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ABSTRACT 

MECHANISMS OF REGULATION OF PROXIMAL TUBULE SODIUM 
TRANSPORTERS IN OBESITY-INDUCED HYPERTENSION 

Marta A. Ambrozewicz 
Eastern Virginia Medical School and 

Old Dominion University, 2009 
Director: Dr. Anca D. Dobrian 

Hypertension is one of the common complications of obesity. Using a rat 

model of diet induced obesity and hypertension we investigated some of the 

mechanisms that are involved in regulation of blood pressure in obesity. The first 

aim of this study was to determine the role of proximal tubule transporters on the 

renal sodium handling in obese hypertensive (OP) and lean normotensive (OR) 

rats. An acute increase in renal perfusion pressure resulted in a blunted 

natriuretic response in OP vs. OR rats and indicated that increased sodium 

reabsorption in the proximal tubule is casual, at least in part, for hypertension in 

OP rats. Subsequently, protein expression and activity of Na,K-ATPase and 

NHE3 were increased in obese rats compared to lean rats. Moreover, in OP rats 

more NHE3 was associated with its active pool located in the microvillus region. 

Together, these results suggest that hypertension in obese rats is characterized 

by the impaired pressure-natriuresis and diuresis that can be explained by the 

increased activity of proximal tubule sodium transporters. 

Previous results from our lab determined that peroxisome proliferator 

activated receptor y (PPARy) has reduced expression and activity in the kidney of 



OP vs. OR rats. Therefore, in the second aim we investigated the effect of 

PPARy ligand activation on expression and activity of proximal tubule Na+ 

transporters in OP and OR rats. In addition, by employing in vitro studies using 

proximal tubule epithelial cells, we determined whether pioglitazone exerts its 

effect via direct PPARy activation. Pioglitazone reduced systolic blood pressure 

in obese rats while having no effect in lean rats. However, it increased sodium 

retention in the lean group. Pioglitazone increased Na,K-ATPase activity in OP 

rats, while its protein expression was increased in both groups. In contrast, NHE3 

activity was reduced in obese rats treated with pioglitazone and protein 

expression was decreased in both groups. Pioglitazone did not have an effect on 

NHE3 localization in obese rats, but in lean rats, it had tendency to redistribute 

NHE3 towards the more active membrane pool. In cells transiently transfected to 

overexpress or silence PPARy, we demonstrated that pioglitazone reduced Na,K-

ATPase and NHE3 abundance via PPARy activation. Collectively, the results 

indicated that pioglitazone reduced blood pressure in the obese group most likely 

by decreasing activity of NHE3. However, other factors besides trafficking are 

involved in the transporter regulation. Pioglitazone did not reduce blood pressure 

in lean rats, suggesting that the metabolic milieu is an important determinant of 

the pioglitazone differential effect on the blood pressure and on the proximal 

tubule transporters. 

Nitric oxide (NO) plays an important role in regulating pressure natriuresis 

and diuresis and its availability seems to be altered in obese animals and 

humans. The third aim was designed to examine the role of NO on blood 



pressure, pressure natriuresis and expression of sodium transporters NHE3 and 

Na,K-ATPase in OP and OR rats. To determine the role of NO, we performed in 

vivo study using L-NAME for chronic NO inhibition. The NO inhibition did not 

change glomerular filtration rate in either of the groups. Natriuresis and diuresis 

was significantly decreased only in treated OR rats. Also, NHE3 protein 

expression and activity were significantly elevated in treated vs. non-treated OR 

rats, with no significant changes in OP rats. Moreover, L-NAME caused a shift of 

NHE3 to the active pool located in microvillus region in OR group only. In 

conclusion, normotensive OR rats are more susceptible to NO deficiency and the 

mechanism involves an increase in activity of NHE3 with the transporter 

redistribution playing a significant role. In addition, we investigated in cell culture 

whether hormones elevated in obesity can modulate Na,K-ATPase and NHE3 via 

cGMP production. In vitro experiments provided some evidence that angiotensin 

II and insulin interact with the NO signaling pathway at the level of cGMP. cGMP 

could affect transporter activity by phosphorylation which could account for the 

effects determined in vivo. 
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SECTION 1 

INTRODUCTION AND BACKGROUND 

1.1 Obesity 

It is possible that millions of years ago, when food and water were not 

easily available, individuals developed a very efficient system to utilize and store 

energy, salt and water. Conversely, descendants of those same individuals, living 

in a new environment of plentitude, would develop obesity. Obesity can be 

defined as a disease in which an excessive accumulation of energy in the form of 

body fat may adversely affect the health of the individual. The most widely used 

and accepted metric for identifying obesity is having a Body Mass Index (BMI) 

greater than 30. However, growing evidence suggests that a central (abdominal) 

fat distribution pattern as reflected by waist circumference is also an important 

factor in assessing obesity (Wang et al. 2005). Obesity is not a single disorder 

but a part of a group of diseases called "complex diseases". The phenotype of 

complex diseases reflects the multifactorial effect of all contributing genes 

(polygenic) and all environmental factors (Motulsky 2006). There are 2 distinct 

genetic mechanisms involved in obesity. One is caused by the infrequent 

presence of certain genes, which produce rare syndromes associated with 

significant obesity such as Prader-Willi or Bardet-Biedl syndrome. However, 

This dissertation follows the style of the journal, Acta Physiologica. 



2 

obesity is much more commonly mediated by the presence of other 

"susceptibility" genes. More than 50 such genetic sites have been identified and 

in their presence obesity will develop only if there is a favorable environment 

(Rankinen etal. 2006). These genes control different processes, such as 

regulation of fat distribution, metabolic rate, response to exercise and diet, control 

of feeding, and food preferences, etc. But the striking rise in the incidence of 

obesity, which has happened in the last few decades, is most probably not 

because of changes in the genetic background of the human race, since these 

changes take thousands of years to evolve. This "epidemic" is mainly caused by 

rapid lifestyle changes involving eating habits and exercise (Ravussin etal. 1988, 

Rissanen etal. 1991, Blundell & Macdiarmid 1997). 

Although obesity is not a recent phenomenon, the epidemic of obesity is 

and continues to escalate in the United States (Ogden etal. 2006) and in much 

of the developed (Berghofer et al. 2008) and developing world (Hossain et al. 

2007). According to data from the 2003-2004 National Health and Nutrition 

Examination Survey (NHANES), ~73% of men and ~60% of women are 

overweight or obese, with prevalence varying among the three major racial/ethnic 

groups in the U.S. (Ogden etal. 2007) and increasing rapidly. All in all, an 

estimated 145 million adults in the United States are overweight or obese. As 

prevalence of obesity increases, the rising economic costs of obesity continue to 

be a major health burden for national health economies (Thorpe 2009). Recent 

estimates indicate that obesity accounted for 9% of total health care costs in the 

U.S. in 1998, with diseases such as coronary heart disease, type II diabetes and 



osteoarthritis accounting for 93 billion dollars of total obesity-attributable medical 

costs in 2002 (Colditz 1999, Finkelstein etal. 2003). 

1.1.1 Obesity and associated co-morbidities 

Higher body weights are associated with several cardiovascular risk 

factors including hypertension (Field etal. 1999, Brown etal. 2000), dyslipidemia 

(Brown et al. 2000) and hyperinsulinemia (Despres 1993). These risk factors 

could represent intermediate steps in the pathway between obesity and coronary 

heart disease or obesity could be an independent risk factor for cardiovascular 

disease (CVD) (Eckel & Krauss 1998, Kim et al. 2000, Grundy 2002). Being 

overweight or obese substantially increases the risk of other chronic diseases 

beside CVD such as stroke, diabetes mellitus, gallblader disease, osteoarthritis, 

sleep apnea and respiratory problems, as well as cancers of the endometrium, 

breast, prostate and colon (National Heart Lung and Blood Institute: Obesity 

Guidelines). 

Previously, adipose tissue was thought to be a passive depot for storing 

excess calories. Recently however, it was discovered that in addition to storing 

excess energy as fat, adipose tissue has much more complex and dynamic 

functions and acts as an endocrine organ secreting various factors into the blood, 

termed adipokines (Rajala & Scherer 2003). These factors include leptin, 

adiponectin, resistin, angiotensin II, prostoglandins, plasminogen activator 

inhibitor-1, tumor necrosis factor-a, macrophage migration inhibitory factor etc. 
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and the list of these factors is growing rapidly. Most of these factors have 

important roles in energy homeostasis, insulin sensitivity, immune function, 

inflammation, and even in tumor progression in the local oncogenic 

microenvironments (Rajala & Scherer 2003). These secretory and non-secretory 

components of the adipose tissue may impact on the complications related to 

obesity directly or may affect the above mentioned risk factors. 

1.1.2 Obesity and hypertension 

As described earlier, the effects of obesity on cardiovascular health and 

disease are many, one of the most profound of which is hypertension. It was 

estimated that after adjustment for other risk factors such as age, BMI, degree of 

weight cycling, physical activity, smoking, and alcohol consumption each 

kilogram increase in body weight increased the risk of developing hypertension 

by 4.4% (Field et al. 1999). And it came as no surprise that with the significant 

rise in obesity in this last decade occurred a corresponding increase in the 

prevalence of hypertension (Field et al. 1999). However, clinical studies 

demonstrated that weight loss can effectively lower blood pressure (Schotte & 

Stunkard 1990, Wassertheil-Smoller era/. 1992). 

It is also important to recognize that long-duration obesity does not appear 

necessary to elevate BP, as shown in obese, normotensive children (Sorof & 

Daniels 2002). Nevertheless, association between obesity and hypertension is 
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widely recognized, but the mechanisms responsible for weight-related changes in 

blood pressure have not been entirely elucidated. 

1.2 Hypertension 

More than 1 billion individuals worldwide, including 50 million Americans, 

have high blood pressures warranting some form of treatment (WHO 2002, 

Hajjar & Kotchen 2003, Kearney et al. 2005). Higher-than-optimal blood pressure 

is the number one attributable risk for death throughout the world and 

approximately 7.1 million deaths per year are credited to uncontrolled 

hypertension (WHO 2002). As life expectancy increases, hypertension is 

becoming an even more important medical and public health issue as blood 

pressure rises with aging in industrialized countries. The most recent National 

Health and Nutrition Examination Survey (NHANES) survey conducted in 2005-

2006 revealed that almost 29 percent of the population in the United States is 

hypertensive having a blood pressure (BP) greater than 140/90 or using 

hypertensive medications (Ostchega et al. 2008). Primary (essential) 

hypertension, which accounts for 95 percent of all cases of hypertension, has 

been traditionally defined as high blood pressure for which no obvious secondary 

cause (e.g., renovascular disease, aldosteronism, pheochromocytoma, or 

individual gene mutations) can be determined. Moreover, risk estimates from the 

Framingham Heart study suggest that approximately 78% of hypertension in men 

and 65% in women can be attributed directly to an overweight condition and 
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obesity (Garrison etal. 1987). Therefore, rather than a special case, obesity 

hypertension should be considered the most common form of essential 

hypertension. 

1.2.1 Blood pressure regulation 

The most important function of blood pressure is to provide the driving 

force that moves blood through the vascular system in order to supply the needs 

of the tissues. Consequently, the regulation of blood pressure is a complex 

physiologic function that depends on the integrated actions of multiple 

cardiovascular, renal, neural, endocrine, and local tissue control systems. Blood 

pressure regulation, as is true for most physiologic control systems, involves 

short-term and long-term mechanisms. Following a sudden change in blood 

pressure, acute control occurs within seconds as a result of: 1) the arterial 

baroreceptors, which detect changes in blood pressure and send appropriate 

autonomic reflex signals into the vasomotor center of the brain and then back to 

the heart and blood vessels to return the blood pressure toward normal; 2) the 

chemoreceptors, which detect changes in oxygen or carbon dioxide in the blood 

and similar to baroreceptors initiate autonomic feedback responses that influence 

blood pressure; and 3) the central nervous system, which responds within a few 

seconds to ischemia of the vasomotor centers in the medulla, especially when 

blood pressure falls below about 50 mm Hg. Each of these nervous control 

mechanisms works rapidly and can have potent effects on blood pressure but 
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they correct a blood pressure abnormality only in part but never restoring it 

completely to the normal values. 

Within a few minutes or hours after a blood pressure disturbance, when 

the nervous mechanism usually become less and less effective, several 

additional control systems are activated, including 1) a shift of fluid from the 

interstitial spaces into the blood stream in response to decreased blood pressure 

(or a shift of fluid out of the blood into the interstitial spaces in response to 

increased blood pressure); 2) the renin-angiotensin system (RAS) which is 

activated when blood pressure falls too low and suppressed when blood 

pressure increases above normal (Fig.1); 3) multiple vasodilator systems that are 

suppressed when blood pressure decreases and stimulated when blood pressure 

rises above normal. However, the renal-body fluid system is a dominant 

mechanism for long-term arterial pressure control (Guyton & Hall 2006). 

1.2.2 Pressure natriuresis and diuresis 

Normally, an increase in blood pressure would raise sodium and water 

excretion, a phenomenon usually referred to as pressure natriuresis and diuresis 

(Fig. 2). Under most conditions this mechanism acts to stabilize blood pressure 

and the body fluid volumes. For example, when blood pressure is increased 

above the renal equilibrium point, because of increased total peripheral 

resistance or increased cardiac pumping ability, this also increases sodium and 

water excretion via pressure natriuresis if kidney function is not impaired. 
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Figure 1 Components of the renin-angiotensin system. 
A decrease in renal perfusion pressure causes the juxtaglomerular cells of the 
afferent arteriole to secrete renin. Renin catalyzes the conversion of 
angiotensinogen to angiotensin I in plasma. Angiotensin-converting enzyme 
(ACE) catalyzes the conversion of angiotensin I to angiotensin II, primarily in the 
lung. Angiotensin II is physiologically active and acts as a vasoconstrictor and 
also stimulates the synthesis and secretion of aldosterone by the adrenal cortex. 
Aldosterone increases Na+ reabsorption. Angiotensin II is rapidly inactivated by 
angiotensinases. 
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Figure 2 Graphical analysis of the infinite gain characteristic of the renal-body 
fluid feedback system on pressure control. 
There are two separate curves that intersect each other: renal output curve (red) 
for water and salt in response to increasing arterial pressure and the line (black) 
which represents the net water and salt output. Redrawn from Textbook of 
Medical Physiology (Guyton & Hall 2006). 
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As long as fluid excretion exceeds fluid intake, extracellular fluid volume will 

continue to decrease, reducing venous return and cardiac output, until blood 

pressure returns to normal and fluid balance is reestablished. An important 

feature of pressure natriuresis is that various hormonal and neural control 

systems can greatly amplify or blunt the basic effects of blood pressure on 

sodium and water excretion. For example, during chronic increases in sodium 

intake only small changes in blood pressure are needed to maintain sodium 

balance in most people. One reason for this insensitivity of blood pressure to 

changes in salt intake is decreased formation of antinatriuretic hormones such as 

angiotensin II and aldosterone, which enhance the effectiveness of pressure 

natriuresis and allow sodium balance normally maintained with minimal increases 

in blood pressure. On the other hand, excessive activation of these antinatriuretic 

systems can reduce the effectiveness of pressure natriuresis, thereby 

necessitating greater increases in blood pressure to maintain sodium balance 

(Guyton & Hall 2006). 

One important feature of pressure natriuresis is that it continues to operate 

until blood pressure returns to the original equilibrium point. In other words, it 

acts as part of an infinite gain feedback control system (Fig. 2) (Guyton 1990). It 

is the only infinite gain feedback system for blood pressure regulation in the 

body, so far known, and it is this property which makes it a dominant long-term 

controller of blood pressure (Fig. 2) (Guyton & Hall 2006). Moreover, in all forms 

of human or experimental hypertension studied thus far, there is a shift of 
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pressure natriuresis that appears to initiate and sustain the hypertension (Hall 

2003). 

1.2.3 Hypertension in obesity 

It is well documented that blood pressure increases with weight gain and 

decreases with weight loss (Garrison etal. 1987, Jones etal. 1999, Stevens et 

al. 2001). Some of the characteristics of primary hypertension caused by excess 

weight gain and obesity include: an expansion of extracellular fluid volume, as 

well as increased tissue blood flow in many tissues, including the heart, kidneys, 

gastrointestinal tract, and skeletal muscles and an increase in cardiac output 

(Hall etal. 1993, Carroll etal. 1995). 

In addition, there is increasing evidence that obesity may provide the 

impetus for sympathetic nervous system (SNS) activation. This is especially 

important in the kidney since pharmacologic blockade of adrenergic activity 

lowers blood pressure to a greater extent in obese, compared to lean individuals. 

Also renal denervation markedly attenuates sodium retention and hypertension 

associated with a high-fat diet in experimental animals (Hall 2003). The 

mechanisms of sympathetic nervous system activation in obesity have not been 

fully elucidated, but one of the more promising candidates is hyperleptinemia 

(Hall et al. 2001). As mentioned before, leptin is produced by adipocytes and acts 

on the hypothalamus and other regions of the brain, such as the brainstem, to 

reduce appetite and increase sympathetic nervous system activity (Hall etal. 



12 

2001). In rodents, increasing plasma leptin concentration to levels comparable to 

those found in severe obesity not only increases sympathetic nervous system 

activity, but also raises blood pressure (Shek etal. 1998, Carlyle et al. 2002). 

Moreover, the hypertensive effects of leptin are enhanced when NO synthesis is 

inhibited (Kuo ef al. 2001). 

Obese individuals, especially those with visceral obesity, although having 

expansion of extracellular fluid volume, often have mild to moderate increases in 

plasma renin activity, angiotensinogen, angiotensinogen converting enzyme 

activity, angiotensin II, and aldosterone levels (Hall 2003). An important role for 

angiotensin II in stimulating renal sodium reabsorption and in mediating obesity 

hypertension is supported by studies in experimental animals demonstrating that 

angiotensin II receptor blockade or angiotensinogen converting enzyme activity 

(ACE) inhibition blunts sodium retention, volume expansion, and decreases 

blood pressure during the development of obesity (Robles et al. 1993, Boustany 

et al. 2005). 

Most of all, in hypertension induced by obesity there is considerable 

evidence in humans that renal dysfunction, characterized by increased tubular 

sodium reabsorption and impairment of pressure natriuresis plays a key role in 

increasing blood pressure (Hall etal. 1993). The increased tubular reabsorption 

is closely related to the increase activity of the sympathetic nervous system and 

activation of the renin-angiotensin system in obesity. Other contributing factors 

are structural changes that cause the physical compression of the kidneys by fat 

accumulation within and around the kidneys and by the increased abdominal 
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pressure. Hyperinsulinemia, which occurs as a compensation for insulin 

resistance, is postulated to mediate increased blood pressure in essential 

hypertension via multiple mechanisms, such as stimulation of sympathetic 

nervous system activity and the renal tubular sodium reabsorption (Hall 1993). 

However, chronic hyperinsulinemia, in the absence of obesity, did not raise blood 

pressure in either dogs or humans and did not enhance the hypertensive effects 

of other pressor substances such as norepinephrine or angiotensin II (Hall et al. 

1995). A study by Fujiwara and coworkers reported that altered pressure 

natriuresis and hypertension is associated with insulin resistance and impaired 

production of NO in cortex and medulla of the obese Zucker rats (Fujiwara et al. 

1999). 

Hall implied that a shift of pressure natriuresis and increased sodium 

reabsorption is caused by altered renal hemodynamics, increased sodium 

reabsorption, or both due to the mechanisms postulated above (Hall et al. 1993, 

Hall, J. E. 1994) such as increased sympathetic nerve activity, increased levels 

of angiotensin II, increased leptin and most likely increased levels of insulin. 

However, there was no renal vasoconstriction observed in obese dogs which 

could lead to a decrease in sodium filtered load. In fact, obese dogs were volume 

expanded and their glomerular filtration rate, filtered sodium load, and renal 

blood flow were elevated (Hall et al. 1993). 



1.2.4 Animal models of obesity hypertension 

Although association between obesity and hypertension is widely 

recognized, the mechanisms responsible for weight-related changes in blood 

pressure have not been elucidated. Animal models of obesity provided us with 

the opportunity to study the physiological and genetic basis of obesity and also to 

explore environmental aspects of the disease. There are a few models of single 

gene mutations available such as ob/ob and db/db mice and Zucker rats (fa/fa) 

with mutations in the leptin gene (ob/ob mouse) and leptin receptor (db/db; fa/fa 

rat). However, in humans, single gene mutations are of limited importance when 

considering the increasing obesity epidemic, as they account for less than 2% of 

obesity. In light of this, several polygenic models have been developed and 

characterized. Nevertheless, the cardiovascular and renal changes in most of 

these models have not been characterized. Among the ones that have been 

studied, most do not mimic the cardiovascular, renal, and neurohumoral changes 

found in obese humans (Kurtz et al. 1989). 

As described before, one hypothesis for the rapidity of the obesity 

epidemic in humans is the possibility that our regulatory systems become 

overwhelmed by high-fat palatable foods which have become increasingly 

available (Blundell & Macdiarmid 1997). In addition, in contrast to genetic models 

of obesity, weight gain induced by long-term high-fat diet causes a reproducible 

rise in blood pressure in dogs, rabbits, and rats (Hall et al. 1993, Carroll et al. 

1995, Rocchini et al. 1999). Dobrian et al. characterized a rat model of diet-
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induced obesity that developed hypertension accompanied by vascular and renal 

changes similar to those observed in obese hypertensive humans (Dobrian et al. 

2000). In this model which was used for the present study, Sprague-Dawley rats 

were fed a purified moderately high-fat (MHF) diet that contains 32% kcal fat, a 

value similar to the average Western diet, and showed a bimodal pattern in body 

weight gain. Approximately half of the rats gain weight rapidly- obesity prone 

(OP) and developed mild hypertension while the other half gain weight at a rate 

similar with chow-fed rats- obesity resistant (OR) group and were normotensive 

as described earlier. This model of diet-induced obesity shares a number of 

common features with human obesity. These include high blood pressure, 

activation of the renin-angiotensin system, and dyslipidemia (Dobrian et al. 

2000), an increase in oxidative stress, a decrease in plasma and urine 

nitrate/nitrite content, suggesting a decreased NO production or bioavailability 

(Dobrian etal. 2001); hyperinsulinemia was also observed (Dobrian et al. 2004) 

as well as hyperleptinemia (Dobrian et al. 2003). 

1.3 Sodium transport 

Na+ is the most abundant cation in extracellular fluid and since its salts 

account for over 90% of the osmotically active solute in the plasma and interstitial 

fluid, the amount of Na+ in the body is the most important determinant of the 

extracellular fluid volume. Hence, reabsorption of Na+ plays a major role in body 

electrolyte and water metabolism. In addition, Na+ transport is coupled to the 
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movement of CI", H \ other electrolytes, glucose, amino acids, organic acids, 

phosphate, and other substances across the tubule walls. In the proximal 

tubules, the thick portion of the ascending limb of the loop of Henle, the distal 

tubules, and the collecting ducts, Na+ moves by cotransport or exchange from 

the tubular lumen into the tubular epithelial cells down its concentration and 

electrical gradients and is actively pumped from these cells into the interstitial 

space. Thus, Na+ is actively transported out of all parts of the renal tubule except 

the thin portions of the loop of Henle. Then, Na+ is pumped into the interstitium 

by Na,K- ATPase. Normally about 60% of the filtered Na+ is reabsorbed in the 

proximal tubule, primarily by the Na+/H+ exchange. Another 30% is absorbed via 

the Na+-2CI-K+ cotransporter in the thick ascending limb of the loop of Henle, and 

about 7% is absorbed by Na+-CI" cotransport in the distal convoluted tubule. The 

remainder of the filtered Na+, about 3%, is absorbed via the ENaC channels in 

the collecting ducts. Thus, the kidneys reabsorb approximately 99.6% of the 

filtered Na+ and it comes as no surprise that there are multiple regulatory 

mechanisms to control the excretion of this ion. The body regulates Na+ transport 

using three major mechanisms: 1) glomerulotubular balance, 2) factors that 

increase Na+ reabsorption such as the renin-angiotensin-aldosterone system, 

sympathetic nerve activation and antidiuretic hormone, and 3) factors that 

decrease Na+ reabsorption such as atrial natriuretic peptide, prostaglandins, 

bradykinin and dopamine. Through the operation of these regulatory 

mechanisms, the amount of Na+ excreted is adjusted to equal the amount 

ingested over a wide range of dietary intakes, and the individual stays in Na+ 
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balance. Therefore, the kidney ultimately governs the extracellular fluid volume 

and consequently is the principal agent in the long-term control of blood pressure 

(Boron & Boulpaep 2002). 

1.3.1 Sodium/hydrogen exchanger type 3 (NHE3) 

In the proximal tubule the essential components of absorption are luminal 

membrane Na+/H+exchanger and basolateral Na,K-ATPase as mentioned 

earlier. Sodium is reabsorbed from the proximal tubule across the apical 

membrane via sodium-hydrogen exchangers, and it is actively pumped out of the 

cell by the basolateral sodium pump, Na,K-ATPase, which generates the 

gradient for Na+ entry across the apical membrane. The inward gradient for Na+ 

is used to drive several secondary active transporters. Quantitatively speaking, 

the most important Na+-coupled transporter in proximal tubule is the Na+/H+ 

exchanger. 

The sodium hydrogen exchangers (NHEs), also called antiporters, are 

widely expressed in the epithelial membrane and play an important role in salt 

and water reabsorption by virtue of the Na+/H+ exchange. NHEs belong to the 

gene family called SLC9A comprising nine isoform NHE1-9 (Donowitz & Li 2007). 

The first five isoforms are expressed largely at the plasma membrane, while the 

other isoforms (NHE6-9) have been shown to reside predominantly intracellular^ 

(Donowitz & Li 2007). The NHE1 isoform is the 'housekeeping' isoform of the 

exchanger and is ubiquitously expressed in the plasma membrane of virtually all 
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tissues (Fliegel 2005). The NHE2-NHE5 isoforms are also localized to the 

plasma membrane, but have more restricted tissue distributions. NHE2 and 

NHE3 are predominantly located in the apical membrane of epithelia and are 

highly expressed in the kidney and the intestine (Biemesderfer et al. 1993, 

Hoogerwerf et al. 1996, Biemesderfer et al. 1997). In kidney, as found by 

immunohistochemistry analysis, NHE1 is expressed along the basolateral 

plasma membrane of most renal epithelial segments (Paillard 1997). At the same 

time NHE3 has been localized to the apical membrane of the proximal 

convoluted tubule in the cortex and to the thick ascending limb of the loop of the 

Henle in the medulla (Biemesderfer et al. 1993, Amemiya et al. 1995). 

1.3.1.1 Structure and functional properties of NHEs 

Structurally, human NHEs have between 645 and 898 amino acids with 12 

putative encoded membrane-spanning domains (msd), the first being a cleaved 

signal peptide as demonstrated for NHE3 (Zizak et al. 2000, Zachos et al. 2005). 

The transmembrane N-terminus of about 500 aa is a transport domain that 

carries out electroneutral exchange of 1 Na+ for 1 H+. The long, hydrophilic, 

cytosolic C-terminus domain (~300aa) regulates activity of the amphipathic N-

terminal domain is a target for phosphorylation by protein kinases and also 

participates in binding with regulatory proteins (Wakabayashi et al. 2000). The 

transport characteristics of NHEs include substrate specificity, ATP dependence, 

and their sensitivity to the diuretic amiloride (Kiela. et al. 2006), with NHE1 and 
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NHE2 isoforms being the most sensitive to amiloride inhibition (IC5o~1|aM), and 

NHE3 being relatively amiloride resistant with IC50 >100jJVI (Kiela etal. 2006). 

Transport kinetics for NHE3, as well as all others NHEs, is consistent with 

simple, saturating, Michaelis-Menten kinetics. 

1.3.1.2 Regulation of NHE3 

Basic short-term regulatory mechanisms of NHE3 are: changes in turnover 

number and changes in trafficking, and recently described changes in 

endocytosis/exocytosis rates (Donowitz & Li 2007). NHE3 activity is rapidly 

stimulated by cc-adrenergic activation (Gesek etal. 1989), angiotensin II 

(Morduchowicz et al. 1991), endothelin (Walter et al. 1995), and insulin (Gesek & 

Schoolwerth 1991) and inhibited by dopamine and parathyroid hormone (Gesek 

& Schoolwerth 1990). Those hormones are coupled to signaling pathways of 

various protein kinases which phosphorylate a number of serine and threonine 

residues that are located in the distal region of the C-terminal tail of NHE3 

(Orlowski et al. 1992). 

NHE3 is known to be phosphorylated under basal conditions (Donowitz & Li 

2007). Its activity was inhibited by PKA and PKG by phosphorylation of Ser552 

and Ser605 since mutations of those serines individually decreased and 

mutations of both simultaneously blocked NHE3 inhibition (Zhao etal. 1999). 

However, Kurashima et al. showed that only phosphorylation of Ser605 was 

essential for PKA-induced NHE3 inhibition (Kurashima etal. 1997), with Ser634 



playing an additional role for the effect of cAMP, and Ser552 not being 

phosphorylated or functionally important. On the other hand, the effects of PKC 

activation by phorbol esters were quite controversial, showing that while phorbol 

ester induced NHE3 phosphorylation on identical serines on the cytoplasmic tail 

on all the clones studied in NHE-deficient fibroblasts transfected with NHE3, the 

final outcome was stimulation, inhibition or no effect on NHE3 activity 

(Wiederkehr et al. 1999). Moreover, Yip et al. demonstrated that when 

expressed in PS120 fibroblats NHE3 was inhibited by PKC stimulation without 

any changes in the phosphorylation (Yip et al. 1997), suggesting that regulation 

of NHE3 probably involves intermediate associated regulatory proteins such as 

Na+/H+ exchanger regulatory factors (NHERFs) which are often absent in those 

transfected cells. Several other kinases also either associate with or regulate 

NHE3 activity and those are: cGMK kinase II known to inhibit NHE3 by a 

phosphorylation process, phosphatidylinositol 3-kinase (PI3-K) known to 

stimulate NHE3 activity, and calmodulin (CaM) kinase II (Donowitz & Li 2007). 

From all those kinases mentioned, only the last one binds directly to NHE3 while 

others: PKA, PKC, and PKG associate with NHE3 by PDZ domains of NHERFs 

family (Donowitz & Li 2007). Besides protein kinase and NHE3 phosphorylation, 

protein phosphatases (PP) may also play a role in NHE3 regulation. PP1 and 

PP2A inhibitor okadaic acid was shown to stimulate NHE3 activity (Donowitz & Li 

2007). In summary, while some regulation of NHE3 may involve changes in 

NHE3 phosphorylation, some other regulations may occur independently of 

NHE3 phosphorylation status but may require presence of additional factors 



and/or complexes. However, regardless of the exact mechanism involved, the 

functional consequences of NHE3 phosphorylation was its reduction in turnover 

number and changes in trafficking described as an increase in endocytosis, 

and/or a decrease in exocytosis. 

Study by Biemesderfer and coworkers demonstrated that in the renal 

proximal tubule brush border NHE3 was localized to two distinct pools: the 

microvillar and the intermicrovillar microdomains with nearly equal levels of 

NHE3 expression, and with the former domain containing the active form of 

NHE3 and the latter the inactive form (Biemesderfer etal. 2001). NHE3 remains 

in a state of dynamic equilibrium between cell surface and the intracellular 

compartment; it can undergo internalization via clathrin-coated vesicles (Chow 

W. et al. 1999) and exocytosis back to the apical membrane in a PI3-K 

dependent manner (Lee-Kwon et al. 2001). Action of PKC (Janecki etal. 1998), 

parathyroid hormone (Collazo etal. 2000), and dopamine (Hu et al. 2001) are 

associated with a decrease in NHE3 surface expression and inhibition of the 

transporter while growth factors (Donowitz et al. 2000) and endothelin (Peng et 

al. 2001) have been shown to stimulate NHE3 activity by increasing the surface 

protein pool in a PI3-K dependent manner. Collectively, these data support the 

notion that NHE3 redistribution is an effective means of transporter regulation. 

There are several models which analyzed changes in NHE3 trafficking. One of 

them is acute pressure-induced natriuresis and diuresis. Yang et al. provided 

evidence that acute hypertension was associated with redistribution of NHE3 

protein from apical membranes to, at first, membranes enriched in intermicrovillar 



cleft markers, and later to membranes containing markers of endosomes (Yang 

et al. 2002). Moreover, a study by Magyar illustrated that with the development of 

hypertension in spontaneously hypertensive rats (SHR) there was an 

internalization of apical NHE3-protein which partially mimicked changes 

observed during acute hypertension in normotensive Sprague-Dawley rats 

(Magyar et al. 2000). 

There is evidence that intrinsic NHE3 activity can be modified without 

alteration in NHE3 abundance in transfected cells, renal cell lines and in renal 

cortex (Moe 1999). This regulation of NHE3 generally involves changes in NHE3 

Vmax (Donowitz & Li 2007) and is associated with NHE3 phosphorylation 

although the precise mechanism remains unknown. It is also possible that those 

changes can be explained by the presence of NHERFs. 

The NHE3 C-terminus is necessary in all cases of NHE3 regulation 

discussed previously and contains stimulatory domains which respond to growth 

factors and okadaic acid, and inhibitory domain motifs for PKA, PKC and CaM. In 

addition, NHE3 can directly bind NHERF1, NHERF2, PDZK1, Hsc70, dipeptidyl 

peptidase IV (DPPIV), PP2A, megalin, and CaM kinase II (Donowitz & Li 2007). 

