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ABSTRACT

REGULATION OF SPARC GENE EXPRESSION BY THE ACTIVATOR PROTEIN 1
TRANSCRIPTION FACTOR

Joseph William Briggs 
Old Dominion University, 2005 

Chair: Dr. Timothy J. Bos

Overexpression of the c-Jun proto-oncogene in MCF7 breast cancer cells results 

in a variety of phenotypic changes related to malignant progression including a shift to 

estrogen independent growth, increased cell motility and invasion. Concurrent with these 

phenotypic changes are alterations to cellular gene expression patterns. One gene that 

becomes highly upregulated is SPARC (secreted protein acidic and rich in cysteine). 

Increased SPARC expression is associated with malignant progression in a variety of 

different cancers, although little is known regarding the mechanisms of SPARC gene 

regulation. Therefore, the objectives of this study were: 1.) to determine the mechanisms 

by which c-Jun regulates SPARC gene expression, and 2.) to determine the contribution 

of SPARC to c-Jun induced phenotype in a MCF7 breast cancer model system.

In order to determine the role of SPARC in c-Jun mediated oncogenic 

progression, we over-expressed SPARC in MCF7 cells and blocked its expression in the 

c-Jun/MCF7 cell line. We found that antisense mediated suppression of SPARC 

dramatically inhibits both cell motility and invasion in this c-Jun/MCF7 model. In 

contrast, stable overexpression of SPARC in the parental MCF7 cell line was not 

sufficient to stimulate cell motility or invasion suggesting that SPARC cooperates with 

other c-Jun target genes to establish a pro-invasive phentoytpe.
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In order to determine the mechanism(s) of c-Jun induced SPARC gene activation, 

we started by analyzing DNA binding and transactivation using the human SPARC 

promoter. The activity of the full-length SPARC promoter (-1409/+28) was 15-30 fold 

higher in c-Jun over-expressing cells compared to vector control cells. Promoter deletion 

analysis revealed that a region between -120 and -70 conferred c-Jun responsiveness. 

This region does not contain an AP-1 binding site, but does contain a GC rich element 

which is recognized in vitro and in vivo by Spl. Importantly, chromatin 

immunoprecipitation analysis demonstrated that c-Jun is physically associated with the 

SPARC proximal promoter region during gene activation.

Further analysis of the SPARC promoter sequence, including the c-Jun responsive 

region, revealed the presence of multiple CpG sequences. Methylation of cytosine 

residues in a CpG context has been shown to inhibit gene expression. Therefore, we 

examined the contribution of DNA methylation to SPARC gene regulation. Analysis of 

MCF7 cells, in which SPARC expression is undetectable, revealed methylation of the 

SPARC promoter at both distal and proximal sites. Inhibition of DNA methyltransferase 

activity in these cells resulted in a dose dependent increase in SPARC mRNA levels 

suggesting that SPARC may be transcriptionally repressed via DNA methylation in 

MCF7 cells. Interestingly, overexpression of c-Jun cells resulted in a localized 

demethylation of the SPARC promoter near the transcription start site correlating with an 

increase in SPARC mRNA and protein levels. Transfection of an in vitro methylated 

SPARC promoter/reporter plasmid into c-Jun/MCF7 cells resulted in a dramatic decrease 

in promoter activity suggesting an important functional role for SPARC promoter 

methylation in regulating c-Jun responsiveness.
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Additional characterization of the SPARC promoter revealed changes in post- 

translational modification of histone H3 and H4 known to be associated with chromatin 

remodeling and gene activation. Specifically, chromatin immunoprecipitation analysis 

demonstrated hyperacetylation of histones as well as enrichment of methylated histone 

H3 at lysine 4 in response to c-Jun.

In conclusion, our results support a model where c-Jun acts as a molecular switch 

directing site-specific epigenetic changes leading to SPARC gene activation. Moreover, 

we have identified SPARC as an important c-Jun target gene which contributes to 

phenotypic progression in an MCF7 model system.
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This dissertation is dedicated to family and friends that supported me and made this

research possible.
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1

CHAPTER I 

INTRODUCTION

A. Breast Cancer Biology and Epidemiology

Breast cancer is a major health problem in the United States and worldwide. It is 

estimated that 211,240 new cases of invasive breast cancer will be diagnosed in 2005 and 

that 40,410 women in the United States will die from this disease this year (1). Breast 

cancer is the third most common cause of death in women 40-55 years of age and the 

incidence of disease increases with age. More than 94% of new cases and 96% of deaths 

attributed to breast cancer occur in women ages 40 and older (1). Success in treating the 

disease relies, in large part, on early diagnosis and appropriate therapeutic intervention 

prior to spread of the disease. The five-year survival rate for patients diagnosed with 

only localized tumor involvement is 97% (1). This number drops to 78% when there is 

regional spread of the disease (1). Patients diagnosed late in disease progression, in 

which the tumor has spread to secondary organ systems, have only a 23% five-year 

survival rate (1).

B. The Etiology of Breast Cancer

It is widely accepted that breast cancer, like other neoplasms, is the result of 

genetic alterations which lead to aberrant cell growth (2-5). Greater than 90% of breast 

cancers arise from cells of epithelial origin (6). Breast malignancies are categorized 

based on the type of tissue from which they arise. The two most common types are

This dissertation follows the format of the journal Cancer Research.
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ductal (tissue connecting the milk glands and nipple) carcinomas and lobular (milk 

producing glandular tissue) carcinomas. Tumors can further be classified based on cell 

genotype and phenotype. Mutations in the breast cancer associated genes BRCA1 and 

BRCA2 are associated with familial forms of breast cancer (3,7). However, these cases 

comprise only a small portion of the total number of breast cancer cases diagnosed each 

year (8, 9). More frequently, the underlying cause of sporadic breast tumors is not 

known. Other genetic alterations which have been shown to occur in the more frequent, 

sporadic cases of breast cancer include: gene mutations, gene amplifications, gene 

deletions and/or genetic rearrangements (10-13). For example, mutation of the p53 tumor 

suppressor gene has been demonstrated in approximately 25% of breast tumors (14, 15). 

In addition, amplification of the MYC proto-oncogene occurs in 15-20% of breast cancers 

(16, 17). Finally, amplification of the HER2/neu gene has been shown in 25-30% of 

breast neoplasms (17-19).

In addition to gene copy number differences, altered gene expression is a common 

occurrence in breast cancer. A study comparing the gene expression profiles of normal 

mammary epithelial cells to invasive breast cancer cells revealed differences in gene 

expression patterns between the two cell populations (20). It is believed that some of 

these differentially regulated genes are involved in breast cancer progression from a 

benign to a malignant state. Differential expression of genes such as estrogen receptor 

alpha, HER2!neu and the proto-oncogene JUN  are well documented (21-26). These 

observations have led to the understanding that the cellular gene expression profile 

ultimately determines cell phenotype. This knowledge has been used to develop new 

treatment regimes for breast cancer and to identify biomarkers for use as prognostic
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indicators. For example, estrogen receptor positive tumors respond to the growth 

inhibitory effects of the anti-estrogen, tamoxifen (27). Likewise, the growth of breast 

tumors with elevated levels of the HER2lneu gene product is inhibited by the monoclonal 

antibody trastuzumab (28).

Our current understanding of breast cancer progression is that it is a multi-step 

process consisting of the initiating oncogenic event(s) followed by promotion of tumor 

cell growth and finally, disease progression (2, 29). These step-wise alterations have 

been characterized histopathologically and phenotypically as 1.) normal mammary 

epithelial cell 2.) benign hyperplasia 3.) carcinoma in situ 4.) locally invasive and 5.) 

metastatic carcinoma. The conversion from benign to malignant neoplasia is 

characterized by an invasive cellular phenotype where cells become motile and degrade 

the local extracellular matrix and basement membrane (30-34). These phenotypes are not 

characteristic of normal epithelial cells, but rather cells of mesenchymal origin. This 

phenomenon has been described as “epithelial-to-mesenchymal transition” (35). This is 

considered an important event in the “evolution” of a tumor cell because it represents a 

time when the phenotype has been sufficiently altered resulting in pathology. This 

pathology involves disruption of the normal tissue architecture, disruption of the 

basement membrane, trauma, and inflammation. A subset of locally invasive cells may 

disseminate into the lymphatics and vasculature of the breast. An even smaller portion of 

the cells which enter the circulation (<0.01%) result in the formation of metastatic foci 

(36). Metastasis is defined as establishment of the tumor in a secondary organ system, 

discontinuous from the primary lesion (1). This event is important because the majority 

of morbidity and mortality associated with breast cancer is the result of metastatic
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disease. However, the cellular events required for malignant progression remain a 

mystery.

In order to better understand the molecular mechanisms of breast cancer 

progression it would be of use to identify genes which play a functional role in the 

disease process. As a result there has been an effort to identify and validate functional 

genes as opposed to bystander genes. Along these same lines, it is of interest to better 

understand how expression of these genes is regulated in non-invasive versus invasive 

tumor cells.

A number of studies have demonstrated that the proto-oncogene JUN  may play an 

important role in oncogenesis and tumor progression. For example, overexpression of 

c-Jun has been shown to induce cell transformation in primary chicken embryo 

fibroblasts and, in cooperation with oncogenic Ras, to transform primary rat cells (37- 

43). Importantly, c-Jun expression is increased in primary and metastatic breast tumor 

samples when compared to normal breast epithelial cells (25, 44, 45). Patients with c-Jun 

positive breast tumors are also less responsive to tamoxifen therapy and have shorter 

survival rates (45). In support of these observations, there is an inverse correlation 

between c-Jun expression and estrogen receptor status (44-46). Interestingly, to date, 

there have been no reports of JUN  gene amplification or mutation. However, several 

studies have demonstrated an increase in c-Jun expression and/or c-Jun DNA binding and 

related transcriptional activity (25, 47-49). The current paradigm is that c-Jun acts at the 

level of transcriptional transactivation to “turn-on” and/or “tum-off ’ a subset of genes 

involved in regulating cell phenotype.
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In addition to c-Jun, other members of the AP-1 transcription factor family have 

been implicated in breast cancer. For example, increased expression of c-Fos correlates 

with failure to respond to endocrine therapy and poor survival (45). In addition, Fra-1 

expression is high in invasive breast cancer cell lines and its expression correlates with 

estrogen receptor negative breast tumors (44, 50, 51). Interestingly, we and others, have 

shown that FRA1 is a c-Jun target gene (50, 51). In contrast, JunB expression is 

decreased in the invasive breast cancer cell line MDA-MB-231 compared to less invasive 

cell lines (20). Increased FosB expression correlates with well differentiated, estrogen 

receptor positive tumors (44). Finally, a comparison of gene expression patterns from 13 

different breast cancer cell lines revealed dramatically elevated expression of both c-Jun 

and Fra-1, primarily in the highly invasive lines (20).

C. Properties and Functions of the Transcription Factor c-Jun

The Jun oncoprotein was originally identified as the Avian Sarcoma Virus 17 

gene product responsible for viral induced cell transformation (52). Subsequent studies 

demonstrated the existence of a cellular counterpart to viral Jun, and was termed c-Jun 

(53). c-Jun belongs to the superfamily of bZIP (basic region leucine zipper) proteins 

which are known as transcriptional regulators (54, 55). Within the bZIP family c-Jun is 

the proto-type for the activator protein-1 (AP-1) transcription factor family (53). The 

JUN  gene is evolutionarily conserved in organisms from Drosophila to humans. In 

humans, JUN is a single copy gene located on chromosome lp31-32. JUN encodes a 

39kDa protein which is required for normal embryonic development. This is supported 

by observations that JUN  -/- (null) mice exhibit embryonic lethality (56, 57).
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c-Jun has been shown to contain distinct modular domains involved in 

transactivation, dimerization and DNA binding (Fig. 1) (53, 54, 58). Under normal 

physiological conditions, c-Jun expression follows immediate-early kinetics in response 

to mitogenic stimuli as well as stress activated cell signaling (55, 59, 60). In addition, 

c-Jun is rapidly induced in cells following treatment with the tumor promoting agent, 

phorbol ester (55, 59-61). This activation of c-Jun expression has been shown to occur as 

a result of protein kinase C signaling events (55, 59-61). In NIH3T3 cells, c-jun mRNA 

levels increase as early as 30 minutes following serum stimulation and return to basal 

levels after approximately two hours (62). The half-life of the c-jun message is regulated 

by the presence of AU rich mRNA destabilizing elements in the 3’ untranslated region 

(63). Furthermore, c-Jun protein undergoes rapid turnover mediated by a proteolytic 

signal PEST amino acid sequence (64, 65). However, during pathological conditions, 

such as tumorigenesis, c-Jun expression and/or steady-state levels has been shown to be 

increased (25, 45, 66, 67).

The c-Jun protein is capable of forming dimers with members of the Jun (c-Jun, 

Jun B, Jun D), Fos (c-Fos, Fra 1, Fra 2, Fos B), ATF/CREB (ATF2, ATF3), and Maf/Nrl 

families through a common leucine zipper motif (54, 68-73). This prerequisite 

dimerization affects DNA binding affinity and site recognition as well as transactivation 

potential (54, 71-73). For example, Jun/Fos heterodimers form stronger interactions than 

Jun/Jun homodimers and in vitro synthesized Jun proteins exhibit lower affinity binding 

to AP-1 sequences than if mixed with c-Fos (74-76). As a result, it is widely accepted 

that the relative abundance of AP-1 proteins determines the identity of AP-1 dimer 

combinations and the cellular profile of genes they regulate.
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A
c-Jun Protein Modular Domain Structure

transactivation domain
leucine zipper 

dimerization domain

± i

amino terminus I carboxy terminus

basic region DNA  
binding domain

B

AP-1 
transcription 

factor complex

Jun family

■ Fos family

c-jun

junB

junD

c-fos
fosB

fra-1
fra-2

Jun/Jun homodimers

Jun/Fos heterodimers 
(no Fos homodimers)

Fig. 1. c-Jun and the AP-1 transcription factor family members. A, Schematic 
representation of the c-Jun protein modular domain architecture. B, Summary of Jun 
and Fos gene family members.
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In the direct model of AP-1 regulated gene expression, AP-1 dimeric complexes 

recognize and bind the consensus DNA sequence TGAC/GTCA in the promoters and 

enhancers of target genes (72-74, 77, 78). The specificity of DNA binding is determined 

by positively charged amino acids in the basic region, adjacent to the leucine zipper 

dimerization domain (69). However, AP-1 is fairly promiscuous and recognizes 

numerous non-canonical variations of this site as well as variations of the eight base pair 

consensus binding site for the ATF/CREB proteins, TGACGTCA (79-81). For instance, 

c-Jun/ATF2 will bind to the AP-1 site in the urokinase plasminogen activator promoter 

with the sequence TGAAGTCA with high affinity (82). In contrast, c-Jun/c-Fos 

heterodimers do not bind well to this sequence and c-Jun homodimers do not bind at all 

(82). The AP-1 like site in the proenkephalin enhancer, TGCGTCA, binds well to JunD 

but not to JunB homodimers (83). We have demonstrated similar qualitative sequence 

specificity differences for variations of AP-1 and CREB target sequences between v-Jun 

and c-Jun isolated from chicken embryo fibroblasts (80). The existence of both high and 

low affinity AP-1 binding sites has important gene regulatory implications. Specifically, 

target gene regulation by AP-1 proteins depends not only on binding site context but also 

on the levels of specific AP-1 dimers expressed at any given time. Taken together, these 

studies demonstrate the capability for unique gene target regulation based on the 

compositional properties of AP-1 dimers. It is these gene regulatory patterns, which 

ultimately influence the biological phenotype.

In addition to these direct mechanisms of transcriptional control, c-Jun/AP-1 can 

also influence gene regulation through indirect mechanisms by interacting with other 

sequence specific transcription factors (84-91). For example, c-Jun has been shown to
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interact with the Spl transcription factor to regulate expression of the p 2i WAF1/c‘PI and 

12(S)-lipoxygenase genes (92, 93). In these examples, c-Jun mediated transcriptional 

activation was shown to be independent of binding to an AP-1 DNA element (92, 93). 

c-Jun has also been shown to interact with the retinoblastoma (RB) protein resulting in 

synergistic activation of the DNA methyltransferase gene, DNMT1. However, in this 

example a consensus AP-1 site in the DNMT1 promoter was required for c-Jun mediated 

transactivation (94). Additionally, c-Jun has been shown to utilize non-canonical AP-1 

sites such as one present in the multi-drug resistance gene, MDR1, as a means of 

regulating gene transcription (95). Mutation of the MDR1 AP-1 like site from 

TCAGTCA to a consensus site (TGAGTCA) resulted in increased promoter activity in 

MCF7 cells transiently transfected with c-Jun (95).

But how does c-Jun promote transcription activation? The current paradigm is 

that c-Jun binds DNA in a sequence specific manner and interacts with components of the 

basal transcription machinery and co-activators to stabilize the transcription pre-initiation 

complex (PIC). In support of this, c-Jun has interacts with TAF1 and TFIIB (96-98). 

Furthermore, c-Jun mediated transcription is dependent on transcription associated 

factors (TAFs) in vitro (97). Interaction with co-activators such as CBP (cyclic AMP 

responsive element binding protein) leads to chromatin remodeling due to CBP’s intrinsic 

histone acetyltransferase activity (99, 100). As a result, it is believed that these events 

lead to increased chromatin accessibility and long term potentiation of transcription by 

directing chromatin modification at a target locus.
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D. The MCF7 Breast Cancer Model System

In order to study the role of c-Jun in breast cancer progression, our laboratory has 

previously shown that c-Jun enhances tumorigenicity of the human mammary carcinoma 

cell line, MCF7 (46). These changes include a shift to estrogen independent growth, 

increased in vitro cell motility and invasion and increased tumor formation in 

ovariectomized athymic (nude) mice (Fig. 2) (46). These changes are specific to c-Jun as 

demonstrated by comparing MCF7 stable cell lines overexpressing c-Jun or the related 

JUN  family member, JunD. JunD/MCF7 cells fail to exhibit phenotypic changes 

consistent with malignant progression (Appendix A, Fig. 38). In addition, nuclear 

extracts isolated from c-Jun/MCF7 cells demonstrate increased AP-1 DNA binding 

activity compared to JunD/MCF7 or empty vector control/MCF7 stable cell lines 

(Appendix A, Fig. 39). Consistent with this observation, we found that overexpression of 

c-Jun induces a number of changes in gene expression including upregulation of the 

mesenchymal cell marker, vimentin, and downregulation of estrogen receptor alpha (Fig. 

2) (46, 51). In addition, analysis of the AP-1 expression profile in c-Jun/MCF7 cells, 

compared to JunD/MCF7 and vector control/MCF7 cells, reveals changes consistent with 

those observed in clinical tumors (44). These changes include upregulation of Fra-1 and 

FosB and downregulation of JunB (Fig. 3). Taken together, these studies establish that 

the c-Jun/MCF7 cell culture model provides a useful tool in which to study mechanisms 

involved in breast cancer development and progression.
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List of c-Jun Target Genes in MCF7 Breast Cancer Cells 

Upregulated Downregulated

1.) Cytokeratin 7
2.) EMMPR1N
3.) Fibronectin
4.) Metallothionein III
5.) MMIF

6.) p 16INK4a
7.) PAI-1

8.) SPARC

9.) TIMP-1

10.) Vimentin

1.) GADD 153
2.) p21WAF1/Cipl
3.) Cytokeratin 19

4.) TRIP6

5.) Estrogen receptor alpha

B
Summary of c-Jun Induced Phenotypic Changes in MCF7 Cells

phenotype empty vector control/MCF7 
stable cell lines

c-Jun/MCF7 stable cell lines

cell morphology tight junctions, adherent large, less adherent, 
less compact growth

responsiveness to estrogen yes no

growth doubling time faster, except in estrogen 
depleted medium

slower

tumorigenicity in nude mice 0/18 13/18

cell motility and chemotaxis weak strong

Matrigel™ invasion weak strong

Fig. 2. Summary of c-Jun induced changes in gene expression and 
phenotype in MCF7 cells. A, A list of genes up or down regulated in 
response to constitutive overexpression of c-Jun in MCF7 cells. B, A 
summary of phenotypic changes in c-Jun/MCF7 cells compared to empty 
vector control/MCF7 stable cell lines.
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MCF7 MCF7
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Fig. 3. Expression profile of JUN  and FOS family genes in MCF7, 
JunD/MCF7 and c-Jun/MCF7 stable cell lines. Semi-quantitative RT-PCR 
analysis of endogenous AP-1 mRNA levels in the presence or absence of c-Jun 
or JunD overexpression in MCF7 cells. The numbers (1) and (2) denote 
individual stable cell lines tested. 18S serves as an invariantly expressed internal 
control gene. (L) denotes DNA molecular weight marker.
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E. Properties and Functions of SPARC

One of the genes most highly upregulated by c-Jun in MCF7 breast cancer cells is 

SPARC (secreted protein acidic and rich in cysteine) (51). An analysis of SPARC 

expression by semi-quantitative RT-PCR demonstrated a >100 fold increase in steady 

state mRNA levels (Fig. 4). SPARC, also known as osteonectin and BM-40, belongs to 

the matricellular family of proteins which are involved in mediating interactions between 

the cell and extracellular matrix (101-107). The SPARC gene is evolutionarily conserved 

from C. elegans to humans and was originally identified as a glycoprotein constituent of 

bovine bone (108-110). Structural and functional analysis demonstrated the existence of 

several modular domains including: 1.) an amino-terminal acidic domain which has 

been shown to bind calcium 2.) a follastatin-like domain containing a copper binding 

region and promotes angiogenesis 3.) a carboxy terminal E-F hand domain which 

consists of a second calcium binding region (111). Additional studies have demonstrated 

the potential for differential N-linked glycosylation patterns depending on the cell type 

analyzed (112). In platelets, SPARC contains mainly complex type sugars, whereas in 

bone, SPARC contains primarily high mannose type (112). The functional significance 

of this differential glycosylation is unknown.

Expression of SPARC has been demonstrated in a wide range of tissues and is 

increased in epithelial cells during the processes of tissue remodeling and tumorigenesis 

(107, 108, 113, 114). SPARC is secreted from cells and binds to proteins such as 

collagen, thrombospondin, platelet derived growth factor (PDGF) receptor and vascular 

endothelial growth factor (VEGF) receptor (115-117). The normal physiological role for 

SPARC has been demonstrated during the processes of wound healing, morphogenesis
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A semi-quantitative RT-PCR

MCF7 c-Jun/MCF7
1 .01 1 .01 input RNA(ug)

L I .1 I I -1 I L

f !
i

SPARC

18S

B Western blot: anti-SPARC antibody

MCF7 c-Jun/MCF7
1 2  3 1 2 3 independent stable cell clones

■M- SPARC protein

* equal protein (ug) loading

Fig. 4. Analysis of SPARC expression in MCF7 and c-Jun/MCF7 cells. A, RT- 
PCR analysis demonstrating steady state levels of SPARC RNA expression using 
18S as an internal control. B, Western blot showing expression of the 43kDa 
glycosylated form of SPARC protein. Equal amounts of total protein (50pg) were 
loaded in each lane.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



15

and bone formation (102). SPARC inhibits cell adhesion resulting in perturbed cell-to- 

cell contacts (101, 102). These observations are likely a result of decreased focal 

adhesion contacts during conditions when SPARC is highly expressed (103, 118, 119).

In addition, overexpression of SPARC has been shown to inhibit cell cycle progression 

by initiating Gi arrest in some cell types (102).

A multitude of studies have been conducted in which differences in SPARC gene 

expression correlate with tumor formation and/or progression. For example, SPARC 

mRNA and protein levels are increased in metastatic prostate cancer cells when 

compared to primary tumor cells (120). In addition, in well-differentiated brain 

astrocytoma tumors SPARC expression is increased (121). Furthermore, increased 

expression of SPARC has been demonstrated in bladder cancer and hepatocellular 

carcinoma and is associated with poor prognosis and late stage disease (122, 123). A 

clinical study of patients with melanoma demonstrated that SPARC expression was 

elevated in primary and metastatic forms of the disease (124, 125). Importantly, specific 

inhibition of SPARC in malignant melanoma cells abolished in vivo tumorigenicity in a 

mouse model (126). Immunohistochemical analysis of invasive meningioma and breast 

tumor samples revealed an increase in SPARC protein when compared to benign tissue 

(127, 128). Interestingly, increased SPARC expression has been observed in conjunction 

with increased c-Jun and Fra-1 expression in a panel of invasive breast cancer cell lines 

(20). Taken together, these studies suggest that increased SPARC may play a role in 

tumor cell progression.
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F. Regulation of SPARC Gene Expression

While there is an abundance of evidence emphasizing the importance of SPARC 

expression in numerous cancer model systems, we know very little with regards to basic 

mechanisms of SPARC gene regulation. The human SPARC promoter was originally 

isolated and shown to be active in transient transfection assays in HT1080 human 

fibrosarcoma cells and HeLa cervical carcinoma cells when inserted upstream of a 

luciferase reporter gene (129). Initial experiments characterizing the chicken SPARC 

promoter established Jun responsiveness in chicken embryo fibroblasts (130). 

Interestingly, in these cells, endogenous chicken SPARC is normally expressed, but 

becomes downregulated in response to v-Jun expression. This v-Jun mediated repression 

of SPARC was shown to contribute to transformation of chicken embryo fibroblasts in 

vitro and fibrosarcoma formation in vivo (42). Conversely, we have shown that 

overexpression of c-Jun in MCF7 breast cancer cells results in SPARC gene activation, 

increased cell motility and invasion (46, 131). This interesting paradox regarding 

SPARC expression and regulation by v-Jun and c-Jun likely reflects cell type specific 

and/or species specific differences, but nonetheless, emphasizes the relationship between 

c-Jun expression and SPARC gene regulation.

G. Hypothesis and Specific Aims

Increased c-Jun/AP-1 expression is associated with breast cancer progression to a 

more invasive, hormone independent phenotype. However, the mechanisms by which 

c-Jun contributes to tumor progression remain unclear. Because c-Jun is a transcription 

factor, it is widely accepted that deregulated expression of c-Jun target genes plays a role
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in this process. One intriguing c-Jun target gene shown to be upregulated in our MCF7 

model system was SPARC. Increased SPARC expression is associated with 

tumorigenesis and malignant progression in a variety of cancers. Therefore, the 

objectives of this dissertation were to: 1.) determine the mechanisms by which c-Jun 

regulates SPARC gene expression, and 2.) determine the contribution of SPARC to c-Jun 

induced phenotype in a MCF7 breast cancer model system. Characterization of the 

events is critical in order to better understand the process of c-Jun mediated gene 

regulation during phenotypic progression. Our hypothesis was that c-Jun binds to 

SPARC gene regulatory regions leading to an increase in SPARC expression and a 

concomitant change to a pro-invasive cell phenotype. To test our hypothesis we 

proposed the following three specific aims:

Aim 1. To determine the effects of SPARC gene expression on MCF7 cell phenotype. 

