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ABSTRACT

Proclivity or Popularity? Exploring Agent Heterogeneity in Network Formation

Xiaotian Wang 
Old Dominion University, 2015 

Director: Andrew Collins

The Barabasi-Albert model (BA model) is the standard algorithm used to describe 

the emergent mechanism of a scale-free network. This dissertation argues that the BA 

model, and its variants, rarely take agent heterogeneity into account in the analysis of 

network formation. In social networks, however, people’s decisions to connect are 

strongly affected by the extent of similarity. In this dissertation, the author applies an 

agent-based modeling (ABM) approach to reassess the Barabasi-Albert model. This study 

proposes that, in forming social networks, agents are constantly balancing between 

instrumental and intrinsic preferences. After systematic simulation and subsequent 

analysis, this study finds that agents’ preference of popularity and proclivity strongly 

shapes various attributes of simulated social networks. Moreover, this analysis of 

simulated networks investigates potential ways to detect this balance within real-world 

networks. Particularly, the scale parameter of the power-distribution is found sensitive 

solely to agents’ preference popularity. Finally, this study employs the social media data 

(i.e., diffusion of different emotions) for Sina Weibo—a Chinese version Tweet—to valid 

the findings, and results suggest that diffusion of anger is more popularity-driven.
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CHAPTER 1 

INTRODUCTION

Social network analysis (SNA) has had an especially long tradition in various 

disciplines of social science [l]-[22], Since its emergence in the 1930s, early SNA has 

focused primarily on the characteristics of individuals, assuming agent heterogeneity as 

the key factor in shaping the formation o f different types of social networks [4], [7], [23]- 

[26], In recent decades, due to the proliferation of the information and communications 

technologies (ICTs, e.g. the Internet and the mobile phone) [27]-[29], the scholarly 

interest in SNA has been reenergized. It is argued that the “digital revolution” has 

fundamentally reshaped the landscape of human society by empowering individuals in 

social networking, mass communication, and political mobilization [30]-[34]. A 

burgeoning literature, therefore, has been devoted to exploring large-scale complex 

networks [11], [18], [20], [35]-[43]V

However, this dramatically increased visibility of SNA is owed mainly to 

statistical physicists [8], [21], [36], [37], [43]. Instead of emphasizing agent 

heterogeneity, statistical physicists focus more on aggregate properties and highlight the 

systematic regularities in spite of agent heterogeneity. In part, this changed focus has a lot 

to do with the rapid development of the deductive approaches to SNA, which propose 

that the structural and algorithmic aspects of abstract networks are the key to our 

understanding of network formation [8], [11], [28], [43]-[47].

1 IEEE Transactions Journals style is used in the thesis for formatting figures, tables, and 
references.
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Given these fundamental differences in how to approach SNA [8], [48]-[49], a 

question naturally arises: which approach should be adopted to explore social network 

formation?

1.1 Theoretical Formulations

This dissertation argues that a generative approach and its associated agent-based 

modeling (ABM) are particularly useful in bridging the seemingly incompatible inductive 

and deductive approaches, which helps reveal the complex nature of social network 

formation. First, on epistemological grounds, ABM implies that social networks can be 

best understood as an emergent phenomenon [49], [50]-[59]. Simple inductive or 

deductive conceptualization of SNA has been problematic largely because network 

formation is a function of complex interactions between agent characteristics and 

network structures. An emergent understanding of network formation, on the other hand, 

suggests that networks are spatially distributed systems of heterogeneous autonomous 

actors with bounded information and computing capacity who interact locally and, hence, 

is particularly helpful in SNA [11], [48]-[49].

Second, and from a theoretical perspective, ABM provides an avenue to integrate 

substantive theories in various disciplines in social science with abstract network models 

[49]. An important consequence of the cleavage between the inductive and deductive 

SNA is the limit of actual applications for deductive models such as BA model in social 

science [11], [60]-[62], Part of this issue is that the network dynamics suggested by social 

theories are usually far more complex than those modeled in deductive SNA [48], For 

instance, the BA model assumes uniformity of behavior of individuals, which is
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constantly violated in a real social network. Not surprisingly, in many social networks, 

considerable deviations from scale-free behaviors have been reported [11], [60]. ABM, 

on the other hand, is flexible enough to handle the heterogeneity, complexity, 

adaptability, and versatility of real social networks [48], [63].

Third, ABM is computationally advantageous in processing and simulating social 

networks at different scales. Both deductive and inductive SNA are plagued by analytical 

shortcomings. On one hand, most of the properties that are mathematically inferred in 

deductive SNA are present at the thermodynamic limit [48], [60], but the number of 

active participants in real social networks is normally much smaller, ranging only from

2 310 to 10 [64]-[66]. On the other hand, due to the complex dependency of the social 

network, inductive statistical models tend to behave poorly when social networks become 

large and complex. For instance, it is found that exponential random graph models 

(ERGMs) are “not a reasonable representation for most empirically observed social 

networks when they have more than 30 nodes, average degrees more than 2, and a 

transitivity index more than 2” [5, pp. 142].

For these reasons, this dissertation argues that ABM is a very promising tool in 

SNA, making the insights of different approaches complements each other [38], [48],

[49], Unfortunately, only limited studies in SNA have adopted an ABM approach, and 

even fewer have explicitly integrate substantive social theories with abstract networks in 

their ABM models.
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1.2 Purpose

This dissertation proposes a simulation-oriented study of social network analysis. 