In the cell, NHE3 rarely exists as a monomer or a dimer (~90-180kDa) but forms 

complexes which range from 400kDa in the intracellular pool to ~1000kDa at the 

plasma membrane (Akhter, S. etal. 2002). These complexes are dynamic and 

are further changed by the stimuli participating in acute NHE3 regulation. The 

dynamic nature of NHE3 complexes allows association/dissociation from the 

cytoskeletal proteins, endocytosis/exocytosis and phosphorylation. These 



mechanisms may act in concert to provide highly regulated turnover and activity 

of NHE3 (Donowitz & Li 2007). 

NHE3 is regulated by binding to various PDZ domains containing proteins 

that are present in the brush border and act as scaffolds that connect the plasma 

membrane with members of the ezrin/radixin/moesin (ERM) family, thereby 

helping NHE3 link with the actin cytoskeleton. NHERFs (Na+/H+ exchanger 

regulatory factors) are PDZ domain proteins in or near the apical membrane and 

include NHERF1 and NHERF2 (both have 2 PDZ domains and an ERM binding 

domain), as well as NHERF3/PDZK1 and NHERF4/IKEPP (both have 4 PDZ 

domains) (Donowitz & Li 2007). NHE3 inhibition by cAMP in PS120 fibroblasts 

requires the presence of NHERF1 that links NHE3 to the actin cytoskeleton via 

binding to ezrin. In this case ezrin acts as a low-affinity protein kinase A 

anchoring protein (AKAP) (Yun etal. 1997, 1998). In the case of cGMP mediated 

inhibition of NHE3, NHERF2 acts as a G kinase-anchoring protein (GKAP) 

forming a complex between NHE3, NHERF2 and cGMP-activated protein kinase 

II (cGKII). This complex is anchored to the cellular cytoskeleton by the ezrin-

binding domain of NHERF2 (Cha et al. 2005). Ca2+-dependent regulation of 

NHE3 involves NHERF2, which binds a-actinin-4, a protein necessary for 

aggregation of the NHE3-containing plasma membrane complexes that occur 

after Ca2+ elevation and before NHE3 endocytosis (Kim etal. 2002). Thus, 

proteins like NHERFs are critical for NHE3 regulation, and their presence can 

explain a paradigm for multi-protein complexes required for regulation of cellular 

processes. NHE3 can also directly bind to the ERM proteins which is necessary 
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for basal trafficking, including basal exocytosis and delivery of newly synthesized 

NHE3 to plasma membrane (Donowitz & Li 2007). This association of NHE with 

the cytoskeleton seem to be yet another mechanism for the NHE3 regulation. 

1.3.1.3 Long-term regulation of NHE3 and hypertension 

In addition to the short-term NHE regulation that occurs in the kidney over 

minutes in response to drugs, changes in dietary intake of sodium, and changes 

in blood pressure/volume, these exchangers are also regulated over periods of 

hours to many days. The long-term regulation of NHEs generally mimic kidney 

disease related processes or responses to a disease or injury. The rat and 

human NHE3 promoters have GC rich regions and the former also contains 

atypical TATA and CCAAT boxes while the latter contains only TATA-like 

sequences. The rat NHE3 promoter includes putative cis-acting elements such 

as glucocorticoid and thyroid response elements, AP1, AP2 C/EBF, NF-1, Oct-1, 

PEA3, and Sp1 transcription-binding sites (Kandasamy & Orlowski 1996). The 

human NHE3 promoter contains transcription factor-binding sites for Sp1, AP-2, 

MZF-1, CdxA, Cdx-2, steroid and nonsteroid hormone receptor half sites, and a 

phorbol 12-myristate 13-acetate-response element (Malakooti era/. 2002). There 

are few studies focused on transcriptional regulation of NHE3. For example, 

glucocorticoid treatment significantly increased the luciferase activity of the 

chimeric NHE3 gene in renal epithelial OK cells and LLC-PK1 cells, thereby 

indicating that glucocorticoid regulation of NHE3 is mediated primarily by a 



transcriptional mechanism (Kandasamy & Orlowski 1996). Interactions of multiple 

transcription factors and/or response elements are supposed to either up- or 

down-regulate NHE mRNA expression and thereby regulate the NHE3 gene 

followed by changes in protein levels (Zachos etal. 2005). 

Altered expression and activity of NHE3 in primary hypertension have 

implied a potential role of this transporter in the pathogenesis of high blood 

pressure. Spontaneously hypertensive rats (SHR) have elevated NHE3 activity 

and abundance in isolated renal proximal tubules (LaPointe etal. 2002) 

suggesting that increased renal reabsorption of sodium may contribute to 

systemic sodium retention and development of hypertension. Studies in obese 

Zucker rats suggested that reduction in D1-like receptor binding sites, defective 

coupling with signaling pathway and reduced PKA activation may be responsible 

for the failure of dopamine to inhibit NHE3 in proximal tubules of obese rats and 

may contribute to their increase in sodium reabsorption and development of 

hypertension (Hussain et al. 2001). As mentioned earlier, in our model of diet-

induced obesity we observed activation of the renin-angiotensin system, and 

elevated levels of insulin and leptin. Each one of those factors can have an effect 

on expression and/or activity of NHE3 in the proximal tubule. In vivo, intravenous 

angiotensin II was shown to stimulate bicarbonate absorption (presumably 

mediated by NHE3) in proximal tubule by reducing cAMP (Liu & Cogan 1989). 

Moreover, Xu et al. observed that in OK cells prolonged exposure to angiotensin 

II increased NHE3 mRNA and stimulated NHE3 activity by stimulating NHE3 

promoter activity (Xu et al. 2006). Acutely, insulin has been shown to increase 
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NHE3 activity in OK cells and chronically, stimulation of NHE3 activity was 

accompanied by an increase in protein and transcript levels in the same cell line 

(Klisic ef al. 2002). More recently, it was demonstrated by Fuster et al. that 

chronic insulin treatment activated NHE3 through phosphatidylinositol 3-kinase-

serum and glucocorticoid dependent kinase 1 pathways (Fuster etal. 2007). 

Although sodium retention observed in essential hypertension apparently 

involves increased activity of NHE3 additional studies are necessary to elucidate 

its contribution to sodium absorption in obesity-induced hypertension. 

1.3.2 The sodium-potassium activated adenosine 5'-triphosphate (Na.K-ATPase) 

The most abundant ion pump in higher organisms is the sodium-

potassium pump or Na.K-ATPase. It is found in the plasma membrane of 

practically every eukaryotic cell and is responsible for maintaining the low sodium 

and high potassium concentration in the cytoplasm using ATP hydrolysis. For 

every molecule of ATP hydrolyzed, three Na+ ions from the intracellular space 

and two K+ ions from the extracellular space are exchanged. Thus, Na.K-ATPase 

contributes substantially to the maintenance of the resting membrane potential of 

the cell and osmotic regulation of the cell volume. In addition, the 

electrochemical Na+ gradient is the driving force for secondary transporter 

system such as transport of sodium into intestinal and renal epithelial cells, as 

well as the transport of other nutrients, such as glucose, amino acids, and ions, 

like Ca2+. Na,K-ATPAse activity is irregularly distributed In the kidney: highest in 



the outer medulla, intermediate in the cortex and lowest in the inner medulla and 

is restricted to the basolateral membrane of epithelial cells (lannello et al. 2007). 

1.3.2.1 Structure of Na.K-ATPase 

The Na.K-ATPase belongs to the P-type ATPases, a family of enzymes 

that is phosphorylated by ATP (Horisberger 2004). This pump is a heterodimer of 

two major subunits: a oc-subunit and a p-subunit. However, other proteins, such 

as members of the FXYD family of proteins, interact with this enzyme in some 

tissues, such as heart, kidney, and brain and are referred to as the y-subunit. 

The catalytic a-subunit has a molecular mass of 100-113 kDa, depending 

on the component isoforms a1, a2, a3, and a4 which are expressed in a tissue-

specific manner. The a1 is present ubiquitously, while the a2 is detected mainly 

in skeletal muscle, heart, and certain neuronal cells (neurons and astrocytes). 

The a3 isoform is expressed mainly in neurons, and a4 is expressed in sperm 

(Blanco 2005). It is reasonable to believe that the tissue-specific distribution of 

the oc-isoforms indicates that each isoform exhibits a particular function 

associated with the tissue in which it is expressed. The a-subunit has 10 

transmembrane segments and both N- and C-termini on the cytoplasmic site; it 

transports the cations, hydrolyzes ATP and has binding sites for specific cardiac 

glycoside inhibitors such as ouabain, as well as several phosphorylation sites. 

The p-subunit is a ~40 kDa glycoprotein. The mass of the protein moiety 

depends on the presence of p1, p2, or p3 isoforms. It crosses the membrane only 



one time and the N-terminus is localized on the intracellular side of the 

membrane. The p-subunit acts a molecular chaperone for the correct membrane 

insertion and packing of the newly synthesized catalytic a-subunit, modulates the 

transport properties of mature Na,K-ATPase, and may play a role in processes 

related to cell polarity (Geering 2008). 

The third subunit of Na,K-ATPase, the y-subunit is a family of proteins 

which are tissue-specific auxiliary subunits of Na,K-ATPase and are referred to 

as FXYD proteins (Geering 2008). They are not required for Na,K-ATPase 

normal activity, however, they can modify it. The seven members of the 

mammalian FXYD proteins family are small membrane proteins containing the 

FXYD motif and two conserved glycine residues in the transmembrane domain 

together with the serine residue. One of these proteins (FXYD2) has indeed been 

known as the y-subunit of the Na,K-ATPase, but all members of this group have 

now been shown to be associated with the a/p-subunitof Na+,K+-ATPase and 

modulate some aspect of its function by changing its substrate affinity and by 

providing protection against thermal inactivation of Na,K-ATPase (Geering 2008). 

In the kidney, the main FXYD proteins expressed are: FXYD2 subunit and 

FXYD4 (or CHIF, corticosteroid hormone induced factor). FXYD2 is mainly 

expressed in proximal tubules and in the thick ascending limb of the loop of 

Henle which are the renal segments reabsorbing most of the filtered Na+ load. 

FXYD4 is located in the outer and inner medullary collecting ducts and in the 

cortical collecting duct (Geering 2006). FXYD2 and FXYD4 have the most 

prominent, opposite effects on the Na+affinity of Na,K-ATPase. Whereas FXYD2 



decreases, FXYD4 increases affinity of Na,K-ATPase for intracellular Na which 

is consistent with the role of those proteins in the efficient reabsorption of sodium 

in the nephron segments with the high and low Na+ load, respectively (Geering 

2006). 

1.3.2.2 Mechanism of Na.K-ATPase regulation 

In general, Na.K-ATPase activation is tissue- and isoform-specific and in 

the rat kidney only oc-1 and [3-1 subunits are expressed (Therien et al. 1996). 

Regulation of the Na.K-ATPase activity can occur by different cellular 

mechanisms and can be achieved by modulation of the number of enzyme 

molecules present at the plasma membrane or by influencing the activity of the 

Na.K-ATPase already located at the cell surface. For long-term regulation, the 

amount of the enzyme at the plasma membrane can be modified by changes in 

the rate of synthesis or degradation of the individual Na.K-ATPase polypeptides 

while for short-term regulation this could be done by mobilization of Na pump 

molecules from the endosomal pools to the cell surface (Therien & Blostein 

2000). Alternatively, the activity of the Na.K-ATPase at the cell surface can be 

directly regulated providing a rapid adjustment in its function. Several effectors 

have been implicated in this acute response; the primary one is the intracellular 

Na+ concentration. Moreover, the activity of kidney tubule Na.K-ATPase is under 

control of hormones which can regulate natriuresis and Na+ reabsorption in renal 
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cells such as catecholamines, peptide hormones and steroid hormones which 

have been shown to exert short- and long-term effects on Na,K-ATPase acivity. 

Aldosterone, a steroid hormone synthesized and released by the adrenal 

cortex has long been known to promote Na+ reabsorption and K+ release in 

kidney epithelial cells. The long-term effect of aldosterone on Na,K-ATPase is to 

increase expression of transporter which is generally mediated by changes in 

mRNA/protein synthesis induced by direct interactions of receptor/corticosteroid 

complexes with the nuclear DNA. However, the short-term effects of aldosterone 

are thought to be mediated not by the nuclear receptor but instead by 

membrane-specific receptors (Therien & Blostein 2000) and is dependent on or 

independent of intracellular Na+ concentration. An example of a Na+-dependent 

effect is the translocation of Na,K-ATPase to the plasma membrane (Therien & 

Blostein 2000). 

Among the catecholamines that affect Na,K-ATPase activity are dopamine 

and norepinephrine which often act antagonistically. Dopamine is a natriuretic 

factor synthesized in the kidney proximal tubule. Dopamine inhibits Na,K-ATPase 

activity in this segment of the nephron, through the dopamine receptors, DAi and 

DA2, via a G protein-linked, PKC-dependent pathways (Bertorello & Aperia 

1990). In the distal segments dopamine also inhibits Na,K-ATPase but acting 

mainly through DAi receptors and PKA-associated pathways (Satoh etal. 1993). 

It has to be noted, that in the rat isolated proximal tubule cells dopamine 

activated PKC and inhibited Na,K-ATPase activity by direct phosphorylation of 

Na,K-ATPase at a serine residue that induced transporter internalization via 
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clathrin-dependent endocytosis (Chibalin etal. 1999). On the other hand, the 

PKA-activated pathway of dopamine inhibition seems to involve phosphorylation 

of both the sodium pump and the so-called dopamine and cAMP-regulated 

phosphoprotein (DARPP-32), the latter being an inhibitor of a protein 

phosphatase (Aperia etal. 1991). 

In contrast to dopamine, other catecholamines including norepinephrine, 

vasopressin, and angiotensin II stimulate Na,K-ATPase activity in various tissues 

including the kidney. In the kidney proximal tubules, stimulation of the sodium 

pump by a-adrenergic agents has been shown to involve protein phosphatase 2B 

(PP2B), a Ca2+- and calmodulin-dependent phosphatase also called calcineurin. 

Because the actions of norepinephrine in the kidney appear to oppose the 

inhibitory effects of dopamine, it has been suggested that the Na,K-ATPase is 

regulated in this organ by the antagonizing actions of calcineurin, which would 

serve to keep the pump in an active, dephosphorylated state, and protein 

kinases, which would maintain the enzyme in an inactive, phosphorylated form 

(Therien & Blostein 2000). Efendiev et al. demonstrated that in a cell culture 

model of proximal tubule epithelial cells -LLC PK1, angiotensin II stimulated 

Na,K-ATPase activity by activating the PKC beta isoform followed by 

phosphorylation of a1-subunit at Ser11 (Efendiev, & Pedemonte 2006) and 

possibly its recruitment to the plasma membrane. 

Insulin is a peptide hormone that can exert short- and long-term effects on 

Na,K-ATPase regulation. There are several mechanisms by which insulin can 

activate Na,K-ATPase. One example is an increase in intracellular Na+ 
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concentration; another is a change in the apparent affinity of the enzyme for Na+ 

(Feraille et al. 1994). However, the mechanism of short-term regulation of Na,K-

ATPase by insulin is not clear. The effect of insulin on Na,K-ATPase activity in 

fibroblasts depends on PI3-K, the zeta isoform of PKC, and p38MAP kinase 

(Sweeney & Klip 1998, Sweeney et al. 1998). Feraille and coworkers have 

shown that insulin-induced stimulation of Na,K-ATPase was associated with 

phosphorylation of Tyr10 residue on the a-subunit of Na,K-ATPase (Feraille et al. 

1994). From the studies summarized above, it is evident that the effect of the 

hormones that regulate Na,K-ATPase are mediated by signaling intermediates 

targeting certain protein kinases and phosphatases. 

Agents that increase cellular cAMP, as well as exogenous derivatives of 

cAMP, lead to Na,K-ATPase stimulation in the proximal convoluted tubules and to 

Na,K-ATPase inhibition in the medullary thick ascending limb of the loop of Henle 

and the cortical collecting duct (Therien & Blostein 2000). This response seems 

to be mediated, at least in part, by protein kinase A (PKA)-directed 

phosphorylation of Ser943 of the Na,K-ATPase a-subunit (Fisone etal. 1994). 

Moreover, cAMP-PKA induced the recruitment of active Na,K-ATPase units to 

the plasma membrane of the rat proximal tubule (Carranza et al. 1998). 

Phosphorylation of the Na pump a-subunit is reversible, as demonstrated by the 

decrease in Na,K-ATPase activity after activation of a dopamine- and cAMP-

regulated phosphoprotein (DARPP-32), an endogenous inhibitor of protein 

phosphatase 1 (PP1) (Aperia et al. 1991). Nevertheless, DARPP is expressed at 

low levels in proximal tubules and this fact most probably precludes its role of 



Na,K-ATPase regulator in this segment of the nephron. However, a 

phosphorylation/dephosphorylation event may dynamically regulate the activity of 

the Na,K-ATPase. 

Some observations show that in the proximal nephron and in cultured 

canine kidney cells, Na,K-ATPase is inhibited by phorbol esters or diacylglycerol 

analogs, in a process that involves protein kinase C (PKC) activation (Bertorello 

1992) and, possibly, the phosphorylation of the Na+ pump a-subunit at Ser16 

(Beguin etal. 1994). Ser23 has also been identified as a potential site for 

phosphorylation (Logvinenko. etal. 1996) together with Ser11 and Ser18 

(Feschenko & Sweadner 1995). The general consensus is that PKC 

phosphorylation occurs primarily at the N-terminus of the a-subunit (Pedemonte 

etal. 1997). This region exhibits the most sequence divergence, both among 

species and isoforms. For example, Ser16 is present only in the cc1-isoform but 

not on any other isoform, whereas Ser23 is present in the a1-subunit of the rat, 

and a1-subunit of human, pig, and mouse do not have Ser18 in their N-terminal 

region. In addition, the mammalian enzyme is phosphorylated at low levels at 

Ser16, and in the rat, at higher levels on Ser23 (Feschenko & Sweadner 1995, 

Efendiev & Pedemonte 2006). In contrast, phosphorylation of the a1-isoform by 

PKA takes place at Ser943 in a highly conserved cytoplasmic region between 

transmembrane segments 8 and 9. Thus the same residue might be involved in 

the phosphorylation of different isoforms by this protein kinase. 

Recently, Efendiev etal. demonstrated that human-type Na,K-ATPase 

can be phosphorylated at the same serine residues by hormones affecting 



enzyme activity in opposite ways (Efendiev & Pedemonte 2006). For instance, in 

LLC PK1 cells, dopamine inhibited while angiotensin II stimulated Na,K-ATPase 

activity and those opposite effects were mediated by the phosphorylation of 

Ser11 of a1-subunit of Na,K-ATPase by activation of PKC zeta and PKC beta, 

respectively. As mentioned before, the mechanism involved either endocytosis or 

exocytosis of phosphorylated enzyme from the plasma membrane or the 

intracellular compartment. 

In the kidney, another kinase, protein kinase G (PKG), and the production 

of cGMP appear to mediate the loss of salt and water produced by acetylcholine, 

bradykinin, and atrial natriuretic peptide and to reduce Na,K-ATPase activity 

(Therien & Blostein 2000). It is not clear whether direct phosphorylation of the 

enzyme or secondary modulators are involved. 

1.3.2.3 Na.K-ATPase in pathophysiological states 

Na,K-ATPase activity is often altered in some models of obesity induced 

hypertension. Bickel and coauthors demonstrated that in 2 and 4 month old, 

hypertensive, insulin-resistant but non-diabetic, obese Zucker rats Na.K-ATPase 

abundance was significantly increased in the proximal tubule (Bickel et al. 2001) 

which was attributed to increased insulin levels. However, in slightly older (6 

month old) obese Zucker rats, at early stages of diabetic nephropathy with insulin 

resistance progressing to diabetes, abundance of Na,K-ATPase was not 

changed at the proximal tubule while there was a decrease in the abundance of 



apical transporters reflected in an almost 3-fold increase in the fractional 

excretion of sodium (Bickel et al. 2002). In another study young, obese Zucker 

rats which were hyperinsulinemic, hyperglycemic, and hypertensive displayed 

impairment in dopamine Di receptor function. This caused an ineffective coupling 

of the receptor with the G protein/effector enzyme complex signaling pathway 

leading to a lack of PKA activation, and subsequently to an increase in the 

activity of Na,K-ATPase (Hussain et al. 1999, 2001). In addition, it was reported 

that increased blood pressure in obese Zucker rats is accompanied by impaired 

pressure-natriuresis consistent with reduced dopamine-induced inhibition of 

sodium transporters and, subsequently, decreased sodium excretion.This could 

be provoked by hyperinsulinemia and/or other circulating factors associated with 

obesity since response to dopamine-induced inhibition of Na,K-ATPase of 

proximal tubule epithelial cells from both lean and obese Zucker rats expressing 

functional Di receptors was blunted when those cells were incubated with obese 

rat serum (Banday et al. 2004). Overall, further studies are necessary to address 

the mechanism of Na,K-ATPase regulation in obesity induced hypertension and 

how this relates to the impairment in pressure natriuresis. 

1.4 Peroxisome proliferator-activated receptors (PPARs) 

Peroxisome proliferator-activated receptors are members of the nuclear 

hormone receptor superfamily of ligand-activated transcription factors. To date, 

three different PPAR subtypes have been cloned and characterized: PPAR-oc, 



PPAR-p/8, and PPAR-y.PPARs have been shown to be critical factors in 

regulating diverse biological processes, including lipid metabolism, adipogenesis, 

insulin sensitivity, immune response, cell growth and differentiation (Desvergne & 

Wahli 1999, Fajas etal. 2001, Guan & Breyer2001, Willson etal. 2001). PPARs 

participate in the pathogenesis of a cluster of human diseases designated the 

metabolic syndrome, which includes insulin resistance, glucose intolerance, 

obesity, dyslipidemia, hypertension, atherosclerosis, and microalbuminuria 

(Ginsberg 2003, Gurnell etal. 2003, Scott2003). 

Like other nuclear receptors, PPARy contains a central DNA-binding 

domain (DBD), a C-terminal ligand-binding domain (LBD), and two transcription-

activation function motifs (N-terminal ligand-independent AF-1 motif, C-terminal 

ligand-dependent AF-2 motif) (Rosen & Spiegelman 2001). PPARs regulate 

transcription of target genes by heterodimerizing with the retinoid X receptor 

(RXR) upon ligand activation and binding to PPAR response element (PPRE) of 

regulatory promoter regions of target genes (Tugwood et al. 1992, Gearing et al. 

1993). This response element, generally of the direct repeat 1 (DR-1) type, is 

composed of two half-sites that occur as a direct repetition of the consensus 

sequence AGGTCA with a single nucleotide spacing between the two repeats 

(Michalik etal. 2006). Following binding of the PPAR/RXR complex to PPRE, 

different co-factors are recruited and may either induce (coactivators) or inhibit 

(corepressors) target gene transcription (Nolte etal. 1998). Various ligands 

engage different co-factors and result in different effects of the receptor on gene 

transcription. It has been also shown that nuclear receptor co-repressors (NCoR) 



and the related factors, such as silencing mediator of retinoic acid and thyroid 

hormone receptors (SMRT), bind to unliganded nuclear receptors and repress 

target gene expression until ligand triggers their dismissal accompanied by 

recruitment of coactivators (Glass & Rosenfeld 2000). However, selective action 

of a given PPAR isotype in vivo probably results from a complex interplay 

between expression levels of the PPAR and RXR isotypes, affinity for a specific 

promoter PPRE, ligands and cofactors availability, and possibly other 

transcription factor binding in the vicinity of the PPRE. 

A wide range of compounds have been identified as PPAR ligands. 

PPARy is activated by various metabolites derived from arachidonic acid through 

the lipoxygenase and cyclooxygenase pathways, such as 15-deoxy-A12,14-

prostaglandin J2 (15-PGJ2) and 15-hydroxyeicosatetraenoic acid (15-HETE) 

(Willson & Wahli 1997, Nagy etal. 1998). FA-derived compounds from oxidized 

LDL (9-HODE, 13-HODE) are also natural PPARy ligands (Shureiqi et al. 2003). 

In addition, the thiazolidinediones (TZDs) including rosiglitazone (Avandia) and 

pioglitazone (Actos) are synthetic, high-affinity ligands for PPARy (Willson & 

Wahli 1997) and are insulin sensitizers used to treat hyperglycemia and type 2 

diabetes. 

PPARy is expressed as two isoforms y1 and y2 in rodents and three 

isoforms y1, y2, and y3 in humans (Fajas etal. 1997, 1998). Adipose tissue and 

large intestine have the highest levels of PPAR-y mRNA; kidney, liver, and small 

intestine have intermediate levels (Fajas et al. 1997); PPAR-y2 and y3 are 

predominantly expressed in adipose tissue in both mouse and human (Fajas et 



al. 1997, 1998). In rodents, Verreth etal. found that compared with lean mice, 

PPARy expression was downregulated in obese double-knockout mice, and that 

diet restriction caused upregulation of PPARy (Verreth et al. 2004). Dobrian et al. 

showed that PPARy mRNA expression and activity in the renal cortex and 

medulla of obesity-prone rats were significantly lower compared with that in 

obesity-resistant rats (Dobrian et al. 2004). Vidal-Puig et al. reported that 

exposure to high fat diet increases adipose tissue expression of PPARy in normal 

mice (Vidal-Puig et al. 1996). This implies that PPARy expression might be 

stimulated by dietary fat until a determined threshold is reached and/or some 

other factors such as insulin may prevent further induction of PPARy in obese 

animals. 

1.4.1 PPARY, obesity, insulin resistance, and type 2 diabetes 

PPARy has been implicated in the pathogenesis of obesity. PPARy is 

expressed in various tissues with a higher level of expression in adipose tissue. 

Moreover, PPARy target genes are generally involved in the lipogenic pathways 

and the storage of fatty acids in adipose tissue which is consistent with a role for 

PPARy in differentiation of adipose tissue both in vitro and in vivo (Michalik et al. 

2006). A missense mutation in the gene for PPARy2 that resulted in the 

conversion of proline to glutamine at position 115 was associated with severe 

obesity in humans as well as accelerated adipocytes differentiation and greater 



cellular accumulation of triglyceride compared to the wild-type PPARy2 (Ristow et 

al. 1998). In contrast, a Pro12Ala substitution in PPARy2 was associated with 

decreased binding affinity to the PPRE, reduced ability to transactivate 

responsive promoters, and with lower body mass index in middle-aged and 

elderly subjects (Deeb et al. 1998). In addition, treatment with TZDs resulted in 

lowering of triglyceride levels but also influenced weight gain and redistribution 

of body fat with an increase in subcutaneous depot (Guan & Breyer 2001). The 

mechanisms which contribute to the pathogenic role of PPARy in obesity are not 

known but leptin was proposed as one of the modulators as well as TNF-a and 

uncoupling proteins (UCPs) (Guan & Breyer 2001). Nevertheless, these data 

demonstrate that PPARy plays an important role in the pathogenesis of obesity. 

In addition, PPARy is involved in glucose metabolism. TZD treatment in 

patients with type 2 diabetes improves insulin resistance, hyperinsulinemia and 

hyperglycemia. Furthermore, Barroso et al. reported heterozygous mutations in 

the ligand-binding domain of PPARy in subjects with severe insulin resistance, 

diabetes and hypertension thus providing genetic evidence for the role of this 

receptor in glucose metabolism and blood pressure control in humans (Barroso 

et al. 1999). Interestingly, this loss-of-funotion mutation was not associated with 

obesity. Also, Ristow et al. showed that patients with gain-of-function mutation of 

PPARy are severely obese but have low levels of insulin and increased sensitivity 

to insulin (Ristow et al. 1998). These data suggest that excess PPARy activity 

could contribute to obesity while reduced PPARy activity might elicit insulin 

resistance. However, the study of animal models revealed that although PPARy 
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is essential in regulating insulin sensitivity, the molecular mechanism is not well 

understood (Guan & Breyer 2001). 

1.4.2 PPARy and hypertension 

PPARy is also involved in blood pressure regulation. However, there are 

controversial data showing that PPARy activation can have hypertensive or 

hypotensive effects. In a model with a generalized PPARy ablation, the mice 

displayed severe lipodystrophy and insulin resistance and had surprisingly low 

blood pressure (Duan et al. 2007) associated with increased vascular relaxation 

and activation of the renin-angiotensin system. This is consistent with the recent 

findings by Todorov et al. showing that PPARy agonist stimulates the renin gene 

in Calu-6 cells in culture (Todorov et al. 2007) suggesting that in same cells 

PPARy leads to activation of the renin-angiotensin II system with relevance to 

blood pressure regulation. On the other hand, a study by Barroso et al. showed 

that patients with a dominant-negative mutation in PPARy have extreme 

hypertension, severe insulin resistance and diabetes (Barroso et al. 1999). This 

serves as a proof of concept evidence for the role of this receptor in human 

metabolism and suggests a beneficial role for PPARy activation in blood pressure 

reduction. Consistent with these data, TZDs, have been shown to lower blood 

pressure in hypertensive fatty Zucker rats (Yoshioka et al. 1993, Buckingham et 
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al. 1998), obese diabetic rats (Yoshimoto et al. 1997), diet-induced hypertensive 

rats (Buchanan et al. 1995, Kaufman et al. 1995, Uchida et al. 1997, Dobrian et 

al. 2004), obese insulin-resistant mice (Verreth et al. 2004), obese insulin-

resistant humans (Nolan et al. 1994), and non-diabetic patients with arterial 

hypertension (Fullert et al. 2002). The mechanism by which blood pressure falls 

is not known, but in insulin-resistant animals, the blood pressure reduction may 

be at least partly due to increased insulin sensitivity (Uchida et al. 1997, 

Yoshimoto et al. 1997). Direct vascular effects of PPARy may also play a role as 

PPARy is expressed in endothelium and vascular muscle cells (Marx etal. 1999, 

Law et al. 2000). Furthermore, PPARy activation possibly modulates release of 

endothelial vasoactive factors such as endothelin-1, prostacyclin, and nitric oxide 

(Ruan etal. 2008) and in this way indirectly affects blood pressure regulation. 

Recent data from Dobrian et al. support this by showing that treatment with TZDs 

prevented hypertension in Spraque-Dawley rats on high fat diet, reduced 

oxidative stress and increased renal formation of NO (Dobrian etal. 2004). 

Potentially, PPARy may also directly reduce vascular tone by downregulating 

angiotensin II receptor 1 or by attenuation of sympathetic overactivity (Ruan et al. 

2008). In summary, most of the data identify hypotensive role of PPARy 

activation which can be attributed to multiple mechanisms. 

The propensity for TZDs to cause fluid retention and pulmonary and 

peripheral edema has emerged as the most common, serious adverse drug 

reaction associated with these compounds (Dobrian 2006). The causes of edema 

and fluid retention with the use of TZDs are not known and are likely 
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multifactorial. However, increased renal sodium retention probably plays a role. 

This together with TZDs blood pressure lowering effect points to the direct role of 

PPARy in regulating sodium and water reabsorption. Moreover, PPARy and RXR 

have been found constitutively expressed in the inner medullary collecting ducts, 

proximal tubules, distal tubules, thick ascending limb of the loop of the Henle, 

glomerulus, and renal medullary microvascular endothelial cells in rats (Braissant 

etal. 1996, Yang etal. 1999, Nicholas etal. 2001), rabbits and humans (Guan et 

al. 1997, Guan & Breyer 2001) further suggesting their likely role in sodium and 

water reabsorption. Yang et al. demonstrated that PPARy activation resulted in 

fluid retention and increased levels of nitric oxide but did not affect GFR or renal 

filtration fraction (RFF) in conscious rats indicating that the PPARy effect on 

volume expansion was not related to changes in renal hemodynamics (Yang et 

al. 2003). Furthermore, a study by Zanchi and coworkers provided evidence that 

chronic treatment with a PPARy agonist had no effect on the systemic and renal 

hemodynamic responses to salt in noninsulin-resistant, healthy, male volunteers. 

However, it reduced urinary sodium excretion and lithium clearance, suggesting 

increased sodium reabsorption at the proximal tubule and also significantly 

increased plasma renin activity. Body weights increased with pioglitazone 

treatment in most subjects (Zanchi etal. 2004). But not all data available support 

the above mentioned studies. Song et al. reported that three-day treatment with 

rosiglitazone produced reduction in creatinine clearance, an indirect measure of 

glomerular filtration rate, and also a reduction in sodium excretion and at the 

same time it lowered mean arterial pressure in normal Sprague-Dawley rats 



43 

(Song et al. 2004). Those discrepancies could be most likely attributed to 

different techniques used for GFR measurement or other experimental protocols. 

Moreover, duration of the treatments could also play a role in the final outcome of 

PPARy activation. 

Nevertheless, besides effecting hemodynamic parameters of the kidney, 

PPARy may directly act on sodium transporters leading to reduction in blood 

pressure and/or fluid retention. Acute, 3 day treatment with rosiglitazone 

increased whole kidney protein abundance of the a-1 subunit of Na,K-ATPase, 

the bumetanide-sensitive Na-K-2CI cotransporter (NKCC2), NHE3, the 

aquaporins 2 and 3, and endothelial nitric-oxide synthase (Song, J. et al. 2004) 

implying that blood pressure reduction observed with PPARy agonists may occur 

at the level of the proximal tubule and the thick ascending limb of the loop of 

Henle. Further studies are needed to explain what mechanism leads to TZDs 

blood pressure lowering effect and whether it involves direct modulation of the 

sodium transporters. 

