHO and p M H l, exhibited a wild-type-like phenotype.

MCMV
m170m04

Ml 40 m 142 m143 143 a144•133/4/5 *138*137 *138 M139

□ RV10 (A13J-141)

3 RV11(A141)

□ RV12 (AIM-141)

3 RV13 (A13J)

3— b 3 RV14 (AMI)

FIG. 4. Maps of recombinant MCMV. The black box indicates wild-type MCMV sequence 
within the HindlH-J and - I  fragments of the MCMV genome. The positions of the MCMV 
genes including the M139, MHO, and M141 are indicated as wide arrows. Solid lines denote 
deleted sequences. The gray boxes indicate the locations of the el-|3-glu cassette.
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However, RV14 (AMMO) expressing WT levels o f M139 proteins, but decreased 

levels o f pM141, replicated identically to RV10 (AM139-141) and RV12 (AM139-140), 

indicating an important function for pM140. Lastly, RV11 (AM 141), expressing M l39 

and M l40 proteins, demonstrated intermediate phenotype both in vitro and in vivo. Table 

4 reflects maximal virus titers o f the recombinant MCMV relative to the titers following 

wild type MCMV infection. These results indicate that M140 and M 141 proteins are 

essential for replication o f the MCMV in cultured macrophages and spleens o f infected 

animals. Interestingly, M l39 gene products appear not to influence MCMV growth, at 

least, in the conditions tested.

TABLE 4

Growth of WT recombinant MCMV in vitro and in vivo

Virus Mutation Replication in vitro Replication in vivo

NIH3T3

WT MCMV none

IC-21

+ -H -+

spleen

++++

liver

-H-H-

RV10 A139-141
(193984-198832)

M M

RV13 A139
(195847-4371)

++++ M M ++++

RV14 A140
(197626-6820)

RVli A141
Insertion @198832

++++

RV12 Al39-140
(195847-4371 + 
197355-6050)

N/D N/D
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Many possible functions can be assigned to these proteins that w ill explain the 

mutant phenotypes. One or more o f these proteins may

1) affect transcription and/or translation o f other pivotal viral genes,

2) compensate for a function o f another viral protein, which are normally 

suppressed in the macrophage environment, but which is required for efficient 

viral replication within these cells,

3) alter the expression o f cellular proteins expressed specifically in macrophages 

and required for robust virus replication in vivo,

4) complement a cellular protein required for MCMV replication and typically 

present in macrophages in sub-optimal levels,

5) manipulate macrophage-specific innate immune mechanisms, thus influence 

immune evasion.

However, the molecular mechanism o f action o f these proteins, alone or in 

combinations remains to be identified. The function o f a protein often follows the 

structure and could not be completely understood without the characterization o f the 

protein. Immunoprecipitation analysis is generally a more sensitive assay compared to 

western blotting, which was previously used to describe these proteins. It also provides 

the means to determine the rate o f synthesis, stability o f the protein o f interest, as well as 

any interactions with other proteins. Therefore, we decided to use this experimental 

approach to further characterize M l39, MHO and M141 gene products and identify 

critical interactions among these proteins. This w ill assist in elucidating the function o f 

these gene products in regulation o f MCMV replication in macrophages and macrophage- 

rich organs in mice.
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CHAPTER II 

SPECIFIC OBJECTIVES

The overall objective o f this study was to characterize proteins originating from 

the US22 MCMV M139-M141 gene region. The characterization o f these proteins is 

vital because it w ill lead to elucidation o f the tunction(s) o f these gene products in 

regulation o f MCMV replication in macrophages and macrophage-populated target 

organs in mice, as the M l39-141 gene products have been shown to influence this aspect 

o f viral pathogenesis (Hanson et al., 1999). The results revealed not only the molecular 

weights o f the expressed proteins, but also the existence o f these proteins as complexes in 

MCMV-infected cells. In addition to physical interactions, the ability o f the MHO gene 

product to functionally stabilize the M141 protein was revealed.

The specific objectives o f this project were:

1) To characterize the expression o f the proteins immunoprecipitating with antibodies 

specific to M139. MHO and M141 proteins. Immunoprecipitation experiments were 

performed with NIH 3T3 fibroblasts and IC-21 macrophages infected with wild type 

(WT) MCMV. The results revealed the number and the molecular weight o f proteins 

precipitated by the a-M139, a-MHO- and ct-M141 polyclonal antisera in both fibroblasts 

and macrophages. The quality o f generated antibodies was assessed for potential 

crossreactivity.

2) To test complex formation bv the M139. M140 and M141 gene products. Complex 

formation by the M139, MHO, and M141 proteins were tested by a series o f experiments
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including immunoprecipitations o f denatured cell lysates compared to those performed 

under non-denatured conditions, sequential immunoprecipitations, and a combination o f 

immunoprecipitation and western blot analyses.

3) To assess expression o f the M l 39. MHO, and M141 from mutant viruses deleted o f 

one or more genes within this region. The origin o f the complexed proteins was verified 

by immunoprecipitation analysis o f cells infected with wild type or recombinant MCMV 

containing mutations within the M l39, MHO, or M 141 genes, individually or in 

combinations. Use o f the MCMV deletion mutants in pulse-chase analyses also revealed 

that the MHO protein, which complexes with the M 141 gene product, confers stability to 

the M 141 protein.

4) To verifv the complex formed by the M l 40 and M141 proteins. The formation o f the 

complex by the MHO and M 141 proteins was proven by immunoprecipitation analysis o f 

the cells infected with a mutant MCMV expressing only the MHO and M141 genes. 

Additional immunoprecipitation analysis o f cells transiently expressing these genes as 

well as analysis o f in vitro co-transcribed/translated MHO and M141 proteins was also 

performed to verify that this complex is formed in the absence o f other viral proteins.

5) To determine a role o f the M 141 protein in complex formation. The involvement o f 

the M 141 protein in interactions with M l39 and MHO proteins was addressed in 

experiments combining sequential immunoprecipitation and denaturing o f precipitated
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proteins. The results indicated that the M 141 protein exists as both a free and complexed 

form.

6) To examine a direct interaction between M l39 gene products and the proteins co- 

precipitatine with them. The involvement o f the M l 39 proteins in formation o f the 

complex with the M140-M141 oligomer was addressed by immunoprecipitation analysis 

o f in vitro transcribed/translated M139, M140 and M141 proteins alone or in 

combinations. These results were further confirmed by similar immunoprecipitations o f 

M l39, M140, or M 141 proteins transiently expressed in NIH3T3 fibroblasts. The data 

indicated that at least a portion o f the M l 39 proteins might associate with the M l 40- 

M141 protein complex.
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CHAPTER III 

MATERIALS AND METHODS 

Cells

NIH 3T3 cells, a contact-inhibited murine fibroblast cell line from the American 

Type Culture Collection (ATCC, Rockville, MD), were propagated in Dulbecco’s 

Modified Eagle’s Medium (DMEM, Mediatech, Hemdon, VA) supplemented with 10% 

heat inactivated bovine calf serum (Hyclone Laboratories, Logan, UT) and 2 mM L- 

glutamine (Mediatech, Hemdon, VA).

IC-21 cells, an SV40-transformed murine peritoneal macrophages cell line from 

C57BL/6 mice (Mauel and Defendi, 1971), were obtained from the ATCC, and were 

propagated in RPMI 1640 media (Mediatech) supplemented with 10% heat inactivated 

fetal calf serum and 2 mM L-glutamine.

Viruses

The Smith strain o f murine cytomegalovirus (MCMV) was obtained from the 

American Type Culture Collection. Stocks o f virus were prepared in, and titered on, 

NIH3T3 fibroblasts, as previously described (Campbell et al., 1989).

Mutant viruses were generated by homologous recombination as previously 

described elsewhere (Hanson et al, in press; Hanson et al., 1999; Cavanaugh et al., 1995). 

In order to generate a recombinant virus with a site-specific mutation within a gene o f 

interest, an appropriate recombination plasmid was constructed in each case. The 

plasmids for generation o f MCMV RV10 (AM 139-141), and RV14 (AMMO) contained a 

deletion (from nucleotides 193984 to 198832, and from nucleotides 197626 to 197682,
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respectively) within the gene o f interest, and an insertion o f a (3-glucuronidase (|3-glu) 

cassette, as a marker gene, surrounded by WT sequences on both sides. The plasmid for 

generation o f MCMV RV11 (AM 141) mutant virus contained an insertion (at position 

198832) o f the |3-glu cassette into the M 141 gene. MCMV RV13 (AM 139) was 

generated during the rescue o f the virus with deletions in both M 139 and M l 40 genes 

(MCMV RV12). It contains a deletion from nucleotides 194371 to 195847, and does not 

contain the P-glu cassette. Revertant viruses, RV10REV, RV12REV, RV14REV, 

contain the wild type sequences introduced back into the RV10 (AM 139-141), RV12 

(AM139-140) and RV14 (AM140) genomes, respectively, by homologous recombination. 

These viruses replicate like WT MCMV both in vitro and in vivo (Hanson et al., 1999; 

Hanson et al., in press). A ll recombinant MCMVs were generated by cotransfecting 

infectious MCMV DNA and linearized recombination plasmids o f interest into NIH3T3 

fibroblasts as described previously (Cavanaugh et al., 1995; Hanson et el., 1999). Blue 

plaques produced by the recombinant viruses containing the P-glu cassette or white 

plaques produced by the revertants and RV13 (AM 139), identified by addition o f 

substrate for the P-glu enzyme (5-bromo-4-o-3-indolyl-P-D-glucuronide), were isolated 

and plaque purified in at least five rounds o f purification. A ll mutations were confirmed 

by Southern blot analysis. The infections described in this study were done at a 

multiplicity o f infection (MOI) o f one plaque forming unit/cell (PFU/cell).

Antibodies

Polyclonal antisera were generated against recombinant M l39, M l40, and M141 

proteins. Recombinant proteins were obtained by cloning an appropriate MCMV
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genomic fragment into a bacterial expression vector. The M l39 expression vector was 

generated by cloning the 2.3 kb HindlH to EcoRI fragment o f MCMV (195850-193532) 

into the pTrcHis (A) vector (Invitrogen, Carlsbad, CA) resulting in the pHisA139 

plasmid. For the expression o f the M l 40 encoded protein, the 1.4 kb HindUI to Sail 

fragment (195850-197271) was also cloned into pTrcHis (A) vector resulting in the 

pHisAI40 plasmid. For generation o f M141 specific antibodies, a 1.2 kb SstI to BglU 

fragment (198832-197629) was cloned into the pTrcHis (A) vector resulting in 

pHisA141 (see Fig. 5).

Fragments used 
for generation of 
recombinant 
M139, Ml 40, and 
M141
proteins for Ab 
production

EcoRI m i

ICndm Sail

SstI

M138

/T

193000
EodRI 
JSJ2 3670

M139, M140, and 
M141 fragments 
cloned into 
mammalian 
expression 
vectors

\1139 \1140 M141
6016 606J 7516 770» 9231

HtaLl LLdl sJ Lll SmI lir i ^
SHO 6 0 0

IBndl
ZZ1

hfrnHQ
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7549

Bern

Xbnl

*» 200000
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FIG. 5. Map of the MCMV M139-M141 gene region and fragments used in cloning. Location 
and direction of transcription of the M139, MHO and M141 genes are indicated by the arrows. 
Predicted start and stop sites for each gene are denoted. Fragments used for the generation of 
recombinant proteins for antibody production and mammalian expression vectors are depicted 
on the top and the bottom of the map respectively. Restriction sites utilized in cloning

procedures are indicated. The stop sites (^) of each gene that lie within fragments used for 
generation o f recombinant proteins are denoted.
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These plasmids were transformed into Top 10 E.coli (Invitrogen, Carlsbad, CA) and 

bacterial cultures were induced with the lactose analog, isopropyl-(}-D-thiogalactosidase 

(IPTG), for four hours in order to up-regulate expression o f the pM 139-His, pM 140-His, 

or pM 141-His fusion proteins driven by the lacO regulated trc promoter. The expression 

o f target proteins was tested by western blot analysis, using anti-His antibodies (Qiagen 

Inc. Valencia, CA). The pM l 39-His, pM l 40-His, and pM 141-His recombinant proteins 

were purified using the Xpress™ purification system (Invitrogen, Carlsbad, CA) 

according to the manufacturer’s protocol. Purified fusion proteins were used to generate 

rabbit polyclonal antisera (Cocalico, Reamstown, PA). Two individual rabbits in each 

case produced antiserums against recombinant proteins. Polyclonal antiserum against the 

MCMV El protein was obtained from Dr. Gina Ciocco-Schmitt (Easter Virginia Medical 

School, Norfolk, VA) and used in immunoprecipitation reactions testing the equal levels 

o f infection among different viruses.

To generate horseradish peroxidase conjugated anti-M139 and anti-M140 

antibodies, the IgG fraction was first purified from the corresponding rabbit polyclonal 

antisera. The a-M139 and a-M140 IgG were purified using ImmunoPure IgG (Protein 

A) Purification kit (Pierce, Rockford, IL) according to the manufacturer’s protocol. In 

brief, 1 ml o f a-M139 and a-M140 polyclonal antisera (about 60 mg total protein) was 

diluted 1:10 with ImmunoPure IgG binding buffer. A ll 10 ml o f each antisera were 

loaded onto separate protein A agarose columns and allowed to flow through. Each 

column was washed with 15 ml o f ImmunoPure IgG binding buffer. Then the IgG 

fractions were eluted in 5 ml o f ImmunoPure elution buffer. Subsequently, each eluate 

was desalted by running through a separate Excellulose column. Desalted IgGs o f the a-
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M l 39 and a-M140 were eluted in three I ml fractions o f phosphate buffered saline (PBS 

pH 7.5) from the Excellulose column. Eluted antibodies were quantitated by 

spectrophotometry (Beckman DU-7000 spectrophotometer). Aliquots o f 30 pg from 

each eluted fraction were resolved by SDS-PAGE (Fig. 6, lanes 4,5,6) together with 

unpurified whole a-M140 rabbit polyclonal antisera (Fig. 6, lane 2) and recombinant 

rabbit IgG (Sigma, St. Louis, MO) (Fig. 6, lane 3), and visualized by Coomassie blue 

staining.

FIG. 6. Purification of the IgG from whole rabbit serum. Figure is a Coomassie stained 
gel of the a-M140 whole antisera and purified IgG fractions. 30 pg of total protein was 
loaded to each lane. Lane 1: molecular weight markers (Amersham Life Science, 
Arlington Heights, IL), Lane 2: unpurified whole a-M140 rabbit polyclonal antisera, Lane 
3: recombinant rabbit IgG, Lane 4-6: Fractions 1-3 of purified a-M140 IgG, respectively. 
HC and HL denotes heavy and light chains of purified IgG molecules.

Subsequently, 3 ml o f a-M139 (654 pg/ml) and a-M140 (630 pg/ml) IgG were 

sent to Genosys by Sigma (Woodlands, TX) for HRP conjugation. The ability o f
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conjugated antibodies to recognize pM139 and pM140 was tested in western blot analysis 

o f the MCMV-infected cell lysates (Fig. 7).

