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Self-consistent simulations of electroporation dynamics in biological cells subjected
to ultrashort electrical pulses

R. P. Joshi, Q. Hu, R. Aly, and K. H. Schoenbach
Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, Virginia 23529-0246

H. P. Hjalmarson
Computational Biology and Materials Technology Department, Sandia National Laboratory, Albuquerque, New Mexico 87185-1111

~Received 6 February 2001; revised manuscript received 4 April 2001; published 21 June 2001!

The temporal dynamics of electroporation of cells subjected to ultrashort voltage pulses are studied based on
a coupled scheme involving the Laplace, Nernst-Plank, and Smoluchowski equations. A pore radius dependent
energy barrier for ionic transport, accounts for cellular variations. It is shown that a finite time delay exists in
pore formation, and leads to a transient overshoot of the transmembrane potentialVmem beyond 1.0 V. Pore
resealing is shown to consist of an initial fast process, a 1024 s delay, followed by a much slower closing at a
time constant of about 1021 s. This establishes a time-window during which the pores are mostly open, and
hence, the system is most vulnerable to destruction by a second electric pulse. The existence of such a time
window for effective killing by a second pulse is amply supported by our experimental data forE. coli cells.
The time constant for the longer process also matches experiments. The study suggests that controlled ma-
nipulation of the pore ‘‘open times’’ can be achieved through multiple, ultrashort pulses.

DOI: 10.1103/PhysRevE.64.011913 PACS number~s!: 87.15.Aa, 87.50.Rr, 87.50.2a, 87.17.Aa

I. INTRODUCTION

Electroporation is a well-known physical process in bio-
logical cells@1–3#. It involves rapid structural rearrangement
of the membrane, in response to an externally applied elec-
tric field. The most prominent observable effect is a rapid
increase in the electrical conductivity by several orders of
magnitude@4#. This is attributed to the formation of aqueous
pathways, or pores, in the lipid bilayer of the membrane. The
opening of such channels~or more appropriately, transient
aqueous pores! enables the transport of ions and water-
soluble species both into and out of individual cells. Elec-
troporation can, therefore, be used to initiate large molecular
fluxes for purposes of introducing genetic material into cells.
Numerous related applications in molecular biology, biotech-
nology, and medicine are beginning to emerge@5–9#.

Electroporation has also been linked to the nonthermal
killing of micro-organisms subjected to strong electric fields
@10#. For this reason, it offers great potential for decontami-
nation and the elimination of harmful micro-organisms and
biohazards. Traditionally, most electroporation studies have
focused on relatively low external electric fields~less than a
kilovolt per centimeter!, applied over extended time periods
ranging from several tens of microseconds to milliseconds
@11#. In a very recent development, work has focused on the
use of much shorter, high-voltage pulses for initiating elec-
troporation. Electric fields as high as 100 kV/cm were used
with pulse durations ranging from nanoseconds to several
microseconds. There appear to be several fundamental ad-
vantages in using short electric pulses for cellular manipula-
tion. First, negligible thermal heating of the biological matter
can be expected to occur due to the short time duration. Also,
much lower energies are required for pulsed inputs, and yet
large values of the electric fields and peak powers can be
obtained. Next, pulsed fields afford a way by which the time
scales can easily be manipulated. For example, by turning off

the applied fields relatively quickly, the slower processes~for
example, biochemical events! could effectively be inhibited,
while intracellular mechanisms would be active.

In order to fully utilize its potential of ultrashort pulses for
cellular manipulation, it is important to first get a good un-
derstanding of the electroporation physics and membrane
electropermeabilization. Litster@12# and Taupin, Dvolaitzky,
and Sauterey@13# were the first to suggest the role of thermal
fluctuations in pore formation, and the existence of a thresh-
old pore-formation energy. The model was subsequently ex-
tended to include electrostatic energy effects@14#. Pastush-
enko, Chhizmadzhev, and Arakelyan@15# were the first to
apply the Smoluchowski equation@16# to predict the evolu-
tionary pore dynamics. Barnett and Weaver@17# subse-
quently derived the equations of Pastushenko, Chhiz-
madzhev, and Arakelyan@15# from statistical mechanics, and
expanded the biophysical description into a numerical model
@18#. Since the evolution dynamics are influenced by the
transmembrane potentialU(r ,t), calculations ofU(r ,t) need
to be included for self-consistency. Most studies, with the
exception of a short report by Vaughann and Weaver@19#,
have ignored this aspect. Only a very recent simulation
model by our group has taken account of a lumped equiva-
lent circuit for self-consistency@20#. However, as is well
known, the use of a simple lumped model has several draw-
backs. First, it completely ignores the distributed nature of
the internal passive circuit elements, and can lead to serious
errors for high-frequency operation or on ultrashort time
scales. Besides, by ignoring the spatial details, features such
as the spreading resistance, which is a purely geometric ef-
fect @21#, are left untreated.