Aim 2. To map the c-Jun responsive region(s) of the human SPARC gene promoter.

Aim 3. To analyze epigenetic modifications associated with SPARC gene expression.
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CHAPTER II 

MATERIALS AND METHODS

Cells used in these studies

The c-Jun/MCF7 stable cell lines and empty vector control/MCF7 cell lines were 

a generous gift from Dr. Mike Birrer (National Institutes of Health/National Cancer 

Institute). Cell lines were maintained in a humidified chamber at 37°C and 5% carbon 

dioxide in Improved Minimal Essential Medium with zinc option (Mediatech 

Incorporated, Herndon, VA) supplemented with 10% fetal bovine serum and 1% 

penicillin/ streptomycin.

Large scale preparation of plasmid DNA

Large scale preparation of plasmid DNA was done using the Qiagen High-Speed 

Midiprep Kit (Qiagen Corporation, Valencia, CA) according to manufacturer’s 

instructions.

Cloning of the human SPARC protein coding region

Total RNA was isolated from c-Jun/MCF7 cells using TRIZOL® reagent 

(Invitrogen Corporation) according to manufacturer’s recommendations. lOOng of total 

RNA was reverse transcribed using Moloney Murine Leukemia Virus reverse 

transcriptase (Promega Corporation) and random hexamers. The human SPARC protein 

coding region was amplified from the cDNA synthesis reaction using the Advantage™ 2 

PCR kit (Clontech Corporation) using the following primers: SPARC cloning primer 1 =
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5’ gtcagaagcttatgagggcctggatcttctttctcc 3’, SPARC cloning primer 2= 5’ 

gtcagatcgattggatttagatcacaagatccttgtcg 3’. SPARC cloning primer 1 has a Hindlll site 

incorporated at the 5 ’ end to facilitate subsequent cloning while SPARC cloning primer 2 

has a Clal site at its 5’ end. Thermocycling conditions for SPARC amplification were as 

follows: step 1, 95°C for 2 minutes, step 2, 95°C for 30 seconds, step 3, 68°C for 30 

seconds, step 4, 68°C for 1 minute, repeat steps 2-4, 29 times. The resultant PCR product 

is expected to be 944 base pairs consisting of 912 bases corresponding to the human 

SPARC coding region. PCR products were resolved by electrophoresis on a 1% low 

melting point agarose/IX TBE gel stained with GelStar® reagent (Cambrex Corporation, 

East Rutherford, NJ) at a final concentration of IX for visualization. The SPARC 

amplicon was purified using the Qiaquick Gel Extraction Kit (Qiagen Corporation, 

Valencia, CA) following manufacturer’s recommendations. This purified RT-PCR 

product was digested with Hindlll and Clal restriction enzymes and ligated to a similarly 

digested pGEM-7Zf+ plasmid (Promega Corporation, Madison, WI). Following 

transformation into DH5 alpha, electrocompetent E. coli cells, a positive clone containing 

an insert of the correct size was selected for sequence verification. DNA sequencing was 

conducted using an ALF automated DNA sequencer (Amersham/Pharmacia Biotech). 

Human SPARC oligonucleotide primers and sequence comparisons were based on 

GenBank accession number NM 003118.

Generation of SPARC/MCF7 and JunD/MCF7 stable cell lines

SPARC/MCF7 and JunD/MCF7 stable cell lines were made utilizing the pLPCX 

retroviral vector system (Clontech Corporation, Palo Alto, CA) according to
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manufacturer’s recommendations. Briefly, the human SPARC protein coding region was 

subcloned from the pGEM7-Zf+ Hindlll/Clal site into the Hindlll/Clal site of pLPCX 

retroviral vector (Clontech Corporation, Palo Alto, CA). The rat JunD protein coding 

region (kind gift from Dr. Rodrigo Bravo, Bristol-Myers Squibb, Trenton, New Jersey) 

was subcloned from Hindlll/Notl into a Hindlll/Notl digested LPCX vector. Purified 

plasmid DNA containing the appropriate expression cassettes for SPARC and JunD were 

transfected into the RetroPack™ PT67 packaging cell line in order to produce infectious 

retrovirus. This cell line is derived from the murine fibroblast NIH3T3 cell line. 

Retroviruses produced from these cells contain the dualtropic 10A1 viral envelope 

protein thereby allowing for retroviral entry into target cells via the cell surface 

receptor(s) RAMI (Pit2) and/or GALV (Pitl) (132, 133). PT67 cells were plated at a 

density of 5 X 105 cells/lOOmm plate. 24 hours later, cells were transfected with 12pg 

DNA/lOOmm plate using FuGENE 6 reagent (Boehringer Mannheim) according to 

manufacturer’s recommendations (DNA:FuGENE ratio= 2:1). After 48 hours PT67 cells 

were placed under antibiotic selection using 2.5pg/ml of puromycin. Clonal populations 

of antibiotic resistant cells were allowed to grow together until confluent. Growth media 

containing virus was harvested and filtered through a 0.45 pm cellulose acetate filter for 

subsequent infection of target cells. MCF7 cells were infected by incubating cells in the 

presence of viral supernatant and lOpg/ml of polybrene. Cells were incubated with virus 

for 6 hours then refed with Improved Minimal Essential Media with zinc option 

(Mediatech Incorporated, Herndon, VA) containing 10% fetal bovine serum and 1% 

penicillin/streptomycin. Forty-eight hours after infection, cells were placed under 

antibiotic selection using 2.0pg/ml of puromycin. After approximately 3 weeks
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individual antibiotic resistant cell clones were isolated using sterile glass cloning rings 

(8mm diameter X 6mm height). To accomplish this, tissue culture dishes containing cell 

colonies were gently washed two times with 37°C phosphate buffered saline. Next, one 

end of a cloning ring was coated with sterile petroleum jelly and placed over an 

individual cell colony using sterilized forceps. A 50jul aliquot of trypsin/EDTA was 

added to the inside of each cloning ring to facilitate removal of the cell colony and to 

disperse cells. The trypsinized cells were then transferred to a single well of a 12-well 

tissue culture dish using a pipette. Stable cell clones were maintained in Improved 

Minimal Essential Medium with zinc option (Mediatech Incorporated, Herndon, VA) 

containing 10% fetal bovine serum, 1% penicillin/streptomycin and 2.0pg/ml of 

puromycin. Individual stable cell lines were then assayed SPARC or JunD protein 

expression as described below.

Western blot analysis

Monolayer cultures of cells were washed twice using IX phosphate buffered 

saline and collected in 1.5mls phosphate buffered saline for each 100mm plate. Cells 

were then centrifuged at 16,000 X g  at 4°C for 2 minutes. The resulting cell pellet was 

resuspended in 0.25M Tris, pH 7.8 followed by a series of three freeze/thaw cycles to 

facilitate cell lysis. The samples were then centrifuged at 16,000 X g  at 4°C for 5 

minutes. The supernatant was transferred to a new microfuge tube and protein was 

quantitated using the Bradford method (134). 50-lOOpg of protein was mixed with 

sample loading buffer (lOOmM Tris, pH 6.8, 2% sodium dodecylsulphate, 5% beta- 

mercaptoethanol, 15% glycerol and 0.025% bromophenol blue). Samples were denatured
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by heating for 3 minutes in a boiling water bath and then analyzed on a 10% sodium 

dodecylsulfate-polyacrylamide gel electrophoresed in IX Tris/glycine running buffer. 

Protein was transferred from the gel to a nitrocellulose membrane using a semi-dry 

electroblot apparatus (200mA for 15 minutes then 360mA for 20 minutes).

Nitrocellulose membranes were washed twice in deionized water followed by a one 

minute incubation in 100% isopropanol. Membranes were then blocked using 5% non

fat milk/lX Tris buffered saline for one hour at room temperature with constant rocking. 

Next, samples were incubated for one hour at room temperature with a anti-SPARC 

mouse monoclonal primary antibody (OST1 clone, Biodesign International, Saco, ME) 

diluted 1:1,000 in 5% non-fat milk/lX Tris buffered saline. Membranes were washed 

three times in IX Tris buffered saline/0.1% Tween-20 to remove unbound primary 

antibody. Samples were subsequently incubated for one hour at room temperature with 

anti-mouse horseradish peroxidase conjugated secondary antibody (Santa Cruz 

Biotechnology, Santa Cruz, CA) diluted 1:5,000 in 5% non-fat milk/lX Tris buffered 

saline. Protein was visualized by enhanced chemiluminescence (Amersham Biosciences, 

Upsala, Sweden) and detected on film. Protein molecular weight was estimated using 

Rainbow marker (Amersham Biosciences, Upsala, Sweden) or MagicMark™ (Invitrogen 

Corporation, Carlsbad, CA) as protein mass standards.

Construction of antisense SPARC adenovirus

Replication incompetent adenoviruses were constructed using the Adeno-X™ 

Expression System (Clontech Corporation, Palo Alto, CA) according to manufacturer’s 

recommendations. Briefly, the human SPARC coding region was subcloned from the
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Hindlll/Xhol sites of PGEM7-Zf+ and inserted into the Hindlll/Xhol sites of the plasmid 

pcDNA3.1/Zeo (Invitrogen Corporation, Carlsbad, CA). pcDNA3.1/Zeo/SPARC was 

subsequently digested with Aflll/Apal restriction enzymes to subclone the SPARC 

coding region in the antisense orientation into a Aflll/Apal digested pShuttle vector 

(Clontech Corporation, Palo Alto, CA). pShuttle/SPARC and pShuttle/LacZ plasmids 

were digested with the restriction enzymes, I-Ceu-I and Pl-Scel and ligated into similarly 

digested Adeno-X™ viral genomes resulting in adenovirus-SPARC antisense and 

adenovirus-LacZ viral genomic DNA. Following digestion using Swal restriction 

enzyme, adenovirus-SPARC antisense and adenovirus-LacZ plasmids were transformed 

into DH5 alpha electrocompetent E. coli. Subsequently, adenoviral plasmid DNA was 

purified using the NucleoBond® Plasmid Maxi Kit (Clontech Corporation, Palo Alto,

CA) according to manufacturer’s instructions. Purified plasmid DNA was digested with 

Pacl restriction enzyme prior to transfection into the HEK293 packaging cell line. 

HEK293 cells were seeded at a density of 3 X 106 cells/ 100mm tissue culture dish 24 

hours prior to transfection. Cell were grown in a humidified chamber at 37°C and 5% 

carbon dioxide in Dulbecco’s Modification of Eagle’s Medium with 10% fetal bovine 

serum and 1% penicillin/streptomycin 24 hours prior to transfection. Cells were 

transfected with purified plasmid DNA using FuGENE 6 reagent (Roche Diagnostics, 

Indianapolis, IN) according to manufacturers recommendations (2:1 FuGENE 

volume:DNA mass). Cells were harvested 7-14 days post-transfection when cytopathic 

effect (CPE) was evident throughout the plate. The cells were then pelleted by 

centrifugation and resuspended in phosphate buffered saline. Virus was freed from cells 

by freezing and thawing cell pellets three times with vortexing after each thaw. This
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supernatant containing vims was used to re-infect HEK293 cells in order to increase the 

viral titer. For infection, cells were seeded at a density of 1 X 106 cells/35mm tissue 

culture dish. Twenty-four hours later, cell growth medium was removed and 1.0ml of 

vims suspended in Dulbecco’s phosphate buffered saline (with calcium) was added to 

each 35mm dish. Infections were conducted for 4 hours in a humidified chamber at 37°C 

and 5% carbon dioxide. Following the 4 hour incubation, complete growth medium was 

added and cells were refed with fresh medium the next day.

Following a single round of viral amplification, viral titer was determined using 

the Adeno-X™ Rapid Titer Kit (Clontech Corporation, Palo Alto, CA) following 

manufacturer’s instructions. Briefly, infected HEK293 cells were fixed in methanol and 

rinsed two times with IX phosphate buffered saline. Samples were then incubated with 

an anti-hexon, adenovirus specific, primary antibody. The primary antibody was then 

washed away and a horse radish peroxidase conjugated secondary antibody was added. 

Diaminobenzidine was added to the reaction to facilitate colorimetric detection. 

Individual cells producing vims were readily detectable using conventional light 

microscopy.

The amount of infectious viral particles following a single round of amplification 

was typically 1-5 X 108 plaque forming units (pfu)/ml (see Appendix A, Fig. 40). In 

order to determine the optimal multiplicity of infection (MOI) for c-Jun/MCF7 cells, a 

series of infections were conducted over a broad range of MOI using adenovirus-LacZ as 

a means of determining the number of infected cells (see Appendix A, Fig. 41). 

Adenovirus-LacZ infected c-Jun/MCF7 cells were stained using the beta-galactosidase 

staining kit (Invitrogen Corporation, Carlsbad, CA) according to manufacturer’s
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instructions. An optimal MOI of between 5-10 was determined to infect the majority of 

cells without being cytotoxic. This MOI was used to infect c-Jun/MCF7 cells with 

antisense SPARC adenovirus in order to suppress endogenous SPARC expression. A 

time course following infection was conducted in order to determine the optimal time 

following infection in which endogenous SPARC expression was suppressed to the 

greatest extent. These conditions were used for all subsequent experiments.

In vitro cell motility and invasion assays

For invasion assays, a solution of collagen type IV was made in 0.01M acetic acid 

in order to coat modified Boyden chamber membranes. Membranes were soaked 

overnight at 4°C followed by coating with Matrigel™ (BD Biosciences, Franklin Lakes, 

NJ). Cells were suspended in serum-free Improved Minimal Essential Media with zinc 

option supplemented with 0.1% bovine serum albumin. NIH3T3 cell culture supernatant 

was used as the chemoattractant added to the lower wells of a modified Boyden chamber 

apparatus. Cells were incubated for 4-5 hours followed by staining with Diff-Quick® 

(American Scientific Products, Chicago, IL) according to manufacturer’s instructions. 

The number of cells that had migrated in response to the chemoattractant was determined 

by counting cells from three fields of view at 40X magnification. Motility assays were 

conducted using the same procedure except membranes were only coated with gelatin.

Cell proliferation assays

The rate of cell proliferation was determined using the CellTiter 96 Non- 

Radioactive Cell Proliferation Assay Kit (Promega Corporation, Madison, WI) according
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to manufacturer’s instructions. This kit is a colorimetric assay based on the conversion of 

MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl) tetrasodium bromide to formazan via 

the succinate-tetrazolium reductase system in viable cells (135). Cells were seeded at a 

density of 5,000 cells/well in a 96-well plate and serum starved for 24 hours prior to 

beginning the assay. The medium was then replaced with Improved Minimal Essential 

Medium with zinc option containing 10% fetal bovine serum and 1% 

penicillin/streptomycin. Four replicate plates were set up so that cell proliferation rates 

could be measured at 24, 48, 72 and 96 hours. Each cell line/condition was assayed in 

seven replicate wells for each time point. In addition, wells containing only media were 

set up in order to serve as background controls. At the indicated time points, 15 pi of 

MTT assay dye was added to each well followed by a 4 hour incubation at 37°C and 5% 

carbon dioxide. Next, lOOpl of stop solution was added for solublization of the formazan 

reaction product. Samples were subsequently incubated for 1 hour then mixed by 

pipetting up and down. Bubbles were removed by aspiration and the sample absorbance 

was recorded at 570nm using a micro titer plate reader. Each experiment was conducted 

in triplicate. Mean absorbance values and standard deviation were calculated for each 

cell line and time point. Linear regression analysis was conducted in order to determine 

proliferation rates. The proliferation rate of empty vector control/MCF7 cells was set at 

100% and the values of c-Jun/MCF7 and SPARC/MCF7 cells were expressed as percent 

of empty vector control/MCF7 cells.
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Generation of c-Jun/MCF7 stable cell lines expressing SPARC siRNAs

The pSilencer 3.1-Hl-hygromycin plasmid based system (Ambion Incorporated, 

Austin, TX) was used for expression of siRNA sequences designed against the human 

SPARC mRNA. Four siRNA sequences were designed using guidelines available at 

www.ambion.com. Briefly, the human SPARC mRNA sequence was analyzed for 

adenine-adenine dinucleotide repeats. The 19 nucleotides immediately 5’ of adenine- 

adenine repeats were recorded. Sequences that were 50-60% guanine and cytosine (G/C) 

residues, without runs of three or more consecutive G/Cs, were given priority scores. Of 

the sequences meeting these criteria, four sequences were selected that were predicted to 

target different regions of the SPARC mRNA. Oligonucleotides were commercially 

synthesized with 5’ phosphate modification and polyacrylamide gel purified (Integrated 

DNA Technologies Incorporated, Coralville, IA). Lyophilized oligonucleotides were 

resuspended at a concentration of 1 pg/pl in nuclease-free water. 2jng of paired sense and 

antisense oligonucleotides were mixed in 46jul of oligonucleotide annealing buffer 

(Ambion Incorporated, Austin, TX) to facilitate complementary base pairing and 

formation of duplex DNA. Annealing of oligonucleotides was accomplished by heating 

to 90°C for 3 minutes followed by cooling in a heat block to 37°C. The duplexes were 

then diluted 1:10 in nuclease-free water and 1 jul was used in a ligation reaction. The 

oligonucleotides were designed to have BamHI/Hindlll overhangs after annealing to 

facilitate ligation into a BamHI/Hindlll digested pSilencer 3.1-Hl-hygromycin plasmid. 

The following oligonucleotides were used:

SPARC+161 (sense):

5 ’ phos-gatcccgtttgatgatggtgcagaggttcaagagacctctgcaccatcatcaaattttttggaaa 3 ’
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SPARC +161 (antisense):

5 ’ phos-agcttttccaaaaaatttgatgatggtgcagaggtctcttgaacctctgcaccatcatcaaacgg 3 ’

SPARC +328 (sense):

5 ’ phos-gatcccggtgtgcagcaatgacaacttcaagagagttgtcattgctgcacaccttttttggaaa 3 ’

SPARC +328 (antisense):

5 ’ phos-agcttttccaaaaaaggtgtgcagcaatgacaactctcttgaagttgtcattgctgcacaccgg 3 ’

SPARC+418 (sense):

5 ’ phos-gatcccgctccacctggactacatcttcaagagagatgtagtccaggtggagcttttttggaaa 3 ’

SPARC +418 (antisense):

5 ’ phos-agcttttccaaaaaagctccacctggactacatctctcttgaagatgtagtccaggtggacggg 3 ’

SPARC +604 (sense):

5 ’ phos-gatcccgtgagaagcgcctggaggcattcaagagatgcctccaggcgcttctcattttttggaaa 3 ’

SPARC +604 (antisense):

5 ’ phos-agcttttccaaaaaatgagaagcgcctggaggcatctcttgaatgcctccaggcgcttctcacgg 3 ’

To generate stable cell lines expressing the individual siRNA transcripts, 

c-Jun/MCF7 cells were plated at a density of 2.5 X 106 cells/lOOmm plate and grown in 

Improved Minimal Essential Medium with zinc option, 10% fetal bovine serum and 1% 

penicillin/streptomycin. Cells were transfected 24 hours later using 27pg of individual 

SPARC siRNA/pSilencer 3.1-Hl-hygromycin expression plasmids. FuGENE 6 

transfection reagent (Roche Diagnostics, East Rutherfod, NJ) was used to deliver plasmid 

DNA (FuGENE:DNA ratio = 2:1). Twenty-four hours after transfection, cells were refed 

with fresh, complete media containing 200pg/ml hygromycin (Clontech Corporation,

Palo Alto, CA) in order to select stable cell populations. Cell cultures were subsequently
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refed every other day with fresh media containing hygromycin. After approximately 

three weeks, cell populations from the same plate (expressing the same individual 

siRNA) were trypsinized, pooled and maintained as a single culture. SPARC protein 

expression was determined by Western blot analysis as previously described in this 

section. Expression of c-Jun protein was determined by Western blot analysis using a 

rabbit polyclonal c-Jun specific antibody, c-Jun/AP-1 (Ab-1) (Oncogene Science, 

Cambridge, MA) at a 1:5,000 dilution.

SPARC promoter/luciferase reporter plasmids

The SPARC promoter constructs corresponding to nucleotides -1409/+28 

and-120/+28 in pGL2-Basic (Promega Corporation, Madison, WI) were a kind gift from 

Dr. Marc Castellazzi and have been described elsewhere (129). To generate the SPARC 

promoter 5’ deletion construct corresponding to positions -70/+28 we used polymerase 

chain reaction to amplify this region from the SPARC promoter -1409/+28-pGL2-Basic 

parental plasmid. The following primers were used: primer 1= -70/+28 5’ 

acggggtggaggggagatgacccag 3’, primer 2= pGL2-Basic primer 5’ ctttatgtttttggcgtcttcca 

3’. 2ng of plasmid DNA was used as a template and mixed with the following PCR 

master mix components: 4pl dNTPs (2.5mM each), 10X Advantage™ 2 reaction buffer 

(Clontech Corporation), 150ng of each primer, 0.5pl Advantage2-HF enzyme mix 

containing Taq polymerase and a proofreading enzyme (Clontech Corporation, Palo Alto, 

CA). Themocycling conditions were as follows: step 1, 95°C for 2 minutes, step 2, 95°C 

for 30 seconds, step 3, 65°C for 30 seconds, step 4, 68°C for 30 seconds, repeat steps 2-4 

for a total of 25 cycles. PCR products were analyzed on a 1% low melt agarose gel and
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visualized by staining with ethidium bromide and gel purified using the Qiaquick Gel 

Extraction Kit (Qiagen Corporation, Valencia, CA). Two-step PCR was used to generate 

point mutations within the SPARC promoter AP-1 like site at -1051/-1045. The pGL2- 

Basic forward primer 5’ tgtatcttatggtactgtaactg 3’, designated A l, corresponds to a region 

of the pGL2-Basic plasmid which is upstream of the plasmid Smal site. The pGL2-Basic 

reverse primer 5’ ctttatgtttttggcgtcttcca 3’, designated Bl, corresponds to a region 

immediately downstream of the plasmid Hindlll site. The internal primers used to 

introduce point mutations to the —1051/-1045 AP-1 like site are as follows: -1051/-1045 

mutated to consensus= primer (Cl) 5’ gcctgggcgacagagtgagtcag 3’ and primer (Dl) 5’ 

gttttgagacagagtctgactcactc 3’, -1051/-1045 more mutated= primer (El) 5’ 

gcctgggcgacagagcgaatgag 3’ and primer (FI) 5’ gttttgagacagagtctcattcgctc 3’.

PCR was performed using the following primer combinations: A l/D l, A l/F l, 

B l/C l, B l/E l. The PCR master mix for each of these reactions contained the following 

components: 4pl dNTPs (2.5mM each), 10X Advantage™ 2 reaction buffer (Clontech 

Corporation, Palo Alto, CA), 150ng of each primer, 0.5 pi Advantage™ 2 enzyme mix 

containing Taq polymerase and a proofreading enzyme (Clontech Corporation, Palo Alto, 

CA). Themocycling conditions were as follows: step 1, 95°C for 2 minutes, step 2, 95°C 

for 30 seconds, step 3, 63°C for 30 seconds, step 4, 68°C for 60 seconds, repeat steps 2-4 

for a total of 25 cycles. Products were purified on a 1% low-melt agarose gel and gel 

purified using the Qiaquick Gel Extraction Kit (Qiagen Corporation, Valencia, CA). A 

portion of the purified PCR products containing the corresponding mutations were mixed 

into a second PCR reaction to produce the full-length mutated product. PCR products 

generated with the following primer combinations were mixed and used as the template
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for subsequent PCR reactions: A l/D l and B l/C l containing the mutation to a consensus 

context, A l/F l and B l/E l containing the mutations to a more mutated context. 

Amplification of full-length mutant promoter fragments was done using primers A1 and 

B1 under the following thermocycling conditions: step 1, 95°C for 2 minutes, step 2, 

95°C for 30 seconds, step 3, 63°C for 30 seconds, step 4, 68°C for 90 seconds, repeat 

steps 2-4 for a total of 25 cycles. These full-length mutated PCR products were gel 

purified using the Qiaquick Gel Extraction Kit (Qiagen Corporation, Valencia, CA) 

according to manufacturer’s instructions. Purified PCR amplicons were treated with 

DNA polymerase I large (Klenow) fragment followed by digestion with Hindlll 

restriction enzyme. The mutant promoter fragments were subsequently cloned into a 

Smal/Hindlll digested pGL2-Basic vector. Mutations were confirmed by DNA 

sequencing.

Luciferase assays

Cells were seeded in 6-well tissue culture plates (area=35mm /well) at a density 

of 3 x 105 cells/well approximately 24 hours prior to transfection. 3pg of the indicated 

plasmid DNA was added to 6pl of FuGENE 6 (Roche Diagnostics, East Rutherfod, NJ) 

reagent pre-mixed with serum-free Improved Minimal Essential Media and added 

dropwise to each well. After 48 hours, cells were washed twice with IX phosphate 

buffered saline (PBS). Following the final PBS wash, 150pl of Reporter Lysis Buffer 

(Promega Corporation, Madison, WI) was added to cells and incubated for 10 minutes. 

These samples were frozen at -80°C for at least 1 hour to facilitate cell lysis and then 

collected for analysis. Luciferase assays were done following manufacturers
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recommendations and quantitated using a luminometer (Turner Designs Incorporated, 

Sunnyvale, CA) with the following parameters: delay= 2 seconds, integration= 15 

seconds, replicates= 3. Relative luciferase values were normalized to protein 

concentration per volume assayed (assay amounts were 20p1 unless the luciferase activity 

was outside of the linear range of detection in which case protein samples were diluted 

accordingly in IX lysis buffer). Protein quantitation was conducted using the Bradford 

method (134).

