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ABSTRACT

EXPLORING THE NEUROPEPTIDES, NEUROPEPTIDE RECEPTORS 
AND NEUROTRANSMITTER RECEPTORS IN THE SYNGANGLIA OF 
PART-FED FEMALES OF ORNITHODOROS TUR1CATA (ARGASIDAE) 

AND IXODES SCAPULARIS (IXODIDAE) WITH INSIGHTS INTO 
THEIR ROLES IN CONTRASTING BIOLOGY

Noble I. Egekwu 
Old Dominion University, 2015 

Director: Dr. Daniel E. Sonenshine (Professor emeritus)

The neurobiology o f the synganglion (central nervous system) of the Lyme disease tick, 

Ixodes scapularis and the soft tick Ornithodoros turicata was evaluated using lllumina 

GAII high throughput sequencing which generated high coverage cDNA libraries 

(transcriptomes). These ticks exhibit different biological patterns o f feeding, blood meal 

water, and salt elimination, cuticle plasticity versus cuticle synthesis, development and 

reproduction. RNA sequencing of I. scapularis, and Ornithodoros turicata yielded a 

total o f 117,900,476 raw reads which were assembled to 30,838 contigs and a total of 

63,528,102 also assembled to 132,258 contigs, respectively. Comparison o f Gene 

Ontology (GO) mapping success for genes in 32 important GO molecular categories 

showed little difference between the two species.

Functional assignments o f transcripts predicting neuropeptides, neuropeptide receptors 

and neurotransmitter receptors was done, supported by strong e-values (< -6), and high 

consensus sequence alignments. For the synganglion o f I. scapularis, transcripts 

predicting 23 neuropeptides and/or their receptors were identified. For the synganglion 

of O. turicata, 25 neuropeptides and/or their receptors were identified. Both species had



transcripts predicting all o f the same neuropeptides and/or their neuropeptide receptors in 

common except for allatotropin peptide, found only in I. scapularis, and allatostatin C, 

bursicon p, and glycoprotein B, which were found only in O. turicata.

If the repertoire o f neuropeptide and neurotransmitter messages expressed in the 

synganglia o f O. turicata and I. scapularis is so similar, how can we explain the very 

different physiological processes that occur in these two very different tick species? Real 

time PCR assays were used to study the expression o f candidate genes in response to 

blood feeding. My study shows a strong similarity in gene identity 

(annotation/alignments) of both species but marked differences in the gene expression, 

extent o f up-regulation or down-regulation, and the timing o f their expression in response 

to feeding. This may indeed help explain many o f the differences in the biology of the 

two different species. The diversity o f messages predicting important genes identified in 

this study and differences in their expression in response to feeding offers a valuable 

resource useful for understanding how the tick synganglion regulates important 

physiological functions in ticks.
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NOMENCLATURE

Ast Allatostatin

ASTA Allatostatin-A

ASTC Allatostatin-C

AT Allatotropin

preproAST A Preproallatostatin-A

preproAST C Preproallatostatin-C

JH: Juvenile Hormone

CA Corpora allata

CNS Central Nervous System

/. scapularis Ixodes scapularis

O. turicata Ornithodoros turicata

CC Corpora cardiaca

PETH Pre-ecdysis triggering hormone

ETH Ecdysis triggering hormone

ETHR Ecdysis triggering hormone Receptor

Crz Corazonin

IscapCrzRec Ixodes scapularis corazonin

OturCrzRec Ornithodoros turicata corazonin

qPCR Quantitative Polymerase chain reaction

PCR Polymerase chain reaction

CCAP Crustacean Cardioactive Peptide

CAPA Cardioacceleratory peptide

RC Retrocerebral complexes

SG Salivary gland

SK Sulfakinin
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CHAPTER 1 

INTRODUCTION

Ticks, having been recognized as vectors o f a wide range o f infectious diseases, continue 

to be the focus o f numerous studies in the United States and throughout the world. Ticks 

are second to mosquitoes as vectors of a wide range o f infectious pathogens (protozoa, 

rickettsiae, spirochetes, and viruses) worldwide (Parola & Raoult, 2001; Jongejan & 

Uilenberg, 2004). In contrast to many other ectoparasites, ticks are obligatory blood 

sucking arthropods that parasitize a wide range o f vertebrate hosts, including mammals, 

birds and reptiles (Furmam & Loomis, 1984; Sonenshine, 1991). Ticks have been 

implicated as vectors o f the agents of harmful diseases such as Lyme disease, Rocky 

Mountain Spotted Fever (RMSF), tick-borne encephalitis, and many other diseases 

responsible for high mortality and morbidity in humans, livestock, companion animals, 

and wildlife. Lyme disease is the most commonly reported vector-borne disease in the 

northern temperate zone regions o f the northern hemisphere (Lindgren & Jaenson, 2006; 

Bacon et al. 2008) with 22,014 confirmed cases in the United States in 2012 (CDC 

2013). Due to their veterinary, zoonotic, and public health importance, it is no surprise 

that ticks are among the most widely studied arthropod disease vectors.

Several studies (e.g., Carroll and Schmidtmann, 1996; Randolph & Storey, 1999; Carroll, 

2002; Randolph 2014) carried out on various species o f ticks have concentrated on 

behavioral patterns linked to disease transmission. In order to understand the process of 

disease transmission, feeding and reproduction patterns (including mating & oviposition) 

were also studied. Much is known about tick semiochemicals, specifically pheromones, 

kairmones and allomones (e.g., Kiszewski et al., 2001; Wanzala et al., 2004; Gaillard et
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al., 2004; Mulenga, 2014) and how they regulate feeding behavior, mating behavior, 

responses to environmental cues (odorants, mates, etc) (summarized by Sonenshine,

1991). These studies have provided valuable insights into the triggers (stimuli) and 

corresponding responses/expected responses affecting the regulation o f these processes. 

For example, a Dermacentor variabilis (D . variabilis) male is able to detect 2, 6- 

dichlorophenol (a sex attractant) upon approaching a female but will not react to this 

odorant and proceed to copulate until it has had a blood meal (Sonenshine, 2006). 

Coordination o f these physiological processes and how they interconnect is maintained 

and driven by the nervous system. The central nervous system (CNS) employs the use o f 

vehicles such as neurotransmitters, neuropeptides, and receptors/receptor sites etc. to 

achieve its goal. Neurohormones and neurotransmitters play key roles in tick 

development and physiology. Although we know a lot about the biology and physiology 

of tick development, feeding, and reproduction, understanding tick neurobiology has 

been difficult because o f their small size and difficulty in tick rearing. Therefore, 

precisely how the tick's nervous system regulates these fundamental biological processes 

is largely unknown. However, advances in molecular biology and high throughput 

sequencing technology has made it possible to advance our understanding o f these 

processes in ticks perhaps similar to what has been achieved in insects and crustaceans. 

What is needed is a detailed knowledge of the molecular biology o f this important system 

and the processes that it controls. However, little is known about the transcribed genes in 

the tick CNS (= synganglion), largely because o f the difficulty in extracting sufficient 

amounts o f tissue from these tiny organs. Fortunately, advances in sequencing 

technology now allow researchers to rapidly obtain large amounts o f data from small
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amounts o f tissue (Mardis, 2011).

In the past decade, advances in high throughput RNA sequencing technology (e.g., 

Solexa/Illumina (HiSeq), has revolutionized the field of transcriptomics (Wang et al. 

2009). One o f its most important advantages as compared to earlier methods (e.g., 

Donohue et al. 2010, Anderson et al. 2008) is the exceptional high coverage (millions of 

base pairs) o f gene transcripts (mRNA). Other advantages include the high 

reproducibility o f results and reduced amount o f RNA sample needed because o f the 

absence o f a cloning step (Wang et al. 2009). Transcriptomes provide a global 

expression profile o f  genes active in response to changes in the animal1 s physiological 

states, in a developmental stage, or in response to environmental stimuli. With the 

possibilities made available by next generation sequencing (NGS) platforms, researchers 

are presented with the advantage o f wholly evaluating global gene expression patterns 

Hurd et al., 2009). The application o f comparative transcriptomics for transcriptional 

profiling in organisms has been reported in several studies. For instance this concept has 

been employed in discovering novel stem cell regulators affecting cell-associated 

functions (e.g. tissue homeostasis, stem cell maintenance, regeneration), from about 123 

conserved genes identified when transcriptome data obtained from pluripotent adult stem 

cells o f planarians, human, and mouse (sharing close to 4,432 orthologs) were compared 

(Labbe et al, 2012). This was the first o f this kind of study comparing between 

invertebrate and vertebrate stem cells. A second example (taking into consideration 

species from same invertebrate family) investigated the detection o f pheromone proteins 

and reproductive genes implicated in cryptic speciation processes by comparing 

transcriptomes generated from tissues o f two earthworm species Hormogaster samnitica
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and H. elisae (Novo et al., 2013). This study was also first o f its kind that provided 

insight into the molecular machinery that governs reproduction in earthworms. With 

comparative transcriptomics, it is possible to identity messages predicting genes relevant 

to cellular responses, environmental cues, morphological change, and growth by 

analyzing the changes in gene expression between different conditions (Whiston et al, 

2012).

RNAseq is the preferred method in my effort to identify neuropeptides, 

neurotransmitters, and receptors and protein families common to two tick species 

representative o f the two major families o f ticks i.e. the Ixodidae (hard ticks) and 

Argasidae (soft ticks). This study will compare differential expression o f putative 

genes/proteins that are specific to individual species as well as investigate molecular 

functions o f the candidate genes identified. This study represents the first use of 

comparative transcriptomics to determine and evaluate expression o f neuropeptides and 

neurotransmitters in the synganglion o f two different tick species with fundamentally 

different life histories (e.g., one versus multiple nymphal stages) and how they may 

regulate their different biological processes.

Neuropeptides, otherwise known as neuronal signaling molecules refer to short chain peptide 

molecules employed by neurons to communicate with each other. Studying neuropeptides in 

ticks presents a platform for discovery of their individual target receptors, second messenger 

systems and consequently physiological functions (Hokfelt et al, 2000). Such information 

when acquired will reveal putative targets useful for vector control o f tick -borne 

diseases by altering feeding, mating, and mate finding behavior. In contrast to ticks, 

many more studies o f neuropeptides and neurotransmitters have been carried out in 

insects and crustaceans (Van Wielendaele et al. 2013; Caers et al. 2012; Altstein and
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Nassel 2010; Christie et al. 2010). In addition, numerous studies in Drosophila for 

instance, have revealed evidence o f close to 40 putative peptide G-protein-coupled 

receptors (GPCRs) (Nassel, 2002).

1.1. Problem Statement

Many tick-borne diseases exist in the United States and other parts o f the world. The 

pathogens responsible for causing these diseases are transmitted by many different tick 

species, both hard ticks and soft ticks. The order Ixodida comprises the Ixodidae (hard 

ticks), including both the Prostriates (e.g., Ixodes hexagonus, I. scapularis, etc,) and the 

Metastriates (e.g., D. variabilis, Amblyomma, and Rhipicephalus); the Argasidae (soft 

ticks, e.g, Ornithodoros turicata)', and the Nuttallielidae (with only one species, 

Nuttalliela namaqua). These tick categories differ on the basis o f morphology, feeding 

habits and life cycle details. For instance, hard ticks feed slowly over many days, often 

increasing up to 100 times their pre-feeding body weight. They synthesize new cuticle to 

accommodate the enormous blood volumes consumed during feeding. Excess blood 

meal water is eliminated by secretion from the salivary glands. Although prostriate 

males are able to undergo spermatogenesis as well as to mate prior to a blood meal, 

metastriate males need a blood meal to complete maturation o f their reproductive organs. 

Soft ticks take frequent small blood meals from hosts within periods extending over 

weeks or months irrespective of mating. They do not synthesize new cuticle, but merely 

expand the soft body folds to accommodate the small blood meal. The coxal glands 

during or following blood feeding eliminates excess blood meal water. The female soft 

tick adults are able to mate at any time prior to or after feeding while sheltering in caves, 

burrows and similar niches (Gray et al., 2014). Prostriate females o f the genus Ixodes 

may mate prior to feeding or while feeding on the host but cannot engorge to repletion
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until copulation and insemination is complete. Metastriate ticks (e.g., genus 

Dermacentor) need a prior feeding on a vertebrate host before maturation o f their sexual 

organs and will only imbibe a blood meal to full engorgement after copulation and 

insemination is complete. To understand these physiological processes, we need to know 

what genes or neuropeptides are active or responsible in real time for triggering the 

responses or activities leading to rapid blood feeding to full engorgement and, 

subsequently, oogenesis and oviposition. Following mating and insemination, females 

need to complete a blood meal to stimulate vitellogenesis, oocyte maturation, and 

subsequently, oviposition. Feeding/acquiring a blood meal is important and common to 

all tick species. The reason why this activity is of great medical and economic 

importance is the simple reason that all major pathogens o f the dreaded range o f tick- 

borne diseases (Lyme, Rocky Mountain Spotted Fever (RMSF), STARI, Rickettsia, Tick 

Borne Relapsing Fever (TBRF), etc) like most vector borne diseases, are transmitted 

during the course of feeding on the hosts. Understanding the molecular basis o f how 

feeding, mate finding, reproduction, and oviposition are regulated, and how they all 

connect to enhance/maintain the success o f ticks in the ecosystem, will open up a new 

frontier in vector control. In fact molecular triggers o f these mechanisms in ticks are 

poorly understood. Neuropeptides are actively involved in the regulation o f many 

fundamental physiological processes, e.g., homeostasis, feeding, excess water 

elimination, developmental processes, modulation o f neuronal and muscular activity and 

many others (Nassel, 2002; Alstein & Nassel, 2011). Studying these neurohormonal 

molecules may help us understand the regulation of major physiological processes in 

ticks. Using comparative transcriptomics accompanied by reverse transcriptase (RT) - 

qPCR for both tick species, I. scapularis and O. turicata, will give a global view of
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candidate neurohormonal genes that are being turned on or off in response to host 

recognition, attachment, and blood feeding. These findings will be useful in identifying 

targets for regulation of vital aspects of tick biology for control o f disease transmission. 

The discoveries resulting from this work will be useful for developing new approaches 

for tick control as well as provide a general model that can be applied across all tick 

categories. Comparative transcriptomics of various mosquito species has already been 

done to characterize important differences that may be useful for understanding features 

o f their biology that open new opportunities for disease vector control (see Koutsos et al. 

2007; Colpitts et al. 2011 for examples). In this study, I be applying advanced molecular 

tools to identify neuropeptides/receptors, and receptors for neurotransmitters in the 

transcriptomes o f two tick genera: Ixodes, and Ornithodoros, and also investigate the 

differential expression profile o f the transcripts identified. To this end, a dissertation 

statement is offered:

1.2. Dissertation Statement

Exploring the neuropeptides, neuropeptide receptors, and receptors for neurotransmitters 

in the synganglia o f part fed females o f Ornithodoros turicata (Argasidae) and Ixodes 

scapularis (lxodidae) with insights into their roles in the contrasting biology of these 

different species.

1.3. Specific Aims

The specific aims o f this project are

1) To generate and analyze the transcriptomes o f the synganglia from feeding/fed 

females using Illumina sequencing technologies for each o f the two tick species, Ixodes



scapularis and Ornithodoros turicata.

2) To carry out a comparative analysis of the transcriptomes for the neuropeptides and 

neurotransmitter receptors expressed in the synganglia o f part-fed females o f I. scapularis 

and O. turicata by using basic bio-informatics tools to perform assemblies, and then 

submitting the assembled transcripts to BLAST. The BLAST output will generate a list 

o f annotated transcripts o f the neuropeptides, neuropeptide receptors and neurotransmitter 

receptors present in the transcriptomes based on low e-value matches (< e-6) in public 

databases (e.g., BLASTnr). Genes will be selected based on information from similar 

studies on other arthropods.

3) To support the presumed functional roles o f annotated neuropeptides, neuropeptide

receptors, and neurotransmitter receptors as predicted in other arthropods using sequence

alignments and reverse transcriptase quantitative polymerase chain reaction (RT-qPCR).

Gene expression assays of the candidate genes will be performed to compare differential 

gene expression in unfed versus part-fed females of I. scapularis and O. turicata ticks 

synganglia. The results of the alignments and RT-qPCR assays will support tentative gene 

identifications (annotations). Examination of the differences in gene expression in the two 

different species in response to feeding may help explain how these genes regulate the 

different ways in which the two species suck blood, expand their integuments, eliminate 

excess blood meal water, initiate reproduction, and other fundamental physiological 

processes. This is the first study comparing the functional roles of neurohormones between 

a hard tick (/. scapularis) and a soft tick (O. turicata) using comparative transcriptomics 

and gene expression assays.

Rationale

Ticks are obligate blood sucking parasites. Blood is their sole nutrient source. Female 

ticks imbibe large quantities o f blood so as provide sufficient nutrients for oogenesis and
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oviposition. Prostriate ticks such as Ixodes scapularis are considered to be an ancient 

group, perhaps close to the ancestral species (Durden and Beati, 2014). They may 

commence mating prior to or during feeding and integumental growth (i.e., new 

synthesis) which is essential for the large blood meal that they imbibe. Metastriate ticks 

such as D. variabilis are considered to be a more recently evolved group (Durden and 

Beati, 2014). In these ticks, mating only occurs on the host. In feeding females, 

integumental growth proceeds slowly until after mating and copulation, when most o f the 

enormous blood meal is imbibed. In both cases, the fully engorged females drop from 

their hosts and lay thousands o f eggs in a single gonotrophic cycle. Soft ticks such as O. 

turicata feed rapidly, often within as little as 30 -  60 minutes, and imbibe relatively 

small blood meals. No new integument is created. Instead, unfolding o f the existing 

cuticle occurs so as to accommodate the small blood volume (~ 10 times the original 

body size) and provide sufficient nutrients for the small egg mass that follows. In this 

and similar soft tick species, multiple feeding and gonotrophic cycles occur, dispersing 

the progeny over extended periods o f time. Females lay only small egg masses, e.g., up 

to several eggs, after each feeding, and require additional blood meal to oviposit again. 

Clearly, these are very different life cycle patterns. Very little is known about the 

molecular pathways that control these differences. The regulation o f the feeding and 

reproductive processes in the soft ticks described above is poorly known (Oliver et al.

1992). Few molecules were reported to function in these processes (Zhu and Oliver,

1991; Mans et al. 2008 a) identified mostly by comparison with (supposedly) similar 

molecules in insects. Molecules that regulate the ecdysial process (molting) or wing 

expansion such as bursicon, corazonin, and eclosion hormone that occur in insects were 

reported to be expressed in some adult ixodid ticks (Bissinger et al. 2011) This is
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surprising since adult ticks do not molt nor have wings. Obviously, the function ascribed 

to a particular molecule when it was first described may differ in another species e.g., 

tick vitellogenin, a hemelipoglycoprotein incorporated into oocytes, is very similar to 

other tick storage proteins but have different functions (Khalil et al. 2011). Why such 

molecules occur in ticks and how they function remain to be discovered. Other insect 

molecules that regulate diuresis have similar cognate (homologous) molecules in ticks, 

even though nitrogenous waste excretion differs radically between the two groups (uric 

acid versus guanine and other purines). Similar questions relate to signaling molecules, 

kinins, and many others.

To date, the only in-depth investigation o f the neuropeptides, neurotransmitters, and 

receptors in the synganglion of a tick was that done by Bissinger et al. (2011) with female 

Dermacentor variabilis. In view o f the great diversity o f tick species, knowledge o f these 

molecules from a single species may not be truly representative o f the entire suborder 

Ixodida. Moreover, ixodid and argasid ticks exhibit major differences in their 

development, blood feeding, reproduction and other biological processes, as noted in 

sections 1.5 below. Therefore, this study is proposed to address the comparison o f these 

essential regulatory molecules and their gene expression in different species o f ticks and 

particularly, representatives o f the two major families o f ticks.

1.4. Categories o f Ticks

Ticks, in general taxonomical terms, and on the basis o f classification, are grouped as 

stated below:

Kingdom: Animalia 

Phylum: Arthropoda 

Class: Arachnida



Subclass: Acari

Superorder: Parasitiformes

Order: Ixodida, Argasidae, Nuttalliedae.

Ticks are grouped into three families, namely, Ixodidae, Argasidae and Nutttallielidae. 

The latter is represented by a single species, (Nuttalliella namaqua) and will not be 

considered further. Ixodidae, or hard ticks, is by far the largest family, and the one with 

the most economic significance o f the two. It comprises 13 genera and well over 650 

species (Sonenshine and Roe, 2014). Genera represented in this group include Ixodes,

Haemaphysalis, Hyalomma, Rhipicephalus, Rhipicentor, Anocentor, Aponoma, Amblyomma, 

Anomalohimalaya, Cosmiomma, Margaropus, Nosomma, and Dermacentor (Hoskins, 1991; 

Durden and Beatii, 2014). The presence of sclerotized or hardened body parts, e.g., 

capitulum, scutum, and plates, is a distinctive characteristic of the ixodid ticks (Obenchain & 

Galun, 1982). These ticks exhibit a remarkable ability to take up and concentrate an 

enormous volume of vertebrate blood during feeding, in some cases increasing to ~ 100 times 

their original body weight. To accomplish this, feeding ticks must excrete excess blood meal 

water and electrolytes since their internal osmotic pressure is approximately 1.5 times greater 

than vertebrate blood. Feeding ticks continuously excrete water and salts via their saliva 

into the skin o f their hosts (Needham & Teel, 1991).

The Argasidae, or soft ticks comprises 186 species with 5 genera, Argas, Ornithodoros, 

Otobius, Nothoaspis and Antricola. These ticks have a flexible, folded leathery cuticle 

which unfolds during feeding, enabling them to expand their bodies rapidly and feed 

quickly, often within minutes or hours (Sonenshine and Roe, 2014). With few 

exceptions, sclerotization is absent in this group (Obenchain & Galun, 1982; Sonenshine,
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1991; Sonenshine & Roe, 2014). Except in the larval stage, the mouthparts are located 

under the anterior end of the body. In the absence of a scutum, distinguishing males 

from females is done by examining the shape o f the genital pore. Nymphs are 

distinguished from adults by the absence o f the genital pore. Aside from these specific 

features, the anatomy o f soft ticks is basically the same as the hard ticks (Needham & 

Teel, 1991). However, major differences in the biology o f these two families o f ticks 

exist, especially pertaining to feeding habitats, number o f life stages, reproduction, host 

finding and host preferences, tick-host behavior, tick relationship to their environment, 

and disease association among species in this group, (Sonenshine, 2005; Sonenshine and 

Roe, 2014; Needham & Teel, 1991). These differences in tick biology are discussed 

below.

1.5. Brief Overview of Tick Biology

Feeding, m ating, and osm oregulation in ixodid and argasid ticks.

Ixodes scapularis biology: The hard tick (family Ixodidae), /. scapularis, has 3 active 

life stages (excluding the egg), larva, nymph and adult. An example o f an adult female is 

illustrated in the image below (Fig. 1.1). After contacting a suitable host, females attach 

by cutting into the host skin with their chelicerae and then embed their mouthparts into 

the freshly created wound site. The ticks secrete a cement compound in their saliva, 

creating a firm bond to host skin. Subsequently, anti-coagulants and other anti­

hemostatic agents enlarge the wound site, allowing blood and tissue fluids to ooze into 

the wound (Ribeiro et al. 1985; Francischetti et al. 2009). These actions create a feeding 

pool from which the ticks feed by sucking blood. Females feed slowly, requiring many 

days to fully engorge. Feeding females feed slowly for many days until they are mated,
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whereupon the females engorge rapidly until replete, usually within 1 or at most 2 days.

In order to expand to the huge size reached by the females o f this species, cuticle 

synthesis takes place continuously as increasing volumes o f blood are imbibed. 

Nevertheless, the body cuticle remains very flexible so as to accommodate the expansion 

o f the growing body. In this species, mating may occur in the natural environment prior 

to feeding or while feeding on the vertebrate host. As noted previously, in contrast to 

metastriate hard ticks, males o f /. scapularis do not feed. During female feeding, 

elimination o f excess blood meal water and excess salts is done by secretion o f saliva into 

the wound site, i.e., while feeding on the host. Adults mate only once, after which the 

female deposits a very large egg mass (many thousands o f eggs) and dies.

Ornithodoros turicata biology: The soft tick (family Argasidae), O. turicata, also has 3 

life stages (excluding the egg), namely, larva, nymph and adult. However, there are 

multiple nymphal stages, each o f which must feed and molt again, thereby extending the 

duration of the life stages by many months or even years. An example o f an adult female 

is illustrated in the image below (Fig. 1.1). In this species, mating usually occurs in the 

natural environment, independent o f feeding, although it may also occur while feeding on 

the vertebrate host. After finding a suitable host, these ticks use their chelicerae to cut 

through their host skin and embed their mouthparts. However, in contrast to 7. scapularis 

and other ixodid ticks, soft ticks, including O. turicata, do not secrete cement. Instead, 

they commence sucking blood from the wound immediately, salivating anticoagulants 

and other anti-hemostatic agents to enhance blood flow (Mans et al. 2008b). Feeding 

occurs very rapidly, usually within 30 -  60 minutes. During or immediately after 

feeding, the ticks eliminate large quantities o f water (and excess salts) via their coxal



glands, enabling them to concentrate the blood meal. In contrast to /. scapularis, both 

males and females feed. Adults can mate and feed numerous times. After each 

bloodmeal, the mated female deposits a relatively small egg mass (several hundred eggs).



Figure. 1. Images comparing (). turicata and I. scapularis females from the ventral aspect. Star indicates location o f  female genital 
aperture. Photo credit: Dr. David Gauthier. Dept. Biological Sciences, Old Dominion University, Norfolk, Virginia. Bar = 1.0 mm.
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1.6. Tick Brain General Morphology & Biology

Tick brain structure: The central nervous system o f ticks is consolidated into a single 

mass, the synganglion, believed to be synonymous with the brain and ventral nerve cord 

o f insects and crustaceans. The synganglion is divided into two major regions, the supra- 

esophageal region and the sub-esophageal region by the passage o f the esophagus 

between these two sectors. The supraesophageal region contains the protocerebral, 

cheliceral, and palpal ganglia. Nerves extending from this region innervate the salivary 

glands, pharynx, esophagus, and optic lobes. Also present on the dorsal side o f this 

region is the retrocerebral organ complex. The subesophageal region contains the 4 

pedal ganglia, the opithosomal ganglion and the olfactory lobes. Nerves from this region 

and and most o f the internal organs, innervate the 4 pairs o f walking legs, most o f the 

internal organs (reviewed by Simo et al. 2014).

The outer zone o f the synganglion comprises the cortex, containing masses o f neuron cell 

bodies clustered into lobes that regulate different functions. Also present are 

neurosecretory cells grouped into small clusters, known as neurosecretory centers. These 

centers are the sites where neuropeptides and neurotransmitters are synthesized. 

Neuropeptides and neurotransmitters pass from these neurosecretory centers via the 

axons o f nerves and neurosecretory tracts to receptors in the target tissues or organs 

(Simo et al. 2014). A diagram o f the synganglion showing the major regions and the 

neurosecretory centers can be found in Simo et al. (2014). The inner region o f the 

synganglion comprises the neuropile. It consists o f a complex system o f fibrous tracts o f 

axons and dendrites from the cortical zone neurons, organized into glomeruli, 

commisures and other connections between the various ganglia (Szlendak and Oliver, 

1992). Using immunoreactive staining with antibodies to insect neuropeptides and
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neurotransmitters, Simo and colleagues have revealed the existence o f a complex 

peptidergic network in the synganglion o f a hard tick, Rhipicephalus appendiculatus and 

identified the neurosecretory centers identified with many o f the specific neuropeptides 

(Simo et al., 2009a). However, immunoreactive staining alone is not conclusive evidence 

o f the same neuropeptides in I. scapularis or O. turicata, indicating the need for further 

work to catalogue these molecules and/or their corresponding receptors and to compare 

their gene expression in the two different species.

In this dissertation, I sought to compare the messages in the transcriptomes o f the I. 

scapularis and O. turicata synganglion transcriptomes predicting the neuropeptides, 

neuropeptide receptors and neurotransmitter receptors. I also attempted to compare gene 

expression assays (RT-qPCR) for these same neuropeptides, neuropeptide receptors, and 

neurotransmitter receptors. Finally, I reviewed the similarities and differences in 

expression o f these regulatory molecules and suggested possible roles for explaining the 

biological differences between these two species representative o f the two major tick 

families, Ixodidae and Argasidae.
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CHAPTER 2 

MATERIALS AND METHODS

2.1. Tissue Collection

The tick strains used were Ixodes scapularis (Wikel strain, originally from University o f 

Connecticut, Storrs, CT), and Ornithodoros turicata (originally from J.H. Oliver,

Georgia Southern University, Statesboro, GA). Adult females, both unfed and fed, were 

used in the studies. Both tick species were pure line strains maintained in the tick 

research facility at Old Dominion University Biology building equipped with a 

functioning walk-in PGC micro pro 2000 Incubator (PGC Inc., Black Mountain, NC) 

furnished with a Honeywell digital Humidity/Temperature Sensor (Morris Town, NJ) 

and a reach-in PGC incubator with precise humidity control (PGC Inc., Black Mountain, 

NC). The parameters for feeding and growing tick colonies as performed in the walk-in 

incubator were done at a relative humidity o f 92 + 0.5 % RH and temperature o f 18 ± 1.3 

°F. After feeding, immature ticks were held in the reach-in incubator under 26 ±1° C. 

and 94 ± 0.5% R.H. for molting. The I. scapularis females were partially fed on New 

Zealand white rabbits, Oryctolagus cuniculus (Charles River Labs, MA) ) for 5-7 days, 

then forcibly detached and transferred to the tick lab for dissection. O. turicata were fed 

on albino mice, Mus musculus (Charles River Labs, MA) for 1 - 2 hours and then 

collected immediately from the mice. O. turicata females were collected immediately 

after engorgement because o f their rapid feeding behavior. A total o f 30-50 part fed 

females o f I. scapularis and fully engorged O. turicata were used in this study for the 

RNA sequencing and approximately 500 -  1000 more for gene expression studies 

achieved by reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) 

experiments.
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Ethics Statement: Handling o f animals in this project was carried out as specified in the 

Guide for the Care and Use o f Laboratory Animals o f the National Institutes o f Health. 

The protocols were approved by the Old Dominion University Institutional Animal Care 

and Use Committee (IACUC). The approved protocols (#10-018 and #10-032) are on 

file at the Office o f  Research, Old Dominion University. Norfolk. Virginia.

Figure 2. Photograph o f dissection o f a partially engorged ixodid tick (Dermacentor 
variabilis) showing the location o f the synganglion in the anterior portion o f the tick 
body. Similar procedures were used for Ixodes scapularis and Ornithodoros turicata. 
Star indicates synganglion (white structure adjacent to asterisk). Bar = 1.0 mm.

Specimen was immobilized on tape and dissected with the aid o f a stereoscopic 

microscope. Tissues o f synganglia were collected fresh for RNA extraction. Adult 

specimens were cleaned with ethanol, followed by RNAase zap (Life Technologies. 

Carlsbad, CA). Each female tick was attached to carpet tape on glass microscope slides, 

dorsal side up. and dissected under a stereoscopic microscope (Wild Hebrugg.
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Switzerland). Ticks were cut open from their lateral regions with dissecting scissors 

(Fine Science Tools Inc., Fosterity, CA) and synganglia (see Fig 2) were detached with a 

pair o f fine-pointed Dumont No. 7 forceps [0.1 mm] and Vannas stainless steel 

irridectomy scissors with 2.5 mm cutting edges (Ted Pella, Inc., Reading, CA). Each 

synganglion collected was rinsed in a single cavity depression slide containing 200 pi of 

phosphate buffered saline (PBS buffer), pH 7.4, and extraneous tissues were removed. 

Next, 1 0 -1 5  tick synganglia were transferred into freshly made 350 pi of RLT Lysis 

buffer made in accordance with the Qiagen RNeasy Plus Micro Kit instructions (Qiagen, 

Valencia, CA) in a 1.5 mL Eppendorf microcentrifuge tube. The tube was placed on dry 

ice, insuring that each synganglion sample remained frozen while the collection 

accumulated. Next, the samples were thawed and the total RNA extracted immediately 

in accordance with the kit instructions.

2.2. RNA Extraction

RNA extraction was performed using the Qiagen Rneasy Micro kit and as specified in 

user manual. Briefly, synganglia collected in RLT buffer as described previously, were 

disrupted with a Sonic Dismembrator Model 100 (Fisher Scientific, Waltham, MA).

Sonic disruption was repeated 3 times for 10 sec and placed for 30 sec on wet ice 

between each cycle. Next, the disrupted tissues were transferred to a ceramic mortar and 

hand homogenized with a ceramic pestle (Corstek, Golden, CO). The resulting 

homogenate was then transferred into the same Eppendorf 1.5 ml microcentrifuge tube 

and spun in an Eppendorf model 5424 centrifuge (Eppendorf AG, Hauppauge, NY) at 

>8,000 x g for 3 minutes. The supernatant was collected and transferred into a gDNA 

column inserted in a collection tube (provided with the RNeasy kit). RNA extraction was 

performed as described in the user manual. Purified RNA was collected and quantified
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with the Nanodrop 2000 instrument (Thermo Fisher Scientific Co, Waltham, MA). 

Measurements were documented as concentration and purity (A260/280). RNA samples 

with A260/280 ratio range of 1.7 to 2.2 were considered to be o f acceptable purity 

(Wilfinger et al., 1997) and any sample with a ratio o f <1.7 were discarded. The samples

were stored immediately in the -80 °C freezer.

2.3. Quality Assurance of Total RNA

Quality assurance o f total RNA isolated from the synganglia o f part fed female /. 

scapularis and O. turicata ticks were required prior to Illumina sequencing. Quality 

assurance assays were accomplished with the Agilent 2100 Bioanalyzer (Agilent 

Technologies, Inc., Santa Clara, CA), located in the Genome Sciences Laboratory at 

North Carolina State University, Raleigh, NC. While analysis o f total RNA was 

performed with the RNA 6000 Nano Kit enhanced for use with the Agilent 2100 

Bioanalyzer collection o f data, visualization, interpretation, and presentation o f results 

were achieved by the 2100 expert software (Agilent Technologies, Inc., Columbia, MD). 

Total RNA was analyzed as specified in manufacturers manual. Samples were processed 

on a chip and the chip was then inserted into the Bioanalyzer to initiate the run according 

to manufacturer’s instructions. Results were analyzed accordingly and RNA quality was 

determined consequently.

RNA extracted from synganglia tissues o f part fed females o f I. scapularis and O. 

turicata ticks yielded > 12 pi for each dissection set. Total RNA yield and purity for 

each sample was determined with a Nanodrop 2000 spectrophotometer (Thermofisher, 

Wilmington, DE). Samples with low purity (< 1.7) were discarded. Each sample set was 

pooled to give a yield o f more than > 1 pg o f total RNA needed for the Illumina run. The
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260/280 ratio was determined to be > 1.8. The samples were submitted to the Genome 

Sciences Laboratory at the North Carolina State University (Raleigh, NC) and prepared 

for Illumina sequencing using the Illumina TruSeq RNA Sample Prep Kit v2 (Part No. 

15026495, Illumina, Inc. San Diego, CA). The integrity o f these RNA samples was 

evaluated further using a Bioanalyzer 2100 (Agilent Technologies, Santa Clara, CA); 

samples that did not meet minimum requirements for Illumina sequencing (RNA integrity 

> 8) were discarded) (see Fleige and Pfaffl 2006).

2.4. Sequencing by Illumina

2.4.1. Library Preparation

Messenger RNA meeting Bioanalyzer quality assurance standards was prepared for 

sequencing on the Illumina platform. Library preparation o f mRNA was achieved with 

the TruSeq RNA Sample Prep Kit v2 (Part No.5026495, Illumina Inc., San Diego, CA). 

Technicians at the Genome Science Facility o f North Carolina State University, Raleigh, 

NC, performed all subsequent procedures, for Illumina sequencing. Paired end libraries 

were constructed using the procedures highlighted in the m anufacturers manual. To 

achieve this, messenger RNA were subjected to a series o f procedures ranging from 

mRNA fragmentation, first and second strand cDNA synthesis and clean-up, and ligation 

of adapter to cDNA strands in accordance with instructions in the sample prep kit noted 

above. In addition, cluster generation by hybridization and bridge amplification o f cDNA 

libraries to flow cells was performed.

2.4.2. Sequencing and Base calling

Sequencing was performed using the “Sequencing By Synthesis (SBS)” procedure. After 

the incorporation o f FI-NTP (fluorescently labeled nucleotide) to the strands, each dye
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was imaged to identify the bases. Base calling is measured by the intensity o f the signals 

emanating from the reaction for each base read out from sequential images. The 

sequencing reaction cycle was repeated several times. For paired-end sequencing runs, 

the single read sequenced strands were stripped off and the 3' ends o f the template 

strands and primers attached which were blocked previously were unblocked to allow 

template to loop over to form a bridge with primers on the lawn. These primers extend 

forming a bridge o f double stranded DNA molecules. The original template forward 

strand was cleaved and washed off the flow cell. Next, the 3‘ends o f the single strands 

were blocked. Each resulting DNA strand then has a sequencing primer attached to it 

whereupon sequencing is performed and imaged as previously described.

2.5. Assembly

Adapter and primer sequences, as well as ambiguous bases were first trimmed from the 

raw reads using default trimming parameters prior to performing assembly to determine 

coverage and overlapping of reads. The trimmed raw reads were assembled into contigs 

by using the CLC-BIO Genome de novo Assembler software (CLC Bio, Aarhus, 

Denmark) to perform de novo assembly. The program reported average raw read length 

(trimmed), total raw reads, average contig length and the total number o f contigs. The 

results were documented in FASTA formats (Pearson and Lipman, 1988) as contigs in 

text files.

2.6 Bioinformatics

Following assembly, the assembled data files (contigs) in fasta format were submitted to 

non-redundant Basic Local Alignment Search Tool (BLAST) program (Altschul et al, 

1990) at the National Institutes o f Health, National Library of Medicine, National Center
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for Biotechnology Information (NCBI) using the NCBI program Netblast (currently 

BLAST Plus) in December, 2011 for 7. scapularis and May, 2012 for O. turicata. 

Parameters selected were e-values set at E-06 and the single best match. Perl script or 

similar programs were used by the Genome Sciences Laboratory at the North Carolina 

State University to organize the data into an excel file with columns showing the contig 

numbers, contig length, matching NCBI sequence numbers, e-values, and annotations. 

Further analysis to validate these genes was performed using the Unweighted Pair Group 

Method with Arithmetic Mean (UPGMA) algorithm (Sokal and Michener, 1958) in the 

Geneious 7.0 program (Drummond et al, 2011) to perform local alignments o f the 

contigs with already annotated conspecific genes from databases. This same program 

was used to determine relationships and pairwise similarities between the I. scapularis 

and O. turicata transcriptomes. Transcripts with pairwise similarities o f < 80% with the 

conspecific Ixodes genome were discarded. In cases where strong identities exist with 

other species for same genes, they were accepted.

2.7. Mapping & Gene Ontology

Mapping, annotation, and gene ontology o f de novo assembly results for the synganglion 

transcriptomes o f part-fed females o f I. scapularis and O. turicata ticks were performed 

using Basic Local Alignment Search Tool (BLAST-[blastnj) algorithm (Conesa et al. 

2005) in BLAST2GO program (BioBam Bioinformatics S.L., Valencia, Spain). 

BLAST2GO mapping was done in Spring, 2012 (the program requires several weeks to 

complete these processes). The program was used to search for similarities by comparing 

contig sequences against nucleotide sequences deposited in the NCBI Genbank 

nucleotide collection (nr) and Expression Sequence Tag (EST) databases. The search
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was performed at an E-value cutoff o f E-06; and blast hit of 3. Gene Ontology (GO) 

terms related to the hits from the BLAST were retrieved after successful mapping o f the 

transcriptomes to GenBank. The BLAST2GO program assigned the transcripts that were 

submitted to their different categories for various molecular processes. The GO category 

assignments at level 3 of molecular processes, was selected for further study. The level 3 

GO molecular categories were examined in relation to their importance in understanding 

their roles in synganglion function, especially those that included neuropeptides, 

neuropeptide receptors, and neurotransmitter receptors.

2.8. Gene Expression Study

2.8.1. Reverse Transcription (cDNA Synthesis)

RNA isolated as described in 2.1., was reverse transcribed to complementary DNA 

(cDNA). The kit used to accomplish this was the Superscript II Reverse Transcriptase 

kit (Invitrogen Inc, Carlsbad, CA). The cDNA synthesis was performed according to 

instructions outlined in the manufacturers manual. An amount of 60-80 ng o f total RNA 

isolated from the synganglia o f unfed and part-fed female ticks o f I scapularis and 

O.turicata were used as starting material for a 20 pi first strand cDNA synthesis reaction. 

An amount o f 60 - 80 ng of RNA was primed with 0.5 pg oligo (dT)i2-is, and 1 pi lOnM 

dNTP brought up to volume with required amount of Nuclease-Free Water (Qiagen) in

0.2 mL (Bio-Rad, Hercules, CA). The tube was transferred into a thermal cycler (TC- 

312, TECHNE, Duxford, Cambridge) and the mixture heated at 65 °C for 5 min using a 

set program to remove secondary structures as described by Burgmann et al (2003). The 

mixture was immediately incubated on ice for at least 1 min after which 4 pi 5X first- 

Strand Buffer, 2 pi 0.1 M DTT, and 40 U RNaseout Recombinant Ribonuclease Inhibitor
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was added and incubated in thermal cycler at 42 °C for 2 min. At this point, 200 U o f 

Superscript II Reverse transcriptase was added and incubated at 50 °C for 55 min 

followed quickly by an inactivation step at 70 °C for 15 min and held at 4 °C for oo.

2.8.2. Gene Expression Profiling

Gene expression was determined by real time quantitative polymerase chain reaction 

(RT-qPCR) assays using the MyiQ2 Two Color Real-Time PCR Detection System (Bio- 

Rad, Hercules, CA). The general experimental design approach used for singleplex assay 

was based on the background o f final RT-qPCR data analysis by “Relative Quantification 

Normalized to a Reference Gene” method described in the Bio-Rad Laboratories Real 

Time PCR Applications Guide, 2006 (www.bio-rad.com/webroot/Bulletin.5279.pdf; 

Mathews et al, 1999; Rozen and Skaletsky, 2000). This method requires using a 

reference gene as a normalizer rather than unit mass. It was also preferred because 

accurate quantitation and loading o f starting material is overlooked in addition to the 

convenience it presents when working with limited material. The reference genes used 

after test trials with glyceraldehyde-3- phosphate dehydrogenase (GAPDH), ribosomal 

protein L8 (RPL8), and Actin, were GAPDH and RPL8 for I. scapularis and O. turicata, 

respectively. The procedures for designing, performance, and analysis o f RT-qPCR 

assays generally followed the MIQE (=Minimum Information for qPCR Experiments) 

guidelines (Bustin et al. 2009) with detailed descriptions presented below.

2.8.3. Primer design and Validation

Forward and reverse primers for singleplex assays were designed for candidate genes 

coding for neuropeptides, neuropeptide receptors and neurotransmitter receptors o f adult 

females o f both I. scapularis and O. turicata. Primers were designed with Beacon 8.02

http://www.bio-rad.com/webroot/Bulletin.5279.pdf
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software (PREMIER Biosoft, Palo Alto, CA), IDT primer by Integrated DNA 

Technologies ( www.idtdna.com) and supplied by Integrated DNA Technologies (IDT, 

Coralville, IA). Each primer set was designed to amplify segments o f candidate genes to 

create amplicon lengths o f between 80 - 120 base pairs confirmable by gel 

electrophoresis. Only primers predicting a high probability (>85%) for amplifying the 

target gene sequence and in which amplicon matched the target gene in Genbank were 

accepted. A serial dilution o f a synganglion cDNA sample (from 10° to 10'6) was tested 

with the GAPDH and/or RPL8 primers and the results evaluated to determine the 

sensitivity o f the qPCR assay (R2 =0.97 for GAPDH; R2 =0.98 for RPL8). The 

sequences o f the primer pairs used for the reference genes and for each neuropeptide 

and/or receptors and each neurotransmitter receptor for I. scapularis and O. turicata are 

located in Appendix A.