0-M139-HRP O-M140-HRP

-97kD- 

-66kD>

4 -  56kD

-46kD-

m  w r m w r

FIG. 7. Anti- M139-HRP and anti-M!40-HRP antibodies specifically recognize MCMV 
proteins. Duplicates of mock (M)- and WT MCMV (WT)-infected NIH3T3 fibroblast lysates 
were resolved by the 12.5%SDS-PAGE (40 pl/lane). The gel was blotted to a nitrocellulose 
membrane. Immunoblots were probed with either a-M 139-HRP or a-M 140-HRP and 
detected by ECL Western Blotting Detection Reagents. Positions of molecular weight makers 
are indicated in the center. Sizes of the detected proteins are indicated in bold on the left and 
the right sides of the blots.

Plasmids

Plasmid generation was conducted by standard methods (Maniatis et al., 1987), 

and restriction endonuclease digestions were done according to manufacturer’s 

suggestions (Promega, Madison, WI; New England Biolabs, Beverly, MA). The 

plasmids used for construct generation, in vitro transcription/translation reactions, and 

transfection studies were prepared and purified using the Quantum Prep Plasmid 

Maxiprep K it (Bio-Rad, Hercules, CA).

75kD-

61kD-
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Mammalian expression vectors containing the M 139, M l40, or M 141 gene were 

generated in order to express each gene individually in the absence o f other viral proteins. 

The M l39 mammalian expression vector was generated by cloning the 2.4-kb Hincll 

fragment (193670-196059) into the EcoRV site o f the pcDNA3.1(+) vector (Invitrogen, 

Carlsbad, CA), resulting in the plasmid called pM139/3.l(+). The MHO mammalian 

expression vector was constructed by cloning the 1.7-kb H indlll to Xbal fragment 

(195850-197549) into appropriate sites o f the pcDNA3.1Zeo (-) vector (Invitrogen, 

Carlsbad CA), resulting in the plasmid called pM!40-Zeo. Similarly, the M 141 

mammalian expression vector was generated by cloning the 1.6-kb A vrll to Bglll 

fragment (197629-199283) into the Xbal and BamHI sites o f the pcDNA3.1Zeo (-) 

vector respectively (Invitrogen, Carlsbad CA), producing the pM141/Zeo (-) plasmid.

The vectors were treated with calf intestine phosphatase (Boehringer Mannheim, 

Indianapolis, IN) for 2-4 hours following appropriate endonuclease digestion. A ll 

genomic fragments and vectors were separated on the 5% polyacrylamide gel and then 

eluted. Purified DNA fragments were ligated by T4 DNA ligase (New England Biolabs, 

Beverly, MA) in 1:3 molar ratio o f vector to insert. The pM l 39-His plasmid was 

generated by cloning the 2.3 kb H indlll to EcoRI fragment (195850-193532, 

respectively) into corresponding sites o f the pcDNA3.1/His B (Invitrogen, Carlsbad, CA) 

mammalian expression vector. The M l39 coding sequence was cloned in frame with the 

vector sequence encoding a histidine tag at the N-terminus. The cloned fragment o f the 

M l39 gene is missing the first 162 base pairs, however the expressed fusion protein 

(74kD) has a similar molecular weight to the native M139 protein (75 kD) due to the 

expression o f the tag. Both proteins characteristic o f the M l 39 gene (74- and 6l-kD)
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were expressed from this plasmid following transient transfections, and were detectable 

in western blots probed with a-M 139 Ab. Transfections o f mammalian expression 

vectors into NIH3T3 cells were performed as described below. Figure 5 illustrates the 

genomic fragments cloned into the mammalian expression vectors.

Procedures

In vitro transcription and translation reactions 

In vitro transcription/translation reactions were conducted using the TnT Coupled 

Reticulocyte Lysate Systems (Promega, Madison, WI) in order to verify the products o f 

the M l39, M l40, and M141 genes. Each reaction was assembled in a total volume o f 50 

pi from the following components: 25 pi o f rabbit reticulocyte lysate, 2 pi o f reaction 

buffer, 1 pi o f RNA polymerase, 1 pi o f 1 mM amino acid mixture without methionine. 

One microliter o f RNasin ribonuclease inhibitor (40 U/pl, Promega, Madison, WI) was 

added to each reaction mix. A total o f 1 pg o f template DNA and 20 pCi o f [35S] 

methionine (1,000 Ci/mmol at 10 mCi/ml, DuPont NEN, Wilmington, DE) were added to 

each reaction mix. The reactions were incubated at 30°C for 90 minutes. Next, the 

expression o f radiolabeled transcribed/translated products was tested by visualization.

For that, 2 pi o f each lysate was mixed with 10 pi o f 2X sodium dodecyl sulfate (SDS) 

protein loading buffer (5 mM Tris, 4% SDS, 2% sucrose, 0.01% brome-phenol blue, 5% 

beta-mercaptoethanol), boiled for 5 minutes and loaded on a 12.5% polyacrylamide gel. 

Gels were fixed (10% acetic acid, 25% Methanol) for 1 hour and treated with rapid 

autoradiography enhancer, Enlightning (DuPont NEN, Wilmington, DE), for 30 minutes.
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Subsequently, gels were dried (SDG2000 Digital Slab Gel Dryer, Savant Instruments, 

Inc., Holbrook, NY) and exposed to X-ray film (Fuji RX) to obtain autoradiographs.

To immunoprecipitate in vitro transcribed/translated proteins, 2.5 pi o f each 

lysate was diluted 10-fold in 10S buffer (50 mM Hepes, [pH 7.2], 250 mM NaCl, 0.3% 

NP-40,0.1% Triton X-100, 0.005% SDS, 10 mM NaP04 [pH 7.0], 1 mM NaF, 0.1 mM 

phenylmethylsulfonyl fluoride [PMSF], 0.5 mM dithiothreitoi [DTT]) and incubated for 1 

hour with 5 pi o f the appropriate antibody at room temperature with constant rocking. 

Then 30 pi o f 50% slurry o f protein agarose A beads in standard immunoprecipitation 

lysis buffer (see description below) was added to each sample and incubated for 2 more 

hours at room temperature with constant rocking. Immune complexes were washed and 

processed in accordance with the standard immunoprecipitation protocol described 

below.

Standard immunoprecipitation analysis

In order to characterize the M139, MHO, and M141 gene products from MCMV- 

infected cells, immunoprecipitations were performed. NIH3T3 fibroblasts (1.5xl06) or 

IC-21 macrophages (2xl06) were seeded into 100 mm tissue culture dishes 24 hours prior 

to virus infection. Cells were inoculated with wild type (WT) MCMV or recombinant 

viruses as indicated, at an MOI o f 1 PFU/cell. Mock-infected cells received an equal 

volume o f culture media. Next, between 19-22 hours post-infection, cell monolayers 

were washed twice with warm Tris-buffered saline (TBS, 30 mM Tris, 150 mM NaCl, 

pH 7.4) and starved for one hour in methionine-cysteine free DMEM (Mediatech, 

Hemdon, VA). Following starvation cells were exposed to methionine-cysteine free
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media supplemented with 35S-methionine-cysteine labeling mix (1175.0 Ci/mmol at 11 

mCi/ml, EasyTaq™ Express Protein Labeling Mix, DuPont NEN, Wilmington, DE), at 

the concentration o f lOOpCi/ml. Four hours later, cell monolayers were washed twice 

with cold TBS to remove the unincorporated labeling materials and lysed in standard 

immunoprecipitation (IP) lysis buffer (50 mM Tris, 5 mM EDTA, 150 mM NaCl, 0.5% 

NP-40,0.5% deoxycholate [DOC], 1 mM PMSF, 10 pg/ml aprotinin). Cellular lysates 

were cleared from insoluble fractions by centrifugation and used directly in 

immunoprecipitations.

Equal amounts o f labeled cell lysates (300 pi) were incubated with 5pl of 

undiluted a-M139, a-M l40, or a-M141 serum, or preimmune serum as a negative 

control for 2 hours at 4°C with constant rocking. The protein A agarose matrix (Roch 

Molecular Boichemicals, Indianapolis, IN) was washed 3 times with standard IP buffer, 

and subsequently, 60 pi o f 50% slurry o f protein A agarose (resuspended in standard IP 

lysis buffer) was added to each sample. The samples were incubated between 6 and 24 

hours at 4°C with constant rocking allowing time for the immobilization o f generated 

immune complexes. These immune complexes were pelleted by centrifugation and 

washed three times with high salt concentration SNNTE (5% sucrose, 500 mM NaCl, 1% 

NP-40, 50 mM Tris, 5 mM EDTA) buffer, and three times with a high detergent 

concentration radioimmunoprecipitaion assay (RIPA) buffer (50 mM Tris, 150 mM 

NaCl, 1% Triton-XlOO, 1% DOC). After pelleting, immune complexes were 

resuspended in 2X loading buffer, boiled for 5 minutes, and electrophoresed on 12.5% 

polyacrylamide gels. Following electrophoresis, the gels were fixed (10% acetic acid,
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25% Methanol), treated with autoradiography enhancer (Enlightning, DuPont NEN, 

Wilmington, DE), dried and exposed to X-ray film  (Fuji RX).

Immunoprecipitation analysis o f denatured cell lysates 

In some experiments proteins from infected cells were denatured prior to 

immunoprecipitations. First, infected cells were harvested in standard IP lysis buffer and 

clarified from an insoluble fraction by centrifugation. A 10% SDS stock solution was 

added to the prepared cell lysate to reach a final concentration o f 1% SDS (example: 50 

pi o f 10% SDS to 450 pi o f lysate). The SDS-containing samples were boiled for 10 

min. Denatured lysates were diluted 10-fold with NET-GEL buffer (150 mM NaCl, 5 

mM EDTA, 50 mM Tris [pH 7.5], 0.05% NP-40, and 0.25% gelatin) and used directly in 

an immunoprecipitation reaction as described above.

Sequential immunoprecipitation analysis 

In some experiments, proteins immunoprecipitated from infected cells were 

solubilized and re-immunoprecipitated with a-M 139, a-M 140, or a-M 141 antisera. 

Infected cells were radiolabeled, harvested, processed and immunoprecipitated according 

to the standard IP protocol to obtain insoluble immune complexes bound to protein A 

agarose beads. Subsequently, the supernatants were aspirated and saved for the next IP 

or discarded. Immune complexes bound to protein A agarose beads were resuspended in 

150 pi o f 1% SDS-PBS and boiled for 10 min to dissociate immune complexes from 

protein A agarose beads and immunoprecipitating antibodies. Then, 1 ml o f IP lysis 

buffer containing 0.1% o f bovine serum albumin (BSA) was added to each o f the SDS-
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treated samples. Diluted samples were centrifuged to spin down protein A agarose beads 

and the aqueous phase was transferred to a set o f fresh tubes. Equal aliquots (about 330 

pi) o f denatured and diluted samples were used directly in a second immunoprecipitation 

reaction with the appropriate antibody. The obtained immune complexes were processed 

as described above.

Combined immunoprecipitation/westem blot analysis 

As an alternative to sequential immunoprecipitations, precipitated proteins were 

subjected to western blot analysis in some experiments. Two million NIH3T3 fibroblasts 

were infected with either WT MCMV, or RV11 (AM 141), or RV13 (AM 139), or RV14 

(AM 140) mutants with MOI o f 1 PFU/cell or mock-infected. Unlabeled cell lysates were 

harvested in standard IP lysis buffer 22-24 hours post-infection and clarified from the 

cellular debris. One m illilite r o f each lysate was immunoprecipitated with a-M  139, a- 

M 140 or a-M  141 antibody, processed, washed and resolved by SDS-PAGE in duplicate 

as described in the standard immunoprecipitation protocol above. Subsequently, the gels 

were electroblotted to nitrocellulose membranes (Boehringer Mannheim, Indianapolis, 

IN), and treated with blocking solution (5% dried milk, 0.1% Tween 20, 10 mM Tris, 150 

mM NaCl) overnight at 4°C. Next, the blots were probed with either a-M139-HRP or a- 

M140 HRP antibody diluted 1:100 in blocking solution. Western blots were detected by 

chemiluminesence using ECL Western Blotting Detection Reagents (Amersham 

Pharamacia Biotech, Piscataway, NJ) on X-ray film  (Fuji RX).
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Transient transfections or transfections/superinfections o f the cells for subsequent

immunoprecipitation analysis 

Some experiments required immunoprecipitations o f proteins not from MCMV- 

infected cells but from cells transiently expressing the M 139, M 140, or M 141 proteins. 

Transfections were performed using the Cytofectene (Bio-Rad, Hercules, CA) 

transfection reagent, according to the manufacturer’s suggestions. NIH3T3 fibroblasts 

were seeded into 60 mm tissue culture dishes (3xl05 cells/plate) 20-24 hours prior to 

transfection. DNA-Cytofectene mixes were prepared for each transfection as follows: 

DNA o f interest (total o f 9 ug) was combined with serum free DMEM in a total o f lOOpl. 

Twelve microliters o f Cytofectene was mixed with 88 pi o f serum free DMEM and added 

to each DNA mix. The assembled mixes (200 pl/transfection) were incubated overnight 

at 4°C. On the next day, 2.5 ml o f warm complete NIH3T3 media was added to each 

DNA preparation. Cell monolayers were washed 2 times with warm PBS (2 ml/wash) 

and 2.7 ml o f DNA-Cytofectene-complete media mix was added to each plate. The 

plates were incubated for at least 5 hours at 37°C and then 1.3 ml o f complete media was 

added to each plate and incubated overnight at 37°C. The following day, the cells were 

washed two times with warm PBS, trypsinized, counted, seeded into 100 mm dishes and 

incubated overnight at 37°C. Transfection efficiency was monitored by assessing the 

percentage o f cells transfected with an unrelated plasmid expressing the green fluorescent 

protein conducted in parallel transfection experiments. Consistently, 5 to 10% o f the 

cells were transfected when 9 pg o f DNA was used, and I to 5% efficiency was detected 

following transfection o f 3pg o f DNA. Twenty-four hours later the transfected cells were 

either labeled with [35S] methionine-cysteine labeling mix or superinfected with WT
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MCMV or RV13 (AM 139) MCMV at an MOI o f 1 PFU/cell. Superinfected cells were 

labeled 19-23 hours post-infection. Radiolabelings and subsequent immunoprecipitations 

were conducted as described in the standard IP protocol above.

Pulse-chase analysis 

Stability o f the M139, M140, and M141 proteins expressed from WT and mutant 

viruses were analyzed in pulse-chase experiments. Two million NIH3T3 fibroblasts were 

infected with either RV10REV, or RV11 (AM 141), or RV13 (AM 139), or RV14 

(AM 140) mutants at an MOI o f 1 PFU/cell. Nineteen hours post-infection, cells were 

starved o f methionine and cysteine for 1 h and then radiolabeled with 450 pCi/ml o f [35S] 

methionine and cysteine protein labeling mix for 2 h in a total o f 5 ml. The 

unincorporated labeling materials were washed 3 times with warm complete culture 

medium without radiolabels and labeled proteins were chased with the same medium for 

indicated times. The cell lysates were harvested in 1 ml o f standard immunoprecipitation 

lysis buffer, clarified from cellular debris, and used in immunoprecipitation reactions 

with either a-M 139, a-M 140, or a-M  141 polyclonal antisera overnight at 4°C with 

constant rocking. Next, 60 pi o f 50% slurry o f protein A agarose was added to each 

sample for at least 4 h. Immunoprecipitated complexes were washed and processed as 

described previously.
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CHAPTER IV 

RESULTS

Identification of protein profiles immunoprecipitating with anti-M139, anti-MHO, 

and anti-M14t antibodies from WT MCMV infected fibroblasts and macrophages

Immunoprecipitation is a sensitive assay used for protein analysis. It provides a 

means to purify a protein in its non-denatured form and, when combined with 

radiolabeling o f the protein, can reveal any precursors or post-translationaly processed 

forms o f the protein. In addition, due to the sensitivity o f this assay, low abundance 

related proteins could be detected. Immunoprecipitations also allow detection o f other 

protein(s) directly interacting with the protein o f interest. Thus, we decided to 

immunoprecipitate the MCMV M l39, MHO, and M141 proteins from infected cell 

lysates in order to further characterize these proteins, which have an important function in 

MCMV pathogenesis. These proteins influence the ability o f MCMV to replicate in 

cultured macrophages and in macrophage rich organs in mice (Hanson, et al., 1999) 

Immunoprecipitation (IP) analysis, thoroughly described in the Material and 

Methods section, was used as a basic experimental approach for this study. Certain 

modifications were introduced to that protocol depending on the posed question.