The issue of charge transport during the electroporation
process was studied by Chernomordiket al. @22#. A one-
dimensional analysis was reported by Glaseret al. @23#, and
subsequently generalized to three-dimensional flow by Bar-
nett @24#. Essentially, ionic transport entails the flow of
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charged particles through an opening within a dielectric
layer. Due to internal polarization, charges are induced at the
membrane wall. This leads to an effective ‘‘barrier’’ to ionic
flow that is the result of electrostatic interactions. This en-
ergy barrier can be calculated for simple geometries@25#,
and in general, decreases monotonically with pore radius.
Due to the presence of a barrier, transport is generally weak
and highly non-Ohmic at low values of the transmembrane
potential, and changes dramatically as the barrier is lowered
due to an external voltage. Though the barrier model appears
to be adequate, more rigorous computational schemes can be
applied to this problem@26#. Similarly, complex geometries
for ion-flow channels could be taken into account in keeping
with experimental reports. For example, besides finite cylin-
drical geometries@27–29#, shapes such as biconical, catenary
or toroidal vestibules@30,31# could arguably provide a more
realistic picture. In any case, the strongest contributions to
the overall current will result from a relatively small subset
of large pores as the corresponding energy barriers would be
the least. Also, current flows can be expected to change with
time as the pores expand or reseal in accordance with the
Smoluchowski equation, and need to be modeled.

In this contribution, time-dependent numerical simula-
tions have been performed to model the pore kinetics based
on the governing Smoluchowski equation. Since the pore
generation and resealing rates depend on theU(r ,t), the
transmembrane potential is computed at each time step for
self-consistency. Instead of using a lumped equivalent circuit
approach, a coupled solution of the Laplace and current con-
tinuity equations has been used based on a three-region
model for a spherical cell as described in the next section. A
one-dimensional approximation of the Nernst-Planck expres-
sion has been applied for ionic transport through the pores.
An energy barrier for ionic transport, taken to depend on the
pore radius, accounts for cellular variations and the distribu-
tions in pore sizes. It is shown that a finite time delay exists
in pore formation, and leads to a corresponding delay in the
ionic current. This has two effects. First, it results in a tran-
sient overshoot of the transmembrane potentialVmem. Con-
sequently, peak values ofVmem can be substantially higher
than the eventual steady-state level. This result agrees very
well with a recent experimental report by Meieret al. @32# on
giant planar lipid membranes. Second, this delay increases
the input voltage magnitude necessary for causing irrevers-
ible breakdown for short electric pulses. Finally, it is shown
that pore resealing is a three-step process. There is an initial
fast process occurring immediately after the cessation of the
external electric field. This is followed by a delay stage last-
ing in the 1024 s range. Eventually, a much slower pore clos-
ing with a time constant of about 1021 s, takes over. This
establishes a 0.1 ms time window during which the pores are
mostly open, and hence, the system is most vulnerable to
destruction by a second electric pulse. The existence of such
a time window threshold for effective killing by a second
pulse is amply supported by our experimental data. Finally,
the time constant for the long-closing process also matches
experimental results data and previous reports. For example,
Meier et al. @32# in their experiments on giant planar mem-
branes, also obtained a time delay of exactly 0.1 ms.

II. SIMULATION MODEL

In our time-dependent simulation model of electropora-
tion, the internal electric fields arising from an external step
voltage are computed based on the current continuity and
Laplace equations. Details of the electric field calculations
for a spherically symmetric cell are provided later in this
section. In practice, cells can be elliptical~more specifically,
prolate/oblate spheroids! either due to their naturally occur-
ring shape, or due to field related deformations. However,
the creation of strong polarization at regions of sharper cur-
vature effectively shields the electric fields, and works to
minimize the disparity resulting from geometric asymme-
tries. Hence, the spherical geometry assumed is expected to
be roughly correct. The model implicitly assumes that the
time delay for cellular reorientation and alignment with the
external field is negligible compared to the times scales for
the poration process. Hence, the reorientation process has
been ignored. This is based on an extrapolation of the char-
acteristic delay times from the experimental data of Eynard
et al. @33# to the high electrical fields of interest here. Cur-
rent flows are computed corresponding to the electric fields
at each time step from a continuum Nernst-Planck-type
model that includes diffusion@22–24#. The transport is as-
sumed to occur through the transient aqueous pathways
~pores!, and so is dictated by the time-dependent pore distri-
bution. The requisite details regarding pore size and areal
densities are computed based on the Smoluchowski equation.
Details of this overall numerical model are discussed next.

In keeping with the literature@34–36#, it is assumed here
that two types of pores exist. The hydrophilic pores have
their walls lined with water-attracting heads of lipid mol-
ecules, and are conducting. Hydrophobic pores are noncon-
ducting, and simply represent gaps in the lipid bilayer of the
membrane. Each of the two pore types are characterized by
an energy of formationE(r ) that is a function of the pore
radiusr. In the present analysis, we have chosen to use the
following pore energy function in keeping with the published
and accepted model@4,14,23,34#:

E~r ,t !52phrs~`!@ I 1~r /r 0!/I 0~r /r 0!#2parV2r 2, and
~1a!