2.8.4. Quantitative Polymerase Chain Reaction (qPCR)

Real-time quantitative polymerase chain reaction (qPCR) amplification assays were 

accomplished using the MyiQ2 Two Color Real-Time PCR Detection System built on the 

quality gradient-enabled icycler thermal cycler (Bio-Rad laboratories Inc., Hercules, CA) 

and the analysis were performed with the accompanying Bio-Rad IQ5 2.1 Standard 

edition Optical system software 2.1 (Bio-Rad Laboratories Inc., Hercules, CA). Based on 

the decision to optimize with reference housekeeping genes, all primer sets designed for 

the candidate genes and the two reference genes (GAPDH for I. scapularis and RPL4/L8 

for O. turicata) were subjected to gradient real-time qPCR solely for the purpose of 

determining optimum annealing temperatures for the individual assays. In order to 

determine expression profiles o f each candidate gene in response to feeding, cDNA

http://www.idtdna.com
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samples reversed transcribed from mRNA extracted from unfed and part-fed females o f I. 

scapularis and O. turicata synganglia were used as templates. The experimental design 

for the gene expression studies featured three biological samples and 4-6 technical 

replicates for each candidate gene and reference genes. The design also included no 

template controls (NTC=all but template) as well as negative controls (water). The 

SYBR Green Supermix (Bio-Rad Laboratories, Hercules, CA) ready-to-use reaction 

master mix was used to prepare a 1 Opl PCR reaction assay for each gene expression 

work. The master mix, which contained antibody-mediated hot-start iTaq DNA 

polymerase, dNTPs, MgC12, SYBR Green 1 dye, enhancers, stabilizers, and fluorescein, 

was optimized for dye-based quantitative PCR. For a typical 10 pi reaction mixture, 5pl 

o f 2x SYBR Green supermix (final concentration 1x), 1 pi o f each forward and reverse 

primers (final concentration 100 nM), and lp l template cDNA (final conc. 75 ng/pl) were 

pipetted into wells o f a 96 -well 1 Cycler iQ clear PCR plates (BIO-RAD Laboratories), 

and mixed thoroughly on ice and under dark conditions.

The PCR plate was sealed with PCR Sealers Microseal B ‘optically transparent film (BIO­

RAD Laboratories, Hercules, CA). The plates were centrifuged (1 min) to get rid of 

bubbles as well as to collect reaction mixture at bottom of well. Once all steps were 

completed, the plate was placed in the plate compartment o f the thermal cycler and qPCR 

was done using the “2 step Amplification + Melt” default program settings. A 

representative protocol is as follows:

Cycle 1: Polymerase Activation & Initial denaturation: 95 °C for 3 min,

Cycle 2: Amplification (*40):

Step 1: Denaturation: 95 °C for 10 - 15 sec

Step 2: Annealing /Extension: 55 °C - 60 °C for 10 sec

Cycle 3: (x81): Melt Curve Analysis: 55 °C - 95 °C for 2-5 sec 0.5 sec increment.
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Target
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Figure 3. Experimental design o f gene expression study showing number o f biological 
samples and technical replicates and their arrangement on a 96-well plate.

Plate reading was taken after the 2nd cycle o f annealing/extension step and after the melt 

curve analysis step. The melt curve analysis was important to confirm that only the 

specific products were being amplified as well as the purity o f template being used; if the 

melt curve showed abnormalities, e.g.. secondary peaks unrelated to the melt temperature 

for the gene being assayed, the result was discarded. As qPCR progressed, accumulation 

o f products was measured by the amplification curve (determined by relative 

fluorescence unit [RFU] plotted against the cycle) as the primary output. The threshold 

cycle commonly referred to as the Ct value was derived from the point at which the 

amplification curve intersected with the amplification threshold. The software program 

automatically applies passive reference normalization (Rn) to enforce baseline correction 

o f each curve. Using the delta-delta CT method (Schmittgen and Livak. 2008). the 

expression levels o f each candidate gene were calculated from the threshold cycle by 

normalizing the amount o f target in each sample relative to internal reference genes



30

which in this case were glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and 

Ribosomal protein L8 (Rpl8) for I. scapularis and O. turicata respectively. Each result 

was reported in fold increase or fold decrease in response to feeding cues. All results 

were plotted into a bar chart for visualizing the resultsFold differences between the 

unfed (set to 1.0) versus the fed samples for each gene assayed were reported.

To assure reliability o f the qPCR assays, the mean and standard deviations o f the Ct 

values o f the 4 - 6  replicates for each biological sample were determined. Replicates 

deviating by more than 1.0 S.D. were rejected. If insufficient replicates remained for use 

in the assay, that biological sample was rejected. If not enough biological samples 

remained that met these standards, then the entire assay was repeated with fresh 

biological samples. Only those assays were accepted in which the melt curve had a 

single well-defined peak, free o f major secondary peaks (e.g., primer dimers, or non­

target amplicons).
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CHAPTER 3 

RESULTS

3.1. RNA Extraction, Quantitation, And Quality

The tables and figures that follow show the synganglion RNA collections, RNA yield, 

and bioanalyzer results confirming purity sufficient to proceed to Illumina sequencing. 

Table 1 shows the contents o f four total RNA collections submitted for bioanalyzer 

assay. The 4 samples were deposited into 4 different wells of the bioanalyzer plate and 

assayed in the instrument. Figure 4 is an electropherogram of the analysis showing the 

intense dark bands at (approximately) 43 seconds, which align with the same band in the 

internal control. Figure 5 provides a graphical display o f the electropherogram for each 

sample and identifies the major peak at 43 seconds as the 28S ribosomal subunit 

compatible with an RNA integrity number (RIN) satisfactory for Illumina sequencing. 

The same procedures were used for O. turicata. Table 2 shows the contents o f four total 

RNA collections submitted for bioanalyzer assay. Total yields were lower than those 

obtained from I. scapularis, for unknown reasons. Figure 6 shows the same or similar 

intense bands at 43 seconds as were seen with 1. scapularis (lanes 4 -  7) o f the analysis 

showing the intense dark bands at (approximately) 41 seconds, which align with the 

similar bands in other unrelated samples. Figure 7 (graphical display of 

electropherogram) identifies the peaks (-4 1  seconds) as the 28S ribosomal subunit (RIN 

> 8) and confirms the suitability o f the samples for Illumina sequencing.



Table 1. Bioanalyzer results o f total RNA yield extracted from synganglia o f part-fed 
Ixodes scapularis

Well Sample
Concentration

(ng/pl)
Total
(Rg)

4 Is 1 sample 1 27.72 Not recorded
5 Is 2 sample 1 25.50 1.597
6 Is 1 sample 2 30.22 Not recorded
7 Is 2 sample 2 24.86 1.6582

ladder Sample! Sample 2 Sample 3 Sample 4 Samples Samples Sample 7 Sample 8 Sample 9 Sample,.. Sample.,.
-  7070 -

6565  -

-  6060 -

5555 -

50 -  50

-  4545  -

-  4040  -

-  3535  -

-  3030  -

-  2525  -

2020 -

10

Figure 4. Bioanalyzer imaging o f  gel results o f Ixodes scapularis. Samples 1 -  4 
represent RNA submitted for bioanalyzer tests. Sample 6 is the internal control.



Figure 5. Samples 1 -4, Agilent 2100 Bioanalyzer electropherogram profiles o f total 
RNA extracted from four samples o f synganglia o f part-fed Ixodes scapularis female 
ticks using the Qiagen Rneasy kit. Tissues were ruptured and sonicated prior to 
extraction. The first and second dominant peaks at approximately 43 sec and 50 sec are 
the 18S and 28s ribosomal subunits and is compatible with a satisfactory RIN (RNA 
integrity number) for use in transcriptomic analysis. See 
htlp://www. eenome. duke, edu/cores/microarrav/services/rna- 
ac/documents/Using%20RIN.pdf for details.

Table 2. Bioanalyzer results o f  Total RNA yield  extracted from synganglia o f  part-fed  
Ornithodoros turicata

Well Sample
Concentration

(ng/pl)
Estimated

Oil)
Total
(^g)

4 O t..5.18.11 24.12 20 0.482
5 O t..5.24.11 21.40 20 0.428
6 O t..5.27.11 23.08 20 0.462
7 O t..6.1.11 28.42 20 0.568
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Ladder Sample 1 Sample 2 Sample 3 Sample 4 Sample S Sample 6 Sample 7 Sample 8 Sample 9 Sample... Sample...
-  7070  -

- 6 565  -

-  6060  -

- 5 555  -

- 5 050  -

-  4545  -

- 4 040  -

-  3535 -

-  3030 -

-  2525  -

-  2020

Figure 6. Bioanalyzer imaging o f gel results o f Ornithodoros turicata. Samples 4 - 7  
represent RNA submitted for bioanalyzer tests. Other lanes are for unrelated treatments.

Figure 7. Agilent 2100 Bioanalyzer electropherogram profiles o f total RNA extracted 
from synganglia o f part-fed O. turicata female ticks using the Qiagen Rneasy kit.
Tissues were ruptured and sonicated prior to extraction. The dominant peak at 
approximately 41 sec is 28S ribosomal subunit and is compatible with a satisfactory RIN 
(RNA integrity number) for use in transcriptomic analysis. See 
hltp://wM'w. genome, duke, edu/cores/microarrav/services/rna- 
qc/documents/Usins%)20RIN.pdf for details.
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3.2. Bioinformatics

The results o f Illumina de novo assembly for /. scapularis are shown in Table 3.3. 

Sequencing (paired end, 2 x al50) yielded a total o f 117,900,476 raw reads (not shown in 

the table). The total mapped read count was 43,351,571, comprising only 3,121,313,112 

bp. Following vector trimming, the raw reads were assembled to 30,838 contigs, 

comprising 20,206,192 bp with an average length o f 655 bp. Table 3.3 shows similar 

data for the Illumina de novo assembly for O. turicata. The total mapped read count was 

63,528,102 reads with a mean read length o f 101 bp. Following vector trimming, the 

raw reads were assembled to 132,258 contigs, comprising 57,956.605 bp with an average 

length o f 438 bp.

Table 3. CLC-Bio De novo Assembly summary data for synganglion transcriptomes of 
part fed I. scapularis and O. turicata females

Parameters Ixodes scapularis Ornithodoros turicata

Contig count 30,838 132,258

Type De novo assembly De novo assembly

Total mapped read count 43,351,571 63,528,102

Mean read length (bp) 72 101

Total read length] (bp) 3,121,313,112 6,416,338,302

Mean contig length (bp) 655 438

Total contig length (bp) 20,206,192 57,956,605

GC contents in % 55.72 46.42
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3.3. Gene Ontology

The program BLAST2GO was used to map the top BLASTx matches (e-value le-06) 

and to assign gene ontology (GO) term annotations. For biological processes, mapping 

success showed little difference between the two species (data not shown). However, for 

molecular processes, GO term mapping success did show some differences. Level 3 

mapping was chosen as the level that showed the greatest number o f categories, 

including neurohormones (e.g, neurotransmitter binding) that could be displayed on a 

single pie chart without extreme crowding. At molecular level 3, a total o f 44 mapped 

gene categories were recognized in I. scapularis versus 51 mapped gene categories in O. 

turicata. Table 3.4 presents a tabulation o f 32 o f the most abundant gene categories as 

well as those hypothesized to be most relevant to the current study, with comparison of 

transcripts predicting these genes between the two species. As expected, the most 

important categories in both tick species comprised transcripts for the common “house 

keeping” genes, i.e., hydrolase activity, transferase activity, ion binding and nucleotide 

binding, nucleic acid binding and protein binding. Overall, there was no significant 

difference between the two different species (/ = 0.277, P>0.05 n.s.). However, several 

noteworthy differences were observed among three specific categories, namely: 1) 

nucleoside binding, representing 6.68 % o f all mapped sequences in I. scapularis versus 

only 0.08% in O. turicata, a 120 fold difference; 2) phosphatase regulator activity, 

representing 1.00% of all mapped categories in I. scapularis versus only 0.08% in O. 

turicata, a 12.5 fold difference; and 3) lyase activity, with 0.68% o f all mapped 

categories in I. scapularis versus 1.08% in O. turicata, a 1.59 fold difference.
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3.4. BLAST2GO Summary
Comparison of GO categories mapped at molecular level 3 for the transcriptomes 
from I. scapularis and O. turicata

I. scapularis Molecular level 3 GO Assignments
Transmembrtnc 

transporter activity, 513

Substrate specific 
transporter activity, 516

Signal transductase 
activity, 771

Oxlreductase, 885

Nudeositie btndtng, 1196

OTHERS

Ligase activity 337

Transcription factor activity 239

Co-factor binding 185

Nucleoside triphosphate
regulator 180
activity
Phosphatase regulator

180
activity
Isomerase activity 134

Tetrapyrolle binding 139
Lyase activity 121

Enzyme activity 94

Carbohydrate binding 93

Enzyme inhibitor activity 79

Lipid binding 76

Chromatin binding 67

Vitamin binding 60

Pattern binding 55
Peptide binding 39
Carboxylic acid binding 39

Peroxidase activity 36

Neurotransmitter binding 23

Kinase regulatory activity 18
Others 391

Figure 8. Gene Ontology (GO) term assignments at molecular level 3 for the /. 
scapularis transcriptome assembled following sequencing by Illumina. The figure 
shows the 34 GO assignments for the part-fed synganglion (17.9] 2 transcripts).



Tnnsnwmbrane o . turicata Molecular level 3 6 0  Assignments
transporter activity,.

Substrate specific *0° 
transporter acthrfty,

794
Signal transductase 

activity, 973

Nucleoside binding, IS

OTHERS

Ligase activity 440

Transcription factor activity 115

Co-factor binding 290

Nucleoside triphosphate
regulator 222
activity

Phosphatase regulator 17
activity

Isomerase activity 153

Tetrapyrolle binding 152

Lyase activity 238

Enzyme activity 135

Carbohydrate binding 113

Enzyme inhibitor activity 95

Lipid binding 114

Chromatin binding 137

Vitamin binding 86

Pattern binding 45

Peptide binding 90

Carboxylic acid binding 61

Peroxidase activity 71

Neurotransmitter binding 44

Kinase regulatory activity 32

Others 259

Figure 9, Gene Ontology (GO) term assignments at molecular level 3 for the (). turicata 
transcriptome assembled following sequencing by Illumina. The figure shows the 51 GO 
assignments for the part-fed synganglion (21.979 transcripts)
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Table 4. Comparison o f Gene Ontology (GO) categories between I. scapularis 
and O. turicata: Similarities and differences in each category in the two different 
species.

I. scapularis O. turicata
No. % total No. % total

GO category transcripts transcripts transcripts transcripts
Hydrolase activity 2246 12.54 3293 14.98
Transferase activity 2098 11.71 2778 12.64
Ion binding 1900 10.61 2162 9.84
Nucleotide binding 1625 9.10 2093 9.52
Nucleoside binding 1196 *6.68 18 *0.08
Nucleic acid binding 1815 10.13 2651 12.06
Protein binding 1762 9.84 2335 10.62
Oxireductase 885 4.95 1173 5.34
Signal transductase activity 111 4.30 973 4.42
Substrate specific transporter 516 2.89 794 3.61
Activity
Transmembrane transporter activity 513 2.86 800 3.64
Ligase activity 337 1.88 440 2.00
Transcription factor activity 239 1.33 115 0.52
Co-factor binding 185 1.01 290 1.32
Nucleoside triphosphate regulator 180 1.00 222 1.01
Activity
Phosphatase regulator activity 180 *1.00 17 *0.08
Isomerase activity 134 0.85 153 0.70
Tetrapyrolle binding 139 0.78 152 0.70
Lyase activity 121 *0.68 238 *1.08
Enzyme activity 94 0.53 135 0.61
Carbohydrate binding 93 0.52 113 0.51
Enzyme inhibitor activity 79 0.44 95 0.43
Lipid binding 76 0.42 114 0.52
Chromatin binding 67 0.37 137 0.62
Vitamin binding 60 0.35 86 0.39
Pattern binding 55 0.31 45 0.21
Peptide binding 39 0.22 90 0.41
Carboxylic acid binding 39 0.22 61 0.28
Peroxidase activity 36 0.20 71 0.32
Neurotransmitter binding 23 0.13 44 0.20
Kinase regulatory activity 18 0.10 32 0.15
Others 391 2.18 259 1.18
Totals (32 selected gene

17,9121,2 ------- 21,9791,2 ........categories)

* Asterisks represent noteworthy differences compared to other gene categories (not tested for 
statistical significance)
'T-test comparing differences in numbers o f transcripts in all categories for I. scapularis versus the 
same for O. turicata; : t = 0.277 (60 df), not significant at 0.05
2No. all genes mapped in I. scapularis -  17,912 (58.08 % );2 No. all genes mapped in O. turicata 
= 21,979 (16.6 % of total contigs in the O. turicata sample)



Table 5. Comparative data for transcripts predicting neuropeptides, transporters and neuropeptide receptor genes as expressed in the
synganglia transcriptomes o f part-fed female O. turicata and I.scapularis1

Ornithodoros turicata Ixodes scapularis

Genes Contig # E-value Accession # 2
Freq Contig # E-value Accession # -  2 Freq

Allatotropin Absent — . . . . 8149 4.00E-46 X P002407036 1

Allatostatin A prepro Absent — . . . . 7636 0 XP 002416345 1

Allatostatin B (Bombystatin) 73312 1.60E-07 XP_001850046 1 7636 0 EU620228 1

Allatostatin C 73361 5.80E-10 X P002433459 1 Absent — — —

Allatostatin receptor 5840 1.00E-55 XP002433373 3 1184 3.90E-57 XP_002433373 6

Bursicon a 4964 9.70E-74 XP_002407512 1 8916 4.20E-64 XP002407512 1

Bursicon p 118500 1.90E-08 XP_002407513 1 — — — —

Calcitonin-like receptor 6563 7.00E-51 X P002436229 12 8281 1.50E-84 XM 00240838 7

Calcitonin-like diuretic hormone 46006 7.20E-04 EU574855 3 9802 5.00E-21 XP 002435658 1

Corazonin prepropeptide 17545 3.10E-18 ACC99609 1 17545 3.12E-18 ACC99609 1

Corazonin receptor 114694 1.80E-42 XP 002402115 

XP_00241082

2 8130 3.20E-85 X M 002402071 1

Corticotropin-release factor peptide 6630 6.30E-102
XP 002405845

2 21180 1.50E-109 XP 002410820 3

Corticotropin-releasing factor (CRF) 
receptor 7646 0 X P002405845 7 799 2.50E-91 XP_002434070 4

Crustacean cardioacceleratory peptide 
(CCAP) 112055 2 .10E-38 X P002402276 1 Absent — —



Table 5 continued.

Ornithodoros turicata Ixodes scapularis

Genes Contig # E-value Accession # Freq2 Contig # E-value Accession # 2
Freq

Crustacean cardio-acceleratory peptide 
receptor (CCAP) 9516 7.28E-04 XP 002407935 3 19265 6.70E-109 XM 002407891 1

Cardioactive peptide CAPA/pyrokinin 
receptor 130874 5.80E-35 ACC99623 1 19265 6.70E-109 XM 002407891 1

Diuretic (calcitonin) hormone receptor 76145 9.9E-12 XP_002435658 2 9802 5.00E-21 X P002435658 1

Eclosion hormone 117001 1.40E-29 XP002399271 1 16950 1.50E-32 XP 002399271 1
Ecdysis Triggering hormone receptor 
(ETHR) 121228 4.98E-31 N P 0 0 107692 2 Absent — — —

Glycoprotein A/Tetraspanin 11593 1.00E-94 AE036315 >20 8734 1.40E-102 XP 002401420 >20

Glycoprotein B mannosly transferase3 5974 1.50E-145 XP_002411894 7 Absent — — —

Gonadotropin-releasing hormone receptor 112451 6.60E-87 XP_002401870 1 20361 1.81E-51 X P002435340 2

Insulin-like peptide 5935 4.20E-22 X P975429 5 29884 5.70E-36 XP 002410559 1

Insulin-like peptide receptor 77139 8.00E-11 X P002403264 5 7890 0 X P 0 0 2 4 16224 2

Ion transport peptide 8959 2.20E-61 XP002404559 5 7332 1.8 E-151 XM_002399497 7

Neuropeptide F receptor 72103 1.20E-25 XM 002402212 15 3925 3.3 E-56 X P 0 0 2 4 0 2 168 1

Myoinhibitory Peptide (MIP) 17453 1.30E-20 XP002434041 1 38613 2.20E-54 XP002434041 1

Neurophysin-oxytocin transporter 60859 1.20E-18 XP_003748448 1 3384 8.80E-22 XP 003748448 2

Orcokinin A Precursor 17445 8.70E-19 XP002401726 2 13501 5.40E-41 XP 002401726 1

Proctolin Absent --------- --------- --------- 7349 3.30E-35 EFX81804 1



Table 5 continued.

Ornithodoros turicata Ixodes scapularis

Genes Contig # E-value Accession # Freq2 Contig # E-value Accession # Freq2
Proctolin Absent — . . . . . . . . 7349 3.30E-35 EFX81804 1

Pyrokinin receptor 68180 7.90E-93 X P 0 0 2 4 0 1 180 2 4791 1.00E-49 XP 002401180 4

FMRFamide precursor 72921 7.50E-06 AEE25641 2 6861 1.80E-105 XM_002413792 1

FMRFamide receptor 9246 2.60E-38 XP002432135 2 Absent — . . . . —

Thyrotropin receptor 69986 3.50E-97 XP 002435494 1 Absent — — —

SIFamide 17744 2.80E-29 XP_002414623 1 39081 5.70E-30 XP_002414623 1

SIFamide receptor 19513 1.40E-54 XP_970225 1 2800 2.10E-26 XP_001947497 1

Sulfakinin 117562 4.40E-20 ACC99604 1 30943 2.40E-27 ACC99604 1

Sulfakinin receptor 80646 3.20E-21 X P 0 0 2 4 13320 2 13955 4.60E-56 XP 002404195 2

Tachykinin receptor 68588 5.30E-100 XP_312088 14 10361 4.60E-109 XM_002411163 2

'Also present was proprotein convertase. Proprotein convertase is an enzyme essential for the conversion o f  neuropeptide hormones to the 
mature form. This enzyme was found in both O. turicata (contig 113357, 3.8E-163, matching Genbank No. X P002403832) and in /. 
scapularis (contig 23747, 5.7E-104, matching Genbank No. XP 002410536, sequence alignment 100%)

2 Frequency indicates the number o f transcripts recognizing identical annotations in Genbank.
3 Identity as glycoprotein B in question. Donohue et al. (2010) reported it as a cysteine knot protein with two subunits, alpha and beta.

However, when queried in Genbank, it is found not to be a hormone but an enzyme. Full name = alpha-mannosyl glycoprotein 
beta acetylglucosamine transferase



Table 6. Comparative data of transcripts for candidate neurotransmitter receptors and transporter genes as expressed in the synganglia
transcriptomes o f part-fed female Ornithodoros turicata and Ixodes scapularis.

Ornithodoros turicata Ixodes scapularis
Genes (receptors and 

transporters)
Contig

# E-value Accession # Freq1 Contig
# E-value Accession # Freq1

Acetylcholine (muscarinic) receptor 88863 7.10E-54 XP_002403135 >20 6186 0 XP_0024003135 >30

Acetylcholine 

(nicotinic) receptor
61851 0 ADG63462 17 21709 0 X P002409079 >20

Dopamine receptor 48220 7.30E-36 AFC88981 6 6007 3.50E-87 XP 002408422 4

GABA receptor (metabotropic) 116021 0 XP002406087 7 6166 1.30E-81 X P002406087 8

Glutamate gated-ion (ionotropic) 
receptor 61197 0 X P 0 0 2 4 15471 10 37672 4.60E-109 XP_002413279 5

Glutamate (Metabotropic) receptor 3710 5.60E-26 XP_002402308 >20 2300 9.80E-69 XP 002407136 >20
Neurotransmitter 
sodium symporter

113270 1.50E-94 XP_002415798 17 22130 4.10E-14 XP 002411089 21

Norepinephrine/ 

octopamine transporter
110311 0 XP 002434929 1 12941 0 X P002434929 2

Octopamine/ 

Tyramine receptor
41296 1.40E-152 X P002405020 1 6007 2.00E-169 X P002408422 11

Serotonin 61315 0 XP002405023 >20 17069 0 X P0024050230 5

Frequency indicates the number o f transcripts recognizing identical annotations in Genbank.
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3.5. Comparison o f neuropeptides and receptors in I. scapularis and O. 
turicata

The true number neuropeptides in ticks is uncertain. Estimates have varied greatly, from 

as few as 20, characterized by proteomic methods (Neupert et al. 2008) to as high as 80, 

characterized by in silico searches o f publicly accessible EST databases (Christie 2008). 

Hill et al. (Pers. Commun) identified genes for 56 putative neuropeptides, at least 41 of 

which are orthologs o f genes present in insects and other invertebrates. Similarly, fifty 

one neuropeptides were reported to occur in another acarine, the spider mite 

Tetranynchus urticae (Veenstra et al. 2012).

Comparisons of the neuropeptides and/or their receptors in the two different tick species 

are shown in Table 3.5. Evidence supporting these annotations includes the low e-values 

(in most cases), sequence alignments and RT-qPCR gene expression (for 17 o f the 

candidate neuropeptides or their receptors).

3 .5 .1 .1, scapularis Transcriptome

Transcripts encoding for 15 neuropeptides and 15 neuropeptide receptors were 

recognized in the transcriptomes o f the I. scapularis synganglion. We found transcripts 

encoding for allatotropin, allatostatin (A & B), bursicon a, corticotropin-releasing factor 

(CRF), FMRFamide, glycoprotein A, eclosion hormone, insulin-like peptide, ion 

transport peptide, myoinhibitory peptide, neuropeptide F, neurophysin/oxytocin, 

orcokinin A, SIFamide, and sulfakinin. We also found transcripts encoding for 15 

different receptors, allatostatin, calcitonin, cardioacceleratory peptide, corazonin, CRF, 

eclosion hormone, insulin, gonadotropin-releasing hormone receptor, neuropeptide F, 

perisulfakinin, proctolin, pyrokinin (CAPA), SIFamide, sulfakinin and tachykinin. 

Although transcripts predicting peptides for eight o f these neuropeptides were not
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recognized, the finding o f transcripts encoding for their receptors suggests that they are 

also expressed; these include calcitonin, CCAP, corazonin, gonadotropin releasing factor 

hormone, neuropeptide F, proctolin, pyrokinin (CAPA), and tachykinin. Thus, the total 

number o f neuropeptides in the synganglion transcriptome is predicted to be 23. The 

actual number of mature peptides is likely even greater since in some cases several 

neuropeptides can be processed via post-translational modifications from a prepropeptide, 

e.g., the transcript encoding for allatostatin is processed further into allatostatin A, B and 

C; version also aligns with /. scapularis bombystatin. Seven more transcripts encoding 

for different neuropeptides were found in the I. scapularis synganglion transcriptome 

than were found in the D. variabilis synganglion transcriptome, namely, allatotropin, 

corticotropin-releasing factor (CRF), FMRFamide, myoinhibitory peptide, neurophysin- 

isotocin, neuropeptide F, and SIFamide (precursor). Similarly, although transcripts 

encoding for 4 neuropeptide receptors were found in the synganglion transcriptomes of 

both species (calcitonin receptor, gonadotropin-releasing hormone receptor, pyrokinin 

receptor, and sulfakinin receptor), we found transcripts encoding for 9 other neuropeptide 

receptors, i.e., allatostatin, corazonin, CRF, eclosion, insulin, perisulfakinin, proctolin, 

SIFamide, and tachykinin. These results greatly extend the number and variety of 

neuropeptides and/or their receptors in the synganglion o f ticks.

Supporting evidence for these gene assignments in the I. scapularis synganglion is shown 

in the sequence alignments Appendix B [Is-1-23]. Comparing the transcripts from the 

transcriptomes versus the conspecific genes, we found 95.8% pairwise identity for 

allatostatin (Is-9), 100% pairwise identity for allatotropin (Is-1), 95.7% pairwise identity 

for glycoprotein A (Is-3), 99.2% pairwise identity for insulin-like peptide (Is-4), 69.7%
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pairwise identity for myoinhibitory peptide (Is-15); 98.2% pairwise identity for insulin­

like peptide receptor (Is-17); 51.2% pairwise identity for sulfakinin receptor (Is-18); 

99.2% pairwise identity for the tachykinin receptor (Is-20); and 89.2% pairwise identity 

for orcokinin 5 (Is-7). For the transcript encoding for sulfakinin, the closest match, 

78.3%, was with a similar neuropeptide in D. variabilis (Is-14). Although not a 

neuropeptide, another noteworthy finding was the occurrence o f transcripts encoding for 

pro-protein convertase in the two Illumina transcriptomes (3 in each, respectively) similar 

to that found in D. variabilis; sequence alignment showed 100% pairwise identity with 

the conspecific gene (Is-8). Proprotein convertase is essential for the conversion of 

neuropeptide hormones to the mature form and their subsequent secretions (Wegener et 

al. 2011) as it performs the function o f removing the signal peptide by endoproteolytic 

cleavage. We did not find a transcript encoding for periviscerokinin, previously 

identified only by MALDI-TOF mass spectrometry (Neupert et al. 2009). Although we 

did not find transcripts encoding for the peptides calcitonin, corazonin, gonadotropin- 

releasing hormone and pyrokinin, neuropeptides reported to occur in the D. variabilis 

synganglion (Donohue et al. 2010), we did find transcripts encoding for their receptors, 

strongly suggesting that the messages for these peptides are also expressed (Is-13, 

calcitonin receptor, 95.8% pairwise sequence alignment with conspecific gene; Is-12 

corazonin receptor, 100% pairwise identity with the conspecific gene; Is-19, 

gonadotropin-releasing hormone receptor, 68.1% pairwise sequence alignment with the 

conspecific gene; and Is-10, pyrokinin receptor, 62.2%, pairwise sequence alignment 

with the conspecific gene; respectively). In addition, we found transcripts encoding for 

bursicon a  in I. scapularis (Is-5, 59.5%) and glycoprotein A, but no evidence o f
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transcripts encoding for bursicon P or glycoprotein B, in contrast to the D. variabilis 

synganglion where both were present. Transcripts encoding for orcokinin 5, 

corticotropin-releasing factor (CRF) receptor, CRF-binding protein, eclosion hormone, 

and FMRFamide were also found in the I. scapularis synganglion transcriptome (Is-2, 

CRF-binding peptide, 100% pairwise sequence alignment; Is-6, eclosion hormone, 97.7% 

pairwise identity; Is-11, FMRFamide, 62% pairwise identity; Is-16, SIFamide receptor, 

100% identity; and neuropeptide F, Is-21, 100% pairwise identity; cardioacceleratory 

peptide receptor, Is-22, >90% pairwise identity in coding region; and ion transport 

peptide Is-23, 77.3% pairwise identity). Although no receptor was found for CAPA (it 

was found in O. turicata, see below), it is likely that the pyrokinin receptor is also 

homologous with the CAPA receptor, since CAPA has been reported to be activated by 

pyrokinin peptides in anopheline mosquitoes (Olsen et al. 2007). Whether this is true in 

ticks requires further study.

Analysis o f these alignments indicates that 17 out o f 23 transcripts had greater than 75% 

pairwise matching alignments. In addition, 7-transmembrane domains were also 

identified in many o f the receptors, including pyrokinin, sulfakinin, and tachykinin 

receptors, which had lower % alignments. Finally, the gene expression studies (qPCR 

results shown in section 3.9) show that the primers recognized these genes in fresh 

synganglion extracts. In summary, the low e-values, matching sequence alignments and 

qPCR expression results support the functional assignment (annotations) for these genes 

presented in this report.



48

3.5.2. O. turicata Transcriptome

Transcripts predicting genes for at least 25 neuropeptides, neuropeptide transporters 

and/or their receptors were found in the O. turicata synganglion transcriptome. These 

include transcripts encoding for the peptides for allatostatin (including allatostatin B and 

allatostatin C), bursicon a, bursicon |3, diuretic hormone (calcitonin-like peptide), 

preprocorazonin, corticotropin-releasing factor, crustacean cardioacceleratory peptide, 

FMRF amide, eclosion hormone, glycoprotein A, glycoprotein B, insulin-like peptide, 

ion transport peptide, myoinhibitory peptide, neuropeptide F, neurophysin-oxytocin 

transporter, orcokinin A precursor, proctolin, SIF amide and sulfakinin. In addition, we 

also found transcripts encoding the receptors for calcitonin/diuretic hormone, 

CAPA/pyrokinin, thyrotropin and tachykinin, suggesting the occurrence o f transcripts 

predicting the peptides for the same neuropeptides. Together, these findings indicate the 

expression o f 25 different neuropeptides and/or transporters in the synganglion of O. 

turicata during feeding. Supporting evidence for these gene assignments in the O. 

turicata synganglion is shown in the sequence alignments in Appendix B (Ot 1 -22). 

Comparing the transcripts from the O. turicata transcriptome versus the conspecific 

genes, we found 46% pairwise identity for preproallatostatin C versus N. vitripennis, the 

closest match, when aligning the coding region (Ot-2), 57% pairwise identity for the 

allatostatin receptor, including 44.2% multiple sequence identity when compared with 

both I. scapularis and the cockroach, Periplaneta americanum, as well as recognition o f 

the characteristic transmembrane domain (Ot-2); 25% pairwise identity for 

cardioacceleratory peptide (CCAP) but with the characteristic peptide domain (Ot-5), 

65.7% pairwise identity for the pyrokinin/CAPA receptor when aligned with D. variabilis
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(CAPA was not present in the I. scapularis transcriptome) (Ot-6); 29.2% pairwise 

identity for the preprocorazonin peptide (Ot-9) but as high as 72% pairwise identity for 

the corazonin receptor (within open reading frame) (Ot-10; 60% pairwise identity for 

corticotropin releasing factor (CRF) (Ot-1185.7% pairwise identity for bursicon alpha 

peptide, which also showed significant alignment with D, variabilis and evidence o f the 

characteristic peptide domain (Ot-12); 37% pairwise identity for neuropeptide F (Ot-16); 

68% pairwise identity for sulfakinin receptor (Ot-20); 48.4% pairwise identity for 

bursicon beta, including 35.8% multiple alignment between the O. turicata transcript 

versus D. variabilis and Tribolium castaneum  (Ot-13); 43.3% pairwise identity for the 

tachykinin receptor (coding region); and 92.2% pairwise identity for the SIFamide 

receptor (coding region) (Ot-22).

Analysis of these alignments indicates that almost all of these neuropeptide or 

neuropeptide receptor transcripts analyzed to date had much lower percent identities than 

what was found for I. scapularis; exceptions include alignments for bursicon alpha and 

SIFamide. This is not surprising since, in most cases, alignments o f the I. scapularis 

synganglion transcripts showed high percent identities when aligned with conspecific 

gene sequences from the I. scapularis genome. This was not the case for O. turicata. 

Nevertheless, the presence o f the characteristic peptide domain in several o f the 

neuropeptide sequences and the 7-transmembrane domains in the neuropeptide receptors 

provide additional evidence in support o f the gene annotations. Finally, as noted 

previously for I. scapularis, the gene expression studies (RT-qPCR results shown in 

section 3.10) show that the primers recognized these genes in fresh synganglion extracts.
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These findings, along with the low e-values provide support that O. turicata transcripts 

encode for the neuropeptides and neuropeptide receptors described in this report.

3.6. Comparison of neurotransmitter receptors in I. scapularis and O. 
turicata.

In ticks as well as other invertebrates, at least 4 different neurotransmitters have been 

described, namely, acetylcholine (ACh), gamma-aminobutyric acid (GABA), 

octopamine, and glutamate. In addition, several neuromodulators, i.e., regulate neuronal 

function, specifically dopamine and serotonin (Osborne, 1996; Egekwu et al 2014).

3 .6 .1 .1, scapularis Transcriptome

Transcripts encoding the 4 neurotransmitter receptors and 2 neuromodulators noted above 

were recognized, namely, ACh, GABA, dopamine, glutamate, octopamine, and serotonin. 

Transcripts encoding for both muscarinic and nicotinic type acetylcholine receptors were 

recognized. In addition, transcripts encoding for 2 types o f GABA receptors (ion-channel 

and metabotropic) and 3 different types o f glutamate receptors (ionotropic, metabotropic 

and NMDA) were recognized. Finally, transcripts encoding the enzyme 

acetylcholinesterase, which degrades acetylcholine, also were recognized. Sequence 

alignments supporting the functional assignments o f these transcripts are shown in 

Appendix B (Is-24 -  31).

Ach is widely regarded as one o f the principal excitatory neurotransmitters (Chapman, 

1998) in most eukaryotic animals. Its function is regulated by AChE. ACh and AChE are 

known to occur in ticks (Lees et al. 2010; Bissinger et al. 2011; Temeyer et al. 2012), 

including both muscarinic and nicotinic receptors (Is-24). In contrast, GABA, mediates 

inhibitory synaptic transmission via its ionotropic (GABA-A) and metabotropic receptors 

(GABA-B) (Is-26) Buckingham et al. 2005).
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The transcriptomes o f the 1. scapularis synganglion revealed transcripts encoding for 

both ionotropic and metabotropic GABA receptors. Transcripts encoding for glutamate 

receptors were the most abundant (49.4%) o f all the neurotransmitter receptors found in 

the 1. scapularis synganglion transcriptomes encoding for all three types o f  glutamate 

receptors (NDMA, ionotropic and metabotropic) were identified in the transcriptomes of 

the 1. scapularis synganglion. In addition, numerous transcripts encoding for glutamate 

synthase were identified (not shown in Table 6). Transcripts encoding for the 

neurotransmitter receptors for the monamines dopamine, octopamine and serotonin were 

also very numerous in the I. scapularis synganglion (Table 6). Here we report 11 

transcripts encoding for dopamine receptors (Is-25), 10 transcripts encoding for 

octopamine receptors (Is-30) but only 1 transcript encoding for a serotonin receptor (see 

Is-31). We also report numerous transcripts predicting receptors for a Na+-transmitter 

symporter, proteins that transport cations into cells innervated by dopaminergic and/or 

serotoninergic neurons. Sequence alignments for these I. scapularis neurotransmitter 

receptors ranged from 85% to 99.5% identity (pairwise). Thus, the low e-values, gene 

expression results (qPCR data shown in the next section) and high percent identities for 

the sequence alignments support the functional assignment (annotations) for these genes 

presented in this report.

3.6.2. O. turicata Transcriptome

Similar to the findings for I. scapularis, transcripts encoding for the same 

neurotransmitter receptors and associated transporters were found in the transcriptome o f 

the O. turicata synganglion (Table 6). Numerous transcripts encoding for both 

muscarinic and nicotinic acetylcholine receptors were recognized. Similarly, 6
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transcripts encoding for a dopamine receptor were recognized. Transcripts encoding for 

metabotropic GABA receptors (7) 2 types o f glutamate receptors (10 ionotropic and>20 

for metabotropic). In addition, 10 transcripts were recognized for the NMDA type of 

glutamate receptor (not shown in the table). Transcripts for octopamine (1) and serotonin 

(>20) also were identified in the transcriptome. Finally, transcripts encoding for the 

transporters, neurotransmitter sodium symporter (17) and the norepinephrine/octopamine 

transporter (1) also were identified. Although the low e-values for these neurotransmitter 

receptors and transporters support the functional assignments o f the transcripts encoding 

for these genes, the percent identities for the sequence alignments were not as high as 

they were for I. scapularis. It is likely that this reflects the absence o f the conspecific 

genome and relatively few published sequences for other species o f soft ticks in 

Genbank. However, gene expression studies (qPCR results) shown in the next section 

provide additional support for the expression o f these neurotransmitter receptors in the O. 

turicata synganglion.

Sequence alignments supporting the annotations o f these neurotransmitter receptors in O. 

turicata are presented in Appendix B.

Alignments: Neuropeptides, Receptors, and Neurotransmitter 
Receptors.
Alignments are shown comparing (see Appendix B) the putative annotated 

neuropeptides, neuropeptide receptors and neurotransmitter receptors (contigs) from the 

transcriptomes versus the corresponding sequence from Genbank. In most cases, 

alignments are limited to the coding region since most contigs do not represent the full- 

length message for each o f these molecules.
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3.7. Comparative gene expression between I. scapularis and O. turicata 
female synganglia for selected neuropeptides, neuropeptide receptors 
and neurotransmitter receptors.

The results of these studies for /. scapularis and O. turicata are compared in relation to 

purported functional categories. Data for gene expression are presented as the fold 

change along with the standard error o f the mean (SEM) and probability (P) value based 

on the student’s t-test. The fold values were calculated according to method o f Livak and 

Schmittgen (2001); SEM and P values were calculated by student's t -  test according to 

method o f Yuan et al (2006), the results o f these assays are shown in Table 7. Selected 

examples o f RT-qPCR assays are illustrated in section 3.10.

Neuropeptides and neuropeptide receptors: qPCR assays were done for 19 o f 

the 23 neuropeptides and/or neuropeptide receptors recognized in I. scapularis, namely, 

allatostatin A, allatostatin receptor, allatostatin B (myoinhibitory peptide), bursicon a, 

calcitonin, CAPA/pyrokinin receptor, cardioacceleratory peptide receptor, corazonin 

receptor, corticotropin releasing hormone receptor, diuretic hormone, eclosion hormone, 

FMRFamide, neuropeptide F, glycoprotein A, gonadotropin releasing hormone, 

SIFamide, preprosulfakinin, sulfakinin receptor and tachykinin receptor. Primers 

designed from contigs in the O. turicata transcriptome with the same functional 

assignments (annotations) amplified transcripts predicting most o f the same 

neuropeptides or neuropeptide receptors in total RNA samples from O. turicata female 

synganglia. This made it possible to carry out qPCR assays for the same neuropeptides 

and/or neuropeptide receptors in O. turicata that were also done in I. scapularis, and 

compare the similarities and differences. Exceptions include allatostatin B 

(myoinhibitory peptide), cardioacceleratory protein and glycoprotein A. Transcripts
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predicting these genes in O. turicata showed poor alignments and primers designed from 

these transcripts failed to amplify the molecules. However, bursicon p, absent in /. 

scapularis, was amplified in samples from O. turicata. Thus, I was able to assay reverse 

transcriptase products from O. turicata transcripts for 16 of the same neuropeptides 

and/or neuropeptide receptors as found in I. scapularis, thereby facilitating direct 

comparisons o f the responses o f these genes to blood feeding in the two different species.
I

To facilitate comparison o f the responses o f the predicted neuropeptides and 

neuropeptide receptors, the results of these studies are arranged in accordance with their 

functional roles, as reported in the literature for insects and other arthropods (Simo et al. 

2009a; Simo et al. 2011; Simo et al. 2014)

For salivary glands, the neurotransmitter receptor dopamine and two neuropeptides, 

myoinhibitory peptide (= Allatostatin B) and SIFamide have been reported to regulate 

gland functions (Simo et al. 2009b). In I. scapularis, all three o f these genes were 

upregulated, consistent with their reported roles in regulating salivary secretion in this 

species. In O. turicata, however, although both dopamine receptor and SIFamide peptide 

were highly significantly upregulated, but myoinhibitory peptide was not amplified. 

However the difference was not statistically significant, i.e., the difference was 

essentially unchanged. Possible explanations of these differences between the two 

species will be considered in the Discussion section.