Previous analysis o f the expression o f M139, MHO, M141 genes demonstrated that all 

transcripts, detected by northern blotting, and proteins, detected by western blotting, were 

expressed with early-late kinetics (Hanson, Dalton et al. 1999, Hanson et al., in press). 

Therefore, all immunoprecipitations described throughout this study were conducted at 

late times post-infection. Fibroblasts and macrophages were infected with WT MCMV
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or mock-infected. Nineteen hours after infection the cells were starved in methionine- 

and cysteine-free (Met-Cyst-free) Dulbecco’s modification o f Eagle’s medium (DMEM) 

for one hour in order to enhance the incorporation o f radiolabeled amino acids, and then 

labeled for four hours with 35S Met-Cyst in the same medium. Each protein o f interest 

contains comparable number o f methionines and cysteines, which provided a similar 

degree o f labeling. More specifically, the full-length M l 39 protein has 12 methionines 

and 12 cysteines, the M l40 protein contains IS methionines and 14 cysteines, and M141 

gene encodes for 11 methionines and 16 cysteines. Cell lysates were harvested at 24 

hours post infection, cleared from insoluble fraction, and immunoprecipitated with anti- 

M139 (a-M  139), anti-M140 (a-M  140), or anti-M141 (a-M  140) antibodies (Abs), or 

preimmune serum as a negative control (Fig. 8A). A ll the samples were resolved by 

12.5% SDS-PAGE. Subsequently the gels were dried and exposed to X-ray film to 

obtain autoradiographs (Fig. 8B).

Interestingly, five bands were detected in immunoprecipitants o f NIH3T3 

fibroblasts and IC-21 macrophages infected with WT MCMV using a-M  139 serum.

Two o f these proteins, 75-kD and 61-kD, were the same size as those detected by western 

blot analysis although the larger protein was previously sized as 72-kD (Hanson et al, in 

press). The use o f radioactive molecular weight markers allowed us to make a more 

accurate determination o f the size o f the larger protein as 75-kD. The 61-kD protein was 

detected in lower amounts compared to the 75-kD species. Three additional proteins o f 

98-kD, 56-kD and 52-kD were observed. The lower molecular weight species were 

equally copious, however the 98-kD protein was visualized in significantly lower 

amounts.
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FIG. 8. Immunoprecipitation analysis of the M139, MHO, and M141 gene products. (A) An 
overview of experimental procedures. (B) Autoradiographs of immunoprecipitations (IP) of WT- or 
mock-infected NIH3T3 fibroblasts (top panel) or IC-21 macrophages (bottom panel) obtained with 
rabbit a-M139, a-M140, a-M141 antisera or preimmune sera. Positions of molecular weight 
makers are indicated on the left side of each autoradiograph. Sizes of the detected proteins are 
indicated in bold on the right.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



62

Two bands were visualized in a similar assay using a-M140 antibody. The 56-kD 

band is the same size as the one detected by western blot. The second protein, not 

detected by western blot was 52-kD and was visualized in lower amounts. Intriguingly, 

the two lowest molecular weight bands o f 56- and 52-kD were immunoprecipitated by 

both a-M 139 and a-M 140 antibodies. Lastly, only one protein o f 52-kD was detected by 

a-M 141 antibody in both immunoprecipitation and western blot analyses.

In this thesis, the 75-kD protein from the M l 39 gene w ill be referred to as 

p75M139 and the 61-kD protein from the same gene as p61M139. Moreover, pM139 

w ill be used to represent both the 75- and 61-kD proteins expressed from M139 gene. 

Similarly, the proteins expressed from the M I40 and M141 genes w ill be denoted as 

pM140 and pM141, respectively.

The characteristic patterns o f resolved proteins (98-, 75-, 61-, 56-, and 52-kD for 

a-M 139 IP; 56-and 52-kD for a-M 140 IP; and 52-kD for a-M 141 IP) were consistent 

and independent from different WT MCMV stock preparations used in the experiments 

(Fig. 9). These results were also reproducible and independent o f antiserum produced by 

two individual rabbits against M l39, MHO, or M141 recombinant proteins (data not 

shown).
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FIG. 9. Immunoprecipitation analysis of WT and revertant MCMV infected cells using 
(A) a-M139 or (B) a-M!40 antibodies. NIH3T3 fibroblasts were infected with the 
indicated viruses, labeled and immunoprecipitated as described in Materials and 
methods. M designates mock-infected cells. Molecular weight markers and the sizes of 
detected proteins are depicted of the left and right sides of the autoradiographs, 
respectively.

Molecular weights o f the most abundant identified proteins o f 75-kD, 56-kD, and 

52-kD correlate with those predicted by analysis o f the MCMV open reading frame 

(ORF) corresponding to M I39, MHO, and M141 and those detected by western blot 

analyses o f WT-infected cell lysates (see Table 3). However, because the messages in 

this region are 3’ co-terminal (see Fig. 2), all o f the detected transcripts are larger than
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open reading frames (ORFs), which code for these proteins. This indicates that during 

translation appropriate internal stop signal is used by the ribosomes to produce a single 

protein corresponding to each gene. However this assumption needs further experimental 

proof. Nevertheless, the discrepancies in protein profiles detected by the 

immunoprecipitation analysis compared to previous western blotting suggests either one 

o f three possibilities:

a) crossreactivity among the antibodies, because all three proteins belong to the 

US22 gene family and share four common motifs. It is note worthy, however, 

that the level o f homology among those proteins is low, or

b) complex formation among the M l39, M l40, and M141 proteins, or

c) interaction o f each protein with other unrelated viral or cellular proteins o f 

similar molecular weights.

Assessment of the quality of generated antibodies for potential 

crossreactivity

As was mentioned above, the M l39, MHO, and M141 proteins are members o f 

the US22 family, containing four characteristic motifs (see Fig. 5). Although the overall 

amino acid sequence homology among these proteins is low, crossreactivity between 

antibodies raised to these proteins is still possible.

To test the quality o f the generated antibodies for specificity and potential 

crossreactivity we utilized the following experimental approach. The M139, MHO, and 

M141 proteins were expressed from a mammalian expression vector in in vitro 

transcription/translation reactions. The resulting radioactively labeled proteins were
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visualized by SDS-PAGE and a portion o f the lysates was used in immunoprecipitation 

reactions such that each protein was precipitated by all three antibodies (Fig. 10A).

Two proteins o f 75- and 61-kD were expressed from the mammalian expression 

vector, pM 139/3.1(+), which contained the full-length M139 gene (Fig. 10B, top panel). 

This suggests that the 75- and 61-kD proteins observed in infected cells arise from the 

M l39 gene. Similarly, a single protein o f 56- or 52-kD was expressed from the 

mammalian expression vector, which contained the full-length MHO or M 141 gene, 

pM140/Zeo (-), and pM14t/Zeo (-) respectively. These findings indicate the origin o f the 

pMHO and pM141 in infected cells. The sizes o f the in vitro transcribed/translated 

proteins from the constructs expressing each open reading frame (ORF) individually 

correlated with those detected by western blot analysis o f the WT-infected cell lysates.

The a-M139 serum immunoprecipitated two proteins expressed from the M l39 

gene o f 75- and 61-kD as expected. Both the a-M140 and a-M14l sera precipitated a 

single protein o f 56- or 52-kD respectively from the in vitro transcription/translation 

lysates expressing either the MHO or M 141 gene product. Thus, we conclude that 

polyclonal antibodies generated against recombinant M139, MHO and M141 proteins 

recognize these specific viral proteins.

Detected levels o f crossreactivity o f the antibodies to the singly expressed 

heterologous protein were minimal. For example, p75M139 and p61M139 were 

abundantly immunoprecipitated by a-M !39 sera and only negligibly immunoprecipitated 

by the a-M140 or a -M H l sera. Likewise, the a-MHO antisera precipitated only the 

pMHO, but not M 139 or M 141 proteins. Similar results were obtained with 

immunoprecipitations o f pM H l by the a-M l41 sera (Fig. 10B, bottom panel).
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FIG. 10. In vitro expression and immunoprecipitation of pM139, pM!40, and pMl41. (A) 
An overview o f experimental procedures. (B) M l 39, M l 40, and M141 proteins were 
expressed and run on 12.5% acrylamide gel to visualize expressed products (top  panel). Each 
lysate was then diluted and used in immunoprecipitation reaction with the antibody indicated. 
Immune complexes were washed, boiled and run on the 12.5% acrylamide gel. Dried gels 
were exposed to X-ray film to obtain an autoradiograph (bottom  panel). Positions of 
molecular weight makers are indicated on the left side of each autoradiograph. Sizes of the 
detected proteins are indicated in bold on the right
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These data suggest that M l39 and MHO proteins are interacting with other proteins such 

as

a) viral proteins from within, or outside of, the M139-M141 region, or

b) cellular proteins either constitutively expressed, or induced by viral infection. 

Furthermore, because two out o f the three additional proteins co-immunoprecipitated 

with a-M I39 sera were identical to ones precipitated with a-M140 (56-and 52-kD) and 

the one protein immunoprecipitated with a-M14l sera is o f 52-kD, it was logical to 

suggest that these proteins form a complex. I f  pM139, pM140 and pM141 form a 

complex in infected cells, then antibodies to each o f these proteins should 

immunoprecipitate identical protein profiles, unless the quaternary structure o f the 

complex is such that the antigenic epitopes o f the underlying protein are hindered from 

the specific antibody by other proteins. Interestingly, the 98-kD protein was not detected 

in these experiments, suggesting that this protein originates from other non-related viral 

or cellular genes. As a first step in understanding these interactions, we decided to test if  

pM139, pM140 and pM14l are indeed involved in a complex formed by these proteins 

alone, or with other viral or cellular proteins.

Assessment of the complex formation by the M139, M140 and M141 proteins.

To provide evidence that pM139, pM140 and pM141 form a complex among 

themselves or other unrelated proteins, we designed three complimentary approaches:

a) immunoprecipitation o f denatured versus non-denatured infected cell lysates

b) sequential immunoprecipitations

c) combination o f immunoprecipitation followed by western blot analysis.
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One o f the biggest advantages o f immunoprecipitation analysis is the ability to 

detect (co-immunoprecipitate) all the proteins directly interacting with the protein o f 

interest when the cell lysates are harvested under non-denatured conditions. 

Understandably, i f  one wants to detect which o f the immunoprecipitating proteins are 

specific for a given antibody, and which proteins are co-immunoprecipitating, the cell 

lysate should first be denatured in order to disrupt existing complexes, and then used in 

immunoprecipitation analysis. The proteins recaptured from the denatured cell lysates 

w ill reveal those specific for the antibody used in the analysis, and undetected proteins 

would correspond to those directly interacting with identified protein(s). We applied this 

rational to prove our hypothesis that pM!39 and pM140 are parts o f a complex or 

complexes. The procedure, described in details in Materials and Methods section, is 

outlined in Figure 11A.
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B
£

/ /*
*

/£ /
/

£

98kD
75kD

61kD 
56kD 
52 kD

- 97kD

- 66kD

46kD

<x-M139 a-M140 a-M141

FIG. 11. Immunoprecipitation of denatured infected cell proteins compared to non-denatured 
proteins. (A). An overview of experimental procedures. (B) Non-denatured and denatured 
lysates were IP-ed with the indicated antibody and run on 12.5% acrylamide gel. Dried gels 
were exposed to X-ray film to obtain an autoradiograph. Positions of molecular weight makers 
are indicated on the right side of the autoradiograph. Sizes of the detected proteins are indicated 
in bold on the left.
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The prototypic protein profiles were resolved with a-M139, a-M140, or a-Ml41 

specific antibodies immunoprecipitating these proteins from non-denatured cell lysates. 

However, upon denaturing, the three additional bands (98-, 56-, 52-kD), undetectable by 

western blotting, were no longer detected in the a-M139 immunoprecipitated profile. 

Likewise, the one band (52-kD) undetectable by western blotting was no longer 

immunoprecipitated by the a-M l40 antibody from denatured lysates (Fig. 10B). The 52- 

kD protein was precipitated by a-M141 Ab from non-denatured cell lysates as well as 

from denatured cell lysates, previously detected by western blot analysis. Therefore, the 

co-precipitation depended on the integrity o f native proteins in non-denatured form. 

Collectively these data support the hypothesis o f complex formation by M l 39 proteins 

and pM140.

The second approach to confirm complex formation consisted o f sequential 

immunoprecipitations. It also served to verify the origin o f the co-immunoprecipitating 

bands in WT-infected cells. NIH3T3 fibroblasts were infected with wild type MCMV, 

radiolabeled at late times post infection, harvested, and immunoprecipitated with either 

a-M139 or a-M140 Abs. Next, precipitated immune complexes were resuspended in 

phosphate buffered saline (PBS) supplemented with SDS to a final concentration o f 1% 

and denatured by boiling for five minutes. Denatured supernatants were separated from 

the Protein A agarose beads, diluted 10-fold, divided into equal aliquots, and re- 

immunoprecipitated with either a-M139, a-M140, or a-M141 specific antibodies (Fig. 

12).

The resulting autoradiograph showed that the a-M139 antibody co-precipitates 

the MHO and M141 proteins, whereas the a-M140 antibody co-precipitates only the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



71

M141 protein. These data suggest that either one or both M l39 proteins directly interact 

with MHO and M141 gene products and that pM140 forms a complex with pM141. 

However, it is still unclear i f  the M140-M141 complex is a prerequisite for p75M139 and 

p6lM139 association with this complex.

First IP a -M 139__________ q-M 140

Denaturing---------------------------------------------------

75kD

61kD 
56 kD 
52kD

97kD

66kD

- 46kD

3T3+WT MCMV

FIG. 12. Sequential immunoprecipitation analysis. Positions of molecular weight markers 
are indicated on the right side of the autoradiograph. Sizes of the detected proteins are 
indicated in bold on the left.

It is also evident from these data that a-M140 Ab does not precipitate the M l39 proteins. 

Again, this may be due to quaternary structure o f the complex, which masks antigenic 

epitopes.

