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ABSTRACT

TUMOR RESPONSE TCF-4/0-CATENIN REGULATORY ELEMENTS 
FOR ENHANCING CANCER GENE THERAPIES

Saurabh Kumar Gupta 
Old Dominion University, 2005 

Chair: Dr. Richard R. Drake

Mutations in the adenomatous polyposis coli gene are frequently associated with 

progression o f colon carcinoma and most other types o f epithelial carcinomas. This 

usually results in stabilization o f P-catenin protein levels, followed by transactivation o f 

Tcf-4/ P-catenin responsive genes. The effectiveness o f a Tcf-4/ P-catenin transcriptional 

enhancer element in combination with a c-fos or carcinoembryonic antigen promoter was 

tested for it’s ability to act as a tumor specific regulator o f gene expression in a panel o f 

human tumor and normal cell lines. Luciferase reporter assays indicated enhanced 

activity o f the Tcf-4/ P-catenin transcriptional element only in tumor cell lines, with 

minimal activities in normal colon cell lines. The Tcf-4/ P-catenin enhancer and c-fos 

promoter linked with the herpes virus thymidine kinase suicide gene in combination with 

ganciclovir was further evaluated in the normal and tumor cell lines. The Tcf-4/p-catenin 

elements conferred tumor specific expression o f HSV thymidine kinase (HSV-TK) gene, 

resulting in selective metabolism o f ganciclovir and cell killing o f only tumor cell lines. 

There was no detectable expression o f HSV thymidine kinase expression in normal colon 

cell lines. Additionally, recombinant adenoviral constructs were made to deliver the gene 

expression cassette, containing the HSV-TK expressed from a Tcf-4/c-fos enhancer/ 

promoter combination, to the tumor cells. No expression was detected in the normal 

colon cells as opposed to significant levels o f  HSV-TK gene expression observed in
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tumor cells. Furthermore, various chemical and genetic modulators were also screened in 

an effort to identify newer methods to regulate the activity o f the proposed recombinant 

enhancer/promoter combinantions. These data suggest that Tcf-4/ P-catenin enhancer 

can be effectively coupled with a suitable tumor-specific or tumor-related mammalian 

promoter for selective expression o f therapeutic genes for gene therapy o f epithelial 

cancers. This approach also offers a potential promoter cassette approach linked with the 

Tcf-4/ p-catenin enhancer to better individualize treatment to cancer patients.
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CHAPTER I 

INTRODUCTION

Colorectal Tumorigenesis

Colorectal cancer is one o f the most common malignancies among populations in 

the United States and Western Europe, and one o f the leading causes o f worldwide 

morbidity and mortality due to cancer. The life time colorectal cancer risk in the general 

population is 5%, but this figure dramatically rises with age: by the age o f  70, 

approximately half o f the Western population will have developed an adenoma (1). In 

general, the incidence o f colorectal cancer is high in developed countries, with incidence 

rates varying up to 20-fold between high- and low-risk geographical areas throughout the 

world (1). These variations in colorectal cancer incidence are most likely to be a result o f 

environmental and dietary modifying factors. Colorectal carcinomas arise through a 

series o f well characterized histopathological changes that result from specific mutation 

‘hits’ o f a select set o f oncogenes and tumor suppressor genes. However, it is still a 

matter o f debate regarding the exact sequence o f events that leads intestinal epithelial 

cells to develop into aggressive carcinoma. Currently, it is estimated that 85% o f all 

sporadic colorectal tumors have inactivating mutations in the APC (Adenomatous 

Polyposis Coli) gene (2) and the other 15% are believed to harbor defects in DNA 

mismatch repair pathway genes (3). Therefore, in general there are two widely accepted 

basic models o f  colorectal tumorigenesis, one driven by mutations in the tumor uppressor 

APC gene, and the other caused by defects in DNA mismatch repair pathway genes.

This dissertation follows the format o f  the journal Cancer Research.
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Histopathology o f Colorectal Cancer

Throughout the entire length o f the large intestine, tubular glands or crypts are 

lined by a monolayer o f columnar epithelial cells. These invaginations effectively 

increase the surface area o f colon and rectum. At the base o f each crypt, a small number 

o f stem cells are present which asymmetrically divide to give rise to four different types 

o f  epithelial cells: columnar absorptive cells, goblet cells, neuroepithelial cells and paneth 

cells. Dividing cells are present in the lower third o f the crypt, whereas the differentiated 

types are present in the upper two-thirds. The cells continuously migrate upwards and are 

eventually exfoliated into the lumen by an apoptotic mechanism. This process o f 

epithelial renewal takes 3-6 days. Therefore, a delicate balance between mitotic rates and 

cell loss exists in these cells. The earliest signs o f colorectal neoplasia are aberrant crypt 

foci, or ACF, which are only visible by microscopy. ACF usually include a small number 

o f  crypts and can be composed o f cells with either normal morphology (nondysplastic), 

or dysplastic cells. The latter cells are more likely to develop into a benign tumor mass 

(polyp) protruding into the lumen from the intestinal epithelium. Polyps can also be 

classified into two types: hyperplastic (nondysplastic) and adenomatous (dysplastic). 

Hyperplastic polyps show normal cellular morphology whereas adenomatous polyps are 

characterized by abnormalities in both inter- and intracellular organization. The 

epithelium, in such adenomatous polyps, is organized in multiple layers, nuclei are 

enlarged, and their alignment at the basal membrane is lost (4).

It is widely accepted that these adematous polyps generally arise as a result o f 

genetic changes initiated by mutations in either APC gene or in genes involved in DNA 

mismatch repair pathway.
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Genetic Model for APC-Driven Colorectal Tumorigenesis

Mutational inactivation o f APC gene is considered a key initiating event which 

results in cascade o f genetic alterations results in development o f majority o f colorectal 

carcinomas. Therefore, it is very important to understand the role the basic biology o f 

APC gene in context o f colorectal carcinoma.

Biology o f  APC

The APC gene was initially identified by positional cloning o f the FAP (familial 

adenomatous polyposis) locus (5). Later, clues regarding APC functional came from 

studies which identified P-catenin as a binding partner o f APC (6). p-catenin was 

originally identified as an essential intracellular component o f the cadherin adhesion 

complexes. It is now well established that P-catenin is an important component o f  the 

wingless/wnt signal transduction pathway. The canonical wnt signaling pathway has been 

characterized from combined work in flies, frogs and mammals. In unstimulated cells, i.e. 

in the absence o f  the extracellular wnt signal, free P-catenin is bound and phosphorylated 

in a so-called destruction complex, consisting o f  the scaffolding proteins axin and 

conductin, glycogen synthase kinase 3 P (GSK-3P) and APC (7). Phosphorylation o f P- 

catenin by this complex labels it for ubiquitination and subsequent proteolytic 

degradation. In the presence o f a Wnt signal bound to frizzled receptors (8), GSK-3P is 

inactivated in the destruction complex by a still poorly defined mechanism involving an 

intracellular protein termed Dishevelled (9). As a consequence, unphosphorylated P- 

catenin becomes stabilized and can shuttle to the nucleus. Once in the nucleus, P-catenin 

can bind to DNA-binding proteins o f  the T-cell factor (TCF) family, to serve as an 

essential co-activator o f  transcription (10). P-catenin not only functions as a Wnt
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transducer, but it also plays an important role in cellular house-keeping functions. For 

example it is an essential component o f the adheren junctions, where it provides the link 

between E-cadherin and a-catenin (11). Together these studies demonstrate that APC can 

regulate cell adhesion and gene transcription by regulating the stability and sub-cellular 

localization o f P-catenin. In addition, APC directly associates with microtubule 

cytoskeleton (12). This function is apparently unrelated to its capacity to regulate the Wnt 

signaling pathway.

A PC, fi-catcnin and Cancer

Disruption o f any o f the several physiological roles played by APC can be 

potentially linked with cancer; it seems that the main tumor suppressing function o f APC 

resides in its capacity to properly regulate intracellular P-catenin levels. Moreover, 

although the vast majority o f colorectal tumors carry mutations in APC, most tumors with 

an intact APC gene were found to contain activating mutations in P-catenin that alter 

functionally significant phosphorylation sites (13). In addition mutations in other 

members o f the Wnt pathway have been shown to be associated with cancer including 

conductin (14) and axin (15).

Mutational activation o f APC gene is regarded as one o f the earliest events in 

initiation o f colorectal tumorigenesis (16-18), ultimately resulting in a nuclear P- 

catenin/TCF-4 transcription complex. The first two identified downstream targets o f this 

transcription complex, MYC and Cyclin-Dl, are clearly relevant for tumor formation 

because o f  their role in proliferation, apoptosis and cell-cycle progression (19-21). 

Changes in the level o f expression o f MYC and cyclin-Dl are likely to affect the rate o f 

renewal o f normal colon epithelium by increasing the overall proliferation rate. Other wnt
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target genes such as matrilysin (22), CD44 (23) and urokinase-type plasminogen activator 

receptor (24) appear more likely to play a role in tumor promotion rather than initiation. 

Similarly, genes like Gastrin (25) and Cox-2 (26) which are believed to have tumor 

promoting roles are targets o f wnt signaling pathway.

In epithelial cells lining the intestinal crypts, nuclear P-catenin expression is 

higher in the lower proliferative compartment o f colon crypts, while it is decreased in the 

upper two-thirds o f the crypt. In contrast, APC staining is dramatically increased in post 

replicative cells in the upper portions o f the crypts as the migrating cells mature upwards 

on the crypt-villi axis. This inverse relationship between levels o f expression o f APC and 

P-catenin is in agreement with the function o f P-catenin in maintaining stem cell 

properties and controlling differentiation in the intestine (27). In the bowel, Tcf-4 is the 

main transcription factor which transduces P-catenin signaling in the nucleus (28). Tcf-4 - 

/- mice cannot sustain an intestinal stem cell compartment, strongly suggesting that 

activation o f  downstream targets such as MYC and cyclin-Dl are required to maintain 

proliferative capacity (27, 29-31). Moving upwards along the crypt villus axis, an 

increase in APC mutations is therefore likely to result in the enlargement o f  the stem cell 

compartment and diminished differentiation. Indeed, it is generally accepted that 

colorectal tumors arise from the stem cells that are located at the base o f the crypt.

APC driven colorectal tumorigenesis

The most widely accepted model o f colorectal tumorigenesis is that tumors 

initiate as the result o f mutation in a single gene in a single progenitor cell. Subsequent 

mutations in the progeny o f this cell and waves o f clonal expansion give rise to daughter 

cells that have the growth advantage typical o f cancer. This whole process is driven by
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clonal selection. In accordance with Knudson’s hypothesis, the mutational targets o f this 

multi-step process are oncogenes and tumor suppressor genes known to directly affect the 

rate o f cell growth or cell death (32). Besides these growth regulating genes, other gene 

classes may be affected by mutations, including nucleotide excision repair genes (33), the 

Bloom’s syndrome gene BLM (34) and DNA mismatch repair pathway genes (35). The 

common function for all the above wild type genes is to maintain genetic stability. 

Alterations o f these genes increase the effective rate o f mutations in cancer which in turn 

fuels tumorigenesis by providing variation for the forces o f selection to act upon. 

Different types o f genomic instability results in inactivation o f different set o f oncogenes 

and tumor suppressor genes. The net outcome o f inactivation o f different set o f genes 

always results in targeting o f a crucial growth regulating pathway. Colorectal 

tumorigenesis provides a classic example o f this phenomenon, in that the inactivating 

mutations in APC cause p-catenin to transactivate downstream growth regulatory genes, 

giving cells with APC mutations a growth advantage compared to non-mutated 

neighboring cells (32, 36).

Assuming APC mutations are a primary initiating event in colorectal 

tumorigenesis, and that this provides some growth advantage to the initiator cell, this 

single mutation is not sufficient to initiate the waves o f clonal expansion needed for a 

tumor to mature. Colorectal tumors are known to harbor hundreds o f mutations, but 

current technology does not allow the dissection o f the evolutionary history o f a tumor 

and sequentially arrange one mutation after another with reference to tumor 

metamorphosis. However, with the knowledge o f known mutations in oncogenes and 

tumor suppressor genes, a model has been constructed by Vogelstein and colleagues.
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According to this model, at least four sequential genetic changes need to occur to ensure 

colorectal cancer evolution. One oncogene (K-RAS) and three tumor suppressor genes 

(APC, TP53 and SMAD4) are the main targets o f these genetic changes. At least seven 

genetic hits are required according to this model: one in oncogenic K-RAS and six 

additional ones to inactivate both the alleles o f the mentioned tumor suppressor genes 

(32, 37). All the mentioned tumor suppressor genes are found mutated in most o f the 

colorectal tumors whereas K-RAS mutations are found in approximately 50% o f cases 

(38-40). It appears that a synergistic action o f the mutated APC and K-RAS genes 

underlies clonal expansion and dysplasia in colorectal tumors. However, because only 

50% o f colorectal tumors are observed to have K-RAS mutations, other unidentified 

genes might be able to substitute for K-RAS functions.

Another important concept for describing colorectal tumorigenesis is ‘loss o f 

heterozygosity’ (LOH): In cells that carry a mutated allele o f a tumor suppressor gene, 

the gene becomes fully inactivated and loses a part o f the chromosome carrying the wild 

type allele. LOH studies have been very instrumental in identifying tumor suppressor 

genes which are involved in colorectal tumors (40-43). LOH in chromosome 5q, 17p and 

18q are found with high frequencies and are most likely to be associated with the 

following tumor suppressor gene: APC (5q), TP53 (17p) and SMAD4(18q).

Chromosome 17p is lost in 75% o f the colorectal cancers but infrequently in benign 

tumors, suggesting that loss o f p53 occurs later in tumor progression and is not crucial for 

initiation (40, 44). The other TP53 allele is almost invariably found to have mis-sense 

mutation, in line with Knudson’s two hit hypothesis. Chromosome 18q is also frequently 

found lost in 50% o f adenomas and 75% o f malignant colorectal cancers (43). Several
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candidate tumor suppressor genes map to this location, including SMAD2 and SMAD4. 

SMAD4, also known as DPC4 (deleted in pancreatic cancer) (45) encodes a key signaling 

molecule with in tumor growth factor-P pathway (46). SMAD4 loss has been observed in 

colorectal and pancreatic cancer (45, 47). SMAD2 also maps to chromosome 18q locus 

and encodes another member o f the TGF-P signaling pathway. It is also found mutated in 

a subset o f colorectal tumors. However, the precise role o f SMAD2, SMAD4 and other 

genes mapping to the 18q locus in tumor progression is not properly understood. 

Additional studies are needed to elucidate the mechanism o f involvement o f these genes 

in colorectal tumorigenesis.

The model for colorectal tumorigenesis proposed by Vogelstein and colleagues 

states that inactivation o f both alleles o f the APC gene triggers the adenomatous process 

by providing the tumor cell with a growth advantage to allow clonal expansion.

Additional mutations, e.g. K-RAS, are needed to support adenoma growth and expansion. 

Subsequent malignant transformation and clonal expansion is driven by additional 

mutations and allelic loss in TP53, SMAD4 and other 18q tumor suppressor genes. 

Although, additional unidentified mutations might be necessary for colorectal cancer 

development, this model predicts that at least seven genetic hits are needed. This is 

reflected in the fact that it takes about 20-40 years for the whole process o f developing an 

aggressive colorectal tumor from a smallest observed lesion, the aberrant crypt foci.

Genetic Instability

Thus, natural selection with waves o f clonal expansion seems to be a major force 

underlying clonal evolution o f a tumor. However, it has been argued that endogenous 

mutation rates are not sufficient to achieve the high number o f genetic alterations found
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in human cancers. This implies that another selection force in the form o f genetic 

instability might be crucial in tumor development. Indeed, it has been hypothesized that 

‘genomic instability’ in the form o f a mutator phenotype is an essential requirement for 

cancer to occur (48). Two forms o f genetic instabilities have been described in colorectal 

cancers: Microsatellite instability (MIN or MSI) and chromosomal instability (CIN). MSI 

is widely present in sporadic colorectal tumors having impairments in DNA mismatch 

repair (MMR) genes. In contrast, 85% of colorectal tumors that include APC mutations, 

no MSI is evident (49). The reasons behind this difference will be described in detail 

below. CIN is a hallmark o f most colorectal cancers, but is not very well understood at 

molecular level. Most colorectal cancers can be characterized for the presence o f 

abnormal chromosomal content that is they are aneuploid. There is evidence that supports 

the idea that aneuploidy arises in these cancers because o f CIN due to an accelerated rate 

o f gain or loss o f chromosomes. CIN is postulated to allow cells to rapidly acquire 

genetic changes that are required for tumorigenesis (50). How CIN originates in a cell is 

not clearly understood, and there are several different mechanism proposed to explain 

how cells might achieve aneuploidy. One proposed view is that CIN is not genetic and 

propagates the idea that CIN is result o f aneuploidy (51). According to this hypothesis, 

following a random tetraploidization event, the chromosomal complement is inherently 

unstable and CIN is a trivial consequence o f the near doubling o f the genetic content. 

Another hypothesis is that CIN is genetic in origin, and there are at least two lines o f 

evidences supporting it. First, the CIN phenotype is dominant as it can be conferred on a 

chromosomally stable diploid cell which is fused with a CIN cell (52). Second, a fraction 

o f cancer contains mutations or abnormal expression patterns o f spindle checkpoint genes
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such as BUB1 and MAD2 (53-57). Targeted mutations in these genes in non-CIN lines 

can convert them to CIN phenotype with resultant aneuploidy, presumably because o f 

disruption o f the cell’s normal error checking mechanisms which prevent mis-segregation 

o f DNA during mitosis.

In addition, it has recently been reported that APC mutations can give rise to CIN 

(58, 59). Experimental evidence have shown that the C terminus o f APC is involved in 

maintaining chromosomal stability during mitosis (58, 59). During metaphase, APC 

localizes to kinetochores o f chromosomes, where in association with the microtubule 

associated protein EB1, it facilitates the binding o f the spindle microtubule to the 

kinetochore. In cells that express a truncated form o f APC; the interaction between 

kinetochores and spindle microtubules is disrupted leading to chromosomal instability. 

However, the idea o f  APC being the cause o f CIN has been challenged by the Vogelstein 

group. They argue that APC mutant cells actually tend to polyploidize in whole genome 

increments rather than show the increased rates o f loses and gains o f one or few 

individual chromosome that is a characteristic o f cancers. Further, they advocate that 

some well characterized human cancer cell lines with APC mutations have chromosome 

complements that have remained stable and invariant over thousands o f cell divisions in 

vitro.

Although the molecular basis o f CIN is yet to be elucidated, it does not undermine 

the fact that genetic instability in the form o f CIN and clonal selection go hand in hand to 

promote tumorigenesis. An important issue in the current discussion is at what point in 

tumor developmental history does CIN originate? Does genetic instability precede 

mutations in rate-limiting oncogenes and tumor suppressor genes or does it simply
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underlie tumor progression? There is evidence to support the idea that genetic instability 

occurs in very early stages o f tumor progression (60). An important study by Shih, et al 

evaluated 32 tiny adenomas with an average diameter o f 2 mm. Using highly quantitative 

methods they found that more than 90% o f these lesions had allelic imbalances o f one or 

more o f the five chromosomes tested. In this study chromosome 5q, where APC resides, 

was excluded because o f the expectations that alterations at this locus initiated the tumor. 

More than two-thirds o f the tiny tumors showed at least one allelic imbalance o f the other 

chromosome tested. Interestingly, in some tumors, the allelic imbalances were not found 

in the entire population o f neoplastic cells whereas chromosome 5q allelic imbalance 

generally seemed to affect most neoplastic cells in the tumor. This study suggests that 

APC mutations may precede genomic instability. However, it does not necessarily 

conclude that an APC mutation result in genomic instability, but it does strengthen the 

viewpoint that APC plays a multifunctional pivotal role in colorectal tumorigenesis. 

Alternative Pathway for Development o f Colorectal Cancer

Over the past decade, researchers have compared colorectal cancers from two 

inherited disorders: familial adenomatous polyposis (FAP) and the hereditary non

polyposis colorectal carcinoma (HNPCC). Several distinct differences were observed. 

HNPCC tumors do not necessarily show APC deletions and are chromosomally stable. In 

addition, they have characteristic defects in DNA mismatch repair (MMR) machinery 

resulting in microsatellite instability (MSI). Subsequently it was shown that 15% of 

sporadic colorectal cancers exihibit the presence o f MSI (61, 62). This feature arises 

through defective DNA mismatch repair or due to failure to express a mismatch repair 

gene. These observations prompted the idea that there is an alternative pathway o f
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colorectal tumorigenesis which is characterized by the presence o f MSI, in contrast to 

CIN found in majority o f colorectal tumors. Microsatellites are tandem repeats o f small 

DNA sequences showing length polymorphisms and are found throughout the human 

genome. Because o f their repetitive nature, microsatellites are prone to strand slippage 

and replication errors. (63). The principal task o f  MMR is to remove nucleotides that 

have been mis-incorporated into the newly synthesized DNA strand by DNA polymerase. 

Thus a disruption in the DNA mismatch repair system can result in MSI.

DNA Mismatch Repair Systems and Mutations in Colorectal Cancer

The DNA mismatch repair system is responsible for correcting base pairing errors 

during replication o f  DNA. It also repairs any mismatches post replicatively which 

escape the proof reading mechanism o f DNA polymerase. The principal players in 

mammalian MMR are the homologues o f  the bacterial mutS and mutL proteins. The 

repair system requires the co-operation o f many genes from the mutS (hMSH2, hMSH3, 

hMSH6) and mutL families (hM LHl, hMLH3, hPM Sl, hPMS2) (64). Briefly, hMSH2 

serves as the scout that recognizes and binds directly to the mismatched DNA sequence 

(65, 66). It forms a heterodimeric complex with hMSH6 if  a single base pair mismatch is 

recognized or with hMSH3 if  there is a two to eight nucleotide deletion o f insertion. A 

second heterodimeric complex o f hMLHl and hPMS2 is then recruited to excise the 

mismatched nucleotides. Although heterodimers o f hM LHl/hPM Sl and hMLHl/hMLH3 

also form, their specific roles remain to be defined. Genetic alteration in mismatch repair 

genes results in defective DNA mismatch repair. The severity o f defect is co-related with 

the specific gene altered. hMSH2 or hMLHl mutations result in high levels o f MSI
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(MSI-H), whereas, inactivation o f hMSH6 leads to partial impairment o f the mismatch 

repair machinery (MS1-L) (67, 68).

Mutations in mismatch repair genes may occur in germline or somatic DNA. It 

has been observed that an inherited germline mutation does not result in widespread 

tumor formation in most organs (69). One possible scenario is that the wild type allele 

may provide sufficient DNA mismatch repair function. However, individuals with 

inherited germ line mutations in a mismatch repair gene can show a predisposition to 

early onset tumors primarily in the colon and endometrium. The biological basis for this 

organ specificity is unknown. The direct consequence o f mismatch repair is the so called 

mutator phenotype which promotes tumor formation by providing a favorable 

environment for mutations to occur. The subsequent mutations which possibly occur in 

oncogenes and tumor suppressor genes provide a selective growth advantage to the 

budding tumor. Ensuing accumulation o f mutations is the result o f MSI and selection 

pressure working synergistically. For colon, HNPCC is defined as an MSI-H phenotype 

and is characterized by germ line mutations in hMSH2 or hMLHl (61, 62). The MSI-H 

phenotype also occurs sporadically in 15% o f colorectal tumors. In sporadic cases, the 

MMR deficiency is due to epigenetic and bi-allelic silencing o f hM LM hl by de novo 

methylation o f its promoter site in more than 90% o f the colorectal tumors showing 

MMR deficiency. (70-72).

Model fo r  Colorectal Tumorigenesis Characterized By MSI-H Phenotype

MSI-H cancers, like other cancers, are thought to develop through accumulation 

o f inactivating or activating mutations in genes that regulate cell growth and/or cell death. 

Inherited or sporadic mutations in MMR genes results in the development o f a certain
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type o f instability widely accepted as MSI, since they are unable to repair spontaneous 

errors that normally occur at microsatellite sequences during DNA replication (61, 62,

73). Besides mutations, epigenetic mechanisms which silence the MMR gene express can 

also result in impairment o f MMR machinery. As a consequence, thousands o f mutations 

are accumulated in these cells at such repetitive sequences that are known to be widely 

distributed throughout the genome (74).

The nature o f genetic instability in MSI-I tumors predict that genes with repetitive 

coding sequences might be possible targets for inactivating and activating mutations in 

tumors with MMR deficiency. In line with this idea, it was reported that the TGF-P 

growth factor receptor II gene, which has 10 poly (A) coding repeat, was mutated in 

MSI-H tumors. A number o f studies have reported mutations in a series o f other target 

genes with possible roles in human carcinogenesis that have been found to be altered in 

colorectal MSI-H tumors by the same underlying mechanism. These include alterations in 

cell growth genes such as IGFIIR (75) and pro-apoptotic genes such as BAX (76) or 

caspase-5 (77). In addition, mutational inactivation o f APC or p53 have also been 

reported in such tumors (3, 78)

All these alterations are known to occur with in the context o f a high background 

o f genetic instability. In MSI-H tumors it is very complex to build a sequential model for 

colorectal carcinogenesis. It is very difficult to establish which mutations really play a 

role in MSI-H carcinogenesis and at what point in the evolutionary history o f the tumor 

they occur. This is because genetic alterations are also expected to occur in non-specific 

genes which do not have any expected role in tumorigenesis. However, a generalized 

model has been proposed (79). hM LHl or hMSH2 mutations in normal colon epithelium
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results in establishing a high basal level o f genomic instability. This initial underlying 

genomic instability, combined with subsequent rounds o f clonal selection, results in 

accumulation o f mutations in cell growth and/or death related genes. For example, 

mutations in the TGF-P receptor and APC can directly aid in selection by providing a 

growth advantage to mutator cells. Similarly, inactivation o f BAX and FAS promote cell 

survival. Simultaneously, mutations in genes which directly or indirectly affect genomic 

instability get selected which effectively raises the level o f genomic instability in these 

tumors. The cumulative result o f all these events carries the normal epithelial cell through 

the stages o f adenoma and early carcinoma. In the final stages, early carcinoma picks up 

hMSH6 or hMSH3 mutations to develop into advanced carcinoma. This model has not 

been experimentally verified. Nevertheless, it does conform to generally accepted 

pathway for tumorigenesis in which natural selection and an underlying genetic 

instability contribute in tumor development.

Conventional Therapies for Cancer

Radiotherapy for Cancer

Radiotherapy is now commonly accepted as one o f the effective forms o f cancer 

treatment. Currently, it is being used to treat a variety o f malignant tumors o f different 

origin and stage. Ionizing radiations (IR), from various sources like linear accelerators, 

brachytherapy etc. are primarily used for the purpose o f radiotherapy. Such IR is defined 

as corpuscular or electromagnetic radiations which are capable o f  producing ions, directly 

or indirectly, in its passage through matter. The absorbed dose o f ionizing radiation is 

measured as the Gray (Gy, 1 joule o f energy absorbed by 1 kilogram o f material).
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Radiation therapy is primarily delivered with high-energy photons (GAMMA-RAYS and 

X-RAYS) and charged particles (electrons). All IR causes ionization o f atoms in the 

biological target material by electrons that travel through the target material colliding 

with atoms and thereby releasing packets o f energy. The success o f IR for treating cancer 

depends on its ability to selectively kill tumor cells. This is mediated by IR-induced DNA 

damage, which also explains the mutagenic and carcinogenic activities o f IR. The 

damage o f DNA is induced directly by ionization o f DNA or indirectly by the generation 

o f free radicals, and is manifested by single- and double-strand breaks in the sugar- 

phosphate backbone o f the DNA molecule. In addition IR also causes cross linking 

between DNA strands and chromosomal proteins The IR caused genotoxic stress 

cumulatively results in activation o f DNA repair, coupled with arrests at cell-cycle 

checkpoints. This allows the cells to repair the DNA damage before they can proceed to 

mitosis. In majority o f tumors the cellular machinery responsible for detecting and 

repairing DNA damage is impaired. This is due to mutations in p53 gene and other genes 

involved in DNA damage repair pathway. Tumors are generally highly sensitive to 

gamma radiations because o f loss o f negative growth regulation and genomic stability. 

Following IR exposure, tumor cells do not usually die o f apoptosis as most tumors lose 

the ability to apoptose. The antitumor effect o f radiation is realized through mitotic 

catastrophe or in senescence-like irreversible growth arrest. IR induced tumor mitotic 

catastrophe is a collective result o f a series o f pathological events that occur after aberrant 

mitosis and usually result in cell death. Such mitosis does not produce proper 

chromosome segregation and cell division but leads to the formation o f large non-viable 

cells with several nuclei, containing fractions o f broken chromosomes.
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Radiation therapy has been very helpful in treating patients with tumors limited to 

rectal walls and it has been proposed that radiotherapy may be used as single modality 

treatment approach in elderly patients with rectal tumors. In a series o f rectal tumor cases, 

radiotherapy has been shown to significantly improve patient survival and the authors 

have proposed that conservative treatment o f rectal cancer may be a valid alternative to 

radical surgery (80). However the use o f radiotherapy alone for rectal cancer treatment 

has been questioned and it has been proposed that adjuvant radiotherapy in combination 

with surgery may be a better alternative in some patients (81). Local reoccurrence and 

metastasis o f colorectal cancer following surgery has led to the development o f the 

adjuvant cancer therapy concept. Adjuvant therapy is commonly used as a broad term 

encompassing all types o f  treatment used in conjunction with surgery and aimed at 

destroying microscopic metastatic disease which cannot be removed by surgery. Many 

adjuvant therapy trials, for treatment o f colorectal cancer, have been conducted over the 

past 30 years and it is highly recommended in patients who are risk o f  developing 

recurrence following surgery.

IR can kill tumor cells effectively, but the dose that can be given is limited by the 

fact that damage to normal tissue must be minimized. Effective clinical schemes o f 

radiation therapy and years o f experiences have resulted in development o f effective 

radiotherapy regimens. However, even with all the precautions taken to minimize 

exposure o f normal cells to IR, it is impossible to have absolutely safe radiation treatment 

because the invasive nature o f cancer growth means that IR must also be delivered to the 

areas that immediately surround the tumor. This eventually results in normal tissue 

toxicity and death o f normal healthy tissue. Moreover, exposure to IR during treatment
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can result in development o f secondary cancers and the risk o f cancers increases as the 

total dose o f radiation increases. These secondary cancers can be very aggressive and 

respond poorly to therapy. For example Radiation associated bone tumors and sarcomas 

develop with-in the radiation field typically after a latency period o f  ten years and are 

refractory to therapy (82).

Chemotherapy for Colorectal Cancer

In addition to radiation and surgical treatments, there are several drugs which are 

currently being used as chemotherapeutic agents for the treatment o f colorectal cancer. 

These chemical agents are broadly categorized on the basis o f the chemical nature and 

mode o f action.

5-FU remains the most widely used chemotherapeutic agent for the treatment o f 

colorectal cancer. It is a pro-drug, an analogue o f  uracil, that is converted to 5-fluoro-2’- 

deoxyuridine monophosphate (5-FdUMP) through a de novo pyrimidine pathway. 

5-FdUMP combines with methylenetetrahydrofolate to form a ternary complex with 

thymidylate synthase (TS), thus interfering with DNA synthesis by inhibiting the 

conversion o f deoxyuridylate to thymidylate. Additional mechanisms o f action include 

direct incorporation into RNA to interfere with RNA transcription and, to a lesser extent, 

direct incorporation into DNA (83). The therapeutic efficacy o f 5-FU can be further 

enhanced by the addition o f leucovorin calcium (LV, also known as folinic acid). The 

half-life and stability o f the 5-FdUMP -thym idylate synthase- methylenetetrahydrofolate 

ternary complex is increased in the presence o f greater concentrations o f reduced folates, 

such as LV (84). Therefore LV/5-FU combination is increasingly being used in adjuvant 

chemotherapy for colorectal cancer treatment.
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However, the therapeutic benefits o f 5-FU are severely limited by a liver enzyme 

named dihydropyrimidine dehydrogenase (DPD). It is estimated that more that 80% 5-FU 

is inactivated by DPD (85) reducing the biological availability o f 5-FU to target cancer 

cells. In addition, expression o f DPD also determines the 5-FU related toxicities. DPD 

activity varies between 8-21 fold among individuals. Patients with lower DPD activities 

cannot efficiently inactivate 5-FU and form excessive amounts o f active metabolite lead 

to severe haematopoietic, neurological and gastrointestinal toxicities that can be fatal (86- 

88). Therefore in the context o f using 5-FU for colorectal cancer chemotherapy, DPD can 

be a double edged sword, when present in excessive amount it reduces the bioavailability 

o f 5-FU by detoxification and lower amounts o f DPD promote widespread toxicities.

Oral fluoropyrimidines are considered as a more acceptable alternative to 5-FU. 

Due to its poor bioavailability and rapid catabolic clearance by dihydropyrimidine 

dehydrogenase, 5-FU is unsuitable for oral delivery. Alternative oral fluoropyrimidines 

have been developed using a 5-FU prodrug (capecitabine) or combinations with 

inhibitors o f DPD. Capecitabine is well absorbed by the gastrointestinal tract and 

undergoes a three-step enzymatic conversion to 5-FU. First metabolized in the liver by 

carboxylesterase to 5 ’-deoxy-5-fluorocytidine, capecitabine 

is converted in the liver and tumour tissues by cytidine deaminase to 5 ’-deoxy-5- 

fluorouridine. A tumour-selective phenomenon is facilitated by higher intra-tumoral 

levels o f thymidine phosphorylase, the enzyme responsible for the final conversion step 

to 5-FU (89)

Irinotecan (also known as CPT-11) is a semi-synthetic derivative o f the natural 

alkaloid camptothecin which targets the activity o f topoisomerase I. Topoisomerase I
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plays a key role in replication by relaxing the supercoiled DNA helix with reversible and 

transient single stranded DNA breaks. The conversion o f irinotecan to its active 

metabolite, SN-38, is mediated by irinotecan carboxylesterase-converting enzyme. SN-38 

then stabilizes the DNA-topoisomerase complex which results in replication arrest and 

apoptosis (90). The major toxicity o f irinotecan is delayed-onset diarrhoea. Intestinal 0- 

glucuronidase hydrolyses a detoxified SN-38 metabolite to active SN-38, which causes 

intestinal epithelial damage and diarrhoea. Another characteristic toxicity is an acute 

cholinergic syndrome characterized by diaphoresis, salivation, lacrimation, abdominal 

cramps and bradycardia (91)

Oxaliplatin is a third-generation platinum with a 1, 2-diaminocyclohexane carrier 

ligand which forms DNA adducts and resultant strand breaks. Unlike other platinums, 

oxaliplatin has activity in colorectal cancer. It is thought that this may be due to the bulky 

1,2-diaminocyclohexane ligand which, when retained by the oxaliplatin-formed DNA 

adducts, may alter the mechanisms o f DNA repair (92, 93). Oxaliplatin has a distinctive 

neurotoxicity which can be categorized into two types. The first is an acute, cold-induced, 

sensory neuropathy characterized by dysaesthesias and paraesthesias during or soon after 

infusion. The second is a delayed-onset, dose-dependent neuropathy occurring hours to 

days after treatment. The latter typically occurs in 10-15% of patients after a cumulative 

dose o f 780-850 mg/m2, with at least partial reversibility in 75% o f affected patients 

within 3-5 months o f treatment discontinuation. Both the acute and delayed neurotoxicity 

may be attenuated by prolonging the infusion time from 2 to 6 h (94).

Chemotherapy, like radiotherapy, is also associated with occurrence o f  secondary 

cancers. Exposure to alkylating agents have been shown to increase the risk o f bone (95)
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and bladder cancer (96). DNA topoisomerase II inhibitors are known cause chromosomal 

translocations which increase the risk o f occurrence o f  leukeamia (97). Given the 

toxicities associated with conventional therapies, it is crucial that other strategies like 

gene therapy should be given consideration. One o f the advantages in pursuing gene 

therapy for cancer treatment which aids in reducing the normal cell toxicity is its 

flexibility to limit the therapy to a loco-regional context o f the tumor. Thus, undesired 

systemic effects o f the therapy are avoided. In addition, gene therapy, by its innovative 

vector designing, has the potential for selective targeting o f cancer cells which would 

further help in minimizing the therapy associated injuries.

Cancer Gene Therapy

In the past decade several advances have been made in the area o f human gene 

therapy. In particular, gene therapy for the treatment o f cancer has emerged as a 

promising approach. At present, gene therapy for cancer amounts to more than 63% o f all 

the human gene therapy trials (Journal o f gene medicine website). Most tumors are the 

result o f a continuing process o f accumulation o f mutations in the backdrop o f genomic 

instability. Therefore tumors are genetically unstable and thus they are extraordinarily 

adaptable to environmental changes. In addition tumors are very heterogenous in many 

respects, including genetic mutations, expression o f oncoproteins, immunogenicity, 

response to environmental changes etc. Given extreme tumor heterogeneity, conventional 

therapies like radiotherapy and chemotherapy often have limited success in treating 

cancers. Gene therapy has the potential to address different obstacles in curing cancer as 

it has several advantages over conventional therapies. Various issues such as toxicity,
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drug resistance and inability to target widely disseminated tumors, are associated with 

conventional chemo and radiation therapies. Chemotherapeutic toxicity mainly occurs 

because o f  the inability o f the therapeutic drug to distinguish between normal and tumor 

cells. Also, tumors are genetically unstable and are extraordinarily adaptable to drug 

insult, which results in acquired resistance to cellular toxins and chemotherapeutic 

agents. Moreover, tumors induce immunological tolerance or inhibit the effecter 

mechanism o f the immune response (98). In contrast, gene therapy strategies have the 

potential to target the tumor cells specifically, which in turn would reduce the toxicity 

load on the normal cells. Further, therapeutic vectors can be designed to deliver and 

express the desired therapeutic genes specifically in the tumors, independent o f the tumor 

cell division and cell cycle stages. A variety o f gene therapy strategies can be designed by 

incorporating different therapeutic genes, providing the flexibility o f either 1) killing the 

cell 2) substituting the mutated gene responsible for neoplastic transformation or 3) 

immunomodulating the host immune response to target and eliminate the tumor.