For diuresis (water balance regulation), 5 predicted neuropeptides and/or neuropeptide 

receptors identified previously in this report (Table 5) were assayed. In I. scapularis, 

four o f these 5 genes were assayed; diuretic hormone was omitted in this species, since 

excess water and salts are secreted via the salivary glands, believed regulated by
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myoinhibitory peptides and SIFamides as noted in the Discussion section. Calcitonin 

hormone, a more specialized variety o f diuretic hormone (Zandawala et al. 2013), 

corticotropin releasing factor, and CAPA/pyrokinin receptor were upregulated (calcitonin 

and CAPA/pyrokinin were highly significantly increased), whereas tachykinin was 

slightly downregulated, essentially unchanged. In 0. turicata, in which water/salt 

elimination occurs during or immediately after rapid feeding, calcitonin, diuretic 

hormone receptor and CAPA/pyrokinin were upregulated. Diuretic hormone is the less 

specialized neuropeptide, so its strong upregulation is consistent with the rapid 

elimination o f excess water via the coxal glands in this species. Corticotropin releasing 

factor hormone and tachykinin receptor showed little change in O. turicata. The 

differences in expression o f these genes in regulating water, salt, and other wastes in the 

two different species will be discussed in more detail in the Discussion section.

For regulation o f feeding volume (excluding satiety, which is considered separately), 4 

neuropeptide and/or neuropeptide receptors were assayed, FMRFamide, neuropeptide F 

receptor, sulfakinin receptor and tachykinin receptor. In I. scapularis, the first 3 genes 

were upregulated, FMRFamide rather slightly but significantly (P<0.001), versus 

Neuropeptide F receptor and sulfakinin strongly which were strongly (and significantly) 

upregulated (P<0.05 and P<0.04, respectively). Tachykinin receptor was downregulated 

slightly, i.e., essentially unchanged. In O. turicata, FMRFamide was strongly 

upregulated, (P<0.001), whereas neuropeptide F and sulfakinin receptor were 

significantly downregulated (P<0.03 and P<0.02, respectively). However, tachykinin 

receptor was upregulated. The significance o f these differences in gene expression in
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relation to the different blood feeding behaviors in I. scapularis and 0. turicata will be 

discussed in more detail in the Discussion section.

Satiety function is regulated by sulfakinin. Major differences in sulfakinin peptide 

expression was observed in the two different tick species, with strong upregulation 

observed in I. scapularis (4.03 fold) consistent with their slow feeding pattern. In O. 

turicata, both sulfakinin peptide and sulfakinin receptor were strongly downregulated 

(0.47 and 0.66), indicating lack o f impediment to rapid blood feeding characteristic o f the 

latter species. The significance o f these differences in relation to differences in their 

blood-feeding habits will be elaborated in the Discussion section.

For regulation of ecdysis, 6 different neuropeptides were assayed; eclosion hormone, 

preprocorazonin, corazonin receptor, cardioacceleratory peptide (CCAP), ecdysis 

triggering hormone (ETH), and CAPA/pyrokinin receptor. In I. scapular is, eclosion 

hormone and ecdysis triggering hormone were downregulated significantly, but 

CAPA/pyrokinin was strongly upregulated (highly significant); corazonin receptor 

showed weak upregulation, while cardioacceleratory peptide was downregulated, but the 

fold changes in the expression o f these two genes were not significant. In contrast, in O. 

turicata, eclosion hormone, corazonin peptide (^preprocorazonin), ecdysis triggering 

hormone and CAPA/pyrokinin were all significantly upregulated; corazonin receptor was 

downregulated. Attempts to assay cardioacceleratory peptide were unsuccessful (primers 

designed from the annotated contig failed to amplify this gene).

For cuticle synthesis and plasticization, three different neuropeptides were assayed, 

bursicon a, bursicon P and eclosion hormone. In /. scapularis, bursicon a was 

upregulated significantly, but eclosion hormone was relatively unchanged (although
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downregulated, the change was not significant). Bursicon p was not assayed since there 

was no evidence of this neuropeptide in I. scapularis (see Table 3.5). In O. turicata, all 3 

genes, bursicon a, bursicon p and eclosion hormone were significantly upregulated. The 

significance o f the differences in expression o f these genes (as well as their presence or 

absence) in I.scapular is versus O.turicata in relation to cuticle expansion during feeding 

will be discussed later (see Discussion section).

For reproduction, 8 different neuropeptides were assayed, namely, allatostatin A peptide, 

allatostatin A receptor, myoinhibitory peptide (also known as allatostatin B), 

gonadotropin releasing hormone, CAPA/pyrokinin (also described as pheromone 

biosynthesis activating hormone), SIFamide peptide, SIFamide receptor and glycoprotein 

A. In I. scapularis, 4 genes, allatostatin A peptide, allatostatin A receptor, myoinhibitory 

peptide and CAPA/pyrokinin (= PBAN) were significantly upregulated during the 

lengthy pre-mating blood feeding period whereas gonadotropin releasing hormone was 

significantly downregulated; SIFamide peptide, SIFamide receptor and glycoprotein A 

expression showed little change (not significant). In O. turicata, allatostatin A was 

significantly upregulated but allatostatin A receptor expression was not significantly 

changed; gonadotropin releasing hormone, SIFamide peptide, SIFamide receptor, and 

CAPA/pyrokinin were also significantly upregulated. Attempts to amplify myoinhibitory 

peptide and glycoprotein A were unsuccessful.

Neurotransmitter receptors: qPCR assays were done for 5 o f 8 the 

neurotransmitter receptors recognized in both species, namely, metabotropic and 

ionotropic glutamate, octopamine, serotonin and dopamine. Primers designed for insulin­

like peptide, ion transport peptide and GABA (metabotropic) failed to amplify those
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genes in O. turicata. In I. scapularis, ion transport peptide, GABA, ionotropic glutamate, 

serotonin, and dopamine were upregulated whereas metabotropic glutamate and 

octopamine receptors were down regulated. The response for ionototropic glutamate was 

exceptionally high (fold = 39.95). In O. turicata, dopamine receptor was significantly 

upregulated; ionotropic glutamate and serotonin receptors also were upregulated slightly 

but these changes were not significant, i.e., they were essentially unchanged. 

Metabotropic glutamate receptor was downregulated in this species, opposite to what was 

observed with the same gene in I. scapularis. Octopamine receptor was downregulated 

in O. turicata, consistent with what was found in I. scapularis. Possible explanations and 

insights into these differences and in the roles o f these neurotransmitter receptors will be 

considered in the Discussion section.



Table 7. Comparison o f gene expression in Ixodes scapularis versus Ornithodoros turicata as determined by real time quantitative 
PCR (qPCR). Organized by functional categories.

Functional
C ategory

G enes expressed I. scapularis (qPCR unfed vs fed) 
Fold ± SEM & P value'

O. turicata (qPCR unfed vs fed) 
Fold ± SEM & P  value1

Salivary gland  
functions

Dopamine

Allatostatin B (= Myoinhibitory peptide) 

SIFamide peptide

4.82, ± 0.69, T = 0.006, P<0,01 

7.95 ± 0.41, T = 0.019, P<0.02 

1.41 ± 0.45, T = 0.452, p>0.05 NS

1.87 ±0.24, T=0.0026, P<0.003 

ND

3.89, 0.42, T = l.72x10 '7, P 0 .001

Diuresis

Elim inate excess 
blood meal 
w ater

Calcitonin (diuretic hormone) -fluid secretion 
[collected immediately after blood feeding].

Diuretic hormone (DH) receptor (regulates fluid 
secretion) [Collected 24 h after feeding].

Corticotropin releasing factor (CRF-DH) -
eliminates waste from Malpighian tubule (MT).

Tachykinin receptor

CAPA/Pyrokinin receptor (periviscerokinin)

8.77 ± 2.25, T = 0.0004, P<0.001 

ND

2.94 ± 0.88, T=0.001, P<0.01

0.88 ± 0.25, T = 5.54x10'", P>0.001 

2.36 ± 0.65, T = 4.84x1 O'6, P<0.001

5.30 ± 0.86, T = 4.65 * 10'5, P<0.001 

3.72 ± 0.08, T = 4.72x 1 O'7, P 0 .001

1.44 ± 0.08, T = 0.045. P<0.05

1.44 ± 0.59, T = 0.354, P>0.05 NS

1.59 ± 0.41, T = 1.11x10 ", P<0.001

Feeding volum e FMRFamide-regulates gut muscle contractions.

Neuropeptide F receptor -stimulates feeding.

Sulfakinin receptor -down-regulation allows 
>blood volume.

Tachykinin receptor —stimulates gut contractions.

I.19 ± 0.11, T = 8.33 x 1 O'9, P 0 .001  

38.32 ± 0.359, T = 0.014, P<0.02

II.96 ± 0.906, T= 0.036, P<0.04

0.88 ± 0.25, T = 0.364, P>0.05 NS

3.56 ± 0.56, T =  1.63x1 O'5, P>0.001 

0.56 ± 0.07, T = 0.03, P<0.05 

0.66 ± 0.07, T = 5.9 x 10'5, P<0.001

1.44 ± 0.59, T = 0.354, P>0.05 NS

C/1
SO



Table 7 continued.

Functional
Category

G enes expressed I. scapularis (qPCR unfed vs fed) 
Fold ± SEM & P value1

O. turicata (qPCR unfed vs fed) 
Fold ± SEM & P value1

Feeding satiety Preprosulfakinin -inhibit further feeding (reaches 
repletion).

4.03 ± 0.25, T = 9.76x 10'7, P<0.001 0.47 ± 0.28, T = 0.019, P<0.001

Ecdysis (molting) Eclosion hormone - presumed regulates ecdysis 
behavior.

Prepro-corazonin peptide -regulate release of 
ecdysis triggering hormone (ETH).

Corazonin receptor -  receptor for ETH.

Cardioacceleratory peptide (CCAP) -regulates heart 
rate/ecdysis.

Ecdysis triggering horm one (ETH ) [24 h after 
feeding].

CAPA/Pyrokinin receptor (periviscerokinin)

0.32 ± 0 .1 1 ,1  = 0.002, P<0.02 

A bsent

1.33 ± 0.61, T = 1.22 x 10'8, P<0.001 

0.97 ± 0.92, T = 0.148, P>0.05 NS

0.05 ± 0.63, T =  7.5x1 O'7, P 0 .001

2.36 ± 0.65, T=4.84x 10'6, P<0.001

1.96 ± 0.69, T = 0.02, P<0.02

1.78 ± 1.10, T = 0.01, P<0.01

1.01, ±0.77, T=0.246, P>0.05 NS 

N D

6.89 ± 0.33, T = 0.002, P<0.01 

1.59 ± 0.41, T =  1.11x10'", P<0.001

Cuticle synthesis/ 
Plasticization

Bursicon a -insect molting hormone; regulate 
plasticization.

Bursicon p -  role in plasticization.

Eclosion hormone

3.32 ± 1.5, T = 0.001, P<0.002 

Absent

0.32 ± 0.11, T = 0.016, P<0.02

3.09 ± 0.14, T = 0.02, P<0.05

2.89 ± 0.14, T = 0.05m, P<0.05 

1.96 ± 0.69, T = 0.02, P<0.03



Table 7 continued.

Functional
C ategory

G enes expressed I. scapularis (qPCR unfed vs fed) 
Fold ± SEM & P value1

O. turicata (qPCR unfed vs fed) 
Fold ± SEM & P value1

Reproduction & 
Development

Allatostatin A peptide stimulates JH synthesis 
(ticks lac±k JH).

6.24 ± 1.55, T = 0.007, PO.OOl 6.45 ± 0.33, T = 6.30x1 O'6, PO.OOl

Allatostatin receptor — inhibits JH synthesis (ticks 
lack JH)

21.16 ± 0.31, T = 0.007, PO.OOl 0.26 ± 0.70, T = 0.480, P>0.05 NS

Myoinhibitory peptide (=Allatostatin B) inhibits JH 
synthesis

7.95 ± 0.71, T=0.035, PO .02, ND

Gonadotropin-releasing hormone receptor (GnRH) 0.39 ± 0.89, T = 7.52X10-4, PO.OOl 2.37 1.42, T = 0.028, PO .05

CAPA/Pyrokinin (PBAN)—possible pheromone 
biosynthesis

2.36 ± 0.65, T = 4.84x 1 O'6, PO.OO 1 1 .5 9 ± 0 .4 1 ,T =  1 .1 1 x 1 0 '" ,PO.OOl

SIFamide peptide -regulates reproductive behavior 0.18 ± 0.05, T = 0.001, P 0 .0 0 2 3.89 ± 0.28, T =  1.72x 10 7, PO.OOl

SIFamide receptor— regulates reproductive behavior 1.47 ± 0.41, T = 0.452, P>0.05 NS 2.17 ± 0.41, T = 0.008, PO.01

Glycoprotein A -  presumed regulates reproductive 
behavior

0.03 ± 2.34, T = 0.05, P<0.05 NS Absent



Table 7 continued.

Functional
C ategory

G enes expressed I. scapularis (qPCR unfed vs fed) 
Fold ± SEM & P value*

O. turicata (qPCR unfed vs fed) 
Fold ± SEM & P value1

Signaling
(Neurotransmitter
receptors)

Glutamate (Ionotropic) receptor -major excitatory 
synaptic transmitter.

0.76 ± 0.188, T = 0.004, P<0.01 0.205 ± 0.186, T= 6.2xl O'6, P<0.001

Glutamate (Metabotropic) receptor -major 
excitatory synaptic transmitter.

39.95 ± 1.76, T = 3 x 10 '5, P<0.001 4.76±0.25(<lh), T=5.8X 10’6, P<0.001 
1.76 ± 0.17 (>24h), T=0.349, P>0.05 

NS

Gamma-aminobutyric acid (GABA) receptor— 
major inhibitor synaptic transmission.

1.93 ± 0.36, T = 0.03, P<0.05 1.20 ± 0.721, T=0.199, P>0.05 NS

Octopamine/tyramine receptor 0.18 ± 0.05, T = 0.001, P<0.002 0.34 ± 0.07, T = 4.1 x io '6, P<0.001

Serotonin receptor- salivary gland secretion and 
other functions.

1.43 ±0.53, T= 0.316, P>0.05 NS 1.34 ± 0.21, T = 0.355, P>0.05, NS

Dopamine receptor 4.83 ± 0.61, T = 0.006, P<0.01 1.59 ± 0.41, T = 1.11x10'", P<0.001

SEM, T-test and P values were calculated according to the methods from Yuan et al. 2006 
ND: Assay not done because primers did not amplify target.
Absent: Transcript was not found in the transcriptomes library generated.
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Figure 10. Comparison o f salivary gene expression in the tick synganglia in response to blood feeding. A) Expression o f three 
salivary gland regulating genes in Ixodes scapularis part-fed females. Dopamine and allatostatin B (Myoinhibitory peptide) are 
strongly (significantly) expressed. Bursicon beta is absent and eclosion hormone is strongly (significantly) down-regulated. B ) 
Expression o f two salivary gland regulating genes in Ornithodoros turicata engorged females. Dopamine and SIFamide peptide were 
strongly (significantly expressed. Myoinhibitory peptide was not found in the I. scapularis transcriptome. ND=Not detected or not 
assayed as a result no detection by primers.
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Figure 11. Comparison o f water balance-related gene expression in the tick synganglia in response to blood feeding. A) Expression 
o f four water balance regulating genes in Ixodes scapularis part-fed females. Calrecticulin/diuresis hormone (Cal/DH), CAPA 
receptor and corticotropin releasing factor (CRF) hormone are strongly (significantly) expressed. However, tachykinin receptor was 
essentially unchanged. B) Expression o f four water-balance regulating genes in Ornithodoros turicata engorged females. Cal/DH 
was very strongly (significantly) expressed immediately after feeding, and remained significantly expressed for at least 24 h after 
feeding. Similarly, both CAPA receptor and CRF hormone genes were significantly expressed immediately after feeding although not 
as strongly as CAL/DH. Tachykinin receptor was slightly upregulated, but this change was not significant.



A  1. scapularis feeding volume in response to

38.32 .................. ................. feeding
i i

1 4  

12 

f  10 

°  8 

1 6

i i

1 1 .9 6  J

d  4 S t i i i l l  Saif
2 1 1 -1 9

0 - ■ * * - * - ...

i  i

F M R F a m id e NPF S u lfa k in in  R ec  

Genes

■  F o ld  U n fe d  F o ld  f e d

T a c h y k in in  R ec

B 0. turicata feeding volume in response 
to feeding

1 4  

12 

F 10 

0 8

F M R F a m id e  N PF S u lf a k in in  R e c  T a c h y k in in  R ec

Genes

■  Fold  U n fe d  ’  F o ld  f e d

Figure 12. Comparison o f feeding volume-related gene expression in the tick synganglia in response to blood feeding. A) Expression 
o f blood volume regulating genes in Ixodes scapularis part-fed females. FMRFamide receptor is slightly but significantly upregulated 
while neuropeptide F receptor (NPF rec) and sulfakinin receptor genes are strongly (significantly) upregulated. However, tachykinin 
receptor was essentially unchanged. Upregulation o f satiety factor sulfakinin is believed to prevent rapid increase in blood volume, 
consistent with slow feeding. B) Expression o f four blood volume regulating genes in Ornithodoros turicata engorged females. 
FMRFamide was strongly (significantly) upregulated while neuropeptide F(NPF rec) and sulfakinin receptors were downregulated 
(significantly). In contrast, Tachykinin receptor was slightly upregulated, but this change was not significant. Downregulation o f  the 
satiety factor sulfakinin is believed to allow unrestricted blood volume uptake, consistent with rapid feeding in this species.
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Figure 13. Comparison o f ecdysis (molting) gene expression in response to blood feeding. A) Expression o f  five ecdysis regulating 
genes in Ixodes scapularis part-fed females. Eclosion hormone receptor (Eclos) and ecdysis triggering hormone peptides (Ecd TH) are 
significantly downregulated. Corazonin peptide (Cor-Pep) was not expressed in this species. Corazonin receptor and CCAP receptor 
(crustacean cardioacceleratory peptide receptor) showed small but ignificant changes. However, CAPA/PK receptor (cardioactive 
peptide receptor) was strongly upregulated. B) Expression o f  five ecdysis regulating genes in Ornithodoros turicata engorged 
females. Eclosion hormone, pre-corazonin (corazonin peptide), ecdysis triggering hormone and CAPA/PK receptor were strongly 
(significantly) upregulated. ND=Not detected or not assayed as a result no detection by primers.
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Figure 14. Comparison o f  cuticle synthesis gene expression in the tick synganglia in response to blood feeding. A) Expression o f two 
cuticle synthesis-related genes in Ixodes scapularis part-fed females. Bursicon alpha is strongly (significantly) expressed, Bursicon 
beta is absent and eclosion hormone is strongly (significantly) down-regulated. B) Expression o f three cuticle synthesis-related genes 
in Ornithodoros turicata engorged females. Both Bursicon a  and p are strongly (significantly) expressed, respectively). Eclosion 
hormone is also strongly (significantly) expressed. The expression o f only bursicon a  in I. scapularis, along with eclosion hormone 
and possibly also corazonin (not shown in this figure) has been suggested (Bissinger et al. 2011) to be responsible for gradual 
synthesis o f new cuticle needed to accommodate the enormous blood meal while also maintaining its plasticity (i.e., prevent 
sclerotization). In contrast, the strong upregulation o f both bursicon genes along with eclosion hormone in adult O. turicata females 
may be responsible for expression o f plasticity o f the cuticle needed for rapid engorgement. ND=Not detected or not assayed as a 
result no detection by primers.
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Figure 15. Comparison o f reproduction and development-related gene expression in the tick synganglia in response to blood feeding. 
A) Expression o f six reproduction/development-related genes in Ixodes scapularis part-fed females. Allatostatin peptide (Allato-pep), 
allatostatin receptor (Allato-rec), and CAPA receptor are strongly (significantly) upregulated, upregulated. However, gonadotropin 
releasing hormone receptor (GRH rec) was strongly (significantly) downregulated. Expression o f  the genes SIF peptide and SIF 
peptide receptor were slightly but not significantly upregulated. B) Expression o f  six reproduction/development-related genes in 
engorged females o f Ornithodoros turicata engorged females. Allatostatin peptide, gonadotropin releasing hormone receptor, 
SIFamide peptide and SIFamide receptor were strongly (significantly) upregulated; CAPA receptor was upregulated slightly (but 
significantly). Allatostatin receptor was downregulated but this change was not significant.
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Figure 16. Comparison o f neurotransmitter-related gene expression in the tick synganglia in response to blood feeding. Expression 
o f seven neurotransmitter receptor genes in Ixodes scapularis part-fed females. Glutamate (metabotropic) was the most strongly 
expressed o f these signaling genes. GABA receptor and dopamine receptor were also upregulated (significantly). Ionotropic 
glutamate (GluR (Ion)) and octopamine receptor were significantly downregulated, while serotonin was slightly upregulated (not 
significant). ILP=Insulin-like peptide; ITP=Ion transport peptide; Oct/tyr=Octopamine tyramine receptor.
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Figure 16 continued.
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Figure 16. Expression o f seven neurotransmitter receptor genes in O. turicata. Similar to /. scapularis, glutamate (metabotropic) was 
the most strongly expressed o f these signaling genes. Insulin and octopamine receptors were strongly (significantly) downregulated. 
GABA and serotonin receptors were weakly upregulated but these differences were not significant. ND=Not detected or not assayed 
as a result no detection by primers.
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CHAPTER 4 

4.0. Discussion

This study reports the results o f comparative transcriptomics o f the synganglion o f two 

species of ticks, the hard tick I. scapularis and the soft tick, O. turicata, with comparisons 

between the neuropeptides, neuropeptide receptors, and neurotransmitter receptors. Both 

transcriptomes were created using the same sequencing platforms (Illumina GAII). 

Quality control (Bioanalyzer) reports, assembly of the raw reads into transcripts (CLC- 

BIO) and transcriptome analysis suggest that the two transcriptomes generated using 

these methods present two cDNA libraries with high coverage o f the synganglion genes 

expressed during blood feeding. Annotations for the transcripts predicting the specific 

genes o f interest, namely, the neuropeptide, neuropeptide receptors and neurotransmitter 

receptors, initially supported by the low Genbank e-values, are further supported by 

sequence alignments with other species and the results of qPCR assays. Consequently, I 

believe that meaningful comparisons can be made about the gene categories and specific 

genes in the two species as discussed below.

4.1. General Comments and Conclusions

Despite the many biological differences in their life cycles, blood feeding, elimination o f 

blood meal water, and cycles o f reproduction described in the introduction o f this 

dissertation, the transcriptomes o f the two representative species, I. scapularis and O. 

turicata are remarkably similar with respect to the gene categories and relative 

abundance. Comparison o f the BLAST2GO charts at molecular level 3 shows these 

similarities. Although mapping was much more successful for I. scapularis than O. 

turicata, examination o f 32 gene categories (at molecular level 3) shows little difference
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in the number o f transcripts expressed for each category, with 3 exceptions, nucleoside 

binding, phosphatase regulator activity (both much more abundant in I. scapularis) and 

lyase activity (much more abundant in O. turicata). Comparison o f the transcripts 

encoding for neuropeptides, neuropeptide transporters and/or their receptors shows 

virtually the same genes in the transcriptomes o f the two different tick species (Table 

3.5). Hill et al. (pers. commun.), in their manuscript describing the genome o f I. 

scapularis, reported 56 neuropeptides, 41 o f which have orthologs in insects and other 

invertebrates. O f these 41 neuropeptides, transcripts predicting 25 o f these genes were 

recognized in O. turicata versus 23 in I. scapularis. Included are allatotropin, 

allatostatin, bursicon a, bursicon P, calcitonin, corazonin, CRF, CCAP, CPA/pyrokinin 

receptor, diuretic hormone, eclosion hormone, FMRFamide, glycoprotein A, GRF, 

insulin-like peptide, ion transport peptide, neuropeptide F, myoinhibitory peptide, 

neurophysin-oxytocin transporter, orcokinin (A version only), proctolin, SIFamide, 

sulfakinin, thyrokinin and tachykinin.

Few differences were noted between the two species. The O. turicata transcriptome 

showed transcripts for 2 o f the 3 major allatostatin genes, allatostatin B (Bombystatin) 

and allatostatin C, as well as both bursicon a  and bursicon p, glycoprotein B, and 

thyrotropin. In contrast, the I. scapularis transcriptome showed transcripts for 

allatotropin, but only allatostatin B, allatostatin C, only one bursicon, bursicon a, only 

glycoprotein A, and no transcript for thyrotropin. In several cases, no transcripts 

predicting the neuropeptide were identified but transcripts for the corresponding receptor 

were found, indicating that the transcript for the neuropeptide may have been missed 

during sequencing or assembly, or that these peptides were not expressed under the
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sampling conditions used in the study. Similar relationships were noted for the 

neurotransmitter receptors and transporters. Transcripts predicting 8 neurotransmitter 

receptors, acetylcholine (muscarinic and nicotinic), dopamine, GABA, glutamate 

(metabotropic and ionotropic), octopamine, and serotonin were annotated in the 

transcriptomes o f both species, as were transporters neurotransmitter sodium symporter 

and norepinephrine/octopamine transporter.

The hard tick, D. variabilis, is the only other species of Ixodid ticks for which 

comparable studies on the transcriptomics o f the neuropeptides and neurotransmitters 

were done (Bissinger et al. 2011; Donohue et al. 2010). Comparing the findings with the 

transcriptome o f D. variabilis, transcripts encoding for the peptides and/or receptors for 

13 o f the same genes as were found in D. variabilis, namely, allatostatin, bombsystatin (= 

allatostatin (3), bursicon a  and P (both in 0. turicata but only bursicon a  in I. scapularis), 

calcitonin, corazonin, eclosion hormone, glycoprotein A, gonadotropin-releasing 

hormone, insulin-like peptide, ion transport peptide, orcokinin, pyrokinin/CAPA, and 

sulfakinin. However, I also found transcripts encoding for an additional 9 other 

neuropeptides and/or their receptors that were not found in the D. variabilis 

transcriptome, namely, allatotropin, corticotropin-releasing factor (CRF), FMRFamide, 

myoinhibitory peptide, neurophysin-isotocin, neuropeptide F, proctolin, SIFamide and 

tachykinin.

The reason why so many additional neuropeptides/neuropeptide receptors were found in 

/. scapularis and O. turicata as compared to D. variabilis is unknown. However, it is 

possible that the much greater coverage provided by Illumina sequencing as compared to 

454 pyrosequencing is the major factor explaining this difference.
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If  the Gene Ontology categories (molecular level 3) and the neuropeptide and 

neurotransmitter profiles o f the synganglia in these two different tick species are so 

similar, how can we explain the major physiological differences observed in their 

biology? Do these genes function in similar roles, or are they expressed at different times 

and integrated differently in different patterns o f neurohormonal regulation. To address 

this question, the results o f quantitative PCR, together with evidence from the literature 

will be examined as discussed in the following section.

Note: The identities mentioned in this section were arrived at by a separate BLAST 

performed specifically to validate gene similarities and may not be similar to the 

information presented in table 3.5-3.6.

4.2. Gene Category: Growth and Development 
Bursicon

Bursicon is described as a peptide neurohormone present in arthropods (Honneger et al 

2002; Mendive et al 2005). Discovered in 1965 in the blowfly Calliphora erythocephala 

by the famous “neck-ligated blow-fly assay” (Fraenkel and Hsiao, 1965), it is said to be 

the cuticle tanning and scelerotization factor o f insects important in the accumulation of 

additional cuticular layers after molting has occurred in newly emerged dipteran adults 

(Honegger et al 2008; Wang et al, 2008; Dircksen et al, 2013). Bursicon has also been 

implicated in wing expansion activity in insects. These functions are achieved by means 

of a G-protein coupled receptor (GPCR). Bursicon is found in the central nervous system 

(CNS) and the hemolymph of newly emerged adult arthropods and chordates (Loy et al, 

2007) but not in nematodes (Sharp et al, 2010). Also, cross-species activity o f bursicon 

has been demonstrated among arthropods (An et al, 2008; Song & An, 2011) where
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bursicon isolated from a species has produced cuticle sclerotization effect when injected 

into another species.

Molecular characterization o f the protein in several insect species revealed a 30-kDa 

bioactive heterodimer made up o f two bursicon subunits conserved among the different 

arthropods (Dewey et al, 2004; Honneger et al, 2008; Song & An, 2011). The two 

subunits bursicon alpha and bursicon beta identified in Drosophila melanogaster have 

molecular weights o f 16 kDa and 14 kDa respectively. I identified homologs o f bursicon 

alpha and bursicon beta messages in the O. turicata transcriptome sharing 81% and 79% 

sequence identity with bursicon alpha (XM 002407468.1, e-value 6.00E-83) o f the deer 

tick I. scapularis and bursicon beta (XM 002407469.1, e-value 4.00E-67) o f I. 

scapularis respectively. Searches from the conserved domain database returned matches 

to the DAN superfamily cll7734] at e-values o f 2.44e-04 and 1.43e-07 respectively, 

showing the 9 conserved cysteines characteristic o f the cysteine knot family (Dewey et al, 

2004). Interestingly, we found a transcript for bursicon alpha in the transcriptome o f the 

/. scapularis synganglion, but no evidence o f bursicon beta.

Biological function of bursicon in ticks

While bursicon has been described previously as a scelerotization and tanning factor as 

well as wing expansion gene in various insects, very little is known about its function and 

role in the biology or survival o f ticks. This is so because there is no evidence o f molting 

or sclerotization in fully mature adult ticks. However, cuticular plasticization has been 

described in the cattle tick Haemaphysalis longicornis during blood feeding, a 

phenomenon synonymous to cuticle expansion in Argasids (Okura et al, 1996). We 

suggest here that an extension o f the cuticle occurs during feeding. In insects, bursicon is
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the hormone that triggers the process o f sclerotization shortly after molting o f each instar 

(Reynolds, 1983). Primers designed to amplify regions o f the bursicon alpha/beta in O. 

turicata and I scapularis showed interesting results. While bursicon alpha and bursicon 

beta showed a 3.09 and 2.89 fold increase respectively in O. turicata in response to 

feeding, bursicon alpha showed a 3.32 fold increase in I. scapularis. Judging from the 

feeding behavior o f both tick species, the increase in body size in O. turicata may be 

accounted for by their characteristic fast feeding and engorgement that occurs within an 

hour in argasids. The increase in I  scapularis may also be attributed to the same 

plasticization process, which may occur at a very slow rate as a result o f slow feeding 

behavior typical o f ixodids usually lasting for days, and not feeding to engorgement until 

mating has taken place. According to Kaufman et al. (2010), bursicon regulates the 

increased plasticization that occurs gradually as the I. scapularis female feeds, allowing it 

to increase to up 50 -  75 times its original body size. Dopamine was also implicated in 

this process (Kaufman, 2014). The implication of this may be that the rate at which 

bursicon is expressed is relatively lower in ixodids, especially during the initial feeding 

period prior to copulation. I hypothesize that plasticization is the means by which the O. 

turicata females are able to expand their cuticles for rapid blood feeding, regulated by 

expression o f both bursicon a  and p as shown in the high fold values recorded 

immediately after feeding. In contrast, gradual synthesis o f new cuticle, along with 

plasticization as the cuticle grows, is the mechanism by which I. scapularis females 

expands its body to accommodate the much larger blood meals consumed in this species, 

regulated by the ecdysial hormones (eclosion, ETH, corazonin) and bursicon functions in 

a secondary role solely to foster the plasticity o f the slowly growing cuticle.
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Corazonin

Corazonin (CRZ) a peptidergic neurohormone o f insects, initially discovered in extracts 

of the corpora cardiaca (CC) from the American cockroach Periplaneta americana, has 

been described as multi-functional, accounting for several phenotypes or behavior in 

diverse insect species (Predel et al, 2007; Choi, 2009). This neuropeptide has been 

observed to “be a potent cardioactive substance” in the American cockroach controlling 

heart beat as well as triggering muscle contractions (Veenstra, 1989). It is also known to 

induce dark coloration in the migratory locust Locusta migratoria (Tanaka, 2003), reduce 

rate o f silk spinning, and cocoon formed in the silk worm Bombyx mori during transition 

from larvae to pupae (Tanaka, et al, 2002), to stimulate the initiation o f pre-ecdysis 

triggering hormone ([PETH] (a function that is yet unclear) in the tobacco 

homworm/sphinx moth Manduca sexta (Kim, 2004; Veenstra, 2009), and has been 

suggested to be active under nutritional stress in most insects (Veenstra, 2009). Overall, 

there is not a common function that has been solely attributed to the CRZ neurohormone 

not even in Drosophila (Cazzamali, et al, 2002; Settembrini BP et al, 2011).

I identified messages encoding the corazonin receptor in both transcriptomes o f O. 

turicata and I. scapularis. 1 identified contigs in the O. turicata and the I. scapularis 

transcriptome both sharing 86% and 100% pairwise sequence identity with corazonin 

receptor (XM 002435295.1) o f the I. scapularis tick at e-values o f 6e-82 and 0.0 

respectively.

Searches from the conserved domain database returned matches to the serpentine type 

7TM GPCR Srx superfamily [cll8571] and [cl 18179], at e-values o f 6.30e-03 and 1.68e- 

04 respectively. Searches for cleavage sites using the translated nucleotides as query
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(using the bioinformatics tool "neuropred"), predicted signal sequences for the immature 

preprohormone as well as consensus cleavage sites on the receptor, predicting possibly, 

corazonin activity. In addition, the message for corazonin receptor was identified in the

O. turicata transcriptome sharing 86% and 77% identity to the corazonin receptor gene 

(XM_002435295.1; e-value: 9E-82) with I. scapularis and (XM _001972489.1; e-value: 

IE-35) with Drosophila erecta respectively.

Biological function o f corazonin in ticks

Like most other neuropeptides, there is little known about the function o f corazonin in 

ticks. Corazonin has been studied to an extent in the Crustacea and the Insecta classes o f 

arthropods and has been observed to be pleiotropic in their functions. This indeed is 

interesting as the function o f this neurohormone in ticks still eludes acarologists. We 

however, suggest that contrary to phenotypes suggested in other studies, corazonin may 

not be responsible. One that is worth considering is its action as a neurohormone that 

responds to nutritional stress (Veenstra, 2009). In our study, nutritional stress was less 

likely at the time tissue collection was performed. Quantitative PCR data for corazonin 

receptor supporting this hypothesis showed a little or no upregulation o f O. turicata 

corazonin receptor (1.01 fold increase) and slight up-regulation o f I. scapularis corazonin 

receptor (1.33 fold increase) in response to feeding in O. turicata and I. scapularis 

respectively. If  this hypothesis o f corazonin's role is correct, we would expect to see 

down-regulation o f this gene in the replete females. In light o f this, more study o f this 

neuropeptide in ticks is recommended.
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Crustacean Cardio-acceleratory Peptide (CCAP)

The crustacean cardio-acceleratory peptide (CCAP) is one o f the numerous peptide- 

signaling factors present in the nervous system and its surrounding tissues (Loi et al, 

2001). A cyclic nonapeptide with a characteristic intramolecular disulfide bridge, CCAP 

is strongly conserved across several arthropods in which studies have been carried out 

(Dircksen et al, 2013). Information about the CCAP synonymous to CAP2a gene was 

first isolated from the central nervous system (CNS) of the tobacco hawkmoth Manduca 

sexta (Tublitz et al, 1991). The CCAP gene has also been described as multi-functional, 

playing a defined role in the following: ecdysis regulation (ecdysis refers to the shedding 

of long-standing exoskeleton at the end o f the molt); hormone release; muscle 

contractions in insects and crustacean; gut tissue regulation (as a gut factor); gut 

contraction (Sakai et al, 2004); and control activity o f the anterograde cardiac pacemaker 

in Drosophila melanogaster (Dulcis et al, 2005, Lahr et al, 2012). Expression o f CCAP 

may also play a role in the circulatory physiology o f Anopheles gambiae (Estevez-Lao et 

al, 2013).

The CCAP gene has been characterized in several arthropods. The peptide contains 125 

amino acid residues as described in M. sexta (Loi et al, 2001). We identified messages 

encoding the crustacean parts o f cardio-acceleratory peptide in the transcriptomes o f O. 

turicata sharing a 88% and 71% identity with the American cockroach Periplaneta 

americana (A B126034.1; E-value: 2e-05) and a hypothetical protein (XM 002402232.1; 

e-value: 2e-18). We did not find any matches in the I. scapularis transcriptome (except 

for strong matches to hypothetical proteins), but designed primers for CCAP with 

sequence information available from the I. scapularis genome deposited in the genbank
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database. Searches to the conserved domain database revealed motifs matching with the 

arthropod cardioacceleratory peptide 2a (CCAP) superfamily [cl 12661] at an e-value o f 

9.18e-08.

Biological functions of CCAP

In spite o f the importance of this peptide in other arthropods, little is known about the 

function o f CCAP in ticks. Other studies have however, given accounts o f the presence 

of this gene in the synganglia transcriptomes o f Dermacentor variabilis and mites 

(Bissinger et al, 2011). Gene expression studies with qPCR assay revealed a 0.97 fold 

(down-regulation) decrease in response to feeding in I  scapularis demonstrating little or 

no activity, further leaving us with questions o f the functionality o f CCAP in ticks.

Pre-Ecdysis, Ecdysis Triggering Hormone (PETH, ETH) and ETH  
Receptor (ETHR)

The ecdysis-triggering hormone (ETH) as its name implies is an endocrine factor that 

triggers or induces the onset and suppression o f pre-ecdysis and ecdysis behavior in 

insects. Ecdysis is a complex periodic process involving the shedding o f old exoskeleton, 

respiratory system, and cuticular lining of the fore gut & hind gut during metamorphosis 

(Park et al, 2003). Pre-ecdysis and ecdysis triggering hormones (PETH & ETH) are 

secreted in endocrine Inka cells in most arthropods (Zitnan et al, 2003), and some studies 

suggest far reaching “lethal and behavioral deficits (non-initiation o f ecdysis sequence, 

inability to inflate new respiratory system, incomplete ecdysis, and mortality)” upon 

silencing of the eth gene in Drosophila (Park et al, 2002). Molecular characterization o f 

the ETHR revealed two splicing variants o f the receptor ETHR-A and ETHR-B inferring 

conserved structures and organization in representative sequences o f ETH and ETHR
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from Rhodnius, Acyrthosiphon, Pediculus, Apis, Anopheles, and Culex while orthologs of 

the eth and ethr genes were identified in Ixodes and Daphnia (Roller et al, 2010).

Even though transcripts encoding the ETH-like peptide were not identified in both 

transcriptomes o f O. turicata and I. scapularis, matches were found sharing 82% identity 

with variants Ethr-A and Ethr-B o f the red floor beetle Tribolium castaneum  

(NM_001083323.1 NM 001083324.1; e-values: le-17) in the O. turicata transcriptome 

predicting a likely ETH-ETHR signaling in ticks. The transcriptome generated from the 

pooled sample o f unfed, part-fed and replete I. scapularis females revealed the presence 

o f a transcript for ETHR, but no transcript for ETHR was found in the transcriptome 

generated from the part-fed females (Egekwu et al, 2014). This suggests that ETHR is 

expressed in the unfed or replete females, but not in the part-fed (virgin) females. 

Biological function of ETH, PETH, and ETHR in Ticks 

Adult ticks as mentioned in previous sections do not undergo molting or ecdysis. This is 

known to occur in larvae and nymphal stages prior to molting. However, ticks are 

unusual in that cuticular expansion occurs during feeding so as to accommodate the huge 

blood meal. While there was little expression o f 0.05 fold o f ETHR in the /. scapularis 

part-fed female, we report here qPCR data revealing up-regulation o f 6.89 fold for O. 

turicata Ethr in response to feeding. I speculate here further, a strong connection to the 

biology o f both ticks species. If cuticular expansion is the case here, then the data 

supports the hypothesis that the ETH-ETHR signaling is active in O. turicata as a result 

o f its ability to feed to engorgement within 1 to 2 hours and then likely suppressed soon 

afterwards. This however, is not the case with I. scapularis that has a partial feeding 

phase initially necessary before the onset o f copulation and then a second slow phase (5-7
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days) o f feeding to engorgement after copulation is achieved with male. It is very likely 

that cuticle expansion is more sustained over a longer period in I. scapularis hence the 

need for ETH activity. We hypothesize that ETH activity will be high in replete females 

as evidence in previous studies showed highly significant downregulation o f ETH in part 

fed female transcriptome and presence o f ETH in transcriptome o f mixed synganglia 

samples o f unfed, part-fed, and replete Ixodes females (Egekwu et al, 2014). These 

findings suggest that ETH may be needed only during the post-mating cuticle expansion 

that occurs when the female feeds to repletion. This is however, subject to further 

investigation.

Eclosion Hormone (EH)

Eclosion hormone on the other hand has been implicated as a regulator o f ETH secretion 

prior to ecdysis (Zitnan et al, 2007). Eclosion hormone being peptidergic, is one o f four 

peptides (others being (CCAP, PETH, ETH) involved in cell-cell communication leading 

to activation of pre-ecdysis and ecdysis processes in insects (Park et al, 1999). The 

interaction o f these peptides as studied in Manduca sexta describes ETH as an activator 

o f EH and EH as a trigger for CCAP secretion and onset o f the ecdysis motor program 

(Gammie & Truman, 1999).

We identified messages encoding the eclosion hormone in both transcriptomes o f O. 

turicata and I. scapularis sharing 83%, 99% pairwise sequence identity with eclosion 

hormone (XM 002399230.1) o f the I. scapularis tick at e-values o f 3.00e-35 and 2.00e- 

124 respectively. Sequence identity o f 78%, 80 % (EU567122.1; e-values: 1 e-26, 3e-27) 

with eclosion o f D. variabilis identity was also observed in both transcriptomes o f O. 

turicata and /. scapularis respectively. Searches from the conserved domain database
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returned matches to the eclosion superfamily [cl04714] at e-values o f 1,20e-l 3 and 1.20e- 

16 respectively.

Biological function of Eclosion in Ticks

The role o f eclosion hormone has been well documented in insects. The role o f this 

hormone in ticks however, has appeared a bit controversial because o f what is known 

about how eclosion hormone works in tandem with the ecdysis, pre-ecdysis hormone, and 

CCAP to regulate growth and development behavior through ecdysis and molting in 

insects (Roe et al, 2013). Adult ticks however, with a different biology from insects, do 

not undergo molting. But the presence of this neuropeptide in several transcriptomes of 

adult fed ticks e.g., D. variabilis (Donohue et al, 2010; Bissinger et al, 2011) and I. 

scapularis (Egekwu et al, 2014) enables me to suggest some other “feeding activated” 

roles regulating adult tick behavior, cuticle expansion, and female reproduction as 

speculated by Roe et al. (2013). However, gene expression from my qPCR data, showed 

up-regulation o f eclosion hormone by 1.96 fold and 0.32 down-regulation in O. turicata 

and I. scapularis respectively in response to feeding. Based on these findings, I suggest 

that eclosion hormone may facilitate the rapid cuticle plasticization needed by O. turicata 

that enables them to blood feed within minutes. In contrast, the fact that it is 

downregulated in part-fed /. scapularis is consistent with the slow feeding process that 

occurs prior to mating and subsequent rapid engorgement. There is high similarity 

between the O. turicata and /. scapularis eclosion sequences (suggesting similarity in 

functions) but there appears to be important differences in their expression patterns and 

time o f expression. Further studies are needed to test this hypothesis.
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4.3. Gene Category: Reproduction 

Allatostatins (Ast) and Preproallatostatin (preproAST)

Allatostatins (Ast) have been described as pleiotropic neuropeptides particularly due to 

multiple phenotypic functions that are affected by the expression o f this gene (Stay & 

Tobe, 2007). Allatostatins have also been implicated in several functions in diverse 

organisms (Veenstral et al 1997). In insects and crustaceans, they are generally known to 

obstruct the biosynthesis o f a growth and reproduction regulator, the juvenile hormone 

(JH), by the corpora allata (CA) o f the synganglion and mandibular glands in insects and 

crustaceans respectively. JH is widely responsible for maturation o f larvae and nymphal 

development as well as vitellogenesis in adult virgin females during reproduction 

(Woodhead et al, 1989; Stay & Tobe, 2007). In some other cases, it has been known to 

regulate certain phenotypes in insects such as color morphs, caste differentiation, wing 

length, etc, which are typical examples o f polyphenism (Hartfelder & Emlen, 2012; 

Jindra et al, 2013). And in mammalian cells, allatostatin binds allatostatin receptors to 

reduce membrane potential and input resistance by opening G-protein coupled inward- 

rectifying potassium channels (Tan et al, 2007). Allatostatin has also been implicated in 

mid-gut movement and recently, it has been shown to affect satiety in Drosophila. An 

inhibitory effect on feeding and an enhancement o f food aversion was observed in 

Drosophila upon activation of AstA-expressing neuron (Hergarden et al 

2012). However, the function o f this gene in ticks has not received extensive studies.