The third approach in assessing complex formation among M l39 proteins, 

pM140, and pM141 was based on the notion that unlabeled immunoprecipitated proteins 

can be subsequently detected by western blot analysis. The technical difficulty o f this
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analysis was the fact that the immuniprecipitating antibodies and the primary antibody 

used in western blot analysis are o f the same species (rabbit). As a result, the secondary 

goat-anti-rabbit-HRP antibodies, required to detect the viral specific proteins during 

western blot analysis, w ill also bind to the precipitating antibody, shadowing the specific 

signal being sought. Therefore, in order to perform this analysis we generated 

horseradish peroxidase conjugated antibodies, anti-M139-HRP (a-M139-HRP) and anti- 

M140-HRP (a-M140-HRP) to avoid background detection o f rabbit polyclonal 

antibodies used on immunoprecipitation step.

Specifically, NIH3T3 fibroblasts were infected with WT MCMV or mock 

infected. At 20 hours post-infection unlabeled cell lysates were harvested and 

immunoprecipitated with a-M139, a-M140, or a-M141 specific antibodies. Obtained 

immune complexes were washed and duplicate sets o f samples were resolved by SDS- 

PAGE. Subsequently the proteins were electroblotted to the membrane and probed with 

either anti-M139-HRP or anti-M140-HRP conjugated antibodies (Fig. 13A,B).

The a-M139 Ab precipitated both M139 proteins o f 75- and 61-kD, which were 

visualized by the subsequent western blot analysis probed with a-M139-HRP. Once 

again, the a-M l39 antibody co-precipitated pM!40 detected by western blotting probed 

with a-M140-HRP. As expected, pM140 was detected in immunoprecipitations followed 

by western blotting using the a-M140 Abs in both the IP and western blotting steps. 

These results corroborate those o f the sequential immunoprecipitation experiments. 

Namely, a-M139 antiserum co-precipitated pM!40, but a-M140 antisera did not co­

precipitate either o f the two M l 39 proteins.
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FIG. 13. Immunoprecipitation followed by western blot analysis. (A) An overview of 
experimental procedures. (B) Unlabeled mock- or WT-infected cell lysates were harvested and 
immunoprecipitated with either a-M 139, or a-M 140, or a-M 141 antisera. Immune complexes 
were washed, boiled and run on a 12.5% acrylamide gel for further western blot analysis. The 
western blots were probed with either anti-M139-HRP or anti-M140-HRP conjugated antibodies. 
Positions of molecular weight makers are indicated on the left. Sizes o f the detected proteins are 
indicated in bold on the right.
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We suspect that pM!41 was co-precipitated with M l39 and M l40 proteins in a- 

M139 and a-M  140 immunoprecipitations, respectively. However we could not prove 

these speculations because first, we did not have a-M141-HRP conjugated antibody, and 

second, the 53-kD heavy chain o f rabbit IgG would mask detection o f the 52-kD pM141. 

The rabbit IgG heavy chain is detected in this assay, probably, because o f non-specific 

interaction o f rabbit HRP-conjugated antibodies with excess amounts o f rabbit 

immunoprecipitating antibodies regardless o f specificity, which becomes detectable upon 

addition o f immunofluorescent reagents. Unexpectedly, this phenomenon served as an 

internal control for protein loading, which appears to be relatively uniform among the 

samples. There were not any specific bands detected in the mock-infected cell lysates.

Collectively, these three described experiments suggest that one or both M 139 

proteins complex with pM140 and pM141, and the MHO gene product directly interacts 

with pM14l. However, the discrepancies in protein profiles immunoprecipitating with 

different antibodies still need to be explained, because all antibodies do not co-precipitate 

all the components o f the predicted larger complex. Is there more that one complex? Do 

these proteins exist in both free and complexed forms? Is there crossreactivity o f an 

antibody with a complex? We began to approach all these questions first by determining 

the involvement o f pM141 in the interaction with M139 and MHO gene products.

Identification of the role of the M141 protein in complex formation.

The a-M 141 antibody immunoprecipitated a protein o f 52-kD from both MCMV- 

infected fibroblasts and macrophages. Interestingly, this protein profile is identical in 

western blot and immunoprecipitation analysis, however the levels o f detected protein in
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western blot are much higher (Hanson et al., in press) compared to immunoprecipitations, 

although neither o f these assays is quantitative. In addition, pM14l is abundantly co- 

immunoprecipitated by both a-M I39 and a-M140 Abs, although the a-M141 antisera do 

not co-precipitate M l39 or M 140 proteins.

To explain these results, we propose that pM!41 is buried inside one or more 

complexes in its native non-denatured form and therefore is not accessible to the a-M 140 

antibody. However, newly synthesized free form o f pMl41 that yet is not incorporated 

into potential complexes remains accessible to the a-M 140 antibody. More specifically, 

the complex configuration hides antigenic epitopes o f the M141 protein from the a-M141 

antibody to the level that the antibody is not able to interact with complexed pM141. 

Therefore, a-M 141 antibody is not able to co-precipitate those proteins directly 

interacting with the M141 gene product. I f  our hypothesis is true, then the pM141- 

depleted infected cell lysates should still contain pM141 as a part o f the complex with 

pM139 and pMl40 proteins, together or separately. Indirectly this hypothesis is 

supported by the fact that once the complexes are denatured and the components are 

resolved (as it is in western blot analysis), pM141 is detected at similar levels compared 

to p75M139, p61M139, and pMI40 (Hanson et al., in press).

To test this hypothesis further we designed the following experimental approach. 

NIH3T3 fibroblasts were infected with WT MCMV or mock-infected. These cells were 

radiolabeled between 19 and 23 hours post-infection, harvested, and the lysates were 

immunoprecipitated with a-M  141 antibody as described in Materials and Methods.
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Ml41 depleted supernatant

non-denatured denatured

Second IP

97kD - Ifedi 98 kD 
75 kD

46kD-

66kD- • * —  61kD 
56kD 
52kD

Mock WT MCMV

FIG. 14. Identification of MI41 protein as a part of one or more complexes. Infected NIH3T3 
fibroblasts were radiolabeled, harvested, and immunoprecipitated (IP) with anti-M141 antisera. 
The beads with immunoprecipitated M141 protein were set aside and the M141-depleted 
supernatant was divided into two parts and was either used directly in the second IP reaction or 
denatured (boiled 5 min in 1% SDS buffer) and then used in the second IP reaction. The 
antibodies used are indicated. All immune complexes obtained after first and second IPs were 
processed identically and according to previously described protocol. Positions of molecular 
weight makers are indicated on the left. Sizes of the detected proteins are indicated in bold on 
the right.

Following the first IP, the beads with immunoprecipitated M141 protein were set aside 

and the M 141 -depleted supernatant was divided into two parts. One part was used 

directly in the second IP reaction to prove that any assembled complex(es) remained in 

the supernatant fraction and that the complex(es) still contained M141 protein.

The other identical part was denatured (boiled 5 min in 1% SDS buffer) and then used in 

the second IP reaction to identify the parts o f the complex(es) (Fig. 14).

The 52-kD protein was precipitated by a-M141 Ab from infected cells lysates and 

no proteins were detected in mock-infected cells in the first round o f
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immunoprecipitations, reproducing previous results. Interestingly, when pM 141-depleted 

supernatant was re-immunoprecipitated with a-M  139 and a-M  140 Abs, the prototypical 

protein profiles, including M 141 protein, were recovered in both cases (Fig. 14). This 

proves that complexes do indeed remain in the supernatants after a-M 141 

immunoprecipitation, and that the a-M 141 antibody is not able to precipitate the 

complexes despite the fact that pM141 is still a component o f the complex. Moreover, a- 

M139 antibodies recaptured both M l39 proteins from the same supernatants following 

denaturing. Similarly, the a-M 140 antibodies immunoprecipitated a single 56-kD protein 

from identically treated supernatants. As expected, much lower amounts o f pM141 was 

immunoprecipitated from the pM 141-depleted supernatants in the following round. 

However, the levels o f pM14l increased dramatically subsequent to denaturing o f the 

identical supernatants. We hypothesize that denaturing releases previously complexed 

pM141 and makes it again assessable to a-M 141 antibody in perfect agreement with our 

hypothesis. Following the changes in the levels o f detected M141 protein we postulate 

that the M 141 gene product is present in infected cells:

a) in a free form which is immunoprecipitable by a-M  141 antibody,

b) as a part o f a complex with pM 140 immunoprecipitable mainly by a-M  140 

Ab, and possibly,

c) as a component o f pM140-pM141 oligomer complexed with M l39 

protein(s), which is immunoprecipitated by a-M  139 Ab.

Our model predicts that the complex(es) hinders the epitopes o f the pM 141; therefore a- 

M141 antibody interacts predominantly with the free uncomplexed form o f the M 141 

protein.
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At this time we propose a working hypothesis explaining our results. The M141 

protein is the first to initiate the complex. After pM141 is synthesized it is associated 

with the MHO protein generating the M140-M141 oligomer. Then one or both M139 

proteins associate with the preexisting oligomer generating the larger complex (Fig. 15).

M141 M141/M140 M141/M140/M139

It is likely that a distinct viral or cellular protein o f 98-kD is then able to interact 

with this complicated structure without affecting the ability o f a-M  139 Ab to 

immunoprecipitate the complex. At each step the underlying protein is being hidden 

from the appropriate antibody, which explains the differences in resolved protein profiles.

Identification of the complexed proteins using a genetic approach

As stated above, the M139, MHO and M141 genes belong to the US22 gene 

family. They are expressed with the same early-late kinetics, and messages originating 

from the M139-M141 region are 3’co-terminal. To this point we have also demonstrated 

that the M139, MHO and M141 gene products interact with each other. Taken together

FIG. IS. Possible interaction among the M l39, MHO and M141 gene products.
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this information indicated a possible cooperation or interdependence o f function o f these 

proteins.

In our laboratory a repertoire o f recombinant MCMV was generated by 

homologous recombination. These viruses contain mutations within M139, M140 and 

M141 genes separately and in combinations. A unique phenotype was found when all 

three genes were deleted in terms o f replication o f mutant virus in macrophages. The 

MCMV AM 139-141 replicates 100-1000 times less efficiently in IC-21 macrophages, 

although it grows like WT in cultured fibroblasts (Hanson, et al., 1999). These effects 

were confirmed in vivo when AM 139-141 virus was found to be highly attenuated in 

spleen tissue o f susceptible mice and was not lethal for SCID mice. The attenuation 

depended on the inability o f the mutant virus to replicate in macrophages in vivo because 

macrophage depletion prior to infection restored the ability o f the virus to replicate in the 

spleens o f infected animals to the levels comparable to WT replication (Hanson et al., 

1999).

Studies with single gene mutants demonstrated that the recombinant virus 

containing mutation within the M l39 gene exhibited a wild type-like phenotype in vitro 

and in vivo. In contrast, the M l40 deletion mutant replicated like a AM 139-141 virus. It 

was tempting to conclude that the MHO protein is the one that influences viral replication 

in macrophages both in vitro and in vivo, but analysis o f the growth properties o f the 

M141 mutant reproducibly resulted in an intermediate phenotype for replication in 

macrophages in vitro and spleen tissue in vivo. Transcription analysis showed that 

introduced mutations altered exclusively expression from the mutated gene, and did not 

affect transcription from neighboring genes. However, deletion o f MHO resulted in a
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significant decrease in pM14l steady state levels, without alterations in levels o f M l 39 

proteins (Hanson et al., in press). The dependence o f pM141 on pM140 for stability is 

consistent with our hypothesis that these two proteins form a complex.

We utilized these mutant viruses to provide a genetic approach to demonstrate the 

origin o f the immunoprecipitated proteins. NIH3T3 fibroblasts were infected with WT 

MCMV or with the described recombinant viruses (see Introduction section). Infected 

cells were radiolabeled between 19-23 hours post-infection and harvested as described in 

Materials and Methods. Each lysate was immunoprecipitated with a-M  139, a-M  140 and 

a-M 141 Abs or with preimmune sera as a negative control. Immune complexes were 

processed and resolved by SDS-PAGE as described in Materials and Methods (Fig. 16A).

The prototypical protein profiles were reproduced in immunoprecipitation o f WT 

MCMV-infected cells. Five proteins were immunoprecipitated with a-M  139 Ab. Once 

again the 75-, 56-, and 52-kD proteins were more abundant than the 98-and 61-kD 

proteins. Two abundant proteins (56- and 52-kD) were immunoprecipitated by the a- 

M 140 Ab with slight prevalence o f the 56-kD protein (Fig. 16B, top panel). Lastly, a 

weak signal was immunoprecipitated by a-M 141, identifying one protein o f 52-kD.
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FIG 16. Identification of the complexed proteins using a genetic approach. (A) An overview of 
experimental procedures. (B) NIH3T3 fibroblasts were infected with either WT or recombinant 
MCMV as indicated. Cells were radiolabeled, lysed, harvested and immunoprecipitated as 
described. The positions of molecular weight makers, sizes of detected proteins, and antibodies 
used are indicated. A represents a mutation within the indicated gene.
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Detection o f pM141 is complicated by two facts. First, the specific signal is initially 

weak, and second, an unidentified protein non-specifically interacts with rabbit sera 

regardless o f specificity or immunity and co-migrates with pM141, which creates a wide 

blurred background. Moreover in the absence o f the M 141 protein the a-M 141 antisera 

interact more strongly with other non-specific proteins o f about 46- and 54-kD.

However, side-by-side comparison o f the bands immunoprecipitated with preimmune 

sera and a-M141 sera demonstrate the presence or the absence o f pM141 (Fig. 16B, 

bottom panel).

As expected, none o f the proteins were detected in RV10 (AM139-141)-infected 

cell lysates. In RV11 (AM141)-infected cell lysates the a-M 139 Ab precipitated both the 

75- and 6 1-kD proteins. The three additional co-precipitating bands disappeared from the 

typical a-M 139 specific protein profile. Similarly, the a-M 140 Ab precipitated one 56- 

kD protein without co-precipitating the 52-kD protein. As anticipated, no protein was 

immunoprecipitated by a-M 141 Ab under these conditions. Together this verifies that 

the M141 gene is the origin o f the 52-kD protein. It is also suggests that pM14l is 

necessary for the interaction between M139 proteins and pM140. Because RV12 

contains a deletion o f both M 139 and MHO genes, none o f these specific proteins were 

immunoprecipitated by the appropriate antibody.

Both proteins originating from the M l39 gene were absent following 

immunoprecipitation o f cells infected with RV13 (AM 139) using a-M  139 antiserum. 

Importantly, this genetically confirms the origin o f these proteins. Unexpectedly, the 

same antibody precipitated both the 56- and 52-kD proteins corresponding to the MHO 

and M141 genes products, respectively. The same two proteins were precipitated by the
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a-M 140 serum, and one o f them (52-kD) was also abundantly immunoprecipitated by the 

a-M141 Ab. These data indicated that the pM140-pM141 oligomer exists in the cell 

without the M l39 protein(s) and also raises the possibility that the a-M  139 antibody 

crossreacts with the pM140-pM141 complex.

Lastly, in RV14 (AM140)-infected cells, only the two M139 proteins were 

precipitated by the a-M 139 serum, identical to immunoprecipitation results o f RV11 

infection. As expected, the 56-kD band disappeared from both a-M  139 and a-M 140 

immunoprecipitations, verifying that the M140 gene is the origin o f that protein. The 

M141 protein was not co-precipitated by the a-M 139 antibody, which suggests that 

pM141 does not complex with M l39 proteins in the absence o f pM140. The data 

obtained from RV14 (AMMO) immunoprecipitations indicate that in the absence o f 

pMMO, M l39 gene products do not interact with pM141, although the M l39 and M141 

proteins are expressed.