There are several factors that make colorectal cancer in particular an attractive 

target for gene therapy. Most cancers disseminate early in natural history, in contrast 

colorectal carcinoma is often confined to specific organs (such as the liver) or 

compartment (such as peritoneal cavity). As many as 30% o f the patients suffering from 

CRC have macroscopic relapses in liver (99), compared with for example, breast cancer, 

in which metastases in multiple sites (such as bone, liver and lung) are much more likely 

to occur. This could offer an advantage through regional delivery o f therapeutic vector to 

maximize tumor exposure and minimize systemic toxicity. There is more information o f 

the sequence o f genetic and epigenetic events that characterize the transformation o f
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colon epithelium to premalignant adenomas and then invasive carcinoma than there is for 

the development o f any other tumor. These data can be used to construct rational gene 

therapy vectors for example tumor suppressor pathway genes such as p53 and 

retinoblastoma (RB) can be potentially used for designing tumor selective replicating 

adenoviruses. Similarly, there is a large database o f CRC associated onco-fetal antigens 

(100). The promoters o f which might be used to restrict transgene expression to tumors 

and allow a further means o f assessing tumor response to treatment. In addition, one the 

most important argument justifying gene therapy approach for treatment o f colorectal 

cancer is; wnt signaling pathway is frequently found selectively activated in majority o f 

colorectal carcinomas due to mutations in APC/p-catenin genes resulting in 

transactivation o f  the promoters o f TCF-4/ P-catenin responsive genes. These promoters 

are characterized by the presence o f a TCF/ P-catenin enhancer which binds to the 

heterodimeric complex o f TCF-4/ P-catenin. These downstream target genes of, wnt 

signaling in colorectal carcinoma, are fairly well known. Therefore characterization o f 

such promoters which are a target o f aberrantly activated wnt signaling in colorectal 

carcinoma cells can be very helpful in designing o f colorectal cancer selective gene 

expression promoters for the purpose o f gene therapy. In particular, by using Tcf-4 

enhancer elements, colorectal carcinoma selective gene expression promoters could be 

designed for targeting the therapeutic gene to CRC cells and increasing the therapeutic 

efficacy. Finally, CRC and its adenoma precursors are more often amenable to biopsy o f 

both early and late disease than other tumor types, which can add an important 

mechanistic element to proof-of principle clinical trials, such as demonstration o f viral
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replication, transgene expression, induction o f apoptosis and tumor infiltration by 

lymphocytes.

Gene Therapy for Colorectal Cancer

Gene Correction or Replacement

The multi-step development o f CRC from a single stem cell to a malignant tumor 

is well described in literature (32). This involves sequential mutations in tumor 

suppressor genes and several oncogenes. At its most basic level, gene replacement 

therapy would involve the use o f viral vectors to re-introduce wild type genes for 

phenotypic correction. There are obvious stoichiometric flaws in this reasoning in that it 

would be impossible to correct all mutant genes (as many o f them are yet to be 

discovered) in every cancer cell. However, common mutations in CRC, such as those o f 

the tumor suppressor TP53 (45-60% o f CRC cases) or the proto-oncogene KRAS (50- 

60%) have been assessed as therapeutic targets.

There are in vitro and in vivo studies which show that adenovirus mediated 

delivery o f p53 gene has an antiproliferative affect on colorectal cancer cells. This effect 

o f p53 can be hypotheticaly explained in several ways. For example p53 could be anti- 

angiogenic and down regulate the vascular endothelial growth factor expression and up 

regulate thrombospondin ( a known anti-angiogenic fector), generating a by stander effect 

which kills the tumors cells due to lack o f nutrients (101). Also, p53 has been shown to 

Further, p53 gene transfer could lead to increased survival following intratumoral 

administration o f p53 gene carrying adenovirus (102). Replacement o f the p53 gene has 

also been show to sensitize CRC cells to conventional cytotoxic agents such as 5- 

fluorouracil (5-FU), presumably by reconstituting the apoptotic pathway (103). KRAS
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has been implicated in maintaining uncontrolled proliferation o f CRC cells; therefore it is 

a logical strategy to target KRAS for CRC treatment. In a rat model o f liver metastasis, 

developed by using a KRAS mutated CRC cell line, significant tumor regression was 

shown to occur after hepatic arterial administration o f a replication deficient adenovirus 

encoding an intracellular antibody specific for KRAS (104)

Virus-Directed Enzyme-Prodrug Therapy (VDEPT)

In this approach an enzyme encoding gene which can convert an inactive, non

toxic prodrug to an effective cytotoxic species is used as the therapeutic gene to target 

cancer cells. Currently there are VDEPT strategies being pursued for the purpose o f CRC 

gene therapy: 1) HSV-tk/GCV 2) cytosine deaminase/5-fluorocytosine 3) nitroimidazole 

reductase (NTR)/CB1954. The use o f HSV-tk/GCV system for cancer gene therapy has 

been explained in detail on page 23.

Cytosine deaminase (CD) is an enzyme that catalyzes the deamination o f cytosine 

to uracil. This reaction converts an inert prodrug, 5-fluorocytosine (5-FC), to a highly 

toxic chemotherapeutic agent, 5-fluorouracil (5-FU) (105). This enzyme is found in many 

bacteria and fungi but not in mammalian cells (106-108). Consequently, mammalian cells 

are resistant to the toxic effects o f 5-FC. The cytotoxic effects o f 5-FU occur following 

its conversion to 5-fluoro-2-deoxyuridine-5-monophosphate (5-FdUMP) (through a de 

novo pyrimidine pathway). 5-FdUMP is an irreversible inhibitor o f thymidylate synthase 

and thus inhibits DNA synthesis by deoxythymidine triphosphate (dTTP) deprivation.

The CD-5FC suicide gene system has been studied as a potential gene therapy strategy in 

a number o f solid tumors. The CD gene was transferred to colon carcinoma cells in vitro, 

and these altered cells were implanted in mice as xenografts. The mice were then treated
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with systemic 5-FC. High local concentrations o f 5-FU were produced by conversion o f 

5-FC to 5-FU in the tumors (109). Adenovirus-mediated transfer o f the CD gene together 

with systemic administration o f the prodrug 5-FC caused suppression o f colon cancer 

metastatis to the liver (110-112). Phase I trials have been undertaken with direct 

intratumoral inoculation o f a replication deficient adenovirus encoding cytosine 

deaminase and oral administration o f 5-FC. Initial reports indicate that the virus is well 

tolerated, and biopsies have indicated cancer-associated expression o f cytosine deaminase 

(113).

One o f the most promising suicide gene systems is the Escherichia coli enzyme 

nitroreductase in combination with the prodrug CB1954 [5-(aziridin-l-yl)-2,4- 

dinitrobenzamide], CB1954 is a weak, monofunctional alkylating agent that was 

synthesized during the 1960s. The nitroreductase enzyme DT diaphorase converts 

CB1954 to its 4-hydroxylamino derivative (114), which after acetylation via thioesters 

such as acetyl coenzyme A (CoA), becomes a powerful bifunctional alkylating agent. The 

activated prodrug is then capable o f forming poorly repaired DNA crosslinks. Human DT 

diaphorase is not capable o f performing this conversion, thereby limiting toxicity to 

transformed cells. The advantage o f the nitroreductase-CB1954 suicide gene system is 

that killing mediated by activated CB1954 is not dependent on cell cycle phase, 

potentially allowing quiescent tumor cells to be killed. Selective killing o f nitroreductase- 

expressing cells following CB1954 administration in vitro (115, 116) and in vivo (117) 

has been demonstrated. In addition, the bystander effect seen with the HSV-TK 

gancyclovir suicide gene system is also seen with the nitroreductase-CB1954 system. 

Mixed populations o f nitroreductase-expressing and nitroreductase-none expressing cells

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



27

were killed after treatment with CB1954 (115). One study has also demonstrated a 

synergistic effect when cells expressing both nitroreductase and TK. were treated with a 

combination o f CB1954 and gancyclovir (116). In a phase I clinical trail, involving 

patients with CRC, Nitroreductase/CB1954 suicide gene system was tested with out any 

significant side effects (118).

Immunogcnctic Strategics

The idea o f Immunogenetic therapy for CRC, either antibody based or cell 

mediated, is gaining a lot o f attention these days. As opposed to most o f the gene-therapy 

approaches which involve regional targeting o f the tumor, immunogenetic approaches 

have the potential to modify the tumor microenvironment for generating an effective anti

tumor immune response. Further, the promise o f immunotherapy lies in the fact that 

although it can be delivered locally, it can generate a signal that can be amplified (for 

example, by T-cell proliferation) and disseminated through the vasculature and tissues by 

lymphocyte trafficking, thereby exposing the tumor cells to the cytotoxic mediator at 

sites distant from the area o f gene vector inoculation. There are several immunogenetic 

approaches which have been used to target CRC.

Manipulating MHC expression: It is well known that most cases o f advanced 

CRC downregulate MHC class I molecules as one means o f escaping immune 

surveillance. In a phase I clinical trial, involving 15 CRC patients negative for HLA-B7, 

a plasmid encoding HLA-B7 was injected directly into the hepatic metastatic nodules o f 

CRC. HLA-B7 expression was shown to be present in tumor biopsies o f 12 patients and a 

total o f 50% patients mounted an HLA-B7 specific cytotoxic T-lymphocyte response. 

There were side effects but no tumor regression was reported (119).
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Delivery o f Interleukin-2 (IL-2): IL-2 has been used extensively as a single agent 

or in combination o f other cytokines to target cancer. IL-2 administration in patients has 

shown very limited anti-tumor benefits which are associated with toxicity. There are 

reports which suggest IL-2 related activity upon genetic introduction o f IL-2 into 

autologous tumor cells, fibroblasts or immune effector cells in syngeneic mouse models 

(120, 121). IL-2 has also been explored in humans for its anti-tumor effects. Clinical 

trials have involved ex vivo transduction o f autologous fibroblasts (122) with IL-2 (which 

were then mixed with autologous irradiated CRC cells before subcutaneous injection), 

transduction o f autologous cytokine induced killer cells with IL-2 and direct intratumoral 

injection o f IL-2-encoding plasmid-lipid complexes (123). These trials have been 

characterized by evidence o f increased immune reactivity (IL-2 detection, CTL 

responses, and induction o f cytokines such as IFN-y and GM-CSF (granulocyte- 

macrophage colony-stimulating factor), but no evidence o f tumour regression.

Carcinoembryonic antigen (CEA) vaccines: CEA is a cell surface glycoprotein 

which is found overexpressed in 85% o f CRC cases. CEA is tumor specific onco-fetal 

antigen and has the potential to be used as an antigen for making anti-tumor vaccines.

The gene encoding CEA has been incorporated into several vectors for the purpose o f 

making a vaccine for CRC. In a phase I clinical trial patients were immunized with 

vaccinia-CEA vaccine involving CEA vaccine and generation o f cytotoxic T 

lymphocytes specific for CEA was demonstrated (124). Several other clinical trials 

involving CEA vaccines have been carried out and in most cases the vaccine was shown 

to well tolerated (125-128). However, despite o f these ongoing efforts CEA encoding 

tumor vaccines have not, so far, shown any clinically significant anti-tumor effects.
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Adenovirus for Therapeutic Gene Delivery 

One o f the major challenges in gene therapy is efficient delivery o f the therapeutic 

gene to the target cells. The biggest physical hurdle that gene therapy technologies have 

to overcome is the cell membrane which is impermeable to charged macromolecules such 

as DNA and RNA (129) While there a multitude o f biological, physical and chemical 

procedures being used to facilitate the delivery o f trans-genes, adenoviral vectors, in 

particular, have shown an enormous amount o f potential for clinical delivery o f the 

trans-gene to the target cells. Adenoviruses are double stranded DNA viruses belonging 

to the parvovirideae family and are known to cause upper respiratory ailments in humans. 

The virion is a small, non-enveloped particle with a spike, icosahedral morphology (130). 

Serologically, adenoviruses have been classified into nearly 50 distinct serotypes (131). 

The different serotypes have been subgrouped (A through E) based on genomic size, 

organization, %GC content etc (132). Majority o f the adenoviral vectors commonly used 

as gene delivery vehicles, are based on human adenovirus o f serotypes 2 and 5 o f the 

subgroup C (133). There are several major advantages o f adenoviral vectors, which make 

them suitable for efficient transfer o f trans-gene: high titer (10l2-1013 virus particles per 

ml) o f recombinant viruses can be produced; ability to infect postmitotic cells; ability to 

infect a wide variety o f cell types; ability to accommodate up to -8 kb o f foreign DNA, 

including expression cassettes or other regulatory sequences; and safety precedents exist, 

as adenovirus based vaccines have been used in humans without any serious life 

threatening side effects (134). In addition, adenoviruses infect a variety o f cell types 

including fibroblasts, epithelial cells, stromal cells, endothelial cells and hepatocytes o f 

human, canine, rodent origin. Most o f these adenoviral vectors have been rendered
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replication deficient by deletion o f their essential genes (135). To generate a defective 

adenovirus for gene transfer application, the El gene, important for viral gene expression 

and replication, can be removed. Thus, El-deleted viruses can be propagated only in a 

cell line that provides the El gene products in trans, such as 293 cells (136). The E l -  

deleted adenoviral vectors, however, express low levels o f viral antigens following 

infection and result in a low level o f DNA replication, especially at a high multiplicity o f 

infection. Synthesis o f adenoviral gene products often stimulates an immune response to 

the infected cells and results in a loss o f therapeutic gene expression 1-2 weeks after 

injection (137, 138). To overcome the problems o f reduced therapeutic gene expression 

and host cell toxicity, newer generation adenoviruses with E3 and E4 regions deleted 

have been constructed (139). Such replication incompetent vectors are widely used for 

gene delivery in vivo and are in clinical trials for cancer and other diseases like cystic 

fibrosis (140). There are, however, some limitations o f adenoviral vectors: lack o f 

sustained expression, as the viral DNA does not integrate into the host genome; 

antigenicity against viral proteins by both humoral and cytotoxic T-lymphocytes (CTLs); 

and possible toxicity at high doses (134). The lack o f sustained expression is not likely to 

present a problem for acute applications like cancer as transient expression o f therapeutic 

genes may be favored. The humoral response may be blocked or reduced by co

administration o f immunosuppressive agents or cytokines. Alternatively, the use o f 

adenoviruses o f different serotypes may allow for repeated administration, even in the 

presence o f neutralizing antibodies (141).
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Herpes Simplex Virus Thymidine Kinase Gene/ Ganciclovir and Suicide Gene 

Therapy

Frederic Moolten was the first to conceptualize the idea that HSV-tk / GCV 

system can be potentially used for gene therapy (142). This was followed by work done 

by the same group showing that HSV-tk/GCV treatment generated enough 

phosphorylated GCV to inhibit mammalian DNA replication(143). Thereafter, a few 

years later many researchers started to apply this system and other prodrug activating 

enzymes for gene therapy (108, 144). In this chapter I will summarize: 1) how the HSV- 

tk/GCV system works 2) HSV-tk/GCV system mediated bystander affect 3) what are the 

current strategies being followed to enhance the therapeutic efficacy, 4) various clinical 

trials undertaken.

Mode o f Action o f the HSV-Tk/GCV System

GCV is an acyclic analog o f the nucleoside 2 ’-deoxyguanosine. It is used as an 

antiviral agent for treating human herpes infections (herpes simplex type 1 and type 2, 

varicella zoster virus and Epstein-barr virus) (145). The antiviral property o f GCV is 

dependent on its intracellular phosphorylation by a viral encoded thymidine kinase. The 

triphosphate derivatives o f GCV act as a competitive inhibitor o f deoxyguanosine 

triphosphate, inhibiting viral DNA synthesis (146, 147). In cells infected with HSV or 

varicella zoster virus, viral thymidine kinase catalyzes the production o f ganciclovir 

mono-phosphate (147, 148). Subsequent conversion o f GCV-monophosphate to GCV- 

triphosphate is aided by cellular guanylate kinase (149) and several other cellular kinase 

enzymes, such as phosphoglycerate kinase (150). Tri-phosphorylated forms o f GCV are 

analogous to 2 ’ deoxyguanosine and bind to DNA polymerase 6. Once bound to DNA
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polymerase GCV triphosphate is either incorporated into DNA or inhibits the polymerase 

itself. Although GCV has hydroxyl groups found in endogenous nucleosides permitting 

chain elongation, the lack o f a complete sugar ring makes GCV a poor substrate for chain 

elongation. As a result, chain termination almost always occurs immediately after GCV 

incorporation into DNA and leads to cell death (151).

Mechanisms o f HSV-Tk/GCV Mediated Cell Killing

In reference to cancer gene therapy mediated by HSV-tk/GCV system there is 

evidence which supports that, depending on the cell type, tumor cell killing can occur via 

both apoptotic (152) and non-apoptotic mechanism (153). Support for the involvement o f 

the apoptotic pathway in HSV-tk/GCV mediated cell killing comes from the fact that 

expression o f Bcl-2 is able to inhibit HSV-tk/GCV caused cell death (154). In addition 

apoptosis has been shown to occur in human hepatocarcinoma cells upon treatment with 

HSV-tk/GCV (155). Moreover, the level o f apoptosis was observed to be dependent on 

the p53 status o f the cell as it was found to be reduced in p53 negative cells as compared 

to p53 positive cells. In contrast, HSV-tk/GCV mediated apoptosis as seen in CHO cells 

is shown to be dependent upon activation o f mitochondrial damage pathway, independent 

o f p53 status (156).

The effect o f HSV-tk/GCV mediated cell killing on cell machinery has also been 

explored by researchers. It has been shown in B16F10 murine melanoma cells, that the 

cause o f cell death, upon expression o f HSV-tk and followed by GCV treatment, seems to 

be due to the irreversible cell cycle arrest at the Gi-M transition and is independent of 

apoptosis (153). On the contrary in similar model systems it was demonstrated that cell
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killing by the HSV-tk/GCV strategy showed an S-G2 phase arrest with signs o f apoptosis 

(157).

The HSV-Tk/GCV Bystander Effect

In addition to direct cell killing, a bystander effect (BE) has also been observed. 

BE is the ability o f  the HSV-tk expressing cells to induce sensitivity, upon GCV 

treatment, in neighboring non HSV-tk expressing cells. BE is one o f the most important 

aspects o f using HSV-tk/GCV system for cancer gene therapy. It was originally described 

by Moolten and Mells in 1990 when they observed that cells transduced with HSV-tk 

gene and treated with GCV induced sensitivity in neighboring cells (143). Preliminary 

experiments, analyzing BE demonstrated that for some cell types in culture, when only 

10% o f the cells were expressing HSV-tk, treatment with GCV could result in 100% cell 

death. This was soon validated by in-vivo experiments showing that 10-50% o f the total 

cell population expressing HSV-tk is enough to produce complete tumor regression upon 

GCV treatment (158-160).

Almost immediately it was established that BE requires cell to cell contact 

between cells expressing and non-expressing the HSV-tk gene (158). This observation 

was strengthened by experiments which demonstrated that conditional media from cells 

expressing HSV-tk and treated with GCV did not confer cytotoxicity to non-expressing 

HSV-tk cells (161). On the whole these experiments suggested that the BE o f the HSV- 

tk/GCV system results from direct cell to cell contact.

The mechanism o f BE caused by HSV-tk/GCV is fairly well understood. It is 

generally accepted that BE occurs by transfer o f phosphorylated GCV from HSV-tk 

expressing cells to non-HSV-tk expressing cells via cell to cell gap junctions. This idea is
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further reinforced by the fact that the magnitude o f the BE is correlated with the extent o f 

gap junctional intercellular communication (GJIC) present between two cells (162). Gap 

junctions are semi-channel like structures (called connexons) present in the cell 

membrane. Connexons are made up o f proteins belonging to a multigene family o f 

distinct but functionally related proteins called connexin (Cx) (163). Expression o f 

connexins in cells which do not form gap junctions has been shown to induce GJIC and 

resultant BE (164). In addition, there are certain drugs such as retinoic acid (165), 

apigenin (164) or lovastatin (166) which are known to positively regulate the formation 

o f gap junctions and increase the extent o f BE when added to tumor cells. In contrast, 

drugs like 18-a-glycirrethinic acid (AGA) (167) which negatively regulate gap junctions 

are known to inhibit BE. Further, the role o f gap junctions in HSV-tk/GCV system has 

also been shown in vivo. Subcutaneous tumors derived from Cx43 (connexin 43 gene) 

transfected glioma cells showed that after GCV treatment only 25% o f the HSV-tk 

expressing cells were enough to eliminate the tumor (168). Although it is clear that gap 

junctions play the major role in mediating the HSV-tk/GCV BE, there are in vitro studies 

which do not correlate between gap junctions and the extent o f BE. For example studies 

have shown that in some instances it is not possible to inhibit BE by inhibiting GJIC 

either in cells lines derived from lung cancer (169) or in colon tumor cell lines (170). 

Further there is evidence that supports that GJIC may not be solely responsible for BE. 

This phenomenon has been illustrated in SW620 colon cancer cells. These cells when 

expressing the HSV-tk are able to efflux phosphorylated GCV metabolites to the extra 

cellular medium (171). It’s been postulated that the efflux phenomenon could either be 

due to the presence o f ATP dependent anionic transporters or to the presence o f proteins
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which confer drug resistance. The authors propose that two recently identified multi-drug 

resistance proteins MP-4 and MRP-5, which efflux phosphorylated nucleotides may be 

responsible for effluxing phosphorylated GCV. In addition, another mechanism to 

explain HSV-tk/GCV mediated BE have also been proposed. According to this 

hypothesis, apoptotic vesicles generated in HSV-tk expressing cells containing toxic 

metabolites are phagocytated by neighboring non-HSV-tk expressing cells (158).

The in vivo mechanism o f HSV-tk/GCV mediated BE has also been explored. 

Other than GJIC, the immune response generated due to the expression o f non human 

proteins or due to the death o f transduced cells have been proposed to cause BE. It is 

hypothesized that non-human proteins can stimulate recognition o f tumor antigens, 

trigger the immune response and finally end up with the death o f non-transduced cells 

(172). In addition, some studies suggest that the immune response generated against the 

HSV-tk/GCV system can induce a distant BE. Treatment with GCV o f tumors expressing 

HSV-tk can mediated regression o f tumors which do not express HSV-tk and which are 

located in other part o f the animal (173). This distant BE suggest that local treatment with 

HSV-tk system could prevent the growth o f dissemination and possible metastasis (152). 

Strategies to Enhance the Therapeutic Response o f HSV-Tk/GCV System

Over the past decade several efforts have been made to improve the efficacy of 

HSV-tk/GCV system for gene therapy purposes. These strategies can be broadly divided 

into two categories: 1) HSV-tk mutants 2) Combined approaches.

HSV-Tk Mutants

One limitation o f the HSV-tk therapy is the low sensitivity o f cells to GCV or 

other nucleoside analogs. A popular strategy is to improve potency o f the suicide effect.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



36

by engineering the HSV-TK protein. The basic rationale behind this approach is to 

construct and characterize an HSV-TK mutant that preferentially phosphorylates specific 

nucleotide analogs. Black et al have created several mutants o f HSV-tk which were 

screened for GCV or ACV phosphorylation in mammalian cells and have identified 

mutants which are more sensitive to ACV or GCV (174). One particular mutant Sr39 

when evaluated in a xenograft model prevented tumor growth at prodrug dosages that did 

not affect wild type HSV-tk (175). Further, using a HSV-tk mutant generated by Black et 

al in 1999 it was shown that tumor cells expressing this mutant resulted in an increase of 

GCV sensitivity. This sensitivity was nine to five hundred folds higher when compared to 

wild type HSV-tk (176)

Combined therapies

It is generally accepted that in cancer therapy multidrug regimens are superior to 

single agent therapy. This has prompted various investigators to test different 

combinations o f strategies to enhance the cytotoxic effects o f the HSV-tk/GCV system. 

The HSV-tk/GCV system has been used in combination with other gene directed enzyme 

prodrug therapy (GDEPT) strategies in search o f enhanced anticancer effects. HSV- 

tk/GCV when used in combination with the cytosine deaminase / 5- fluorouracil (CD/5- 

FU) system to treat 9L gliosarcoma cells reduced cell survival both in vitro and in vivo. 

The effects o f the two components appeared to be synergistic and related mechanistically 

to the enhancement o f CV phosphorylation by thymidine kinase following 5-Fluorouracil 

treatment (177). The combination o f  these suicide genes has also been shown to sensitize 

the tumor cells to radiation with potent antitumor effects (178).In another study the HSV- 

tk/GCV system has been combined with cytochrome P450 2B1 / cyclophosphamide
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GDEPT. It’s been postulated that these two GDEPT act synergistically. HSV-tk/GCV 

gene therapy inhibits the repair o f cellular cross-linking o f DNA caused by 

P4502B1/cyclophosphamide (179). In addition this synergism has been shown to require 

co-expression o f both genes in the same cell. In an attempt to achieve enhanced tumor 

cell killing, several chemotherapeutic agents have been combined with the HSV-tk/GCV 

system. Drugs like topotecan (topoisomerase I inhibitor) results in synergistic 

cytotoxicity in HSV-tk expressing murine MC38 and human HT29 colorectal cancer 

cells, both in vitro and in vivo (180). Moreover, a synergistic effect was observed when 

GCV and topotecan were administered in combination with a replication competent 

adenovirus expressing HSV-tk (181).

UCNOl (a protein kinase c inhibitor) when used in combination with HSV- 

tk/GCV resulted in increment o f apoptosis and tumor cell killing in human colon cancer 

cells (182). This apoptotic enhancement was associated with the increased levels o f 

proapoptotic proteins Bcl-XL. However, when HSV-tk/GCV was combined with Taxol 

o f Campthecin, an antagonistic effect was observed. Furthermore, in glioblastoma model 

a synergism between the HSV-tk/GCV and temozoloamide (TMZ, and alkylating agent 

used to treat gliomas, has been shown (183).

These results clearly show that the combination o f certain, but not all 

chemotherapy drugs and HSV-tk/GCV may result in increased cytotoxic effects.

H SV-Tk/G CVand Radiotherapy 

The combination o f HSV-tk/GCV prodrug therapy and radiotherapy has been 

attempted in several studies. The rationale behind these approaches is that radiation 

induces membrane damage which may facilitate the bystander effect o f HSV-tk/GCV
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gene therapy whereby cytotoxic nucleotides analogs diffuse from HSV-tk expressing 

cells to neighboring non HSV-tk expressing cells. In addition, cells would not be able to 

repair radiation-induced DNA damage in the presence o f cytotoxic nucleotide analogs. 

One o f the earliest studies showed that the addition o f radiation improves the 

effectiveness o f HSV-tk/GC gene therapy for the brain tumors (184). Similar synergistic 

effects were observed when a fusion construct containing both suicide genes HSV-tk and 

cytosine deaminase, was used to transfect 9L glioma cells followed by drug treatment 

(178, 185). Combination o f HSV-tk/GCV therapy and radiation was shown to be 

synergistic when used to target head and neck cancer xenografts in nude mice (186). 

Further, in prostrate cancer cells, it was demonstrated that HSV-tk/GCV system and 

radiotherapy act synergistically in tumor cell killing which increases with higher doses o f 

radiation (187).

HSV-Tk/GCV System and Induction o f Immune Response

There are findings suggesting the existence o f an antitumor immune response 

when HSV-tk/GCV therapy is used for in vivo treatments. The phenomenon o f the 

bystander effect which is characteristic o f HSV-tk/GCV system is also believed to have 

an immunologic component (172). There are two important features o f this HSV-tk/GCV 

mediated antitumor immune response: 1) the bystander effect is mediated by the immune 

/inflammatory system, 2) the killed tumor cells can generate an antitumor response since 

GCV is not immunosuppressive (188, 189). The other crucial part o f bystander effect 

which occurs through GJIC involving transfer o f toxic drug metabolite has been 

explained earlier on page 25. Findings supporting a role for the immune system include 

demonstration o f cytokine release leading to the haemorrhagic necrosis and to an
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infiltration o f immune cells into the tumor after the HSV-tk/GCV therapy (172, 190,

191). This cytokine release with in the tumor also leads to up-regulation o f immune 

regulatory molecules such as B7.1, B7.2 and ICAM (192). These findings have led to the 

hypothesis that the bystander effect changes the tumor microenvironment from one that is 

immuno-inhibitory to one that is immunostimulatory. This is because HSV-tk expressing 

cells die through apoptosis, during which they release soluble factors such as 1L-1, which 

further affect the tumor microenvironment.

One o f the potential ways o f increasing the BE is to use biological response 

modifiers such as cytokines to augment the immune / inflammatory response generated 

by the HSV-tk/GCV therapy. In one particular study, immunotherapy in combination 

with HSV-tk/GCV suicide gene therapy was tested in a experimental metastatic breast 

cancer model. Adenoviral vectors were used to transfer transgenes for HSV-tk along with 

either cytokine gene: GCM-CSF and IL-2 to the established breast tumors. Upon 10 days 

o f GCV administration an enhanced reduction in tumor volumes was observed (193). IL- 

12 has been demonstrated to be highly efficient in enhancing the antitumor response in 

combination with HSV-tk/GCV therapy. Studies in colon carcinoma using adenoviruses 

as vectors for gene delivery have proven to be highly efficient in inhibition o f tumor 

growth and in the increase o f survival time (194).

Clinical Trials

Several phase I and phase II clinical trials have been implemented in the last 

decade using the HSV-tk/GCV gene therapy strategy. Results from only few o f these 

studies have been published.
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1) Mesothelioma: Adenoviral vectors encoding the HSV-tk gene under the control o f 

sarcoma virus promoter were administered in variable doses to patients with 

mesothelioma. Transient fever and minor changes in liver function tests were the most 

common adverse effects noticed. In addition, local skin reaction due to adenovirus 

infection was observed in 60% o f the patients. Tumor cell transduction was confirmed by 

PCR and immunoblotting. Furthermore, in this study authors did mentioned the existence 

o f humoral and cellular immune responses against the adenoviruses but it did not produce 

any clinical effects (195). Further results were not reported.

2) Melanoma: Patients with malignant melanoma were treated with intratumoral 

injections o f retroviral vectors encoding for HSV-tk which was followed seven days later 

by administration o f GCV. Adverse effects like transient fever and skin reaction were 

noticed. A moderate decrease in tumor size was constantly observed for the period o f 

administration o f GCV but all tumors progressed there after (196)

3) Brain tumors: Gene therapy for malignant gliomas utilizing HSV-tk/GCV system is 

currently a very hot area in the field o f cancer gene therapy. Glioblastomas have one o f 

the highest mortality rates among cancers and remains very challenging to manage as 

patients have an average survival rate o f 32-56 weeks after being first diagnosed. The 

earliest clinical trials involving treatment o f brain tumors with HSV-tk/GCV suicide gene 

therapy did not meet with any significant success. In one study, malignant glioma 

patients received multiple injections o f a retroviral vector (coding for HSV-tk) producing 

cells. A follow up assessment o f gene transfer by in situ hybridization showed that 

effective transfer was very limited and did not produce any antitumor effects (197). A 

clinical trial following a similar therapy protocol involving patients with primary or
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recurrent malignant gliomas did not result in any conclusion which could advocate the 

use o f HSV-tk/GCV suicide gene therapy to treat brain tumors (198). A French group 

evaluated the effect o f injecting retroviral producing cells after debulking surgery for 

recurrent gliomas. Almost two weeks after GCV treatment, tumors showed necrosis in 

three o f eight patients. However all patients showed disease progression on long term 

follow up. Limited antitumor response was attributed to poor transfer o f the therapeutic 

gene to the tumor (199).

Recently partial success in treating malignant gliomas using HSV-tk/GCV suicide 

gene therapy has been reported. Eleven patients with recurrent malignant gliomas after 

surgical resection and radiotherapy were included in this clinical trial. Adenoviral vectors 

expressing HSV-tk were used for the gene delivery and no adenoviral vector shedding or 

systemic toxicity was noticed in this study. Additionally, HSV-tk expression as assessed 

by PCR was negative after 3 months o f adenoviral injections. Ten o f eleven patients 

survived for an average o f 112.3 weeks from the day o f diagnosis (200).

In summary HSV-tk gene transfer to a variety o f neoplasms can be safely 

achieved in vivo by intratumoral injections using adenoviral or retroviral vectors. GCV 

administration after HSV-tk gene transfer does not result in significant toxicity.

Although, significant success in brain tumor regression has not been achieved, 

nevertheless recent studies have shown interesting results.

Imaging Gene Expression

There is another aspect o f  HSV-tk suicide gene therapy which is worth 

mentioning. One o f the hurdles in human gene therapy is the inability to establish in each 

patient whether gene transfer has been achieved, what tissues have been transduced and
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are actively expressing the transgene and what is the magnitude o f the transgene 

expression? In combination with positron emission tomography (PET), the HSV-tk gene 

has shown the potential to resolve the above mentioned problems. PET is a non invasive 

imaging technique which follows the fate o f a previously administered, radiotracer to 

obtain accurate, quantitative and dynamic information about the location o f the 

radionucleotide in the patient. The principle behind the approach is HSV-tk once 

successfully expressed in a cell, is able to phosphorylate the radiotracer (for e.g. 8- 

[18F]fluoroganciclovir) which gets trapped inside the HSV-tk-expressing cells only and 

can be visualized externally with a PET camera (201). Several radio labeled thymidine 

and ganciclovir derivatives have been proposed as probes for imaging o f HSV-tk enzyme 

activity with PET, including [124I]FIAU (202), and 9-[(l-[18F]Fluoro-3-hydroxy-2- 

propoxy)methyl]guanine ([18F]FHPG) (203). These radiopharmaceuticals are better 

substrates for the HSV-tk enzyme than for human thymidine kinases. PET imaging, 

offers a potential method o f high resolution and sensitivity which allows noninvasive 

quantification o f HSV-tk expression (204).

Wnt Signaling And P-Catenin/Tcf-4 Transcriptional Regulation

The APC driven model for colorectal tumorigenesis suggests that wnt signaling 

pathway is aberrantly activated in majority o f colorectal tumors. Besides, there is 

evidence indicating that wnt signaling pathway is also found to be activated in other 

tumors for example, prostrate and breast (205-207). The differential activation o f this 

pathway in cancer cells makes it an attractive target for designing tumor specific gene 

expression promoters. The canonical Wnt signaling pathway has been shown to be well
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conserved in evolution and is currently best described in invertebrate systems like 

Xenopus and Drosophila where it plays a significant role in development. The pathway is 

comprised o f a family o f  secreted Wnt glycoproteins which signals by binding to cell 

surface co-receptors, frizzled and LRP5/6, (low-density lipoprotein receptor related 

protein) (8, 208). One o f the major effectors o f this pathway is P-catenin which forms 

transcriptionally active complexes with the Tcf/Lef (T cell / Lymphoid enhancer factor) 

family o f proteins when a Wnt signal is received at the cell surface. This heterodimeric 

complex transactivates various Wnt responsive genes, which contribute in making 

developmental decisions. In parallel, the Wnt signaling pathway has been shown to be 

activated in a majority o f human cancers o f epithelial origin and is marked by a 

transcriptionally active P-catenin / Tcf-Lef complex. Genes transactivated by Wnt 

signaling are considered to contribute to the pathogenesis o f human cancers (24). P- 

catenin is a multifunctional protein, and apart from it’s oncogenic role, it is known to 

associate with proteins like cadherins and other catenins, participating in processes like 

cell adhesion (209). The Wnt signal increases the levels o f monomeric p-catenin in cells 

by destabilizing the complex o f proteins which are responsible for glycogen synthase 

kinase-3p mediated phospholyration o f P-catenin. This is well documented in Xenopus 

and Drosophila (210-212). However, in human cancers it has been shown that, mutations 

in the key proteins responsible for P-catenin degradation can also lead to 

upregulation/stabilization o f P-catenin, even in the absence o f a Wnt signal. Stabilized P- 

catenin forms a transcriptionally active complex with Tcf-Lef and consitutively 

transactivates Wnt responsive genes (10). A variety o f proteins are involved in regulation 

o f P-catenin levels including the tumor suppressor gene APC (Adenomatous Polyposis
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Coli), which is found to be associated with P-catenin and mutated in more than 85% of 

colorectal tumors (13) In these carcinomas elevated levels o f P-catenin coupled with 

transcriptionally active complex o f P-catenin/Tcf-4 were found (213).

In vitro studies done on cell lines derived from colon tumors have shown that 

introduction o f wild type APC effectively reduces the levels o f P-catenin in conjunction 

with disruption o f transcriptional activity o f P-catenin / Tcf-4 complex (213). APC is also 

associated with at least two other proteins, Axin and glycogen synthase kinase-3P (GSK- 

3P), which contribute towards regulation o f P-catenin. Axin has binding sites for APC, 

GSK-3P and P-catenin and it functions as central scaffolding in the multiprotein complex 

(214). The APC-Axin complex is believed to associate and regulate the activity o f GSK- 

3P, which in turn phosphorylates APC-Axin increasing their affinity for P-catenin (215). 

GSK-3P, a serine threonine kinase, associates and phosphorylates P-catenin on the N- 

terminal serine/threonine residues. Phosphorylated P-catenin is recognized and tagged by 

the P-Trcp protein; P-catenin further gets covalently modified by addition o f  ubiquitine. 