E~r ,t !52pgr 2F E
0

r

2pG~r * !r * dr* G1~C/r !22parV2r 2,

~1b!

for hydrophobic and hydrophilic pores, respectively. In the
above, I 1 and I 0 are the modified Bessel functions of the
zeroth and first order, respectively,h is the membrane thick-
ness,s~`! is a constant equal to 531022 N m21, while r 0
represents a characteristic length scale over which the prop-
erties of water change between the interface and the bulk.
The value ofr 0 is taken to equal 1 nm. Also,g is the energy
per unit length of the pore perimeter, whileG is the energy
per unit area of the intact membrane. In practice, theG value
in a finite biological membrane changes with osmotic pres-
sure, thepH value, and/or with perforations upon stretching.
For example, a simple heuristic model has recently been
used to describe such changes@37# with G(r )5G0@1
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2r2/r`
2#. This is based on the idea that tension is proportional

to the membrane area, at least to first order. Hence, it follows
that pore formation and growth will lead to reduction in the
G parameter. The primary effect of such variations inG,
would be the creation of an additional local minima in the
pore energy function. From the standpoint of electroporation,
this means that instead of expanding indefinitely beyond the
unstable maxima, the pores become quite large, but ulti-
mately stabilize at this high radial value. The variable ten-
sion concept had been proposed by Winterhalter and Hel-
frich @38#, as well.

Typical values for the various parameters are given in
Table I. Surface tension of the membrane, the line tension of
the pore edge, and the membrane capacitance contribute to
E(r ). The third term in Eq.~1b! represents the steric repul-
sion between lipid heads lining the pores@3,35#, and is re-
sponsible for the increase in pore free energy with shrinking
radius. The value ofC in Eq. ~1b! was chosen to be 9.67
310215J1/4m in keeping with the reports by Neu and Kras-
sowska@35# as it yields values close to those measured by
Glaseret al. @23#. The last term in Eq.~1! represents the
capacitive contribution to the energy in the presence of a
transmembrane potentialV. The coefficientap is a property
of the membrane and its aqueous environment. In the sim-
plest continuum approximation@23#, it is expressed in terms
of the membrane thicknessh and the permittivities«w and
«m of water and the membrane, respectively, as:ap5(«w
2«m)/@2h#. It might be mentioned that other models have
been proposed as well that take into account different factors
in the pore energy calculation. For instance, formulations
based on the role of osmotic pressure@13#, electrocompres-
sion of the lipid bilayer@39#, interaction with membrane cy-
toskeleton@40#, and cellular deformation@38# exist. While
the expression forE(r ) would change somewhat on the basis
of the alternative theories, the basic trends and qualitative

physical behavior would remain unaltered.
The energy functionE(r ) determines the ‘‘drift flux’’ for

pores inr space and therefore, governs the growth or con-
traction of pores at any given radiusr. In general, the pres-
ence of a membrane voltage reduces the maxima, and can
even quell the energy barrier completely beyond a critical
voltage value. For transient voltage pulses, stability would
depend on the ability of pores to drift past the barriermaxi-
mas within the duration of the applied voltage pulse. As in
previous treatments, it is assumed here that the formation of
pores is a two-step process. All pores, are initially created as
hydrophobic/nonconducting at a rateS(r ) per unit area of
the membrane, during every time intervaldt. This rate is
given as

S~r !5$~vch!/~kBT!%@dE~r !/dr#exp@2E~r !/~kBT!#dr dt,

~2!

wherevc is an attempt rate density@14#, E(r ) the energy for
hydrophobic pores,T the operating temperature, andkB the
Boltzmann constant. This assumes that the use of a kinetic
collisional theory remains valid for nongaseous phases as
well. If a nonconducting pore is created with a radiusr
.r * ~50.5 nm!, it spontaneously changes its configuration
and transforms into a conducting, hydrophilic pore. All con-
ducting pores then survive as long as their radii remains
larger thanr * . Destruction of a conducting pore occurs only
if it drifts or diffuses inr space to a value belowr * . Due to
the exponential term in Eq.~2!, most pores are created with
very small radii.