Collectively analyzing the results o f immunoprecipitation from the cells infected 

with the different mutant viruses we concluded that:

1. the M l 39 ORF encodes the 75-and 61-kD protein. In the absence o f either 

the M l40 or M 141 gene, the a-M 139 Ab immunoprecipitates only these two 

proteins. However, the a-M 139 Ab appears to cross-react with complexed 

M140-M141 proteins. More specifically, a-M139 Ab reproducibly 

immunoprecipitates M140 and M141 proteins from RV13 (A139) infected 

cells. We conclude that the structure o f the pM140-pM141 complex creates a 

cross-reactive epitope not present in either native protein.
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2. the M l40 ORF encodes the 56kDa protein. The a-M 140 Ab co-precipitates 

the M 141 protein.

3. the M 141 ORF encodes the 52kDa protein and the a-M 141 Ab does not co­

precipitate additional proteins.

4. in the absence o f the M139 gene, the 75kDa and 61kDa proteins are 

not expressed; however the 56kDa and 52kDa proteins are abundant.

To prove that differences in the amount o f the detected protein levels were not 

due to differences in levels o f infection, we immunoprecipitated a fraction o f each lysate 

with an unrelated rabbit polyclonal antisera to an early protein, E l, expressed from the 

M l 12-113 gene region. The resulting autoradiographs demonstrated similar levels o f El 

proteins (33-, 36-, 38-, 87-kD) in all lysates, verifying comparable levels o f infection 

among the different mutants (Fig. 17).

a -E l

97-

66-

46-

M WT RV10 RVll RV12 RV13 RV14 
(Al 39-41) (A141) (A139-40) (A139) (A140)

FIG. 17. Immunoprecipitation analysis of WT and mutant MCMVinfected cell lysates using a- 
E1 rabbit polyclonal antisera. Cells were infected with the indicated viruses. M represents 
mock-infected cells. One hundred microliters of each lysate (described above) was 
immunoprecipitated and visualized in accordance with standard IP protocol. A represents a 
mutation within the indicated gene.
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Analysis of the stability of M139, MHO and M141 gene products

To this point, it became evident that the MHO protein forms a complex with 

pM141. Previously, a decrease in the steady state levels o f pM141 was observed in the 

absence o f pMHO detected by western blot analysis o f RV14 (AMHO)-infected 

fibroblasts and macrophages (Hanson et al., in press). These observations incite the 

following question: is pMHO required to stabilize the M 141 protein and generate the 

pM140-pMl41 complex with a distinct function in MCMV pathogenesis?

To assess this possibility, we analyzed the stability o f these proteins. We 

conducted the pulse-chase analysis in cells infected with recombinant viruses containing 

a single mutation within either M 139, or MHO, or M 141 gene, or RV10REV.

RV10REV is the revertant virus containing wild type sequence reinserted into the RV10 

virus (deleted o f the M139-M141 gene region) by homologous recombination. The 

RV10REV virus has been shown to have wild type growth and replication characteristics 

(Hanson et al., 1999). Pulse-chase analysis allows one to determine the half-life o f newly 

synthesized proteins and, indirectly, the rate o f complex formation.

NIH3T3 fibroblasts were infected with the MCMV single deletion mutants (Fig.

18 C, D, E) or with RV10REV (Fig 18 B). Nineteen hours post-infection, cells were 

starved o f methionine and cysteine for I h and then radiolabeled with 450 pCi o f [35S] 

methionine and cysteine protein labeling mix per ml for 2 h. Labeled proteins were 

chased with complete medium for the indicated times. The cell lysates were harvested, 

clarified from cellular debris, and immunoprecipitated with a-M !39, a-m l40, or a- 

M141 Abs.
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E _________________ PULSE 2h_____________________

CHASE
Oh lh 2h 4h Oh lh_ Jh_^4h_ _Oh_ JJi 2h 4h

98kO»

75kd»

61kD*
56kD*-

52kD*

a-M139 a-M l 40 a-M14t

3T3 + RV14(A140)

FIG. 18. Pulse-chase analysis. (A) An overview o f experimental procedures. NIH3T3 
fibroblasts were infected with RVlORev (B), RV1 l(AM141) (C), RV13(AM139) (D), RV14 
(AM 140) (E). Infected cell were labeled for 2 hours, and chased for indicated periods o f  time. 
Cell lysates were harvested and immunoprecipitated with the indicated Ab. Immune complexes 
were processed as described in Materials and Methods. Positions o f molecular weight makers 
are indicated on the right. Protein sizes are indicated in bold on the left. A represents a mutation 
within the indicated gene.

Immunoprecipitated complexes were washed, resuspended, and run on 12.5% acrylamide 

gel. The gels were dried and exposed to X-ray film  to obtain autoradiographs (Fig.l8A).

Pulse-chase analysis o f wild type MCMV (RV10REV)-infected cells reproduced 

previous results and prototypical protein profiles were recovered with all three antibodies 

(Fig. 18B). Five proteins immunoprecipitating with the a-M139 Ab were equally ( if  not 

better) detectable from 0 to 4 hours post-chase; therefore the half-life o f these five 

proteins is greater than 4 hours.

The a-M l40 Ab precipitated both pM l40 and pM141. A t 0 hour post-chase the 

56-kD band corresponding to pM140 is highly predominant; however, with time the
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density o f this band decreases and becomes comparable to the intensity o f the pM 141 

specific band (52-kD). The half-life o f the pMHO appears to be about 2 hours. It is not 

clear from these data how much o f the newly synthesized pM!40 is in the free form, and 

how much o f it is in a complexed form. It is also possible that the free and complexed 

forms have different half-lives.

The a-M141 antibody again precipitated one prominent protein o f 52-kD at 0 

hours post-chase. The estimated half-life o f the pM14l is 2 hours in the presence o f the 

M 139 and M l40 proteins. Interestingly, the same antibody co-precipitated increasing 

amounts o f the pM 140-specific band over the course o f the chase (Fig. 18B). These data 

support our hypothesis that pM140 and pM141 form a complex, and may explain why the 

co-precipitating pM140 band was not detectable before. It is possible that the a-M141 

Ab has a higher affinity to the free, uncomplexed form o f pM 141; however, over time, all 

o f the pM 141 complexes with the MHO protein. In the absence o f free pM141, the a- 

M 141 Ab may be able to coprecipitate the pM 140. In fact, the levels o f pM 140-pM 141 

oligomer detected by both a-M !40 and a-M14l antibodies at 4 hours post-chase are very 

similar. Conversely, none o f the M l 39 proteins become detectable in either a-M140 or 

a -M l4 l immunoprecipitated profiles.

In the cells infected with RV l I (AM141) (Figure 18C), the M139 and MHO 

proteins demonstrated a rate o f degradation similar to that detected in RVlOREV-infected 

cells. The pM H l was absent in correlation with the mutation o f RVl 1 (AM141) 

recombinant virus. This indicates that the stability o f the M l 39 and MHO gene products 

do not depend on the presence o f p M H l. A protein closely migrated with p75M139 was 

non-specifically detected by both the a-M140 and a-M14l antisera. This was non-
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reproducible phenomenon, characteristic to only one o f the two antisera developed for 

each protein.

In RV13 (AM139)-infected cells (Fig.l8D), the M140 and M141 proteins were 

abundantly expressed and their rate o f degradation were similar to those seen in 

RVlOREV-infected cells, even in the absence o f pM139. Therefore, the stability o f 

pM140 was not influenced by the M139 proteins. Again, pM140 and pM141 were able 

to form a complex, readily detected by a-M140 and to a lesser extent by a-M l41 at 4 

hour post-chase. Although both o f the M l 39 proteins were absent, the a-M139 Ab once 

again immunoprecipitated the pM140-pMl41 complex with the levels increasing over the 

time o f the chase. This again raised a concern that a-M139 Ab crossreacts with the 

complexed form o f pM140 and pM141. Apparently this complex develops over time, 

and eventually becomes recognizable by a-M139 Ab.

Finally, when the cells were infected with R V l4 (AM 140) the M l39 proteins 

were detected following a-M139 immunoprecipitation and their rate o f degradation was 

similar to that o f WT MCMV-infected cells (Fig. 18E). Once again a non-specific 76- 

77kD protein was detected by the a-M140 and a-M141 antibodies. As expected, pM140 

was not expressed. Interestingly, pM141 was abundantly expressed and readily 

immunoprecipitated with a-M141 at 0 hour post-chase; however, this protein was 

quickly degraded, and became almost undetectable by 4 hours post-chase. 

Densitometrical analysis o f the relative intensity o f the bands demonstrated that the half- 

life o f M 141 was about 1 hour in R V l4 (AM140)-infected cells, compared to 2 hours in 

RV10REV- or RV13 (AM139)-infected cells. Moreover, by 4 hours post-chase, only 

10% o f the initial pM141 remained in the RV14-infected cells, in contrast to 40% o f the
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labeled M141 protein remaining in RVlOREV-or RV13 (AM139)-infected cells (Fig. 19). 

This strongly suggests that the stability o f the M 141 protein depends on the presence o f 

pM140, most likely because these two proteins form a complex, which renders pM141 

more stable.

A

WT 

RVA139 

RVA140

RVAI41 

Chase (hr

FIG. 19. The relative intensity o f pM 141-specific bands in cells infected with single deletion 
MCMV mutants. (A) Autoradiographs o f a-M141 pulse-chase analysis o f  cells infected with 
indicated viruses, revealing changes in pM141 levels. (B) The plot reflecting relative density of 
pM 141-specific bands in autoradiographs in panel A. Hours post-chase are indicated on the 
bottom. A represents a mutation within the indicated gene.

The pulse-chase analysis o f the proteins immunoprecipitated by a-M139 antibody 

from R V l3 (AM139)-infected cells corroborated our previous speculation that the a- 

M139 antiserum cross-reacts with the pMl40-pM141 complex. Therefore we developed 

an alternative hypothesis for possible interactions among the M l39, MHO, and M141 

gene products. Previously we hypothesized that two complexes were 

immunoprecipitated by a-M140 Ab and by a-M139 Ab sequentially. First the pM140- 

pM14l complex forms and then association o f the M139 proteins with the pMHO- 

pM14l oligomer results in the larger complex among the M139, MHO and M141

(X-M141 IP

1 0  1 2  4

RVA139
-V -  RVA140
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proteins. However, an alternative hypothesis is that the M l39 proteins do not complex 

with the pM 140-pM14l complex. Instead, this complex is immunoprecipitated by the a- 

M139 Ab due to a cross-reactivity this antibody with the pM140-pM14I hetero-oligomer. 

Nevertheless, our previous and now alternative hypotheses may not be mutually 

exclusive, because the largest 98-kD protein is brought down by a-M139 Ab only from 

WT-infected cell lysates, and the presence o f both M139 proteins, pM140, and pM141 

seem to be a prerequisite for that interaction (Fig. 20).

M141/M140/M139

M141 M141/M140 b

M139
FIG. 20. Two alternatives in interactions among the M139, MHO and M141 gene products.

The last series o f experiments were designed to distinguish between the two 

proposed hypotheses to explain the interaction o f the pM140-pM141 complex with 

pM!39 and another 98-kD protein.
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Characterization of the interactions between the pM140-pM141 complex and 

other proteins

I f  the a-M139 Ab crossreacts with and therefore immunoprecipitates the pM140- 

pM141 complex, then the pM140 specific band w ill be visualized in western blotting 

following a-M139 immunoprecipitation o f RVl 3 (AM 139) infected cells. To assess this 

NIH3T3 fibroblasts were infected with R V l3 (AM 139), or with RV14 (AM 140) or RVl 1 

(AM 141) mutant MCMV to serve as controls for cross-reactivity with singularly 

expressed M 140 or M 141 proteins. The unlabeled lysates were harvested at late times 

post-infection, and immunoprecipitated with a-M139 Ab. Immune complexes were 

washed and duplicate samples resolved by SDS-PAGE. The gel was blotted to the 

membrane and probed with either a-M139-HRP or a-M140-HRP (Fig. 21 A).
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NIH3T3 fibroblasts

RV14(A140) R V l 1(A141)RV13 (A139)

I
Western blot

Harvest unlabeled lysates in IP buffer 
Immunoprecipitate with a-M139

a-M 140 a-M139 a-M 140 a-M139 a-M 140 a-M139
HRP HRP HRP HRP HRP HRP

Infection:

Immuno- 
pretfpitation 

75kD -

RV13 RV14 RV11 RV13 RV14 RV11
(A139) (A140) (A141) (A139) (A140) (A141)

a-M139

Western
blotting

a-M139-HRP a-M140-HRP

FIG. 21. a-M!39 immunoprecipitation followed by western blot analysis. (A) An overview of 
experimental procedures. (B) NIH 3T3 fibroblasts were infected with mutant viruses as indicated, 
harvested and immunoprecipitated with a*M139 antisera. Immune complexes were washed, 
boiled and run on a 12.5% acrylamide gel for further western blot analysis. The western blots 
were probed with either anti-M!39-HRP or anti-M140-HRP conjugated antibodies. Positions of 
molecular weight makers are indicated on the right. Sizes of detected proteins are indicated in 
bold on the left. A represents a mutation within the indicated gene.
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As expected, both M139 proteins were immunoprecipitated from the R V l4 

(AM 140) and RVl 1 (AM 141) infected cells and absent from cell lysates infected with 

R V l3, as was demonstrated by the subsequent a-M139-HRP western blot analysis. 

Interestingly, the pM140 specific band was detected by a-M140-HRP western blotting 

following a-M !39 immunoprecipitation o f RV l 3 (AM139)-infected cells, but not RV14 

(AM140)- or RVl 1 (AM141)-infected cells (Fig. 20B). These data indicate that a-M139 

Ab does not immunoprecipitate free form (or homo-oligomers) ofpM140 orpM 14l, but 

rather crossreacts with the pM140-pM141 hetero-oligomer. Crossreactivity o f the a- 

M139 Ab does not exclude the possibility that pM139 proteins also directly interact with 

the pM140-pM141 complex. Perhaps the two latter proteins are immunoprecipitated by 

a-M 139 Ab from WT MCMV-infected cells not only because o f the identified 

crossreactivity, but also because all o f these proteins generate another larger complex.

The use o f a transiently expressed epitope tagged M l 39 expression vector as a 

source o f M l 39 proteins in combination with superinfection by either WT MCMV or 

R V l3 (AM 139) MCMV allowed us to assess these possibilities more directly. 