Specifically, this study intends to apply agent-based modeling approach and construct an 

ABM network model based key theories regarding social network. This ABM study 

allows for exploring the different patterns of network emergence when individuals' 

motivations vary. Drawing on arguments of individual psychologies [67]-[76], it is 

argued that people’s motivation of social networking is a result of their two fundamental 

psychological needs: the needfor cognition and the needfor affect. Individuals who 

possess a high need for cognition are motivated to connect with people possessing a large 

column of information; that is, the people who are well connected. Individuals who 

possess a high need for affects are motivated to feel strong emotions and, therefore, tend 

to develop links with individuals with similar views. In other words, people are 

constantly weighting between popularity and proclivity in forming their social 

connections. Moreover, it is argued that how these two needs matter is contingent on 

costs of constructing and maintaining social ties.

This study therefore helps advance scholarly understanding of network formation 

by integrating substantive social theories with abstract network models by using ABM. 

First, this study considers the formation of complex social networks is driven primarily 

by the human’s basic psychological needs. Hence, mechanisms of the network formation 

should have roots in the utility function of individuals.

Psychological needs => Networking heuristics => Dynamic formation ( 1)
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Second, different psychological needs lead to varying strategies of emerging 

social networks. People with different needs tend to employ different network heuristics 

in searching their friends. Finally, individuals’ strategies of networking serve as the 

momentum of the growth and evolution of social networks. Hence, finding out the driven 

mechanism for making decisions o f people not only is significantly important for 

clarifying the network formation simulation, but also helps understanding the 

fundamental roots of social networking.

1.2.1 Need for Cognition and Principle of Popularity

Two motivations that are of particular relevance to social networking are: the 

need for cognition and the need for affect [71], [73], [75]. The need for cognition is 

fundamentally an instrumental concern and a stable disposition that explains individual 

differences in the tendency to use network to acquire such resources as information. 

Individuals who possess a high need for cognition have a strong motivation to connect 

with resourceful and well-informed people in a given social network. Consequently, 

individuals who are high in need for cognition are more likely to behave in line with the 

rational model: they should operate as if they possess a running tally about everyone’s 

relative position in a network, which would in turn help make their decisions for 

networking.

Yet how can these individuals' running tally o f network structure translate into 

abstract network models? Many works by sociologists have examined how individuals' 

instrumental concern can be realized in a network setting. One of the most influential 

works is Granovetter’s “strength of weak ties” (SWT) theory [77]-[78], in which weak,
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bridging ties are argued to be beneficial to individuals because of their potential to 

introduce novel information. Burt [1] later refines the argument by emphasizing the 

relationship between “structural holes” and “information brokers.” This, in turn, leads to 

Burt's conclusion that network brokers tend to enjoy various advantages because they can 

bridge otherwise isolated clusters. More recently, Podolny [79] argues that network 

structure matters not only because it serves as a “pipe” for resources, but also because it 

acts like a “prism,” revealing important information about the inherent qualities of 

vertices (e.g., credibility). An individual's status (i.e., popularity) in a given network 

provides others a heuristic shortcut in assessing his/her credibility. In sum, these studies 

suggest that individuals motivated by need for cognition tend to be connected with people 

o f high degrees in a network.

If individuals high in need for cognition are popularity-driven, what is its 

implication on network formation? Studies by statistical physicians on scale-free 

networks provide some clues. Yet, it should be noted that their concerns are mainly at the 

system level. As for large-scale complex networks, empirical results demonstrate that 

most of them are scale-free; their degree distribution follows a power law distribution 

[80]-[82]. The BA model [35], [37] is then introduced to describe this scale-free 

emergent mechanism. The BA model suggests that the growth of network size and 

preferential attachment are the necessary conditions for the emergence of scale-free 

networks. In other words, a social network that is solely composed of individuals who are 

high in need for cognition tends to follow a power law distribution.

In many social networks, however, significant deviations from scale-free behavior 

have been reported. Although numerous variants of the BA model have been developed
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to reproduce the growth process of social networks, most of them still share the 

instrumental assumption that a vertex’s probability to be connected is determined 

primarily by its position (i.e., “popularity”) in a given network [60], [62]. Instrumental 

concern or need for cognition, as elaborated above, is not the only motivation that 

governs individuals’ social networking. For many, the need for affect is another 

important motivation,

1.2.2 The Need for Affect and Principle of Proclivity

The need for affect, in sharp contrast to need for cognition, is fundamentally 

intrinsic. It is a separate motivational construct that captures the degree to which people 

enjoy experiencing strong emotions [70], [72], [75], [83]. Individuals who are high in 

need for affect are more likely to view emotions as useful when making various 

decisions. Because these individuals tend to enjoy experiencing strong emotions, their 

attitudes tend to possess a stronger affective basis. This is not to say that the attitudes of 

individuals who are high in need for cognition are unaffected by emotion. Almost all 

attitudes carry some affective component. Rather, the argument here is that individuals 

high in need for affect possess attitudes that carry a more intense affective charge, and 

while affect may induce “biased reasoning” in most people, individuals high in need for 

affect should be especially prone to biased processing [70]-[72],

What are the implications of this “biased reasoning” for social networking? Pujol 

et al. [84] have pointed out that the assumptions of BA models usually lack sociological 

grounding. Wong et al. [84] argued that many network models have not taken the 

advantages o f sociological and psychological insights of how social networks may be
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formed. It is also problematic since it assumes all the nodes possess the same preference 