Nuclear extract preparation

Nuclear extracts were prepared according to a modification of the procedure 

established by Dignam (136). Monolayer cell cultures were washed two times with 

phosphate buffered saline and collected in a buffer consisting of lOmM HEPES pH 7.9, 

1.5mM magnesium chloride, lOmM potassium chloride, 0.5% NP-40, 2pg/ml aprotinin, 

0.5pg/ml leupeptin, lpg/ml pepstatin, ImM PMSF, 0.5mM DTT. Cells were incubated 

on ice for 10 minutes followed by centrifugation at 16,000 X g  at 4°C. The nuclear pellet 

was resuspended in 20mM HEPES pH 7.9, 25% glycerol, 0.42M sodium chloride,

1.5mM magnesium chloride, 0.2mM EDTA, 1 pg/ml aprotinin, 0.5pg/ml leupeptin, 

lpg/ml pepstatin, ImM PMSF, 0.5mM DTT. The pellet was incubated for 30 minutes on 

ice with gentle mixing at 5 minute intervals. This mixture was then centrifuged at 16,000 

X g  for 30 minutes at 4°C. The supernatant was collected and dialyzed against a buffer 

consisting of 20mM HEPES pH 7.9, 20% glycerol, 0.1M potassium chloride, 0.2mM 

EDTA, ImM PMSF, 0.5mM DTT for 4 hours at 4°C. The dialysis buffer was changed 

once during the 4 hour incubation. Samples were snap-frozen using a dry ice-ethanol
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bath and stored in 30 j l i 1 aliquots at -80°C. Protein concentration was determined using 

the Bradford method (134).

Gel Shifts, antibody supershifts and competitions

Empty vector control/MCF7, c-Jun/MCF7 and JunD/MCF7 nuclear extracts were

32prepared as previously described in this section. P labeled gel shift probes were 

prepared using partially overlapping, complementary oligonucleotide primers as 

indicated. Oligonucleotide primer pairs were annealed by heating to 90° C for 3 minutes 

followed by cooling to room temperature on the bench top. DNA polymerase I large

32(Klenow) fragment was used to fill-in single stranded regions with alpha- P dNTP 

(alpha-32P dATP or alpha-32P dTTP depending on probe) and non-radiolabeled dNTPs. 

Radiolabeled gel shift probes were subsequently extracted once with an equal volume of 

phenol and purified from unincorporated radiolabel using a Chromaspin-10 TE 

chromatography column (Clontech Corporation, Palo Alto, CA). The specific activity of 

radiolabeled probes was quantitated using a liquid scintillation counter and expressed as 

counts per minute (cpm) as indicated in individual figure legends. A 2X gel shift reaction 

buffer for AP-1 binding consisted of 20mM HEPES, 35% glycerol, 0.2mM EDTA,

40mM sodium chloride, 8mM magnesium chloride, 5mM DTT (made fresh), 4mM 

spermidine, Ipg poly-dldC and 0.1% NP-40. AP-1 DNA binding competitors were

32generated in the same way as P radiolabeled probes except a full complement of non- 

radiolabeled dNTPs were used in the labeling reaction. Cold competitors were added in

T9the indicated amounts for 20 minutes prior to incubation with the appropriate P labeled 

probe. Gel shifts using antibodies to either compete or supershift DNA bound proteins
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were done by pre-incubating the nuclear extracts for 20 minutes with 2pg of anti- c-Jun 

antibody directed against the DNA binding domain (Santa Cruz Biotechnology, Santa 

Cruz, CA), 2jig of anti Fra-1 antibody R-20 clone (Santa Cruz Biotechnology, Santa 

Cruz, CA), 2pg of anti-Spl antibody PEP-1 (Santa Cruz Biotechnology, Santa Cruz,

CA), 2pg of anti-pl30 antibody N-17 (Santa Cruz Biotechnology, Santa Cruz, CA) or 

2|ig of anti-pl6 antibody N-20 (Santa Cruz Biotechnology, Santa Cruz, CA). lpg poly- 

dldC was added to each reaction to inhibit non-specific protein/DNA interactions. 

Reactions were analyzed on 6% non-denaturing polyacrylamide gels electrophoresed in 

1% TBE running buffer at room temperature. Gels were pre-run for 20 minutes at 20mA 

constant current with lOpil of 2X gel shift reaction buffer loaded in each well. Gel shift 

reactions were then loaded onto the gel and electrophoresis was continued for 

approximately 2 hours at 30mA constant current. Gels were then transferred to filter 

paper and dried at 80°C for 2 hours followed by autoradiography for detection of 

protein/DNA complexes.

To analyze DNA binding of protein complexes with Sp family binding specificity 

the gel shift reactions were done as indicated above with the following modifications. 

Reactions were electrophoresed on a 5% non-denaturing polyacrylamide gel in 0.5%

TBE running buffer at room temperature unless otherwise noted. Sp 1 consensus and 

mutant competitors (kind gift from Dr. Julie Kerry, Eastern Virginia Medical School) 

were added to nuclear extracts and DNA binding buffer 20 minutes prior to incubation 

with the indicated probe. The binding buffer used was as follows: 20mM HEPES, 35% 

glycerol, 0.2mM EDTA, 40mM sodium chloride, 8mM magnesium chloride, 5mM DTT
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(made fresh), 4mM spermidine, 1 |ig poly-dldC/reaction and 0.1% NP-40. The following 

gel shift probes were used in these studies:

PG32-1 consensus AP-1 probe:

Forward primer: 5’ acccggggatcctctagaatgactcatcgg 3’

Reverse primer: 5’ cttgcatgcctgcaggatccgatgagtcat 3’

SPARC promoter AP-1 like site at —1051/-1045 mutated to consensus:

Forward primer: 5’ gcctgggcgacagagtgagtcag 3’

Reverse primer: 5’ gttttgagacagagtctgactcactc 3 ’

SPARC promoter AP-1 like site at -1051/-1045 mutated to wild type:

Forward primer: 5’ gcctgggcgacagagtgagtgag 3’

Reverse primer: 5’ gttttgagacagagtctcactcactc 3’

SPARC promoter AP-1 like site at -1051/-1045 mutated to more mutated:

Forward primer: 5’ gcctgggcgacagagcgaatgag 3’

Reverse primer: 5’ gttttgagacagagtctcattcgctc 3 ’

Heterologous competitor for AP-1 gel shift reactions:

Forward primer: 5’ ttgacgtcaataatgacg 3’

Reverse primer: 5 ’ tatgggaacatacgtcat 3 ’

Spl consensus gel shift competitor probe:

Forward primer: 5’ tcatacaacgtagggcgggattgttgagaa 3’

Reverse primer: 5’ tgttctcaacaatcccgccctacgttgtat 3’

Spl mutant gel shift competitor probe:

Forward primer: 5’ tcatacaacgtagagtactattgttgagaa 3’

Reverse primer: 5 ’ tgttctcaacaatagtactctacgttgtat 3 ’
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SPARC promoter-120/-83 gel shift probe:

Forward primer: 5’ gggagaaggaggaggccgggggaag 3’

Reverse primer: 5 ’ ctcctgtctcctccttcccccgg 3 ’

RNA isolation

Total cellular RNA was isolated using TRIZOL® reagent (Invitrogen Corporation, 

Carlsbad, CA) according to the manufacturers protocol. Cells were washed two times in 

phosphate buffered saline followed by the addition of TRIZOL® reagent (2.5mls for 

100mm plate, 1ml for 60mm plate). Samples were collected using a sterile plastic 

scraper and aliquoted into nuclease-free microfuge tubes. Samples were then vortexed 

for 15 seconds and incubated at room temperature for 5 minutes. Chloroform was then 

added and samples were shaken by hand vigorously for 30 seconds followed by 

incubation for 5 minutes at room temperature. Samples were subsequently centrifuged at 

10,000 X g  at 4°C for 10 minutes. Following centrifugation, the upper (aqueous) phase 

was carefully aliquoted into a new nuclease-free microfuge tube using a nuclease-free, 

aerosol barrier pipette tip. An equal volume of 100% isopropanol was then added and the 

sample was vortexed briefly followed by a 10 minute incubation at room temperature.

The sample was then centrifuged at 10,000 X g  for 15 minutes at 4°C to collect the RNA 

precipitate. Following centrifugation, the supernatant was carefully removed from the 

RNA pellet and discarded. Ice-cold 70% ethanol was gently added to the pellet followed 

by a final centrifugation at 10,000 X g  for 7 minutes. The ethanol was then removed and 

the pellet was air dried. The RNA pellet was resuspended in an appropriate volume of
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nuclease-free water. An aliquot of the purified RNA was quantitated by 

spectophotometry at 260nm.

Semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR)

1 OOng of total RNA was incubated in the presence of 20pmol of random 

hexamers (Applied Biosystems, Foster City, CA) at 70°C for 2 minutes followed by snap- 

cooling at 4°C. The reverse transcription master mix was then added to the RNA/primer 

mixture. The reverse transcriptase master mix consisted of 5pi of a 5X Moloney Murine 

Leukemia Virus reverse transcriptase (MMLV-RT) reaction buffer (Promega 

Corporation, Madison, WI), 20 units of recombinant Rnasin (Promega Corporation, 

Madison, WI), 4pl of dNTP mix (2.5mM each), 200 units of Moloney Murine Leukemia 

Virus reverse transcriptase (Promega Corporation, Madison, WI) and nuclease-free water 

(Promega Corporation, Madison, WI). The reverse transcription reaction was then 

incubated at 42°C for 1 hour followed by heating at 94°C for 5 minutes to halt cDNA 

synthesis. The samples were then cooled to 4°C until further use.

A 1.5pl aliquot of the reverse transcription reaction was used to amplify a portion 

of the 18S ribosomal subunit gene transcript using the following oligonucleotide primers: 

18S sense primer= 5’ tgactctagataacctcggg 3’, 18S antisense primer= 5’ 

cccaagatccaactacgagc 3’. The PCR reaction mixture consisted of the following: 1.5pl of 

template cDNA, 5pi of 10X PCR buffer (Clontech Corporation, Palo Alto, CA), 4pl 

dNTP mix (2.5mM each), 150ng of sense and antisense 18S primers, 0.5pl of Titanium™ 

Taq DNA polymerase (Clontech Corporation, Palo Alto, CA) and nuclease-free water for 

a 50pl total reaction volume. Polymerase chain reaction for 18S was conducted using a
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Biometra T-Gradient Thermocycler as follows: step one, 95°C for 1 minute, step two, 

95°C for 30 seconds, step three, 55°C for 30 seconds, step four, 68°C for 45 seconds.

Steps 2-4 were repeated for a total of 13 cycles which corresponded to mid-log phase 

amplification using 1 OOng of input, total cellular RNA. The expected amplification 

product is 403 base pairs. The method for determining the mid-log phase of 

amplification is described later in this section.

A 2 pi aliquot of the reverse transcription reaction was used to amplify a portion 

of SPARC utilizing a gene specific primer pair that would span intron regions. The 

primers used for SPARC RT-PCR were as follows: SPARC sense primer= 5’ 

gtcagaagcttatgagggcctggatcttctttctcc 3’, SPARC antisense primer= 5’ 

gtcagatcgattggatttagatcacaagatccttgtcg 3’. The PCR reaction mixture consisted of the 

following: 2pl of template cDNA, 5pl of 10X PCR buffer (Clontech Corporation, Palo 

Alto, CA), 4pl dNTP mix (2.5mM each), 150ng of sense and antisense SPARC primers, 

0.5pl of Titanium™ Taq DNA polymerase (Clontech Corporation, Palo Alto, CA) and 

nuclease-free water for a 50pl total reaction volume. Polymerase chain reaction for 

SPARC was conducted using a Biometra T-Gradient Thermocycler as follows: step one, 

95°C for 1 minute, step two, 95°C for 30 seconds, step 3, 68°C for 30 seconds, step 4, 

68°C for 1 minute. Steps 2-4 were repeated for a total of 30 cycles which corresponded 

to mid-log phase amplification using lOOng of input, total cellular RNA. The expected 

amplicon size is 944 base pairs. The method for determining the mid-log phase of 

amplification is described later in this section.

For visualization of RT-PCR amplicons, reaction products were electrophoresed 

on a 1.5% agarose gel stained with GelStar® reagent (Cambrex Corporation, East
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Rutherford, NJ). Following ultraviolet transillumination at 312nm, images were captured 

using a Kodak DC40 digital camera equipped with an ethidium bromide lens filter and 

PCR amplicon signals quantitated using Kodak ID Image Analysis software package.

In order to utilize 18S as an endogenous control for standardization purposes it 

was necessary to identify when 18S amplification was in mid-log phase to allow for 

appropriate quantitation. This was done by conducting multiple, parallel 18S PCR 

reactions over a range of cycle numbers and input RNA concentrations utilizing aliquots 

from the same cDNA mixtures as the template. For SPARC (and other indicated genes), 

mid-log phase amplification was conducted by testing samples over a range of different 

cycle numbers and varying input RNA concentration as well. Following quantitation 

using Kodak ID Image Analysis software (Kodak Corporation), the values were plotted 

as relative intensity vs. cycle number as well as relative intensity vs. input RNA amount. 

The cycle number which correlated to mid-log phase amplification using lOOng of input 

total RNA was used for all subsequent experiments for standardization of SPARC 

expression between the two cell types. Input RNA was adjusted to ten-fold higher 

(l.Opg) and ten-fold lower (lOng) in the reverse transcription reaction to ensure linear 

amplification over a one-log change in RNA concentration in either direction.

The primers used for RT-PCR analysis of AP-1 family gene expression were as 

follows:

fra-1 sense= (position 410-427, GenBank accession number X16707)=

5’ AGGAAGGAACTGACCGAC 3’

fra-1 antisense= (position 889-906, GenBank accession number X16707)=

5’ GAAGGGGAGGAGACATTG 3’
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fosB sense= (position 3137-3155, GenBank accession number NM_006732)=

5’ GCTATTTATCCCTTTCCTG 3’

fosB antisense= (position 3579-3597, GenBank accession number NM_006732)= 

5’ TGCTCACACTCTCACACTC 3’

c-jun sense= (position 2036-2065, GenBank accession number J04111)=

5’ GCATGAGGAACCGCATCGCTGCCTCCAAGT 3’

c-jun antisense= (position 2416-2445, GenBank accession number J04111)=

5’ GCGACCAAGTCC TTCCCACTCGTGCACACT 3’

junB sense= (position 1469-1496, GenBank accession number NM_002229)=

5’ CCAGTCCTTCCACCTCGACGTTTACAAG 3’

junB antisense= (position 1696-1725, GenBank accession number NM_002229)=

5’ GACTAAGTGCGTGTTTCTTTTTCCACAGTAC 3’

junD sense= (position 1273-1293, GenBank accession number X51346)=

5’ CAGCCTCAAACCCTGCCTTTC 3’

junD antisense= (position 1571-1590, GenBank accession number X51346)=

5’ AACAGAAAACCGGGCGAACC 3’

c-fos sense= (position 1170-1187, GenBank accession number NM_005252.2)=

5’ TCTTCCTTCGTCTTCACC 3’

c-fos antisense= (position 1727-1746, GenBank accession number NM_005252.2) 

5’ AAT C AGAAC AC ACT ATT GCC 3’

fra-2 sense= (position 570-587, GenBank accession number BC022791)=

5’ AGGAGGAGAGATGAGCAG 3’

fra-2 antisense= (position 1070-1087, GenBank accession number BC022791)=
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5’ GG AT AGGTGAAGACGAGG 3’

Conditions used for semi-quantitative RT-PCR analysis of AP-1 family members 

were the same as for SPARC except that a 66°C annealing temperature was used for each 

primer pair during PCR. Mid-log phase amplification conditions were determined for 

each AP-1 family member using the same technique described previously in this section 

for SPARC and 18S. The number of PCR amplification cycles required for mid-log 

phase amplification using lOOng of total RNA as input for reverse transcription were as 

follows: fra-l= 29 cycles, fosB= 36 cycles, c-jun= 30 cycles, junB= 34 cycles, junD= 32 

cycles, c-fos= 36 cycles, fra-2= 30 cycles.

Chromatin immunoprecipitation (ChIP) analysis

Cells were seeded in duplicate 150mm tissue culture plates at a density of 3 X 106 

cells per plate. Approximately 48 hours later, cells from one plate were counted in order 

to normalize for differences in cell number. To the second plate, a 37% stock of 

formaldehyde was added directly to the tissue culture medium to achieve a final 

concentration of 1%. The plate was gently rocked to facilitate mixing and then the plates 

were incubated at 37°C for 10 minutes. The tissue culture media was removed and the 

cells were washed 3 times in ice-cold phosphate buffered saline plus protease inhibitors 

(aprotinin lpg/ml, leupeptin lpg/ml, PMSF ImM final concentration). For ChIP analysis 

of acetylated histones, the histone deacetylase inhibitor, trichostatin A, was added to 

wash buffers at a final concentration of lOOng/ml. Cells were collected by gentle 

scraping using a rubber policeman. The cell suspension was centrifuged at 1,500 X g  for 

5 minutes at 4°C in order to pellet cells. The supernatant was discarded and the cell pellet
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was resuspended in 200pl of cell lysis buffer (1% SDS, lOmM EDTA, 50mM Tris-HCl, 

pH 8.1, aprotinin lpg/ml, leupeptin lpg/ml, PMSF ImM) for every 1 X 106 cells 

(estimated by cell counts). Samples were then incubated at room temperature for 10 

minutes to allow for membrane dissociation. An aliquot equal to 8 X 106 cells was 

subjected to sonication. A Fisherbrand 60 watt sonic dismembrator with a 1/8” diameter 

tip was used for all sonication (Fisher Scientific Corporation, Pittsburgh, PA). Sonication 

consisted of eight, 6 watt pulses, each lasting 12 seconds. Samples were kept on ice 

during the entire sonication procedure and a 1 minute incubation on ice was done in 

between each pulse to prevent sample heating. Under these conditions, DNA was 

sheared to an average size of 500-1,000 base pairs. Following sonication, samples were 

centrifuged for at 10,000 X g for 5 minutes at 4°C. The supernatant, containing soluble 

chromatin, was collected and distributed into 200pl aliquots for each 

immunoprecipitation. A lOOpl aliquot was saved and designated as input chromatin not 

subjected to immunoprecipitation. This sample was saved until the crosslink reversal 

step. Chromatin aliquots subjected to immunoprecipitation were diluted in 1700pl of ice- 

cold ChIP dilution buffer (0.01% SDS, 1.1% Triton X-100, 1.2mM EDTA, 16.7mM Tris- 

HCl, pH 8.1, 167mM sodium chloride, lpg/ml aprotinin, lpg/ml leupeptin, ImM PMSF). 

Samples were then pre-cleared using 80pl of salmon sperm DNA/protein A agarose 

(stock= 1.5ml packed beads with 600pg sonicated salmon sperm DNA, 500pg BSA 

1.5mg recombinant protein A, 50% slurry up to 3mls suspended in TE with 0.05% 

sodium azide). For pre-clearing, samples were incubated at 4°C for 1 hour with constant 

rotation. Next, samples were centrifuged for 1 minute at 100 X g  in a tabletop microfuge 

in order to pellet beads. Supernatants were aliquoted into new, nuclease-ffee microfuge
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tubes followed by the addition of lOjug of antibody. The following antibodies were used 

in chromatin immunoprecipitation analysis: anti-tetraacetylated (K5, K8, K12, K16) 

histone H4 (Upstate Biotechnology, Charlottesville, VA) catalog #06-866, anti- 

diacetylated (K9, K14) histone H3 (Upstate Biotechnology, Charlottesville, VA) catalog 

#06-599, anti-dimethyl histone H3 lysine 4 (Upstate Biotechnology, Charlottesville, VA) 

catalog #07-030, anti-trimethyl histone H3 lysine 9 (Abeam Ltd., Cambridge, United 

Kingdom) catalog #ab8898, anti-Fra-1 R-20 clone (Santa Cruz Biotechnology, Santa 

Cruz, CA) catalog #sc-605, anti-c-Jun H79 clone (Santa Cruz Biotechnology, Santa Cruz, 

CA) catalog #sc-1694, anti-Neu C-18 clone catalog #sc-284 (Santa Cruz Biotechnology, 

Santa Cruz, CA), anti-Spl PEP 2 clone (Santa Cruz Biotechnology, Santa Cruz, CA) 

catalog #sc-59.

Samples were immunoprecipitated overnight at 4°C with constant rotation. The 

next day, antibody/protein/DNA complexes were isolated by adding 60pl of protein A 

agarose/sheared salmon sperm DNA to the samples followed by incubation for 2 hours at 

4°C with constant rotation. Samples were then centrifuged at 100 X g  for 1 minute in a 

tabletop microfuge. The supernatant was discarded and then the samples washed one 

time for 5 minutes at 4°C with constant rotation using 1ml of ice-cold low salt wash 

buffer (0.1% SDS, 1% Triton X-100, 2mM EDTA, 20mM Tris-HCl, pH 8.1, 150mM 

sodium chloride). Samples were then centrifuged at 100 X g  for 1 minute in a tabletop 

microfuge to collect complexes. Supernatants were discarded and samples were 

subjected to a second wash for 5 minutes at 4°C with constant rotation using 1ml of ice- 

cold high salt wash buffer (0.1% SDS, 1% Triton X-100, 2mM EDTA, 20mM Tris-HCl, 

pH 8.1, 500mM sodium chloride). Samples were then centrifuged at 100 X g  for 1
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minute in a tabletop microfuge to collect complexes. Supernatants were discarded and 

samples washed a third time for 5 minutes at 4°C with constant rotation using 1ml of ice- 

cold lithium chloride wash buffer (0.25M lithium chloride, 1% NP-40, 1% sodium 

deoxycholate, ImM EDTA, lOmM Tris-HCl, pH 8.1). Samples were then centrifuged at 

100 X g  for 1 minute in a tabletop microfuge to collect complexes. Supernatants were 

discarded and samples washed a fourth time for 5 minutes at 4°C with constant rotation 

using 1ml of ice-cold Tris/EDTA buffer (lOmM Tris-HCl, ImM EDTA, pH 8.0).

Samples were centrifuged at 100 X g  for 1 minute in a tabletop microfuge to collect 

complexes and washed a final time using 1ml of ice-cold Tris/EDTA buffer. Following 

this final wash, immunoprecipitated protein/DNA complexes were eluted off of the 

protein A agarose beads by vortexing samples with 250jul of 1% sodium 

dodecylsulfate/O.lM sodium bicarbonate followed by a 15 minute incubation at room 

temperature with constant rotation. Samples were centrifuged at 100 X g in a tabletop 

microfuge and the supernatant transferred into a new nuclease-free tube. The elution 

process was repeated a second time and eluted supernatants (5 00 pi) combined. Input 

chromatin samples were thawed and diluted by adding 400pl of nuclease-free water. In 

order to reverse protein/DNA crosslinks, all samples received 20pl of 5M sodium 

chloride followed by incubation for at least 4 hours at 65°C. DNA was subsequently 

purified by extracting samples with an equal volume of phenol and then an equal volume 

of chloroform. DNA was precipitated by adding 2.5 volumes of ice-cold 100% ethanol 

and 20pg of glycogen. Samples were incubated for at least 5 hours at -20°C. Samples 

were then centrifuged at 16,000 X g  for 30 minutes at 4°C in order to pellet DNA. Pellets
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were washed once with 70% ethanol then air-dried. DNA was resuspended in 50pl of 

nuclease-free water for subsequent PCR analysis.

Chromatin immunoprecipitation PCR analysis of the SPARC proximal promoter 

region was conducted using the following two oligonucleotide primers: primer 1=5' 

cagccctggcactctgtgagtcggt 3' corresponding to nucleotide position -257/-233 of the 

human SPARC promoter and primer 2= 5' ggcagtctgaaggaccgcgggaatggagg 3', 

corresponding to nucleotide position +211A of the human SPARC promoter. PCR 

reactions consisted of 5 pi of 10X Titanium™ Taq buffer (Clontech Corporation, Palo 

Alto, CA), 4pl of a dNTP mix (2.5mM each dATP, dTTP, dCTP, dGTP), 200ng each of 

primer 1 and primer 2, 0.5pl of Titanium™ Taq DNA polymerase (Clontech Corporation, 

Palo Alto, CA), and nuclease-free water in a reaction volume of 48pl. 2pl of 

immunoprecipitated DNA was added as the template for ChIP PCR. In addition, several 

dilutions of input DNA (non-immunoprecipitated sample) were analyzed by PCR under 

the same conditions in order to demonstrate that the reactions were conducted under non

saturating, semi-quantitative conditions. PCR was conducted using a Biometra T- 

Gradient Thermocycler as follows: step 1, 95°C for 3 minutes, step 2, 95°C for 1 minute, 

step 3, 68°C for 45 seconds, step 4, 68°C for 45 seconds. Steps 2-4 were repeated an 

additional 29-35 times depending on empirical determination of optimal cycle number for 

each sample so that reactions were analyzed within the linear range of PCR amplification. 

Reactions were subsequently cooled to 4°C and 15 pi of each reaction was analyzed by 

agarose gel electrophoresis. 0.8% agarose gels in IX TBE were prepared and stained 

with IX GelStar® reagent (Cambrex Corporation, East Rutherford, NJ) in order to 

visualize PCR amplification products by ultraviolet transillumination at 312nm. Gel
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images were captured using a Kodak DC40 digital camera equipped with an ethidium 

bromide filter. Images were analyzed by densitometry using Kodak ID Digital Science 

imaging software in order to quantitate PCR amplicon signal intensities. For 

quantitation, pixel intensity values for individual immunoprecipitated samples signal 

intensity compared with input DNA signal on the same gel from the same batch of 

chromatin preparation. This was represented as fold enrichment relative to input DNA 

signal. Comparisons between cell lines were done by calculating differences in fold 

enrichment for each antibody. At least two independent chromatin preparations were 

analyzed for each immunoprecipitation.

In vitro methylation of plasmid DNA

Twenty units of recombinant Hpall methylase (New England Biolabs, Ipswich, 

MA) were used to methylate 1 Opg of SPARC promoter/pGL2-Basic luciferase reporter 

plasmid DNA in a reaction containing IX Hpall methylase reaction buffer (New England 

Biolabs, Ipswich, MA), 80pM S-adenosyl methionine (New England Biolabs, Ipswich, 

MA) and nuclease-free water in a total reaction volume of 100 pi. Samples were 

incubated at 37°C for 16 hours. After 4 hours, reactions were supplemented with fresh S- 

adenosyl methionine. The enzyme was then heat inactivated by incubating samples at 

70°C for 10 minutes. DNA was then purified using Qiaquick Gel Extraction Kit (Qiagen 

Corporation, Valencia, CA) according to manufacturers instructions and eluted in 

nuclease-free water. Two, 500ng aliquots (estimated from input) of purified Hpall 

methylated DNA were subsequently digested using Hpall or MspI restriction enzymes to
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determine the completeness of in vitro methylation. Two independent Hpall methylated 

plasmid preparations were tested.