Specifically, NIH3T3 fibroblasts were transiently transfected with a vector expressing N- 

terminally His-tagged pM139, or the empty vector. Forty-eight hours after transfection 

the cells were superinfected with either WT MCMV or R V l3 (AM 139). These cells were 

radiolabeled between 19-23 hours post-infection, and the label was chased for two hours, 

allowing time for the labeled proteins to form complexes. WT MCMV-superinfected cell 

lysates were harvested and immunoprecipitated with either a-M  139 or a-His antibodies, 

whereas R V l3 (AMl39)-superinfected cells were immunoprecipitated only with a-M 139 

Ab, to served as control for the ability o f His-tagged pM139 to interact with the a-M !39
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A N1H3T3 fibroblasts

Transfection: Empty vector M139-His fusion pro­
tein expression vector

/  X  /  X
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Superinfection: WT RV13(A139) WT RV13(A139)
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FIG. 22. Immunoprecipitation analysis of transiently transfected-superinfected cell lysates.
(A) An overview of experimental procedures. (B) NIH 3T3 fibroblasts were transfected with 
His-M 139 or pcDNA3.1 expression vectors. Cells were superinfected with WT or RV13 
MCMV as indicated. Radiolabeled cell lysates were immunoprecipitated with the antibodies indicated. 
Immune complexes were washed, boiled and run on a 12.5% acrylamide gel.
Positions of molecular weight makers are indicated on the left. Sizes of the detected proteins 
are indicated in bold on the right.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



97

antibody (Fig. 22B). As expected, the a-His antibody did not detect a specific signal in 

the cells transfected with the empty vector and superinfected with WT MCMV. The 

prototypical protein profile was immunoprecipitated by the a-M 139 antibody from 

identical lysates. The pM140-pM141 complex was immunoprecipitated by the same 

antibody from cells transfected with the empty vector and superinfected with R V l3 

(AM 139) mutant virus, again indicating the crossreactivity o f a-M 139 Ab with the 

pM140-pM141 oligomer. A faint non-specific band similar to 61-kD protein was 

detected in this immunoprecipitation, which appears non-reproducibly with only one o f 

two a-M 139 antisera.

In cells transfected with the vector expressing pM139 fused to a histidine tag at 

the N-terminus and then superinfected with WT MCMV, the a-His antibody 

immunoprecipitated only one protein o f 75-kD, despite that fact that all five proteins 

were present in those lysates, as proven by simultaneous immunoprecipitation with a- 

M139 Ab. These results suggest that a) no other proteins co-precipitate with p75M139 

and b) only the 75-kD protein is expressing the histidine tag, indirectly indicating that the 

61-kD protein most likely is not a splice variant. There are three potential reasons why 

the anti-His antibody failed to co-precipitate the pM140-pM141 complex. It is possible 

that the

1) 61 -kD protein is the one responsible for the interaction o f the pM 140-pM 141 

complex with pM139 proteins,

2) N-terminally expressed His-tag is buried deep in the complex, therefore not 

providing enough interaction with the a-His Ab for sufficient 

immunoprecipitation or

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



98

3) M139 proteins do not interact with the pM140-pMl41 complex.

The levels o f the 75- and 6l-kD  proteins precipitated with a-M 139 Ab from 

pMl39-His transfected and WT MCMV-superinfected cells reflects those expressed 

collectively from the vector and those synthesized by the WT virus. Whereas in R V l3 

(AM139)-superinfected cells, the 75-and 61-kD band represent the proteins transiently 

expressed from the vector only. The detection o f the 6 1-kD band is marginal because o f 

the presence o f a non-specific band o f similar size being immunoprecipitated from RVl 3 

(AM 139)-superinfected cells. Nevertheless, side-by side comparison o f the p75M139 and 

p61M!39 immunoprecipitated from the R V l3 (AM139)-superinfected cells indicate that 

both proteins are expressed from the M139-His mammalian expression vector, and also 

that the His-tag does not interfere with interaction o f the expressed proteins with the a- 

M139 Ab.

Our final approach to assess the interactions between the M l39 proteins and the 

pM140-pM141 complex consisted o f transient expression o f p75M139, p61M139, 

pM140, and pM141 in vitro (in rabbit reticulocyte lysates), or in vivo (in NIH3T3 

fibroblasts) followed by immunoprecipitation analysis. This gave us the opportunity to 

study the interactions among these proteins in the absence o f other viral proteins and 

assess i f  they were able to form a complex under those conditions.

First, the proteins were expressed in vitro using the rabbit reticulocyte lysate 

system. The products were visualized on the gel, and then an aliquot o f each lysate was 

used in immunoprecipitation with a-M 139, a-M  140, or a-M  141 Abs (Fig. 23). A ll 

proteins were expressed in in vitro transcription/translation reactions (Fig. 23, top panel). 

The MHO and M141 proteins were abundantly expressed. When co-expressed with
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MHO, the M l39 proteins and pM141 were expressed in relatively small amounts, 

possibly due to the number o f exclusively methionine residues (12 in full-length M l 39 

gene) in p75M139 and p61M139 coding sequences, because only methionine labeling 

was used in in vitro transcription/translation reactions (see Materials and Methods).

In  vitro Transcription/ 
Translation

M140M141 M140M139 
M141 MHO 

____________ M141

97kD-

66 kD- 4

75kD 
6 lid) 
56 kD 
52 kD

46kD-

Immuno-
precipitation

97kD- 

66kD- 

46 kD-

>  .V S  .s
^  *  d & & & & & &

m

•75kD

•61kD 
. 56kD

■ 52kD

FIG. 23. In vitro analysis of interactions among the pM139, pMHO, and pM H l. M139, 
MHO, and M141 proteins were expressed and run on 12.5% acrylamide gel to visualize 
expressed products (top panel). Each lysate was then diluted and used in immunoprecipitation 
reaction with the antibody indicated. Immune complexes were washed, boiled and run on the 
12.5% acrylamide gel. Dried gels were exposed to X-ray film to obtain an autoradiograph 
(bottom panel). Positions of molecular weight makers are indicated on the left side of each 
autoradiograph. Sizes of the detected proteins are indicated in bold on the right.

Immunoprecipitations o f the lysates expressing either pMHO or p M H l alone 

confirmed the specificity o f the antibodies to the appropriate protein and minimal
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crossreactivity among them (Fig. 23, bottom panel). Based on our previous results 

indicating that the a-M 139 Ab cross-reacts with the pMl40-pM141 complex, it was 

surprising that the a-M139 Ab did not precipitate either the MHO or M141 gene 

products from lysates where both proteins were co-expressed. However, when all the 

proteins were co-expressed, the a-M l39 Ab immunoprecipitated the 75- and 61-kD 

(visualized better on the longer exposure autoradiograph) proteins, along with pMHO and 

p M H l, indicating complexing o f one or both M l 39 proteins with the MHO and M 141 

gene products (Fig. 23, bottom panel). Complexing may not be optimal under these non- 

physiologicai conditions, which may explain the low levels o f co-precipitated pMHO and 

p M H l.

The pM HO-pM Hl complex was also precipitated with either a-M 140 or a- 

M 141 antibodies whenever the two genes were co-expressed in the absence and the 

presence o f pM139. These data support the concept that pMHO forms a complex with 

pM 141, in the absence and the presence o f M l 39 proteins.

The fact that all co-precipitating, and therefore assumed to be complexed, proteins 

were detected at low levels can be explained by the non-physiological conditions o f 

rabbit reticulocyte lysates, which perhaps do not support stable maintenance o f the 

generated complexes. Alternatively, complex formation may require conditions present 

only in the microenvironment o f the cell.

Lastly, immunoprecipitations o f NIH3T3 fibroblasts transiently expressing 

pM139, pM140 and pM H l alone or in combinations provided a means to assess a) direct 

interactions between the pM HO-pMHl complex and M139 proteins, b) efficiency o f 

these proteins to form a complex in the absence o f other viral proteins, and c)
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crossreactivity o f the a-M139 Ab with the pMl40-pM141 complex in physiologically 

relevant conditions. Therefore, NIH3T3 fibroblasts were transiently transfected with the 

same mammalian expression vectors, encoding pM139, pM140 or pM l41. Forty-eight 

hours post-transfection the cells were radiolabeled for 3 hours, and the label was chased 

for 2 hour to allow time for the formation o f complex(s) by the newly synthesized, 

labeled proteins. Lysates were harvested and immunoprecipitated with one o f the three 

antibodies (Fig. 24A)
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FIG. 24. Analysis of interactions among the pM139, pM140, and pM141 in the absence of 
other viral proteins. (A) An overview of experimental procedures. (B) NIH 3T3 fibroblasts 
were transfected with M l39, M l40 and M141 expressing vectors, radiolabeled and chased for 
indicated amounts of time. Cell lysates were immunoprecipitated with the antibodies 
indicated. (C) N1H3T3 fibroblasts were infected with WT or RVl39 (A 139) or transfected 
with 9-, 6-, or 3-pg of pM 139/3.1(+) expression vector. Cells were radiolabeled and 
immunoprecipitated with a-M 139 Ab. Immune complexes were washed, boiled and resolved 
by SDS-PAGE. The positions of molecular weight makers and sizes of detected proteins are 
indicated.

Immunoprecipitation o f the cells transiently transfected with the M140 expression 

vector resulted in detection o f the 56-kD band only by a-M 140 antibody. Similarly, the 

52-kD band specific to pM141 was immunoprecipitated only by a-M 14l Ab from the 

cells transfected with the M 141 expression vector alone. Again, the a-M  139 Ab did not 

immunoprecipitate the pM140-pM141 complex from the cells transiently expressing 

these two proteins. However, both proteins were immunoprecipitated by the a-M 140 

antibody from the cells cotransfected with M l40 and M141 expression vectors. 

Interestingly, when all three expression vectors were used in cotransfection, the pM140-
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pM141 complex was immunoprecipitated by the a-M l39 Ab, a-M l40 Ab, and to a 

lesser extent, by the a-M 141 Ab (Fig. 24B), similar to results obtained from 

immunoprecipitations o f in vitro transcribed/translated proteins. These data again 

contradict the hypothesis that the a-M139 Ab merely crossreacts with pM140-pM141 

complex, and rather indicates complexing among pM139, pM140 and pM141. 

Nevertheless, the reproducible immunoprecipitations o f the pM140-pMl41 complex 

from the RVl 3 (AM139)-infected cells clearly indicate a crossreactivity o f the a-M 139 

Ab to the pM140-pM141 complex (Fig. 24C). It is possible that other viral proteins are 

required to augment the interaction o f the pM140-pMl41 complex with the a-M 139 Ab, 

and transient expression o f the M l 39 proteins complements that function in the absence 

o f other viral proteins.

Detection o f the p75M139 and especially the p61M139 specific signals in 

transfected cells was difficult to discern because two similarly sized, non-specific 

proteins were reproducibly immunoprecipitated with the a-M 139 antibody (Fig.24B, C). 

Expression o f these proteins appeared to be independent from the DNA content o f the 

transfected expression vectors and is probably a result o f transfection manipulations, 

which non-specifically up-regulate many cellular genes. However, an increased density 

o f the 75-kD band immunoprecipitated from the cells co-transfected with M l 39 

expression vector, compared with those transfected with either M 140 or M 141 expression 

vectors alone indicated the presence o f p75M139 in those lysates. In addition, control 

experiments were conducted in order to demonstrate the levels o f the specific pM139 

signal from the cells transiently transfected with 9-, 6-, and 3-pg compared to the signal 

detected in WT-infected cells (Fig. 24C). The 75-kD band was easily detectable by a-
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M l 39 immunoprecipitation following transfection o f 9 pg o f the pM139/3.1(+), however 

its intensity decreases in correlation with the amount o f transfected DNA. The detected 

6 1-kD band appears to be non-specific, because its density does not change with the 

amount o f transfected DNA. It is unfortunate that this non-specific band co-migrates 

with the 61-kD protein also expressed from the M l39 gene and overshadows the specific 

signal. In co-transfection experiments, the total amount o f DNA was limited to 9 pg per 

transfection; therefore, pM139 (3pg) was minimally detected. Further analysis is needed 

to determine the role o f pM139 proteins in formation o f the complex with the pM140- 

pM141 oligomer, or in augmentation o f the interactions o f the a-M  139 Ab with the 

pM140-pM14I complex.

Data from pulse-chase experiments indicates that all proteins expressed from the 

M139-M141 gene region exist in the infected cell in a free form immediately after 

synthesis, but only the pM14l is detected in this state. Whether or not these proteins are 

functional in a free form remains to be determined. Furthermore, the results presented in 

this study demonstrate that pMl41 forms a complex with the M140 gene product. 

However, is not obvious how the pM140-pM141 complex interacts with the M l39 gene 

products. There are three alternative potential interactions among the M l39 proteins and 

pMl40-pM141 oligomer, which could not be clearly defined by the results o f this project 

(Fig. 25).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



106

M141/M140/M139/98kD

M139 
75/61 kD

M141/M140M141

M139 
75kD and 61kD

FIG. 25. Possible interactions among the pM140-pM141 complex and M l39 gene products.

The first possibility is the progression o f the pM140-pM141 complex into a larger one, 

formed by the addition o f the two M l 39 proteins and the unidentified 98-kD protein (Fig. 

25a). It is also possible that M l39 gene products interact with each other, but do not 

complex with the pM140-pM141 oligomer (Fig. 25b). The third and final possibility is 

the presence o f M l 39 proteins separate from each other, in addition to the pM140-pM141 

complex (Fig. 25c). In all three cases the a-M 139 Ab w ill immunoprecipitate all the 

proteins expressed from the M139-M141 gene region, because o f the nature and the 

characteristics o f this antibody.
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CHAPTER V 

DISCUSSION AND FUTURE DIRECTIONS

Monocytes/macrophages are one o f the key cell types infected by CMV during an 

acute stage o f infection (Soderberg-Naucler et al., 1998). CMV replicates within these 

cells upon cellular activation and differentiation. Infected monocytes/macrophages 

disseminate the virus within the host. These cells harbor latent viral DNA (Mitchell et 

al., 1996), which reactivates following immunosuppression and allogeneic stimulation 

(Kurz and Reddehase 1999). Moreover, these cells also participate in innate immune 

responses to MCMV infection by secreting chemokines and pro-inflammatory cytokines 

(reviewed by Michelson, 1997). Therefore, it is critical to understand how viral proteins 

regulate the replication o f CMV in monocytes/macrophages.

The studies in our laboratory have demonstrated that the deletion o f the MCMV 

US22 family genes M139, M140 and M141 results in a phenotype profoundly different 

from WT virus. The MCMV mutant lacking these three genes replicates poorly in 

cultured macrophages and exhibits attenuated growth in macrophage rich organs o f 

infected mice (Hanson et al., 1999). This study was aimed to characterize the proteins 

expressed from the M139-M141 genes and to identify potential interactions among them 

in order to elucidate the ways they influence macrophage-specific replication o f MCMV.

Initial characterization o f the proteins expressed from the M139-M141 gene 

region was done by western blot analyses using rabbit polyclonal antibodies generated 

against recombinant M139, MHO and M141 proteins. The a-M139 antisera detected 

two proteins sized as 72- and 61-kD. A single protein o f 56-kD was identified by the a-
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M140 antisera and a 52-kD protein was detected by the a-M 141 antisera (Hanson et al., 

in press). In this study, immunoprecipitation analyses o f these proteins, for the first time, 

revealed a more complex pattern o f expression.

Characterization of the M139 gene products

A total o f five proteins was immunoprecipitated by the a-M 139 antisera. Two o f 

them, p75M139 and p61M139 were identical to those detected by western blot, although 

a slight correction was applied to the size o f the larger protein.

We initially considered that p61M139 might be a degradation product o f the 

p75M139. However, the presence o f proteinase inhibitors (PMSF and Aprotinin) in the 

immunoprecipitation lysis buffer rendered it unlikely that p6IM !39 is a product o f 

p75M139. More notably, the stoichiometry o f the 75- and 61-kD bands, 

immunoprecipitated by the a-M 139 Ab during pulse-chase analysis o f WT MCMV- 

infected cell lysates, did not change between 0 and 4 hours post-chase (Fig. 18B). These 

data strongly indicated that p61M139 is not a proteolytically processed product o f 

p75M139.