1.5 Nitric Oxide 

In the kidney, nitric oxide (NO) plays an important role in the control of 

renal hemodynamics (Romero et al. 1992), mediation of pressure natriuresis 

(Majid et al. 1993), blunting of tubuloglomerular feedback (Wilcox 1998), 

inhibition of tubular sodium reabsorption (Ortiz & Garvin 2002), and modulation of 

renal sympathetic nerve activity (Eppel et al. 2003). The net effect of NO in the 



kidney is to promote natriuresis and diuresis (Lahera etal. 1991). Several 

investigators have shown that chronic inhibition of NO production by NO 

synthase inhibitors such as A^-monomethyl-L-arginine acetate or A^-nitro-L-

arginine methyl ester (L-NAME) produces arterial hypertension in animals (Arnal 

etal. 1992, Ribeiro etal. 1992, Navarro etal. 1994, Fernandez-Rivas etal. 

1995), a fall in glomerular filtration rate and an increase in filtration fraction 

(Ribeiro et al. 1992). The decreased NO production is associated with 

hypertension, ischemic heart disease, insulin resistance, and atherosclerotic 

disease (Moss etal. 2004, Zavaroni etal. 2004). NO is formed during oxidation 

of L-arginine to L-citrullin by the action of the enzyme NO synthase (NOS). There 

are three NOS isoforms designated as constitutive neuronal NOS (nNOS, NOS 

I), inducible NOS (iNOS, NOS II) and constitutive endothelial NOS (eNOS, NOS 

III) (Stuehr 1999). 

While expression of all three isoforms was reported in the kidney, the most 

consistent documented sites of constitutive NOS expression in the kidney are the 

macula densa for nNOS expression (Wilcox 1998) and the renal vasculature for 

the expression of eNOS (Bachmann et al. 1995). It is controversial whether the 

proximal tubule produces NO under basal conditions. However, the proximal 

tubule constitutively expresses iNOS mRNA (Ahn et al. 1994). In addition to 

iNOS, eNOS mRNA was also detected by RT-PCR in some of the rat proximal 

tubule segments (Ujiie et al. 1994). NOS activity was detected in isolated rat 

proximal tubules, primary cultures of rat or human proximal tubule cells, and 

proximal tubule cell lines (McLay etal. 1994, Yu etal. 1994, Guzman etal. 



1995). In contrast, no studies have shown the presence of NOS proteins in the 

proximal tubule under basal conditions, which makes questionable whether the 

proximal tubule is able to produce NO constitutively. However, recent study 

provided evidence that in diabetic rats 3-5 wk after streptozotocin injection eNOS 

and nNOS expression in proximal tubules increases (Baines & Ho 2002). 

Moreover, Jarry et al. described the presence of nNOS in most tubules of the 

human nephron including proximal tubule by several different approaches such 

as immunohistochemistry, RT-PCR analysis, western blotting, and measurement 

of NOS activity (Jarry et al. 2003). In addition, it was noted that epithelial cells 

expressing nNOS also express soluble guanylyl cyclase, indicating that these 

cells possess the machinery for an autocrine/paracrine effect of nitric oxide. Why 

the earlier studies were not able to demonstrate the presence of NO protein in 

proximal tubule using the same techniques is hard to explain. However, whether 

or not there is a significant level of NOS protein expression in the normal kidney 

under physiological conditions, evidence suggests that the proximal tubule is 

constantly exposed to NO that might include NO from non-proximal tubule 

sources such as the vasculature or other nephron segments (Amorena & Castro 

1997, Unas & Repine 1999). 

1.5.1 Functions of NO in the kidney 

Synthesis of NO appears to play a substantial role in mediating pressure-

induced diuretic and natriuretic responses in the kidney (Majid et al. 1993). In 



anesthetized dogs intrarenal infusion of a NOS inhibitor blunted the diuretic and 

natriuretic responses to the increases in renal perfusion pressure (RPP) without 

altering renal blood flow (RBF) or GFR. This resulted in higher blood pressure 

that was prevented by the infusion of the NO synthesis precursor L-arginine 

(Salom etal. 1992). Furthermore, with the elevation of renal arterial pressure a 

significant increase in urinary excretion of NO metabolites was observed and 

there was a positive correlation between changes in NO metabolites excretion 

rate and changes in RPP or urinary sodium excretion (UnaV) (Suzuki etal. 1992, 

Majid et al. 1995) prompting the authors to suggest that during acute changes in 

RPP, intrarenal changes in NO production rate may be responsible for the 

changes in sodium excretion. Finally, changes in renal tissue NO activities were 

assessed directly using an NO-selective microelectrode inserted into the cortical 

tissue of anesthetized dogs and it was demonstrated that reductions of renal 

arterial pressure lead to decreases in tissue NO activity, urinary nitrate/nitrite 

excretion, and urinary sodium excretion (Majid etal. 1998). The mechanisms by 

which RPP effects renal production of NO are not entirely known however the 

shear stress is a likely candidate. Likewise, how increased NO in the kidney 

promotes natriuresis and diuresis is not well understood but a direct effect on 

tubular transport seems to play an important role. More recently, a study by Jin et 

al. showed that renal interstitial cGMP, formed as a result of stimulation of 

soluble guanylyl cyclase (sGC) activity by NO, induced natriuresis via protein 

kinase G without changes in renal blood flow or GFR (Jin et al. 2001). 

Furthermore, the same group demonstrated that pressure-natriuresis was 



mediated by activation of the cGMP/PKG pathway in renal proximal tubule cells 

(Jin et al. 2004). In addition, there is evidence that export of cGMP from its renal 

synthesizing cells into the extracellular renal interstitial compartment was 

necessary for NO-induced natriuresis. This effect was accompanied by no 

change in GFR and an increase in fractional excretion of sodium and lithium 

suggesting a major role for renal proximal tubule cells in this type of natriuresis 

(Ahmed et al. 2007). 

Many in vitro and in vivo studies have demonstrated that NO induces 

natriuresis by directly inhibiting nephron transport especially at the level of 

proximal tubule (Lahera et al. 1991, Jin et al. 2004, Ahmed et al. 2007). For 

example, McKee observed that in the kidney NO through generation of cGMP 

and stimulation of PKG inhibited Na,K-ATPase (McKee etal. 1994). Guzman et 

al. have shown that in mouse proximal tubule epithelial cells Na,K-ATPase 

activity decreased after NO production was induced by LPS/IFN gamma; this 

inhibition of Na,K-ATPase activity was prevented by simultaneous incubation with 

N omega-nitro L-arginine and markedly blunted by removal of L-arginine from the 

medium. The NO donors sodium nitroprusside and SIN-1 also inhibited Na,K-

ATPase activity to a similar extent as LPS/IFN gamma (Guzman et al. 1995). 

Linas and Repine reported that NO produced by endothelial cells, caused a 

decrease in sodium transport and inhibition of Na,K-ATPase as well as an 

increase in cGMP levels in primary cultures of rat proximal tubule cells (Linas & 

Repine 1999). 



In addition to a decrease in Na,K-ATPase activity, several studies have 

shown that NO decreases activity of NHE3. Roczniak et al. have shown that NO 

stimulated soluble guanylyl cyclase in rabbit proximal tubule and caused 

inhibition of Na+/H+ exchange which was at least partly mediated by the 

generation of cGMP (Roczniak & Burns 1996). Furthermore, following chronic 

treatment with L-NAME in Sprague-Dawley rats, the renal expression of NHE3 as 

well as expression and activity of Na,K-ATPase were increased (Kim et al. 2006) 

suggesting an inhibitory effect of NO on the transporters. As in previously cited 

studies, L-NAME treatment also significantly increased blood pressure and 

decreased fractional excretion of sodium with no effect on GFR. Finally, Coon et 

al. reported that in rabbit intestinal villus cell brush border membrane inhibition of 

constitutively expressed NOS with L-N(G)-nitroarginine methylester (L-NAME) 

stimulated Na+/H+ exchange while a selective inhibitor of inducible NOS, did not 

affect Na+/H+ exchange. These findings indicate that under physiological 

conditions constitutive NO most likely maintains an inhibitory tone on NHE3 

expression (Coon et al. 2007). Although there are also studies that indicate an 

opposite effect for the NO (De Nicola et al. 1992) most of the data confirms that 

in the proximal tubule NO inhibits activity of NHE3 and Na,K-ATPase (Roczniak 

& Burns 1996, Stoos & Garvin 1997, Ortiz & Garvin 2002). 

The other mechanism by which NO can regulate proximal tubule 

reabsorption appears to involve modulation of the effects of the sympathetic 

nervous system in the kidney. It has been reported that renal denervation 

prevented a decrease in proximal tubule sodium reabsorption caused by NOS 



inhibition (Gabbai et al. 1995) and at the same time NOS inhibition significantly 

enhanced the vasoconstrictor responses to sympathetic nerve stimulation (Reid 

& Rand 1992). However, Khraibi demonstrated that the natriuretic effect of NO 

production inhibition in Okamoto spontaneously hypertensive rats was changed 

by kidney denervation, while in Wistar-Kyoto rats it was independent of renal 

innervation (Khraibi 1995) suggesting different effects depending on the animal 

model used. Moreover, a study by Wu found that while NO has a direct inhibitory 

effect on proximal tubular reabsorption of sodium its presence is also required for 

the stimulatory effect of renal sympathetic nerves on proximal sodium transport 

(Wu & Johns 2002). 

Yet another mechanism by which NO can modulate proximal tubule 

transport is its interaction with angiotensin II. Several studies suggested that NO 

might be a direct modulator of ACE activity (Higashi et al. 1995, Takemoto ef al. 

1997), may regulate angiotensin II receptors in vitro through a cGMP-

independent mechanism (Cahill ef al. 1995), and an exogenous NO donor was 

able to abolish the stimulatory effect of angiotensin II on proximal tubule transport 

(Eitleefa/. 1998). 

There is a general consensus that hypertension is associated with 

impaired endothelium dependent vasodilation due to reduced NO signaling 

(Schiffrin & Touyz 2004). Endothelial dysfunction may result from reduced 

generation of NO due to diminished expression or activation of endothelial NO 

synthase or an increase in oxidative stress that reduces bioavailability of NO 

(Schiffrin & Touyz 2004). High levels of superoxide anions, which rapidly react 



with NO to form highly toxic peroxynitrite anion is the mechanism leading to 

reduced NO bioavailability (Beckman & Koppenol 1996). Dobrian etal. reported 

that in obese hypertensive animals on high fat diet there was a reduction in 

urinary NO metabolites while expression of eNOS and nNOS were increased in 

the renal cortex and medulla of those animals (Dobrian etal. 2001, 2004) 

implying that in obesity-induced hypertension NO bioavailability is reduced most 

likely due to increased oxidative stress. Decreased renal cortical nitric oxide 

production was observed in the kidney of obese Zucker rats (Erdely et al. 2004) 

and a recent study in obese young humans showed a negative correlation 

between BMI and NO metabolites and a positive correlation between arginine 

and BMI suggesting increased NO production but reduced NO bioavailability 

(Gruber et al. 2008). 

However, another important mechanism which regulates the biological 

activity of NO in the kidney is the sensitivity of NO signalling. For example, Ortiz 

demonstrated that even though a high salt diet did not change NO production, it 

increased sensitivity of the thick ascending limb to NO with regard to sodium 

reabsorption (Ortiz et al. 2003). 

In summary, obesity induced hypertension is extremely common in the 

general population especially with the increase in number of overweight and 

obese people. As in all other forms of hypertension, it is associated with the 

impairment of pressure-natriuresis. However, the exact mechanisms leading to 

fluid retention are not known but some suggest that direct change in tubular 

reabsorption might be a cause. We propose that in obesity, activities of the 
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sodium transporters at the proximal tubule level are increased leading to 

increased sodium reabsorption. Therefore, we determined the responses of 

obese and lean rats fed a high fat diet to changes in renal perfusion pressure and 

analyzed the expression, activity and localization of the tubular transporters 

NHE3 and Na,K-ATPase. 

Moreover, as PPARy is a transcription factor involved in obesity and hypertension 

we examined the role of PPARy activation in hypertension related to obesity with 

regard to proximal tubule sodium transport, by chronically treating our obese and 

lean rats with a PPARy agonist. To determine the direct involvement of PPARy 

during the course of agonist treatment we studied modifications of NHE3 and 

Na,K-ATPase expression in cultured proximal tubule cells. 

As NO might play an important role in regulating pressure natriuresis in 

the kidney and its availability seems to be altered in obese animals and humans, 

we wanted to determine its role in hypertension induced by obesity by chronically 

blocking its production in vivo. Moreover, since this molecule appears to affect 

some other pathways in blood pressure regulation such as the renin-angiotensin 

system, leptin, and insulin which are all activated in obesity, we further studied its 

role on the sodium transporters in vitro. 



SECTION 2 

SPECIFIC AIMS 

Specific Aim #1 

Theoretical and experimental studies have shown that in all forms of 

hypertension, including obesity hypertension, there is an abnormality of kidney 

function characterized by a hypertensive shift in renal pressure natriuresis. When 

obesity is induced by feeding a high fat diet, there is marked sodium retention 

and expansion of extracellular fluid volume. Moreover, sodium retention and 

altered pressure natriuresis appears to be caused mainly by increased tubular 

sodium reabsorption. 

Hypothesis: Development of hypertension in diet-induced obesity is due 

to the increase in Na+ reabsorption by means of changes in activity of 

sodium transporters at the level of the proximal tubule. 

Aim 1: Determine mechanism of sodium handling in obese hypertensive (OP) 

and lean normotensive (OR) rats on high fat diet. 

Aim 1.A. Establish the renal hemodynamic parameters in OP, OR rats. 

Aim 1.B. Determine the abundance, activity and localization of proximal tubule 

sodium transporters-Na,K-ATPase and NHE3. 

Experiments: In the first part of the study, Sprague-Dawley rats were put on the 

high fat diet and systolic blood pressure (SBP) was measured by tail cuff method 

at weeks 8 and 12 on the diet in obese and lean animals. Results were in 



accordance to previous data to show that OP rats had high blood pressure while 

OR rats were normotensive. 

After 12 weeks on the diet, renal function was assessed in OP and OR 

rats during surgical procedures in which animals were challenged with a change 

in renal perfusion pressure. Experiments were designed to determine whether 

there is a difference in sodium excretion between the groups and which nephron 

segment is defective with regard to sodium reabsorption. At the end of the 

experiment, fat content in obese and lean rats was measured while body weights 

were recorded weekly for the duration of the study. 

Next, protein expression of proximal sodium transporters- Na,K-ATPase 

and NHE3 was examined by western blotting in basolateral membrane (BLM) 

and brush border membrane vesicles (BBMV) preparation of kidney cortex, 

respectively. In subsequent experiments activity of above transporters was 

assessed in fresh BLM and BBMV fractions from obese and lean rats. 

Immunohistochemistry was employed on paraffin-embedded, and formalin fixed 

kidney cortexes from OP and OR rats to determine localization of NHE3 within 

the villus membrane. 

Specific Aim #2 

Peroxisome Proliferator-Activated Receptor y (PPARy) modulates 

transcription of genes involved both in obesity and hypertension (leptin, 

angiotensin II). PPAR y is expressed both in the adipose tissue and kidney. Two 

heterozygous mutations in the PPAR y ligand binding domain of the gene cause 



severe insulin resistance and hypertension in humans. Treatment with PPAR y 

ligands lowers blood pressure in both humans and rodent models. 

Hypothesis: PPARy activation lowers blood pressure by altering activity of 

sodium transporters Na,K-ATPase and NHE3 and thereby controlling 

tubular Na+ reabsorption. 

Aim 2.A. Investigate the effects of in vivo PPARy activation on blood pressure, 

renal hemodynamics, and expression, localization and activity of proximal tubule 

sodium transporters in obese and lean rats. 

Aim 2.B. Determine whether PPARy ligands exert their action on sodium 

transporters dependent or independent of PPARy using primary cultures of 

human renal proximal tubule epithelial cells (RPTEC). 

Experiments: In this aim OP and OR rats were treated with 0.1% (w/w) 

pioglitazone (PPARy agonist) for 4 weeks from week 8 to week 12 during dietary 

regimen. The effect of PPARy activation on the systolic blood pressure (SBP) 

was determined. SBP was measured in obese and lean animals by the tail cuff 

method as described in Aim #1, at week 8, before starting the treatments, and at 

week 12, after treatment completion, on the day of the surgery. Body weights and 

food intake were measured weekly. Before starting treatment and after its 

completion, rats from all experimental groups were placed in metabolic cages for 

24 hour urine collection and the assessment of water intake. Urine was analyzed 

for Na+ content. 

In the second part of the study, glomerular filtration rate, urinary sodium 

excretion, fractional excretion of sodium and lithium were analyzed. Rats were 
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anesthetized and catheters were implanted in the left carotid artery for the 

measurement of mean arterial pressure and blood sampling, in the left jugular 

vein for fluid infusions (saline solutions with inulin and lithium chloride), and in the 

bladder for urine collection. 

Separate groups of animals were used for the following part of the study 

where we examined by western blotting protein expression of Na,K-ATPase and 

NHE3 in baso-lateral membranes and brush border membrane vesicles, 

respectively, isolated from renal cortexes. The same preparations were also used 

for activity measurements of the above transporters. 

Finally, we estimated the effect of pioglitazone treatment on NHE3 

distribution in the renal proximal tubule in obese and lean rats as described in 

Aim#1. 

In vitro experiments were designed to demonstrate the effect of 

pharmacological and molecular stimulation and inhibition of PPARy on Na,K-

ATPase and NHE3 expression using primary culture of renal proximal tubule 

epithelial cells (RPTEC). At first, cells were incubated with PPARy agonists and 

antagonists for 4 hours and expression of sodium transporters were measured by 

western blotting. Those experiments confirmed that PPARy stimulation 

decreases and inhibition increases protein abundance of Na,K-ATPase and 

NHE3. 

Afterwards, using the nucleofection technique RPTEC were transiently 

transfected with full length human PPARy to overexpress PPARy or with small 

interfering RNA technique to silence the latter, followed by 12 hours of 



pioglitazone treatment. Altogether, in vitro experiments suggested that 

pioglitazone effect on Na+ transporters requires activation of PPARy. 

Specific Aim #3 

NO stimulates soluble guanylyl cyclase in rabbit proximal tubule and 

causes inhibition of activity of Na,K-ATPase and Na+/H+ exchange which is at 

least partly mediated by generation of cGMP. In carotid arteries of obese rats 

levels of cGMP are enhanced. Previous studies demonstrate that feeding rats 

and dogs with moderately high fat diet results in higher levels of renin activity in 

obese animals compared with lean animals, higher levels of leptin in animals as 

well as obese humans and that those changes are paralleled by changes in 

insulin levels. 

Hypothesis: The tonic inhibition on sodium transporters in the absence of 

NO is achieved in obesity by increased levels of Angiotensin II, Insulin or 

Leptin. These hormones act to maintain low activity of sodium transporters 

in obesity via an increase in cGMP production. 

Aim 3.A. To investigate the effects of chronic in vivo inhibition of nitric oxide (NO) 

production on blood pressure, renal hemodynamics, and expression, localization 

and activity of proximal tubule sodium transporters in obese and lean rats. 

Aim 3.B. To determine whether angiotensin II, insulin, or leptin modulate the 

expression of Na,K-ATPase and NHE3 in RPTEC in vitro by utilizing cGMP as a 

messenger. 



Experiments: Sprague-Dawley rats were put on the high fat diet for 12 weeks and 

treated with nitric oxide synthase inhibitor-L-NAME (NG-nitro-L-arginine methyl 

ester) between weeks 8-12. Rats were placed in metabolic cages before and 

after the treatment for 24-hour urine collection and the assessment of water 

intake. 

After 12 weeks on the diet, renal function was assessed in OP and OR 

rats treated or not with L-NAME, during acute manipulation of renal perfusion 

pressure. Rats were anesthetized and catheters were placed in the trachea, 

jugular vein and in the left carotid artery for mean arterial pressure (MAP) 

measurement. A catheter was also implanted in the left femoral artery and in the 

bladder. MAP was measured and recorded continuously during the procedure. 

Blood and urine were analyzed for electrolytes, lithium, and inulin. As a result we 

obtained pressure-natriuresis and diuresis curves for obese and lean animals 

with or without chronic NO inhibition. Body weights were recorded weekly for the 

duration of the study while fat content was measured at the conclusion of the 

procedure. 

Protein expression and activity of Na,K-ATPase and NHE3 in obese and 

lean rats with or without L-NAME treatment were analyzed as described in Aim 

#1. 

Also, immunohistochemistry was employed to provide information on 

effect of L-NAME on NHE3 distribution as described previously in Aim #1. 

In vitro experiments were performed using primary cultures of human 

renal proximal tubule epithelial cells (RPTEC). At first, ability of cells to produce 



intra- and extracellular cGMP in response to various NO donor concentrations at 

different time points was assessed. It was followed by the measurements of the 

effect of ODQ (inhibitor of soluble guanylyl cyclase) and probenecid (an organic 

anion transporter). Those experiments proved that RPTEC are capable of 

producing cGMP in response to an NO donor in a concentration-dependent 

manner. 

Next, we evaluated the capability of angiotensin II (All), insulin and leptin, 

to affect production of cGMP in the presence or absence of NO donor s-nitro-

acetylpenicillamine (SNAP) and have chosen concentrations of hormones which 

significantly increased cGMP in the presence of SNAP in RPTEC for further 

study. 

Finally, we measured protein expression of Na,K-ATPase and NHE3 by 

western blotting in membrane fractions of RPTEC stimulated with All, insulin or 

leptin together with SNAP for 6, 12 and 24 hours. Since these data were not 

conclusive, phosphorylation levels of Ser16 and 552 for Na,K-ATPase and 

NHE3, respectively were assessed in membrane fractions of RPTEC treated with 

All/insulin and an NO donor. From this study we concluded that there is 

interaction between NO and insulin which influence phosphorylation of Na,K-

ATPase and NHE3, probably leading to changes in activity of both transporters. 
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SECTION 3 

STUDIES FOR SPECIFIC AIM #1 

3.1 Materials and Methods for Specific Aim #1 

Animals 

All procedures involving animals were approved by the Institutional Animal 

Care and Use Committee of Eastern Virginia Medical School. Male 3-month old 

Sprague-Dawley rats (Charles River, Wilmington, MA), weighting -300 g were 

housed individually in a humidity- and temperature-controlled room with a 12 hr 

dark-light cycle and allowed ad libitum access to water and food throughout the 

experiment. Rats were fed either a moderately high fat diet (MHF; ~ 32% kcal as 

fat; Research Diets, New Brunswick, NJ) or low fat (~11.8% kcal as fat) calorie 

matched control diet (controls) for 8 weeks. Between weeks 6 and 7 they were 

assigned, based on the difference in the body weight (BW) gains to an obesity-

prone (OP) and an obesity-resistant (OR) group as described previously (Dobrian 

et al. 2001) (Fig. 3). All the OP rats had body weights higher that the heaviest 

control rat and all the OR rats had body weights equal or lower than the heaviest 

control. The control animals were not used later in any of the experimental 

protocols. Separate groups, fed and treated exactly the same way, were used for 

physiological measurements and for preparation of membrane fractions, brush 

border membrane vesicles, and any subsequent experiments involving those 

preparations. 
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Sprague-Dawley male rats, ~3 month old (-300 g) 
fed for 8-12 weeks with: 

Moderately high fat diet (MHF) 
32.4 kcal% fat; 29% sucrose, 0.8% NaCI 

OBESITY-RESISTANT OBESITY- PRONE 

Normotension Hypertension 

Weight gain 

Figure 3 Rat model of diet-induced obesity and hypertension. 
Male, 3 months old Sprague-Dawley rats were put on moderately high fat diet 
and stayed on this diet for 12-16 weeks. They diverged into two statistically 
different populations according to their body weights and were assigned to 
obesity-resistant (OR) and obesity-prone (OP) groups between weeks 6th and 7th. 
After being on the diet for 8-10 weeks OR rats were normotensive while OP rats 
developed high blood pressure. 
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Surgical procedure for acute pressure natriuresis experiments 

The surgical procedure was performed as previously described (Khraibi 

2000). On the day of the acute experiment, rats were anesthetized with Inactin 

(100 mg kg"1), and catheters were placed in the trachea (PE-240) and left jugular 

vein (PE-50) for intravenous infusion of 0.75 ml per 100 g body wf1 h"1 of saline 

with 6 mM lithium chloride (LiCI) and 0.75 ml per 100 g body wt"1 h"1 of a solution 

of 3% inulin and 6.25% bovine albumin in saline (which also contained 6 mM 

LiCI). A PE-50 catheter was implanted in the left carotid artery for mean arterial 

pressure (MAP) measurement and blood withdrawal. A PE-50 catheter was 

implanted in the left femoral artery for the measurement of renal perfusion 

pressure (RPP). A PE-90 catheter with a flared tip was placed in the bladder for 

urine collection. An adjustable clamp was placed around the abdominal aorta 

above both renal arteries and was used to control RPP. The rats were allowed 

1 h to recover after completion of the surgical procedures. Then RPP was 

controlled at a lower level (-100 mmHg) by tightening the clamp around the aorta 

and reducing renal perfusion pressure. After 10 minutes a clearance period of 

30 min was started; MAP was measured and recorded continuously. At the end of 

this period, -1 ml of blood was withdrawn from the left carotid artery for plasma 

electrolytes, lithium, and inulin measurements. Urine was collected for 30 min. At 

the conclusion of the clearance period the aortic clamp was loosened to allow 

renal perfusion pressure to increase and then tightened again at the higher level 

(-140 mmHg). After 10 minutes the second clearance period started during 

which MAP was measured and recorded continuously. And again at the end of 



this period, ~1 ml of blood was withdrawn from the left carotid artery for plasma 

electrolytes, lithium, and inulin measurements. Urine was collected continuously 

for 30 min. All rats were killed by an Inactin overdose (50 mg; 0.5 ml of a solution 

of 100 mg ml"1 of Inactin in saline) at the end of the experiment while still under 

deep anesthesia. 

To avoid any manipulation of the kidneys, different groups of animals 

were used for basolateral membrane and brush border membrane vesicle 

fractions. At the completion of the diet protocol the rats were anesthetized with 

Inactin (100 mg kg"1), kidneys were removed without any further handling, 

epididymal and perirenal fat were removed and frozen in liquid nitrogen, and 

finally rats were killed by an Inactin overdose as mentioned above. 

Physiological parameters 

Systolic blood pressure was assessed by tail-cuff method using Visitech 

Blood Pressure Analysis System (BP-2000-R; Visitech Systems, Apex, NC) on 

previously trained, conscious animals from groups used for physiological 

measurements. The average of 3-5 readings was recorded for each animal. 

Glomerular filtration rate (GFR) was calculated from the clearance of inulin, and 

inulin concentrations was measured by the anthrone method (Khraibi etal. 1989, 

Khraibi & Knox 1989). Lithium concentrations in plasma and urine were 

measured using flame photometry (model 943, Instrumentation Laboratory, 

Lexington, MA), phosphate by the method of Chen (Chen & Jorgensen 1956) and 

sodium concentration in plasma and urine were measured using EasyLyte Na/K 



analyzer( Medica, Bedfrod, MA). Fractional excretions of sodium and, lithium 

were calculated as the ratio between their urinary excretion and the glomerular 

filtration rate. Urinary sodium excretion was expressed as the rate of sodium 

excretion per urine volume. 

Baso-lateral membrane (BLM) and brush border membrane vesicle 

(BBMV) preparations 

The kidneys were rapidly isolated after the last Inactin injection and 

placed on ice in the appropriate homogenizing buffers. Their capsules were 

removed; cortexes dissected out and then cut out into small pieces. One kidney 

was processed for baso-lateral membrane (BLM) preparation and the other for 

brush border membrane vesicles (BBMV) preparation. 

For BLM preparation modified protocol from V. Scalera (Scalera etal. 

1980) was used. Pieces of cortex were placed into 15 ml of the homogenizing 

buffer (sucrose buffer) which contained 10 mM Tris-HCI, 0.25 M sucrose, and 

0.5 M phenylmethanesulphonyl fluoride (PMSF) at pH 7.6 and homogenized on 

ice with Polytron homogenizer at 20 000 rpm for 60-90 seconds. The crude 

homogenate was centrifuged at 3 000 g for 15 minutes to remove whole cells, 

and nuclei. The supernatant was then centrifuged at 30 000 gfor 30 minutes 

and the fluffy, upper layer of the pellet was resuspended again in sucrose 

buffer, homogenized with Teflon glass homogenizer for 20 strokes and 

centrifuged at 30 000 g for 30 minutes. The pellet was resuspended in buffer 

that had 5 mM HEPES, 100 mM KCL, and 100 mM mannitol final concentration 



at pH 7.2 (mannitol buffer) and centnfuged at 30 000 g for 30 minutes. The final 

pellet was dissolved in a small volume of mannitol buffer and the protein 

concentration for each lysate was determined on this freshly prepared sample 

by using a BCA protein assay kit (Pierce Chemical) with BSA as a standard. On 

the same day part of the lysate was used for Na,K-ATPase activity 

measurements and the rest was frozen at -80 °C for future western blotting. 

For brush border membrane vesicles (BBMV) preparation protocol from 

J. Biber was used based on a different reactivity of the brush-border membrane 

compared to other cellular membranes with divalent cations, such as Mg2+ 

(Biber et al. 2007). Pieces of cortex were homogenized in the buffer which 

contained 12 mM Tris base, 5 mM EGTA, 300 mM D-mannitol, and 0.1 mM 

PMSF pH 7.1 (buffer A) using a Polytron homogenizer (~20 000 rpm) for 90 sec, 

on ice. Ice-cold water was then added to this crude homogenate and mixed 

with it, followed by addition of magnesium chloride (MgCb) and subsequent 

incubation on ice for 15 min. Then homogenate was centrifuged at 3 000 g for 

15 min and supernatant transferred to a new tube and centrifuged at 30 000 g 

for 30 minutes at 4 °C. The resulting pellet was resuspended in 1 ml of buffer 

containing 6 mM Tris base, 2.5 mM EGTA and 150 mM D-mannitol pH 7.1 

(buffer B, which was prepared by diluting buffer A 1:1 with distilled water) by 

using a 27-gauge needle attached to a 1cc syringe. Then buffer B was added to 

final volume of 35 ml followed by addition of MgCI2 and subsequent incubation 

on ice for 15 minutes. Next, the homogenate was centrifuged at 



3 000 g for 15 minutes and the supernatant transferred into a clean tube and 

spun at 30 000 g for 30 minutes at 4 °C. The resulting pellet was resuspended 

in 1 ml of buffer B by using a 27-gauge needle attached to a 1cc syringe 

aspirating 5-7 times and buffer B was added to a final volume of 35 ml. The 

suspension was centrifuged for 30 minutes at 30 000 g and pellet consisting of 

brush border membrane vesicles was resuspended in 1 ml of buffer B. Protein 

for each lysate was determined in freshly prepared samples by using a BCA 

protein assay kit (Pierce Chemical) with BSA as a standard. NHE3 activity 

measurements were performed in the same day and the remainder of the 

lysate was frozen at -80 °C and used for western blotting. 

Western Blotting on BLM and BBMV fractions 

Na,K-ATPase and NHE3 protein expression were assessed in BLM and 

BBMV, respectively. The samples were diluted with a 1/5 vol of Laemmli buffer 

(62.5 mmol/L Tris-HCI, pH 6.8, 2% [wt/vol] SDS, 5% R-mercaptoethanol, 10% 

[vol/vol] glycerol, and 0.001% bromophenol blue) and equal amounts of 

proteins (10-20 |ug per lane) were subjected to SDS-polyacrylamide (7.5%) gel 

electrophoresis and blotted onto PVDF membranes. The membranes were 

treated with Odyssey Blocking solution diluted 1:1 with phosphate-buffered 

saline (PBS) to block nonspecific binding sites, for 1 hour RT, and incubated 

with either monoclonal anti-NHE3 antibody (1:500 dilution, Novus Biologicals, 

Littleton, CO), monoclonal anti-Na,K-ATPase antibody (Upstate , Lake Placid, 

NY,1:10 000 dilution), or monoclonal Villin (1:1 000 dilution, Sigma-Aldrich, 



Saint Louis, MO ) overnight. Villin served as loading control for NHE3, loading 

of Na,K-ATPase was assessed by Ponceau red staining. Antigen detection was 

performed using appropriate secondary antibodies conjugated to fluorescent 

tag (IRDye 680 and IRDye 800) at 1:15 000 dilution for 45 minutes at RT. 

Membranes were scanned using the Odyssey Infrared Imaging System (Li-Cor 

Biosciences, Lincoln, NE). Semi-quantitative analyses of the specific bands 

were performed using Li-Cor Odyssey software. Results were expressed as 

relative fluorescence units (RFU). 

Activity of Na.K-ATPase in BLM fractions from renal cortex 

Na,K-ATPase activity was assayed by measuring the amount of 

inorganic phosphate (Pj) liberated from ATP during incubation with the fresh 

membrane fraction of renal cortex at 37 °C in the assay buffer. The assay 

buffer contained 120 mM NaCI, 20 mM KCI, 6.0 mM EGTA Na2, 7.5 mM MgCI2, 

50 mM imidazole-HCI, 30 mM Tris-HCI (pH 7.5) and 50 \i\ of tissue fraction. 