The Smoluchowski equation that governs the pore dy-
namics is given in terms of the pore density distribution
function n(r ,t) as

]n~r ,t !/]t1$D/@kBT#%@]$E~r !n~r ,t !%/]r #

2D@]2n~r ,t !/]r 2#5S~r !, ~3!

whereS(r ) is the source term as given in Eq.~2!, while D is
the pore diffusion constant given in Table I. The process of
diffusion represents a ‘‘random walk’’ of the pore radius in
‘‘ r space.’’ Physically, this is brought about by fluctuations
in the radius in response to water molecules and other spe-
cies constantly entering and leaving the pores. Numerical
simulations of the dynamic pore distribution were carried out
based on a time-domain, finite-difference discretization of
the governing Smoluchowski equation. An upperboundr max
of 2000 Å was set on the pore radius, and this entirer space
was uniformly divided into 5000 segments to yield a con-
stant grid spacingdr of 0.4 Å. This ensured that the set limit
was much larger than the critical radiusr c at which the en-
ergy functionE(r ) has a local maxima. Two suitable bound-
ary conditions were imposed for the second-order partial dif-
ferential equation~3!. A ‘‘reflecting boundary’’ was assigned
at r 5r max, which was implemented by setting the pore flux
to zero atr 5r max. Mathematically, this amounts to a Neu-
menn condition: udn(r ,t)/dr] ur 5r max

52@dE(r,t)/dr#@n/

(kBT)] r 5r max
. At the other end, absorbing boundary condi-

tions were implemented by settingn(0,t)50. The time step

TABLE I. Parameters used for the theoretical model

Parameter Source Value

D (m2 s21) Ref. @18# 5310214

g (J m21) Ref. @18# 1.8310211

G0 (J m22) Ref. @18# 1023

C (J1/4 m) Ref. @23# 9.67310215

Kw (F m21) Ref. @18# 8038.85310212

Km (F m21) Ref. @18# 238.85310212

h ~m! Ref. @31# 531029

ap (F m22) Ref. @23# 6.931022

vc (m23 s21) Ref. @14# 231038

vd (s21) Ref. @31# 1011

r 0 (m) Ref. @31# 131029

s0 (N m21) Ref. @31# 531022

s in (S m21) Ref. @33# 0.455
sout (S/m) Ref.@33# 5.0
s ~S/m! Ref. @33# 1.3
A ~V! Ref. @31# 2.5
n5h1 /h Ref. @33# 0.15
r ~m! Ref. @35# 6531029
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dt, in these simulations was chosen to be much smaller than
the fluctuation ratevd that represents the fastest time con-
stant in the system@23#. Specifically,dt510211s was used.
As an initial condition prior to the application of an external
voltage, the pore density was taken to be zero at all the grid
points.

The external electric fieldF(t) was taken to have the
exact time-dependent shape corresponding to the external
pulsed wave form. For purposes of calculating the transmem-
brane potential, the coupled Laplace and current-continuity
equations were solved at each time step. The schematic
shown in Fig. 1 was used to represent a cell suspended in a
medium, and the relevant equations applied to this geometry.
The geometric model is similar to that used by Grosse and
Schwan@41# for analyzing membrane potentials induced by
alternating fields. The inner region was assumed to be
spherical in shape with a radius ofa, homogeneous and char-
acterized by a conductivitys in . The applied electric field
F0(t) was taken to be along thez axis. The cellular mem-
brane was assigned a thicknessb-a, while the outer region
denoting the suspension was assigned a conductivitysout.
Due to spherical symmetry, the potentials that must satisfy
the Laplace equation, can be expressed as

U in~r ,t !5A0~ t !P01A1~ t !rP11A2~ t !r 2P21¯

5 (
j 50,}

Aj~ t !r j Pj , ~4a!

Umem~r ,t !5 (
j 50,}

@Bj~ t !r j Pj1Cj~ t !Pj /r j 11#, ~4b!

and Uout~r ,t !52F0~ t !rP11 (
j 50,}

D j~ t !Pj /r j 11,

~4c!

whereU in(r ,t), Umem(r ,t), andUout(r ,t) are the potentials
at the inner, the membrane, and outer regions,Pj is the j th
order Legendre polynomial, andF0(t) the externally applied
electric field. Also,Aj (t), Bj (t), Cj (t), and D j (t) are the
coefficients of the Legendre series expansions that can be
determined by applying matching boundary conditions at the
interfaces of the three regions. Here, the Laplace instead of
Poisson’s equation has been used on the assumption that
charge inequalities arsing from ionic transport during the

electroporation process can be ignored on the short time
scales. As will be shown later, the current flows are not very
large and so charge transfer during the ultrashort time scales
of interest here, are indeed minimal. Invoking continuity in
the potential and current density then leads to the following
boundary conditions:

U in~r 5a,t !5Umem~r 5a,t !, ~5a!

Umem~r 5b,t !5Uout~r 5b,t !, ~5b!

s in@]U in~r ,t !/]r #ur 5a5sout@]Uout~r ,t !/]r #ur 5b , ~5c!

and 2s in@]U in~r ,t !/]r #ur 5a5CM@]Vmem~ t !/]t#1Jmem~ t !,
~5d!

whereCM is the membrane capacitance,Vmem(t)5@Umem(r
5b,t)2Umem(r 5a,t)# is the membrane potential, and
Jmem(t) is the conduction current density across the mem-
brane through the pores. Values of the conductivity param-
eters and the membrane capacitance have been reported in
the literature@42#, and are used here as given in Table I.
Straightforward, but tedious manipulation of Eq.~5! yields
the following expression for the time-dependent membrane
potentialVmem(t):

Vmem~ t !5A~ t !cos~u!@$b2b3/a2%$112sout/s in%/$~b/a!3

12sout/s in%2~b21!#13 cos~u!F0~ t !