Use o f the M l 39 deletion mutant proved that both p75M139 and p61M139 were 

expressed from the same gene. In particular, neither one o f these proteins were detected 

in the lysates o f the cells infected with RVl 3 (AM 139) (Fig. 16B, 18D). In addition, the 

ability o f the a-M  139 polyclonal sera to precipitate both proteins indicated that these 

proteins are transcribed in the same absolute open reading frame and subsequently share 

common protein sequences.
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Results from our study suggested that p75M139 and p61M139 are expressed from 

distinct messages regulated by separate promoters within the M l39 gene. There are two 

messages (3.8- and 3.0-kb) that map to the M139 gene and likely originate from 

alternative transcriptional start sites (Hanson, Dalton et al., 1999). Expression o f the 3.8- 

kb message is predicted to start at position 196016 and is regulated by a TATA-less 

promoter (Rawlinson et al., 1996). Use o f the first translation initiation codon in this 

message is predicted to generate a 75-kD protein. However, a second potential initiation 

codon has also been identified which i f  utilized would result in a 6 1-kD protein. There 

are two additional potential translation initiation sites at position 195766 and 195667 

where the 3.0-kb transcript is predicted to start. The transcript expressed from either one 

o f these translation initiation sites, would lack the upstream initiation codon for the 75- 

kD protein, but would include the downstream initiation codon o f the predicted 61-kD 

protein. We favor the hypothesis that the 3.0-kb transcript originates at one o f these two 

sites, and encodes the 61-kD protein, as opposed to the possibility that both the 75- and 

61-kD proteins are expressed from the larger, 3.8-kb transcript using the alternative 

translation initiation sites. Additional experiments, such as nuclease protection assays, 

are needed to conclusively identify the start site o f the 3.0-kb transcript. Subsequently, in 

vitro transcription/translation analysis using a temple DNA containing either a full-length 

M l39 gene or a truncated sequence sufficient to encode only 3.0 message, w ill be 

necessary to identify the 75- and 61-kD proteins as products o f the 3.8- and 3.0-kb 

transcripts.

It is also possible that the smaller protein is translated from a splice variant o f the 

larger transcript; however, immunoprecipitations o f transiently expressed His-tagged
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M l39 protein argue against this hypothesis. These studies demonstrated that both 

proteins (75- and 61-kD) were produced from the mammalian expression vector 

containing M l39 sequence fused at its amino-terminus to the histidine tag coding 

sequence. However, only the 75-kD protein was detected by a-His antibody (Fig. 22). If  

the 61-kD protein was a splice product o f this gene then, most likely, both the 75- and 61- 

kD proteins would contain the His tag and thus be detected by the a-His antibody in 

western blot analyses.

Finally, the use o f an alternative translation start site is also a possible explanation 

for the 61-kD protein. However, the inequivalent stoichiometry o f the 75- and 61-kD 

proteins detected in both western blot analyses and immunoprecipitations (which 

correlates with the relative levels o f the 3.8- and 3.0-kb messages) suggests that both 

proteins are expressed from separate, rather than the same messages. Both proteins are 

predicted to originate from the same absolute reading frame; therefore, to assess this 

possibility, a point mutation can be introduced into the second (and third) translation 

initiation site so that this mutation would not abrogate the transcription o f the larger 

message. Alternatively, analysis o f an internal promoter, regulating expression o f the 

3.0-kb transcript, can reveal those regulatory sequences that could be mutated to inhibit 

expression o f the 3.0-kb transcript, but not interfere with transcription o f the larger 3.8-kb 

message. The proteins expressed from this kind o f mutated constructs w ill definitively 

determine the origin o f the 6l-kD  protein. Another approach to resolve these questions 

would be to generate a peptide antibody to sequences predicted to be unique to the 75-kD 

protein, or amino acid sequencing.
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Interaction of the M139 gene products with other proteins

Assessment o f the quality o f generated antibodies 

Three additional proteins o f 98-, 56- and 52-kD co-precipitated with pM139 from 

the WT MCMV-infected cells using a-M 139 antibody (Fig. 8B). The two latter proteins 

(56- and 52-kD) were identified as products o f the MHO and M141 genes respectively.

A simple explanation for this finding is that the M 139 antisera cross-reacted with the 

three co-precipitating proteins. However, immunoprecipitation analyses o f singularly 

expressed M l39, M l40 or M141 proteins in in vitro transcription/translation reactions 

proved that the a-M 139, a-M 140, and a-M  141 antisera minimally cross-react with 

proteins encoded by the other genes from the M139-M141 region (Fig. 10). This 

conclusion is consistent with the fact that there is low sequence homology among the 

three genes.

Although the a-M139 antisera do not cross-react with pMl40 and pM141 

expressed as single proteins, there is evidence that this antibody does cross-react with the 

complexed form o f pM140 and pM141. In particular, pMl40 and pM141 were 

repeatedly immunoprecipitated by the a-M 139 antisera in the absence o f pM139 (Fig. 

16B, 18B,D, 22B). Therefore, we hypothesized that the a-M 139 antisera cross-reacts 

with the pM140-pM14I complex. This can be explained by the fact that complexed 

proteins acquire conformational changes that affect tertiary structure o f these proteins, 

which differs from the one that each protein has when expressed alone. We tested this 

hypothesis by combining immunoprecipitation analysis o f unlabeled recombinant 

MCMV-infected cells with subsequent western blotting (Fig 21 A). These analyses 

demonstrated that pM140-pM141 complex was immunoprecipitated from R V l3
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(AM139)-infected cells by the a-M139 Ab, and detected by a-M140-HRP (Fig. 21B). 

However the pM140 was not detected in western blot analysis o f immunoprecipitants 

from either R V l4 (AM 140)- or RVl 1 (AM14l)-infected cells. This strongly suggested 

that the a-M139 antisera cross-react with the pM140-pM141 complex, and again 

demonstrated that the same antisera do not cross-react with the free form o f pM140 or 

pM141.

Interactions between pM140-pM141 complex and M l39 gene products

In spite o f the above findings, our data do not rule out the possibility that pM139 

(p75M139 and/or p61M139) complex with pM140-pM141. Moreover, an a-M  139 

antibody-specific protein profile (total o f 5 proteins) was immunoprecipitable exclusively 

from WT MCMV-infected cells where all the M139-M141 proteins were expressed. This 

finding supports the hypothesis that M l39 proteins directly interact with pM l40 and 

pM141 (either as a complex or as distinct proteins) and this interaction is a prerequisite 

for association o f the 98-kD protein. Therefore, only in WT MCMV-infected cells do the 

a-M 139 antisera immunoprecipitate all the components o f this large complex.

The scope o f this study did not provide enough information to determine whether 

p75M139, p61M139, or both are involved in the complex. The M l39 specific antisera 

interact with both proteins expressed from the M l39 gene. Therefore both proteins w ill 

be immunoprecipitated by this antibody regardless o f which one o f them directly interacts 

with other proteins. However, one o f the described experiments indirectly addressed this 

question. Immunoprecipitation analysis using a-M 139 antibody revealed the presence o f 

both M139 proteins along with the M140 and M141 proteins in the cells transiently
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expressing M l39 proteins from the vector containing M l39 gene fused to the histidine 

tag coding sequence and superinfected with the RV13 (AM 139) (Fig. 22B). 

Immunoprecipitations o f the same cell lysates using a-His antibody demonstrated that 

only the p75M139 expressed the histidine tag (encoded on the N-terminus) since 

p61M 139 was not immunoprecipitated by the a-His antibody. This provided an 

opportunity to test the ability o f the p75M139 to form a complex with other proteins. 

Interestingly, no other proteins co-precipitated with the transiently expressed p75M139- 

His. There are two possible explanations for this finding.

The first possibility is that the N-terminal histidine tag interferes with the ability 

o f p75M139 to form a complex with other proteins. To address this possibility the tag 

could be expressed on the C-terminus, and similar experiments should be conducted. I f  

proteins co-precipitate with C-terminally tagged p75M139 it would prove the ability o f 

that protein to form a complex and demonstrate that the N-terminus o f p75M139 is 

involved in protein-protein interactions. Alternatively, another antibody could be 

generated against the unique part o f p75M139. The use o f this antibody would allow 

immunoprecipitation exclusively o f the 75-kD protein and those protein(s) which 

complex with it.

The second explanation for N-terminally His-tagged p75M139 not being able to 

co-precipitate any other proteins is that it is not involved in direct interactions with other 

proteins. This leaves the possibility that p61M139 is responsible for complexing with 

other proteins that are immunoprecipitated by the a-M139 antisera. To address this 

question one could generate a mammalian expression vector that contains a truncated 

M139 sequence encoding only the p61M139 protein. Then one would transfect that
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construct into cells, and superinfect those cells with RV13 (AM 139) recombinant 

MCMV. This combination would provide all viral proteins (including transiently 

expressed p61M139) except p75M139. Immunoprecipitations o f these cell lysates with 

a-M139 polyclonal antisera would demonstrate whether the 61-kD protein is the one 

involved and possibly responsible for the interactions with other proteins.

Nevertheless, the fact that the a-M 139 antisera cross-react with the pM140- 

pM141 complex brought a question about physical interaction between pM139 (either 

one or both) and the pM140-pM141 complex. We addressed this question by 

immunoprecipitating proteins expressed from M l39, MHO and M141 genes in in vitro 

transcription/translation reactions, or in fibroblasts transiently transfected with the same 

mammalian expression vectors. Surprisingly, pM140 and pM141 co-expressed in in vitro 

transcription/translation reaction were not immunoprecipitated by the a-M 139 Ab, which 

contradicts previous results and the hypothesis that a-M 139 Ab cross-reacts with pM140- 

pM141 complex (Fig. 23). Importantly both pM140 and pM141 were 

immunoprecipitated together by either a-M 140 or a-M 141 antisera. Furthermore, when 

all three genes were co-expressed a-M 139 antibody precipitated both p75M139 and 

p61M139 but again failed to immunoprecipitate pM140 and pM141. This indicated that 

either pM139 did not complex with the pM140-pM!41 hetero-oligomer, or the pM140 

did not form a complex with pM141, which appears to be required for subsequent pM139 

association. The absence o f a cross-linking reagent in these reactions supporting 

maintenance o f generated complexes, as well as expression o f these MCMV proteins in 

non-physiological conditions could possibly explain these unexpected results.
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The last approach to test direct interaction between the pM140-pM14l oligomer 

and M l 39 proteins relied on analyses o f interactions among these proteins transiently 

expressed in mouse fibroblasts. Interestingly, both proteins o f the pM140-pM141 

oligomer were immunoprecipitated only by the a-M 140 or a-M  141 antisera but not by 

the a-M 139 antibody. These results once again conflicted with our previous finding o f 

cross-reactivity o f the a-M 139 antisera with the pM140-pM141 complex. However, 

when M l39 was cotransfected into the cells along with the M l40 and M141 genes, the 

pM 140 and pM 141 were precipitated by all three antisera. This supports the hypothesis 

that pM139 directly interacts with the pM140-pM141 oligomer. Nevertheless, these 

results are not consistent with immunoprecipitation analysis o f the RV13 (AM 139)- 

infected cells. Therefore, more studies w ill be needed to resolve these discrepancies. In 

addition, the 98-kD protein was not recovered in a-M 139 immunoprecipitations 

following cotransfections o f the three genes from the M139-M141 gene region into the 

cells, indicating that viral infection is needed in order for that protein to be expressed and 

co-precipitated (Fig.22B).

Characterization o f the 98-kD protein 

The 98-kD protein reproducibly co-precipitated with M l39 proteins exclusively 

from WT MCMV-infected fibroblasts and macrophages. Immunoprecipitations o f cells 

infected with mutant MCMV lacking an expression o f M139-M141 genes, alone or in 

combination, resulted in loss o f detection o f this band (Fig. 16B). Interestingly, when 

expression o f pM139, pM140 and pM141 was reconstituted by transiently expressing 

M l 39 proteins (from a vector containing histidine tag fused to the N-terminus o f the
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M139 gene) and superinfecting with RV13 (AM139), the 98-kD band was still 

undetectable following a-M  139 immunoprecipitations (Fig. 22B). This unexpected 

result again can be explained by the fact that the histidine tag might interfere with direct 

interaction o f p75M139 with the 98-kD protein. In addition, the finding the a-His 

antibody did not immunoprecipitate any components o f the complex except p75M139, 

supports the same hypothesis.

Alternatively, the 98-kD protein might be a cellular protein, which is upregulated 

exclusively by WT MCMV infection. These questions can be addressed by the methods 

similar to those that were proposed above to identify which o f the two M l 39 proteins are 

involved in complex formation, or i f  both o f them are required for this interaction.

In order to identify the 98-kD protein, it could be co-immunoprecipitated with a- 

M139 antisera and be eluted from the gel. The eluted protein could be sequenced and the 

sequence o f the coding gene could be deduced essentially as was previously described 

(Huber et al., 1998). Comparison o f the deduced DNA sequence with known viral or 

mouse cellular genes might result in identification o f a gene encoding the 98-kD protein.

In any case we did not encounter circumstances where pM 139, or a possible 

complex with either o f the M l 39 proteins, correlated with a phenotype different from the 

WT virus. In fact, RV13 (AM 139) replicates like WT MCMV in cultured fibroblasts and 

macrophages, and in the spleens o f acutely infected mice. This could be attributed to 

several factors. First, we did not test the growth o f the virus in cells such as epithelial or 

endothelial cells, which are naturally permissive for MCMV infection. Second, 

replication o f WT and recombinant MCMV were tested only in two organs o f mice, 

spleen and liver. Third, we did not conduct studies o f reactivation o f latent virus. It is
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possible that the function(s) o f pM139 would be revealed in the course o f these 

experiments. However, mutations within either the MHO or M 141 gene result in 

dramatically different phenotypes both in vitro and in vivo from those o f WT MCMV 

(Table 4). Therefore, we concentrated on characterization o f the MHO and M141 gene 

products and the interaction between them.

Identification of MHO and M141 proteins

The origins o f the 56- and 52-kD bands were identified by immunoprecipitation 

analysis o f in vitro transcribed/translated proteins expressed from mammalian expression 

vectors encoding MHO and M141 genes respectively (Fig. 10). Subsequently, the MHO 

and M141 genes were verified as the sources o f 56- and 52-kD proteins respectively 

through immunoprecipitation analysis o f RV14 (AM140)- and RV11 (AMHl)-infected 

cells (Fig. 16). These two bands were co-immunoprecipitated by the a-M  140 antibody 

from the WT MCMV-infected cells (Fig 8B). Interestingly, the a-M 141 antibody 

immunoprecipitated only one band o f 52-kD from the same lysates (Fig. 8B). However, 

during pulse-chase analysis, at 4 hours post-chase the same antibody was able to co­

precipitate the 56-kD band in addition to the M 141 specific 52-kD band (Fig. 18B,D). 

Therefore, we concluded that MHO and M141 proteins form a complex.