Reaction was started with addition of 4 mM of Na2ATP (Sigma-Aldrich, Saint 

Louis, MO), carried out for 15 minutes at 37 °C, and after that stopped by 

putting samples on ice and completed by adding 35 \i\ of ice-cold 72% 

trichloroacetic acid (TCA) solution (TCA, Sigma-Aldrich, Saint Louis, MO). Then 

samples were centrifuged at 5 800 g for 5 minutes and the supernatant used 

for further assay. To determine ouabain insensitive Na.K-ATPase activity, the 

same mixture as above was incubated with 5 mM ouabain (Sigma-Aldrich, 

Saint Louis, MO) dissolved directly into assay buffer, and final Na.K-ATPase 



activity was calculated as the difference between the activities assayed in the 

absence of ouabain (total activity) and in the presence of 5 mM ouabain. Pj 

concentration was measured by the method of Chen (Chen et al. 1956). To 200 

|jj of the sample diluted 1:10 1.6 ml of working reagent was added and 

incubated for 90 minutes at 37 °C. Working reagent was prepared fresh daily by 

addition of 5 ml of 8 N H2S04, 5 ml of 2.5% ammonium molybdate and 5 ml of 

10% ascorbic acid added to 35 ml of water. After incubation absorbance was 

read at 820 nm. To correct for spontaneous ATP breakdown, the absorbance of 

the blank sample prepared as described above but with water instead of 

supernatant from the membrane fraction was read and subtracted from the 

absorbance of the test sample. The activity was expressed as mmol of Pj 

hydrolyzed by 1mg of protein during 1 minute of incubation time (mmol min"1 

mg "1 of protein). Each sample was assayed in duplicate. 

Measurement of NHE3 activity in BBMV from renal cortex 

BBMV were labeled with cell-permeable AM ester of the polar fluorescein 

derivative BCECF (Molecular Probes Inc., Eugene, OR) by incubation in a 

solution of BCECF-AM for 30 min in a buffer without Na+ at pH 7.2. A sample 

containing 200 |j,g of protein was used for each measurement. The labeled 

sample was mixed with a buffer containing 150 mM NaCI, pH 9.2, using a stop-

flow kinetic device (KinTek SF 2001, KinTek Corporation, Austin, TX); the 

change in pH response to a sodium load was recorded every 0.6 seconds for 1 

minute for each preparation. To normalize for the potential differences in sample 



protein the unlabeled samples were also measured in the same conditions and 

the readings were subtracted from the labeled samples. Dual-excitation ratio of 

440/490 nm was used to transform the changes in fluorescence into changes in 

intracellular pH, according to the Henderson-Hasselbalch equation. The pKa of 

the indicator was determined by measuring the changes in fluorescence in 

response to different values of extracellular pH. That was done by mixing the 

labeled sample with buffers of known pH preincubated with nigericin (Sigma-

Aldrich, Saint Louis, MO) - K+/H+ ionophore, which causes equilibration of 

intracellular and extracellular pH in the presence of a depolarizing concentration 

of extracellular K+. The activity of NHE3 was calculated from the power of the first 

exponential curve and expressed as a rate of intracellular pH recovery vs. time in 

response to an extracellular sodium load. The specificity of the reaction for NHE3 

was tested in several arbitrary samples in which 100 |aM of 5-(N-Ethyl-N-

isopropyl) amiloride (Sigma-Aldrich, Saint Louis, MO) was added to the 

membrane preparation 15 minutes before the beginning of the fluorescence 

recordings. At this concentration, the amiloride derivative is expected to inhibit 

virtually all NHE1 and NHE2 activity, with only minimal inhibition (-10%) of NHE3 

activity. 

Immunohistochemistry 

Formalin-fixed, paraffin-embedded kidney sections (4 urn) were 

incubated at 55 °C for 1hr, deparaffinized, rinsed in water and processed for 

antigen retrieval with Dako Target Retrieval Solution (Dako Corporation, 



Carpinteria, CA) for a total of 15 minutes. Then sections were blocked with 5% 

normal goat serum and 1% BSA in PBS for 1 hr at room temperature and 

simultaneously labeled with polyclonal NHE3 antibody (Catalog number 

AB3085, Lot: 23101099; Chemicon International, 1:200 dilution) and 

monoclonal Villin antibody (Catalog number 0258, Lot: 17; Immunotech, 

Chicago, IL; 1:50 dilution ) in blocking solution , overnight, at 4 °C. 

Subsequently, sections were incubated with a mix of fluorophore-conjugated 

secondary antibodies-Alexa Fluor488 goat anti-rabbit for NHE3, 1:500 dilution; 

AlexaFluor594 goat anti-mouse for villin, 1:500 dilution (Molecular Probes, Inc., 

Eugene, OR) - for 45 min, at room temperature, followed by 1% Sudan black to 

block tissue autofluorescence. After final washes and mounting with 

VectaShield (VectaShield Mounting Medium, Vector Labs, Burlingame, CA) 

images were visualized and recorded by confocal fluorescence microscopy 

using a Zeiss LSM 510 laser scanning microscope (Carl Zeiss Microscopy, 

Germany). Some sections in which the primary antibodies were omitted were 

used as negative controls. Each tissue section was excited with two lasers, 

Argon (488 nm), and HeNel (543 nm) and scanned pixel by pixel using frame 

mode with line averaging. Emission signals were collected by using the 505-

550 nm band pass and 560 nm long pass filters and quantified using a 

photomultiplier tube and the LSM5 software. The composite image consisted of 

green staining for NHE3, red staining for villin, and yellow staining for 

colocalization of the two. For each slide 6-10 z-stacks were taken from different 

areas of the tissue. Each z-stack contained from 12 to 20 XY images recorded 



at intervals of 1 arbitrary unit apart with a zoom of 2X on a 40X oil immersion 

objective. Image analysis was performed using MetaMorph software vs.6.3 

(Molecular Devices, Downingtown, PA). 

Image analysis and data collection 

Metamorph software separated each composite image into two images, 

one for each laser. Regions of interest were drawn around tubules which were 

round in shape and had an opened lumen. For each image a manual threshold 

was set to subtract background from true signal. The green fluorescent signal 

(NHE3 staining) as well as the overlapping of the green (NHE3) over the red 

(villin) fluorescent signals on each plane of the Z-stack were used in the final 

computation. A number of 12-20 planes were analyzed for each individual 

tubule. Colocalization was expressed as the percentage of the sum of green 

fluorescence overlapping the red fluorescence to the sum of green 

fluorescence only, in all the planes selected from an individual z-stack and was 

recorded using an Excel spreadsheet. Six to ten tubules were analyzed for 

each animal, 3-4 animals were analyzed for each experimental group, and the 

final percentage for each group was expressed as mean ± SD. 

Statistical analysis 

Results are presented as mean ± standard error of mean (SEM) or 

standard deviation (SD), as indicated for each experiment unless stated 
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otherwise. Statistical analysis was performed using Student's t test for paired 

and unpaired data. The null hypothesis was rejected for a p-value<0.05. 

3.2 Results for Specific Aim #1 

Body Weights, Fat content and Systolic Blood Pressure 

When fed moderately high fat diet (MHF) normal male Sprague-Dawley 

(SD) rats spontaneously diverge into two groups: obesity-prone (OP) and 

obesity-resistant (OR) as previously described (Dobrian et al. 2001). 

Retrospectively, in our study SD rats segregated into distinct populations of 

obese and lean rats after being fed with MHF for 4 weeks and attained a 

significance in their body weights starting at week 6 (Fig. 4a). This difference was 

maintained until the end of the experiment at week 12. OP group was on average 

12% heavier than OR group at week 6 and continuously obese animals were 

weighting more than lean until week 12 when OP rats weighted on average 22% 

more than OR rats ( 737.8 ± 15.4 g vs. 604.9 ± 14.8 g). 

Those differences were paralleled by higher content of epididymal fat in 

OP rats compared to OR rats, 22.93 + 1.33 g vs. 15.8 ± 1.64 g (p<0.01) but not 

reflected by differences in perirenal fat pads, 27.98 ± 4.49 g vs. 16.65 ± 2.03 g 

where it failed by a small margin to attain significant difference (p=0.06) (Fig. 4b). 

This could be explained by the small number of animals in the groups at the time 

of the surgeries (n = 4). Overall, total fat (sum of perirenal and epididymal fat) 

content was 56.85% higher in obese rats compare to lean rats, 50.90 ± 5.32 g vs. 

32.45 ± 3.43 g (Fig. 4b) and statistically significant. 
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Figure 4 Representative graphs illustrating the typical body weights and fat 
content in OP and OR rats. 
Panel (a): Body weights and food intake (not shown) were measured weekly. 
Starting at week 6 BWs between OP and OR groups were significantly different. 
Panel (b): Weights of perirenal and epididymal fat pads were measured at the 
completion of the experiments. Results are means ± SEM of n=4-5 rats/ group. 
Significance was determined using unpaired Student's t-test and the null 
hypothesis was rejected for a p-value< 0.05. *= significant compared to lean 
counterparts. 



In this study we measured systolic blood pressure (SBP) by the tail-cuff 

method on previously trained rats at week 8 and week 12 of the diet. At week 8 

SBP was significantly higher in obese animals than in lean (153.7 ± 3.2 mmHg 

vs. 142.4 ± 2.6 mmHg) and remained higher at the completion of the study at 

week 12 (158.9 ± 3.5 mmHg vs. 143.5 ± 4.2 mmHg) (Fig. 5). 

Acute pressure natriuresis and diuresis in OP and OR rats 

As previously described by our lab, an increase in SBP in obese animals 

compared to lean rats is not reflected in 24 hour sodium excretion (Dobrian et al. 

2001). 24 hour sodium excretion was not significantly different between OP and 

OR groups in that study, suggesting that after 16 weeks on the diet both groups 

reached steady state. However, in this study we aimed to determine differences 

in pressure natriuresis and diuresis in OP and OR rats when they were 

challenged with acute changes in renal perfusion pressure (RPP). Between low 

(101.25-102.75 mmHg) and high (134.0-135.63 mmHg) renal perfusion 

pressures (RPPs) urine flow rate in OP rats failed to achieved statistical 

significance (18.75 ± 2.81JJ.I min"1 vs. 46.25 ± 16.79 |J min"1), but in the OR group 

an increase in RPP was accompanied by an increase in urine flow rate (V) from 

14.75 ± 1.75 \i\ min"1 to 53.25 ± 15.67 ^l min "1 (Fig. 6a). This indicates blunted 

diuresis in obese rats compared to their lean counterparts. Urinary sodium 

excretion (UNaV) between low and high RPP were not different in the obese 

group (from 1.18 ± 0.59 (xEQ min"1 to 7.01 ± 4.87 |aEQ min"1) but once more 

gained statistical significance in the lean group (from 1.03 ± 0.72 JJEQ min"1 to 
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Figure 5 Systolic blood pressures in lean and obese Sprague-Dawley rats. 
SBP was assessed in previously trained rats by tail cuff method at week 8th and 
12th of the diet, right before completion of the study. Obese rats had significantly 
increased blood pressures compared to lean. Values are means ± SEM of n=6 
rats/group with 3-5 readings for each animal. Significance was determined using 
unpaired Student's t-test and the null hypothesis was rejected for a p-value< 
0.05. *= significant compared to lean rats. 
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9.97 ± 3.63 nEQ min"1, p-value=0.05) (Fig. 6b). The same response was 

achieved when fractional excretion of sodium (FENa) was calculated: in OP rats 

there was no significant change in FENa between low and high RPP (from 0.13 ± 

0.05% to 0.79 ± 0.57%). However, there was an increase in FENa in OR rats 

from 0.20 ± 0.14% to 1.34 ± 0.39% (Fig. 6c). The magnitude of change for UNaV 

and FENa amid low and high RPP were not significantly different in obese and 

lean rats. These results show that obese animals do not respond to the increase 

in pressure the same way lean animals do, suggesting that their pressure 

natriuresis and diuresis is altered compare to lean counterparts. However, 

despite those differences in UnaV and FENa among the groups glomerular 

filtration rate (GFR) remained the same: in OP rats: 5.66 ± 0.65 ml min"1 at low 

RPP and 5.6 ± 0.7 ml min"1 at high RPP; in OR rats: 3.95 ± 0.66 ml min"1 at low 

RPP and 4.9 ± 0.64 ml min"1 at high RPP (Fig. 6d) suggesting that autoregulatory 

capability of kidneys were preserved. 

Finally, fractional excretion of lithium (FELi) was determined and used as 

an index of reabsorption in the proximal tubule. In the OP group a change in RPP 

from 101.2 ± 0.63 mmHg to 134.2 ± 2.58 mmHg caused a change in FELi from 

5.61 ± 1.74% to 13.89 ± 3.09% which failed by a small margin to attain statistical 

significance (p-value=0.058) (Fig. 7). However, in the OR group an increase in 

RPP from 102.7 ±1.1 mmHg to 135.6 ± 1.38 mmHg caused a significant 

increase in FELi from 8.74 ± 4.09% to 19.77 ± 1.37% (Fig. 7). This result 

suggests that OP's attenuated pressure natriuresis is most likely associated with 

a defect at the proximal tubule level. 
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Figure 6 Acute pressure natriuresis and diuresis in obese (OP) and lean (OR) 
rats. 
During surgical procedure an adjustable clamp was placed around aorta above 
renal arteries to control renal perfusion pressure (RPP). At first RPP was set 
~100 mmHg and urine collected for 30 min. At the end of this period blood was 
drawn from carotid artery for plasma electrolytes, lithium and inulin 
measurements. Then RPP was set ~140 mmHg and all above procedures were 
repeated. Panel (a): Effect of RPP on urine flow in OP and OR rats. At high RPP 
lean rats had an increase in urine flow rate, obese animals had impaired diuresis. 
Panel (b): Renal perfusion pressure effect on urinary sodium excretion (UNaV) in 
obese and lean animals. Increasing RPP caused a significant increase in sodium 
excretion rate in OR group but not in OP. Panel (c): Fractional excretion of 
sodium (FENa) at low and high RPP in OP and OR groups. While lean rats had 
significantly higher FENa at higher RPP obese rats demonstrated no change 
manifesting impaired natriuresis. Panel (d): Relations between renal perfusion 
pressure and glomerular filtration rate (GFR), calculated as the rate of inulin 
clearance, in OP and OR rats. Both groups showed well preserved 
autoregulatory kidney function. Results are expressed as means ± SEM of n = 4-
5 rats/ group. Significance was determined using paired or unpaired Student's t-
test and the null hypothesis was rejected for a p-value< 0.05. *= significant 
compared to low RPP in the same group of animals. 
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Figure 7 Fractional excretion of lithium (FELi) at low and high RPP in obese and 
lean Sprague-Dawley rats. 
During surgical intervention rats were infused with lithium and after the 
experiment lithium concentrations in urine and plasma were assessed. FELi was 
calculated as the ratio between its urinary excretion and the amount filtered at 
low and high RPP and it was used as a marker for the proximal tubule function. 
High RPP significantly increased excretion of lithium in OR group but not in OP 
rats. Results are expressed as means ± SEM of n = 4-5 rats/ group. Significance 
was determined using paired Student's t-test for data within the group or 
unpaired t-test was used for group comparison. The null hypothesis was rejected 
for a p-value< 0.05. *= significant compared to low RPP in the same group of 
animals. 
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Expression, activity and localization of proximal tubule transporters: NHE3 

and Na.K-ATPase 

In a separate and similar experiment using different groups of rats we 

measured protein expression, activity and localization of quantitatively the most 

important transporter on the apical side of proximal tubule -the Na/H exchanger 

type 3 and on basolateral side, the Na.K-ATPase. 

The protein expression of Na.K-ATPase assessed by western blotting in a 

membrane fraction enriched in baso-lateral membrane (BLM) was significantly 

higher in obese rats when compared to lean rats 54.39 ± 3.25 RFU vs. 30.69 ± 

0.69 RFU, respectively (Fig. 8a and 8b). The membranes were stained with 

Ponceau Red to insure equal loading of the gel. Na.K-ATPase activity measured 

as a release of inorganic phosphate in the fresh preparations of BLM was not 

different between the groups (0.27 ± 0.04 mmolPj mg"1 min"1 vs. 0.37 ± 0.04 

mmol Pi mg"1 min"1) (Fig. 9). This latter result could most probably be explained 

by impurity of the preparations and contaminations with other membranes; as 

well as the fact that in this ouabain-sensitive ATPase fractions the inhibition by 

ouabain was 30% and 37% for OP and OR groups respectively (data not shown). 

Again this suggests that our preparations were impure and contained other 

pumps insensitive to ouabain like H+,K+-ATPase from proximal tubule or cortical 

segment of collecting tubules. In addition, although Na.K-ATPase is an 

oligomeric protein, we measured expression levels of the a-subunit only, which 

may not directly correlate with the activity of the pump. 
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Figure 8 Na,K-ATPase protein expression in fractions of baso-lateral 
membranes (BLM) from OP and OR rats kidneys. 
For this set of experiments different groups of animals were used to avoid any 
manipulations of kidney before harvesting. Those animals were kept at the same 
conditions, fed the same diet for the same amount of time as animals used for 
physiological measurements. Panel (a): Graph representation of Na,K-ATPase 
abundance, measured in arbitrary units, represented as means ± SEM of n = 6 
rats/group. Blots were probed with Na,K-ATPase oc1-subunit specific antibody. 
Semi-quantitative densitometry analyses were done by using Odyssey Infrared 
Imaging System software. Significance was determined using unpaired Student's 
t-test and the null hypothesis was rejected for a p-value< 0.05. *= significant 
compared to lean rats. Panel (b): Immunoblots of BLM samples from OP and OR 
rats. Each lane represents a sample from an individual rat. Equal protein loading 
was ensured by staining each membrane with Ponceau red. 
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Figure 9 Na,K-ATPase activity in fractions of baso-lateral membranes (BLM) 
from OP and OR rats kidneys. 
Na,K-ATPase activity was expressed as a mmol of inorganic phosphate (Pi) 
liberated per mg of protein per minute and performed on freshly prepared baso-
lateral membrane (BLM) fractions. It was calculated as the difference between 
activities assayed in the absence of ouabain (total) activity and in the presence of 
5 mM ouabain. Values are means ± SEM from 6 rats per group. Each sample 
was assayed in duplicate and background was subtracted from the mean. There 
was no significant difference between the groups. Significance was determined 
using unpaired Student's t-test and the null hypothesis was rejected for a p-
value< 0.05. *= significant compared to lean rats. 



The protein expression of NHE3, the other transporter of interest was 

measured in brush border membrane vesicles (BBMV). Villin was used as a 

loading control. NHE3 expression was significantly higher in obese compared to 

lean rats (0.56 ± 0.04 RFU vs. 0.35 ± 0.06 RFU) (Fig. 10a and 10b). This was 

paralleled by higher activity of this transporter in OP animals then in OR rats 

(0.414 ± 0.06 ApH At"1 vs. 0.306 ± 0.09 ApH At"1) measured in fresh BBMV 

fractions as the rate of pH recovery in response to an external sodium load (Fig. 

11). Randomly chosen samples were incubated with 100 (iM 5-(N-ethyl-N-

isopropyl) amiloride (EIPA) to insure that activity measured was of NHE3 since 

NHE1 isoform is 100 times more sensitive to inhibition by EIPA than NHE3 

isoform. In our BBMV preparations NHE activity was resistant to EIPA (data not 

shown) suggesting that it contain mostly NHE3 isoform. 

NHE3 is one of the most regulated transport proteins and its stimulation 

and inhibition are at least partially due to changes in trafficking. In the apical 

membrane of proximal tubule cells it exists in two pools: in the microvilli where it 

appears to be active and in the intervillus spaces where it appears to be less 

active or inactive (Biemesderfer et al. 2001). Using immunohistochemistry and 

fluorescent microscopy we have measured localization of NHE3 transporter with 

regard to villin which is localized in the microvilli of the brush border of the 

epithelial cells. The highest overlapping of the two suggests that more NHE3 is in 

the active form. Representative fluorescent pictures from OP and OR groups are 

shown in the Fig. 12a. There was a significantly higher colocalization of villin 
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Figure 10 Na/H exchanger protein abundance in fractions of brush border 
membrane vesicles (BBMV) from OP and OR rats kidneys. 
For this set of experiments different groups of animals were used to avoid any 
manipulations of kidney prior to harvesting. Animals were kept at the same 
conditions, on the same diet for the same time interval as the ones used for 
physiological measurements. Panel (a): Semi-quantitative densitometry 
analyses, measured in relative fluorescent units, represented as mean ± SEM of 
n = 6 rats/group. Blots were probed with anti-NHE3 and anti-villin antibodies. 
Semi-quantitative densitometry analyses were done by using Odyssey Infrared 
Imaging System (Li-Cor) software. Significance was determined using unpaired 
Student's t-test and the null hypothesis was rejected for a p-value< 0.05. *= 
significant compared to lean group. Relative abundance of NHE3 was increased 
in OP group compared to OR group. Panel (b): Immunoblots of BBMV samples 
from OP and OR rats. For each blot, each lane was loaded with equal amount of 
protein from brush border membrane vesicles (BBMV) from a different rat. Equal 
protein loading was ensured by probing duplicates of each membrane with anti-
villin antibody, and density of NHE3 bands was normalized to that of villin bands. 
Proteins were detected with Odyssey Infrared Imaging System (Li-Cor). 
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Figure 11 NHE3 activity in fractions of brush border membrane vesicles (BBMV) 
from OP and OR rats kidneys. 
Na/H exchanger activity was measured in freshly obtained BBMVs. from OP and 
OR rats and it is expressed as a change in pH over time. Na+/H+ exchange 
activity was determined as the rate of Na+-dependent intracellular pH recovery 
assessed using BCECF-AM in the presence and absence of external sodium. 
Some samples were incubated with NHE1 inhibitor amiloride to test the 
specificity of the reaction. NHE3 activity was greater in OP rats then in OR rats. 
Values are means ± SEM from 6 rats per group. Significance was determined 
using unpaired Student's t-test and the null hypothesis was rejected for a p-
value< 0.05. *= significant compared to lean counterparts. 



(red) and NHE3 (green) in obese animals when compared to lean (21.5 ± 4.4% 

vs. 9.1 ± 3.7%) (Fig. 12b). This suggests that localization of NHE3 transporter as 

well as its protein levels could contribute to the higher activity measured in OP 

rats. 

3.3 Discussion for Aim #1 

In our study we aimed at understanding the mechanism responsible for 

the weight-related increase in blood pressure in a rat model of diet-induced 

obesity. We have used a moderately high fat diet containing 32% kcal fat which 

mimics the fat content in the Western type of human diet. Similarly to the human 

population, not all animals fed with this diet become obese. Additionally, our 

experimental model has many characteristics of obese humans (Kopelman 2000, 

Hall 2003) including hyperinsulinemia (Levin & Keesey 1998), hyperleptinemia 

(Levin et al. 2003), increased renin activity and high blood pressure (Dobrian et 

al. 2000). 

After 12 weeks of high fat feeding obese rats weighted significantly more 

than lean rats. Body weight in the OP group was on average 17% higher than in 

the OR group. Associated with this increase in BW was a 10% increase in 

systolic blood pressure in the obese compared to lean rats. According to a study 

by Guyton (Guyton 1990) all forms of hypertension are linked to the impairment 

in pressure natriuresis. We also report that pressure natriuresis and diuresis are 

attenuated in obese compared to lean rats. In obesity induced hypertension, 
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Figure 12 Confocal immunofluorescence analysis of NHE3 distribution in obese 
(OP) and lean (OR) Sprague-Dawley rats. 
4 micron sections of paraffin embedded kidneys were double labeled with 
polyclonal NHE3 and monoclonal anti-villin antibodies followed by the 
corresponding anti-rabbit and anti-mouse secondary antibodies (AlexaFluor 488-
green, AlexaFluo594- red). Panel (a): Representative images of cortical tubules 
from obese and lean animals double stained with NHE3 and villin. In OP group a 
larger fraction of NHE3 is localized at the apical brush border, illustrated by 
colocalization with villin (yellow). Panel (b): Semi-quantitative analysis of NHE3 
and villin colocalization in kidney section from OP and OR animals. 6-10 z-stack 
images were taken with laser scanning confocal microscope from each animal (n 
= 3 rats per group). Images were analyzed using Metamorph software and 
colocalization was expressed as the percentage of the sum of the green staining 
overlapping the red staining to the sum of the green fluorescence only. OP group 
had higher colocalization of NHE3 and villin compared to OR group. Significance 
was determined using unpaired Student's t-test and the null hypothesis was 
rejected for a p-value< 0.05. *= significant compared to lean rats. Bar= 
10microns. 



abnormal kidney function is initially associated with increased tubular sodium 

reabsorption, which leads to sodium retention and expansion of extracellular and 

blood volumes (Hall 2003). This increase in sodium reabsorption results in a 

rightward shift in the renal pressure-natriuresis curve and an increase in blood 

pressure. As a result, an obese individual has to have a higher blood pressure 

set point in order to maintain sodium and water balance. In our study, glomerular 

filtration rates were not different between anesthetized obese and lean animals 

under basal conditions or following an increase in renal perfusion pressure, 

suggesting that GFR is well autoregulated between renal perfusion pressure 

(RPP) values of 100 and 135 mmHg in both groups. These findings indicate that 

the difference in the sodium excretory responses to high RPP between obese 

and lean rats are most likely caused by abnormalities in renal tubular 

reabsorption of sodium. Although fractional excretion of lithium was similar 

between the two rat groups, there was a difference in response to an acute 

increase in RPP between lean and obese animals suggesting that the defect in 

sodium reabsorption may be at the level of the proximal tubule. 

In our study we intended to define the cellular mechanisms which are 

responsible for sodium retention seen in obese rats. Sodium is reabsorbed from 

the proximal tubule across the apical membrane via sodium-hydrogen exchanger 

type 3 (NHE3), and actively pumped out of the cell by the basolateral sodium 

pump, Na,K-ATPase, which generates the gradient for Na+ entry across the 

apical membrane. Protein expression of Na,K-ATPase and NHE3 were studied 

by immunoblots after preparation of baso-lateral membrane fractions (BLM) and 



brush border vesicle membrane (BBMV), respectively. Protein expression and 

activity of the transporters in BLM and BBMV were measured and the subcellular 

distribution of NHE3 was studied by immunohistochemistry. We reported that 

expression of Na,K-ATPase was 77% higher in OP than the OR group but its 

activity was the same between the groups. However, the activity of Na,K-ATPase 

was reported to correlate to the number of pump units (Ewart & Klip 1995) and 

this suggests that in general Na,K-ATPase was more active in obese rats. This 

is in agreement with the study by Bickel et al. (Bickel et al. 2001) in which the 

increase in the abundance of Na,K-ATPase was reported in the kidneys of 

obese, hypertensive, hyperinsulinemic Zucker rats evaluated by semiquantitative 

immunoblotting. Not all reports on Na,K-ATPase abundance in obesity are in 

agreement, as a reduction of Na,K-ATPase activity was reported in liver and 

kidneys of obese animals (Bray & Yukimura 1978, York et al. 1978) and humans 

(Klimes etal. 1982). However, the different results most likely reflect cell-specific 

regulation of Na,K-ATPAse in liver, renal or blood tissue. Also, a number of 

studies indicate no change in Na,K-ATPase activity in obese humans (Simat et 

al. 1983, Klimes et al. 1984). 

It is known that Na,K-ATPase is an oligomeric protein composed of a a 

subunit, a p subunit and a FXYD protein (y subunit). Expression of the catalytic 

subunit a, the one which hydrolyzes ATP and transports the cations is most 

commonly measured and was also evaluated in our study. However, recent 

findings suggest that |3 subunits and FXYD proteins essentially contribute to the 

various physiological roles of Na,K-ATPase in different tissues and can modulate 



88 

its activity in a tissue-specific way (Geering 2008). It is not clear whether changes 

in expression and activity of the a subunit are paralleled by changes in the p and 

FXYD subunits and how they can affect the overall activity and expression of the 

transporter. Moreover, Na,K-ATPase is irregularly distributed along the whole 

length of the nephron and we can not exclude the fact that beside proximal 

tubules our membrane preparations could as well include other nephron 

segments such as the thick ascending limb of Henle's loop, distal convoluted 

tubule, and connecting tubule. 

Beside the protein abundance, phosphorylation and subcellular 

distribution play a major part in the regulation of Na,K-ATPase enzyme activity. 

The catalytic a subunit of Na,K-ATPase can be phosphorylated by PKA at the C-

terminus at Ser943 (Feschenko & Sweadner 1995), as well as by PKC at the N-

terminal sites: Ser11, Ser18 and Ser23 (Logvinenko etal. 1996). Phosphorylation 

is generally associated with altered enzyme activity (Lai et al. 2000, Bertuccio et 

al. 2007), though phosphorylation status of Na,K-ATPase was not assessed at 

this point in our study. Previous studies demonstrated that in the proximal tubule 

the effect of angiotensin II on Na,K-ATPase is mediated by PKC (Rangel et al. 

2002). The mechanism of regulation of Na,K-ATPase by insulin in the kidney is 

largely unknown. It has been shown that PKC may play a role in the insulin-

mediated activation of Na,K-ATPase in cultured rat skeletal muscle cells 

(Sampson etal. 1994). Sweeney and Klip have shown that in 3T3-L1 fibroblasts 

phosphatidylinositol 3-kinase and PKC-zeta appear to be involved in the 

signaling pathway of insulin effect on Na,K-ATPase activity (Sweeney et al. 



1998). However, there are also data showing that stimulation of Na,K-ATPase 

activity by insulin in the proximal tubule is likely mediated by phosphorylation of 

TyriO (Feraille ef a/. 1999). 

In addition, redistribution of a transporter between the plasma membrane 

and cytosolic compartments is another mechanism by which its activity could be 

regulated (Periyasamy et al. 2005). There is some evidence that trafficking can 

be associated with phosphorylation of Na,K-ATPase (Chibalin etal. 1999, 

Efendiev etal. 2003). These are all important regulatory mechanisms that 

deserve further investigation. 

The other transporter of interest to us was sodium/hydrogen exchanger 

type 3 (NHE3) found in the kidneys almost exclusively in the apical side of the 

epithelium in the proximal tubule segment. We reported that obese rats had 60% 

higher expression of NHE3 when compared to lean rats (0.56 ± 0.04 RFU vs. 

0.35 ± 0.06 RFU) and this was paralleled by 35% higher activity of the 

transporter in the OP group (0.414 ± 0.06 ApH At"1 vs. 0.306 ± 0.09 ApH At"1). 

Also, we found a higher degree abundance of NHE3 in the villus tip in OP vs. OR 

group. 

The role of NHE3 in hypertension is of potential importance. NHE3 has 

been studied in various models of obesity and hypertension but the data which 

links NHE3 and high blood pressure is not conclusive. In agreement with our 

study there are reports of increased activity of exchanger in spontaneously 

hypertensive rats (SHR) and Milan hypertensive rats (MHR) compared to their 

normotensive controls of the same age (Morduchowicz etal. 1989, Parenti etal. 



1992, Hayashi et al. 1997). These results were supported by other studies in 

which both activity and abundance of Na/H exchanger was determined in freshly 

isolated or cultured proximal tubule cells and in renal cortical tubules from the 

spontaneously hypertensive rat (SHR) and WKY rats before and after the 

development of hypertension (Kelly et al. 1997, LaPointe et al. 2002). In contrast, 

there is as well evidence of decreased NHE3 activity or no change in NHE3 

activity and protein expression in primary cultured renal cells from spontaneously 

hypertensive rats (Orlov et al. 1991), in induced acute or chronic hypertension in 

Sprague-Dawley and spontaneously hypertensive rats, respectively (Yip et al. 

1998, Zhang etal. 1998, Magyar et al. 2000), in hypertensive Dahl salt-sensitive 

rats on high-salt diet (Kobayashi et al. 2004) and in obese Zucker rats (Bickel et 

al. 2002). The reason for the discrepancy is unclear, although the background on 

which hypertension develops could modulate the final outcome of exchanger 

activity as much as the high blood pressure itself (Kobayashi et al. 2004). 

Furthermore, since NHE3 activity is the resultant of several factors besides 

protein abundance, such as interaction with NHE regulatory factors (NHERF), 

NHE3 phosphorylation, membrane trafficking and changes in turnover rate, any 

above mentioned changes can determine NHE3 activity. There is evidence for 

redistribution of proximal tubule NHE3 from the apical microvilli to the 

intermicrovillar region, as determined by both subcellular fractionation and 

confocal microscopy (Zhang etal. 1998, Yang etal. 2002). Interestingly, the 

distribution was observed with both acute and chronic hypertension (Yip et al. 

1998) and was associated with decreased proximal tubule sodium transport 



(Zhang et al. 1996, 1998). In our study we have observed significantly higher 

colocalization of NHE3 with villin in obese vs. lean groups (21.46 ± 4.38% vs. 

9.10 ± 3.67%) and we concluded that in OP rats more NHE3 is distributed in the 

physiologically active membrane pool compared to the OR rats. 

In summary, in our study we demonstrated possible cellular mechanisms 

responsible for the changes seen in hypertension related to obesity. 