In vitro methylation of gel shift probes

A gel shift probe spanning the region from -120/-83 of the human SPARC 

promoter was synthesized as described elsewhere in this section. Following probe 

quantitation, an equal amount of probe (as determined by liquid scintillation counting) 

was subjected to in vitro methylation using recombinant Hpall methylase (New England 

Biolabs, Ipswich, MA). A second aliquot of the probe was “mock” methylated in a 

reaction lacking Hpall methylase. Following methylation reactions, gel shift probes were 

phenol extracted once and purified using a Chromaspin-10 TE chromatography column 

(Clontech Corporation, Palo Alto, CA). Samples were re-quantitated by scintillation 

counting to determine cpm/pl of purified probe. Equal aliquots (25,000cpm/reaction) of 

mock and Hpall methylated gel shift probes were digested with 20 units of Hpall or MspI 

restriction enzymes in order to determine the efficiency of in vitro probe methylation.

'I'j
The P labeled gel shift probes from these restriction enzyme digestion reactions were 

extracted once with an equal volume of phenol and purified using a Chromaspin-10 TE 

chromatography column (Clontech Corporation, Palo Alto, CA). Digested mock 

methylated and Hpall methylated probes were resolved on a non-denaturing 

polyacrylamide gel as described previously in this Chapter. The completeness of 

methylation was determined by comparing the molecular weight of the mock methylated 

probe and Hpall methylated probe digested with Hpall restriction enzyme. At least two 

independent preparations of Hpall methylated gel shift probes were assayed.
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Hpall/M spI mapping of SPARC promoter methylation

Purified genomic DNA was separated into three separate 1 pg aliquots. One 

aliquot was incubated with restriction enzyme digestion reaction mix without enzyme 

(designated as uncut). A second aliquot was digested with the restriction enzyme Hpall. 

A third aliquot was digested with the restriction enzyme Mspl. Samples were digested at 

37°C for 4 hours. Samples were then incubated for 10 minutes at 70°C to heat inactivate 

the enzymes. Reactions were diluted to lOng/pl in nuclease-free water. A 2.5jul aliquot 

from each reaction was subjected to PCR using the following primer pairs:

SPARC promoter Hpall/MspI site #1:

Forward primer: 5’ gaagccaaggcattcggattgcccaag 3’

Reverse primer: 5’ gttttgagacagagtctcactcactc 3’

SPARC promoter Hpall/MspI site #2:

Forward primer: 5 ’ gcctgggcgacagagtgagtga 3 ’

Reverse primer: 5 ’ ggctgctgcctaaaccgactcac 3 ’

SPARC promoter Hpall/MspI site #3:

Forward primer: 5’ catatataacaggagtgacccaag 3’

Reverse primer: 5 ’ gctgtcctgaccaaacgtcccaacc 3 ’

SPARC promoter Hpall/MspI site #4:

Forward primer: 5’ ggttgggacgtttggtcaggacagc 3’

Reverse primer: 5 ’ gggcgtctgaaggaccgcgggaatgtggagg 3 ’

Primers were designed to flank individual Hpall/MspI restriction enzyme 

digestion sites. Polymerase chain reaction for SPARC was conducted using a Biometra 

T-Gradient thermocycler as follows: step one, 95°C for 3 minutes, step two, 95°C for 45
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seconds, step 3, 68°C for 30 seconds, step 4, 68°C for 1 minute. Steps 2-4 were repeated 

for a total of 30 cycles. PCR reaction products were separated by agarose gel 

electrophoresis and visualized by GelStar® nucleic acid stain (Cambrex Corporation, East 

Rutherford, NJ) via ultraviolet transilluminatation at 312nm. A PCR reaction in which 

template was omitted was run with each sample set as a negative control. The expected 

PCR amplicon sizes for SPARC promoter Hpall/MspI site #1= 252 base pairs, SPARC 

promoter Hpall/MspI site #2= 847 base pairs, SPARC promoter Hpall/MspI site #3= 711 

base pairs, SPARC promoter Hpall/MspI site #4= 180 base pairs.

5-aza-2’deoxycytidine and trichostatin A treatment of cells

A 5mM stock of 5-aza-2’deoxycytidine (Sigma-Aldrich Corporation, St. Louis, 

MO) was made fresh daily in sterile water and then filter sterilized using a 0.22pm 

syringe filter. Cells received fresh drug once daily for the indicated times and 

concentrations. A trichostatin A (Wako Chemicals USA, Incorporated, Richmond, VA) 

stock solution was prepared in 100% ethanol and stored at -20°C. When used in 

combination with 5-aza-2’deoxycytidine, trichostatin A was added at the end of the time 

course (the last 12-14 hours) at a final concentration of lOOng/ml. When trichostatin A 

was used alone, cells were incubated for 60 hours before the drug was added. As a 

negative control for trichostatin A experiments, parallel samples were treated with the 

same volume of 100% ethanol vehicle.
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Genomic DNA isolation

Genomic DNA was isolated from MCF7 vector control cells and c-Jun/MCF7 

cells using a Qiagen Genomic DNA Isolation Kit (Qiagen Corporation, Valencia, CA). 

Cells were seeded at a density of 1 X 106 cells/100mm tissue culture plate and harvested 

48 hours later. Cells were washed twice with ice-cold phosphate buffered saline then 

collected using a plastic scraper. Samples were aliquoted into a 15ml conical tube and 

centrifuged at 1,500 X g  for 10 minutes at 4°C. The cell pellet was resuspended in 500|il 

of ice-cold phosphate buffered saline. 500gl of ice-cold buffer Cl and 1.5mls of ice-cold 

distilled water was added to the sample to facilitate cell membrane lysis. Samples were 

mixed by inversion and incubated on ice for 10 minutes. Next, samples were centrifuged 

at 1,300 X g  for 15 minutes at 4°C. The supernatant was discarded and 250pl of ice-cold 

buffer Cl was added followed by vortexing and centrifugation at 1,300 X g  for 15 

minutes at 4°C to remove cell debris. The supernatant was discarded followed by the 

addition of 1ml of buffer G2. Samples were vortexed vigorously for 30 seconds followed 

by the addition of 25 pi of Qiagen protease or Qiagen proteinase K. Samples were then 

incubated at 50°C for 1 hour. During this time a Qiagen genomic DNA purification 

column 20/G was equilibrated using 1ml of buffer QBT. Samples were vortexed prior to 

adding to the purification column. Columns were then washed three times with 1ml of 

buffer QC. Genomic DNA was eluted from column using 1ml of buffer QT pre-warmed 

to 50°C. Elution was repeated a second time. DNA was precipitated by adding 1.4mls of 

100% isopropanol at room temperature to the sample followed by vortexing. Samples 

were aliquoted equally into two, 2.0ml nuclease-free tubes and centrifuged at 16,000 X g 

at 4°C for 15 minutes in a refrigerated table-top microfuge. Each DNA pellet was
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washed with 1ml of 70% ice-cold ethanol, vortexed and centrifuged at 16,000 X g for 10 

minutes at 4°C. The supernatant was removed and DNA pellets were allowed to air-dry 

before resuspending samples in 50pl Tris-EDTA, pH 8.0. Samples were incubated 

overnight at 50°C and then quantitated by ultraviolet spectophotometry at a 260nm 

wavelength.

Cytosine methylation analysis using sodium bisulfite modification of genomic DNA

2pg of purified genomic was modified using the EZ DNA Methylation Kit™ 

(Zymo Research Corporation, Orange, CA) following the manufacturer’s instructions. 

l-2pg  of high quality, purified genomic (free of RNA and protein) DNA was used for 

each bisulfite modification reaction. PCR primers used for bisulfite modified DNA 

amplification were designed using the MethPrimer program

(http://www.ucsf.edu/urogene/methprimer/) (137). The primers used to amplify a 398 

base pair region of the SPARC 5’ promoter region (bisulfite modified) were as follows: 

primer 1= 5’ tagttatagattgaattttttgtatttttt 3’, primer 2= 5’ attttattttaaaacaaaatctcactcactcta 

3’. The primers used to amplify a 366 base pair region of the SPARC 3’ promoter region 

(bisulfite modified) were as follows: primer 1=5’ ggttagaagattaagatatttgggtttg 3’, primer 

2= 5’ caaaaaaccactcaaaactctaaactaa 3’. PCR reactions consisted of 5pi of 10X Titanium 

Taq buffer (Clontech Corporation, Palo Alto, CA), 4pl of a dNTP mix (2.5mM each 

dATP, dTTP, dCTP, dGTP), 200ng each of primer 1 and primer 2, 0.5pl of Titanium™ 

Taq DNA polymerase (Clontech Corporation, Palo Alto, CA), and nuclease-free water to 

a reaction volume of 48pl. 2pl of bisulfite modified genomic DNA was used as the 

template for PCR. Polymerase chain reaction was conducted using a Biometra T-
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Gradient thermocycler as follows: step 1, 95°C for 3 minutes, step 2, 95°C for 45 

seconds, step 3, 60°C for 45 seconds, step 4, 68°C for 1 minute. Steps 2-4 were repeated 

an additional 32 times. Reactions were subsequently cooled to 4°C and 15pl of each 

reaction was analyzed by agarose gel electrophoresis. 0.8% agarose gels in IX TBE were 

prepared and stained with ethidium bromide in order to visualize PCR amplification 

products by ultraviolet transillumination at 312nm. PCR products were gel purified using 

a Qiaquick Gel Extraction Kit (Qiagen Corporation, Valencia, CA) following the 

manufacturer’s instructions.

Purified PCR products were ligated into the T/A cloning plasmid, pGEMT-Easy 

(Promega Corporation, Madison, WI) and transformed into DH5 alpha electrocompetent 

E. coli. Individual clones were screened for the presence of an insert of the expected size 

by EcoRA restriction enzyme digestion. Plasmid DNA from positive clones was purified 

using the Qiagen Plasmid Spin Miniprep Kit (Qiagen Corporation, Valencia, CA) 

according to manufacturer’s instructions and eluted in nuclease-free water. DNA from 

eight cloned PCR products was sequenced for each cell line. DNA sequences were 

aligned and compared to a reference SPARC promoter sequence (GenBank accession 

number X82259) in order to determine the methylation status of individual cytosine 

residues. Only DNA sequences demonstrating complete conversion of non-CpG 

cytosines were used for analysis.

DNA sequencing

DNA sequencing was performed by MWG Biotechnology and the University of 

Virginia Core DNA Sequencing Facility unless otherwise stated.
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CHAPTER III 

RESULTS

A. Effects of SPARC on MCF7 Cell Phenotype

The purpose of the experiments outlined in this section was to determine the 

extent to which SPARC gene expression influences MCF7 cell phenotype. SPARC gene 

expression has been correlated with a variety of tumor cell phenotypes including 

increased cell motility and invasion, decreased cell adhesion and inhibition of cell 

proliferation (101, 104, 105, 107, 123). However, little is known regarding the functional 

role of SPARC in regulating breast cancer cell phenotype. In order to gain a better 

understanding of these events, we used a MCF7 model system in which overexpression 

of the transcription factor c-Jun results in increased SPARC gene expression and 

phenotypic changes consistent with malignant progression (46, 51). Many of the 

alterations in cell phenotype induced by c-Jun are consistent with known functions of 

SPARC, such as increased cell invasiveness. Therefore, we sought to examine the 

contribution of SPARC using two approaches. The first was to overexpress SPARC in 

MCF7 cells in the absence of exogenous c-Jun overexpression. This approach would 

allow us to determine the extent to which SPARC expression is sufficient to induce 

alterations in cell phenotype. Our second approach was to inhibit SPARC gene 

expression in MCF7 cells stably expressing c-Jun. This strategy would allow us to 

determine the contribution of SPARC to c-Jun induced phenotypic changes. 

Characterization of these processes will provide a better understanding of the molecular 

mechanisms of breast cancer progression.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



54

Cloning of the human SPARC protein coding region

In order to use a genetic approach to analyze the contribution of SPARC in MCF7 

cell phenotype, we first needed to isolate an expressible human SPARC cDNA clone. To 

accomplish this goal, we conducted RT-PCR to specifically amplify the full-length 

human SPARC protein coding region. Total RNA from c-Jun/MCF7 cells, in which 

SPARC is abundantly expressed, was reverse transcribed. The SPARC cDNA was PCR 

amplified using a gene specific primer pair which flanked the translation start and stop 

codons. Restriction enzyme digestion sites were included at the 5’ ends of each primer to 

facilitate directional cloning. The SPARC PCR amplification product was gel purified 

and cloned into the pGEM7-Zf+ plasmid. DNA sequencing confirmed the identity of the 

cloned PCR product as the full-length SPARC protein coding sequence (Fig. 5).

Expression of the cloned human SPARC gene by in vitro transcription/translation

In order to verify expression of the cloned SPARC gene we conducted in vitro 

transcription and translation as shown in Fig. 6. The SPARC/pGEM7-Zf+ plasmid was 

linearized with a restriction enzyme 3’ of the stop codon and used as the template for in 

vitro transcription reaction using recombinant bacteriophage SP6 polymerase. The 

resulting SPARC RNA was in vitro translated using nuclease treated rabbit reticulocyte

35lysates in the presence of S-methionine. A negative control mock translation reaction, 

in which template was omitted, was also conducted. In vitro translation products were 

resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)

35followed by autoradiography in order to detect S-methionine labeled SPARC protein. 

As shown in Fig. 6, analysis of in vitro translated SPARC reaction products revealed
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ATG AGG GCC TGG ATC TTC TTT
M R A W I F F

GCC TTG GCA GCC CCT CAG CAA
A L A A P Q Q

GAG GTG GTG GAA GAA ACT GTG
E V V E E T V

GTG GGA GCT AAT CCT GTC CAG
V G A N P V Q

GAT GGT GCA GAG GAA ACC GAA
D G A E E T E

CCC TGC CAG AAC CAC CAC TGC
P C Q N H H C

CTG GAT GAG AAC AAC ACC CCC
L D E N N T P

ACC AGC TGC CCA GCC CCC ATT
T S C P A P I

AGC AAT GAC AAC AAG ACC TTC
S N D N K T F

GCC ACA AAG TGC ACC CTG GAG
A T K C T L E

CTC CAC CTG GAC TAC ATC GGG
L H L D Y I G

TGC CTG GAC TCT GAG CTG ACC
C L D S E L T

GAC TGG CTC AAG AAC GTC CTG
D W L K N V L

GAG GAC AAC AAC CTT CTG ACT
E D N N L L T

AAG AAG ATC CAT GAG AAT GAG
K K I H E N E

CAC CCC GTG GAG CTG CTG GCC
H P V E L L A

AAC ATG TAC ATC TTC CCT GTA
N M Y I F P V

GAC CAG CAC CCC ATT GAC GGG
D Q H p I D G

GCT CCA CTG CGT GCT CCC CTC
A P L R A P L

ACC CGC TTT TTC GAG ACC TGT
T R F F E T C

ATC GCC CTG GAT GAG TGG GCC
I A L D E W A

AAG GAT ATC GAC AAG GAT CTT
K D I D K D L

CTC CTT TGC CTG GCC GGG AGG
L L C L A G R

GAA GCC CTG CCT GAT GAG ACA
E A L P D E T

GCA GAG GTG ACT GAG GTA TCT
A E V T E V S

GTG GAA GTA GGA GAA TTT GAT
V E V G E F D

GAG GAG GTG GTG GCG GAA AAT
E E V V A E N

AAA CAC GGC AAG GTG TGC GAG
K H G K V C E

ATG TGC GTG TGC CAG GAC CCC
M C V C Q D p

GGC GAG TTT GAG AAG GTG TGC
G E F E K V C

GAC TCT TCC TGC CAC TTC TTT
D S S C H F F

GGC ACC AAG AAG GGC CAC AAG
G T K K G H K

CCT TGC AAA TAC ATC CCC CCT
P C K Y I P P

GAA TTC CCC CTG CGC ATG CGG
E F P L R M R

GTC ACC CTG TAT GAG AGG GAT
V T L Y E R D

GAG AAG CAG AAG CTG CGG GTG
E K Q K L R V

AAG CGC CTG GAG GCA GGA GAC
K R L E A G D

CGG GAC TTC GAG AAG AAC TAT
R D F E K N Y

CAC TGG CAG TTC GGC CAG CTG
H W Q F G Q L

TAC CTC TCC CAC ACC GAG CTG
Y L S H T E L

ATC CCC ATG GAG CAT TGC ACC
I P M E H C T

GAC CTG GAC AAT GAC AAG TAC
D L D N D K Y

GGC TGC TTC GGC ATC AAG CAG
G C F G I K Q

GTG ATC TAA
V I ST O P

Fig. 5. Summary of the human SPARC protein coding sequence. 912 base pair 
nucleic acid sequence of human SPARC protein coding sequence (GenBank 
accession number NM_003118) and predicted 303 residue amino acid sequence. 
Single letter amino acid abbreviations correspond to IUPAC designation.
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Fig. 6. Expression of cloned human SPARC by in vitro transcription/translation. 
In vitro translation rabbit reticulocyte lysate 35S-methionine in vitro transcribed 
RNA no RNA template (mock translation) detected by autoradiography. SPARC 
protein coding sequence cloned into pGEM7Zf+ plasmid, linearized, in vitro 
transcribed using recombinant bacteriophage SP6 RNA polymerase.
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expression of a 34kDa protein. This molecular weight is consistent with SPARC protein 

that has not been post-translationally modified. In vivo, SPARC has been shown to 

undergo TV-linked glycosylation at amino acid 99 (Asn) which results in a higher 

molecular weight protein product (112, 138, 139). However, in vitro synthesis of 

SPARC protein using rabbit reticulocyte lysates is not expected to result in a glycosylated 

product. A second, lower molecular weight protein present in the SPARC reaction may 

have been generated from an alternate translation start site, since the band is not present 

in the mock translation reaction. To our knowledge, there have been no reports of 

alternate start site usage for SPARC in vivo, therefore this lower molecular weight 

product is most likely an in vitro artifact. Based on DNA sequencing (Fig. 5) and in vitro 

transcription/translation analysis (Fig. 6), we conclude that we successfully isolated a 

full-length, expressible human SPARC cDNA.

Generation of MCF7 stable cell lines constitutively expressing SPARC

Next we sought to generate MCF7 cell lines stably expressing SPARC in order to 

analyze its role in modulating the MCF7 phenotype. To accomplish this goal, we used 

retroviral mediated gene transfer to introduce the SPARC gene expression cassette into 

MCF7 cells. This strategy was chosen over direct transfection of a SPARC mammalian 

expression plasmid for two main reasons. First, the efficiency of gene transfer using 

retroviral gene delivery is much higher compared to standard transfection of plasmid 

DNA. Second, integration of the transgene into the host cell genome is much more 

efficient due to the presence of viral long terminal repeat (LTR) sequences. A schematic 

representation of our experimental approach is outlined in Fig. 7. The SPARC protein
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1.) Transfect retroviral constructs into PT67 packaging cell line

2.) Harvest replication deficient retroviruses

A.) SPARC expressing retrovirus
B.) Negative control retrovirus

3.) Infect MCF7 cells

4.) Start antibiotic selection

5.) Ring clone individual antibiotic resistant colonies and 
assay for SPARC mRNA and protein expression

6.) Assay stable cell clones in phenotype assays (cell proliferation, in vitro cell 
motility and invasion)

Fig. 7. Experimental approach for generating SPARC/MCF7 stable cell lines.
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coding region was subcloned into the retroviral expression plasmid, LPCX. This plasmid 

was transfected into the PT67 packaging cell line to generate infectious, replication 

deficient retrovirus. In parallel, a negative control retrovirus, without the SPARC gene 

insert, was also generated. The PT67 packaging cell line stably expresses viral gag,pol 

and env genes required for virus assembly (140). The LPCX plasmid transfected into 

these cells provided the viral packaging signal sequence. Virus was harvested from PT67 

tissue culture media and then used to infect MCF7 cells. Following infection, MCF7 

cells were grown in the presence of the antibiotic puromycin to allow for positive 

selection of cells containing the stably integrated SPARC or empty vector control gene 

expression cassettes. Individual antibiotic resistant stable cell colonies were ring cloned 

and assayed for SPARC expression. Expression of the SPARC transgene is regulated via 

the cytomegalovirus major immediate early gene promoter. As a result, SPARC is 

constitutively expressed at high levels in stable cell clones.

Fig. 8 shows semi-quantitative RT-PCR analysis of steady state SPARC mRNA 

levels in three independently isolated stable SPARC/MCF7 cell clones. These results 

indicate that SPARC expression in each of the three clones was comparable to the levels 

observed in c-Jun/MCF7 cells. Next, SPARC protein expression was analyzed by 

Western blot analysis of whole cell lysates using a SPARC specific antibody (Fig. 8).

The molecular weight of SPARC protein was estimated to be 43kDa, consistent with 

published reports and consistent with SPARC expressed in c-Jun/MCF7 cells (111, 125, 

141). A higher molecular weight band was occasionally observed and may represent 

non-specific background due to insufficient washing during the Western blot procedure. 

Based on the results presented in Fig. 8, we conclude that three independent
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Fig. 8. Analysis of SPARC mRNA and protein expression in SPARC/MCF7 
stable cell lines. A, Semi-quantitative RT-PCR demonstrating SPARC mRNA levels 
in three independent SPARC/MCF7 stable clones (1, 2, 3) using the 18S ribosomal 
subunit as an internal control (L= DNA molecular weight marker). B, Western blot 
analysis of SPARC protein levels in three independent SPARC/MCF7 stable cell 
clones using a SPARC specific antibody. Equal amounts of protein (50pg) were 
loaded in each lane.
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SPARC/MCF7 stable cell clones were isolated that express levels of SPARC mRNA and 

protein comparable to c-Jun/MCF7 cells and would, therefore, be good candidates for 

phenotypic characterization.

Effect of stable overexpression of SPARC on MCF7 cell proliferation

Increased SPARC expression has been shown to influence a variety of cell 

phenotypes (101-107). For example, increased expression of SPARC is known to inhibit 

cell cycle progression resulting in a decrease in cell proliferation (141, 142).

Interestingly, we observe a similar phenotype in c-Jun/MCF7 cells in which SPARC 

mRNA and protein levels are dramatically elevated (46, 51). Therefore, we hypothesized 

that SPARC may contribute to decreased cell proliferation in our MCF7 model system.

In order to determine if SPARC overexpression, alone, was sufficient to alter the 

rate of MCF7 cell proliferation, we conducted non-radioactive cell proliferation assays 

(MTT assays). The MTT assay is a colorimetric assay based on cellular conversion of 

MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl) tetrasodium bromide dye to an 

insoluble, blue formazan reaction product (143). The degree of color change in each 

sample has been shown to be directly proportional to cell number (143, 144).

Vector control/MCF7, c-Jun/MCF7 and SPARC/MCF7 stable cell lines were 

initially maintained in serum-free conditions for 24 hours in order to promote quiescence. 

Cells were then trypsinized, counted and plated at an equivalent density in complete 

media containing 10% fetal bovine seruni. MTT reactions were quantified by measuring 

the optical density (OD) of each sample at 24 hour intervals for a total of 96 hours. 

Results were analyzed by linear regression analysis to determine the slope of a best-fit
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line between each optical density reading for each cell line. Proliferation rates for 

c-Jun/MCF7 and SPARC/MCF7 cells were then expressed relative to vector 

control/MCF7 cells.

As shown in Fig. 9, the three SPARC/MCF7 stable cell lines exhibited a 

statistically significant decrease in cell proliferation rate compared to vector control 

MCF7 cells (P= <.05). These results are consistent with previous reports which 

demonstrated that overexpression of SPARC in the breast cancer cell line,

MDA-MB-231, resulted in a decrease in the cell proliferation rate (142). However, 

SPARC/MCF7 cell lines failed to fully recapitulate the cell proliferation defects induced 

by c-Jun overexpression. One explanation for this difference is that other c-Jun target 

genes contribute to regulation of cell proliferation. Consistent with this notion, we have 

previously shown that overexpression of c-Jun results in altered expression of several cell 

cycle genes including /;/(5INK4a and/>27CIP1/Wafl (51).

Analysis of in vitro cell motility and invasion in SPARC/MCF7 stable cell lines

As stated previously, increased SPARC expression is associated with increased 

cell motility and invasion during wound healing, tissue remodeling and tumorigenesis 

(101-107). Consistent with these observations, we have previously shown that MCF7 

cells overexpressing c-Jun exhibit a dramatic increase in in vitro cell motility and 

invasion (46). In order to determine if SPARC overexpression, alone, was sufficient to 

induce cell motility and invasion we assayed SPARC/MCF7 stable cell lines using a 

modified Boyden chamber assay. This assay measures the ability of cells to migrate 

through a porous membrane in response to a chemotactic stimulus (145).
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Cell Proliferation Rate of SPARC/MCF7 Stable Cell Lines

120%

100%

80%

60%

40%

20%

0% i i1 I
MCF7 c-Jun/MCF7 SPARC/MCF7 SPARC/MCF7 SPARC/MCF7

clone 1 clone 2 clone 3

Cell Line

Fig 9. Effect of stable SPARC expression on MCF7 cell proliferation. Cell 
proliferation rates were determined by MTT assay. The indicated cells lines were 
plated at the same density in 96-well plates. Samples were assayed at 24, 48, 72 and 
96 hours. Optical densities were determine using a microtiter plate reader rate 
determined slope of the line. Clone 1, 2 and 3 represent three independent 
SPARC/MCF7 stable cell lines. The cell proliferation rate of vector control/MCF7 
cells was set at 100%. The proliferation rate of c-Jun/MCF7 and SPARC/MCF7 
cells is expressed as a percentage of MCF7.
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An equal number of vector control MCF7, c-Jun/MCF7 and three SPARC/MCF7 stable 

cell lines were suspended in serum-free growth media and added to the upper portion of a 

modified Boyden chamber. These cells were separated from the bottom chamber of the 

apparatus by a gelatin coated porous membrane. The lower chamber contained NIH3T3 

conditioned media which served as the chemotactic stimulus. As a result, cells with the 

capacity to respond positively to the chemoattractant migrated through the pores, 

ultimately attaching to the underside of the membrane. Following a short (4-5 hour) 

incubation, the apparatus was disassembled and the cells were stained. Cells remaining 

on the upper portion of the membrane, which did not migrate through pores, were wiped 

away and the cells on the bottom were counted using an inverted microscope. Cells in 

multiple fields of view were counted in order to control for localized variation in cell 

distribution as well as variations in membrane coating.