We identified two allatostatin preprohormones (preproAST), preproallatostatin A & 

preproallatostatin C, from the O. turicata transcriptome that shared 84% sequence 

identity in each case with preproAST A (AJ302036.1, e-value 0.091) o f the cricket
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Gryllus bimaculatus and preproAST C (XM 003426036.1, e-value 6e-06) o f the jewel 

wasps Nasonia vetripennis respectively. Receptor genes o f Ast were also identified in 

both O. turicata and I. scapularis sharing 78% and 99% identity with I. scapularis 

allatostatin receptor (XM 002403808.1, e-value 6e-96) and (XM_002433328.1, e-value 

0) respectively. Both contigs contained domains belonging to 7TM GPCR and 7TM 

Biological Function of Allatostatin in Ticks

The function o f allatostatin in ticks is yet unknown. In fact, several questions still remain 

as to why it is present in adult ticks. Several studies on insects and crustacea, has 

revealed that these genes inhibit the biosynthesis o f JH by the corpora allata and 

mandibular glands respectively. Adult ticks do not molt nor undergo vitellogenesis until 

they mate, leaving us with the sole question o f the function o f Ast in these two tick 

species. Is it also possible that the function o f these genes may have evolved across the 

different classes o f arthropods? For instance it has been suggested that these 

neuropeptides may be playing an important role in cuticle expansion (Kaufman,

2014). This question is worthy o f investigation. Although Ast A, B or C were not 

identified in both transcriptomes, the presence o f PreproAST A, preproAST C messages, 

and Ast receptors in the O. turicata transcriptome lends credence to the possible synthesis 

of the mature Ast peptide. Quantitative PCR (see fig 3.12) data showed a 6.45-fold up 

regulation and 0.26 o f PreproAst A in O. turicata and the receptors respectively. We can 

attribute this trend to the feeding behavior o f O. turicata females that feed within an hour 

or two and quickly drop off. It is quite possible that the Ast is turned on to inhibit the 

need for more blood meal. In I. scapularis, we went ahead to design primers for 

preproAst A & B (based on information from Genbank) and gene expression studies



revealed a 6.24 fold increase 7.95 fold increase, and 21.16 upregulation upon feeding for 

preproAst A, Ast B, and Allastostatin receptor respectively.

Allatotropin (AT)

Allatotropin (AT) is a multi-functional amidated neuropeptide that is critical in Juvenile 

Hormone (JH) synthesis in insects. The role o f JH in insects is mentioned in the previous 

section (see 4.3.1.). Allatotropin has been described as a regulator o f the JH synthesis by 

the corpora allata (CA) stimulating an increase in the synthesis o f JH in retrocerebral 

complexes (RC) o f adult female moths (Teal, 2002; Alzugaray et al, 2013). The peptide 

in several arthropods is pleiotropic in action performing neural, endocrine and myoactive 

roles amongst which include mid-gut ion transport inhibition, circadian rhythms control, 

and cardioacceleratory functions (Alzugaray et al, 2013). The action o f Allatotropin and 

Allatostatin are antagonistic as the secretion o f Ast has been demonstrated to inhibit the 

production o f Allatotropin (Teal, 2002).

Contigs sharing sequence identity of 100% with the 1. scapularis Allatotropin 

XM 002406992.1; e-value: 1 e -166). None was identified in the O. turicata 

transcriptome.

Biological function of Allatotropin

The function o f Allatotropin has been related to stimulation o f JH biosynthesis in insects. 

The function in ticks has not received a lot o f attention and so remains unclear. And 

because adult ticks do not undergo molting, we speculate that this peptide may be 

performing a different function in ticks. Even though we found a good alignment o f this 

gene in I. scapularis, qPCR data is not yet available at this point. We are also unable to 

comment on the similarities between the sequences in /. scapularis and O. turicata
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because o f the absence o f an allatotropin-like peptide in the O. turicata transcriptome.

We could however, adduce the differences in expression patterns and possibly the 

absence o f the peptide in O. turicata transcriptome to the antagonistic action o f the 

Allatostatin peptide to Allatotropin (Teal, 2002). Quantitative qPCR data for 

Allastostatin showed up-regulation o f the preprohormone and receptors in both O. 

turicata and I. scapularis to support our speculations. At this stage, I cannot speculate as 

to the roles o f allatotropin and allatostatin in tick reproduction.

SIFamide

Originally isolated from the flesh fly Neobelliera bullata as a myotropic neuropeptide 

NeobuLFamides, SIFamide is extremely conserved and abundant in arthropods that have 

been studied (Verleyen et al, 2004; Vazquez-Acevedo et al, 2009; Dircksen et al, 2013). 

Studies have shown conservation o f six isoforms in numerous crtustaceans (gut and 

brain), several insects (4 neurons in pars intercerebralis), and a tick, implicating the 

peptide in neuromodulatory functions such as vision, tactile input and olfaction (Verleyen 

et al, 2008). Other studies have also demonstrated the role o f SIFamide in modulation of 

sexual behavior in fruit flies and control o f male agresssive behavior in the lobster 

Macrobranchium rosenbergii (Tehazz et al, 2007; Dircksen, 2013, Kastin, 2013).

We identified sequences sharing 74%, 80% identity with the I. scapularis SIfamide 

precursor (GQ214556.1; e-value: le-25) and SIFamide receptor (KC422392.1; e-value: 

3e-89) in the O. turicata transcriptome. Sequences sharing 100%, 68% identity with /. 

scapularis hypothetical protein (XM_002404070.1; e-value: le-80) and Nasonia 

vetripennis SIFamide like receptor (XM 001600048.2; le-09) were also identified in the



I. scapularis transcriptome. All sequences revealed typical motifs o f 7TM_GPCR_Srx, 

and 7 transmembrane receptor (rhodopsin) families from the conserved domain database. 

Biological Function of SIFamide in Ticks

SIfamide has been implicated in several functions in arthropods. In ticks however, 

immunohistochemistry patterns have demonstrated activity o f the SIFamide receptors in 

salivary glands (SG) o f I. scapularis suggesting a pre-existence o f SIFamide signaling 

system in unfed salivary glands (Simo et al, 2013). It was inferred (based on the location 

o f the SIFamide receptor in the SG), that the likely targets and functions o f this peptide 

were the myoepithelial cells (contraction o f the acini and/or the control o f the valve), 

basally located dopaminergic granular cells (paracrine and dopamine regulation); and 

neck cells (control o f the acinar duct and its valve). RNAi however, has not verified this 

finding due to the difficulty in delivering the dsRNA in ticks (Simo et al, 2013; Simo et 

al, 2014).

Quantitative PCR data showed a 3.89 fold increase o f the SIFamide receptor in O 

turicata and 1. 41-fold increase in I. scapularis in response to feeding. While the trend in

I. scapularis, may suggest the role o f SIFamide in controlling the SG as proposed in 

Simo et al, (2013), the trend in O, turicata points us in a different direction. We show 

sequence similarities in both tick species but still see differences in their expression 

patterns and time o f expression of SIFamide peptide. We therefore speculate that 

SIFamide may be performing other functions in ticks and these functions may be 

behavior-dependent (biology of both ticks) in O. turicata and I. scapularis.
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Pyrokinin/Pheromone Biosynthesis Activating Neuropeptide (PBAN).

First discovered in the cockroach, Leucophaea madarae the pyrokinin/pheromone 

synthesis activating neuropeptide (PK/PBAN) family is distributed in a wide range o f 

insects and is recognized by a C-terminal pentapeptide, FXPRLamide, which may also be 

utilized in vast amount o f physiological functions in different insect species (Fan et al, 

2012; Hellmich et al, 2014). In addition to playing myotropic roles, this peptide 

neurohormone family, may be involved in melanization, puparial contraction, diapause 

trigger/inhibition, increased production o f sex pheromones, and stimulation o f 

pheromone biosynthesis in different insect species (Paluzzi and O ’Donell, 2012;

Hellmich et al, 2014). We identified partial sequences from the O. turicata 

transcriptomes sharing 100%, 84%, and 72% identity with an I.scapularis G-protein 

receptor (XM 002401136.1; e-value: 0.0); a D. variabilis pyrokinin-like receptor 

(EU659109.1; e-value: 2e-124); and a Plutella xylostella biosynthesis activating 

neuropeptide receptor (AY974334.1; e-value: le-39). We also identified transcripts in 

the I. scapularis transcriptomes sharing 76% and 70% identity with a D. variabilis 

pyrokinin-like receptor (EU659109.1; e-value: le-109), and a P. xylostella biosynthesis 

activating neuropeptide receptor (AY974334.1; e-value: 8e-30).

Biological Functions of PK/PBAN in Ticks

Like most other neurohormones, the function o f pyrokinin/PBAN in ticks is not known. 

We observed a 0.63 fold decrease in the expression o f the peptide in the synganglion of 

part fed O turicata (not shown in the figure) versus a 2.36 fold increase in /. scapularis 

females. The many roles attributed to this peptide in insects and arachnids demands 

extensive work in researching the functions they play in ticks. We speculate here that
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this PK/PBAN might indeed be playing a role in the activation o f pheromone 

biosynthesis neuropeptide. We support this finding for PBAN with qPCR data from the 

same biological samples o f O. turicata females used for pyrokinin. We do not have 

qPCR data for I. scapularis PBAN and cannot comment further at this time. We also 

speculate here, the possibility o f this neurohormone playing a vital role in the 

biosynthesis o f sex pheromones in female ticks as it affects the PBAN peptide. While 

argasids (e.g., O. turicata) release this pheromone post-feeding period to attract males, 

ixodid prostriates (.Ixodes sp) sex pheromones are released by unfed females as well as 

feeding females. This may account for the trend in the qPCR results showing 0.63 in 

PK/PBAN expression in O. turicata (collected after drop off) and 2.36 in PK/PBAN 

expression in I. scapularis (which should increase progressively during the course of 

feeding). The role o f sex pheromones in tick reproductive behavior is well documented 

in Sonenshine (1999, 2006) but little is known about the genes that regulate this process. 

Again we document here possible differences in the expression pattern and time of 

expression that may be related to the difference in sexual behavior and feeding biology o f 

both ticks in spite o f the substantial similarities in their gene sequences.

Other related peptides in this category

The pheromone biosynthesis activating neuropeptide (PBAN) hormone has been 

identified in moths as a neuropeptide that regulates biosynthesis of pheromones (Raina et 

al, 1989; Tillman et al, 1999) and in some cases responsible for induction and termination 

o f diapause (DH-PBAN) as observed in Bombyx mori (Zhang et al, 2004). While no 

transcripts corresponding to these insect neuropeptides were identified in the I. scapularis 

transcriptome, contigs sharing 60% sequence similarity with /. scapularis hypothetical
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protein (XP 002407526.1; e-value: 4.58E-36) was identified in the O. turicata 

transcriptome. Furthermore, searches from the conserved domain database revealed the 

PBAN super family ([cl05446]; e-value: 1.77E-06) confirming the presence o f this 

neurohormone in the query sequence. Very little or nothing is known about the 

biosynthesis o f the various pheromones in ticks (such as 2, 6, dichlorophenol [2, 6-DCP] 

or the Attraction-Aggregation-Attachment Pheromone [AAA]) and there is little known 

about the PBAN that may be activating biosynthesis of the sex pheromones. We suggest 

that this peptide, which may be species specific, is involved in the production of sex 

pheromones in individual tick species to attract males for mating (Sonenshine et al 1984; 

Sonenshine, 1985; Sonenshine, 2006). Quantitative PCR data also showed a 0.63 down- 

regulation o f the gene in the synganglion o f the female O. turicata. The reasons for these 

speculations are explained above (in the PK/PBAN section).

The Gonadotropin Releasing Hormone (GnRH) has been implicated in release of 

gonadotropins, which in turn initiates the development o f the gonads in insects. This 

hormone has been implicated in ecdysteroid synthesis in invertebrates (Loof et al, 2012). 

Even though the function o f the GnRH is not known in ticks, we identified sequences 

sharing 77% and 97% identity with I. scapularis GnRH-receptors (XMJ302401826.1; e- 

value: 2e-89) and (XM 002407293.1; e-value: 5e-30) in the transcriptomes o f O. turicata 

and I. scapularis respectively. While the partial sequence identified in I. scapularis 

transcriptome revealed no results upon searches in the conserved domain database 

(CDD), the sequence from the O. turicata transcriptome revealed the 7tm_l 

[pfamOOOOl], 7 transmembrane receptor (rhodopsin family). Furthermore, qPCR data 

revealed a 2.37 fold increase and 0.39 fold decrease in GnRH receptor expression in the
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synganglia o f female O. turicata and I. scapularis ticks respectively. These findings are 

surprising, since I expected that GnRH activity would have been increased since feeding 

activates spermatogenesis and oogenesis in ticks. The function o f this hormone therefore, 

should be investigated further.

The Pheromone and Odorant Receptor was identified in both the O. turicata and I. 

scapularis transcriptomes. Whilst we identified partial sequences sharing 75% with I. 

scapularis pheromone and odorant receptor (XM 002415597.1; e-value: 0.0), partial 

sequences sharing 99% identity with the same accession number were identified for O. 

turicata and /  scapularis respectively. Quantitative PCR data showed down-regulation 

by 0.39 fold o f the receptors as expressed in the synganglion o f O. turicata females in 

response to feeding. In spite o f insufficient information o f the function o f these receptors 

in ticks, they are important and may be species specific in various organisms (ticks 

inclusive) in functioning as modulators o f sexual behavior (Sakai et al, 2011) and food 

perception (Touhara et al, 2009) depending on ligands that elicits their activation. The 

sequences identified in O. turicata previously in this section revealed alignments to the 

Major Facilitator (MFS [cd06174]) super family while the sequences identified in I. 

scapularis revealed alignment to Ligand binding domain of the metabotropic glutamate 

receptors ( P B P l m G l u R  [cd06362]). It is possible that this receptor is part o f the 

interpretative repertoire o f association neurons in the synganglion. Further research is 

needed to investigate this hypothesis.
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4.4. Gene Category: W ater Balance and Feeding Behaviour 

Diuretic Hormones

Diuretic hormones (DH) are hormones that play roles in water regulation, fluid secretion 

and ion balance in Malpighian tubules in arthropods (Li et al, 1997; Nassel, 2002). In 

insects and crustaceans, two or more genes may encode precursors o f putative diuretic 

hormones (Nassel, 2002; Dircksen et al, 2013). We describe herewith in the 

transcriptomes o f O. turicata and I. scapularis, the presence o f transcripts encoding a 

corticotropin releasing factor-(CRF/DH) like diuretic hormone receptor and a calcitonin­

like diuretic hormone receptor (CT/DH). These diuretic hormones will be discussed 

individually and as expressed in the ticks. We identified contigs sharing 83% and 78% 

partial sequence identity to I. scapularis DH receptor (XM 002435613.1, e-value: 6e-81) 

and/, scapularis CRF/DH receptor (XM 002403924.1, e value: 6e-30) in the O. turicata 

transcriptome while contigs sharing 77% and 74% with I. scapularis DH receptor 

(XM 002435613.1, e-value: le-47) and/, scapularis CRF/DH-receptor 

(XM 002403924.1; e value: le-41) were identified in the I. scapularis transcriptome. 

Conserved domain searches with these contigs as queries revealed motifs belonging to 

the 7 transmembrane receptor (Secretin family) [cl 19289] with e values o f 2.71e-06 and 

1.32e-30 for O. turicata and I. scapularis respectively.

We also identified sequences sharing 75% identity with I. scapularis CT/DH-receptor 

(XM 002413994.1; e-value: 3e-95) in the O. turicata transcriptome and partial sequences 

sharing 99% identity with I. scapularis CT/DH-receptor (XM 002408382.1; e-value: 8e- 

102) in the I. scapularis transcriptome.
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Results for O. turicata (table 7) show that expression o f diuretic hormone is strongly 

upregulated during the brief feeding period (< 1 hour), but then declines when assayed 

again 1 -  2 days post-feeding. Results for I. scapularis show that diuretic hormone 

receptor is strongly upregulated during the lengthy tick-feeding period ( 5 - 6  days post­

attachment). These findings help explain one of the major differences in the 

osmoregulatory functions o f these two species.

Corticotropin Releasing Factor-Diuretic Hormone (CRF/DH)

The CRF peptide, also a homolog o f the Diuretic hormone (DH) has been studied in 

several arthropods and suggested to act as neuromodulators in the CNS (Nassel et al, 

2002). The CRF/DH regulates fluid secretion rate by stimulating cyclic AMP (cAMP) 

production in Malpighian tubules (Clottens, et al, 1994). Many studies have also 

implicated CRF as a “clearance peptide” in blood feeding insects, excreting very high 

amount o f metabolic waste from the haemolymph (Kay et al, 1993) and may also have a 

hormonal role in the regulation o f post feeding diuresis (Coast, 1996).

Biological Function of CRF/DH in Ticks

Although little is known about the function o f this peptide in ticks, we can draw 

speculation from the gene’s role in other arthropods. Gene function studies by RNAi 

may be needed to investigate the function o f this peptide in ticks. Quantitative qPCR 

data o f CRF/DH-R revealed weak up-regulation (1.44 fold) in O. turicata and up- 

regulation o f 2.94 fold in I. scapularis respectively. We propose here that CRF may be 

playing a role in waste removal from the haemolymph in ticks. The qPCR data supports 

this hypothesis for I. scapularis but not O. turicata. However, the timing o f the 

synganglion extractions in the latter may be a factor in explaining this difference



(synganglia were extracted ~ 1-2 days after feeding). The sequence similarities may be 

an indication of the same function but the time o f expression might be different as a result 

o f their respective feeding biology.

Calcitonin-like Diuretic Hormone (CT/DH)

The calcitonin-like diuretic hormone (CT/DH) family was so called because o f its role in 

stimulating salt and water transport by Malpighian tubules (MT) secretion as well as ion 

homeostasis in some insects (Furuja, et al, 2000; Zandawala et al, 2013). The 

prepropeptides are quite conserved in many insects where they are found in the cells 

present in the central nervous system (CNS) and CT/DH receptors are reported in insects 

and other arthropods (Zandawala, 2012). The CT/DH has been implicated as a powerful 

heart modulator in the American lobster Homarus americanus (Christie et al, 2009) and a 

stimulator o f V-ATPase activity in the fruit fly (Coast et al, 2001) suggesting other 

possible functions in arthropods.

The role o f CT/DH in ticks has not received much investigation. Ticks need to retain or 

expel water or ions to balance their osmotic pressures after every blood meal. We 

suggest that CT/DH just like other diuretic hormones is vital in this homeostatic process. 

The qPCR data for part fed /  scapularis CT/DH-R female revealed an 8.77 fold up- 

regulation in response to feeding. In contrast, we observed a strong 5.30 fold up- 

regulation o f CT/DH-R in O. turicata, declining to 3.72 folds 2 days post engorgement. 

We suggest that there are great similarities in the sequence o f the CT/DH in both ticks but 

differences in the duration o f their expression appear to be related to the time o f feeding, 

very brief in O. turicata versus long periods in /. scapularis. These findings are 

consistent with the very different modes o f feeding in the two species, rapid feeding and
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rapid water/salt elimination in O. turicata versus more gradual water elimination during 

slow feeding and salivary gland transformation in I. scapularis.

Cardioacceleratory Peptide CAPA peptide Pyrokinin/- 
Periviscerokinin) Receptors

The CAPA peptide family, singled out as one o f the known nitridergic peptides in insects 

has received a lot o f attention in the past decade in insects and arachnids. They are 

presumed “the most abundant neuropeptides in the abdominal neurohemal system” in 

insects (Predel and Wegener, 2006). The function o f this peptide is myomodulatory and 

osmoregulatory especially important in the induction of calcium signaling via CAPA 

receptors (CAPA-R), and performing diuretic roles by increasing levels o f nitric oxide 

and cGMP in Malpighian tubules (MT) of insects (Terhza et al, 2012; Davies et al, 2013). 

The peptide and its receptor (capaR) have also been implicated in the regulation o f anti­

diuresis in Manduca sexta and Rhodnius prolixus respectively by inhibiting fluid 

secretion in the MTs (Quilan et al, 1997; Paluzzi et al, 2010). The CAPA peptides have 

been grouped into periviscerokinin (PVK/CAP2b) and pyrokinin (PK/CAP21,) peptide 

families and this nomenclature may be based on the isolation history and the position on 

the prepropeptide (Predel and Wegener, 2006). The peptide PVK-CAPA has also been 

isolated from the Gulf Coast tick Amblyomma maculatum (Neupert et al, 2008) and 

Rhipicephalus (Boophilus) microplus (Yang et al, 2013).

We identified transcripts encoding the CAPA receptor-like peptide in the O. turicata 

transcriptome sharing 76% identity with the predatory mite Metaseiulus occidentalis capa 

receptor (XM 003739621.1; e-value: 1 e-32) and 70% identity with the I. scapularis 

periviscerokinin/Cap2b receptor (JQ771528.1; e-value: 4e-07). Partial sequences o f the 

same transcripts revealed 89% identity with the red imported fire ant Solenopsis invicta
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pyrokinin-2 receptor (JX657040.1; e-value: 0.008). We also identified contigs sharing 

98% identity with I. scapularis conserved hypothetical protein (XM 002435093.1; e- 

value: 6e-48) in the I. scapularis transcriptome. All contigs mentioned revealed the 

presence o f motifs o f the 7 transmembrane receptor (7tm_l [pfamOOOOl]; e-value: 2.04e- 

08) common to this group.

Biological Function of CAPA peptide in Ticks

Even though the role o f PVK/CAP2b and PK/CAP2b peptide family in water 

retention/diuresis is well documented in insects, its function in ticks is not known. We 

speculate that these peptides may be performing the same diuretic function in ticks as 

suggested in Neupert et al (2008). Ticks being blood feeders need to regulate water and 

ion balance. Quantitative qPCR data showed a 1.59 and 2.36 fold increase o f the CAPA- 

R in synganglia o f O. turicata and I. scapularis respectively in response to feeding. If 

indeed CAPA has diuretic capabilities, then we would expect such an increase in its 

expression. We speculate that the upregulation of CAPA found in O. turicata is expected 

to be highest during feeding or soon after feeding, similar to what was reported 

previously for other diuretic hormones (calcitonin and DH). CAPA expression found in 

/. scapularis however showed a greater increase, perhaps related to the sustained feeding 

process characteristic o f this species. We therefore describe strong similarities in peptide 

sequences but differences in the time o f gene expression patterns o f CAPA-R in O. 

turicata and /. scapularis. Further work is recommended to determine the function o f 

this peptide family in ticks.



98

Tachykinin-Related Peptides (TKRP)

This family o f peptides present in the brain or guts o f mammals and invertebrates 

represents by far, one o f the largest peptide families with about 40 TKRPs isolated from 

insects, worms, molluscs, and several vertebrate tissues (Severinin et al, 2002). With 

several isoforms identified in arthropods, TKRPs are said to be multi-functional and are 

implicated in neuromodulatory roles in the CNS, control o f blood flow in mammals, as 

well as stimulating a large number of visceral muscles. In addition, a recent study has 

described TKRPs as an ancestral relative o f the natalisin gene implicated in the regulation 

o f sexual/mating behavior and fecundity in insects and arthropods (Jiang, et al, 2013).

We identified transcripts sharing 77% and 71% identity with the Western predatory mite 

Metaseiulus occidentalis tachykinin-like peptides receptor 99D-like (XM 003744167.1) 

at e-values o f le-34 and 3e-109 in the O. turicata and I, scapularis transcriptomes 

respectively. Searches in the conserved domain data base revealed matches to the 7 

transmembrane receptor GPCRs of the rhodopsin family (7tm_l [pfamOOOOl]) with e- 

values o f 6.0e-14 and 1.55e-57 for O. turicata and /. scapularis respectively.

Biological functions of Tachykinin in Ticks

The function o f this peptide has not been investigated in ticks although receptors o f 

TKRP have been mentioned in the salivary ducts (Simo et al, 2011). Quantitative PCR 

data revealed a 1.44 fold increase in expression o f TKRP receptors in the synganglion of 

O. turicata females and a 0.88 fold decrease in expression o f TKRP receptors in I. 

scapularis female synganglion in response to feeding. We are unable to offer concrete 

explanations for these observations. We can however, speculate that this peptide family 

may be involved in tick feeding behavior especially in gut contraction, an activity which
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occurs with much higher frequency in the rapidly feeding argasids as compared to the 

slow blood sucking activity in ixodids. We report here high sequence similarities and yet 

differences in patterns o f expression o f TKRP and its receptors in O. turicata and I. 

scapularis ticks

4.5. Gene Category: Feeding Volume; Satiety 
Neuropeptide F (NPF).

A homologue o f its equivalent neuropeptide Y in vertebrates, Neuropeptide F (NPF)- 

related peptides are abundant in the nervous system o f most invertebrates studied (Maule 

et al 1995; Gonzalez and Ochard, 2009). These peptides have been implicated in several 

physiological roles. While some studies have revealed the role o f NPF-related peptides 

in feeding, metabolism, reproduction and stress responses (Nassel and Wegener, 2011), 

other studies have suggested myoinhibitory roles, ability to decrease epithelial membrane 

potential (Gonzalez & Orchard, 2009); inhibiting activity o f the abdominal ganglia 

(Maule et al, 1995); and a possible role for signaling associated with nutritional status 

(Garczynski, et al, 2005) in insects and other invertebrates studied.

We identified messages for the NPF receptors sharing partial sequence identity of 84% 

with the I. scapularis neuropeptide F receptor (XM 002402121.1; e-value: 4e-22) in the 

O. turicata transcriptome and messages sharing 79% identity with I. scapularis 

neuropeptide F receptor (XM 002413274.1 ; e-value: 2e-104) in the I. scapularis 

transcriptome. These contigs showed a strong alignment with the 7 transmembrane 

receptor (rhodopsin family) conserved domain (7tm_l [pfamOOOOl], at e-values o f 1,04e- 

06 and 9.85e-38 for (). turicata and I. scapularis respectively.
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Biological Function o f NPF in Ticks

The biological function o f NPF-related peptides has not been thoroughly investigated in 

ticks. Based on information available from studies in insects, we suggest possible roles 

for NPF in gut contraction and feeding behavior. Reverse transcriptase-PCR revealed a 

0.56 fold decrease and a very high 38.32 fold increase in the expression o f the transcripts 

o f NPF-receptors in the O. turicata and I. scapularis synganglia, respectively. We see 

here again similarities in the gene sequences and a huge disparity in the level, pattern, 

and timing o f gene expression in both ticks. However, the exact function regulated by 

this gene in the two different species is unknown.

Sulfakinin (SK)-SK-Receptors

The sulfakinin (SK) family o f neuropeptides peptides have been isolated in several 

insects and are considered as factors that are involved in regulating the feeding and the 

process o f digestion in insects (Liesch et al, 2013). Previously, it was implicated in 

neurotransmission or neuromodulation in insects and crustaceans (Johnsen et al, 2001); a 

satiety factor demonstrated to have inhibited feeding in the German cockroach and desert 

locust (Downer et al, 2006); increase heart beat frequency in cockroaches; and amplitude 

o f hindgut contraction (Kastin, 2006).

Messages encoding SK-receptors (SK-R) were identified in both transcriptomes o f the O. 

turicata and I. scapularis transcriptomes sharing 78% & 99% sequence identity to I. 

scapularis sulfakinin receptor (XMJ302434986.1; e-value: 6e-24) and 

(XM 002404151.1; e-value: 2e-170) respectively.
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Biological Function of SK in Ticks

Like most of the neuropeptides already mentioned, SK has not been investigated for its 

function in ticks. We therefore infer its function from the information presented in 

studies performed in insects, also supported by qPCR data from our laboratory. We 

speculate here that SK in ticks may be involved in feeding regulation as well as may be a 

satiety factor. The qPCR data revealed a 0.66 down-regulation in SK-R expression in 

synganglia o f female fed O. turicata and an 11.96 fold increase o f SK-R expression in 

part fed I. scapularis female synganglia. Again we see here a difference in the 

expression pattern in these two ticks. It is presumed that a decrease in SK-R expression 

would avoid early termination of blood volume intake, thereby allowing an increase 

blood volume/intake. This we clearly see in the O. turicata females as they feed and 

engorge within hours. In contrast, I. scapularis feeds slowly for 5-6 days, so that the 

upregulation of SK-R expression observed with the qPCR results is consistent with the 

need to keep feeding relatively slowly until mating. These ticks do not engorge fully 

until after mating, hence a reverse in the expression pattern is expected during the slow 

feeding period. Here again, there are very substantial similarities in the SK/SK-R 

sequences in both O. turicata and I. scapularis, but very great differences in gene 

expression consistent with their different patterns of blood feeding. Further studies are 

needed to fully explain how SK and SK-R regulates blood feeding in ticks.

4.6. Categories: Neurotransmitter Receptors

Here we describe receptors of 3 biogenic amine neurotransmitters (dopamine, 

octopamine, serotonin [5-hydroxytryptamine]), 1 acetylcholine, and 2 amino acid 

neurotransmitters (glutamate and GABA) in both transcriptomes o f O. turicata and I.
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scapularis trancriptomes (Osbome, 1996). We report in the O. turicata transcriptome, 

transcripts predicting dopamine activity with 78% identity to I. scapularis dopamine 

D l/beta receptor (XM 002435536.1; e-value: 9e-13; 7tm_l GPCR), Octopamine with 

83% identity to I. scapularis octopamine receptor (XM_002408768.1; e-value: le-42; 

7tm_l GPCR); Serotonin with 79% identity with I. scapularis serotonin receptor 

(XM 002404954.1; e-value: 3e-54; 7tm_l GPCR). Similarly, receptors for acetylcholine 

neurotransmitters were identified in the transcriptomes with the presence of transcripts 

sharing 75% identity with I. scapularis acetylcholinesterase (XM 002402693.1; e-value: 

3e-16; Esterase lipase super family[cl 19094]). Finally we report here messages for the 

metabotropic glutamate receptors sharing 71% identity with the I. scapularis 

metabotropic glutamate receptor 4, 6, 7 (XM_002413234.1 ; e-value: le-160; 

PBPl_mGluR[cd06362]), 83% identity with I. scapularis ionotropic glutamate receptor 

(XM 002409119.1; e-value: le-63; Periplasmic Binding Protein Type l super 

fam ily[cll0011), and 87% identity with I. scapularis GAB A receptor (XM 002411520.1; 

e-value: 5e-97; Neur_chan_memb[pfam02932]).

We report similarly in the I.scapularis transcriptome, transcripts identified predicting 

dopamine activity with 78% identity to I.scapularis dopamine D l/beta receptor 

(XM_002435536.1; e-value: 2e-137; Rick_17kDa_Anti[pfam05433]), Octopamine with 

100% partial sequence identity to I. scapularis octopamine receptor (XM 002408768.1; 

e-value: 0.0; 7tm_l GPCR); Serotonin with 99% identity with I. scapularis serotonin 4 

receptor (XM 002406426.1; e-value: 0.0; 7tm_l GPCR). We document here, the 

presence o f transcripts sharing 99% and 99% identity with I. scapularis acetylcholine 

receptors (XM_002407257.1; e-value: 0.0; Neur_chan_memb[pfam02932]) and
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acetylcholinesterase (XM_002413971.1; e-value: 2e-133; Esterase lipase super 

family[cl 19094]). Finally we also report here, messages for the metabotropic glutamate 

receptors sharing 96% identity with the I. scapularis glutamate receptor 

(XM 002409118.1 ; e-value: le-162; PBPl_mGluR[cd06362]) 100% identity w ith /. 

scapularis ionotropic glutamate receptor (XM 002401727.1; e-value: 2e-162; 

PBPb[cd00134]), and 100% identity with I. scapularis GABA-B receptor 

(XM 002433605.1; e-value: 0.0; PBPl_GABAb_receptor[cd06366]).

Biological functions o f neurotransmitters in Ticks

For all neurotransmitters mentioned in this work, there exists no clear documentation of 

their functions in argasid and ixodid ticks. However, working off of concept-building 

experimentation (Dircksen et al, 2013) based on primary information o f structure and 

function o f these molecules extensively studied in most insects, as well as from the high 

similarity o f these molecules with those isolated from insects; I am able to speculate the 

physiological functions o f these neurotransmitters in ticks. These inferences are of 

course, subject to further investigation by performing functional studies. I hereby suggest 

putative roles o f candidate neurotransmitters and interpretation o f gene expression data 

(in response to feeding) o f the respective neurotransmitter receptors in both O. turicata 

and I. scapularis ticks.

Gene expression analysis o f dopamine receptors implicated by immunochemistry as 

inducers o f salivary secretion o f ticks (Simo et al, 2011) revealed an up-regulation by 

1.87 and 4.82 fold in engorged O. turicata and part-fed /. scapularis respectively. 

Similarly, expression o f octopamine receptors o f which the neurotransmitter activity is 

known to be multi-functional in insects (Farooqui, 2012) and to inhibit oviposition in
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ticks (Cossio-Bayugar et al, 2012) revealed a 0.34 and 0.18 fold down-regulation in O. 

turicata and I. scapularis respectively. Serotonin neurotransmitters (5-hydroxytrptamine) 

which bind and activate membrane receptors to influence aggression, sleep, circadian 

rhythms, visual stimuli response, and associative learning in insects (Blenau and Thamm, 

2011) revealed a slight up-regulation o f its receptors by 1.34 folds in synganglia o f O. 

turicata and slight 1.43 fold up-regulation in I. scapularis. metabotropic Glutamate (i- 

glutamic acid) involved in fast excitatory synaptic transmission (O’Connor, 1999; Olsen, 

2002)) revealed expressions o f 4.76 fold in O. turicata and significant 39.95 fold in I. 

scapularis for the glutamate receptors (mGluR). Finally we show a 1.20 and 1.93 fold 

expression o f y-aminobutyric acid (GABA) receptors in the synganglia o f O. turicata and 

/. scapularis respectively. GABA neurotransmitters are the major fast synaptic 

transmission inhibitors (Olsen, 2002). In spite of the similarities observed in the receptor 

sequences o f the various neurotransmitters, I report some significant differences in their 

pattern and level o f expression in both tick species studied. I recommend further studies 

on the general characteristics, structure, and function o f neurotransmitters in ticks.
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CHAPTER 5 

SUMMARY

The neurobiology o f the synganglion (central nervous system) o f the Lyme disease tick, 

Ixodes scapularis and the soft tick Ornithodoros turicata was evaluated using Illumina 

GAII high throughput sequencing which generated high coverage cDNA libraries 

(transcriptomes). These ticks exhibit very different biological patterns o f feeding, blood 

meal water and salt elimination, cuticle plasticity versus cuticle synthesis, development 

and reproduction. Two important conclusions have emerged from the comparison o f the 

neuropeptides, neuropeptide receptors and neurotransmitter receptors in two different tick 

species as found in the synganglion transcriptomes. Briefly, 1) there is relatively little 

difference in the occurrence o f transcripts encoding these peptides/proteins in the 

synganglia o f  the different ticks; 2) differences in gene expression, extent o f their 

upregulation or downregulation, and the timing o f their expression contribute to 

explaining many o f the differences in the biology o f the two different species.

For/, scapularis, sequencing yielded a total o f 117,900,476 raw reads, which were 

assembled to 30,838 contigs. For O. turicata, sequencing yielded a total o f 63,528,102, 

which were assembled to 132,258 contigs. Comparison o f Gene Ontology (GO) mapping 

success for genes in 32 o f the most important GO molecular categories showed relatively 

little difference between the two species (t = 0.277, P > 0.05, not significant).

Functional assignments o f transcripts predicting neuropeptides, neurotransmitter 

receptors and other genes o f interest were done, supported by strong e-values (< -6), and 

high consensus sequence alignments. For the synganglion o f /. scapularis, transcripts 

predicting 23 neuropeptides and/or their receptors were identified. Included were
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transcripts encoding for allatotropin, allatostatin (A & B), bursicon a, calcitonin, 

CAPA/pyrokinin receptor, cardioacceleratory peptide, corazonin, corticotropin-releasing 

factor (CRF), FMRF amide, glycoprotein A, eclosion hormone, insulin-like peptide, ion 

transport peptide, gonadotropin-releasing hormone receptor, myoinhibitory peptide, 

neuropeptide F, neurophysin/oxytocin, orcokinin A, perisulfakinin, proctolin, SIFamide, 

sulfakinin and tachykinin. For the synganglion o f O. turicata, transcripts predicting 25 

neuropeptides and/or their receptors were identified. Both species had transcripts 

predicting all of the same neuropeptides and/or their neuropeptide receptors in common 

except for allatotropin peptide, which was found only in I. scapularis, and allatostatin C, 

bursicon (3, and glycoprotein B, which were found only in O. turicata. Also present in 

both species was the enzyme pro-protein convertase, essential for converting 

neuropeptide preprohormones to their mature form. These results include at least 8 more 

transcripts encoding for different neuropeptides than were found in the D. variabilis 

synganglion transcriptomes. Transcripts predicting the same 6

neurotransmitter/neuromodulator receptors and the same 3-neurotransmitter transporters 

were found in the transcriptomes o f both I. scapularis and O. turicata.

If the repertoire o f neuropeptide and neurotransmitter messages expressed in the 

synganglia o f O. turicata and I. scapularis is so similar, how can we explain the very 

different physiological processes that occur in these two very different tick species? 

Reverse transcriptase qPCR was used to address this question. Primers designed from the 

transcript and/or published gene sequences were used to assay the expression o f the most 

o f the neuropeptides and/or neurotransmitter receptors in response to blood feeding. 

Examples include calcitonin-diuretic hormone, bursicon and eclosion hormone. Results
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for O. turicata show that expression o f calcitonin and diuretic hormone receptors were 

strongly upregulated in females during (pre-drop off) and immediately after the brief 

feeding period (< 1 hour), when the excess blood meal water and salts are excreted, but 

then declined when assayed again 2 days post-drp off. In contrast, results for 7. 

scapularis show that the calcitonin-like receptor was strongly upregulated during the 

lengthy tick-feeding period ( 5 - 6  days post-attachment) when excess blood meal water is 

secreted frequently in the saliva as the ticks feed. Results for bursicon showing strong 

upregulation o f both bursicon a  and p in adult O. turicata females suggest that these 

neuropeptides may be responsible for enhancing cuticle plasticity, i. e., the need for 

stretching the existing integument during the brief period o f rapid blood feeding. 

Similarly, eclosion hormone, part o f the gene pathway that regulates ecdysis, also was 

strongly upregulated in O. turicata, consistent with a role in cuticle plasticization needed 

by these ticks that enables them to blood feed within minutes. In contrast, the expression 

of only bursicon a  in I. scapularis, along with eclosion hormone, ecdysis triggering 

hormone and corazonin, has been suggested (Bissinger et al. 2011) to be responsible for 

new cuticle synthesis during feeding. Growth o f new cuticle is needed to accommodate 

the enormous blood meal consumed during the lengthy feeding period in this species. 

Contrasts in gene expression assays for several other neuropeptide regulatory genes that 

were done for O. turicata and 7 scapularis are reviewed and their possible roles for 

explaining the differences the biological differences between the two species are 

discussed. Similarly, downregulation of sulfakinin, important in regulating satiety during 

blood feeding, allows the soft ticks to consume large volumes o f fluid very rapidly; in 

contrast, its upregulation in 7 scapularis which feeds slowly and expands gradually,
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insures the opposite, so that they do not consume more volume than the slowly growing 

cuticle can accommodate.

The diversity o f messages predicting important genes identified in this study and 

differences in their expression in response to feeding offers a valuable resource useful for 

understanding how the tick synganglion regulates important physiological functions in 

ticks.

5.1. Future Directions

For future studies on how neuropeptides and neurotransmitters regulate blood feeding 

and reproduction in the two different tick species, I will collect specimens at different 

intervals during and after feeding. For the soft ticks, I will collect specimens every 5 -  

10 minutes during the brief (approximately 1 hour) feeding period, followed by 

collections at 24 and 48 hours after feeding. For the hard ticks, I will collect specimens 2, 

4 and 6 days after attachment, 24 hours after mating, and 2 and 4 days after drop off 

(repletion). This will enable me to monitor the time course in changes in gene expression 

and compare the findings with the different biological patterns for these two species.

Gene analysis will be done for the several different gene categories reported in the 

dissertation. In addition, RNAi o f selected genes will be done to assess gene function. In 

addition single gene knockdown studies, RNAi with pooled gene constructs will be done 

since it is possible that knockdown o f only one gene in a complex regulatory pathway 

(e.g. calcitonin/DH) may not be sufficient to fully disrupt the process.



109

REFERENCES

Alstein, M. and Dick, R.N., (2010). Neuropeptide signaling in insects. In: Neuropeptide 
systems as targets fo r  parasite and pest control (Geary GT, Maule AG, eds) 
Springer Landes Bioscience and Springer Science+Business Media. New York, 
NY.

Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J. (1990) Basic local 
alignment search tool. J  Mol Biol 215: 403-410

Altstein, M. and Nassel, D.R. (2010) Neuropeptide signaling in insects. Adv Exp Med 
Biol 692:155-165.

An, S., Songjie, W., David, S. and Qisheng, S. (2009) Identification o f a novel bursicon- 
regulated transcriptional regulator, M dl3379, in the house fly Musca domestica. 
Arch, o f  Insect Biochem. & Physiol 70: 1-16. doi:10.1002/arch.20283.

Anderson, J., Sonenshine, D.E. and Valenzuela, J.G. (2008) Exploring the mialome of 
ticks: an annotated catalogue o f midgut transcripts from the hard tick, 
Dermacentor variabilis (Acari: Ixodidae). BMC Genomics 9: 552.

Alzugaray, M.E., Mariana. L., Diambra, A.L.A., Hemandez-Martinez, S., Damborenea, 
C., Noriega, F.G., et al. (2013) Allatotropin: an ancestral myotropic neuropeptide 
involved in feeding. PLoS One 8: 10 E77520. doi:10.1371/joumal.pone.0077520.

Bacon, R.M., Kuegler, K.J. and Mead, P.S. (2008) Surveillance for Lyme disease-United 
States, 1992-2006. MMWR Sureill Summ 57: 1-9.

Blenau, W. and, Thamm, M. (2011) Distribution o f serotonin (5-HT) and its receptors in 
the insect brain with focus on the mushroom bodies. Lessons from Drosophila 
melanogaster and Apis mellifera. Arthropod Struct & Dev 40: 381-94. 
doi: 10.1016/j.asd.2011.01.004.

Buckingham, S., Biggin, P.C., Satelle, B.M., Brown, L.A. and Satelle, D.B. (2005) Insect 
GABA receptors: splicing, editing and targeting by antiparasities and insecticides. 
Mol Pharmacol 68: 942-951.

Biirgmann, H., Widmer, Sigler, W.V. and Zeyer, J. (2003) mRNA Extraction and reverse 
transcription-PCR protocol for detection o f NifH gene expression by Azotobacter 
vinelandii in Soil. App Environ Microbiol 69: 1928-935.

Bustin, S.A., Benes, V., Garson, J.A., Hellemans, J., Huggett, J., Kubista, M. et al. 
(2009). The M1QE guidelines: minimum information for publication of 
quantitative real-time PCR experiments. Clin Chem 55: 611-22.



110

Bissinger, B., Donohue, K.V., Khalil, S.M., Grozinger, C.M., Sonenshine, D.E., Zhu, R. 
and Roe, M. (2011) Synganglion transcriptome and developmental global gene 
expression in 153 adult females o f the American dog tick, Dermacentor 
variabilis. Insect Mol Biol 20: 465-91.

Buckingham, S., Biggin, P.C., Satelle, B.M., Brown, L.A. and Satelle, D.B. (2005) Insect 
GABA receptors: splicing, editing, and targeting by antiparasitics and 
insecticides. Mol Pharmacol 68: 942-951.