Approximately half of SD rats fed high fat diet became obese and had high blood 

pressure while the rest stayed lean and normotensive. That was well correlated 

with higher protein expression and activity of NHE3 and higher overall activity of 

Na,K-ATPase in the renal proximal tubule. The mechanisms which contribute to 

those changes are multifactorial and can include phosphorylation of the 

transporters, activation/inhibition of their regulatory factors or transporters 

redistribution between different membrane pools. We provided evidence of 

differences in NHE3 abundance, activity and membrane distribution between 

lean and obese rats which could contribute to the increased sodium retention 

seen during acute pressure-induced natriuresis and diuresis. 
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SECTION 4 

STUDIES FOR SPECIFIC AIM #2 

4.1 Materials and Methods for Specific Aim #2 

Animals 

The animal husbandry and separation into groups was done as 

described in methods for specific Aim #1. The OP and OR groups were 

randomly divided into sub-groups {n = 6): 1) no treatment, diet only: NT-OP/NT-

OR and 2) treatment with 0.1% (w/w) pioglitazone (Takeda Pharmaceuticals, 

Lincolnshire, IL): PIO-OP/PIO-OR. The rats were kept on respective 

diet/treatments for 4 additional weeks (Fig. 13). Pioglitazone was incorporated 

into the food pellets. Body weights and food intake were measured weekly as 

mentioned in section 4. Before and after the treatment rats were put into the 

metabolic cages and urine was collected for 24 hours for sodium 

measurements. Separate groups, fed and treated exactly the same way, were 

used for preparation of membrane fractions, brush border membrane vesicles, 

and any subsequent experiments involving those preparations. 

Surgical procedure 

The surgical procedure was performed as previously described (Khraibi et 

al. 2002). On the day of the acute experiment, rats were anesthetized with Inactin 

(100 mg kg"1), and catheters were placed in the trachea (PE-240) and 
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Figure 13 Research design for specific Aim #2. 
Male, 3 months old Sprague-Dawley rats were started on moderately high fat diet 
(MHF) a week after arrival to the facility. At week 5, halfway through the diet, rats 
were trained for the tail-cuff blood pressure measurements by the blood pressure 
analysis system (BP-2000-R; Visitech Systems; Apex, NC). Blood pressure was 
measured at week 8, before starting the treatments, and at week 12, after 
treatment completion on the day of the surgery. Average of 3-5 readings were 
taken for each animal and recorded by the automated software. Before and after 
treatment, rats from all groups were placed in metabolic cages for 24-hour urine 
collection. Non-treated groups OP and OR were placed in metabolic cages only 
once, right before surgeries. Water intake and urine volume was recorded and 
urine was analyzed for Na+ content. Starting with week 8th of the diet each 
group: OP and OR was further divided into 2 subgroups and was treated for 
additional 4 weeks with: 0.1% (w/w) pioglitazone incorporated in the food pellets 
or left untreated (diet only). After 4 weeks of treatments, and total of 12 weeks of 
the diet acute measurements of renal function were performed during surgical 
procedure. 



left jugular vein (PE-50) for intravenous infusion of 0.75 ml per 100 g body wt h 

of saline with 6 mM lithium chloride (LiCI) and 0.75 ml per 100 g body wt"1 h"1 of a 

solution of 3% inulin and 6.25% bovine albumin in saline (with 6 mM LiCI). A PE-

50 catheter was implanted in the left carotid artery for mean arterial pressure 

(MAP) measurement and blood withdrawal. PE-90 catheter with a flared tip was 

placed in the bladder for urine collection. The rats were allowed 1 hrto recover 

after completion of the surgical procedures. Then, a clearance period of 30 min 

was started; MAP was measured and recorded continuously. At the end of this 

period, ~1 ml of blood was withdrawn from the left carotid artery for plasma 

electrolytes, lithium, and inulin measurements. Urine was collected for 30 min. All 

rats were killed by an Inactin overdose (50 mg; 0.5 ml of a solution of 100 mg ml"1 

of Inactin in saline) at the end of the experiment while still under deep 

anesthesia. 

To avoid any manipulations of the kidneys different groups of animals were 

used for membrane and brush border membrane vesicle fractions. At the 

completion of the treatments rats were anesthetized with Inactin (100 mg kg"1), 

kidneys were removed without any further handling and then rats were killed by 

an Inactin overdose as mentioned above. 

Physiological parameters 

All physiological parameters were assessed, measured and calculated 

as described in the Material and Methods section for Aim #1. 



Baso-lateral membrane (BLM) and brush border membrane vesicles 

(BBMV) preparations 

BLM and BBMV fractions of renal cortexes from nontreated animals and 

rats treated with pioglitazone were prepared using the same protocols as 

described in the Material and Methods paragraph for Aim #1. 

Western Blotting on BLM and BBMV preparations 

Na,K-ATPase and NHE3 protein expression were assessed by western 

blotting as described in the Material and Methods paragraph for Aim #1. 

Activity of Na.K-ATPase and NHE3 

Na,K-ATPase activity was measured in freshly obtained BLM 

preparation and NHE3 activity was measured in freshly obtained BBMV fraction 

as previously described in the Material and Methods paragraph for Aim #1. 

Immunocytochemistry, image analysis and data collection 

Colocalization of NHE3 (green) and Villin (red) were evaluated on 

paraffin-embedded sections of kidney from untreated and treated animals; 

images were recorded by confocal fluorescent microscopy and overlapping of 

both colors were analyzed by MetaMorph software as described in the Material 

and Methods paragraph for Aim #1. 



Cell culture and treatments 

Human renal proximal tubule epithelial cells (RPTEC) (primary cells) were 

purchased from Lonza, Inc (Walkersville, MD). Cells were grown in the media 

recommended by the supplier-REBM, containing 5% fetal bovine serum. RPTEC 

were seeded at density of 3.3 x 105per 100 mm plate and 2.5 x 105-1 x 106 per 

well on 6-well plates for transfection purposes, grown to ~80% confluence and 

used between passages 3 and 6 in all experiments. They were kept in serum-

free medium 24 hr before experiments. Quiescent cells were treated with various 

PPARy agonists: pioglitazone (50 |aM), rosiglitazone (100 mM), and PGJ2 (2 ^M) 

or PPARy antagonists BADGE (100 fiM), and GW (2 y.M) for 4 hrs, harvested 

and total homogenate or membrane fractions were prepared to assess protein 

expression of Na,K-ATPase and NHE3. The protein concentration for each 

lysate was determined by using a BCA protein assay kit (Pierce Chemical) with 

BSA as a standard. PPARy agonists and antagonists were purchased from 

Cayman Chemicals (Ann Arbor, Ml). Transiently transfected cells (to either 

overexpress or silence PPARy) were seeded in 6-well plates and incubated for 

12 hours, at 37 °C, in transfection media with serum, followed by additional 24 

hour incubation in media without serum. Afterwards, the cells were incubated for 

12 additional hours in fresh serum free medium supplemented with either 

pioglitazone (50 \iM) or PGJ2 (2 (iM), both PPARy agonists, and subsequently 

harvested and processed for appropriate assays. 



Plasmid preparation 

GeneHogs strain of E.coli (GeneStorm clone ID # RG001382, Invitrogen 

Carlsbad, CA) was streaked from a glycerol stock onto a freshly prepared agar 

plate containing Zeocin as a selective antibiotic and placed at 37 °C. After 24 hrs 

2-3 single colonies were picked from the plate and inoculated into 2 ml of LB 

medium again containing Zeocin and grown for 8 hours at 37 °C with vigorous 

shaking (250 rpm). 500 jal of the starter culture was then diluted into 150 ml of LB 

medium and further grown with vigorous shaking (~300 rpm) to saturation (-12-

16 hours). The bacterial cells were then harvested by centrifugation at 6 000 g 

for 15 min at 4 °C in Beckman JA-25 centrifuge and cDNA was isolated from 

plasmid according to MidiPrep kit instructions (Qiagen, Valencia, CA). In the last 

step DNA was eluted in DNAase free water and the purity of plasmid was 

checked by measurements of the A260:A280 ratio. The integrity of plasmid was 

verified by Bgl II restriction enzyme digestion and visualized on 0.8% agarose 

gel. 

Transient transfection and PPARy overexpression 

Full length PPAR-y cloned in pcDNA3.1/GS vector already transformed in 

GeneHogs strain of E.coli (GeneStorm clone ID # RG001382) was purchased 

from Invitrogen (Carlsbad, CA). Transfection was done by Amaxa's Nucleofector 

technology following the basic nucleofection protocol for primary mammalian 

epithelial cells (Amaxa Biosystems, Gaithersburg, MD). After transfection, cells 

were left undisturbed at 37 °C for 36 hrs. Afterwards, the transfection medium 



was replaced with the media supplemented with pioglitazone for 12 hrs. Control 

cells were transfected with empty vector in identical conditions. The efficiency of 

the transfection was verified by fluorescent microscopy of cells transfected with 

pcDNA3.1/GFP. 

Transient transfection and small interfering RNA (siRNA) technique 

One day prior to transfection, RPTEC were plated in REBM into 6-well 

plates, at density of 2.5 x 105 cells/well. For transfection with X-tremeGene 

siRNA Transfection Reagent (Roche Applied Science, Indianapolis, IN) 

expression vector and either a specific siRNA duplex or a control siRNA was 

diluted in a serum-free medium. In parallel, X-tremeGene siRNA Transfection 

Reagent (Roche Appied Science, Indianapolis, IN) was added to serum-free 

REBM, and the resulting mixture was combined immediately with the diluted 

nucleic acids. After 20 minutes incubation at room temperature the solution was 

added to the cells. Without further medium change the cells were assessed for 

viability by microscopic inspection. Next day additional media with serum was 

added to each well. Subsequently cells were washed and incubated for 12 hr 

with PPARy ligands, then lysed in the homogenizing buffer. siRNA (sense and 

antisense) were designed to target a common sequence in both PPAR-y1 and y2 

isoforms. The following sequences were used for PPAR-y1, 2: 

sense siRNA: 5'-GACUACAUUGGCUGGACCUTT-3'; 

antisense siRNA- 5'AGGUCCAGCCAAUGUAGUCTT-3'; 



control sense: 5'-GACUACAUUGGCUGGACCUTT-3'; control antisense: 

5'AGGUCCAGCCAAUGUAGUCTT-3'.The efficiency of the transfection was 

verified by fluorescent microscopy of cells transfected with Cy3 luciferase-labeled 

oligonucleotides. 

Protein preparation from RPTEC and Western blotting 

Na,K-ATPase and NHE3 protein expression was assessed in total 

homogenates and in membrane fractions of RPTEC. The latter was prepared 

using Compartmental Protein Extraction Kit (Chemicon, Billerica, MA) 

according to the protocol from the manufacturer. Cell pellets were homogenized 

in RIPA buffer without detergents, with 5% sorbitol, 1mM PMSF, 1mM NaF, 

1mM Na3V04 final concentration, Protease Inhibitor Cocktail (Sigma Aldrich, 

Saint Louis, MO) at 1:1 000 dilution. Protein concentration for each lysate was 

determined using a BCA protein assay kit (Pierce Chemical) with BSA as a 

standard. The general western blot protocol was described in Materials and 

Methods paragraph for specific Aim #1. For RPTEC the following antibodies 

were used: polyclonal anti-NHE3 (Chemicon, Billerica, MA, 12 jxg ml"1) and 

monoclonal Na,K-ATPase (Upstate , Lake Placid, NY,1:10 000 dilution). 

Polyclonal anti-oc-tubulin antibody (Abeam, Cambridge, MA, 1:500 dilution) or 

monoclonal anti-a- tubulin (Sigma, Saint Louis, MO, 1:1 000 dilution) served as 

a loading control. Antigen detection was performed using appropriate 

fluorescent secondary antibodies (IRDye 680 and IRDye 800, Li-Cor 

Biosciences, Lincoln, NE) at 1:15 000 dilution for 45 minutes at RT. Membranes 
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were scanned using Odyssey Infrared Imaging System (Li-Cor Biosciences, 

Lincoln, NE). Semi-quantitative analyses of the specific bands were performed 

using Li-Cor Odyssey software. Results were expressed as relative 

fluorescence units (RFU). For some blots, secondary HRP-antibodies were 

used at 1:7 500 dilution (Amersham, Piscataway, NJ, USA) and the antigen-

antibody complexes were detected using enhanced chemiluminescence (ECL, 

Amersham, Piscat away, NJ, USA). The films were scanned and the intensity of 

the bands was measured by densitometry using SigmaGel software (Jandel 

Scientific). 

Statistical analysis 

Results are presented as mean ± standard error of mean (SEM) of the 

indicated number of experiments unless stated otherwise. Statistical analysis 

was performed using Student's t-test for unpaired data (treatment versus 

control), or by analysis of variance (ANOVA) and Holm-Sidak modification for 

multiple group comparisons, as appropriate using InStat software (San Diego, 

CA). The null hypothesis was rejected for a p-value<0.05. 

4.2 Results for Specific Aim #2 

In vivo experiments 

Physiological parameters 
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The summary of the effect of 4 weeks of pioglitazone treatment on various 

physiological parameters in obese and lean rats is presented in Table 1 and 

Table 2. OP rats had significantly higher body weights (BW) than OR rats. 

Chronic treatment with pioglitazone significantly increased body weights in the 

obese group by ~10%, had no effect on body weights in the lean group and thus 

made the difference in BWs between treated OP and OR animals significant 

(Tablel). Those changes were paralleled by a significant increase in total 

visceral fat after treatment with pioglitazone in obese rats with no effect in lean 

rats (Tablel). Furthermore, average food intake (Table 1) during the 4 weeks of 

treatment was significantly increased in the pioglitazone treated OP group and 

was significantly higher compared to the treated OR group. Treatment did not 

have an effect on food intake in lean animals. Systolic blood pressure (SBP) was 

significantly higher in obese animals compared to lean; pioglitazone treatment 

lowered SBP in OP groups from 158.9 ± 3.5 mmHg to 140.3 ± 8.9 mmHg and 

had no significant effect in the OR rats (Table 1). Since it is known that sustaining 

a hypertensive state requires an increase in the blood volume which is achieved 

by sodium and water retention we have estimated chronic sodium excretion in all 

groups of animals placed in metabolic cages. Urine sodium excretion (UNaV) 

over the period of 24 hours was not different between obese and lean rats. Also, 

pioglitazone treatment did not significantly change 24 hours UNaV in OP and OR 

groups (Table 1). In addition, there was no significant difference in water intake 

and urine volume over 24 hours in obese and lean rats non-treated or treated 
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Table 1 Final measurements of the body weights (BW) and total fat, food and 
water intake, systolic blood pressure (SBP) and chronic urinary sodium excretion 
in obese (OP) and lean (OR) rats with or without pioglitazone treatment. 

BW(g) 

Average food intake 
(g/week) over 4 weeks of 
Pio treatment 

Total visceral fat (g) 

SBP (mmHg) 

Urine Na+ (mmol 24 h"1) 

Water intake (ml 24 h"1) 

Urine volume (ml 24 h"1) 

OP 

(n = 6) 

639.7±26.6 

157.1+3.0 

27±3.6 

158.9±3.5 

2.12±0.27 

20.83±2.01 

11.67±1.86 

PIO OP 

(n = 6) 

702.5±22.4 * 

172.1 ±7.0 

42.7±4.5 * 

140.3+8.9 * 

2.7510.23 

22.50±4.43 

14.50±2.35 

OR 

(n = 6) 

563.6±4.2 f 

137.2±4.0 f 

26.4±4.4 

143.5±4.2 f 

2.0310.10 

22.5011.83 

12.5411.28 

PIO OR 

(n = 6) 

566.6119.6 § 

129.4110.0 § 

21.612.5 § 

149.716.9 

2.2710.19 

22.5011.12 

12.1710.84 

Body weights represent averages for each group from the last week of the diet 
before sacrifice. Food intake represents average over the 4 weeks of treatment. 
Significance remained the same when data of food intake was calculated over 
the entire period of the study. Total visceral fat represents sum of epididymal and 
retropritoneal fat. Systolic blood pressure corresponds to final readings of the 
experiment. Values for urine sodium, water intake and urine volume were 
obtained from metabolic cages over 24 hours period. Values are mean ± SEM 
from n = 6 rats/group. Significance was determined using one-way ANOVA with 
Holm-Sidak modification for multiple group comparisons and null hypothesis was 
rejected for a p-value <0.05. *=significant compared to non-treated; f=significant 
compared to OP; §= significant compared to PIO-OP. 
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with pioglitazone (Table 1). The lack of difference in sodium excretion could most 

probably be explained by the fact that after being fed with high fat diet for 8 

weeks high blood pressure was already established in obese groups and those 

animals were in sodium balance; additional 4 weeks of treatment did not change 

that (Hall 2003). Next, we examined natriuresis and diuresis in obese and lean 

rats after acute saline loading (Table 2). No significant difference was found in 

glomerular filtration rate (GFR), urine flow (V) and fractional excretion of sodium 

(FENa) between four experimental groups. However, acute measurements 

showed sodium retention in OR group treated with pioglitazone compared to OP 

group (14.8 ± 3.2 ^Eq min"1 vs. 2.9 ± 1.2 f̂ Eq min"1) with no effect on sodium 

excretion (UNaV) in non-treated groups. Fractional lithium excretion (FELi) which 

assesses proximal tubule function was not different between OP and OR rats 

after saline loading and was comparable after pioglitazone treatment. The limited 

natriuretic and diuretic response to acute volume expansion in our study could be 

explained by relatively fixed GFR in our experimental groups and different extend 

of volume expansion between obese and lean rats. Together, these data suggest 

that pioglitazone has different effects in obese and lean rats with respect to 

sodium reabsorption and regulation of blood pressure. Next, we examined the 

expression, activity and localization of the renal proximal tubule sodium 

transporters. This part of the study was conducted in different set of animals 

subjected to identical dietary and treatment protocols. 
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Table 2 Renal parameters measured during surgical procedure in obese (OP) 
and lean (OR) rats with or without pioglitazone treatment: glomerular filtration 
rate (GFR) and urinary sodium excretion (UNaV), fractional excretion of sodium 
(FENa), fractional excretion of lithium (FELi) and urine volume (V). 

GFR (ml min"1) 

UNaV (nEq min"1) 

FENa (%) 

FELi (%) 

V (nl min-1) 

OP 

(n = 6) 

4.08±0.7 

9.9±2.3 

2.611.3 

41.9±16.2 

71.3±13.1 

PIOOP 

(/I = 6) 

5.75±0.8 

14.813.2 

1.910.4 

25.415.1 

81.3114.0 

OR 

(n = 5) 

3.4510.4 

8.311.6 

1.810.4 

2714.4 

56.717.0 

PIOOR 

(n = 5) 

3.2310.8 

2.911.2 § 

0.610.2 

14.713.9 

28.2116.4 

Anesthetized rats were infused with lithium and inulin, urine was collected and 
blood withdrawn. Glomerular filtration rate was calculated from the clearance of 
inulin. Urinary sodium excretion was measured as the rate of sodium excretion 
per volume of urine per time unit. Fractional excretion of sodium and lithium was 
calculated as the ratio between the amount excreted in the urine versus the 
amount reabsorbed by the kidney. Values presented are mean ± SEM from n = 
5-6 rats/group. Significance was determined using one-way ANOVA with Holm-
Sidak modification and null hypothesis was rejected for a p-value <0.05. §= 
significant compared to PIO-OP. 
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Activity, protein expression and localization of sodium transporters 

In this part of the study we investigated some of the mechanisms which 

were responsible for blood pressure lowering effect of pioglitazone in obese but 

not lean rats on high fat diet. As described in results paragraph of Aim #1 Na,K-

ATPase and NHE3 are two proximal sodium transporters of interest to us. Their 

activity, as well as activity of any transporter, is the resultant of several factors 

including protein abundance, modifications of the function of single units of 

transporter and/or localization. We have measured protein expression of the a1-

subunit of Na,K-ATPase by western blotting in baso-lateral enriched membrane 

(BLM) preparations from renal cortex (Fig. 14). Pioglitazone treatment 

significantly increased Na,K-ATPase expression by 21% in OP group from 54.4 

± 3.2 RFU to 68.3 ± 3.3 RFU and by 46% in OR group from 30.7 ± 0.7 RFU to 

56.1 ± 1.7 RFU. The activity of Na,K-ATPase was also measured in BLM, on the 

day of preparation ( Fig. 15). The 4 week treatment with pioglitazone almost 

doubled the activity of the pump in obese animals (0.27 ± 0.04 vs. 0.52 ± 0.04 

mmol Pi mg"1 min"1) while had a tendency to an increase in lean rats (0.37 ± 0.04 

vs. 0.47 ± 0.04 mmol Pj mg"1 min"1) although did not attain significance (p-value= 

0.113). 

Next, we examined NHE3 protein levels in brush border membrane 

vesicles (BBMV) prepared from renal cortex of obese and lean rats with or 

without pioglitazone treatment by western blotting (Fig. 16). Villin served as 

loading control. NHE3 expression was dramatically reduced by treatment in both 

groups: in OP from 0.56 ± 0.04 to 0.07 ± 0.007 RFU and in OR from 0.36 ± 0.05 
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Figure 14 Na,K-ATPase protein expression measured in baso-lateral-enriched 
membranes isolated from renal cortex of obese (OP) and lean (OR) rats with 
(PIO) or without pioglitazone treatment (NT). 
Panel (a): Graph representation of Na,K-ATPase abundance, measured in 
arbitrary units, represented as means ± SEM of n = 6 rats/group. Blots were 
probed with Na.K-ATPase a1 subunit specific antibody. Semi-quantitative 
densitometry analyses were done by using Odyssey Infrared Imaging System 
software. Significance was determined using one-way ANOVA and the null 
hypothesis was rejected for a p-value< 0.05. *=significant compared to non-
treated; t=significant compared to OP; §= significant compared to PIO-OP. Panel 
(b): Immunoblots of BLM samples from non-treated and treated OP and OR rats. 
Each lane represents a sample from an individual rat. Equal protein loading was 
ensured by staining each membrane with Ponceau red. 
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Figure 15 Effect of pioglitazone on Na,K-ATPase activity assessed in baso-
lateral membranes prepared from renal cortexes of obese (OP) and lean (OR) 
animals. 
Na,K-ATPase activity expressed as mmol of inorganic phosphate liberated per 
mg of protein per minute performed on freshly prepared baso lateral membrane 
(BLM) fractions. Na,K-ATPase activity was calculated as the difference between 
activities assayed in the absence of ouabain (total) activity and in the presence of 
5 mM ouabain. Values are means ± SEM from 6 rats per group. Each sample 
was assayed in duplicate and background was subtracted from the mean. 
Pioglitazone treatment significantly increased activity of the pump in obese rats 
with no effect in lean group. Significance was determined using one-way ANOVA 
and the null hypothesis was rejected for a p-value< 0.05. 
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Figure 16 Na/H exchanger (NHE3) protein abundance after pioglitazone 
treatment in obese (OP) and lean (OR) rats. 
NHE3 was assayed in brush border membrane vesicles (BBMV) fractions 
prepared from renal cortex of OP and OR groups treated or not with pioglitazone. 
Panel (a): Densitometric analysis of immunoblots shown below. NHE3 
immunoreactivity is expressed as a ratio between NHE3 and Villin signals, in 
relative fluorescent units (RFU). Results represent average ± SEM of n = 6 
rat/group. Significance was determined using one-way ANOVA and the null 
hypothesis was rejected for a p-value< 0.05. Pioglitazone treatment significantly 
decreased NHE3 protein expression in OP and OR groups. Panel (b): 
Immunoblots of BBMV samples from obese and lean rats. Equal amount of 
proteins were loaded into each gel and duplicates of membranes were probed 
with anti-villin antibody which served as a loading control. Antigen-antibody 
complexes were detected with Odyssey Infrared Imaging System (Li-Cor). 
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Figure 17 Na+/H+ antiporter activity in obese and lean rats non-treated (NT) or 
treated with pioglitazone (PIO). 
Brush border membrane vesicles (BBMV) prepared from renal cortex were 
preloaded with pH indicator BCECF-AM in Na+-free buffer, pH 7.2 and then 
mixed with the buffer solution containing 150 mmol I"1 NaCI, pH 9.2 for 
determination of pH recovery as described in methods paragraph for Aim #1. 
Equal amounts of protein were labeled and readings for unlabeled samples were 
subtracted from final values. NHE3 activity was expressed as a change in pH 
over time. Values are means ± SEM from 6 rats per group. Significance was 
determined using one-way ANOVA and the null hypothesis was rejected for a p-
value< 0.05. Pioglitazone treatment significantly reduced activity of the 
exchanger in OP but not in OR group. 
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to 0.06 ± 0.015 RFU. To determine if reduced protein abundance was 

accompanied by modifications of sodium hydrogen exchanger activity, we 

measured the latter in freshly isolated BBMVs. and expressed it as the rate of pH 

recovery in response to extravesicular sodium load (Fig. 17). In the obese group, 

pioglitazone treatment significantly reduced activity of NHE3 from 0.46 ± 0.13 to 

0.22 ± 0.09 ApH At"1, which corresponds well with the protein change whereas in 

lean group pioglitazone had no significant effect on the activity of the transporter. 

As described in result paragraph for Aim #1 to insure that the activity measured 

was specific for NHE3, randomly chosen samples of BBMV were incubated with 

100 \xM of 5-(N-Ethyl-N-isopropyl) amiloride (EIPA) since it inhibits NHE1 isoform 

of the transporter (data not shown). This incubation resulted in less than 10% 

inhibition in the rate of fluorescence. To ensure the specificity of the NHE3 

activity assay, randomly chosen samples of BBMV were incubated with a higher 

concentration of EIPA (500 j^M), which was expected to block all NHE related 

activity. The inhibition found in our experiments was more than 95% in all 

assayed samples (data not shown). Next, we tested if localization of NHE3 plays 

a role in overall activity of the exchanger since it is possible that redistribution of 

NHE3 out of the apical microvilli is correlated with inhibition of the transporters. 

For this purpose we employed immunohistochemistry techniques and acquired 

images with confocal microscopy. Fig. 18a represents typical images from all four 

experimental groups. Sections of kidneys were simultaneously stained with 

NHE3 and villin where the latter was used as a marker of the top of the villi. 

Therefore, the greater the overlaying of colors the closer NHE3 was to the top of 
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Figure 18 Confocal immunofluorescence analysis of NHE3 distribution in obese 
and lean rats with or without pioglitazone treatment. 
4 micron sections of paraffin embedded kidneys were double stained with 
polyclonal NHE3 antibody and monoclonal anti-villin antibody followed by the 
corresponding anti-rabbit (AlexaFluor488-green) and anti-mouse (AlexaFluor594-
red) secondary antibodies. Panel (a): Representative images of cortical tubules 
from all experimental groups double stained with NHE3 (A, D, G, J) and villin (B, 
E, H, and K). Overlapping (C, F, I and L) of NHE3 and Villin appears yellow. 
Treament with pioglitazone seemed to change this colocalization but not 
significantly. Panel (b): Semi-quantitative analysis of NHE3 and villin 
colocalization in kidney section. 6-10 z-stack images were taken with laser 
scanning confocal microscope from each animal (n = 3 rats per group). Images 
were analyzed using Metamorph software and colocalization was expressed as 
the percentage of the sum of the green staining overlapping the red staining to 
the sum of the green fluorescence only. Pioglitazone treatment did not produce 
significant NHE3 redistribution. Significance was determined using one-way 
ANOVA and the null hypothesis was rejected for a p-value< 0.05. Bar= 
10microns. 



112 

apical brush border microvilli. Pioglitazone treatment did not have an effect on 

NHE3 localization in obese rats. However, in the OR group, it increased 

colocalization from 9.1 ±2.1 to 14.6 ± 1.3% with borderline significance (p-

value=0.09) (Fig. 18b). Therefore we concluded that since changes in protein 

expression of both transporters are paralleled to a certain extent by changes in 

activity, pioglitazone must exert its effect at least partially at the genomic level, 

although there are other factors which can influence general activity of 

transporters in vivo. 

In vitro experiments 

For our in vitro study we used primary cultures of human renal 

proximal tubule epithelial cells (RPTEC) and examined the effect of PPARy 

modulation on NHE3 and Na,K-ATPase using pharmacological and molecular 

approach. Protein expression of both transporters was assessed by western 

blotting in cells treated with PPARy antagonists (GW9682 and BADGE) and 

PPARy agonists (PGJ2 and rosiglitazone). Rosiglitazone (Avandia) is a high-

affinity ligand for PPARy and belongs to the same group of anti-diabetic 

thiazolidinediones (TZD) as pioglitazone. 15-deoxy-A 12, 14-prostaglandin J2 

(PGJ2) is a natural PPARy ligand. Activation of PPARy by PGJ2 and 

rosiglitazone caused a significant reduction in protein expression of Na,K-

ATPase compared to control (C: 0.68 ± 0.04 vs. PGJ2: 0.34 ± 0.1 vs. Rosi: 0.42 

± 0.07 arbitrary units) while PPARy antagonists: GW9682 and BADGE increased 

it by 70% and 30% respectively (Fig. 19). Activation and inhibition of PPARy had 
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Figure 19 Effect of PPARy activation or inhibition on Na,K -ATPase protein 
expression in human renal proximal tubule epithelial cells (RPTEC). 
RPTEC were incubated for 4 hours with PPARy antagonists (GW9682 and 
BADGE) or PPARy natural or synthetic ligands, PGJ2 and rosiglitazone, 
respectively. Top: Semi-quantitative analysis of western blots from membrane 
fractions of RPTEC. Results are expressed as a ratio of Na.K-ATPase to tubulin 
signal in arbitrary units and represent means ± SD from of 3-5 experiments. 
Significance was determined using one-way ANOVA and null hypothesis was 
rejected for a p-value <0.05. *=significant compared to control. PPARy inhibition 
increased protein expression of Na.K-ATPase while PPARy activation reduced it. 
Bottom: Representative western blots for Na,K-ATPase and tubulin. Equal 
amounts of protein were loaded into the SDS-PAGE gel and probed with a 
monoclonal antibody against Na,K-ATPase oc1 subunit. Immunoreactive bands 
were visualized, after incubation with appropriate secondary antibody, using 
enhanced chemiluminescence. Then membranes were stripped and 
immunoblotted with anti-tubulin antibody as a protein loading control. 
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Figure 20 NHE3 protein expression in membrane fractions of human renal 
proximal tubule epithelial cells (RPTEC) treated with PPARy agonist and 
antagonists. 
RPTEC were incubated for 4 hours with PPARy antagonists (GW9682 and 
bisphenol A diglycidyl ether-BADGE) or the PPARy natural or synthetic ligands, 
PGJ2 and rosiglitazone, respectively. Top: Semi-quantitative analysis of western 
blots from membrane fractions of RPTEC. Results are expressed as a ratio of 
NHE3 to tubulin signal in arbitrary units and represent means ± SEM from of 3-5 
experiments. Significance was determined using one-way ANOVA and null 
hypothesis was rejected for a p-value <0.05. *=significant compared to control. 
PPARy inhibition increased the abundance of NHE3 while PPARy activation 
reduced it. Bottom: Representative immunoblots for NHE3 and tubulin. Equal 
amounts of protein were loaded into the SDS-PAGE gel and probed with a 
monoclonal antibody against NHE3. Immunoreactive bands were visualized, after 
incubation with appropriate secondary antibody, using enhanced 
chemiluminescence. Then membranes were stripped and immunoblotted with 
anti-tubulin antibody as a protein loading control. 
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the same effect on NHE3 protein expression namely: GW9682 and Badge 

increased it from 0.76 ± 0.02 to 1.4 ± 0.07 arbitrary units (GW9682) and 1.27 ± 

0.07 arbitrary units (Badge) while PGJ2 and rosiglitazone reduced it to 0.39 ± 

0.08 and 0.51 ± 0.01 arbitrary units, respectively (Fig. 20). Those results suggest 

that PPARy can effect protein expression of both sodium transporters in cultured 

renal proximal tubule epithelial cells. 

To differentiate if the effects of agonists and antagonists are PPARy 

dependent or independent we transiently over-expressed PPARy using human 

full-length PPARy cDNA, containing the V5 tag, cloned into a mammalian 

expression vector. The efficiency of transfection was verified in cells transfected 

with the same vector containing the green fluorescent protein gene and was 

-55% (Fig. 21). Since PPARy is a phosphoprotein whose activity is regulated by 

phosphorylation in addition to ligand binding (Chana etal. 2004), the levels of 

phosphorylated form of PPARy were evaluated in transfected cells which 

expressed more phosphorylated PPARy under basal conditions and upon 

pioglitazone treatment (Fig. 21). 

