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ABSTRACT 

COMPARISON OF IMMUNE CORRELATES, AGE RELATED CHANGES AND 
PROTEOMIC PROFILING OF HEALTHY INDIVIDUALS RECEIVING INFLUENZA 

VACCINES 

Gaurav Basu 
Eastern Virginia Medical School and Old Dominion University, 2009 

Directors: Dr. Richard R. Drake & Dr. Yuping Deng 

The burden of influenza related infections is substantial, both in terms of illness, 

lives lost and economic impact on society. The degree of impact of influenza related 

infections is much higher in the elderly population where it is a leading cause of 

catastrophic disability; greatly affecting the quality of life of elderly persons above 65 

years of age. Vaccination is the mainstay for control and prevention of influenza 

infections. There are two vaccine formulations that are licensed for use at present. The 

inactivated influenza vaccines (TIIV) which have been used for 60 years in all age groups 

and the new live attenuated influenza vaccine (LAIV) which is only recommended for 

use in individuals between 2-49 years of age. The mechanisms by which these two 

vaccines provide immunity in pre-vaccinated individuals have not been investigated in 

detail. 

In our study we looked at the different immune correlates of vaccine responses 

and studied the mechanism by which these two vaccines provide immunity. We 

investigated age related changes in immune response to inactivated influenza vaccines 

between young and elderly. We also attempted to identify serum specific vaccine and age 

related immune senescence markers using mass spectrometric approach by using the 

MALDI-TOF MS technique. 

We found contrasting immune responses induced by the two vaccines in different 



arms of the immune system. Our results showed that using antibody titer as the only 

standard to measure vaccine efficacy may lead to a bias towards parentarally 

administered vaccines. Our study showed significant age related differences in both 

humoral and cell mediate immune responses in the cohort immunized with inactive 

influenza vaccine. Elderly showed a decline in IFN-y secretion as a result of age related 

decline in the function of influenza specific memory T cells. A positive correlation was 

observed between Th 1 T cell response and antibody response only in the elderly which 

suggested an important role of IFN-y to antibody response in elderly. Our study did not 

find any relationship in baseline levels of IL-10, IL-6, TNF-a and IL-lp cytokines 

affecting T cell or antibody response in the elderly which suggests that immune response 

to vaccination is not affected in the elderly due to a change in these cytokines with age. 

We also demonstrated that MALDI-TOF MS technique was not feasible in identifying 

vaccine response or immune senescence markers in healthy vaccinated individuals. 
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CHAPTER 1 

INTRODUCTION 

1.1 Influenza Virus 

1.1.1. Classification, Structure and Nomenclature 

Influenza viruses belong to the family Orthomyxoviridae (from the Greek orthos 

meaning 'standard' and myxa, meaning 'mucus') [1]. There are three types of influenza 

viruses categorized as A, B and C based on the antigenic differences of two internal 

proteins, nucleoprotein (NP) and matrix protein (M) [2]. Influenza virus particles are 

enveloped and often pleiomorphic, with a diameter of 80 to 120 nm. The host-derived 

lipid envelope contains spikes, which are integral proteins that project out from the 

surface of the virus particles (Fig. 1). Influenza viruses contain 7 or 8 negative-sense 

single stranded RNA (ssRNA) genome segments depending on the type of influenza 

virus. Influenza type A and B virions are composed of 8 genome segments, which code 

for ten different viral proteins, while type C has 7 segments, which code for the same 

number of proteins. The three influenza types not only differ in their genetic composition, 

but also differ in epidemiology, host range and pathogenicity. Influenza A and B viruses 

are important human pathogens, while influenza C viruses are rarely associated with 

infections in humans. Influenza B viruses primarily infect only humans while influenza A 

viruses are known to infect a number of vertebrates, most importantly aquatic birds [3, 4]. 

Migrating water fowl are believed to be hosts of all known influenza A sub-types. 

The model journal for this dissertation is Vaccine 
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The influenza type A viruses are further divided into subtypes based on the 

different surface glycoproteins hemagglutinin (HA) and neuraminidase (NA). To date 

there have been 16 distinct HA and 9 distinct NA types reported based on sequence 

analysis and verification of serological reactivity [2, 5]. All influenza strains acquire 

names based on a standard nomenclature established by the World Health Organization 

(WHO). For each influenza virus strain the designation comprises die type of influenza 

virus/abbreviation for animal (if not human species)/place or area of isolation/sequence 

number at the isolating laboratory/year of isolation (subtype), e.g. Influenza A/New 

York/411/2002 (H3N2) [6, 7]. 

Fig. 1. Structural diagram of influenza virus 
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1.1.2 Viral Life Cycle 

Influenza virus infects the mucosal epithelial cells of the upper respiratory tract. 

The viral infection begins when viral HA binds to sialic acid residues on the host cell 

surface. The removal of sialic acids by the viral NA glycoprotein creates a pathway for 

the virus through the outer mucus layer to allow cell receptor mediated endocytosis. The 

virus is engulfed and taken into the cell in a vesicle where it fuses with acidic endosomes. 

The low pH allows the flow of ions from the endosome into the virion via the viral M2 

protein channel resulting in the disassociation of viral ribonuceloproteins (RNPs) from 

the viral Ml protein. The low pH is also responsible for a conformational change in the 

HA protein, which results in the fusion of the viral envelope and the endosomal 

membrane. This step is necessary for virus infectivity [2]. The fusion results in the 

release of disassociated RNPs into the cytoplasm of the infected cell which are then 

transported to the nucleus via the NP that has a nuclear localization signal (NLS) [8]. In 

the nucleus of the infected cells the (-) sense viral RNAs (vRNAs) serve as templates for 

both transcription of mRNAs and replication of new vRNAs. The viral polymerase 

requires a 5' RNA primer to initiate transcription of viral mRNAs. This is achieved by a 

process called "cap-snatching" where the cap specific endonuclease activity of PB2 

removes the 5' methylguanosine ends of newly synthesized cellular mRNAs [9]. The 

elongation of the mRNA chains are mediated by PB1 polymerase which continues up to a 

point where a stretch of uridine residues is reached where the polymerase complex 

"stutters" and the poly (A) tail is transcribed. The RNA polymerase is made up of three 

subunits which are PB1, PB2 and PA which work in conjunction to transcribe the viral 

genome into a (+) sense mRNA and a (-) sense complimentary RNA (cRNA). While 
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transcription is carried out by PB1 and PB2 proteins, genome replication requires PB1 

and PA subunits of the polymerase complex. The cRNA is used for generating new viral 

genome and mRNA is used for protein translation. Once the initial proteins are made, 

then eight complementary positive sense RNA strands are made from the eight (-) sense 

RNA segments (in influenza A and B). In influenza A and B, ten proteins result from the 

translation of the eight segments of the genome, including hemagglutinin (HA), 

neuraminidase (NA), PB1, PB2, nucleoprotein (NP), another RNA polymerase complex, 

two matrix proteins (Ml and M2) , and two NS proteins (NS1 and NS2). The HA, NA 

and M2 are translated on the endoplasmic reticulum (ER) while the other proteins are 

translated in the cytoplasm on free ribosomes. The HA, NA and M2 proteins are 

transported from the ER to the Golgi apparatus where they undergo further modifications 

like glycosylation, polymerization, and acylation before being transported to the cell 

membrane. The RNPs and Ml proteins also migrate to the cell membrane where they 

interact with the HA and NA proteins. The viral envelope begins to form on the cell 

membrane by the continuous interaction of Ml and other viral glycoproteins [2]. The 

viral particles are pinched off via a budding process of the cell membrane by an unknown 

mechanism. Upon exit, the neuraminidase removes surface sialic acid receptors on the 

membrane, thus allowing the virus particles to leave the cell. The accumulation of 

nucleocapsid in the cytoplasm initiates assembly [10, 11]. The production of infectious 

viral particles is inhibited if the activity of NA is inhibited or HA is not cleaved [12]. 

How the viral RNA segments are packaged for inclusion in the budding viral particles is 

not well defined. Most viral particles that bud off from an infected cell are not viable; 
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only one virion out of 20-50 virion is able to infect a new cell in cell culture [13]. A 

schematic diagram of the life cycle is described (Fig. 2). 

Fig. 2. Schematic diagram of Influenza virus life cycle. 
Figure adapted from diagram of virus replication at www.accessexcellence.org 

Plasma 
Membrane 

Endocytosis 

Primers 

http://www.accessexcellence.org
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1.1.3 Influenza Epidemiology 

Influenza viruses are responsible for highly contagious infections and are a major 

cause of annual epidemics and occasional pandemics. Annual influenza outbreaks usually 

occur during the winter months in the Northern Hemisphere and between May through 

September in the Southern Hemisphere. However, year round infections are detected in 

the tropic and subtropical areas [14]. The reason behind seasonal outbreaks of influenza 

infections is not clearly known. One possible explanation could be the close proximity of 

individuals spending more time indoors during winter months, exacerbating person to 

person transmission. The number of suspected influenza cases in periods of known 

influenza spread designated as influenza like illness (1LI) is a frequently used measure of 

epidemiological activity by international and national authorities [15]. The numbers of 

ILI cases are reported by general practitioners (GP) with patients suffering from typical 

influenza symptoms and the number of ILI is a good estimate of the magnitude of 

circulating influenza viruses [16]. The definition of ILI that corresponds best with 

laboratory confirmed influenza is a sudden onset of fever, cough, myalgia, severe malaise 

and fatigue [17]. 

Influenza outbreaks can vary strongly between seasons, however, it is estimated 

that during annual influenza outbreaks 5-15% of the world's population is infected 

resulting in one million deaths each year [18]. However, the total number of influenza 

related deaths worldwide is difficult to estimate, due to a lack of knowledge about 

influenza epidemics in developing countries [19]. Influenza is a leading cause of 

catastrophic disability, greatly affecting the quality of life of elderly people above 65 

years of age. The degree of impact related to influenza infections is much higher in the 
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elderly population as opposed to young adults [20, 21]. Most influenza infection related 

deaths are a result of complications and secondary infections like pneumonia in the 

elderly and the frail elderly [22]. Along with pneumonia, influenza represents the sixth 

leading cause of death among individuals 65 years or older in the United States [23]. 

Influenza infections account for 226,000 hospitalizations and 36,000 deaths annually in 

the United States, as estimated by the Center for Disease Control and Prevention [20, 24]. 

Morbidity rates as high as 70% have also been reported in children less than a year old 

[25]. The burden of influenza related infections is substantial, both in terms of illness, 

lives lost and economic impact on society [18]. In a recent report it has been estimated 

that the direct and indirect economic costs of influenza related complications are as high 

as $71 billion to $166 billion [26]. The major economic impact of influenza is related to 

loss of productivity, besides the medical costs of hospitalizations as a result of severe 

disease. Vaccination is the most cost-effective means to prevent seasonal influenza 

infections and has proven to be effective in prevention and controlling severity of disease 

[21,27]. 

1.1.4 Antigenic Drift 

Influenza viruses are unique among the respiratory viruses as they have 

substantial antigenic variations. The three influenza types continuously undergo antigenic 

variations leading to changes in the amino acid sequence as a result of mutations through 

a process called antigenic drift. "New drifted" influenza A variants replace previously 

circulating strains each year causing seasonal epidemics, whereas influenza B and C 

accumulate fewer mutations and generally are more antigenically stable [28]. Annual 



8 

outbreaks are a result of accumulation of mutations. Antigenic drift is the gradual 

evolution of viral strains due to frequent mutations and occurs in response to selection 

pressure to evade human immunity [29, 30]. The process of antigenic drift involves point 

mutations within antibody-binding sites in the influenza glycoproteins HA and NA, or 

both, which may potentially occur each time the virus replicates [31]. Influenza viruses 

like all RNA viruses general have very high frequencies of copy errors during replication 

as the RNA dependent RNA polymerase does not have the ability to proof read. The 

average number of mutations in influenza virus per genome per replication cycle is 1.0, 

compared to 0.0027 for yeast (Saccharomyces cerevisiae) [32]. Mutations, especially in 

the HA which contains the main antigenic determinants allows the virus to escape the 

host's immunological memory. The annual mutation rate for influenza A envelope 

glycoproteins HA and NA is 0.4% and 0.7%, respectively [33]. Mutations allow the virus 

to escape the host's antibody repertoire resulting in new infections. The slower evolution 

of influenza B and C viruses may be attributed to having a single host to replicate. A 

hypothesis explaining this has been proposed; both influenza B and C viruses have been 

coevolving with humans longer and have undergone host specific adaptations, while on 

the other hand, influenza A has not reached its evolutionary equilibrium with man and is 

unable to do so as a result of frequent reassortment with viruses from other hosts [4]. 

1.1.5 Antigenic Shift 

Antigenic shift involves major changes in the surface glycoproteins HA and NA 

of influenza A viruses. It occurs after reassortment of viral genome segments between 

two different influenza A types. If two different influenza type A viruses co-infect the 
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same cell and multiply, exchange of genome segments can occur that lead to novel 

viruses with new combinations of HA and NA surface glycoproteins. If this reassortment 

generates new subtypes never seen in human populations, the potential for influenza 

pandemics can occur as these novel viruses spread in humans [34]. It is estimated that the 

phenomenon of antigenic shift occurs approximately three times every 100 years [35], in 

fact three pandemics occurred during the 20th century (1918, 1957 and 1968). The most 

devastating antigenic shift occurred in 1918 and was termed the "Spanish Flu" [36]. 

There are three main theories to describe the process of antigenic shift: reassortment, 

recirculation of existing subtypes and a gradual adaptation of animal viruses to human 

transmission. Reassortment is the most important process that contributes to major shifts 

in influenza antigenicity and consists of a mixing of genetic material between different 

viral strains. Genetic reassortment occurs between co-infecting influenza A subtypes 

from different species for example; reassortment between human and avian virus strains 

could lead to the production of a highly virulent strain. Co-circulation of different 

influenza A subtypes is responsible for reassortment [29] and is of particular importance 

in the evolution of avian flu-associated H3N2 viruses [37]. Once a virus has undergone 

antigenic shift, it remains susceptible to antigenic drift as occurs with any influenza virus. 

In most cases the novel viruses are not able to directly infect humans; however, over time 

the novel viruses can acquire the required mutations, which could enable them to directly 

infect humans. Direct transfer of highly virulent strain from avian carriers to humans has 

been confirmed by influenza epidemics in Hong Kong during 1997-1998 [38]. Domestic 

animals and birds are important reservoirs of influenza viruses. Close proximity to these 

hosts may lead to higher chances of co-infection and direct transmission of different 
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influenza types [39]. The highly pathogenic avian influenza A (H5N1) epizootic (animal 

outbreak) has been reported recently in Asia, Europe, the Near East, and Africa. H5N1 

Infections of H5N1 virus have become endemic among domestic poultry in certain parts 

of the world, which is thought to be responsible for sporadic human infections as a result 

of direct contact with infected fowl or wild birds who are carriers of the virus. To date, 

person-to-person transmission of H5N1 infections have been very rare, limited and 

unsustained. However, this epizootic threat continues to pose a important public health 

hazard [40]. The World Health Organization (WHO) has reported human cases of avian 

influenza A (H5N1) in Asia, Africa, the Pacific, Europe and the Near East. The highest 

numbers of cases to date were reported from Indonesia (141) and Vietnam (109). The 

total number of deaths reported as a result of H5N1 infections to date is 256 [41]. Overall 

mortality in reported H5N1 cases is approximately 60%. The majority of cases have 

occurred among children and adults less than 40 years old. Mortality was highest in 

patients 10-19 years of age. 

1.1.6 Influenza Transmission, Symptoms and Pathogenesis 

Influenza viruses are spread in the form of virus-laden droplets from coughing, 

sneezing or direct person-to-person contact from infected individuals. Human influenza 

viruses replicate almost exclusively in epithelial cells of the respiratory tract; however, in 

rare cases infections of the muscle and central nervous system have been documented [1, 

42, 43]. Symptoms such as cough, sore throat, myalgia and fever are due to a 

combination of inflammatory response to viral replication in infected cells and 

desquamation of the epithelial cell lining. The incubation period is short lasting one to 
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five days and the onset of illness is abrupt with the initial three days being the period of 

highest person to person communicability. Clinical symptoms persist for three to four 

days, although cough and malaise may persist for as long as two weeks. Influenza can 

cause severe disease and complications in individuals belonging to the high-risk groups. 

Complications, which include primary viral pneumonia, combined viral-bacterial 

pneumonia and bacterial pneumonia, are most common in the elderly and frail elderly 

following influenza infections. Influenza infections cause macrophage-mediated lysis of 

infected cells, secretion of the inflammatory cytokines tumor necrosis factor-alpha (TNF-

a), alpha and beta interferons (IFN-a, IFN-p) and interleukins (IL-ip, IL-6, IL-12), which 

have been implicated in pathogenesis of influenza infections. For the host, these 

cytokines, interferons and interleukins help limit production of new viruses by down 

regulation of intracellular protein synthesis [44,45]. 

1.1.7 Immune Responses to Influenza virus 

1.1.7.1 Innate Immune Responses 

In humans, the first lines of defense against influenza virus infections are multi-

component innate immune responses. The main function of the innate immune system is 

to contain the pathogen until the adaptive immune system is activated and fully 

functional. The components of the innate immune response consist of mucus, 

macrophages, IFN-a, IFN-p, the complement system, and natural killer (NK) cells. Most 

influenza viruses are initially detected and destroyed within hours by non-antigen specific 

innate immune mechanisms [1, 45]. The complement system is important in recruiting 

phagocytic cells by acting as an opsonizing and inflammatory initiator. The complement 



12 

system together with anti-influenza antibodies present in serum permeabilizes 

membranes and contributes to the destruction of target cells. Infected monocytes, 

macrophages and alveolar epithelial cells secrete chemokines that attract other immune 

cells like neutrophils, macrophages and NK cells to the site of infection. These cells 

produce additional cytokines, chemokines and anti-viral proteins in response to influenza 

infections. Macrophages have been shown to secrete IL-1, EL-6, TNF-a, and IL-12 which 

are known activators of NK cells. 

The type 1 interferons, IFN-a and IFN-p\ are among the most important cytokines 

of the innate immune system, as they play a major role in controlling the spread of 

infection by inhibiting viral replication [1]. Besides recruiting monocytes, the interferons 

also stimulate increased expression of major histocompatibility complex class I (MHC I) 

and class II (MHC II) to increase antigen presentation to macrophages and NK cells. 

Cytokines IL-1, IL-6 and TNF-a induce fever. IL-12 along with TNF-a elicits production 

of IFN-y by NK cells. IFN-y can activate pathways associated with direct antiviral 

functions [46]. Within 48 hours of the onset of viral infection, NK cells producing IFN-y 

are detected which help to limit the spread of virus by perforin mediated cell lysis of 

infected cells with altered MHC I [45]. It has been shown that NK cells are activated with 

the help of their activating receptors NKp46 and NKp44 that recognize HA on infected 

cells and lyse them [47]. Influenza virus has a novel mechanism for inhibiting NK cell 

lysis activity, thereby enhancing the ability of the virus to spread to other cells [48]. The 

innate toll-like receptors (TLRs), which are a family of pattern recognition receptors that 

bind to pathogens and serve as sentinels to induce cytokine production [49], have also 

been proven to significantly contribute to immune activation in response to influenza 
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infection. The TLRs are differentially expressed in antigen presenting cells (APCs) and in 

lymphocytes. The dsRNA intermediate produced by influenza virus during its replication 

cycle is able to activate TLR 3, TLR 7 and TLR 8 that are constitutively expressed on the 

APCs or NK cells [50-52]. 

1.1.7.2 Adaptive Immune Response - Humoral and Cell Mediated 

Influenza viruses that are able to evade and escape the initial innate immune 

response can next be detected and destroyed by components of the adaptive immune 

system. The adaptive immune response against influenza virus consists of humoral and 

cell mediated immune responses (CMI). The humoral immune response is elicited by the 

bone marrow derived lymphocytes called B cells and the cell-mediated immune 

responses are elicited by a set of thymus-derived lymphocytes called T cells. 

The humoral immune system, which includes mucosal and systemic components, 

plays a major role in immunity against influenza infection and disease. In humans, 

specific antibodies against all major viral proteins like HA, NA, NP, Ml and M2 are 

detected after infection [53]. However, antibodies to surface glycoproteins HA and NA 

have been proven to provide protection and resistance to infection, whereas antibodies to 

conserved antigens like M and NP proteins are not protective [1]. The antibodies 

produced against the HA glycoprotein are the most important for neutralizing the virus 

and preventing virions from binding to host cell receptors, and hence, preventing illness. 

Antibodies against the NA glycoprotein prevent the release of virus from infected cells 

and help restrict the infection to the respiratory tract [1]. The specific antibodies 

generated by the immune system cannot provide lifelong immunity against influenza 
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viruses due to the ability of the virus to generate new antigenic epitopes as a result of 

which protection provided by antibodies only lasts up to a few years. 

Besides the innate immune system, the mucosal immune system also forms an 

initial line of defense against infection. Nasal secretions consist of neutralizing antibodies 

which are primarily secretory immunoglobulin A (S-IgA) [54] and IgM against influenza 

glycoproteins HA and NA. The mucosal S-IgA prevents entry of virus and can function 

intracellularly to inhibit viral replication [55]. The S-IgA antibodies are primarily 

involved in prevention of influenza infections in the upper respiratory tract, whereas 

serum IgG antibodies predominate in protection of the lower respiratory tract [45]. 

Subjects who have a local IgA response have been shown to have serum IgA response 

[55]. It has been observed that IgA is the predominant isotype detected in local secretions 

after infection and serum IgA responses are detected in serum upon subsequent infection. 

Serum antibodies play a major role in resistance to or recovery from influenza infections 

in humans. In humans, levels of serum antibody to surface glycoproteins HA and NA 

correlate with resistance to illness following challenge with influenza virus under 

experimental conditions or natural infections [56, 57]. The most commonly measured 

correlate of protection against influenza are the serum anti-HA antibodies [58]. All three 

major classes of Ig (IgG, IgA and IgM) are produced by B cells present in the peripheral 

blood in individuals undergoing influenza infections [59]. The three major Ig classes can 

be detected within 10-14 days during a primary infection. Peak levels of IgA and IgM are 

observed after 2 weeks of infection, but then the levels begin to decline, whereas IgG 

levels peak around 4-6 weeks after infection. The IgG and IgM predominate in primary 

responses, while IgA and IgG are dominant during secondary immune responses [57]. 
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The serum IgGs are divided into four classes: IgGl, IgG2, IgG3 and IgG4. Most of the 

serum IgGs belong to the IgGl sub-group and play an important role in the prevention of 

influenza infection and provide protection against new infections [60]. In humans, 

systemic levels of IgGl and IgG3 are important for complement fixation and antibody-

dependent cellular cytotoxicity [61]. 

1.1.7.3 Cell Mediated Immune Responses 

Cell-mediated immune responses play a major role in clearing virus from infected 

cells, which for influenza infections, aids in recovery from influenza illness and it may 

also prevent influenza-associated complications. However, its role in preventing 

influenza infections has not been well defined [1, 55]. The cell-mediated immune 

component consists of two main cell types, cytotoxic T cells (CD8+ T cells) and helper T 

cells (CD4+ T cells). The cytotoxic CD8+ T cells (CTLs) are restricted by MHC I 

antigens. In humans, pre-infection levels of virus specific CTL are associated with 

accelerated clearance of the virus from the respiratory tract [62]. The CTLs appear in the 

blood of infected or vaccinated individuals on days 6 to 14 and disappear by day 21 [63]. 