Caers, J., Verlinden, H., Zeis, S., Vandersmissen, H.P., Vuerinckx, K. and Schoofs, L. 
(2012) More than two decades o f research on insect neuropeptide GPCRs: an 
overview. Front Endocrinol 3:151.

Chapman, R. (1998) The insects. Cambridge University Press, Cambridge UK.

Carroll, J.F. (2002) How specific are host-produced kairomones to host-seeking ixodid 
ticks? Exp Appl Acarol. 28: 155-161.

Carroll, J.F. and Schmidtmann, E.T. (1996) Dispersal of blacklegged tick (Acari:
Ixodidae) nymphs and adults at the woods-pasture interface. J  Med Entomol 33: 
554-558.

Cazzamali, G., Saxild, N. and Grimmelikhuijzen, C. (2002) Molecular cloning and
functional expression o f a Drosophila corazonin receptor. Biochem Biophys Res 
Commun 298:31-6

Centers for Disease Control and Prevention (2013) Lyme disease data. Available:
www.cdc.gOv/osels/ph/_surveillance/nndss/casedef/l yme_disease_2008.htm.

Choi, M. and Vander Meer, R.K. (2012) Molecular structure and diversity o f
PBAN/pyrokinin family peptides in ants. Front Endocrinol 20: 323-343.

Christie, A. (2008) Neuropeptide discovery in ixodoidea: an in silico investigation using 
publicly accessible expressed sequence tags. Gen Comp Endocrinol. 157: 174- 
185.

Christie, A.E., Stemmier, E.A. and Dickinson, P.S. (2010) Crustacean neuropeptides.
Cell Mol Life Sci 67: 4135-4169.

Christie, A.E., Stevens, J.S., Bowe, M.R., Chapline, M.C., Jensen, D.A., Schegg, K.M. et 
al (2009) Identification o f a calcitonin-like diuretic hormone that functions as an 
intrinsic modulator o f the American lobster, Homarus americanus, cardiac 
neuromuscular system. J  Exp Biol 213: 118-27. doi:10.1242/jeb.037077.

http://www.cdc.gOv/osels/ph/_surveillance/nndss/casedef/l


Clottens, F.L., Holman, G.M., Coast, G.M., Totty, N.F., Hayes T.K., Kay, I. et al. (1994) 
Isolation and characterization o f a diuretic peptide common to the house fly and 
stable fly. Peptides 15: 971-79. doi: 10.1016/0196-9781 (94)90059-0. 154

Coast, G.M. (1996) Neuropeptides implicated in the control o f diuresis in insects. 
Peptides 17: 327-36. doi: 10.1016/0196-9781 (95)02096-9.

Coast, G.M., Webster, S.G., Schegg, K.M., Tobe, S.S., Schooley, D.A. (2001) The
Drosophila melanogaster homologue o f an insect calcitonin-like diuretic peptide 
stimulates V-ATPase activity in fruit fly Malpighian tubules. J  Expt Biol 204: 
1795-804.

Colpitts, T.M., Cox, J., Vanlandingham, D.L., Feitosa, F.M., Cheng, G., Kurscheid, S. et 
al. (2011) Alterations in the Aedes aegypti transcriptome during infection with 
West Nile, dengue and yellow fever viruses. PLoS Pathog 7: e l 002189.

Conesa, A., Gotz, S., Garcia-Gomez, J.M., Tero, I.J., Talon, M. and Robles M. (2005) 
BLAST2GO: a universal tool for annotation, visualization and analysis in 
functional genomics research. Bioinformatics 21: 3674-3676.

Cossio-Bayugar, R., Miranda-Miranda, E., Narvaez, P.V., Olvera-Valencia, F. and 
Reynaud, E. (2012). Perturbation o f tyraminergic/octopaminergic function 
inhibits oviposition in the cattle tick Rhipicephalus (Boophilus) microplus. J  
Insect Physiol 58: 628-33

Davies, S.A., Cabrero, P., Povsic, M., Johnston, N.R., Terhzaz, S. and Dow, J.A. (2013) 
Signaling by Drosophila capa neuropeptides. Gen Comp Endocrinol 188: 60-66

Dewey, E.M., Mcnabb, S.L., Ewer, J., Kuo, G.R., Takanishi, L.C., Truman, J.W., Hans- 
Willi, D. and Honegger, H. (2004) Identification o f the gene encoding bursicon, 
an insect neuropeptide responsible for cuticle sclerotization and wing spreading. 
Current Biol 14: 1208-213. doi: 10.1016/j.cub.2004.06.051.

Dircksen H, Neupert S, Predel R, Verleyen P, Huybrechts J, Strauss J, Hauser F,
Stafflinger E, Schneider M, Pauwels K. et al. (2011). Genomics, transcriptomics, 
and peptidomics o f Daphnia pulex neuropeptides and protein hormones. J. 
Proteome Res. 10: 4478-4504.

Dircksen, H. (2013) Crustacean bioactive peptides. In: Handbook o f  biologically active 
peptides (Abba Kastin eds). pp 209-228 Academic Press, Waltham, MA.

Donohue, K.V., Khalil, S.M.S., Ross, E., Grozinger, C.M., Sonenshine, D.E. and Roe 
R.M. (2010) Neuropeptide signaling sequences identified by pyrosequencing o f 
the American dog tick synganglion transcriptome during blood feeding and 
reproduction. Insect Biochem. Mol Biol 40: 79-90.



112

Downer, K.E., Haselton, A.T., Nachman, R.J. and Stoffolano, J.G. (2007). Insect satiety: 
sulfakinin localization and the effect o f drosulfakinin on protein and carbohydrate 
ingestion in the blow fly, Phormia regina (Diptera: Calliphoridae). J  Insect 
Physiol 53: 106-12. doi: 10.1016/j.jinsphys.2006.10.013.

Drummond, A.J., Ashton, B., Buxton, S., Cheung, M., Cooper, A. et al. (2011) Geneious 
V5.5. "http://www.geneious.com.

Dulcis, D., Levine, R.B. and Ewe, J. (2005) Role o f the neuropeptide CCAP in
Drosophila cardiac function. Dev Neurobiol 64: 259-74. doi:10.1002/neu,20136.

Durden, L.A. and Beatii, L. (2014) Modem Tick Systematics. In Biology o f  ticks 2nd 
edition (Sonenshine, D.E. and Roe, R.M. eds) Vol 1 pp. 17-58. Oxford 
University Press, New York, NY.

Egekwu, N., Sonenshine, D.E., Bissinger, B.W. and Roe, R.M. (2014). Transcriptome of 
the female synganglion o f the black-legged tick Ixodes scapularis (Acari: 
Ixodidae) with comparison between Illumina and 454 systems. PLoS One 9: 
el02667.

Estevez-Lao, T.Y., Boyce, D.S., Honegger, H.W. and Hillyer, J.F. (2013).
Cardioacceleratory function o f the neurohormone CCAP in the mosquito 
Anopheles gambiae. JE xp t Biol 216: 601-13. doi: 10.1242/jeb.077164.

Fan, Y., Pereira, R.M., Kilic, E., Casella, G. and Keyhani, N.O. (2012). Pyrokinin p- 
neuropeptide affects necrophoretic behavior in fire ants (S. Invicta), and 
expression o f P-NP in a mycoinsecticide increases its virulence. PLoS One 7: 
E26924. doi: 10.137l/joumal.pone.0026924.

Farooqui, T. (2012). Review o f octopamine in insect nervous systems. Open Access 
Insect physiol 4: 1-17.

Fleige, S. and Pfaffl, M.W. (2006) RNA Integrity and the effect on the real-time qRT- 
PCR performance. Mol Aspects Med 27: 126-39.

Francischetti, I.M., Sa-Nunes, A., Mans, B.J., Santos, I.M. and Ribeiro, J.M. (2009). The 
role o f saliva in tick feeding. Front Biosci 14: 2510-2088.

Fraenkel, G. and Hsiao, C. (1965), Bursicon, a hormone which mediates tanning o f the 
cuticle in the adult fly and other insects. J  Insect Physiol 11:513-556.

Furman, D.P. and Loomis, E.C. (1984) The ticks o f  California (Acari: Ixodida) 
University o f California Press, Berkeley, CA.

Furuya, K.R., Milchak, R.J., Schegg, K.M., Zhang, J., Tobe, S.S., Coast, G.M. and 
Schooley, D.A. (2000) Cockroach diuretic hormones: Characterization o f a

http://www.geneious.com


113

calcitonin-like peptide in insects. PNAS 9: 6469-474. doi: 10.1073/- 
pnas.97.12.6469.

Gaillard, I., Rouquier, S. and Giorgi, D. (2004) Olfactory receptors. Cell Mol Life Sci 
61:456-469.

Gammie, S.C. and Truman, J. (1999) Eclosion hormone provides a link between ecdysis- 
triggering hormone and crustacean cardioactive peptide in the neuroendocrine 
cascade that controls ecdysis behavior. J  Exp Biol 202: 343-52.

Garczynski, S.F., Crim, J.W., Brown, M.R. (2005) Characterization o f neuropeptide F
and its receptor from the African malaria mosquito, Anopheles gambiae. Peptides 
26: 99-107. doi: 10.1016/j.peptides.2004.07.014. 156

Geary, T.G. and Maule, A.G. (2010) Neuropeptide Systems as Targets fo r  Parasite and  
Pest Control. Springer Science+Business Media, New York, NY.

Gonzalez, R. and Orchard, I. (2009). Physiological activity o f Neuropeptide F on the 
hindgut o f the blood-feeding hemipteran, Rhodnius prolixus. J  Insect Sci 57, 9

Gray, J.S., Estrada-Pena, A. and Vial, L. (2014). Ecology o f nidicolous ticks. P. 39-60. 
In: Biology o f  Ticks 2nd edition (Sonenshine, D.E. and Roe, R.M. eds.) Vol. 2, pp. 
39-60, Oxford University Press, New York, NY.

Harmer, D. (2013). Illumina Genome Analyzer II; The New Gold-standard for next now 
generation sequencing! Lecture. Accessed 2013. 
http://ncifrederick.cancer.gov/atp/cms/wp- 
content/uploads/2010/08/CustomerIlluminaTechExplanation.pdf.

Flartfelder, K. and Emlen, D.J. (2011). Endocrine control o f insect polyphenism. In: 
Insect Endocrinology (Gilbert, L.I. eds.) pp. 464-522, Elsevier, Amsterdam.

Hellmich, E., Nusawardani, T., Bartholomay, L. and Russell, J. (2014) Pyrokinin/PBAN- 
like peptides in the central nervous system of mosquitoes. Cell Tissue Res 356: 
39-47. doi: 10.1007/s00441-013-1782-8.

Hergarden, A.C., Tayler, T.D. and Anderson, D.J. (2012) Allatostatin-A neurons inhibit 
feeding behavior in adult Drosophila. PNAS 109: 3967-972.

Hill, C.A., Meyer, J.A., Waterhouse, R.M., Miller, J.R., Walenz, B.P. et al. The genome 
sequence o f the Lyme disease tick, Ixodes scapularis. Manuscript for submission 
to BMC Genomics.

Honegger, H., Dewey, E.M. and Ewer, J. (2008) Bursicon, the tanning hormone of
insects: Recent advances following the discovery of its molecular identity. Comp 
Physiol [A] 194: 989-1005. doi:10.1007/s00359-008-0386-3.

http://ncifrederick.cancer.gov/atp/cms/wp-


114

Hokfelt, T., Broberger, C., Xu, C.Z.D., Sergeyev, V., Ubink, R. and Diez, M. (2000) 
Neuropeptides— An Overview. Neuropharmacology: 39: 1337-356.

Hoskins, J.D. (1991) Ixodid and argasid ticks. Keys to their identification. Vet Clin North 
Am Small Anim Pract 21: 185-87.

Hurd, P. and Nelson, C.J. (2009) Advantages of next-generation sequencing versus the 
microarray in epigenetic research. Briefings Functional Genom Proteom  8: 174- 
183.157

Jiang, H., Lkhagva, A., Daubnerova, I., Chae, H.S., Simo, L., Jung, S.H. et al. (2013) 
Natalisin, a tachykinin-like signaling system, regulates sexual activity and 
fecundity in insects. PNAS 110: E3526-3534.

Jindra, M., Palli, S.R. and Riddiford, L.M. (2013) The juvenile hormone signaling 
pathway in insect development. Annu Rev Entomol 58: 181-204.

Johnsen, A.H., Hanne, D., Marlene, D., Mike, H. and Thorpe, A. (2001) Sulfakinin
neuropeptides in a crustacean isolation, identification and tissue localization in the 
tiger prawn Penaeus monodon. Eur JBiochem  267: 1153-160.

Jongejan, F. and Uilenberg, G. (2004). The global importance o f ticks. Parasitology. 129 
Suppl: S3-14. Review.

Kastin, A.J. (2006) Handbook o f  Biologically Active Peptides. Academic Press, 
Amsterdam.

Kaufman, R.W. (2014). Integument and Ecdysis.. In: Biology o f  Ticks. 2nd edition
(Sonenshine, D.E. and Roe, R.M.), vol 2, pp. 99-121 Oxford University Press, NY, 
NY.

Kaufman, W.R., Flynn, P.C. and Reynolds, S.E. (2010). Cuticular plasticization in the
tick, Amblyomma hebraeum (Acari: Ixodidae): Possible roles o f monoamines and 
cuticular pH. J  Exp Biol 213: 2820-831. doi: 10.1242/jeb.044412.

Kay, I. and Wheeler, C.H. (1993) Diuretic peptides in the house cricket, Acheta
domesticus (L.): A possible dual control o f  Malpighian tubules. In: Structure and 
function o f  primary messengers in invertebrates: Insect diuretic and antidiuretic 
peptides (Klaus, W.B. and Coast, G.M. eds.). pp. 38-66, Basel. NewYork, NY.

Kingan, T.G., Gray, W., Zitnan, D. and Adams, M.E. (1997). Regulation o f ecdysis- 
triggering hormone release by eclosion hormone. J  Exp Biol 200: 3245-256.

Kim, Y.J., Spalovska-Valachova I, Cho, K.H., Zitnanova, I., Park, Y., Adams, M.E. and 
Zitnan, D. (2004) Corazonin receptor signaling in ecdysis initiation. PNAS 101: 
6704-6709. Epub 2004 Apr 19.



115

Kiszewski, A.E., Matuschka, F.R. and Spielman, A. (2001) Mating strategies and 
spermiogenesis in ixodid ticks. Annu Rev Entomol 46: 167-82.

Khalil, S.M., Donohue, K.V., Thompson, D.M., Jeffers, L.A., Ananthapadmanaban, U. 
Sonenshine, D.E. et al. (2011). Full-length sequence, regulation and 
developmental studies o f a second vitellogenin gene from the American dog tick, 
Dermacentor variabilis. J  Insect Physiol 57: 400-408.

Koutsos, A.C., Blass, C., Meister, S., Schmidt, S., MacCallum, R.M., Soares, M.B., 
Collins, F.H. et al. (2007) Life cycle transcriptome o f the malaria mosquito 
Anopheles gambiae and comparison with the fruit fly Drosophila melanogaster. 
PNAS 104: 11304-11309. Epub 2007

Kuschel, M. (2000) Analysis o f Messenger RNA using the Agilent 2100 Bioanalyzer and 
the RNA 6000 LabChip® Kit Application Note. Agilent Technologies. 158

Labbe, R.M., Irimia, M., Currie, K.W., Lin, A., Zhu, S.J. et al. (2012). A comparative 
transcriptomic analysis reveals conserved features of stem cell pluripotency in 
planarians and mammals. Stem Cells 8: 1734-45. doi: 10.1002/stem. 1144

Lahr, E.C., Dean, D. and Ewer, J. (2012) Genetic analysis o f ecdysis behavior in 
Drosophila reveals partially overlapping functions o f two unrelated 
neuropeptides. JNeurosci 32: 6819-829. doi: 10.1523/JNEUROSC1.5301- 
1 1 .2 0 1 2 .

Lee, C., Kim, J., Shin, S.G. and Hwang, S. (2006) Absolute and relative QPCR
quantification o f plasmid copy number in Escherichia Coli. J  Biotech 123: 273- 
80. doi: 10.1016/j jbiotec.2005.11.014.

Lees, K., Woods, D.J. and Bowman, A.S. (2010) Transcriptome analysis o f the
synganglion from the brown dog tick, Rhipicephalus sanguineus. Insect Mol Biol 
19: 273-282.

Li, H., Wang, H., Schegg, K.M. and Schooley, D.A. (1997) Metabolism o f an insect 
diuretic hormone by Malpighian Tubules studied by liquid chromatography 
coupled with electrospray ionization Mass spectrometry. PNAS 94: 13463-3468. 
doi: 10.1073/pnas.94.25.13463.

Liesch, J., Bellani, L.L. and Vosshall, L.B. (2013) Functional and genetic
characterization of neuropeptide Y-like receptors in Aedes aegypti. PLoS Negl 
Trop Dis 7: E2486. doi:10.1371/joumal.pntd.0002486.

Lindgren, E. and Jaenson, T.G.T. (2006) Lyme borreliosis in Europe: influences of 
climate and climate change, epidemiology, ecology and adaptation measures. 
Copenhagan, Denmark: World Health Organization pp. 1-34.



116

Livak, K.J. and Schmittgen, T.D. (2001) Analysis o f relative gene expression data using 
real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25: 
402-408.

Loof, A.D., Lindemans, M., Liu, F., Groef, B.D. and Schoofs, L. (2012) Endocrine
Archeology: Do insects retain ancestrally inherited counterparts o f the vertebrate 
releasing hormones GnRH, GHRH, TRH, and CRF? Gen Comp Endocrinol 177:
18-27. doi: 10.1016/j.ygcen.2012.02.002.

Loi, P.K., Emmal, S.A., Park, Y. and Tublitz, N.J. (2001) Identification, sequence and 
expression o f a crustacean cardioactive peptide (CCAP) gene in the moth 
Manduca sexta. J  Exp Biol 204: 2803-2816.

Tublitz, N.J. and Loi, P.K. (2004) Sequence and expression o f the CAPA/CAP2b gene in 
the tobacco hawkmoth, Manduca sexta. J  Exp Biol 207: 3681-3691.

Loy, T.V., Matthias, B., Van, H., Peter, H., Poels, V.J., Mendive, F., Vassart, M.F. and
Broeck (2007) Evolutionary conservation o f bursicon in the animal kingdom. Gen 
Comp Endocrinol 15: 59-63. doi:10.1016/j.ygcen.2006.12.004.

Mans, B.J., Ribeiro, J.M. and Andersen, J.F. (2008 a) Structure, function and evolution of 
biogenic amine-binding proteins in soft ticks. J  Biol Chem 283: 18721-18733.

Mans, B.J., Andersen, J.F., Francischetti, I.M., Valenzuela, J.G. and Schwan, T.G. (2008 
b) Comparative sialomics between hard and soft ticks: implications for the 
evolution o f blood-feeding behavior. Insect Biochem Mol Biol 38: 42-58

Mardis, E.R. (2011) A decade‘s perspective on DNA sequencing technology. Nature 470: 
198-203.

Maule, A.G., Halton, D.W. and Shaw, C. (1995) Neuropeptide F: A ubiquitous 
invertebrate neuromediator? Hydrobiologia 305: 297-303. 
doi:10.1007/BF00036410.

Mulenga, A. (2014) Molecular biology and physiology o f chemical communication. In: 
Biology o f  Ticks 2nd edition (Sonenshine, D.E. and Roe, R.M. eds). Vol 2 pp. 
368-397, Oxford University Press, NewYork, NY.

Neupert, S., Russell, W.K., David, H., Russell, D.H., Strey, O.F., Teel, P.D., Strey, A. 
and Nachman, R.J. (2008) Identification o f a CAPA-PVK (IXORI-PVK) from 
single cells o f the Gulf Coast tick, Amblyomma maculatum. Pestycydy 1-2: 67-73.

Nassel, D. (2002) Neuropeptides in the nervous system o f Drosophila and other insects: 
Multiple roles as neuromodulators and neurohormones. Progress in Neurobiology 
68: 1-84.



117

Nassel, D.R. and Wegener, C. (2011) A comparative review o f short and long 
neuropeptide F signaling in invertebrates: Any similarities to vertebrate 
neuropeptide Y signaling? Peptides 32: 1335-355. 
doi: 10.1016/j .peptides.2011.03.013.

Needham, G.R. and Teel, P.D. (1991) Host physiological ecology o f ixodid ticks. Annu 
Rev Entomol 36: 659-81. doi: 10.1146/annurev.en.36.010191.003303.

Neupert, S., Russell, W.K, Predel, R., Russell, D.H, Strey, O.F. et al. (2009) The
neuropeptidomics o f Ixodes scapularis synganglion . J  Proteomics 72: 1040- 
1045.

Novo, M., Riesgo, A., Femandez-Guerra, A. and Giribet, G. (2013): Pheromone 
evolution, reproductive genes, and comparative transcriptomics in 
mediterranean earthworms (annelida, oligochaeta, hormogastridae). Mol Biol 
E v o l l : 1614-1629. doi: 10.1093/molbev/mst074

Obenchain, F.D., Galun, R. (1982) Physiology o f  Ticks. Pergamon Press, Oxford 
(Oxfordshire), UK.

O'connor, V. (1999). Calmodulin dependence o f presynaptic metabotropic glutamate 
receptor signaling. Science 286: 1180-184. doi: 10.1126/ science. 286. 
5442.1180.

Okura, N., Hiroyasu, K., Takayuk, M. and Satoshi, S. (1996). Cuticular plasticization 
induced by copulatory stimuli in female Haemaphysalis longicornis. J  Med 
Entomol 33: 702-05.

Olsen, S.S., Cazzamali, G., Williamson, M.G. and Hauser, F. (2007) Identification o f 
one capa and two pyrokinin receptors from the malaria mosquito Anopheles 
gambiae. Biochem Biophys Res Commun 362: 245-251.

Osborne, R.H.(1996) Insect Neurotransmission: Neurotransmitters and their receptors. 
Pharmacol Ther 69: 117-42. doi: 10.1016/0163-7258(95)02054-3.

Oliver, J.H. Jr, Zhu, X.X., Vogel, G.N., Dotson, E.M. (1992). Role o f synganglion in 
oogenesis o f the tick Ornithodoros parkeri. J  Parasitol 78: 93-98.

Paluzzi, J. and O'Donell, M. J. (2012). Identification, spatial expression analysis and 
functional characterization o f a pyrokinin-1 receptor in the Chagas‘ disease 
vector, Rhodnius prolixus. Mol Cell Endocrinol 363: 36-45.

Paluzzi, J.P., Park, Y., Nachman, R.J. and Orchard, R. (2010) Isolation, expression
analysis, and functional characteristics o f the first antidiuretic hormone receptor 
in insects. PNAS 107:10290-10295



118

Park, Y., Zitnan, D., Gill, S.S. and Adams, M.E. (1999) Molecular cloning and
biological activity of ecdysis-triggering hormones in Drosophila melanogaster. 
FEBSLetters 463: 133-38. doi: 10.1016/S0014-5793 (99)01622-1.

Park, Y., Filippov, V., Gill, S.S. and Adams, M.E. (2002) Deletion o f the ecdysis-
triggering hormone gene leads to lethal ecdysis deficiency. Dev 129: 493-503. 
doi: 10.1242/j eb.00261.

Park, Y., Kim, Y., Dupriez, V. and Adams, M.E. (2003) Two subtypes o f ecdysis- 
triggering hormone receptor in Drosophila melanogaster. J  Biol Chem 278: 
17710-7715.

Parola, P. and Raoult, D. (2001) Tick-borne bacterial diseases emerging in Europe. Clin 
Microbiol Infect 7: 80-83.

Pearson, W.R. and Lipman, D.J. (1988) Improved tools for biological sequence
comparison. PNAS  85: 2444-8. doi: 10.1073/pnas.85.8.2444. PMC 280013. 
PMID 3162770

Predel, R. and Wegener, C. (2006) Biology o f the CAPA peptides in insects. Cell Mol 
Life Sci 63: 2477-490. doi:10.1007/s00018-006-6187-3.

Predel, R, Neupert, S., Russell, W.K., Scheibner, O. and Nachman, R.J. (2007)
Corazonin in insects. Peptides 28: 3-10. doi: 10.1016/j.peptides.2006.10.011.

Preparing DNA libraries for sequencing on the MiSeq®. Accessed 2013. 
www.illumina.com/support/kits. 161

Quinlan, M.C., Tublitz, N.J., 0 ‘Donnell, M.J. (1997) Anti-diuresis in the blood-feeding 
insect Rhodnius prolixus Stal: The peptide CAP2b and cyclic GMP inhibit 
Malpighian tubule fluid secretion. J  Exp Biol 200: 2363-2367.

Raina, A.K., Jaffe, H., Kempe, T.J., Keim, P, Blache, R.W. et al. (1989) Identification 
o f a neuropeptide hormone that regulates sex pheromone production in female 
moths. Science 244: 796-98. doi: 10.1126/science.244.4906.796.

Randolph, S.E. (2014). Ecology o f non-nidicolous ticks. In Biology o f  Ticks, 2nd edition 
(Sonenshine, D.E., and Roe, R.M. eds). pp. 1 -38. Oxford University Press, New 
York, NY.

Randolph, S.E. and Storey, K. (1999) Impact o f microclimate on immature tick-rodent 
host interactions (Acari: Ixodidae): implications for parasite transmission. J  Med 
Entomol 36: 741-748.

Reynolds, S. E. (1983) Bursicon. In Endocrinology o f  insects (Downer R.G.H., Raufer 
H.L.eds). pp. 235-248, Alan R. Liss Inc., New York, NY.

http://www.illumina.com/support/kits


119

Roe, M.R., Donohue, K.D., Khalil, S.M.L., Bissinger, B.W., Zhu, J. and Sonenshine.
D.E. (2014) Hormonal Regulation o f Metamorphosis and Reproduction in Ticks. 
In Biology o f  Ticks 2nd edition (Sonenshine, D.E. and Roe, R.M. eds). Vol. 1, pp. 
437-439. Oxford University Press, New York, NY.

Roller, L., Zitnanova, I., Dai, L., Simo, L., Park, Y. et al. (2010). Ecdysis triggering 
hormone signaling in arthropods. Peptides 31: 429-41. doi:10.1016/j. 
peptides.2009.11.022.

Ribeiro, J.M.C., Makoul, G., Levine, J., Robinson, D. and Spielman, A. (1985)
Antihemostatic, anti-inflammatory and immunosuppressive properties o f the 
saliva o f a tick, Ixodes dammini. J  Exp Med 161:332-344.

Sakai, T., Satake, H., Minakata, H. and Takeda.M. (2004) Characterization o f
crustacean cardioactive peptide as a novel insect midgut factor: Isolation, 
localization, and stimulation o f a-Amylase activity and gut contraction. 
Endocrinol 145: 5671-5678 doi:http://dx.doi.org/10.1210/en.2004-0722.

Settembrini, B.P., de Pasquale, D. Postal, M., Pinto, P.M., Carlini, C.R. and Villar. M.J.
(2011) Distribution and characterization of corazonin in the central nervous 
system o f Triatoma infestans (Insecta: Heteroptera). Peptides 32: 461-468.

Severini, C. (2002) The Tachykinin peptide family. Pharmacol Rev 54: 285-322. 
doi:10.1124/pr.54.2.285.

Schmittgen, T.D., Livak, K.J. (2008) Analyzing real-time PCR data by the comparative 
CT method. Nat Protoc 3: 1101-1108.

Sharp, J.H., Wilcockson, D.C. and Webster, S.G. (2010) Identification and expression 
o f mRNAs encoding bursicon in the plesiomorphic central nervous system of 
Homarus gammarus. Gen Comp Endocrinol 169: 65-74. 
doi: 10.1016/j .ygcen.2010.07.006.

Simo, L., Slovak, M., Park, Y. and Zitnan, D. (2009a) Identification o f a complex 
peptidergic neuroendocrine network in the hard tick, Rhipicephalus 
appendiculatus. Cell Tissue Res 335: 639-655.

Simo, L. Zitnan, D. and Park, Y. (2009b) Two novel neuropeptides in innervation of the 
salivary glands o f the black-legged tick, Ixodes scapularis: myoinhibitory 
peptide and SIFamide. J  Comp Neurol 517:551-563.

Simo, L, Zitnan, D., and Park, Y. (2011) Neural Control o f salivary glands in ixodid 
ticks J  Insect Physiol 58: 459-466. doi: 10.1016/j.jinsphys.2011.11.006.

http://dx.doi.org/10.1210/en.2004-0722


120

Simo, L, Koci, J., Zitnan, D. and Park, Y. (2011) Evidence for D1 dopamine receptor 
activation by a paracrine signal o f dopamine in tick salivary glands. PLoS One 
6 : e l6 1 58

Simo, L., Koci, J. and Park, Y. (2013) Receptors for the neuropeptides, myoinhibitory 
peptide and SIFamide, in control o f the salivary glands o f the blacklegged tick 
Ixodes scapularis. Insect Biochem Mol Biol 43: 376-87. 
doi: 10.1016/j .ibmb.2013.01.002.

Simo, L., Sonenshine, D.E., Park, Y. and Zitnan, D. (2014) In Biology o f  Ticks 2nd 
Edition. (Sonenshine, D.E. and Roe, R.M. eds). Vol. 1., pp. 309-367. Oxford 
University Press, New York, NY.

Sokal, R, Michener, C. (1958). A statistical method for evaluating systematic 
relationships. University o f  Kansas Science Bulletin 38: 1409-1438.

Sonenshine, D.E. (1985). Pheromones and other semiochemicals o f the Acari. Annu Rev 
Entomol 30: 1-28. doi:10.1146/annurev.ento.30.1.1.

Sonenshine, D.E. (1991) Biology o f  Ticks. Vol. 1. pp. 1 -447. Oxford University Press, 
New York, NY.

Sonenshine, D.E. (1999) Pheromones and other semiochemicals of ticks and their use in 
tick Control. Parasitology 129: S405-425. doi: 10.1017/S003118200400486X.

Sonenshine, D.E. (2005). The biology o f tick vectors of human disease. In Tick-borne 
diseases o f  humans (Goodman, J.L., Dennis, D.T. and Sonenshine, D.E. eds). pp 
1 2 -3 6 . ASM Press, Washington, D.C.

Sonenshine, D.E. (2006) Tick pheromones and their use in tick control. Annu Rev 
Entomol 51: 557-80.

Sonenshine, D.E. and Roe, R.M. (2014). Overview. Ticks, people and animals. In
Biology o f  ticks 2nd edition (Sonenshine, D.E. and Roe, R.M. eds), Vol. 1. pp 3 -  
16. Oxford University Press, New York, NY.

Sonenshine, D.E., Silverstein, R.M. and West, J.R. (1984). Occurrence of sex attractant 
pheromone, 2,6-dichlorophenol, in relation to age and feeding in American dog 
tick, Dermacentor variabilis (say) (Acari: Ixodidae). J  Chem Ecol 10: 95-100. 
doi: 10.1007/BF00987646.

Song, Q. and An, S. (2011). Bursicon, a neuropeptide hormone that controls cuticle 
tanning and beyond. Recent Advances in Entomological Research: From 
Molecular Biology to Pest Management, In (Tongxian, L, Kang, L. eds). pp. 
132-147. Higher Education Press, Beijing, China.



121

Stay, B. and Tobe, S.S. (2007) The role o f allatostatins in juvenile hormone synthesis in 
insects and crustaceans Annu Rev Entomol 52: 277-99.

Szlendak, E. and Oliver, J.H. Jr. (1992) Anatomy o f synganglia, including their 
neurosecretory regions, in unfed, virgin female Ixodes scapular is (Acari: 
Ixodidae). J  Morphol 213: 349-364.

Tan, E.M., Yamaguchi, Y., Horwitz, G.D., Gosgnach, S., Lein, E.E. et al. (2007) 
Selective and quickly reversible inactivation o f mammalian neurons in vivo 
using the Drosophila allatostatin receptor. Neuron 51: 157-70.

Tanaka, Y., Ishibashi, .J. and Tanaka, S.(2003) Comparison o f structure-activity
relations o f corazonin using two different bioassay systems. Peptides 24: 837- 
844.

Tanaka, S., Zhu, D.H., Hoste, B. and Breuer, M. (2002) The dark-color inducing
neuropeptide, [His (7)]-corazonin, causes a shift in morphometic characteristics 
towards the gregarious phase in isolated-reared (solitarious) Locusta migratoria. 
J  Insect Physiol 48: 1065-1074.

Teal, P.E.A. (2002) Effects o f allatotropin and allatostatin on in vitro production of 
juvenile hormones by the corpora allata o f virgin females o f the moths o f 
Heliothis virescens and Manduca sexta. Peptides 23: 663-69. 
doi: 10.1016/SO 196-9781 (01 )00660-X.

Technical Workflow. CBot Support:
http://support.illumina.com/sequencing/sequencing 
instruments/cbot/workflow.ilmn. Accessed 2013.

Terhzaz, S., Cabrero, P., Robben, J.H., Radford, J.C., Hudson, B.D. et al. (2012)
Mechanism and Function of Drosophila CAPA GPCR: A desiccation stress- 
responsive receptor with functional homology to human neuromedin receptor. 
PLoS One 7: E29897. doi:10.1371/joumal.pone.0029897.

Terhzaz, S., Philippe, R., Goodwin, S.F. and Veenstra, J,A, (2007). The neuropeptide 
SIFamide modulates sexual behavior in Drosophila. Biochem Biophys Res 
Commun 352: 305-310. doi:10.1016/j.bbrc.2006.11.030.

Temeyer, K.B., Tuckow, A.P., Brake, D.K., Li, A.Y. and Perez de Leon, A.A. (2012) 
Acetylcholinesterases o f blood-feeding flies and ticks. Chem Biol Interact 203: 
319-322.

Tillman, J.A., Seybold, S.J., Jurenka, R.A. and Blomquist, G.J. (1999) Insect
Pheromones— an Overview o f biosynthesis and endocrine regulation. Insect 
Biochem Mol Biol 29: 481-514. doi: 10.1016/S0965-1748(99)00016-8.

http://support.illumina.com/sequencing/sequencing


122

Touhara, K. and Vosshall, L.B. (2009) Sensing odorants and pheromones with 
chemosensory receptors. Annu Rev Physiol 71: 307-32. 
doi: 10.1146/annurev.physiol. 010908. 163209.

Tublitz, N.J., Allen, A.T., Cheungm, C.C., Edwards, K.K., Kimble, D.P., Loi P.K. and 
Sylwester, A.W. (1992) Insect cardioactive peptides: regulation o f hindgut 
activity by cardioacceleratory peptide 2 (CAP2) during wandering behaviour in 
Manduca sexta larvae. J  Exp Biol 165: 241-64.

Van Wielendaele, P., Badisco, L. and Vanden Broeck, J. (2013) Neuropeptidergic 
regulation o f reproduction in insects. Gen Comp Endocrinol 188: 23-34.

Vazquez-Acevedo, N., Rivera, N.M., Torres-Gonzalez. A.M., Rullan-Matheu, Y., Ruiz- 
Rodrigue, E.A. and Sosa, M.A. (2009). GYRKPPFNGSIFamide (Gly-SIFamide) 
165 modulates aggression in the freshwater prawn Macrobrachium rosenbergii. 
Biological Bulletin 217: 313-26.

Veenstra, J,A. (1989) Isolation and structure o f corazonin, a cardioactive peptide from 
the American cockroach. FEBS Lett. 250: 231-234

Veenstra, J,A (2009) Does corazonin signal nutritional stress in insects? Insect Biochem  
Mol Biol 39: 755-62.

Veenstra, J,A, Noriega, F.G., Graf, R. and Feyereisen, R. (1997) Identification o f three 
allatostatins and their cDNA from the mosquito Aedes aegypti. Peptides 18: 
937-42.

Veenstra, J.A., Rombauts, S. and Grbic, M. (2012) In silico cloning o f genes encoding 
neuropeptides, neurohormones and their putative G-protein coupled receptors in 
a spider mite. Insect Biochem Mol Biol 42: 277-295.

Verleyen, P., Huybrechts, J. and Schoofs, L. (2008) SIFamide illustrates the rapid
evolution in arthropod neuropeptide research. Gen Comp Endocrinol 162: 27- 
35. doi: 10.1016/j.ygcen.2008.10.020.

Verleyen, P., Huybrechts, J., Baggerman, G., Van Lommel, A., De Loof, A. and 
Schoofs, L. (2004). SIFamide is a highly conserved neuropeptide: A 
comparative study in different insect species. Biochem Biophys Res Commun 
320: 334-41. doi:10.1016/j.bbrc.2004.05.173.

Wang, Z., Gerstein, M. and Snyde, M.. (2009) RNA-Seq: A Revolutionary Tool for 
transcriptomics. Nature Rev Gen 10: 57-63.

Wang, S., An, S.and Song, Q. (2008) Transcriptional expression o f bursicon and novel 
bursicon-regulated genes in the house fly Musca domestica. Arch Insect



123

Biochem Physiol (ft\ 1-13.
http://onlinelibrary.wiley.com/doi/10.1002/arch.20239/pdf.

Wanzala, W., Sika, N.F.K., Gule, S.and Hasanali, A. (2004) Attractive and repellent
host odours guide ticks to their respective feeding sites. Chemoecol 14: 229-232.

Wegener, C., Herbert, H., Kahnt, J., Bender, M., Rhea and J.M. (2011) Deficiency of 
prohormone convertase dPC2 (AMONTILLADO) results in impaired 
production of bioactive neuropeptide hormones in Drosophila. J  Neurochem 
118: 581-595.

White Paper on De Novo Assembly in CLC Assembly Cell 4.0. 2012.
http://www.clcbio.com/files/whitepapers/whitepaper-denovo-assembly-4.pdf.

Whiston, E., Zhang Wise., H., Sharpton, T.J., Jui, G., Cole, G.T.and Taylor, T.W.
(2012) Comparative transcriptomics of the saprobic and parasitic growth phases 
in Coccidioides Spp. PloS One 7: e41034. doi: 10.1371/journal.pone.0041034

Wilfinger, W.W., Mackey, K. and Chomczynski, P. (1997) Effect o f pH and Ionic 
strength on the spectrophotometric assessment of nucleic acid purity. 
Biotechniques 22: 474-6-78-81.

Woodhead, A.P., Stay, B., Seidel, S.L., Khan, M.A. and Tobe, S.S. (1989) Primary 
structure o f four allatostatins: Neuropeptide inhibitors o f juvenile hormone 
synthesis. PNAS S6: 5997-6001.

Yang, Y., Bajracharya, P., Castillo, P, Nachman, R.J. and Pietrantonio, P.V. (2013) 
Molecular and functional characterization o f the first tick CAP2b 
(periviscerokinin) receptor from Rhipicephalus (Boophilus) microplus (Acari: 
Ixodidae). Gen Comp Endocrinol 194: 142-51.

Yuan, S.J., Reed, A., Chen, F. and Stewart, C.N. Jr. (2006) Statistical analysis o f real­
time PCR data. BMC Bioinformatics 7: 85 doi: 10.1016/j.ygcen.2013.09.001.
166.

Zandawala, M. (2012) Calcitonin-like diuretic hormones in insects. Insect Biochem Mol 
Biol 42: 816-25. doi:10.1016/j.ibmb.2012.06.006.

Zandawala, M., Li, S., Hauser, F., Grimmelikhuijzen, C.J.P. and Orchard, I. (2013) 
Isolation and functional characterization o f calcitonin-like diuretic hormone 
receptors in Rhodniusprolixus. PLoS One 8: E82466. doi: 10.1371/ joumal.pone. 
0082466.

Zhang, T., Sun, J., Zhang, Q., Xu, J., Jiang R. and Xu,W. (2004) The diapause
hormone-pheromone biosynthesis activating neuropeptide gene o f Helicoverpa

http://onlinelibrary.wiley.com/doi/10.1002/arch.20239/pdf
http://www.clcbio.com/files/whitepapers/whitepaper-denovo-assembly-4.pdf


124

armigera encodes multiple peptides that break, rather than induce, diapause. J  
Insect Physiol 50: 547-54. doi: 10.1016/j.jinsphys.2004.03.011.

Zhu, X.X., Oliver J.H. Jr. (1991) Immunocytochemical localization of an insulin-like 
substance in the synganglion o f the tick Ornithodoros parked  (Acari:
Argasidae). Exp appl Acarol 13: 153-159.

Zitnan, D, Zitnanova I, Spalovska, I., Takac P, Park, Y. and Adams M.E. (2003).
Conservation o f ecdysis-triggering hormone signalling in insects. J  Expl Biol 206: 
1275-289. doi: 10.1242/jeb.00261.

Zitnan, D., Kim, Y.J., Zitnanova, I., Roller, L. and Adamsm, M.E. (2007) Complex
steroid-peptide-receptor cascade controls insect ecdysis. Gen Comp Endocrinol 153 
88-96. Epub 2007

Zandawala, M. (2012) Calcitonin-like diuretic hormones in insects. Insect Biochem Mol 
Biol 42: 816-25. doi:10.1016/j.ibmb.2012.06.006.

Zandawala, M., Li, S., Hauser, F., Grimmelikhuijzen, C.J.P. and Orchard, I. (2013) 
Isolation and functional characterization o f calcitonin-like diuretic hormone 
receptors in Rhodnius prolixus. PLoS One 8: E82466. 
doi:10.1371/joumal.pone.0082466.

Zhang, T., Sun, J., Zhang, Q, Xu, J., Jiang R, Xu W. (2004) The diapause hormone-
pheromone biosynthesis activating neuropeptide gene o f Helicoverpa armigera 
encodes multiple peptides that break, rather than induce, diapause. J  Insect Physiol 
50: 547-54. doi:10.1016/j.jinsphys.2004.03.011.

Zhu, X.X., and Oliver, J.H. Jr. (1991) Immunocytochemical localization o f an insulin-like 
substance in the synganglion o f the tick Ornithodoros parked  (Acari: Argasidae). 
Exp appl Acarol 13: 153-159.