3~sout/s in!/$~b/a!312sout/s in%, ~6a!

whereu is the angle with respect to thez axis~and hence, the
applied electric field direction!, andA(t) satisfies the follow-
ing ordinary differential equation:

CM@dA~ t !/dt#@$b2b3/a2%$112sout/s in%/$~b/a!3

12sout/s in%2~b2a!#

52Jmem~ t !2s in„@2~sout/s in!$~b/a!321%A~ t !

23~sout/s in!F0~ t !~b/a!3]/ $~b/a!3

12sout/s in%…. ~6b!

Since steady-state results of the transmembrane potential
have been derived in the literature, an indirect validation of
the above equation can easily be obtained by evaluating
Vmem(t) in the long time limit. Setting the time derivative
term to zero yields an expression forA(t→}). Using this
expression in equation~6a!, provides the steady-state trans-
membrane potential:Vmem521.5aEcos(u) for b;a. This
steady-state result is in accordance with the expression re-
ported and experimentally verified in the literature@43,44#. It
is worth mentioning that the time-varying field of equation
~4!, would produce a force at the membrane in accordance
with the Maxwell stress tensor@45#. It is conceivable that
such stress will lead to changes in the volume and shape of
the cells. Experimental scattering data on cells subjected to
high-voltage pulses confirms such dynamical variations in

FIG. 1. Schematic of the model used to represent a cell in a
suspension for potential calculations.
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size @46#. Cell shrinkage in the context of apoptosis follow-
ing high-voltage pulses is also possible. Such aspects can be
analyzed based on the theory presented here. However, nu-
merical results and pertinent discussions on volumetric
changes will be reported elsewhere.

The conduction current densityJmem(t) needs to be speci-
fied in order to solve for the potentials in Eq.~6!. A one-
dimensional approximation of the Nernst-Planck expression
for ionic flow has often been used in the literature@22–24#.
This gives to the following current-voltage relation:

I ~ t !5psR2N~ t !$exp@qVmem~ t !/~kBT!#21%Y XE
0

h

exp@qVmem~ t !$12x/h%/~kBT!1w~x!#dxC, ~7!

whereR(t) is the pore radius,s the conductivity of the aque-
ous solution that fills the pore,w(x) the energy barrier to
ionic flow through the pores,h is the membrane thickness,
and N(t) the pore density. A simple trapezoidal form for
w(x) as given by

w~x!5qA/~kBT!$x/h1% for 0<x<h1 . ~8a!

w~x!5qA/~kBT! for h1<x<h2h1 . ~8b!

w~x!5qA/~kBT!$~h2x!/h1% for h1<x<h2h1 . ~8c!

has been used for the barrier energy, and will be applied
here. In the above,A represents the peak barrier height under
zero bias. Values ofs and A are known to be roughly 1.3
S/m @42# and 2.5 V@23#, respectively. The parameterh1 is
the length of the entrance region of the pore over which the
barrier profile would be changing linearly for an unbiased
cell. Its value is roughly 0.15 times the membrane thickness.
In addition, an ionic component,I ion , which is orders of
magnitude lower in strength, has to be included. This ionic
current density is@42#:

I ion51.9 ~Vmem10.083!. ~9!

The 83 mV in the equation above represents the reversal
potential.

It must be pointed out that the above equations~7! and~8!
are somewhat inaccurate for the following reasons.

~i! First, the barrier peakA is assumed to be independent
of the pore radius. This is physically inaccurate. As shown
by Parsegian@25#, for example, the barrier is a monotoni-
cally decreasing function of the radiusr implying that it is
easier for ions to get through wider pores. An approximate
form, which is correct for an infinitely long cylindrical pore
geometry, forw(r ) has been derived to be@25#: w(r )55
31029/r . In our calculations, thisw(r ) function was explic-
itly used in Eq.~8!.

~ii ! Next, Eq. ~7! treats the pore radius to be a constant
that is incorrect for two reasons. Not only would the radius
of the pores change under transient conditions upon the ap-
plication of an external voltage wave form, but also the pores
would not all be identical in size. The distributionn(r ,t) as
predicted by the Smoluchowski equation, would impart a
heterogeneous spread in theR parameter.

~iii ! Finally, N(t) that is an integral quantity needs to be
obtained through a suitable integration ofn(r ,t) over r
space. TreatingN(t) as a fundamental independent variable
is incorrect.