During a primary infection, the naive T cells expand and differentiate into cytotoxic 

effector T cells, which are capable of eliminating virus-infected cells. After viral 

clearance, the pool of effector T cells contracts and a virus-specific memory T cell 

persists that can undergo rapid reactivation in the event of future infections. The 

cytotoxic T cell response has been found to be cross-reactive, providing protection 

against serologically different influenza A viruses [64]. Internal non-glycosylated 

proteins like M, NP and PB2 have been shown to be recognized by CTLs [65, 66]. 
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Based on the cytokines produced by helper T cells, they are sub-divided as T 

helper type 1 or T helper type 2 cells. The type 1 helper cells (Thl) secrete IFN-y and IL-

2 which helps in antibody production and proliferation of MHC I restricted CTLs which 

primarily drives cellular immunity. The cytokine IL-2 has been shown to be 

indispensable in stimulating Thl and CTL proliferation, and differentiation and activation 

of NK cells [67, 68]. In addition BL-2 contributes to antibody generation by enhancing B 

and T cell interactions [69]. Another set of CTLs have been found that are CD4+ MHC 

class II restricted that have peforin mediated cytotoxicity [70]. The cytokine IFN-y is 

also an important immune modulator and influences other immune cell functions and 

antibody subclass switching. It has been demonstrated that IFN-y is able to upregulate the 

expression of TLRs and MHC class I and II molecules in macrophages, increasing anti

viral activity [71, 72]. In humans, IFN-y has also been shown to influence IgG class 

switching to the IgGl sub class [73]. The type 2 helper cells (Th2) secrete IL-4, IL-5 and 

IL-10 which drives humoral immunity by helping antibody producing cells to produce 

IgA, IgGl and IgE [74]. 

1.1.8 Prevention and Prophylaxis of Influenza 

There are two major methods to prevent and treat influenza infections, vaccines 

and antiviral drugs. For vaccines, there are two main types used to prevent annual 

influenza infections. They are divided into two categories; inactivated influenza vaccines 

and live virus vaccines. 
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1.1.8.1 Inactivated Influenza Vaccines 

There are three main formulations of the inactivated influenza vaccines that are or 

have been used clinically. The whole virus vaccine is inactivated using chemical reagents 

(formalin, P-propiolactone) without destroying the viral envelope [75]. In spite of high 

immunogenicity, the use of this kind of vaccine formulation was discontinued due to 

frequent adverse reactions [76, 77]. The other formulation is a split virus vaccine that is 

produced by chemical agents (ether, tributyl phosphate) by disrupting the viral envelope. 

The immunogenicity induced by this vaccine is lower compared to the whole virus 

vaccine; however, there are fewer adverse reactions [76]. The third formulation is a sub-

unit vaccine that consists of highly purified surface glycoprotein antigens HA and NA 

[78]. This formulation is the least immunogenic formulation; however it is one of the 

safest vaccine formulations and is the most widely used vaccine at present. All 

inactivated influenza vaccines are administered parenterally, either by an intramuscular 

or subcutaneous route. The inactivated vaccines are produced in embryonated chicken 

eggs. All the vaccines are trivalent and are composed of three influenza virus strains to 

provide protection against the most commonly circulating strains during a season. A 

normal adult dose of the trivalent influenza vaccine has a concentration of 15ng HA of 

each influenza strain (H1N1, H3N2 and one B strain). The inactivated vaccines are 

licensed in the U.S.A. for use in children 6 months or older and all adult age groups. The 

inactivated vaccines are 60-100% effective in preventing morbidity and mortality and 30-

70% effective in prevention of hospitalization in elderly people [79]. The efficacy of 

inactivated vaccines has been found to be significantly lower in the elderly population 

when compared to the young [21]. 
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1.1.8.2 Live Attenuated Influenza Vaccines 

Live attenuated influenza vaccines (LAIV) have been recently licensed in the 

U.S.A., but have been used extensively in other countries like Russia [55]. The vaccine 

consists of a reassorted virus which has the genes encoding the HA and NA glycoproteins 

from wild-type virus inserted into an attenuated donor virus strain. In the U.S.A. there are 

two master donor strains: one for influenza A strains, A/Ann Arbor/6/60 (H2N2), and one 

for influenza B strains, that are used for the production of LAIV. The attenuated donor 

strains are temperature-sensitive and have limited ability to replicate in the lower 

respiratory tract [80]. The LAIV vaccines are trivalent and are also produced in 

embryonated chicken eggs. The LAIV vaccine is administered intranasally (0.25 ml in 

each nostril) at a dose of approximately 107 TCID50 of each of three virus stains using a 

large particle aerosol spray device [81, 82]. The LAIV vaccine has been found to be 78-

100% effective at preventing influenza associated illness after an experimental challenge 

or natural infection [82, 83]. The LAIV vaccines are licensed for use in children 2 years 

and older and in adults up to the age of 49 years. It has not been approved for use in 

elderly and immunocompromised adults, who are the most susceptible and high-risk 

groups that need to be vaccinated. Concerns regarding the possibility of new assortments 

between live virus present in the vaccine and wild-type influenza virus as a result of 

simultaneous infections have prevented the use of this vaccine in the high-risk groups. 

A comparison of the two licensed vaccine products in the United States of 

America at present is listed in Table 1. 
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Table 1. Comparison of different properties of the two currently licensed influenza 
vaccines in the United States of America. 

Category 

Administration 

Formulation 

Efficacy in children 

Efficacy in adults <50years 

Safety (side effects) 

Growth medium 

Storage 

Age group 

TIIV (Fluzone®) 

Intramuscular 

Inactivated 

50%-90% 

70%-90% 

Sore arm 

Chick embryos 

Refrigerated 

Individuals >6mo 

LAIV (FluMist®) 

Intranasal 

Live attenuated 

70%-90% 

70%-90% 

Runny nose 

Chick cells 

Refrigerated 

2 - 4 9 yrs* (healthy) 

1.1.8.3 Antiviral Drugs against Influenza 

There are three classes of drugs that are used to treat influenza infections. These 

chemical drugs target different viral proteins to prevent the spread of infection. The M2 

channel inhibitors Amantadine and Rimantadine block the M2 ion channel protein to 

prevent viral uncoating and replication. These drugs only work against influenza A 
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viruses and have an efficacy rate of 70-90% in healthy adults when used prophylactically. 

The other class of drugs targets the NA glycoprotein and prevents the release of viral 

particles from infected cells. These drugs (Oseltamivir [Tamiflu] and Zanamivir 

[Releza]) act against both Influenza A and B strains with a prophylactic efficacy rate of 

80%. The third group of drugs (Ribavirin) targets viral RNA replication [55, 84, 85]. All 

the chemical drugs help reduce illness within 1-2 days after their administration and 

reduce the possibility of transmission; however, they do not elicit immunological 

memory and therefore cannot be used a substitute for vaccination. Another critical issue 

regarding the use of anti-viral drugs is associated with the development of resistance to 

antiviral drugs. Studies show that influenza A viruses resistant to amantadine and 

rimantadine can emerge quickly during treatment, even as early as 2-3 days after 

initiation of drug therapy [86]. At present, neuraminidase inhibitors are the most widely 

used antivirals prescribed. A recent report by the CDC demonstrated that a high 

percentage of circulating influenza A/H1N1 viruses are now resistant to oseltamivir [87]. 

It is recommended that there should be careful use of antivirals, as monotherapy using a 

single antiviral agent will lead to further selection of antiviral resistant strains [88]. 

1.1.9 Aging and Immunosenescence 

Aging can be defined as "a process that converts healthy adults into frail ones 

with diminished reserves in most physiological systems and an exponentially increasing 

vulnerability to most diseases and to death" [89]. Aging is not a disease but a natural 

phenomenon, which is genetically controlled and is influenced by environmental factors. 

Aging is associated with an increase in morbidity and mortality, which has been 
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attributed to immunosenescence. Immunosenescence is defined as the state of 

dysregulated immune function that contributes to increased susceptibility of the elderly to 

infection and possibly to autoimmune diseases and cancer [90, 91]. Immunosenescence 

results in the decline in the body's ability to fight infection or mount an adequate immune 

response [92]. Aging-related immunosenescence affects both the innate and adaptive 

immune systems. 

1.1.9.1 Immunosenescence in Innate Immunity 

The NK cells are major components of the innate immune system and represent 5-

15% of the total human PBMC [93]. These cells are involved primarily in the secretion of 

IFN-y and cytotoxicity. Studies have suggested that there is a decline in per cell activity 

of NK cells in the elderly; however the impact can be compensated as a result of 

increased number of NK cells in the elderly [94]. The TLRs are also affected by aging. 

Animal studies have shown that there is reduced expression of TLRs resulting in reduced 

production of cytokines TNF-a and IL-6 [95]. The APCs, which include macrophages, 

dendritic cells and monocytes, form an important link between the innate and adaptive 

immune systems. Animal studies have shown an impaired activation of tissue 

macrophages as a result of impaired IFN-y production by macrophage cells [96]. Other 

studies in mice have also revealed that alveolar macrophages of older animals are less 

efficient in antigen presentation when compared to the young animals which indicates an 

age related decline in antigen presentation by APCs [97]. 
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1.1.9.2 Immunosenescence in Adaptive Immunity 

The adaptive immune system is composed primarily of T and B lymphocytes, 

which are responsible for eliciting specific immune responses against pathogens in 

conjunction with the innate immune system. The T cells are the major source of 

cytokines in the adaptive system and can be divided into two types based on cell surface 

expression of CD4 or CD8 molecules. The CD4 T cells are further divided into type 1 

(Thl) and type 2 (Th2) cells, each of which produce different profiles of cytokines that 

are critical in regulating the inflammatory component of the immune response. The Thl 

cells typically produce pro-inflammatory cytokines like IFN-y, TNF-a, IL-2, IL-6 and IL-

1 while Th2 cells produce anti-inflammatory cytokines such as EL-10, IL-4 and IL-5 [98, 

99]. The production of Thl and Th2 cytokines usually counteract each other. However, 

with advanced age and immunosenescence, there is a shift in towards the Th2 cytokine 

production and a loss in CTL activity [100, 101]. These changes create a pro

inflammatory state that alters immune cell signaling, differentiation, and apoptosis [102]. 

There is also an increase in memory to naive ratio of both cytotoxic and helper T cells as 

a result of thymic involution, which is associated with a decrease in the central 

production of T cells [103, 104]. The loss in naive T cells is offset by the expansion of 

memory T cells in the periphery [105]. The accumulated memory T cells may impair 

long term T cell activation [106]. An increase in CTL to helper T cells is also observed as 

a result of immunosenescence due to the apoptosis-resistant nature of CTL [107]. Other 

changes associated with aging T cells include loss of CD28 surface molecules which 

significantly reduce the ability of T cells to proliferate [108], calcium deficiency which is 

critical for cell signaling and other activation functions [109]; inactivation of 
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transcription factors like NF-KB and AP-1 which results in downregulation of IL-2 which 

is a key component of T cell proliferation and NK cell activation and differentiation 

[110]. 

The changes associated with B cells are less clear; however they appear to have 

similarities to age-related changes in T cells. B cells from older individuals show 

impaired activation and proliferation that may also be related to changes in co-

stimulatory molecule expression [98, 103]. The age-related dysfunction of T cells in 

conjunction with the intrinsic impairment of B cells significantly affects the production of 

antibodies in the elderly [111]. Impaired primary and secondary antibody production after 

vaccination have been demonstrated; the impairment is greater when helper T cells are 

involved to drive the antibody production in the elderly. Lower efficacy and specificity of 

antibodies produced in older individuals when compared to younger individuals has been 

reported [112]. 

The field of proteomics, which involves the study of expressed proteins, has made 

rapid strides in the past two decades. The primary aim of clinical proteomics is to identify 

biomarkers for the diagnosis of disease by comparing the proteomic profiles of control 

and disease states from various body fluids like plasma, serum, saliva, cerebrospinal 

fluid, and urine [194]. Biomarker discovery using ever-advancing mass spectrometry 

techniques like matrix assisted laser desorption and ionization time of flight 

(MALDI/TOF), surface-enhanced laser desorption and ionization (SELDI), two 

dimensional electrophoresis (2D gels), and liquid chromatography-mass spectrometry 

(LC-MS) have emerged as essential investigative tools for identifying various disease 

states, especially in the field of early cancer diagnosis [139, 195-199]. I believe that this 
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technology can be applied to further understand the response to influenza vaccination and 

infection. Analyzing pre- and post-vaccination serum samples from healthy individuals 

could provide valuable insights into determining protein biomarker profiles of vaccine 

responders and non-responders. Attempting to correlate the antibody response and T cell 

response to proteomic data could facilitate better understanding and establishment of 

relationships between certain serum biomarkers and T cell and antibody response 

markers of vaccine response. The use of this technique could also provide specific 

proteomic profiles to differentiate the two different vaccine compositions. 

1.2 Proteomics 

1.2.1 Definition of Proteomics 

The terms "proteome" and "proteomics" were first coined by Marc Wilkins in 

1994 in a conference in Sienna, Italy, and subsequently published in 1995 by an 

Australian group (Wasinger et al.), who defined proteomics as "the study of proteins, 

how they're modified, when and where they are expressed, how they are involved in 

metabolic pathways and how they interact with one another" [113, 114]. 

The word "proteome" is derived from the words "PROTein" and "genOME". 

Each organism has a set of genes which comprises its genome; similarly, the entire 

repertoire of proteins expressed in an organism represents its proteome. Although the 

genome is the source of all the information in an organism, it needs to be decoded 

(expressed) into proteins that carry out functions in all the different cells of a living 

organism. The transcription of genes is the first stage of the decoding process, and is 

followed by translation of the messenger RNA to produce proteins. For most organisms 
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the genome remains relatively static over time, but the same cannot be said for the 

proteins being expressed. The proteome of a cell is a highly dynamic entity and 

undergoes several changes based on the condition, age, function, and intracellular and 

environmental stimuli. With the successful completion of the Human Genome Project in 

2002, it was established that about 30,000 genes code for around 400,000 known proteins 

and likely several thousand more uncharacterized and undefined proteins [115-117]. The 

identification and analysis of proteins has turned out to be more complicated than 

expected, and so far the ambitious goal to identify all proteins expressed by human 

genome has not been achieved. Hence, proteomics represents a huge, long-term task, 

which will be more involved and challenging than sequencing the genome. 

Proteomics is a combination of several fields of study, which include biochemical 

techniques, protein separation techniques followed by analytical techniques like mass 

spectrometry and finally utilizing the power of bioinformatics to identify proteins. 

Proteomic-based studies are primarily clinical proteomics or functional proteomics. 

Clinical proteomic based studies are focused essentially on protein expression (profiling) 

to investigate the differential expression based on a disease state versus a normal state 

and are dedicated to biomarker identification. Functional proteomic studies are targeted 

to identify protein-protein interactions and their roles in cell function and signaling 

pathways. 

1.2.2 History of Protein Sequencing Methods 

Early protein sequencing techniques were developed in the middle part of the 

twentieth century. A technique developed by Aberhalden and Brockmann in 1930 was 
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one of the earliest described protein sequencing methods [118]. The method involved a 

stepwise degradation procedure that utilized the ability of phenylisocyanate (PIC) to bind 

to amino acid groups and give rise to an intermediate that is capable of rearrangement 

under acidic conditions. The modified terminal amino acid from the parent peptide was 

cleaved in a stepwise process [118]. Nobel laureate Fredrick Sanger, whose work led to 

the first complete description of a chemical structure of protein "insulin", sequenced the 

protein by using a novel C-terminal protein labeling method involving the dinitrophenyl 

(DNP) group. The DNP-labeling method covalently modified the C-terminal amino acids 

of a peptide. The modification was used as a chemical marker of the peptide that 

remained bound to the terminal amino acid group after the peptides were hydrolyzed, 

following which the complete sequence of the peptide could be obtained by aligning all 

the peptides [117, 119]. In 1949, by using the basic backbone of Sanger's end terminal 

labeling technique and making modifications by replacing the coupling agent with 

phenylisothiocyanate (PITC), Pehr Victor Edman, a Swedish biochemist, developed a 

protein sequencing method that became known as Edman degradation. The method 

comprises three steps: coupling, cleavage and conversion. The first step entails coupling 

of PITC to the free N-terminal end of a polypeptide to form a cyclic intermediate 

phenylthiocarbamyl (PTC). The second step involves the cleavage of the modified PTC 

amino terminal product from the polypeptide by anhydrous acid. The cleavage results in 

two parts, the modified amino terminal amino acid and the shortened part of the initial 

polypeptide. The remaining polypeptide chain can undergo further coupling and cleavage 

reactions between its reactive N-terminal amino groups with PITC. The final conversion 

step engages in the removal of the modified amino terminal amino acid from the mixture 
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containing the shortened polypeptide sequence by a non-polar solvent. The 

hydrophobicity of the unstable derivative amino acid enables the removal using a non-

polar solvent. An aqueous acid is used to convert the unstable derivative amino acid into 

a more stable phenylthiohydantoin (PTH) product. Following the final conversion step 

the remaining shortened polypeptide chain is free to undergo several cycles of stepwise 

degradation steps. The amino acid released in each cycle is identified using analytical 

liquid chromatography methods [120]. An automated version of the Edman degradation 

method was introduced in 1967 by Edman and Beg [121]. Despite its reliability and 

success the Edman degradation method is plagued with several limitations which include 

requirement of high sample volume, highly purified protein, requirement of an exposed 

N-terminus of the protein, low throughput and the ability to only sequence polypeptides 

composed of 50-70 amino acids. 

During the period when automated Edman degradation method was introduced, a 

protein separation technique called two-dimensional gel electrophoresis (2DE) was 

developed by Klose and O'Farrell in the 1970s to separate and identify complex protein 

mixtures [122, 123]. The technique offered the separation and fractionation of proteins 

from complex mixtures by gel electrophoresis in two dimensions. The first dimension is 

used to separate the proteins based upon isoelectric focusing, which is followed by 

separation of proteins based on their molecular weight by sodium dodecyl sulfate (SDS) 

polyacrylamide gel electrophoresis (SDS-PAGE). The separated proteins are then 

visualized using an appropriate stain (silver, coomassie blue or fluorescent). The 

intensities of the spots after staining reveal the amount of each protein present in the 

mixture, which can subsequently be compared between two samples to identify 
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differential expression. The method did provide an effective strategy to separate complex 

protein mixtures, but it was soon observed that there were several limitations and 

drawbacks to this technique [114, 117]. Among the major drawbacks were issues 

regarding reproducibility, co-migration of proteins, the arduous and labor-intensive 

procedure, low throughput and lack of quantitation of differentially expressed proteins. A 

number of concerns regarding reproducibility and quantitation were addressed with the 

introduction of highly sensitive fluorescent dyes with a wide dynamic range. These 

specially-designed flourophores have been efficiently used in 2D-DIGE (differential gel 

electrophoresis) [124, 125]. Despite several advances made in the 2DE technique, it still 

remains a labor-intensive technique requiring a large amount of starting material and 

suffers from reproducibility concerns. Another concern with 2DE is that it does not 

resolve very basic proteins or hydrophobic proteins. It is also not suitable for 

identification of low abundance proteins, as they may not be stained and are hence 

underrepresented. 

1.2.3 Mass Spectrometry 

Except for the past 15-20 years, the biological applications of mass spectrometry 

in proteomic research were limited. Several advances and improvements in 

instrumentation and ionization techniques have made it possible for researchers to use 

mass spectrometry as their primary tool for most proteomic studies. There are many 

different types of mass spectrometers used by researchers involved in proteomic studies. 

All mass spectrometers consist of three essential components: an ionization source, a 

mass analyzer and an ion detector. The ionization module confers an electrical charge by 
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adding protons to the molecules, resulting in the generation of gas phase ions, which pass 

into the mass analyzer. The mass analyzer component of the mass spectrometer separates 

the gas phase ions based on electrical and/or magnetic fields. The movement of the ions 

is dependent on the mass and charge of ion and is measured as mass over charge (m/z) 

ratio. Commonly used mass analyzers include time of flight (TOF) analyzers, quadrupole, 

ion traps (typically coupled with quadrupole), fourier transformers (FT) and hybrid 

instruments (Q-TOF, Q-TRAP). Ions are detected after flowing through the mass 

analyzer by a device that detects the intensity and m/z values of the ions based on the 

magnitude of current produced at the detector as a function of time. The data are 

collected and recorded by a data recorder. The data processor then generates spectra that 

reflect the m/z values on the x-axis and the intensities on the y-axis [117]. 

The electron and chemical ionization techniques that were traditionally used for 

other molecules could not be applied to proteins as they did not ionize easily, owing to 

their large molecular structure, and they were susceptible to damage as a result of 

extensive thermal decomposition. The first attempt at ionization of proteins, made in 

1981, allowed the analysis of proteins using a mass spectrometer by a method called fast 

atom bombardment (FAB) [126]. The technique was termed "soft ionization", as it 

ionized large molecules like proteins efficiently without significant fragmentation. 

Several advances were made in the development of better "soft ionization" techniques 

over the next decade and around 1990 two soft ionization methods, electrospray 

ionization (ESI) and matrix-assisted laser desorption ionization (MALDI), were made 

commercially available [117]. 
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1.2.3.1 MALDI Mass Spectrometry 

Matrix-assisted laser desorption ionization (MALDI)- based mass spectrometry 

was made possible by the development of the MALDI soft ionization technique in 1988 

by Karas and colleagues in Germany and Tanaka et al. in Japan [127, 128]. MALDI 

ionization involves a protein suspended or dissolved in a crystalline structure (matrix) of 

small, organic, UV-absorbing molecules. The matrix is usually a weak aromatic acid that 

strongly absorbs energy at the wavelength of an irradiated laser. The analyte is mixed 

with the matrix material in solution and allowed to dry on a metal target plate. As the 

analyte-matrix mixture dries, it forms a crystalline coating on the target support. The 

matrix plays an important role in several different ways: a) it protects the analytes from 

decomposition by absorbing the excessive energy from the laser, b) the photoionization 

and photoexcitation of the matrix molecules lead to proton transfer to the analyte 

molecules, which enhances ion formation, c) sample dilution in matrix prevents 

association of analyte molecules. There are several different kinds of matrix and the 

choice of matrix depends on several factors and the interest of the investigator. The 

selection of matrix varies with kind of laser infrared (ER) or ultraviolet (UV)) lasers that 

are used to excite the matrix. The most commonly used matrices for MALDI-MS 

ionization are a-cyano-4-hydroxycinnamic acid (CHCA), sinapinic acid (3, 5- dimethoxy 

4-hydroxycinnamic acid) and gentisic acid (3, 5-dihydroxybenzoic acid (DHBA). It has 

been reported that sinapinic acid provides better signals for higher molecular weight 

proteins, whereas CHCA is a more suitable choice for smaller proteins and peptides up to 

10,000 Daltons. For glycolipid and glycoprotein analysis, DHBA is the ideal choice, as it 

is completely water soluble [117]. The crystals resulting from the matrix-analyte mixture 
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are irradiated with laser pulses at wavelengths of maximum matrix spectral absorption. 

This results in desorption and photoexcitation of the matrix, which leads to the ionization 

of the analyte through proton transfer from the matrix. The ionization results in the 

generation of singly charged ions {M+H}+ for the most part, however multiply charged 

and oligomeric forms of the analyte are observed in the case of large molecules. The 

ionized analyte is then accelerated by an electrostatic field into a mass analyzer (time of 

flight {TOF} tube). 

The TOF mass analyzer is a field-free chamber of high vacuum through which the 

ions travel and reach the detector. Applying a fixed voltage at the source, the ionized gas 

phase analyte is accelerated to a fixed kinetic energy and guided into the TOF tube. All 

ions with the same kinetic energy are separated in the TOF chamber based on their m/z 

ratios. The ions with low m/z ratios travel faster in the flight tube than those with higher 

m/z values. The m/z values are determined by measuring the time of flight at the detector 

since the m/z is proportional to the square of the time of flight. The relative intensities of 

ions are recorded at the detector, which is at the end of the flight tube. This technique of 

acquisition of data is termed "linear mode", which is effective for detection of analytes 

larger than 4000 Daltons and up to 300,000 Daltons. The MALDI-TOF-MS has another 

variable mode called "reflectron mode" which enables higher resolution and mass 

accuracy and is used for analyzing smaller peptides with higher precision. The technique 

incorporates a reflectron, an electrical mirror with an electric potential creating a 

retarding field at a voltage that is slightly higher than the accelerating voltage. The ions 

are sequentially slowed down through the reflector until they stop and are reflected back 
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in the opposite trajectory in a second drift region to a second detector. The reflection 

mode provides a longer flight path which results in higher mass accuracy measurements. 