125

APPENDIX A 

LIST OF PRIMERS USED IN GENE EXPRESSION STUDIES

Species Target Forward Reverse

1. scapuloris GAPDH
5'-TGGCATTCGGTTGTTCTTTG-
3'

5'-GCCAACCTTTGCCATGCT-3'

1. scapularis Allatotropin 5' -gTT CCgCAAgAT g AAg AT-31 5 '-CCAGCAAG AAAG AG AG A-3'

K II Allatostatin prepro 5' -CACgAAgT ACgAT gAgAT-3' 5 '-CggCTAgACAACATAgAT-3'

II II Allatostatin
recep tor

5' -ACAACCAACAT CCT G ATA-3' 5'-GCCAGTAGTTAAGAGTGTA-3'

" Bursicon a 5'-ggAT CAT gCT CTT CCT ACg-3 S' CAT CT CCT ggCAACACAT-3’

" Calcitonin recep tor 5' - AAT CAT CTT CT gTT ACC A-3 ’ 5’-CCTTCTTCTCCTAATCTT -31

„ C ardioacceleratory 
peptide (CCAP)

5'-CACCAAgAggACCAgTCC-3' 5' - AACACg AAg ACgAT g ATg A-31

" Corazonin receptor 5'-CAAGGCCAAGATGAAGTC-3' 5'-CCAGGAAGATGAAGATGAT-3'

II Corticotropin RF 

recep tor

5’-ACCACCAT CT ACT ACAT A-3'
5'- gT AAT AT AggAAT AT CCAT Agg- 
3 ‘

" Eclosion horm one 
recep tor

5'-AAgTAACggATggTTgTC-3' S'-T AAT AggAgCgAAgTT gAC-3'

,, FMRFamide
peptide

5'-AT CACCAgACgCAgACTT-3' 5' -CTCgCTgT ATT CgTT gT CAA-3'

II II Glycoprotein 
horm one a

G onadotropin

5'-T ACAcgCTT CgCAT gAAC-3' 

5'-CTgAATgTgACCTgTgAA-3'

5' -gTCCTCAgTATCC ATg AT gTT-3' 

5 '- AggTgAggTAgATgTgAA-3'

n  II releasing horm one 5'-AT gCTT AggAgACTT gT AA-3' 5'-CAACACTTgAAggTTCTT-3'
recep tor
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Species Target Forward Reverse

l( if Myoinhibitory
peptide

(=Bombystatin)

5'- ggTTCggCTTCggTCTCg-3' 51 -CAAAgTT gT ACCT CCgCTT CAT-3'

„ N europeptide F 5' - AgT AC ATCCgCTAC ATCT-3' 5' -gTT CAT CCAgC AgT Ag AT-3'
recep tor

" Orcokinin peptide 5'-ggAgAACATgAACACCAg -3' 5'-CCgCTCAATTTgTCCAAg-3'

protein convertase 
type 2

5'-CT CCACgT AgTT CACTT C-3' 5'-AACCAAT AACagCCT gAA-3'

» Pyrokinin recep tor 
prim er se t 1

5-gACCT gT CT gTT CTTT gCCTTT C- 
3'

5 -CCCATgCgCCCgTACA-3’

u n Pyrokinin recep tor 

Prim er se t 2

5' -ggCT ggCT gT ATT ACgTTT CCT- 
3'

5'-CggT ACCggT gT gACAT CAC-3'

ii n SIFamide recep tor 
(GenBank)

5'-T CCAACggCAgC AT ATT C-3; 5'-TTCACACATTgCGtATTTCA-3'

„ Sulfakinin recep tor 5'- gACggCT CT AAATT ACAT-3 ’ 5'-CACTTg ATT CTT CAC Cag-3'

Tachykinin
recep tor

5'-gCACT gT CACCAATT ACT-3' 5'-AT gT agAT gAAgTT gAAgAT gA-

0. turicoto RPL8 5'-AAGGTCGGTCTGATTGCT-3'
3'
5'-TCAGTCGTCCTTGTTCTTG-3’

Dopam ine (3) 5'-CgAAgATTgCTTCAAgTT-3' 5'-AAgAT gCT gT agAT gATT g-3'

» RPL8 5'-AAGGT CGGTCT GATT GCT-3' 5' -TCAgTCgTCCTTgTT CTTg-3'

Histamine receptor
5'-GAATGCATCAGCGCGAAAG- 5'-
3' G CGTACAG AAAAG GATT CAT CG -3'

Pherom one 5'-AACATACTGTTCTCTGTGCTG- 5'-AACAT GCT AAG AT CCACCT CG-
odoran t recep tor 3' 3'
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APPENDIX B

ALIGNMENTS FOR CANDIDATE NEUROPEPTIDES, NEUROPEPTIDE 
RECEPTOR GENES, AND NEUROTRANSMITTER RECEPTORS.



Is—1 * Allatotropin.
Multiple sequence alignment (ClustalW) of the deduced amino acid sequence of a putative I. scapularis allatotropin (contig 8149) from the I. scapularis 

synganglion transcriptome compared with the conspecific I. scapularis (Iscap: XP 002406992) and the tobacco horn worm Manduca sexta (Msexta: 
AAB08759). Pairwise identity for contig versus I. scapularis sequence from Genbank 100%; multiple identity 43%. Asterisks denote identical residues, 
dots indicate conservative substitutions.

Msexta
Iscap
Contig8149

Msexta
Iscap
Contig8149

Msexta
Iscap
Contig8149

Msexta
Iscap
Contig8149

------------------------------- MNLTMQLAVIVAVCLCLAEGAPDVRLTRTKQ
----------------------------MAALGRTSAL-VAAALFLCLAAAGSETPEASDRQ
RSSDLGGTLGSRRGSPSRARHENPSDMAALGRTSAL-VAAALFLCLAAAGSETPEASDRQ

QRPTRGFKNVEMMTARGFGKRDRPHPRAERDVDHQAPSARPNRGTPTFKSPTVGIARDFG
HR--GGFQKLRLSTARGFGKRIPPGLAFLRQRNQEPADPIIKKG---FRKMKISTARGFG
HR- -GGFQKLRLSTARGFGKRIPPGLAFLRQRNQEPADPIIKKG---FRKMKISTARGFG

KRASQ-----YGNEE— EIRVTRGTFKPNSNILIARGYGKRTQLPQIDGVYGLDNFWEML
KREDPDLSFLLENEDIDPVDLK-----------------------------------------
KREDPDLSFLLENEDIDPVDLKEKRGIRRLSLSTARGFGKRMSPGFSDDQGPSDAGQSGS

..............
ETS PEREVQEVDEKTLESIPLDWFVNEMLNNPDFARSWRKFIDLNQDGMLSSEELLRNF 

GWLAEEIAKVADISDDGLAYQDSF*QAQ*HTM*S*TSSRLLFSTIVS*PQGQSLYIKSST

Is-2. Corticotropin Releasing Factor.
Multiple sequence alignment (ClustalW) o f the deduced amino acid sequence o f a putative 1. scapularis CRF-binding peptide (contig 21180) from the I. 

scapularis synganglion transcriptome compared with the conspecific I. scapularis (Iscap: XP 002410820) and the aphid Acyrthosiphon pisum (Acyr: 
XP 003240961). Pairwise identity for contig versus I. scapularis sequence from Genbank 100%. Asterisks denote identical residues, dots indicate conservative 
substitutions.

Contig21180 QEEHPKPMDQRFAEFCGPIKPWKPFTTSQNVGWMFRVPTRGNYFSVLVTFRRNPKPCNVLLQP 
I scap  MDQRFAEFCGPIKPWKPFTTSQNVGWMFRVPTRGNYFSVLVTFRRNPKPCNVLLQP



Is-2 continued.
Contig21180 LSESPVYTLRNYGRRVNCSAAFIFPMNFRILATSIGSQGFSGSTNSELETGLITKCKKRGMQDY 
Iscap LSESPVYTLRNYGRRVNCSAAFIFPMNFRILATSIGSQGFSGSTNSELETGLITKCKKRGMQDY

Contig21180 AQFLGGNGISTEGMLIVEDICGLDSTASKKAIQIPCGSTAVR1VSSGRYEDSLTFGYEPIIEIE 
Iscap AQFLGGNGISTEGMLIVEDICGLDSTASKKAIQIPCGSTAVRLVSSGRYEDSLTFGYEPIIEIE

Is-3. Glycoprotein A.
Multiple sequence alignment (ClustalW) o f the deduced amino acid sequence o f  I. scapularis Glycoprotein alpha (contig 26726)from from the I. scapularis 

synganglion transcriptome compared with the conspecific I. scapularis (Iscap: CAR94694) and D. variabilis (Dvar: ACC96601). Pairwise identity contig versus 
I. scapularis sequence from Genbank 95.7%; multiple identity 83.2%. Asterisks denote identical residues, dots indicate conservative substitutions.

Con t2 672 6 ------------------------------ GCHKVGHTRRVSIPDCVEFDMTTNACRGFCTS
Iscap CRTSTNSWRSLLLFWSLVKPERIFGSVRAATKSGHTRRVSI PDCVEFDMTTNACRGFCTS
Dvar MARKQQRVAIVLAMLALAGAEANFWERP GCHKVGHTRRVS IPECVEFDITTNACRGFCTS

Cont26726 YSIPSPEYTLRMNPNQGVTSFGQCCNIMDTEDVKVQVRCLDGHKDLTFKSAKSCSCFHCK 
Iscap YSIPSPEYTLRMNPNQGVTSFGQCCNIMDTEDVKVQVRCLDGHKDLTFKSAKSCSCFHCK
Dvar YSIPSPEFTLRMNRNQRVTSFGQCCNIIDTEDVKVQVRCLDGHRDLVFKSAKSCAC----

Is-4. Insulin-like Peptide.
Multiple sequence alignment (ClustalW) o f the deduced amino acid sequence o f a putative I. scapularis insulin-like peptide (contig 28977) from the I. 

scapularis synganglion transcriptome compared with the conspecific I. scapularis (Iscap: XM 002402930) and the American dog tick (Dvar: EU616823). 
Pairwise identity contig versus /. scapularis sequence from Genbank Alignment contig28977 versus I. scapularis 99.2%; multiple alignment I. scapularis and D. 
variabilis 93.9%. Asterisks denote identical residues, dots indicate conservative substitutions. Contains the IlGF-insulin-bombyxin-like superfamily conserved 
domain.

Contig28977 PMVSWALNTVLVALVAASALVAPAAAGSGRRCGKILLEFMEFVCEGEFYDPYENTGPKRS 
Iscap -MVSWALNTVWALVAASALVAPAAAGSGRRCGKILLEFMEFVCEGEFYDPYENTGPKRS
Dvar -----------------------------------------------------------------



Figure 3.7a Is-4 continued.

Contig28977 LIGQRLFPLVSPGIENTDKAPASGFLRAESASQLLRKRNFQGGIVFECCYKACSIMEAQS 
Iscap LIGQRLFPLVSPGIENTDKAPASGFLRAESASQLLRKRNFQGGIVFECCYKACSIMEAQS
Dvar  GIVFECCYKACSIAEAQS

Contig28977 YCPS*RPTIERLTTDTT*IDDKGERPRVSNVTFGTINF*HLYR
Iscap YCPS------------------------------------------
Dvar YCLS-

* *  • *

Is-5. Bursicon alpha.
Multiple sequence alignment (ClustalW) of the deduced amino acid sequence of a putative I. scapularis bursicon alpha (contig 8916) from the I. scapularis 
synganglion transcriptome compared with the conspecific I. scapularis (Iscap: M 002407468), the American dog tick (Dvar: ACC99596 ) and the mosquito 
Culex quingquefasciatus (Culex: XM OO1851995). Pairwise identity contig 8916 versus /. scapularis sequence from Genbank versus 59.5%. Asterisks denote 
identical residues, dots indicate conservative substitutions.

Contig8 916 - LPAAARHPRAQAAWLPAQAYTVLCLPGIMLFLRPGSGSRYWQVERSCMCCQEMGEREATK
Iscap CQLRPVIHVLKQPGCQPKPIPSFACQGSCSSYVQVSGSRYWQVERSCMCCQEMGEREATK
Dvar  SGSRYWQVERSCMCCQEMGEREATK
Culex- -QVTPVIHVLQYPGCVPKPIPSFACVGRCASYIQVSGSKIWQMERSCMCCQESGEREASV

: : : : : : :  : :  : : : : : : : : :  :
Contig8 916 AVFC PKGP - GPKFRKLITRAPVECMCRPCTAPDEASILPQE FVGL * APAPH---------
leap AVFCPKGP-GPKFRKLITRAPVECMCRPCTAPDEASILPQEFVGL----------------
Dvar AVFCPKGP-GPKFRKLVTRAPVECMCRPCTAPDEASVLPQEFVGL----------------
Culex- SLFCPKAKNGEKKFKKFGGISMRGHRRECHTRVPQS--------------------------

  * ..................................



Is-6. Eclosion Hormone.
Multiple sequence alignment (ClustalW) of the deduced amino acid sequence o f a putative I. scapularis eclosion hormone (contigl6950) from the I. scapularis 
synganglion transcriptome compared with the conspecific I. scapularis (Iscap: XP 002399271), the American dog tick (Dvar: ACC99595) and the mosquito 
Aedes aegypti (Aaegypt: XP 00 1661508). Pairwise identity contig 16950 versus /. scapularis sequence from Genbank versus 91.1%; multiple alignment identity 
48.6%. Bold indicates conserved domain.

Contigl6950 YKVIQTIYLVSISRQGQLSKTTMARIIDFPIFLWSAAAFAVLLSLSSATHTYPS— DPV
I scap ----------------------- MARILDFPIFLWSAVAFAVLLSLS SATHTYPS — DPV
Dvar  LVAARI STRLP— EAT
Aaegypt ----------------------- MAS VRIVALFI Al ALVWLVSEAS ANPQIDILGGYDMI

♦ ♦ I : : : : : : * : : : : : : : : : * : : : : : : : : : : : : : : : : : :

Contigl6950 LVCINNCGQCKMIYGEYFNGRQCAEECLSTAGFIQPDCDEADSIVKYLRR----------
Iscap LVCINNCGQCKMIYGEYFNGRQCAEECLSTAGFIQPDCDEADSIVKYLRRKP--------
Dvar MICIENCGQCKIMYGDYFDGRKCAEECVSTVGYIQPDCDIADTIIKYLRRKP--------
Aaegypt GVCINNCAQCKKMFGEFFEGHLCAEACIQFKGKMVPDCEDINSIAPFLNKLN--------

; *  ; ; ★ ; 1 * 1 * *  ! * * * ! * !  ! I ! *  ! ! 1 * * * 1  ! I I * !  I ! * !  I

Is-7. Orcokinin 5.
Multiple sequence alignment (ClustalW) of the deduced amino acid sequence of a putative I. scapularis Orcokinin 5 peptide (contig 13501) from the /. 
scapularis synganglion transcriptome compared with the conspecific I. scapularis (Iscap: XP 2401726) and the American dog tick (Dvar: ACC99606). 
Pairwise identity contig 13501 versus /. scapularis sequence from Genbank 89.2%; versus D. variabilis sequence from Genbank 52.6%; multiple 
alignment identity 40.0%. Asterisks denote identical residues, dots indicate conservative substitutions.

Dvar  MTSLFGVLLLVTASLCSALIEVRGEEPGGVAAPASPSSKGARTLDKLSGGEYIR
Contigl3501 SIYAYRMTSLLFVFLLAGVSLCSALIDGHEAEPG---------- KGVRTLDKLSGGEYIR
Iscap ----------------MGGENMNTR— DGHEAETG---------- KGVRTLDKLSGGEYIR

I ! I I I i : i * * ; i * I *

Dvar GLG— GRRRLDKISGGELLRSADDA------ ELLRELVLPYALRGVPASSQGSGSRRGLD
Contigl 35 01 ALHRLGGRRLDKISGGELLRAMPESQDRSSGEVLRSLGGPYALRRLTVP------- RGLD
I scap ALHRLGGRRLDKI SGGELLRAMPESQDRSSGEVLRSLGGPYALRRLTVP------- RGLD

• i t  "k • k i t



Is-7 continued.

Dvar KIGGGEYIRMAGAFPPGASPAKROAAFDSLSGLTFGGDQGGLHKRGYGHGEFDEIDHA---
Contigl3501 RISGGEYIRAMGPSGFPAGPAAA----------------------------------------
Iscap RISGGEYIRAMGPSGFSAGPAAAKSLCHTDATYRAPLEDF----------------------

I * | • 1*1 ! ;★; ; ★;

Is-8. Proprotein Convertase.
Multiple sequence alignment (ClustalW) o f the deduced amino acid sequence o f a putative I. scapularis Proprotein convertase (contig 23747) from the /. 
scapularis synganglion transcriptome compared with the conspecific I. scapularis (Iscap: X P 0 0 2 4 10536 ), the American dog tick (Dvar: ACD63025) 
and the marine worm, Platynereis dumerilii (Pdumer: E54439). Pairwise identity contig 23747 versus /. scapularis sequence from Genbank 100%, 
pairwise identity contig 23747 versus D. variabilis sequence from Genbank 80.6%; multiple alignment identity (ail 4 sequences) 51.1%. Conserved 
peptidase domain present. The S8 family has an Asp/His/Ser catalytic triad similar to but not identical to that found in trypsin-like proteases; Specific 
hit] pfam01483, Proprotein convertase P-domain ; A unique feature of the eukaryotic subtilisin-like proprotein convertases is the presence o f an 
additional highly conserved sequence o f approximately 150 residues (P domain) located immediately downstream o f the catalytic domain. Asterisks 
denote identical residues, dots indicate conservative substitutions.

Dvar TSKRNSLYDSKNRFHWKMNGVGLEFNHLFGFGVLDAGAMVALAKIWKTVPARFHCEAGSY
Iscap TSKRNSLYDSKNRFHWKMNGVGLEFNHLFGYGVLDAGAMVALAKIWKTVPPRYHCEAGSY
Pdumer  HASDPNGEHNWTINGAGLEFNHLFGYGVLDAGDMVDMAREWKNVPDRFHCTAGTV
Contig23747 ----------------------------------- LDAGAMVALAKIWKTVPPRYHCEAGSY

Dvar VKTSEFKANESLKIYLDTDSCAGTDTEVNYVEHVQAVITLNATRRGDVKLFMVSPSGTRS
I scap LKTSEFRTNNSLKIFIDTDSCAGTVTEVNYVEHVQAVITLNATRRGDVKLFMVSPSGTRS
Pdumer TGDYAYTTKQSLILSIDTDACKGLENQVNYLEHVQSFITLKASRRGDITLYLLSPMNTTS
Contig23747 LKTSEFRTNNSLKIFIDTDSCAGTVTEVNYVEHVQAVITLHATRRGDVKLFMVSPSGTRS

Dvar MILSRRPNDDDSHDGFTKWPFMTTHTWGENPRGRWTLEAHIDRGTGGAKDSGSDDAGGEA
I scap MI LSRRPNDDDRHDGFTKWPFMTTHTWGENPRGRWSLEARIE---- GADPSKSDPK--A
Pdumer MI LSKRPKDDD S TDGFTKWPFMTTHTWAENPRGTWKLFVIFD S----------EEPQ--
Contig2 3747 MILSRRPNDDDRHDGFTKWPFMTTHTWGENPRGRWSLEARIE---- GADPSKSDPK--A

  .....................



Is-8 continued.

Dvar RGFLKEWTLMIHGTRD PPYVD L P— AHDHNSKLAIVKKAHESTRRGAAALKARSRP----
I scap RGFLREWTLMVHGTRDPPYVDLP- -AHDSNSKLAIVKKAHETTQRGGKAPRP--------
Pdumer DGVLFEWTLMLHGTQVSPYVHQKNVNLDKHSKLAWKREHESGANFQF-------------
Contig23747 RGFLREWTLMVHGTRDPPYVDLP— AHD SNSKLAIVKKAHETTQRGGKAPRP * RVGGPRG

•*•*•★★★★★★★★*• • •  Ht* •  • •

Is- 9. Allatostatin Prepropeptide.
Multiple sequence alignment for preproallatostatin from the fed female synganglion of the Ixodes scapularis transcriptome versus the same and 

other species. Multiple sequence alignment (ClustalW) of the deduced amino acid sequence of a putative I. scapularis allatostatin (contig 7636) 
compared with the conspecific /. scapularis (Iscap: EEC 20057), the American dog tick (Dvar: ACC99603). Pairwise identity contig 7636 versus I. 
scapularis sequence from Genbank versus 95.8%; multiple alignment identity 55.5%. Asterisks denote identical residues, dots indicate conservative 
substitutions.

ACC99603 -----------------------------------------------------------------
Contig07636 PADKRSFSGQFDGSRYWLRPTTSLFGMDMRRSPCTVSRFMRPCPVTCLLLLFMLAAQYCR 
EEC20057_  MRPCFVTCLLLLFMLAAQYCR

ACC 9 9 60 3_ --------------------------------------ADIDEDEDDDAMAEAAAASRTGGYL
Contig07636_AEDASPAQLQENDKRRPPAAMYGFGLGKRAPFLFLAD-DAAEQAAERAEAEDEDPDLNYL 
EEC2 0 0 5 7_ AEDASPAQLQENDKRRPPAAMYGFGLGKRAPFLFLAD-DAAEQAAERAEAEDEDPDLNYL

 ̂ t t ^  i i i i i i i i i i * r i i i i i : z i i :
ACC 9 9 60 3_ EKRG--PREPLRYGFGLGKRRSGQEREYVPFDQEKRERHRFSFGLGKRDfCKSKLEDFMKR
Contig07636_DKRGERPQHPLRYGFGLGKRLDREGSYPGSIDHNRRERHRFGFGLGKRGKKSEIEDFMKR 
EEC2 0057_ DKRGERPQHPLRYGFGLGKRLDRDGNYPGSIDHNRRERHRFGFGLGKRGKKSEIEDFMKR

• • * •  •*★★***
ACC99603_ RYNFGLGKRGIYGDADAGERWKRSF--------------------------------------
Contig07636_RYSFGLGRRSAYG-GDDGERWKRSLASDHN*NRNRRSRVGPRWAYLGLIGSDRC*A*RAL 
EEC2 0 0 5 7_ RYNFGLGKRSAYG-GDDGERWKRSLASDHN--------------------------------



Is-10. CAPA/Pyrokinin/PBAN.
Multiple sequence alignment for putative pyrokinin/PBAN receptor from the fed female I. scapularis synganglion transcriptome versus the same and other 
species. Multiple sequence alignment (ClustalW) o f the deduced amino acid sequence of a putative I. scapularis pyrokinin receptor (contig 570) compared with 
the conspecific I. scapularis (Iscap: XM 002401136), the American dog tick (Dvar: ACC99623). Pairwise identity contig 570 versus I. scapularis sequence 
from Genbank versus 62.2%,- multiple alignment identity 55.0%. Box shows the GPCR Fl_l  domain (PS00237). The disulfide domain (from position 121 -  
206), GPCR Fl_2 was also found in all three sequences.

Contig570
Iscap
Dvar

Contig571
Iscap
Dvar

Contig570
Iscap
Dvar

Contig570
Iscap
Dvar

-MWRKYPYVFGEVFCILRGLTSEMST1S ASILTITAFTVERYVAI ’HPLRAHTMSQLPRAI 
QLWERHPYVFGEAFCILRGLTSETSTK ASILTITAFTIERYVAI :HPLRAHTMSKLSRAV 
QLWQRHPYVFGEAFCVLRGLTSETSTK ASILTITAFTIERYVAI' -HPLRAHTMSKLSRAV
• • *  • - A * * * * * . * * - * * * * * * * * * * * * * * * * * * * * * - * * * * * *  * * * * * * * * * * . * . * * .

RSIVGIWIVAGAFAVPLALQFGIVYEKTRDGGALILESAACMLKRPVEHAFTVSTVLFFV 
KFWVIWVLSAVCAIPLAVQFGIVHQ-TLDGTTVLPETAACTVKDPLEHAFELSTFVFFL 
KFWAIWVLSAVCAIPLAVQFGIVHQ-TLDGTTVLPESAACTVKDPLEHAFELSTFXFFL 
•••★ *★••••••*•**★•**★★*•• * ! * * * ! ! ! ! !
LPISVISVLYVLIGIQLRRSSAATRRD CSPDMN---------- GKS HRSNTS
LPMS VILVLYVCIALQLKRSNALSRQDVDHRC P W H N ---------- GKSATAAEKE---
LPMSVILVLYVCIALQLKRSDALSRQDVHHKCPSSNNTSSSWHGKGGADSSSGHKQGSA

. ** * ** ★ •
-GSKRAWKMLVAVWSFIICWTPFHAQRLIATYAMRTP RHTGG-----------

MVQPV-HKFQRGCQL-------------------------------------------------
AVQPLP SKLQRGCQLRKS VRGGAAAS S SRKAVINMLIAVWAFFICWAPFHAQRLMAVYA

Is-11. FMRFamide.
Pairwise sequence alignment o f FMRFamide from the fed I. scapularis synganglion transcriptome versus the conspecific sequence from Genbank. 

Pairwise sequence alignment with the translation of the nucleic acid sequence (contig 6861) versus an /. scapularis sequence from Genbank (Iscap: 
XM 002413792) Pairwise identity between contig 6861 and I. scapularis Genbank sequence XM 002413792 = 62%.

Contig6861 ----------------------------------- QSHTASKRVTNRIMHFGKRESAFSI PL
I scap:---------- -----------------MGTDVQQGEPESVNEPKRSAQPLDRVARTADPDNTKDASGRDPY

* *

Contig6861 EDQLKRDFLEWKKRYTDRMLHFGKKRPQDRYTDKRITNRIMHFGKRGVIFPLSDETDDSS
Iscap: SDY— RTLMALMGPRQHRYLHFGRKKALPL Y SDVPIDQ------ VEGSDDYIGDDYDASS



Is-11 continued.

Contig6861 
Iscap:

Contig6861
Iscap:

Contig6861
Iscap:

Contig6861 
Iscap:

Contig6861_ 
XM 002413792

GKQKRQLKNSILHFGKRDDELSIEKRTRNRIMHFGKREEGYPHENTLTSDKHLGDRILHF 
AESLEDMRWAKPYLGDGLHEDWLSGAPEDGEVI— REEGYPYENTLTSDMHLGDRILHF 

★ ★ ★★★★★* ★★★★★★★ ★★★★★★★★★
GKQE PHHQDAD S LNKRSTANADLQFDNEDNES PYLVDKKITNRILHFGKRLDGSAEDPGK 
GKQEPHHQDADFLNKRSTANADLQFDNEYSE S PYLVDKKITNRILHFGKRLDGSAEDPGK
'k-k'k'k'k'kick'kifkir-k'k'kick-k'k'kicic'k'kitifk-k-kit'k'kirieit'k-kick-kir'k'k'k-k'klr'kit'kit'kitit'k-k'kie'k*

ASGKSKQHVPFVNSDIKFEDSFLIEEHKPHNRKKRSLGFDQYDLDETLERWHQLMDAGY 
VSGKSKQDVPSVNSDIKFEDSFLVEEHKPHNRRKRSLGFDQYDLDETLERWHQLMDAGY ****** * * * * * * * * * * * * * * *  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

PKRIALGHPGIPGHLHLPHAFVAAHVYGSELPRMLSRPSRSDRFFPDPYSGEHREAPKGP 
PKRVALAHPGIPGHLHLPHAFVAAHVYGSELPRMLSRPSRSDRFFPVPYSGEHREAPKGP 
* * * * * *  * * * * * * * * * * * * * * *

SRNVFLRFG*SLSKTLSRGMKILTPSNTPLSMPASHPLHHDIGRNTYQHLPWTKRWRFSP 
SRNVFLHFG-------------------------------------------------------

*  *  *  *  *  *  *  *  *

Is-12. Corazonin Receptor.
Multiple sequence alignment of the corazonin receptor from the fed female Ixodes scapularis synganglion transcriptome versus the conspecific and other 

species. Multiple sequence alignment with the translation of the nucleic acid sequence (contig 8130) versus an I. scapularis sequence from Genbank (Iscap: 
XM 002402071) and Anopheles gam biae sequence (Agam: XM 321555). Pairwise identity for contig 8130 versus conspecific Genbank acquired sequence is 
100%; pairwise identity between contig 8130, XM 002402071 and XM 321555 in three-way alignment is 42.1%. Highlighted sequences (gray) represent the 
GPCR family signature features (F 1 _2 from 131 -  206 domain) and F I -1 from 146 -  162 domain, bold italics, respectively).

contig08130 SCRLGCWLLAATVLSSVAIALDSGGNSTLPKDECGPDNATCGTEPL-HAPVFQPSSLIR
Iscap: --------------------------------------------------------------- IR
Agam: SGLVTLVGDIMAQSGATILPREECDRLNISYAFENGTALEIPGLSCYEHAPTLSKSGVIR

* *

contig08130----WILVLIGVL S LVGNCATL VS IWKTRLRAR------ STVYLLLAHLSVADLLVTFFCVLA
Iscap: WILVLI GVL S LVGNCATLVSI WKTRLRAR------ STVYLLLAHLSVADLLVTFFCVLA
Agam: VIVLSAMAIVSLLGNVATMWNIQKNRKSRRVTRHNWSAIYSLIFHLSIADVLVTGFCLIG

* * * *  * * * * * *  *  *  *  *  *  £  *  * * *  * *  * *  * *



Is-12 continued.

contig08130
XM_002402071
XM_321555

contig08130 
Iscap:
Agam:

EAAWTWTVQWTAGDGACKAVKFLQMFSLYLSTFILWIAFDRFAAIRFPMRRASARRTVV 
EAAWTWTVQWTAGD GACKAVKFLQMF SLYLSTFILWIAFD RFAAIRF PMRRAS A R R T W
EAAWYYTVDWVAGNLFCKLFKLCQMFSLYLSTYVLVLVGVDRWVAVKYPMKSLNTARRCH

* .........
RMVFGVWALSAMLSLPQVFIFRVQRGPFEEEFYQCVTYGFYSAQWQEQLYTTVSLVLMFL
RMVFGVWALSAMLSLPQVCAHFSRISLFAH--------------------------------
RFLFVAYLLSFLLSTPQWMIFRVAKGPFVEDFYQCVTHGFYTDRWQEQLYTTFTLVFMFI

Is-13. Calcitonin Receptor.
Multiple sequence alignment for calcitonin receptor from the fed female Ixodes scapularis synganglion transcriptome versus the conspecific and other species. 
Multiple sequence alignment (ClustalW) of the deduced amino acid sequence of a putative I. scapularis calcitonin receptor (contig 08281) from the /. scapularis 
synganglion transcriptome compared with the conspecific I. scapularis (Iscap: XM 002408382) and Rhipicephalus pulchellus (Rpul: JAA63077). Pairwise 
identity contig 08281 versus I. scapularis sequence from Genbank 95.8%; multiple alignment identity 79.5%. Asterisks denote identical residues.

Contig82 81  LRHPFCYLIFNALLAGGALGQRPSPKKFPGSCRMENQLYVSQA
I s cap:  MENQLYVSQA
Rpul: PILIASPSLEDSMLLGRLRIHFWSLLAAAAVCSVSARRNLYEKTADTCRMETQHYLEPH

Contig8281 TFNQISCARCYKYMANLSFKNGSRLTYCRSGKLCR-DCETPTECYVPYGNQSDVEVYDTF
Iscap: TFNQISCARCYKYMANLSFKNGSRLTYCRSGKLCR-DCETPTECYVPYGNQSDVEVYDTF
Rpul: VFSRLTSARCYKYMPSLAFKNASRLTYCGKGSLCRGDCE— GECFQPYGNDSDVQVLETF

I *******! ; * ; * * * ; ; • * • ★ ★ ★  •**•
Contig8281 KKKLFAERWE SCCRAARE CCDEML SEDADATS SPKEGLYCPATWDGWTCYKDTPAGMTVQ
Iscap: KKKLFAERWESCCRAARECCDEMLSEDADATSSPK---------------------------
Rpul: KKGLYADRWKSCCSAARECCQEMLADNHAGVSAEKDGLHCPATWDGWTCYKDTPAGTTVQ

Contig8281 KPCPFHAYYITEKPQCIKMSKKICWENGTWYYNQEFGKEFTFYDCGSLEYHRSMTVFSIV
Iscap: -----------------------------------------------------------------
Rpul: KPCPAHAYFITETPQCIKMSKKTCWENGTWFYSQEYGKEYTFYDCGSLEYHRSMTIFSIV



Is-13 continued.

Contig8281 LH S L S VIVLVPAIVIFSVYKQLQVHRISLHKNFCVAMVLYDISVILVDSLFILDHVNEEK
Iscap: -------VL VPAI VI FSVYKQLQVHRI SLHKNFCVAMVIi YD IS VI LVD S LFI LDHVNEEK
Rpul: LHSLSVIVLVPAIAIFSIYKQLQVHRISLHKNFCVAMVLYDISVILVDAVFILDHVSEEK

•*★***★★★*★
Contig8281 NIRVHQSPDLCKVLYTLSRYFRLCQYAWMFCEGFYLHKLIASAFAEQKSLLIFYWGWGC
Iscap: NIR DLCKVLYTLSRYFRLCQYAWMFCEGFYLHKLIASAFAEQKSLLIFYWGWGC
Rpul: NIRVNENPNLCKVLYTLSRYFRLCQYAWMFCEGFYLHKLIASAFAEQKSLLVFYVIGWGC

* * * *  : a * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * - * * * * * * * *

Contig8281 PAX FVTISAVLRAMRLGHPCWMDNVEGYNWITLAPGLFCLFANFLFLCNIIRVLVTKLRS
Iscap: PAIFVTISAVLRAMRLGHP---------------------------------------------
Rpul: PAIFVTISAVLRAVRIGHPCWMDNVEGYNWITLAPGLFCLFANFVFLCNIIRVLVTKLRS

*************••*********************************************
Contig8281 THANEPSQFRKAVRAVLVLFPLFGMHFLMTVYRSPANCGAWEVYQYISKASDGLQGFFVA
I scap: ---------- KAVRAVLVLFPLFGMHFLMTVYRSPANCGAWEVYQYISKASDGLQ-----
Rpul: THANEPSQFRKAVRAVLVLFPLFGMHFLMTVYRSPANCGAWEIYQYISKASDGLQGFFVA

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Contig8281 VIFCYL-----------------------------------------------------------
Iscap: --------- VLYLLKRSYGRYRLQRGFSSRRGQSMAMTRMSVSTHVSSVGDNSNPNNGSI
Rpul: VIFCYLNGEVLYLLRRSYGRYRLQRGFSSRRGNSLAMTRMSVSTHVTSVGDSLNP-NGSI

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * • * *  * * * *

Is-14. Preprosulfakinin.
Sequence alignment for preprosulfakinin from the fed female Ixodes scapularis synganglioin transcriptome versus the same and other species. Pairwise 

sequence alignment for preprosulfakinin from the fed female synganglion o f the Ixodes scapularis transcriptome versus the same from Derm acentor variabilis. 
Pairwise sequence alignment (ClustalW) of the deduced amino acid sequence o f the putative /. scapularis preprosulfakinin (contig 30943) compared with D. 
variabilis (Dvar:ACC99604). Pairwise identity = 78.3%. Asterisks denote identical residues.
Contig30943 RPSASNMRASSWFLLCLLAALVYGSWSSPASMQQRHRMAMGKWLKSVLPGAPSGGDAGSR
Dvar  SAGDSDSR

*  * *  * *

Contig30943 NSGDID-TDMIDPVILANGFAKRRDDDYGHMRFGRSDDYGHMRFGRK-TDGR
Dvar NTADLDAADMIDPVLLASGFAKRQEDDYGHMRFGRSDDYGHMRFGRK-----

*  * *  * * * * * * * * *  * * * * *  * * * * * * * * * * * * * * * * * * * * * *

LU
-•J



Is-15. Myoinhibitory Peptide.
Multiple sequence alignment for myoinhibitory peptide (=Allatostatin B) from the fed female Ixodes scapularis synganglion transcriptome versus the 

conspecific and other species. Multiple sequence alignment (ClustalW) of the deduced amino acid sequence o f a putative I. scapularis myoinhibitory peptide 
(contig 38613) compared with the conspecific I. scapularis (Iscap: X P 002434041) and Drosophila melanogaster (Dmel: NP648971). Pairwise identity contig 
38613 versus I. scapularis sequence from Genbank 69.7%; multiple alignment identity 17.5%. Asterisks denote identical residues, dots indicate conservative 
substitutions.

Contig38613 GTRELQDGIEPCLAAWDDAR*TRHCSGSTVTTEARGKRPVLRQGA-LLRTPSAPCLPSNR
Iscap: -------------------------------------------------------- MSPVESSR
Dmel: GNN— KRAWQSLQSSWGKRSSSGDVSDPDIYMTGHFVPLVITDGTNTIDWDTFERLASGQ

: : : : * :  : 
Contig38613 LGTLEGGPSWRRTASLAAPRPARWS*AGAC*CCSAALLCCGAAEPQPQGGDWNALSGMWG
I scap: HAGRRPWATYGESGRTATSAWLSRSLLVLLVLAALLCCSAAEPQPQGGDWNALSGMWG
Dmel: SAQQQQQQPLQQQSQSGEDFDDLAGEPDVEKRAWKSMNVAWGKRRQAQG--WNKFRGAWG

•    ★★ • • • ★ •
Contig38 613 KRASDWNRLSGMWGKRAGAYGPYQALLLRAGESNDGAGHGISARAAPPGSPRENHWNDLS
Iscap: KRASDWNRLSGMWGKRAGAYGPYQALLLRAEESNDGAGHGISARAAPPGSPRENHWNDLS
Dmel: KREPTWNNLKGMWGKRDQWQKLHGGWGKRSQLPSN---------------------------

♦ ♦ * * * * * ★ •  •  •  •      ..........................................................................................

Contig38613 GYWG*RKRAASTHTDARLTEFPSSSSSP
Iscap: GYWG--------------------------
Dmel: ------------------------------

★ ★ ★ ★

Is-16. SIFamide Peptide.
Sequence alignment (pairwise) for SIFamide peptide from the fed female synganglion o f the Ixodes scapularis transcriptome 

versus the same for this species. Pairwise sequence alignment (ClustalW) o f the deduced amino acid sequence o f the putative I. 
scapularis SIFamide (contig39081) compared with the conspecific I. scapularis in Genbank (Iscap: XP 002414623). Pairwise identity 
= 100% (excluding non-coding regions). Asterisks denote identical residues.

Contig39081 LTEVLRLSTRTEFHRAT*QFQEIRKMNSWKAFFMFGTLLVMAVMMNMACAAYRKPPFNGS 
Iscap:  MNSWKAFFMFGTLLVMAVMMNMACAAYRKPPFNGS



Is-16 continued.

Contig39081 IFGKRSRADLNNADVKYAMCEAVWDTCTQWFPITQDGAQ*RQIKTK*GHIFDVEPSPLFP 
Iscap: IFGKRSRADLNNADVKYAMCEAVWDTCTQWFPITQDGAQ----------------------

Is-17 Insulin-like Receptor.
Multiple sequence alignment Insulin-like receptor from the fed female Ixodes scapularis synganglion transcriptome versus the conspecific and other 
species. Multiple sequence alignment (ClustalW) of the deduced amino acid sequence of a putative I. scapularis insulin receptor (contigl 3135) compared 
with the conspecific I. scapularis (iscap: XP 002416224) and Apis florea  (Apis:XP 003690408). Pairwise identity contig 13135 versus I. scapularis 
sequence from Genbank 98.2%; versus Apis florea  sequence from Genbank, identity 51.9%. Asterisks denote identical residues, dots indicate conservative 
substitutions

Contigl3135: 
Iscap: 
Apisflorea:

-------------------------------------------------DPGVNMQIIAHLKPF
RSLLGYWYYREAPFQNVTLFDGRDACQGDVYVGLWICLWKTADADPGVNMQIIAHLKPF 
QQLLSYLLNYIETENENITYE--MNACGGN NTWQILDVDIPEWTSPVSKHIANLKPY

Contigl3135: TQYAVYVKAYTLPTAE------ QGAQSDITYFKTLPAAPSQPQNLKVTPSKDSKLMISWV
Iscap: TQYAVYVKAYTLPTAE------ QGAQSDITYFKTLPAAPSQPQNLKVTPSKDSKLMISWV
Apisflorea: TMYAVYVKTFNSRTTNFFVNPNEVGQSRIIFFRTKSTIPSPPMNVISTPLSDTEILVKWE

*  ; * * * * * ;  ; ; * * ; * ; : * ; * ; : : ■ * * ; * : * : ; ; * *

Contigl3135: PPKYPNGDVRFYRWGIAQPSAPLHHYLGESRDYCVD-------------------------
Iscap: PPKYPNGDVRFYRWGIAQPSAPLHHYLGESRDYCSEGREGSSPTPEVPDRPVPKAPATP
Apisflorea: SPLFPNGPIGYYM LSATMIREDESLISSRDYCNDTLENDLDSEEAAPVTVPEV—TV-



Is-18 Sulfakinin Receptor.
Multiple sequence alignment for sulfakinin receptor from the fed female Ixodes scapularis synganglion transcriptome versus the conspecific and other 

species. Multiple sequence alignment (ClustalW) of the deduced amino acid sequence of a putative I. scapularis sulfakinin receptor (Is contigl7295) compared 
with the conspecific /. scapularis (Iscap: XM 002413275) and Culex quinquefasciatus from Genbank (Culex: XM_001866703). Pairwise identity contig 17295 
versus I. scapularis sequence from Genbank 51.2%; versus C. quinquefasciatus 44.2%. Asterisks denote identical residues, dots indicate conservative 
substitutions. The transmembrane domain (PfamOOOOl) is present.

Contl72 95 GTPG7QRILK-LRGYYQAVRPEARKWARRCSGSAWTRAAEQPSPQGASSWMETCNLSTEG
Iscap: ------MIRKVISNIPEHTAPSPPSTTSWVFDGVNIiLPNVTPTPD-IVEVLTVSNITLED
Conti7 295 NGSDARPAYSWWRSDQAVLVAPYTVILLLAVLGNGLVIVTLAVNKRMRTVTNLFLLNLAV
Iscap: SGGQDIPPEP---EDVILRITLYS11FVFAWGNVLVLVTLVQNKRMRTVTNVFLVNLAV

Contl7295 SDLLLGVFCMPFTLAGVLLREFVFGELMCRLIPYLQAVSVCVSAWTLMAMSVERYFAICY 
Iscap: SDLLLGVLCMPFTLVGSLLRNFVFGEIMCRLIPYLQE-GYGRQCTRTTGVNDEAY-----

Is-19. Gonadotropin releasing hormone (GnRH).
Pairwise sequence alignment for Gonadotropin releasing hormone (GnRH) receptor from the fed female Ixodes scapularis synganglion transcriptome versus the 
published sequence (GenBank) for this hormone of the same species. Pairwise sequence alignment (ClustalW) o f the deduced amino acid sequence o f a putative 
I. scapularis GRH receptor (contig 12746) compared with the conspecific I. scapularis (Iscap: XM 002407293). Pairwise identity = 68.1%. Asterisks denote 
identical residues.

Contigl2746 -------------------------------------FSSDSSVYPYELTIRFKGQLFSKCSK
I scap FFGARDAKTAPMIVPEVKPWLPKDKTTVGDNSLFS SD-SVYPYELTIRFKGQLFSKCSK

Contigl2746 ARHLPDCSCESCALSGRYGKGNKFGSSSLHDPKQTSSPTNHSM*CPSRTLMERRTSLIET
Iscap  RY GKGSKFGS S S LHD PKQTS S PTNH SM------------------



Is-20. Tachykinin Receptor
Multiple sequence alignment for the tachykinin receptor from the fed female Ixodes scapularis synganglion transcriptome versus the published sequences 

(GenBank) for the same and other species. Multiple sequence alignment (ClustalW) o f the deduced amino acid sequence o f a putative I. scapularis tachykinin 
receptor contig 10361 compared with the conspecific I. scapularis GPCR receptor (XP 002411208) and Metaseiulus occidentalis from Genbank (Moccid: 
XP 003744215). Pairwise sequence identity (coding region) = 46.2%; multiple sequence identity = 38.3%. Asterisks denote identical residues, dots indicate 
conservative substitutions. This GPCR receptor includes the Serpentine type 7 TM GPCR chemoreceptor Srsx domain (Superfamily cl 18179) characteristic of 
chemosensory functions.

Contigl0361:
Iscap:
Moccid:

Contigl0361: 
Iscap: 
Moccid:

Contigl0361:
Iscap:
Moccid

-*VDMELNESDLGNASG-DAVSLVNLSSEDIMTENVYIMFWWGQAAWTLLFGCMVMVATG
 MELNESDLGNASG-DAVSLVNLSSEDIMTENVYIMFWWGQAAWTLLFGCMVMVATG
MDALEEMNLSSTFNISEVFRIYGANLTFDD—GDSAFYMPLYIEVLWCVLFSTMIWAAC- 

••*•*| * • • • • • • * • •  • • • •  •★••*••
GNLIVIWIVLAHKRMRTVTNYFIVNLSLADTMVSTLNVIFNFIYMLNGNWPFGTAFCKVS 
GNLIVIWIVLAHKRMRTVTNYFIVNLSLADTMVSTLNVIFNFIYMLNGNWPFGTAFCKVS 
GNLIVIWIVLAHKRMRTVTNYFIVNLSIADTMVSTLNVIFNFTYMLRJREVMFGEWYCKFS 
***************************;**************;***; •*•**• ■ **■*  
NFIAIVSVAASVFTLMAICIDRYMAII*SPRLSPEPSGQSTQLRVRTHQTPKQVPAIHLC
NFIAIVSVAASVFTLMAICIDR-----------------------------------------
NFIAWSVSASVFTLMAISIDRYMAI MHPLHPRMSRTMTLNIAVCIWILAGILSC

Is-21. Neuropeptide F Receptor.
Sequence alignment (pairwise) for the neuropeptide F receptor from the fed female Ixodes scapularis synganglion transcriptome versus the conspecific 

species. Pairwise sequence alignment (ClustalW) of the deduced amino acid sequence o f the putative I. scapularis neuroepeptide Y receptor (contig3925) 
compared with Iscap Genbank XP_002402168) Pairwise identity = 100%. Asterisks denote identical residues. This receptor includes Serpentine type 7 TM 
GPCR chemoreceptor Srsx domain the (Super family cl 18571) characteristic o f chemosensory functions.