To further test the involvement of PPARy in response to pharmacological 

manipulation we used the small interfering RNA method. The efficiency of the 

transfection was verified by fluorescent microscopy of cells transfected with Cy3 

luciferase-labeled oligonucleotides and was > 90%. Maximal inhibition of mRNA 

has been achieved after 24-48 hours whereas minimal protein levels were 

measured 48 to 72 hr after transfection. Based upon these data we performed 

the experiments 36 hours post-transfection, with an additional 12 hours of 
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Figure 21 Efficiency of transient transfection for primary renal proximal tubule 
epithelial cells (RPTEC) by nucleofection method. 
36 hours after cells were transfected with plasmid expressing green fluorescent 
protein (GFP) (pcDNA3.1/GFP) the efficiency of transfection was verified by 
microscopy. Top panel: Microscopic images of transfected cells taken with phase 
contrast (left) and fluorescence optics (right). On average, the efficiency of 
transfection was ~55%. The overexpressed PPARy, which contains a C-terminal 
peptide encoding the V5 epitope, was detected by western blot using a anti-V5-
HRP antibody (shown on far right). Bottom panel: Representative immunoblot of 
transfected and non-transfected RPTEC in basal conditions and with pioglitazone 
treatment probed with antibody against the phosphorylated form of PPARy. 
Transfected cells expressed more phosphorylated PPARy under both conditions. 
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Figure 22 Efficiency of transient transfection with small interfering RNA (siRNA) 
for primary renal proximal tubule epithelial cells (RPTEC) using X-tremeGene 
siRNA Transfection Reagent. 
Top panel: Representative results of transfection efficiency 24 hr after 
transfection of RPTEC with Cy3-Luciferase siRNA. The efficiency of the 
transfection was > 90%. Middle panel: Representative RT-PCR showing 
expression of PPARy mRNA at 24, 48, 72 hours in RPTEC transfected (T) or 
non-transfected (NT) with siRNA (left). Transfection was most effective between 
24 and 48 hours. Representative western blotting of protein expression of PPARy 
at 24, 48, 72 and 96 hours post-transfection in cells non-transfected (NT), 
transfected (T) or transfected with scrambled oligonucleotides (TS) (right). The 
lowest protein expression was detected between 48-72 hours. Bottom panel: 
Representative western blotting of transfected and non-transfected RPTEC in 
basal conditions and with pioglitazone treatment probed with anti-phospho 
PPARy. Expression of pPPARy was virtually undetectable in RPTEC transfected 
with siRNA. 
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pharmacological stimulation with pioglitazone (Fig. 22). Na,K-ATPase protein 

expression was significantly reduced in wild type cells upon pioglitazone 

treatment to 50% of the control. Overexpression of PPARy followed by 

pioglitazone treatment decreased Na,K-ATPase protein by 65% while silencing of 

the receptor abolished the inhibitory effect of the drug (Fig. 23). To diminish 

variability of the data from different blots controls are presented as 100% and 

treatment values are normalized to controls. Similar changes were estimated in 

protein expression of NHE3. In wild type cells pioglitazone significantly 

decreased NHE3 levels by 35%, simultaneous overexpression and activation of 

PPARy caused reduction of exchanger by 54% while siRNA eliminated the effect 

of PPARy activation (no change in protein levels) (Fig. 24). Together, the in vitro 

data indicate that pioglitazone exerts its action on human proximal tubule sodium 

transporters, Na,K-ATPase and NHE3, via PPARy activation. 

4.3 Discussion for Specific Aim #2 

In this study we examined the effect of chronic pioglitazone treatment on 

systolic blood pressure (SBP) in obese and lean Sprague-Dawley rats on high fat 

diet and began to unravel cellular and molecular mechanisms underlying the 

observed effects. Pioglitazone (Actos) is an antidiabetic agent that acts primarily 

by decreasing insulin resistance and is used in the management of type 2 

diabetes. Together with rosiglitazone it belongs to the thiazolidinedione (TZD) 

group of drugs which are high-affinity synthetic ligands for PPARy. We reported 
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Figure 23 Na,K-ATPase expression levels in RPTEC following overexpression 
or silencing of PPARy and pioglitazone stimulation. 
Cells were transiently transfected with either a full length human PPARy cDNA 
cloned in a pcDNA3.1/GS vector or with siRNA designed to target a common 
sequence in both PPAR-y1 and y2 isoforms. Equal amount of protein from total 
homogenates of cells were loaded into 7.5% polyacrylamide gel. Membranes 
were immunoblotted with monoclonal anti Na,K-ATPase a1 subunit antibody and 
detected by Odyssey Infrared Imaging System. Membranes were stripped and 
reprobed with anti-tubulin which served as a loading control. Results are 
expressed as a percentage of the controls of Na,K-ATPase/tubulin ratio to 
minimize variability between different blots. Values are mean ± SD from 3-5 
experiments performed in duplicate. Significance was determined using unpaired 
two tail t-test and the null hypothesis was rejected for a p-value <0.05. *= 
significant compared to control. 
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Figure 24 NHE3 expression levels in RPTEC following overexpression or 
silencing of PPARy and pioglitazone stimulation. 
Cells were transiently transfected with either a full length human PPARy cDNA 
cloned in a pcDNA3.1/GS vector or with siRNA designed to target a common 
sequence in both PPAR-y1 and y2 isoforms. Equal amount of protein from total 
homogenates of cells were loaded into 7.5% polyacrylamide gel. Membranes 
were immunoblotted with polyclonal anti NHE3 antibody and detected by 
Odyssey Infrared Imaging System. Membranes were stripped and reprobed with 
anti-tubulin which served as a loading control. Results are expressed as a 
percentage of the controls of NHE3/tubulin ratio to minimize variability between 
different blots. Values are mean ± SD from 3-5 experiments performed in 
duplicate. Significance was determined using unpaired two tail t-test and the null 
hypothesis was rejected for a p-value <0.05. *= Significant compared to control. 
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that 4 week pioglitazone treatment lowered SBP by ~18 mmHg in obesity-prone 

(OP) rats while having no effect on blood pressure of obesity-resistant (OR) rats 

on a high fat diet. To date, there is extensive evidence that PPARy agonists 

reduce blood pressure in a wide range of insulin-resistant (Yoshimoto et al. 1997, 

Walker et al. 1999) as well as in non-insulin-resistant animal models of 

hypertension (Zhang et al. 1994), and in human studies of diabetic or non-

diabetic hypertensive subjects (Ogihara etal. 1995, Fullert etal. 2002). The 

effects of these PPARy agonists on blood pressure in normotensive rats and 

humans are not very conclusive. Song et al. reported a decrease in blood 

pressure in normal rats after treatment with rosiglitazone (Song et al. 2004) while 

Tanimoto etal. reported no change in systemic blood pressure in diabetic KK/Ta 

mice treated with pioglitazone for 4 or 8 weeks (Tanimoto et al. 2004). Moreover, 

Zanchi and coworkers demonstrated that in healthy human subjects chronic 

administration of pioglitazone did not alter blood pressure (Zanchi et al. 2004). 

The discrepancy between the study by Song and our results could most likely be 

explained by differences in the selection of the animal model, the diet, the length 

of the treatments, or various TZDs used (rosiglitazone vs. pioglitazone). 

Multiple mechanisms have been implicated in the anti-hypertensive effects 

of TZDs, including an increase in insulin sensitivity (Uchida etal. 1997, Walker et 

al. 1999), direct vascular effects (Diep et al. 2002, Ryan et al. 2004), modulation 

of endothelial vasoactive factors (Fujiwara et al. 1998) and direct renal action 

(Isshiki et al. 2000). The renal related effects of TZDs explained the fluid 

retention and edema, a serious side-effect, induced sometimes by TZD treatment 
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in both animals and humans (Yang et al. 2003, Zanchi etal. 2004). The present 

study was undertaken to elucidate the renal mechanisms of blood pressure 

lowering effects of TZDs. This could further facilitate our understanding of the 

complex renal effects of TZDs. We showed that sodium excretion was similar 

under chronic conditions in all the experimental groups. However, when 

challenged with acute volume expansion, lean rats treated with pioglitazone 

excreted significantly less sodium than obese rats. Glomerular filtration rate 

(GFR) remained the same in all the groups. In accordance with our data, studies 

by Yang et al. and Zanchi et al. showed no change in GFR after TZD treatment in 

animal and humans, respectively (Yang et al. 2003, Zanchi et al. 2004). 

Conversely, a study by Song et al. reported that acute, three-day administration 

of rosiglitazone, reduced the GFR, measured indirectly as creatinine clearance, 

(Song et al. 2004). It remains to be reconciled whether or not this discrepancy is 

related to the methods used to estimate GFR or differences in other experimental 

protocols such as the length of the treatment, the choice of the animal model or 

dietary regimen. 

Our study demonstrated that in an animal model of obesity-induced 

hypertension pioglitazone lowers blood pressure without effecting renal 

parameters or sodium excretion while in normotensive lean rats it caused no 

difference in blood pressure even as it lead to sodium retention with no change in 

GFR. As we did not observe an alteration in renal hemodynamic parameters 

following treatment with pioglitazone we proceeded to evaluate the ability of 

TZDs to directly influence tubular reabsorption. We focused our work on the 



123 

proximal tubule since we showed in the previous aim that in our model of diet-

induced hypertension the blunted pressure natriuresis and diuresis was mediated 

by increased sodium reabsorption in this segment of the nephron. 

We evaluated expression, activity and distribution of two sodium 

transporters: Na,K-ATPase and Na+/H+ exchanger type 3 (NHE3) in obese and 

lean Sprague-Dawley rats chronically treated with pioglitazone. We reported that 

Na,K-ATPase protein expression was increased by pioglitazone in obese and 

lean rats while its activity was stimulated only in the OP group. This is difficult to 

reconcile with the observed reduction in blood pressure in obese rats treated with 

pioglitazone and a lack of changes in sodium excretion in this group. The reason 

for this is not clear but our less than pure basolateral membrane preparations 

could be one probable cause. Renal cortex is enriched in proximal tubules but it 

also contains other nephron segments such as the thick ascending limb of 

Henle's loop, distal convoluted tubule, and connecting tubule. All these segments 

express Na,K-ATPase in the epithelial cell basolateral membranes and may also 

contain other pumps which are ouabain sensitive such as H+,K+-ATPase 

(Beltowski & Wojcicka 2002). A contamination with intracellular membranes 

although unlikely, remains a possibility. A lower than expected ouabain 

inhibitable activity was found consistently in our membrane preparations. In OR 

rats treated with pioglitazone, an increase in Na,K-ATPase abundance correlated 

well with reported stimulation of sodium reabsorption in these animals but did not 

explain the lack of difference in their blood pressure after the treatment. The 

discordant data between activity and expression of Na,K-ATPase in this group 
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could be attributed to a redistribution of enzyme subunits to intracellular 

organelles (early endosomes) during Na,K-ATPase inhibition as suggested by 

Chibalin etal. in opposum kidney (OK) cells (Chibalin etal. 1998). 

Another regulatory mechanism for Na,K-ATPase activity involves the 

cytoplasmic sodium concentration (Soltoff & Mandel 1984) and the levels of 

circulating hormones such as dopamine (Meister & Aperia 1993) and insulin 

(Sweeney & Klip 1998). There are reports showing defects of dopamine 

receptors (D1) in proximal tubules of spontaneously hypertensive rats (SHR) 

(Kinoshita, S. etal. 1989) which lead to blunted pressure natriuresis (Felder etal. 

1990). Similarly, dopamine was unable to inhibit the activity of Na,K-ATPase and 

NHE3 in proximal tubules of obese Zucker rats (Hussain etal. 1999). Umrani and 

co-workers reported that PPARy activation restores renal dopamine receptor 

function in obese Zucker rats by lowering plasma insulin levels (Umrani etal. 

2002). Although we did not measure dopamine receptors in our model, it is 

probable that the same effect was achieved in our study. In addition to dopamine, 

insulin exerts both short and long-term effects on Na,K-ATPase. Nevertheless, in 

diabetic experimental models, effects of PPARy activation are rather 

controversial. An increase in whole kidney and cortical Na,K-ATPase activity was 

reported by Ng etal. in streptozotocin-induced diabetic rats (Ng etal. 1993) and 

by Bickel et al. in obese Zucker rats at 2 and 4 months of age (Ng et al. 1993, 

Bickel etal. 2001); no change in cortical Na,K-ATPase expression was found in 

6-month old obese Zucker rats (Bickel et al. 2002). Furthermore, Song et al. 

have demonstrated that a 3 day treatment with a PPARy agonist increased the 
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renal abundance of Na,K-ATPase in normal Sprague-Dawley rats (Song etal. 

2004). Riazi et al. reported that 12 week treatment with rosiglitazone also 

increased the whole kidney expression of Na,K-ATPase in obese Zucker rats 

(Riazi etal. 2006) whereas Umrani etal. showed that4 week rosiglitazone 

treatment of obese Zucker rats attenuated the increased Na,K-ATPase activity 

(Umrani etal. 2002). In OP rats Dobrian etal. reported increased levels of 

insulin (Dobrian et al. 2004). This may account for differential regulation of Na,K-

ATPase in different animal models. Moreover, the disagreement between 

different studies indicate that not only insulin but additional factors such as age 

and other hormones interacting together can influence Na,K-ATPase activity. 

Although TZDs effectively attenuate insulin resistance in hyperinsulinemic states 

they do not affect sodium transporters in an unequivocal way. This suggests that 

the effects of PPARy stimulation on sodium transporters is dependent on the 

length of treatment, animal model used (normal versus obese versus lean treated 

high fat diet), the metabolic milieu of the animal, or type of TZD used. 

We also examined the effect of PPARy activation on the apical 

sodium/hydrogen exchanger type 3 (NHE3). NHE3 is one of the most regulated 

transport proteins. It can be modulated by changes in expression, alterations in 

intrinsic activity without changes in NHE3 protein abundance (Soleimani etal. 

1995), phosphorylation status (Moe 1999), changes in trafficking (Biemesderfer 

et al. 2001), and presence or absence of its regulatory factors (NHERF) (Yun et 

al. 1997). Pioglitazone treatment decreased NHE3 protein expression in lean rats 

without a reduction in the activity of the transporter. We also found a 
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redistribution of NHE3 towards the top of the villus in the lean rats, which may 

account for the lack in activity change despite a reduction in protein abundance. 

In the obese rats we did not find a change in NHE3 membrane distribution and a 

reduction in both protein abundance and activity. These results suggest that both 

abundance and distribution of NHE3 are important for activity of the transporter. 

The results for both OP and OR groups correlate well with changes in sodium 

reabsorption reported in this Aim. However, this data further implies that ability to 

respond to TZDs can vary depending on the metabolic state of the subject (lean 

versus obese). Based on the reports by Hall (Hall 2003) and the results from this 

and the previous aims we may conclude that obese rats present with the 

expansion of extracellular fluid volume and most likely can not retain much fluid 

when challenged with acute saline loading. On the other hand, lean rats treated 

with pioglitazone react to acute volume expansion with the disproportionate 

expansion of the extracellular space which finally leads to fluid retention. Further 

studies are needed to address these observations. 

In obese rats treated with pioglitazone, reduction in expression and activity 

of NHE3 at the proximal tubule level could explain a drop in systolic blood 

pressure. On the other hand, the lack of changes in sodium excretion in this 

group could possibly be justified by an upregulation of other transporters in this 

or other nephron segments. These transporters include, among others, the 

sodium phosphate cotransporter subtype II (NaPi-2), at proximal tubule level and 

the amiloride-sensitive sodium channel (ENaC) in the collecting duct (Knepper 
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2002). Circumstantial evidence provided by this study suggests that stimulation 

of NaPi-2 and ENaC represents a potential alternative. 

Since our animal model of diet-induced obesity makes difficult the in vivo 

assessment of a direct effect of TZDs on PPARy activation, we examined the 

latter in vitro in human renal proximal tubule epithelial cells (RPTEC). We 

modulated PPARy pharmacologically or by gene overexpression or silencing. 

Protein expression of Na,K-ATPase was decreased upon activation of PPARy by 

the natural and synthetic ligands PGJ2 and rosiglitazone, respectively and was 

increased by PPARy inhibitors GW9682 and BADGE. Moreover, overexpression 

of the receptor followed by its activation led to reduction in Na,K-ATPase protein 

expression. This effect of pioglitazone was abolished in cells transfected with 

siRNA for PPARy, providing evidence that pioglitazone requires the expression of 

peroxisome proliferator-activated receptor gamma in order to reduce Na,K-

ATPase protein expression. 

There are a few proposed mechanisms through which PPARy activators 

can negatively regulate expression of other genes. The transcriptional 

suppression of Na,K-ATPase could be due to a direct binding of activated PPARy 

to the PPAR-response element in the gene promoter, as previously described for 

the sex hormone-binding globulin gene (Selva & Hammond 2009) and for TZDs 

inhibition of B3-adrenergic receptors (Bakopanos & Silva 2000). Alternatively, 

inhibitory effects might occur independent of a PPAR binding site by a physical 

interaction with other transcription factors in a process called trans-repression. 

For instance, sumoylation of PPARy ligand-binding domain leads to prevention of 
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the ubiquitylation machinery that normally mediates the signal-dependent 

removal of corepressor complexes required for gene activation as was noted for 

inducible nitric oxide synthase (iNOS) (Pascual etal. 2005). The trans-repression 

mechanism is indirectly supported by the lack of PPRE element in the promoter 

of human a1-subunit Na.K-ATPase (mapped data supplied by NCBI 

ID:NM_000701.6) as determined using Genomatix Matlnspector software 

(Genomatix Software Inc., Ann Arbor, Ml). 

Nevertheless, it was surprising that the effects of PPARy activation on 

sodium transporters expression in vivo and in vitro were contradictory. We 

observed an increase in Na.K-ATPase expression in the former experiments and 

a reduction in the latter after treatment with pioglitazone. This discrepancy could 

most likely be clarified by the fact that very different preparations were used for 

these experiments. As already discussed, baso-lateral fractions prepared from 

the rat kidney were not very pure and could contain some other segments of 

nephron as well as some intracellular membranes. On the other hand, for our in 

vitro measurements we used a pure preparation of renal proximal tubule 

epithelial cells. Furthermore, the metabolic milieu in vivo may have important 

influences on the transporters modulation as previously discussed. Finally, it is 

very likely that in our in vivo model of diet-induced obesity and in vitro cell culture 

model PPARy expression and activity levels are different. 

Similarly, we conducted in vitro experiments to investigate whether 

pioglitazone modulates NHE3 expression via a PPARy related mechanism. The 

effects measured for Na.K-ATPase were mirrored by the results obtained for 
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NHE3. Protein expression of NHE3 was decreased upon activation of PPARy by 

the natural or synthetic ligands PGJ2 and rosiglitazone, respectively and was 

increased by PPARy inhibition by GW9682 and BADGE. Stimulation of PPARy in 

cells overexpressing the receptor led to a reduction in NHE3 abundance while 

having no effect in cells transfected with PPARy siRNA. Thus, we concluded that 

pioglitazone requires the presence of peroxisome proliferator-activated receptor 

gamma in order to exert its inhibitory effect on NHE3 protein expression. Studies 

by Oliver et al. showed that troglitazone inhibited NHE3 activity in proximal 

tubule-like LLC-PK1 cells (Oliver et al. 2005). Also, de Dios et al. showed that 

acute exposure to troglitazone but not rosiglitazone, inhibits Na/H exchange 

activity in cultured bovine endothelial cells (de Dios etal. 2001). 

As discussed before for Na,K-ATPase, inhibition of NHE3 gene 

transcription by activated PPARy can take place by binding to peroxisome 

proliferator responsive element (PPRE) in the gene promoter (Selva & Hammond 

2009) or by trans-repression mechanisms (Pascual et al. 2005). Since human 

NHE3 does not contain a putative PPRE sequence in the promoter based on 

software analysis of the promoter sequence (Genomatix Software Inc., Ann 

Arbor, Ml) it is unlikely to have a direct NHE3 transcriptional effect. However, in 

the rat NHE3 promoter (GeneBank # S833406) a putative PPRE sequence is 

reported (Genomatix Matlnspector software; Genomatix Software Inc., Ann 

Arbor, Ml) suggesting a possible direct transcriptional regulation of NHE3 gene 

and implying that the PPARy signaling pathway may be species-specific. 
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In addition, some of the pleiotropic actions of PPARy synthetic ligands on 

cellular function may involve pathways other than the classical PPARy mediated 

pathway (Rangwala & Lazar. 2004). These involve Mitogen Activated Protein 

Kinase Kinase (MEKK) (Takeda. etal. 2001) and mitochondrial AMPK (AMP-

activated protein kinase) activation (Feinstein etal. 2005). Turturro etal. 

demonstrated an inhibitory effect of troglitazone on NHE3 activity in proximal 

tubule-like LLC-PK1 cells and proposed that physiological responses to TZDs 

may reflect the interaction of more than one pathway (Turturro et al. 2007). This 

opens the possibility that in RPTEC PPARy activation may use different 

pathways to exert effects on NHE3 expression and activity. However, further 

studies are warranted to examine the involvement of these different pathways. 

In summary, the in vitro study demonstrated that pioglitazone can inhibit 

protein abundance of Na,K-ATPase and NHE3 by directly activating PPARy. In 

vivo the reduction in blood pressure in obese animals was correlated with 

reduced NHE3 activity due, at least partially, to a reduction in protein expression 

without significant changes in transporter trafficking. Besides, pioglitazone 

stimulated basolateral Na,K-ATPase in the renal tubules. Also, blood pressure of 

lean rats was not changed following chronic pioglitazone treatment but sodium 

reabsorption was significantly increased. 

Clearly, further in vivo studies are needed to determine the expression 

and activity of other sodium transporters along nephron length in obese and lean 

rats fed a high fat diet to complement our understanding of physiological 

processes underlying their diverse responses to PPARy activation. 
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SECTION 5 

STUDIES FOR SPECIFIC AIM #3 

5.1 Materials and Methods for Specific Aim #3 

Animals 

The animal husbandry and separation into groups was done as described 

in methods for specific Aim #1. After 8 weeks on the diet the OP and OR groups 

were randomly divided into 2 sub-groups (each with n of 6): 1) no treatment, diet 

only: NT-OP/NT-OR and 2) treatment with 1.2 mg kg"1day"1 NG-nitro-L-arginine 

methyl esther (L-NAME, Sigma-Aldrich, Saint Louis, MO) in drinking water for 4 

additional weeks (L-OP/L-OR). This dose of L-NAME has been reported not to 

increase mean arterial pressure (Cadnapaphornchai etal. 2001). Body weights 

and food intake were measured weekly as mentioned in section 4, water intake 

was determined every other day during treatment with L-NAME (Fig. 25). For 

part of the study in which the effects of L-NAME on pressure natriuresis were 

evaluated, different groups of rats were used than for studies involving regualtion 

of sodium transporters. However, both groups followed the same dietary and 

treatment protocols. 

Surgical procedure for acute pressure natriuresis experiments 

The surgical procedure was modified from Khraibi etal. (Khraibi 2000) 

and performed as previously described in the Material and Methods part of 

specific Aim #1. 
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Figure 25 Research design for specific aim #3A. 
Male, 3 months old Sprague-Dawley rats were started on moderately high fat diet 
(MHF) a week after arrival to the facility. Before and after treatment, rats from all 
groups were placed in metabolic cages for 24 hour urine collection. Non-treated 
groups OP and OR were placed in metabolic cages only once, right before 
surgeries. Water intake and urine volume was recorded and urine was analyzed 
for Na+ content. Starting with week 8th of the diet each group: OP and OR was 
further divided into 2 subgroups and was treated for additional 4 weeks with: 1.2 
mg"1 kg"1 L-NAME in drinking water or left untreated (diet only). After 4 weeks of 
treatments, and total of 12 weeks of the diet, acute measurements of renal 
function were performed during surgical procedure. 
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Physiological parameters 

All physiological parameters were assessed, measured and calculated 

as described in the Material and Methods section for Aim #1. 

Baso-lateral membrane (BLM) and brush border membrane vesicles 

(BBMV) preparations 

BLM and BBMV fractions of renal cortexes from nontreated animals and 

rats treated with pioglitazone were prepared using the same protocols as 

described in the Material and Methods paragraph for Aim #1. 

Western Blotting on BLM and BBMV preparations 

Na,K-ATPase and NHE3 protein expression were assessed by western 

blotting as described in the Material and Methods paragraph for Aim #1. 

Activity of Na.K-ATPase and NHE3 

Na,K-ATPase activity was measured in freshly obtained BLM 

preparations and NHE3 activity was measured in freshly obtained BBMV 

fractions as previously described in the Material and Methods paragraph for 

Aim #1. 

Immunocvtochemistry, image analysis and data collection 

Colocalization of NHE3 (green) and villin (red) were evaluated on paraffin-

embedded sections of kidney from untreated and treated animals; images were 
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recorded by confocal fluorescent microscopy and overlapping of both colors were 

analyzed by MetaMorph software as described in the Material and Methods 

paragraph for Aim #1. 

Nitrite/nitrate Measurement 

Total nitrite/nitrate levels were determined as a measure of NO production 

in urine collected from untreated and treated animals during a 24 hr period and in 

the supernatant from treated and control cells using an enzymatic kit (R&D 

Systems, Minneapolis, MN). This assay determines NO concentrations based on 

the enzymatic conversion of nitrate to nitrite by nitrate reductase, which is 

followed by colorimetric detection of nitrite. A set of standards was assayed in 

duplicates along with the samples. The background was subtracted from each 

reading, and the average optical density was calculated. The values were 

represented as micromole of nitrite/nitrate per milliliter. 

Cell culture and treatments 

The initial batch of human renal proximal tubule epithelial cells (RPTEC) 

was purchased from Lonza, Inc (Walkersville, MD) and was grown in the media 

recommended by the supplier-REBM, containing 5% fetal bovine serum. RPTEC 

were always used between passage 3 and 6. They were seeded at a density of 

3.3 x 105per 100 mm plate for western blotting and grown to ~80% confluence 

before the start of the experiments. For measurements of cGMP cells were 

seeded at 1 x 105 cells per well on 12-well plates 48 hours before experiments. 
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Cells were kept in serum and insulin-free medium 24 hrs before experiments. At 

first, RPTEC were treated with NO donor S-nitro-acetylpenicillamine (SNAP, 

Cayman Chemical, Ann Arbor, Ml) at various concentrations (10"4 M, 10"5 M, 10"6 

M) for 5 min, 30 min and 2 hrs in the presence of 1 mM 3-lsobutyl-1-

methylxanthine (IBMX, Sigma, Saint Louis, MO). In the next step of the study, 

cells were preincubated with 1 mM IBMX and incubated with SNAP (10"5 M) and 

oxadiazolo-quinoxaline (ODQ, 10"4M, Sigma, Saint Louis, MO), a guanylyl 

cyclase inhibitor or Probenecid (10"4M, Sigma, Saint Louis, MO) which blocks an 

organic anion transporter (OAT). Next, RPTEC were preincubated withl mM 

IBMX and incubated with different concentrations of Angiotensin II (10"6M, 10"7 

M, 10"8M)( Sigma-Aldrich, Saint Louis, MO), Leptin (15 ng ml"1, 30 ng ml"1, 45 ng 

ml"1 and 60 ng ml"1) (Calbiochem, San Diego, CA) and Insulin (10"7M, 10"8M, 10" 

9 M)( Sigma-Aldrich, Saint Louis, MO ) for 2 hrs in the presence or absence of 

SNAP (10"6 M). Finally, cells preincubated with 1 mM IBMX were treated with the 

selected concentrations of Angiotensin II (10"8M), Insulin (10"9M), Leptin (45 ng 

ml"1) with or without SNAP (10"5 M) in the absence or presence of Probenecid 

(lO^M). 

cGMP measurements 

cGMP measurements were performed using a commercially available 

competitive enzyme immunoassay (EIA) kit (Cayman Chemical, Ann Arbor) 

following the instructions by the manufacturer. Levels of cGMP were initially 

assessed in the supernatant and cell lysates in the presence of 1 mM of IBMX 
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under basal conditions and upon treatments with different concentrations of 

SNAP at various time points. In the next step, levels of cGMP were assessed in 

the cells preincubated with 1 mM IBMX and incubated with SNAP (10"5M) and 

ODQ (10"4M) or Probenecid (104 M). Also, cGMP levels were tested in the 

supernatant and cell lysates of the cells preincubated withl mM IBMX and 

incubated with different concentrations of angiotensin II, leptin, and insulin for 2 

hrs in the presence or absence of SNAP (10"6 M). Afterwards cGMP levels were 

tested in supernatant or cell lysates preincubated with 1mM IBMX and incubated 

with angiotensin II (10"8M), insulin (10"9M), leptin (45 ng ml"1) with or without 

SNAP (10"5 M) in the absence or presence of Probenecid (10"4 M). cGMP 

measurements were performed in the medium and cell lysates to test extra- and 

intracellular levels of cGMP, respectively. Medium from the wells were aspirated 

and cells were extracted according to the protocol provided and both 

preparations were stored at -80 °C for further tests. All samples were acetylated, 

diluted, and sampled in duplicates. 

Protein preparation from RPTEC and Western blotting 

Na,K-ATPase and NHE3 protein expression was assessed in membrane 

fractions of RPTEC which were prepared using Compartmental Protein 

Extraction Kit (Chemicon, Billerica, MA) according to the protocol from 

manufacturer. For assessing levels of phosphorylated forms of sodium 

transporters, membrane fractions were prepared during different steps of 

centrifugation. Cell pellets were homogenized in RIPA buffer without 
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detergents, with 5% sorbitol, 1 mM PMSF, 1 mM NaF, 1 mM Na3V04 final 

concentration, Protease Inhibitor Cocktail (Sigma Aldrich, Saint Louis, MO) at 

1:1 000 dilution and additionally 1:100 dilution of Phosphatase Inhibitor 

Cocktail (Sigma Aldrich, Saint Louis, MO) for phosphoantibodies. After 

incubation on ice, samples were centrifuged at 4 800 rpm for 10 min. 

Supernatants were transferred and centrifuged again at 38 000 rpm for 90 min. 

Pellets produced were reconstituted in RIPA buffer as described above. Protein 

concentrations for each lysate were determined by using a BCA protein assay 

kit (Pierce Chemical) with BSA as a standard. Western blot protocol was 

followed as described in Materials and Methods paragraph for specific Aim #1 

with the exception of some antibodies used. The following antibodies were 

used: polyclonal anti-NHE3 (Chemicon, Billerica, MA, 12 \xg ml"1), monoclonal 

antibody against phosphoNHE3 [Ser 552] (Novus Biologicals, Littleton, CO; 12 

jxg ml"1), monoclonal Na,K-ATPase (Upstate , Lake Placid, NY,1:10 000 

dilution) and polyclonal phospho Na,K-ATPase [Ser 16] (Cell Signaling 

Technology, Danvers, MA; 1:500 dilution). Antigen detection was performed 

using appropriate secondary antibodies conjugated to fluorescent tag (IRDye 

680 and IRDye 800) at 1:15 000 dilution for 45 minutes at RT. Membranes 

were scanned using the Odyssey Infrared Imaging System (Li-Cor Biosciences, 

Lincoln, NE). Membranes probed with phospho antibodies were scanned and 

then stripped with Western Re-probe Buffer (Geno Technology, Inc, St. Louis, 

MO) according to the protocol provided and incubated with antibodies 

.recognizing total form of transporters. Semi-quantitative analyses of the specific 
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bands were performed using Li-Cor Odyssey software. Results were expressed 

as the ratio of membrane to cytosolic fractions or phospho to total form in 

relative fluorescence units (RFU). 

Statistical analysis 

Results are presented as mean ± standard error of mean (SEM) of the 

indicated number of experiments unless stated otherwise. Statistical analysis 

was performed using Student's t test and non-parametric test for unpaired data 

(treatment versus control), or by analysis of variance (ANOVA) and Holm-Sidak 

or Student-Newman-Keuls post-hoc for multiple group comparisons, as 

appropriate using InStat software (San Diego, CA). The null hypothesis was 

rejected for a p-value<0.05. 

5.2 Results for Specific Aim # 3 

In vivo experiments 

Physiological parameters 

After 12 weeks of the moderately high fat diet (MHF) final body weights 

(BWs) of obese rats nontreated or treated with 1.2 mg"1 kg"1 day"1 L-NAME for 4 

weeks were significantly higher then lean rats ( OP-781.0 ± 33.4 g vs. OR-633.5 

± 2.8 g; L-OP-821.0 ± 10.6 g vs. L-OR-658.0 ± 13.6 g)(Fig. 26a). As in earlier 

studies, obesity prone rats weighted significantly more than obesity resistant rats 

and treatment with L-NAME did not affect BWs. Total fat content remained 45% 
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Figure 26 Final measurements of the body weights (BW) and total fat in obese 
(OP) and lean (OR) rats with or without L-NAME treatment. 
Body weights represent averages for each group from the last week of the diet 
before sacrifice. Total visceral fat represents sum of epididymal and 
retroperitoneal fat. Values are mean ± SEM from n = 6 rats/group. Significance 
was determined using one-way ANOVA with Holm-Sidak modification for multiple 
group comparisons and null hypothesis was rejected for a p-value <0.05. Obese 
rats treated or not were significantly heavier then corresponding group of lean 
rats and those differences were paralleled by changes observed in the amount of 
total fat. 



higher in the OP group treated with L-NAME compared to the OR group and 

paralleled changes observed in BWs (54.6 ± 2.5 g vs. 37.6 ± 2.2 g) (Fig. 26b). At 

the end of the dietary protocol, during the surgical procedure, mean arterial 

pressure (MAP) was measured (Fig. 27) and we found no significant differences 

in MAP between the experimental groups. 

