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Methodology:

Multi-label classification of mixed sample Raman spectra was 

achieved by implementing a model which avoids the issues found in 

CNN and SML by decomposing an N-class multi-label problem into 

“N” single class detection problems following the pseudocode in 

Procedure 1.5

Following Procedure 1 delivers the user a model consisting of 

multiple feedforward neural networks (fnn), each referred to as a 

“sample detector”. Each sample detector is trained to detect spectral 

features from a single pure sample very well compared to all others. 

To reduce the effects of assumed mutual exclusivity the input lengths 

to each detector are limited to only areas of the line profile where 

spectral features of its respective pure sample are found, each region 

is referred to as a “zone of interest”. The dataset used to train each 

detector consists only of spectral data extracted from its zones of 

interest and is decomposed to only have two classes.

Procedure 1 – Training Algorithm

1. for each pure sample i in training data

2. detect regions of line profile containing spectral data

3. initialize fnn with input length equal to the sum of all region lengths

4. create a two class training dataset by extracting regional data

5. train fnn using two class dataset

6. end

A mixed sample data point is classified by iteratively analyzing an 

input line profile with each trained sample detector, following 

Procedure 2. Line profile data from all sample detector’s zones of 

interest is extracted. The extracted data is then forward propagated 

through all sample detectors. If a user-set activation threshold is 

reached, the pure sample associated with an arbitrary detector is 

labeled as present in the mixed sample being analyzed.

Procedure 2 – Analysis Algorithm

1. for each sample detector i in a trained model

2. extract spectral data from the detector’s regions of interest

3. forward propagate extracted data through the detector’s fnn

4. if threshold activation reached

5. report pure sample as detected

6. else

7. report pure sample as not detected

8. end 

9. end

The model can be run in two modes, the first mode returns a single 

binary value (“detected” or “not detected”) for each pure sample in 

the training dataset. The second mode trains a fnn for every region of 

interest found for each pure sample, and outputs the amount of 

regions of interest which were activated by an input data point for 

each trained pure sample. It was experimentally found to be most 

effective to use both methods in parallel with each other. Graphical 

representation of the training and analysis procedures for the model 

used in this experiment are shown in Figure 2.

Introduction:

Interest in the use of Raman spectrometers has seen an increase 

in the fields of geology and planetary sciences due to the non-

destructive insight Raman spectra may provide into the molecular 

makeup of a given sample.  Advancements in Raman 

spectrometer hardware have allowed for compact instruments to 

have deployment capabilities directly on interplanetary missions, 

flexible usage conditions requiring no sample 

collection/preparation, and no need for daylight radiation 

shielding1,2.  

As the amount of science which can be collected from a Raman 

spectrometer in a given amount of time increases, a bottleneck 

will be created in data analysis which leaves a need for a faster 

method of spectral data classification. Recent studies3,4 have 

shown that machine learning models are able to solve this 

problem by achieving high-accuracy classification. Liu et al4 found 

the convolutional neural network (CNN) held the highest 

classification accuracy (96% top 5) for single sample Raman data.

Multi Label Classification:

Our experiments have shown that when multiple samples are 

struck by the same incident, Raman peaks from all samples may 

be present in its line profile1. In machine learning a case such as 

thus, when a single input has the potential to contain features from 

more than one learned class, is referred to as a multi-label 

problem5. In Liu et al a CNN was used for classification of single 

sample Raman data, however, due to the lack of spatial encoding 

in CNNs and the use of a softmax layer (SML), transferring the 

network to multi-label classification would not be feasible6. The 

weakness of SML for multi-label classification can be seen by 

visualizing the input weights of a SML which has been trained for 

pure sample classification, as shown in Figure 1. 

Figure 1 a and c show low frequency region pure sample data 

from naphthalene and sulfur respectively which was used to train 

a SML for classification, collected at LaRC with a Kaiser Holoplex 

f/1.8 spectrometer, Big Sky Laser UltraCFR laser at 532nm, and 

Princeton Instruments PIMAX ICCD camera. Figure 1 b and c 

show the learned input weights of the two output nodes of the 

SML. It can be seen that the network not only learned to associate 

spectral features with a specific class (positive weights) but it also 

assumes that features are mutually exclusive from each other 

(negative weights), making multi-label classification impossible 

with this type of model.

Results:

Figure 3  shows a front image of a sample composed of coarsely 

crushed naphthalene and sulfur. Each spot on the image overlay 

represents the center of the laser strike-point for a single data point. 

Between each exposure, the sample was carefully moved in steps of 

1mm to ensure the mixture was not disturbed, data points were 

collected from a total area of 1cm2. The color of each spot 

corresponds to the label(s) that a trained model applied to that data 

point. A red spot means features from both naphthalene and sulfur 

had activations, a yellow spot means only sulfur features had strong 

activation, and a green spot means only naphthalene features had 

strong activation. 

Summary:

• Advancements in Raman hardware are creating a need for faster 

analysis methods.

• A model has been developed which can analyze mixed Raman 

samples after being trained with only pure sample data.
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Figure 1 Pure Naphthalene and Pure sulfur training 

data (a,c) and their corresponding learned input weights 

for a trained SML (b,d).

Figure 2 Dataflow diagram of training (top) and analysis 

(bottom) procedures for the two class multi-label model 

used in this experiment.

Figure 3 High contrast image of mixed naphthalene 

and sulfur. Red = mixed classification, yellow = sulfur 

classification, green = naphthalene classification.

Figure 4 Line profiles of data points (0,0) – (0,10).

mailto:aatki011@odu.edu
mailto:m.n.abedin@nasa.gov