In vitro cell invasion assays were conducted in a similar manner to the motility 

assays. The main difference was that membranes were coated first with collagen IV and 

then with Matrigel™. Matrigel™ is a complex mixture of extracellular matrix (ECM) 

components obtained from Engelbroth-Holm-Swarm (EHS) mouse sarcoma cell cultures 

(146). This mixture polymerizes on the membrane and forms a barrier that cells must 

proteolytically degrade in order to migrate through the pore. Therefore, this in vitro 

invasion assay is a measure of a cell’s ability to both degrade extracellular matrix 

components and move in a directional manner. As shown in Fig. 10, SPARC/MCF7 

stable cell lines showed no significant difference in motility or invasion when compared 

to vector control/MCF7 cells. These results suggest that other cellular changes induced 

by c-Jun are required for acquisition of these phenotypes.
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Fig. 10. Analysis of in vitro cell motility and invasion demonstrated by 
SPARC/MCF7 stable cell lines. A, Quantitation of cell motility assays done on 
gelatin coated membranes over a four hour incubation period. B, Quantitation of 
cell invasion assays conducted on Matrigel™ coated membranes over a period of 
four hours. Each motility and invasion experiment was conducted at least three 
times. All values are expressed as number of stained cells per high-powered field.
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Analysis of the effect of SPARC inhibition on c-Jun induced cell motility and 

invasion in MCF7 cells

In order to determine if SPARC is involved in migration and invasion exhibited 

by c-Jun/MCF7 cells we developed a means for its specific suppression. A previous 

study examining the role of SPARC in human melanoma showed that antisense inhibition 

of SPARC expression diminished cell adhesion and invasiveness in vitro and abrogated 

tumor formation in mice in vivo (126). Therefore, we chose to adopt a similar strategy to 

determine the contribution of SPARC to c-Jun induced cell motility and invasion in a 

MCF7 breast cancer model system.

In order to express antisense SPARC in c-Jun/MCF7 cells we constructed 

replication deficient adenovirus expressing the SPARC cDNA in the antisense 

orientation. We chose an adenovirus based strategy for gene delivery because this 

method is more efficient compared to standard transfection procedures. This method 

results in transient, high levels of expression of the gene of interest. Using this method, 

we were able to demonstrate 90% of c-Jun/MCF7 cells expressing the control gene beta- 

galactosidase (Appendix A, Fig. 41). Although this method is limited to transient gene 

expression, it is still suitable for in vitro cell motility and invasion assays because these 

are short-term assays (4-5 hours). A schematic diagram of our experimental approach is 

outlined in Fig. 11.

Recombinant, replication deficient adenovirus was produced in the human 

embryonic kidney cell line, HEK293. These cells stably expresses the adenovirus El 

genes necessary for viral replication (147, 148). Virus was harvested from HEK293 cells 

and used to infect c-Jun/MCF7 cells. Infection of c-Jun/MCF7cells with an adenovirus
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Subclone gene expression cassette into recombinant adenoviral DNA (Clontech
AdenoX™ commercial system)

1.) beta-galactosidase control adenovirus 2.) antisense SPARC adenovirus

Transfect recombinant adenovirus DNA into HEK293 packaging cell lineI
Viral assembly and packaging (HEK293 cells)

Harvest replication deficient recombinant adenovirus

j
Titer viral stocks (plaque assay/Clontech AdenoX Rapid Titre Kit™) 

Infect c-Jun/MCF7 cells 

Harvest total cell protein 

Western blot for SPARC protein

Determine optimal multiplicity of infection (MOI) and time point which result 
in decreased SPARC protein levelsi

Assay for in vitro cell motility and invasion

Fig. 11. Experimental approach for suppression of SPARC protein 
expression using antisense SPARC adenovirus.
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expressing the beta-galactosidase gene product was used to determine the optimal 

multiplicity of infection (MOI) in which most cells became infected without showing 

cytotoxic effects. This MOI was subsequently used to infect c-Jun/MCF7 cells with the 

adenovirus expressing SPARC in the antisense orientation. SPARC protein expression 

was subsequently analyzed by Western blot at 12, 30, 48 and 72 hours post-infection.

Fig. 12 demonstrates a marked inhibition in SPARC protein expression 24 hours 

following infection (MOI=5) with antisense SPARC adenovirus. This time point and 

MOI was subsequently used to assess motility and invasion of c-Jun/MCF7 cells.

As shown in Fig. 13, c-Jun/MCF7 cells expressing antisense SPARC were 

significantly less motile than cells infected with the same MOI of control adenovirus. 

Additionally, c-Jun/MCF7 cells infected with the SPARC antisense virus demonstrated a 

70% decrease in invasive capacity when compared to control infected cells. Taken 

together, these results are consistent with a mechanism by which SPARC upregulation, in 

response to c-Jun, is a pivotal event leading to the induction of motility and invasion in 

c-Jun/MCF7cells.

Development of a RNAi mediated approach for stable SPARC inhibition in 

c-Jun/MCF7 cells

As a follow-up to the transient antisense SPARC studies described above, we 

sought to develop a system for stable inhibition of SPARC expression in c-Jun/MCF7 

cells for future in vivo studies. Recent breakthroughs have uncovered a novel approach, 

termed RNA interference (RNAi), for potent and specific inhibition of gene expression 

(149-151). Expression of short, 19-23 base pair, small interfering RNAs (siRNAs) has
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A
Time (hrs.) post-infection

Adenovirus SPARC antisense infected 

Adenovirus beta-gal infected
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»  •  • •

B 24 hours post infection
c-Jun

Adeno-SPARC antisense
+
+

SPARC protein ■ ■ ft

Fig. 12. Analysis of SPARC expression in c-Jun/MCF7 cells infected with 
antisense SPARC adenovirus. A, Western blot analysis of SPARC protein 
expression at 12, 30, 48 and 72 hours following infection with adenovirus 
expressing SPARC in the antisense orientation or control adenovirus expressing 
the beta-galactosidase gene (MOI= 5) in c-Jun/MCF7 cells. B, Western blot 
demonstrating SPARC expression in c-Jun/MCF7 cells 24 hours post-infection 
with antisense SPARC expressing adenovirus. Equal amounts of total protein 
(50/rg) were loaded in each lane.
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Fig. 13. Analysis of c-Jun/MCF7 in vitro cell motility and invasion following 
antisense inhibition of SPARC expression. A, Quantitation of cell motility assays 
done on gelatin coated membranes over a 4 hour incubation period. B, Quantitation 
of cell invasion assays conducted on Matrigel™ coated membranes over a period of 
4 hours. Each infection and motility/invasion assay was repeated at least three times 
and verified using different viral stocks to control for variability in virus 
preparations. All values are expressed as number of stained cells counted per high- 
powered field. Statistics were evaluated using ANOVA (7)=<.005).
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been shown to promote degradation of complementary cellular mRNAs (149, 150, 152, 

153). This process occurs via activation of an RNAi nuclease complex termed the RNA 

induced silencing complex (RISC). RISC binds to short, double stranded RNA 

molecules leading to enzymatic degradation of target mRNA thereby decreasing steady 

state levels (149, 154). A schematic representation of our strategy to inhibit SPARC 

expression using RNAi is shown in Fig. 14.

One drawback to this method is that it is difficult to predict which sequences will 

activate the cellular RISC complex. Therefore, we designed four unique siRNA 

expression cassettes targeted to different regions of the human SPARC mRNA. These 

expression cassettes were then cloned into the pSilencer-Hl-hygro plasmid. This plasmid 

expresses the siRNA sequences under the control of a RNA polymerase III gene 

promoter (HI promoter) which has been shown to promote efficient transcription of short 

RNA species (34, 155). In addition, the pSilencer-Hl-hygro plasmid contains the 

hygromycin resistance gene allowing for positive selection of stable cell clones. Separate 

plates of c-Jun/MCF7 cells were transfected with individual SPARC siRNA expression 

plasmids followed by selection with hygromycin. Hygromycin resistant cells were 

pooled and maintained as stable cell populations. These cell populations were then 

analyzed by Western blot to determine SPARC protein levels (Fig. 14). Three of four 

siRNA sequences designed to inhibit SPARC expression dramatically lowered steady- 

state levels of SPARC protein. Importantly, levels of c-Jun protein remained unchanged 

(Fig. 14). Therefore, we conclude from these experiments that we have successfully 

developed a reagent suitable for inhibiting SPARC protein expression allowing for long

term in vivo analysis of these cells. This RNAi approach for SPARC “knock-down” was
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SPARC siRNA design

5 ’ UTR SPARC protein coding region 3’ UTR - A A A A  A A  A A A
+ 1 6 1  + 3 2 8 + 4 1 8 +604
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RNA polymerase III 
BamHI termination site

5 ’ P h O S -gatcccgTTTGATGATGGTGCAGAGGttcaagagaCCTCTGCACCATCATCAAAttttttggaaa
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c-Jun/MCF7 
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SPARC siRNA
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anti-SPARC antibody
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Fig. 14. Experimental approach and characterization of human SPARC specific 
RNAi. A, Schematic representation of the regions of SPARC mRNA targeted by 
individual siRNA sequences. B, Design of siRNA sequences and predicted 
secondary structure of siRNA transcripts. C, Western blot analysis of SPARC 
protein expression in c-Jun/MCF7 cells stably expressing individual SPARC siRNA 
sequences (1= +161, 2= +328, 3= +418, 4= +604).
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more dramatic than the results we obtained using the antisense SPARC adenovirus. This 

is likely due to the fact that RNAi promotes active degradation of mRNA in contrast to 

the antisense SPARC adenovirus.

In summary, the objective of Aim 1 was to determine the role of SPARC gene 

expression on MCF7 cell phenotype. We addressed this objective by cloning the human 

SPARC gene and expressing it in MCF7 cells to assess the role of SPARC in the absence 

of exogenous c-Jun expression. In addition, we expressed SPARC in the antisense 

orientation in c-Jun/MCF7 cells in order to inhibit SPARC protein expression. This 

allowed us to examine the contribution to c-Jun induced invasive phenotype. Our 

conclusions from these experiments were: 1.) SPARC overexpression in MCF7 cells 

results in a significant decrease in cell proliferation rate 2.) overexpression of SPARC, 

alone, is not sufficient to promote cell motility and invasion of MCF7 cells and 3.) 

suppression of SPARC in c-Jun/MCF7 cells significantly inhibits cell motility and 

invasion. The results presented in this section establish SPARC as a phenotypically 

relevant c-Jun target gene which contributes to a pro-invasive breast cancer cell 

phenotype. However the mechanism(s) of SPARC gene regulation by c-Jun had yet to be 

examined and served as the focus of Aim 2.
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B. Mapping the c-Jun Responsive Region of the SPARC Promoter

The experiments described in Aim 1 established that SPARC is a phenotypically 

relevant c-Jun target gene. Next, we were interested in determining the mechanism(s) by 

which SPARC gene expression is regulated. In order to address this issue, we examined 

SPARC promoter activity by transient transfection and promoter/reporter assays. In 

addition, we characterized protein/DNA interactions involving the SPARC promoter 

using nuclear extracts from MCF7 and c-Jun/MCF7 cell lines. The studies conducted in 

Aim 2 sought to identify cis regulatory elements of the SPARC promoter which confer 

c-Jun responsiveness in the context of a MCF7 breast cancer model system.

Analysis of SPARC promoter activity in vector control/MCF7, JunD/MCF7 and 

c-Jun/MCF7 stable cell lines

The human SPARC promoter was originally described as a 1409 base pair 

sequence 5’ of the major transcriptional start site (129). This sequence was shown to 

exhibit activity by transient promoter/reporter assays in multiple cell lines including 

HEK293, HeLa, HepG2, Tera-2 and HT1080 cells (129). Analysis of the human SPARC 

promoter sequence revealed the presence of three AP-1 like sites which deviate from the 

consensus context (TGAC/GTCA) by a single nucleotide (Fig. 15). Previous studies 

conducted by our laboratory have shown that c-Jun/AP-1 is capable of binding to AP-1 

like sequences in vitro (80). Therefore, we hypothesized that c-Jun may bind to one, or 

more, of these sites as a means of positively regulating SPARC promoter activity.
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Fig. 15. The DNA sequence of the human SPARC gene promoter., +1 denotes the 
transcription start site. +2 through +28 denotes additional sequence from the SPARC 
gene 5’ untranslated region and is present in the SPARC promoter/luciferase reporter 
plasmids used in these studies. AP-1 “like” sites are underlined.
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In order to quantify promoter activity, we assayed the human SPARC promoter cloned 

immediately upstream of the firefly luciferase reporter gene (generous gift from Dr. Marc 

Castellazzi). This plasmid was transiently transfected into two independent vector 

control/MCF7, c-Jun/MCF7 and JunD/MCF7 stable cell lines. JunD/MCF7 cells were 

used in order to determine the extent to which SPARC upregulation was specific to c-Jun. 

Forty-eight hours after transfection, cellular protein was assayed for luciferase enzyme 

activity as a measure of SPARC promoter activity. Luciferase values were normalized to 

protein concentration and represented as fold induction over empty vector control/MCF7 

cells.

As shown in Fig. 16, transient transfection of the SPARC promoter/luciferase 

reporter plasmid (-1409/+28) into c-Jun/MCF7 cells resulted in a 15-30 fold increase in 

promoter activity when compared to vector control/MCF7 cells. Overexpression of JunD 

had no significant effect on SPARC promoter activity suggesting that SPARC promoter 

activation is specific to c-Jun. These results establish that the SPARC promoter is 

responsive to c-Jun in the context of a transient promoter/reporter assay and would 

therefore serve as a valuable tool in order to map the c-Jun responsive region(s).

Characterization of protein/DNA interactions at the SPARC promoter AP-1 like 

sites

Next, we evaluated protein/DNA interactions of three potential AP-1 binding sites 

at -1051/-1045, -868/-862 and -241/-235 by gel mobility shift analysis. Oligonucleotide 

primers for each of the non-canonical AP-1 sites were generated and assayed for their 

ability to bind proteins from nuclear extracts derived from vector control/MCF7,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



77

A

-1409

AP-1 like sites 

-1051/-1045 -868/-862
V

TGAGTGA TGACCCA

+1

-241/-235 Luciferase
'"'A. J  

TGAGTCG

B Transactivation of the SPARC Promoter (-1409/+28)

30

25

s  204-»o o 
>  ©

o =  15
c  o
• l o

■o O 
—  °  10

X

MCF7 Clone 1 Clone 2 

JunD/MCF7

Cell Lines

Clone 1 Clone 2 

c-Jun/MCF7

Fig. 16. Analysis of SPARC promoter (-1409/+28) activity in MCF7, JunD/MCF7 
and c-Jun/MCF7 stable cell lines. A, Schematic diagram indicating the relative location 
and DNA sequence context of three non-canonical AP-1 sites. Nucleotides underlined 
and in italics denote sequences which differ from the consensus AP-1 context. B, 
Results of transient transfection analysis of the SPARC promoter (-1409/+28)/luciferase 
reporter plasmid in the indicated cell lines. Promoter activity is expressed as fold 
induction over the vector control/MCF7 cells. Relative luciferase values were 
normalized to protein concentration. Each experiment was done 2-3 times in triplicate.
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JunD/MCF7 and c-Jun/MCF7 cells. In addition, a consensus AP-1 probe was analyzed 

as a positive control for AP-1 binding. Nuclear extracts from each cell line were

32incubated with P radiolabeled DNA probes corresponding to the AP-1 like sequences 

(Fig. 17). Protein/DNA complexes were resolved on non-denaturing polyacrylamide gels 

using conditions previously established for AP-1 binding (80). As a negative control, 

each of the radiolabeled DNA probes were also analyzed in the absence of nuclear 

extract.

As shown in Fig. 17, only one of the SPARC promoter sites (-1051/-1045) 

showed appreciable binding of a complex consistent with AP-1 to proteins from c- 

Jun/MCF7 nuclear extracts. The inability to detect binding to the other two AP-1 like 

sites at -868/-862 and -241/-235 suggests that these sites are in a poor sequence context 

for AP-1 complex formation. We detected minimal AP-1 binding activity in vector 

control/MCF7 nuclear extracts, consistent with previous reports that MCF7 cells possess 

low endogenous levels of AP-1 activity (95). We also did not detect AP-1 binding in 

JunD/MCF7 nuclear extracts, consistent with our previous finding that JunD 

overexpression had no effect on SPARC promoter activity (Fig. 16). Taken together, 

these results suggest that AP-1 binding activity present in c-Jun/MCF7 nuclear extracts is 

capable of recognizing the SPARC promoter AP-1 like site at -1051/-1045.

Gel shift competition analysis of the SPARC promoter AP-1 like site at -1051/-1045

Next, we sought to characterize the specificity of protein/DNA interactions on the 

SPARC promoter -1051/-1045 AP-1 like site by conducting gel shift competition
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Fig. 17. Gel mobility shift analysis of the SPARC promoter AP-1 like sites at 
-1051/-1045, -868/-862 and -241/-235. The indicated 2P radiolabeled DNA probes 
(30,000 cpm) were incubated with either vector control/MCF7, JunD/MCF7 or 
c-Jun/MCF7 nuclear extracts (8ug). The arrow (—►) denotes the position of AP-1 
complex formation. The asterisk (*) denotes the location of unbound, radiolabeled probe. 
MCF7-1 and MCF7-2 designations represent nuclear extracts isolated from individual 
stable cell line clones.
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analysis. Gel shift reactions were conducted in the presence of a non-radiolabeled DNA 

probe corresponding to an unrelated DNA sequence, without AP-1 binding site, or a 

consensus AP-1 sequence. We expected that specific AP-1 binding would not be affected 

by addition of an unrelated DNA probe, whereas addition of a consensus AP-1 probe 

would inhibit binding in a dose dependent manner.

Nuclear extracts from c-Jun/MCF7 cells were pre-incubated with unlabeled,

“cold” AP-1 consensus gel shift probe or an unrelated competitor DNA sequence. Next, 

the 32P radiolabeled probe containing the SPARC AP-1 like site at -1051/-1045 was 

added to the reaction. The resulting protein/DNA complexes were resolved on a non

denaturing polyacrylamide gel and visualized by autoradiography. As shown in Fig. 18, 

the consensus AP-1 competitor completely abolished AP-1 binding to the -1051/-1045 

probe at the lowest concentration whereas competition with an unrelated competitor had a 

modest effect only at higher concentrations. Formation of a lower molecular weight 

complex decreased with increasing concentrations of either probe suggesting that this 

represented a non-specific protein/DNA interaction. Taken together, these results 

demonstrate that the non-canonical AP-1 site at -1051/-1045 is capable of binding 

proteins with AP-1 binding specificity.

Antibody competition/supershift analysis of the SPARC promoter AP-1 like site at 

-1051/-1045

In order to identify proteins which specifically recognized the SPARC promoter 

AP-1 like site at -1051/-1045, we performed antibody competition and supershift analysis 

(Fig. 19). Addition of antibody to a gel shift reaction can either inhibit specific
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Fig. 18. Gel shift competition analysis of the SPARC promoter -1051 /-1045 
AP-1 like site. AP-1 binding from c-Jun/MCF7 nuclear extracts to a radiolabeled 
DNA probe (50,000 cpm) containing the non-canonical AP-1 site at -1051/-1045 
where (-) represents no competitor followed by increasing amounts of the indicated 
AP-1 consensus or unrelated competitors (2.5, 5, 10, 25 and 50X molar excess).
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protein/DNA interactions or result in formation of a higher molecular weight complex 

called a “supershift” depending on the protein domain recognized by the antibody. In 

either event, this strategy can be used to specifically identify the protein(s) bound to a 

radiolabeled DNA probe. Our analysis focused on c-Jun and Fra-1 binding because of 

previous observations suggesting that the AP-1 expression profile in these cells favored 

this AP-1 dimer combination (Fig. 3) (46).

Nuclear extracts from c-Jun/MCF7 cells were incubated with anti-c-Jun, anti-

32Fra-1 or a negative control antibody followed by the addition of the P radiolabeled gel 

shift probe (-1051/-1045). As shown in Fig. 19, an antibody directed against the c-Jun 

DNA binding domain specifically blocked AP-1 binding indicating c-Jun is part of this 

complex. Because this antibody is directed against the DNA binding domain, the effect 

seen is a block in binding rather than a supershift (80). Addition of anti-Fra-1 antibody 

resulted in the formation of a higher molecular weight, supershifted complex indicating 

that the AP-1 binding activity observed is largely composed of c-Jun/Fra-1 dimers. 

Incubation with a negative control antibody, against a protein not expected to be present 

in the complex (p i6), did not alter AP-1 binding. Taken together, these results 

demonstrate that c-Jun/Fra-1 dimers present in c-Jun/MCF7 nuclear extracts are capable 

of binding to the SPARC promoter AP-1 like site at -1051/-1045.

Site directed mutagenesis of the AP-1 like site at -1051/-1045 of the SPARC 

promoter

In order to determine the functional significance of the AP-1 site located at 

-1051/-1045, we conducted site-directed mutagenesis and then analyzed the effect on
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Fig. 19. Antibody competition/supershift analysis of the SPARC promoter 
-1051/-1045 AP-1 like site. A, Promoter schematic indicating the position of 
several potential AP-1 binding sites in the human SPARC promoter. B, Gel shift 
analysis using the indicated nuclear extracts and antibodies run on a 6% 
non-denaturing polyacrylamide gel and 50,000 cpm of radiolabeled, double 
stranded DNA probe (5’ gcctgggcgacagagtgagtgagactctgtctcaaaac 3’).
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AP-1 binding and transactivation. We hypothesized that mutation of this site to a 

consensus AP-1 context would result in an increase in DNA binding and a concomitant 

increase in SPARC promoter activity. Conversely, we reasoned that mutation of this site, 

to a more divergent sequence context, would result in a decrease in AP-1 binding and 

transactivation potential.

Gel shift probes were constructed in order to change the wild-type -1051/-1045 

sequence to a perfect consensus (TGAGTCA) or triple mutant (CGAATGA) sequence 

context. Gel mobility shift analysis of these mutants using c-Jun/MCF7 nuclear extracts 

demonstrated that, as expected, mutation to a consensus AP-1 context resulted in much 

stronger AP-1 binding, whereas the triple mutant abolished binding (Fig. 20/1).

Next, we examined the effect of these mutations on SPARC promoter activity in 

vector control/MCF7 and c-Jun/MCF7 cells. The same point mutations used in gel shift 

analysis were introduced in the context of the full-length promoter using overlapping 

PCR. Each mutant was subsequently inserted upstream of the firefly luciferase reporter 

gene. We reasoned that if this site was critical for promoter activation mediated by direct 

AP-1 binding then mutation to a high or low affinity site would result in a change in 

transactivation potential relative to the wild-type sequence. On the other hand, if 

mutation of this site did not affect promoter activation it would suggest that it is either not 

required or not active when taken out of the full genomic context. Interestingly, transient 

transfection of the site-directed mutants into c-Jun/MCF7 cells resulted in no significant 

difference in promoter activity compared to the wild-type sequence context (Fig. 205). 

These results suggest that the AP-1 binding site at -1051/-1045 does not play a critical 

role in c-Jun mediated stimulation of SPARC promoter activity.
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Fig. 20. Analysis of AP-1 binding and promoter activity of -1051/-1045 AP-1 like 
site mutants. A, Gel shift analysis showing AP-1 binding from c-Jun/MCF7 nuclear 
extracts to the indicated mutated or wild type -1051/-1045 DNA probe (30,000 cpm). 
B, Site-directed mutagenesis was used to introduce point mutations to the non- 
canonical AP-1 site at -1051/-1045 in the context of the SPARC promoter fragment 
-1409/+28. Mutant and wild-type promoter/reporter constructs were transiently 
transfected into c-Jun/MCF7 cells and assayed for activity. Promoter activation is 
expressed as percent expression relative to the wild-type sequence context. Relative 
luciferase values were normalized to protein concentration.
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Functional analysis of a SPARC promoter deletion mutant spanning the region 

from -120/+28

Because mutation of the AP-1 site at -1051/-1045, alone, had no effect on c-Jun 

mediated SPARC promoter activation, we initiated deletion analysis in order to examine 

the combined effect of removing all three AP-1 like sites. We hypothesized that if AP-1 

binding was required then deletion of all potential binding sites would be expected to 

abrogate c-Jun responsiveness. To accomplish this, we obtained a SPARC promoter 

fragment containing only nucleotides -120 to +28 relative to the transcriptional start site 

(generous gift from Dr. Marc Castellazzi). This SPARC promoter construct does not 

contain any sequence resembling an AP-1 site and was therefore analyzed in vector 

control/MCF7, JunD/MCF7 and c-Jun/MCF7 cells to determine the effect on promoter 

activity. Surprisingly, the SPARC promoter fragment spanning from -120 to +28 

retained approximately 85% activity relative to the -1409/+28 construct when transfected 

into c-Jun/MCF7 cells (Fig. 21). These results suggest that the three AP-1 sequences in 

the SPARC promoter are dispensable and that the major c-Jun responsive region is 

located within the region spanning -120/+28.

Functional analysis of the SPARC promoter deletion mutant spanning the region 

from -70/+28

To further resolve the location of the c-Jun responsive element, we constructed an 

additional 5 ’ promoter deletion mutant which resulted in a promoter fragment spanning 

from -70/+28 relative to the transcriptional start site. This truncated promoter construct 

resulted in deletion of a region containing multiple repeats of the sequence, GGA, and a
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Fig. 21. Analysis of SPARC -120/+28 promoter activity. A, Promoter schematic 
indicating features of the region from -120/+28 of the human SPARC promoter. B, 
Transient transfection of SPARC promoter (-120/+28)/luciferase reporter constructs 
into MCF7 and c-Jun/MCF7 cells. Promoter activation is expressed as fold induction 
over the MCF7 cell line. Relative luciferase values were normalized to protein 
concentration.
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GC rich region, both of which have been implicated in regulation of SPARC promoter 

activity (129, 130, 156, 157). Transient transfection of this construct into c-Jun/MCF7 

cells resulted in an 85% reduction in SPARC promoter activity relative to the -120/+28 

promoter fragment (Fig. 22). Taken together, these results suggest that the 50 base pair 

sequence between nucleotides -120 and -70 contains the major c-Jun responsive region.

Gel shift analysis of the c-Jun responsive region spanning nucleotides -120/-83

Next we wanted to characterize protein/DNA interactions involving the c-Jun 

responsive region of the SPARC promoter. As mentioned previously, this region 

contains a GC rich element suggesting that transcription factors that recognize this 

sequence may play a role in SPARC gene regulation. The transcription factor Spl, and 

related proteins, have been shown to bind with high affinity to GC rich regions in TATA- 

less promoters similar to SPARC (140, 158, 159). Therefore, we hypothesized that Spl 

may be involved in SPARC promoter regulation via interaction with the GC rich region 

located between -120/-83.