To ensure equal effectiveness of L-NAME treatment, metabolites of nitric 

oxide (NO) nitrate and nitrite were assessed in urine collected for 24 hours in 

metabolic cages. Levels of NOx in urine were not different between OP and OR 

groups (6.95 ± 1.0 |amol ml"1 vs. 6.61 ±1.1 ^mol ml"1, respectively). Treatment 

with L-NAME caused a decrease in NO production to 4.2 ± 0.3 |j.mol ml"1 in 

obese rats and to 3.7 ± 0.4 (xmol ml"1 in lean rats but failed to gain significance by 

an extremely small margin (p=0.052) in the former (Fig. 28). Daily water intake 

from 8th to 12th week of the diet was used to assess the L-NAME dose received 

since the drug was delivered in drinking water. Average daily water intake was 

increased in the OP group compared to the OR group: 42.3 ± 2.0 ml day"1 vs. 

35.8 ± 1.6 ml day"1 (data not shown) suggesting that L-NAME levels were 

comparable between the groups when adjusted for differences in body weights. 

Acute pressure natriuresis and diuresis in OP and OR rats treated with L-

NAME 

During the surgical procedure, animals from all experimental groups were 

challenged with an increase in renal perfusion pressure (RPP). At low RPP there 

were no differences in urine flow rate (V) between treated and nontreated obese 
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Figure 27 Mean arterial pressure (MAP) in OP and OR groups non-treated or 
treated with nitric oxide synthase inhibitor (L-NAME). 
MAP was measured and recorded continuously during surgical procedure. L-
NAME was administered in drinking water at dose which is known not to induce 
hypertension. There was no difference in MAP between the study groups. Values 
are mean ± SEM from n = 6 rats/group. Significance was determined using one
way ANOVA with Holm-Sidak modification for multiple group comparisons and 
null hypothesis was rejected for a p-value <0.05. 
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Figure 28 Final measurements of urinary nitrate and nitrite (NOx) levels in OP 
and OR rats with or without L-NAME treatment. 
Metabolites of nitric oxide were measured in urine collected over a period of 24 
hours by using an enzymatic method and stored at -80 °C until used for an 
assay. Each sample was diluted in order to produce values within the dynamic 
range of the test and then assayed in duplicates. Background was subtracted 
from the average measurements and concentrations normalized to 24 hr urine. 
Values represent mean ± SEM from n = 6 rats/group. Significance was 
determined using one-way ANOVA with Student-Newman-Keuls method for 
multiple group comparisons and null hypothesis was rejected for a p-value <0.05. 



and lean rats. In OR rats treated with L-NAME, elevation in RPP provoked a 

significantly lowered increase in urine flow rate (V) compared to nontreated 

animals (OR: 53.25 ± 15.7 [i\ ml"1, L-OR: 23.5 ±4.1 |LLI ml"1) while having no 

significant effect on V in OP rats (Fig. 29a). This result suggests that L-NAME 

treatment reduced the diuretic response in lean rats whereas obese rats did not 

respond to NO inhibition in the same manner. 

There were no differences in glomerular filtration rate (GFR) among the 

study groups with or without NOS inhibition at either low or high RPP suggesting 

that L-NAME treatment did not impair autoregulatory function of the kidney in the 

interval of RPP employed in the experiment (Fig. 29b). 

Pressure natriuresis was assessed by urinary sodium excretion (UNaV) 

and fractional excretion of sodium (FENa) at two different RPP. Treatment with L-

NAME caused a significant reduction in UNaV in OR group at higher RPP from 

9.97 ± 3.63 nEq min"1 to 1.13 ± 0.45 |aEq min"1 and did not change urinary 

sodium excretion in OP group (Fig. 30a). Change in FENa showed the same 

pattern: at high RPP lean rats treated with L-NAME had a significant decline in 

fractional excretion of sodium compared to their nontreated counterparts from 

1.34 ± 0.39% in the latter to 0.27 ± 0.09% in the former while there was no 

change in FENa in the obese group (Fig. 30b). The above results indicate that L-

NAME treatment while uniformly reducing NO production in both groups modifies 

pressure diuresis and natriuresis significantly only in the OR group. 

Finally, we measured fractional excretion of lithium (FELi) in response to 

low and high RPP as a method of assessing proximal tubule function. The 
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Figure 29 Relations between renal perfusion pressure (RPP) and urine flow (a) 
and glomerular filtration rate (b) in obese (OP) and lean (OR) rats with or without 
chronic inhibition of NOS. 
During surgical procedure an adjustable clamp was placed around aorta above 
renal arteries to control renal perfusion pressure (RPP). At first RPP was set 
~100 mmHg and urine collected for 30 min. At the end of this period blood was 
drawn from carotid artery for plasma electrolytes, lithium and inulin 
measurements. Then RPP was set -140 mmHg and all above procedures were 
repeated. L-NAME treatment reduced response of lean rats to high RPP while 
having no effect on obese rats. Glomerular filtration rate, calculated as the rate of 
inulin clearance remained the same in non-treated and treated OP and OR rats 
suggesting that inhibition of NO production did not impair autoregulatory kidney 
function. Results are expressed as means ± SEM of n = 4-5 rats/ group. 
Significance was determined using one-way ANOVA with Student-Newman-
Keuls method for multiple group comparisons and the null hypothesis was 
rejected for a p-value< 0.05. *= significant compared to L-NAME treated at a 
similar perfusion pressure. §= significant compared to low RPP in the same 
group of animals. 
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Figure 30 Pressure-natriuresis in obese and lean Sprague-Dawley rats treated 
or not with L-NAME. 
In acute settings, as described in material and methods paragraph for Aim #1 
and also in the previous figure, animals were challenged with the change in RPP 
from 98-105 mmHg to 128-145 mmHg. Panel (a): Relation between RPP and 
urinary sodium excretion (UNaV). When compared with that in non-treated lean 
rats, L-NAME treated OR animals excreted less sodium. Panel (b): Relation 
between RPP and fractional excretion of sodium. The changes mirrored those 
mentioned previously: L-NAME treated lean rats excreted less sodium than their 
non-treated counterparts. Results are expressed as means ± SEM of n = 4-5 
rats/ group. Significance was determined using one-way ANOVA with Student-
Newman-Keuls method for multiple group comparisons and the null hypothesis 
was rejected for a p-value< 0.05. *= significant compared to L-NAME treated at a 
similar perfusion pressure. §= significant compared to low RPP in the same 
group of animals. 
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increase in the FELi in response to an elevation in RPP was reduced in the OR 

group treated with L-NAME compared to the untreated group from 19.8 ± 1.4% to 

13.5 ± 5.4% while FELi did not change in the OP group treated with L-NAME vs. 

the untreated control (Fig. 31). This result suggests that inhibition of NO 

production impairs natriuresis and diuresis in the OR rats at least partially 

through a proximal tubule related mechanism. Moreover, in our previous aims we 

focused our efforts on this segment of the nephron. Therefore, we again 

examined the expression, activity and localization of two of proximal tubule 

transporters: Na,K-ATPase and NHE3 in the separate set of experiments as 

described in the methods. 

Activity, protein expression and localization of Na.K-ATPase and NHE3 in 

OP and OR rats treated with L-NAME for 4 weeks 

Activity of any transporter is the interplay of several factors which could 

act alone or in combination and include protein expression, membrane trafficking, 

interaction with regulatory factors or substrate affinity. 

In this aim we started to investigate some of the mechanisms that could 

lead to changes in natriuresis and diuresis in obese and lean rats chronically 

treated with nitric oxide synthase (NOS) inhibitor L-NAME observed in first part of 

the study. Protein expression of basolateral transporter Na.K-ATPase was 

measured by western blotting in basolateral membrane preparations (BLM) from 

renal cortex. The membranes were stained with Ponceau Red to insure equal 

loading of the gels. L-NAME treatment significantly elevated protein abundance 
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Figure 31 Fractional excretion of lithium (FELi) at low and high RPP in obese 
and lean Sprague-Dawley rats with or without chronic NO depletion. 
During surgical intervention rats were infused with lithium and after the 
experiment lithium concentrations in urine and plasma were measured. FELi was 
calculated as the ratio between its urinary excretion and the amount filtered and it 
was used as a marker for the proximal tubule function. NO depletion produced a 
reduction in response to high RPP in OR group but not in OP rats. Results are 
expressed as means ± SEM of n = 4-5 rats/ group. Significance was determined 
using one-way ANOVA with Student-Newman-Keuls method for multiple group 
comparisons and the null hypothesis was rejected for a p-value< 0.05. *= 
significant compared to L-NAME treated at a similar perfusion pressure. §= 
significant compared to low RPP in the same group of animals. # = borderline 
significance (0.05<p-value<0.07) compared to the low perfusion pressure. 
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of Na,K-ATPase from 30.69 ± 0.69 RFU to 40.24 ± 2.43 RFU in lean rats and did 

not affect Na,K-ATPase expression in the OP group (Fig. 32). Induction of Na,K-

ATPase protein expression could at least partially explain the decrease in 

urinary sodium excretion and fractional excretion of sodium observed after 

chronic administration of L-NAME in obesity resistant rats by association with 

pump activity. However, those changes were not reflected in our estimation of 

Na,K-ATPase activity measured as a release of inorganic phosphate from 

freshly prepared BLM. There was no difference in Na,K-ATPase activity between 

treated and nontreated groups of obese and lean animals (Fig. 33). This 

discrepancy between expression and activity could most probably be explained 

by different mechanisms of Na,K-ATPase activity regulation in normal and 

hyperinsulinemic states deprived of NO. Lack of correlation between activity and 

pressure diuresis and natriuresis in the lean group could be clarified by the 

approach used during basolateral membrane preparation and in a consequence 

partial contamination of basolateral membranes by apical membranes or different 

nephron segments. Moreover, ouabain-sensitive Na+,K+-pump activity accounted 

for about 38 and 36% of total activity of BLM fractions from obese and lean rats 

treated with L-NAME (data not shown), respectively; again suggesting that our 

preparations were impure and contained other pumps insensitive to ouabain like 

H\K+-ATPase from proximal tubule or cortical segments of collecting tubules. 

Next, we determined protein expression of the sodium/hydrogen 

exchanger type 3 (NHE3) by western blotting in brush border membrane vesicles 
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Figure 32 Na,K-ATPase protein expression measured in baso-lateral-enriched 
membranes isolated from renal cortex of obese (OP) and lean (OR) rats with or 
without L-NAME treatment. 
Panel (a): Graph representation of Na,K-ATPase abundance, measured in 
arbitrary units, represented as means ± SEM of n = 6 rats/group. Blots were 
probed with Na,K-ATPase a1 subunit specific antibody. Semi-quantitative 
densitometry analyses were done by using Odyssey Infrared Imaging System 
software. Significance was determined using one-way ANOVA and the null 
hypothesis was rejected for a p-value< 0.05. Panel (b): Immunoblots of BLM 
samples from non-treated and treated OP and OR rats. Each lane represents a 
sample from an individual rat. Equal protein loading was ensured by staining 
each membrane with Ponceau red. Treatment with L-NAME significantly reduced 
expression of basolateral sodium pump in OP and OR rats. 
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Figure 33 Effect of L-NAME on Na,K-ATPase activity assessed in baso-lateral 
membranes prepared from renal cortexes of obese(OP) and lean (OR) animals. 
Na,K-ATPase activity expressed as mmol of inorganic phosphate liberated per 
mg of protein per minute performed on freshly prepared basolateral membrane 
(BLM) enriched fractions. Na,K-ATPase activity was calculated as the difference 
between activities assayed in the absence of ouabain (total) activity and in the 
presence of 5 mM ouabain. Values are means ± SEM from 6 rats per group. 
Each sample was assayed in duplicate and background was subtracted from the 
mean. There was no difference in activities between study groups. Significance 
was determined using one-way ANOVA and the null hypothesis was rejected for 
a p-value< 0.05. 
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(BBMV) from renal cortex. Villin was used as a loading control. The purity of 

BBMV was estimated by measuring activity of leucine aminopeptidase N (LAP) 

for each sample and comparing it to activity of LAP in the initial homogenate. 

According to the protocol from Biber et al. (Biber et al. 2007) an average 18fold 

enrichment achieved for all samples provided us with high purity for brush 

border membrane vesicles. L-NAME treatment significantly increased expression 

of NHE3 in both groups: lean and obese compared to non-treated controls by 

-36% and 42%, respectively (Fig. 34). Activity of NHE3 calculated in freshly 

obtained BBMV fractions corresponded only partially to the protein 

measurements. In obese rats reduction of NO did not change activity of the 

exchanger while in lean rats the 42% increase in protein levels was reflected in 

~53% increase in activity of NHE3 (Fig. 35). As described earlier in the results 

paragraph of Aim #2, sensitivity and specificity of the NHE3 activity assay was 

assessed by incubation of randomly chosen samples with various concentrations 

of 5-(N-Ethyl-N-isopropyl) amiloride. We concluded that the assay was specific 

and sensitive for the NHE3 isoform. 

Since changes observed in natriuresis and diuresis could most probably 

be elucidated by modifications in abundance and activity of NHE3 in lean rats 

treated with L-NAME but not in L-NAME treated obese rats, we pursued another 

mechanism of NHE3 activity regulation- membrane trafficking. 

As described before, we used immumohistochemistry and image visualization 

techniques to quantify localization of NHE3 with regard to villin. Villin was used 

as a marker for the microvillus membrane, therefore the higher the degree of 
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Figure 34 Na/H exchanger (NHE3) protein abundance after L-NAME treatment 
in obese (OP) and lean (OR) rats. 
NHE3 was assayed in brush border membrane vesicles (BBMV) fractions 
prepared from renal cortex of OP and OR groups treated or not with L-NAME. 
Top panel: Densitometric analysis of immunoblots shown below. NHE3 
immunoreactivity is expressed as a ratio between NHE3 and Villin signals, in 
relative fluorescent units (RFU). Results represent average ± SEM of n=6 
rat/group. Significance was determined using one-way ANOVA and the null 
hypothesis was rejected for a p-value< 0.05. L-NAME treatment significantly 
increased NHE3 protein expression in OP and OR groups. Bottom panel: 
Immunoblots of BBMV samples from obese and lean rats. Equal amount of 
proteins were loaded into each gel and duplicates of membranes were probed 
with anti-villin antibody which served as a loading control. Antigen-antibody 
complexes were detected with Odyssey Infrared Imaging System (Li-Cor). 
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Figure 35 Na+/H+ antiporter activity in obese and lean rats non-treated (NT) or 
treated with L-NAME. 
Brush border membrane vesicles (BBMV) prepared from renal cortex were 
preloaded with pH indicator BCECF-AM in Na+-free buffer, pH 7.2 and then 
mixed with the buffer solution containing 150 mmol I"1 NaCI, pH 9.2 for 
determination of pH recovery as described in methods paragraph for Aim #1. 
Equal amounts of protein were labeled and readings for unlabeled samples were 
subtracted from final values. NHE3 activity was expressed as a change in pH 
over time. Values are means ± SEM from 6 rats per group. Significance was 
determined using one-way ANOVA and the null hypothesis was rejected for a p-
value< 0.05. L-NAME treatment significantly elevated activity of exchanger in OR 
group while did not effect OP group. 



154 

colocalization between villin and NHE3, the more abundant is the transporter in 

the microvillus membrane (Fig. 36a). NO depletion had no effect on NHE3 

distribution in the OP group (21.46 ± 4.38% vs. 23.29 ± 10.47%) though it 

significantly increased colocalization of NHE3 with villin in the OR group from 9.1 

± 3.67% to 20.50 ± 5.9% (Fig. 36b). As a result, alterations in NHE3 distribution 

may account for an increase in exchanger activity together with an increase in 

NHE3 protein expression in lean groups treated with nitric oxide synthase 

inhibitor. 

In conclusion, similar depletion of NO in obese and lean animals lead to 

impairment in pressure natriuresis and diuresis supported by an increase in 

activity and expression of NHE3 and its redistribution to the tip of the villus in 

concert with elevation of Na,K-ATPase in obesity resistant rats only. 

Based on these results the following questions arose: 1) Why did obese and lean 

groups react differently to NO inhibition? 2) Are lean rats more sensitive to NO 

deprivation or are obese rats more resistant to it? 3) How can those differences 

be explained? 4) Does the metabolic state influence the effects of NO on sodium 

transport in the proximal tubule in vivo? 

As this study did not provide definite information regarding the direct 

effects of NO on sodium transport in the proximal tubule in vivo, it seemed almost 

imperative to try to explain some of our questions using an in vitro system which 

is devoid of any other influences beside those imposed in the experiment. 
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Figure 36 Changes in NHE3 distribution in obese and lean rats after chronic 
treatment with L-NAME. 
4 micron sections of paraffin embedded kidneys were double stained with 
polyclonal NHE3 antibody and with monoclonal anti-villin antibody followed by 
the corresponding anti-rabbit (AlexaFluor488-green) and anti-mouse 
(AlexaFluor594- red) secondary antibodies. Panel (a): Representative images of 
cortical tubules from all experimental groups stained simultaneously with NHE3 
(A, B, C, D) and villin (E, F, G, and H). Overlapping (I, J, K and L) of NHE3 and 
Villin appears yellow. Chronic L-NAME administration caused NHE3 
redistribution in lean rats and did not have an effect in the obese group. Panel 
(b): Semi-quantitative analysis of NHE3 and villin colocalization in kidney section. 
6-10 z-stack images were taken with laser scanning confocal microscope from 
each animal (n = 3 rats per group). Images were analyzed using Metamorph 
software and colocalization was expressed as the percentage of the sum of the 
green staining overlapping the red staining to the sum of the green fluorescence 
only. Significance was determined using one-way ANOVA and the null 
hypothesis was rejected for a p-value< 0.05. *= significant compared to non-
treated group, f = significant compared to OP rats. Bar = 10microns. 
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cGMP levels, role of oxadiazolo-quinoxaline (ODQ) and probenecid in 

human renal proximal tubule epithelial cells (RPTEC) model 

Since it is controversial whether renal proximal tubules cells produce NO 

under basal conditions, we determined the capability of primary cultures of 

RPTEC to generate guanosine cyclic 3', 5' monophosphate (cGMP) in response 

to direct stimulation of soluble guanylyl cyclase by the NO donor: S-nitroso-A/-

acetylpenicillamine (SNAP) (Fig. 37). In a concentration- and time-dependent 

manner SNAP caused significant stimulation of intracellular and extracellular 

cGMP. After 5 minutes of SNAP incubation intracellular cGMP production 

increased from a basal value of 0.14 ± 0.07 to 12.77 ± 4.5 pmol ml"1 at 10~5 M 

SNAP and to 104.32 ± 19.6 pmol ml"1, at 10"4 M SNAP, while extracellular cGMP 

concentration did not change significantly at this time point (data not shown). 

After 30 minutes at a 10"6 M SNAP concentration, intracellular levels of cGMP 

remained elevated and extracellular levels began to increase from 0.03 ± 0.01 

pmol ml"1 to 1.63 ± 0.24 pmol ml"1 (Fig. 38a). At the same time point, a 

concentration of 10"5 M SNAP significantly increased intracellular levels of cGMP 

from 0.15 ± 0.08 to 30.27 ± 10.9 pmol ml"1. However, extracellular levels of 

cGMP did not reach statistical significance (from 0.03 ± 0.01 to 31.01 ± 20.94 

pmol ml"1), most probably due to the large variance and small number of 

experiments (Fig. 38a). As demonstrated in Fig. 38b, after 2 hours SNAP 

increased intracellular cGMP production and also extracellular cGMP levels in 
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Figure 37 Schematic of experimental design for Aim # 3B. 
As it is controversial whether renal proximal tubule epithelial cells (RPTEC) 
contain nitric oxide synthase (NOS), enzyme responsible for Nitric Oxide (NO) 
production, RPTEC were exposed to (NO) donor-SNAP (S-nitro-N-acetyl-DL-
penicillamine) and intracellular and extracellular levels of cGMP (cyclic 
guanosine monophosphate) were measured. cGMP synthesis is catalyzed by 
guanylate cyclase (GC). Membrane-bound GC is activated by peptide hormones 
while soluble GC (sGC) is typically activated by NO to stimulate cGMP synthesis. 
ODQ (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one), highly selective, irreversible, 
inhibitor of soluble guanylyl cyclase was used to test whether SNAP modifies 
levels of cGMP through its action on sGC. To investigate whether presence of 
cGMP in extracellular milieu is necessary for its action we used probenecid to 
block organic anion transporter through which cGMP is exported from the cell. 
The ultimate goal of this experiment was to measure protein expression of 
sodium transporters in RPTEC: apical sodium/hydrogen exchanger type 3 
(NHE3) and basolateral Na,K-ATPase pump. 
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Figure 38 The effects of SNAP incubation on intracellular and extracellular 
cGMP levels in human renal proximal tubule epithelial cells (RPTEC) for 30 min 
(Panel a) and 2 hrs (Panel b). 
Cells were seeded at 100 000 cells/well density in 12-well plates and kept in 
serum-free medium 24 hr before the experiments. RPTEC were incubated for 30 
min or 2 hours with no SNAP (control) or with 10"6, 10"5 and 10"4 M SNAP in the 
presence of 1 mM IBMX (isobutylmethylxanthine), a non-specific inhibitor of 
phosphodiesterases. The concentration of cGMP was quantified in cell lysates 
(intracellular) and in the medium (extracellular) using a commercially available 
EIA kit. The samples were acetylated and tested in duplicates. Dilutions were 
performed to insure that samples were in the range of the linear response. 
Values are mean ± SEM from 3 experiments performed in duplicates. 
Significance was determined using unpaired two tail t-test and the null hypothesis 
was rejected for a p-value <0.05. *= Significant compared to control for 
intracellular levels, f = Significant compared to controls for extracellular levels of 
cGMP. SNAP significantly in concentration-dependent manner increased cGMP 
levels intra- and extracellular. 
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a concentration-dependent manner. Based on those results we chose the 2 hour 

time point with a 10"6 M SNAP concentration to test the effects of different 

hormones. 

To determine if the effect of SNAP was mediated by soluble guanylyl 

cyclase (sGC) we used a highly specific inhibitor of sGC, 1-H-[1,2,4] oxadiazolo -

[4,2-alpha] quinoxalin-1-one (ODQ, lO^M). For those experiments we 

intentionally employed a higher concentration of SNAP then in previous 

experiments to show that ODQ and probenecid are capable of blocking cGMP 

generated by higher SNAP concentrations. ODQ significantly abolished the 

increase in intracellular and extracellular cGMP levels produced by SNAP (10"5 

M) after 5 min (only intracellular; data not shown) and 30 minutes incubation (Fig. 

39a). After 2 hours, the extracellular level of cGMP was significantly reduced, 

while intracellular cGMP levels were reduced with borderline significance (p-

value=0.09) compared to levels of intracellular cGMP achieved after incubation 

with SNAP only. However, intra- and extracellular levels of cGMP measured in 

samples incubated with SNAP and ODQ for 2 hrs were not significantly different 

then control values of cGMP (without SNAP) (Fig. 39b). 

In the next series of experiments we tested the ability of probenecid to 

prevent the export of cGMP in the extracellular compartment. As demonstrated in 

Fig. 39c, after 30 minutes probenecid (10~4 M) did not prevent the export of cGMP 

from the cells. After 2 hours, probenecid significantly decreased extracellular 

cGMP accumulation close to control levels from 79.4 ± 33.08 pmol ml"1 to 0.74 ± 

0.33 pmol m"1 in the presence of SNAP (10"5 M)(Fig. 39d). 
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Figure 39 The effects of ODQ (a, b) and probenecid (c and d) on intracellular 
and extracellular cGMP responses to SNAP in RPTEC. 
Cells were seeded at 100 000 cells/well density in 12-well plates and kept in 
serum-free medium 24 hr before the experiments. Panel (a) and (b): Effects of 
ODQ on intracellular cGMP following incubation with SNAP for 30 minutes (Panel 
a) or 2hrs (Panel b). To test whether the effect of SNAP was mediated by 
formation of cGMP, RPTEC were incubated without SNAP (control) or with SNAP 
at 10"5 M and with simultaneously with ODQ (10"4 M) plus SNAP at 10"5 M for 30 
min or 2 hours in the presence of 1mM IBMX. ODQ significantly reduced 
intracellular cGMP levels after 30 minutes and 2 hours. Panel (c) and (d): Effects 
of probenecid on extracellular cGMP following incubation with SNAP for 30 
minutes (Panel c) or 2 hrs (Panel d). Cells were incubated with probenecid and 
SNAP for 30 minutes or 2 hours. After 2 hr probenecid significantly abolished 
extracellular cGMP accumulation. Concentration of cGMP was quantified in cell 
lysates (intracellular) and in the medium (extracellular) using a competitive 
enzyme immunoassay. Samples were acetylated and dilutions performed to 
insure linearity of response. Values are mean ± SEM from 3 experiments 
performed in duplicates. Significance was determined using unpaired two tail t-
test and non-parametric test and the null hypothesis was rejected for a p-value 
<0.05. *= Significant compared to control for intracellular levels. |= Significant 

compared to controls for extracellular levels of cGMP. #= Significant compared to 
SNAP treatment. §= Borderline significance (0.05<p-value<0.09) compared to 
SNAP treatment. 
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Accumulation of intracellular cGMP was also observed during this time course 

but it did not reach statistical significance, most probably due to large variability 

between the samples. In conclusion, at 2 hrs and 10"5M SNAP concentration 

probenecid almost entirely blocks cGMP export. 

Effect of angiotensin II, insulin and leptin on cGMP production in the 

absence or presence of NO 

Angiotensin II and insulin at different concentrations significantly increased 

extracellular levels of cGMP after simultaneous incubation with 10"6 M SNAP for 

2 hours (Fig. 40). Leptin however did not induce cGMP production at any of the 

concentrations tested in the experiment. The ability to modulate cGMP 

production was tested at 3-4 concentrations for the three hormones as follows: 

angiotensin II: 10"8, 10"7, and 10"6M; insulin: 10"9, 10"8, and 10"7M and leptin: 15, 

30, 45 and 60 ng ml"1, either in the presence or absence of SNAP (10"6 M) for two 

hours. This concentration of SNAP was chosen since as described earlier, it 

produced a significant increase in the levels of intracellular and extracellular 

cGMP at 30 min and 2 hrs. 

In the absence of NO donor, angiotensin II, insulin or leptin had no effect 

on cGMP production (data not shown). Nevertheless, in the presence of SNAP 

extracellular cGMP was increased following treatments with 10"8 M angiotensin II 

(Fig. 40a) or 10"9M insulin (p-value=0.05) (Fig. 40b). Leptin treatment at 

45 ng ml"1 had increased cGMP production compared to control from 25.47±4.3 

to 42.4±6.8 pmol ml"1 but failed to gain statistical significance (p-value=0.1) 
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Figure 40 Angiotensin II, insulin and leptin effect on intra- and extracellular 
cGMP production in the presence of SNAP in RPTEC. 
Cells were seeded at 100 000 cells/well density in 12-well plates and kept in 
serum-free and insulin-free medium 24 hr before the experiments. Panel (a): 
Effect of different angiotensin II concentrations on intracellular and extracellular 
cGMP production in the presence of SNAP. RPTEG were incubated 
simultaneously with SNAP (10"6M) and angiotensin II (10"8, 10"7, and 10"6M) for 2 
hours in the presence of 1 mM IBMX. 10~8 M All significantly increased 
extracellular cGMP over the control values after 2 hours incubation. Panel (b): 
Effect of different insulin concentrations on intracellular and extracellular cGMP 
production in the presence of SNAP. RPTEC were incubated simultaneously with 
SNAP (10"6M) and insulin (10"9, 10"8, and 10"7M) for 2 hours in the presence of 
1mM IBMX. 10"9 M of Insulin significantly increased extracellular cGMP over the 
control values after 2 hours incubation. Panel (c): Effect of different leptin 
concentrations on intracellular and extracellular cGMP production in the 
presence of SNAP. RPTEC were incubated simultaneously with SNAP (10"6 M) 
and leptin (15, 30, 45 and 60 ng ml"1) for 2 hours in the presence of 1mM IBMX. 
Leptin had no effect on cGMP production at any given concentration. 
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(Fig. 40C). However, we decided to proceed with all the above hormones 

because we considered that effect of leptin on cGMP production did not become 

statistically different because of the large assay variability as mentioned earlier. 

Effect of NO and angiotensin II, insulin and leptin on Na.K-ATPase and 

NHE3 total protein expression 

We investigated the effects of NO together with angiotensin II (All), insulin 

and leptin on Na.K-ATPase and NHE3 on total protein expression in membrane 

fractions of RPTEC by western blotting. Tubulin was used as a loading control. 

Protein expression of both: Na.K-ATPase and NHE3 were not consistently 

changed at 6, 12 and 24 hour time course by any of the above mentioned 

hormone treatments concurrent with NO donor administration at 10"6 M (data not 

shown) or 10"5 M (Fig. 41 and 42) compared to controls (NO donor only). For this 

reason we did not pursue measurements of Na.K-ATPase and NHE3 protein 

abundance at those time points, however we continued to determine expression 

of phosphorylated forms of both transporters at shorter time periods. Also, we 

have decided to focus our efforts on treatments with angiotensin II and insulin 

only as leptin did not significantly increase cGMP production. 

Effect of NO, angiotensin II, and insulin on phosporvlation status of Na,K-

ATPase and NHE3 

There is evidence that serine-threonine phosphorylation of the catalytic a-subunit 

by PKA or PKC is a key event in the short-term regulation of Na.K-ATPase 
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Figure 41 Protein levels of Na,K-ATPase cc1 subunit in RPTEC stimulated with 
NO and treated with angiotensin II, insulin and leptin for 6, 12 or 24 hours. 
Cells were plated on 100 mm dishes at 330 000 cells/plate density and grown 
until they reached confluency; then kept in serum-free medium 24 hr before the 
experiments. SNAP, 10"5 M was added to all dishes followed by no treatment 
(control) or angiotensin II (10~8M), insulin (10"9M), leptin (45 ng ml"1) for 6, 12 or 
24 hours. Top: Values represent a ratio between Na,K-ATPase and tubulin signal 
from 1 experiment in relative fluorescent unit (RFU). Bottom: Western blots of 
Na, K-ATPase and tubulin which served as a loading control. Equal amount of 
proteins were loaded into SDS-PAGE gel and membrane were simultaneously 
probed with a monoclonal antibody against Na,K-ATPase and a polyclonal 
antibody against tubulin. Bands were visualized by Odyssey Infrared Imaging 
System. 
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Figure 42 Protein levels of NHE3 in RPTEC stimulated with NO and treated with 
angiotensin II, insulin and leptin for 6, 12 or 24 hours measured by western 
blotting. 
Cells were plated on 100 mm dishes at 330 000 cells/plate density and grown 
until they reached confluency; then kept in serum-free medium 24 hr before the 
experiments. SNAP, 10"5 M was added to all dishes followed by no treatment 
(control) or angiotensin II (10"8M), insulin (10"9M), leptin (45 ng ml"1) for 6, 12 or 
24 hours. Top: Values represent a ratio between NHE3 and tubulin signal from 1 
experiment in relative fluorescent unit (RFU). Bottom: Western blots of NHE3 and 
tubulin which served as a loading control. Equal amount of protein were loaded 
into SDS-PAGE gel and membrane were simultaneously probed with a 
polyclonal antibody against NHE3 and a monoclonal antibody against tubulin. 
Bands were visualized by Odyssey Infrared Imaging System. 
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(Fisone et al. 1994, Belusa etal. 1997, Pedemonte etal. 1997, Chibalin etal. 

1999). In contrast, phosphorylation of NHE3 is not always necessary for its acute 

regulation. The most definitive studies showed that cAMP effected in vivo 

phosphorylation of rat NHE3 Ser605 and Ser552 in a concentration-dependent 

manner (Moe 1999). Given all the above, we investigated whether All and insulin 

could change the phosphorylation status of proximal tubule transporters and if 

this mechanism involves the NO pathway. RPTEC were incubated with 10"8 M 

angiotensin II and 10"9M insulin in the presence or absence of 10"5M SNAP for 

30 minutes. Protein phosphorylation was expressed as the ratio between protein 

phosphorylated on Ser16 and Ser552 to total protein expression. 

The phosphorylation status of Na,K-ATPase was increased by incubation 

with angiotensin II and insulin 3fold and 5fold, respectively, compared to control 

levels. Conversely, SNAP alone decreased phophorylation of Na,K-ATPase by 

200fold. However, simultaneous administration of SNAP with All further elevated 

phophorylation levels of Ser16 of Na,K-ATPase over the control with SNAP only 

(Fig. 43). At the same time, SNAP prevented the effect achieved by insulin alone 

(as percent of control: insulin, 534%; SNAP, 0.4%; insulin+SNAP, 56%) (Fig. 43). 

These results suggest that phosphorylation of the a1-subunit of Na,K-ATPase at 

Ser16 can be stimulated by angiotensin II and insulin independent of cGMP 

production since neither angiotensin II or insulin could change cGMP production 

in the absence of the NO donor. However, only insulin effect on the 

phosphorylation status of Na,K-ATPase was modulated in the presence of NO 

implying that insulin signaling pathway can also be influenced by the NO pathway 
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Figure 43 Serine 16 phosphorylation of Na,K-ATPase ot1 subunit in RPTEC 
treated simultaneously with NO and angiotensin II (All) or insulin. 
Cells were plated on 100 mm dishes at a density of 330 000 cells/plate, grown to 
near confluency and then kept in serum-free, insulin-free medium 24 hr before 
the experiments. Cells were treated withIO"5 M SNAP in the absence (control) or 
presence of angiotensin II (10"8M) or insulin (10"9M) for 30 min. In all conditions, 
phosphodiesterase inhibitor (IBMX) was used. Values represent a ratio between 
phospho- and total Na,K-ATPase signal from 1 experiment. Control without 
SNAP was set to 100% and treatments were expressed relative to the control 
level. Phosphorylation levels of Na,K-ATPase were greatly reduced by NO and 
increased by All and insulin. NO together with All further increased 
phosphorylation of Ser16 while reversed insulin response in RPTEC. 
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in renal proximal tubule epithelial cells. Whether cGMP is a share messenger of 

those pathways needs additional testing where ODQ compound should be used. 