Ubiquitinated P-catenin is degraded by the proteasome destruction pathway (216, 217). 

Therefore, an N terminal serine/threonine residue mutation in P-catenin renders it 

refractory to APC’s regulatory tumor suppressive effect resulting in stabilization o f P- 

catenin (218). Hence the ability o f GSK.-3P to phosphorylate P-catenin is crucial for its 

destruction. How the wnt signaling pathway communicates with GSK.-3P is not clearly 

understood. However, studies from invertebrate model systems have suggested that at 

least two proteins, disheveled (Dvl) and FRAT provide a link between Wnt signal and 

GSK.-3P. FRAT is associated with Dvl which is turn is bound to Axin, Dvl / FRAT 

complex, upon receiving a Wnt signal, inhibits GSK-3P resulting in non-phosphorylation
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and stabilization o f P-catenin (219). The mechanism o f inhibition o f GSK.-3P by Dvl 

/FRAT complex is not clearly understood; but possibly occurs by disruption o f the Axin- 

APC scaffolding (7).

Therefore, with the underlying principle that canonical Wnt signaling pathway is 

constitutively activated in a large number o f adenocarcinoma, it is reasonable to 

hypothesize those recombinant promoters incorporating Tcf-4 enhancer elements will be 

specifically active in such Wnt signaling positive tumors and not in normal cells. 

B-catenin/Tcf-4 Transcriptional Regulation

The APC and P-catenin mutations result in the formation o f a constitutively active 

P-catenin/Tcf-4 complex, which transactivates a number o f cancer promoting genes. This 

occurs by binding o f the P-catenin/Tcf-4 complex to the Tcf-4 enhancer regions in the 

promoters o f these target genes. A few genes activated by this complex have been 

identified and include c-Myc (19), c-jun and fra-1(24), cyclin D (20, 215) and matrilysin 

(MMP7) (22). It appears that LEF-1 family o f transcription factors, o f which Tcf-4 is a 

member, act as DNA scaffolding proteins that alone do not affect transcription (220). 

They must interact with a partner protein (like P-catenin), and this complex leads to gene 

regulation via interaction with basal transcription machinery (221). p-catenin has been 

shown to translocate into the nucleus independent o f any association with Lef/Tcf 

binding (222), and other non-DNA binding proteins may be involved in forming or 

stabilizing the P-catenin and Tcf-4 interactions (222). Because the Lef/Tcf interactions 

appear to interact with DNA as a true enhancer element and do not activate transcription 

independently (220), it is possible for gene therapy purposes to couple the Tcf-4 enhancer 

with other promoter elements that may not affect overall gene expression activities.
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Another unique aspect o f Tcf-4/ P-catenin regulation is the modulation o f responsive 

genes by chemical modulators like butyrate, phorbol esters, doxorubicin and retinoids. 

Short chain fatty acids like butyrate and trichostatin A have been reported to increase 

Tcf-4/ P-catenin mediated gene expression (223, 224). This is consistent with the reported 

role o f these compounds in the homeostasis o f the colonic mucosa through induction o f 

cell maturation pathways, cell cycle arrest, differentiation and apoptosis (224). Recent 

microarray analysis o f butyrate and trichostatin A treated colon tumor cells indicated 

activation o f a distinct subset o f genes in cell differentiation processes, including 

elevation o f Tcf-4/ P-catenin responsive genes (224). Addition o f the phorbol ester PM A 

has also been reported to increase Tcf-4 mediated gene expression (225). Conversely, the 

addition o f doxorubicin (226) or retinoids (227) led to decreased Tcf-4/ P-catenin 

mediated gene expression. Therefore, modulation o f the transcriptional activity o f  the 

recombinant Tcf-4/ P-catenin enhancer /promoters may provide an opportunity to 

regulate the level o f expression o f therapeutic genes under clinical situations.

Promoters for Design of Recombinant Tumor Specific Gene Expression DNA 

Elements

There are several oncogenes which are found up-regulated in cancers and are 

believed to give direct or indirect growth advantage to the cancer cell. Promoters o f such 

oncogenes are usually found to be the target o f mitogenic signaling pathways resulting in 

their constitutive transactivation. Further, these oncogenic promoters are not expected to 

be activated in normal cells. Therefore, such promoters are an ideal candidate for 

designing o f tumor specific gene expression promoters. However, most o f these
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promoters are weak activators o f transcription and may not allow achieving desired levels 

o f therapeutic gene expression in the target cell. This issue could be effectively solved by 

coupling an enhancer element to such promoters to increase their activity. In this study 

Tcf-4 / P-catenin enhancer element are coupled with the minimal oncogenic promoters 

described in this section. 

c-fos Promoter

c-fos is a transcription factor belonging to the AP-1 family o f proteins, which are 

known to play an important role in cell proliferation and survival (228). AP-1 

(activating protein -1 ) is a collective term referring to dimeric transcription factors 

composed o f Jun, Fos or ATF (activating transcription factor) subunits that bind to a 

common DNA site, the AP-1 binding site. AP-1 activity is induced by a variety o f 

biological, chemical and physical stimuli. These include growth factors, cytokines, 

neurotransmitters, polypeptide hormones, cell matrix interactions, bacterial and viral 

infections, and a wide variety o f physical and chemical stresses. This multitude of 

stimuli, largely regulates the abundance and the activity levels o f AP-1 proteins (229). 

The abundance o f AP-1 proteins is most commonly regulated by controlling the 

transcription o f their genes (230) and by modulation o f their stability (231, 232). 

Regulation o f c-fos is a classic o f example how AP-1 proteins can be regulated by 

different signaling mechanisms. The c-fos promoter is the target o f several signal 

transduction pathways, which regulate c-fos levels in response to external stimuli. 

Stimulation o f cells with different stimuli induces c-fos very rapidly (233). Several cis 

elements are known to mediate c-fos promoter induction: first, proximal to the c-fos 

TATA box is a CRE which binds to CREB (CRE-binding protein), inducing c-fos via
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cAMP- and Ca2+- dependent signaling pathways in response to neurotransmitters and 

polypeptide hormones (234). A Second cis element is the sis-inducible enhancer (SIE) 

which is recognized by the STAT (signal transducer and activator o f transcription) group 

o f transcription factors. These stimuli activate the mitogen activated protein kinase 

(MAPK) cascades that enhance AP-1 function through the phosphorylation o f distinct 

substrates. In addition, fos promoters can be induced by activated extracellular-signal- 

regulated kinase (ERIC) in response to serum and various growth factors (235). Based on 

these studies it can be concluded that the c-fos promoter is a target o f various cell 

signaling cascades induced by cell growth and proliferation promoting agents. For typical 

cancer disease models it is well established that various growth and proliferation 

promoting signaling cascades are constitutively active. In line with viewpoint, it is know 

that expression o f fos is differentially regulated in various cancers. Therefore the c-fos 

promoter is an ideal candidate for the designing o f a tumor specific gene expression 

promoter because tumor cells, as compared to normal cells, will have the appropriate 

cellular environment for its induction.

Cyclooxygenase-2 (Cox-2) Promoter

Cyclooxygenases are the key enzyme in arachadonic metabolism and catalyze the 

conversion o f arachadonic acid to prostaglandin H2, the precursors for prostaglandins and 

thromboxanes (236). Two isoforms o f Cox exists, Cox-1 and Cox-2. Cox-1 is 

constitutively expressed in many tissues (236), however Cox-2 is induced in many 

inflammatory reactions (237). Numerous studies have suggested that Cox-2 is regulated 

at the transcriptional level. Many growth factors, cytokines and inflammatory agents all 

appear to enhance the expression o f Cox-2 by interacting with various regulatory
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sequences in the promoter region o f this gene (238). Evidence for involvement o f Coxs in 

cancer was suggested by unusually high amounts o f prostaglandins in various animal and 

human tumor tissues, including human colon cancer (239, 240). Recent studies have 

presented compelling evidence that Cox-2 is induced and at elevated levels in human 

colorectal cancers, azoxymethane-induced mouse tumors and in the polyps o f mouse FAP 

(familial adenomatous polyposis) models (241-244). In addition, under physiological 

conditions Cox-2 is virtually undetectable in most o f the tissues (245, 246). This evidence 

suggest that Cox-2 is differentially expressed in tumors as compared to majority o f 

normal tissue. Differential expression o f Cox-2 could be explained by studies which 

propose that Cox-2 promoter is differentially regulated in tumors. Further, it has been 

suggested that the Cox-2 promoter is regulated by the wnt signaling pathway which is 

aberrantly activated in a number o f epithelial tumors (247). In addition, recently, a direct 

link between transcriptional regulation, at the promoter level, o f Cox-2 by the wnt 

signaling pathway has been demonstrated (26).

In the past the Cox-2 promoter has been used and characterized as a tumor 

specific gene expression promoter for expression o f therapeutic genes in different types 

o f tumors (248-252). Therefore it is suggestive that the Cox-2 promoter has a potential 

utility for a tumor specific promoter and it could be successfully engineered by 

combining with various DNA elements to achieve an augmented level o f specificity and 

activity.

CEA Promoter

The carcinoembryonic antigen (CEA) has a long history as a potential therapeutic 

tool for targeting metastatic colon carcinoma. CEA is a tumor-associated marker that is
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expressed by most colorectal tumors (253, 254). CEA expression is fairly homogenous 

with metastatic tumors (254), and its promoter and enhancer sequences have been very 

well characterized. The CEA promoter has been mapped and the promoter elements 

critical for selective expression o f transgenes in recombinant adenoviruses are located 

between nt. -229 to nt. + 111 (the translational start site) (253). The CEA promoter linked 

to a therapeutic gene and incorporated into an adenovirus has been used extensively in 

multiple studies and shown to be active in only CEA producing cells (255). Related to 

our proposed studies one report used a CEA/HSV-TK adenovirus, which was shown to 

have no hepatoxicity in nude mice, yet was effective at reducing the tumor volume o f a 

human tumor xenograft following GCV administration (256). Although the use o f CEA 

to target gene therapy has resulted in specificity, this has come at the cost o f a 10-300 

fold loss in activity compared with nonspecific viral promoters such as CMV 

(cytomegalovirus) or RSV (Rous sarcoma virus) (255, 257, 258). CEA is found 

specifically up regulated in colon tumors and at the same time more than 80% o f colon 

tumors show constitutive activation o f Wnt signaling pathway. Therefore, it is reasonable 

to speculate that a recombinant Tcf-4 / CEA promoter will have enhanced transcriptional 

activity as compared to CEA promoter alone

In addition to colorectal carcinoma, wnt signaling pathway is also shown to be 

activated in prostate cancer and is believed to play an important role in the development 

o f prostate cancer (205, 207). Therefore, it is logical to think that Tcf-4 / P-catenin 

enhancer element can be potentially combined with promoters which are differentially 

up-regulated in prostate carcinoma.
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PSMA Promoter

Prostate Specific Membrane Antigen (PSMA) is a membrane glycoprotein with 

folate hydrolase activity, predominantly expressed in prostate epithelial cells. Studies at 

the mRNA and protein levels support that PSMA is differentially regulated in benign and 

malignant prostate abnormalities as well as during tumor progression. In benign prostate 

hyperplasia (BPH) PSMA decreases whereas in prostate cancer (CaP) PSMA levels are 

increased reaching their highest values in hormone deprived and hormone refractory 

states. The mechanism o f regulation o f the gene in the various prostate abnormalities has 

yet to be identified. PSMA is most strongly expressed in the prostate with lower levels in 

the brain, salivary gland and small intestine (259, 260). Immunohistochemistry has 

consistently detected strong PSMA expression in prostate epithelia, with weaker 

expression in colon, small intestine, and kidney tubules (260-265). In addition week 

expression o f PSMA has also been observed in cardiac muscle and sweat glands (261). 

PSMA expression in tumor tissue increases as the prostrate tumor increases in size (260). 

Furthermore, expression levels o f PSMA, unlike PSA, has been reported to increase 

under conditions o f androgen deprivation (259, 260, 264). The collective evidence 

suggests the potential use o f the promoter o f the PSMA gene in gene therapy o f prostate 

disease. However, PSMA promoter itself is a week promoter and need to be coupled with 

other positive regulatory DNA elements to achieve satisfactory levels o f therapeutic gene 

expression. We have combined the Tcf-4/p-catenin enhancer element with the minimal 

PSMA promoter to attain higher levels o f gene expression. The significance o f this 

approach lies in the fact that approximately 20% o f the prostate show an aberrant
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activation o f wnt signaling pathway. Therefore, combining PSMA promoter and Tcf-4/p* 

catenin enhancer element is a rational approach for designing prostate specific gene 

expression promoters for the purpose o f gene therapy.

PSA Promoter

Prostate specific antigen is a protein expressed exclusively by benign, 

hyperplastic and malignant prostatic epithelium (266). An increase in the serum levels of 

PSA are considered indicative o f the benign hyperplasia or malignant carcinoma o f the 

prostate (267) and this has allowed PSA to be used as a diagnostic marker for prostate 

disease. Expression o f PSA is reported to be up regulated by androgens and is restricted 

exclusively to prostate (268). The restricted expression o f PSA is attributed to the 

immediate 5 ’ promoter region o f the PSA gene and is shown to be sufficient to target 

expression to prostate tissue (269). Subsequent studies demonstrated that PSA promoter 

activity is also regulated by an upstream PSA enhancer element (270). A thorough 

analysis o f PSA promoter revealed that coupling o f  minimal PSA promoter with its 

enhancer increases the specificity and level o f gene expression (271). This suggest that 

for designing o f prostate specific gene expression vectors, using PSA promoters, 

coupling o f positive regulatory elements is very critical for achieving satisfactory levels 

o f therapeutic gene expression. With the idea that wnt signaling pathway is frequently 

found activated in prostate carcinoma, it is reasonable to conceptualize that combing Tcf- 

4/p-catenin enhancer element with PSA enhancer will contribute in achieving higher 

levels o f specificity and gene expression in prostate carcinoma.
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Transcriptional Targeting Using Tcf-4/fl-Catenin Enhancer

Selective targeting and killing o f  tumor cells is one o f the major goals o f all 

cancer therapies. Conventional chemotherapy and radiotherapy induce dose limiting 

normal cell toxicities, which reduce their clinical effectiveness. Cancer gene therapy has 

the potential to avoid or minimize normal cell toxicities. This could be achieved by 

employing suitable strategies to target the therapeutic gene directly to the tumor cells.

The majority o f the cancer gene therapy clinical trials have focused on the delivery genes 

directly to the tumor site by intratumoral injections using both viral and non-viral 

delivery agents, thereby largely avoiding normal tissues. However, direct intratumoral 

injections fail to achieve higher levels o f tumor targeting because there are instances in 

which it is difficult to reach the tumor and it cannot be applied to disseminated metastatic 

tumors which are yet to be detected. A viable alternative to intratumoral injection is 

systemic delivery o f a suitably packaged transgene. This would allow targeting o f both 

the primary tumor and metastatic deposits, which must be controlled if  therapy is to be 

successful. While increasing the therapeutic ratio, systemic delivery also runs the risk o f 

exposing the normal cells to the harmful effects o f  the therapy. Cancer gene therapy 

offers several technological advances which may be helpful in addressing this issue. A 

number o f gene therapy strategies are now being developed to target both viral and 

nonviral delivery agents to tumor cells. These include exploitation o f natural viral 

tropisms; genetically modifying the virus to ablate native receptor interactions and 

incorporating a novel ligand into one o f the viral coat proteins; using tissue specific 

ligands or monoclonal antibodies incorporated on to the surface o f liposomes to direct 

them to target cells.
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In cancer gene therapy expression o f the therapeutic gene in target cells is an 

absolute requirement to minimize normal cell toxicity. Targeted delivery o f the 

therapeutic vector to the tumor cells is one way to achieve this goal; however it is still 

desirable to have another level o f control to ensure exclusive expression o f the 

therapeutic gene in target cells. Transcriptional targeting o f the therapeutic gene is a 

promising way to selectively target tumor cells and it involves designing o f recombinant 

DNA element (promoters) which would actively express the therapeutic gene in tumor 

cells. The basic idea behind these tumor specific gene expression promoters is that they 

usually contain cis-acting elements which are activated in diseased states such as cancer. 

A decade o f research has well established that genetic mutations result in aberrant 

activation o f growth pathways which contribute towards the development o f  cancer.

These growth signaling cascades, in general, target promoters o f several oncogenes 

resulting in their constitutive activation. The products o f these oncogenes are known to 

contribute towards the development o f cancer. Cyclooxygenase-2, c-myc, c-fos, cyclinD 

etc are classic examples o f such oncogenes which are found to be constitutively activated, 

at transcription level, in variety o f cancers. Therefore, promoters o f such oncogenes are 

ideal candidates for being used in designing o f tumor specific gene expression promoters. 

It is expected that, owing to the differential activation o f signaling pathways in a cancer 

cell environment, these oncogenic promoters will only be activated in cancer cells and 

not in normal cells. Thus, such promoters are extremely important DNA sequences for 

the purpose o f constructing tumor specific gene expression construct. However, it is also 

well known that usually such oncogenic promoters are poor or weak activators o f 

transcription. This can be an issue o f concern because failure to express sufficient
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amounts o f the therapeutic gene may result in failure o f the therapy. Besides, there is 

always a possibility that such oncogenic promoters can cause a leaky expression o f the 

therapeutic gene in normal cells which can result in normal cell toxicity. In general, 

activity and specificity are the two major concerns while designing a tumor specific gene 

expression promoter. An ideal promoter should be able to achieve therapeutically 

significant levels o f therapeutic gene expression specifically in cancer cells and should 

not show any biologically significant activity in normal cells. As described earlier, 

oncogenic promoters are good candidates but do not entirely fulfill the necessary 

requirements from the perspective o f gene therapy. Therefore it is very crucial to 

engineer such oncogenic promoters before they can be used in cancer gene therapy.

One o f the ways to accomplish this is to incorporate unique enhancer DNA 

sequences in such oncogenic promoters. These enhancer elements are specialized DNA 

sequences naturally found to be part o f several gene promoters and are responsible for the 

transcriptional activation or repression o f promoters in response to a biological signal.

The ability o f an enhancer element to transcriptionally activate or repress a promoter is 

facilitated by its ability to bind to a variety o f proteins. These proteins may range from 

chromatin modifying agents to transcription factors and are usually components o f signal 

transduction pathways. They have the ability to actively associate or dissociate from 

enhancer elements in response to a signal. Activation or repression o f promoter is a very 

complex process and it is the result o f a cumulative effect o f the nature o f proteins bound 

to enhancer/promoter DNA sequence at any given point o f time. Therefore a biological 

signal received at the cell surface may trigger a cascade o f events that may result in 

binding o f proteins known to be activators o f DNA transcription leading to transcriptional

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



56

activation o f the promoter. On the other hand it may also repress transcription if  the 

signals lead to dissociation o f pro-transcription proteins or binding o f factors which have 

a cumulative repressive effect on transcription. As mentioned earlier in this text that 

aberrant activation o f growth promoting signal transduction pathways results in 

differential activation o f genes in cancer. The promoters o f these differentially 

transctivated genes usually have specific DNA elements (for example enhancer elements) 

binding to an array o f proteins in response to a signal transduced by the activated 

signaling pathway. Such enhancer elements can be innovatively used in cancer gene 

therapy to control the expression o f therapeutic genes.

Mutational inactivation o f APC and/or beta-catenin is frequently found in 

epithelial tumors resulting in transcriptional activation o f Tcf-4/p-catenin gene responsive 

genes. Therefore, it is rational to assume that incorporating Tcf-4/p-catenin enhancer in 

therapeutic gene expression vectors would result in tumor selective gene expression. In 

past several attempts have been made to exploit the tumor selective activation o f the Tcf- 

4/p-catenin pathway for the purpose o f designing tumor selective gene expression 

vectors. Typically, these include combing o f Tcf-4/p-catenin enhancer with a promoter to 

drive the expression o f a therapeutic gene. In a study it was shown that introduction o f 

the cell death gene fadd  under the control o f a HSV-TK promoter containing wild-type 

Tcf/Lef-binding sites resulted in preferential killing o f colon cancer cells with 

hyperactive b-catenin/Tcf activity (272). A synthetic promoter, incorporating Tcf-4/beta- 

catenin binding sites has been designed and shown to successfully express E. coli 

Nitroreductase gene in colon cancer xenografts (273). The suppression o f colon cancer 

cell growth was demonstrated in nude mice when xenografts were targeted with an
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adenoviral vector carrying HSV-TK gene driven by a recombinant CMV/Tcf-4/p-catenin 

promoter (274). These studies have been well designed and successfully demonstrate the 

proof-of-principle. However, none o f the studies propose the idea o f  combining 

oncogenic promoter with Tcf-4/bet-catenin enhancer elements for designing tumor 

specific gene expression promoters. This is a very crucial aspect because various 

oncogenic promoters are found differentially activated in tumors and incorporating such 

DNA elements in therapeutic vectors would help in achieving a stringent control over the 

therapeutic gene expression. It is expected that such recombinant promoters will have a 

very low activity in normal cells and this would help in further minimizing the normal 

cell toxicity. Furthermore, none o f the studies have conclusively shown the activity o f 

recombinant promoters, with Tcf-4/beta-catenin binding sites, in normal colon cells 

which is a very important aspect in the strategic targeting o f Tcf-4/p-catenin signaling 

pathway for gene therapy. It is expected that recombinant Tcf-4/p*catenin enhancer / 

promoter combination designed in this study would be very useful in construction o f gene 

expression vectors for strategic delivery o f therapeutic o f choice to cancer cells. Another 

hallmark o f the proposed enhancer / promoter design strategy is that it can be adapted to 

suit the clinical therapeutic requirements governed by the patient and the type o f tumor. 

This can be achieved by combining Tcf-4/p-catenin enhancer with the chosen oncogenic 

promoter and therapeutic gene. Choosing an oncogenic promoter partner for Tcf-4/p* 

catenin enhancer for treating a patient can be aided by gene array analysis o f a tumor 

biopsy taken from the patient. Furthermore, the ability to modulate the levels o f 

therapeutic gene expression via genetic and chemical means is another novel aspect o f 

the proposed enhancer/promoter system. As described on page number 34, the activity o f
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Tcf-4/p-catenin enhancer elements can be modulated by chemical means and these 

modulators could be strategically used in clinic for regulating the activity o f the proposed 

enhancer/promoter system.
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CHAPTER II 

SPECIFIC AIMS

The goal o f this research is to construct and identify enhancer/promoter 

combinations for tumor specific gene expression. Identified combinations will be tested, 

in vitro, for their ability to drive the expression o f a therapeutic gene and kill cells. 

Further, delivery issues o f the therapeutic gene construct will be addressed by 

incorporating these elements into a recombinant adenovirus. The efficacy o f  the 

recombinant adenovirus to deliver and selectively express the therapeutic gene in target 

cells will be evaluated by in vitro assays. Finally, various chemical and genetic 

modulators will be screened in an attempt to identify newer methods o f regulating the 

activity o f the recombinant enhancer/promoters.

Aim 1: Construction and screening o f optimal recombinant Tcf-enhancer/Promoter 

combination

Experiments described in this aim are designed to accomplish a single goal: 

identify the optimal Tcf-4 enhancer/promoter combination(s) which have the ability to 

drive gene expression specifically in tumor cell as compared to normal cells. To 

accomplish these goals we plan to conduct luciferase reporter assays. Various Tcf- 

4/promoter luciferase reporter constructs would be generated by cloning optimized 

number o f repeats o f Tcf-4 enhancer element in combination with the chosen oncogenic 

promoter in a luciferase reporter construct. To ascertain the efficacy o f these 

enhancer/promoter combinations, reporter constructs would be used to screen several 

colon and breast tumor cell lines. Since, it is known that in majority o f colon and in fairly
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high number o f  breast tumors, inactivating mutations in the APC/beta-Catenin gene 

results in stabilization o f p-Catenin which leads to transactivation o f P-catenin/tcf-4 

enhancer regulated genes. Therefore, the selected colon and breast tumor lines are likely 

to be good model system for screening for optimal Tcf-4 enhancer/promoter 

combinations. Further, the results o f these experiments will also provide additional 

information: comparative ability o f the all enhancer/promoter combination to drive gene 

expression in different cell lines because it is expected that a certain combination might 

be optimal in certain cell lines and not in others. All the reporter constructs will also be 

tested for their ability to drive gene expression in a small panel o f primary human normal 

(NCM) cell lines obtained from INCELL. These cell lines have been derived from 

normal human colon and are expected to have low or insignificant amounts o f 

transcriptionally active beta-catenin. Therefore, the cloned Tcf-4 enhancer/promoter 

combinations are expected to be transcriptionally inactive and a lower level o f reporter 

luciferase activity is expected in these normal cell lines.

Aim 2: Evaluation o f the ability o f chosen Tcf-enhancer/Promoter combination to 

selectively express a therapeutic gene in tumor cells and estimation o f cell killing

These experiments are designed to accomplish two goals: 1) Evaluate the ability 

o f the chosen enhancer promoter combination (from Aim # 1) to drive the expression o f a 

therapeutic gene selectively in tumor cells and 2) estimate the efficacy o f  tumor selective 

gene expression in tumor cell killing. Reporter luciferase data from Aim#l would help us 

to identify enhancer promoter combinations which are selectively active in tumor cells; 

next we would use the identified enhancer/promoter elements to drive the expression o f a 

therapeutic gene. We plan to use HSV-TK as the therapeutic gene, which would be
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cloned down stream of the chosen Tcf-4 enhancer/promoter element in a eukaryotic 

expression vector. This recombinant therapeutic gene expression construct would be used 

to transient transfect normal and tumor cell lines allowing us to evaluate the ability o f the 

enhancer/promoter for tumor selective HSV-TK gene expression. Because o f the tumor 

selective activity o f the enhancer/promoter we expect to see a selective expression o f 

HSV-TK in tumor cells and not in normal cells. In addition, to gene expression analysis, 

we would a conduct a functional assay to confirm the activity o f the expressed HSV-TK. 

Transfected cells will be treated with labeled [3H] nucleosides followed by the extraction 

and assaying o f nucleotides. Ability to phosphorylate nucleosides would reflect the 

functionality o f the expressed HSV-TK and the amount o f extracted nucleotides would be 

an index o f the levels o f HSV-TK expression in cells. In the next step we will investigate 

the ability o f the pTcf-4/promoter-HSV-TK gene construct to selectively kill tumor cells 

by conducting GCV cytotoxic cell viability assays. For determination o f GCV 

cytotoxicity, tumor cell lines will be transiently transfected with Tcf-4/promoter-HSV- 

TK construct followed by treatment with different doses o f GCV. As a control normal 

cell will be transfected similarly followed upon by GCV treatment. GCV treated cells 

would be allowed to grow for 36-48 hours followed by counting o f  viable cells. We 

expect to see increased tumor cell killing as compared to the normal cells, which be could 

be explained on the basis o f level o f expression o f HSV-TK in tumor cells as compared to 

normal cells.
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Aim 3: Optimization o f delivery o f the therapeutic gene/promoter-enhancer combination 

to the tumor

The main objective o f the experiments in this section is to design optimal delivery 

method which could deliver the recombinant therapeutic gene construct to the target 

cells. Gene delivery by naked DNA transfection is severely limited by the ability o f the 

target cells to get transfected. Some cells are more susceptible for naked DNA uptake as 

compared to others. However, transfection efficiencies for a specific target cell can be 

improved by employing various transfection methods. Nevertheless, transfection 

procedures fail to achieve significant levels o f gene delivery o f the therapeutic gene to 

target cell and this would severely impede the objectives o f cancer gene therapy which 

requires, ideally, targeting every single tumor cell. We plan to use recombinant 

adenoviral vectors to address the issue o f delivering our recombinant therapeutic gene 

construct to the target cells.

Aim 4: Identification o f strategies for modulating Tcf-4/Beta-catenin responsive 

promoters

For several therapeutic implications, it may be necessary to regulate the 

expression o f the therapeutic gene, for e.g. stimulation o f the gene expression is possibly 

needed, for increasing therapeutic gene expression, in cells which are marginally 

responsive. Conversely, the possibility o f having a strategic repressor option in the 

context o f viral-based gene therapies could be important. One o f the several ways to 

control the expression o f the therapeutic gene in target tissue is to regulate the activity o f 

the enhancer/promoter which is driving its expression. Experiments in this specific aim 

are, primarily, geared towards identifying strategies to regulate the activity o f the
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recombinant Tcf-4 enhancer/promoter by chemical and genetic means. Short chain fatty 

acids like butyrate and trichostatin A have been reported to increase Tcf-4/p-catenin 

mediated gene expression. Butyrate is a histone de-acetylase inhibitor which can act 

differentially either promoting or repressing Tcf-4/p-catenin mediated gene expression. 

Therefore compounds like butyrate and trichostatin A could be potentially used for 

increasing therapeutic gene expression by stimulating the Tcf-4 enhancer/promoter. On 

the contrary, compounds like doxorubicin and 9-cis-retinoic acid have been reported to 

transcriptionally repress expression o f Tcf-4/p-catenin responsive genes. Further, drugs 

like aspirin and indomethacin have recently been reported to reduce Tcf-4/p-catenin 

mediated signaling by increased stabilization o f phosphorylated P-catenin the levels. 

Hence, there are several promising compounds which can be screened for potential 

chemical regulators o f recombinant Tcf-4 enhancer/ promoter combinations. The 

luciferase reporter DNA constructs designed in specific aim#l contain tcf-4 enhancer 

elements coupled with different oncogenic promoters used to drive the expression o f a 

reporter luciferase gene. These constructs will be primarily used for screening o f various 

compounds for modulatory acitivity on recombinant Tcf-4/promoter combination. The 

central idea is to measure the luciferase activity, following transfection o f cells with 

reporter DNA, in presence or absence o f the candidate drug. Levels o f luciferase activity 

would assist in classifying the candidate compound into stimulators or repressors.
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CHAPTER III 

MATERIALS AND METHODS

Plasmids

Luciferase reporter plasmids pTop-flash and pFop-flash were gifted by Dr. Van 

de Wetering, Netherlands. Reporter plasmids pGL2-CEA was obtained as a gift from Dr. 

Kathy Molnar-Kimber, university o f Pennsylvania, PA. pGL3-PSA and pGL3-PSMA 

were gifted by Dr. Tonia Vlahou, Eastern Virginia Medical School, VA.

Cloning Procedures

Restriction Digests

All restriction enzymes used in these studies unless otherwise noted, were bought 

from Promega. For most digests, 3-5 units o f enzyme were used per pg o f DNA digested 

in a company recommended restriction enzyme buffer and the reaction was incubated for 

approximately 2 hours at the appropriate temperature.

Ligation Reactions

All ligation reactions were performed using 20 pg o f T4 DNA ligase (NEB) and 

buffer provided by the manufacturer. All ligation reactions had 100-300 ng o f vector 

DNA and three to five molar excess o f insert when necessary. The ligation reaction was 

incubated at 16° C for at least 16 hours.

Phosphatase Reactions

These reaction was carried to remove 5’ phosphate on restriction digested DNA to 

prevent self ligation o f the vector DNA in ligation reactions. Approximately 20 units o f

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



65

calf intestinal phosphatase (NEB) were added to the reaction mixture containing 

manufacturer recommended buffer and restriction digested vector DNA. The reaction 

mixture was incubated at 37° C for 30 minutes, 20 units o f phosphatase were added, and 

the reaction was incubated for an additional 30 minutes. The vector DNA was 

subsequently purified on a 1% agarose gel.

Competent Bacteria

E. coli D H 5a competent cells used in these studies were prepared in the 

laboratory and JM109 competent cells were purchased (Promega). Single colony o f E. 

coli D H 5a cells was revived overnight in LB at 37°C at 200 rpm shaking. 1 ml o f this 

culture was subcultured in 100 ml LB and grown till A6oo reached 0.3. The culture was 

chilled on ice for 10 min and centrifuged at 4500xg for 15 min at 4°C. The cells were 

gently suspended in 15 ml o f ice cold sterile solution o f 100 mM CaCL containing 15% 

glycerol, and incubated on ice for 30 min. Cells were harvested again at 4500xg for 15 

min and gently suspended in 5 ml o f 100 mM CaCL solution containing 15% glycerol. 

Competent cells were aliquoted in small volumes (100-200 pi) in prechilled tubes and 

stored at -70°C.

Transformation o f Bacteria

Competent cells, stored at -70°C, were slowly thawed on ice. The DNA (ligation 

mix (10 pi) or 100 ng o f plasmid DNA) was added to 100 pi o f  competent cells. After 

gentle mixing, cells were incubated on ice for 1 h. Cells were given a heat shock at 37°C 

for 5 min or 42°C for 90 sec and then chilled on ice for 2 min. The cells were then 

allowed to grow in 1 ml o f LB for 1 h at 37°C. Dilutions o f cells were plated on LB-agar
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plates containing specific antibiotics and incubated at 37°C overnight. The recombinants 

were screened for the presence o f plasmid by mini-preparation o f plasmid DNA and 

restriction endonuclease digestions.

Miniprep Analysis o f Plasmid Constructs

For screening o f E. coli cells harboring the desired plasmid small scale 

preparation o f plasmids were made using Qiagen miniprep kit. Briefly, cells were picked 

up from a single colony and grown for 12 h in a small volume o f LB containing 

appropriate antibiotic. Three ml o f culture was centrifuged in microcentrifuge tubes at 

8000xg for 2 min and the supernatant was discarded. The plasmid DNA was then 

purified using Qiagen miniprep spin columns following the protocol provided by the 

manufacturer in the product literature. The purified plasmids were appropriately 

restriction digested and analyzed on agarose gels.

Large Scale Plasmid Purification

For rapid large-scale preparation o f plasmid DNA using the Qiagen midi

preparation kit, manufacturer’s instructions were followed. Briefly, 50 ml o f  LB medium 

with appropriate antibiotics was inoculated with an ovmight culture o f E. coli cells 

harboring the desired plasmid. Cells were harvested at 4000xg and suspended in 5 ml o f 

resuspension buffer (50 mM Tris-Cl, pH 8.0, 10 mM EDTA, 100 pg/ml RNase A). 5 ml 

o f lysis buffer (0.2 M NaOH, 1% SDS) was then added to the suspension, mixed 

thoroughly and incubated for 5 min at RT. To this, 5 ml o f neutralization buffer (3 M 

potassium acetate, pH 5.5) was added and mixed and then incubated for 10 min on ice. 

The mixture was spun at 12,000xg for 30 min and clear supernatant was collected in a 

fresh tube. The supernatant was then loaded on Qiagen T ip-100 equilibrated in Buffer
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QBT (0.75 M NaCl, 50 mM MOPS, pH 7.0, 15% isopropanol) and bound DNA was 

washed with buffer QC (1.0 M NaCl, 50 mM MOPS, pH 7.0, 15% isopropanol). Pure 

DNA was eluted in buffer QF (1.25 M NaCl, 50 mM Tris-Cl, pH 8.5, 15% isopropanol) 

and precipitated with 0.7 volumes o f isopropanol. DNA pellet was washed with 70% 

ethanol and dried and dissolved in TE ((10 mM Tris-Cl, pH 8.0, 1 mM EDTA).

Isolation o f DNA Fragments from Agarose Gels

To isolate DNA fragments from a reaction mixture containing other products, the 

reactions were stopped with stop dye (50% glycerol, lOOmM EDTA, 0.1% bromophenol 

blue and loaded onto a 1% agarose gel. Following electrophoresis, the desired band was 

excised with sterile scalpel blade and put in a microcentrifuge tube. The DNA was 

purified with the help o f Qiaquick gel extraction kit (Qiagen). Briefly, the gel pieces were 

dissolved in solubilization buffer for 15 min at 55°C. Solubilized agarose with DNA was 

added to the spin column provided in the kit and was spun at 12,000xg for 1 min. The 

flow through was discarded and column was washed with a buffer containing 70% 

ethanol. Bound DNA was eluted at 55°C for 5 min in 10 mM Tris, pH 8.0.

PCR amplification o f DNA fragments

PCR master mix (Promega) was used for all the PCR reaction described in these 

studies and the reactions were performed following the manufacturer’s instruction. 100 

ng o f template DNA and 100 ng o f each primer were used in 50 pi o f reaction mixture. 

The following program was used in all amplication reactions on a thermal cycler (MJ 

research). Step 1: 94° C for 2 minutes; Step 2: 92° C for 1 minute; Step 3: 55° C for 1 

minute; Step 4: 72° C for 1 minute; Step 5: cycle to step 2, 32 times; Step 6: 72° C for 5 

minutes; Step 7: maintain at 4°C.
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Human Normal and Tumor Cell Lines

Normal cell lines (NCM-460, NCM-425, CSC-1) were maintained in INCELL’s 

specialty media M310 at 37 ° C and 5% C 02. Colon tumor cell lines (SW480, HCT8, 

SW620, HCT116, HT29) were maintained in RPM1 1640 (Cell Grow) supplemented 

with 10% fetal bovine serum (Cell Grow), 1% penicillin-Streptomycin (Cell grow), at 37 

° C and 5% C 0 2.