We conducted gel mobility shift analysis on vector control/MCF7 and

32c-Jun/MCF7 nuclear extracts incubated with a P radiolabeled DNA probed 

corresponding to nucleotides -120/-83 of the SPARC promoter. As shown in Fig. 23 

analysis of these reactions revealed the presence of similar complexes formed with vector 

control/MCF7 and c-Jun/MCF7 nuclear extracts suggesting that a common protein, or 

proteins, may be involved.

In order to determine if any of these complexes contained specific Spl binding 

activity we conducted competition analysis. Addition of a Spl consensus probe resulted
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showing the truncated forms of the human SPARC promoter used in these experiments. 
B, Transient transfection of SPARC promoter (-120/+28) and (-70/+28)/luciferase 
reporter constructs into c-Jun/MCF7 cells. SPARC promoter fragment -70/+28 activity 
is expressed as percent activation relative to the SPARC promoter -120/+28 luciferase 
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Fig. 23. Analysis of protein/DNA interactions in the region -120/-83 of the SPARC 
promoter. A, Promoter schematic highlighting GC box and GGA repeat motifs. B, Gel 
shift analysis showing various complexes binding to a radiolabeled DNA probe 
spanning the region of the SPARC promoter from nucleotides -120/-83 using MCF7 
and c-Jun/MCF7 nuclear extracts. Spl consensus and Spl mutant oligonucleotides 
were used as competitors (100X molar excess) to show the specificity of DNA complex 
formation.
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in specific inhibition of complex 1 and complex 3, whereas incubation with a Spl mutant 

probe had no effect (Fig. 23). These results suggest that protein with Spl binding 

specificity -120/-83 and this activity is present in both extracts.

Next, we attempted to identify Spl as part of complex 1 and/or complex 3 by 

antibody shift analysis. As shown in Fig. 23, addition of Spl specific antibody had no 

effect on the mobility of any of the specific complexes in either vector control/MCF7 or 

c-Jun/MCF7 nuclear extracts under the conditions tested. One explanation for this result 

is that another Sp family member, such as Sp2, Sp3 or Sp4, is responsible for the binding 

we observe. These related zinc finger DNA binding proteins are all capable of binding to 

GC rich sequences similar to those present in the -120/-83 probe (160, 161). 

Alternatively, it is possible that Spl is actually present in the complexes, but we could 

not detect it using the reaction conditions tested. One final possibility we considered was 

that Spl antibody was unable to recognize Spl protein due to protein/protein interactions 

which may have masked the epitope(s).

Chromatin immunoprecipitation analysis of c-Jun and Sp-1 binding to the SPARC 

promoter in vivo

Next, we wanted to determine if AP-1 and Spl proteins were associated with the 

SPARC promoter in vivo. c-Jun and Spl have been shown to interact resulting in 

synergistic activation of the p21 and 12(S)-lipoxygenase genes (92, 93). In both cases, 

c-Jun/Spl interaction was shown to occur in the absence of an AP-1 binding site (92,

93). Therefore, we hypothesized that, in vivo, c-Jun and Spl may co-localize at the 

SPARC promoter as a means of cooperatively regulating its activity.
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Two widely used techniques to study protein/DNA interactions in living cells are 

in vivo DNA footprinting and chromatin immunoprecipitation (ChIP) analysis. In vivo 

DNA footprinting is a sensitive technique that provides a high degree of resolution for 

analyzing protein/DNA interactions (162). However, this technique provides only 

indirect evidence regarding the identity of the protein(s) bound to a specific region of 

genomic DNA. On the other hand, chromatin immunoprecipitation (ChIP) analysis is a 

technique that provides direct evidence that a protein, alone or in a multi-protein 

complex, is associated with a specific genomic region in vivo (163, 164). Therefore, we 

chose to use chromatin immunoprecipitation analysis to examine c-Jun, Fra-1 and Spl 

association with the SPARC promoter in vector control/MCF7 and c-Jun/MCF7 cells.

Our experimental approach is outlined in Fig. 24.

Protein/DNA interactions were “frozen in time” by reversible chemical 

crosslinking using formaldehyde. Chromatin was purified and sheared by sonication to 

generate fragments with an average size of 500-1000 base pairs. Fragments of this size 

provide a high degree of specificity for the genomic DNA region of interest (163, 164). 

Following sonication, chromatin was divided into equal amounts to allow for parallel 

analysis of multiple protein/DNA interactions. This was accomplished by incubating 

individual chromatin aliquots with antibodies for c-Jun, Fra-1, Spl or a negative control 

antibody. Following immunoprecipitation, protein/DNA complexes were isolated using 

protein A/agarose beads. Samples were then washed to remove non-specific interactions. 

Affinity purified chromatin was subsequently eluted from the protein A/agarose beads 

followed by crosslink reversal. DNA was then isolated from each sample and analyzed

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



93

150mm plate 150mm plate

Chromatin Immunoprecipitation (ChIP) Assay Schematic

grow cells subconfluent 
so that they are rapidly dividing

count a parallel plate o f  cells in order to normalize between cell lines that 
grow at different rates

i
cross-link protein/protein and protein/DNA by addition o f  formaldehyde to the media

I
harvest cells and lyse in order to isolate chromatin

i
sonicate chromatin from 8 x 10(6) cells per sample

i
remove cell debris and aliquot equal amounts o f  chromatin 

(equal to 1.1 x 10(6) cells per antibody or control)

1
dilute chromatin using IP dilution buffer to lower the SDS% 

carried over from the cell lysis stage

pre-clear diluted chromatin sarr^le using salmon sperm DNA and 
protein A/G agarose beads to remove non-specific binding

1
add an appropriate amount o f  specific antibody (amount w ill vary)

i
rotate overnight at 4 C

i
capture antibody/protein/DNA complex by adding protein A/G agarose beads

*do a series o f  low/high stringency washes with rotating at 4 C

elute specific protein/DNA complex by mechanical agitation and 
SDS/sodium bicarbinate treatment

reverse cross-links between protein/Dl^A by high heat and high salt conditions

phenol, chloroform extract sample to remove protein and to keep DNA

ethanol precipitate DNA  

1
wash DNA pellet 

1
resuspend DNA pellet 

1
determine appropriate PCR conditions (input amount, cycle numbers, linearity, primer design,

background, etc.)

Fig. 24. Experimental approach for determining in vivo protein/DNA interactions 
by chromatin immunoprecipitation analysis.
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by PCR using oligonucleotide primer pairs specific the SPARC proximal promoter 

region.

Fig. 25 demonstrates the results of chromatin immunoprecipitation analysis of the 

SPARC proximal promoter region. As expected, c-Jun was present at the SPARC 

promoter locus only in c-Jun/MCF7 where SPARC gene expression is upregulated. In 

addition, Fra-1 was present above background only in c-Jun/MCF7 cells. The presence 

of a PCR amplicon in one of the MCF7 “no antibody control” reactions was most likely 

due to contamination during PCR since the same sample was tested in other reactions and 

did not result in this background. Interestingly, Spl was present at the SPARC promoter 

locus in both vector control/MCF7 and c-Jun/MCF7 cell lines consistent with our in vitro 

gel shift analysis suggesting the presence of a common protein with Spl binding 

specificity. It should be noted that, even though the PCR amplicon spans the region from 

nucleotides -241 to +28, we cannot rule out the possibility that AP-1 sites immediately 

upstream and/or downstream may contribute to c-Jun and Fra-1 binding observed in the 

genomic context. This is due to the fact that the average chromatin fragment size is ~750 

base pairs. As a result, we may be detecting protein/DNA interactions occurring 250 

base pairs upstream or downstream of the region amplified using the primer pair shown 

in Fig. 25.

Taken together, the results presented in Aim 2 demonstrate that the SPARC 

promoter region from -120 to -70 contains the major c-Jun responsive element. In 

addition, we showed that c-Jun, Fra-1 and Spl were associated with the SPARC proximal 

promoter region in c-Jun/MCF7 cells. Interestingly, Spl was also bound to this GC rich 

region in vector control/MCF7 cells where transcription is inactive. These results are
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significant because they represent a direct mechanism for c-Jun target gene activation 

leading to malignant progression.
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C. Epigenetic Modifications Associated With SPARC Gene Expression

The results obtained in Aim 2 identified a cytosine and guanine rich region of the 

SPARC promoter which was critical for c-Jun responsiveness. Further analysis of the 

SPARC promoter revealed the presence of multiple cytosines in a cytosine-phosphate- 

guanine (CpG) dinucleotide context. CpG sequences are known to undergo epigenetic 

modification via DNA methylation (165-167). Importantly, normal genomic DNA 

methylation patterns have been shown to change during tumorigenesis and oncogenic 

progression (168-171). Aberrant DNA methylation can lead to gene activation or 

repression depending on the context. For example, hypermethylation of the tumor 

suppressor gene CDKN2A (pi <5INK4a) results in gene inactivation in many tumors (170, 

172, 173). In contrast, hypomethylation of gene regulatory regions correlates with 

transcriptional activation (174, 175). Interestingly, a recent study demonstrated a 

correlation between hypermethylation of SPARC exon 1 and decreased SPARC 

expression in pancreatic cancer cell lines (176). Therefore, we tested the hypothesis that 

DNA methylation at the SPARC genomic locus may be involved in regulation of SPARC 

gene expression in a MCF7 breast cancer model system.

Analysis of SPARC gene expression following treatment of MCF7 cells with the 

DNA methyltransferase inhibitor 5-aza-2’deoxycytidine

CpG methylation is catalyzed by cellular DNA methyltransferase (DNMT) 

enzymes (170, 177). Previous studies have demonstrated that selective inhibition of 

DNA methyltransferases is sufficient to reverse genomic DNA methylation patterns 

leading to reactivation of silenced genes (178-181). Therefore, in order to determine the
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effect of DNA methylation on SPARC gene expression in MCF7 cells we used a 

pharmacological inhibitor of DNA methyltransferase activity, 5-aza-2’deoxycytidine 

(5-aza-dC). 5-aza-dC is a cytosine nucleotide analog that becomes incorporated into 

newly synthesized DNA (179-181). When incorporated 5’ of a guanine residue, 

5-aza-dC irreversibly binds DNA methyltransferase enzymes resulting in demethylation 

of genomic DNA (182, 183). We reasoned that if the SPARC promoter locus were 

methylated in MCF7 cells, then inhibition of DNA methyltransferase activity would be 

expected to result in an increase in SPARC expression.

Vector control/MCF7 and c-Jun/MCF7 cells were grown in the presence or 

absence of 5-aza-dC for 60 hours. Following treatment, total RNA was isolated and 

SPARC mRNA levels were determined by semi-quantitative RT-PCR. The invariantly 

expressed 18S ribosomal subunit served as an internal control to demonstrate that equal 

amounts of RNA were assayed in each reaction. As shown in Fig. 26, treatment of 

MCF7 cells with 5-aza-dC resulted in a dose dependent increase in steady-state SPARC 

message levels. In contrast, 5-aza-dC had no effect on SPARC expression in 

c-Jun/MCF7 cells where transcription was already active.

Next, we wanted to determine the time course of SPARC gene activation in 

MCF7 cells following treatment with 5-aza-dC. Cells were grown in the presence of the 

drug for a total of 72 hours at which point the cells were trypsinized, reseeded and grown 

in the absence of 5-aza-dC in order to determine the reversibility of SPARC gene 

activation. Total RNA was harvested at 24 hour intervals following the start of 5-aza-dC 

treatment and SPARC mRNA levels analyzed by semi-quantitative RT-PCR. As shown 

in Fig. 26
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Fig. 26. Analysis of SPARC gene expression following treatment of MCF7 
cells with the DNA methyltransferase inhibitor, 5-aza-2’deoxycytidine. A, Semi- 
quantitative RT-PCR analysis of SPARC expression in vector control/MCF7 and 
c-Jun/MCF7 cells following 5-aza-dC treament at the indicated dose. Cells were 
treated with increasing doses of 5-aza-dC for 60 hours. Total RNA was then 
isolated followed by RT-PCR analysis for SPARC expression using 18S as an 
internal control. B, Semi-quantitative RT-PCR analysis of SPARC expression 
over time following 5-aza-dC treatment (5pM). (-) negative RT-PCR control in 
which template was omitted from the reaction.
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SPARC expression was detected as early as 24 hours after treatment. Surprisingly, 

SPARC expression persisted in MCF7 cells exposed to 5-aza-dC even after removal of 

the drug. We reasoned that removal of 5-aza-dC would result in restoration of DNMT 

activity and, therefore, re-silencing of SPARC expression. One possible explanation for 

these results is that SPARC mRNA is very stable and therefore, not quickly degraded.

As a result, steady state message levels may persist even after repression of SPARC gene 

transcription. However, this explanation seems unlikely because comparable levels of 

SPARC transcript were maintained for up to 60 days after 5-aza-dC removal (Fig. 26).

An alternative explanation is that DNMT inhibition led to SPARC promoter 

demethylation that was not re-established following removal of the drug.

Taken together, the results presented in Fig. 26 suggest that, in MCF7 cells, 

SPARC gene expression is repressed by DNA methylation and activated following DNA 

demethylation. Therefore, we have identified two events which are capable of activating 

SPARC gene expression 1.) overexpression of c-Jun and 2.) inhibition of DNA 

methyltransferase activity.

Low resolution analysis of SPARC promoter DNA methylation in vector 

control/MCF7 and c-Jun/MCF7 stable cell lines

Since inhibition of DNA methyltransferase activity with 5-aza-dC resulted in an 

increase in SPARC gene expression, we wanted to determine the extent to which the 

SPARC promoter region was methylated in MCF7 cells. In addition, we wanted to 

determine if there was a correlation between SPARC promoter methylation and
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transcriptional up-regulation in response to c-Jun. It was our hypothesis that the SPARC 

promoter was methylated in MCF7 cells, but not in c-Jun/MCF7 cells.

A variety of different methods have been used to determine genomic DNA 

methylation patterns. These include: cleavage of genomic DNA with methylation 

sensitive restriction enzymes followed by Southern blot analysis, methylation specific 

PCR (MSP) and bisulfite DNA sequencing (172, 184, 185). For our initial experiments, 

we conducted PCR analysis of genomic DNA that had been digested with the 

methylation sensitive restriction enzyme isoschizomer pair, Hpall and Mspl. Both 

enzymes recognize the sequence 5’-CCGG-3’, however, Hpall cannot digest DNA when 

the internal cytosine is methylated whereas Mspl will digest regardless of the methylation 

status (186). Examination of the SPARC promoter sequence revealed the presence of 

four Hpall/MspI sites located at both distal and proximal regions. As a result, this 

approach allowed a rapid determination of DNA methylation at four positions over a 

1400 base pair region. Our experimental approach is outlined in Fig. 27.

Genomic DNA was isolated from vector control/MCF7 and c-Jun/MCF7 cells and 

digested in parallel with Hpall or Mspl. Undigested genomic DNA served as a positive 

control for the PCR reactions while Mspl digested samples served as a positive control to 

demonstrate complete digestion of the genomic DNA. Additionally, we analyzed 

genomic DNA from three independent clones of each cell line to control for clonal 

variability.

As shown in Fig. 28, analysis of undigested genomic DNA resulted in successful 

PCR amplification of the SPARC promoter indicating that reaction conditions were 

optimal. In addition, analysis of Mspl digested samples showed successful digestion of
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Experimental approach for low resolution mapping of SPARC promoter methylation

purify genomic DNA from MCF7 and c-Jun/MCF7 cells

I
aliquot equally
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Fig. 27 . Experimental approach for low resolution mapping of DNA 
methylation at the SPARC promoter locus.
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Fig. 28 Analysis of SPARC promoter methylation in MCF7 and c-Jun/MCF7 cells 
by Hpall/MspI mapping. A, Schematic representation of the SPARC promoter 
indicating FIpall/MspI restriction enzyme recognition sites. B, Genomic DNA from 
three independent MCF7 empty vector control cell lines and c-Jun/MCF7 stable cell 
lines (clone 1, 2 and 3) was digested with the restriction enzyme isoschizomer pair 
Hpall/MspI. The restriction enzyme Hpall cannot digest methylated sites 
(5’-CCGG-3’) whereas Mspl will digest the same sequence regardless of the 
methylation status. PCR was conducted on digested DNA using primer pairs flanking 
individual Hpall/MspI sites. The presence of a band in the Hpall lanes indicates that 
it is protected from digestion and is therefore methylated. Mspl reactions serve as 
controls to demonstrate complete DNA digestion. UC= uncut, and serves as a positive 
control for the PCR reaction. The (-) lane serves as a negative PCR control in which 
template DNA has been left out of the reaction.
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all Hpall/MspI sites as indicated by the decrease in PCR amplification product. The 

presence of low-level background in some Mspl digested samples was most likely due to 

incomplete digestion of genomic DNA. PCR analysis of Hpall reactions in vector 

control/MCF7 cells resulted in productive amplification suggesting that each of the four 

Hpall/MspI sites is methylated. In contrast, analysis of Hpall digested DNA from three 

c-Jun/MCF7 stable cell lines resulted in loss of the PCR amplification product at 

Hpall/MspI sites #3 and #4. This result indicates that sites #3 and #4 are not methylated 

in vivo in c-Jun/MCF7 cells. Further analysis revealed that the distal Hpall/MspI sites,

#1 and #2, remain methylated in all three c-Jun/MCF7 cell lines. Interestingly, the 

Hpall/MspI site #4 is located within the -120/-70 region that we previously mapped as 

the major c-Jun responsive region. Taken together, these results demonstrate a localized 

demethylation of the proximal promoter region in c-Jun/MCF7 cells whereas the distal 

promoter region is methylated in both vector control/MCF7 and c-Jun/MCF7 cells.

High resolution analysis of SPARC promoter DNA methylation in vector 

control/MCF7 and c-Jun/MCF7 stable cell lines

The previous Hpall/MspI mapping of SPARC promoter methylation 

demonstrated that at least two CpG sites become demethylated in response to c-Jun. This 

demethylation correlates with c-Jun induced transcriptional activation. However, there 

are other CpG sites, not in a Hpall/MspI context, that may also be differentially 

methylated. Therefore, we next wanted to determine the methylation status of other CpG 

sites in order to generate a more detailed map of SPARC promoter methylation.
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In order to accomplish this goal, we analyzed methylation using sodium bisulfite 

modification of genomic DNA followed by DNA sequencing. This method is considered 

the “gold standard” for methylation mapping because it allows for single nucleotide 

resolution as well as simultaneous analysis of multiple sites on the same fragment of 

DNA (185). A schematic diagram of our approach is shown in Fig. 29. Genomic DNA 

was treated with sodium bisulfite, hydroquinone and sodium hydroxide to chemically 

convert unmethylated cytosines to uracil (185). Methylated cytosines are resistant to this 

chemical modification. As a result, it is possible to use DNA sequence analysis to 

determine the CpG methylation status of the genomic region of interest. Importantly, 

conversion of all non-CpG cytosines to uracil is used as an internal control to verify that 

the modification reaction was successful. Following bisulfite modification, genomic 

DNA served as the template for PCR using primer pairs specific for distal and proximal 

regions of the SPARC promoter. PCR products derived from modified vector 

control/MCF7 and c-Jun/MCF7 genomic DNA were then cloned into the T/A cloning 

plasmid, pGEMT-Easy. Eight cloned PCR products from each cell line were analyzed by 

DNA sequencing. Each of the cloned inserts represents a single allele amplified from a 

single cell. As a result, sequencing of multiple clones makes it is possible to determine 

the percentage of alleles in the cell population which display a given pattern of 

methylation (185).

The results of bisulfite sequence analysis are graphically represented in Fig. 30. 

Filled (black) circles indicate methylated CpG residues, whereas empty (white) circles 

represent unmethylated CpGs. Strikingly, these results demonstrate prominent 

demethylation of the SPARC promoter in c-Jun/MCF7 cells. This demethylation is
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Experimental Approach for High Resolution Mapping of SPARC Promoter Methylation 

isolate genomic DNA and denature to make single stranded

t
treat DNA with sodium bisulfite, hydroquinone and sodium hydroxide

NH2

(Cytosine)

Reaction 1 
Sulphonation

HS°3 - +HN 
 ►

OH-

NH2

"jSO ^ ^ ^ S O s-  
H

.H2O

(Uracil)

HSO3-

OH-

Reaction 3 Alkali 
Desulphonation

unmethylated cytosine (C) residues will be 
converted to uracil (U) following bisulfite 
modification and then read as thymine (T) 
following PCR amplification and DNA 
sequencing

5’ methyl (CH3 )-cytosine (C) is resistant to 

bisulfite modification and is still read as a 
cytosine (C) following PCR amplification and 
DNA sequencing

NH4+
o

Ht to < k ^ > s o 3.

(Cytosine
sulphonate)

Reaction 2 
Hydrolytic 

Deamination

(Uracil sulphonate)

H

TCGATCGGTTACCATG
t

TUGATUGGTTAU U ATG
t

TTGATTGGTTATTAT G

CH3 CH3 
I I 

TCGATCGGTTACCATG
t

T CGATCGGTTAU U AT G

t
TCGATCGGTTATTATG

clone PCR products into T/A cloning plasmid pGEMT-Easy

sequence 8 clones (each clone represents a single allele)

Fig. 29. Experimental approach for high resolution mapping of SPARC promoter 
methylation by sodium bisulfite genomic DNA modification.
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Fig. 30. Results of high resolution, sodium bisulfite mapping of SPARC 
promoter methylation. Genomic DNA was isolated from MCF7 empty vector 
control cell line and c-Jun/MCF7 stable cell line. DNA was treated with sodium 
bisulfite, hydroquinone and sodium hydroxide in order to convert unmethylated 
cystosine residues to uracil. Methylated cytosines are protected from chemical 
modification and are not converted to uracil. The proximal and distal regions of 
the SPARC promoter were then PCR amplified, cloned into plasmid DNA and 
sequenced. Results are represented graphically where unfilled (white) 
ovals=unmethylated CpGs and filled (black) ovals=methylated CpGs.
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localized to the proximal promoter region and includes the c-Jun responsive region.

These results are consistent with our Hpall/MspI methylation mapping experiments (Fig. 

28), in which the two Hpall/MspI sites closest to the transcriptional start site were 

demethylated in c-Jun/MCF7 cells. Taken together, the results of SPARC promoter 

methylation mapping clearly demonstrate an inverse correlation between SPARC 

transcript levels and the extent of DNA methylation.

Analysis of the effect of in vitro methylation on SPARC promoter activity

Next, we wanted to determine the functional significance of SPARC promoter 

methylation. It was unclear whether methylation played a functional role in SPARC 

promoter regulation or whether the change in methylation was a byproduct of 

transcriptional activation.

In order to address this issue, we conducted in vitro methylation of the SPARC 

promoter -120/+28 luciferase reporter plasmid and assayed for activity by transient 

transfection. There is a single CpG in the c-Jun responsive region between -120/-70 

which corresponds to a Hpall sequence context. Purified plasmid DNA was incubated 

with recombinant bacterial Hpall methylase in the presence of the methyl donor, 

S-adenosyl methionine (SAM). This resulted in methylation of Hpall/MspI site #4 in the 

c-Jun responsive region as well as additional sites within the plasmid (Fig. 31). As a 

control, we prepared a corresponding mock methylated plasmid in which the Hpall 

methylase was omitted from the reaction. In order to verify the completeness of in vitro 

methylation, an aliquot of Hpall methylated or mock methylated plasmid DNA was 

analyzed by Hpall and Mspl restriction enzyme digestion. Fig. 31, demonstrates that the
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Fig. 31. In vitro Hpall methylation of the SPARC promoter (-120/+28) 
luciferase reporter plasmid. A, Schematic representation of all Hpall/MspI sites 
in the -120/+28 SPARC promoter/luciferase reporter plasmid. CCGG denotes the 
relative location of Hpall/MspI digestion sites in the pGL2 luciferase reporter 
plasmid. B, Verification of complete Hpall methylation of the SPARC 
promoter/reporter plasmid. Mock methylated and Hpall methylated plasmids 
were digested with Hpall or MspI restriction enzyme and analyzed by agarose gel 
electrophoresis. U= undigested, H= Hpall digested, M= MspI digested.
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in vitro methylated plasmid was completely protected from Hpall digestion indicating 

that it was efficiently methylated.

Next, mock methylated and Hpall methylated SPARC promoter/luciferase 

reporter plasmids were transiently transfected into vector control/MCF7 and c-Jun/MCF7 

cells. Forty-eight hours post-transfection, luciferase values were analyzed as a measure 

of SPARC promoter activity. As shown in Fig. 32, in vitro Hpall methylation of the 

SPARC promoter (-120/+28)/luciferase reporter plasmid resulted in an 85% decrease in 

promoter activity in c-Jun/MCF7 cells compared to the mock methylated plasmid. This 

level of inhibition was similar to the level observed when we deleted the 50 base pair 

c-Jun responsive region (Fig. 22). As expected, in vitro methylation had no effect on 

SPARC promoter activity in MCF7 cells. Taken together, these results suggest a 

functional role for SPARC promoter methylation in regulating c-Jun responsiveness.

Analysis of the effect of in vitro SPARC promoter methylation on protein/DNA 

interactions

DNA methylation has been shown to affect transcription by a variety of 

mechanisms. For example, cytosine methylation can directly inhibit transcription factor 

binding due to alteration of DNA structure (187, 188). In addition, methylated CpG 

sequences can serve as recognition sites for methyl binding proteins (189, 190). This can 

result in competition between sequence specific transcription factors and methyl binding 

proteins for a common DNA sequence (190). Lastly, methyl binding proteins have been 

shown to participate in active transcriptional repression via recruitment of histone 

deacetylase (HDAC) enzymes (190, 191).
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Fig. 32. Effect of in vitro SPARC promoter methylation on promoter activity in 
transient transfection assays. Mock and Hpall methylated plasmids were transfected 
into vector control/MCF7 and c-Jun/MCF7 cells. Luciferase activity was determined 
for each sample 48 hours post-transfection. Fuciferase values were normalized to 
protein concentration for each sample and expressed as relative luciferase units/ug of 
protein. Values represent the average of two independent experiments with each 
condition tested in duplicate.
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In an attempt to characterize the mechanism(s) by which DNA methylation affects 

SPARC promoter activity, we analyzed the effect of in vitro methylation on protein/DNA 

interactions by gel mobility shift analysis. We hypothesized that DNA methylation may 

alter protein/DNA interactions at the c-Jun responsive region.