The MALDI-TOF-MS is able to provide accurate molecular weights of several 

proteins and peptides that are part of the analyte. The spectra obtained by MALDI-TOF-

MS analysis can be used to determine differentially expressed proteins and peptides 

between samples for example, disease vs. normal, treated vs. non-treated. With 

advancements in mass spectrometry techniques, it is now possible on the MALI-TOF 

platform to determine the protein identities and characterize the differentially expressed 

proteins using a technique called tandem mass spectrometry, also known as MS/MS. For 

MALDI-TOF-MS/MS analysis, a parent ion that is to be sequenced is selected from the 

first MS scan based on its m/z value and is subjected to process called collision-induced 

dissociation (CED). Only the parent ion is allowed to enter the collision cell, which is 

filled with a gas (usually helium), using a timed gate to make sure there is only one 

parent ion of interest that is being fragmented. The CID process, which involves collision 

of the molecules of the parent ion with the gas molecules, leads to the formation of 

several smaller cleavage products of the original parent ion. Generally the fragments 

generated by CED are either b-ions (N-terminal fragments) or y-ions (C-terminal 

fragment). The fragmentation products are unique for each peptide or protein. A peak 

map, generated as a result of the fragmentation, is labeled based on the masses and 

intensities of each of the peaks. The peak intensities and peak masses are comparable to 

the amino acids that make up the protein. The information generated by fragmentation is 

used to determine the protein identity by searching appropriate databases to find amino 

acid combinations that correspond to the MS/MS spectra. 
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In addition to the CID technique, there is another method of tandem mass 

spectrometry that can be used on the MALDI-TOF platform. This method uses a tandem 

MALDI-TOF/TOF technique termed "LIFT", which uses nitrogen laser-induced 

dissociation (LID) of the parent ion [129]. As in the CID method, the parent ion of 

interest is selected by the first TOF analysis, which is then filtered out using a precursor 

ion selector. Once the target parent ion is selected, a low voltage is applied for 

accelerating the ions. The fragments of the parent ion are generated by laser-induced 

dissociation. The method LIFT gets its name from die fact that instrument "lifts" the 

potential energy of the ions to a higher level inside the LIFT cell. The parent ion and the 

fragments are then directed to the detector where a MS/MS spectrum is generated. The 

LIFT technique has been proven to be useful for the detection of low mass ions of low 

abundance. The spectra generated by both CID and LIFT are run through different search 

engine databases like SEQUEST or MASCOT to ascertain the closest match between the 

MS/MS spectra and proteins listed in the databases by programmed computer-based 

algorithm analysis. The databases provide several different options based on die sample 

preparation and modifications anticipated. 

1.2.3.2 Electrospray Ionization Mass Spectrometry (ESI-MS) 

Electrospray Ionization Mass Spectrometry was made possible by the 

development of the electrospray ionization (ESI) technique by Fenn and his group in 

1989 which made ionization of larger complex molecules possible [130]. The ESI 

technique allows for the ionization of volatile complex protein mixtures from a liquid 

phase. In the ESI source, a continuous analyte solution is passed through a fine needle, 
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which leads to the formation of charged droplets due to the high voltage maintained at the 

end of the needle. In the vacuum chamber, die solvent which surrounds the charged 

droplet gradually evaporates, and eventually analyte ions are formed and released as gas 

phase ions. Electrospray results in a continuous production of singly and multiply 

charged analyte ions. These charged ions are then accelerated in an electric field and are 

then deflected by a magnetic field. The formation of multiply charged ions from proteins 

and peptides is dependent on molecular weight and the availability of basic sites like 

arginine, histidine and lysine. Generally ESI ion sources are coupled with an ion trap or 

quadrupole mass analyzer. The spectrum generated by ESI is more complex due to the 

presence of multiply charged ions; however, there are mathematical algorithms that help 

in deconvoluting the multiply charged ion spectrum in to simple mass spectrum that 

reveals the molecular weights of the fragments. To obtain protein identification and 

characterization, the parent ions of interest can be isolated and subjected to further 

fragmentation using the CID method as described for MALDI mass spectrometry. The 

major drawback using ESI mass spectrometry is the formation of multiply charged ions 

that can overlap and hinder the analysis of complex mixtures. 

1.2.4 Proteomic Biomarker discovery using Blood: Opportunities and Challenges 

Blood has been used a rich source for the identification of biomarkers of disease, 

treatment and as a diagnostic tool. The blood proteome that includes plasma and serum is 

a source of proteins secreted from tissues. A change in the blood proteome is indicative 

of the biochemical and physiological state of an organism. Although serum and plasma 

are promising clinical fluids for biomarker discovery, there are several challenges that are 
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associated with them. The wide dynamic range of these protein-rich fluids is the major 

hurdle, as the protein concentration of serum and plasma spans ten to eleven orders of 

magnitude [131]. Out of the entire plasma/serum proteome, there are 22 proteins that 

make up 99% of the entire protein content, with the remaining 1% making up the low 

abundance proteins [132, 133]. Of the most abundant proteins, albumin constitutes nearly 

55% of the blood proteome. The highly abundant proteins are able to mask and prevent 

the identification of lower abundance proteins. Although the current proteomic-based 

approaches using mass spectrometers are capable of highly sensitive identification of 

proteins and peptides, their working range spans only three orders of magnitude of the 

blood proteome [132, 134]. Hence, major efforts have been directed towards the 

reduction of these abundant proteins prior to subjecting them to mass spectrometric 

analysis. Among the most widely used strategies is targeted capture by depleting the most 

abundant proteins within the serum and plasma samples. This can be achieved by 

antibody-based albumin and immunoglobulin depletion kits, or by using immunoaffinity 

kits that can deplete the top 12-20 proteins in the blood proteome [135, 136]. However, 

the downside of targeted capture by depleting the most abundant proteins is that a number 

of smaller proteins are bound to these highly abundant carrier proteins and are removed 

in the process. These less abundant proteins, which are lost as result of fractionation, 

could be of interest [137]. Another commonly used fractionation method is based on 

affinity chromatography columns, which are used prior to LC-MS/MS. The drawback of 

using this technique is that the columns are not suited for automation and are not high 

throughput. However, the chromatography columns or magnetic particles with higher 

surface area and binding capacity provide fractionation with less influence from 
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competition over binding sites [138]. The MALDI-TOF-MS platform utilizes the 

advantage of higher surface area affinity based magnetic beads as a fractionation measure 

to reduce the highly abundant proteins from serum and plasma samples prior to MS 

analysis. There are different types of magnetic affinity beads that are available which can 

be used in conjunction with automated platforms prior to mass spectrometric analysis 

using MALDI-TOF [139]. The magnetic beads offer a high throughput, reproducible, 

automated and efficient method for front-end fractionation of the blood proteome. 

Despite the technical hurdles, plasma and serum hold great promise for identifying 

biomarkers, due to their inherent richness of proteins and also the ability to obtain blood 

relatively easily. 



37 

CHAPTER II 

SPECIFIC AIMS 

The research project was designed to address a number of questions 

regarding influenza vaccine responses in healthy subjects. We were interested in 

evaluating the immune correlates of vaccine responses induced by the inactivated 

trivalent vaccines and live attenuated vaccines. Both vaccines have been proven to be 

equally efficacious; however, further studies are required to understand the mechanism 

by which the two vaccines provide immunity. Since live attenuated vaccines have been 

licensed for use recently, very few studies have focused on investigating different 

humoral and cellular components of the immune response which are induced in pre-

vaccinated individuals. Using the proteomic serum profiling technique to investigate 

vaccine response biomarkers has never been undertaken. Since this technique has been 

successful in identifying several cancer and other disease-specific biomarkers, we wanted 

to utilize this new technique to look for influenza vaccine response markers and immune 

senescence markers. The study was divided into three parts based on the following aims: 

Aim I: Comparison of cellular and humoral immune responses of trivalent 

inactivated influenza vaccine (TIIV) and live attenuated influenza vaccine (LAIV) in 

healthy young adults. 

Both vaccines are known to have comparable vaccine efficacy, whereas the immune 

parameters accountable for their perspective vaccine efficacies are not well understood. 

The goals of this aim were to compare and contrast the humoral and cell-mediated 

immune responses (CMI) between TIIV and LAIV in healthy young adults, in order to 
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gain better understanding of immune correlates of vaccine efficacy. We hypothesized that 

using one gold standard (Hemagglutination inhibition assay {HAI}) to measure vaccine 

response may not be ideal when evaluating different vaccine compositions and routes of 

administration. The goals of this aim were achieved by: 

A. Evaluation of the humoral antibody response to TTTV and LAIV vaccination. We 

evaluated the antibody response to vaccination by HAI assay between subjects 

vaccinated with THY and LAIV to determine the difference in humoral response 

to vaccination. 

B. Further characterization of the humoral antibody response was done by evaluating 

the serum IgGl, IgG2, IgG3 and IgA levels pre- and post- vaccination in subjects 

vaccinated with TIIV and LAIV. 

C. Evaluation of the cellular immune responses was done by comparing the Thl T 

cell response, which was defined as IFN-y secretion by memory T cells pre- and 

post-vaccination, between the two groups. 

D. Further evaluation of the cellular immune responses was done by evaluating the 

Th2 T cell response by comparing the levels of IL-10 cytokine secretion by 

PBMCs pre and post-vaccination between the two vaccinated groups. 
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Aim II: Comparison of age-related changes in immune response to inactivated 

influenza vaccine response between healthy young and elderly and the role of 

cytokines in lower vaccine efficacy in elderly. 

There is a general consensus that the inactivated influenza vaccine efficacy is much 

lower in the elderly compared to the young. In an attempt to understand the age-related 

decline in the immune response to vaccination, we aimed to study different components 

of the immune response that may have an impact on lower vaccine response rates among 

the elderly. We hypothesized that age-related change in cytokine levels could lead to a 

lower antibody response to influenza vaccination in the elderly. The goals of this aim 

were achieved by: 

A. Evaluation of the humoral antibody response by measuring antibody response to 

TIIV using HAI assay among healthy young and elderly subjects previously 

vaccinated with inactivated influenza vaccine. 

B. Further characterization of the humoral antibody response by measuring the 

serum IgGl, IgG2, IgG3 and IgA response to influenza vaccination in the young 

and die elderly. 

C. Evaluation of the cellular immune response by measuring the percentage of 

influenza-specific memory T cells (ISMT) secreting fFN-y pre- and post-

vaccination between the young and elderly. 

D. Evaluation of the cellular immune response by measuring the baseline levels of 

Thl and Th2 cytokines secreted by PBMCs stimulated with influenza antigen pre-

and post-vaccination. Further correlation of the baseline levels of cytokines pre-
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vaccination with antibody and T cell responses post-vaccination were performed 

to evaluate any age-related changes influenza vaccine response. 

E. Correlation of humoral antibody and memory T cell responses to establish age-

related changes. 

Aim III: Proteomic profiling of a longitudinal series of serum samples collected 

before and after LAIV and TIIV influenza vaccination from healthy subjects to 

identify biomarkers related to vaccine response and immune senescence. 

Proteomic profiling using MALDI-TOF MS has been demonstrated to be a platform 

of choice for several serum profiling studies to identify biomarkers for various forms of 

cancer and other disease states. The use of this powerful tool has not been applied to 

serum-based studies assessing vaccine responses. We achieved this aim by: 

A. Serum from a cohort of subjects who had been administered the live attenuated 

influenza vaccine was evaluated for differentially expressed potential biomarker 

proteins using the matrix-assisted laser desorption/ionization/time of flight 

(MALDI-TOF) instrument. 

B. Serum from a cohort of inactivated influenza-vaccinated subjects was evaluated 

for differentially expressed potential biomarker proteins using the matrix-assisted 

laser desorption/ionization/time of flight (MALDI-TOF) instrument. 
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CHAPTER III 

COMPARISON OF CELLULAR AND HUMORAL IMMUNE RESPONSES OF 

TRIVALENT INACTIVATED INFLUENZA VACCINE (THV) AND LIVE 

ATTENUATED INFLUENZA VACCINE (LAIV) IN HEALTHY YOUNG 

ADULTS 

Introduction 

Influenza viruses are major respiratory pathogens which cause significant 

morbidity and mortality, resulting in approximately 250,000 - 500,000 deaths annually 

worldwide [140, 141]. It is estimated that influenza is responsible for 226,000 

hospitalizations and 36,000 deaths annually in the United States [20, 24]. Although 

influenza infections do not usually result in deaths and hospitalizations among healthy 

young adults, they are responsible for a significant loss of productivity. Based on studies 

in several industrialized nations, it has been established that annual influenza epidemics 

are responsible for significant economic burden. Loss of productivity, coupled with the 

utilization of health care services, is estimated to cost about $1-6 million per 100,000 

individuals, based on estimates from France, Germany and the United States [19]. 

Several antiviral drugs designed to fight influenza infections are available; 

however, vaccination remains the mainstay among efforts to prevent and control annual 

influenza outbreaks. The key to protection against subsequent infections and controlling 

viral replication has been associated with the generation of antibodies against 

hemagglutinin (HA) and neuraminidase (NA) surface glycoproteins as a result of natural 

infection or vaccination [6, 7]. The role of cell-mediated immunity, such as T cell 

responses, in protection against influenza infection is less clear; however, its importance 
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in clearing influenza virus from infected cells and lowering morbidity and mortality rates 

is evident [142-144]. Most adults have pre-existing levels of antibodies against influenza 

A and B viruses as a result of prior exposure or vaccination [145]. Influenza viruses 

undergo antigenic shift as a result of a series of point mutations in their HA and NA 

genes during replication in infected cells. The changes in the HA and NA genes render 

individuals susceptible to these new strains. To ensure optimal vaccine efficacy, it is 

essential to have a close match between the strains incorporated in the vaccine and the 

circulating strains. Therefore, influenza vaccines are formulated each year based on 

recommendations from various international WHO influenza surveillance laboratories. 

At present there are two types of licensed influenza vaccines available in the 

United States. The trivalent inactivated influenza vaccine (THY) administered by 

intramuscular injection, was first used more than 60 years ago for preventing influenza in 

humans and has been the most widely used vaccine [146]. TUV is composed of 15 jig of 

purified HA from each of the three H1N1, H3N2 and influenza B virus strains that are 

expected to circulate in a season annually. TIIV is licensed for use in children 6 months 

or older and in adults. In 2003, another influenza vaccine was licensed for use in the 

United States. The new vaccine is a live attenuated influenza vaccine (LAIV), which is 

comprised of cold-adapted influenza strains into which HA and NA genes from expected 

circulating virus strains are inserted by genetic reassortment each year. The genetically 

modified cold-adaptive live virus strains have reduced ability to replicate in the 

respiratory tract [147, 148]. The LAIV is administered via an intranasal spray. Although 

originally licensed to be administered to healthy individuals 5-49 years of age in 2003, in 

September 2007 it was approved for use in children 2-5 years of age [149]. The two 
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vaccines differ in their composition and routes of administration but contain similar or 

identical HA and NA antigens. 

Both the TITV1 and LAIV vaccines have been shown to have similar efficacy in 

preventing laboratory-diagnosed influenza (LDI) [79]. It has been shown that TUV 

induces significant serum hemagglutination inhibition (HI), IgG, and IgA antibody 

responses in adults with significant immunological memory to influenza. In contrast, 

LAIV vaccination studies have shown that, in comparison to TUV, the magnitude of 

serum HI and IgG antibody responses is lower in adults [8, 16-18]. In most of the 

previous studies, the subjects enrolled had mixed influenza vaccination histories. This 

makes the head-to-head comparison of immune responses elicited by vaccination 

difficult. Studies involving comparison of parallel cell- mediated immune responses in 

response to vaccination with TITV and LAIV have been limited. Studies directly 

comparing the immunogenicity of the two vaccines in healthy adults previously 

vaccinated with an influenza vaccine have not been done extensively. The goal of our 

study was to compare the immune correlates of vaccine response in healthy adults 

previously vaccinated with influenza vaccine. Several immune correlates including HAI 

antibody response, serum IgG sub-type (IgGl, IgG2 and IgG3) antibody response, serum 

IgA antibody response, T cell IFN-y production and IL-10 response were compared pre-

and post-vaccination between TIIV and LAIV recipients. 
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Materials and Methods 

Vaccines 

The vaccines used for this study were Fluzone® (Aventis Pasteur), a TIIV 

vaccine, and FluMist® (Medlmmune), a LAIV vaccine. The TIIV vaccines used were 

from seasons 2005-2006 (T05-06) and 2006-2007 (T06-07), and the LAIV vaccines were 

from season 2006-2007 (L06-07). The TIIV vaccine of the 2005-2006 season comprised 

15 ng each of the HA from A/New Caledonia 20/1999 (H1N1), A/New York/55/2004 

(H3N2) and B/Jiangsu/10/2003 (B/Shanghai/361/2002-like); the TIIV vaccine of the 

2006-2007 season comprised 15 ng each of the HA from A/New Caledonia 20/1999 

(H1N1), A/Wisconsin/67/2005 (H3N2), and B/Malaysia/2506/2004. The LAIV vaccine 

comprised of cold-adapted attenuated influenza virus containing 106'5"7'5 TCDD50 median 

tissue culture infectious doses of A/New Caledonia 20/1999 (H1N1), 

A/Wisconsin/67/2005 (H3N2), and B/Malaysia/2506/2004-like virus strains. 

Recruitment of Human Subjects and Vaccination Protocols 

Subjects for the study were recruited with written informed consent by the clinical 

coordinating team at the Glennan Center for Geriatrics and Gerontology, Eastern Virginia 

Medical School, during the winter influenza seasons of 2005-2006 and 2006-2007. The 

Institutional Review Board at Eastern Virginia Medical School approved the study 

protocol and the informed consent form. All study participants were healthy young adults 

between 18-40 years of age, independently residing in the Hampton Roads area of 

Virginia. All subjects recruited for the study had been vaccinated with TIIV in the season 

prior to enrollment to minimize the immunological differences as a result of vaccination. 
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Subjects with egg allergy, underlying chronic diseases such as diabetes, autoimmune 

diseases such as lupus erythematosus or rheumatoid arthritis, or congestive heart failure, 

those on immunosuppressive drugs, and pregnant women were excluded from 

participating in the study. 

There were 27 subjects recruited in season 2005-2006 who were vaccinated with 

TirV. During the season 2006-2007 there were two groups of subjects who were 

randomly divided into two groups. The first group, comprising 22 subjects, was 

vaccinated with TIIV and the other group, comprising 41 subjects, was vaccinated with 

LAIV. Blood samples were obtained from each subject on four days: day 0 prior to 

vaccination, and days 4, 7 and 21 after vaccination. 

Hemagglutination inhibition (HAI) assay 

Hemagglutination occurs when sialic acid residues, similar to the cellular 

receptors on erythrocytes, bind to the receptor- binding site present on the tip of the viral 

HA proteins. Hemagglutination can be inhibited by adding HA-recognizing antibodies 

before adding erythrocytes in the assay, which is termed hemagglutination inhibition; 

hence the assay is termed a hemagglutination inhibition assay (HAI). When performing 

HAI assays, sera from vaccinated or infected subjects are titrated on 96 well plates, to 

which a known amount of influenza virus and erythrocytes are added. In our study, serum 

antibody titers specific for each of the three strains present in the vaccine formulations 

were determined by standard microtiter HAI assay following procedures described 

previously [150]. Serum HAI antibodies were determined on day 0 (pre-vaccination) and 

on day 21 (post-vaccination). Non-specific inhibitors in serum were removed by 
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incubating serum with receptor-destroying enzyme (RDE; Sigma). All influenza H1N1, 

H3N2 and B antigens (wild strains compatible with the recombinant strains in the 

vaccine) were grown in 10 day old fertilized chicken eggs. A slight modification was 

made to the protocol. Guinea pig red blood cells (GPRBCs) were used for agglutination 

instead of chicken or turkey RBCs. The HAI titer was defined as the reciprocal of the 

highest dilution of serum that completely inhibited agglutination. Antibody titers of >40 

were considered protective (seroprotection) and a > four-fold rise in antibody titer 

(seroconversion) to one out of three vaccine antigens was considered an adequate 

response. 

Serum IgGl, IgG2 and IgG3 analysis by ELISA 

Serum levels of influenza-specific IgGl, IgG2 and IgG3 were determined by 

ELISA analysis. All the assays were carried out in a similar fashion. For all the above-

mentioned variables studied, serum samples obtained at day 0 (prior to vaccination) and 

at day 21 (post-vaccination) were analyzed. For each of the IgGl, IgG2 and IgG3 

analyses, 96-well EIA specific round bottom plates (Immulon 1; Dynatech Laboratories, 

Chantilly, VA) were used. The 96-well plates were coated with IgGl, IgG2 and IgG3 

purified protein as standards (all K-chains; Sigma Aldrich, MO) and with trivalent 

influenza vaccine 2005-2006 formula (A/New Caledonia 20/1999 (H1N1), A/New 

York/55/2004 (H3N2) and B/Jiangsu/10/2003; Aventis Pasteur, Swiftwater, PA) or 

2006-2007 formula (A/New Caledonia 20/1999 (H1N1), A/Wisconsin/67/2005 (H3N2), 

and B/Malaysia/2506/2004; Aventis Pasteur, Swiftwater, PA). The plates were incubated 

at 4°C for 16-18 hours. After overnight incubation, the plates were washed twice with 
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wash buffer (IX PBS with 0.05% Tween 20, pH 7.4). Following the wash procedure, 200 

ul of blocking buffer (10% FBS/1X PBS) was added to each well and incubated at 37°C 

for 2 hours. The plates were then washed with wash buffer 4 times. Dilutions of serum 

samples to be analyzed were made for the respective IgG subtype assays. The serum 

samples were diluted to 1:5000, 1:200 and 1:400 with blocking buffer for IgGl, IgG2 and 

IgG3 analysis, respectively. The plate was incubated at 37°C for 2 hours. Plates were 

washed four times with wash buffer. For each IgG subtype, biotin-conjugated anti-IgG 

subtype antibodies {IgGl and IgG2 (BD Biosciences)} and IgG3 (Sigma Aldrich) were 

diluted 1:1000, 1:1000 and 1:4000 with blocking buffer, respectively. Biotin-conjugated 

anti-IgG specific antibodies were added to the 96-well plate and incubated at 37°C for 1 

hour. Plates were washed, 100 ul of avidin-HRP (Sigma Aldrich) diluted 1:400 was 

added and the plate was incubated at room temperature for 30 minutes. After the final 

incubation, the plates were washed five times with wash buffer. Peroxidase substrate 3, 

3', 5, 5'-tetramethylbenzidine (TMB) (Sigma Aldrich) was added and color development 

was allowed to continue for 10 minutes at room temperature in the dark. The color 

development reaction was stopped by adding 100 \il 1 N sulfuric acid. The plates were 

read at 450 nm by an ELISA plate reader and analyzed with KC4 (version 3.0) software 

(PowerWave, Bio-tek Instruments, Winooski, VT). The final analysis was done by 

normalizing all the readings based on the dilution factors. 

Serum IgA analysis by ELISA 

The IgA ELISA analysis was done in a similar fashion as the IgG sub-type 

ELISA. Serum samples obtained at day 0 (prior to vaccination) and at day 21 (post-
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vaccination) were analyzed. For IgA analysis 96 well EIA specific round bottom plates 

(Immulon 1; Dynatech Laboratories, Chantilly, VA) were used. The 96 well plates were 

coated with IgA (K-chain; Sigma Aldrich, MO) and with trivalent influenza vaccine 

2005-2006 or 2006-2007 formula. The plates were incubated at 4°C for 16-18 hours. 