(instrumental preferential attachment) and overlooks the potential impacts of agent 

heterogeneity on network formation (intrinsic preferential attachment). When joining a 

real social network, people are not only driven by instrumental calculation o f connecting 

with the popular, but are also motivated by intrinsic affection of joining the like. In other 

words, people are constantly weighing between popularity and proclivity in forming their 

social connections. The impact of this mixed preferential attachment is particularly 

consequential on such social networks as political communication. More importantly, this 

assumption is supported from the social theory: homophily.

McPherson et al. [26] argue that homophily is the principle that a contact between 

similar people occurs at a higher rate than among dissimilar people, and the similarity 

could be regarding many types of personal characteristic positions, including gender, 

religion, social class, education and other intra-personal or behavioral characteristics. In 

fact, there are some models taking homophily into consideration, somehow not using the 

specific term but essentially the similar meaning. Robins et al. [86] presented network 

models for social selection process. Although where characteristic positions affecting the 

social relationship formation are concerned, it is broken between the local behavior and 

the global pattern. In other words, there is no analysis for the properties of large social 

networks. Newman and Girvan [87] conducted a network model discussing the 

mechanism of assortative mixing, which is, the nodes with a similar degree level like to 

link with each other. However, it actually is a special case of preferential attachment, 

albeit the similarity of nodes is concerned.
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This study proposes an integrative model of preferential attachment encompassing 

both instrumental calculation and intrinsic similarity, which is a term transformed from 

homophily. Particularly, it emphasizes the ways in which both agent-heterogeneity and 

network position affect social network formation. Agent-based modeling is chosen as the 

paradigm to conduct this study. This integrative approach can strongly advance our 

understanding about the formation of social networks.

1.2.3 Individual Capacity and Mode of Mass Media

Up to this point, it is clear that both the principle of popularity and the principle of 

proclivity are key strategies adopted by individuals in social networking. Yet, it should be 

noted that the actual impacts of these two principles are contingent on the costs of 

acquiring information and establishing connections; that is, the constraints of 

communication modes.

Scholars have long found that the individual acquisition costs of information vary 

widely under different media settings. A key theme across many disciplines in social 

science is the question to what extent lower communications costs have made people 

more connected and less isolated [34], [88]. Recent years have seen an explosion of 

research on the topic. To some degree, the diffusion of ICT is at the heart of the latest 

surge of studies on social network. The development of the Internet has greatly increased 

the means by which people communicate with each other. In many respects, ICTs 

appears closer to traditional media than to mass media in the sense that they are used as 

personal communication platforms.
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A review of relevant literature suggests that competing views on the effects of 

technological innovation and its resulting impact on ordinary people provide the basis for 

a rich debate on the relationship between social isolation and the fragmentation of 

society. Whereas few doubt that technology has greatly expanded our capacity to connect 

with others, the impact of technology on the perception of being connected is more 

controversial. For instance, many argue that ICT reduces or counteracts the impact of 

geography on structuring opportunities for social interactions, and that they take time 

away from other face-to-face activities [89],

Rather than joining the existing debate on the exact impacts of ICT, this study 

intends to explore to what extent the network formation is constrained by different modes 

of communication. An ABM approach to this problem helps elucidate the structural 

differences of social networks under different media setting.

In summary, the above three factors strongly affect the patterns of social 

networking among individuals with different inherent characteristics. People can be 

driven purely by one o f the two mechanisms or jointly by a different combination of 

instrumental and intrinsic mechanisms. It should be noted that in either case the 

formation of social network is simultaneously affected by the context of the mass media; 

that is, the capacity of their own to construct their social networks with or without 

conscious. Accordingly, these different networking strategies lead to the emergence of 

variant social network patterns. Hence, the purpose of this dissertation is to reveal the 

different social network patterns outputted from the network system consisted and 

functioned of these three factors, and consequently to explain the characteristics owned 

by their relative network topologies.
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Previous research in social science, actually, has investigated how the need for 

cognition (i.e., “popularity”) and the need for affect (i.e., “proclivity”) influence opinion 

formation, but this is the first study to the researcher’s knowledge that investigates 

whether these motivations shape the formation of social networks. This inquiry makes no 

claims about the role that cognition or affects play in the evaluation o f information. 

Rather, the purpose here is to investigate how individual differences in psychological 

motivations shape how people form their social circles by integrating ABM approach and 

abstract network models.

1.3 Problem

Motived by the research questions addressed above, this dissertation explicitly 

emphasizes an agent-based thinking and intends to explore three key factors in shaping 

the emergence of social networks.

To do so, two critical problems need to be systematically explored. The first 

problem is the agent heterogeneity in the emergence of social networks. Scholars have 

long noticed that the network, modeled usually as a “structure”, strongly shapes the 

outcome on lots of social topics, such as, opinion formation, information diffusion [5], 

[11], [25]. However, the specific mechanisms that lead to the observed networks are 

severely underexplored. The actual social networks are a product of human behavior (if 

only located in the range of human communication) and are generated by interactive 

social agents are accordingly unpredictable and ever changing.