Luciferase Vectors and Assays

Luciferase Reporter Vectors

Tcf-4/p-catenin enhancer and pGL3-basic/Tcf: pTop-Flash luciferase reporter 

plasmid was used as the source for Tcf-4/p-catenin enhancer fragment. pTop-Flash was 

restriction enzyme digested with Sal-I and the reaction mixture was resolved on a 15 % 

polyacryamide gel. Resolving gel consisted o f 15% (w/v) acrylamide:bisacrylamide 

(29:1), IX TBE, and 0.1% APS. Gel was polymerized with 1 pl/ml o f TEMED. Tcf-4/p- 

catenin enhancer fragment was excised out o f the gel and eluted in a elution buffer (0.5 

M ammonium acetate, ImM EDTA, pH 8.0). pGL3-basic (promega) reporter luciferase 

vector was restriction enzyme digested with Sal-I and purified on agarose gel. Sal-I 

digested 86 bp. insert o f Tcf-4/p-catenin enhancer fragment was ligated with Sal-I 

digested pGL3-basic vector to generate pGL3-basic/Tcf.

pG U -C E A /T cf

pGL3-CEA vector was digested with Sal-I followed by purification on a 1% 

agarose gel. Purified Sail digested pGL3-CEA was treated with calf intestinal 

phosphatase and purified on a 1% agarose gel. Sal-I digested Tcf-4/p-catenin enhancer
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fragment (86 bp.) was ligated to the restriction digested, CIAP treated pGL3-CEA to 

generate pGL3-CEA-Tcf.

pGL3-Cox2 and pGL3-Cox2/Tcf

A 720 bp fragment o f Cox-2 promoter was PCR amplified from human genomic 

DNA. SW480 colon cancer cells were used as the source o f genomic DNA which was 

isolated following the instructions provided with the Qiagen mammalian cell DNA 

extraction kit. Desired Cox-2 promoter fragment was amplified with Xhol (Cox-2/XhoI- 

CCGCTCGAGCGGGGGTACGAAAAGGCGGAA) and Bgl-11 (Cox-2/Bgl-II- 

GAAGATCTTCCGCCAGGTACTCACCTGT) restriction enzyme end primers in a PCR 

reaction mix (Promega) with 100 ng o f genomic DNA template. The amplified DNA 

fragment was agarose gel purified restriction enzyme digested in a reaction mixture 

containing Xho-I and Bgl-11. Following restriction enzyme treatment, 270 bp DNA 

fragment was resolved on an agarose gel and purified using Qiagen qiaquick gel 

extraction kit. The vector DNA was prepared by treating pGL3-basic plasmid DNA with 

Xho-I and Bgl-II. The restriction digested vector DNA was agarose gel purified using 

Qiagen Qiaquick gel extraction kit and ligated, with PCR amplified, and restriction 

enzyme treated 270 bp Cox-2 promoter DNA to generate pGL3-Cox2.

Sal-I restriction enzyme digested Tcf-4/p-catenin enhancer DNA was cloned in 

the Sal-I restriction enzyme site o f pGL3-Cox2 to generate pGL3-Cox2/Tcf.

pG L3-PSA/Tcf

Sal-I restriction enzyme digested Tcf-4/p-catenin enhancer DNA was cloned in 

the Sal-I site o f pGL3-PSA luciferase reporter vector to generate pGL3-PSA/Tcf.
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pG U -P SM A /Tcf

PSMA promoter (640 bp.) insert was excised out o f pGL3-PSMA promoter using 

Kpn-I and Hind-III restriction enzymes. The 640 bp. promoter DNA fragment was 

resolved and purified on an agarose gel. For vector DNA, pGL3-Tcf plasmid was 

restriction digested with Kpnl and Hind-III, followed by purification on an agarose gel. 

Kpn-I and Hind-III digested insert and vector DNA were ligated to generate pGL3- 

PSMA/Tcf.

Reporter Luciferase assays

To evaluate the ability o f the recombinant enhancer/promoter combinations to 

express the reporter gene in cancer and normal cells, dual luciferase assays were 

performed. The assay relies on an internal control (pRL-TK) vector which carries a gene 

for Renilla luciferase expressed from a ubiquitously active eukaryotic promoter (HSV- 

TK). Renilla luciferase generates a signal which is distinct from the luciferase expressed 

by the test reporter vector and this signal is used to normalize for transfection efficiencies 

o f different cell lines. Optimal transfection conditions for each cell lines were empirically 

determined. 2 X 105 cells/well were seeded in 6 well plates. The cells were transfected 

overnight with lOpl lipofectamine (Life Tech.) reagent, 2 pg luciferase reporter plasmid 

and 200 ng o f  pRL-TK in OPTIMEM media (Life Tech.). On following day, regular 

maintenance media was replaced. After 48 hours, the cells were lysed and assayed 

according to the protocol supplied with the Dual Luciferase Assay Kit (Promega). The 

relative light units were recorded with a Turner luminometer.
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HSV-TK Constructs and Gene Expression Analysis

Construction o f pCDNA-TK and pc-fos/Tcf-4-HSV-TK

pCDNA3.1(+)-5.4 kb (Invitrogen), was used as the eukaryotic expression vector. 

The native CMV promoter was removed by Bglll and BamHI (promega) restriction 

digest, followed by gel purification o f the vector backbone excluding the CMV promoter. 

Wild type HSV-TK gene (1.1 Kb) was excised from pLTK-ED (275) using 5’ Bglll and 

3’ BamHI restriction enzymes and cloned into Bglll and BamHI sites o f CMV promoter 

less pCDNA3.1(+) to generate pCDNA-TK. To generate pc-fos/Tcf-4-HSV-TK, Tcf-4-c- 

fos DNA fragment (186 bp.) was PCR amplified with 5’ Bgl-II 

(GTAAGATCTGTTCTAGAGTCGACCTGCAGCCCAAG) and 3 ’ Bam-HI 

(GTAGGATCCATGGGAGATCCTCTAGAGAGACACTG) primers and using PCR 

master mix reagent (promega). The PCR product (186 bp.) was resolved on a 1% agarose 

gel, purified and restriction enzyme digested (with Bam-HI and Bgl-II). Restriction 

digested and agarose gel purified enhancer/promoter DNA fragment was cloned into the 

Bglll site o f pCDNA-TK upstream o f HSV-TK to generate pc-fos/Tcf-4-HSV-TK. 

Construction o f pPSMA/Tcf-4-HSV-TK

The luciferase gene o f pGL3-PSM A/Tcf plasmid DNA was removed by 

restriction enzyme digestion (Hind-III, Xba-I) and resolving the products on a 1% 

agarose gel. The vector backbone without the luciferase gene was excised from the gel 

and purified. For insert, the HSV-TK gene (1.1 kb.) was PCR amplified with primers 

with Hind-III (CCCAAGCTTGGGATGGCTTCGTACCCCGGCCATC) and Xba-I 

(GCTCTAGAGCTCAGTTAGCCTCCCCCATCTG) restriction enzyme end primers. 

pLTK-ED (ref) was used as template DNA. Following agarose gel purification, HSV-TK
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gene was restriction digested (Hind-III, Xba-I) and ligated with the prepared vector to 

generate pPSMA/Tcf-4-HSV-TK.

Transfection and Gene Expression Analysis

The ability o f the HSV-TK expression vectors for tumor selective expression o f 

HSV-TK was evaluated by transiently transfecting vectors in normal and tumor cells 

followed by Western analysis. 2 x l0 5 cells were seeded in 6 well plates for 24 hours 

followed by overnight transfection with 2pg/well o f DNA, lOpl/well o f Lipofectamine 

transfection reagent and OPTIMEM media (Invitrogen). The day after transfection, 

regular growth media was replaced. After 48 hours o f transfection, protein extracts were 

prepared by boiling in reducing sample loading buffer. Protein samples were subjected to 

SDS-PAGE and western blot analysis.

SDS-PAGE Analysis

SDS-PAGE analysis was carried out as described by Laemmli (1970). Resolving 

gel consisted o f 15% (w/v) acrylamide:bisacrylamide (29:1), 0.4 M Tris-Cl, pH 8.8, 0.1% 

SDS, and 0.1% APS. Gel was polymerized with 1 pl/ml o f TEMED. 5% stacking gel was 

made similarly in 0.125 M Tris-Cl, pH 6.8. Samples were boiled in the reducing sample 

buffer (4M urea, 20mM DTT, lOOmM Tris pH 8.0, 4% SDS, 0.1% bromophenol blue) 

prior to loading onto the gel. The gel was electrophoresed in running buffer (25 mM Tris- 

Cl, pH 8.3, 250 mM glycine and 0.1 % SDS) at 15 V/cm for 2 h. The gel was then stained 

with Coomassie brilliant blue G-250 (0.05% w/v) for 1 h and destained in methanol: 

glacial acetic acid: water (4:1:5).
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Immunoblotting

The samples analyzed by SDS-PAGE were electrotransferred onto nitrocellulose 

membrane at 30 mA for 10 h in transfer buffer (20 mM Tris, 150 mM glycine, pH 8.0 

and 20% methanol). Non-specific sites were blocked by 5% non-fat milk in TBST ( 0.01 

M Tris pH 8.0, 0.14 M Sodium Chloride and 0.1 % Tween-20) for 1 h on a rocker. The 

membrane was then incubated with primary rabbit polyclonal IgG against HSV-TK in IX 

TBST (1:1000) followed by incubation with HRP conjugated goat anti-rabbit antibody 

(1:5000). The blot was washed thoroughly with TBST between successive incubations. 

Fluorimetric detection o f bands was attained using ECL western blotting kit (Amersham 

Pharmacia Biotech, UK). Blots overlaid with detection reagents were exposed to X-ray 

film (Kodak) and were developed using an automated X-ray film developer (Kodak). 

Metabolic Labeling with 13H1 GCV

For metabolic labeling procedure (171). Parental and HSV-TK expressing vector 

transfected cells (2 x l0 5) were labeled in triplicate with lpCi o f [3H]GCV for 8-10 hours, 

and then nucleotides were extracted from pelleted cells in 0.2ml o f 70% methanol at 4°C 

for 15 min. An aliquot o f each methanol-soluble supernatant was analyzed for 

radioactivity by scintillation counting using a bench top scintillation counter (Beckman). 

The residual cell pellets were analyzed for radioactivity, by scintillation counting, for 

nucleotides present in DNA.

GCV Cytotoxicity: Cell Viability Assays

1x10s cells/well, tumor and normal cells were seeded in 6 well plates. Next day 

cells were transfected as previously described in these studies. Similarly, control cells 

were mock transfected with the same amount o f non-specific DNA / lipocfectamine.
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Following 18-20 hours o f transfection, regular growth media was replaced with 0, 1 and 

10pm GCV. After 48 hours o f growth, cells were washed once with PBS to dislodge dead 

cells, adherent cells were collected by trypsinization and trypan blue stained live cells 

were counted using a haemocytometer/microscope.

GCV sensitivity: Clonal dilution Assays

For determination o f GCV sensitivity, cells were seeded in 24 well plates 

(2x l05/well) in 1 ml media. On the following day, cells were transfected with appropriate 

plasmid DNA constructs and control cells were mock transfected similarly with same 

amount o f lipid and non specific control plasmid DNA. The next day, after transfection,

0, 0.1, 1 or 1 Opl GCV was be added to each cell line in triplicate. After 24 hours o f GCV 

treatment, the media was removed, cells were rinsed in fresh media, trypsinized, and then 

media was added to a final volume o f 1 ml/well. Each well o f cells was then sequentially 

diluted from 1:10 to 1:10,000 in 1 ml fresh media on a separate 24 well plate. After 

approximately 7 days, surviving cell colonies were fixed in 100% methanol, stained with 

0.1% methylene blue and were counted.

Adenoviral Vectors and Gene Expression Analysis

Construction o f the Recombinant Adenoviral Vectors

The adenoviral vectors used in the study are E1/E3 deleted replication 

incompetent viruses and are constructed by using pAdeasy technology and a pAd-easy 

recombinant adenoviral vector construction kit (Qbiogene). Instruction and reagents 

provided by the manufacturer were used to construct two recombinant adenoviral vectors; 

Ad-Tcf-fos-TK and Ad-CMV-TK. Recombinant adenovirus were constructed in three
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steps, in the first step two vector pShuttle-Tcf-fos-TK and pShuttle-CMV-TK, were 

generated.

pShuttlc-Tcf-fos-TK

pc-fos/Tcf-4-HSV-TK construct was restriction enzyme digested (Bgl-II, BamH- 

I), products were resolved on a 1% agarose gel and an insert o f 1.3 kb fragment (Tcf-c- 

fos-TK) was purified. pShuttle vector (provided in the kit) was prepared by Bgl-II 

restriction digestion followed by phosphatase treatment and agarose gel purification. 

Prepared Tcf-c-fos-TK DNA fragment was liagated in the Bgl-II restriction site o f the 

prepared vector to generate pShuttle-Tcf-fos-TK.

pShuttle-CM  V- TK

pLTK-ED (ref) plamisd DNA was restriction digested (Bgl-II, BamH-I), products 

were resolved on a agarose gel and an insert DNA o f 1.1 kb. o f HSV-TK gene was 

purified. Vector was prepared by treating pShuttle-CMV (provided in the kit) with Bgl-II 

restriction enzyme and agarose gel purifying the restriction digested DNA. HSV-TK 

insert with Bgl-II and BamH-I restriction ends was ligated with purified Bgl-II treated 

pShuttle-CMV to generate pShuttle-CMV-TK.

In the second step, using a recombination positive bacterial strain (provided in the 

kit), pShuttle-Tcf-fos-TK and pShuttle-CMV-TK were recombined with pAdeasy-1 (33.4 

Kb) plasmid to generate the recombinant adenoviral DNA. These recombinant constructs 

were transfected in HEK 293 cells to produce adenoviral particles. The recombinant 

adenoviruses were amplified and purified as suggested by the manufacturer. The viral 

stocks were titered using an adenovirus rapid titration kit (Clontech) and following 

instructions provided by the manufacturer.
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Adenoviral Infections and gene expression analysis for HSV-TK

Infecting cells with adenoviruses simply involves placing viruses in contact with 

cells. For the first 3-4 hours o f infection, to increase the infection efficiency, the volume 

o f the media used was minimized to allow close contact between the cells and 

recombinant adenoviruses. Infection was carried at 37° C and 5% C 0 2. Regular media 

was then added to cover the cells and were allowed to grow normally. For HSV-TK 

expression analysis 2 x l0 5 cells /well were infected with recombinant adenoviruses in 6 

well plates. After 48 hours o f infection, protein extracts were prepared by boiling samples 

in reducing sample buffer and were analyzed by SDS-PAGE / Western blot analysis.

Screening of Drugs with Modulatory Properties

To evaluate the ability o f the candidate drug to modulate the activity o f 

recombinant Tcf-4 enhancer/promoter dual luciferase assays were. 2 X 105 cells/well 

were seeded in 6 well plates. The cells were transfected overnight with 1 Opl 

lipofectamine (Life Tech.) reagent, 2 pg luciferase reporter plasmid and 200 ng o f pRL- 

TK in OPTIMEM media (Life Tech.). The drug, to be tested, was added to the cells in 

different concentrations at the time o f transfection. On the following day, regular 

maintenance media was replaced. The pRL-TK construct was used as an internal control 

for transfection efficiency. After 48 hours, the cells were lysed and assayed according to 

the protocol supplied with the dual Luciferase Assay Kit (Promega). The relative light 

units were recorded with a Turner luminometer.
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CHAPTER IV 

RESULTS

Introduction

The ability to distinguish a normal cell from a tumor cell is one o f the central 

requirements in a cancer gene therapy protocol. This can be accomplished by restricting 

the entry o f the therapeutic vector into the cells and/or at the level o f transcription by 

directing the expression o f the therapeutic gene from a tumor specific promoter (276, 

277). Transcriptional control strategies mainly involve designing therapeutic vectors by 

incorporating promoter/enhancer elements that show little or no activity in normal cells 

under non-pathological conditions, but are turned on or up regulated in certain types o f 

tumors. For example, erb-2 and muc-1 promoters, which are frequently found up 

regulated in adenocarcinomas due to the altered signaling pathways, have been 

successfully exploited in experimental therapeutic models (278, 279). However, some 

tumor specific promoters are inefficient activators o f transcription, which severely limits 

their applicability. One o f the approaches for improving the transcriptional strength or 

specificity is to couple positive regulatory elements o f enhancer domains with the basal 

minimal, differentially regulated, promoters o f oncogenes. This strategy has been 

successfully used for carcino embryonic antigen (CEA) and prostate specific antigen 

(PSA) promoter (271, 280). We have used a similar rationale to design promoters for 

gene therapy vectors based on the wnt signaling pathway. It is well established that wnt 

signaling pathway is aberrantly activated in a variety o f adenomas o f epithelial origin 

(205, 281 -285). This results in stabilization o f P-catenin levels leading to constitutive
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activation o f gene promoters that contain Tcf-4/p-catenin enhancer element. Therefore it 

is logical that the Tcf-4/P-catenin enhancer element could be incorporated in the design 

o f tumor specific promoters to achieve tumor specificity o f therapeutic gene expression.

The purpose o f the experiments described in this chapter is to establish that the 

Tcf-4/p-catenin enhancer element can be combined with minimal promoters o f known 

oncogenes to achieve specificity o f gene expression in tumor cells as compared to normal 

cells. A Tcf-4/p-catenin enhancer element was combined with various minimal 

oncogenic promoters in reporter luciferase constructs. These constructs were used to 

screen a panel o f tumor and normal cell lines to evaluate the ability o f the Tcf-4/p-catenin 

enhancer / promoter combination to direct gene expression specifically in the tumor cells. 

A chosen Tcf-4/P-catenin enhancer / promoter combination was cloned upstream o f an 

HSV-TK gene in a therapeutic eukaryotic expression vector to test the ability o f the 

recombinant promoter to tumor specific gene expression. To address the issue o f delivery 

o f the therapeutic vector to the cells, an adenoviral vector was generated and evaluated 

for its ability to deliver and express the therapeutic gene in cells. Finally, the possibility 

o f regulating the activity o f recombinant Tcf-4/p-catenin enhancer / promoter with 

chemical means was also explored.

Aim 1: Construction and screening of recombinant Tcf-enhancer/Promoter 

combinations

Construction and cell line testing o f Tcf-4-enhancer/c-fos recombinant promoter

The Tcf-4/p-catenin enhancer element was coupled with different basal minimal 

promoters in a luciferase reporter plasmid to generate various recombinant
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enhancer/promoter combinations as described in materials and methods. These 

combinations were then screened in a panel o f normal and tumor cell lines to identify the 

most active enhancer/promoter combination based on selectivity o f expression o f the 

reporter gene in tumor cells as compared to normal cells. The luciferase reporter plasmids 

pLuc-fos/Tcf (pTOP-FLASH) and pLuc-fos/fct (pFOP-FLASH) were kindly provided by 

Dr. Mark Van der Wetering. The pLuc-fos/Tcf construct consists o f four tandem repeats 

o f the Tcf-4 binding sequence (CCTTTGATCT, 82 bp total), 5’ to a murine c-fos 

promoter (186 bp) driving expression o f the luciferase gene. The pLuc-fos/fct is a 

negative control plasmid that contains altered Tcf enhancer repeat sequences 

(CCTTTGGCCT) not recognized by Tcf-4 (18). Therefore pLuc-fos/fct served as an 

excellent negative control reporter plasmid and demonstrated that binding o f Tcf-4 factor 

to the enhancer element is crucial for the transcription o f the reporter gene. For 

transfections, 2 X 105 cells were seeded (in triplicate) and incubated overnight with 2 pg 

pTCF/fos-Luc, 1 pg renilla luciferase (pRL-TK), and 8-14 pi lipofectin reagent in Opti- 

MEM media. A Dual-Luciferase Reporter kit and a Turner TD-20e luminometer were 

used to determine luciferase activity, with values expressed as the ratio (relative light 

units, RLU) o f firefly luciferase activity to Renilla luciferase activity 48 hrs. post 

transfection. In addition, to examine the effect o f tandem repeats o f Tcf-4 enhancer on the 

activity o f c-fos promoter, a Tcf-4 enhancer deleted vector containing only c-fos 

promoter driving the expression o f luciferase gene was made. The Tcf-4 enhancer-deleted 

vector, pTOPLESS, was generated by digesting pTOPFLASH with Sal I to remove the 

82 bp TCF enhancer sequences. Following gel purification, the pTOPLESS plasmid was 

generated by religation o f  the Sal I site. The constructed plasmids were used to evaluate
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the ability o f the T cf enhancer sequences to express the luciferase reporter in normal and 

cancer cell lines. In dual luciferase assays, as described in the methods section, different 

cell lines were transfected with either pLuc-fos/Tcf or pTOPLESS or with just the blank 

luciferase reporter vector (pGL3). Table-1 shows the comparative luciferase activity in a 

panel o f selected cell lines. The results show that the combination o f Tcf-4/p-catenin 

enhancer with the c-fos promoter results in increased luciferase activities as compared to 

the luciferase activities o f the c-fos promoter (pTOPLESS) or the blank vector (pGL3) 

alone. Shown in the panel are colon cancer cell lines (HCT 8, SW480, SW620, colo 320) 

and normal colon cell line (NCM 460). All o f the colon cancer cell lines tested are known 

to have APC or P-catenin gene mutations (286) resulting in aberrant constitutive 

activation o f the wnt signaling pathway. Therefore a higher Tcf-4 enhancer activity is 

expected in these cell lines which is reflected in the increased amount o f luciferase gene 

product (higher luciferase activity) produced by pLuc-fos/Tcf. NCM460 is a normal cell 

line derived from non diseased colon (272) and is used as a negative control in the 

presented experiments. Use o f NCM 460 as a negative control is based on the rationale 

that being a normal cell line it does not have APC or P-catenin gene mutations (no wnt 

signaling) and is expected to have very low Tcf-4/ P-catenin enhancer activity, 

resembling a normal cell situation. Figure 1 is an alternative way o f showing the proof o f 

principle. The activity o f pLuc-fos/Tcf and pLuc-fos/fct were compared in normal and 

cancer cell lines by conducting dual luciferase assays. Either pLuc-fos/Tcf or pLuc- 

fos/fct was co-transfected with pRL-TK (internal control) in selected cell lines. 48 hours 

post transfection cell lysates were prepared and relative luciferase ratio (RLU) readings
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Table 1. Fold activation by Tcf-4/p-catenin enhancer element. pLuc-fos/Tcf, 
pTOPLESS (c-fos promoter alone, no Tcf-4 enhancer), or pGL3 (blank vector) 
luciferase reporter plasmids were co-transfected with pRL-TK in selected cell lines. 
Whole cell lysates were prepared 48 hours later and assayed for luciferase activity 
using a dual luciferase reporter assay kit. Shown are the fold increases in the 
luciferase activities by Tcf-4/p-catenin enhancer element in selected cell lines.

Cell Line pTOPLESS pGL3

HCT8 5 150
SW480 34 500
SW620 24 420
Colo320 40 550
NCN460 1 4
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Figure 1. fos/Tcf and fos/fct recombinant promoter activities in normal and 
colon tumor cells. Normal and colon cancer cell lines were co-transfected using 
pRL-TK with either pLuc-fos/Tcf or pLuc-fos/fct reporter plasmids. Wholecell 
lysates were prepared 48 hours post transfection and assayed for luciferase 
activities. Shown are the recombinant promoter activities in terms o f relative 
luciferase units derived by dividing the firefly luciferase activity value by the 
renilla luciferase value.
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were recorded as previously described in the text. pLuc-fos/Tcf has much higher activity 

in colon cancer cell lines (colo 320, HCT8, SW480, SW620) as compared to pLuc- 

fos/fct. On the other hand pLuc-fos/Tcf did not show any appreciable activity in chosen 

normal cell lines (NCM460, NCM425, CSC1).

Construction and cell line testing o f Tcf-4-enhancer/CEA recombinant promoter 

The carcinoembryonic (CEA) antigen is a tumor associated antigen and is expressed by a 

majority o f colorectal tumors. The feasibility o f the use o f the CEA promoter in the 

design o f a tumor specific gene expression promoter was tested. As described in the 

methods section, the TCF-4 enhancer element was cloned into the Sal-I restriction site o f 

pGL3-CEA to generate pGL3-CEA/Tcf. Dual luciferase assays were performed to 

evaluate the activity o f these CEA constructs. A pane o f selected cell lines (table-2) were 

transfected with either pGL3-CEA or pGL3-CEA/Tcf, in dual luciferase assays. 

Luciferase activities were monitored after 48 hours o f transfection as described earlier. In 

order to compare the activities o f the CEA constructs to c-fos/Tcf promoter, the same 

panel o f cell lines were also transfected with either pLuc-fos/Tcf or pTOPLESS, in dual 

luciferase assays (table-2). The activity o f the recombinant CEA promoter was also tested 

in two breast cancer cell lines; MCF-7 and MDA 435. Breast cancer cell lines were 

chosen because deregulation o f the wnt signaling pathway has also been reported in 

breast carcinoma (284). In luciferase reporter assays, the combination o f the Tcf-4 

enhancer element with the CEA promoter did not yield any significant increase in 

luciferase activities as compared to the CEA promoter alone. As shown in table-2, by fold 

induction, the CEA/Tcf combination did not result in any significant increase in 

luciferase activities, in the tested cancer cell lines (MCF-7, MDA-435, SW620), over
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Table 2. Effect o f Tcf-4 enhancer element on the activity o f c-fos and CEA 
promoters. Normal and colon cancer cell lines were co-transfected using pRL-TK 
with either pLuc-fos/Tcf or pLuc-fos/fct reporter plasmids. Whole cell lysates 
were prepared 48 hours post transfection and assayed for luciferase activities. The 
promoter activities in terms o f relative luciferase units were derived by dividing 
the firefly luciferase activity value by the renilla luciferase value.

Cell Line/Promoter No TCF Plus TCF Fold
RLU Ratio RLU ratio

CSC-l-Fos 0.009 0.04 4.4
CSC-1-CEA 0.01 0.01 1.0
CSC-1-LTR 6.0 - -

NCM460-Fos 0.003 0.04 13.3
NCM460-CEA 0.005 0.01 2.0
NCM460-LTR 8.7 - -

NCM425-Fos 0.06 0.39 6.5
NCM425-CEA 0.02 0.13 6.5
NCM425-LTR 16.7 - -

MCF7-Fos 0.31 1.1 3.5
MCF7-CEA 0.05 0.08 1.6
MCF7-LTR 0.78 -

MDA435-Fos 0.03 0.71 23.6
MDA435-CEA 0.04 0.05 1.25
MDA435-LTR 8.5 -

MDA436-Fos 0.07 0.68 9.71

MDA231-Fos 0.04 0.96 24

SW620-Fos 0.32 4.2 13.2
SW620-CEA 0.27 1.4 5.1
SW620-LTR 7.4 - -
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CEA promoter alone. On the other hand, as demonstrated in the previous experiment, the 

combination o f the Tcf-4 enhancer with the c-fos promoter resulted in a significant 

increase o f luciferase activity in the SW620 and MDA 435 cancer cell lines, when 

compared to c-fos promoter alone. Unexpectedly, in the panel o f selected normal cell 

lines (CSC-1, NCM460, NCM425), the combination o f c-fos/Tcf also resulted in 

appreciable increase in luciferase activities when compared to c-fos alone. The 

significance o f these unexpected findings is included in the discussion section o f the 

presented study. Furthermore, in order to demonstrate that the selected cell lines were 

capable o f plasmid DNA uptake in transfection assays and are transcriptionally active, 

dual luciferase assays were performed using pGL3-LTR reporter luciferase assay 

plasmid. The pGL3-LTR plasmid containing the wild-type U3 LTR o f the Moloney 

murine leukemia virus was a gift from Dr. Robert Saylors, University o f Arkansas for 

Medical Sciences. It was expected that LTR would be typically activated in eukaryotic 

cells and would express the luciferase gene. As a positive control, dual luciferase assays 

were performed by transfecting pGL3-LTR in the same panel o f cell lines (table-2). As 

shown in table-2, in all the normal cell lines (CSC-1, NCM460 and NCM 425) and 

cancer cell lines (MCF7, MDA435 and SW620) pGL3-LTR showed significant luciferase 

activity. These results are significant especially in reference to the normal cell lines 

because a lower Tcf-4 enhancer activity could be argued as a result o f poor transfection 

efficiency and inability to express the reporter DNA. Therefore in the light o f these 

results it is suggested that the chosen cell lines are transfectable, transcriptionally active 

and are appropriate controls for analyzing Tcf-4 activity in normal cells.
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Construction and cell line testing o f combination o f Tcf-4-enhancer with Cox-2, PSMA 

and PSA promoter

The possibility o f  using cyclooxygenase-2 (cox-2), prostate specific membrane antigen 

(PSMA) and prostate specific antigen (PSA) promoter, in combination with the Tcf-4 

enhancer, for designing o f tumor/tissue specific gene expression promoter was also 

examined. Cox-2, is an enzyme, that is induced in many inflammatory reactions (237). 

Many growth factors, cytokines and inflammatory agents all appear to enhance the 

expression o f Cox-2 by interacting with various regulatory sequences in the promoter 

region o f this gene (238). The Cox-2 promoter was selected as a candidate promoter for 

gene therapy because o f the deregulation o f cox-2 expression levels commonly found in 

tumors o f epithelial origin such as colon cancer (287). Studies have shown that the 

minimal cox-2 promoter can be used for designing tumor specific gene expression 

promoters (248). In an effort to improve the specificity and activity o f a minimal cox-2 

promoter, it was combined with the Tcf-4 enhancer element. A 720-bp minimal cox-2 

promoter was amplified from genomic DNA isolated from SW480 cells and cloned in 

pGL3-basic vector to generate pGL3-Cox-2. Subsequently, the Tcf-4 enhancer was 

cloned into the enhancer cloning site o f pGL3-Cox-2 to generate pGL3-Cox-2/Tcf.

Prostate Specific Membrane Antigen (PSMA) is a membrane glycoprotein with 

folate hydrolase activity, predominantly expressed in prostate epithelial cells. Studies at 

the mRNA and protein levels demonstrate that PSMA is differentially regulated in benign 

and malignant prostate abnormalities as well as during tumor progression. Thus, the 

promoter o f the PSMA gene may be o f use in gene therapy o f prostate cancer. However, 

available data indicates that the PSMA promoter, by itself, is a weak activator o f
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transcription and may not necessarily be able to achieve therapeutically significant levels 

o f gene expression. Therefore, in an effort to achieve higher tumor specific activity o f the 

PSMA promoter, it was combined with Tcf-4 enhancer element. A 640-bp minimal 

PSMA (cloned in pGL3-PSMA) promoter has been previously defined and was cloned in 

pGL3-Tcf to generate pGL3-PSMA/Tcf as described in materials and methods.

Prostate specific antigen is a protein expressed by benign, hyperplastic and 

malignant prostatic epithelium (266) and it is well established as a prostate cancer 

specific biomarker. Expression o f PSA is regulated by androgens and is restricted to the 

prostate (268). PSA expression is attributed to the selective activation o f the PSA 

promoter in prostate. Therefore, the PSA promoter is a very attractive candidate for the 

design o f a tumor/tissue specific gene expression promoter for the purpose o f  gene 

therapy. Indeed the PSA promoter has been shown to be a promising candidate for 

constructing tumor/tissue specific gene expression promoters (271). However, it is 

associated with weak transcriptional activity and in the past, the PSA promoter has been 

coupled with enhancers in an effort to improve its activity. With the back ground 

knowledge that wnt/p-catenin signaling pathway is activated in a significant number of 

prostate cancer cases, the idea o f combining Tcf-4 enhancer element with a minimal PSA 

promoter to construct a tumor/issue specific gene expression promoter was explored. 

pGL3-PSA reporter vector, containing a minimal 410 bp PSA promoter, was a gift from 

Dr. Antonia Vlahou. pGL3-PSA/Tcf was generated by cloning the Tcf-4 enhancer 

element into pGL3-PSA.

The promoter/enhancer activity o f the constructed luciferase reporter plasmids, 

pGL3-Cox/Tcf, pGL3-PSMA/Tcf and pGL3-PSA/Tcf, was assessed by screening a panel
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Figure 2. Cell line screening o f the activities o f PSMA, PSA, COX-2 promoters. 
Dual luciferase assays were performed in each cell line using plasmids containing 
the test promoter with or without the Tcf-4/p-catenin enhancer element. Relative 
luciferase unit ratios are shown for each o f the tested promoter. Also shown, for 
comparison, are the RLU ratios obtained in dual luciferase assays performed using 
plasmid containing the c-fos/Tcf recombinant promoter (pLuc-fos/Tcf. The data 
shown is a representative o f multiple experiments.
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of selected cancer and normal cell lines (figure-2) in luciferase assays. pGL3-Cox2, 

pGL3-PSMA and pGL3-PSA reporter constructs were used as controls. The selected cell 

lines were transfected and processed for luciferase activities as described in the materials 

and methods section. The activities o f the various promoters and promoter/enhancer 

combinations were assessed by the fold increase in the luciferase activities. In HCT8 

(colon cancer cell line) coupling o f the Tcf-4 enhancer element with the Cox-2 promoter 

resulted in a dramatic increase o f luciferase activities (see figure-2) in colon cancer cell 

lines HCT8 (15 fold) and SW620 (23 fold). However, combination o f Tcf-4 with Cox-2 

caused only marginal increase in luciferase activities in the colon cancer cell line 

HCT116 and at the same time it resulted in a marginal decrease o f luciferase activity in 

the prostate cancer cell line DU 145. The combination o f the Tcf-4 enhancer with the 

PSMA or PSA promoters resulted in a marked increase (PSMA/Tcf-12 fold, PSA/Tcf-9 

fold) in luciferase activities, over the control promoters, in the prostate cancer cell line 

DU145 (figure-2). In addition, shown in figure-2, are the luciferase activities o f the 

indicated plasmids in two normal cell lines NCM460 and CSC1, suggesting that the 

combination o f the Tcf-4 enhancer with either the PSMA, PSA or Cox-2 promoters did 

not result in any appreciable increase o f luciferase activity in normal cells.

As evident from the results o f the reporter assay based cell line screening o f the 

Cox-2/Tcf-4 recombinant promoter, the Cox-2 promoter was found to be a promising 

candidate and could be used for designing a tumor specific gene expression promoter. 

Therefore the activity o f the recombinant Cox-2/Tcf-4 promoter was compared with c- 

fos/Tcf-4 and CEA/Tcf-4 recombinant promoters in reporter luciferase assays in a panel 

o f selected cell lines (figure-3). As indicated from the RLU ratios in figure-3, the activity
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Figure 3. Cell line screening o f the activities o f COX-2, c-fos and CEA promoters. 
Dual luciferase assays were performed in each cell line using plasmids containing the 
test promoter with or without the Tcf-4/(3-catenin enhancer element. Relative luciferase 
unit ratios are shown for each o f the tested promoter. Also shown, for comparison, are 
the RLU ratios obtained in dual luciferase assays performed using plasmids containing 
the viral LTR promoter (pGL3-LTR ) and c-fos/Tcf recombinant promoter (pLuc- 
fos/Tcf).
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o f Cox-2/Tcf-4 promoter was comparable to or higher than the c-fos/Tcf-4 promoter in 

the colon cancer cell lines(HCT8, LoVo, CMT93 and SW620). On the other hand, cox- 

2/Tcf-4 promoter activity was found to be lower than the c-fos/Tcf-4 promoter in colon 

cancer cell line HCT116 and Colo320. With the exception o f CMT93, Cox-2/Tcf 

recombinant promoter activities were found to be higher than the activities o f CEA/Tcf-4 

in the selected cell lines. Also, shown in figure-3 are the luciferase activities o f viral LTR 

promoter (from pGL3-LTR) in different cell lines. The LTR activity was used for the 

purpose o f determining comparative luciferase activities and to serve as a positive 

control.

In the prostate cancer cell line DU 145, the combination o f the Tcf-4 enhancer 

element with the PSMA promoter showed an appreciable increase in promoter activity 

over that o f the PSMA promoter alone. In an effort to further characterize the PSMA/Tcf- 

4 recombinant promoter, luciferase assays were performed using the pGL3-PSMA/Tcf 

luciferase reporter construct in a panel o f prostate cancer (Tramp, PC3 and DU 145) and 

normal (NCM460 and normal prostate) cell lines in luciferase assays (figure-4). The 

PSMA/Tcf-4 recombinant promoter showed an appreciable increase in activity over the 

PSMA promoter alone, in the PC3 prostate cancer cell line but did not show any 

significant activity in the normal prostate cell line and normal colon cell line (NCM460). 

The possibility o f using a mouse model for prostate cancer (TRAMP) was also explored 

by including TRAMP cells in the panel o f cell lines assessed for PSMA/Tcf-4 activity. 