As demonstrated in Fig. 44, the phosphorylation level of Ser552 of Na/H 

exchanger 3 was slightly elevated by angiotensin II and remained unchanged 

after incubation with insulin when compared to control levels. SNAP alone 

decreased phosphorylation of NHE3 by 35% and it prevented the effect of 

angiotensin II (as percent of control: angiotensin II, 120%; SNAP, 65%; 

angiotensin ll+SNAP, 88%). Simultaneous incubation of RPTEC with SNAP and 

insulin increased posphorylation of NHE3 to 117% from 97% with insulin alone. 

These results suggest that angiotensin II and insulin may not play a role in 

phosphorylation of NHE3 at Ser552. Nevertheless, in the presence of NO 

angiotensin II and insulin modulated the phosphorylation status of NHE3 

differently, pointing to the fact that their signaling pathways could be influenced 

by NO pathway in RPTEC. Further experiments are required to establish whether 

cGMP plays a role. 

Insulin cross-talk with NO at the level of cGMP production and the 

resultant production of cGMP could in turn induce phosphorylation of the two 

transporters. This may account at least in part for different levels of activity of 

those transporters determined in vivo. However, further studies are required to 

determine the precise mechanism(s) involved. 
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Figure 44 Serine 552 phosphorylation of NHE3 in RPTEC treated 
simultaneously with NO and angiotensin II (All) or insulin. 
Cells were plated on 100 mm dishes at a density of 330 000 cells/plate, grown to 
near confluency and then kept in serum-free, insulin-free medium 24 hr before 
the experiments. Cells were treated with SNAP 10"5 M in the absence (control) or 
presence of angiotensin II (10~8 M) or insulin (10"9 M) for 30 min. In all conditions 
phosphodiesterase inhibitor (IBMX) was used. Values represent a ratio between 
phospho- and total NHE3 signal from 1 experiment. Control without SNAP was 
set to 100% and treatments were expressed relative to the control level. NO 
decreased, All slightly increased and insulin did not change NHE3 
phophorylation levels. In the presence of NO, All decreased and insulin 
increased phosphorylation of Ser552of NHE3 in RPTEC. 



170 

5.3 Discussion for Specific Aim # 3 

In the previous Aim we described the effects of pioglitazone on sodium 

transport and renal excretory function. Earlier data published by our group 

showed that pioglitazone treatment resulted in an increase of NOx as well as 

eNOS and nNOS expression in the kidney (Dobrian et al. 2004). Since several 

studies showed that NO can modulate renal sodium handling, we further 

investigated the effect of in vivo chronic NO blockade on expression and activity 

of Na,K-ATPase and NHE3. 

The results of our present study demonstrated that inhibition of NO 

synthesis by chronic treatment with L-NAME lead to a marked attenuation of the 

urine flow rate and sodium excretion in response to changes in renal perfusion 

pressure in lean, but not obese, rats on a moderately high fat diet. The dose of L-

NAME was chosen to inhibit NO without changes in blood pressure. This 

approach allowed us to determine if the changes in renal hemodynamics and 

sodium excretion were related to changes in NO production and not simply a 

consequence of the increase in blood pressure. Indeed, L-NAME reduced NO 

production in a comparable manner in both groups while having no significant 

effect on MAP. In obese rats, treatment with L-NAME did not produce any 

changes in pressure natriuresis and diuresis. In contrast, in lean rats NO 

inhibition reduced natriuresis and diuresis. In both groups, GFR was not affected 

by the treatment and remained the same in treated and non-treated animals. In 

agreement with our results from the lean animals, several studies have indicated 

that inhibition of renal NO synthesis blunted the diuretic and natriuretic 



171 

responses without altering renal blood flow or glomerular filtration rate (Salom et 

al. 1992, Majid etal. 1993). Moreover, there is evidence suggesting that 

excretion of urinary NO metabolites was increased with renal perfusion pressure 

(Suzuki et al. 1992, Majid et al. 1995). Finally, direct measures of renal cortical 

NO activity in the dog with an NO-sensitive microelectrode showed that it 

decreased linearly with the reduction in renal perfusion pressure within the 

autoregulatory range (Majid et al. 1998). However, these data do not explain the 

differences in natriuretic responses between the lean and obese rats. In animal 

models of obesity and in obese humans there are reports of elevated renal 

sympathetic nerve activity (Vaz et al. 1997, Hall 2003) and activation of the renin-

angiotensin system (Sharma 2004). Interaction between NO and renal 

sympathetic nerves is an important factor in the regulation of renal 

hemodynamics and sodium homeostasis. Basal NO synthesis has been reported 

to blunt the vasoconstrictive effect of sympathetic nerve stimulation in the 

isolated perfused rat kidney (Reid & Rand 1992). In addition, there is also 

considerable evidence concerning NO interaction with the renin-angiotensin 

system. NO synthesis inhibition and angiotensin II stimulation are quite similar in 

terms of regulation of vascular tone. For example, inhibition of nitric oxide 

production stimulates endothelial angiotensin-converting enzyme (ACE) activity 

and generation of angiotensin II (Takemoto etal. 1997, Katoh etal. 1998). 

However, it is not clear the extent to which the vasoconstrictor response to NO 

blockade results from withdrawal of an NO vasodilatory stimulus or is related to 

the amplification of vasoconstrictor systems. Moreover, obesity is usually 
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associated with expansion of extracellular fluid volume (Carroll etal. 1995, Hall et 

al. 2002). Therefore, we propose that most probably lack of changes in excretion 

of water and sodium in obese Sprague-Dawley rats fed a high fat diet and treated 

chronically with L-NAME to inhibit NO production is a result of an imbalance 

between NO and other vasoconstrictor signaling pathways which leads to their 

defective mutual regulation. 

Exactly how increased renal NO synthesis or inhibition of NO production 

cause changes in natriuresis and diuresis are not fully understood. Since NO did 

not alter renal autoregulatory function under the experimental conditions we 

used, inhibition of tubular sodium transport appears to be important in our model. 

In an attempt to elucidate whether overall actions of NO in the kidney can be 

attributed to a direct tubular effect we analyzed the outcome of chronic L-NAME 

treatment on proximal tubule transporters Na,K-ATPase and NHE3 expression 

and activity. We have observed in obese rats treated with L-NAME an increase in 

abundance of NHE3 but no changes in its activity. Also, we did not determine 

changes in abundance and activity of Na,K-ATPase. On the other hand, after NO 

inhibition in lean rats we reported an increase in protein expression of Na,K-

ATPase without changes in its activity and an increase in NHE3 abundance and 

activity, as well as redistribution of this transporter to the more active membrane 

pool. 

The effect of NO on tubular sodium transport varies in different segments 

of the nephron. In most cases, however, NO inhibits sodium transport which is 

consistent with its natriuretic and diuretic action (Ortiz & Garvin 2002). In the 
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proximal tubule, which is responsible for reabsorbing 50-60% of filtered sodium 

and water, the effects of NO are not fully understood. As reviewed by Ortiz and 

Garvin, there are reports showing that NO inhibits proximal tubule transport, 

while others suggest that NO stimulates proximal tubule transport (Ortiz & Garvin 

2002). Wu et al. proposed that while NO itself has a direct inhibitory effect on 

proximal tubule sodium transport, the presence of NO is necessary to ensure that 

renal nerves can stimulate fluid reabsorption by the proximal tubules (Wu & 

Johns 2002). 

However, the direct inhibitory role of NO on proximal tubule sodium 

transport seems to be due to decreased apical Na/H exchange (Roczniak & 

Burns 1996) and reduced Na,K-ATPase activity (Liang & Knox 1999a) which is 

in agreement with results we obtained from lean rats. The NO inhibition did not 

significantly change proximal Na+ transport in obese rats. Ortiz and Stoos 

proposed that effects of NO in the kidney can be modulated by changes in the 

sensitivity to NO signaling (Ortiz et al. 2003). Differences in NO signaling 

pathway are possible between OP and OR rats and could play a role in final 

responses to NO production blockage. An interesting observation suggesting 

differences in NO sensitivity between obese and lean animals was reported by 

Jebelovszki et al. in coronary arterioles of rats. They reported that coronary 

arteriolar dilations to acetylcholine (ACh) were preserved and not significantly 

affected by NOS inhibition, whereas the dilations to NO donors were significantly 

enhanced in obese rats compared to lean. In contrast, the inhibition of NO 

synthesis with L-NAME decreased ACh-induced dilation in coronary arterioles 
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isolated from lean animals only. In addition, the authors found that NO donor-

stimulated vascular cGMP immunoreactivity and cGMP levels were increased in 

obese rats compared to lean rats. The authors suggested that in high fat diet-

induced obesity, due to the increased soluble guanylyl cyclase activity, the NO 

sensitivity of coronary arterioles was enhanced despite the impaired NO 

bioavailability (Jebelovszki et al. 2008). 

Besides possible variations in NO sensitivity in OP vs. OR rats, a 

difference in the metabolic milieu of the obese and lean animals is another 

possibility which may lead to different responses to NO depletion. It is known that 

the NO signaling cascade is influenced by other systems. Previous studies 

demonstrated that feeding rats and dogs a moderately high fat diet results in 

higher levels of renin activity in obese animals compared with lean animals 

(Dobrian etal. 2000, Henegar etal. 2001, Boustany et al. 2004). Higher levels of 

leptin in animals as well as obese humans were observed in diet-induced obesity 

(Hirose etal. 1998, Lauterio etal. 1999, Levin etal. 2003, Ricci & Levin 2003). 

Moreover, those changes are paralleled by changes in insulin levels (Hall et al. 

1998, Lauterio etal. 1999, Henegar etal. 2001, Levin etal. 2003). For example, 

angiotensin II stimulated NO production via both AT1 in cultured endothelial cells 

(Saito et al. 1996) and via AT2 receptors in SHR rats (Saito et al. 1996, Gohlke 

et al. 1998) while it decreased NO bioavailability by stimulating superoxide 

production in Wistar rats (Mollnau et al. 2002) as well as blocking NO signal 

transduction in animals (Kim etal. 2001, Mollnau et al. 2002). Experimental 

evidence also suggests that NO is involved in the pathogenesis of diabetes and 



175 

insulin resistance. NADPH oxidases in the vascular wall are activated in diabetes 

mellitus, leading to enhanced degradation of NO and the production of reactive 

oxygen species (Guzik et al. 2002). Furthermore, uncoupling of eNOS has been 

demonstrated in animal models of diabetes (Elrod etal. 2006). In the kidney, 

leptin interferes with NO synthesis and this effect depends on the exposure time 

to the hormone as well as its concentrations. For instance, long-term 

hyperleptinemia decreased natriuresis and urinary excretion of NO metabolites 

and cGMP (Beltowski et al. 2004) by increasing levels of systemic and intrarenal 

oxidative stress, leading to NO deficiency (Beltowski et al. 2004). However, in an 

acute setting leptin stimulated systemic NO release (Beltowski et al. 2002) while 

chronic inhibition of NO synthesis impaired the acute leptin-mediated natriuretic 

effect in normotensive lean rats (Villarreal etal. 2004). Interestingly, the short-

term leptin-induced natriuretic effect observed in lean rats was attenuated in 

obese rats and was blunted in spontaneously hypertensive rats (SHR) (Villarreal 

et al. 1998, Beltowski et al. 2002). It was suggested that while leptin may be a 

potential salt-excretory factor in normal rats, in obesity and hypertension its 

function may be impaired. Overall, these data imply that in hypertension induced 

by obesity there are factors which could tip the already existing imbalance 

between NO and systems that antagonize its action, in the favor of the latter. 

Therefore, further NO inhibition in obese rats is unlikely to induce additional 

significant changes. 

As mentioned before, to investigate whether the differences in natriuretic 

responses could be attributed to differences in sodium transport we examined 
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expression and activity of Na,K-ATPase and NHE3 in obese and lean rats 

treated with L-NAME. In the lean rats we reported an increase in protein 

expression of Na,K-ATPase and an increase in NHE3 abundance and activity as 

well as redistribution of this transporter. In obese rats we did not observe a 

significant change in either Na,K-ATPase or NHE3 activities following chronic L-

NAME treatment. Little is known about the molecular mechanism of NHE3 

regulation by NO. As described earlier, Roczniak and Burns showed that NO 

stimulated soluble guanylyl cyclase in both freshly isolated proximal tubule 

segments and in primary cultures of proximal tubule cells, and caused inhibition 

of Na+/H+ exchange. It was concluded that this effect was at least partly mediated 

by generation of cGMP (Roczniak & Burns 1996). Using the Caco-2 cell line, a 

human colonic carcinoma cell line that has been used to study regulation of 

electrolyte uptake by various hormones and growth factors, Gill et al. reported 

that NHE3 activity was decreased through the activation of soluble guanylyl 

cyclase, resulting in increased production of intracellular cGMP and activation of 

protein kinase G (PKG); there was no involvement of PKC- or protein kinase A 

(PKA)-mediated pathways in this process (Gill et al. 2002). Further downstream 

events in the NO signaling pathway which lead to NHE3 inhibition have not been 

fully deciphered although a study by Cha et al. demonstrated that cGMP 

inhibition of NHE3 required NHE3 regulatory factor 2 (NHERF2). NHERF2 binds 

cGMP-dependent protein kinase type II (cGKII), and then anchors this complex 

to the brush border membrane (Cha et al. 2005). It was also suggested that 



177 

cGMP could stimulate phosphorylation of NHE3 while additional signaling 

molecules still need to be identified. 

Na,K-ATPase is also subjected to regulation by NO and various hormones 

that are increased in obesity and hypertension. Na,K-ATPase activity was found 

to be inhibited by NO in an opossum kidney (OK) proximal tubule cell line (Liang 

& Knox 1999a), in the mouse proximal tubule epithelial cells (Guzman etal. 

1995, Seven etal. 2005)) and in guinea pig kidney (Seven etal. 2005). 

Moreover, it was noted that in primary culture of rat proximal tubule cells in the 

presence of an NHE3 inhibitor, NO still decreased Na,K-ATPase activity implying 

that this inhibition is independent of intracellular Na+ concentration (Linas & 

Repine 1999). Recently, it was reported by Shahidullah etal. that various nitric 

oxide donors decreased Na,K-ATPase activity by activation of soluble guanylyl 

cyclase, generation of cGMP and activation of PKG in epithelial cells from 

porcine eyes (Shahidullah & Delamere 2006). Therefore, it is conceivable to 

believe that a similar mechanism might be responsible for the NO effect on Na,K-

ATPase in the kidney as well. However, whether PKG regulates Na,K-ATPase 

through secondary modulators or by direct phosphorylation should be further 

investigated. We propose that the lack of responses from obese animals treated 

with L-NAME could be explained, as in the case of apical NHE3, by a difference 

in the metabolic and hormonal milieu in the obese vs. lean rats. 

Our results did not provide definitive information regarding direct effects of 

NO on the activity of proximal tubule sodium transporters in vivo thus we 

designed in vitro experiments on sodium reabsorption in primary cultures of 
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human renal proximal tubule epithelial cells (RPTEC). We analyzed expression 

of Na,K-ATPase and NHE3 in the presence of angiotensin II, insulin or leptin and 

examined the role of cGMP as a potential mediator of their responses. We 

demonstrated that in response to an NO donor, RPTEC stimulated cGMP 

production by activation of soluble guanylyl cyclase (sGC) since the selective 

sCG inhibitor, ODQ, was effective in blocking this increase. However, it is 

controversial whether the proximal tubule produces NO under basal conditions. 

Nevertheless, evidence suggests that the proximal tubule is constantly exposed 

to NO that might include NO from nonproximal tubule sources such as the 

vasculature or other nephron segments (Amorena & Castro 1997, Linas & 

Repine 1999). Also, proximal tubule cells from humans contain sGC (Sasaki et 

al. 2004) therefore are being able to signal through NO, regardless of the source. 

Next, we reported that in the presence of an NO donor, angiotensin II and 

insulin but not leptin increased cGMP levels in renal proximal tubule epithelial 

cells. To our knowledge, there are no reports about the effect of insulin and leptin 

on cGMP production in RPTEC. As already mentioned before, infusion of 

angiotensin II into rats significantly decreased expression of both subunits of 

sGC in blood vessels (Mollnau et al. 2002). Moreover, in isolated proximal 

tubules Zhang and Mayeux showed that angiotensin II induced a rise in cGMP 

production which was mediated by AT1 receptors (Zhang & Mayeux 1998). 

As we did not observe any changes in total abundance of Na,K-ATPase 

and NHE3 after 6, 12 and 24 hours incubation of RPTEC with angiotensin II and 

insulin in the presence of an NO donor, we decided to determine changes in 
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phosphorylation status of Na,K-ATPase and NHE3 in the same conditions but in 

shorter periods of time. We reported that phosphorylation of the a1-subunit of 

Na,K-ATPase at Ser16 was stimulated by angiotensin II and insulin in the 

absence of NO while phosphorylation status of NHE3 at Ser552 was not 

changed. However, in the presence of an NO donor only insulin affected the 

phosphorylation state of Na,K-ATPase but both: angiotensin II and insulin 

modulated the phosphorylation status of NHE3. As already discussed in aim # 1, 

it has been shown that in the proximal tubule the oc-subunit of Na,K-ATPase can 

be phosphorylated by PKA in the C-terminal at Ser943 (Feschenko & Sweadner 

1995) as well as by PKC in the N-terminal at Ser11, Ser18 and Ser23 

(Logvinenko etal. 1996). Modification of Na,K-ATPase by phosphorylation is 

generally associated with altered enzyme activity (Bertuccio et al. 2007) and 

changes in subcellular Na,K-ATPase distribution . For example, angiotensin II 

stimulated Na,K-ATPase in the proximal tubule by PKC activation (Rangel et al. 

2002) very rapidly, by a direct mechanism that could involve changes in 

phosphorylation (Yingst etal. 2004). In the rat, angiotensin II induced the 

phosphorylation of both Ser11 and Ser18of the Na,K-ATPase a-subunitby 

protein kinase C beta. This resulted in the recruitment of Na,K-ATPase molecules 

to the plasma membrane and an increased capacity to transport sodium ions 

(Efendiev et al. 1999, 2000). However, in human type Na,K-ATPase Ser11 was 

essential for the hormonal regulation of Na,K-ATPase activity and 

phosphorylation of this residue either lead to stimulation or inhibition of the 

enzyme with the subsequent recruitment or rectraction of Na,K-ATPase to or 
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from plasma membrane, respectively (Efendiev & Pedemonte 2006). Our data 

are supported by the above mentioned findings since incubation of RPTEC with 

angiotensin II lead to the increase in the phosphorylation status of Ser16 of the 

a1-subunit although we do not have evidence yet to indicate that this could be 

translated into changes in Na,K-ATPase activity. 

The mechanisms by which insulin regulates Na,K-ATPase in the kidney is 

largely unknown. There are reports demonstrating that insulin can stimulate 

Na,K-ATPase (Sweeney et al. 1998) by tyrosine phosphorylation in kidney 

proximal tubule cells (Feraille et al. 1999). However, in the present study, we 

have observed that phosphorylation of Ser16 was stimulated following the insulin 

administration. To ensure that the effects of angiotensin II and insulin were in fact 

achieved by activation of protein kinase C further testing with PKC inhibitors is 

required. 

NO was shown to inhibit Na,K-ATPase activity acting through the cGMP 

pathway and by activating protein kinase C-a (Liang & Knox 1999b), however, 

no phosphorylation sites were described. It is possible that as mentioned before, 

Ser11, Ser18 and Ser23 are involved. Our data suggest that an NO donor 

decreased the phosphorylation status of Ser16. However, in the presence of NO, 

angiotensin II at a concentration which increased cGMP levels, did not change 

the phosphorylation status of Ser16 of Na,K-ATPase while insulin did. To the 

best of our knowledge, reports about interaction of angiotensin II and NO/cGMP 

pathways in the proximal tubule and their effects on sodium transporters are 

missing. Zhang and Mayeux demonstrated that angiotensin II had a biphasic 
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effect on Na,K-ATPase activity in the rat proximal tubule and that activation of 

NOS opposed the stimulatory effects of angiotensin II on Na,K-ATPase activity 

(Zhang & Mayeux 2001). Also, there are no reports on simultaneous effects of 

NO and insulin on Na,K-ATPase and NHE3. To better understand the influence 

of the NO/cGMP signaling cascade on angiotensin II and insulin pathways 

additional studies are needed. 

NHE3 is subjected to both short- and long-term regulation. Long-term 

regulation is associated with an increase in protein abundance, whereas short-

term regulation is associated with transporter trafficking as well as post-

translational modifications of the proteins. We examined one of the acute 

regulatory mechanisms of NHE3 in vitro. NHE3 was phosphorylated in intact 

tissue or in cell culture models by PKA and PKC (Wiederkehr et al. 1999, Zhao et 

al. 1999). While an increase in NHE3-phosphorylation was paralleled, in general, 

by a decrease in NHE3 activity (Fan et al. 1999, Zhao et al. 1999), PKC 

activation lead to either stimulation or inhibition of NHE3 activity (Wiederkehr et 

al. 1999). The result was dependent on the system used and suggested that 

phosphorylation of NHE3 per se is necessary but not sufficient to regulate 

activity. The study by Zhao et al. demonstrated that Ser552 and Ser605 are 

involved in PKA-inhibition of NHE3 (Zhao et al. 1999). Kocinsky and coworkers 

showed that phosphorylation of NHE3 at serines 552 and 605 by PKA did not 

alter NHE3 activity in vivo. Furthermore, in a proximal tubule cell model PKA 

activation reduced NHE3 activity in a time-dependent manner (Kocinsky et al. 

2007). The authors implied that the lack of direct association between NHE3 
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phosphorylation and NHE3 activity demonstrates that NHE3 phosphorylation at 

serines 552 and 605 per se does not directly inhibit transport. Nonetheless, we 

assessed the phosphorylation state of NHE3 Ser552 RPTEC after stimulation 

with angiotensin II and insulin in the presence or absence of NO. In the absence 

of an NO donor, neither angiotensin II nor insulin modulated Ser552 

phosphorylation of NHE3. Angiotensin II is known to stimulate NHE3 by its action 

on AT1 receptors through pathways that are dependent on phospholipase C, 

metabolism of arachidonic acid, phosphatidyl inositol 3 kinase and Akt in human 

intestinal epithelial Caco2BBE cells (Musch etal. 2009). Studies by Becker etal. 

revealed that angiotensin II stimulated NHE3 activity in the proximal tubule, but 

the stimulatory response was markedly greater in obese Zucker than in lean 

Zucker rats; in addition, angiotensin II caused greater inhibition in cAMP 

accumulation in the proximal tubule of obese compared to lean rats (Becker et al. 

2003). Some in vivo results suggested that angiotensin II stimulated Na+/H+ 

exchange in the proximal tubule by a depression in intracellular cAMP (Liu & 

Cogan 1989). Although, no correlations have been made to the phosphorylation 

of NHE3 at Ser552, it is tempting to suggest that angiotensin II may stimulate 

NHE3 by reducing cAMP levels and by further decreasing the phosphorylation 

status of NHE3 at the Ser552 residue. 

How insulin signals NHE3 stimulation is not known. In opossum kidney 

(OK) cells, insulin increased NHE3 activity in a time- and concentration-

dependent manner (Klisic et al. 2002). While the chronic effect of insulin on 

NHE3 appeared to proceed through the phosphatidylinositol 3-kinase-serum- and 
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glucocorticoid-dependent kinase 1 pathway, the signaling cascade for the acute 

effect is not known; in addition, in clear contradistinction to hormones coupled to 

protein kinase A, insulin acutely alters NHE3 activity without changes in its 

phosphorylation (Fuster et al. 2007). 

Our data suggest that in the presence of an NO donor, signaling cascades 

of angiotensin II and insulin may be altered and differently modulate Ser552 

phosphorylation of NHE3. Further studies are necessary to evaluate whether 

those changes are cGMP dependent by using a soluble guanylyl cyclase 

inhibitor, such as ODQ. Moreover, it is imperative to measure how the 

phosphorylation status of Na,K-ATPase and NHE3 is changing when angiotensin 

II and insulin effects are combined in the presence of NO to more closely mimic 

the in vivo environment. 

In summary, we demonstrated that inhibition of NO production by chronic 

L-NAME treatment impaired pressure-induced natriuresis and diuresis in lean, 

normotensive but not in obese, hypertensive animals. In the lean rats, impaired 

pressure natriuresis was paralleled by alterations in the abundance, expression 

and distribution of apical NHE3 and the basolateral Na,K-ATPase in the proximal 

tubule. The mechanism responsible for diverse regulation of both transporters in 

obese and lean animals could evolve most likely from different metabolic states 

of obese vs. lean rats. It could also involve an imbalance among the NO 

signaling pathway, angiotensin II and insulin and eventually lead to differential 

regulation of sodium transporters in both the acute and the long-term settings. 
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SECTION 6 

SUMMARY AND CONCLUSIONS 

Excess weight contributes to increased blood pressure in a large 

proportion of essential hypertensive patients. Epidemiological studies have 

shown that hypertension is more prevalent in obese than in nonobese individuals 

and that blood pressure is correlated to body weight, even in normotensive 

subjects. There are many animal models of obesity available but not all of them 

mimic closely enough the cardiovascular, renal, and neurohumoral changes 

found in obese humans. In this study we used a rodent model previously 

characterized by Dobrian et al. This rat model of diet-induced obesity develops 

hypertension and shows vascular and renal changes similar to those observed in 

obese hypertensive humans. Sprague-Dawley rats were fed a purified 

moderately high-fat (MHF) diet that contains 32% kcal as fat, a value similar to 

the average Western diet, and showed a bimodal pattern in body weight gain. 

Approximately half of the rats gain weight rapidly (obesity-prone (OP)) and 

develop mild hypertension while the other half (obesity-resistant (OR) group) gain 

weight at a rate similar with chow-fed rats- and are normotensive. 

Theoretical and experimental studies have shown that in all forms of 

hypertension, including obesity hypertension, there is an abnormality of kidney 

function characterized by a hypertensive shift in renal pressure natriuresis. In 

addition, when obesity is induced by feed.ing a high fat diet, there is marked 

sodium retention and expansion of extracellular fluid volume. Moreover, sodium 

retention and altered pressure natriuresis appears to be caused mainly by 



185 

increased tubular sodium reabsorption. Based on this evidence we hypothesized 

that development of hypertension in diet-induced obesity is due to the increase 

in Na+ reabsorption by means of changes in activity of proximal tubule sodium 

transporters. In summary, our study demonstrated that pressure-induced 

natriuresis and diuresis were attenuated in obese rats compared to lean rats fed 

high fat diet. This can explain the increased sodium reabsorption in the obese 

rats, at least in part due to impaired proximal tubule function. These findings 

were well correlated with higher protein expression and activity of the apical 

NHE3 and the higher overall activity of basolateral Na,K-ATPase in the renal 

proximal tubule. The mechanisms which contribute to these changes are likely 

multifactorial. We provided evidence on the differences in NHE3 distribution 

between lean and obese rats which could account for the differences in NHE3 

activity and may explain the increased sodium retention seen in obese rats 

during acute pressure natriuresis and diuresis. For future studies, it would be of 

interest to examine other sodium transporters along the renal tubule as well as to 

investigate the mechanism of sodium handling and transporters activity in the 

obese and lean rats before the development of hypertension. 

PPARy is implicated in the pathogenesis of obesity and is also involved in 

blood pressure regulation. PPARy are molecular targets for TZDs (pioglitazone, 

rosiglitazone) used in clinical practice to treat diabetes. Besides reducing blood 

glucose levels these agents increase insulin sensitivity, lower blood pressure, but 

can also cause sodium retention by effecting tubular reabsorption. While the 

water retention induced by the TZDs is explained by a distal mechanism, the 
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blood pressure lowering effects have no clear molecular explanation. Thus, we 

hypothesized that PPARy activation lowers blood pressure by altering activity of 

sodium transporters Na,K-ATPase and NHE3 and by modulating tubular sodium 

reabsorption. Consequently, to address this hypothesis we examined the effects 

of chronic pioglitazone administration on blood pressure, sodium handling, and 

activity of proximal tubule transporters in obese and lean rats fed with a high fat 

diet. Also, using an in vitro model of proximal tubule epithelial cells we tested 

whether the pioglitazone effect on sodium transporters is mediated by 

peroxisome proliferator-activated receptor gamma. In summary, in an animal 

model of obesity-induced hypertension pioglitazone lowered blood pressure with 

a strong tendency to increase sodium excretion. In normotensive lean rats, 

pioglitazone had no effect on renal hemodynamics and blood pressure and at the 

same time caused sodium and water retention. Na,K-ATPase protein expression 

and activity were increased while NHE3 protein expression and activity were 

decreased by pioglitazone in obese rats. In lean animals Na,K-ATPase 

abundance was elevated while NHE3 protein expression was reduced. 

Moreover, in lean group after pioglitazone treatment NHE3 had a tendency to be 

redistributed to the active pool localized in the microvilli region. We concluded 

that simultaneous reduction in NHE3 abundance and activity could be 

responsible for blood pressure lowering effect of pioglitazone. Since we do not 

have a good candidate responsible for increased sodium and water reabsorption 

observed in lean rats we propose, that additional studies to analyze expression 

and activity of other transporters are needed to account for this effect. Our in vitro 
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experiments provided evidence that pioglitazone requires the expression of 

peroxisome proliferator-activated receptor gamma in order to act on Na,K-

ATPase and NHE3. Furthermore, additional in vitro studies will provide further 

mechanistic understanding on PPARy effect on sodium transporters. 

It has been shown that chronic inhibition of NO production produces 

arterial hypertension. In the kidney NO plays an important role in the control of 

renal hemodynamics and its net effect is to promote natriuresis and diuresis. This 

mechanism is not well understood, but a direct effect on tubular transport seems 

to be involved. Many in vitro and in vivo studies have demonstrated that at 

proximal tubule level NO induces natriuresis by directly inhibiting activity of NHE3 

and Na,K-ATPase through generation of cGMP and stimulation of PKG. There 

are reports that in obesity-induced hypertension NO bioavailability and sensitivity 

are altered. Moreover, NO is known to interact with pathways which are activated 

in obesity such as renin-angiotensin system, renal sympathetic nerves and leptin. 

Therefore, we hypothesized that NO may have different effects on Na+ handling 

in obese and lean animals and its interaction with hormones such as angiotensin 

II, insulin and leptin is relevant for the blood pressure control. We measured 

GFR, fractional excretion of sodium and lithium at two different perfusion 

pressures, and expression and activity of Na,K-ATPase and NHE3 in basolateral 

or brush border membranes from renal cortex, respectively, in vivo. Moreover, 

we analyzed changes in phosphorylation status of Na,K-ATPase and NHE3 after 

treatment with angiotensin II or insulin in the presence of NO in vitro, in cell 

culture. In summary, L-NAME treatment did not change MAP in either group. The 
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changes in GFR were also not significantly different between groups. L-NAME 

attenuated the natriuretic response to increases in RPP in OR while it had no 

effect on pressure natriuresis and diuresis in the OP group. We have observed 

after NO inhibition in lean rats an increase in protein expression of Na,K-ATPase 

without changes in its activity and an increase in NHE3 abundance and activity 

as well as redistribution of this transporter to the more active membrane pool. On 

the other hand, in obese rats treated with L-NAME we report an increase in 

abundance of NHE3 but no changes in its activity or in abundance and activity of 

Na,K-ATPase. In conclusion, inhibition of NO production blunted pressure-

induced natriuresis and diuresis in lean rats fed high fat diet most likely through 

releasing tonic inhibitory effect of NO on the proximal tubule sodium transporters. 

However, L-NAME treatment did not have any effect on renal hemodynamics and 

kidney excretory function in obese animals, leading us to believe that metabolic 

and hormonal differences between those animals are responsible for their 

diverse responses to NO blockage. 

Our in vitro studies demonstrated that phosphorylation of the oc1-subunit of 

Na,K-ATPase at Ser16 was stimulated by angiotensin II and insulin in the 

absence of NO while phosphorylation status of NHE3 at Ser552 was not 

changed. However, in the presence of an NO donor only insulin effected 

phosphorylation state of Na,K-ATPase but both: angiotensin II and insulin 

modulated the phosphorylation status of NHE3. Available data suggest that 

phosphorylation of Na,K-ATPase is usually associated with altered enzyme 

activity while phosphorylation of NHE3 is necessary but not sufficient to regulate 
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its activity. Our study provides evidence that Na,K-ATPase and NHE3 

phosphorylation status is changed after treatment with hormones in the presence 

or absence of an NO donor but further studies are needed to extrapolate these 

findings to changes in the transporters' activity. 

Moreover, additional in vitro studies are necessary to evaluate whether the 

changes are cGMP dependent by using a soluble guanylyl cyclase inhibitor, such 

as ODQ. It is also imperative to measure how the phosphorylation status of 

Na,K-ATPase and NHE3 is changing when angiotensin II and insulin effects are 

combined in the presence of NO to more closely mimic in vivo environment. 
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