In this process, a key issue is how agent heterogeneity should be modeled. Until 

now, scholars have focused mostly on tracing the formation process of social networks or
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on inferring different social network topologies and their underlying mathematical 

properties. Unfortunately, the complication inherent in the human social world, 

particularly those derived from agent heterogeneity, is far more complex than expected. 

Knowledge about social networks is still insufficient to support an understanding of the 

existing social problems that were believed to have lots to do with social structures. The 

continuing exploration on social networking mechanisms requires new methods to 

incorporate agent heterogeneity into the modeling of social network formation.

The problem associated with agent heterogeneity naturally leads to the second 

problem: the social networking strategies of agents (people). The BA model, as described 

above, provides a new path toward the understanding the network formation, though 

Barabasi and Albert arbitrarily raise a simple assumption and generate a stylized network 

topology that explains one among many actual networks. This dissertation argues that a 

key contribution of the BA model is that it highlights one important driven mechanism: 

connecting with the popular. In light of their study, many would raise the question: in the 

real world networking are social agents governed only by one strategy? Obviously there 

are more. This dissertation proposes to flavor the agent with heterogeneous attributes. 

Besides the choice of connecting with the popular, another universal communicating rule 

would be connecting with the like. Relying on the thick research archive focusing on this 

topic, this dissertation introduces the “homophily” theory and raises another connecting 

strategy for social agents: connecting with the like. People living in the real social world 

usually are not performing to the extreme.

In this dissertation, thanks to advancements in the agent-based simulation 

technique, agents are installed with the tolerance of making choices in between the two
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rules; that is, agents are allowed to make choice like real people: an agent may consider 

connecting with people like itself, but it is also possible that the agent is more interested 

in constructing a relationship with the popular.

1.3.1 Uniqueness of Social Agents

Scholars are uncertain about how to obtain more accurate and realistic models of 

the social networks in the real world. Although many sophisticated models have been 

proposed (such as the BA model), this study suggests that the hidden micro mechanisms 

of their models are still underdeveloped. First, network topology in social networks is a 

graph analogy of the interactions of people [3], [8], [43]. When trying to make a model of 

a social network, it is important to note that what happens in the real world is intentional 

and rational (in most cases) communication, and thus connections are made between 

people with different personal characteristics. Hence, agent heterogeneity is the key 

factor that needs to be considered in the model process. However, most studies ignore the 

“humanity” of agents.

Second, rather than passively following the “iron law” of “connecting with the 

popular”, which is proposed by Barabasi and Albert [35] as one hypothesis, people 

usually intentionally and consciously build up connections with their own preferred 

“targets”, and these connections can be strong ties or weak ties based on the purposes of 

people who are involved in a concrete event [8]. In some cases, people are building 

relationships not out of a “popularity” consideration but from sharing the same opinion.

A convenient example is the tweeting and retweeting activities on the Internet. As a 

matter of fact, most activities of social media follow the logic of intrinsic preferential
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attachment (e.g., party orientation, [27]). The question at this point is that do the 

subjective opinions held by people affect the networks topologies? If so, how do they 

affect the networks topologies?

Third, social scientists from different disciplines have long emphasized the 

conditioning impacts of network structures on various sociopolitical outcomes, ranging 

from economic transaction to political participation [11], [67], [76], [90]-[93]. An 

emphasis on the consequences of social network, though necessary in revealing why and 

how social network matters, tends to distract us from a key fact: a social network per se is 

interactively constructed by intentional and heterogeneous individuals. Therefore, 

without a thorough examination of how various social networks are formed, our 

understanding about impacts of social networks is likely to be biased.

In summary, social networks, comparing to the well-explored existing networks, 

such as transportation networks or WWW networks, are significantly different in these 

facets [94]:

1. Social networks are emerged from the complex communication among a variety of 

individuals. Consequently, the existence and the structures are greatly driven and 

influenced by people’s psychological needs and the social activities. Different 

motivations and intentions lead to different network structures. Whether the different 

network structures accordingly lead to the different network topologies needs further 

measurements, which is one of the key questions that this study intends to explore.

2. Social networks are constantly changing. People’s social activities and the concerns 

involved in the process of the social activities cause the changes on the social 

networks.
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3. Social networks are large. With the advancement of ICTs, the size of the social 

networks turns out to be extremely large.

4. Traditional computing methodologies are not good for the social network research. 

The relationships between the data are hardly assumed as linear. Social network 

studies ask for the new and effective methodology to be explored.

1.3.2 Network Heuristics of Agents

As discussed above, in recent decades, the scholarly interest in SNA is 

reenergized by the proliferation of the information and communications technologies 

(ICTs) like the Internet and the mobile phone network.

Particularly, Barabasi and Albert [35] argue that the vertex connectivities in large 

networks tend to follow a scale-free power law distribution. The key underlying 

mechanism is that a vertex’s probability to be connected is determined only by its relative 

position (i.e., connectiveness or “popularity”) in the existing network. The formation of 

large networks is governed by this robust self-organizing mechanism that goes beyond 

the particulars of agents or individual systems. However, in many social networks 

considerable deviations from scale-free behaviors have been reported (Shirazi, Namaki, 

Roohi, and Jafari 2013). Numerous variants of the BA model, accordingly, have been 

developed to reproduce the growth process of social networks, and most of them still 

share the very key instrumental assumption that a vertex’s probability to be connected is 

determined primarily by its “popularity” in a given network.