However, the TRAMP cell did not show any appreciable PSMA/Tcf-4 recombinant 

promoter activity as assessed from the RLU ratios (figure-4).
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Figure 4. Cell line screening o f the activities o f the PSMA promoter. Selected 
cell lines were co-transfected with pRL-TK. and reporter plasmids containing the 
PSMA promoter with or without the Tcf-4 enhancer Tcf-4/p-catenin enhancer 
element. Transfected cells were processed 48 hours later using a dual luciferase 
assay kit and relative luciferase units were determined. RLU ratios from each 
transfection are shown in the figure.
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Evaluation o f NCM460 as a negative control

NCM460 is cell line derived from normal colon mucosa and has been extensively 

used in the presented study as a negative control. The rationale behind using NCM460 as 

a negative control was that being derived from non-cancerous tissue, mutations in genes 

responsible for regulating p-catenin levels are unlikely to be found and it is expected that 

a constitutively active P-catenin will not be found in the nucleus. It has been suggested 

that in a normal cell P-catenin plays a role in cell to cell junctions and is found as part o f 

multi-protein complex at the inner surface o f cell membrane, which includes proteins like 

E-cadherin (288). Therefore, to evaluate the cellular localization o f P-catenin in this cell 

line immunoflorescence studies were performed by staining for p-catenin as described in 

materials and methods. As expected in a normal cell, beta-catenin was found to be 

located on the inner side o f the cell membrane and no nuclear staining was observed 

(figure-5). To assess whether introduction o f a constitutively active P-catenin (13) can 

allow for Tcf-4/p-catenin enhancer mediated transcriptional activity in the NCM460 

cells, luciferase reporter assays were performed in the presence o f plasmid expressing 

constitutively active P-catenin. NCM460 cell were co-transfected with pLuc-fos/Tcf and 

P-catenin expressing plasmid and after 48 hours cells were processed for luciferase 

activity. A 100 fold increase in luciferase activity o f pLuc-fos/Tcf was observed in 

presence o f constitutively active beta-catenin indicating these cells were capable o f Tcf- 

4/p-catenin transcriptional activity.
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Figure 5. Validation o f NCM-460 colon cells as a negative control. To visualize 
the localization o f P-catenin immunoflorescence staining for P-catenin was 
performed in NCM460 cells. Cells were stained with a primary anti P-catenin 
antibody followed by incubation with a secondary FITC labeled anti mouse IgG 
antibody.
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Aim #2. Evaluation of the ability of Tcf-enhancer/Promoter combinations to 

selectively express a therapeutic gene in tumor cells

Results presented under aim-1 strongly suggested that specific combinations o f 

the Tcf-4 enhancer with minimal promoters could result in tumor/tissue specific gene 

expression. Such promoter/enhancer combinations are potential candidates for use in 

directing therapeutic gene expression. However, these findings are based on luciferase 

reporter assays suggesting the potential o f these recombinant promoters in cancer gene 

therapy. To further evaluate the tumor specific gene expression efficacy o f these 

recombinant promoters, therapeutic gene expression vectors were generated 

incorporating the therapeutic gene encoding the Herpes Simplex Virus Thymidine Kinase 

expressed from Tcf-4-enhancer/promoter combinations. For experiments presented in 

this section the following recombinant plasmid DNA vectors were constructed as 

described in material and methods.

a) pc-fos/Tcf-4-HSV-TK: Consists o f the HSV-TK gene expressed from a 

recombinant Tcf-4 enhancer/c-fos promoter combination.

b) pSc-fos/Tcf-4-HSV-TK: Derived from pc-fos/Tcf-4-HSV-TK in which a 

significant portion o f the c-fos promoter was deleted.

c) pPSMA/Tcf-4-HSV-TK: Consists o f the HSV-TK gene expressed from a 

recombinant Tcf-4 enhancer/PSMA promoter combination.

d) pCDNA-HSV-TK: Negative control plasmid consisting o f only the HSV-TK 

gene without any promoter.
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Characterization o f HSV-TK expression constructs

HSV-TK expression analysis 

The pc-fos/Tcf-4-HSV-TK was constructed to test the ability o f Tcf-4/p-catenin 

enhancer coupled with the c-fos promoter to drive the expression o f HSV-TK selectively 

in tumor cells. The new plasmid was used to transiently transfect colon cancer cell lines 

(HCT-8, SW480 and SW620) and normal colon cells (NMC-460). After transfection, 48 

hours later, whole cell lysates were made from each cell line and were subjected to SDS- 

PAGE, Western blot analysis using anti-HSV-TK antibodies. As shown in figure-6, 

transient transfection o f pc-fos/Tcf-4-HSV-

TK resulted in significant amounts o f HSV-TK in the tested cancer cells lines (HCT-8, 

SW620, and SW480). On the contrary, under similar conditions, HSV-TK expression 

was not detected in the normal cell (NCM460). Also shown in figure-6 are the results 

from similar transient transfection assays using the promoter less negative control 

plasmid pCDNA-HSV-TK where no detectable expression was observed in any o f the 

tested cell lines. In addition, the ability o f c-fos/Tcf-4 recombinant promoter to express 

HSV-TK in breast cancer cell lines was tested. As mentioned earlier in the text, this was 

done because evidence o f aberrant activation o f wnt signaling pathway in breast cancer 

has been documented. Two breast cancer cell lines were chosen; MDA435 and MCF7. 

As presented in figure 7, transient transfection o f pc-fosTcf-4-HSV-TK resulted in 

significant expression o f HSV-TK in MCF7 and MDA435. As a control, pCDNA-HSV- 

TK was transiently transfected in both breast cancer cell lines and assayed for expression 

o f HSV-TK. As seen in figure 7, no expression, from pCDNA-HSV-TK, was detected in 

MCF7 cells; however trace amounts o f HSV-TK were detected in the MDA435. For
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Figure 6. HSV-TK Western blots to assess the gene expression ability o f c-fos/Tcf 
recombinant promoter in normal and tumor colon lines. Selected cell lines were 
transiently transfected with plasmids encoding HSV-TK gene driven by: cfos/Tcf 
(lane 4), truncated c-fos/Tcf (lane 3) or without any promoter (lane 2). Whole cell 
lysates were prepared after 48 hours o f transfectionand were subjected to Western 
blot analysis using an anti HSV-TK antibody. Lane 1 is an untransfected negative 
control.
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Figure 7. HSV-TK Western blot to assess the gene expression ability o f c- 
fos/Tcf recombinant promoter in breast tumor cell lines. Selected cell lines were 
transiently transfected with plasmids encoding HSV-TK gene driven by: 
cfos/Tcf (lane 3) or without any promoter (lane 2). Whole cell lysates were 
prepared after 48 hours o f transfectionand were subjected to Western blot 
analysis using an anti HSV-TK antibody. Lane 1 is a untransfected negative 
control. Bands corresponding to HSV-TK are labeled.
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comparison o f HSV-TK expression, results from transient transfection o f HSV-TK 

expression constructs in NCM460 and SW620 cell lines are also shown in figure 7. These 

results demonstrate that c-fos/Tcf-4 recombinant promoter can selectively express the 

therapeutic gene, HSV-TK, in examined tumor cell lines. However, selective expression 

o f HSV-TK does not necessarily mean that a functional HSV-TK gene product is 

expressed which would facilitate tumor cell killing upon treatment with ganciclovir. To 

determine whether the expressed HSV-TK was functional GCV metabolic labeling and 

sensitivity assays were performed.

GCV Metabolic Labeling and Sensitivity in pc-fos/Tcf-4-HSV-TK transfected cells 

To determine whether the expressed HSV-TK was functional, identical 

transfection protocols were performed except that at 24 hours post-transfection, 1 pM 

[3H] GCV was added for 12 hours. Cells were isolated, counted and then extracted with 

70% methanol. The soluble supernatant and insoluble DNA pellet were quantitated for 

levels o f [3H] GCV incorporation by scintillation counting. To separate GCV from 

phosphorylated GCV metabolites in the methanol soluble fractions, thin layer 

chromatography, using PEI-cellulose plates developed in 0.8 M LiCl, was performed. As 

shown in Figure 8, only cells transfected with the pc-fos/Tcf-4-HSV-TK construct had 

significant levels o f soluble [3H] GCV-phosphometabolites. Again, only minimal 

metabolism o f [3H] GCV was found for the NCM460 control cells. Analysis o f  [3H] GCV 

levels in the methanol insoluble pellet, indicative o f GCV incorporation into cellular 

DNA, was also performed. As presented in Figure 9, the levels o f [3H] GCV 

incorporated into the DNA were highest in the pc-fos/Tcf-4-HSV-TK transfected tumor 

cells, but low in the NCM460 cells. Similar, GCV metabolic labeling, experiments were
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Figure 8. Assessment o f functionality o f HSV-TK expressed by c-fos/Tcf 
recombinant promoter in colon cell lines. Expressed HSV-TKwas evaluated for 
its ability to phosphorylate GCV. Selected cell lines were transiently transfected 
with plasmids encoding HSV-TK gene driven by: cfos/Tcf (pc-fos/Tcf-4-HSV- 
TK), truncated c-fos/Tcf (pSc-fos/Tcf-4-HSV-TK) or without any promoter 
(pCDNA-HSV-TK). Following 36 hours after transfection radio labeled GCV 
was added to the cell. 6-8 hours later, GCV metabolites were extracted and 
counted for radioactivity. Shown are the estimated amounts o f soluble GCV 
metabolites for each cell line.
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Figure 9. Assessment o f functionality o f HSV-TK expressed by c-fos/Tcf 
recombinant promoter in colon cell lines. DNA incorporation o f radio labeled 
GCV was used as an index to asses the functionality o f expressed HSV-TK. 
Selected cell lines were transiently transfected with plasmids encoding HSV-TK 
gene driven by: cfos/Tcf (pc-fos/Tcf-4-HSV-TK), truncated c-fos/Tcf (pSc- 
fos/Tcf-4-HSV-TK) or without any promoter (pCDNA-HSV-TK). Following 36 
hours after transfection radio labeled GCV was added to the cell. 6-8 hours later, 
insoluble GCV metabolites were separated from soluble metabolites followed by 
scintillation counting. Shown are estimated amounts o f incorporated GCV 
metabolites for each cell line.
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performed in breast cancer cells line; MCF7 and MDA435, and a higher metabolism o f 

[3H] GCV was detected in pc-fos/Tcf-4-HSV-TK transfected cells (figure 10). To 

examine whether GCV metabolism resulted in increased tumor cell killing, SW480, 

MDA435 and NCM460 cells were transfected with pCDNA-HSV-TK or pc-fos/Tcf-4- 

HSV-TK. After 24 hours, half o f the samples received 10 pM GCV for an additional for 

48 hrs. Viable cell numbers were determined using trypan blue dye exclusion and 

automated cell counting. As shown in Figure 11, only in the pc-fos/Tcf-4-HSV-TK 

transfected SW480 (figure 1 la) and MDA-435 (figure 1 lc) cells did GCV addition have 

any significant toxic effect, while no effect was observed in the similarly treated normal 

NCM460 (figure 1 lb) and CSC-1 (figure 1 Id) cells. As a control, the promoterless 

pCDNA-HSV-TK vector was transfected in SW480 (figure 1 la), MDA435 (figure 1 lc), 

NCM460 (figure 1 lb) and CSC-1 cells (figure 1 Id) in identical transfection experiments. 

Results presented in figure 11 show that pCDNA-HSV-TK construct did not result in any 

significant toxicity in the chosen cell lines. The cumulative results presented in Figures 8- 

11 indicate functional and tumor cell specific expression o f HSV-TK delivered via the 

pc-fos/Tcf-4-HSV-TK plasmids. The results, so far, strongly support the proof o f 

principle that a minimal oncogenic promoter can be successfully combined with Tcf-4/p* 

catenin enhancer to achieve tumor specific gene expression. With these encouraging 

results further experiments were performed using constructs in which the PSMA 

promoter was coupled with Tcf-4/p-catenin enhancer (pPSMA/Tcf-4-HSV-TK) to 

express HSV-TK.
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Figure 10. Assessment o f  functionality o f HSV-TK expressed by c-fos/Tcf 
recombinant promoter. Expressed HSV-TK was evaluated for its ability to 
phosphorylate GCV in MDA435 and MCF7 breast cancer cell lines. Selected 
cell lines were transiently transfected with plasmids in which the HSV-TK gene 
was driven by cfos/Tcf (pc-fos/Tcf-4-HSV-TK). pCDNA-HSV-TK is used as . 
Following 36 hours after transfection radio labeled GCV was added to the cell. 
6-8 hours later, GCV metabolites were extracted and counted for radioactivity. 
Shown are the estimated amounts o f soluble GCV metabolites for each cell 
line.Also shown, for comparison, soluble GCV amounts from the normal cell 
line NCM460 and the colon cancer cell line SW620.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



104

11(a)

o
eo
U

<u
Uv.o
i_a
A
E
3
z

120 - 

100 - 

80 - 

60 

40 

20 H

□ OuMGCV
□ 10 uM GCV

i r

Control pCDNA-HSV- pc-fos/Tcf-4- 
TK HSV-TK

11(b)

o
e  120

J ioo A
er'

w
< « .o
uo
£
E

80 

60 - 

40 ■ 

20 ■ 

0

i

□ 0 urn GCV 

H 10 uM GCV

*

Control pCDNA-HSV-
TK

pc-fos/Tcf-4-
HSV-TK

Figure 11 (a-b-c-d). GCV sensitivity in pc-fos/Tcf-4-HSV-TK transfected 
cells. Selected cell lines were transiently transfected with either pc- 
fos/Tcf-4-HSV-TK or pCDNA-HSV-TK (control) and treated with GCV 
24 hours after transfection. Number o f live cells was assessed 72 hours 
later. Cell numbers, determined as percentage o f  control, are shown for 
SW480 (a), NCM460 (b), MDA435 (c) and CSC1 (d). Figure 11 (c) is 
shown on page 105 and 11 (d) on page 106.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



105

11 (c )

□ NCM460
□ MDA435

120

2 100

Figure 11 Continued.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



106

11(d)

0  0 um GCV

Z  Control pCDNA- pc-fos/Tcf-4-
HSV-TK HSV-TK

Figure 11 Continued.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



107

GCV Sensitivity in pPSMA/Tcf-4-HSV-TK. transfected cells

In a significant number o f prostate tumor cases aberrant activation o f wnt 

signaling pathway is documented (205). In addition, in prostate carcinoma PSMA is 

frequently found to be overexpressed, which is attributed to the increase in transcription 

activity o f the PSMA promoter (289). Therefore the ability o f PSMA/Tcf-4 recombinant 

promoter to direct tumor specific gene expression in prostate tumor cells was explored. 

Two prostate cancer cell lines DU 145 and PC3 were transiently transfected with 

pPSMA/Tcf-4-HSV-TK and pCDNA-HSV-TK. After 24 hours, half o f the samples 

received 10 pM GCV for an additional for 48 hrs. Viable cell numbers were determined 

using trypan blue dye exclusion and automated cell counting. As shown in figure 12, 

pPSMA/Tcf-4-HSV-TK transfection resulted in significant cellular toxicity upon addition 

o f GCV in PC3 cells (figure 12b). On the other hand, under identical conditions 

pPSMA/Tcf-4-HSV-TK transfection did not cause any noticeable GCV toxicity in 

normal NCM460 cells (figure 12a). Simultaneously, there was no GCV mediated cellular 

toxicity observed in NCM460 and PC3 cells when transfected with control promoter less 

vector pCDNA-HSV-TK. However, at 10 pm GCV concentration, in DU 145 prostate 

cancer cells the combination o f GCV with transfection o f pPSMA/Tcf-4-HSV-TK did 

not cause any increased toxicity as compared with the control pCDNA-HSV-TK. 

transcfection (figure 12c). This inconsistency in the results could be due to the 

differential metabolism o f GCV by DU 145 cells. Therefore, the experiment described in 

figure 12c was repeated and this time transiently transfected cells were treated with an 

increased dose o f 25 pm GCV. The data presented in figure 12d clearly exihibit that 

DU 145 prostate cancer cells show significant cell killing when transiently transfected by
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Figure 12(a-b-c-d). GCV sensitivity in pPSMA/Tcf-4-HSV-TK transfected 
prostate cancer cells. Selected cell lines were transiently transfected with 
either pPSMA/Tcf-4-HSV-TK or pCDNA-HSV-TK (control) and treated 
with GCV 24 hours after transfection. Number o f live cells was assessed 72 
hours later. Cell numbers, determined as percentage o f control, are shown 
for NCM460 (a), PC3 (b) (page 109) and DU145 (c-d) (pagel09-l 10). As a 
control, GCV sensitivity caused by transient pPSMA/Tcf-4-HSV-TK 
transfections in normal NCM460 was also determined (figure a). pc-fos/Tcf- 
4-HSV-TK mediated GCV sensitivity in DU 145 cells was compared to 
GCV sensitivity caused by pPSMA/Tcf-4-HSV-TK. and is shown in 
figure d. For b, c and d, see pages 109-110.
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pPSMA/Tcf-4-HSV-TK and followed by 25 pm GCV treatment. For comparison, in 

figure 12D, pc-fos/Tcf-4-HSV-TK/GCV mediated DU 145 cell killing is also shown. 

Further, having successfully tested the ability o f pPSMA/Tcf-4-HSV-TK vector to kill 

human prostate cancer cells, the PSMA/Tcf-4 vector was assessed for its toxicity in a 

mouse prostate cancer cell line (Tramp). The primary objective behind testing the HSV- 

TK expression construct in Tramp cells was to exploit the already established Tramp 

mouse model for certain in vivo gene therapy experiments. Tramps cells were transiently 

transfected with pPSMA/Tcf-4-HSV-TK, pCDNA-HSV-TK or with blank vector. After 

24 hours, half o f the samples received 10 pM GCV for an additional 48 hrs followed by 

10 pM o f GCV treatment 24 hours later. Viable cell numbers were determined using 

trypan blue dye exclusion and automated cell counting. As shown in figure 13 treatment 

o f Tramp cell with pPSMA/Tcf-4-HSV-TK/GCV caused approximately 25% cell death 

as compared to the control pCDNA-HSV-TK/GCV treated cells. The marginal toxicity o f 

pPSMA/Tcf-4-HSV-TK/GCV system in Tramp cells could be attributed to lower 

transfection efficiency o f TRAMP cells and /or to the lower Tcf-4 transcriptional activity 

in these cells.

Cumulatively, the results presented in figure 12 suggest that the pPSMA/Tcf-4- 

HSV-TK construct can successfully express a functional HSV-TK gene in specific 

prostate cancer cells. In addition, the pPSMA/Tcf-4-HSV-TK/GCV system can result in 

significant cell death in prostate cancer cells and shows little or insignificant amount o f 

toxicity in normal NCM460 cells.

In summary, the presented results so far are highly suggestive that a recombinant 

oncogenic promoter/Tcf-4 enhancer combination can successfully express a functional

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1 1 2

120 i

100 ■

ob 
|  80

r  60uA
E
Z 40

U
20

□  0 uM GCV

□  10 uM GCV T

t ....... .......... ........ 1    1
Control pCDNA-HSV-TK pPSMA/Tcf-4-HSV-TK

Figure 13. GCV sensitivity in pPSMA/Tcf-4-HSV-TK. transfected Tramp cells. 
Tramp cells were transiently transfected with either pPSMA/Tcf-4-HSV-TK or 
pCDNA-HSV-TK (control) and treated with GCV 24 hours after transfection. 
Numbers o f live cells were assessed 72 hours later. Cell numbers, determined as 
percentage o f control, are shown.
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therapeutic gene specifically in tumor cells. In transient transfection experiments, in 

combination with GCV the recombinant promoter system shows the ability to selectively 

kill tumor cells. However, therapeutic gene facilitated tumor cell killing is severely 

compromised by the delivery o f the therapeutic gene expression vector inside the tumor 

cells. In other words, effective tumor cell killing cannot be achieved unless the 

therapeutic vector is not successfully delivered inside the target tumor cell. Experiments 

presented in aim No. 2 have used lipid based transient transfection methods to deliver the 

therapeutic vector inside the target cells. Such delivery methods are effective in 

demonstrating the proof o f principle under in vitro conditions. However, such 

transfection methods do not successfully deliver the DNA vector, in most cases, to 

majority o f target cells. Given that one o f the primary objectives in cancer gene therapy 

is to target as many as tumor cells, we next looked to optimize the delivery o f the 

therapeutic vector to the tumor cells.

Aim #3. Optimization of delivery of the therapeutic gene/promoter-enhancer 

combination to the tumor

To improve the delivery o f the therapeutic gene/promoter-enhancer combination 

to tumor tissue/cells, recombinant adenoviruses were constructed. As mentioned in the 

introduction chapter, there are several advantages o f using adenoviruses for delivering the 

therapeutic gene expression constructs. These advantages include: the ability to produce 

high titer (1012-1013 virus particles per ml) o f  recombinant viruses; postmitotic cells can 

be effectively infected including a wide variety o f cell types and the ability to 

accommodate up to -8 kb o f foreign DNA, including expression cassettes or other

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



114

regulatory sequences. Further, the current generation o f engineered adenoviruses are 

considered relatively safe for the purpose o f  gene therapy as they do not integrate into the 

genome and are rendered replication incompetent by deletion o f certain essential viral 

genes.

Using a pAdeasy recombinant adenoviruses construction kit (Qbiogene) the 

following adenoviruses incorporating the specified DNA elements were generated as 

described in materials and methods section.

A d-c-fos/Tcf-4-HS V-TK

The c-fos/Tcf-4 promoter-enhancer combination and the HSV-TK gene, was 

excised out o f the pc-fos/Tcf-4-HSV-TK plasmid vector. The excised DNA fragment was 

incorporated into a promoterless pShuttle vector which was subsequently used for 

generating recombinant Ad-c-fos/Tcf-4-HSV-TK adenoviral particles. The hall mark o f 

Ad-c-fos/Tcf-4-HSV-TK vector is that it was designed to express HSV-TK gene from a 

recombinant c-fos/Tcf-4 promoter.

Ad-CMV-HSV-TK

The HSV-TK gene was incorporated into a pShuttle-CMV vector which was 

subsequently used to generate Ad-CMV-HSV-TK viral particles. Ad-CMV-HSV-TK was 

used as positive control adenoviral vector because the presence o f a CMV promoter 

allowed it to express HSV-TK ubiquitously in tested cell lines.

The adenoviral particles were amplified and quantitated as described in materials 

and methods section. To ensure that the generated adenoviral particles were expressing 

HSV-TK, colon cancer cells (SW480, SW620 and NCM460) were infected with Ad-c- 

fos/Tcf-4-HSV-TK and Ad-CMV-HSV-TK and 48 hours later whole cell lysates were
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made from infected and uninfected cells. Prepared lysates were subjected to SDS-PAGE 

and Western blot analysis. Blots were probed for HSV-TK with a HSV-TK antibody. 

Figure 14 shows the result from Western blot analysis done on whole cell lysates from 

HSV-TK expressing adenoviral vectors. As shown in figure 14, Ad-CMV-HSV-TK 

expressed HSV-TK in all the chosen cell lines including the normal NCM460 colon cells. 

In contrast, Ad-c-fos/Tcf-4-HSV-TK mediated HSV-TK expression was observed only in 

SW480 and SW620 colon cancer cell lines, and no detectable expression o f HSV-TK was 

seen in NCM460 cells. It can be concluded from the results that Ad-CMV-HSV-TK has 

the ability to express HSV-TK in both normal and cancer cell lines. This is because o f the 

presence o f strong CMV promoter which is expected to be active in any given eukaryotic 

cell environment (290). On the other hand, Ad-c-foc/Tcf-4-HSV-TK vector expresses the 

therapeutic gene only in cancer cell lines and not in the NCM60 normal cells.

Having confirmed that the HSV-TK expressing adenoviral vectors can 

successfully express the therapeutic gene in chosen cells, the adenoviral vector infected 

cells were tested for their GCV sensitivity. Such sensitivity experiments are crucial for 

insights into the functional aspects o f the adenovirally delivered and expressed HSV-TK 

gene. Effective tumor cell killing is entirely dependent upon the ability o f the expressed 

HSV-TK gene to convert the prodrug GCV into toxic metabolites. For the GCV 

sensitivity assay, SW480, SW620 and NCM cells were infected with Ad-CMV-HSV-TK 

and Ad-c-foc/Tcf-4-HSV-TK adenoviral particles and 24 hours later 0.1 pm and 10.0 pm 

GCV was added to the infected cells. Adenovirally infected cells without the addition o f 

GCV were assessed as controls. The cells were allowed to grow for the next 48 hours. 

Viable cell numbers were determined using trypan blue dye exclusion and automated cell
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Figure 14. Recombinant adenoviral vector infections: HSV-TK 
Western Blot. Normal (NCM460) and tumor colon cells (SW480 and 
SW620) were infected with either Ad-CMV-HSV-TK or Ad-c- 
fos/Tcf-4-HSV-TK. Each cell line was infected with same MOI for 
both the recombinant adenoviral vectors. Whole cell lysates were 
prepared 48-72 hours later and were subjected to SDS-PAGE/Westem 
blot analysis using an anti HSV-TK antibody. Bands Corresponding to 
HSV-TK are labeled.
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counting. All o f the Ad-CMV-HSV-TK infected cell lines showed a significant GCV 

dose dependent cellular toxicity. However, o f the cell lines infected with Ad-c-fos/Tcf-4- 

HSV-TK, only SW620 and SW480 colon cancer cells showed significant GCV dose 

dependent cellular toxicity, whereas normal NCM460 cells showed a minimal GCV 

sensitivity (figure 15). Based on the results presented in figure 15 it can be concluded 

that the adenoviral vectors, Ad-CMV-HSV-TK and Ad-c-fos/Tcf-4-HSV-TK are capable 

o f delivering and expressing a functional HSV-TK in specific cancer cell lines and 

exihibit significant cell death upon addition o f GCV. In addition, Ad-c-foc/Tcf-4-HSV- 

TK infection does not result in extensive GCV mediated cellular toxicity in the normal 

NCM460 cells.

So far in this study, it has been shown that Tcf-4 enhancer element can be 

successfully combined with a minimal oncogenic promoter to generate a tumor specific 

gene expression promoter. In aim 1 we showed by reporter gene assays that’s these 

promoters can direct tumor specific gene expression. Furthermore, we demonstrated the 

ability o f the designed recombinant promoter to specifically express a therapeutic gene, 

under in vitro conditions, in tumor cells. In addition studies in specific aim 2 show that 

the HSV-TK therapeutic gene expressed in the tumor cells was functional and capable o f 

directing tumor cell killing. Finally, in specific aim 3 we constructed recombinant 

adenoviruses engineered to deliver the therapeutic gene expression cassette to tumor 

cells. The data presented prove that the adenoviral viral vectors successfully express the 

chosen therapeutic gene (HSV-TK) and cause significant tumor cell death upon addition 

o f the prodrug (GCV). Together, these studies demonstrate that we can generate an 

adenoviral vector capable o f directing tumor cell specific killing.
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Figure 15. GCV sensitivity in infected with HSV-TK expressing adenoviral 
vectors. Normal (NCM460) and tumor colon cells (SW480 and SW620) were 
infected with either Ad-CMV-HSV-TK or Ad-c-fosATcf-4-HSV-TK. Each cell 
line was infected with same MOI for both the recombinant adenoviral vectors. 24 
hours after infection cells were treated with GCV and 72 hours later viable cell 
number was determined. Numbers o f live cells are shown as percentage o f 
control. SW620 and SW480 are colon cancer cell lines where as NCM460 is a 
normal colon cell line.
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Aim #4. Identification of strategies for modulating Tcf-4/P-catenin responsive 

promoters

Recombinant adenoviruses would help in improved targeting o f the tumor cells 

because most o f the tumor cells have up-regulated CAR receptors. To continue 

identifying novel strategies which would allow better targeting and control o f therapeutic 

gene expression, the idea o f regulating the activity o f the recombinant Tcf-4 

enhancer/promoter combination was also explored. The significance o f this approach lies 

in the fact that regulating the promoter activity would allow control over the amount o f 

therapeutic gene expressed inside the target cell which might be necessary under clinical 

situations. For instance, it might be required to turn off the expression o f the therapeutic 

if  accidentally expressed ectopically. On the other hand, a boost in expression o f the 

therapeutic gene might provide for increased tumor cell death. In an effort to identify 

genetic and chemical modulators for regulating the activity o f recombinant Tcf-4 

enhancer/promoters, several candidate compounds were screened. Short chain fatty acids, 

like butyrate, have been previously shown to influence the normal homeostasis o f colon 

epithelial cells (224). In addition, butyrate has also been shown to influence the wnt/p- 

catenin signaling pathway (223). In order to test the ability o f butyrate to modulate the 

activity o f our recombinant promoters, reporter luciferase assays in the presence or 

absence o f sodium butyrate were performed. Either pLuc-fos/Tcf or pLuc-fos/fct (Tcf 

enhancer sites are scrambled, a negative control reporter vector) was co-transfected with 

pRL-TK (internal control) in selected cell lines. 24 hours post-transfection 1.4 mM 

sodium butyrate was added to the cells. 48 hours post transfection cell lysates were 

prepared and relative luciferase ratio (RLU) readings were recorded as previously
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described in the text. The data generated from this experiment is presented in figure 16. 

The relative luciferase ratios as shown in figure 16 did not presented a clear picture. 

Sodium butyrate treatment, in general, did not significantly appear to affect the relative 

luciferase units ( RLU-firefly luciferase reporter gene activity divided by the internal 

control renilla luciferase activity) in cases when cell lines were transfected with the 

negative control plasmid, pLuc-fos/fct. Butyrate seemed to have a variable effect on 

expression o f the luciferase gene in cell lines transfected with pLuc-fos/Tcf. For example, 

in pLuc-fos/Tcf transfected HCT8 cells, butyrate significantly increases luciferase 

expression, as assessed from increased relative light units. In contrast, under similar 

conditions, Lovo colon cancer cell line showed only a marginal increase in luciferase 

expression. Further, the presence o f butyrate in pLuc-fos/Tcf transfected Colo320, 

SW480 and SW620, decreased luciferase expression. However, it should be noted that, 

by nature, butyrate is also known as a histone deacetylase inhibitor and it’s generally 

known to increase gene expression by opening up the chromatin structure (291). 

Therefore relative luciferase units shown in the figure 16 should be interpreted in the 

light o f the fact butyrate is also expected to increase transcription o f the Renilla luciferase 

gene (pRL-TK, internal control) besides the test firefly luciferase reporter (pLuc-fos/Tcf). 

Indeed a look at the firefly luciferase numbers alone revealed that butyrate did enhanced 

the expression o f luciferase from pLuc-fos/Tcf in colon cancer cell lines (Lovo,

Colo320, HCT8, SW480 and SW620) (figure 17). Importantly, butyrate did not seem to 

affect the luciferase gene expression from pLuc-fos/Tcf or pLuc-fos/fct when transfected 

in NCM460 (normal cells). These results are very preliminary but suggest that specific 

compounds may be identified that can affect Tcf-4/p-catenin mediated transactivation of
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Figure 16. Effect o f 1.4 mM Butyrate (RLU Firefly:Renilla) on c-fos promoter 
activity with and with out Tcf-4 enhancer element. Dual Luciferase assays were 
performed to asses the effect o f butyrate on recombinat c-fos/Tcf-4 promoter 
activity. Selected cell lines were co-transfected with pRL-TK and with either 
pLuc-fos/Tcf or pLuc-fos/fct. 24 hours later cell were treated with 1.4 mM 
sodium butyrate and 48 hours later, cells were processed for dual luciferase 
activities. Shown are c-fos/Tcf-4 and c-fos/fct promoter activities, in different cell 
lines, in terms o f relative luciferase units.
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Figure 17. Effect o f 1.4 mM Butyrate on c-fos promoter activity with and with out 
Tcf-4 enhancer element. The data is derived from experiment performed in figure 
16. Effect o f  butyrate on the activity o f c-fos/Tcf-4 and c-fos/fct promoter, in 
selected cell lines, is shown as uncorrected Firefly Luc values in absence and 
presence o f butyrate.
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gene expression. From the data it can be concluded that under the conditions tested 

butyrate increases the levels o f luciferase gene expression and this effect may not be 

specific to modulating the transcriptional activity o f the recombinant TCf-4 

enhancer/promoter combination. In addition to butyrate, other chemicals which were 

previously shown to be associated with colon cancer prevention/treatment such as non

steroidal anti-inflammatory drugs; Indomethacin and cycloxygenase-2 inhibitors; 

Celecoxib (292), were also tested. Colo320 and SW620 cells were transiently transfected 

with pc-fos/Tcf-4-HSV-TK and 24 hours later treated with appropriate concentrations o f 

sodium butyrate, Indomethacin and Celecoxib (figure 18, lane 2-4). Whole cell lysates 

were prepared 48 hours post transfection and were subjected to SDS-PAGE and western 

blot analysis. The blot was probed with antibodies raised against HSV-TK. Butyrate 

caused significant increase in HSV-TK expression levels as compared to untreated 

control in Colo320 cells and did not seem to have any effect in SW620 cells (figure 18 

lane 2). In contrast, treatment with Indomethacin and Celecoxib appeared to result in 

lowering o f HSV-TK gene expression (figure 18, lanes 3, 4). The results shown in figure 

17 are not very conclusive; however they do suggest that transcriptional activity o f the 

recombinant Tcf-4enhancer/promoter combination can be modulated by chemical means. 

Additional experiments, including screening o f more candidate compounds, are needed to 

confirm these findings.

The presence o f  a constitutively active P-catenin inside a cell is one o f the 

primary requirements for the transcriptional activation o f the proposed recombinant Tcf- 

enhancer/promoter elements. Therefore it can reasonably argued that increasing the 

expression o f the constitutively active P-catenin may result in enhancement o f the
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Colo320

SW620

Figure 18. Effect o f various modulating agents on expression o f HSV-TK driven 
by c-fos/Tcf-4 promoter. HSV-TK Western blot. Colon cancer cells (colo320, 
SW480) were transiently transfected with pc-fos/Tcf-4-HSV-TK (lanes 1-4) and 
treated with butyrate (lane 2), indomethacin (lane 3) and celecoxib (lane 4). To 
asses the effect o f  overexpression o f constitutively active P-catenin on c-fos/Tcf-4 
promoter driven HSV-TK expression, pc-fos/Tcf-4-HSV-TK was co-transfected 
with a plasmid expressing for mutated form o f P-catenin (lane 5). Whole cell 
lysates were prepared 48 hours post transfection and were subjected to SDS- 
PAGE/Westem blot analysis. Bands corresponding to HSV-TK are shown.
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recombinant Tcf-enhancer/promoter element driven therapeutic gene expression. This 

idea was explored by co-transfecting Colo320 and SW620 cells with pc-fos/Tcf-4-HSV- 

TK and with a plasmid encoding for a constitutively active P-catenin (A-45 P-catenin). 

Whole cell lysates were prepared 48 hours post transcription and subjected to Western 

blot analysis using an antibody against HSV-TK. Indeed, A-45 P-catenin co-transfection 

resulted in increased gene expression o f HSV-TK in SW620 and Colo320 (figure 17, lane 

5). However, this enhancement o f c-fos/Tcf-4 driven HSV-TK expression mediated by A- 

45 P-catenin may be a general response o f A-45 p-catenin protein as a known 

transcription factor and may not be specific for c-fos/tcf-4 promoter. Additional 

experiments are required to explore the nature o f increase o f gene expression caused by 

A-45 P-catenin. However these data indicate that the activity o f the recombinant tcf-4 

enhancer/promoter elements can be modulated by chemical and genetic means.
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CHAPTER V 

DISCUSSION AND CONCLUSION

One o f the most challenging aspects in cancer therapy is how to exclusively target 

cancer cells and spare the normal cells? Conventional therapies, owing to their lack of 

specificity in targeting tumor cells, frequently cause serious side effects. Because o f this 

narrow therapeutic window, most metastatic and local malignancies become refractory to 

treatment. In contrast, gene therapy for cancer has the ability to distinguish between 

normal and tumor cells. This very aspect o f gene therapy gives it an edge over 

conventional cancer therapies as it has the ability to minimize normal cell toxicity by 

selectively attacking the tumor cells. However, this aspect o f gene therapy is very 

challenging and needs innovative strategies for specific targeting to the site o f the tumor. 

One o f the ways this can be achieved is by limiting the expression o f the therapeutic gene 

to the tumor cells and sparing the normal cells from the toxic effect o f the therapeutic 

gene. This strategic approach o f limiting the expression o f the therapeutic gene to the 

tumor cells is known as transcriptional targeting and has been described in detail in the 

Introduction. In general, successful expression o f any gene is dependent upon activation 

o f specialized DNA sequences known as promoters. Promoters provide the binding sites 

for transcription factor/proteins which are required for the successful initiation and 

completion o f gene transcription. Activation o f a promoter is a function o f the availability 

o f the transcription factor/proteins, inside the target cell, which bind to specific sites in 

the promoter DNA to form a transcription activation complex. In continuation, a 

universally active promoter implies that the promoter DNA sequence is active in a variety
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o f cells owing to its ability to bind constituitively expressed transcription factor/proteins 

that form a transcription initiation complex.

Typically in cancer gene therapy, a toxin gene is coupled with a promoter 

incorporated in a gene expression cassette which is delivered to the target tumor cells. 

Therefore, activity o f the promoter in the target tissue will govern the expression o f the 

therapeutic gene. A universally active promoter is not a worthy candidate for such 

therapy protocols because its activity in normal cells would result in expression o f the 

toxin therapeutic gene leading to widespread normal cell toxicities. Hence, an ideal 

situation would be to have a gene expression promoter which is exclusively activated in 

tumor cells. These promoter DNA elements are known as tumor specific gene expression 

promoters. As explained in the Introduction, minimal promoters o f various oncogenes, 

such as Cyclooxygenase-2, c-myc, c-fos, cyclinD etc, when combined with an enhancer 

DNA sequence are ideal candidates for being used in designing o f tumor specific gene 

expression promoters. Enhancer elements are naturally found to be part o f several genes 

differentially regulated in various types o f cancers. As mentioned earlier in this text, 

aberrant activation o f growth promoting signal transduction pathways results in 

differential activation o f genes in cancer. The promoters o f these differentially 

transactivated genes usually have specific DNA elements (for example enhancer 

elements) binding to an array o f proteins in response to a signal transduced by the 

activated signaling pathway. Such enhancer elements can be innovatively used in cancer 

gene therapy to control the expression o f therapeutic genes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



128

Aberrant activation o f the Wnt-signaling pathway has been associated with an increasing 

number o f neoplasms. Deregulation o f this pathway disrupts normal proteosome 

mediated degradation o f P-catenin, resulting in a nuclear localization. P-catenin shows 

nuclear localization in a majority o f colorectal carcinomas and has been associated with a 

significant proportion o f prostate cancers, melanomas, ovarian cancers, glioblastomas, 

and breast cancers (281-285, 293). Nuclear P-catenin pairs with members o f the Lef/Tcf 

family o f proteins and trans-activate several cancer promoting genes (19, 20, 22, 24).