To redress the above shortcomings of equation~7!, a
somewhat modified current-voltage (I -V) characteristics
were used in this study. TheI -V relation was taken to be

I ~ t !5psE
0

`Xr 2n~r ,t !$exp@qVmem~ t !/~kBT!#21%Y H E
0

h

exp@qVmem~ t !$12x/h%/~kBT!1w~r ,x!#dxJ C, ~10!

which includes an integration inr space over the time-
dependent distributionn(r ,t). In the process, the role of in-
tercellular variations and the size distribution of pores are
both taken into account. A distribution of barrier energies
and their fluctuation from site to site is also automatically
included in this formulation. It, therefore, represents a more
physical model of an actual cellular colony.

As a final comment, it may be pointed out that the present
model is non-Markovian in nature, and hence, includes
memory effects. The kinetic rates depend on the membrane
voltage, and hence, vary with time. Consequently, the model

describing the evolution of the biological system, not only
depends on the initial starting state, but also on the details of
the time-dependent voltage sequence. This formulation,
therefore, goes beyond the Markovian treatments based on
Poisson models@47,48#.

III. RESULTS AND DISCUSSION

The pore formation energy function for hydrophilic pores
is shown in Fig. 2 based on Eq.~1b! for various values of the
r } parameter. Its characteristics are important since the pore
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dynamics are governed by this energy function. Essentially
energy is required to create a ‘‘circular’’ edge for pore for-
mation. However, a deduction has to be considered to ac-
count for the elimination of the membrane surface area. For
a monotonically decreasing value of the surface tension with
pore radius, as implied by a finiter } parameter, contribu-
tions to an energy decrease are reduced leading to increases
in the formation energy. This is evident from the three curves
of Fig. 2 corresponding to three differentr } values. A fixed,
high value of G corresponding to the r }

5} limit yields the lowest energy. Physically though,r }5
} is an incorrect representation for two reasons. First, it
implies that the pores are able to expand without bound and
never stabilize. This would lead to unphysical density en-
hancements in the nonporous regions of the membrane, or
thickness increases. Second,r }5} incorrectly implies that
the tension is unaffected by changes in the membrane area.
Though direct experimental verification of surface tension is
unavailable, molecular dynamics simulations of lipid bilay-
ers do demonstrate the following@49#: ~a! Finite tension is
required to maintain a given cellular shape and size, and~b!
the tension must change with the system area. Also, indirect
experimental evidence indicative of variations in membrane
tension is available. For example, activation of the 3-ns
mechanosensitive channel large cloned fromE. coli @50# has
been linked to the tension of lipid membranes. Similarly, the
activity of lytic peptides is affected by the tension of vesicles
under stress@51#, and the catalytic activity of ab isoform of
phospholipaseC shown to change with surface pressure@52#.
These experimental results suggest that the tension must
naturally be variable, and that its variation facilitates biologi-
cal activities that are observed. Third, since tension is pro-
portional to the membrane area, at least to first order, it fol-
lows that changes due to pore formation will lead to
variations inG that are proportional to the square of the pore
radius.

For a finite value ofr } , the formation energy not only
increases, but also exhibits a local minima. This implies that
the pores can expand upon the application of external electric
fields, but will eventually stabilize to some large average
value as dictated by the minima. This leads to the following
consequences.~i! First, for pore creation and cellular ma-

nipulation, a somewhat larger external energy will be neces-
sary to create large pores due to the variable surface tension.
~ii! Second, for cellular destruction, a sufficiently large volt-
age must be applied for a sufficiently long time to transcend
the energy barrier and ensure that pores move into the energy
minima. ~iii! Pore resealing, in the presence of a local
minima ~e.g., as in ther }565 nm curve of Fig. 2!, becomes
a two-step process. An initial rapid decrease is expected to
occur due to the diffusion of pore with radii smaller than the
local minima toward smallr space. However, those lying
beyond the local minima will remain ‘‘trapped’’ and will
diffuse to lowerr values very slowly. Hence, conceivably, a
small fraction of the pore will remain open for long times,
provided the initial voltage and time duration were sufficient
to carry them over the barrier.~iv! Finally, the two-step pro-
cess implies that there is an optimal time-window for cellular
destruction. If, for example, a second voltage pulse can be
applied before the fast first-step has not fully completed, the
potential for damage will be rather high. On the other hand,
applying a second voltage pulse after the end of the fast
resealing process, only a few pores will be open, and a high
membrane potential will not be developed due to their high
conductivity. This suggests that for maximal damage, a se-
ries of short pulses with delays less than that of the fast-
process time constant will be most desirable.