However, it should be noted that when joining a real social network, people are 

not only driven by instrumental calculation of connecting with the popular, but also
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motivated by the intrinsic affection of joining the like. The impact of this mixed network 

formation is particularly consequential to social networks such as political 

communication networks. For instance, when people appear in a new community and 

start to build their network, the two endogenous driven mechanisms would lead people to 

build up their social networks. Under extreme conditions, by following the preferential 

attachment only, people would only be interested in linking with popular people. By 

following homophily only, people would focus on connecting with the other people that 

have similar intrinsic properties with them, thus creating a more comfortable social 

ambiance. Certainly, the latter is a human behavior factor, which is labeled as an 

“intrinsic” intention to construct a network in this study. It is realized that in the real 

world, most people make decisions based on both mechanisms in different levels instead 

of in the extreme situations. Regarding the specifics of the heterogeneous attachment, 

more details will be introduced in Chapter 3 and 4.

1.4 Method and Procedure

In this dissertation, agent-based modeling (ABM) approach is used to reassess the 

Barabasi-Albert (BA) model, the classical algorithm used to describe the emergent 

mechanism of scale-free networks. This approach allows for the incorporation of agent 

heterogeneity, which is rarely considered in the BA model and its extended models. The 

simulation will be constructed according to the decomposition of the decision process of 

heterogeneous agents. Hence, a statistical analysis will be conducted to export the 

information out of the data output from the simulation.
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1.4.1 Simulation and Agent-Based Modeling

For at least three reasons, this dissertation proposes that agent-based thinking is 

the best way to formalize and conceptualize the network formation process. First, argued 

by Miller and Page [58], social networks are complex system and local interactions 

produce the global pattern. The global network topologies are grown from the local 

interactions between people—agents in the model.

ABM provides us a way to harvest on the global pattern by seeding the local 

agent activities. Analogously, the choice people made for linking with each other could 

generate and influence the structures of social networks. At this point, ABM is, so far, the 

only approach for linking the local behavior and the global pattern.

Second, agent-based modeling is the appropriate tool for learning complexity [95]. 

It has been widely accepted that there are many problems that cannot be calculated or 

represented by traditional mathematical methods; simulation provides a rational 

alternative to address these problems.

Here, ABM supplies an approach of simulating the human behavior. The 

traditional computational method does not contain this part o f the function. It is 

emphasized that the method in this study consists of two parts: simulation then analysis. 

Simulation is used to construct a simulated social networking world based on rules that 

rely on the literature studies and the mathematical understanding of social activity. 

Without the simulating process, the study would be another piece of empirical 

computation, rather than an exploration to the unknown social communicating 

mechanism.
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Third, validation is important for all the models, especially for agent-based 

modeling. In this proposed work, simulation experiments will be compared to real world 

network data to validate the findings. Validation is always in the first order when models 

used for conducting simulations, this study is not an exception. Real-world network data 

will be utilized for testing the results of the study.

For these reasons, this dissertation argues that ABM is a very promising tool in 

SNA, making the insights of different approaches complements each other [38], [48],

[49], [96], Unfortunately, only limited studies in SNA have adopted an ABM approach, 

and even fewer have explicitly integrate substantive social theories with abstract 

networks in their ABM models.

Several key assumptions of ABM involved in this dissertation need to be briefly 

explained here. Agents in ABM have their assumptions and they are conventionally and 

well acceptably described as having the following characteristics [57];

• Perception. Agents perceive their environment. They may respond to changes in the 

environment and the presence of other agents and accordingly adjust their activity.

• Performance. Agents are installed with a set of behaviors that they are capable of 

performing. For instance, they are able to communicate with each other or send and 

receive messages.

• Memory. Advantaged by the ICTs, agents are able to carry memories. They are 

capable of recalling information of their past states and actions.

• Policy. Agents are performing according to the rule of the simulated world maker.
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Behavioral Rule

In this study, all agents’ abilities listed above are performed for accomplishing the 

research goal. Regarding these four points, agents in this study are capable of:

Perception. Agents in the model need to identify that the one they want to link 

with in each tick. They accomplish this goal through calculating the probability based on 

identifying the agent with more resources or with the similar characteristics to make their 

decision.

Performance. Agents observe the other agents (calculate) and make decisions on 

choosing the one to which they are going to link.

Memories. Agents need to memorize the characteristics (color) and identify the 

ones they linked with. That information is reported out of the system. This information is 

analyzed in the final stage.

Policy. Policy is fairly important in this study. Policy supports the whole 

simulated world. They are the hypothesis of this study and will be fully introduced in the 

following chapters.

Simulation Space

Combined with the tool NetLogo used in this dissertation, the simulation runs 

non-considering the physical location of agents. The structure of the networks is the focus 

of this study. Consequently, the “patch” setting for building up the environment of agents 

in NetLogo is not that important in the study. Agents are assumed to only consider the 

messages exchanged with each other, rather than taking care about their location.
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Data Export

Data will be exported from the simulation and the analysis based the data will be 

introduced in detail in Chapter 4.