Since our previous gel shift analysis of the -120/-83 region (Fig. 23) did not take 

into account DNA methylation we re-analyzed this region using mock methylated and 

Hpall methylated gel shift probes. In order to verify complete methylation of the probe, 

samples were digested with Hpall and MspI restriction enzymes and analyzed by native 

polyacrylamide gel electrophoresis. Fig. 33 demonstrates that the in vitro methylated 

probe was completely protected from digestion with Hpall restriction enzyme indicating 

efficient methylation under these conditions.

Next, in vitro methylated and mock methylated probes were analyzed in gel 

mobility shift assays using nuclear extracts from vector control/MCF7 and c-Jun/MCF7 

cells. As shown in Fig. 33, similar band shift patterns were formed with either nuclear 

extract regardless of the DNA methylation status of the probe. This suggests that in vitro 

protein/DNA interactions at the c-Jun responsive region are unaffected by methylation of 

Hpall site #4. Based on our previous gel shift competition analysis (Fig. 23) and 

chromatin immunoprecipitation data (Fig. 25) we believe these complexes to be 

consistent with Sp family protein/DNA interactions. Interestingly, studies by other 

laboratories have demonstrated that Spl DNA binding is unaffected by cytosine 

methylation (192). It should be noted that we did not attempt antibody shift analysis for 

Spl in these experiments because we were previously unsuccessful using this approach 

(Fig. 23). In addition, we did not conduct antibody shift analysis for c-Jun/AP-1 binding
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Fig. 33. Effect of in vitro methylation of the SPARC promoter -120/-83 
region on protein/DNA interactions. A, DNA sequence of the gel shift probe used 
for in vitro methylation analysis. The cytosine residue targeted for methylation 
using recombinant Hpall methylase is indicated by (-CH3). B, Hpall and MspI 
control digestion reactions demonstrating complete Hpall methylation of the gel 
shift probe. C, Gel shift reactions using mock or Hpall methylated gel shift 
probes and MCF7 and c-Jun/MCF7 nuclear extracts.
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because there was no AP-1 binding site present in the sequence -120/-83. Taken 

together, our data suggests methylation of the c-Jun responsive region does not inhibit the 

formation of similar complexes present in both MCF7 and c-Jun/MCF7 nuclear extracts.

Analysis of histone modifications at the SPARC promoter locus

Genomic DNA is arranged in the nucleus as a highly ordered chromatin structure 

consisting of repeating protein/DNA complexes called the nucleosome (193, 194). A 

single nucleosome consists of 146 base pairs of DNA coiled around an octameric 

arrangement of core histone proteins (194-196). This histone core consists of two 

molecules each of histones H2A, F12B, H3 and H4 (195, 197). Histones H3 and FI4 are 

oriented with the amino terminal protein “tails” radiating outward from the nucleosome 

core (195). A variety of post-translational modifications are known to occur at these 

“tail” regions including, acetylation, methylation, phosphorylation, and ubiquitylation 

(198, 199). Each of these modifications has been associated with either positive or 

negative regulation of gene expression (200-202). This has led to the “histone code” 

hypothesis proposed by Allis and Jenuwein which puts forth the idea that the 

combination of histone tail modifications at a given genomic locus defines the spectrum 

of transcriptionally active and repressed states (203).

Histone acetylation is a well-characterized modification associated with gene 

regulation (204, 205). Steady-state histone acetylation patterns are reflective of the 

balance between histone acetyltransferase (HAT) and histone deacetylase (HDAC) 

activities. For example, hyperacetylation of histone H3 and H4 has been shown to 

correlate with increased gene expression, whereas hypoacetylation is associated with
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transcriptional repression (199, 201, 206-212). Interestingly, many of the same lysine 

residues that have been shown to be acetylated can also be methylated (199, 201, 206). A 

single lysine can be either acetylated or methylated at a given time, but not both. In 

contrast to acetylation, histone methylation can occur in mono-, di-, or tri-methylated 

forms (213, 214). Methylation of histone H3 at lysine 4 (K4) is generally associated with 

gene activation while methylation of histone H3 at lysine 9 (K9) is associated with gene 

silencing (215-219). Therefore, we expected to see enrichment of methylated histone H3 

at lysine 4 in c-Jun/MCF7 cells, whereas in vector control/MCF7 cells we expected to see 

methylated histone H3 at lysine 9. In addition, we hypothesized that histones associated 

with the SPARC promoter would be hypoacetylated in MCF7 cells compared to 

c-Jun/MCF7 cells.

In order to address this hypothesis, we conducted chromatin immunoprecipitation 

(ChIP) analysis using modification state specific, anti-histone antibodies. A summary of 

the antibodies used in these studies is shown in Fig. 34. In vivo protein/DNA interactions 

were analyzed following formaldehyde cross-linking of vector control/MCF7 and 

c-Jun/MCF7 cells. Chromatin from each cell line was isolated and fragmented by 

sonication. Antibodies were added to diluted chromatin in order to immunoselect 

protein/DNA complexes specific for individual histone modifications. An antibody 

specific for HER2/«ew, a transmembrane receptor protein not expected be at the SPARC 

promoter, was included as a negative control. In addition, an aliquot of sonicated and 

crosslinked chromatin was retained and not subjected to immunoprecipitation. This 

“input” sample was therefore representative of the amount of total chromatin in each 

immunoprecipitation reaction. Protein/DNA complexes were affinity purified using
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Fig. 34. Schematic representation of histone modifications analyzed by chromatin 
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protein A/agarose beads. Samples were extensively washed to remove non-specific 

interactions followed by elution of the immunoselected chromatin. Protein/DNA 

crosslinks were reversed and the DNA purified. This DNA served as the template for 

PCR analysis using a primer pair specific for the SPARC proximal promoter region.

PCR was conducted using conditions previously shown to be dependent on the amount of 

input DNA (Fig. 35) and therefore quantitative. PCR amplification products were 

resolved by agarose gel electrophoresis and quantitated by densitometry. Results were 

interpreted by comparing the ratio of individual immunoprecipitated DNA signals to the 

corresponding input DNA signal. The values obtained for each antibody were then 

compared between cell lines in order to calculate the fold enrichment of each histone 

modification in c-Jun/MCF7 cells relative to vector control/MCF7 cells.

As shown in Fig. 35, we detected a 2.7 fold enrichment of di-acetylated histone 

H3 (K9, K14) and a 1.8 fold enrichment of tetra-acetylated histone H4 (K5, K8, K12, 

K16) at the SPARC promoter region in c-Jun/MCF7 cells relative to vector 

control/MCF7 cells. Additionally, c-Jun/MCF7 cells demonstrated a 2.8 fold increase in 

di-methyl histone H3 at lysine 4. Under the conditions tested, we did not observe 

methylation of histone H3 at lysine 9, a modification strictly associated with constitutive 

heterochromatin and gene silencing (214, 220, 221). Flowever, we did detect this 

modification at other genomic loci indicating that the antibody is functional under the 

conditions tested (Appendix A, Fig. 45).

Taken together, these results demonstrate that the SPARC promoter locus is 

enriched for histone modifications in c-Jun/MCF7 cells that are consistent with active 

transcription. However, we were surprised to find these same modifications at the
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Fig. 35. Chromatin immunoprecipitation analysis of histone modifications at the 
SPARC promoter locus in MCF7 and c-Jun/MCF7 cells. A, Schematic diagram of 
the SPARC promoter indicating the location of ChIP PCR primers. B, Results of 
PCR analysis of the SPARC promoter region using immunoselected chromatin from 
vector control/MCF7 and c-Jun/MCF7 cells. Chromatin was immunoprecipitated 
using the indicated antibodies. PCR amplification products were quantitated by 
densitometry. The ratio of each immunoprecipitated reaction product, relative to the 
input chromatin sample, was calculated for each antibody and each cell line. This 
value was arbitrarily set at one for vector control/MCF7 cells. The corresponding 
samples from c-Jun/MCF7 cells were then expressed as fold enrichment relative to 
vector control/MCF7 cells. NAC= no antibody control, IP= immunoprecipitated 
sample, N/A= quantitation could not be done because the signal for IP reactions was 
not above background.
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transcriptionally inactive SPARC locus in MCF7 cells. We interpret these results to 

mean that there are subtle differences in histone modifications between vector 

control/MCF7 and c-Jun/MCF7 cells. This interpretation would be consistent with the 

localized demethylation of the SPARC promoter observed in c-Jun/MCF7 cells.

Analysis of SPARC expression in MCF7 cells treated with the histone deacetylase 

inhibitor, trichostatin A

To further characterize the role of histone modification on SPARC gene 

expression we examined the effect of the histone deacetylase inhibitor, trichostatin A 

(TSA). TSA has been shown to induce hypoacetylation of histones resulting in an 

increase in gene expression (222). Furthermore, TSA used in conjunction with the DNA 

methyltransferase inhibitor, 5-aza-dC, has been shown to result in synergistic activation 

of transcriptionally silenced genes (223-225).

Vector control/MCF7 were treated with vehicle, 5-aza-dC alone, TSA alone, or a 

combination of 5-aza-dC and TSA. RNA was then harvested and assayed for SPARC 

expression by semi-quantitative RT-PCR. As shown in Fig. 36, 5-aza-dC treatment was 

sufficient to induce SPARC gene expression. This result was consistent with our 

previous results (Fig. 26) which demonstrated a dose dependent increase in SPARC gene 

expression following 5-aza-dC treatment. In contrast, treatment of MCF7 cells with TSA 

alone did not result in an increase in steady-state SPARC mRNA levels. When the DNA 

methyltransferase inhibitor (5-aza-dC) and histone deacetylase inhibitor (TSA) were used 

in combination, we saw no additive or synergistic effect on SPARC gene expression.
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Fig. 36. Analysis of SPARC expression in MCF7 cells following treatment 
with the histone deacetylase inhibitor, trichostatin A. Cells were treated with 
vehicle, 5-aza-dC (5uM), trichostatin A (lOOng/ml), or a combination of 
5-aza-dC (5uM) and trichostatin A (lOOng/ml). Total RNA was isolated from 
each sample and analyzed by for SPARC expression by semi-quantitative 
RT-PCR. UT= untreated, AZA= 5’aza-2’deoxycytidine, TSA= trichostatin A, 
(-)= negative RT-PCR control in which template was omitted from the 
reaction.
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Taken together, these results suggest that DNA methylation, not histone acetylation, is 

the critical epigenetic determinant associated with SPARC gene expression.
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CHAPTER IV 

DISCUSSION

The gene, SPARC, is highly expressed in many types of cancer, including tumors 

of the breast. Importantly, SPARC has been shown to directly contribute to 

tumorigenesis and malignant progression. We have previously shown that constitutive 

expression of the transcription factor c-Jun results in SPARC gene activation and 

phenotypic progression in a MCF7 breast cancer model system. The studies described in 

this dissertation addressed two primary objectives: 1.) to determine the contribution of 

SPARC to c-Jun induced phenotype in a MCF7 breast cancer model system, and 2.) to 

determine the mechanisms by which c-Jun regulates SPARC gene expression. In this 

chapter we will summarize our findings and discuss the results in the context of the 

literature.

A. The Effects of SPARC on MCF7 Cell Phenotype 

Cell Proliferation

The goal of Aim 1 was to determine the effects of SPARC gene expression on 

MCF7 cell phenotype. Several studies have shown that SPARC is associated with 

decreased cell proliferation (101, 107, 108). In support of this observation, SPARC 

expression is inversely correlated with cell proliferation rate in c-Jun/MCF7 cells. 

Flowever, it was unclear which c-Jun target gene(s) may play a role in regulating this 

phenotype. In order to address this question, stable cell lines were generated in order to 

address the extent to which overexpression of SPARC, alone, is sufficient to inhibit 

MCF7 cell proliferation. The results presented in Fig. 9 demonstrate that constitutive
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overexpression of SPARC in MCF7 cells results in an intermediate cell proliferation rate 

compared to vector control/MCF7 cells and c-Jun/MCF7 cells. Importantly, the results 

were statistically significant (P= <.05) in each of the three SPARC/MCF7 stable cell 

lines tested.

The exact mechanism by which SPARC alters cell proliferation remains unclear. 

One possibility is that SPARC attenuates cell signaling required for tumor cell 

proliferation. In support of this hypothesis, SPARC has been shown to inhibit growth 

factor receptor signaling via interaction with platelet derived growth factor (PDGF) 

receptor and vascular endothelial growth factor (VEGF) receptor (102, 104, 117). 

Another possibility is that altered expression of other c-Jun regulated genes is needed in 

order to achieve the same level of inhibition seen in c-Jun/MCF7 cells. For example, 

expression of genes involved in cell cycle regulation, such as p l6 mK4a and p2yCIP1/Wafl 

may provide an additional effect, in addition to SPARC, resulting in decreased cell 

proliferation (51).

Cell Motility and Invasion

Next, SPARC/MCF7 stable cell lines were analyzed for their in vitro migratory 

and invasive potential. Previous studies have shown that increased SPARC expression 

promotes an intermediate attachment state which facilitates cell movement (103, 127). 

The processes of directional movement and degradation of reconstituted basement 

membrane are essential steps for tumor invasiveness and malignant progression. These 

processes are also mechanistically coupled. In order for a cell to exhibit invasiveness it
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must be both motile and exhibit increased proteolytic activity in order to break through a 

reconstituted basement membrane.

In Figure 10, we demonstrate that overexpression of SPARC, in the absence of 

exogenous c-Jun, is not sufficient to promote MCF7 cell motility and invasion in vitro 

(Fig. 10). This result is in agreement with a previous study which showed that addition 

of recombinant SPARC to MCF7 cells also failed to promote invasiveness (226).

Next, we addressed the question of whether SPARC expression was required for 

c-Jun induced cell motility and invasion. To accomplish this goal, an antisense approach 

was used to inhibit SPARC expression. This approach resulted in a transient decrease in 

SPARC protein levels (Fig. 12). This decrease in SPARC expression also correlated with 

a statistically significant decrease in c-Jun induced cell motility and invasion (Fig. 13). 

These results are consistent with a previous report using a mouse model of malignant 

melanoma. In this previous study, inhibition of SPARC expression reduced tumor cell 

invasiveness in vitro and abrogated tumor formation in mice in vivo (126).

From our studies, it appears that other c-Jun target genes cooperate with SPARC 

to promote an invasive phenotype. For example, c-Jun/AP-1 has been shown to stimulate 

expression of the matrix metalloproteases (MMPs). Transient transfection of c-Jun in the 

invasive breast cancer cell line, MDA-MB-231, stimulates both MMP-2 and MMP-9 

expression (227). Furthermore, MMP-9 enzymatic activity was shown to be increased in 

c-Jun/MCF7 stable cell lines (46). In addition, SPARC enhances MMP-2 proteolytic 

activity in two invasive breast tumor cell lines (MDA-MD-231 and BT549) as well as the 

invasive prostate cancer cell lines PC3 and DU145 (226). We hypothesize that SPARC
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may be acting in an autocrine and/or paracrine fashion enhancing both MMP expression 

as well as MMP activation thereby contributing to invasiveness.

However, increased MMP expression may not account for enhanced cell motility. 

It is possible that expression levels of SPARC modulate cell attachment, thereby, 

contributing to altered cell motility. SPARC is known to function as an anti-adhesive 

protein and expression correlates with decreased focal adhesion contacts (102, 104, 119). 

It is thought that if the cell were too firmly attached to the substratum then cell migration 

would be inhibited. Conversely, if the cell were too loosely attached, then the cell may 

undergo apoptosis or anoikis. Since we observe inhibition of both motility and invasion, 

it is unclear whether this is the result of decreased motility alone or also due to decreased 

proteolytic activity. Future studies using an approach such as gel zymography analysis 

would be useful in determining the extent to which SPARC regulates MMP enzyme 

activity. Taken together, the cell proliferation and motility/invasion data are consistent 

with the hypothesis put forth by Giese and colleagues that tumor cells can “grow” or 

“go”, but cannot do both simultaneously (118, 228).

B. SPARC Promoter Regulation 

Mapping the c-Jun Responsive Region

Having established that SPARC is a phenotypically relevant c-Jun target gene, we 

turned our attention to the regulation of SPARC gene expression. The goals of Aim 2 

were to map the c-Jun responsive region(s) of the human SPARC promoter and to 

identify the trans acting factors which contribute to differential SPARC gene activation.
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A previous study defined the SPARC promoter as the 1409 base pairs 5’ of the 

transcriptional start site (129). This promoter region was cloned upstream of a luciferase 

reporter gene and assayed by transient transfection. Figure 16 demonstrates increased 

SPARC promoter activity in c-Jun overexpressing cell lines, but not empty vector 

control/MCF7, or JunD/MCF7 cells. These results are consistent with our previous 

observation that overexpression of JunD did not result in an increase in SPARC gene 

expression (131). Therefore, we conclude that the related JUN  family members, c-Jun 

and JunD, differ in their ability to regulate SPARC promoter activity.

The direct model of c-Jun/AP-1 mediated transcriptional regulation involves 

dimerization, followed by DNA binding to an AP-1 site and subsequent recruitment of 

transcriptional coactivators. The culmination of these events is thought to result in 

stabilization of the transcription pre-initiation complex (53, 61, 70, 96, 99). Sequence 

analysis of the human SPARC promoter revealed three potential AP-1 binding sites that 

differed from a consensus context by a single nucleotide. Gel mobility shift analysis was 

used to examine AP-1 binding activity in empty vector control/MCF7, JunD/MCF7 and 

c-Jun/MCF7 nuclear extracts. The results demonstrated AP-1 binding only to the 

—1051/—1045 site and only in c-Jun/MCF7 nuclear extracts (Fig. 17). These results are 

consistent with our previous promoter/reporter data which showed that c-Jun upregulated 

the SPARC promoter, but JunD did not. This is also consistent with the relative AP-1 

binding activity in c-Jun/MCF7 and JunD/MCF7 nuclear extracts when assayed using a 

consensus AP-1 element (Appendix A, Fig. 39). The specificity of binding to the 

—1051/—1045 site was demonstrated by oligonucleotide competition analysis using a 

consensus AP-1 probe. The results shown in Fig. 18 demonstrated that the major shifted
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complex was consistent with AP-1 and this was confirmed using antibodies specific for 

c-Jun and Fra-1 (Fig. 19). These results suggested a direct role for this site in mediating 

c-Jun activation of the SPARC promoter. In addition, this result suggests that the other 

two AP-1 sites (-868/-862 and -241/-235) are not in a favorable sequence context, most 

likely due to the effects of sequences flanking the core binding site.

c-Jun and Fra-1 are upregulated in invasive breast cancer cell lines and clinical 

tumor samples (20, 44). Furthermore, c-Jun and Fra-1 appear to be the preferred dimer 

combination in this MCF7 model system when c-Jun is overexpressed (Fig. 19 and 

Appendix A, Fig. 39). The functional importance of increased Fra-1 expression was 

recently shown in a study which demonstrated that overexpression of Fra-1 was sufficient 

to promote invasiveness in vitro (229). Conversely, inhibition of Fra-1 expression by 

RNAi resulted in decreased invasiveness exhibited by the MDA-MB-231 breast cancer 

cell line (229). Future studies using a similar RNAi approach in the MCF7 model system 

would be useful in determining the role of c-Jun/Fra-1 heterodimers in regulating SPARC 

gene expression and malignant phenotype.

Next, in order to determine the contribution of the -1051/-1045 AP-1 binding site 

to SPARC promoter regulation, point mutations were made to the core binding sequence. 

As expected, mutation of this site to a consensus context resulted in increased AP-1 

binding in gel mobility shift assays (Fig. 20). Conversely, altering the site so that two 

additional nucleotides were mutated resulted in a decrease in AP-1 binding (Fig. 20). We 

reasoned that if the AP-1 site played a role in regulating SPARC promoter activity, then 

DNA binding would correlate with promoter activity. To test this hypothesis, these 

mutations were made in the context of the full-length (-1409/+28) SPARC promoter.
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Even though we were able to show increased DNA binding in vitro by mutating the AP-1 

site to a consensus context, this did not result in an increase in SPARC promoter activity 

in c-Jun/MCF7 cells (Fig. 20). In addition, the mutation which decreased AP-1 binding 

had no significant effect on SPARC promoter activity. These results suggest that the 

-1051/-1045 site was not required for c-Jun responsiveness and prompted us to examine 

the extent to which any of the three AP-1 sites were required.

This question was addressed by analyzing a truncated promoter construct in 

which -1300 nucleotides (-1409 to -121) were deleted. This resulted in removal of all 

obvious AP-1 binding sites. The results presented in Fig. 21 demonstrate that the 

truncated -120/+28 SPARC promoter retains -85% of the activity in c-Jun/MCF7 cells 

when compared to the full-length (-1409/+28) construct. These results suggest two 

things: 1.) that the major c-Jun responsive region lies within this 148 base pair sequence 

and 2.) that the AP-1 sites are dispensable for c-Jun responsiveness.

In order to more precisely map the c-Jun responsive region, an additional SPARC 

promoter deletion mutant was generated. The results presented in Fig. 22 demonstrate 

that the region between -120 and -70 is required for c-Jun responsiveness. This result is 

consistent with a previous study which indicated that activation and/or repression is 

regulated by DNA sequences in the region from -120 to -70 (129). Furthermore, this is 

the same region previously shown to be required for downregulation of the chicken and 

human SPARC promoter by v-Jun in primary chicken embryo fibroblasts (130). Since 

the AP-1 sites were dispensable for c-Jun responsiveness, we hypothesized that another 

sequence specific transcription factor may confer DNA binding. The presence of a 

guanine and cytosine (GC) rich sequence between -120 and -70 suggested that Sp family
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proteins may bind to this region. Spl binds GC rich sequences in TATA-less promoters 

and can play a dual role as an activator or repressor depending on the context (158, 230, 

231). Furthermore, c-Jun and Spl cooperate resulting in activation of other genes such as

p2iwAFiicipi, keratin 16 and Vimentin (93, 232-234).

In order to test this hypothesis, gel mobility shift experiments were conducted. 

Oligonucleotide competition analysis using a consensus Spl probe demonstrated that two 

complexes (complexes 1 and 3) were specifically inhibited (Fig. 23). These complexes 

were present in both MCF7 and c-Jun/MCF7 nuclear extracts supporting the idea that 

Spl may play a dual role by binding to this region. Furthermore, chromatin 

immunoprecipitation (ChIP) analysis demonstrated that Spl, c-Jun and Fra-1 physically 

associate with the SPARC promoter locus in intact cells (Fig. 25). Importantly, c-Jun 

was not bound at an unrelated locus on chromosome 11 (estrogen receptor alpha locus) 

thereby demonstrating specificity (Appendix A, Fig. 47). Based on the ChIP data, we 

conclude that SPARC is a bona fide, direct AP-1 target gene.

A recent study examined the role of Sp family proteins in regulating the SPARC 

promoter by utilizing Drosophila SL2 cells, which are devoid of endogenous Sp family 

genes. In this study, increasing amounts of Spl or Sp3 expression constructs were co

transfected in SL2 cells, along with either the -120/+28 or -70/+28 SPARC 

promoter/reporter plasmids (131). The region from -120 to -70 (the previously mapped 

c-Jun responsive region) was also shown to be required for Spl responsiveness in this 

system (131). These experiments provided the first direct evidence that Sp family 

proteins are capable of transactivating the SPARC promoter.
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Similarly, the chicken promoter is also activated in response to Spl in the 

Drosophila SL2 system (156). However, when v-Jun was co-expressed, there was an 

-60% decrease in Spl dependent transcription (156). This same study showed that v-Jun 

mediated repression was via a direct mechanism. Chromatin immunoprecipitation 

demonstrated v-Jun protein physically associated with the plasmid template when 

transcription was repressed (156). This result is consistent with our current studies where 

we are able to demonstrate AP-1 and Spl binding in a chromatinized context in 

c-Jun/MCF7 cells (Fig. 25). But, rather than repression, we find that c-Jun activates the 

human SPARC promoter in these cells. The reason for this dichotomy regarding SPARC 

gene regulation is not known. It is likely that cell type specific factors play a role in this 

process since downregulation of SPARC by v-Jun and/or c-Jun is consistent in 

fibroblasts, whereas upregulation of SPARC occurs in epithelial cells when c-Jun is 

overexpressed.

We propose that Spl serves as a sequence specific DNA binding component at 

the SPARC locus. c-Jun and Spl have been shown to interact so it is tempting to 

speculate that this may be occurring at the SPARC promoter as a mechanism for 

transcriptional activation. The interaction between Spl and c-Jun is mediated by the 

glutamine rich region of Spl and leucine zipper region of c-Jun (93, 234). This same 

region of Spl interacts with the basal transcription factors including TATA binding 

protein, TAF4 and TAF7 (235, 236) . In addition, c-Jun interacts with TFIIB, TAF1 and 

TATA binding protein (96, 97). Therefore, it is possible that AP-1 and Spl cooperate to 

stabilize assembly of the transcription pre-initiation complex.
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C. Epigenetic Regulation of SPARC Gene Expression

The results obtained in Aim 2 established that a cytosine and guanine rich region 

(-120/-70) of the SPARC promoter was required for c-Jun responsiveness. The 5’ carbon 

of cytosine in a cytosine-phosphate-guanine (CpG) context has been shown to undergo 

methylation (165-167). Importantly, CpG methylation patterns have been shown to 

change during tumorigenesis (168-171). The degree of DNA methylation in promoters 

tends to be inversely correlated with gene expression levels. The MCF7 and c-Jun/MCF7 

model system used in these studies represents transcriptionally “inactive” (MCF7) and 

“active” (c-Jun/MCF7) states with respect to SPARC gene expression suggesting active 

repression or gene “silencing”. The goal of Aim 3 was to analyze the epigenetic 

modifications associated with SPARC gene expression starting with DNA methylation.

The Effect of DNA Methyltransferase Inhibition on SPARC Expression

In order to determine the role of DNA methylation in SPARC gene regulation we 

used a pharmacological inhibitor of DNA methyltransferase enzymes, 5-aza-2’ 

deoxycytidine (5-aza-dC). This reagent has been used to reactivate genes silenced by 

DNA methylation (182, 183). The results shown in Fig. 26 demonstrate a dose 

dependent increase in steady-state levels of SPARC mRNA in MCF7 cells where SPARC 

was previously undetectable. In contrast, 5-aza-dC had no effect on SPARC levels in 

c-Jun/MCF7 cells. This suggested that the SPARC promoter is methylated in MCF7 

cells, but demethylated in c-Jun/MCF7 cells where SPARC gene expression was already 

active. These results are consistent with a recent study in which 5-aza-dC treatment of 

lung cancer cells resulted in increased SPARC gene expression (237).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



132

Next, a time course experiment was conducted in order to determine the kinetics 

of SPARC gene activation in response to 5-aza-dC. SPARC transcripts were detectable 

as early as 24 hours following initial treatment with 5-aza-dC (Fig. 26). The maximal 

effect on SPARC steady state mRNA levels was achieved by 48 hours with no 

appreciable increase after that. The MCF7 cells used in this study were previously shown 

to have a doubling time of 37 hours (46). Therefore, it would be expected to take 74 

hours for a CpG site to become demethylated on both strands of DNA. Therefore, our 

results suggest an active, rather than a passive, mechanism of DNA demethylation at the 

SPARC promoter.