After overnight incubation, the plates were washed twice with wash buffer ( IX PBS with 

0.05% Tween 20, pH 7.4). Following the wash procedure, 200 ul of blocking buffer 

(10% FBS/1 X PBS) was added to each well and incubated at 37°C for 2 hours. The 

plates were then washed with wash buffer 4 times. The serum samples were diluted 1:400 

with blocking buffer for IgA and added to the plate. The plate was incubated at 37°C for 

2 hours. Plates were washed four times with wash buffer. For IgA, HRP-conjugated anti-

IgA antibody (Sigma Aldrich) was diluted 1:4000 with blocking buffer. Diluted HRP-

conjugated anti- IgA specific antibody was added to the 96-well plate and incubated at 

37°C for 1 hour. Plates were washed four times with wash buffer. After the final 

incubation, the plates were washed five times with wash buffer. Peroxidase substrate 3, 

3' , 5, 5'-tetramethylbenzidine (TMB) (Sigma Aldrich) was added to all the wells and 

color development was allowed to continue for 10 minutes at room temperature in the 

dark. The color development reaction was stopped by adding 100 (0,1 1 N sulfuric acid. 

The plates were read at 450 nm using an ELISA plate reader and analyzed with KC4 

(version 3.0) software (PowerWave, Bio-tek Instruments, Winooski, VT). The final 

analysis was done by normalizing all the readings based on the dilution factors. 
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Purification of PBMC 

Human peripheral blood mononuclear cells (PBMC) were isolated from blood 

that was collected in heparinized tubes. Whole blood was first centrifuged at 320 X g for 

10 minutes. Plasma was aspirated. The buffy coat layer, which is composed of the 

PBMCs, was carefully aspirated and laid onto a gradient purification Ficoll reagent, 

Histopaque 1077 (Sigma-Aldrich, St. Louis, MO), followed by centrifugation at 650 X g 

for 30 minutes. The PBMC were collected by aspiration from the interface and washed 

twice with RPMI1640 medium (Invitrogen, Carlsbad, CA) at 500 X g and 320 X g for 10 

minutes each. The PBMCs were then counted using an automatic lymphocyte counter 

(Coulter ACT, Beckman Coulter, Miami, FL) and resuspended in CTL media (RPMI 

1640 medium containing 10% FBS, 2 mM of L-Glutamine, 100 U of penicillin, 100 

Hg/ml of streptomycin and 55 nM of 2-mercaptoethanol). The concentration was 

calculated and brought up to 1 million PBMCs/ml for the fast immune assay. 

Influenza virus used for Fast Immune Assay 

All the live influenza virus strains used in the study were propagated in Bio-

Safety Level-2 conditions. The seed virus strains were obtained from the Center for 

Disease Control and Prevention (CDC), Atlanta, GA. All Bio-Safety guidelines detailed 

in the microbiological and biomedical laboratory manuals published by the CDC and by 

the Office of Safety at Eastern Virginia Medical School were followed. The live virus 

strains of influenza used in this study were A/New Caledonia 20/1999 (H1N1), A/New 

York/55/2004, A/Wisconsin/67/2005 (H3N2), B/Malaysia/2506/2004 and 

B/Shanghai/361/2002. The live viruses were grown in fertilized chicken eggs, using seed 
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viruses obtained from the CDC, following procedures described previously [151]. 

Purified allantoic fluids containing live virus were then analyzed to determine the viral 

titers. After determination of the viral titers, the allantoic fluids were transferred to 

cryovials and stored at -80°C until required. 

Detection of T cell IFN-y production using Fast Immune Assay 

The fast immune procedure to determine T cell IFN-y secretion was done as 

described previously [152]. One million PBMC were activated ex vivo using a 

combination of the three strains of virus (10 HA units/ml for each) corresponding to the 

vaccine strains in 150 (il of complete medium in a 96-well U-bottom tissue culture (TC) 

plate at 37°C overnight. Brefeldin A (BFA, Sigma-Aldrich, St. Louis, MO) was then 

added to each well to a final concentration of 5 ug/ml after 17 hours. The culture was 

incubated at 37°C for 3 more hours before being fixed with 1% paraformaldehyde-PBS 

and then permeabilized with permeabilization buffer (Becton Dickinson, San Diego, CA) 

at room temperature for 10 minutes each. The cell culture was stained with the following 

conjugated antibodies; CD69-PE, CD4-AP, CD8-PerCP and IFN-y-FITC (BD 

PharMingen, San Diego, CA). The CD69 is a T cell activation marker used to identify 

activated T cells, CD4 and CD8 markers are used to identify different T cell sub-types 

and IFN-y is a cytokine that is secreted by activated T cells. Intracellular cytokine 

staining was detected using a flow cytometer (FACSCalibur, CellQuest 3.3 software, BD 

Biosciences, San Diego, CA). 
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Cytokine analysis by cytometric bead array (CBA) 

Cytometric bead array analysis was used to determine cytokine levels after 

stimulation of PBMCs for 15 hours with a combination of three strains of influenza 

viruses present in the vaccines. The superaatants from influenza virus stimulated PBMC 

were diluted in PBS 1:2 and incubated with CBA beads coated with anti IL-10 antibodies 

{human inflammatory cytokine kit; BD™ Cytometric Bead Array (CBA)}. The beads 

were washed and stained with PE-conjugated secondary antibodies. The fluorescent 

intensity for each cytokine was measured using a flow cytometer (FACSCalibur, BD 

Biosciences, San Diego, CA). The final concentrations were analyzed and calculated 

using CBA software (BD Biosciences). 

Statistical Analysis 

Data analysis of the normally distributed data was performed using Student's t-

test. Normal distribution of the data was evaluated using Kolmogorov-Smirnov's test. A 

modified t-test, Mann-Whitney rank sum test or Wilcoxon signed rank test was applied to 

determine significant differences between the two groups where data was not normally 

distributed. Statistical significance was set at p<0.05. The correlation coefficient of the 

two groups was analyzed using Pearson's correlation coefficient test. To determine the 

statistical relevance of seroprotection and seroconversion rates, Chi Square or Fischer's 

test were performed (p<0.05) based on the size of the group that was being evaluated. 
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Results 

THV stimulated higher levels of systemic antibody response than LAIV when 

measured by hemagglutination inhibition (HAI) assay 

The HAI response to vaccination was compared between three groups of subjects 

who received THV (T05-06 and T06-07) and LAIV (06-07) influenza vaccines. We 

compared HAI responses to each of the three vaccine strains (H3N2, H1N1 and B) 

independently in each group. We used a cohort vaccinated with TIIV from the 2005-2006 

season to observe if there were any season specific variations between the immune 

responses after TIIV vaccination. Since we did not have a cohort vaccinated with the 

LAIV for the 05-06 season, we could not evaluate the season specific changes for LAIV. 

The H3N2 strains T05-06 and T06-07 were able to induce significant increase in HAI 

antibodies when serum HAI antibody levels at baseline (Day 0, T05-06: 20.86-51.74 and 

T06-07: 8.56-35.98) were compared with levels on day 21 (post-vaccination) {(62.38-

110.08 and 40.5-112.22 (p = <0.001)} (Tablel). In contrast, LAIV06-07 was able to 

induce an increase in serum HAI antibody titers to H3N2 (day 0, 14.38-44.82 and day 21 

20.33-61.87 (p = 0.01). The mean fold of increase (MFI) in serum HAI antibody to H3N2 

after LAW was 1.87 as compared to 5.53 and 7.27 after T05-06 and T06-07, 

respectively. Although the T06-07 group demonstrated a higher increase in MFI 

compared to T05-06, it did not reach statistically significant levels. 

In the case of H1N1 strain, we observed a similar trend where T05-06 and T06-07 

were able to induce significant increase in HAI antibodies when serum HAI levels at 

baseline (day 0) {81.42-296.98 and 21.63-60.63} were compared with levels on day 21 

(post-vaccination) {136.80-382.48 and 61.18-117.08 (p = 0.001)}. Again, although 
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LAIV06-07 was able to induce a significant increase in serum HAI antibodies to H1N1 

{dayO, 33.28-144.6 and day 21, 32.53-187.99 (p = 0.01)}, when compared to T05-06 and 

T06-07 the magnitude of increase was much lower. The MFI in serum HAI antibody to 

H1N1 was 3.17, 4.24 and 1.44 in T05-06, T06-07 and LAIV06-07 group, respectively. 

We did not observe a significant difference in MFI between T06-07 group and the T05-

06 group. 

For the B strain we observed that the pre-vaccination HAI titers were higher in the 

T05-06 group compared to T06-07 and LAIV06-07 (Table 2). Regardless of the 

difference in initial HAI antibody levels, both the T05-06 and T06-07 vaccines were able 

to induce significant antibody response to the B strains {day 0, 20.57-72.43 and 5.41-

7.31; day 21, 42.85-93.45 and 16.9-48.1 (p = 0.001)}. Similar to the trend observed for 

the H3N2 and H1N1 strains, LAIV was able to induce significant HAI antibody response 

but the magnitude was low compared to T05-06 and T06-07. For the B strains the MFI in 

serum HAI antibody to vaccination were 2.45, 5.68 and 1.57 for T05-06, T06-07 and 

LAIV06-07, respectively. We observed a significant difference in the MFI increase for 

the B strain between T05-06 group and T06-07 group. We expect that this difference was 

due to a new B strain (B/Malaysia) that was introduced in the T06-07 season as opposed 

to the T05-06 B/Shanghai strain. It was observed that THV and LAIV vaccine recipients 

who had higher baseline HAI titers showed a lower increase in serum HAI levels 

compared to individuals with low baseline HAI titers for all the three virus strains (data 

not shown). 

The seroconversion rates were also compared between the three groups. It was 

observed that seroconversion rates for H3N2, H1N1 and B strains for subjects vaccinated 
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with T05-06 and T06-07 were significantly higher (%2 test, p<0.05) than the subjects 

vaccinated with LAW (Table 3). A similar trend emerged when seroprotection rates were 

calculated before and after vaccination. Both T05-06 and T06-07 groups had significantly 

higher seroconversion rates (x2 test, p<0.05) for each of the three influenza strains than 

LAIV06-07 group (Table 3). Taken together, the results show that the two TITV vaccines 

were able to induce higher systemic antibody responses compared to the T06-07 LAIV 

vaccine when measured by HAI assays. 
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Table 2. Geometric means of HAI Antibody titers against influenza strains after 
influenza vaccination observed after Hemagglutination Inhibition Assay. 

H3N2 (A/New York or A/Wisconsin) 
Pre (Day 0) Post (Day 21) MFI 

Fluzone® 
(TIIV05-06) 36.30 (95% CI = 20.86-51.74)* 86.23 (95% CI = 62.38-110.08)*a 5.53 
Fluzone® 
(TIIV06-07) 22.27 (95% CI = 8.56-35.98)* 76.36 (95% CI = 40.5-112.22)*b 7.27 
FluMist® 
(LAIV06-07) 29.60 (95% CI = 14.38-44.82)* 41.10 (95% CI = 20.33-61.87)*ab 1.87 

H1N1 (A/New Caledonia) 
Pre (Day 0) Post (Day 21) MFI 

Fluzone® 
(TIIV05-06) 189.19 (95%CI =81.42-296.98)* 259.65 (95% CI = 136.80-382.48)*3 3.17 
Fluzone® 
(THV06-07) 41.13 (95% CI = 21.63-60.63)* 89.13 (95% CI = 61.18-117.08)*b 4.24 
FluMist® 
(LAIV06-07) 88.94 (95% CI = 33.28-144.6)* 110.26 (95% CI = 32.53-187.99)*'ab 1.44 

B (B/Shanghai or B/Malaysia) 
Pre (Day 0) Post (Day 21) MFI 

Fluzone® 
(THV05-06) 46.5 (95% CI = 20.57-72.43)* 68.15 (95% CI = 42.85-93.45)*a 2.45 
Fluzone® 
(TIIV06-07) 6.36 (95% CI = 5.41-7.31)*" 32.5 (95% CI = 16.9-48.1)* 5.68 
FluMist® 
(LAIV06-07) 17.5 (95% CI = 12.26-19.74)*" 22.31 (95% CI = 16.39-28.23)*3 1.57 

* = p = <0.01 comparing Day 0 and Day 21 HAI GMT titers (paired t-Test) 
a = p= <0.05 between T05-06 and LAIV06-07 (unpaired t-Test test values) 
b = p<0.05 between T06-07 and LAIV06-07 (unpaired t-Test values) 

MFI = Mean Fold Increase 

n = 27 (TIIV05-06) 
n = 22 (TIIV06-07) 
n = 41(LAIV06-07 
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Table 3. Seroprotection and seroconversion rates in response to TIIV and LAIV 
vaccination. 

% Seroprotection Rates (n) (HAI Titers >1:40) 

H3N2 H1N1 B 

Pre Post Pre Post Pre Post 
Fluzone® (TIIV 05-06) 37(10) 74 (20)a 63(17) 85 (23)a 37(10) 63 (17)a 

Fluzone® (TUV 06-07) 18(4) 63 (17)b 36(8) 72(16) 0(0)b 31(7) 
FluMist® (LAIV 06-07) 23(9) 31 (12)ab 42(16) 50(19)a 21 (8)b 26(10)a 

% Seroconversion Rates (n) 
(4 Fold or more Increase in HAI Titers) 

H3N2 H1N1 B 

Fluzone® (TIIV 05-06) 40(ll)a 15(4) 18.5(5) 
Fluzone® (TIIV 06-07) 55 (12)b 27 (6)b 45 (10)b 

FluMist® (LAIV 06-07) 10.5 (4)ab 5.2 (2)b 5.2 (2)b 

a = p=<0.05 between T05-06 and LAIV06-07 (Chi Square or Fisher's exact test values) 
b = p<0.05 between T06-07 and LAIV06-07 (Chi Square or Fisher's exact test values) 

n = 27 (TIIV05-06) 
n = 22 (THV06-07) 
n = 41 (LAIV06-07) 
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TIIV, but not LAIV, induced IgGl, IgG2, and IgG3 response after vaccination 

The levels of each serum IgG sub-class specific for influenza strains for each 

vaccine formulation were determined using ELISA assays. Since all the subjects were 

vaccinated during the previous influenza season with TIIV, they all had pre-vaccination 

serum antibody IgG subclasses for influenza viruses (H3N2, H1N1 and B strains) (Figs. 

3,4, and 5). The ELISA assay used in our study detected serum antibody IgGl, IgG2 and 

IgG3 subclass levels against all the three virus strains present in the vaccines. In both the 

TIIV groups T05-06 and T06-07 there was a significant increase in serum IgGl, IgG2 

and IgG3 antibody levels between day 0 (prior to vaccination) and day 21 (post-

vaccination) (p = <0.001). The increase in serum IgG response among TIIV recipients 

was dominated by subclass IgGl which showed a robust increase. The absolute levels of 

serum IgGl were about 10 times greater than those of the IgG2 and IgG3 subclasses. 

However, there was no significant increase observed in serum IgGl, IgG2 or IgG3 

antibody levels in subjects vaccinated with LAIV (p = >0.05). When serum IgGl and 

IgG3 antibody levels of subjects vaccinated with TITV06-07 and LAIV06-07 were 

compared there was no significant difference observed at baseline (day 0), however, post-

vaccination (day 21) there was a significant difference (p = <0.001). Taken together, the 

results show that TIIV, but not LAIV, was able to induce a robust increase in serum 

IgGl, IgG2 and IgG3 antibody response after vaccination. 
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Fig. 3. Serum IgGl antibody levels before and after TIIV and LAIV influenza 
vaccination, observed by ELISA. 
Serum samples were collected on day 0 (pre-vaccination) and on day 21 (post-
vaccination). Serum antibody response was evaluated by ELISA. Vertical bars represent 
the mean and error bars represent the standard error of mean (S.E.M). 
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Fig. 4. Serum IgG2 antibody levels before and after THV and LAIV influenza 
vaccination, observed by ELISA. 
Serum samples were collected on day 0 (pre-vaccination) and on day 21 (post-
vaccination). Serum antibody response was evaluated by ELISA. Vertical bars represent 
the mean and error bars represent the standard error of mean (S.E.M.). 
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Fig. 5. Serum IgG3 antibody levels before and after THV and LAIV influenza 
vaccination, observed by ELISA. 
Serum samples were collected on day 0 (pre-vaccination) and on day 21 (post-
vaccination). Serum antibody response was evaluated by ELISA. Vertical bars represent 
the mean and error bars represent the standard error of mean (S.E.M.). 
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TIIV was able to induce significant serum IgA antibody response and the magnitude 

of response was comparable to that of LAIV 

Serum IgA antibody response after vaccination against the three influenza strains 

(H3N2, H1N1 and B) was tested using ELISA. Subjects in all three groups vaccinated 

with T05-06, T06-07 and LAIV06-07 demonstrated a significant increase in influenza 

specific serum IgA antibody levels from baseline (pre-vaccination) to day 21 (post-

vaccination) (p = <0.001) {Fig. 6}. The serum IgA response induced by T06-07 and 

LAIV06-07 were comparable and did not differ significantly. These results demonstrate 

that both TIIV and LAIV were able to induce significant and comparable serum IgA 

antibody response after vaccination. 
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Fig. 6. Serum IgA antibody levels before and after TIIV and LAIV influenza vaccination, 
observed by ELISA. 
Serum samples were collected on day 0 (pre-vaccination) and on day 21 (post-
vaccination). Serum antibody response was evaluated by ELISA. Vertical bars represent 
the mean and error bars represent the standard error of mean (S.E.M). 
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LAIV was able to induce a greater level of type 1 T cell response than TIIV 

To monitor the type 1 T cell response elicited by TIIV and LAIV vaccinations, we 

measured the production of IFN-y by CD4+ and CD8+ T cells using the Fast Immune 

assay [152, 153]. We saw that in both the TITV cohorts T05-06 and T06-07 there was a 

trend of increase in the percentage of activated (CD69+) T cells secreting IFN-y from 

baseline (day 0) to day 4, day 7 and day 21 post-vaccination. The increase however, did 

not reach statistically significant levels (p>0.05) (Figs. 9 and 7). 

Subjects who were vaccinated with LAIV06-07 showed an increase in the 

percentage of activated T cells secreting IFN-y from baseline (day 0) (0.348 ± 0.03 

S.E.M.) to day 4 (0.455 ± 0.04 S.E.M.) and day 7 (0.522 ± 0.06 S.E.M.), and this increase 

reached statistically significant levels (p = 0.015 and 0.004, respectively) {Figure 8}. 

When the frequency of IFN-y secreting T cells across different days (day 0, day 4, day 7 

and day 21) were compared between LAIV06-07 and T06-07 groups, there was no 

statistical difference observed, although the median levels of IFN-y secreting T cells 

remained higher in LAIV06-07 group. These results indicate that there is a difference in 

the kinetics of vaccine induced IFN-y secretion by T cells; and LAIV is able to induce a 

greater increase in IFN-y secreting T cells following vaccination when compared to TIIV. 
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Fig. 7. Percentage of CD69+IFN-Y+ T cells pre- and post-TITV06-07 influenza 
vaccination observed using the Fast Immune Flow Cytometry Assay. 
One million PBMCs from each subject vaccinated with TTTV were stimulated with 1 ul of 
influenza virus antigen in a 96 well plate overnight. Fast Immune assay and flow 
cytometry was used to determine the frequency of CD69+IFN-Y+ T Cells. 
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Fig. 8. Percentage of CD69+IFN-Y+ T cells pre- and post-LAIV06-07 influenza 
vaccination observed using the Fast Immune Flow Cytometry Assay. 
One million PBMCs from each subject vaccinated with TIIV were stimulated with 1 u,l of 
influenza virus antigen in a 96 well plate overnight. Fast Immune assay and flow 
cytometry was used to determine the frequency of CD69+IFN-Y+ T Cells. 
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Fig. 9. Percentage of CD69+IFN-y+ T cells pre- and post-TIIV05-06 influenza 
vaccination observed using the Fast Immune Flow Cytometry Assay. 
One million PBMCs from each subject vaccinated with TTTV were stimulated with 1 ul of 
influenza virus antigen in a 96 well plate overnight. Fast Immune assay and flow 
cytometry was used to determine the frequency of CD69+IFN-y+ T Cells. 
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Correlation analysis between the T cell and antibody responses to TIIV and LAIV 

In addition to the Thl T cell response to the two vaccines (EFN-y T cell 

responses), the Th2 T cell responses to the vaccines were also analyzed using IL-10 as 

the indicator. The levels of EL-10 in supernatants from influenza-stimulated PBMC from 

day 0 (pre-vaccination) and at day 7 (post-vaccination) were measured using CBA. We 

observed a significant increase in IL-10 levels post-vaccination in all groups (p<0.05). 

To better understand the correlations between the T cell response and antibody response, 

their correlations were analyzed. We picked IgA and IgGl as the indicator for antibody 

response to LAIV and TITV, respectively and their folds of increase after vaccination 

were related to the fold of increase in Thl and Th2 T cell response, respectively. As 

shown in Table 4, we observed a significant positive correlation between the serum IgA 

antibody and Th2 T cell (IL-10) response in the LAIV group (r = 0.56, Table 4). This 

positive correlation was only seen in the LAIV vaccinated group but not in the TIIV 

group (r = -0.07, non significant). In addition to correlation between antibody and T cells, 

we also observed a strong positive correlation between the serum IgGl and IgA response 

in TITV vaccinated group (r = 0.88, Table 4), but not in the LAIV vaccinated group (r = 

0.03). In summary, these data suggest that the Th2 T cell response may play a role in the 

serum IgA response to LAIV and that the serum IgA response is positively associated 

with the IgGl response to TIIV. 
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Table 4. Correlation analysis between serum IgGl, serum IgA, Thl and Th2 T cells 
response in TIIV and LAIV group 

TIIV LAIV 
IgA IgGl Thl Th2 IgA IgGl Thl Th2 

(IFN-Y) (IL-10) (IFN-y) (IL-10) 

IgA 

IgGl 0.88 -- n.s 

Thl n.s n.s — n.s. n.s 
(IFN-y) 

Th2 n.s n.s. n.s. — 0.56 n.s n.s 
(IL-10) 

n.s. = non significant, defined as correlation coefficient r<0.5 or r>-0.5. 

Table 5. Correlation analysis between the increase in IgA (LAIV), IgGl (TIIV) and the 
increase in HAI antibody titers 

TIIV LAIV 

titers 
H3/N2 
Hl/Nl 
B 
Over all 

IgGl 

0.06 
0.72 
0.14 
0.42 

IgG2 

0.36 
0.40 
0.25 
0.56 

IgG3 

0.13 
0.29 
0.26 
0.34 

IgA 

0.05 
0.70 
0.09 
0.38 

IgGl 

-0.18 
0.28 
0.67 
0.34 

IgG2 

0.14 
0.29 
0.50 
0.46 

IgG3 

-0.03 
0.46 
0.34 
0.33 

IgA 

0.42 
0.27 
0.55 
0.66 
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Discussion 

The goals of this study were to compare immune correlates of TITV and LAIV 

vaccines administered to previously immunized healthy adults. We examined the 

humoral immune responses by evaluating the serum HAI, serum IgG sub class, and 

serum IgA response after vaccination. The cellular immune components evaluated 

included IFN-y and EL-10 response after vaccination. Several studies have demonstrated 

that the efficacies of the two vaccines are essentially comparable and neither approach 

offers an advantage over another against prevention from influenza virus infection and 

disease [79, 154-156]. Our study demonstrates that there are important differences in 

serum antibody responses and cellular immune correlates between the two vaccines when 

administered to previously vaccinated healthy adults: TITV induces higher levels of 

serum antibody response while LAIV induced more robust Thl T cell response. 