1.4.2 Statistical Analysis of the Network

Researchers of SNA have long employed a variety of measurement to describe 

structural characteristics of a network. In this dissertation, many vertex- and local-level 

measurements will be used to examine various properties of simulated networks. These 

network metrics provide a convenient way to evaluate the impacts of heterogeneous 

attachment on network formation. For the definitions and details of these measurements, 

please see Chapter 2. These measurements serve valuable purposes in describing and 

understanding network features that might bear on particular research questions.

However, it should be noted that a single network metric is inherently limited in 

revealing the complex nature of a particular network. Beyond simple descriptive network 

statistics, many analytical methods have been introduced to explore the complex 

emergence o f networks. The reasons are multiple.

First, social behavior is complex, and stochastic models allow us to capture both 

the regularities in the processes giving rise to network ties while at the same time 

recognizing that there is variability that is unlikely to be modeled in detail. Second, 

statistical models also allow inferences about whether certain network substructures— 

often represented in the model by one or a small number of parameters—are more 

commonly observed in the network than might be expected by chance. Third, sometimes, 

different social processes may make similar qualitative predictions about network 

structures and it is only through careful quantitative modeling that the differences in
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predictions can be evaluated. Therefore, it is important, if not necessary, to go beyond 

simple network statistics and search for a well-fitting analytical model of a simulated or 

observed network and in a particular statistical model.

1.4.3 Validation and Verification against an Actual Social Net

After simulation and statistical analysis, a remaining question is the extent to 

which the model proposed in this dissertation helps reveal micro-dynamics in actual 

social networks. From the perspective of agent-based modeling, this is about the issue of 

validation. Broadly speaking, validation in agent-based modeling concerns whether the 

simulation is a good model of the target. A model that can be relied on to reflect the 

behavior of the target is “valid.” Gilbert and Troitzsch [97] suggest that validity can be 

ascertained by comparing the output of the simulation with data collected from the target. 

However, there are several caveats that must be borne in mind.

In this study, one enormous challenge is to conduct a micro-level validation of the 

agent-based model, which requires laboratory experiments testing under what 

circumstances individuals are popularity- or proclivity-oriented. Therefore, this 

dissertation turns to the approach of the macro-level validation. Specifically, relying on 

data collected from social media in China [64], this dissertation is able to validate the 

proposed model. After applying findings emerged in Chapter 4, this dissertation is able to 

clarify the micro-foundation of the diffusion patterns of different emotions.
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1.5 Significance and Relevance

In three ways, this study contributes to current studies o f network formation. First, 

by exploring the impacts agent heterogeneity, this study highlights an important yet less 

examined mechanism in network formation; that is, intrinsic preferential attachment. This 

mechanism becomes particularly important in the age of new media, in which individuals’ 

capacity in homophilous sorting has been strongly boosted by information and 

communications technologies [98]-[ 101]. Therefore, an investigation of the impacts of 

intrinsic preferential attachment can significantly enrich our understanding about large- 

scale social networks.

Second, by emphasizing both micro-mechanisms in governing dyad formation 

and macro mathematical properties of large-scale networks, this dissertation concurs with 

Barabasi [37] that “the structure and the evolution of networks are inseparable.”

Third, joining many recent works [49], [58], [60], this study demonstrates that 

ABM, given its explicit emphasis on complexity and emergence, provides a promising 

perspective and a useful method to explore the dynamic evolution of large-scale social 

networks.

1.6 Organization of The Dissertation

Following this chapter, Chapter 2 intends to review some background knowledge 

about the existing network theory, theoretically and technically. Specifically, Chapter 2 

focuses on both the statistical analysis and the mathematical analysis of network 

formation. To do so, Chapter 2 first aims to present a core set of methods and models for 

the analysis o f measurements that are either of or from a system conceptualized as a
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network. These methods and models are of critical importance in characterizing the 

observed structures of given networks. Then, Chapter 2 turns to the key mathematical 

models that describe the emergence of various networks.

Chapter 3 is devoted to a review of extent studies on agent-based modeling and 

social networks, a discussion of the advantages associated with agent-based modeling in 

simulating network formation, and, finally, an explanation of operationalization of 

network formation based heterogeneous attachment.

In Chapter 4, this dissertation examines various properties o f simulated social 

networks generated based upon different combination of popularity-proclivity parameter, 

X, and individual capacity, m. For this examination, a large number of simulated social 

networks was generated based on individuals’ heterogeneous attachment. These network 

properties encompass vertex-level, local-level, and global-level network statistics. 

Through examination of the relationships o f these network statistics to the heterogeneous 

attachment, through X, and individual capacity, m, the following questions will be 

addressed: To what extent does agent heterogeneity affect actual formation of social 

networks? More specifically, when people are popularity- and proclivity-orientated, will 

the resultant social network be better connected, equally connected, or efficiently 

connected?