This occurs by binding o f  the constitutively active P-catenin/Tcf-4 complex to the Tcf-4 

enhancer regions present in the promoter regions o f these target genes. In other words 

the presence o f a Tcf-4 enhancer contributes to the expression o f these cancer promoting 

genes by its ability to bind to the transcriptionally active P-catenin/Tcf-4 complex 

resulting in transcriptional activation o f their promoters. Given the fact that the canonical 

Wnt signaling pathway is constitutively activated in a large number o f adenocarcinomas 

and not in normal cells, the Tcf-4 enhancer element could be a very valuable tool for 

design o f tumor specific gene expression promoters.

Specific Aim 1

In this Specific Aim, the effectiveness o f the Tcf-4 transcriptional enhancer 

element was evaluated for its ability to act as a tumor specific regulator o f therapeutic 

gene expression in a panel o f human tumor and normal colon cell lines. These 

experiments were geared towards establishing the proof o f principle that the Tcf-4/p* 

catenin enhancer could be used for regulation o f gene transcription in tumor cells. To 

achieve the objectives o f this aim, extensive cell line screenings were done using dual
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luciferase assays. The Tcf-4 enhancer element was cloned with a panel o f chosen 

minimal promoters from various oncogenes; c-fos, CEA, Cox-2, PSMA and PSA. CEA 

(280), Cox-2 (252), PSMA (294) PSA (271, 295) promoters have been previously used 

for constructing tumor specific gene expression promoters. On one hand, these candidate 

gene therapy promoters have shown vast potential but, in general, they are very weak 

activators o f gene transcription. This is especially true for PSMA, PSA and PSMA 

promoters, and in previous studies this issue has been addressed by coupling these 

promoters with specific enhancer elements to increase the transcriptional activity o f the 

native promoters (271, 280, 294, 295). 

c-fos promoter

A minimal c-fos promoter has never been used as such, for expressing a therapeutic gene 

for the purpose o f gene therapy. Given the fact that promoters o f several members o f the 

AP-1 family o f proteins are targets o f various signaling pathways found to be activated in 

variety o f cancers(296), c-fos could be a very strong candidate for use in cancer gene 

therapy. Our results from luciferase assays show that coupling o f a Tcf-4 enhancer 

element with a minimal c-fos promoter results in a significant increase in the 

transcriptional activity as compared to the c-fos promoter alone (Table 1). As expected, 

owing to the activation o f the Wnt signaling pathway in the chosen colon cancer cell lines 

(HCT8, SW480, SW620, and Colo320), a c-fos/Tcf recombinant promoter showed a 

higher activity in terms o f the measured luciferase levels. At the same time, no significant 

levels o f c-fos/Tcf transcriptional activity was observed in the normal NCM460 colon 

cells. This was because NCM460 cells are derived from normal colon epithelia and do 

not have transcriptionally active P-catenin present in the nucleus required to transactivate
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the Tcf-4 enhancer elements (discussed later). In the next step, we compared the activities 

o f c-fos/Tcf and c-fos/Fct (Tcf-4 enhancer with mutated Tcf-4 binding sites) in luciferase 

assays (figure 1). As expected, we observed a dramatic increase in the transcriptional 

activity o f c-fos/Tcf over c-fos/Fct, demonstrating that a functional Tcf-4 enhancer 

sequence is essential for the recombinant promoter activity in a tumor cell environment 

having a constitutively active P-catenin/Tcf-4 complex. In addition, in normal cells 

(NCM460, NCM425) presence o f Tcf-4 enhancer element did not result in any 

significant increase in promoter activities. Therefore it can be concluded that in luciferase 

assays, coupling o f the Tcf-4 enhancer increases the transcriptional activity o f a minimal 

c-fos promoter.

CEA promoter

Encouraged by these results, we next tested the possibility o f using the CEA promoter in 

combination with the Tcf-4 enhancer element. The CEA promoter is found typically 

activated typically in gastrointestinal cancers and several previous studies have shown the 

potential o f the CEA promoter for tumor specific therapeutic gene expression. However, 

CEA promoter is also a weak activator o f gene transcription which could be an issue in 

cases where a high level o f therapeutic gene expression is required. We tested the 

hypothesis that the activity o f a CEA promoter could be improved by coupling it with a 

Tcf-4 enhancer element. We tested CEA/Tcf recombinant promoter activity in a panel o f 

cell lines (table2) and noticed that it is active only in SW620 colon cancer cells. CEA/Tcf 

promoter activity was also assessed in breast cancer cells (MDA435 and MCF7) and no 

appreciable increase o f promoter activity was observed as compared to the CEA promoter 

activity alone. At the same time, one o f our collaborators (Dr. Kathy Molnar-Kimber) at
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the University o f Pennsylvania tested the activity o f the CEA/Tcf recombinant promoter 

in Lovo and Colo320 colon cancer cells. A dramatic increase in CEA promoter activity 

was seen in the presence o f the Tcf-4 enhancer element in Colo320 cells and a modest 

increase was noticed in Lovo cells. Therefore coupling o f a Tcf-4 enhancer element with 

a CEA promoter may be advantageous under some situations. Although the cells in which 

CEA/Tcf recombinant promoter did not show significant activity have been shown to 

have deregulation o f Wnt signaling pathway, it could be possible that these cells have 

very low CEA activity and coupling o f Tcf-4 enhancer is not enough for high levels 

transcriptional activation. Results presented in table 2 also show that, except in MCF7 

breast cancer cells, the c-fos/Tcf combination is significantly active in the test cancer 

cells lines, again emphasizing the point that the minimal promoter coupled with Tcf-4 

enhancer element is also an important factor contributing to the overall activity o f the 

recombinant promoter.

NCM460 as negative control cell line

The normal colon cells, NCM460, have been extensively used in this study. The 

NCM460 cell line is a very useful tool for evaluating the activities o f the candidate 

promoter/enhancer combination in a normal cellular environment. This becomes very 

important because the goal o f the study was to design novel promoter/enhancer 

combinations, active in tumor cells and not in normal cells, which could be used for 

driving therapeutic gene expression. The c-fos/Tcf recombinant promoter showed a 10- 

fold increase in activity in NCM460 cells (table 2) which was an unexpected result 

because being normal cells, NCM 460 do not have a constitutively active Wnt signaling 

pathway (272). However, it is worth mentioning that these results are derived from a dual
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luciferase assay which is a screening tool and not an assay which would directly measure 

the levels o f therapeutic gene expression in terms o f cell killing or viability. In other 

words, a more functional assay would be a better way to evaluate the activity o f the 

designed recombinant promoter/enhancer combinations. Another important parameter 

was to assess how transfectaable NCM460 cells were, as it could be argued that if  these 

cells were not efficiently transferable, then this would result in lower activities o f the 

candidate recombinant promoters. We addressed this issue by transfecting NCM460 cells 

with a reporter construct in which the luciferase gene was driven by a constitutively 

active MMLV LTR promoter (table 2). Significant levels o f luciferase gene expression 

was achieved from the LTR promoter indicating successful reporter plasmid DNA 

uptake, and also that these cells are not transcriptionally inactive.

Additionally, we showed by immunostaining for P-catenin that there is no nuclear 

P-catenin present in NCM460 cells and it was found to be present on inner side o f cell 

membranes, indicating that wnt signaling pathway is not deregulated in these cells (figure

5). Further, we co-transfected NCM460 cells with pLuc-fos/Tcf (luciferase gene 

expressed by c-fos/Tcf recombinant promoter) and a plasmid DNA encoding 

constitutively active beta-catenin. As expected, a dramatic increase in the activity o f c- 

fos/Tcf promoter was observed suggesting that NCM460 cells do not have constitutively 

active P-catenin which is available for the transactivation o f recombinant promoters 

consisting o f Tcf-4 enhancer elements. With all the given data it can be concluded that 

NCM460 cells are good negative controls for the experiments performed in Specific 

A im l.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



133

Cox-2, PSMA and PSA promoter

Cox-2 is found to be up-regulated in a variety o f epithelial tumors and has been shown to 

be a target o f the wnt signaling pathway (26, 247). In addition cox-2 promoter activity 

has been shown to be inactive in liver which can be very helpful in minimizing the liver 

toxicity in patients being treated with suicide gene therapy (252). Previous studies have 

indicated the potential o f using the Cox-2 promoter as a tumor specific gene expression 

promoter (248). We hypothesized that coupling o f the Tcf-4 enhancer element with a 

Cox-2 promoter would achieve higher transcriptional activities. Indeed, in dual luciferase 

assays using plasmid constructs in which the luciferase gene was driven by a Cox-2 

promoter or Cox-2/Tcf promoter enhancer combination, we found that the Tcf-4 enhancer 

element significantly increased the activity o f  the Cox-2 promoter in the colon cancer cell 

lines HCT8 and SW620, where as it gives a modest boost to the Cox-2 promoter activity 

in the HCT116 colon cancer cell line (figure 3). This was expected given the fact that 

Cox-2 in known to be upregulated in gastrointestinal cancers (287), and moreover the 

tested cell lines are also known to have an activated wnt signaling pathway (286).

In our continuing efforts to identify more candidate promoter/Tcf-4 enhancer 

combinations, we also tested the activity o f PSA and PSMA promoters in the presence 

and absence o f a Tcf-4 enhancer element by performing dual luciferase assays. No 

significant PSA or PSMA activity, either in the presence or absence o f Tcf-4 enhancer, 

was observed in the tested colon cancer cells (HCT116, HCT8, and SW620). However, 

coupling o f the Tcf-4 enhancer did significantly increase the PSMA promoter activity in 

prostate cancer cells DU 145 and PC3 (figure 4).
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Conclusion: Specific Aim 1

Based on the results from experiments performed in specific aim 1 it can be concluded 

that coupling o f a Tcf-4 enhancer element to a minimal promoter o f an oncogene is a 

viable strategy for designing o f tumor specific gene expression promoters. In this 

promoter/enhancer combination the role o f the promoter partner is very significant; as 

evidenced by the following observations:

• Lovo and Colo320 colon cancer cells showed a high CEA/Tcf activity, in 

contrast they show comparably less Cox-2/Tcf-4 activity

• SW620, HCT116 and HCT8 colon cancer cells had a low CEA/Tcf recombinant

promoter activity but high Cox-2/Tcf and c-fos/Tcf recombinant promoter 

activity.

• Prostate cancer cell lines DU 145 and PC3 registered a high PSMA/Tcf 

recombinant promoter activity but low PSA/Tcf recombinant promoter activity.

Therefore the emerging theme is, one particular promoter/Tcf-4 recombinant promoter 

combination may be active in one specific target cell and may not show the same activity 

in a different cell line.

Specific Aim 2

In Aim 1 we established that Tcf-4 enhancer elements can be successfully 

combined with minimal promoters o f various oncogenes for the purpose o f engineering 

o f a tumor specific gene expression promoter. In the next step, we evaluated the ability o f 

the chosen c-fos/Tcf enhancer promoter combination to express the therapeutic gene 

HSV-TK specifically in targeted tumor cells. By transient transfection experiments we
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showed successful expression o f c-fos/Tcf driven HSV-TK expression in selected colon 

cancer cells (SW480, HCT8 and SW620) and breast cancer cells (MDA435 and MCF7) 

(figures 6&7). At the same time no c-fos/Tcf driven HSV-TK expression was detected in 

the normal NCM460 cells. These results are in perfect agreement with the results 

luciferase assays performed in aim 1 using c-fos/Tcf recombinant promoter. However, it 

is noteworthy here that although, in luciferase assays, we did noticed a 10 fold increase in 

promoter activity upon coupling o f Tcf-4 enhancer element with c-fos promoter, we did 

not see any detectable levels o f the therapeutic gene expression as measured by western 

blots. Therefore indicating that activity o f the c-fos/Tcf recombinant promoter in normal 

cells is not significantly enough for the expression o f HSV-TK. Further by metabolic 

labeling assays we demonstrated that the HSV-TK gene product expressed from c-fos/Tcf 

recombinant promoter is functional and is capable o f phosphorylating the prodrug GCV 

into GCV phosphate (figures 8 and 9). The high level o f HSV-TK metabolically labeled 

GCV detected in SW480 cells conform to the high level o f HSV-TK expression seen by 

western blotting. However, HCT8 cells did seem to have comparable GCV metabolites, 

although they show levels o f HSV-TK expression. This anomaly could be due to the 

difference in metabolism o f GCV by HCT8 cells. Several cancer cells are know to 

develop drug resistance via effluxing the drug with the help o f specialized pumps present 

in their cell membranes. This effectively reduces the bio-availability o f the drug in the 

target tissue. In our GCV sensitive cell viability assays we showed that transient 

transfection o f colon cancer (SW480) and breast cancer cells (MDA 435) followed by 

GCV treatment results in significant cell death. Whereas, in identical assays no 

significant GCV mediated cell killing was observed in the normal NCM460 cells. These
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results are as expected, given that c-fos/Tcf selectively expresses the HSV-TK gene in 

tumor cells (here SW480 and MDA435) and not in normal cells (NCM 460), it is likely 

that tumor cells will have a significantly higher GCV toxicity as compared to the normal 

cells (figure 11).

The ability o f PSMA/Tcf recombinant promoter combination was also tested to 

sensitize prostate cancer cells (DU 145 and PC3) to GCV. In transient transfection assays 

followed by GCV treatment, using pPSMA/Tcf-4-HSV-TKconstruct, PC3 cells showed 

were found to be highly sensitive to GCV (figure 12). This was highly expected because 

in our luciferase assays we had already shown that PSMA/Tcf recombinant promoter is 

very active in PC3 cells. Although, in luciferase assays, we had seen a high PSMA/Tcf 

recombinant promoter activity in DU 145 cells, we did not notice significant cell death at 

lOum GCV concentrations. Again this could be an issue o f reduced bioavailability o f 

GCV in DU 145 cells owing to the activation o f drug resistance mechanisms commonly 

found in cells (figure 12). Therefore, we repeated the GCV sensitivity assay in DU 145 

cells, using pPSMA/Tcf-4-HSV-TKconstruct, and increased the GCV treatment levels to 

25um. A dramatic increase in DU 145 cell killing was observed, indicating increased level 

o f GCV sensitivity. This increase was highly specific to the expression o f HSV-TK in 

DU 145 cells because mock or pCDNA-HSV-TK (promoter less) transfected cells were 

not found to be sensitive to 25um GCV. In addition, transfection o f pPSMA/Tcf-4-HSV- 

TKconstruct did not cause any significant level o f GCV toxicity in the normal NCM460 

cells indicating non-expression HSV-TK in these cells due to weak PSMA/Tcf 

recombinant promoter activity.
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Conclusion: Specific Aim 2

From the data provided it can be concluded that c-fos/Tcf and PSMA/Tcf recombinant 

promoters can successfully express a functional copy o f the chosen therapeutic gene, 

HSV-TK, in tumors cells.

Specific Aim 3

The ultimate aim in this step o f the study was to engineer a delivery system in 

which the gene expression cassette could be packed and delivered to the target tumor 

cells. Adenoviral vectors are widely used for in vitro and in vivo gene transfer in several 

animal models and in clinical trials as well. They are know to efficiently transduce a wide 

range o f cell types and have shown enormous potential for being used in cancer gene 

therapy for delivery o f the therapeutic gene to the tumor cells (297). However, there are 

several issues related to the Biosafety o f a adenoviruses for example adenoviruses are 

known to generate an acute inflammatory immune response which can cause widespread 

toxicities in the patient (298). However, newer generation adenoviral vectors have a 

better safety profile as they are engineered to carry less adenoviral proteins and unable to 

replicate inside the host (297). The main objective o f this specific aim was to demonstrate 

that a therapeutic gene expression cassette, in which the therapeutic gene is under the 

control o f a recombinant c-fos/Tcf promoter-enhancer combination, can be successfully 

delivered and expressed in a target cell. Ad-Fos/Tcf-TK was designed to express HSV- 

TK from a c-fos/Tcf recombinant promoter. Ad-CMV-TK was constructed as a control 

vector in which HSV-TK gene was under the control o f a CMV promoter. The tested cell 

lines were infected with the recombinant adenoviruses and were assessed for HSV-TK
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expression by Western blotting. Ad-c-fos/Tcf4-HSV-TK was found to successfully 

express HSV-TK in the tested colon cancer cells (SW620 and SW480). Owing to the 

high activity o f C-fos/Tcf recombinant promoter and the ability o f adenoviruses to infect 

tumor cells, this result was highly expected. However, no expression o f HSV-TK was 

detected in normal (NCM460) cells. A logical explanation for this observation could be 

the inactivity o f c-fos/Tcf recombinant promoter in these normal cells. However it can 

also be speculated that NCM460 cells cannot be infected by adenoviruses resulting in 

their failure to deliver the HSV-TK therapeutic gene construct to the normal cells. To 

address this issue NCM460 cells were infected with Ad-CMV-TK, followed by a western 

blot analysis for the HSV-TK gene expression. As expected, significant levels o f HSV- 

TK protein were detected in NCM460 cells suggesting a successful delivery o f the HSV- 

TK therapeutic gene by Ad-CMV-TK. Further, we established adenovirus mediated 

delivery o f HSV-TK causes GCV sensitivity in target cells. Following infection with the 

recombinant adenoviruses, cells were treated with GCV and 48 hours later live cells were 

counted. Ad-c-fos/Tcf4-HSV-TK (figure 15)was found to cause significant cell death in 

colon cancer cell lines (SW480 and SW620) and was not observed to cause any 

significant GCV sensitivity in the normal cells (NCM460). These results are in 

accordance with the HSV-TK western blot shown in figure 6 in which, owing to the 

inactivity o f the recombinant promoter, Ad-c-fos/Tcf4-HSV-TK was not found to be 

active in the normal cells. Therefore, it can be speculated that lack o f  Ad-c-fos/Tcf4- 

HSV-TK mediated HSV-TK expression in the normal NCM460 cells resulted in 

insignificant cell death. This speculation was further confirmed by the observation that, 

owing to the universally active CMV promoter, Ad-CMV-TK caused significant GCV
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toxicity in the normal cells (NCM460) as well as the colon tumor cells (SW480 and 

SW620).

Conclusion Specific Aim 3

The following points can be concluded from the experimental evidence provided in 

specific aim 3.

• The recombinant therapeutic gene expression cassette can be successfully 

packaged inside an adenoviral delivery vector.

• Adenoviruses can successfully deliver and express the therapeutic gene 

expression cassette to the colon cancer cells (SW480 and SW620).

• It is probable that the Adenoviral vectors would be able to deliver and express the 

therapeutic gene expression cassette in other types o f cancers especially the ones 

in which wnt signaling pathway is found to be aberrantly activated.

Specific Aim 4

Finally, having successfully delivered the therapeutic gene expression cassette to 

the tumor cells, the next step was to discern strategies by which the therapeutic gene 

expression could be regulated. This regulatory aspect o f therapeutic gene expression 

could be very critical under certain clinical situations which may require increasing or 

decreasing the level o f therapeutic expression. Chemical modulators like sodium butyrate 

have been previously shown to increase the expression o f Tcf-4 responsive genes (223). 

Therefore the efficacy o f  sodium butyrate to increase the recombinant promoter activity 

was explored by conducting luciferase assays. Sodium butyrate was found to increase the 

activity o f our recombinant Tcf-4/c-fos promoter combination as well the HSV-TK
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promoter which drives the expression o f the internal control ‘Renilla Luciferase’ gene. 

This is evident from the results presented in figure 16 Which show that after adding 

sodium butyrate the relative luciferase value actually goes down, this is because sodium 

butyrate (general histone deacetylase inhibitor) non specifically increases the rate o f 

transcription o f both the HSV-TK promoter (expresses the Renilla luciferase gene), as 

well as the transcriptional activity o f the tested Tcf-4/c-fos promoter combination 

(expressing the luciferase gene). Although non-specifically, sodium butyrate did increase 

the activity o f our tested Tcf-4/c-fos promoter combination (figure 17), therefore it may 

be useful for cancer gene therapy under situations where increased therapeutic gene 

expression is needed for enhancing tumor cell killing. Further, we screened NSAIDs 

(Non-steroidal anti-inflammatory drug-NSAlD) like indomethacin and Celecoxib (Cox-2 

inhibitor) for their ability to modulate the transcriptional activity o f our recombinant 

enhancer/promoter system. Indomethacin has been suggested to have chemo preventive 

properties against colon cancer and is believe to act by upregulating tumor suppressive 

gene PTEN, affecting the cell survival and inhibition o f apoptosis by negatively 

regulating the AKT/PI3K pathway (292). In addition indomethacin has been directly 

shown to down-regulate wnt signaling by stabilizing the phosphorylated forms o f p* 

catenin (299). Similarly Cox-2 inhibitors have been increasingly used as a chemo 

preventive agent for colon cancer and have been shown to inhibit wnt signaling pathway 

by affecting the levels o f nuclear P-catenin (287, 300). In our preliminary experiments we 

found marginal reduction in the activity o f the c-foc/Tcf-4 recombinant promoter. This 

was evidenced by the reduced HSV-TK levels in western blots performed on SW620 and 

Colo320 colon cancer cell lines transfected pc-fos/Tcf-4-HSV-TK and treated with
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Indomethacina and Celecoxib (figure 18). Given the fact that NSAIDs have been shown 

to inhibit wnt signaling pathway, these results are highly encouraging and are indicative 

that the activity o f our recombinant enhancer/promoter system can be controlled by 

chemical means. Taken together, it can be stated that there is a good possibility of 

regulating the activity o f our recombinant enhancer/promoter system, in clinical settings, 

by chemical means. However extensive screening and analysis o f these chemical 

modulators is needed to further characterize their modulatory properties.

In our on going efforts to find mechanisms to regulate the transcriptional activity o f 

our recombinant enhancer/promoter system, we hypothesized that over expressing a 

constitutively active form o f P-catenin in the target cell should enhance the transcriptional 

activity o f the recombinant enhancer/promoter. Indeed, our results show increased HSV- 

TK expression levels when a plasmid expressing for constitutively active P-catenin was 

co-transfected with pc-fos/Tcf-4-HSV-TK in SW620 and Colo320 colon cancer cell 

lines. The most logical explanation for this result is that P-catenin over expression 

increased the activity o f the pc-fos/Tcf recombinant promoter which is driving the 

expression o f the HSV-TK gene. This observation is very interesting and may have 

significant clinical implications. For example, an adenoviral delivery vector can be 

designed with a dual expression cassette containing the therapeutic gene and gene for 

constitutively active P-catenin under the control o f our recombinant Tcf-4 

enhancer/promoter system. This system would express higher amounts o f the therapeutic 

gene because o f the constitutively active P-catenin. Since the expression o f P-catenin will 

also be controlled by the Tcf-4 enhancer/promoter, P-catenin levels will further stimulate 

the transcriptional activity o f the recombinant promoter greatly increasing the levels o f
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therapeutic and P-catenin gene expression levels. This dual expression strategy is 

particularly more beneficial in cancers which have low levels o f nuclear P-catenin to 

activate the recombinant Tcf-4 enhancer/promoter system.

Conclusion Specific Aim 4

• Sodium butyrate increases the activity o f the c-fos/Tcf-4 recombinant promoter. 

Although this effect o f sodium butyrate is non-specific, it can still be used as a 

positive regulator o f the Tcf-4 enhancer/promoter system.

• NSAIDs, which are known to affect the wnt signaling pathway by stabilizing the 

levels o f phosphorylated P-catenin, can be used as negative regulators o f the Tcf-4 

enhancer/promoter system.

• Constitutively active P-catenin gene expression enhances the level o f HSV-TK 

gene expression, most likely by increasing the transcriptional activity o f the pc- 

fos/Tcf recombinant promoter.

The Big Picture

Because mutations in the APC gene and P-catenin gene are frequently associated 

with progression o f colon carcinoma and most other types of epithelial carcinomas, the 

effectiveness o f a Tcf-4/ P-catenin transcriptional enhancer element was evaluated for its 

ability to act as a tumor specific regulator o f therapeutic gene expression in a panel o f 

human tumor and normal colon cell lines. Using the HSV-TK gene in combination with 

GCV, we demonstrated that the Tcf-4/ P-catenin enhancer and c-fos promoter can 

efficiently direct expression o f HSV-TK resulting in phosphorylation o f GCV and cell 

killing.
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1) Our approach with the Tcf-4/ P-catenin enhancer is based on tumor specific conditions 

with transcriptional activity dependent on transcription factor complexes found only in 

the tumor phenotype. In several studies, coupling o f the Tcf enhancer elements with 

constitutive viral promoters (TK., SV40, Ad E1B,E2) in adenoviral vectors have proven 

to be effective vehicles for tumor specific gene expression in cell culture and in animal 

models (272, 273, 301). We hypothesized that linking the T cf enhancer elements with a 

mammalian promoter associated with a tumor phenotype or involved in the wnt signaling 

pathway could be even more effective. An increasing number o f genes with Tcf-4/ P- 

catenin 5' regulatory sequences have been identified, including c-myc, cyclin D, c-jun, 

and MMP-7 (19-22, 24). Promoter sequences from these genes, and others yet to be 

identified, could be manipulated for combination testing with the Tcf-4/ -catenin 

enhancer.

2) This approach can be very useful in customizing cancer gene therapy treatment based 

on the gene expression o f the tumor biopsy taken from the patient. Depending on which 

oncogenes are found to be up-regulated in the tumor, a custom gene expression cassette 

can be tailor made for the patient by coupling Tcf-4 enhancer element with the chosen 

oncogenic promoter.

3) The potential o f this strategy can be further explored by combining the Tcf-4 enhancer 

elements with newly discovered/designed tumor/tissue specific gene expression 

promoters. There are several potential candidate promoters, for example, epithelial cell 

adhesion molecule promoter, stress inducible grp78 promoter and the tyrosine 

hydroxylase promoter (302-304).
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4) Owing to the leaky therapeutic gene expression in normal cells, cancer gene therapy 

may cause normal cell toxicities. Usually liver cell toxicity is one o f the prime concerns 

in cancer gene therapy and our approach can address this issue by selecting special 

promoters in combination with Tcf-4 enhancer element. For example, Cox-2 promoter 

has been shown to have minimal activity in liver cells, and as already shown in the 

presented data Cox-2 promoter, can be successfully combined with Tcf-4 enhancer 

element for tumor specific gene expression.

5) We have demonstrated that these innovatively designed therapeutic gene expression 

cassettes can be successfully delivered using adenoviral vectors. In a clinical situation, 

this would allow stringent control o f the delivery and expression o f the therapeutic gene 

expression cassette. In addition, systemically administered adenoviral vectors can reach 

widely disseminated tumors which may go undetected by conventional therapies. 

However there are certain safety issues associated with the use o f adenoviral vectors as 

delivery vehicle, these concerns can be addressed to reasonable levels by using the newer 

generation adenoviral vectors (298).

6) Another unique aspect o f Tcf-4/ P-catenin regulation is the modulation o f responsive 

genes by chemical modifiers like butyrate, phorbol esters, doxorubicin and retinoids.

Short chain fatty acids like butyrate and trichostatin A have been reported to increase 

Tcf-4/ P-catenin mediated gene expression (223, 305). Addition o f the phorbol ester PMA 

has also been reported to increase gene expression (305). Conversely, addition o f 

NSAIDs has been suggested to inhibit Tcf-4/p-catenin mediated transcription by 

stabilizing the levels o f phosphorylated P-catenin. In addition, there are other compounds 

which have the potential for being used as negative regulators o f  Tcf-4/p-catenin
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mediated transcription. For example, the anti-cancer drug, Adriamycin (226) and 

retinoids (227) have been shown to decrease Tcf-4/ -catenin mediated gene expression. 

The effects o f these compounds on HSV-TK expression in the Tcf-TK-transfected cells is 

currently under investigation. Because o f the demonstrated variability o f transcriptional 

regulation o f Tcf-4/ P-catenin expression in different tumor cell lines (as in Figure 1), 

addition o f an inducible stimulating agent could enhance expression in marginally 

responsive cells. Conversely, the possibility o f having a repressor option in the context o f 

patient safety for viral-based gene therapies could be important. Thus, the drug 

inducibility (or repression) options conferred with the Tcf-4/ P-catenin enhancer will be 

further characterized for potential clinical use o f this element in therapeutic gene 

expression.

7) Innovative cancer therapy protocols can be designed by combining our approach with 

conventional cancer therapies. For example, a Tcf-4 enhancer element could be combined 

with a radioinducible promoter like Egr (306) for expressing the desired therapeutic gene. 

This multi-modal therapeutic approach may result in improved therapeutic outcomes.

8) Our recombinant Tcf-4 enhancer/promoter system can be utilized to control the 

replication o f conditionally replicative oncolytic adenoviruses. This can be achieved by 

placing the expressing o f key genes needed for the replication o f oncolytic adenovirus 

under the control o f our recombinant enhancer/promoter system. In an appropriate tumor 

cell environment, the Tcf-4 enhancer/promoter would be highly active allowing increased 

replication o f the oncolytic adenovirus. On the other hand, in a normal cell environment, 

the recombinant promoter will not be active and will prevent normal cell toxicity by not 

allowing the oncolytic adenovirus to replicate.
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9) Our gene therapy approach is solely a tumor specific gene expression promoter based 

approach. Therefore, it has the flexibility o f being used with any therapeutic gene o f 

choice allowing 1) killing o f the tumor cell 2) substituting the mutated gene responsible 

for neoplastic transformation or 3) immunomodulating the host immune response to 

target and eliminate the tumor.

Future Directions

The results presented in the study successfully demonstrate the ‘proof o f 

principle’ that Tcf-4/p-catenin enhancer can be used for the design o f tumor/tissue 

specific gene expression promoters for the purpose o f cancer gene therapy. However, it 

should be noted that this conclusion is derived solely from in vitro experiments. The 

validity o f these in vitro results needs to be tested in animals to demonstrate the 

robustness o f the proposed enhancer promoter system. There are several key points which 

can be derived from the in vitro data presented, for example 1) aberrant activation o f the 

wnt signaling pathway, due to mutational inactivation o f the APC or P-catenin gene in the 

target tumor is an absolute requirement for the success o f the proposed system, 2) the 

minimal promoter partner is very crucial in determining the over all activity o f the 

recombinant promoters, 3) the promoters incorporating the Tcf-4 enhancer element are 

not active in the tested normal cells (we will elaborate this point later) and finally, 4) the 

therapeutic gene expression construct comprising o f the recombinant promoters 

expressing the gene o f choice can be successfully delivered by using an adenoviruses to 

the tumor cells under in vitro conditions. As mentioned earlier, each o f these points will 

need to be further characterized in animal model systems.
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There are several rodents models for colorectal cancer that are based upon 

mutational inactivation o f the APC gene(307). These APC mutation based animal models 

would be ideal for testing the tumor specific gene expression ability o f the proposed 

promoter/enhancer system under in vivo situations. The APC/min mouse (min mouse) is 

one o f the most extensively used animal models for colon cancer studies. These animals 

carry germline heterozygous mutations in the APC gene resulting in a truncated APC 

gene product and develop more than 100 intestinal tumors mainly in the upper 

gastrointestinal tract (GI). The Min mouse has been widely used in colon cancer research 

although it does not forms tumors in the large intestine, its use can be justified from the 

fact that patients suffering from familial adenomatous polyposis are susceptible to a 

broad spectrum o f extra-colonic manifestations, the most clinically relevant o f which are 

the desmoid and upper GI tract tumors (307). Therefore, we believe that for our studies, 

this model would be highly useful in replicating our in vitro studies under in vivo 

situations.

However, to use the min mouse model for our studies, several key issues 

including the choice o f therapeutic gene, delivery vector, and route o f administration o f 

the vector or drug will have to be worked out before we can observe the expected results. 

In addition, there is the issue o f which minimal promoter to be pair with the Tcf-4 

enhancer for testing in the animal model. This is a very crucial aspect and stems from the 

demonstrated fact that the activity o f the minimal promoter is also an important part o f 

the whole recombinant promoter. In other words, if  a minimal promoter partner is chosen 

which has a fairly high amount o f activity in normal cells/tissues besides being highly 

active in the target tumor cells; it may result in normal cell/tissue toxicity and lowers the
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therapeutic index. One o f the inherent positive points o f using the Tcf-4 enhancer 

elements for designing such recombinant promoters is the mechanism by which they 

control gene expression. Tcf-4 elements in the absence o f nuclear P-catenin, a situation 

expected in normal cells, act as transcription repressors. Several proteins like the histone 

deacetylases CtBP and Rpd3 are recruited to the TCf-4 elements (308) resulting in the 

transcriptional repression o f the promoter. Therefore, this unique gene expression 

controlling feature o f Tcf-4 elements can act as a safeguard mechanism by silencing the 

expression o f the toxic therapeutic gene in normal cells. Hence, even if  the minimal 

promoter partner has some activity in normal cells/tissues, we predict it is likely to show 

much reduced transcriptional activity when coupled with a Tcf-4 element.

By optimizing the above mentioned factors we expect to see a reduced tumor load 

in the min mouse upon treatment with our therapeutic expression vectors along with 

reduced normal cell toxicity. However, complete eradication o f the tumors and 

minimizing normal cell toxicity may require several intervening steps. For example, 

rationally chosen therapeutic gene(s) could result in an enhanced bystander effect 

targeting increasing number o f tumor cells or the gene therapy approach could be 

combined with other treatment modalities like chemotherapy for better therapeutic 

outcome. Cancer immunotherapy is one o f the most promising ways to achieve 

substantial levels o f a bystander effect. The proposed therapeutic gene expression system 

in this study can be easily adapted for such purposes. Several studies have shown the 

benefits o f targeting the tumors with an immunogenic approach. Cytokines, like GM-CSF 

(granulocyte-macrophage colony-stimulating factor), when expressed in the tumor micro

environment have been shown to stimulate an intense inflammatory reaction
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characterized by tumor infiltrating granulocytes, macrophages and dendritic cells. 

Furthermore, the presence o f dendritic cells (the antigen presenting cells) suggests that 

GM-CSF creates an advantageous intracellular environment for tumor antigen 

presentation resulting in the activation o f lymphocytes against the tumors (309). Other 

promising cytokines which can be used for cancer immunotherapy are IL-12 and IL-21 

(310, 311). Genes for such cytokines along with tumor antigens can be incorporated into 

the Tcf-4 enhancer/promoter containing vectors for targeting colon tumors. Such cancer 

vaccines are expected to be highly effective in targeting widely disseminated tumors.

The possibilities o f using our proposed gene expression system are potentially 

unlimited, in theory it can be used to express any desired gene in tumors especially o f the 

colon. Therefore, in future studies, it will be quite interesting to see the efficacy o f the 

Tcf-4 enhancer containing recombinant promoters to express genes other than HSV-TK. 

Efforts are needed to harvest the customizable aspect o f our proposed gene expression 

system. Given the possibility o f the spectrum o f therapeutic genes which can be used to 

target tumor tissue, a thorough genetic screening o f the patient would be extremely 

beneficial in choosing the appropriate therapeutic gene on an individual patient basis.

As far as the question o f minimizing o f normal cell toxicity, it may not be 

possible to attain absolutely no normal cell toxicity, but it can be minimized. The 

presented in vitro data clearly shows that the proposed promo ter/enhancer system is not 

active in the normal NCM460 cells. These cells are derived from normal colon cells, are 

non cancerous and have been previously used as standard negative control cells in a 

published study (272). In addition we have demonstrated that, like normal cells, these 

cells do not have nuclear P-catenin and the Tcf-4 enhancer activity can be increased by
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over expression o f constitutively active P-catenin. However, it must be emphasized that 

although these cells may have characteristics o f normal colon cells, they may not be a 

true representation o f the entire spectrum o f the epithelial cells lining the colon or GI 

tract. Two other normal colon cell lines, NCM425 and CSC-1 were also tested in our 

study and showed lower activities o f the promoter/enhancer system. However, more 

studies are required to assess the ability o f NCM425 and CSC-1 to serve as negative 

controls.

In relation to normal cell toxicity, another issue which may impact the usage o f 

our proposed promoter/enhancer system is the presence o f a small number o f stem cells at 

the base o f each colonic crypt along the length o f intestine. These stem cells differentiate 

into several types o f epithelial cells found in the lining o f the GI tract and are responsible 

for replenishing the epithelial cells lost during normal wear and tear o f the GI tract (4). It 

has been suggested that these stem cells require wnt signaling for the process o f 

differentiation, and nuclear staining o f P-catenin has been documented in these cells. At 

the same time these cells do not show any APC staining, reinforcing the fact that the 

presence o f wild type APC protein is crucial for regulation o f P-catenin levels. As the 

cells mature along the crypt-villi axis and move towards the periphery o f villi (the center 

o f the GI tract), they progressively show less nuclear P-catenin levels and increased APC 

expression. In the given scenario, in theory, our recombinant promoter/enhancer/gene 

construct could be toxic to these cells because o f the activated wnt signaling pathway and 

may result in stem cell toxicity. However, how much stem cell toxicity our proposed 

therapy system would cause is a matter o f speculation. This is because these stem cells 

have very low minimal levels o f wnt signaling activation which may be significant only
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from a differentiation and development perspective (312). How this background wnt 

signaling will activate our recombinant Tcf-4 enhancer/promoter elements, needs to be 

determined, but based on known considerations we do not expect it to cause widespread 

stem cell toxicity. This is based on the fact that too much wnt signaling usually causes a 

normal cell to undergo apoptosis. Therefore, levels o f wnt signaling in these colon stem 

cells may not be as comparable to the colon cancer cells (in which mutational inactivation 

o f APC/p-catenin causes aberrant activation o f wnt signaling), and this might not 

significantly activate our proposed recombinant promoter system. In addition, normal 

stem cell toxicity can be further minimized by directly targeting the tumor with the 

therapeutic vector by using variety o f means, for example by combining imaging 

techiniques like ultrasound biomicroscopy can be used to guide direct injection o f the 

vectors into the tumors (313). Furthermore, the transgene expression can also be 

monitored by combining molecular imaging with radio-nuclide based gene therapy 

approaches and could assist in minimizing normal cell toxicity (314).