The serum HAI antibody titer is used as a surrogate marker for protection after 

parenteral influenza vaccination. Usually a threshold titer of >40 by standard HAI assay 

is associated with >50% reduction of the risk of contracting an influenza infection or 

influenza disease [157]. Increases in HAI titer by four-fold, or an HI titer of >40, are the 

standards of measuring influenza vaccine efficacy. In our study, TIIV induced a 

significantly higher increase in serum HI antibody titers compared to LAIV. The 

seroconversion and seroprotection rates were also significantly higher in the groups 

vaccinated with TIIV than LAIV. In our study, LAIV stimulated small increases in HAI 

titers specific for the H3/N2 and B strain, but no increase in the Hl/Nl strain. The 

increase in serum HAI titers and the seroconversion rates were significantly lower than 

those by stimulated by TITV (Table 2 and Table 3). These results are consistent with other 
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studies which have demonstrated similar observations [11, 16, 17]. LAIV is known to 

induce a significantly higher mucosal IgA response than TIIV which has been 

demonstrated in nasal washes from vaccinated individuals [158, 159]. Unfortunately, 

corresponding nasal washes for IgA testing were not available for our study. 

The IgG responses to LAIV have been reported before [60, 160], while in our 

study, LAIV did not induce any responses in IgGl, IgGl or IgG3. In our opinion, the 

explanation for this difference can be attributed to two main factors. First, all subjects 

involved in our study were vaccinated during the influenza season one year prior to the 

study. In previous LAIV reports, the study subjects generally did not have any prior 

immunization history or were immune naive. A recent study by Sasaki et al. [145] which 

included subjects vaccinated with an influenza vaccine in the year prior to the study 

showed that that there were significant differences in B cell and antibody responses 

elicited by THV and LAIV vaccines in adults. However that study focused on antibody 

secreting cells in PBMCs, whereas we investigated the actual level of serum antibody. It 

was noted that the effector IgG, memory IgG and serum antibody response was much 

higher in TIIV vaccinated individuals when compared with the LAIV group. Our theory 

that prior vaccination may contribute to the low IgG response is consistent with the 

reports that LAIV is not able to induce serum IgG response in elderly subjects when 

administered alone [160], who typically are vaccinated annually. The second possibility 

is that the immunogenicity of FluMist for the season of 2006-2007 was particularly low. 

Thus far, this has not been verified by any other reported studies. 
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In our study, we also showed that LAIV stimulated a robust serum IgA response. While 

the exact role of serum IgA in the immunity to influenza is not well understood, we 

speculate that there may be an increase in serum IgA as a result of the previously reported 

mucosal IgA response [159]. In addition, we observed a positive correlation between the 

increases in the serum IgA and HI titers, and these positive correlations are more 

pronounced than those between IgGl-3 and HI (Table 5). Further studies would be 

necessary to delineate the relationship between serum and mucosal IgA, as well as the 

role of IgA in HAI titers. 

The cellular immune responses were compared between the TIIV and LAIV 

vaccinated groups. We observed that individuals vaccinated with LAIV were able to 

elicit a more robust type 1 T cell response when compared to the TIIV group. Although 

there was a trend of increase in the frequency of IFN-y+T cells after the TIIV vaccination, 

the increase did not reach statistically significant levels, and this was true for both 

influenza seasons 05-06 and 06-07 (Fig. 9 and Fig. 7). On the other hand, the Thl T cell 

response induced by LAIV was statistically significant (Fig. 8). Of note, the baseline 

levels of the Thl T cells were similar between TIIV06-07 and LAIV06-07, while the 

baseline level for TIIV05-06 was lower. We believe that this difference is contributed by 

the different levels of the memory Thl T cells specific for different strains of influenza 

viruses used in the vaccines during the two different seasons. Regardless of the 

differences in baseline levels, the kinetics of the T cells responses to TIIV for different 

influenza seasons were similar (Fig. 9). It also suggests that the difference between the 

TIIV and LAIV response was not season-specific. 
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Inactivated or killed virus vaccines induce T cell responses mostly by CD4+ Thl 

T cells [152]. On the other hand, LAIV, which is a live virus vaccine capable of 

replicating in the upper respiratory tract, has the ability to provide CD8+ T cells with viral 

antigens via dendritic cells and other antigen presenting cells. Hence the LAIV vaccine is 

able to induce a response from both the CD4+ T cells and the CD8+ T cells resulting in a 

more pronounced type 1 T cell response to vaccination as opposed to TIIV. We believe 

this likely explains the more robust Thl T cell response in LAIV vaccinated subjects 

compared to TIIV vaccinated to subjects. Further studies are required to examine the 

different T cell subsets to get a clear picture regarding the immune mechanism of the two 

vaccines. 

In addition to Thl, the Th2 T cell response was also monitored using EL-10 in the 

PBMC supernatants as the index. We found no differences in the magnitude of EL-10 

response between the TIIV and LAIV (p = 0.72). It is known that the class and magnitude 

of antibody responses may be influenced by the types of T cell response (Thl vs. Th2), 

which precedes the antibody responses. Here we observed that the antibody response to 

LAIV correlated positively with the Th2 T cells response (r = 0.56, Table 4). This 

positive correlation was only found in LAIV group. As far as we know, this is the first 

report on this matter. If confirmed by other independent studies, this information may be 

useful for enhancing the antibody response to LAIV by modulating IL-10. Conversely, 

we did not find any significant correlation between the Thl T cell and the IgGl antibody 

response (r = -0.07). On the other hand in the same vaccine trial, a positive correlation 

between the Thl and IgGl was observed in a group of healthy elderly (Chapter IV). In 

addition, this positive correlation is also observed in a group of frail elderly subjects in a 
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separate vaccine trial done by our group [152]. We reason that as people become older, 

the Thl T cells become one of the confounding factors for the serum antibody response 

to THY. These results, together with the results on antibody responses, reiterate that 

LAIV and TIIV stimulate different arms of the immune system. 

Our results also raise the issue of what immune correlates are important for 

influenza vaccine efficacy. LAIV is less effective in inducing serum IgG response, which 

has been used as the standard immune correlates for influenza vaccines and other 

vaccines [60, 161]. One the other hand, LAIV is more effective in stimulating mucosal 

IgA and Thl T cell response [79]. The advantage of T cell response is that it can provide 

cross protection, and studies have shown that LAIV is able to provide protection from 

antigenically drifted strains in addition to homologous strains [142, 155]. One obvious 

benefit of mucosal secretory IgA antibodies is their location in the mucosal tract where 

influenza viruses enter and initiate infection. LAIV and TIIV are known to be similar in 

their effectiveness in protecting influenza infection. If this holds true for the influenza 

season 2006-2007, our data supports the notion that IgA and T cell responses should be 

considered as important immune correlates for influenza vaccine efficacy in addition to 

serum IgG response. 
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CHAPTER IV 

COMPARISON OF AGE RELATED CHANGES IN IMMUNE RESPONSE TO 

INACTIVATED INFLUENZA VACCINE RESPONSE BETWEEN HEALTHY 

YOUNG AND ELDERLY AND THE ROLE OF CYTOKINES IN LOWER 

VACCINE EFFICACY IN ELDERLY 

Introduction 

Influenza virus is a very common respiratory pathogen that is responsible for 

increased annual morbidity and mortality in the elderly population [20]. Annual estimates 

by the Center for Disease Control and prevention report that influenza is responsible for 

226,000 hospitalizations and 36,000 deaths every year [24]. The economic burden of 

influenza related medical costs among the elderly in the United States alone amounts to 

greater than 10 billion dollars that are spent on treating severe illness which is prevalent 

in the elderly populations every influenza season [162, 163]. Current public health 

measures to reduce influenza related hospitalizations and deaths among elderly call for 

annual influenza vaccinations among all persons above the age of 65 [164]. Although 

influenza vaccination is able to substantially reduce severe illness, secondary infections 

and deaths in the elderly, the efficacy rate of vaccination is 30-50% in this group [21, 

162]. Several studies have concluded that the elderly demonstrate a reduction in antibody 

response after influenza vaccination [165-168]. Besides a reduction in antibody response 

to vaccination, a decline in cell mediated immune response has also been associated with 

lower vaccine efficacy in this group [167]. Aging is associated with several changes in 

different arms of the immune system, however, T cells show the most consistent and 
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largest alterations with age [101]. Increased susceptibility of the elderly to influenza 

infections may be related to a lack of development of influenza specific T cell responses 

after vaccination. Memory T cells mount an immediate vigorous response in response to 

antigenic challenge and secrete cytokines like IFN-y and TNF-a. It has been shown that 

influenza specific memory T cells secreting IFN-y are crucial for a rapid response to 

influenza reinfections [169]. Changes in age associated memory T cell response in the 

frail elderly have been shown to result in an impaired response to influenza vaccination 

[152]; however, further studies evaluating the effect of memory T cells after influenza 

vaccination are needed to understand the role of cell mediated immune response in the 

elderly. Aging has also been associated with dysregulation in cytokine production which 

play a critical role in modulating immune responses. Murine studies have demonstrated a 

shift from a Thl type to a Th2 type cytokine response with increasing age [170]. In 

humans there have been conflicting reports regarding a shift from a Thl to a Th2 

cytokine profile; some investigators have shown that the capacity of T cells to produce 

Thl cytokines is altered while the ability to produce Th2 cytokines is unaffected [171, 

172]. However a recent review suggested that there is conflicting data to conclude that 

there is a shift from a Thl cytokine profile to a Th2 cytokine profile in the elderly [101]. 

Ageing has also been associated with an increase in inflammatory cytokine levels, and 

IL-6 remains the most studied cytokine in the elderly. High levels of IL-6 in elderly have 

been reported in by some investigators [173, 174]; however, there are contradictory 

reports with unchanged values as well [175]. A change in cytokine levels as a result of 

aging could influence antibody response to influenza vaccination. It remains to be 

evaluated if there is indeed an age related shift in cytokine levels which might influence 
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vaccine responses. Studies which evaluate both cellular and humoral immune correlates 

after influenza vaccination in healthy young and the elderly have been limited. In order to 

understand the relationship between Thl T cell response and antibody response in the 

elderly to influenza vaccination it is important to study cellular and humoral immune 

response to vaccination concurrently. 

The current study was conducted to compare different correlates of immune 

responses among a healthy group of young and elderly individuals who had been 

previously vaccinated with influenza vaccine. We performed our study over two seasons. 

Several different humoral and cell mediated immune correlates were evaluated. Our study 

confirmed previous reports regarding blunted antibody response in elderly. Cell mediated 

immune response of influenza specific memory T cells (ISMT) demonstrated lower 

levels of IFN-y secreting ISMT before and after vaccination in the elderly. We wanted to 

investigate if there are age related changes in cytokine profiles and if these correlated 

with the reduced T cell and antibody response to vaccination in the elderly. We also 

studied aging associated changes in cytokine profiles and the effect of immunization on 

the cytokine profiles. Our results demonstrate that there is a significant decline in both 

the humoral and cell mediated immune response in the elderly to influenza vaccination. 

We did not find any correlation in the cytokine profiles of elderly causing a shift from 

Thl to Th2 response before and after vaccination. The pre-vaccination cytokine levels 

did not have any relation with a reduction in T cell or antibody response in the elderly. A 

significant observation of our study was the correlation between the Thl T cell response 

and the antibody response that was observed only in the elderly which suggests that 
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reduction in Thl T cell response affects antibody response to influenza vaccination in the 

elderly. 

Materials and Methods 

Vaccines 

The vaccines used for this study were Fluzone® (Aventis Pasteur) from seasons 

2005-2006 (T05-06) and 2006-2007 (T06-07). The TITV vaccine of the 2005-2006 season 

comprised of 15 ng each of the HA from A/New Caledonia 20/1999 (H1N1), A/New 

York/55/2004 (H3N2) and B/Jiangsu/10/2003 (B/Shanghai/361/2002-like) and the TIIV 

vaccine of the 2006-2007 comprised of each of the HA from A/New Caledonia 20/1999 

(H1N1), A/Wisconsin/67/2005 (H3N2), and B/Malaysia/2506/2004. 

Recruitment of Human Subjects and Vaccination Protocols 

Subjects for the study were recruited with written informed consent by the clinical 

coordinating team at the Glennan Center for Geriatrics and Gerontology, Eastern Virginia 

Medical School during the winter influenza seasons of 2005-2006 and 2006-2007. The 

Institutional Review Board at Eastern Virginia Medical School approved the study 

protocol and the informed consent form. All study participants were healthy community 

dwelling young and elderly adults between 21-91 years of age, independently residing in 

the Hampton Roads area of Virginia. All subjects recruited for the study had been 

vaccinated with TITV in the season prior to enrollment to minimize the immunological 

differences as a result of vaccination. For the T05-06 season the mean age of the study 

participants was 29 years (S.D. ±5.5) for the young group (n = 27) and 78.5 years (S.D. ± 
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5.7) for the elderly (n = 33). For the T06-07 season the mean age of the study participants 

was 27 years (S.D. ± 4) for the young group (n = 22) and 78 years (S.D. ± 7.7) for the 

elderly (n = 10). Subjects with egg allergy, underlying chronic diseases such as diabetes, 

autoimmune diseases such as lupus erythematosus or rheumatoid arthritis, or congestive 

heart failure; those on immunosuppressive drugs; and pregnant women were excluded 

from participating in the study. There were 60 subjects recruited in season 2005-2006 and 

32 subjects recruited for die season 2006-2007 who were vaccinated with TITV. Blood 

samples were obtained from each subject on four days: day 0 prior to vaccination and on 

days 4, 7 and 21 after vaccination. 

Hemagglutination inhibition (HAI) assay 

Hemagglutination occurs when sialic acid residues, similar to the cellular 

receptors on erythrocytes bind to the receptor binding site present on the tip of the viral 

HA proteins. Hemagglutination can be inhibited by adding HA recognizing antibodies 

before adding erythrocytes in the assay which is termed as hemagglutination inhibition; 

hence the assay is termed as hemagglutination inhibition assay (HAI). When performing 

HAI assays sera from vaccinated or infected subjects are titrated on 96 well plates to 

which a known amount of influenza virus and erythrocytes are added. In our study serum 

antibody titers specific for each of the three strains present in the vaccine formulations 

were determined by standard microtiter HAI assay following procedures described 

previously [150]. Serum HI antibodies were determined on day 0 (pre-vaccination) and 

on day 21 (post-vaccination). Non-specific inhibitors in serum were removed by 

incubating serum with receptor destroying enzyme (RDE; Sigma). All influenza H1N1, 
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H3N2 and B antigens (wild strains compatible with the recombinant strains in the 

vaccine) were grown in 10 day old fertilized chicken eggs. A slight modification was 

made to the protocol. Guinea pig red blood cells (GPRBCs) were used for agglutination 

instead of chicken or turkey RBCs. The HI titer was defined as the reciprocal of the 

highest dilution of serum that completely inhibited agglutination. Antibody titers of >40 

were considered protective (seroprotection) and a > four-fold rise in antibody titer 

(seroconversion) to one out of three vaccine antigens was considered an adequate 

response. 

Serum IgGl, IgG2 and IgG3 analysis by ELISA 

Serum levels of influenza specific IgGl, IgG2 and IgG3 were determined by 

ELISA analysis. All the assays were carried in a similar fashion. For all the variables 

serum samples obtained at day 0 (prior to vaccination) and at day 21 (post-vaccination) 

were analyzed. For each of IgGl, IgG2 and IgG3 analysis 96 well EIA specific round 

bottom plates (Immulon 1; Dynatech Laboratories, Chantilly, VA) were used. The 96 

well plates were coated with IgGl, IgG2 and IgG3 purified protein as standards (all K-

chains; Sigma Aldrich, MO) and with trivalent influenza vaccine 2005-2006 formula 

(A/New Caledonia 20/1999 (H1N1), A/New York/55/2004 (H3N2) and 

B/Jiangsu/10/2003; Aventis Pasteur, Swiftwater, PA) or 2006-2007 formula (A/New 

Caledonia 20/1999 (H1N1), A/Wisconsin/67/2005 (H3N2), and B/Malaysia/2506/2004; 

Aventis Pasteur, Swiftwater, PA). The plates were incubated at 4°C for 16-18 hours. 

After overnight incubation the plates were washed twice with wash buffer (1 X PBS with 

0.05% Tween 20, pH 7.4). Following wash procedure 200 [il of blocking buffer (10% 
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FBS/1 X PBS) was added to each well and incubated at 37°C for 2 hours. The plates 

were then washed with wash buffer 4 times. Dilutions of serum samples to be analyzed 

were made for the respective IgG subtype assays. The serum samples were diluted to 

1:5000, 1:200 and 1:400 with blocking buffer for IgGl, IgG2 and IgG3 analysis, 

respectively. Plates were incubated at 37°C for 2 hours and washed four times with wash 

buffer. For each IgG subtype, biotin-conjugated anti-IgG subtype antibodies {IgGl and 

IgG2 (BD Biosciences) and IgG3 (Sigma Aldrich)} were diluted 1:1000, 1:1000 and 

1:4000, respectively with blocking buffer. Biotin conjugated anti IgG specific antibodies 

were added to the 96 well plate and incubated at 37°C for 1 hour. Plates were washed and 

100 \i\ of avidin-HRP (Sigma Aldrich) diluted 1:400 was added and the plates were 

incubated at room temperature for 30 minutes. After the final incubation, the plates were 

washed five times with wash buffer. Peroxidase substrate 3, 3' , 5, 5'-

tetramethylbenzidine (TMB) (Sigma Aldrich) was added, and color development was 

allowed to continue for 10 minutes at room temperature in the dark. The color 

development reaction was stopped by adding 100 u,l per well of 1 N sulfuric acid. The 

plates were read at 450 nm using an ELISA plate reader and analyzed with KC4 (version 

3.0) software (PowerWave, Bio-Tek Instruments, Winooski, VT). The final analysis was 

done by normalizing all the readings based on the dilution factors. 

Serum IgA analysis by ELISA 

The IgA ELISA analysis was done in a similar fashion as the IgG sub-type 

ELISA. Serum samples obtained at day 0 (prior to vaccination) and at day 21 (post-

vaccination) were analyzed. For IgA analysis 96 well EIA specific round bottom plates 
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(Immulon 1; Dynatech Laboratories, Chantilly, VA) were used. The 96 well plates were 

coated with IgA (K-chain; Sigma Aldrich, MO) and with trivalent influenza vaccine 

2005-2006 or 2006-2007 formula. The plates were incubated at 4°C for 16-18 hours. 

After overnight incubation, the plates were washed twice with wash buffer ( I X PBS with 

0.05% Tween 20, pH 7.4) and 200 ^1 of blocking buffer (10% FBS/1 X PBS) was added 

to each well and incubated at 37°C for 2 hours. The plates were then washed with wash 

buffer 4 times. The serum samples were diluted to 1:400 with blocking buffer for IgA and 

added to the plate. The plates were incubated at 37°C for 2 hours. Plates were washed 

four times with wash buffer. For IgA, HRP-conjugated anti-IgA antibody (Sigma 

Aldrich) was diluted to 1:4000 with blocking buffer. Diluted HRP-conjugated anti-IgA 

specific antibody was added to the 96-well plate and incubated at 37°C for 1 hour. Plates 

were washed four times with wash buffer. After the final incubation, the plates were 

washed five times with wash buffer. Peroxidase substrate 3, 3', 5, 5'-

tetramethylbenzidine (TMB) (Sigma Aldrich) was added to the wells, and color 

development was allowed to continue for 10 minutes at room temperature in the dark. 

The reaction was stopped by adding 100 nl 1 N sulfuric acid per well. The plates were 

read at 450 nm using an ELISA plate reader and analyzed with KC4 (version 3.0) 

software (PowerWave, Bio-Tek Instruments, Winooski, VT). The final analysis was done 

by normalizing all the readings based on the dilution factors. 

Purification of PBMC 

Human peripheral blood mononuclear cells (PBMC) were isolated form blood 

that was collected in heparinized tubes. Whole blood was first centrifuged at 320 X g for 
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10 minutes. Plasma was aspirated. The buffy coat layer, which contains the PBMCs, was 

carefully aspirated and laid onto a gradient purification Ficoll reagent Histopaque 1077 

(Sigma-Aldrich, St. Louis, MO), followed by centrifugation at 650 X g for 30 minutes. 

The PBMC were collected by aspiration from the interface and washed twice with RPMI 

1640 medium (Invitrogen, Carlsbad, CA) at 500 X g and 320 X g for 10 minutes each. 

The PBMCs were then counted by an automatic lymphocyte counter (Coulter ACT, 

Beckman Coulter, Miami, FL) and resuspended in CTL media (RPMI 1640 medium 

containing 10% FBS, 2 mM of L-Glutamine, 100 U of penicillin, 100 ng/ml of 

streptomycin and 55 nm of 2-mercaptoethanol). The cell concentration was calculated 

and brought up to 1 million PBMCs/ml for the fast immune assay. 

Influenza virus used for Fast Immune Assay 

All the live influenza virus strains used in the study were propagated under Bio-

Safety Level-2 conditions. The seed virus strains were obtained from Center for Disease 

Control (CDC), Atlanta, GA. All Bio-Safety guidelines detailed in the microbiological 

and biomedical laboratory manuals published by the CDC and by the Office of Safety at 

Eastern Virginia Medical School were followed. The live virus strains of influenza used 

in this study were A/New Caledonia 20/1999 (H1N1), A/New York/55/2004, 

A/Wisconsin/67/2005 (H3N2), B/Malaysia/2506/2004 and B/Shanghai/361/2002. The 

live viruses were grown in fertilized chicken eggs using seed viruses obtained from CDC 

following procedures described previously [151]. Purified allantoic fluids containing live 

virus were then analyzed to determine the viral titers. After determination of the viral 

titers the allantoic fluids were transferred to cryovials and stored at -80°C until required. 
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Detection of T cell IFN-y production using Fast Immune Assay 

The fast immune procedure to determine T cell IFN-y secretion was done as 

described previously [152]. One million PBMC were activated ex vivo using a 

combination of the three strains of virus (10 HA units/ml for each) corresponding with 

vaccine strains in 150 jxl of complete media in 96-well U-bottom tissue culture (TC) plate 

at 37°C overnight. Brefeldin A (BFA, Sigma-Aldrich, St. Louis, MO) was then added to 

each well at a final concentration of 5 ug/ml after 17 hours. The culture was incubated at 

37°C for 3 more hours before being fixed with 1% paraformaldehyde-PBS and then 

permeabilized with permeabilization buffer (Becton Dickinson, San Diego, CA) at room 

temperature for 10 minutes each. The cell culture was stained with the following 

conjugated antibodies; CD69-PE, CD4-AP, CD8-PerCP and IFN-y-FITC (BD 

PharMingen, San Diego, CA). Intracellular cytokine staining was detected using a flow 

cytometer (FACSCalibur, CellQuest 3.3 software, BD Biosciences, San Diego, CA). 

Cytokine analysis by cytometric bead array (CBA) 

Cytometric bead array analysis was used to determine the cytokine levels after 

stimulation of PBMCs for 15 hours with a combination of three strains of influenza 

viruses present in the vaccines. The supernatants from influenza virus stimulated PBMC 

were diluted in PBS 1:2 and incubated with CBA beads coated with anti IL-10, IL-6, 

TNF-a and IL-ip antibodies {human inflammatory cytokine kit; BD™ Cytometric Bead 

Array (CBA)}. The beads were washed and stained with PE-conjugated secondary 

antibodies. The fluorescent intensity for each cytokine was measured using a flow 
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cytometer (FACSCalibur, BD Biosciences, San Diego, CA). The final concentrations 

were analyzed and calculated using CBA software (BD Biosciences). 

Statistical Analysis 

Data analysis of the normally distributed data was performed using Student's t-

test. Normal distribution of the data was evaluated using Kolmogorov-Smirnov's test. A 

modified t-test, Mann-Whitney rank sum test or Wilcoxon signed rank test was applied to 

determine significant differences between the two groups where data was not normally 

distributed. Statistical significance was set at p<0.05. The correlation coefficient of the 

two groups was analyzed using Pearson's correlation coefficient test. To determine the 

statistical relevance of seroprotection and seroconversion rates, Chi Square or Fischer's 

test were performed (p<0.05) based on the size of the group that was being evaluated. 