Self-consistent simulations based on the coupled Laplace-
Nernst-Planck-Smoluchowski equations were carried out
next to evaluate the temporal response to ultrashort, external
electric pulses. A 10 kV/cm rectangular external electric field
pulse with a 431026 duration was assumed. These param-
eters were chosen in keeping with actual pulsed field experi-
ments conducted onE. coli in our laboratory to facilitate
comparisons between theory and experiment. The cell radius
was chosen to be 1.0mm and a membrane thickness of 5 nm
which is roughly characteristic ofE. coli. Figure 3 shows the
dynamic evolution of the pore density. An initial delay of
about 5 ns seen in Fig. 3~a!is due to membrane charging and
for Vmem to build up to levels at which the pore creation rate
becomes substantial. A peak value of about 231014m22 is
reached after about 20 ns. Subsequently, the pore density
shows a slight monotonic decrease over the remaining dura-
tion of the 4ms external pulse. This occurs due to a substan-
tial increase in the membrane conductance and a consequent
decay inVmem that controls the pore generation. Details of
the time-dependent membrane voltage are shown in Fig. 4.
The voltage exceeds 1.0 V at about 15 ns, and reaches a peak
value of roughly 1.2 V. At this point the pore conductance
increases to such a degree that the voltage across the mem-
brane capacitance begins to fall. The overall result is a ‘‘volt-
age overshoot’’ behavior. It agrees well with a previous re-
port on the time-dependent behavior of the membrane
voltage by Meieret al. @32#. As the external electric field is
turned off beyond 4ms, the transmembrane potential falls
dramatically with a time constant in the sub-microsecond
range. The fast dropoff is the result of a large conductance,
and hence, a low internal ‘‘RC’’ time constant. A final
steady-state value of about280 mV, equal to the rest poten-
tial is finally reached. The corresponding influence on the
pore density, as seen from Fig. 3~a!, is a sharp decrease by

FIG. 2. The pore formation energy function for hydrophilic
pores for variousr ` values.
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about fifty percent following the turn-off. Beyond this, the
density continues to decrease, but at a relatively low rate
until about 0.1 ms. This implies that many of the pores tend
to remain open, well after the 4ms pulse is switched off.
Hence, a second electric pulse applied within this duration is
likely to have a substantial damaging effect. This is borne
out in our experimental measurements onE. coli, as dis-
cussed later. Also, this 0.1 ms time delay corresponds well
with an experimental report by Meieret al. @32#. Beyond 0.1
ms, the rate of pore reduction increases. The long time be-
havior can best be gauged from the semilogarithmic curve of
Fig. 3~b!. It shows a gradual slowing in the resealing rate. At
the 2.4 ms instant, an ‘‘effective decay time constant’’ of
4.531023 s is computed from the results. Based on this time
constant, a lower bound on the duration for near-complete
pore resealing can be estimated. It works out to 0.12 s. In
actuality, though, the duration would be even longer since
the decay curve of Fig. 3~b!exhibits a continuous slowing
down. It is, therefore, natural to expect that the pore decay
will weaken even further at longer times, and resealing du-
rations spanning several seconds or even minutes, will result.
In any case, the projected resealing values are in the
1021– 102 s range, in keeping with experimental reports
@53,54#.

The dynamical behavior can easily be understood in terms
of the formation energy characteristic of Fig. 2. Initially, the
pores that are not near the local minima, and have values in
r space that are below the barrier. These pores tend to drift
and diffuse towardr→0, giving rise to a fast decay. How-
ever, this leaves behind an ever-increasing higher fraction of
larger pores that are near the local minima. Those near the
minima move inr space primarily through diffusion, and
hence, the system takes a long time to completely recover to
the original steady state.

The effect of including a second electric pulse and the
comparative temporal behavior is shown in the curves of Fig.
5. The pore density evolution for single and a dual 4ms, 10
kV/cm rectangular electric pulses is shown. The delay for the

FIG. 3. Simulation result for the pore density evolution with
time in response to a 4ms, 10 kV/cm rectangular electric pulse.~a!
Logarithmic scale, and~b! semilogarithmic graph.

FIG. 4. Calculated temporal variations of the transmembrane
potential in response to a 4ms, 10 kV/cm rectangular electric pulse.

FIG. 5. Simulation result comparing the pore density evolution
with one and two 4ms, 10 kV/cm rectangular electric pulses. The
delay for the two-pulse simulation was taken to be 1.2 ms.
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two-pulse situation was taken to be 1.2 ms. Despite being
outside the 0.1 ms time-window, the application of a second
pulse is seen to have effect on the evolution. First, the pore
density is increased leading to a short spike. However, this
increment is not as large as that produced by the original
pulse, since the larger pores remain open, giving rise to a
reasonably large membrane conductivity. Consequently, the
membrane potential developed is not as large, and the pore
creation rate not boosted as much. A second observation is
that a two-step decay is evident following the second pulse,
as with the initial pulse. Finally, and most important, the
decay time for the two-pulse situation becomes significantly
longer beyond 2 ms. This implies that applying two or more
pulses can slow resealing considerably. From a practical
standpoint, this has applications for drug delivery over pro-
longed durations. The resealing rate reduction for a dual-
pulse scenario can again be understood on the basis of the
formation energy curve. The second pulse forces more pores
over the energy barrier and into the local minima. With an
increased fraction of such pores, the decay rate is corre-
spondingly reduced.