Contig3925 ------------------------------------LGYWPFGGVMCVWTYAQCVTVFI SAY
Iscap: MRTVTNMFIMNLAIGDILMASLCIPFTFVSNLLLGYWPFGGVMCVWTYAQCVTVFISAY

* * * * * * * * * * * * * * * * * * * * * * * * * * *

Contig3 92 5 TLIAISVDRYTAIVYPLRPRMTKLRSKIIIGWWLVALVTPLPTALVTQLVPHPCANQ-- 
Iscap: TLIAISVDRYTAIVYPLRPRMTKLRSKIIIGWWLVALVTPLPTALVTQLVPHPCANQTY



Is-22. Crustacean Cardioacceleratory Peptide (CCAP).
Sequence alignment (pairwise) for the crustacean cardioacceleratory peptide (CCAP) receptor from the fed female synganglion o f the Ixodes scapularis 

transcriptome sample 11-2 versus the conspecific species. Pairwise sequence alignment (ClustalW) of the deduced amino acid sequence o f the putative /. 
scapularis cardioacceleratory peptide receptor (contig 19265) compared with Iscap Genbank XM 002407891). Pairwise identity = 52.4%. Pairwise identity for 
the coding region > 90%. Asterisks denote identical residues. Both the GPCR domain F 1.1 and F 1.2 characteristic of these transmembrane receptors were 
identified.

Contigl9265 MSVPAVFLSREALVRGRLQCWIELELWQWQLYMTLVACSLFFVPALVITACYSVIVYTIW 
I scap: MSVPAVFLSREALVRGRLQCWIELELWQWQLYMTLVACSLFFVPALVITACYSVIVYTIW

Contigl9265 TKSKILSYPKLPSAKTGS— NNHKTGEPDSDTKRTSSRGVIPKAKIKTIKMTLIIVFVFIL
Iscap: TKSKILSYPKLPSVGLCNCLAERLCGWWPSTPRRSWREQTVSRPSECSTMTESLQQQQRSS

* ★* * ★ * *
Contigl9265 CWSPYFVYDLLQVYGYTSQTQTAIAVSTF 
Iscap: TRLQLRQHRRGTLLRSTDSTDAHVRNSHV

Is-23. Ion transport Peptide.
Sequence alignment (pairwise) for the ion transport peptide from the fed female synganglion of the Ixodes scapularis transcriptome versus the conspecific 

species. Pairwise sequence alignment (ClustalW) of the deduced amino acid sequence of the putative I. scapularis ion transport peptide (contig contig7332) 
compared with Iscap Genbank XM 002399497). Pairwise identity = 77.3%. Asterisks denote identical residues.

Contig7332 ----------LLGPVLGFLT AG ICLRFYED PFHD PGITPRDPRWVGAWWMGYILFAMGLA
I s cap LTLGMGFAFRLLGPVLGFLTAGICLRFYEDPFHDPGI TPRDPRWVGAWWMGY I LFAMGLA

★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ♦ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ It

Contig7332 LVALPMMLFPRILPSGKHYKVNNLQKLSKSKSKDGLKTENGPEKHPFINFAICKDIV---
Iscap LVALPMMLFPRILPSGKHYKVNNLQKLSKSKSKDGLKTENGPEKHPFINFAICKGMKSPS

******************************************************;
Contig7332 ------- VIVK--RLGRNPIFMLKTIGAVFVLHAT AGY GTAFTKYVE-------FQFGQS
I scap MFIPRHGVL PRPLRLGRNPI FMLKT IGAVFVLHATAGY GTAFTKYVDVCVWRTVHKHCR

Contig7 332 ASKAS YYTGAAKWTTMVGIMVGAVAVHRLRPRPTILAGY SALVE IALTAGFIAMMFIGC 
Iscap SNTVLVPTGAAKWTTMVGIMVGAVAVHRLRPRPTILAGYSALVEIALTAGFIAMMFIGC



3.7a-Is-23 continued.

Contig7332 DNPIVAGVSPGTNTTTSLVDACNVNCDCTTQIYEPVCSSDKLTSFFSPCHAGCKDVSLSP 
Iscap DNPIVAGVSPGTNTTTSLVDACNVNCDCTTQIYEPVCSSDKLTSFFSPCHAGCKDVSLSP

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Contig7332 SNKT----------------------------------------------------- VYSNCSC
Iscap SNKTVWHLVCLLSISKSRLNYEDDIEHARLTLFFLHCQRMCKSLTRCGHANLQVYSNCSC

**** *******
Contig7332 IATAVAEASSYVTPGLCGSTCNKLSLFLMIVIAGQLLG-----------------------
Iscap IATAVAEASSYVTPGLCGSTCNKLSLFLMIVIAGQLLGSTGRIGSMLIYLRLVPSSPGYS

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

(O t-1 to Ot-22): Alignments for 0. turicata candidate neuropeptides and neuropeptide receptor genes 

O t-l. RPL-8
Alignment for control genes: Alignment (Pairwise) O. turicata Ribosomal Protein L8 (RPL-8) contig 116968 from the fed female synganglion of the O. 
turicata transcriptome versus Ornithodoros coriaceus from Genbank (ACB70396. Pairwise alignment 63.5%. Due to its lower e-value and higher 
alignment success, this gene was used as the control gene for qPCR assays.

Contigll6968 WLLPF*VHFQTRKVLLEMGRVIRAQRKGAGSVFRAHTKHRKGAPKLRSIDFAERHGYMKG
Ocoriaceus: ------------------------------------------- EGAPKLRAIDFAERHGYMKG

* * * * *  * * * * * * * * * * * *

Contigl16968 IIKEIIHDPGRGAPLARWFRDPYRYKLRRHVHWPVCLLWQEGAAPGWQRVALEC++++L 
coriaceus: IIKEIIHDPGRGAPLARWFRDPYRYKLRKELFLAAEGMYTGQFVYCGKKAQLQVGNVLP

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  *

Contigl 16968 -NA*RYGHL--------- QR*REARRQGQHATVIAHNPDSRKTRVKLPSGAKKVLSSANR
Ocoriaceus: LSAMPEGTVICNVEEKPGDRGSLARTSGNYATVIAHNPDPRKTRVKLPSGAKKVLSSANR

*  * *  *  * * * * * * * * *  * * * * * * * * * * * * * * * * * * * *

Contigll6968 AMVGIVAGGGRVEKPI------------------------------------------------
Ocoriaceus: AMVGIVAGGGRVEKPILKAGRAYHKYKAKRNCWPKVRGVAMNPVEHPHGGGNHQHIGKAS



Ot-2. PreproAllatostatin C.
Sequence alignment (pairwise) o f  the putative preproallatostatin C (Contig 73361) from the fed female Ornithodoros turicata synganglion transcriptome

versus Nasonia vitripennis XP_ XP 003426084 allatostatin prohormone. Pairwise identity^ 46% (coding region).

Nason: MMS LRIAVCT AVAL WLVDWS TAL PAGDKEALMNGLNMMGDEEGAAVERD— LLNYLVGR
Contig73361  LVEE S GNPGS S GNLDNLLLNYLFAK

Nason: RFVKRLRNQADVD DLQRKRNYWRQCAFNAVSCFGK------------------------
Contig73361 QMARRVQ-QRDLEQSMDFQRKRSGWRQCAFNAVSCFGRRK*TPSVRRCCSPEVLHRESHN

Ot-3. Octopamine/tyramine Receptor.
Sequence alignment (pairwise) octopamine/tyramine receptor contig8628 from the fed female Ornithodoros turicata synganglion transcriptome versus the I. 

scapularis sequence from Genbank (XM 002408768). Percent identity O. turicata versus I. scapularis = 58%.

Iscap: VWLCTSSILNLCAISVDRYLAITRPVRYRSLMSSKRAKLLIV— AVWVIAFVICFPPLVG
Contig8628: -------------------------PPLVGWNDGSEVTVPYAATNGTLHLESRWTKPSTAN

★ ★ ★ ★
Iscap: WNDGTENLSAQCVLINNKGYVIYSALGSFYIPMLFMLFFNYRIYRAAIQTGRALERGFIT
Contig8628: DTDLFVCESAQCVLINNKGYVIYSALGSFYIPMLFMLFFNYRIYRAAIQTSRALERGFIS
Iscap: TKSGKIKGRTQEQRLTLRVHRGNDSGLNVKRGSEHVGAETCIDGIVTGRRRPGLKKSRDE
Contig8628: TKSGKIKGKAEEP---------------------------------------------------

* * * * * * * *  *

Ot-4. Dopamine D1 Receptor.
Sequence alignment (multiple) of the Dopamine D1 receptor contig 42220 from the fed female Ornithodoros turicata synganglion transcriptome versus the 
Rhipicephalus microplus and the Ixodes scapularis sequences from Genbank. Alignment O. turicata dopamine dl receptor contig 41220 versus R. microplus 
(Rmicro=AFC88981) and I. scapularis (Iscap:= XM 002409287). Pairwise % against R. microplus: 68.0%; versus I. scapularis 44%

Con tig41220 ------------------ TRWGASQTRTSTMICLSKRLGISLQIAMTTPPS S--------
Rmicro: NKSLQVSSMVPEADPLTANTGSGSQPDEDEFDDLPTEAGGDKWAECDEEEASFLA— AQS
Iscap:  CD IWIAFDVMC STAS ILNLCAISMDRFLHIKDPLGY GRWMTKRAVLGTICAI WML S



Ot-4 continued.

Contig41220 APSPKPANIIWHNRNHDSGYAASHLEETQFLSNVQAPRLPDTKRNGTAVPLLTVSVARD 
Rmicro: ATSGSDPPSHATHNRNHDSGYVDSNVDEVHF-SRQERPN-KEFKKNGTVMPLLTVSWGG
Iscap: ALMSFLPISLGWHRPYPDSLLLVNGLTMCAL DLTPE YAVTSSLISFYMPCWMVALY

• 1 1  ; • ; • • ★ ■ • • • ••••*•★ 
Contig41220 APSSTERDAESQTTPVKKKSRFNLGRKHKSSRRKREKASAKRERKATKTLAIVLGVFLIC
Rmicro: PTL GASIEDGPARKKSRFNLGRKHKSSRKKREKASAKRERKATKTLAIVLGVFLIC
Iscap: TRLYLYARKHVQNIRAVTKPMNHKDMSPTKFRSMGQSSLHVMDHKAAITLGIIVGVFLCC

• • •• I : ; ; : * * ; ; * * : * ; ; * * * * : *
Contig41220 WVPFFTCNVIEAVCMKLQRNDCHLGVTVFLLTTWLGYMNSCVNPVIYTIFNPEFRKAFKK 
Rmicro: WVPFFTCNWD AVCMKLQSQDCHLGVTVFLLTTWLGYVN SCVNPVIYTIFNPE FRKAFKK
Iscap: WVPFFCANIVAAFCKTCISEDC------FKFLTWLGYLNSALNPIIYSIFNTEFRDAFRR

Ot-5. Cardioacceleratory Peptide (CCAP).
Sequence alignment (pairwise) for cardioacceleratory peptide (CCAP) contig 112055 from the fed female Ornithodoros turicata synganglion transcriptome 
versus same for the Ixodes scapularis hypothetical protein (Iscap: XP 002402276,) and Bombyx mori (NM001130897) sequences from Genbank. The 
Cardioacceleratory peptide domain (pssmid 256294) characteristic of this neuropeptide is present. Percent identity 25%.

Contigl12055 
Iscap:
Bmori:

Contigll2055 
Iscap:
Bmori:

Contigll2055
Iscap:
Bmori:

PV*GVSTFRNAPLPSNCTGILKYTRFVIEDSLSFLYGVGLPTREVTMKTELVTLVASIVY
--------------------------------------------------MKPDLSTVISSSLY
------------------------------------------------------ MTSRVLLVLV

VLVLSA--CIVRALEKQDD--TSDDSFLTEQKRPFCNAFTGCGGKRS— GPGRRDLLAQI 
ILLLSA— CLSAALEKQDD--TADDSYLVEQKRPFCNAFTGCGGKRS— SPNRIDLLARL 
VALLCAECCVTATIPRNFDPRSNEEMVTMPKKRPFCNAFTGCGRKRSQTAPGMPNQDLMR

;;; • ••★★★★★★★★★★★★•★*★ *•• •••• 
QNRLLNEARVLEFQRRIiSENPSQDREAITDEL-RSNRLLMDLLAPSSLRKRIPSTIDAE*
QNRLLSEIRNLELRTRLEEGPSRRHDEYTDNVSRLNKREESISDASSTRDRCP-------
QRQYVDEDT---LGTMLDSESAI — DELSRQILSEAKLWEAIQEASAEIARRKQKEFYNS



Ot-6. CAPA Receptor.
Sequence alignment (pairwise) for the putative CAPA receptor contig 130874 from the fed female Ornithodoros turicata synganglion transcriptome versus

the D.variahilis ACC99623 Pyrokinin/CAPA receptor. Pairwise identity 65.7%.

Dvar: VQPLPSKLQRGCQLRKSVRGGAAASSSRKAVINMLIAVWAFFICWAPFHAQRLMAVYAK
Iscap:  FLCWAPFHAQRLMAVYVT

****************
Dvar: VPTPALEIAFNLLTYVSGVTYYVSATINPILYSIMSLKFRQAFRDTLMRCCGRHRATRHG
Iscap: STTPALETAFHALTHISGVTYYVSATINPILYSIMSLKFRQAFRDTLMRCCGR-RVPRHE

Dvar: KSWSVTFPSGFRSTFRSSLAFETSDFTLLTDGGPPPPYTVEALLAQRARNVIVSIDECS
Iscap: WTSADGYVSNHHPHTTPSSV*HAV---------------------------------------

★ ★ ★

Ot-7. Pheromone Biosynthesis-Activating Neuropeptide (PBAN).
Sequence alignment (multiple) for the Pheromone biosynthesis-activating neuropeptide receptor contig 44381 from the fed female Ornithodoros turicata 

synganglion transcriptome versus the I.scapularis sequence from Genbank (XM002407482) and the Plutella xylostella  (AAX99220) from Genbank. Pairwise 
identity contig 44381 versus I. scapularis 34%; contig 44381 versus both Genbank sequences 38%.

Contig44381 S VSE S SDAYWGDTGATADNDITESPYTDWGILVMPYKRRSSTFTPRIGRKRRSINQGDIN
Iscap: SAGRDL-----GRGPEELLTLDTELGSDWAFLLLPYKRRSNNFTPRIGAKRRS VSE -DGG
p x :  ------------------------------------------------------------------------------------------------------------------------------------------------

Contig44381: VAK--------------------------------------------------------------
Iscap: HGD--------------------------------------------------------------
Px: -- MLSLFFGKAVCLMTIFNVCSMT SADD LKDEDIQRDARDRASMWFGPRLGKRAMHLAP

Contig44381:  DQDDREMSKP-FWADTGYSYQRDSRQII
Iscap: ---------------------------------- S SDMRAL S RH - SWPALD WS Y PRMS QQMI
Px: DGDGQAVYRMLEAADAIJKYYYDQLQYYGAQADDPETKVTKKVIFTPKLGRNADEDQQQS V

• • * • * • • • •  •• ••
Contig44381: PLPRIGR-AFVPRLGKRQDDDLDDMGTDEFDGQRFYTPRIGRAFTPRIGR-A FTPRI
Iscap: PVPRNGRGSFVPRLGKRRMGYDDPE SWDSREFSASGDPKRG-SFTPRIGRAA FTPRI
Px:  DFT PRLGRRRLKD S GLAPPDE YRT PELLDAR-AQ YFS PRLGRGGSMTFS PRL



Ot-7 continued.

Contig44381: GRA------- FTPRIGRTPFTPRIR-----------------------
Iscap: GRT------ P FTPRI GRSGDSNKDTMSNDDKAQSASGSDSNSRSSV
Px: GRNLVYDLYPASIRVARSANKTKST-----------------------

Ot-8. Calcitonin-related Peptide.
Sequnece alignment (Pairwise) for the calcitonin-related peptide contig 46006 from the fed female Ornithodoros turicata synganglion transcriptome versus 

the O. coriaceus EU574856 from Genbank. Pairwise identity 31.8% (coding region).

Ocoriaceus: MKYGMRLICAILLLLVFLAGRAELAVLSPSTGDAEVAPKEDNGGTRVKRTVCRFSTC
Contig46006 ----------------------------------------- QEEEGTPKPSTSRCSLPTC

★ ★ ★★
Ocoriaceus: AGQNLADRLSGGGRGTSPPGSTGSGGYGRRK----------------------------
Contig46006  NLASQLA---KPTSPPGSTGSHGFGRRRRRSVPDKKYLLSLVAG----------

★ ★ ★  ★ * * * * * * * * *  *  * * *

Ot-9. Corazonin prepropeptide
Sequence alignment (pairwise) for the corazonin prepropeptide contig 17454 from the fed female Ornithodoros turicata synganglion transcriptome versus the D. 
variabilis sequence (Dvar: ACC99609) from Genbank. Pairwise identity 29.2% (coding region).

Contigl7545 EAVASGNRAAGIAWLGQESFTRTTPKYRHESTNGSVLFRVDILPYSQTFQYSRGWTNGK
Dvar:  MSRTVATCGVLLACLVMIASCQTFQYSRGWTNGK

* * * * * * * * * * * * *

contigl7545 RRAEAVASGPSQAAEERSLVEDALAKASLREHLLLEKLGRAFRTLDRVDEEQQEYYGH*Q 
Dvar: RRDGAIVAGPSRVTVEHRLLEEFLSKFAPKDRWLERLGHLFRTLDR-SEDDQEY—

** * *** * * * ★ ★★ ★* ★★★★★★ * ★★★

4̂



Ot-lO. Corazonin Receptor.
Sequnece alignment (pairwise) for the corazonin receptor contig 1917 from the fed female Ornithodoros turicata synganglion transcriptom e versus

I.scapularis XP 002435340X full sequence from Genbank. Pairwise identity 40% .; pairwise identity within open reading frame 72.2%.

Contigl917 YTTISLVLMFLLPLATLVTTYLCTFYTISVQRSFFDPAKSGGSSSGRSAMEDARRKLLHK
Iscap:  MDDARRKLLHK

* *********
Contigl917 A2CMKSLMITWIVLAFIICWTPYYCMMIIFIFLDPDDQLTEELQAGIFFFGSSTAMINPI 
Iscap: AKMKSLMITWIVLAFIVCWTPYYCMMII FI FLDPDDQLTEELQAGI FFFGS STAMINPL

* ★ * ★ * ★ ★ * * * ★ * * * * * ★  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Contigl 917 IYGVFHLRRRRRGSSKQYNSSMTSRGVADYPSAVHNKRTLRARRGSSDGVSSSSCVNGGR 
Iscap: IYGVFHLRRRPSRGSKQFNSSVASRGAEN—  SVLLTNCPRRTRSGHQPPQQLRMVQQTSH

* * * * * * * * * *  * * *  * * *  ★ * *  *  *  *  *

Contigl917 PLIRLKYSWSNGCLRQKETALVAVQP-ER*HCNC*PHGALRTFVSLTAALCNNFW*N*I
Iscap: PWRLKYSWSNGCLKQKQATWDVEDIDR--------------------------------

★ * * * * * * * * * * * *  * *  *  *  *

Ot-11. Corticotropin releasing Factor Receptor.
Sequence alignment (pairwise) of the corticotropin releasing factor receptor contig7646 from the fed female Ornithodoros turicata synganglion transcriptome 

versus the Ixodes scapularis (XP 002405845) sequence from Genbank. Pairwise identity 60% (76.5% coding region).

Contig764 6 FDAGLTEDECIRLRDEQLQVRGSSKILQCEIVWDSFTCWPATELGKWRKPCSDILATLN
IS cap: ----------------------- MHERLYCRAVWDSFTCWPPAPAGKVLRKPCADIIASLD

*  *  * * * * * * * * *  * * *  * * *  * *  *

Contig7 64 6 VTLDLKRAAQSEGMYAYRACGTNGDWLWGNWTNYTDCVGLIKHQTSGMSH-VSLAVTYIF 
Iscap: ITLDMKQDSLSSGLYAYRVCGPEGNWLWGNWTNYTECLGLINNQPQEMSSWSLAVSYIL

**★ ★ * * ***★ ★* * * ★* *★★★★ ★★
Contig7646 IIFSFVSLVFLSASVFIFCYFRSLQCSRTKVHQNLVLALMIHSVMWVLYLPIVLHSDEP 
Iscap: LLFSLLSLIFLFATMFIFCYFRSLQCSRTRVHQNLVLALMVHAVMLWLSLPWLHSDAP

★ ★ ★★ ★* ★ ★★★★★*★★★★★★*★ i t  * * * * * *  * *  * * * * *  *

Contig7646 TPFAPIRWLCKSILSLKMYAEMASINWMFVEGLLLHSRITICIFRQDAPFKLYYAIGWGL 
Iscap: SPFVQIPPLCKSILSLKMYAAMASINWMFVEGLLLHSRITICIFRQDAPFKLYHAIGWGL

* *  *  * * * * * * * * * * * *  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

00



Ot-11 continued.

Contig7 646 PMVFVIAWAYMMQQQLGTACWEGYGANQYVWLLIGPRLVALLVNFVFLVNIIRILVTRVR 
Iscap: PLTFILSWAYLMEQTLRTPCWEGYGSNSYVWLLIGPRLVALLVNFVFLVNIIRILVTRVK

★ ★ ★ * * * ****** * ★★★★★**★★★★★★★★*★★****★★★★★***★
Contig7646 SAVSVETTQFQKAIKATVLLFPLLGITHLLFCINPKDEDLGLQEAYMIINAILQSSQGIF 
Iscap: SAVSLETTQFRKAIKATVLLFPLLGITHLLFCINPQDEDMGLKEAYMIINAILQSSQGIF

Contig7646 VSVLYCFMNSEVQTAVRNAYLRAAIRRNPN-DRSFVRGGCSQTSAVFMSHFNGSVTDNG- 
Iscap: VSVLYCFMNSEVQTALRNAYLRAAIRRNPNKERPFLRGNFSQTSTVFLSPFNGSVTEQSP

★★★★★★★★★★★★★★* ★ ★ ★★ ★★ ★ ★★★★★
Contig7646 ATRTANKIIRKYPVRTTTITT---------------
Iscap: S PRAS SKVIRKYPLRATAGPQRIPRNNNGAAVAAV

★ ★ ★ *

Ot-12. Bursicon alpha.
Sequence alignment (multiple) of the Bursicon alpha peptide contig 4964 from the fed female Ornithodoros turicata synganglion transcriptome versus the I. 

scapularis (: XP_002407512) and D. variabilis bursicon alpha (EU574002) sequences from Genbank. Pairwise percent identity for the coding region = 85.7%.

Contig4964: STLLWQQKSTMEQTSGMSVLCVLFFLARLVQSTSIGPEESCQLRPVIHVLKQPGCQPKPI
Iscap: ---------- MLICVRSPCSLLASWLILAVLAASMGPEESCQLRPVIHVLKQPGCQPKPI
Dvar: -----------------------------------------------------------------

Contig4964: PSFACQGSCSSYVQVSGSRYWQVERSCMCCQEMGEREATKAVFCPNSPGPKFRKWTRAP
Iscap: PSFACQGSCSSYVQVSGSRYWQVERSCMCCQEMGEREATKAVFCPKGPGPKFRKI.ITRAP
Dvar:  SGSRYWQVERSCMCCQEMGEREATKAVFCPKGPGPKFRKLVTRAP• ****************************** • «*★★★★★★• ; **** 
Contig4964 : VECMCRPCTS PDENS11PQEFVTL * TSLNAFLTMFIS SFLFMYVQCUERSDRNGLVKSDK
Iscap: VECMCRPCTAPDEASILPQEFVGL----------------------------------------
Dvar: VECMCRPCTAPDEASVLPQEFVGL----------------------------------------

* * * * * * * * * * * * * * * * ■ * * * * * • *

SO



Ot-13. Bursicon beta.
Sequence alignment (Multiple) o f the bursicon beta contig 118500 from the fed female Ornithodoros turicata synganglion transcriptome versus the 

Dermacentor variabilis (Dvar: EU616824) and Tribolium castaneum  (Tcast: Q 156997) sequences from Genbank. Pairwise percent identity = 48.4% (coding 
region); multiple percent identity 35.8%.

Contigll8500 --------------------------------------EAATCNLQSTSIRITRDQTDEQGAI.
Dvar: MTWRALTVAAAISALWLTTAAVSASLASAliEGPGGGVASCRLQETSIRITRDHSDDQGSP
Tcast:  MFDKIILCLVYATCVYSVSEISEETCETLMSDINLIKEEFDELGRL

*•  • • | | | J •

Contigl18500 QRTCEGTVFVARCEGTCVSQVQPSITLPHGFLKECNCCRETYMNRREIQLQDCFDPNGQK
Dvar: VRTCEGTVLVSRCEGTCVSQVQPS XTLPHGFLK-----------------------------
Tcast: QRICNGEVAVNKCEGSCKSQVQPSVITPTGFLKECYCCRESFLRERTITLTHCYDPDGVR

• • • •  • • •

Contigll8500: IYG-AEGSMTIFLEEPQECACHKCGL*N-
Dvar: -------------------------------
Teas t : LTAETVNSMDVKLREPAECKCYKCGDFSR

Ot-14. Glycogen Synthase Kinase.
Sequence alignment (pairwisey of the contig 35555, glycogen synthase kinase from the fed female Ornithodoros turicata synganglion transcriptome versus 

the I. scapularis (I. scapularis XM 002401461, glycogen synthase kinase sequence from Genbank. Pairwise % identity 15%. Pairwise identity for open reading 
frame 53.7%.

Contig35555 ---------------------------------------- QAPRPVFCKDACRS PSQLRVHP
Iscap: MCSARDGQAQRCHIRPASDPKSATARRRNRTTPGRGVPCLPRPRWYAAAARDEVG GP

★ ★ ★  ★ *  *

Contig35555 VLLQAFKTETFAGMARKLTAFSTAGSTAMGSGYYHLPISDIVITKRDGQKVKTVQWKSE 
Iscap: AAGTVPSPQSHKGMAKKLTAFSTAGSNVAGGGYYHLPITDIVITKRDGQKVKTVQWKAD

★★★★★★★★★*★★★★ ★ ★★★★★★★★★★★★★★★★★★★
Contig35555 GPDDELQEMSYVSTKVIGQRNFRSRA-------------------------------------
Iscap: GSDDDLIELSYITTKVIGKGTFGWQQIKLVDTGEVYAVKWVRQDRKFKNRELQIMRHLS



Ot-15. Allatostatin Receptor.
Sequence alignment (multiple) sequence for the allatostatin receptor contig 61571 from the fed female Ornithodoros turicata synganglion transcriptome 

versus the same for /. scapularis (XM 002403808) and Periplaneta americana (AF336364) sequences from Genbank. Pairwise identity 57.0% for the coding 
region; multiple sequence identity 44.2%.

Pamer: ---------------------------MDVSGTVTAPPPLGVGIGGLRYHACVNISVNTS
Cont61574 MDDYMNDD-DIPFDVRNGVDYPLIDHPDKGQVLTTALAAVLHTAAAQLCNVTRCGNVT
Iscap: MAYYLRDVMRPPTDGASFEMTTSLPNSDKLEMLSTAMftMLSQTALPESIATSASRLCK

Pamer: ELSAFC— SNSSEQLNGYGLDPPPEPQSLQLIQKIVSIWPLLFGLIVLVGLFGNALWL
Cont61574 DLSSL------ D PDFS GDD - PDLD PYSGNRTVEEVLAVWPILFGTIAIVGFFGNALWM
I scap: ENSSLCRANVSGPSYPDSEYEDMYDYPGNRAVEEVLAIWPILFGAIAWGFFGNALWL

: : : : : : : :  * :  **;*******; 
Pamer: WAANQQMRSTTNLLIINLAVADLLFIVFCVPFTATDYVLPFWPFGDIWCKIVQYLIWT
Cont61574 WLCNPQMRSTTNLLIINLAMADLLFIVFCVPFTGWDYTLS YWPFGDVWCRIVQYLVI VC
Iscap: WLCNPQMRSTTNILIINLAMADLLFIVFCVPFTGWDYTLNYWPFGDVWCRIVQYLVIVC

* * • • * ★ ♦ ★  •*•
Pamer: AYAS VYTLVLMS LDRFLAWH PITSMSIRTERNAIAAIAVTWWILLAS VPVYL S HGE VT
Cont61574 AYASIYTLVLMSLDRFLAWHPITSMSIRTERNAYIAICLTWIVILLACVPALFAHGMM-
Iscap: AYAS IYTLVLMS FDRFLAWHPI TSMS IRTERNAYI AI FLTWWILLACVPALFSHGMVF

Pamer: YTYSSAEHTACVFLEADPINRPDGYNKPVFQIIFFATSYVTPLALICGLYLWLLVRLWRG
Cont61574------  THGRDSGCTFRS------ DLGYNWAAFQICFFLSSYWPLSLTFVLYVLMLKRLWFG
Iscap:----------  LDDNYSSCTFLA------ EMGYSLAAFQICFFMFSFWPLALIFILYVLMLKRLWFG

: *:*:  **: ; ; ***; **
Pamer: AAPGGHVSAE SRRGKKRVTRMVWWAIFAVCWFPIQLILVLKS VDKY— EITNTSVMIQ
Cont61574 VAPGGRVSADSVRSKKRVTRLVWWWFAVCWCPVQWLVLKSVNAYG-KMNPPRIVIQ
Iscap: VTPGGRVSAESVRSKKRVTRLVWWWFAVCWCPVQIVLVLKSVELYGLPMNPPRIVIQ

Pamer: IVSHVLAYMNSCVNPILYAFLSDHFRKAFRKVINC— GSAQRAQPGPRYHR ASTI
Cont61574 IASQILAYTNSCVNPFLYAFLSENFRKSFRKIILC NSRVLGSGPARTR--DDFERTE
Iscap: IASQILAYTNSCVNPFLYAFLSENFRKSFRKIIFCYQRNASSSSSGPSRTRIGEEGEKTE

Pamer:
Cont615874
Iscap

QQQPQANGRALNNECVENDNKSGLLNVTKATRANGSSNDIL 
RETMAGNCSAGKSTKISNDIL*QPSGA*YTT*PDGPSVPWL 
RETM-GNCTT-KTSKISNDIL---------------------



Ot-16. Neuropeptide F.
Sequence alignment (multiple) o f  neuropeptide F Contig72103 from the fed female Ornithodoros turicata synganglion transcriptome versus same for I.

scapularis (XM 002402121) and M. occidentalis (XM 003738374) sequences from Genbank. Pairwise sequence identity contig 72103 versus I. scapularis 37%.

Contig72103:  PEIYELAAIGYIWFICHWLAMSHACYNPIIYFWMNAKFRAGLQSTFR-CLPFV
Iscap: ILLSDLNPDINSYEYIRYIYFVIHWLAMSHASYNPFIYCWMNAKFREGFGNLTRRCWPPV
Moccid: NLLS-AYSKLNESHYAKYIYFGSHWIAMSHTCYNPIIYCWLNAKFRQGFYRLFCSRKSRS

★★ ★ * ★ ★ ★ ★ ★ ★ • * *  * ★ . . . .

Contig72103 KPSVQTTTSYVSARK-LTSQRSPI*SSLPCTSYGPSVSWADDKDDDHRGDRVHAELVP- 
Iscap: CWPGRLRRQTLRKESNEGAALRRVNTYTTYVSVRAAGGGSSLKFNGNRGLKEVNGKIGDY
Moccid: SQRRNTYTSYVSCNNHHLNTNHVARHQKQPWHEPLMDNTEF-------------------

Ot-17. Nitric Oxide Synthase.
Sequence alignemt (multiple) o f the nitric oxide synthase brain-like receptor Contigl 17001 from the fed female Ornithodoros turicata synganglion 

transcriptome versus the same for Ixodes scapularis nitric oxide synthase (Iscap: XM002401328 and B. floridae  (Bf lor: XM002605780) sequences from 
Genbank.

Contigll7001 -------------------------------------------- LPCSNTICQGSLM--G-GP
Iscap:  LPCSNTICQGSLM---CGP
Bflor: PSSRRNSTTLSPSAKPRYARMKNWLNDKQMTDTLHNKGTPVNPCSGTKCLGSLMRPNAAA
Contigll7001  EPRPKEEVLQHAKEFLDQYYTSIKRFHSKVHE--------------------
Iscap: VRRNGK EPRPTDEVLQHAKEFLDQFYTSIKRFHSKAHEKRWSEVERQVQQRGTYDLT
Bflor: LAKSGRPAGEVRPKEEVLEHAKEFLDEFFASIKRANTQAHKQRWAEAKAQIEEKGWYELT



Ot-18. Diuretic Hormone Receptor.
Sequence alignment (pairwise) o f  the Diuretic hormone receptor contig 103210 from the fed female Ornithodoros turicata synganglion transcriptom e versus

the same for I. scapularis (Iscap: XM 002435613) sequence from Genbank. Percent identity for the coding region =88.3%.

Contl03210: ----------------------------------------- IYDCIFICPWIVLLVNMFFMG
Iscap: GCRRWWSPCGPPPKPSSVPTTTIRFSRTECECVWQLKDIYDCIFICPWIVLLVNIFFMG

* * * * * * * * * * * * * * * * *  * * * *

Contl03210: EIMWVLITKLRAATTLETQQYRKAAKALLVLIPLLGVTYILVIWTPSHRTAKVIFTYLQV 
Iscap: EIMWVLITKLRAATTLETQQYRKAAKALLVLIPLLGVTYILVIWTPSHKTARIIFTYLQI

** *******
Contl03210: TLLSTQGFTVAV----------------------------------------------------
Is Iscap: TLLSTQVRSTIRHHLERWRASRALRAERLRTGLSYRVGCRQASQERVRSTIRHHLERWRA

* * * * * *

Ot-19. Histamine Release Factor.
Sequence alignment (multiple) o f the Histamine release factor O. turicata contig 127579 from the fed female Ornithodoros turicata synganglion 

transcriptome versus the same for D. andersoni (Dand: DQ009480) and Amblyomma americanum  (Aamer: DQ009481) sequences from Genbank. Percent 
identity for the coding region 86.7%.

Contigl27579 -KVLPKLDDYQFFIGESCNAEGIVGLLEYREQDGGGEKAVMMFFKHGLDEEKM*MYQEL*
Dand: KKVLPKLDDYQFFIGESCNAEGIVGLLEYREQDGGGEKAVMMFFKHGLDEEKM--------
Aamer: KKVLPKLDDYQFFIGESCNAEGIVGLLEYREQDGGGEKAVMMFFKHGLDEEKM--------

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Ot-20. Sulfakinin Receptor.
Sequence alignment (pairwise) for the Sulfakinin receptor contig 17295 from the fed female Ornithodoros turicata synganglion transcriptome versus the 

same for/, scapularis (XP 002435031) sequence from Genbank. Percent identity 68.0% (coding region).

Contl72 95 GTPG7QRILK-LRGYYQAVRPEARKWARRCSGSAWTRAAEQPSPQGASSWMETCNLSTEG
Iscap:  MIRKVISNIPEHTAPSPPSTTSWVFDGVNLLPNVTPTPD- IVEVLTVSNITLED

* * * * * ★ *
Conti72 95 NGSDARPAYSWWRSDQAVLVAPYTVILLLAVLGNGLVIVTLAVNKRMRTVTNLFLLNLAV
Iscap: SGGQDIPPEP--ED VILRITLYS11FVFAWGNVLVLVTLVQNKRMRTVTNVFLVNLAV



Ot-20 continued.

Contl7295 SDLLLGVFCMPFTLAGVLLRE FVFGELMCRLIPYLQAVS VCVSAWTLMAMS VERYFAIC Y
Iscap: SDLLLGVLCMPFTLVGSLLRNFVFGEIMCRLIPYLQE-GYGRQCTRTTGVNDEAY----

★★★★★★ ★ ★★★ ★★★★★ ****★★*★*

Ot-21. Tachykinin Receptor.
Sequence alignment (multiple) of the tachykinin receptor Contig. 110646 from the fed female Ornithodoros turicata synganglion transcriptome versus the 

same for I.scapularis GPCR receptor (Iscap: XM002411163) and Metaseiulus occidentalis (Moccid: XM003744167) sequences from Genbank. Percent identity 
(pairwise) 53.3% (coding region).

Contigl10646 CIST*QELDAAVPPYNGTERNFLRD*ERHSHTGEPHLRRHHGRECVHLAPAAWTLLFGCM
Iscap:  MELNESDLGNASGDAVSLVNLSSEDIMTENVYIMPWWGQAAWTLLFGCM
Moccid:  MDALEEMNLSSTFNIS-EVFRIYGANLTFDDGDSAFXMPLYIEVLWCVLFSTM

★ • •*  ★*• • •

Contigl10646 VLVATGGNLIVIWIVLAHKRMRTVTNYFIVNLSLADTMVSTLNWFNFIFMLNEHWPFGR
Iscap: VMVATGGNLIVIWIVLAHKRMRTVTNYFIVNLSLADTMVSTLNVIFNFIYMLNGNWPFGT
Moccid: IWAACGNLIVIWIVLAHKRMRTVTNYFIVNLSIADTMVSTLNVIFNFTYMLRREWWFGE

Contigl 10646 AYCKVSNFVSIVSVAAS VFTLMAICIDRYMAIMRPLRPRMSRAMTLNIAVCIWI AS SLIS
Iscap: AFCKVSNFIAIVSVAASVFTLMAICIDR-----------------------------------
Moccid: WYCKFSNFIAWSVSASVFTLMAISIDRYMAIMHPLHPRMSRTMTLNIAVCIWILAGILS

* * . * * * . ■ • * * * . . * * * * * * * * • * * * * * * * *  * *  * * * * *  * * * * * * * * * *  *

Contigl10646 LPNIIYSTTTQEMFTNGDSRTICLLLWP-DGDASKSPTDYVYNVIIVWAYLIPLTAMAF
Iscap: -----------------------------------------------------------------
Moccid: CPQYVY SRTREQ DNHTVCYMFFNEDGEITESEEDYIYNVLILIVTYVIPMQAMAF

* *  *  *  *  *  * *  *  * *  * * *  *  *  *  * *  * * * *

Contigl10646 TYFRVGRELWGSQSIGECTATQLESINS-----------------------------------
Iscap: -----------------------------------------------------------------
Moccid: TYFRVGRELWGSQSIGEVTRKQTETINSKRKIVKMMIVWAIFGVCWLPYHLYFLIVHHF

★ ★ ★ ★★★



Ot-22. SIFamide Receptor.
Sequence alignment (Pairwise) o f  the SIFamide receptor contig 19513 from the fed female Ornithodoros turicata synganglion transcriptom e versus the same
versus same for I. scapularis SIFamide receptor (Iscap: KC422392). Percent identity 92.2%  (coding region).

Contigl9513------------------------------------------- NATDLYSIPSDLWMRYSPG
Iscap MLGSSLLNADNVTLRWGDSQTDDTSQSETANAVQDNGSWNASDYDLYSIPSDLWMRYSPG

* * * * * * * * * * * * * * * *

Contigl9513 MVAVFCLAYSLVFMVGLLGNSFWAWIRSPRMRTVTNYFIVNLAMADILVCVFCIPATL 
Iscap: IVAVFCLAY SWFVMGLLGNSFWAWARS PRMRTVTNYFI VNLAMAD ILVWFCI PATL

********* ** ************ *********************** ********
Contigl9513 VSNIFVPWVLGWFMCKTMSYLQGVAVSASINTLVAISVDRCLAICYPLKC----------
Iscap: VSNIFVPWVLGWFMCKTMSYLQGVAVSASINTLVAISMDRCLAICYPLKCQLSTRSVRKI

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  * * * * * * * * * * * *

Neurotransmitter Receptors

Is-24. Muscarinic Acetylcholine Receptor.
Multiple sequence alignment for muscarinic acetylcholine receptor from the fed female synganglion o f the Ixodes scapularis transcriptome 11-2 versus the 

same and other species. Pairwise sequence alignment (ClustalW) of the deduced amino acid sequence of a putative I. scapularis muscarinic acetylcholine 
receptor (contig6686, 11-2) compared with the conspecific I. scapularis (Iscap: X P0024003135) and the Rhipicephalus microplus (Rmicro: AFC88982). 
Pairwise identity = 99.5%; multiple sequence identity 86.2%. Asterisks denote identical residues; dots indicate conserved residues.

Contig6 68 6 RMMT SLWWPCRE L * PRGTQTAHACKGRRRNMGAFENKGPTVMR* PEAQVMALLGAAFNAS
Iscap:---------- ----------------------------------------------------- MALLGAAFNAS
Rmicro: ------------------------------------------- MGLLETALNASVLLAATEAG

; ; *  ; ; * ;  : * ;

Contig6686 AAS TDAGPLDDV--------- TINITNTSLTE-SGGTSSPYSLPEVILIAILAALLSTLT
Iscap: AASTDAGPLDDV--------- T INI TNTSLTE - SGGTS S PYSLPEVILIAILAALLSTLT
Rmicro: GSGGWNGVLDDGSGGASTTSGTGNATNDSVASGSSGHSAPYSLPEVILIAFLAALLSAVT

* * * !  * ; ‘ i t i : :  * * * : * ; * * * * * * * * * * * ; * * * * * * i ; *



Is-24 continued.

Contig6686 IIGNLMVMISFKLDKQLQTISNYFLLSLAIADFSIGVISMPLFTMYTLYDHWPLGTFICD
Iscap: IGNLMVMISFKLDKQLQTISNYFLLSLAIADFSIGVISMPLFTMYTLYDHWPLGTFICDD
Rmicro: IIGNLMVMISFKLDKQLQTISNYFLLSLAIADFSIGVISMPLFTMYTLYDHWPLGPFICD

★ ★ H r * * * * * * - * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Contig6 68 6 TWLAFDYLT SNASVLNLLIISFDRYFSVTRPLTYRARRTTKRAAIMIASAWVISLVLWPP
Iscap: TWLAFD YLTSNASVLNLLIISFDRYFSVTRPLTYRARRTTKRAAIMIASAWVI SLVLWPP
Rmicro: TWLAFDYLTSNASVLNLLIISFDRYFSVTRPLTYRARRTTKRAAIMIASAWVISLVLWPP

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Contig6 68 6 WIYSWPYIEGRRSVPVDRCYIQFLETNIYVTFGTALAAFYVPVTVMCILYWRIWRETEKR
Iscap: WIYSWPYIEGRRSVPVDRCYIQFLETNIYVTFGTALAAFYVPVTVMCILYWRIWRETEKR
Rmicro: WIYSWPYIEGQRSVPLDRCYIQFLETNIYVTFGTALAAFYVPVTVMCILYWRIWRETEKR

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Contig6686 QKDLTQLQAGRKD— GSRRSTSSDDPAESEDFRRGRSDSCAPDVETTYVPTSLCVETSKY
Iscap: QKDLTQLQAGRKD— GSRKSTSSDDPAESEDFRRGRSDSCAPDVETTYVPTSLCVETSKY
Rmicro: QKDLTQLQAGRKETGGSRKSTSSDDPAESEDFRRGRSDSCPPDVETTYVPTSLCVETSKY*★*****★★★;*; *************************•******************* 
Contig6686 LPPAVPKRRRLKDVLLSWCRIDNDKEDDDSTSHGGSPGTQTPASVETPVQSASMTFRADQ
Iscap: LPPAVPKRRRLKDVLLSWCRIDNDKEDDDSTSHGGSPGTQTPASVETPVQSASMTFRADQ
RMICRO: LPPAAPKRRRLRDVLLSWCRIDNDKEDDDSTSHGGSPGTQTPASIETPVQSASMTFRADQ

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  I * * * * * * * * * * * * * * *

Contig6686 LVQLNPAGRQ---------- V----------- SIPMTDRNGLRRSDRP------- STSRS
Iscap: LVQLNPAGRQ---------------------- VS I PMTDRNGLRRSDRP------- STSRS
Rmicro: LVQLNPAGRTGTGTS SAI AS IGGGGGGGTGGVSIPMTDRNGLRRNEKTGATAAATSASRS

*********: :**★ ******★**;:;: *:***
Contig6686 YSSDSVYTILIRLPTQPSLEGGASQA-------------------------------------
Iscap: YSSDSVYTILIRLPTQPSLEGGASQASIKMILEEDAEKNET--------- TTTFARTSSE
Rmicro: YSSDSVYTILIRLPTQPSLEGETSQASIKMILEEDAEKHEAAGGAASSGAAATFARTSSE

* * * * * * * * * * * * * * * * * * * * * :  : * * * ; : : : : : : : : :



Is-25. Dopamine Receptor.
Multiple sequence alignment for a putative dopamine receptor from the fed female synganglion o f  Ixodes scapularis transcriptome 11-2 versus the published 

sequences (GenBank) for this neurotransmitter for the same and other species. Pairwise sequence alignment (ClustalW) of the deduced amino acid sequence o f a 
putative dopamine receptor (contig 6007) compared with the conspecific I. scapularis dopamine receptor (XP 002408422). Pairwise sequence identity = 93.4%. 
Asterisks denote identical residues. Dots indicate conserved residues.