Results 

Comparison of the Thl response to TIIV vaccination between young and elderly 

The type 1 T cell response was measured between the young and the elderly after 

TIIV vaccination by monitoring the change in the percentage of IFN-y secreting ISMT 

cells (CD8+ and CD4+ memory T cells) using die Fastlmmune Assay. We observed that 

there was a trend in increase in the percentage of IFN-y secreting T cells after TIIV 

vaccination in the elderly and young group. Observations were made at day 0 (prior to 

vaccination), day 4, day 7 and day 21 post-vaccination. Although there was an increase in 

the percentage of IFN-y secreting T cells in both the young and the elderly groups there 

was a difference in the kinetics that was observed. In the elderly group mere was a 
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significant increase in the percentage of IFN-y secreting T cells between day 0 and day 7 

(T05-06 day 0 0.118 s.e.m ± 0.01; T05-06 day 7 0.215 S.E.M. ± 0.04, p = 0.02) (T06-07 

day 0 0.161 S.E.M. ± 0.02; T06-07 day 7 0.223 S.E.M. ± 0.03, p = 0.03), however the 

increase was transient and went back to baseline levels by day 21 (Fig. 10 and Fig. 11). 

The trend was observed for both the T05-06 and T06-07 season. On the other hand in the 

young group there was a trend in increase in the number of IFN-y producing T cells 

between day 0, day 4, day 7 and day 21. The increase in the young group was not 

transient and significantly higher levels in the percentage of IFN-y secreting T cells were 

observed on day 7 in the young group (T05-06 day 0 0.203 S.E.M. ± 0.03; T05-06 day 7 

0.257 S.E.M. ± 0.02, p = 0.003) (T06-07 day 0 0.320 S.E.M. ± 0.03; T06-07 day 7 0.404 

S.E.M. ± 0.05, p = 0.05) (Fig. 10 and Fig. 11). The trend was consistent for both the T05-

06 and T06-07 group. The percentage of T cells secreting IFN-y did not go down to 

baseline levels by day 21 in the young group and there was sustained increase in Thl type 

T cell response. These results indicate that although there is a trend of increase in the Thl 

type T cell response in both the elderly and the young after TIIV vaccination, there is a 

major difference in the ability to induce a sustained increase in the levels of IFN-y 

secreting T cells. 

We also observed that there was a significant difference in the percentage of IFN-

y secreting T cells between the young and the elderly for each time point that was 

measured. When the levels were compared across day 0, day 4, day 7 and day 21 we 

found that there were significantly higher levels of IFN-y secreting T cells in the young 

group as opposed to the elderly group. (Elderly T05-06 day 0 0.118 S.E.M. ± 0.01; 

Young T05-06 day 0 0.203 S.E.M. ± 0.01, p = 0.007) (Elderly T05-06 day 4 0.125 
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S.E.M. ± 0.01; Young T05-06 day 4 0.205 ± 0.01, p = 0.05) (Elderly T05-06 day 7 0.215 

S.E.M. ± 0.04; Young T05-06 day 7 0.257 ± 0.01, p = 0.02) (Elderly T05-06 day 21 

0.145 S.E.M. ± 0.01; Young T05-06 day 21 0.243 ± 0.02, p = 0.002) (Elderly T06-07 day 

0 0.161 S.E.M. ± 0.02; Young T06-07 day 0 0.320 S.E.M. ± 0.03, p = 0.006) (Elderly 

T06-07 day 4 0.195 S.E.M. ± 0.02; Young T05-06 day 4 0.360 ± 0.06, p = 0.112) 

(Elderly T06-07 day 7 0.223 S.E.M. ± 0.03; Young T06-07 day 7 0.404 ± 0.05, p = 0.05) 

(Elderly T06-07 day 21 0.173 S.E.M. ± 0.02; Young T06-07 day 21 0.449 ± 0.07, p = 

0.003) (Fig. 10, Fig. 11). These results show that with age there is decline in the baseline 

levels of T cells that secrete IFN-y specific for influenza viruses. Influenza vaccination 

does induce an increase in the percentage of IFN-y specific T cells; however, the 

response is blunted in the elderly compared to the young. 
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Fig. 10. Percentage of CD69+IFN-Y+ T cells pre- and post-TIIV05-06 influenza 
vaccination observed in young and elderly subjects using the Fast Immune Flow 
Cytometry Assay. 
One million PBMCs from each subject vaccinated with TIIV were stimulated with 1 ul of 
influenza virus antigen in a 96-well plate overnight. The Fast Immune assay and flow 
cytometry were used to determine the frequency of CD69+rFN-y+ T Cells. 
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Fig. 11. Percentage of CD69+IFN-Y+ T cells pre- and post-TIIV06-07 influenza 
vaccination observed in young and elderly subjects using the Fast Immune Flow 
Cytometry Assay. 
One million PBMCs from each subject vaccinated with TIIV were stimulated with 1 ul of 
influenza virus antigen in a 96-well plate overnight. The Fast Immune assay and flow 
cytometry were used to determine the frequency of CD69+IFN-y+ T Cells. 
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Comparison of antibody response to TIIV vaccination between young and elderly 

The antibody responses to TIIV vaccination were measured by several different 

assays in the two groups. We measured the HAI antibody response to each influenza 

strain present in the vaccine by standard hemagglutination inhibition assay. We also 

measured the serum IgGl, IgG2, IgG3 and IgA levels by ELISA pre- and post-

vaccination. There was a significant increase (p = 0.001) in HAI antibody titers after 

TIIV vaccination in both the elderly and young group for each of the three influenza 

vaccine strains (Table 6) except for B/Malaysia strain for the T06-07 season in the elderly 

group. Although there was no difference between the young and the elderly population in 

pre-vaccination antibody titers except for H1N1 strain in the T05-06 season, die elderly 

showed significantly lower antibody titers to all the three strains compared to young after 

vaccination except for H3N2 strain in the T05-06 season (Table 6) (H1N1 A/New 

Caledonia p<0.05, B/Shanghai p<0.05 for the T05-06 season, H3N2 A/Wisconsin 

p<0.05, A/New Caledonia p<0.05, B/Malaysia p<0.01 for the T06-07 season). The mean 

fold increase in HAI antibody titers was low for the elderly in both the seasons when 

compared to young (Table 6). 

We also observed that the incidence of pre-vaccination antibody titers equal to the 

seroprotection rate defined by HAI titers >40 was comparable between the young and the 

elderly; however, post-vaccination levels of antibody seroprotection rates were much 

higher in the young group compared to the elderly (Table 7). For H3N2 strains (A/New 

York and A/Wisconsin), 77% young had post-vaccination HAI antibody titers of >40 for 

season 05-06 and 06-07 compared to 54% and 30% in the elderly group, respectively (x2; 

p = 0.05). Similarly for the H1N1 strain (A/New Caledonia), only 15% and 30% of the 
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elderly had HAI titers >40 for the season 05-06 and 06-07, respectively, compared to 

88% and 72% in the young group for the respective seasons (x,2; p = 0.05). We observed a 

similar trend with regard to the B strains (B/Shanghai and B/Malaysia) where 65% and 

31% of the young had HAI titers >40 for the season 05-06 and 06-07, respectively and in 

the elderly the rates were 21% and 10% for the respective seasons. Overall, although 

there was an increase in HAI antibody titers in the elderly after vaccination, the response 

was much lower compared to the young. Seroconversion (4-fold rise in antibody titers) 

rates between young and old were comparable, but the seroprotection rates of the elderly 

were lower post-vaccination (Table 7). These results reflect that although there was an 

increase in HAI antibody titers in the elderly, it was not able to reach protective levels. 

We observed that the baseline levels of HAI antibody levels were an important 

factor in the level of HAI antibody response post-vaccination. In both the young and the 

elderly groups, we found that subjects with higher baseline HAI antibody levels had a 

lower mean fold increase in antibody titers post-vaccination. On the other hand, subjects 

with low pre-vaccination HAI antibody titers showed a much higher mean fold increase 

in HAI antibody response post-vaccination (data not shown). 
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Table 6. Geometric means of HAI antibody titers against influenza strains after influenza 
vaccination observed after Hemagglutination Inhibition Assay. 

TITV 
(T05-06) 
Young 
Elderly 
TIIV 
(T06-07) 
Young 
Elderly 

TIIV 
(T05-06) 
Young 
Elderly 
TITV 
(T06-07) 
Young 
Elderly 

TIIV 
(T05-06) 
Young 
Elderly 
TITV 
(T06-07) 
Young 
Elderly 

H3N2 (A/New York or A/Wisconsin) 
Pre 

36.30 (95% CI = 20.86-51.74)* 
19.75 (95% CI= 11.42-28.08)* 

22.27 (95% CI= 8.56-35.98)* 
15.5 (95% CI= 7.06-23.94)* 

Post 

86.23 (95% CI = 62.38-110.08)* 
79.72 (95% CI = 43.88-115.56)* 

76.36 (95% CI= 40.5-112.22)*b 

27.6 (95% CI= 21.95-33.25)*'" 

H1N1 (A/New Caledonia) 
Pre 

189.19 (95% CI= 81.42-296.98)*3 

11.42 (95% CI=8.14-14.7)*'a 

41.13 (95% CI= 21.63-60.63)* 
16.5 (95% CI= 10.3-22.7)* 

Post 

259.65 (95% CI = 136.80-382.48)*a 

26.8 (95% CI= 8.48-45.19)*'3 

89.13 (95% CI = 61.18-117.08)*b 

27.7 (95% CI= 14.3-41.5)*" 

B (B/Shanghai or B/Malaysia) 
Pre 

46.5 (95% CI = 20.57-72.43)* 
13.96 (95% CI= 9.24-18.68)* 

6.36 (95% CI = 5.41-7.31)* 
8.2 (95% CI= 6.72-9.68) 

Post 

68.15 (95% CI = 42.85-93.45)*" 
33.27(95% CI= 21.92-44.62)*3 

32.5 (95% CI =16.9-48.1)*" 
13 (95% CI= 6.6-19.4)" 

MFI 

5.53 
4.27 

7.27 
2.66 

MFI 

3.17 
1.94 

4.24 
1.62 

MFI 

2.45 
1.9 

5.68 
1.54 

* = Significant increase in HAI antibody titers between Day 0 and Day 21, p = <0.05 
(paired t test) 
a = Significant difference between HAI antibody titers between young (T05-06) and 
elderly (T05-06), p = <0.05 (unpaired t test) 
b = Significant difference between HAI antibody titers between young (T06-07) and 
elderly (T06-07), p = <0.05 (unpaired t test) 
MFI= Mean fold increase 

Young (n) = 27 (TIIV05-06): 22 (TIIV06-07) 
Elderly (n) = 33 (TIIV05-06): 10 (TITV06-07) 



92 

Table 7. Seroprotection and seroconversion rates between the young and elderly after 
TirV vaccination. 

% Seroprotection Rates (n) (HAI Titers >1:40) 

H3N2 H1N1 B 

TIIV (T05-06) 
Young 
Elderly 
TIP/ (T06-07) 
Young 
Elderly 

Pre 
38 (10) 
18(6) 

17(4) 
20(2) 

Post 
77 (20) 
54(18) 

77(18)a 

30 (3)a 

Pre 
65 (17)a 

3(D a 

36(8) 
10(1) 

Post 
88 (23)a 

15 (5)a 

72 (16)a 

30 (3)a 

Pre 
38 (10)a 

6(2)a 

0(0) 
0(0) 

Post 
65 (17)a 

21 (7)a 

31(7) 
10(1) 

% Seroconversion Rates (n) 
(4 Fold or more Increase in HAI Titers) 

TIIV (T05-06) 
Young 
Elderly 
TIIV (T06-07) 
Young 
Elderly 

H3N2 

42(11) 
54(18) 

55 (12) 
40(4) 

H1N1 

15(4) 
15(5) 

27(6) 
0(0) 

B 

23(6) 
15(4) 

41(9) 
10(1) 

a = Significant difference between seroprotection rates between young and elderly (Chi 
square test p = 0.05) 

Young (n) = 27 (TIIV05-06): 22 (TIIV06-07) 
Elderly (n) = 33 (TIIV05-06): 10 (TIIV06-07) 
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The levels of serum IgA increased after vaccination in both the young and the elderly 

group. The levels of serum IgA pre and post-vaccination were comparable between the 

young and the elderly group (T05-06Young day 0, 29.1 ug/ml; S.E.M. ± 5, T05-

06Elderly day 0, 36 ug/ml; S.E.M. ± 4.8; T05-06Young day 21, 64.6 ug/ml; S.E.M. ± 

9.1, T05-06Elderly day 21, 69.9 ug/ml; S.E.M. ± 15.3) (T06-07Young day 0, 34.1 ug/ml; 

S.E.M. ± 6.4, T06-07Elderly day 0, 25.9 ug/ml; S.E.M. ± 5.2; T06-07Young day 21, 47.9 

ug/ml; S.E.M. ± 8.3, T06-07Elderly day 21, 33.7 ug/ml; S.E.M. ± 5.9) (Fig. 12). This 

shows that there is no change as a result of age in the ability to induce a serum IgA 

response by TITV vaccination. 

The serum IgG sub-class specific for influenza strains for both the T05-06 and 

T06-07 vaccines were determined using ELISA. All the subjects in our study had been 

vaccinated during the previous influenza season with TITV and had pre-vaccination 

serum antibody IgG subclasses for influenza viruses (H3N2, H1N1 and B strains) (Fig. 

13, Fig. 14 and Fig. 15). The ELISA assay used in our study detected serum antibody 

IgGl, IgG2 and IgG3 subclass levels against all the three virus strains present in the 

vaccines. We observed that IgGl had the greatest increase in levels following vaccination 

in both the young and the elderly groups. In the case of serum IgGl we observed that the 

levels of pre-vaccination serum IgGl levels were comparable in both the young and the 

elderly group for both the 05-06 and 06-07 seasons (Fig. 13). There was a significant 

increase in serum IgGl levels in both the young and the elderly groups (p = <0.001) (Fig. 

13). However, the magnitude of increase in the levels of IgGl was much lower in the 

elderly group (T05-06 50%, T06-07 26%) compared to the young group (T05-06 190%, 

T06-07 74%) (Fig. 13). These results show that there is marked decline in the elderly 
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group's ability to mount a serum IgGl response after vaccination. When serum IgG2 and 

IgG3 levels were compared, there was a significant increase in both IgG2 and IgG3 levels 

after vaccination in both the elderly and the young groups (p = <0.001) (Fig. 14 and Fig. 

15). The elderly had higher levels of serum IgG2 when compared to the young group, 

both pre- and post-vaccination (p = 0.05) (Fig. 14 and Fig. 15). 

After evaluating the antibody responses, we looked at the correlation of the HAI 

antibody response to serum IgA, IgGl, IgG2 and IgG3 among the elderly and young 

groups for both the T05-06 and T06-07 seasons combined. There was a positive 

correlation between the HAI antibody response and serum IgA (r = 0.62), IgGl (r = 0.71) 

and serum IgG2 (r = 0.40) in the elderly, and there was a weak correlation between HAI 

antibody response and serum IgGl (r = 0.45) and IgA (r = 0.43). 
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Fig. 12. Serum IgA antibody levels before and after TITV influenza vaccination observed 
in the young and the elderly by ELIS A. 
Serum samples were collected on day 0 (pre-vaccination) and on day 21 (post-
vaccination). Serum antibody response was evaluated by ELISA. Vertical bars represent 
the mean, and error bars represent the standard error of the mean (S.E.M.). 
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Fig. 13. Serum IgGl antibody levels before and after TUV influenza vaccination 
observed in young and elderly by ELISA. 
Serum samples were collected on day 0 (pre-vaccination) and on day 21 (post-
vaccination). Serum antibody response was evaluated by ELISA. Vertical bars represent 
the mean, and error bars represent the standard error of mean (S.E.M). 
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Fig. 14. Serum IgG2 antibody levels before and after TIIV influenza vaccination 
observed in young and elderly by ELISA. 
Serum samples were collected on day 0 (pre-vaccination) and on day 21 (post-
vaccination). Serum antibody response was evaluated by ELISA. Vertical bars represent 
the mean, and error bars represent the standard error of mean. 
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Fig. 15. Serum IgG3 antibody levels before and after TIIV influenza vaccination 
observed in young and elderly by ELISA. 
Serum samples were collected on day 0 (pre-vaccination) and on day 21 (post-
vaccination). Serum antibody response was evaluated using ELISA assay. Vertical bars 
represent the mean, and error bars represent the standard error of mean (S.E.M). 
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Thl T cell response correlated positively with the antibody response in the elderly 

but not young subjects 

The antibody response to influenza vaccination and its correlation with type 1 T 

cell response was also analyzed between the young and the elderly groups. It was 

observed that the elderly group had a strong positive correlation between antibody 

response and type 1 T cell response. There was a positive correlation between Thl 

response and serum IgA (r = 0.74), IgGl (r = 0.64), IgG2 (r = 0.51) and IgG3 (r = 0.43). 

There was no correlation observed between type 1 T cell response and antibody response 

in the young group. These results indicate that the type 1 T cell response is associated 

with IgA, IgGl, IgG2 and IgG3 antibody response to influenza vaccination in the elderly. 

Cytokine response to influenza vaccination in the elderly and the young 

In an attempt to understand the underlying mechanism of age-related decline in 

Thl and antibody response to inactivated influenza vaccination, the inflammatory and 

Th2 cytokine levels prior to vaccination, as well as how they responded to vaccination, 

were measured in young and elderly subjects. The inflammatory cytokines tested were 

TNF-a, IL-ip and IL-6, and the Th2 cytokine tested was IL-10. The cytokine levels from 

PBMC supernatants before and after influenza virus stimulation were measured using a 

multibead cytokine assay (CBA). Among all the cytokines evaluated, IL-6 was the most 

abundant. Although the mean levels of IL-6 were greater in the young group, we did not 

observe any statistically significant (p>0.05) difference in levels between the young and 

the elderly groups. The IL-10 levels were comparable in the young and the elderly groups 

pre- and post-vaccination. There was an increase in IL-10 levels in both die young and 
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the elderly groups after vaccination, but it was not significant. In the case of TNF-a, we 

observed that the young group had significantly higher levels both pre- and post-

vaccination compared to the elderly group. However, there was no significant increase in 

TNF-a levels post-vaccination in either group. Similarly for IL-lp, the levels were higher 

in the young group when compared to the elderly both pre- and post-vaccination, and did 

not increase significantly post-vaccination. We did not observe an enhanced Th2 cytokine 

response in the elderly group before and after influenza vaccination. 

These results suggest that the blunted type 1 T cell response in the elderly was not 

due to the increase in Th2 cytokines. We also evaluated the correlation between baseline 

levels of all the Thl and Th2 cytokines and the antibody response in both elderly and 

young adults, in an effort to investigate the relationship between cytokine levels and their 

effect on the T cell and antibody response to vaccination. We did not find any 

correlations between the T cell response or antibody response and baseline cytokine 

levels (data not shown), which suggests that cytokines do not influence the humoral 

antibody outcome after vaccination in the elderly or the young. We did not find any age-

related changes in cytokine profile before vaccination that had any influence on the T cell 

or antibody response to vaccination. 

Discussion 

It has been well established that influenza is a serious public health hazard, and 

the elderly are a highly vulnerable population affected by influenza-related illness and 

other secondary infections caused as a result of influenza infections [164, 176]. Although 

vaccination has been recommended to reduce influenza-related morbidity and mortality, 
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it has been found to be less efficacious in this population compared to the young [165, 

168]. One of the most crucial factors when evaluating age-related changes in immune 

response to vaccination is the state of health of the subjects. It has been shown in various 

studies that the health criteria of subjects can influence the results of a study [168]. In 

order for a study to be reflective of immune response elicited by a general healthy elderly 

population, we excluded any elderly subjects with immunodeficiency diseases, 

malignancies or those who were taking medications known to affect the immune system. 

In our study, we evaluated the humoral and cell-mediated immune responses 

simultaneously from a group of healthy and young individuals over a two year period to 

determine the effects of age on immune response to influenza vaccination. Most studies 

in the past have focused on either humoral or cell-mediated immune responses separately. 

Very few studies have looked into the age-associated changes in both arms of the 

immune system in parallel to delineate the age-related immune dysfunction to influenza 

vaccination [152, 166, 167, 177, 178]. We performed a comprehensive study looking at 

various humoral and cell mediated immune components pre- and post- influenza 

vaccination in a cohort of healthy community-dwelling young and elderly individuals to 

investigate the age-related decline in vaccine response. 

We demonstrated that the humoral immune response is compromised in the 

elderly compared to the young. Our results are in agreement with previous reports which 

have demonstrated an age-related decline in humoral antibody response to influenza 

vaccination [165, 168]. Although we did not observe any significant difference in the 

levels of four-fold rise after vaccination between young and elderly, it was evident that 

the baseline levels were much lower in the elderly compared to the young, since post-
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vaccination seroprotection levels in the elderly were significantly lower than in the 

young. Inactivated influenza vaccination was able to induce an increase in HAI antibody 

titers to each of the three strains, but was not able to provide an increase equivalent to 

seroprotective levels defined by >1:40 (HAI titer standard for seroprotection). We 

observed a trend of lower humoral immune response for both influenza seasons T05-06 

and T06-07 in the elderly. Another interesting trend observed in both the young and the 

elderly groups was that subjects with lower baseline HAI antibody levels tended to have a 

higher increase in antibody response as opposed to die individuals who had high levels of 

pre- existing HAI antibodies for any strain. Our data confirms reports from prior studies 

that have demonstrated inadequate humoral immune response to influenza vaccination in 

the healthy elderly compared to healthy young individuals. 

We further characterized the humoral immune response by determining serum 

IgG subclass and serum IgA levels pre- and post-vaccination. We investigated serum 

levels of IgGl, IgG2 and IgG3, which are subclasses of total serum IgG. Influenza 

immunization has been shown to induce serum IgG and IgA responses and is correlated 

with resistance to illness [56]. Total human serum IgG is divided into four subclasses: 

IgGl, IgG2, IgG3 and IgG4; their distribution is approximately 65%, 23%, 8% and 4% of 

the total serum IgG, respectively [179]. In humans, IgGl and IgG3 are the most 

important IgG subclasses in complement-fixation reactions and antibody cellular 

cytotoxicity [180]. The greatest increase in vaccination-induced titers was observed in 

IgGl levels, whose concentrations were significantly higher than IgG2, IgG3 or IgA 

levels. We observed an age-related decline in IgGl levels in the elderly group. Since HAI 

antibody response correlates with IgGl titers more than with any other isotype [181], 
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these results suggest that the difference in IgGl antibody levels could reflect the overall 

blunted humoral antibody response to vaccination in healthy elderly adults. Another 

study reported similar results where they observed an age-associated decline in IgGl 

antibody response to vaccination [182]. We also observed an age-related difference in 

serum IgG2 levels. Previous studies have observed that there is an age-related increase in 

levels of influenza specific serum IgG2 antibodies [161]. It has also been shown that only 

3-4% of anti-influenza antibodies in convalescent sera bear the IgG2 isotype [183]. 

Hence, although serum IgG2 subclass antibodies increase with age, the role of the IgG2 

subclass in immunity to influenza may be limited and may not be able to compensate for 

the age-related decline in serum IgGl. We observed a significant positive response to 

serum IgG3 levels post-vaccination in the elderly and the young. There were no dramatic 

differences observed in serum IgG2 and IgG3 levels as opposed to serum IgGl levels 

between the two groups. Other investigators have also observed that inactivated influenza 

vaccines stimulate moderate IgG2 and IgG3 responses [60, 182]. In the case of serum 

IgA levels, we observed that the pre- and post-vaccination levels in the young and the 

elderly were comparable and did not show any age-related decline in vaccine-induced 

immune response. While the biological role of IgA antibodies is evident at the mucosal 

surfaces, their function in systemic immunity with regard to influenza is still not clear 

[179]. 