Another attractive aspect o f the proposed system is the potential ability to regulate 

(induce or suppress gene expression) the levels o f therapeutic gene expression under 

clinical situations. Although, the data presented here to support this aspect are very 

preliminary and need further characterization, the initial results are suggestive o f the 

regulatory potential o f the recombinant promoters containing the Tcf-4 enhancer element. 

Among the existing transcriptional gene regulatory systems, the Tet-regulatable system is 

the most widely exploited tool for controlling gene expression. For gene therapy purposes 

the Tet-regulatory system has been encoded with lentiviruses, adenoviruses, adeno- 

associated viruses and retroviruses. The Tet system has several advantages. For example,
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tetracycline is non toxic to humans at the dosage levels required for gene activation 

(although it can be toxic to humans at high concentrations) and it does not exhibit any 

pleiotropic effect on cellular metabolic pathways. The down side o f using this system to 

control gene expression in the clinic is the possibility o f the Tet system proteins being 

immunogenic in human because o f their bacterial origin (315). At the same time, the Tet 

system involves incorporation o f extra DNA sequences encoding the Tet component 

proteins which may be critical for the gene delivery vector in terms o f the carrying 

capacity. In contrast, for regulation o f the therapeutic gene, the system proposed in this 

study requires no extra set o f genes to be included in the therapeutic gene expression 

vector. In addition, no potentially immunogenic substances are involved. For example, 

short chain fatty acids (like sodium butyrate and retinoic acid) are naturally occurring 

substances. However, what adverse affects these substances might have on normal cells 

will have to be worked out, for example short chain fatty acids are also known to cause 

apoptosis in cells. Therefore, extensive studies are needed both in vitro and in vivo to 

demonstrate the feasibility o f using these chemical regulators to control transcriptional 

activity o f Tcf-4 enhancer containing promoters.

The proposed Tcf-4 enhancer based recombinant promoter system is a promising 

approach for expressing the therapeutic genes specifically in tumors especially o f the 

colon. This system needs further characterization under in vivo situations. There are some 

hurdles, as described above, which may limit the use o f these Tcf-4 based recombinant 

promoters in the clinic. However, with innovative design and application o f 

comprehensive knowledge from the fields o f molecular biology, immunology, virology 

and molecular medicine, these issues can be rationally addressed. The field o f cancer
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gene therapy is an area o f  active translational research and requires concerted efforts o f 

scientists from several different areas. In fact, this is one o f the limitations o f successful 

implementation o f cancer gene therapies in clinic. For the future more resources and 

dedicated efforts are required for the success o f cancer gene therapy. In general, the field 

o f gene therapy is very young and has given the mankind a ray o f hope for the treatment 

o f a broad spectrum o f human diseases ranging from genetic disorders to heart diseases 

and cancer. Given the nature o f the pain and suffering involved in these human diseases, 

gene therapy has generated high hopes and great hypes. There is huge burden on the 

scientific community to innovatively tap the potential o f gene therapy and the same 

assure the public that the patient’s welfare and health is their major goal.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



154

REFERENCES

1. Pisani, P., Parkin, D. M., Bray, F. Ferlay, J. Estimates o f the worldwide mortality 
from 25 cancers in 1990. Int J Cancer, 83:18-29, 1999.

2. Sparks, A. B., Morin, P. J., Vogelstein, B. Kinzler, K. W. Mutational analysis o f 
the APC/beta-catenin/Tcf pathway in colorectal cancer. Cancer Res, 58:1130- 
1134, 1998.

3. Huang, J., Papadopoulos, N., McKinley, A. J., et al. APC mutations in colorectal 
tumors with mismatch repair deficiency. Proc Natl Acad Sci U S A ,  93:9049- 
9054, 1996.

4. Fodde, R., Smits, R., Clevers, H. APC, signal transduction and genetic instability 
in colorectal cancer. Nat Rev Cancer, 1:55-67, 2001.

5. Groden, J., Thliveris, A., Samowitz, W., et al. Identification and characterization 
o f the familial adenomatous polyposis coli gene. Cell, 66:589-600, 1991.

6. Rubinfeld, B., Souza, B., Albert, I., et al. Association o f the APC gene product 
with beta-catenin. Science, 262:1731-1734, 1993.

7. Polakis, P. Wnt signaling and cancer. Genes Dev, 14:1837-1851, 2000.

8. Bhanot, P., Brink, M., Samos, C. H., et al. A new member o f the frizzled family 
from Drosophila functions as a Wingless receptor. Nature, 382:225-230, 1996.

9. Kishida, S., Yamamoto, H., Hino, S., et al. DIX domains o f Dvl and axin are 
necessary for protein interactions and their ability to regulate beta-catenin 
stability. Mol Cell Biol, 19:4414-4422, 1999.

10. Behrens, J., von Kries, J. P., Kuhl, M., et al. Functional interaction o f beta-catenin 
with the transcription factor LEF-1. Nature, 382:638-642, 1996.

11. Ben-Ze'ev, A. Geiger, B. Differential molecular interactions o f beta-catenin and 
plakoglobin in adhesion, signaling and cancer. Curr Opin Cell Biol, 10:629-639,
1998.

12. Munemitsu, S., Souza, B., Muller, O., et al. The APC gene product associates 
with microtubules in vivo and promotes their assembly in vitro. Cancer Res, 
54:3676-3681, 1994.

13. Morin, P. J., Sparks, A. B., Korinek, V., et al. Activation o f beta-catenin-Tcf 
signaling in colon cancer by mutations in beta-catenin or APC. Science, 
275:1787-1790, 1997.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



155

14. Liu, W., Dong, X., Mai, M., et al. Mutations in AXIN2 cause colorectal cancer 
with defective mismatch repair by activating beta-catenin/TCF signalling. Nat 
Genet, 26:146-147, 2000.

15. Clevers, H. Axin and hepatocellular carcinomas. Nat Genet, 24:206-208, 2000.

16. Jen, J., Powell, S. M., Papadopoulos, N., et al. Molecular determinants o f 
dysplasia in colorectal lesions. Cancer Res, 54:5523-5526, 1994.

17. Powell, S. M., Zilz, N., Beazer-Barclay, Y., et al. APC mutations occur early 
during colorectal tumorigenesis. Nature, 359:235-237, 1992.

18. Smith, A. J., Stem, H. S., Penner, M., et al. Somatic APC and K-ras codon 12 
mutations in aberrant crypt foci from human colons. Cancer Res, 54:5527-5530, 
1994.

19. He, T. C., Sparks, A. B., Rago, C., et al. Identification o f c-MYC as a target o f the 
APC pathway. Science, 281:1509-1512, 1998.

20. Tetsu, O. McCormick, F. Beta-catenin regulates expression o f cyclin D1 in colon 
carcinoma cells. Nature, 398:422-426, 1999.

21. Shtutman, M., Zhurinsky, J., Simcha, I., et al. The cyclin D1 gene is a target o f 
the beta-catenin/LEF-1 pathway. Proc Natl Acad Sci U S A ,  96:5522-5527, 1999.

22. Crawford, H. C., Fingleton, B. M., Rudolph-Owen, L. A., et al. The 
metalloproteinase matrilysin is a target o f beta-catenin transactivation in intestinal 
tumors. Oncogene, 18:2883-2891, 1999.

23. Wielenga, V. J., Smits, R., Korinek, V., et al. Expression o f CD44 in Ape and Tcf
mutant mice implies regulation by the WNT pathway. Am J Pathol, 154:515-523, 
1999.

24. Mann, B., Gelos, M., Siedow, A., et al. Target genes o f beta-catenin-T cell- 
factor/lymphoid-enhancer-factor signaling in human colorectal carcinomas. Proc 
Natl Acad Sci U S A ,  96:1603-1608, 1999.

25. Koh, T. J., Bulitta, C. J., Fleming, J. V., et al. Gastrin is a target o f the beta- 
catenin/TCF-4 growth-signaling pathway in a model o f intestinal polyposis. J Clin 
Invest, 106:533-539, 2000.

26. Araki, Y., Okamura, S., Hussain, S. P., et al. Regulation o f cyclooxygenase-2 
expression by the Wnt and ras pathways. Cancer Res, 63:728-734, 2003.

27. Korinek, V., Barker, N., Moerer, P., et al. Depletion o f epithelial stem-cell 
compartments in the small intestine o f mice lacking Tcf-4. Nat Genet, 19:379- 
383, 1998.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



156

28. Barker, N., Huls, G., Korinek, V.Clevers, H. Restricted high level expression o f 
Tcf-4 protein in intestinal and mammary gland epithelium. Am J Pathol, 154:29- 
35, 1999.

29. Melhem, M. F., Meisler, A. I., Finley, G. G., et al. Distribution o f cells expressing 
myc proteins in human colorectal epithelium, polyps, and malignant tumors. 
Cancer Res, 52:5853-5864, 1992.

30. Yuwono, M., Rossi, T. M., Fisher, J. E.Tjota, A. Oncogene expression in patients 
with familial polyposis coli/Gardner's syndrome. Int Arch Allergy Immunol, 
111:89-95, 1996.

31. Roose, J., Huls, G., van Beest, M., et al. Synergy between tumor suppressor APC 
and the beta-catenin-Tcf4 target Tcfl. Science, 285:1923-1926, 1999.

32. Kinzler, K. W. Vogelstein, B. Lessons from hereditary colorectal cancer. Cell, 
87:159-170, 1996.

33. Friedberg, E. C. How nucleotide excision repair protects against cancer. Nat Rev 
Cancer, 1:22-33, 2001.

34. Ellis, N. A. German, J. Molecular genetics o f Bloom's syndrome. Hum Mol 
Genet, 5 Spec No: 1457-1463, 1996.

35. Jacob, S. Praz, F. DNA mismatch repair defects: role in colorectal carcinogenesis. 
Biochimie, 84:27-47, 2002.

36. McCormick, F. Signalling networks that cause cancer. Trends Cell Biol, 9:M53- 
56, 1999.

37. Fearon, E. R. Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell, 
61:759-767, 1990.

38. Forrester, K., Almoguera, C., Han, K., Grizzle, W. E.Perucho, M. Detection o f 
high incidence o f K-ras oncogenes during human colon tumorigenesis. Nature, 
327:298-303, 1987.

39. Bos, J. L., Fearon, E. R., Hamilton, S. R., et al. Prevalence o f ras gene mutations 
in human colorectal cancers. Nature, 327:293-297, 1987.

40. Vogelstein, B., Fearon, E. R., Hamilton, S. R., et al. Genetic alterations during 
colorectal-tumor development. N Engl J Med, 319:525-532, 1988.

41. Fearon, E. R., Hamilton, S. R.Vogelstein, B. Clonal analysis o f human colorectal 
tumors. Science, 238:193-197, 1987.

42. Law, D. J., Olschwang, S., Monpezat, J. P., et al. Concerted nonsyntenic allelic 
loss in human colorectal carcinoma. Science, 241:961-965, 1988.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



157

43. Vogelstein, B., Fearon, E. R., Kern, S. E., et al. Allelotype o f colorectal 
carcinomas. Science, 244:207-211, 1989.

44. Rodrigues, N. R., Rowan, A., Smith, M. E., et al. p53 mutations in colorectal 
cancer. Proc Natl Acad Sci U S A ,  87:7555-7559, 1990.

45. Hahn, S. A., Schutte, M., Hoque, A. T., et al. DPC4, a candidate tumor suppressor 
gene at human chromosome 18q21.1. Science, 271:350-353, 1996.

46. Blobe, G. C., Schiemann, W. P.Lodish, H. F. Role of transforming growth factor 
beta in human disease. N Engl J Med, 342:1350-1358, 2000.

47. Thiagalingam, S., Lengauer, C., Leach, F. S., et al. Evaluation o f candidate 
tumour suppressor genes on chromosome 18 in colorectal cancers. Nat Genet, 
13:343-346, 1996.

48. Loeb, L. A. A mutator phenotype in cancer. Cancer Res, 61:3230-3239, 2001.

49. Rajagopalan, H., Nowak, M. A., Vogelstein, B.Lengauer, C. The significance o f 
unstable chromosomes in colorectal cancer. Nat Rev Cancer, 3:695-701, 2003.

50. Lengauer, C., Kinzler, K. W.Vogelstein, B. Genetic instabilities in human 
cancers. Nature, 396:643-649, 1998.

51. Duesberg, P., Rausch, C., Rasnick, D.Hehlmann, R. Genetic instability o f cancer 
cells is proportional to their degree o f aneuploidy. Proc Natl Acad Sci U S A ,  
95:13692-13697, 1998.

52. Lengauer, C., Kinzler, K. W.Vogelstein, B. Genetic instability in colorectal 
cancers. Nature, 386:623-627, 1997.

53. Ohshima, K., Haraoka, S., Yoshioka, S., et al. Mutation analysis o f mitotic 
checkpoint genes (hBUBl and hBU BRl) and microsatellite instability in adult T- 
cell leukemia/lymphoma. Cancer Lett, 158:141-150, 2000.

54. Cahill, D. P., Lengauer, C., Yu, J., et al. Mutations o f mitotic checkpoint genes in 
human cancers. Nature, 392:300-303, 1998.

55. Jin, D. Y., Spencer, F.Jeang, K. T. Human T cell leukemia virus type 1 
oncoprotein Tax targets the human mitotic checkpoint protein MADE Cell, 
93:81-91, 1998.

56. Michel, L. S., Liberal, V., Chatteijee, A., et al. MAD2 haplo-insufficiency causes 
premature anaphase and chromosome instability in mammalian cells. Nature, 
409:355-359, 2001.

57. Jallepalli, P. V. Lengauer, C. Chromosome segregation and cancer: cutting 
through the mystery. Nat Rev Cancer, 1:109-117, 2001.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



158

58. Fodde, R., Kuipers, J., Rosenberg, C., et al. Mutations in the APC tumour 
suppressor gene cause chromosomal instability. Nat Cell Biol, 3:433-438, 2001.

59. Kaplan, K. B., Burds, A. A., Swedlow, J. R., et al. A role for the Adenomatous 
Polyposis Coli protein in chromosome segregation. Nat Cell Biol, 3:429-432, 
2001 .

60. Stoler, D. L., Chen, N., Basik, M., et al. The onset and extent o f genomic 
instability in sporadic colorectal tumor progression. Proc Natl Acad Sci U S A ,  
96:15121-15126, 1999.

61. Ionov, Y., Peinado, M. A., Malkhosyan, S., Shibata, D.Perucho, M. Ubiquitous 
somatic mutations in simple repeated sequences reveal a new mechanism for 
colonic carcinogenesis. Nature, 363:558-561, 1993.

62. Thibodeau, S. N., Bren, G.Schaid, D. Microsatellite instability in cancer o f the 
proximal colon. Science, 260:816-819, 1993.

63. Hoang, J. M., Cottu, P. H., Thuille, B., et al. BAT-26, an indicator o f the 
replication error phenotype in colorectal cancers and cell lines. Cancer Res, 
57:300-303, 1997.

64. Jiricny, J. Marra, G. DNA repair defects in colon cancer. Curr Opin Genet Dev, 
13:61-69, 2003.

65. Fishel, R., Ewel, A., Lee, S., Lescoe, M. K.Griffith, J. Binding o f mismatched 
microsatellite DNA sequences by the human MSH2 protein. Science, 266:1403- 
1405, 1994.

66. Prolla, T. A., Pang, Q., Alani, E., Kolodner, R. D.Liskay, R. M. MLH1, PMS1, 
and MSH2 interactions during the initiation o f DNA mismatch repair in yeast. 
Science, 265:1091-1093, 1994.

67. Boland, C. R., Thibodeau, S. N., Hamilton, S. R., et al. A National Cancer 
Institute Workshop on Microsatellite Instability for cancer detection and familial 
predisposition: development o f international criteria for the determination o f 
microsatellite instability in colorectal cancer. Cancer Res, 58:5248-5257, 1998.

68. Wu, Y., Berends, M. J., Mensink, R. G., et al. Association o f hereditary 
nonpolyposis colorectal cancer-related tumors displaying low microsatellite 
instability with MSH6 germline mutations. Am J Hum Genet, 65:1291-1298,
1999.

69. Chung, D. C. Rustgi, A. K. The hereditary nonpolyposis colorectal cancer 
syndrome: genetics and clinical implications. Ann Intern Med, 138:560-570, 
2003.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



159

70. Fleisher, A. S., Esteller, M„ Wang, S., et al. Hypermethylation o f the hM LHl 
gene promoter in human gastric cancers with microsatellite instability. Cancer 
Res, 59:1090-1095, 1999.

71. Leung, S. Y., Yuen, S. T., Chung, L. P., et al. hMLHl promoter methylation and 
lack o f hM LHl expression in sporadic gastric carcinomas with high-frequency 
microsatellite instability. Cancer Res, 59:159-164, 1999.

72. Veigl, M. L., Kasturi, L., Olechnowicz, J., et al. Biallelic inactivation o f hM LHl 
by epigenetic gene silencing, a novel mechanism causing human MSI cancers. 
Proc Natl Acad Sci U S A ,  95:8698-8702, 1998.

73. Aaltonen, L. A., Peltomaki, P., Leach, F. S., et al. Clues to the pathogenesis o f 
familial colorectal cancer. Science, 260:812-816, 1993.

74. Toyota, M., Ahuja, N., Ohe-Toyota, M., et al. CpG island methylator phenotype 
in colorectal cancer. Proc Natl Acad Sci U S A ,  96:8681-8686, 1999.

75. Souza, R. F., Appel, R., Yin, J., et al. Microsatellite instability in the insulin-like 
growth factor II receptor gene in gastrointestinal tumours. Nat Genet, 14:255-257, 
1996.

76. Rampino, N., Yamamoto, H., Ionov, Y., et al. Somatic frameshift mutations in the 
BAX gene in colon cancers o f the microsatellite mutator phenotype. Science, 
275:967-969, 1997.

77. Schwartz, S., Jr., Yamamoto, H., Navarro, M., et al. Frameshift mutations at 
mononucleotide repeats in caspase-5 and other target genes in endometrial and 
gastrointestinal cancer o f the microsatellite mutator phenotype. Cancer Res, 
59:2995-3002, 1999.

78. Olschwang, S., Hamelin, R., Laurent-Puig, P., et al. Alternative genetic pathways 
in colorectal carcinogenesis. Proc Natl Acad Sci U S A ,  94:12122-12127, 1997.

79. Duval, A. Hamelin, R. Genetic instability in human mismatch repair deficient 
cancers. Ann Genet, 45:71-75, 2002.

80. Papillon, J. Gerard, J. P. Role o f radiotherapy in anal preservation for cancers o f 
the lower third o f the rectum. Int J Radiat Oncol Biol Phys, 19:1219-1220, 1990.

81. Minsky, B. D., Enker, W. E., Cohen, A. M.Lauwers, G. Local excision and 
postoperative radiation therapy for rectal cancer. Am J Clin Oncol, 17:411-416,
1994.

82. Hawkins, M. M., Wilson, L. M., Burton, H. S., et al. Radiotherapy, alkylating 
agents, and risk o f bone cancer after childhood cancer. J Natl Cancer Inst, 88:270- 
278, 1996.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



160

83. Pinedo, H. M. Peters, G. F. Fluorouracil: biochemistry and pharmacology. J Clin 
Oncol, 6:1653-1664, 1988.

84. Danenberg, P. V. Danenberg, K. D. Effect o f 5, 10-methylenetetrahydrofolate on 
the dissociation o f 5-fluoro-2'-deoxyuridylate from thymidylate synthetase: 
evidence for an ordered mechanism. Biochemistry, 17:4018-4024, 1978.

85. Heggie, G. D., Sommadossi, J. P., Cross, D. S., Huster, W. J.Diasio, R. B.
Clinical pharmacokinetics o f 5-fluorouracil and its metabolites in plasma, urine, 
and bile. Cancer Res, 47:2203-2206, 1987.

86. Diasio, R. B., Beavers, T. L.Carpenter, J. T. Familial deficiency o f 
dihydropyrimidine dehydrogenase. Biochemical basis for familial pyrimidinemia 
and severe 5-fluorouracil-induced toxicity. J Clin Invest, 81:47-51, 1988.

87. Johnson, M. R., Hageboutros, A., Wang, K., et al. Life-threatening toxicity in a 
dihydropyrimidine dehydrogenase-deficient patient after treatment with topical 5- 
fluorouracil. Clin Cancer Res, 5:2006-2011, 1999.

88. van Kuilenburg, A. B., Muller, E. W., Haasjes, J., et al. Lethal outcome o f a 
patient with a complete dihydropyrimidine dehydrogenase (DPD) deficiency after 
administration o f 5-fluorouracil: frequency o f  the common IVS14+1G>A 
mutation causing DPD deficiency. Clin Cancer Res, 7:1149-1153, 2001.

89. Miwa, M., Ura, M., Nishida, M., et al. Design o f a novel oral fluoropyrimidine 
carbamate, capecitabine, which generates 5-fluorouracil selectively in tumours by 
enzymes concentrated in human liver and cancer tissue. Eur J Cancer, 34:1274- 
1281, 1998.

90. Toffoli, G., Cecchin, E., Corona, G.Boiocchi, M. Pharmacogenetics o f irinotecan. 
Curr Med Chem Anti-Canc Agents, 3:225-237, 2003.

91. Takasuna, K., Hagiwara, T., Hirohashi, M., et al. Involvement ofbeta- 
glucuronidase in intestinal micro flora in the intestinal toxicity o f the antitumor 
camptothecin derivative irinotecan hydrochloride (CPT-11) in rats. Cancer Res, 
56:3752-3757, 1996.

92. Tashiro, T., Kawada, Y., Sakurai, Y.Kidani, Y. Antitumor activity o f  a new 
platinum complex, oxalato (trans-l-l,2-diaminocyclohexane)platinum (II): new 
experimental data. Biomed Pharmacother, 43:251-260, 1989.

93. Mathe, G., Kidani, Y., Triana, K.., et al. A phase I trial o f trans-1- 
diaminocyclohexane oxalato-platinum (1-OHP). Biomed Pharmacother, 40:372- 
376, 1986.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



161

94.

95.

96.

97.

98.

99.

100 .

101 .

102 .

103.

104.

105.

106.

107.

Gamelin, E., Gamelin, L., Bossi, L.Quasthoff, S. Clinical aspects and molecular 
basis o f oxaliplatin neurotoxicity: current management and development o f 
preventive measures. Semin Oncol, 29:21-33, 2002.

Tucker, M. A., D'Angio, G. J., Boice, J. D., Jr., et al. Bone sarcomas linked to 
radiotherapy and chemotherapy in children. N Engl J Med, 317:588-593, 1987.

Pedersen-Bjergaard, J., Ersboll, J., Hansen, V. L., et al. Carcinoma o f the urinary 
bladder after treatment with cyclophosphamide for non-Hodgkin's lymphoma. N 
Engl J Med, 318:1028-1032, 1988.

Felix, C. A. Secondary leukemias induced by topoisomerase-targeted drugs. 
Biochim Biophys Acta, 1400:233-255, 1998.

Gomez-Navarro, J., Curiel, D. T.Douglas, J. T. Gene therapy for cancer. Eur J 
Cancer, 35:2039-2057, 1999.

Midgley, R. Kerr, D. Colorectal cancer. Lancet, 353:391-399, 1999.

Thompson, J. A., Grunert, F.Zimmermann, W. Carcinoembryonic antigen gene 
family: molecular biology and clinical perspectives. J Clin Lab Anal, 5:344-366,
1991.

McCormick, F. Cancer gene therapy: fringe or cutting edge? Nat Rev Cancer, 
1:130-141,2001.

Harris, M. P., Sutjipto, S., Wills, K. N., et al. Adenovirus-mediated p53 gene 
transfer inhibits growth o f human tumor cells expressing mutant p53 protein. 
Cancer Gene Ther, 3:121-130, 1996.

Opalka, B., Dickopp, A.Kirch, H. C. Apoptotic genes in cancer therapy. Cells 
Tissues Organs, 172:126-132, 2002.

van Etten, B., ten Hagen, T. L., de Vries, M. R„ et al. Prerequisites for effective 
adenovirus mediated gene therapy o f  colorectal liver metastases in the rat using an 
intracellular neutralizing antibody fragment to p21-Ras. Br J Cancer, 86:436-442,
2002 .

Moolten, F. L. Drug sensitivity ("suicide") genes for selective cancer 
chemotherapy. Cancer Gene Ther, 1:279-287, 1994.

Austin, E. A. Huber, B. E. A first step in the development o f gene therapy for 
colorectal carcinoma: cloning, sequencing, and expression o f  Escherichia coli 
cytosine deaminase. Mol Pharmacol, 43:380-387, 1993.

Kilstrup, M., Meng, L. M., Neuhard, J.Nygaard, P. Genetic evidence for a 
repressor o f synthesis o f cytosine deaminase and purine biosynthesis enzymes in 
Escherichia coli. J Bacteriol, 171:2124-2127, 1989.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1 6 2

108. Mullen, C. A., Kilstrup, M.Blaese, R. M. Transfer of the bacterial gene for 
cytosine deaminase to mammalian cells confers lethal sensitivity to 5- 
fluorocytosine: a negative selection system. Proc Natl Acad Sci U S A ,  89:33-37,
1992.

109. Huber, B. E., Austin, E. A., Good, S. S., et al. In vivo antitumor activity o f 5- 
fluorocytosine on human colorectal carcinoma cells genetically modified to 
express cytosine deaminase. Cancer Res, 53:4619-4626, 1993.

110. Ohwada, A., Hirschowitz, E. A.Crystal, R. G. Regional delivery o f an adenovirus 
vector containing the Escherichia coli cytosine deaminase gene to provide local 
activation o f 5-fluorocytosine to suppress the growth o f colon carcinoma 
metastatic to liver. Hum Gene Ther, 7:1567-1576, 1996.

111. Topf, N., Worgall, S., Hackett, N. R.Crystal, R. G. Regional 'pro-drug' gene 
therapy: intravenous administration o f an adenoviral vector expressing the E. coli 
cytosine deaminase gene and systemic administration o f 5-fluorocytosine 
suppresses growth o f hepatic metastasis o f colon carcinoma. Gene Ther, 5:507- 
513, 1998.

112. Block, A., Freund, C. T., Chen, S. H., et al. Gene therapy o f metastatic colon 
carcinoma: regression o f multiple hepatic metastases by adenoviral expression o f 
bacterial cytosine deaminase. Cancer Gene Ther, 7:438-445, 2000.

113. Crystal, R. G., Hirschowitz, E., Lieberman, M., et al. Phase I study o f direct 
administration o f a replication deficient adenovirus vector containing the E. coli 
cytosine deaminase gene to metastatic colon carcinoma o f the liver in association 
with the oral administration o f the pro-drug 5-fluorocytosine. Hum Gene Ther, 
8:985-1001, 1997.

114. Knox, R. J., Friedlos, F., Jarman, M.Roberts, J. J. A new cytotoxic, DNA 
interstrand crosslinking agent, 5-(aziridin-l-yl)-4-hydroxylamino-2- 
nitrobenzamide, is formed from 5-(aziridin-l-yl)-2,4-dinitrobenzamide (CB 1954) 
by a nitroreductase enzyme in Walker carcinoma cells. Biochem Pharmacol, 
37:4661-4669, 1988.

115. Grove, J. I., Searle, P. F., Weedon, S. J., et al. Virus-directed enzyme prodrug 
therapy using CB1954. Anticancer Drug Des, 14:461-472, 1999.

116. Bridgewater, J. A., Springer, C. J., Knox, R. J., et al. Expression o f the bacterial 
nitroreductase enzyme in mammalian cells renders them selectively sensitive to 
killing by the prodrug CB 1954. Eur J Cancer, 31 A:2362-2370, 1995.

117. Drabek, D., Guy, J., Craig, R.Grosveld, F. The expression o f bacterial 
nitroreductase in transgenic mice results in specific cell killing by the prodrug 
CB1954. Gene Ther, 4:93-100, 1997.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



163

118. Chung-Faye, G., Palmer, D., Anderson, D., et al. Virus-directed, enzyme prodrug 
therapy with nitroimidazole reductase: a phase I and pharmacokinetic study o f  its 
prodrug, CB1954. Clin Cancer Res, 7:2662-2668, 2001.

119. Rubin, J., Galanis, E., Pitot, H. C., et al. Phase I study o f immunotherapy o f 
hepatic metastases o f colorectal carcinoma by direct gene transfer o f an allogeneic 
histocompatibility antigen, HLA-B7. Gene Ther, 4:419-425, 1997.

120. Fakhrai, H., Shawler, D. L., Gjerset, R., et al. Cytokine gene therapy with 
interleukin-2-transduced fibroblasts: effects o f 1L-2 dose on anti-tumor immunity. 
Hum Gene Ther, 6:591-601, 1995.

121. Galanis, E., Hersh, E. M., Stopeck, A. T., et al. Immunotherapy o f advanced 
malignancy by direct gene transfer o f an interleukin-2 DNA/DMRIE/DOPE lipid 
complex: phase I/II experience. J Clin Oncol, 17:3313-3323, 1999.

122. Sobol, R. E., Shawler, D. L., Carson, C., et al. Interleukin 2 gene therapy of 
colorectal carcinoma with autologous irradiated tumor cells and genetically 
engineered fibroblasts: a Phase I study. Clin Cancer Res, 5:2359-2365, 1999.

123. Schmidt-Wolf, I. G., Finke, S., Trojaneck, B., et al. Phase I clinical study 
applying autologous immunological effector cells transfected with the interleukin- 
2 gene in patients with metastatic renal cancer, colorectal cancer and lymphoma. 
Br J Cancer, 81:1009-1016, 1999.

124. Tsang, K. Y., Zaremba, S., Nieroda, C. A., et al. Generation o f human cytotoxic T 
cells specific for human carcinoembryonic antigen epitopes from patients 
immunized with recombinant vaccinia-CEA vaccine. J Natl Cancer Inst, 87:982- 
990, 1995.

125. Conry, R. M., Khazaeli, M. B., Saleh, M. N., et al. Phase I trial o f a recombinant 
vaccinia virus encoding carcinoembryonic antigen in metastatic adenocarcinoma: 
comparison o f intradermal versus subcutaneous administration. Clin Cancer Res, 
5:2330-2337, 1999.

126. Conry, R. M., Allen, K. O., Lee, S., et al. Human autoantibodies to 
carcinoembryonic antigen (CEA) induced by a vaccinia-CEA vaccine. Clin 
Cancer Res, 6:34-41, 2000.

127. Hodge, J. W., McLaughlin, J. P., Kantor, J. A.Schlom, J. Diversified prime and 
boost protocols using recombinant vaccinia virus and recombinant non-replicating 
avian pox virus to enhance T-cell immunity and antitumor responses. Vaccine, 
15:759-768, 1997.

128. Marshall, J. L., Hawkins, M. J., Tsang, K. Y., et al. Phase 1 study in cancer 
patients o f a replication-defective avipox recombinant vaccine that expresses 
human carcinoembryonic antigen. J Clin Oncol, 17:332-337, 1999.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



164

129.

130.

131.

132.

133.

134.

135.

136.

137.

138.

139.

140.

141.

142.

Crystal, R. G. Transfer o f genes to humans: early lessons and obstacles to success. 
Science, 270:404-410, 1995.

Ginsberg, H. S., Pereira, H. G„ Valentine, R. C.Wilcox, W. C. A proposed 
terminology for the adenovirus antigens and virion morphological subunits. 
Virology, 28:782-783, 1966.

Hierholzer, J. C. Adenoviruses in the immunocompromised host. Clin Microbiol 
Rev, 5:262-274, 1992.

Green, M., Mackey, J. K., Wold, W. S.Rigden, P. Thirty-one human adenovirus 
serotypes (A di-A d31) form five groups (A-E) based upon DNA genome 
homologies. Virology, 93:481-492, 1979.

Barnett, B. G., Crews, C. J.Douglas, J. T. Targeted adenoviral vectors. Biochim 
Biophys Acta, 1575:1-14, 2002.

Kovesdi, I., Brough, D. E., Bruder, J. T.Wickham, T. J. Adenoviral vectors for 
gene transfer. Curr Opin Biotechnol, 8:583-589, 1997.

Roy-Chowdhury, J. Horwitz, M. S. Evolution o f adenoviruses as gene therapy 
vectors. Mol Ther, 5:340-344, 2002.

Graham, F. L. Prevec, L. Methods for construction o f adenovirus vectors. Mol 
Biotechnol, 3:207-220, 1995.

Yang, Y., Su, Q.Wilson, J. M. Role o f viral antigens in destructive cellular 
immune responses to adenovirus vector-transduced cells in mouse lungs. J Virol, 
70:7209-7212, 1996.

Yang, Y. Wilson, J. M. Clearance o f adenovirus-infected hepatocytes by MHC 
class I-restricted CD4+ CTLs in vivo. J Immunol, 155:2564-2570, 1995.

Gorziglia, M. I., Lapcevich, C., Roy, S., et al. Generation o f an adenovirus vector 
lacking E l, e2a, E3, and all o f E4 except open reading frame 3. J Virol, 73:6048- 
6055, 1999.

Griesenbach, U., Ferrari, S., Geddes, D. M.Alton, E. W. Gene therapy progress 
and prospects: cystic fibrosis. Gene Ther, 9:1344-1350, 2002.

Mack, C. A., Song, W. R., Carpenter, H., et al. Circumvention o f anti-adenovirus 
neutralizing immunity by administration o f an adenoviral vector o f an alternate 
serotype. Hum Gene Ther, 8:99-109, 1997.

Moolten, F. L. Tumor chemosensitivity conferred by inserted herpes thymidine 
kinase genes: paradigm for a prospective cancer control strategy. Cancer Res, 
46:5276-5281, 1986.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



165

143. Moolten, F. L. Wells, J. M. Curability o f tumors bearing herpes thymidine kinase 
genes transferred by retroviral vectors. J Natl Cancer Inst, 82:297-300, 1990.

144. Chiocca, E. A. Brain tumor gene therapy in mice with a novel "suicide" gene: the 
cyclophosphamide-activating CYP2B1 gene. Clin Neurosurg, 42:370-382, 1995.

145. Faulds, D. Heel, R. C. Ganciclovir. A review o f its antiviral activity, 
pharmacokinetic properties and therapeutic efficacy in cytomegalovirus 
infections. Drugs, 39:597-638, 1990.

146. Cheng, Y. C., Grill, S. P., Dutschman, G. E., Nakayama, K.Bastow, K. F. 
Metabolism o f 9-(l,3-dihydroxy-2-propoxymethyl)guanine, a new anti-herpes 
virus compound, in herpes simplex virus-infected cells. J Biol Chem, 258:12460- 
12464, 1983.

147. Field, A. K.., Davies, M. E., DeWitt, C., et al. 9-([2-hydroxy-l- 
(hydroxymethyl)ethoxy]methyl)guanine: a selective inhibitor o f herpes group 
virus replication. Proc Natl Acad Sci U S A ,  80:4139-4143, 1983.

148. Ashton, W. T., Karkas, J. D., Field, A. K.Tolman, R. L. Activation by thymidine 
kinase and potent antiherpetic activity o f  2'-nor-2'-deoxyguanosine (2'NDG). 
Biochem Biophys Res Commun, 108:1716-1721, 1982.

149. Biron, K. K.., Stanat, S. C., Sorrell, J. B., et al. Metabolic activation o f the 
nucleoside analog 9-[(2-hydroxy-l-(hydroxymethyl)ethoxy]methyl)guanine in 
human diploid fibroblasts infected with human cytomegalovirus. Proc Natl Acad 
Sci U S A ,  82:2473-2477, 1985.

150. Smee, D. F. Interaction o f 9-( 1,3-dihydroxy-2-propoxymethyl)guanine with 
cytosol and mitochondrial deoxyguanosine kinases: possible role in anti
cytomegalovirus activity. Mol Cell Biochem, 69:75-81, 1985.

151. llsley, D. D., Lee, S. H., Miller, W. H.Kuchta, R. D. Acyclic guanosine analogs 
inhibit DNA polymerases alpha, delta, and epsilon with very different potencies 
and have unique mechanisms o f action. Biochemistry, 34:2504-2510, 1995.

152. Wei, S. J., Chao, Y., Hung, Y. M., et al. S- and G2-phase cell cycle arrests and 
apoptosis induced by ganciclovir in murine melanoma cells transduced with 
herpes simplex virus thymidine kinase. Exp Cell Res, 241:66-75, 1998.

153. Halloran, P. J. Fenton, R. G. Irreversible G2-M arrest and cytoskeletal 
reorganization induced by cytotoxic nucleoside analogues. Cancer Res, 58:3855- 
3865, 1998.

154. Hamel, W., Magnelli, L., Chiarugi, V. P.Israel, M. A. Herpes simplex virus 
thymidine kinase/ganciclovir-mediated apoptotic death o f bystander cells. Cancer 
Res, 56:2697-2702, 1996.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



166

155. Krohne, T. U., Shankara, S., Geissler, M., et al. Mechanisms o f cell death induced 
by suicide genes encoding purine nucleoside phosphorylase and thymidine kinase 
in human hepatocellular carcinoma cells in vitro. Hepatology, 34:511-518, 2001.

156. Tomicic, M. T., Thust, R.Kaina, B. Ganciclovir-induced apoptosis in HSV-1 
thymidine kinase expressing cells: critical role o f DNA breaks, Bcl-2 decline and 
caspase-9 activation. Oncogene, 21:2141-2153, 2002.

157. Wei, S. J., Chao, Y., Shih, Y. L., et al. Involvement of Fas (CD95/APO-1) and 
Fas ligand in apoptosis induced by ganciclovir treatment o f tumor cells 
transduced with herpes simplex virus thymidine kinase. Gene Ther, 6:420-431,
1999.