Since, DNA methylation patterns are faithfully conserved during replication, any 

changes are expected to be maintained in daughter cells. Therefore, we wanted to 

determine the extent to which demethylation and SPARC gene activation was reversible. 

5-aza-dC was removed from the MCF7 growth media and cells were passaged regularly 

as subconfluent populations for an additional 60 days (Fig. 26). Our results demonstrate 

that SPARC mRNA levels persist long after 5-aza-dC is removed. This suggests that 

DNA demethylation may serve as an epigenetic “hit” leading to mitotically heritable gene 

activation. These observations are important from a clinical standpoint since DNA 

methyltransferase inhibition is being tested as a therapeutic strategy to reactivate silenced 

tumor suppressor genes (179). Therefore, it is important to better understand the 

pleiotropic effects of DNA methyltransferase inhibitors on genes such as SPARC, which 

are capable of contributing to the malignant phenotype.
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Mapping SPARC Promoter DNA Methylation

Our previous experiments using 5-aza-dC suggested that DNA methylation plays 

a role in regulating SPARC gene expression in MCF7 cells. We hypothesized that this is 

a mechanism for transcriptional repression in MCF7 cells and that c-Jun relieves this 

repression. This would provide an explanation for the “off’ and “on” type of 

transcriptional regulation in this model system. In order to determine the extent of 

SPARC promoter methylation in each cell line, we analyzed the methylation status of 

CpG sequences using Hpall/MspI mapping. The results confirmed that the SPARC 

promoter is methylated in MCF7 cells at each of the four Hpall/MspI sites analyzed (Fig. 

28). In contrast, the proximal promoter region, including the previously mapped c-Jun 

responsive element, becomes demethylated in response to c-Jun overexpression. These 

observations were confirmed and extended by using sodium bisulfite modification of 

genomic DNA followed by DNA sequencing. Using this approach we were able to 

determine the methylation status of 17 CpG residues spanning the entire SPARC 

promoter region. As shown in Fig. 28, the SPARC proximal promoter is demethylated in 

response to constitutive c-Jun overexpression. Importantly, this demethylation is 

localized to the 3’ region of the promoter including the region previously identified as the 

c-Jun responsive element.

To our knowledge, this is the first high-resolution map of DNA methylation at the 

human SPARC gene promoter. It is unclear why there is a discrete boundary between 

proximal and distal promoter methylation in c-Jun/MCF7 cells. We hypothesize that the 

physical distance between CpG clusters may buffer, or insulate, the effects occurring in 

either region making these cis elements independent of one another. Another possibility
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is that c-Jun/AP-1 specifically targets demethylation to the proximal promoter region. It 

is unclear from our current studies whether DNA demethylation preceedes, or occurs 

subsequent to, SPARC gene activation. Future studies using an inducible system to 

regulate c-Jun expression will be useful in defining the chronology of events leading to 

SPARC gene activation.

In contrast to what is known about the process of DNA methylation, the process 

of DNA demethylation is poorly understood. There are several mechanisms by which 

promoter demethylation and gene reactivation are thought to occur. Evidence suggests 

that the methyl binding protein, MBD2, exhibits demethylase activity and may be 

responsible for de novo demethylation (238). Alternatively, DNA demethylation can 

occur via a passive mechanism. This can occur via DNA methyltransferase inhibition 

resulting in sequential loss of methylation on both strands of DNA following two rounds 

of replication (239, 240). These mechanisms are not mutually exclusive and future 

studies will be needed to determine how the SPARC gene locus becomes demethylated in 

response to c-Jun.

The Effect of Methylation on SPARC Promoter Activity and Protein/DNA 

Interactions

Next, we sought to determine the extent to which DNA methylation plays a 

functional role in SPARC promoter regulation. In order to accomplish this, we 

conducted in vitro methylation of the SPARC promoter/luciferase reporter plasmid 

followed by transient transfection. The SPARC promoter fragment spanning nucleotides 

-120 to +28 was analyzed, since this region becomes demethylated and contains the
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previously mapped c-Jun responsive element. Fortuitously, a single CpG (Hpall site #4) 

lies within the c-Jun responsive region (Fig. 31). This allowed for specific methylation of 

this site using recombinant Hpall methylase while leaving other CpGs in the SPARC 

proximal promoter region unmodified.

As shown in Fig. 31, methylation of Hpall site #4 resulted in a 75% reduction in 

SPARC promoter activity in response to c-Jun. Since overexpression of c-Jun promotes 

demethylation at the endogenous SPARC locus, it is tempting to speculate that the 

residual promoter activity in c-Jun/MCF7 cells is due to progressive demethylation of the 

in vitro methylated plasmid over the 48 hour transfection period. This could be 

addressed in future studies by analyzing the degree to which methylation is retained on 

the transfected, in vitro methylated plasmid DNA template. By comparing the 

methylation status over time, it would be possible to determine whether demethylation, in 

this context, occurs in c-Jun overexpressing cells and the extent to which this might 

correlate with relative SPARC promoter activity.

Our data supports a model where SPARC promoter methylation is not simply a 

byproduct of transcriptional repression. Instead, DNA methylation of the c-Jun 

responsive element is sufficient to repress transactivation. In addition, our studies 

suggest an explanation for previous observations in which transiently transfected SPARC 

promoter constructs were active in HeLa and HepG2 cells, but endogenous SPARC gene 

expression was undetectable (129). We hypothesize that the endogenous genomic locus 

may be methylated in these cells in contrast to the transfected plasmid DNA.

Next, we examined the effect of in vitro methylation on protein/DNA interactions 

by gel mobility shift analysis. We used the same gel shift probe (-120/-83) which
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demonstrated Sp family binding activity in order to determine if specific methylation at 

Hpall site #4 altered the protein binding pattern (Fig. 33). Previous studies have shown 

that Spl/Sp3 DNA binding are not affected by CpG methylation (192). In agreement 

with these studies, our results demonstrate that similar protein/DNA complexes are 

observed in the presence, or absence, of Hpall methylation. Based on our previous gel 

mobility shift data (Fig. 23) and chromatin immunoprecipitation analysis (Fig. 25) we 

attribute this binding to Sp family proteins. Taken together, our data supports the 

hypothesis that Spl is present at the SPARC locus, regardless of the methylation status. 

This suggests that Spl participates in a repression complex in the absence of c-Jun 

overexpression and then becomes an activator of SPARC transcription in the presence of 

c-Jun.

How can Spl play dual roles in regulating SPARC gene transcription? One 

candidate protein which may act as a bifunctional modulator of Spl is MCAF (MBD1 

chromatin associated factor). MCAF has been shown to function as a both an activator as 

well as a repressor of gene transcription (241). As the name implies, MCAF can 

physically associate with the methyl binding protein, MBD1, but has also been shown to 

bind Spl as well (241). Interestingly, the murine homolog of MCAF, mAM, was 

previously shown to interact with the murine ATFa, a known Jun dimerization partner 

(242). This interaction between MCAF and ATFa correlates with recruitment of the 

basal transcription machinery components TFIIE, TFIIH and RNA polymerase II (242). 

Based on these studies, it is tempting to speculate that MCAF may be a missing link in 

deciphering the precise mechanism of SPARC gene regulation by Spl and AP-1. We 

envision a scenario where Spl/MBDl/MCAF exist in a ternary complex at the SPARC
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promoter and mediate repression in MCF7 cells. In this case MCAF would confer 

repressor function to Spl. Then, following c-Jun overexpression, AP-1 may compete 

with MBD1 resulting in a Spl/AP-l/MCAF activation complex. Further biochemical 

characterization will be required to confirm this hypothesis.

Analysis of DNA Methyltransferase Expression in MCF7 and c-Jun/MCF7 Cells

As a follow up study, we explored the possibility that c-Jun alters the expression 

of DNMT 1, DNMT3a and/or DNMT3b resulting in aberrant genomic DNA methylation 

patterns. In support of this hypothesis, previous studies have shown that c-Jun and c-Fos 

stimulate DNMT1 expression (94, 243). Therefore, we examined the relative expression 

levels of DNA methyltransferase genes in MCF7 and c-Jun/MCF7 cells.

As shown in Appendix A, Fig. 43, c-Jun overexpression in MCF7 cells induces a 

modest increase in DNMT1 steady state mRNA levels. However, the most notable 

difference observed was in the expression pattern of multiple DNMT3b isoforms. By 

using an oligonucleotide primer pair flanking potential 3’ DNMT3b mRNA splice sites, 

several known splice variants are detectable in MCF7 and c-Jun/MCF7 cells. 

Interestingly, increased expression of DNMT3b isoforms has been demonstrated in 

human cancers (244, 245). Specifically, DNMT3b4 expression correlates with DNA 

hypomethylation at pericentromeric repeats and is associated with chromosome 

instability in hepatocellular carcinomas (246). In addition, MCF7 cells express primarily 

DNMT3b2, whereas T24 bladder cancer cells express mainly the DNMT3b3 isoform 

(247). Several of these alternatively spliced transcripts are expected to yield catalytically 

inactive isoforms suggesting they may have other, as of yet, undetermined roles in DNA
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methylation (178, 248). Taken together, the data suggests that altered expression of 

DNMT3b isoforms may play a role in regulating SPARC promoter methylation. 

Exploring this possibility will be the focus of future studies.

Analysis of Histone Modifications at the SPARC Promoter Locus

DNA methylation changes are known to correlate with post-translational 

modification of histone “tails” (249, 250). Therefore, we used chromatin 

immunoprecipitation to analyze specific histone modifications at the SPARC promoter 

locus. Characterization of the proximal promoter region in c-Jun/MCF7 cells revealed 

changes known to be associated with gene activation (Fig. 35). For example, we 

observed an increase in acetylated histone H3 and H4 as well as methylation of histone 

H3, specifically at lysine 4. The fact that there is a basal level of acetylated histones and 

H3-K4 methylation in empty vector control/MCF7 cells suggests that this is a 

euchromatic locus, even though gene expression is not active in these cells. In support of 

this idea, we did not detect tri-methylation of histone H3 at lysine 9, in either cell line, 

further suggesting that the locus does not reside in a heterochromatic region. To our 

knowledge, this is the first analysis of histone modifications at the SPARC promoter. 

These modifications constitute the “histone code” at the locus.

The histone “code”, together with DNA methylation patterns, comprise a larger 

epigenetic “code” recognized by transcriptional regulators. We envision a scenario 

where chromatin modifying proteins are specifically targeted to the c-Jun responsive 

region of the SPARC promoter. The net result of such recruitment is transformation of 

the locus from a repressed state to an activated state. In addition, it is likely that these
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c-Jun induced changes antagonize the repression machinery and serve to maintain the 

activated state of SPARC gene transcription. For example, both AP-1 and Spl have been 

shown to interact with the histone acetyltransferase CBP/p300 (99, 251). Recruitment of 

CBP/p300 to the SPARC proximal promoter region would be expected to result in an 

increase in the level of acetylated histones at the locus. This hypothesis could be tested 

by chromatin immunoprecipitation analysis of the SPARC promoter using a CBP/p300 

specific antibody.

A similar mechanism of targeted recruitment may account for elevated levels of 

H3-K4 dimethylation at the SPARC promoter (Fig. 35). In support of this idea, a recent 

study demonstrated that the H3-K4 specific methyltransferase, SET7/9, is involved in 

regulation of the AP-1 target gene, collagenase (252). This study showed that SET7/9 

physically associates with the collagenase promoter at low levels prior to collagenase 

gene induction and then becomes enriched at the locus concomitant with AP-1 binding 

and transcriptional activation (252). A similar scenario may explain the basal level of 

H3-K4 methylation observed in MCF7 cells. Therefore, the presence of this modification 

may render the locus “poised” for activation prior to c-Jun induction.

A final experiment was conducted to demonstrate the extent to which histone 

acetylation/deacetylation contributes to SPARC gene regulation. MCF7 cells were 

treated with the histone deacetylase inhibitor trichostatin A (TSA) and SPARC steady 

state mRNA levels determined by semi-quantitative RT-PCR. TSA is a well 

characterized, non-competitive inhibitor of histone deacetylase enzymes (222). Previous 

studies have shown reactivation of silenced genes in response to TSA (223, 224). 

Depending on the context, treatment with TSA and 5-aza-dC can result in synergistic
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activation of gene expression (191, 223, 224). The results presented in Figure 36 show 

that SPARC expression was increased only by 5-aza-dC and not TSA, alone, or in 

combination with 5-aza-dC. This result demonstrates that, in MCF7 cells, repression of 

SPARC gene transcription occurs via a TSA insensitive mechanism. This is consistent 

with the relative enrichment of acetylated histones at the SPARC locus in MCF7 cells 

and suggests that maintenance of the repressed state is HD AC independent. This 

strengthens the argument that, in MCF7 cells, DNA methylation is the dominant 

epigenetic modification regulating SPARC gene expression.

Analysis of c-Jun Induced Epigenetic Changes at the Human Vimentin and 

Estrogen Receptor Alpha Gene Loci

In our MCF7 model system, expression of another gene, vimentin, is regulated in 

an “o ff’ and “on” manner similar to SPARC (51). Vimentin is an intermediate filament 

protein expressed in cells of mesenchymal origin and has, therefore, been used as a 

marker for epithelial-to-mesenchymal transition observed in invasive breast cancers 

(253). An early study demonstrated that AP-1 was responsible for serum and PMA 

(phorbol 12-myristate 13-acetate) inducibility of vimentin gene expression (254). This 

study also showed that tandem AP-1 elements located -700 base pairs upstream of the 

transcription start site were necessary and sufficient for this effect (254). These sites 

were subsequently shown to exhibit AP-1 binding in vitro and a recent study 

demonstrated that AP-1 and Spl cooperate resulting in synergistic activation of the 

human vimentin promoter (234, 254). However, there has been no direct evidence that
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AP-1 and/or Spl physically associate with the vimentin promoter in an endogenous, 

genomic context.

In contrast to SPARC, the vimentin promoter is a classical CpG island with 56 

CpG sequences over a 600 base pair region surrounding the tandem AP-1 sites (Appendix 

A, Fig. 44). The results presented in Appendix A, Fig. 44 demonstrate that this locus is 

almost completely methylated in empty vector control/MCF7 cells where transcription is 

repressed. However, there is a dramatic and widespread loss of DNA methylation in 

response to c-Jun overexpression. In contrast to the SPARC gene locus, the widespread 

demethylation of the vimentin promoter CpG island demonstrates that c-Jun is capable of 

inducing more than just localized changes in DNA methylation during target gene 

activation. In addition, chromatin immunoprecipitation analysis demonstrated that c-Jun 

and Fra-1 physically associate with the vimentin promoter in the demethylated state 

(Appendix A, Fig. 45). These experiments provide the first direct evidence that vimentin 

is a direct AP-1 target gene. It is likely that in this case, c-Jun and Fra-1 utilize two 

adjacent AP-1 sites since they are in a consensus context and this region was previously 

shown to be required for AP-1 responsiveness. Similar to what we observed at the 

SPARC locus, Spl was present at the vimentin promoter under conditions where 

transcription was repressed or activated. This further suggests a bi-functional role for 

Spl in transcriptional activation.

In contrast to the SPARC locus, chromatin immunoprecipitation analysis of the 

vimentin promoter in MCF7 cells revealed histone modifications consistent with a 

heterochromatic, transcriptionally silent locus (Appendix A, Fig. 45). One of the most 

striking changes induced by c-Jun was loss of histone H3-lysine 9 tri-methylation, a
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modification strictly associated with classic epigenetic gene silencing. This result also 

serves as a positive control, demonstrating that the negative result obtained at the SPARC 

promoter using the anti-tri-methyl histone H3-K9 antibody (Fig. 35) is a “real” negative 

result.

Based on characterization of epigenetic changes at the SPARC and vimentin gene 

loci, we wanted to determine if any c-Jun target genes were regulated in an opposite 

manner. Therefore, we chose to examine the estrogen receptor alpha (ERa) gene locus. 

ERa expression is “on” in growth factor dependent MCF7 cells and “off* in estrogen 

independent and tamoxifen resistant c-Jun/MCF7 cells (46). The ERa locus is known to 

become hypermethylated in invasive, ERa negative, breast cancer cells and this correlates 

with loss of ERa expression (183, 255, 256). However, the mechanisms driving this 

process are unclear. In order to characterize the methylation status of the ERa promoter 

in our model system, we conducted Hpall/MspI mapping as shown in Appendix A,

Fig. 46. The results demonstrate a localized hypermethylation in response to c-Jun 

overexpression. Specifically, the CpG rich region immediately 3’ of the promoter “A” 

transcription start site becomes completely methylated and this correlates with 

transcriptional repression. This is in agreement with the current paradigm where the 

degree of promoter methylation inversely correlates with the level of gene transcription.

Next, we conducted chromatin immunoprecipitation analysis in order to 

determine the histone modifications and protein/DNA interactions at the estrogen 

receptor alpha locus. The results presented in Appendix A, Fig. 47 show that Spl is 

present at the locus only in MCF7 cells when transcription is active. Importantly, this 

demonstrates that Spl is not ubiquitously present under all conditions tested in our
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studies. Interestingly, c-Jun and Fra-1 are not associated with the ERa locus, at least not 

in the hypermethylated region analyzed by ChlP. This suggests that ERa may be an 

indirect AP-1 target gene. In addition, our analysis revealed hypoacetylation of histone 

H3 in c-Jun/MCF7 cells during the repressed state and enrichment of methylated histone 

H3 at lysine 4 in MCF7 cells during active transcription. These changes are in agreement 

with the current paradigm that histone acetylation and H3-K4 methylation directly 

correlate with the relative level of gene transcription.

Taken together, our analysis of the SPARC, vimentin and estrogen receptor alpha 

gene loci highlight the diverse mechanisms by which c-Jun regulates target gene 

expression. Importantly, these studies were conducted in a biologically relevant model 

system which recapitulates the phenotypic changes associated with malignant breast 

cancer progression.
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CHAPTER V 

CONCLUSIONS

Our hypothesis was that c-Jun binds to the SPARC promoter leading to an 

increase in SPARC mRNA and protein and a concomitant change to a pro-invasive cell 

phenotype. Our objectives were 1.) to determine the contribution of SPARC to c-Jun 

induced phenotype in a MCF7 breast cancer model system and 2.) to determine the 

mechanism(s) by which c-Jun regulates SPARC gene expression. The results described 

in Chapter III of this dissertation have led us to propose the following conclusions:

1.) Overexpression of SPARC in MCF7 cells leads to a statistically significant 

(P= <0.05) decrease in cell proliferation rate.

2.) Overexpression of SPARC, in the absence of c-Jun overexpression, was not sufficient 

to induce MCF7 cell motility and invasion.

3.) Inhibition of SPARC expression in c-Jun/MCF7 cells results in a statistically 

significant (P= <0.05) decrease in cell motility and invasion.

4.) Three AP-1 like sites (-1051/-1045, -868/-862, -241/-235) in the SPARC promoter 

are dispensable for c-Jun responsiveness.
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5.) The SPARC promoter region spanning nucleotides -120 to -70 contains the c-Jun 

responsive element (JRE) required for maximal promoter activation in c-Jun/MCF7 cells.

6.) Spl and AP-1 (c-Jun and Fra-1) are present at the SPARC proximal promoter region 

in vivo in c-Jun/MCF7 cells where SPARC is expressed. In MCF7 cells, where SPARC 

expression is undetectable, only Spl is present at the SPARC promoter.

7.) Treatment of MCF7 cells with the DNA methyltransferase inhibitor, 5-aza- 

2’deoxycytidine (5-aza-dC), results in reactivation of SPARC gene expression, whereas 

in c-Jun/MCF7 cells, there is no effect on SPARC expression.

8.) Overexpression of c-Jun in MCF7 cells results in localized demethylation of the 

SPARC proximal promoter region.

9.) In vitro methylation of a single Hpall site between -120/-70 of the SPARC promoter 

abrogates c-Jun responsiveness.

10.) Hypermethylation and hyperacetylation of histone H3 lysine 4 correlates with 

increased SPARC expression in response to c-Jun.

11.) In MCF7 cells, repression of SPARC gene transcription is maintained by a histone 

deacetylase independent mechanism.
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These conclusions have led us to propose the following model of SPARC gene 
regulation:

SPARC Promoter Locus in MCF7 Cells

DNMTDNMT

MBDM BDVIMBD
MBDSpl

Me Me
-1409 CpG CpG

M CAF Me

SPARC Promoter Locus in c-Jun/MCF7 Cells

K4-Me K4-Me

Fig. 37. Proposed model of c-Jun/AP-1 transcriptional regulation of SPARC 
gene expression. The size of the arrow represents transcription level in each cell 
line. (HAT) histone acetyltransferase, (MCAF) MBD1 chromatin associated factor, 
(DNMT1) DNA methyltransferase, (MBD) methyl binding protein, (Ac) acetylation, 
(Me) methylation.
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Fig. 38. Analysis of in vitro cell motility and invasion demonstrated by 
JunD/MCF7 stable cell lines. A, Quantitation of cell motility assays done on 
gelatin coated membranes over a 4 hour incubation period. B, Quantitation 
of cell invasion assays conducted on Matrigel™ coated membranes over a 
period of 4 hours. All values are expressed as the number of stained cells per 
high power field.
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Fig. 39. AP-1 DNA binding activity in nuclear extracts from empty vector 
control/MCF7, JunD/MCF7 or c-Jun/MCF7 stable cell lines. A radiolabeled 
oligonucleotide probe corresponding to a consensus AP-1 site from the intron 1 
region of the human Fra-1 gene was used in gel shift reactions (25,000cpm). Anti 
c-Jun, anti JunD, anti Fra-1 or anti p i30 (negative control) antibodies were 
incubated with the radiolabeled probe and nuclear extracts as indicated.
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Fig. 40. Determination of recombinant adenoviral titer. Virus was 
propagated as described in Chapter II. HEK293 cells were infected with the 
indicated dilutions of virus stock. Cells were assayed 48 hours later for 
production of adenovirus hexon protein using the Clontech Rapid Titer™ Kit 
as described in Chapter II.
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Fig. 41. Infection of c-Jun/MCF7 cells with recombinant 
adenovirus expressing beta-galactosidase. Magnification= 10X 
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Fig. 42. Effect of stable JunD expression on MCF7 cell proliferation. Cell 
proliferation rates were determined by MTT assay as described in Chapter IF The 
indicated cell lines were plated at the same density in 96-well plates. Samples were 
assayed at 19, 43, 65 and 87 hours. Optical densities were determined using a 
microtiter plate reader where A= absorbance at 570nm wavelength.
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Fig. 43. Semi-quantitative RT-PCR analysis of steady state DNA 
methyltransferase levels in MCF7 and c-Jun/MCF7 cell lines. DNMT3b 
RT-PCR primers flank the alternatively spliced 3’ coding region. 
Individual DNMT3b amplicons (upper most and lower most bands) were 
gel purified and identified by DNA sequencing. DNMT3b-4 and 
DNMT3b-5 identities are inferred based on amplicon size compared to 
published reports (242). The 18S ribosomal subunit gene serves as an 
invariantly expressed, internal control.
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Fig. 45. Chromatin immunoprecipitation analysis of the vimentin gene locus in MCF7 and c-Jun/MCF7 stable 
cell lines. A, Schematic representation of the human vimentin genomic locus. Lollypops denote the location of CpG 
sequences. Arrows denote the genomic region amplified by PCR during chromatin immunoprecipitation analysis.
B, Results of chromatin immunoprecipitation analysis using the following antibodies: (Ac-H3) anti diacetylated 
histone H3, (Ac-H4) anti tetraacetylated histone H4, (diMe-H3-K4) anti dimethyl histone H3 at lysine 4, (triMe-H3- 
K9) trimethyl histone H3 at lysine 9, anti c-Jun, anti Fra-1, anti Spl, (NAC) no antibody control. ( — )= no template 
added negative control for PCR reactions.

O OO



181

A

Hpall/MspI 
site #1

1 promoter “A”

Hpall/MspI
resion #2

-1855 +1

B
H pall #1 H pall region #2

clone 1 clone 2 clone 3 clone 1 clone 2 clone 3
Hpall Hpall Hpall Hpall

UC MspI
T

M:jspl
UC Mspl UC

Hpall Hpall
Mspl

UC Mspl UC Mspl

MCF7

c-Jun/MCF7

Fig. 46. The estrogen receptor alpha gene locus is hypermethylated in 
c-Jun/MCF7 cells. A, Schematic representation of the a region of the human 
estrogen receptor alpha gene locus. Arrows indicate transcription start sites. 
B, Hpall/MspI mapping of DNA methylation. Genomic DNA isolated from 
either MCF7 or c-Jun/MCF7 cells was digested with Hpall, Mspl or left 
undigested (UC). Following digestion, PCR was performed using 
oligonucleotide primer pairs flanking the Hpall/MspI sites. (—) denotes the 
negative control PCR reaction in which DNA template was omitted.
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Fig. 47. Chromatin immunoprecipitation analysis of the estrogen 
receptor alpha gene locus in MCF7 and c-Jun/MCF7 stable cell lines. A, 
Schematic representation of the estrogen receptor alpha genomic locus. The 
large arrows denote potential transcription start sites. The smaller arrows 
denote the genomic region amplified by PCR during chromatin 
immunoprecipitation analysis. Lollypops denote the location of Hpall/MspI 
sites. (+1) denotes the major transcription start site. B, Results of 
chromatin immunoprecipitation analysis using the following antibodies: 
(Ac-H3) anti diacetylated histone H3, (Ac-H4) anti tetraacetylated histone 
H4, (diMe-H3-K4) anti dimethyl histone H3 at lysine 4, (triMe-H3-K9) 
trimethyl histone H3 at lysine 9, anti c-Jun, anti Fra-1, anti Spl, (NAC) no 
antibody control. (— )= no template added negative control for PCR 
reactions.
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