We investigated the difference in the type 1 T cell response to influenza 

vaccination in the young and the elderly by studying IFN-y secretion from ISMT (CD4 

and CD8 T cells). Memory T cells have been shown to mount a vigorous immune 

response to challenge previously encountered antigens. We observed a significant decline 
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in the percentage of IFN-y secreting T cells in the elderly for both seasons T05-06 and 

T06-07. Other studies have also observed an age-related decline of IFN-y secretion after 

vaccination in the elderly [152, 166, 184]. An interesting observation in our study was 

that the decline was across longitudinal time points between the two groups. In a previous 

report, an impaired T cell response was found in the frail elderly who showed a blunted 

response to influenza vaccination [152]. We observed a similar trend in our study among 

the healthy elderly. Another interesting observation was that although there was an 

increase in the percentage of IFN-y secreting ISMT cells after vaccination in both 

groups, the young were able to maintain increased levels 21 days after vaccination as 

opposed to the elderly, where the levels went down to baseline after day 7 post-

vaccination. Our data were different from those of a previous study [152], in which the 

levels of IFN-y-secreting ISMT cells went down in the young population after 7 days. 

One of the reasons could have been the small sample size in that study (n = 7) as opposed 

to our study {T05-06 (n = 27) and T06-07 (n = 22)}. An observation similar to that in our 

study in the young group was made in another study, in which young subjects 

demonstrated a sustained increase in IFN-y production after vaccination [106]. The study 

by Deng et al. showed that there is no change in the number of ISMT cells between the 

young and the elderly. Hence, aging is not associated with a decline in the number of 

ISMT cells, but their ability to secrete IFN-y is compromised. Based on our data and 

previous findings, we can conclude that there is a functional difference between the 

ISMT of the elderly and the young, and that influenza vaccination is not able to induce 

significant and long- lasting IFN-y secretion from the ISMT cells in the elderly. Studies 

aimed to decipher the mechanism of functional changes that result in the reduced IFN-y 
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response of the ISMT cells in the elderly will help elucidate the reasons for immune 

senescence in memory T cells in the elderly. We also observed a difference in the scale of 

the IFN-y response between the two vaccine seasons. This could be due to the 

composition of the vaccine; however, it was important to note that the trends between the 

young and the elderly were similar in both seasons which demonstrates that the 

dysfunction of the ISMT cells is not specific for certain strains of the virus. The 

importance of IFN-y, a classical Thl cytokine promoting the Thl response and 

suppressing the Th2 response, has been well documented [169]. It has also been 

demonstrated that IFN-y secreting influenza-specific ISMT cells are critical for a rapid 

response to influenza vaccination [169]. Investigators have emphasized the importance of 

IFN-y in the defense against viruses and intracellular pathogens. We show in our study 

that there is a decline in IFN-y secreting ISMT cells ex vivo when stimulated with 

influenza antigen. Age-related defects in the ability of the ISMT cells to secrete IFN-y at 

the same levels as in the young may be responsible for lower vaccine efficacy rates and 

increased susceptibility to influenza infections in the elderly. The decline in the CTL 

response in the elderly could also be related to a decline the IFN-y levels which promote 

activation and proliferation of influenza-specific CD8 memory T cells. These results 

could also explain the reduction in the Thl-driven antibody response in the elderly 

compared to the young. 

We next investigated the cytokine profiles from PBMCs stimulated with influenza 

antigens ex vivo in the young and the elderly to study the effects of aging on cytokine 

responses to influenza vaccination. Cytokines play a critical role in regulating 

communication among cells of the immune system and in effector activity during an 
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immune response. Investigators have been interested in studying the age-related changes 

in cytokine profiles as a result of aging and its impact on the immune response. While 

most of the murine studies support an age-related shift from a Thl response to a Th2 

response, in humans the data remains inconclusive [101]. Experimental considerations 

are important when studying cytokine profiles. Variable results have been documented as 

a result of a change in stimulating agent, types of cells studied and health status of the 

subjects [101]. Using influenza as a stimulating agent as opposed to other mitogens yields 

contradictory results when measuring cytokine secretions from PBMCs [167, 185]. Using 

mitogens to evaluate the immune response may not reflect an immune response specific 

for a specific pathogen. By keeping the experimental conditions consistent, our study 

evaluated the both the Thl and Th2 cytokine profiles from the same lymphocyte 

preparation (PBMCs) using influenza as a stimulating antigen in a group of healthy 

young and an elderly population. We observed that IL-6 was the most abundant cytokine 

secreted by the lymphocytes in both groups. There was considerable heterogeneity in 

both groups, and we did not see an age-related change in IL-6 levels secreted by the 

elderly pre- or post-influenza vaccination. Studies using influenza as a stimulating 

antigen have observed a similar trend when there was no significant change in the BL-6 

response to vaccination [152, 167, 186]. The IL-10 levels remained unchanged or there 

was a moderate increase in IL-10 levels post-vaccination. We did not find a correlation of 

IL-10 and EL-6 with the IFN-y T cell response; thus, there was no shift in cytokine 

profiles of the elderly from a Thl response to a Th2 response. The proinflammatory 

cytokines TNF-a and IL-ip both were found to be higher in the young group when 

compared to the elderly and increased post-vaccination. However, the increase did not 
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reach statistically significant levels. In order to assess the role of baseline cytokine levels 

prior to vaccination, which might be responsible for lower T cell or antibody responses in 

the elderly, we measured cytokines secreted by PBMCs before and after vaccination. We 

did not observe any correlation between the baseline levels of IL-6, TNF-a, IL-ip or IL-

10 and T cell or antibody responses, which points out the lack of age-associated changes 

having an impact on the T cell or antibody responses to influenza vaccination. We did not 

observe an age-related shift in the cytokine response from a predominantly Thl response 

to a Th2 response. It is important to note that our study group comprised healthy elderly 

and young individuals who reflect the majority of the population to which influenza 

vaccination is administered. We excluded any individuals with underlying inflammatory 

diseases such as arthritis, which have been shown to influence the results in previous 

studies. We also evaluated the Thl and Th2 cytokines concurrently from the same 

lymphocyte preparation to eliminate any assay-related bias. No relationship between 

baseline changes in Thl and Th2 cytokine levels with respect to antibody response were 

observed, which demonstrated that the age-related changes in IL-6, IL-10, IL-ip or TNF-

a do not affect T cell or antibody responses to influenza vaccination. 

Finally, we looked at the correlation between the Thl T cell response and the 

antibody response among the elderly and young adults. We found that in the elderly 

group, there was a positive correlation between the Thl T cell response and the IgGl, 

IgG2, IgG3 and IgA antibody responses. Similar results have been reported in previous 

studies in healthy and frail elderly [152, 166]. We did not find a correlation between 

antibody and Thl T cell responses among the young group. In this regard, there have 

been previous studies with conflicting data. In one study, a positive correlation was 
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observed between antibody and T cell responses in the young [152], however the sample 

size was relatively small (n = 7). On the other hand, results similar to those in our study 

(n = 27 for T05-06 and n = 22 for T06-07) were reported in a cohort of young individuals 

(n = 30) vaccinated with inactivated influenza vaccine [185]. These results show that the 

Thl T cell response is an important component of the immune response in the elderly 

compared to the young, who show discordance between antibody and T cell responses. 

Results from our study indicate that in the elderly the Thl T cell response (IFN-y 

secretion) becomes critical as it drives the antibody response to vaccination. Vaccines 

that enhance both cellular and humoral immunity in the elderly are likely to offer optimal 

protection. Further studies need to be done to decipher the relationship between ISMT 

cells and antibody responses induced by vaccination, which will help in designing a more 

effective influenza vaccine for the elderly. 

In summary, we studied a comprehensive set of immune correlates to influenza 

vaccine response between young and elderly over a two year period. The data yielded 

several important conclusions. Clearly, the elderly have a blunted immune response to 

vaccination in both cellular and humoral arms of the immune system. We show that there 

is a significant decline in the humoral antibody response to all three vaccine strains in the 

elderly when compared to the young. The dramatic decline in IgGl in the elderly, which 

forms an important component of the HAI antibody response, is responsible for the 

overall decline in stimulation of the HAI antibody response. Changes in B cell repertoire 

with age may be responsible for the reduced IgGl response in the elderly. We also found 

that there was significant change in the ability of ISMT cells to secrete IFN-y in the 

elderly. Vaccination was able to induce a moderate increase in IFN-y response in the 



109 

elderly. However, there was a difference in the kinetics of the IFN-y response which was 

observed between the young and elderly; the young had a sustained increase in IFN-y 

response post-vaccination as opposed to the elderly. Since DFN-y is an important 

component of the cell-mediated and antibody responses, the overall change in ISMT 

function which results in a decline in IFN-y production could be a major factor in the 

blunted response to vaccination in the elderly. We also found that T cell responses 

correlated positively with antibody responses only in the elderly, which could mean that 

the IFN-y response becomes critical in the elderly. 

The antibody levels which offer protection in the young may not adequately 

protect the elderly. The underlying mechanisms of functional changes in ISMT cells need 

to be investigated; these will provide insights for the development of better influenza 

vaccines for the elderly. Another important observation of our study was that there was 

no shift in cytokine profiles from a Thl T response to a Th2 T cell response in the 

elderly. There was no correlation between baseline levels of cytokines that influenced the 

antibody responses in the elderly. The most significant observation of our study was the 

correlation between T cell response and antibody response in the elderly. Since the 

elderly showed reduced vaccine efficacy, one of the reasons for the reduced immune 

response could be due to a lower T cell response which influences the antibody response. 

Our results point out that the T cell response to influenza vaccination becomes more 

critical in the elderly compared to the young. Cellular immune responses targeted 

towards more conserved internal proteins of the influenza virus offer cross-reactive 

protection against different strains. Improving the induction of cellular immunity towards 

these proteins offers promise for developing better vaccines for the elderly, which will 
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help in boosting not only the T cell response but the antibody response to vaccination as 

well. 
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CHAPTER V 

PROTEOMIC PROFILING OF A LONGITUDINAL SERIES OF SERUM 

SAMPLES COLLECTED BEFORE AND AFTER LAIV AND TIIV INFLUENZA 

VACCINATION FROM HEALTHY SUBJECTS TO IDENTD7Y BIOMARKERS 

RELATED TO VACCINE RESPONSE AND IMMUNE SENESCENCE 

Introduction 

Influenza infections account for 40,000 deaths in the United States annually. The 

burden of influenza related infections is substantial, both in terms of illness, lives lost and 

economic impact on society [18, 20]. The impact of influenza-related infections is much 

higher in the elderly population. Influenza is a leading cause of catastrophic disability; 

greatly affecting the quality of life of elderly persons above 65 years of age [20, 21, 187]. 

Vaccination is the most cost-effective means to prevent severe influenza infections, 

especially for individuals who have a risk of morbidity and mortality. These include 

elderly individuals, infants, immunocompromised individuals, health care workers, and 

diabetic patients. Unlike other types of vaccines, the composition of the most common 

vaccines available in the market changes from year to year depending on the virus strain 

prevalent. At present there are two types of vaccines that are licensed in the U.S. market; 

a trivalent split inactivated influenza vaccine (THV) and a live virus vaccine, FluMist® 

(LAIV). The TIIV has been used for the past 60 years. Despite vaccination efforts, 

studies have shown that the vaccines are only 30-40% effective in the elderly population, 

in contrast to 70-90% in the young population [20, 166, 188, 189]. The inadequate 

vaccine response is largely attributable to immunosenescence. The underlying 

mechanism of immunosenescence still remains poorly understood. Continued and 
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focused research efforts are needed to understand the underlying mechanisms of 

immunosenescence; they will eventually translate into better vaccines or age group-

specific vaccines [22, 27]. Various studies have demonstrated a relationship between 

influenza vaccine response in the elderly and immunosenescence. Most of the data, 

however, are focused on T cells [152, 190]. Other aspects of immunity are most probably 

also affected by immunosenescence. There is a lack of evidence on other immune 

senescence markers; they might also be affected as a result of aging, which leads to a 

decline in the efficacy of influenza vaccine response. The most established method to 

determine vaccine efficacy is the hemagglutination inhibition (HAI) antibody titer 

increase post-vaccination. This technique does not help in identifying immune response 

markers as a result of vaccination over time. The HAI assay is helpful only in 

determining increases in serum antibody levels after vaccination. Other techniques 

involving measuring T cell activity, NK cell activity and other cell surface markers have 

also been used to demonstrate immune responses to vaccination [166, 191-193]; 

however, they do not give us a complete picture of immunological changes taking place 

after administering the vaccine. The field of proteomics, which involves the study of 

expressed proteins, has made rapid strides in the past two decades. The primary aim of 

clinical proteomics is to identify biomarkers for the diagnosis of disease by comparing 

the proteomic profiles in control and disease states from body fluids like plasma, serum, 

saliva, cerebrospinal fluid, and urine [194]. Biomarker discovery uses ever advancing 

mass spectrometry techniques like matrix-assisted laser desorption and ionization time of 

flight (MALDI/TOF), surface-enhanced laser desorption and ionization (SELDI), two 

dimensional electrophoresis (2D gels), and liquid chromatography mass spectrometry 
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(LC-MS), which have emerged as essential investigative tools for identifying various 

disease states, especially in the field of early cancer diagnosis [139, 195-199]. Studies 

have successfully utilized mass spectrometry based proteomic techniques to identify 

blood-based biomarkers from human plasma and serum for cancer diagnostic, asthma, 

Alzheimer's disease, and rheumatoid arthritis [194]. To date, no data are available on the 

use of mass spectrometry-based proteomic techniques to assess the efficacy of influenza 

vaccines. We wanted to determine if we could identify any influenza vaccine-related 

biomarkers using mass spectrometry-based proteomic technology. We used mass 

spectrometry-based profiling techniques to observe longitudinally collected serum 

samples from subjects vaccinated with the TIIV and LAIV influenza vaccines to quantify 

the immune responses to influenza vaccination and identify vaccine response biomarkers. 

In this study, we used the MALDI-TOF MS in conjunction with chemical affinity beads 

for proteomic profiling of a longitudinal series of serum samples obtained from two 

different vaccinated cohorts. The first cohort comprised young and elderly healthy 

volunteers who were immunized with THY and the second cohort comprised healthy 

young volunteers vaccinated with LAIV. Unfortunately, to our surprise, the study did not 

reveal any candidate immune response markers in the LAIV group, due to high levels of 

variability of peptide/protein peaks observed in the vaccinated subjects. The same case 

applied to the THV group, in which we did not observe any host response biomarkers to 

influenza vaccination. Our comparisons between the young and the elderly groups also 

did not reveal any age-related immune senescence markers. To our knowledge, this was 

the first effort to use proteomic profiling (MALDI-TOF MS) technology to evaluate 

vaccine response markers. Our exploratory efforts using proteomic profiling approaches 
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did not succeed in identifying serum biomarkers of influenza vaccine immune response. 

Although the use of proteomic technology appeared to be a novel and unique tool to 

investigate influenza vaccine responses, the use of serum as a source to identify vaccine 

response biomarkers seems to be more complicated than anticipated at this time. 

Materials and Methods 

Vaccines 

The vaccines used for this study were Fluzone® (Aventis Pasteur), a TIIV vaccine 

and FluMist® (Medlmmune) a LAIV vaccine. The THV vaccines used were from 

seasons 2005-2006 (T05-06) and 2006-2007 (T06-07) and the LAIV vaccines were from 

season 2006-2007 (L06-07). The TIIV vaccine of the 2005-2006 season comprised 15 fig 

each of the HA from A/New Caledonia 20/1999 (H1N1), A/New York/55/2004 (H3N2) 

and B/Jiangsu/10/2003 (B/Shanghai/361/2002-like), and the TIIV vaccine of the 2006-

2007 season comprised 15 ng each of the HA from A/New Caledonia 20/1999 (H1N1), 

A/Wisconsin/67/2005 (H3N2) and B/Malaysia/2506/2004. The LAIV vaccine comprised 

cold adapted attenuated influenza virus containing io65"7,5 TCID50 median tissue culture 

infectious doses of A/New Caledonia 20/1999 (H1N1), A/Wisconsin/67/2005 (H3N2) 

and B/Malaysia/2506/2004-like virus strains. 

Study Population 

Subjects for the study were recruited by the clinical coordinating team at the 

Glennan Center for Geriatrics and Gerontology, Eastern Virginia Medical School during 

the winter influenza season of 2005-2006 and 2006-2007 through written informed 



115 

consent. The Institutional Review Board at Eastern Virginia Medical School approved the 

study, protocol and the informed consent form. The study group comprised healthy 

independently living individuals divided into two groups. One group received Fluzone, 

an intramuscular inactivated split virus vaccine, and the other group received FluMist, an 

intranasal live attenuated virus vaccine. The subjects that received the Fluzone vaccine 

were further divided in to two groups and two categories. The two groups were divided 

into young subjects and elderly subjects, and the two categories were divided into 2005-

2006 influenza season and 2006-2007 influenza season groups. Subjects who received 

the FluMist vaccine were enrolled in the 2006-2007 influenza season. For the Fluzone 

study, a total of 92 subjects were recruited, out of which 49 were young (ages 28 ± 5 S.D. 

years) and 43 were elderly (ages 78 ± 6 S.D. years) elderly. For the FluMist study, a total 

of 41 (ages 31 ± 9 S.D. years) subjects were recruited. Subjects allergic to eggs, suffering 

from underlying chronic diseases such as diabetes, autoimmune diseases like systemic 

lupus erythematosus or rheumatoid arthritis, or congestive heart failure, pregnant women 

and those on immunosuppressive drugs were excluded from the study. In order to reduce 

any differences in immunological background against influenza, only those individuals 

were included in the study who had been vaccinated with the influenza vaccine during the 

previous influenza season (2004-2005 or 2005-2006). Serum samples were collected on 

day 0 (before vaccination) and on day 4, day 7 and day 21 post-vaccination. All the 

samples were frozen at -80°C after collection until further analysis. 
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Hemagglutination inhibition (HAI) assay 

Hemagglutination occurs when sialic acid residues, similar to the cellular 

receptors on erythrocytes bind to the receptor binding site present on the tip of the viral 

HA proteins. Hemagglutination can be inhibited by adding HA recognizing antibodies 

before adding erythrocytes in the assay which is termed as hemagglutination inhibition; 

hence the assay is termed as hemagglutination inhibition assay (HAI). When performing 

HAI assays sera from vaccinated or infected subjects are titrated on 96 well plates to 

which a known amount of influenza virus and erythrocytes are added. In our study serum 

antibody titers specific for each of the three strains present in the vaccine formulations 

were determined by standard microtiter HAI assay following procedures described 

previously [150]. Serum HI antibodies were determined on day 0 (pre-vaccination) and 

on day 21 (post-vaccination). Non-specific inhibitors in serum were removed by 

incubating serum with receptor destroying enzyme (RDE; Sigma). All influenza H1N1, 

H3N2 and B antigens (wild strains compatible with the recombinant strains in the 

vaccine) were grown in 10 day old fertilized chicken eggs. A slight modification was 

made to the protocol. Guinea pig red blood cells (GPRBCs) were used for agglutination 

instead of chicken or turkey RBCs. The HI titer was defined as the reciprocal of the 

highest dilution of serum that completely inhibited agglutination. Antibody titers of >40 

were considered protective (seroprotection) and a > four-fold rise in antibody titer 

(seroconversion) to one out of three vaccine antigens was considered an adequate 

response. 



117 

MALDI/TOF of Serum Samples 

Serum samples from all subjects vaccinated with either TIIV (n = 92) or LAIV (n 

= 41) collected at different time points pre and post-vaccination were processed in 

duplicate. For each sample, 20 ul of serum was subjected to fractionation with 10 ul 

Magnetic Weak Cation exchange beads (MB-WCX) on the ClinProt robotic platform as 

per manufacturer's instruction (Bruker Daltonics, Germany). The samples were washed 

twice with binding buffer and unbound proteins were discarded. Proteins bound to the 

beads were eluted, mixed with alpha-cyano-4-hydroxycinnamic acid (CHCA) matrix 1:1 

in an acetone and ethanol mixture of 1:2. For each sample 1 u.1 was robotically spotted in 

duplicate onto a pre-structured sample support (600 \im AnchorChip™ target, Bruker 

Daltonics) and allowed to air dry at room temperature. The samples were analyzed using 

an UltraFlex 1 matrix assisted laser desorption/ionization time of flight (MALDI-

TOF/TOF) mass spectrometer (Bruker Daltonics) equipped with a pulsed ion extraction 

ion source. The samples were assayed randomly and blinded to the operator. Ionization 

was achieved by irradiation with a nitrogen laser (337 nm) operating at 15 Hz. Each 

spectrum was detected in linear positive mode and was externally calibrated using a 

mixture of peptide standards. Profile spectra were acquired from an average of 400 laser 

shots. The serum profiles were processed using ClinPro Tools 2.0 Software (Bruker 

Daltonics, Germany). The Clin Pro Tools software was used to facilitate the processing 

and comparison of multiple spectra by automatic normalization, base line subtraction, 

peak definition and recalibration. The peak mass-to-charge ratio (m/z) values and 

intensities in the range of 1000 Da to 10,000 Da were analyzed with a signal to noise 

ratio of >3. A mass window of 0.5% was used to align the spectra. The processed spectra 



118 

were used under the quick classifier method to classify differentially expressed peaks 

between the groups that were being investigated. A k-nearest neighbor genetic algorithm 

as a part of the software was used to generate statistically significant differences in 

protein peaks in the groups analyzed. These identified ions represent candidate 

protein/peptide biomarkers of influenza vaccine response. The relative peak intensities of 

significant peaks were calculated among the different groups that were compared and a 

student t test was performed to determine the statistically significant peaks. 

Results 

Serum MALDI-TOF MS profiling of subjects vaccinated with LAIV 

We first evaluated the serum profiles from subjects vaccinated with LAIV 

vaccine. A four-fold rise in antibody response to any one of the three strains in the 

vaccine which is used as a standard measure of vaccine response was not used to classify 

subjects as responders and non-responders since the humoral response to vaccination was 

low in all subjects as mentioned in Chapter III. In order to evaluate influenza vaccine 

immune response we categorized serum samples collected from all subjects based on 

days collected pre and post-vaccination in the form of a longitudinal data set. Serum 

samples collected at day 0, day 4, day 7 and day 21 were fractionated using WCX affinity 

based magnetic beads on the ClinProt robotic platform and subjected to MALDI-TOF 

MS serum profiling as described in the methods section. We observed 138 peaks in the 

1000 to 10000 m/z range when evaluated with the ClinPro Tools software. Statistically 

evaluation did not yield any peaks which were differentially expressed between day 0 

(pre- vaccination) and subsequent post-vaccination days (day 4, day 7 and day 21). We 
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performed student's t-test for the most intense peaks across the groups and did not find 

any peaks of interest which showed differential expression as a result of vaccination. We 

observed a number of the peptide peaks which have been reported in other cancer 

biomarker discovery studies by our group and others [195, 200] which are listed in Table 

8. We compared the expression of some of these most commonly identified peptide peaks 

and found that there was no difference in expression levels over time (Fig. 16, Fig. 17 

and Fig. 18). We also observed a high level of subject to subject variation. The majority 

of the outliers which were observed in our analysis had high or low levels of expression 

throughout the longitudinal time points that were evaluated. 

There were three peaks which did show some amount of differential expression 

hence we looked at each of those individual peaks and arranged the data from the 

individual subjects to determine if we could find any correlation between differential 

expression of these peaks and antibody or T cell responses. We arranged the data based 

on the following three peaks 1979 m/z, 2861 m/z and 3059 m/z. A representation of 

differential expression of these peaks over different time points pre- and post-vaccination 

is depicted in Fig. 19. Keeping the change in the intensity of the peaks at day 4 and day 7 

relative to the baseline (pre-vaccination) levels as the variables of interest we divided 

vaccinated subjects into two groups. The first group (Gl) showed an increase in the 

intensity of three peaks on day 4 and day 7 post-vaccination and the second group (G2) 

did not show any change in intensity at day 4 and day 7 post-vaccination. Once the two 

groups were established, we then compared the antibody response (based on HAI 

response) and the T cell response (based on IFN-y response) of the vaccinated subjects 

that fell in each group Gl and G2 (Table 9). When all the variables were compared we 
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were not able to establish any correlation between change in the peak intensities with 

either the antibody response or the T cell response. There were no meaningful statistical 

relationships that could be recognized. No trend emerged which could justify the change 

in peak intensities were a result of vaccination as they did not correlate with any other 

immune response markers. Based on these data we concluded that the variations in the 

peak intensities were most likely attributed to subject to subject variation and were not a 

reflection of a change in protein profiles as a result of influenza vaccination. 