For a more quantitative evaluation, it is instructive to ex-
amine the pore distribution functions at various times.
Shown in Fig. 6 are five distribution functions at various
times for the single- and dual-pulse scenarios. The highest
curve for the dual-pulse situation is at a time instant of 1.205
ms and hence, just after the completion of the second pulse.
Though the peak lies at about 1.5 nm, a fairly broad ‘‘tail’’ at
larger radii is apparent. At a later time oft51.23 ms for the
dual-pulse situation, the peak is seen to be reduced apprecia-
bly and broadened due to diffusion inr space. Finally, at the
longest time of 2.43 ms, the dual-pulse distribution is seen to
have become quite negligible for small pore radii, but has a
well-defined peak at about 52 nm. This location corresponds
to the potential minima in Fig. 2 for ther }565 nm curve. It
is thus evident that a well-defined population of relatively
large pores remains and is long-lived. For the single-pulse
situation, the snapshot distributions att51.2 and 2.4 ms are
shown. The distribution is relatively broad at 1.2 ms, and

similar to the dual-pulse case, settles down to acquire a local
peak at 52 nm. However, the 52 nm peak is smaller, signi-
fying a greater number of pores for the dual-pulse case. Be-
yond these times, the resealing can be expected to be slow,
and pore may remain open for a very long time.

Finally, some experimental findings and measured data
for E. coli cells subjected to short electric pulses are pre-
sented. The results, plotted in Fig. 7, show the measured
viability of E. coli subjected to two 4ms, 13 kV/cm electric
pulses with variable delays. The delay between the first and
second pulses ranged from 5ms to 50 s. A sudden jump in
the viability is seen in going from a 0.1 ms delay to a 1.0 ms
delay for the second pulse. This is in keeping with the simu-
lation result of Fig. 3~a!that shows a 0.1 ms time-window
during which the pores are mostly open, making the system
most vulnerable to destruction by a second electric pulse.
Second, there is no significant change in the experimental
viability in going from a 1.0 ms delay to a 1 s delay. This
again is in keeping with the prediction of a slow pore decay,
and the calculated lower bound of about 0.12 s. Finally, the
absence of complete saturation in the viability even for delay
times as long as 50 s, suggests that the pores are relatively
long lived in accordance with previous reports@53,54#.

IV. SUMMARY AND CONCLUSIONS

A self-consistent model analysis of electroporation in bio-
logical cells has been carried out based on the coupled
Laplace-Nernst-Planck-Smoluchowski equations. The physi-
cal processes of pore generation, drift, and diffusion inr
space were all comprehensively included. A pore-radius-
dependent energy barrier to ionic transport accounted for cel-
lular variations. The primary objective was to obtain predic-
tions and qualitative understanding of the cellular response
to short, high electric field pulses by taking account of the
growth and resealing dynamics. The electroporation dynam-

FIG. 6. Simulated pore distribution functions at various times
for single- and dual-pulse situations.

FIG. 7. Experimental results on the viability ofE. coli subjected
to two 4 ms, 13 kV/cm electric pulses with variable delays. The
delay between the first and second pulses ranged from 5ms to 50 s.
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ics in the presence of multiple electric pulses and the poten-
tial benefits have also been analyzed.

It has been shown that a finite time delay exists in pore
formation, and leads to a transient overshoot of the trans-
membrane potentialVmem. The membrane potential itself re-
mains around the 1.0 V value that has been reported in the
literature. However, the peak can exceed this value on a tran-
sient basis. It has also been demonstrated that pore resealing
is a multistep process. It consists of an initial fast decay,
followed by a 1024 s delay, and then a much slower pore-
closing with a time constant of about 1021 s. This establishes
a 0.1 ~ms! time-window during which the pores are mostly
open, and hence, the system is most vulnerable to destruction
by a second electric pulse. The existence of such a time
window threshold for effective killing by a second pulse is
amply supported by our experimental data forE. coli cells
involving two pulses with variable delays. A sudden jump in
the experimental cell viability has been observed in going
from a 0.1 ms delay to a 1.0 ms delay for the second pulse.
This is in keeping with our simulation results that show a 0.1
ms time window during which the pores are mostly open.

Second, no significant change in the experimental viability
was recorded in going from a 1.0 ms delay to a 1 sdelay.
This again is in keeping with the prediction of slow pore
decay, and the calculated lower bound of about 0.12 s. The
time constant for the longer process also matches experimen-
tal results and previous reports.

Finally, it has also been shown that the pore decay time
for the two-pulse situation becomes significantly longer than
a single pulse case. This implies that applying two or more
pulses can slow resealing considerably. From a practical
standpoint, this has applications for drug delivery over pro-
longed durations, or for controlled manipulation of the pore
‘‘open times’’ via ultrashort, multiple pulses.
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