Finally, Chapter 5 summarizes major findings that emerged from Chapter 4, and 

illuminate the key theoretical and practical implications that can be learned from these 

findings. The findings from this study significantly supplement our understanding of the 

emergence of social networks, particularly among intrinsically heterogeneous agents. In
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addition, the chapter discusses the limitations and drawbacks o f this studies and possible 

directions for future studies.
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CHAPTER 2 

BACKGROUND OF THE STUDY: METHODS AND MODELS

Social network analysis—or in its general sense, network analysis—has a very 

long tradition. As noted by Brandes and Erlebach [8] as well as Kolaczyk [102], the seeds 

o f network-based analysis in the sciences, particularly its mathematical foundation of 

graph theory, can be traced back to the Euler’s solution to the well-known Konigsberg 

Bridge problem in 1735. In the study, Euler proved that it was impossible to traverse each 

o f the seven bridges of that city each only once. Since then, particularly after the mid- 

1800’s, network analysis has developed rapidly in a wide range of disciplines. Starting 

from the 1930s, network analysis has experienced another wave of rapid expansion 

thanks to the systematic collection and analysis of data on networks of one form or 

another in disciplines like sociology [5], [25], [43].

Provided with these intellectual accumulations, during the mid-1950s many 

sociologists started to take a particularly quantitative view towards the topic of social 

structure, they began developing the use of networks to characterize interactions within 

social groups [6], [7], [10], [86]. At the same time, as with the fields of operations 

research and computer science, networks were incorporated into solving problems 

involving transportation, allocation, and the like, producing network-based approaches to 

modeling and analysis of various complex systems [8], [102].

In recent decades, the proliferation o f information and communications 

technologies (ICTs) has reenergized scholarly interest in network analysis. Particularly, 

statistical physicists and computer scientists contribute significantly to studies on 

dynamics on these large-scale complex networks [8], [21], [36], [37], [43]. The
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development of network analysis in such a wide range of disciplines, as emphasized by 

Brandes et al. [6], naturally leads to a question: Given it permeates a wide range of 

traditional disciplines (e.g., from the physical and mathematical sciences to the social 

sciences and humanities), is there a science of networks?

It should be noted that even when the disciplinary boundaries still tend to create 

academic “islands” of different interests, methods, and goals, there is much overlap in 

disciplinary network research. This dissertation explicitly emphasizes an agent-based 

modeling (ABM) approach to exploring the emergence of network formation. Despite its 

ABM, this dissertation also relies heavily on developments of network studies in other 

disciplines. Therefore, it is of critical importance to examine the must-known knowledge 

about the existing network theory, theoretically and technically. To do so, this chapter 

focuses on (1) the statistical analysis of network data and (2) the mathematical analysis of 

network formation. More specifically, this chapter first aims to present a core set of 

methods and models for the analysis of measurements that are either of or from a system 

conceptualized as a network. These methods and models are of critical importance in 

characterizing the observed structures of given networks. Then, this chapter turns to the 

key mathematical models that describe the emergence of various networks.

2.1 Literature Review: Network Analysis

As discussed above, social network analysis (SNA) has evolved over the years 

within its application to the social sciences [4], [7], [23]-[26]. It was not until 1930s that 

researchers started to employ the perspective of a “social network” for drawing the 

features and shape of social structures [4]. By the 1970s, a growing number o f scholars
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applied SNA and combined the different domains to study various social relations. It has 

been primarily focused on the characteristics of individuals, assuming agent 

heterogeneity as the key factor in shaping the formation of different types o f social 

networks [23], [26], [86], [103]-[107]. For example, Stanley Milgram, a professor and a 

creative practitioner of experimental psychology in Harvard social relations department, 

rediscovered “six degrees of separation” thesis which originally raised by Karinthy in 

1929, and now, this theory is often cited to indicate a feature o f the social networks: short 

path length [4],

Thanks to the rapid development o f computational and modeling technology, the 

most recent 20 years have witnessed a dramatic growth in the innovative social network 

analysis. In this section, three items of basic commonly used network knowledge need to 

be introduced. They are: network properties, levels of analysis, and network models. 

Network properties are used for measuring and differentiating the features o f networks. 

Levels of analysis help informing the objectives of networks in the research from 

different levels. Network models summarize the content about three main lines o f well- 

studied network topologies.

2.1.1 Network Descriptions

For a relational system, in which agents are constantly interacting with one 

another, a network graph representation is possible. Such a network representation can be 

constructed from an appropriate set of measurements [8], [102], [108]-[117]. People 

exchange information, goods, or services with one another so frequently that social 

exchange has been viewed as one basic form of social behavior. An objective account of
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any social exchange would render concordance: both actors involved in the exchange 

would agree about the nature of their relationship.

Given a network graph representation of a social system, a natural question is how 

to explore and describe the characteristics and structural properties of the network. These 

tasks range from the calculation of simple metrics summarizing topological structure, 

both local and global, to the unsupervised extraction of complex relational patterns. In 

this chapter, this dissertation presents a core set of tools and techniques for examining 

various structural properties of a given network.

Network properties refer to several important definitions about quantities of 

measuring the features o f network topologies. Some properties of networks can be 

quantified and thus used for describing characters and structures of the network. For 

example, various types of basic social dynamics can be represented by triplets of vertices 

with a particular pattern of ties among them (i.e., triads). Questions involving the 

movement of information or commodities usually can be posed in terms of paths on the 

network graph and flow along those paths. Certain notions of the “importance” of 

individual system elements may be captured by measures of how “central” the 

corresponding vertex is in the network. The search for “communities” and analogous 

types of unspecified “groups” within a system frequently may be addressed as a graph 

partitioning problem.