158. Freeman, S. M., Abboud, C. N., Whartenby, K. A., et al. The "bystander effect": 
tumor regression when a fraction o f the tumor mass is genetically modified. 
Cancer Res, 53:5274-5283, 1993.

159. Takamiya, Y., Short, M. P., Moolten, F. L., et al. An experimental model o f 
retrovirus gene therapy for malignant brain tumors. J Neurosurg, 79:104-110,
1993.

160. Culver, K. W., Ram, Z., Wallbridge, S., et al. In vivo gene transfer with retroviral 
vector-producer cells for treatment o f experimental brain tumors. Science, 
256:1550-1552, 1992.

161. Bi, W. L., Parysek, L. M., Wamick, R.Stambrook, P. J. In vitro evidence that 
metabolic cooperation is responsible for the bystander effect observed with HSV 
tk retroviral gene therapy. Hum Gene Ther, 4:725-731, 1993.

162. Fick, J., Barker, F. G., 2nd, Dazin, P., et al. The extent o f  heterocellular 
communication mediated by gap junctions is predictive o f bystander tumor 
cytotoxicity in vitro. Proc Natl Acad Sci U S A ,  92:11071-11075, 1995.

163. Goodenough, D. A., Goliger, J. A.Paul, D. L. Connexins, connexons, and 
intercellular communication. Annu Rev Biochem, 65:475-502, 1996.

164. Vrionis, F. D., Wu, J. K., Qi, P., et al. The bystander effect exerted by tumor cells 
expressing the herpes simplex virus thymidine kinase (HSVtk) gene is dependent 
on connexin expression and cell communication via gap junctions. Gene Ther, 
4:577-585, 1997.

165. Park, J. Y., Elshami, A. A., Amin, K., et al. Retinoids augment the bystander 
effect in vitro and in vivo in herpes simplex virus thymidine kinase/ganciclovir- 
mediated gene therapy. Gene Ther, 4:909-917, 1997.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



167

166. Touraine, R. L., Ishii-Morita, H., Ramsey, W. J.Blaese, R. M. The bystander 
effect in the HSVtk/ganciclovir system and its relationship to gap junctional 
communication. Gene Ther, 5:1705-1711, 1998.

167. Mesnil, M., Piccoli, C.Yamasaki, H. A tumor suppressor gene, Cx26, also 
mediates the bystander effect in HeLa cells. Cancer Res, 57:2929-2932, 1997.

168. Dilber, M. S., Abedi, M. R., Christensson, B., et al. Gap junctions promote the 
bystander effect o f herpes simplex virus thymidine kinase in vivo. Cancer Res, 
57:1523-1528, 1997.

169. Imaizumi, K., Hasegawa, Y., Kawabe, T., et al. Bystander tumoricidal effect and 
gap junctional communication in lung cancer cell lines. Am J Respir Cell Mol 
Biol, 18:205-212, 1998.

170. Princen, F., Robe, P., Lechanteur, C., et al. A cell type-specific and gap junction- 
independent mechanism for the herpes simplex virus-1 thymidine kinase 
gene/ganciclovir-mediated bystander effect. Clin Cancer Res, 5:3639-3644, 1999.

171. Drake, R. R., Pitlyk, K., McMasters, R. A., et al. Connexin-independent 
ganciclovir-mediated killing conferred on bystander effect-resistant cell lines by a 
herpes simplex virus-thymidine kinase-expressing colon cell line. Mol Ther, 
2:515-523,2000.

172. Gagandeep, S., Brew, R., Green, B., et al. Prodrug-activated gene therapy: 
involvement o f an immunological component in the "bystander effect". Cancer 
Gene Ther, 3:83-88, 1996.

173. Kianmanesh, A. R., Perrin, H., Panis, Y., et al. A "distant" bystander effect o f 
suicide gene therapy: regression o f  nontransduced tumors together with a distant 
transduced tumor. Hum Gene Ther, 8:1807-1814, 1997.

174. Black, M. E., Newcomb, T. G., Wilson, H. M.Loeb, L. A. Creation o f drug- 
specific herpes simplex virus type 1 thymidine kinase mutants for gene therapy. 
Proc Natl Acad Sci U S A ,  93:3525-3529, 1996.

175. Black, M. E., Kokoris, M. S.Sabo, P. Herpes simplex virus-1 thymidine kinase 
mutants created by semi-random sequence mutagenesis improve prodrug- 
mediated tumor cell killing. Cancer Res, 61:3022-3026, 2001.

176. Qiao, J., Black, M. E.Caruso, M. Enhanced ganciclovir killing and bystander 
effect o f human tumor cells transduced with a retroviral vector carrying a herpes 
simplex virus thymidine kinase gene mutant. Hum Gene Ther, 11:1569-1576, 
2000 .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



168

177. Aghi, M., Kramm, C. M., Chou, T. C., Breakefield, X. O.Chiocca, E. A. 
Synergistic anticancer effects o f ganciclovir/thymidine kinase and 5- 
fluorocytosine/cytosine deaminase gene therapies. J Natl Cancer Inst, 90:370-380,
1998.

178. Rogulski, K. R., Zhang, K., Kolozsvary, A., Kim, J. H.Freytag, S. O. Pronounced 
antitumor effects and tumor radiosensitization o f double suicide gene therapy.
Clin Cancer Res, 3:2081-2088, 1997.

179. Aghi, M., Chou, T. C., Suling, K., Breakefield, X. O.Chiocca, E. A. Multimodal 
cancer treatment mediated by a replicating oncolytic virus that delivers the 
oxazaphosphorine/rat cytochrome P450 2B1 and ganciclovir/herpes simplex virus 
thymidine kinase gene therapies. Cancer Res, 59:3861-3865, 1999.

180. Wildner, O., Blaese, R. M.Morris, J. C. Synergy between the herpes simplex virus 
tk/ganciclovir prodrug suicide system and the topoisomerase I inhibitor topotecan. 
Hum Gene Ther, 10:2679-2687, 1999.

181. Wildner, O., Blaese, R. M.Morris, J. C. Therapy o f colon cancer with oncolytic 
adenovirus is enhanced by the addition o f herpes simplex virus-thymidine kinase. 
Cancer Res, 59:410-413, 1999.

182. McMasters, R. A., Wilbert, T. N., Jones, K. E„ et al. Two-drug combinations that 
increase apoptosis and modulate bak and bcl-X(L) expression in human colon 
tumor cell lines transduced with herpes simplex virus thymidine kinase. Cancer 
Gene Ther, 7:563-573, 2000.

183. Rainov, N. G., Fels, C., Droege, J. W., et al. Temozolomide enhances herpes 
simplex virus thymidine kinase/ganciclovir therapy o f malignant glioma. Cancer 
Gene Ther, 8:662-668, 2001.

184. Kim, J. H., Kim, S. H., Brown, S. L.Freytag, S. O. Selective enhancement by an 
antiviral agent o f the radiation-induced cell killing o f human glioma cells 
transduced with HSV-tk gene. Cancer Res, 54:6053-6056, 1994.

185. Rogulski, K. R., Kim, J. H., Kim, S. H.Freytag, S. O. Glioma cells transduced 
with an Escherichia coli CD/HSV-1 TK fusion gene exhibit enhanced metabolic 
suicide and radiosensitivity. Hum Gene Ther, 8:73-85, 1997.

186. Kanazawa, T., Mizukami, H., Okada, T., et al. Suicide gene therapy using AAV- 
HSVtk/ganciclovir in combination with irradiation results in regression o f  human 
head and neck cancer xenografts in nude mice. Gene Ther, 10:51-58, 2003.

187. Atkinson, G. Hall, S. J. Prodrug activation gene therapy and external beam 
irradiation in the treatment o f prostate cancer. Urology, 54:1098-1104, 1999.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



169

188. Ramesh, R., Munshi, A., Marrogi, A. J.Freeman, S. M. Enhancement o f tumor 
killing using a combination o f tumor immunization and HSV-tk suicide gene 
therapy. Int J Cancer, 80:380-386, 1999.

189. Freeman, S. M., Ramesh, R., Shastri, M., et al. The role o f cytokines in mediating 
the bystander effect using HSV-TK xenogeneic cells. Cancer Lett, 92:167-174,
1995.

190. Ramesh, R., Marrogi, A. J., Munshi, A., Abboud, C. N.Freeman, S. M. In vivo 
analysis o f  the 'bystander effect': a cytokine cascade. Exp Hematol, 24:829-838,
1996.

191. Caruso, M., Panis, Y., Gagandeep, S., et al. Regression o f established 
macroscopic liver metastases after in situ transduction o f a suicide gene. Proc Natl 
Acad Sci U S A ,  90:7024-7028, 1993.

192. Ramesh, R., Munshi, A., Abboud, C. N., Marrogi, A. J.Freeman, S. M.
Expression o f costimulatory molecules: B7 and ICAM up-regulation after 
treatment with a suicide gene. Cancer Gene Ther, 3:373-384, 1996.

193. Majumdar, A. S., Zolotorev, A., Samuel, S., et al. Efficacy o f herpes simplex 
virus thymidine kinase in combination with cytokine gene therapy in an 
experimental metastatic breast cancer model. Cancer Gene Ther, 7:1086-1099,
2000 .

194. Caruso, M., Pham-Nguyen, K., Kwong, Y. L., et al. Adenovirus-mediated 
interleukin-12 gene therapy for metastatic colon carcinoma. Proc Natl Acad Sci U 
S A, 93:11302-11306, 1996.

195. Molnar-Kimber, K. L., Sterman, D. H., Chang, M., et al. Impact o f preexisting 
and induced humoral and cellular immune responses in an adenovirus-based gene 
therapy phase I clinical trial for localized mesothelioma. Hum Gene Ther, 9:2121 - 
2133, 1998.

196. Klatzmann, D., Cherin, P., Bensimon, G., et al. A phase I/II dose-escalation study 
o f herpes simplex virus type 1 thymidine kinase "suicide" gene therapy for 
metastatic melanoma. Study Group on Gene Therapy o f  Metastatic Melanoma. 
Hum Gene Ther, 9:2585-2594, 1998.

197. Ram, Z., Culver, K. W., Oshiro, E. M., et al. Therapy o f malignant brain tumors 
by intratumoral implantation o f retroviral vector-producing cells. Nat Med, 
3:1354-1361, 1997.

198. Sandmair, A. M., Loimas, S., Puranen, P., et al. Thymidine kinase gene therapy 
for human malignant glioma, using replication-deficient retroviruses or 
adenoviruses. Hum Gene Ther, 11:2197-2205, 2000.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



170

199. Klatzmann, D., Valery, C. A., Bensimon, G., et al. A phase I/II study o f herpes 
simplex virus type 1 thymidine kinase "suicide" gene therapy for recurrent 
glioblastoma. Study Group on Gene Therapy for Glioblastoma. Hum Gene Ther, 
9:2595-2604, 1998.

200. Germano, I. M., Fable, J., Gultekin, S. H.Silvers, A. Adenovirus/herpes simplex- 
thymidine kinase/ganciclovir complex: preliminary results o f a phase I trial in 
patients with recurrent malignant gliomas. J Neurooncol, 65:279-289, 2003.

201. Gambhir, S. S., Barrio, J. R„ Phelps, M. E., et al. Imaging adenoviral-directed 
reporter gene expression in living animals with positron emission tomography. 
Proc Natl Acad Sci U S A ,  96:2333-2338, 1999.

202. Min, J. J., Iyer, M.Gambhir, S. S. Comparison o f [(18)F]FHBG and [(14)C]FIAU 
for imaging o f  H SV l-tk reporter gene expression: adenoviral infection vs stable 
transfection. Eur J Nucl Med Mol Imaging, 2003.

203. de Vries, E. F., van Dillen, I. J., van Waarde, A., et al. Evaluation o f [18FJFHPG 
as PET tracer for HSVtk gene expression. Nucl Med Biol, 30:651-660, 2003.

204. Koehne, G., Doubrovin, M., Doubrovina, E., et al. Serial in vivo imaging o f the 
targeted migration o f human HSV-TK-transduced antigen-specific lymphocytes. 
Nat Biotechnol, 21:405-413, 2003.

205. Cheshire, D. R. Isaacs, W. B. Beta-catenin signaling in prostate cancer: an early 
perspective. Endocr Relat Cancer, 10:537-560, 2003.

206. Brown, A. M. Wnt signaling in breast cancer: have we come full circle? Breast 
Cancer Res, 3:351-355, 2001.

207. Bierie, B., Nozawa, M., Renou, J. P., et al. Activation o f beta-catenin in prostate 
epithelium induces hyperplasias and squamous transdifferentiation. Oncogene, 
22:3875-3887, 2003.

208. Pinson, K. I., Brennan, J., Monkley, S., Avery, B. J.Skames, W. C. An LDL- 
receptor-related protein mediates Wnt signalling in mice. Nature, 407:535-538,
2000 .

209. Oyama, T., Kanai, Y., Ochiai, A., et al. A truncated beta-catenin disrupts the 
interaction between E-cadherin and alpha-catenin: a cause o f loss o f intercellular 
adhesiveness in human cancer cell lines. Cancer Res, 54:6282-6287, 1994.

210. Klingensmith, J. Nusse, R. Signaling by wingless in Drosophila. Dev Biol, 
166:396-414, 1994.

211. Miller, J. R. Moon, R. T. Signal transduction through beta-catenin and 
specification o f cell fate during embryogenesis. Genes Dev, 10:2527-2539, 1996.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



171

212. Cadigan, K. M. Nusse, R. Wnt signaling: a common theme in animal 
development. Genes Dev, 11:3286-3305, 1997.

213. Korinek, V., Barker, N., Morin, P. J., et al. Constitutive transcriptional activation 
by a beta-catenin-Tcf complex in APC-/- colon carcinoma. Science, 275:1784- 
1787, 1997.

214. Behrens, J., Jerchow, B. A., Wurtele, M., et al. Functional interaction o f an axin 
homolog, conductin, with beta-catenin, APC, and GSK3beta. Science, 280:596- 
599, 1998.

215. Ikeda, S., Kishida, S., Yamamoto, H., et al. Axin, a negative regulator o f  the Wnt 
signaling pathway, forms a complex with GSK-3beta and beta-catenin and 
promotes GSK-3beta-dependent phosphorylation o f beta-catenin. Embo J, 
17:1371-1384, 1998.

216. Orford, K., Crockett, C., Jensen, J. P., Weissman, A. M.Byers, S. W. Serine 
phosphorylation-regulated ubiquitination and degradation o f beta-catenin. J Biol 
Chem, 272:24735-24738, 1997.

217. Aberle, H., Bauer, A., Stappert, J., Kispert, A.Kemler, R. beta-catenin is a target 
for the ubiquitin-proteasome pathway. Embo J, 16:3797-3804, 1997.

218. Easwaran, V., Song, V., Polakis, P.Byers, S. The ubiquitin-proteasome pathway 
and serine kinase activity modulate adenomatous polyposis coli protein-mediated 
regulation o f beta-catenin-lymphocyte enhancer-binding factor signaling. J Biol 
Chem, 274:16641-16645, 1999.

219. Li, L., Yuan, H., Weaver, C. D., et al. Axin and Fratl interact with dvl and GSK, 
bridging Dvl to GSK in Wnt-mediated regulation o f LEF-1. Embo J, 18:4233- 
4240, 1999.

220. Roose, J. Clevers, H. TCF transcription factors: molecular switches in 
carcinogenesis. Biochim Biophys Acta, 1424:M23-37, 1999.

221. Hsu, S. C., Galceran, J.Grosschedl, R. Modulation o f transcriptional regulation by 
LEF-1 in response to Wnt-1 signaling and association with beta-catenin. Mol Cell 
Biol, 18:4807-4818, 1998.

222. Prieve, M. G. Waterman, M. L. Nuclear localization and formation o f beta- 
catenin-lymphoid enhancer factor 1 complexes are not sufficient for activation o f 
gene expression. Mol Cell Biol, 19:4503-4515, 1999.

223. Bordonaro, M., Mariadason, J. M., Aslam, F., Heerdt, B. G.Augenlicht, L. H. 
Butyrate-induced apoptotic cascade in colonic carcinoma cells: modulation o f the 
beta-catenin-Tcf pathway and concordance with effects o f sulindac and 
trichostatin A but not curcumin. Cell Growth Differ, 10:713-720, 1999.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



172

224. Mariadason, J. M., Comer, G. A.Augenlicht, L. H. Genetic reprogramming in 
pathways o f colonic cell maturation induced by short chain fatty acids: 
comparison with trichostatin A, sulindac, and curcumin and implications for 
chemoprevention o f colon cancer. Cancer Res, 60:4561-4572, 2000.

225. Baulida, J., Batlle, E.Garcia De Herreros, A. Adenomatous polyposis coli protein 
(APC)-independent regulation o f beta-catenin/Tcf-4 mediated transcription in 
intestinal cells. Biochem J, 344 Pt 2:565-570, 1999.

226. Yang, S. Z., Kohno, N., Kondo, K., et al. Adriamycin activates E-cadherin- 
mediated cell-cell adhesion in human breast cancer cells. Int J Oncol, 15:1109- 
1115, 1999.

227. Easwaran, V., Pishvaian, M., SalimuddinByers, S. Cross-regulation o f beta- 
catenin-LEF/TCF and retinoid signaling pathways. Curr Biol, 9:1415-1418, 1999.

228. Karin, M., Liu, Z.Zandi, E. AP-1 function and regulation. Curr Opin Cell Biol, 
9:240-246, 1997.

229. Piechaczyk, M. Blanchard, J. M. c-fos proto-oncogene regulation and function. 
Crit Rev Oncol Hematol, 17:93-131, 1994.

230. Ziff, E. B. Transcription factors: a new family gathers at the cAMP response site. 
Trends Genet, 6:69-72, 1990.

231. Treier, M., Staszewski, L. M.Bohmann, D. Ubiquitin-dependent c-Jun 
degradation in vivo is mediated by the delta domain. Cell, 78:787-798, 1994.

232. Tsurumi, C., Ishida, N., Tamura, T., et al. Degradation o f c-Fos by the 26S 
proteasome is accelerated by c-Jun and multiple protein kinases. Mol Cell Biol, 
15:5682-5687, 1995.

233. Treisman, R. The serum response element. Trends Biochem Sci, 17:423-426,
1992.

234. Sheng, M., Thompson, M. A.Greenberg, M. E. CREB: a Ca(2+)-regulated 
transcription factor phosphorylated by calmodulin-dependent kinases. Science, 
252:1427-1430, 1991.

235. Hill, C. S., Wynne, J.Treisman, R. Serum-regulated transcription by serum 
response factor (SRF): a novel role for the DNA binding domain. Embo J, 
13:5421-5432, 1994.

236. Mamett, L. J., Rowlinson, S. W., Goodwin, D. C., Kalgutkar, A. S.Lanzo, C. A. 
Arachidonic acid oxygenation by COX-1 and COX-2. Mechanisms o f catalysis 
and inhibition. J Biol Chem, 274:22903-22906, 1999.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



173

237. Smith, W. L., Garavito, R. M.DeWitt, D. L. Prostaglandin endoperoxide H 
synthases (cyclooxygenases)-l and -2. J Biol Chem, 271:33157-33160, 1996.

238. Tanabe, T. Tohnai, N. Cyclooxygenase isozymes and their gene structures and 
expression. Prostaglandins Other Lipid Mediat, 68-69:95-114, 2002.

239. Jaffe, B. M. Prostaglandins and cancer: an update. Prostaglandins, 6:453-461, 
1974.

240. Eberhart, C. E., Coffey, R. J., Radhika, A., et al. Up-regulation o f cyclooxygenase 
2 gene expression in human colorectal adenomas and adenocarcinomas. 
Gastroenterology, 107:1183-1188, 1994.

241. Kargman, S. L., O'Neill, G. P., Vickers, P. J., et al. Expression o f prostaglandin 
G/H synthase-1 and -2 protein in human colon cancer. Cancer Res, 55:2556-2559,
1995.

242. DuBois, R. N., Radhika, A., Reddy, B. S.Entingh, A. J. Increased 
cyclooxygenase-2 levels in carcinogen-induced rat colonic tumors. 
Gastroenterology, 110:1259-1262, 1996.

243. Williams, C. S., Luongo, C., Radhika, A., et al. Elevated cyclooxygenase-2 levels 
in Min mouse adenomas. Gastroenterology, 111:1134-1140, 1996.

244. Dubois, R. N., Abramson, S. B., Crofford, L., et al. Cyclooxygenase in biology 
and disease. Faseb J, 12:1063-1073, 1998.

245. Tippetts, M. T., Vamum, B. C., Lim, R. W.Herschman, H. R. Tumor promoter- 
inducible genes are differentially expressed in the developing mouse. Mol Cell 
Biol, 8:4570-4572, 1988.

246. Vane, J. R., Bakhle, Y. S.Botting, R. M. Cyclooxygenases 1 and 2. Annu Rev 
Pharmacol Toxicol, 38:97-120, 1998.

247. Hsi, L. C., Angerman-Stewart, J.Eling, T. E. Introduction o f full-length APC 
modulates cyclooxygenase-2 expression in HT-29 human colorectal carcinoma 
cells at the translational level. Carcinogenesis, 20:2045-2049, 1999.

248. Nettelbeck, D. M., Rivera, A. A., Davydova, J., et al. Cyclooxygenase-2 promoter 
for tumour-specific targeting o f adenoviral vectors to melanoma. Melanoma Res, 
13:287-292, 2003.

249. Li, Q., Guo, Y., Xuan, Y. T., et al. Gene therapy with inducible nitric oxide 
synthase protects against myocardial infarction via a cyclooxygenase-2-dependent 
mechanism. Circ Res, 92:741-748, 2003.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



174

250. Nagi, P., Vickers, S. M., Davydova, J., et al. Development o f a therapeutic 
adenoviral vector for cholangiocarcinoma combining tumor-restricted gene 
expression and infectivity enhancement. J Gastrointest Surg, 7:364-371, 2003.

251. Casado, E., Gomez-Navarro, J., Yamamoto, M., et al. Strategies to accomplish 
targeted expression o f transgenes in ovarian cancer for molecular therapeutic 
applications. Clin Cancer Res, 7:2496-2504, 2001.

252. Yamamoto, M., Alemany, R., Adachi, Y., Grizzle, W. E.Curiel, D. T. 
Characterization o f the cyclooxygenase-2 promoter in an adenoviral vector and its 
application for the mitigation o f toxicity in suicide gene therapy o f 
gastrointestinal cancers. Mol Ther, 3:385-394, 2001.

253. Richards, C. A., Austin, E. A.Huber, B. E. Transcriptional regulatory sequences 
o f carcinoembryonic antigen: identification and use with cytosine deaminase for 
tumor-specific gene therapy. Hum Gene Ther, 6:881-893, 1995.

254. Boucher, D., Coumoyer, D., Stanners, C. P.Fuks, A. Studies on the control o f 
gene expression o f the carcinoembryonic antigen family in human tissue. Cancer 
Res, 49:847-852, 1989.

255. Lan, K. H., Kanai, F., Shiratori, Y., et al. Tumor-specific gene expression in 
carcinoembryonic antigen—producing gastric cancer cells using adenovirus 
vectors. Gastroenterology, 111:1241 -1251, 1996.

256. Kijima, T., Osaki, T., Nishino, K., et al. Application o f the Cre recombinase/loxP 
system further enhances antitumor effects in cell type-specific gene therapy 
against carcinoembryonic antigen-producing cancer. Cancer Res, 59:4906-4911,
1999.

257. DiMaio, J. M., Clary, B. M., Via, D. F., et al. Directed enzyme pro-drug gene 
therapy for pancreatic cancer in vivo. Surgery, 116:205-213, 1994.

258. Kurane, S., Krauss, J. C., Watari, E., et al. Targeted gene transfer for 
adenocarcinoma using a combination o f tumor-specific antibody and tissue- 
specific promoter. Jpn J Cancer Res, 89:1212-1219, 1998.

259. Israeli, R. S., Powell, C. T., Corr, J. G., Fair, W. R.Heston, W. D. Expression o f
the prostate-specific membrane antigen. Cancer Res, 54:1807-1811, 1994.

260. Troyer, J. K., Beckett, M. L.Wright, G. L., Jr. Detection and characterization o f
the prostate-specific membrane antigen (PSMA) in tissue extracts and body 
fluids. Int J Cancer, 62:552-558, 1995.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



175

261. Lopes, A. D., Davis, W. L., Rosenstraus, M. J., Uveges, A. J.Gilman, S. C. 
Immunohistochemical and pharmacokinetic characterization o f the site-specific 
immunoconjugate CYT-356 derived from antiprostate monoclonal antibody 
7E11-C5. Cancer Res, 50:6423-6429, 1990.

262. Liu, H., Moy, P., Kim, S., et al. Monoclonal antibodies to the extracellular 
domain o f prostate-specific membrane antigen also react with tumor vascular 
endothelium. Cancer Res, 57:3629-3634, 1997.

263. Chang, S. S., Reuter, V. E., Heston, W. D., et al. Five different anti-prostate- 
specific membrane antigen (PSMA) antibodies confirm PSMA expression in 
tumor-associated neovasculature. Cancer Res, 59:3192-3198, 1999.

264. Silver, D. A., Pellicer, I., Fair, W. R., Heston, W. D.Cordon-Cardo, C. Prostate- 
specific membrane antigen expression in normal and malignant human tissues. 
Clin Cancer Res, 3:81-85, 1997.

265. Dumas, F., Gala, J. L., Berteau, P., et al. Molecular expression o f PSMA mRNA 
and protein in primary renal tumors. Int J Cancer, 80:799-803, 1999.

266. Hakalahti, L., Vihko, P., Henttu, P., et al. Evaluation o f PAP and PSA gene 
expression in prostatic hyperplasia and prostatic carcinoma using northem-blot 
analyses, in situ hybridization and immunohistochemical stainings with 
monoclonal and bispecific antibodies. Int J Cancer, 55:590-597, 1993.

267. Stamey, T. A., Yang, N., Hay, A. R., et al. Prostate-specific antigen as a serum 
marker for adenocarcinoma o f the prostate. N Engl J Med, 317:909-916, 1987.

268. Young, C. Y., Montgomery, B. T., Andrews, P. E., et al. Hormonal regulation o f 
prostate-specific antigen messenger RNA in human prostatic adenocarcinoma cell 
line LNCaP. Cancer Res, 51:3748-3752, 1991.

269. Pang, S., Taneja, S., Dardashti, K., et al. Prostate tissue specificity o f the prostate- 
specific antigen promoter isolated from a patient with prostate cancer. Hum Gene 
Ther, 6:1417-1426, 1995.

270. Schuur, E. R., Henderson, G. A., Kmetec, L. A., et al. Prostate-specific antigen 
expression is regulated by an upstream enhancer. J Biol Chem, 271:7043-7051,
1996.

271. Latham, J. P., Searle, P. F., Mautner, V.James, N. D. Prostate-specific antigen 
promoter/enhancer driven gene therapy for prostate cancer: construction and 
testing o f a tissue-specific adenovirus vector. Cancer Res, 60:334-341, 2000.

272. Chen, R. H. McCormick, F. Selective targeting to the hyperactive beta-catenin/T- 
cell factor pathway in colon cancer cells. Cancer Res, 61:4445-4449, 2001.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



176

273. Lipinski, K. S., Djeha, A. H„ Ismail, T., et al. High-level, beta-catenin/TCF- 
dependent transgene expression in secondary colorectal cancer tissue. Mol Ther, 
4:365-371,2001.

274. Kwong, K. Y., Zou, Y., Day, C. P.Hung, M. C. The suppression o f colon cancer 
cell growth in nude mice by targeting beta-catenin/TCF pathway. Oncogene, 
21:8340-8346, 2002.

275. McMasters, R. A., Saylors, R. L., Jones, K. E., et al. Lack o f bystander killing in 
herpes simplex virus thymidine kinase-transduced colon cell lines due to deficient 
connexin43 gap junction formation. Hum Gene Ther, 9:2253-2261, 1998.

276. Nettelbeck, D. M., Jerome, V.Muller, R. Gene therapy: designer promoters for 
tumour targeting. Trends Genet, 16:174-181, 2000.

277. Miller, N. Whelan, J. Progress in transcriptionally targeted and regulatable vectors 
for genetic therapy. Hum Gene Ther, 8:803-815, 1997.

278. Ring, C. J., Harris, J. D., Hurst, H. C.Lemoine, N. R. Suicide gene expression 
induced in tumour cells transduced with recombinant adenoviral, retroviral and 
plasmid vectors containing the ERBB2 promoter. Gene Ther, 3:1094-1103, 1996.

279. Block, A., Milasinovic, D., Mueller, J., et al. Amplified M ucl-specific gene 
expression in colon cancer cells utilizing a binary system in adenoviral vectors. 
Anticancer Res, 22:3285-3292, 2002.

280. Nyati, M. K.., Sreekumar, A., Li, S., et al. High and selective expression o f yeast 
cytosine deaminase under a carcinoembryonic antigen promoter-enhancer. Cancer 
Res, 62:2337-2342, 2002.

281. Gamallo, C., Palacios, J., Moreno, G., et al. beta-catenin expression pattern in 
stage I and II ovarian carcinomas: relationship with beta-catenin gene mutations, 
clinicopathological features, and clinical outcome. Am J Pathol, 155:527-536,
1999.

282. Inagawa, S., Itabashi, M., Adachi, S., et al. Expression and prognostic roles o f 
beta-catenin in hepatocellular carcinoma: correlation with tumor progression and 
postoperative survival. Clin Cancer Res, 8:450-456, 2002.

283. Rubinfeld, B., Robbins, P., El-Gamil, M., et al. Stabilization o f beta-catenin by 
genetic defects in melanoma cell lines. Science, 275:1790-1792, 1997.

284. Lin, S. Y., Xia, W., Wang, J. C., et al. Beta-catenin, a novel prognostic marker for 
breast cancer: its roles in cyclin D1 expression and cancer progression. Proc Natl 
Acad Sci U S A ,  97:4262-4266, 2000.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



177

285. Yano, H., Hara, A., Takenaka, K., et al. Differential expression o f beta-catenin in 
human glioblastoma multiforme and normal brain tissue. Neurol Res, 22:650-656,
2000 .

286. Gayet, J., Zhou, X. P., Duval, A., et al. Extensive characterization o f genetic 
alterations in a series o f human colorectal cancer cell lines. Oncogene, 20:5025- 
5032, 2001.

287. Koehne, C. H. Dubois, R. N. COX-2 inhibition and colorectal cancer. Semin 
Oncol, 31:12-21,2004.

288. Barker, N., Morin, P. J.Clevers, H. The Yin-Yang o f TCF/beta-catenin signaling. 
Adv Cancer Res, 77:1-24, 2000.

289. Chang, S. S., O'Keefe, D. S., Bacich, D. J., et al. Prostate-specific membrane 
antigen is produced in tumor-associated neovasculature. Clin Cancer Res, 5:2674- 
2681, 1999.

290. Foecking, M. K. Hofstetter, H. Powerful and versatile enhancer-promoter unit for 
mammalian expression vectors. Gene, 45:101-105, 1986.

291. Kiela, P. R., Hines, E. R., Collins, J. F.Ghishan, F. K. Regulation o f the rat NHE3 
gene promoter by sodium butyrate. Am J Physiol Gastrointest Liver Physiol,
281 :G947-956, 2001.

292. Chu, E. C., Chai, J.Tamawski, A. S. NSAIDs activate PTEN and other 
phosphatases in human colon cancer cells: novel mechanism for chemopreventive 
action o f NSAIDs. Biochem Biophys Res Commun, 320:875-879, 2004.

293. Chesire, D. R., Ewing, C. M., Sauvageot, J., Bova, G. S.Isaacs, W. B. Detection 
and analysis o f beta-catenin mutations in prostate cancer. Prostate, 45:323-334,
2000 .

294. Uchida, A., O'Keefe, D. S., Bacich, D. J., Molloy, P. L.Heston, W. D. In vivo 
suicide gene therapy model using a newly discovered prostate-specific membrane 
antigen promoter/enhancer: a potential alternative approach to androgen 
deprivation therapy. Urology, 58:132-139, 2001.

295. Lee, S. E., Jin, R. J., Lee, S. G., et al. Development o f a new plasmid vector with 
PSA-promoter and enhancer expressing tissue-specificity in prostate carcinoma 
cell lines. Anticancer Res, 20:417-422, 2000.

296. Chastel, C., Jiricny, J.Jaussi, R. Activation o f stress-responsive promoters by 
ionizing radiation for deployment in targeted gene therapy. DNA Repair (Amst), 
3:201-215,2004.

297. Wu, Q., Moyana, T.Xiang, J. Cancer gene therapy by adenovirus-mediated gene 
transfer. Curr Gene Ther, 1:101-122, 2001.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



178

298. Chuah, M. K., Collen, D.VandenDriessche, T. Biosafety o f adenoviral vectors. 
Curr Gene Ther, 3:527-543, 2003.

299. Dihlmann, S., Klein, S.Doeberitz Mv, M. K. Reduction o f beta-catenin/T-cell 
transcription factor signaling by aspirin and indomethacin is caused by an 
increased stabilization o f phosphorylated beta-catenin. Mol Cancer Ther, 2:509- 
516, 2003.

300. Boon, E. M., Keller, J. J., Wormhoudt, T. A., et al. Sulindac targets nuclear beta- 
catenin accumulation and Wnt signalling in adenomas o f patients with familial 
adenomatous polyposis and in human colorectal cancer cell lines. Br J Cancer, 
90:224-229, 2004.

301. Brunori, M., Malerba, M., Kashiwazaki, H.Iggo, R. Replicating adenoviruses that 
target tumors with constitutive activation o f the wnt signaling pathway. J Virol, 
75:2857-2865, 2001.

302. McLaughlin, P. M., Trzpis, M., Kroesen, B. J., et al. Use o f the EGP-2/Ep-CAM 
promoter for targeted expression o f heterologous genes in carcinoma derived cell 
lines. Cancer Gene Ther, 11:603-612, 2004.

303. Dong, D., Dubeau, L., Bading, J., et al. Spontaneous and controllable activation o f 
suicide gene expression driven by the stress-inducible grp78 promoter resulting in 
eradication o f sizable human tumors. Hum Gene Ther, 15:553-561, 2004.

304. Steffens, S., Sandquist, A., Frank, S., et al. A neuroblastoma-selective suicide 
gene therapy approach using the tyrosine hydroxylase promoter. Pediatr Res, 
56:268-277, 2004.

305. Barshishat, M., Polak-Charcon, S.Schwartz, B. Butyrate regulates E-cadherin 
transcription, isoform expression and intracellular position in colon cancer cells.
Br J Cancer, 82:195-203, 2000.

306. Kufe, D. Weichselbaum, R. Radiation therapy: activation for gene transcription 
and the development o f genetic radiotherapy-therapeutic strategies in oncology. 
Cancer Biol Ther, 2:326-329, 2003.

307. Fodde, R. Smits, R. Disease model: familial adenomatous polyposis. Trends Mol 
Med, 7:369-373, 2001.

308. Hecht, A. Kemler, R. Curbing the nuclear activities o f beta-catenin. Control over 
Wnt target gene expression. EMBO Rep, 1:24-28, 2000.

309. Dranoff, G. GM-CSF-secreting melanoma vaccines. Oncogene, 22:3188-3192,
2003.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



179

310. Nakano, H., Kishida, T., Asada, H., et al. Interleukin-21 triggers both cellular and 
humoral immune responses leading to therapeutic antitumor effects against head 
and neck squamous cell carcinoma. J Gene Med, 2005.

311. Saika, T., Kusaka, N., Mouraviev, V., et al. Therapeutic effects o f adoptive 
splenocyte transfer following in situ AdIL-12 gene therapy in a mouse prostate 
cancer model. Cancer Gene Ther, 2005.

312. Gregorieff, A. Clevers, H. Wnt signaling in the intestinal epithelium: from 
endoderm to cancer. Genes Dev, 19:877-890, 2005.

313. Liang, H. D. Blomley, M. J. The role o f  ultrasound in molecular imaging. Br J 
Radiol, 76 Spec No 2:S140-150, 2003.

314. Penuelas, I., Haberkom, U., Yaghoubi, S.Gambhir, S. S. Gene therapy imaging in 
patients for oncological applications. Eur J Nucl Med Mol Imaging, 2005.

315. Nakagawa, S., Massie, B.Hawley, R. G. Tetracycline-regulatable adenovirus 
vectors: pharmacologic properties and clinical potential. Eur J Pharm Sci, 13:53- 
60, 2001.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



180

VITA

SAURABH KUMAR GUPTA

Work address
700 West Olney Road 
Eastern Virginia Medical School
Department o f Microbiology and Molecular Cell Biology 
Noroflk, Virginia 23507

Education
Old Dominion University and Eastern Virginia Medical School 
Norfolk, Virginia
Doctor o f Philosophy, Biomedical Sciences (August 2001 -  December 2005)

Indian Institute o f Technology (formerly, University o f Roorkee)
Roorkee, India
Masters in Biosciences (July 1995 -  July 1997)

University o f  Delhi 
Delhi, India
Bachelor o f Sceince, Biology (July 1992 -  July 1995)

Professional Experience
Research Associate (June 2003 -  October 2005)
Eastern Virginia Medical School

Graduate Resaech assistant (August 2001 -  June 2003)
Eastern Virginia Medical School

Graduate research Assistant (August 1999 -  July 2003)
University o f  Arkansas for Medical Science 
Little Rock, Arkansas -  72205

Research Fellow (July 1998 -  July 1999)
National Center for Cell Sciences 
Pune, India

Research Fellow (September 1997 -  June 1998)
National Institute o f immunology 
New Delhi, India

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


	Tumor Response TCF-4/β-Catenin Regulatory Elements for Enhancing Cancer Gene Therapies
	Recommended Citation

	tmp.1557409886.pdf.WYe_q