Rmicro: IAFDVMCSTASILNLCAISLDRFLHIKDPLNYGRWMTKRAVLGTICGIWMLSALLSFLPI
Contig3334:  WMLSALMSFLPI
Iscap: IAFDVMCSTASILNLCAISMDRFLHIKDPLGYGRWMTKRAVI.GTICAIWMLSALMSFI.pl

I : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :  :***★**:**♦* 
Rmicro : SLGWHRPYPDSLLWNGLTMCALDLTPEYAVTSSLISFYMPCWMVALYARLYLYARRHV
Contig: 3334 SLGWHRPYPDSLLLVNGLTMCALDLTPEYAVTSSLISFYMPCWMVALYTRLYLYARKHV
Iscap: SLGWHRPYPDSLLLVNGLTMCALDLTPEYAVTSSLISFYMPCWMVALYTRLYLYARKHV

★
Rmicro: QNIRAVTKPCWNNKDSGSPTKFRAIGGQS SLHVMDHKAAITLGIIVGVFLCCWVPFFCA
Contig3334 QNIRAVTKP— MNHKDM-SPTKFRSM-GQ----------------------------------
Iscap: QNIRAVTKP— MNHKDM- S PTKFRSM- GQS SLHVMDHKAAI TLGI I VGVFLCCWVPFFCA

★ ★★★★★★★* ****** • • * * • • • • • • •     ..........

Is-26. Metabotropic gamma aminobutyric acid (GABA) Receptor.
Multiple sequence alignment for metabotropic gamma aminobutyric acid (GABA) receptor from the fed female synganglion o f the 

Ixodes scapularis transcriptome 11-2 versus the same and other species. Pairwise sequence alignment (ClustalW) o f the deduced amino 
acid sequence o f a putative /. scapularis metabotropic GABA receptor (contig6166, 11-2) compared with the conspecific /. scapularis 
(Iscap: XP 002406087) and the Rhipicephalus microplus strain NRFS metabotropic GABA receptor, (Rmicro: JN974907). Pairwise 
identity = 93.1%; multiple sequence identity 85.8%. Asterisks denote identical residues; dots indicate conserved residues.

Rmicro: VTRSPLANPNEKSRDKEYKTSKSLYIAAVFPMKGHGGWLGGQGCFPAALMALEDVNKRSD
I s cap : ------------------------SLYIAAVFPMKGHGGWLGGQGCLPAALMALEDVNKRSD
Contig6166 GLIPLQPSSVDKVETVEASTLKSLYIAAVFPMKGHGGWLGGQGCLPAALMALEDVNKRSD

;**********************;****★**********
Rmicro: LLIGYKLEIDWRDSQ-CN----PGLAATVMYDLL YNE P— QKLMLLGGCSIVCSTVAEA
Iscap: LLIGYKLEIDWRDSQVCALPSDFPGFRDHARAPNSYGFPYFSSLCMAHSPTRLGRMFSRR
Contig6166 LLIGYKLEIDWRDSQ-CN----PGLAATVMYDLLYNDP— QKLMLLGGCSIVCST IAEA



Is-26 continued.

Rmicro: 
Iscap: 
Contig6166

Rmicro:
Iscap:
Contig6166

Rmicro:
Iscap:
Contig6166

Rmicro:
Iscap:
Contig6166

Rmicro: 
Iscap: 
Contig6166

Rmicro:
Iscap:
Contig6166

Rmicro:
Iscap:
Contig6166

Rmicro:
Iscap:
Contig6166

★  * * * * ★ * * * * * * ★ ★ ★   ★  • • * ..........................................................................................

A- KMWNLWI S YGS S S PALSNRKRFPTFFRTH PS AT IHNPTRIKLFQKFSWSRI AI IQEA 
PHRRLSFFQISYGSSSPALSNRKRFPTFFRTHPSATIHNPTRIKLFQKFEWSRIAIIQEA 
A-KMWNLWISYGSSSPALSNRKRFPTFFRTHPSATIHNPTRIKLFQKFEWSRIAIIQEA 

:*************************************************** 
EEVFISTGEDLEARCKEAHIEIVTRQSFLTDPTDAVKNLVRQDARIIVGMFYVAAARRVF 
EEVFTSTGEDLEIKCKEAHIEIVTRQSFLTDPTDAVKNLVRQDARIIVGMFYVAAARRVF 
EEVFTSTGEDLEIKCKEAHIEIVTRQSFLTDPTDAVKNLVRQDARIIVGMFYVAAARRVF

CEAYKQNVFGKQYVWLLIGWYEDGWYTVQDKGHNCTTEQMKEALEGHFTTEALMLNQGSQ 
CEAYKQNVFGKQ YVWLLI GWYEDGWYTVQDKGHNCTTEQMKEALEGHFTTEALMLNQGNQ 
CEAYKQNVFGKQYVWLLIGWYEDGWYTVQDKGHNCTTEQMKEALEGHFTTEALMLNQGNQ 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

ETISGMSSQQFLERYERALAEQNGGLQGYKPEGHQEAPLAYDAIWAIALALNKTINTLRE 
ETISGMSSQQFLERYELALAEQN-GMNGYRPEGHQEAPLAYDAIWAIALALNKTINTLKE 
ETISGMSSQQFLERYELALAEQN-GMNGYRPEGHQEAPLAYDAIWAIALALNKTINTLKE

A * * * * * * * * * * * * * * * * * * * * * * * - - * * . * * * * * * * * * * * * * * * * * * * * * * * * * * * * . *

YSMSIEDFTYTNHKIADEIWSAMNATQFLGVSGFVAFSAKGDRMA.WTLIEQMIDGNYVKI
Y SMS IEDFTYTNKKIADEIWSAMDATQFLGVSGFVAFSALGDRMSWTLIEQMIEGS YVKI
Y SMS IEDFTYTNKKIADEIWSAMDATQFLGVSGFVAFS ALGDRMSWTLIEQMIEGS YVKI 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * . * . * * * *

GYFDTQTDNLTILNQEKWTDGKPPQDRTIIVRVHRKVSLSLFAGMCAVAFIGWWAVGLL 
GYYDIETDNLTIYTQAKWTDGKPPQDRTIIVRVHRKVSLSLFAGMCAVAFIGWWAVGLL 
GYYDIETDNLTIYTQAKWTDGKPPQDRTIIVRVHRKVSLSLFAGMCAVAFIGWWAVGLL **;*;;★*****;•*•******************************************** 
IFNWIFRHSRYIQLSHPMCNNIMLIGIILCLVCVCLLGLDGQFVSEFRYAHICQARSWFL 
VFNWIFRHSRYIQLSHPMCNNIMLIGIILCLVCVCLLGLDGQFVSEFRYAHICQARSWFL 
VFNWIFRHSRYIQLSHPMCNNIMLIGIILCLVCVCLLGLDGQFVSEFRYAHICQARSWFL

AI GFTLS FGAMFSKIWRVHRLTTKSKSE SKGLS FQRVE SWRLY GMVGGLVL VDAVIL SAW
TIGFTLSFGAMFSKIWRVHRITTMSKSESK KVESWKLYGMVGAMVLIDAVILTAW
TIGFTLSFGAMFSKIWRVHRITTMSKSESKGLSFQKVESWKLYGMVGAMVLIDAVILTAW ;* * * * * * * * * * * * * * * * * * *

Rmicro: 
Iscap:

QLVDPMQRHLEVFPLEPPALSDEDVRIEPALEHCESRNHAIWLGVMYSYKGLLLIFGIFL 
QLVDPMKRELEIFPLEDPEMSDEDVKIEPALEHCESKNHAIWLGVMYS YKGLLLIFGIFL



ls-26 continued 
Contig6166

R.microplus
Iscap:
Contig6166

R.microplus
Iscap:
Contig6166

Rmicro:
Iscap:
Contig6166

QLVDPMKRELEIFPLEDPEMSDEDVKIEPALEHCESKNHAIWLGVMYSYKGLLLIFGIFL 
•★•★★•★★★★•★•♦★★★★*•★★★★★★*★★★•

AYETRSVKIKQLNDSRLVGMSIYNVWLCLITAPVTLVIGSQQDATFAFVAIiAIIFCSFL
AYETRSVKIKQLNDSRLVGMSIYNVWLCLITAPVTLVIGSQQDATFAFVALAIIFCSFL
AYETRSVKIKQLNDSRLVGMSIYNVWLCLITAPVTLVIGSQQDATFAFVALAIIFCSFL

SMALIFVPKIIELVRRPRERADVRSLMOTITSKEEEERHQRLLAENEDLKKQIAEKEEQI
SMALIFVPKIIELVRRPRERADVRSLMDTITSKEEEERHQRLLAENEDLKKQIAEKEEQI
SMALIFVPKIIELVRRPRERADVRSLMDTITSKEEEERHQRLLAENEDLKKQIAEKEEQI

QVLNQKLQERQRLAHQTALPASGERVFLASVSPWSVLAPDTLVGHSCCAAAPEEYTKTDS
QLLNQKLQER------------------------------------------------------
QLLNQKLQERQRMA— TALPSSGERVRIA-------LPPTYADGMLAPREQI AID PVSD S
*-********••   .

Is-27. Glutamate (metabotropic) Receptor.
Sequence alignment (pairwise) for the glutamate (metabotropic) receptor from the fed female synganglion o f the Ixodes scapularis transcriptome 11-1 versus 

the same and other species. Sequence alignment (ClustalW) of the deduced amino acid sequence o f a putative /. scapularis glutamate (NMDA) receptor (contig 
37672) from the Illumina sample II- 1 compared with the conspecific I. scapularis (Iscap: XP 002413279 ). Pairwise identity = 94.2%. Asterisks denote 
identical residues.

Contig37672
XP_002413279

Contig37672
XP_002413279

Contig37672
XP_002413279

Contig37672 
XP 002413279

----------------------- HMSPGSPWAAAALALASLGALAAIiAVLAVFLAYRDTPV
AECAPGTLPDPFHERCLPVPESHMSPGSPHAAAALALASLGALAALAVLAVFIiAYRDTPV

VRASGRELSCVLLAGILLCHGTALLLVQRPSAAVCGAQRAALGLCFAWYSAILAKTDRI
VRASGRELSCVLLAGILLCHGTALLLVQRPSAAVCGAQRAALGLCFAWYSAILAKTDRI
♦ I k * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

ARIFRAGRRSAQRPGCISPRSQLALCGALVSVQGLVAALWLALRPPRAVHHHPTREDNQL
ARIFRAGRRSAQRPGCISPRSQLALCGALVSVQGLVAALWLALRPPRAVHHHPTREDNQL
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

VCLASVQRAGYALALAYPLCLVAVCTVYAVLTRKIPEAFNESKYIGFAMYTTCVIWLAFL 
VCIASVQRAGYALALAYPLCLVAVCTVYAVLTRKIPEAFNESKYIGFAMYTTCVIWLAFL 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

vO



Is-27 contnued.

Contig37672 PIYLTTWRHVNLNLTSMAVAVSLSASVTLACLFVPKLYIILLHPEKNVRQSIMAKYGTLK
XP_00241327 9 PIYLTTWRHVNLNLTSMAVAVSLSASVTLACLFVPKLYIILLHPEKNVRQSIMAKYGTLK

Contig37 672 NQQQHRVESATQSDVDYEMSDKQRSACSLVSTNSRASCATQTDDQDSALWDKDVQL*PGG
XP_002 413279 NQQQHRVESATQSDGACFLLPYWRASRRKFTPA------------------------------

**************

Is-28. Glutamate (ionotropic) Receptor.
Sequence alignment (pairwise) for the glutamate (ionotropic) receptor from the fed female synganglion o f the Ixodes scapularis transcriptome sample 11- 

2versus the published sequence (GenBank) for this neurotransmitter of the conspecific species. Pairwise sequence alignment (ClustalW) o f the deduced amino 
acid sequence of the putative glutamate (ionotropic) receptor (contig8356) compared with the Ixodes scapularis sequence (Iscap: XP 002407641). Pairwise 
identity = 86.5%. Asterisks denote identical residues.

Iscap: GNVTTWLSSTLHSSLALQSLFKNTNVPYVATSYQEHCSVNVGGNLNLPSADSLGVSLLP
Con tig8356 -- TTWLS STLHSSLALQSLFKNTNVPYVATS YQEHCSVNVGGNLNLPS ADSLGVSLLP

Iscap: DYLPAVAEWDHLAWDTFVYVYDSDNGPSKLQRLLSHQFKNSVSMRYAKRISNSSDANDF
Contig8 35 6 DYLPAVAEWDHLAWDTFVYVYDSDNGPSKLQRLLSHQFKNSVSMRYAKRISNSSDANDF

★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★A****
Iscap: LRLLETTDRESRKYVLLDCRFETAKRIIIDHVRDIYMGRRNYHFLLVNPWNELTYEKVP
Contig8356 LRLLETTDRESRKYVLLDCRFETAKRIIIDHVRDIYMGRRNYHFLLVNPWNELTYEKVP

Iscap: EFVAVNITGLRLVGEDLSQQSSLDPSQEPREKKIT--------------------------
Contig8356 EFVAVNITGLRLVGEDLSQQSSLDPSQEPREKKITVEEALIHDAATLIVNTYKELKLRSL

Iscap:  EEDERRAGPQPRPRLEAEAE LLEEGDQLLQAD S PS TTTCGDRP S VPQE
Contig8356 VPHRYSYIFEDQEEDERRAGPQPRPRLEAEAELLEEGDQLLQA------------------

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Iscap: LGE11TRNLREVRPKDTEVDVCSCNFVLLVPSIVLQTLLCFYVLLQRSFQGLTGSIRFTS
Contig8356 LGEIITRNLRE-----------------------------------------------------

* * * * * * * * * * *

F



Is-28 continued.

Iscap:
Contig8356

Iscap:
Contig8356

Iscap: 
Contig8356

Iscap:
Contig8356

Iscap:
Contig8356
Iscap: 
Contig8356

Iscap:
Contig8356
Iscap: 
Contig8356

Iscap: 
Contig8356

DGCRIDYNVHWQLNVNNEAIKIAEWSDTKGFEPVIKPARVEVNDTGVLDKDKTYVIQSV
DGCRIDYNVHWQLNVNNEAIKIAEWSDTKGFEPVIKPARVEVNDTGVLDKDKTYVIQSV

L-KPSSW-QRVPDAQDRMGNDRYDGYCKDLIDALARELDIKYELRAAEETVYGRRDHKVR 
LEKPYLMVKESPDAQDRTGNDRYDGYCKDLIDALARELGIKYELRAAEETVYGRRDHKVR 
* * * *  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

GGWTGLIGEVLRKASQNAQS PSTATVINAERKEAVDFSQPFMTTGIAALMLKPSDLPGRG
GGWTGLIGEVLRK---EVDMGVAATVINAERKEAVDFSQPFMTTGIAALMLKPSDLPGRG
* * * * * * * * * * * * *  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

MFTFLAPFSLELWIFFVSSFGLVFVIMFFVSFFTTRVSSTKPGMEHSACGTIYKSLCYSL
MFTFLAPFSLELWIFFVSSFGLVFVIMFFVSFFTTRVSSTKPGMEHSACGTIYKSLCYSL
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

EAFTPHYIDSYYARPYEVLRSTGSYRRRYPIFPTLSRSISGRVIGNIWWLFIVFVFSAYT
EAFTPHYIDSYYA---------------------------------------------------
* * * * * * * * * * * * *

ASMVPFLSKESRIRPIRSVEDLPLQSQVDYGFSRQSMAKKYFENPNLNSTAHRRMWEVMN
ASMVPFLSKESRIRPIRSVEDLPLQSQVDYGFSRQSMAKKYFENPNLNSTAHRRMWEVMN
★★*★★*★*★***★★*★★*★★★★★*★*★**★***********★*★**★★★*★★*★******
SKPDVFKN SNAEGVDAVRS S KGNYVFFMEANAVAFVNTQRPCDTMQLGGTFGVRS FAVAV 
SKPDVFKNSNAEGVDAVRSSKGNYVFFMEANAVAFVNTQRPCDTMQLGDTFGVRSFAVAV
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★A*
PKGSSLRKHLDEAIAHLSETGELDKLKKKWWTQKSYCQYPERKKDETVMPLDNFIGVFFI
PKGSSLRKHLDEAIAHLSETGELDKLKKKWWTQKSYCQYPERKKDETVMPLDNFIGVFFI

LGGGVALGILVGLIEFI----------------------------------------------
LGGGVALGILVGLIEFIYKCCVRSSAAKGTVPETTSTGEATITEKEFAEQALASA**RKR
★★★★★★★★★★★★★★★★★



Is-29. Glutamate (NMDA) Receptor.
Sequence alignment (pairwise) for the glutamate (NMDA) receptor from the fed female synganglion of the Ixodes scapularis transcriptome sample 11-1 versus 

the same for this species. Pairwise sequence alignment (ClustalW) o f the deduced amino acid sequence of the putative glutamate NDMA receptor (contig36704) 
compared with the Ixodes scapularis sequence (Iscap: XP 002408667). Pairwise identity = 96.7%. Asterisks denote identical residues. The four transmembrane 
regions characteristic of the ionotropic and NMDA domains (pfam00060) as well as the N-terminal leucine/isoleucine/valine-binding protein (LlVBP)-like 
domain o f the NMDA (cd06351) are present in this receptor (as well as other domains).

Iscap: GNVTTWLSSTLHSSLALQSLFKNTNVPYVATSYQEHCSVNVGGNLNLPSADSLGVSLLP
Contig8356  TTWLSSTLHSSLALQSLFKNTNVPYVATSYQEHCSVNVGGNLNLPSADSLGVSLLP

Iscap: D YLPAVAE WDHLAWDTFVYVYDSDNGPSKLQRLLS HQFKNS VSMRYAKRISNSSDANDF
Contig835 6 DYLPAVAEWDHLAWDTFVYVYDSDNGPSKLQRLLSHQFKNSVSMRYAKRISNSSDANDF

★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ H r * * * *

Iscap: LRLLETTDRESRKYVLLDCRFETAKRIIIDHVRDIYMGRRNYHFLLVNPWNELTYEKVP
Contig835 6 LRLLETTDRESRKYVLLDCRFETAKRI 11DHVRDIYMGRRNYHFLLVNPWNELTYEKVP 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Iscap: EFVAVNITGLRLVGEDLSQQSSLDPSQEPREKKIT--------------------------
Contig8356 EFVAVNITGLRLVGEDLSQQSSLDPSQEPREKKITVEEALIHDAATLIVNTYKELKLRSL

Iscap:  EEDERRAGPQPRPRLEAEAELLEEGDQLLQADSPSTTTCGDRPSVPQE
Contig8356 VPHRYSYIFEDQEEDERRAGPQPRPRLEAEAELLEEGDQLLQA------------------

★ ★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★I*
Iscap: LGE11TRNLREVRPKDTEVDVCSCNFVLLVPSIVLQTLLCFYVLLQRSFQGLTGSIRFTS
Contig8356 LGEIITRNLRE-----------------------------------------------------

***********
Iscap: DGCRIDYNVHWQLNVNNEAIKIAEWSDTKGFEPVIKPARVEVNDTGVLDKDKTYVIQSV
Contig8356 DGCRIDYNVHWQLNVNNEAIKIAEWSDTKGFEPVIKPARVEVNDTGVLDKDKTYVIQSV 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Iscap: L-KPSSW-QRVPDAQDRMGNDRYDGYCKDLIDALARELDIKYELRAAEETVYGRRDHKVR
Contig8356 LEKPYLMVKESPDAQDRTGHDRYDGYCKDLIDALARELGIKYELRAAEETVYGRRDHKVR 

* * * *  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Iscap: GGWTGLIGEVLRKASQNAQSPSTATVINAERKEAVDFSQPFMTTGIAALMLKPSDLPGRG
Contig8356 GGWTGLIGEVLRK EVDMGVAATVINAERKEAVDFSQPFMTTGIAALMLKPSDLPGRG

* * * * * * * * * * * * *  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Iscap: MFTFLAPFSLELWIFFVSSFGLVFVIMFFVSFFTTRVSSTKPGMEHSACGTIYKSLCYSL
Contig8356 MFTFLAPFSLELWIFFVSSFGLVFVIMFFVSFFTTRVSSTKPGMEHSACGTIYKSLCYSL



Is-29 continued.
Iscap: EAFTPHYIDSYYARPYEVLRSTGSYRRRYPIFPTLSRSISGRVIGNIWWLFIVFVFSAYT
Contig8356 EAFTPHYIDSYYA---------------------------------------------------

Iscap: ASMVPFLSKESRIRPIRSVEDLPLQSQVDYGFSRQSMAKKYFENPNLNSTAHRRMWEVMN
Contig8356 ASMVPFLSKESRIRPIRSVEDLPLQSQVDYGFSRQSMAKKYFENPNLNSTAHRRMWEVMN 
************************************************************
Iscap: SKPDVFKNSNAEGVDAVRSSKGNYVFFMEANAVAFVNTQRPCDTMQLGGTFGVRSFAVAV
Contig8356 S KPD VFKN SNAE GVDAVRS S KGNYVFEMEANAVAFVNTQRPCD TMQL GD T FGVRS FAVAV

Iscap: PKGSSLRKHLDEAIAHLSETGELDKLKKKWWTQKSYCQYPERKKDETVMPLDNFIGVFFI
Contig8356 PKGSSLRKHLDEAIAHLSETGELDKLKKKWWTQKSYCQYPERKKDETVMPLDNFIGVFFI
Iscap: LGGGVALGILVGLIEFI----------------------------------------------
Contig8356 LGGGVALGILVGLIEFIYKCCVRSSAAKGTVPETTSTGEATITEKEFAEQALASA**RKR

Is-30. Octopamine Neurotransmittcr Receptor.
Pairwise sequence alignment for the octopamine neurotransmitter receptor from the fed female synganglion of the Ixodes scapularis transcriptome (11-2) 

versus published sequences (GenBank) from the conspecific species. Pairwise sequence alignment (ClustalW) o f the deduced amino acid sequence of a putative 
/. scapularis octopamine (contig 6007)from the Illumina sample 11-2 compared with the conspecific I. scapularis (Iscap: XP 002408422). Pairwise identity for 
contig 6007 versus the I. scapularis sequence from Genbank 93.4%. Asterisks denote identical residues. The 7-transmembrane receptor (rhodopsin family) is 
present in this receptor.

Contig6007 LLAEASRVS P S TYYYYGDAAVS VMS VLILVFMVLS VLGNAMWLTWRHRGMRTRTNMFI
Iscap:  TYYYYGDAAVSVMSVLILVFMVLSVLGNAMWLTWRHRGMRTRTNMFI

*************************************************
Contig6007 VNLAVADILVAVLDMPVSLATLLRGDWTLGYGFCQFNGFTMALLLMCSIHTLMYMSVHKY 
Iscap: VNLAVADILVAVLDMPVSLATLLRGDWTLGYGFCQFNGFTMALLLMCSIHTLMYMSVHKY

Contig6007 VS ITRPFSRAMTKRRVGFLIAAAWLWPFFCALTPFLGLTKIVYKIGASQCGPAYPHSMKM 
Iscap: VSITRPFSRAMTKRRVGFLIAAAWLWPFFCAVTPFLGLTKIVYKIGASQCGPAYPHSMKM

Contig6007 YAHSALITVTNYFVPLIVMGFCYFNIFRAIGEHMTRVKATSNISLHNSVTQQKRINVTLV 
Iscap: YAHSALITVTNYFVPLIVMGFCYFNIFRAIGEHMTRVKATSNISLHNSVTQQKRINVTLV

as



Is-30 continued.

Contig6007 LVLLCFLFCWTPYMIYTFWNSRTSKTKVPYILNPVAYWFGYLNSACNPIIYAFRSPSFR 
I scap : LVLLCFLFCWTPYMIYTFWNSRTSKTKVPYILNPVAYWFGYLNSACNPIIYAFRSPSFR

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Contig6007 HGYKELLFGSGVTWSCEGSTGQRSSSFQQKVAADAAAVPGSPPAAPTDPKSCRRPKRFL
Iscap: HGYKELLFGSGVTWSCEG EAPFLW-LPSDAALWVNEAPAV---------------

*★★★★★★★★★**★★**★** ★★★ ★★

Is-31. Serotonin Receptor.
Multiple sequence alignment for a putative serotonin receptor from the fed female synganglion of the Ixodes scapularis transcriptome (11-2) versus published 

Genbank sequences from the conspecific and other species. Multiple sequence alignment (ClustalW) of the deduced amino acid sequence o f a putative I. 
scapularis serotonin receptor (contig 17069) from the Illumina sample 11-2 compared with the conspecific I. scapularis (Iscap: X P0024050230) and the cattle 
tick R. microplus (Rmicro:AAQ89933) sequences. Pairwise identity contig 17069 versus the I. scapularis sequence from Genbank = 99.5%; versus R. microplus 
sequence from Genbank 91.4%. Asterisks denote identical residues, dots indicate conservative substitutions. The 7-transmembrane receptor (rhodopsin family) 
is present in this receptor sequence.

AAQ89933 
Contigl7069 
XP_002405023

AAQ89933 
Contigl7069 
XP_002405023
AAQ89933 
Contigl7069 
XP_002405023

AAQ89933 
Contigl7069 
XP_002405023

AAQ89933 
Contigl7069 
XP_002405023

On

KLRSDRCERTECRKLEYD*RWQPDHNDAC*RGMNGDSRLTTLWPDMAGANPHYASVINEA 
-------------------------------------------------MAGANPHYASVINEA

------------------- MQANLSQSWHENLPWITVSLLLCLVIVATVIGNIFVIAAII
DASRQDNWSSAQESCTNSSIGNSSLSWHENLWWTVSILLSLVIVATVIGNIFVIAAIL 
DASRQGNWS SAQE SCTNSSIGNS SLSWHENLVWVTVSILL SLVIVATVIGNIFVIAAX L

WERNLRTVSNYLVLSLAVADLMVACLVMPLGAVYEVTREWRMPPELCDVWTCCDVLCCTA
MERNLRTVSNYLVLSLAVADLMVACLVMPLGAVYEVTQEWV1APELCDVWTCCDVLCCTA
MERNLRTVSNYLVLSLAVADLMVACLVMPLGAVYEVTQEWVLAPELCDVWTCCDVLCCTA

SILHLLAIAVDRYWAVTIVD YMRQRDVRKVGIMIFLVWS VAFWSI API FGWKDKD SRSR 
SILHLLAIAVDRYWAVTCMDYMRQRDVRKVGSMIFLVWSVSFVVSIAPIFGWKDKDSHSR 
SI LHLLAI AVDRYWAVTCMD YMRQRD VRKVGSMI FLVWS VS FWSIAPIFGWKDKDSHSR 
*****************;;************;********•************★****** 
VLHEKKCLVSQDAAYQVFATC S S FYVPLIMILLL YWRIFKVARQRIRHKPGAKAVLIVHK 
VLNEKKCLVSQDAAYQVFATCSSFYVPLIMILLLYWRIFKVARQRIRHKPGAKAVLIVHK 
VLNEKKCLVSQDAAYQVFATCSSFYVPLIMILLLYWRIFKVARQRIRHKPGAKAVLIVHK



Is-31 continued.

AAQ89933
Contigl7069
XP_002405023

AAQ89933
Contigl7069
XP_002405023

AAQ89933 
Contigl7069 
XP 002405023

E PS T S SAVASNENTPQHNATVAS S PVRNS SNQS S P SNGMNKAMHGGIGRLLVLTKREKKH
EPSTSSAPPSNESTPHHGTL------- NSGNQP-PSNGM-KAVHGGIGRLLVLTKREKKH
EPSTSSAPPSNESTPHHGTL------- NSGNQP-PSNGM-KAVHGGIGRLLVLTKREKKH

VEETIESRRERKAAKTVAIITGVFVMCWLPFFVMALVMPLCETCDPGKLVFSFFLWLGYA 
VEE SIESRRERKAAKTVAIITGVFVMCWLPFFMMALVMALCDACDPGKLLFSFFLWLGYA 
VEESIESRRERKAAKTVAIITGVFVMCWLPFFMMALVMALCEACDPGKLLFSFFLWLGYA 
★★★*★★★★★★★★★★★★★★★★★★★★★★★★★★★★•★★★★★•★★••★★★★★★•★★★★★★★★★★
NSMINPIIYTIFSPDFRNAFNRILCGKKPPMR------------------------------
NSMINPIIYTIFSPDFRNAFSRILCGKKPTFR*QQGASASATVRRTSVNPELEMV*SVTE
NSMINPIIYTIFSPDFRNAFSRILCGKKPTFR------------------------------
★  ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★  ♦ ★ ★ ★ ★ ★ ★ ★ ★  ♦ • ★

Ot-23. Muscarinic Acetylcholine Receptor.
Sequence alignment (multiple) o f the muscarinic acetylcholine receptor (contig88863) from the fed female Ornithodoros turicata synganglion transcriptome 

versus the same from Ixodes scapularis (Iscap: XM 002403091) and Rhipicephalus microplus (Rmicro: JN97419) from Genbank. Pairwise identity versus 
I.scapularis = 82.3%; multiple identity all three sequences = 84.2%.

Contig88863 : ------------- KTLSAILLAFIVTWTPYNVLVLIKTLSPCEDCIPMGLWNFAYYLCYI
Iscap: RKQQERKQEKKAAKTLSAILLAFIVTWTPYNVLVLIKTVSSCDDCIPTGLWNFVYYLCYI
Rmicro: RKQQERKQEKKAAKTLSAILLAFIVTWTPYNVLVLIKTVSSCDDCIPTGLWNFVYYLCYI

★ ★ ★ i t * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ; * * * * * *

Contig88863: NSTVNPLCYALCNANFRRTYMRILSCKWHNKQRSMNRGYFS*TYAIVRQRKQRSCKCSST
Iscap: NSTVNPLCYALCNANFRRTYMRILSCKWHNKQRSMNRGYFS---------------------
Rmicro: NSTVNPLCYALCNANFRRTYMRILSCKWHNKQRSMNRGYFT---------------------

OnLft



Ot-24. Metabotropic Glutamate.
Sequence alignment (pairwise) for the metabotropic glutamate receptor contigl 1722 from the fed female Omithodoros turicata synganglion 

transcriptome versus the same for the Ixodes scapularis sequence (Iscap: XP 002400087) from Genbank. Percent identity (coding region) 
= 64.6%.

Contigll722: --YFGSKHKVITMCLCISFSAMVALVLLFFPKVYIIMFRPEKNNRSAFTTSKDVRCHIGY
Iscap: PIYFGSKHKVITLCLCISFSAEVALVLLFLPRVYIIIFRPDKNNRSAFTTSKDVRCHIGY

★★★★★★★★★★ ★★★★★★*★ ★★★★★★★ ★★★★★★ ★★★
Contigll722 : VNS-----------------AAAAVSRNSSHSASEFSMESPRNHSGE-VLPKSASKSKSLN
Iscap: MNSAVTGPGGSSAAAAAAAATSAVSRNSSHSTSEFSLESPRNHSGDTVLKPPPTRSKSLN

** *★ ★★★★★★★★★ ★★★*★*★* ★★ ★★★★★
Contigl 1722: LVARFRVSKQDRIAASVAQHIRAVRAAEDLDRRT----------------------------
Iscap: LLERFRASKQDRIAASVAQHIRAVRAAEALDRRTRLRHSAEPLFGPNKIPATRTSSDSPP

* ★★★★★

Ot-25. lonotropic Glutamate Receptor.
Sequence alignment (pairwise) for the putative ionotropic glutamate receptor contig 9148 from the fed female Ornithodoros turicata synganglion 

transcriptome versus the same from the /. scapularis sequence Glutamate Receptor from Genbank (XP 002404506). Percent identity (coding region) = 58.3%.

Iscap: RFEGFCVDLVRELSLLLGFRYQLRLVRDGAYGTKDSTGRWNGMVRELVDREADLALGDLT
Contig9148 : --------------------------------------PKGAWNGMIRELIDREADLAIADLT

★  'k 'k 'k -k  ★ ★ ★ ★ * ★ *  ★ ★ ★

Iscap: ITYVREEAVDFTMPFMTLGIGILFRKPQGDRTLFFFLSPLSSDVWLCVAVSYLGVSFLLC
Contig9148 : ISYIREEAVDFTMPFMTLGISILFRKPELEQTLLFFLTPLSVDVWVSMAMAYVGISVLLF ★ ★ ★★ ★★★ ★★★ ★★★ ★ * * ★ *★
Iscap: LLARFSPAESGLKRRSCCCEGTLSPCGHSKESELKNQFTLLNSLWFTISAIMQQGCDASP
Contig9148: LVARFSPYE WTAAPPCE-LIESSAHG--PILRNHFTLLNSLWFTISAIMRQGCDAS-

*  * * * * *  *  * *  *  *  *  * * * * * * * * * * * * * * *  * * * * * *

I scap: RSASGRLLAASWWFFSFVAISTYTANLASFLTRERLRSPIQSAEDLVKQSDVRYGCVRSG
Contig9148 : -----RIIAAVWWFFSFVIISSYTANLASFLTRERMRSPIENAEDLAKQSEILYGCVKSG

* ★★ ★★ ★*★★★★★★★★★★★ ★★★* ★★★ ★★★★ ★★
Iscap: S TEAFFKAINYTT YERMWQAMKH SMVESNSEGVSRVLSEAYAFLMESTSIEYVAQR
Contig9148: STEAFFKESKFETYEKMWQTMASAQPPTLTESNAEGASRVRAGKYAFLMESTSIEYIVER



Ot 25 continued.

Iscap: HCQLNQVGGLLDSKGYGIATPTGSPYRNLLSSAILRLQESGTLQLLKERWWNVDTRGRCP
Contig9148: DCELQQIGGLLDSKGYGIATPSGSPYRTHLSSAILQLQEKGTLQELKDRWWKVDAHHRCA

Iscap: ED AGS GVS S L S AASE LGLSKVGGVFWLLAGLGFAC11 A W E  FL-----------------
Contig9148: DD-GSQVKP-GSASELGLSKVGGVFWLLAGLGLACVIAFAEFICKTRSMRRPIKVEEET ★ ★★ ★ ★★★*★★★**★★★★★★★★★★★★ ★★ ★* ★★

Ot-26. GABA-A Receptor.
Sequence alignment (pairwise) for the GABA-A receptor (contig 75714) from the fed female Ornithodoros turicata synganglion transcriptome versus the same 
for Ixodes scapularis (Iscap: XP 002411565) sequence from Genbank. Pairwise percent identity = 75.8%.

Contig75714: ---NYSRLVCEIRFVRSMGYYLIQIYIPASLIWISWVSFWLHRNATPARVALGVTTVLT
I scap: RPRNYSRLVCEIRFARSMGYYLIQIYIPAGLIWISWVSFWLHRNASPARVALGVTTVLT

★★★*★★★★★★★ ★**★★★***★★★★★
Contig75714: MTTLMSSTNAALPKISYVKSIDIYLGTCFLMVFASLLEYAAV-------------------
Iscap: MTTLMS STNAALPKISYVKSIDVYLGTCFVMVFTALLE YATVGYLGKRITMRKTRCQQLA

Ot-27. Serotonin Receptor.
Alignment (pairwise) serotonin receptor O. turicata contig34862 from the fed female Ornithodoros turicata synganglion transcriptome versus the same for 

the Ixodes scapularis (XP 002404998) sequence from Genbank. Pairwise percent Identity (coding region): 61.7%.

Contig34862 :------------------ RSVSPTSWGACLVMPLAAVAEVSQEWVLGPALCDVWTCCDVLC
Iscap: IFMERNLRSVGNYLVLSLGVADLMV-ACLVMPLAAVAEVSQEWALGPALCDVWTCCDVLC

Contig34862 CTASILHLLAIAMDRYRTVSHVDYVRQRNARQVGTMILLVWGVAW---------------
I s cap: CTASILHLLAIAMDRYRTVAQVDYVRQRNARQVGFMILLVWAVALAVS VAPVFGWKD PD F

0\



Ot-28. Octopamine/norepinephrine Transporter.
Sequence alignment (multiple) of 3 sequences: Norepinephrine transporter Contigl 10311 from the fed female Ornithodoros turicata synganglion transcriptome 

versus sequences from for /. scapularis (XP 002434929) and Limulus polyphemus (OAT 1)_K.F321729) from Genbank. Pairwise % Identity (coding region): 
67.8%.

Contigl10311: FEYLFEVYQ*DLHHSTMPSNNTVINTTATTQLTPATDAQQQQKNEQHSVADSDAEEGSGD
Iscap:  MPTNNS SLVPKSEQLQQQQEQRNSAAGQPLIPAAGS
Lpoly:  MSEHFSSNSKTHDPESPD

* *  *  * i t  *  ; *  * ;

Contigll0311: VKAEV------NAKTDTDKPRS----PVSRFFSHHHHSKESPSG-SEKGKWKKLRHAAPR
Iscap: VTEEYQESLEGGSKTSSPLPDSDKRGPAFRPLVHQPQSKESPL-IFEKSKLKRLRHSAIR
Lpoly: QETDKSENPRDSQNTTTPSPDSSK------- SIPTANGKGGPNDLRNKNKKRRLRKYLTK

• * • * • • j * • • * • ★ * • • ★★★ • •
Contigll0311: DDGYCSSTSTPLSSEYVEQLNANDCQSEWLVDGLATTVPVHKGAHPDFESPKVTTDGTT
Iscap: DDGYCS SS STPLS SE YVDHLGSTEGQTEVILADGVAS TVPI------- WDAKAADSKGG
Lpoly: DEGYYSTSSTPKSLAHKWLLSG TSVSTLPGQVSAT---------- DSRKLPDLADG

* * ♦  * * * * *  *  *  *

Contigll0311: GVTSGSQGDSRGGDRPTWKNKADFLLSIIGFAVDLANVWRFPYLCYRNGGGVFLIPYMLM 
Iscap: S WPSGPHD S— GDRPTWKNKADFLLS11GFAVDLANVWRFPYLCYRNGGGVFLIPYLLM
Lpoly: TLTENASEDGEGDDRPTWGKKADFLLSIIGFAVDLANVWRFPYLCYKNGGGVFLIPYLLM

Contigll0311: LIFGALPLFYMELVLGQYNRQGPISVWKICPLFKGVGYCAVLVSWYVSFYYNVIIGWALY 
Iscap: LVFGALPLFYMELVLGQYNRQGPISVWKLCPLFKGVGYCSVLVSWYVSFYYNVIIGWALY
Lpoly: LVFGAMPLFYMELALGQYNRLGPIS VWKIC PLFKGVGY CAVLISWYVS FYYNVIIGWTVY

Contigll0311: FMFSSFRSELPWSHCGNPWNTENCYTGSFLDISRSNNTTQISPTNRNSPALEFFNRAVLE 
Iscap: FMFSSFRAELPWARCGNPWNTPSCYSGT-LDDNGTVQDDSMPIENRTSPALEFFNRAVLE
Lpoly: FIYKSFSSELPWMKCGNEWNTNLCSTGG-LPNSSDVNSTDLNVLNKTSPALEFFDREVLE

• * * * • • * * > ! • •  ■ • • * • • •  • * *  • • *  *  *  * .............................• * * ........................

Contigl10311: LHSSSGMHDLGVPKWQLVLCVFLVFVILYLALFKGVSSSGKWWVTATAPYIILTLLLLR 
Iscap: LHTSPGMHDLGVPKWQLLLCVMLVFVILYLALFKGVSSSGKWWVTATAPYVILTLLLLR
Lpoly: VHLSTGFHDLGAPRWQLVICVFIVFLILYLSLFKGVKSSGKWWVTATAPYIILTILLLR

*  • • * • • • • * • ★ • • • * * • • * * • • * • • • ■ *  *  * • • • * • • • •

Contigll0311: GVLLPGAGQGVMYYLQPNVGKLLETQVWVDAACQVFYSVGVGFGVHLTYASYNPFHNNCY 
Iscap: GVLLPGAGTGVKYYLQPNVDKLLETQVWVDAAVQVFYSVGVGFGVHLTYASYNPFHNNCY
Lpoly: GVLLPGAINGMNYYLRPDVHKLLD SQVWIDAAVQVFY S VGVGFGVHLTYASYNKFHNNCY

.............................*  • *  • • • * • * •  . . .  id e  . . . * • • • * ...................................................................................................................



Ot-28 continued.

Contigll0311:
Iscap:
Lpoly:

Contigll0311: 
Iscap:
Lpoly:

Contigll0311: 
Iscap:
Lpoly:

Contigll0311:
Iscap:
Lpoly:

Contigll0311: 
Iscap:
Lpoly:

RDCLMTTIVNSFTSFYSGFVIFVYLGYMAAKQGVPIDRVATEGHGLVFQVYPEAIATLPG
RDCLMTTAVNSFTSFYSGFVIFVYLGYMAAKQGVPIQTVATEGHGLVFQVYPEAIATLPG
RDCLLTTAINSSTSFFSGFVIFVYLGYMAERQGVPINKVATEGHGLVFQVYPEAIATLPG

! I I * I I I ! I I I I I I I r I I I ! I I
GPIWAVLFFVMLLTLGLD S AMGGLE S VITGLMDEFRIYFSRWRFRREIFTAWLCAS FCV 
APIWAVLFFIMLLTLGLD S AMGGLE S VITGLMDEFKPFFSRWRCRREVFTAWI CAS FCV 
APFWAVLFFFMLLTLGLDSAMGGLESVITGLLDEFHTYFTRWRFRREIFTAVIIS VS FII
* : * : : : : : :
SLVNVTRGGGFMIHWFDTYSAGISLLCSALFESIGVAWIYGLDRFCGNIHEMLGFRPGIF 
SIVNVTRGGGYMITWFDTYS AGISLLCS ALFESIGIAWFYGLDRFCGNINEMLGFRPGIF 
GMVNVTRGGGYTMYWFDTYSAGI SLLCS ALLEAIGVAWFY GLANFCEDIHEMLGFS PGLF
★ ; ; ; ; ; ; ; ; * * *  i i t z j i i c i i j i i i i i * i * : i * j i * i : : * * i : * * i * j r i i j * i i ! i
WKLCWKFITPTFLVAVIISAWNEPRLEYHDYWYPPWAVNMGWALALSSVAMVPIVAVIK 
WRLCWKFITPTFLVAVILSGIVNQAPVEYHNYRYPTWAINMGWGLALSSVAMVPIVAAFK 
WRLCWKFIS PFFLVAVIASAVATNAPLVYHNYRFPGWAVALGWSFALS SVTMVPWACYK
! I ! ! I I I I *  I *  ! I ! I ! ! • * ★ ★ ★  • * i : i r i * I J I * ! I I

LCRAKGTCAERVAYTITPVKEWEE SKEKGVIERFKMSHWTYV* GVCTSAKQRERVLHWML
LCRAKGTCAELSHWTYV----------------------------------------------
LFKARGTCTERLAKVITPEQELEQQTDKWVNQFHLSHWVYV-------------------

★ ★ * ★ ★ ★★★ ★★

ONsC
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