We had anticipated observing differences in serum profiles which would have 

been correlated with other immune correlates evaluated in Chapter HI. However, such 

correlation studies were not possible due to lack of identification of any differentially 

expressed peaks. 
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Table 8. List of peaks observed in our study which have been observed by other groups 
involving cancer biomarker studies [195, 200]. 

Peak (m/z) 
3261 
3190 
2931 
2768 
2553 
2816 
3239 
2659 
2021 
2861 
3240 
1465 
2021 
1865 
1895 
1740 
2704 
2183 
3970 
2271 
3156 
2755 
1944 
2081 
2209 

Peptide fragment ID 
Fibrinogen alpha 
Fibrinogen alpha 
Fibrinogen alpha 
Fibrinogen alpha 
Fibrinogen alpha 
Fibrinogen alpha 
Fibrinogen alpha 
Fibrinogen alpha 
Fibrinogen alpha 
Fibrinogen alpha 
Fibrinogen alpha 
Fibrinogen alpha 
Complement C3f 
Complement C3f 
Complement C4a 
Complement C4a 
Complement C4a 
ITIH4 
ITIH4 
ITIH4 
ITIH4 
apoA-IV 
Kininogen HMW 
Kininogen HMW 
Kininogen HMW 
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Fig. 16. Box and whiskers plot of the distribution of relative intensities of peak 1865 m/z 
in the LAIV cohort. 
The box denotes where the intensities of majority of the samples lie and the whiskers of 
the box plot demonstrate the range of intensities of all samples that are not considered 
outliers. The outliers are shown as individual points. The median of the group is denoted 
by a solid line in the respective boxes. There were no statistically significant comparisons 
observed between groups. 
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Fig. 17. Box and whiskers plot of the distribution of relative intensities of peak 1944 m/z 
in the LAIV cohort. 
The box denotes where the intensities of majority of the samples lie and the whiskers of 
the box plot demonstrate the range of intensities of all samples that are not considered 
outliers. The outliers are shown as individual points. The median of the group is denoted 
by a solid line in the respective boxes. There were no statistically significant comparisons 
observed between groups. 

Peak 1944 m/z (Kininogen HMW peptide fragment) Longitudinal Expression in 
Subjects vaccinated with LAIV 06-07 

n= 41 
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Fig. 18. Box and whiskers plot of the distribution of relative intensities of peak 3190 m/z 
in the LAIV cohort. 
The box denotes where the intensities of majority of the samples lie and the whiskers of 
the box plot demonstrate the range of intensities of all samples that are not considered 
outliers. The outliers are shown as individual points. The median of the group is denoted 
by a solid line in the respective boxes. There were no statistically significant comparisons 
observed between groups. 

Peak 3190 m/z (Fibrinogen alpha peptide fragment) Longitudinal Expression in 
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Fig. 19. Example of three possible differential peaks 1979 m/z, 2861 m/z and 3059 m/z 
observed in LAIV vaccinated subjects. 
Three possible differentially expressed peaks that were observed in LAIV vaccinated 
subjects based on differential expression at day 4 and day 7 post-vaccination. First group 
(Gl) demonstrated increase in peak intensity on day 4 and day 7 post-vaccination and 
second group (G2) did not show any increase in peak intensity at day 4 and day 7 post-
vaccination. 
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Table 9. Comparison of subjects vaccinated with LAIV with an increase in peaks 1979 
m/z, 2861 m/z and 3059 m/z to subjects with no significant change in respective peaks 
with relation to T cell and antibody response. 

A B 

Subjects with an increase in peak Subjects with no increase in peak 
intensities on Day 4, Day 7 after intensities on Day 4, Day 7 after 

vaccination vaccination 

Subjects 

Oil 

311 

314 

317 

>I9 

324 

326 

329 

331 

Fold Increase 
IFN-'/ 

3.68 

2S 

0 9 

( ' ) . & • > 

1.14 

1.9$ 

3.4S 

11 

1 

HA1 Ah Response 

NR 

WR 

NR 

NR 

WR 

R 

WR 

NR 

WR 

Subjects 

•32 

305 

318 

320 

328 

334 

336 

341 

Fold Increase 
IFN-y 

3.27 

1.35 

0.41 

1.16 

054 

14 

1.33 

HAIAb Response 

WR 

NR 

NR 

WR 

WR 

NR 

NR 

The numbers (311,314 etc.) denote each subject vaccinated with influenza vaccine. 
R = Responder (based on four-fold increase of HAI antibody titers to all three strains of 
influenza virus present in the vaccine) 
WR = Weak responder (based on four-fold increase of HAI antibody titers to one of the 
three strains of influenza present in the vaccine) 
NR = Non-responder (no four-fold increase in HAI antibody titers to any of the three 
strains of influenza virus present in the vaccine) 
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Serum MALDI-TOF MS profiling of subjects vaccinated with TITV 

We next evaluated the serum profiles from subjects who were vaccinated with 

TIIV. Since subjects vaccinated with TIIV demonstrated a strong humoral antibody 

response as opposed to LAIV (Chapter III), we divided this cohort further into sub

groups based on four-fold increase in HAI antibody titers to any of the three strains 

present in the vaccine. Subjects who demonstrated a four-fold increase in HAI antibody 

titers were classified as responders. The different sub-groups were as follows: young 

responder, young non-responder, old responder, and old non-responder. We divided the 

cohorts in mis manner in an attempt to look for serum biomarkers of vaccine response as 

well as immune senescence markers. It has been described in detail in Chapter IV how 

the immune response to TIIV vaccination is markedly reduced in elderly compared to 

young. We attempted to identify candidate markers in the serum which are differentially 

expressed in the young and elderly as a result of vaccine response. All serum samples 

were subjected to fractionation using WCX affinity magnetic beads on the ClinProt 

robotic platform as and subjected to MALDI-TOF MS as described in the methods 

section. Overall we observed 122 peaks in the 1000 to 10000 m/z range when evaluated 

with the ClinPro Tools software. We performed statistical analysis on the most intense 

peaks that were observed. To our surprise we did not find any statistically significant 

peaks that were observed among any of the groups that were evaluated. We failed to 

identify any vaccine response specific peaks; we also failed in our attempt to identify 

aging associated differentially expressed peaks between the young and the elderly groups. 

The classification based on antibody response did not yield any statistically significant 

differentially expressed peaks. Again we were able to observe the most abundant 
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peptide/protein peaks that are identified in most cancer biomarker related studies [195, 

200] which are listed in Table 8. The identified peaks were similar to the ones observed 

in the LAIV cohort. We compared the expression of some of these peaks across all 

different groups as we did for the LAIV cohort and found no statistically different peaks 

similar to the LAIV cohort (Fig. 20, Fig. 21 and Fig. 22). A trend was observed similar to 

LAIV group where die majority of the outliers in analysis had high or low levels of 

expression throughout the longitudinal time points that were evaluated. The failure of our 

endeavor in identifying vaccine response or aging related biomarkers was not due to 

experimental errors in the assay per se since in both the LAIV and TIIV cohorts we were 

able to observe the most abundant peptide/protein peaks that have been observed in other 

studies using this technology. These results show that the technology is not able to 

identify influenza vaccine response markers or aging related immune senescence markers 

in healthy subjects. 
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Fig. 20. Box and whiskers plot of the distribution of relative intensities of peak 1740 m/z 
in the TIIV cohort. 
The box denotes where the intensities of majority of the samples lie and the whiskers of 
the box plot demonstrate the range of intensities of all samples that are not considered 
outliers. The outliers are shown as individual points. The median of the group is denoted 
by a solid line in the respective boxes. There were no statistically significant comparisons 
observed between groups. 
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Fig. 21. Box and whiskers plot of the distribution of relative intensities of peak 1944 m/z 
in the TIIV cohort. 
The box denotes where the intensities of majority of the samples lie and the whiskers of 
the box plot demonstrate the range of intensities of all samples that are not considered 
outliers. The outliers are shown as individual points. The median of the group is denoted 
by a solid line in the respective boxes. There were no statistically significant comparisons 
observed between groups. 
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Fig. 22. Box and whiskers plot of the distribution of relative intensities of peak 3190 m/z 
in the THV cohort. 
The box denotes where the intensities of majority of the samples lie and the whiskers of 
the box plot demonstrate the range of intensities of all samples that are not considered 
outliers. The outliers are shown as individual points. The median of the group is denoted 
by a solid line in the respective boxes. There were no statistically significant comparisons 
observed between groups. 
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Discussion 

Our studies showed that MALDI-TOF serum profiling using affinity capture 

magnetic beads was not able to identify differential peptide/protein expression to 

influenza vaccination and aging associated immune senescence markers among healthy 

individuals. We used the technique to identify differential expression of peptides 

longitudinally in two separate vaccine cohorts. In both the TUV and LAIV cohort we did 

not find any statistically significant differentially expressed serum peptides/proteins. 

There could be a number of reasons for the failure of our study to identify vaccine 

response markers and age related immune senescence markers. 

Previous studies involving detection of cancer biomarkers have been successful in 

identifying signature biomarkers in the form of differentially expressed peptides/proteins 

in serum samples using the MALDI-TOF platform. The majority of the differentially 

expressed peptides are derived from the most abundant proteins that are secreted or 

otherwise released from tissues into the bloodstream [132]. Most cancers involve 

transformation and proliferation of altered cell types that produce high levels of specific 

proteins and enzymes like proteases [201, 202]. This results in the modification of the 

existing serum proteins (serum proteome) along with their metabolic products serum 

peptidome [132]. In addition there is complex interplay between tumor tissue and the 

surrounding microenvironment, resulting in an alteration of the serum protein profile 

[203]. A recent study showed that a large portion of the human serum peptidome that is 

detected by MALDI-TOF MS is produced ex vivo by degradation of endogenous 

substrates by endogenous proteases [204]. Another study also provided evidence of 

exoprotease activity activities superimposed on the ex vivo coagulation and complement 
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degradation pathways contributed not only to cancer specific but also cancer type specific 

serum peptides [195]. The MALDI-TOF MS profiling detection method is suitable for 

such studies since proteases and exoproteases are well established components of cancer 

progression and invasiveness [205-207]. In our study we were attempting to identify 

differentially expressed peaks corresponding to vaccine response related changes in 

healthy subjects. Since influenza vaccination does not involve any transformation or 

proliferation of cell types that produce high levels of proteases or exoproteases, it may 

have impacted the experimental outcome and led to our inability to identify any 

peptides/proteins of vaccine response in the window of 1000 to 10000 m/z that we 

evaluated. In our study we observed a number of peptide peaks that corresponded to 

peptide fragments that have been reported to be differentially expressed in previous 

cancer studies which rules out possibility of any assay related errors. When these peptide 

fragments were studied longitudinally there was no significant difference that was 

observed over time after vaccination. It has also been observed that the sensitivity to 

identify distinct peptides from subjects with later stages of cancer is higher than from the 

ones with benign tumors or in initial stages of tumor progression using the MALDI-TOF 

MS profiling method. Our results imply mat there are no dramatic systemic changes in 

the entire proteome as a result of vaccination as opposed to cancer, which is why this 

technique failed to identify any signature biomarkers. 

Expression based profiling studies employing the MALDI-TOF platform mostly 

examine endogenous low molecular mass peptides/proteins (1-20 kDa) of serum and 

plasma [138]. Due to the large size of most proteins captured by magnetic affinity beads 

(e.g. IgGs and IgAs) are not effectively resolved in the MALDI-TOF instrument. Unless 
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the larger proteins are broken down into smaller fragments within the detection range of 

the instruments they will not be detected. In our study we only investigated the 

peptides/proteins in the 1-10 kDa range; hence it is likely that a number of proteins that 

were captured by WCX fractionation were not detected due to the absence of the peptide 

fragments representative of the larger proteins that were beyond the detection range of 

the instrument. The WCX affinity capture beads are based on cation exchange principle 

where a weak acid (carboxymethyl functional group) is bound to the bead which enables 

the beads to only bind positively charged proteins present in the serum due to its negative 

polarity. The entire serum proteome is too complicated and it is impossible to study all 

the proteins present in the serum at one time. Different fractionation methods are 

employed to capture particular classes of peptides/proteins. It is unlikely that WCX 

fractionation alone could account for the enrichment all the low abundant serum proteins. 

Other fractionation techniques using other affinity bead types for example WAX (weak 

anionic exchange); HIC C8 (based on hydrophobic interactions) and IMAC Cu (based on 

metal ion affinity) can be used to investigate other serum fractions to identify different 

groups of proteins which may demonstrate differential expression. Another approach that 

could be employed is to digest each sample (e.g., using trypsin) after front end 

fractionation and then evaluating the complex protein mixtures. However, this method 

will require multiple MS runs to detect differentially expressed peptides which is not 

feasible for large sample sizes and is labor intensive. 

Another explanation for our results could be sensitivity, ion suppression and mass 

resolution issues that are associated with the MALDI-TOF MS profiling technology. For 

example, prostate specific antigen (PSA) which is a universally accepted marker for 
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prostate cancer is secreted in the serum of prostate cancer patients. However, MALDI-

TOF MS technology currently available has not been able to detect PSA from serum. It is 

possible that the changes in serum proteins that occur after vaccination are not detectable 

using MALDI-TOF MS platform due to their low concentrations in the serum. It has been 

reported that concentrations of cytokines are so low that these proteins are beyond the 

detection range of the instrument [208]. There is a general consensus that only 1% of the 

entire serum protein content is made up of proteins that are considered low abundance 

which are of primary interest from a biomarker discovery point of view [133]. However, 

it has been observed during the analysis of complex mixtures like serum using MALDI-

TOF MS that complex components of highest molar abundance generally dominate the 

spectrum and tend to suppress detection of lower abundance proteins [138]. A number of 

reports have suggested that there are difficulties in determining the protein identities of 

potential biomarker peaks, and there is a concern that the sensitivity and dynamic range 

of prevalent proteins in serum or plasma prohibits identification of proteins which 

continues to hamper expression profiling approaches [209, 210]. At the moment there are 

no clear answers about the interrelationship between changes of peptide protein profiles 

obtained from serum and pathological changes in an organism. 

In conclusion, our results, although negative, shed some light into the use of 

MALDI-TOF MS technology to identify vaccine response markers. This is the first report 

to use this technology for the identification of vaccine response markers. It is often the 

case that a quest of discovery using a new technology meets with failures. Future studies 

involving vaccine response should be undertaken with caution and careful consideration 

should be given to the kind of systemic changes that take place after vaccination which 
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could yield any significant biomarkers in the serum. The field of serum profiling using 

MALDI-TOF MS technology currently is and will remain a very active field in the search 

for cancer biomarkers. Its use for vaccine response markers however, remains limited to 

date and needs further investigation. 
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CHAPTER VI 

CONCLUSIONS AND FUTURE DIRECTIONS 

Conclusions Aim I: Comparison of cellular and humoral immune responses of 

trivalent inactivated influenza vaccine (TIIV) and live attenuated influenza vaccine 

(LAIV) in healthy young adults 

A. Subjects vaccinated with TIIV had a significantly higher increase in serum 

antibody titers (HAI) compared to the LAIV group. 

B. The seroconversion and seroprotection rates were also found to be significantly 

higher in the groups vaccinated with TIIV than LAIV. 

C. Comparable serum IgA responses were observed between the TIIV and LAIV 

groups, however, serum IgA correlated positively with HAI antibody response 

and IL-10 cytokine response only in LAIV group. 

D. Significant increase in serum IgGl, IgG2 and IgG3 responses after vaccination 

were only observed in the TIIV group which correlated positively with the serum 

HAI antibody response. There was no significant increase in serum IgGl, IgG2 

and IgG3 response in the LAIV group. 

E. We observed that subjects vaccinated with LAIV were able to elicit a more robust 

type 1 T cell response (increase in percentage of IFN-y producing T cells) 

compared to the TIIV group. 
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Future Directions for Aim I 

The efficacy of both TIIV and LAIV vaccines have been shown to be comparable 

in several studies. Studies have shown that LAIV predominantly induces local secretion 

of polymeric secretory IgA antibodies on the mucosal surface [79] and that polymeric 

secretory IgA antibodies can neutralize influenza virus efficiently independently of serum 

IgGs [211]. Our study along with other reports has clearly demonstrated a limited 

humoral antibody response after LAIV vaccination as opposed to TUV. Keeping these 

considerations in mind some investigators have proposed that the levels of IgA in nasal 

secretions which are significantly higher after LAIV to TUV immunization should be 

used to account for vaccine efficacy for LAIV [79]. The exclusive consideration of HAI 

as a serological response marker will result in a bias in favor of parenteral vaccine and an 

underestimation of the efficacy of LAIV. 

The difference in the immune response to TITV and LAIV can be explained by the 

different routes of immunizations employed. Systemic immunizations are generally 

inclined to induce a greater systemic antibody response as opposed to mucosal 

immunization especially in previously immunized individuals who have been primed. 

The antibody responses induced after LAIV immunization could be predominantly taking 

place locally in the nasal mucosa and the upper respiratory tract and only a limited 

proportion of the local antibody responses are actually reflected in systemic circulation. 

Previous studies have demonstrated the ability to induce local response after mucosal 

immunizations [158, 212, 213]. On the other hand parenteral influenza immunization did 



139 

not result in an increase in antibody responses in the nasal mucosa but showed an 

increase in the blood and tonsils [214]. 

Future studies should be designed to investigate nasal washes for mucosal IgA, 

and IgGs pre- and post-vaccination from a group of pre-vaccinated healthy young 

individuals vaccinated with the TITV and LAIV vaccine. Such studies will provide us 

with better data to interpret the differences in immune responses of the two vaccines. 

Simultaneous assessment of serum IgA and IgGs should also be conducted and pre and 

post-vaccination values should be correlated to provide us with a better understanding of 

the relationship between mucosal and systemic antibody responses. 

We speculate that LAIV which is capable of replicating in the upper respiratory 

tract, has the ability to provide CD8+ T cells with viral antigens via dendritic cells and 

other antigen presenting cells. As a result LAIV vaccine is able to induce a response from 

both the CD4+ T cells and the CD8+ T cells resulting in a more pronounced type 1 T cell 

response to vaccination. Further studies should be targeted to examine immune response 

to vaccination from different T cell subsets to get a clear picture regarding the immune 

mechanism of the two vaccines. We believe this will help explaining a more robust Thl T 

cell response in LAIV group compared to TITV group. Another observation made in our 

study which requires further investigation is the correlation of IL-10 cytokine and 

antibody response in LAIV group. Further studies need to be done to verify this 

observation and studies to modulate IL-10 response to induce antibody response in LAIV 

vaccination should be designed. 
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Aim II: Comparison of age related changes in immune response to inactivated 

influenza vaccine response between healthy young and elderly and the role of 

cytokines in lower vaccine efficacy in elderly. 

A. The humoral antibody (HAI) immune response to inactivated influenza 

vaccination is compromised in the elderly compared to the young. 

B. Subjects with lower baseline HAI antibody levels had a higher increase in 

antibody response as opposed to those who had high levels of pre existing HAI 

antibodies for any strain of the influenza virus present in the vaccines. 

C. There was a dramatic decline in serum IgGl response to influenza vaccination in 

the elderly which forms an important component of the HAI antibody that reflects 

the overall decline in of the HAI antibody response. 

D. The overall ability of ISMT cells to secrete IFN-y pre- and post-vaccination was 

lower in the elderly compared to the young across longitudinal time points. 

E. There was a difference in the kinetics of the IFN-y response observed between 

young and elderly where young had a sustained increase in IFN-y response post-

vaccination as opposed to the elderly. 

F. Overall change in ISMT function which results in a decline in IFN-y production 

could be a major factor in the blunted response to vaccination in the elderly. 

G. Influenza specific T cell responses correlated positively with antibody response 

only in the elderly which reflects that IFN-y response becomes critical in elderly. 

H. No correlation between baseline levels of IL-10, IL-6, TNF-a and IL-ip cytokines 

was observed in relation to the antibody and T cell responses to vaccination in the 
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elderly which demonstrated that these cytokines are not related to a reduced 

immune response in elderly. 

Future Directions of Aim II 

The results from our study demonstrated a marked decline in humoral and cell 

mediated Thl T cell immune responses in the elderly compared to the young after 

inactivated influenza vaccination. Our study clearly demonstrated that there is decline in 

the IFN-y secretion levels from ISMT cells in elderly and vaccination was not able to 

compensate for this decline. We also observed a correlation between Thl T cell response 

and antibody response only in the elderly which suggest the importance of Thl T cell 

response to antibody production in the elderly. It will be useful to investigate the 

mechanism of decreased IFN-y production as a result of the functional decline of ISMT 

cells which would help in developing approaches to compensate for the decreased 

influenza vaccine efficacy in elderly. Future studies using proteomic techniques could be 

employed to determine difference in proteins between isolated T cells from young and 

elderly. These isolated pure cell populations could be digested using proteolytic enzymes 

and labeled with isotope labeled tags (iTRAQ) and differential expression of proteins 

present in these cells can be evaluated using LC-MALDI MS or LTQ. Such studies could 

provide us with insights into the mechanism of functional decline in T cells. It will also 

be useful in identifying other cell types associated with IFN-y production in response to 

influenza vaccination which will allow for modulation of those specific cell types for 

antibody generation. Efforts should be made to develop vaccines that can stimulate the 

Thl T cell response as it appears to be the most effective way to increase the efficacy of 
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influenza vaccines in elderly. The use of IFN-y as an adjuvant to influenza vaccines could 

also be investigated. An alternative approach would be the use of adjuvants to stimulate 

IFN-y response in elderly. The role of other cytokines like IL-7 which has an important 

role in thymic functioning should be investigated since modulation of these cytokines 

may offer a target for increasing the response to vaccination in the elderly. 

Conclusions Aim III: Proteomic profiling of a longitudinal series of serum samples 

collected before and after LAIV and TIIV influenza vaccination from healthy 

subjects to identify biomarkers related to vaccine response and immune senescence. 

A. Although we observed a number of peptide/protein peaks using MALDI-TOF MS 

serum profiling, we were unable to identify any vaccine response specific peaks 

in the LAIV group after vaccination. 

B. The TETV group also did not reveal any influenza vaccine response specific peaks 

or any ageing related immune senescence markers using the MALDI-TOF MS 

technique. 

Future Directions of Aim III 

Our study was a first study which utilized this technology for the identification of 

vaccine response markers. Our results bring out some very important points in regard to 

study design for the use of MALDI-TOF MS technology to identify vaccine response 

markers. It is clear from our study that there is high level of heterogeneity in peptide/peak 

response in healthy individuals to vaccination. These individuals have been exposed to 

various strains of influenza along with several other pathogens over the years. The varied 



143 

immunological background and susceptibility to other medical conditions of the subjects 

makes it challenging to search for vaccine response markers using MALDI-TOF MS. 

Cancer and other systemic diseases which are characterized by dynamic changes in 

protein expression and function are ideal candidates for the use of this technology. Future 

studies involving vaccine response should be undertaken with careful considerations to 

the kind of population in which the study is being conducted and systemic changes that 

take place after vaccination which could yield any significant biomarkers in the serum. 

Other fractionation techniques and tryptic digestion methods can be employed to mine 

deeper into the serum for identification of vaccine response or immune senescence 

markers. Future studies could be carried in out in immune naive populations, for example 

in children who have relatively similar immunological background, which would reduce 

the complexity and heterogeneity in immune response. Studies evaluating other vaccines 

besides influenza vaccines could also help us better understand if the field of serum 

profiling can be applied for vaccine response markers. At this point though the use of 

MALDI-TOF MS technique for identification of vaccine response markers remains 

limited and needs further investigation. 
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