Although immunoprecipitation analysis used as a basic tool o f this study is not 

quantitative, a reproducible stoichiometry o f precipitated bands suggest the concept that 

all proteins expressed from the M139-M141 genes exist in both free and complexed 

forms. Our conclusions were based on the fact that all these proteins contain similar 

number o f methionine and cysteine residues, which ensures similar levels o f
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radiolabeling during synthesis. More specifically, the M l39 gene encodes for 12 

methionines and 12 cysteines, the M l40 contains 15 methionines and 14 cysteines within 

its sequence, and M 141 has 11 methionines and 16 cysteines within the coding sequence.

The difference in detection o f exclusively free forms o f pM139 compared to free 

and complexed forms can be seen in autoradiographs o f a-M 139 immunoprecipitation 

analyses o f WT MCMV- and RV14 (AM140)- or RV11 (AM141)-infected cells (Fig. 

16B). The free and complexed forms o f pM140 are immunoprecipitated by the a-M 140 

Ab immediately after labeling, resulting in a much more intense pM140 specific signal 

compared to the pM141 signal (Fig. 8, 11, 14). However, with time, most o f this newly 

synthesized protein is incorporated into the complex with pM141, and at 4 hours post­

chase both proteins are precipitated at almost equal amounts (Fig.l6B). The same 

appears to be true for the M 141 protein. The newly synthesized free form is 

immunoprecipitated by the a-M 141 antibody but, in contrast to pM140 and pM139, 

when pMI41 is integrated into the complex, the antigenic epitopes become hidden from 

the a-M 141 antibody.

The role of the M141 protein in complex formation

The hypothesis that pM141 is buried deep in at least one complex was proven in 

experiments where WT MCMV-infected cell lysates were immunoprecipitated with a- 

M141 Ab and these lysates were re-immunoprecipitated with a-M 139 or a-M  140 

antisera to visualize complexed pM141 (Fig. 14). Reproducing previous results, one 

band o f 52-kD was immunoprecipitated from total lysates by the a-M  141 Ab. A faint 

56-kD band specific to the MHO gene product was also visualized. As predicted, re-
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immunoprecipitation o f pM 141-depleted supernatants recovered all five proteins 

typically precipitating with a-M  139 Ab, whereas the two expected proteins were usually 

immunoprecipitated by the a-M 140 Ab. The components o f these complexes were 

identified as pM139, pM!40 or pM141 during re-immunoprecipitations o f the same 

lysates, which were denatured prior to incubation with a-M  139, a-M  140 or a-M  141 

antisera respectively. These data convincingly proved that almost all o f the pM141 is 

enclosed in one or more complexes and in this form pM141 remains relatively 

inaccessible to the a-M141anisera. Whether pM141 directly interacts with M l39 gene 

products in the absence o f pM140, or whether the pM140-pM141 complex is a 

prerequisite for that interaction remains to be determined. Immunoprecipitation analysis 

o f the cells transiently expressing pM139 and pM141 w ill answer these questions.

Interaction between MHO and M141 gene products

A direct interaction between pM140 and pM141 was demonstrated throughout 

this study rather convincingly by the following results:

1. the a-M  140 immunoprecipitations o f denatured WT MCMV-infected cell 

lysates detected only one 56-kD protein whereas both the 56- and 52-kD 

proteins were detectable in immunoprecipitations o f non-denatured cell 

lysates (Fig. 11). This proved that pM14l (52-kD) was associated with 

pM l40 (56-kD) and therefore was co-precipitated with the 56-kD protein 

exclusively from non-denatured lysates.

2. sequential immunoprecipitations o f WT MCMV-infected cell lysates 

demonstrated that the 52-kD protein was co-precipitated with pM!40 (56-
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kD) by the a-M  140 antibody in the first immunoprecipitation reaction and 

was later visualized by subsequent re-immunoprecipitation using the a- 

M 141 antibody (Fig. 12).

3. following co-expression o f pM140 and pM141 in either in vitro 

transcription/translation reaction or in transiently transfected cells, both 

proteins were immunoprecipitated with antibodies specific to either the 

M140 or M141 gene product. This demonstrated the ability ofthe two 

proteins to form a complex in the absence o f other cellular or viral 

proteins (Fig. 23, 24B)

4. immunoprecipitations o f RV14 (AMl40)-and RV11 (AM 141)-infected 

cells demonstrated the absence o f the corresponding coprecipitating 

protein, due to absence o f the pM140-pM141 complex (Fig. 16B).

The number o f monomers forming this complex and how many molecules o f each 

protein in particular are involved in the pM140-pM141 interaction is not known, although 

a similar density o f the two bands precipitated at 4 hours post-chase by all three 

antibodies suggests a one-to-one ratio (Fig 16B). Regardless, we refer to it as the 

“pM140-pM!41 hetero-oligomer”  alternatively to the “ complex” .

Immunoprecipitations o f RV13 (AM 139) -infected cell lysates (either during 

standard radiolabeling or pulse-chase analyses) provided additional proof that pM140 and 

pMl41 form a complex and they do so even in the absence o f M139 proteins (Fig. 16D). 

Interestingly, both o f these proteins were precipitated not only by antibodies specific for 

the M l40 and M141 proteins but also by the a-M 139 antisera, due to potential 

crossreactivity.
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Another significant discovery was made during pulse-chase analysis o f the cells 

infected with the RV14 (AM 140) recombinant MCMV. No pM140 was expressed in 

these cells, and both M l39 proteins were synthesized, as expected. The pM141 was 

expressed and immunoprecipitated by the a-M 141 Ab in the amount similar to those in 

WT MCMV-infected cells. However, the half-life o f pM141 was dramatically decreased 

to 1 hour, compared to 2 hours in WT-or RV13 (AM139)-infected cells. As a result in 

RV14 (AM140)-infected cells, the M l40 protein is absent due to the mutation within the 

M l 40 gene and M141 protein is, at least, undetectable because o f its instability in the 

absence o f pM140.

Biological significance of interaction between the 1VU40 and 1VI141 gene products.

As was mentioned above, RV14 (AM140) replicates to 2-3 Iogio lower titers in 

cultured macrophages even following high multiplicity o f infection. This mutant also 

does not replicate in spleens o f infected mice (Hanson et al., in press). The RV11 

(AM 141) mutant is characterized by a distinct, yet significantly less dramatic phenotype. 

More specifically, the RV11 (AM141) MCMV replicates to 1-1.5 logio lower titers in 

cultured macrophages and to 2-2.5 logio lower titers in spleens o f infected mice. 

Interestingly, pM140 is expressed in RVl 1 (AM141)-infected cells to levels similar to 

those detected in WT MCMV-infected cells and with an analogous half-life. A t this time, 

knowing that pM140 and pM141 form a complex and that the stability o f pM141 depends 

on the presence o f pM140, we propose that pM141 possesses a distinct function 

influencing macrophage-specific pathogenesis. Moreover, pM141 can deliver this
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function only when complexed with the MHO protein. This might be attributed to the 

fact that pMHO stabilizes pM141.

Stabilization o f the M 141 protein may not be the only function o f the pMHO.

The fact that the M 141 mutant (RV l 1) expressing high levels o f pMHO, reproducibly 

exhibits an intermediate phenotype in replication both in vitro and in vivo compared to 

WT and RV14 (AM140) MCMV indirectly suggests that pMHO has another function 

influencing macrophage-specific viral pathogenesis independent from stabilization o f 

pM 141. Whether pM 140 has a function redundant to pM 141, or it can form a homo­

oligomer that can partially compensate for the function ofthe pM140-pM141 complex or 

interact with pM139 and the 98-kD protein to accomplish the same objective, remains to 

be determined.

It is well known that many viral proteins complex with cellular counterparts to 

deliver their function (Caswell et al., 1993; Jupp et al., 1993; Lang et al., 1995; Schwartz, 

Helmich, and Spector, 1996; Scully et al., 1995). Moreover, structural proteins o f the 

viral envelope form complexes (gC-I, gC-II, and gC-III) in order to function (see 

Structure o f the Virion). Characterization o f interactions between pMHO and pM141 

provides another example where formation o f a complex by two distinct viral proteins 

results in a unique function influencing macrophage-specific replication o f MCMV both 

in vitro and in vivo.

Further studies should be aimed toward mapping the interaction domains within 

pMHO and pm 141. This can be achieved by analysis o f the interactions between MHO 

and M141 gene products expressed from constructs, containing certain deletions within 

MHO and M141 coding sequences. Subsequently, the key amino acids can be identified
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within the interaction domains, using point mutations, which would alter protein 

expression and, as a result, abrogate the interaction. These studies w ill also allow 

determining i f  pM140 or pM14l have a separate unique function, as well as whether or 

not these proteins have redundant (or at least complementing) functions under 

circumstances when both proteins are expressed but are not forming a complex.

As was mentioned above, phenotypically in vitro and in vivo R V l4 (AM 140) 

infection is indistinguishable from the RV10 (AM139-M141) MCMV (Hanson et al., 

1999: Hanson, et al., in press). Interestingly, the analysis o f viral gene expression 

demonstrated that in RV10 (AMl39-M141)-infected macrophages the expression o f the 

immediate-early genes is decreased whereas in RV14 (AM140)-infected cells the IE 

genes are expressed to the levels comparable with those induced by WT MCMV 

infection (Hanson et al., in press). This phenomenon taken together with early-late 

expression kinetics o f the M l 40 and M141 proteins suggests that pM140-pM141 

complex influence macrophage-specific protein synthesis shut-off mechanism, because 

both o f these proteins are affected by the mutation within the MHO gene.
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CHAPTER VI 

CONCLUSIONS

Cytomegalovirus (CMV) is a large and complex ubiquitous herpesvirus. It causes 

morbidity and even mortality in neonates, and severe disease in immunocompromised 

individuals. CMV is characterized by complicated pathogenicity, which involves acute, 

chronic, and latent infections. More than 200 predicted open reading frames (ORFs) are 

encoded by CMV’s double-stranded DNA genome. Many o f those genes are 

nonessential for CMV replication in tissue culture and their protein products are involved 

in regulating CMV pathogenesis and host-virus interactions.

Murine CMV (MCMV) serves as a model for human CMV (HCMV) disease and 

allows one to analyze the function o f viral proteins in the context o f a natural host. We 

identified three genes (M139, MHO, and M141) within the MCMV genome, which 

regulate viral expression in macrophages and mice, but are nonessential for replication o f 

the virus in fibroblasts. These genes are members o f the US22 gene family with respect 

to HCMV homology. There is no function assigned to the proteins encoded by these 

genes. However, deletion o f M l 39, MHO, and M141 significantly curtails growth o f 

MCMV in macrophages in vitro and in macrophage-dense target organs in vivo (Hanson 

et al. 1999, J.Virol. 73(7): 5970-80). Therefore, M139, MHO, and/or M141 gene 

products likely affect tissue specific viral infectivity. The purpose o f this study was to 

characterize these proteins (pM139, pMHO, and p M H l) with respect to kinetics o f their 

expression, stability, and complexing with themselves and other viral or cellular proteins. 

Fine characterization o f these proteins and the interactions which they are involved w ill
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provide initial information about the function o f these three gene products in regulation 

o f MCMV expression in macrophages and macrophages-rich target organs in mice.

Our approach to characterizing the M139, M140, and M141 proteins consisted o f 

generating polyclonal antibodies (Ab) specific for each protein, and using them in 

extensive analyses such as western blotting or immunoprecipitation (IP) o f cells infected 

with w ild type MCMV or recombinant mutant viruses. In order to generate pM 139, 

pM140, and pM141 specific antibodies, genomic fragments coding the appropriate 

protein were cloned into bacterial expression vectors. Next, the recombinant proteins 

were expressed, purified, and injected into rabbits to produce specific polyclonal 

antiserum. A different set o f expression vectors was generated to test the antibodies for 

the purpose o f crossreactivity, and for further use in the study. These mammalian 

expression vectors contain the genomic fragment coding for either pM139, or pM140, or 

pM141 full-length proteins. Expression form these vectors was tested positively in in 

vitro transcription/translation reactions. Subsequently, each protein (M l39, M140, and 

M141) expressed form these vectors was immunoprecipitated by anti-M139, anti-M140 

and anti-M141 antibodies. The antibodies proved to be specific and immunoprecipitated 

only one appropriate protein. For example, anti-M139 IP visualized only the M l39 

proteins but not pM140 or pM14l. Analogous results were obtained in anti-M140 and 

anti-M141 immunoprecipitations.

The kinetics o f expression o f the M l 39, M140, and M141 proteins was initially 

examined by western blot analysis, which showed that these proteins are abundant at 

steady state levels, and are expressed at early and late times during an MCMV infection 

in both NIH3T3 fibroblasts and IC-21 macrophages. Western blot analyses also revealed
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that the anti-M139 Ab detects two proteins o f 75 kD and 61 kD; anti-M l40 Ab detects 

one protein o f 56 kD; anti-M141 Ab detects one protein o f 52 kD.

However, immunoprecipitation analyses o f pM!39, pM140, and pM14l reveal 

additional proteins co-precipitating with pM139 and pM140. Whereas a-M139 Ab 

detected two proteins in Western blot analysis, five bands were immunoprecipitated with 

the same Ab. Likewise, two proteins were immunoprecipitated with a-M  140 Ab, 

although the same Ab detected only one protein in Western blot analysis. Interestingly 

only one protein was detected by a-M 141 Ab in both immunoprecipitation and western 

blot analysis, but the levels o f immunoprecipitated protein were much lower than those 

detected in Western blot analysis. Therefore we propose that M l39 and M140 proteins 

are interacting with other proteins originating from either the M139-M141 gene region, 

or other viral or cellular genes.

A series o f experiments including immunoprecipitation o f non-denatured versus 

denatured lysates, sequential IPs, and combination o f IP followed by western blot 

analysis confirmed that a-M 139 Ab co precipitates MHO and M141 proteins, whereas a- 

M140 Ab co precipitates only the M 141 protein and a-M141 Ab did not coprecipitate 

any additional proteins. The fact that each antibody was immunoprecipitating a unique 

protein profile can be explained by the quaternary structure o f the pM139, pM140 and 

pM141 complex. When these proteins are complexed epitopes o f underlying protein(s) 

may be masked thus making these proteins inaccessible for the specific Ab. 

Reimmunoprecipitations o f pM 141 -depleted supernatants resolved the issue o f the 

pM141 involvement in complex formation. It was shown that pM141 exists in infected
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cells in a free form that is accessible by its Ab, and also as a component o f one or more 

complexes which hinders the epitopes o f the pM 141.

Using a genetic approach and immunoprecipitations o f cell lysates infected with 

recombinant MCMV containing mutations in M139, MHO, and M141 genes alone or in 

combination, the origins o f identified proteins were confirmed in vivo. Pulse-chase 

analyses were done to determine the stability o f the proteins. It was determined that the 

stability o f pM141 depends on the presence o f pM140, but not pM139.

A final series o f experiments were design to distinguished i f  all three proteins 

complex with each other or coprecipitate by virtue o f antibody crossreactivity. The 

results demonstrated that indeed the M l40 and M141 proteins form a stable complex. It 

remains to be determined i f  the two M l 39 proteins form a heterodimer or exist separately 

within an infected cell. Given the complexity o f viral pathogenesis and the fact that 

pM139, pM140, and pM141 proteins are dispensable for viral replication in tissue 

culture, it is possible that each single protein as well as the complex(s) they form may 

have a distinct function which influences tissue specific infectivity.
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