Accordingly, scholars often use these properties for measuring network 

characteristics and differentiating between them [4], [7], [8], [102]. The introduction of 

these definitions is originally rooted in graph theory, and they are well accepted and used 

by scholars from different research domains. The structural analysis of network graphs
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has traditionally been treated primarily as a descriptive task, as opposed to an inferential 

task, and the tools commonly used for such purposes derive largely from areas outside of 

‘mainstream’ statistics. For example, overwhelming proportions of these tools is naturally 

graph-theoretic in nature, and thus have their origins in mathematics and computer 

science [8], [102], Similarly, the field of social network analysis has been another key 

source, contributing tools usually aimed at capturing basic aspects of social structure and 

dynamics. More recently, the field of physics has also been an important contributor, with 

the proposed tools often motivated by analogues in statistical mechanics.

2.1.1.1 Basic Definitions

This chapter follows a common notation system in network analysis [4], [7], [8],

[102], Formally, a graph G = (F, E) is a mathematical structure consisting of a set V of 

vertices and a set E  of edges, where elements of E  are unordered pairs {/, j )  of distinct 

vertices {i,j} e  V . Moreover, the number of vertices N v =\ V | is commonly referred as 

the order of the graph G, and the number of edges N e =| E \ is also known as the size of 

the graph G, respectively. Often, and without loss of generality, the vertices can be 

simply labeled with the integers 1,2,..., Arv. Similar notations can be used for the edges.

A graph S  = (Vs , Es ) is a subgraph of another graph G = (Va ,E0), if Vs c  V(. and 

Es c  Eg . An induced subgraph of G ' is a subgraph G' = (V ',E ') ,  where Fv c  VG is a 

pre-specified subset of vertices and Es c  Ea is the collection of edges to be found in G 

among that subset of vertices.
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As defined, a graph has no edges for which both ends connect to a single vertex 

(called loops) and no pairs of vertices with more than one edge between them (called 

multi-edges) [4], [7], [8], [102]. A graph with either of these properties is called a multi

graph. For simplicity, and reflecting the bulk of common practice, the presentation in this 

dissertation will concentrate primarily on graphs, not multi-graphs, though reference to 

the latter will be made where appropriate. When it is necessary to indicate explicitly that 

a graph G is not a multi-graph, it will be referred to it as a simple graph, and its edges, as 

proper edges.

A graph G for which each edge in E  has an ordering to its vertices (i.e., so that 

{/,/} is distinct from { j , i} ,  for { /,/}) is called a directed graph or digraph. Such edges

are called directed edges or arcs, with the direction of an arc {i,j}  reading from left to 

right, from the tail u to the head v. It should be noted that there is a natural extension of 

digraphs to multi-digraphs, where multiple arcs (i.e., multi-arcs) share the same head and 

tail. Moreover, digraphs may have two arcs between a pair of vertices without there being 

multi-arcs if the vertices play opposite roles of head and tail for the respective arcs. In 

this case, the two arcs are said to be mutual. However, in this study for the purpose of 

simplicity, only simple and undirected graphs are discussed.

Beyond this simple formal setup, it is necessary to describe the connectivity of a 

graph. One of the most basic notions of connectivity is that of adjacency. Two vertices 

i , j e  V are said to be adjacent if joined by an edge in E. Similarly, two edges e en e2e E 

are adjacent if joined by a common endpoint in V. A vertex v e V  is incident on an edge 

e e  E if v is an endpoint of e.



2.1.1.2 Degree, Degree Distribution, and Degree Correlation

Networks are usually described by the network graphs and network graphs consist 

of vertices and edges. The degree of a vertex provides a quantification of the edges 

connected with the vertex within a network graph. Provided with the above setup, the 

notion of the vertex degree o f v, say dv, can be defined as the number of edges incident on 

v. The degree sequence of a graph G is the sequence formed by arranging the vertex 

degrees dv in non-decreasing order. The sum of the elements of the degree sequence is 

equal to twice the number of edges in the graph (i.e., twice the size of the graph). Note 

that for digraphs, the vertex degree is replaced by the in-degree (i.e., d ‘" ) and the out-

degree (i.e., d °‘“), which count the number of edges pointing in towards and out from a

vertex, respectively. Hence, digraphs have both an in-degree sequence and an out-degree 

sequence. However, in this dissertation only dv is considered given that only undirected 

graphs are examined.

One way to gauge the overall degree structure in the graph G is to calculate kave. 

Average degree (kave) refers to the number of links connected to a node, and average 

degree indicates the density of a network structure. The formula below provides a general 

meaning, and it can vary as in accordance with network structure,

where, E  is the number of the edges in the network graph, and N  is the size of the 

network.
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Degree distribution is another important measure when the vertex degrees are 

considered in aggregate for indicating the characteristics of the network graph [102]. 

Given a network graph G ,fj  is defined as fraction of vertices ve V with degree dv = d .

The collection { f j } d>0 is called the degree distribution of G. For directed graphs, degree 

distributions may be defined analogously for in- and out-degrees. The degree distribution 

provides a natural summary of the connectivity in the graph.

Given an observed degree distribution, it is intuitive to summarize this 

distribution. Reporting basic summary statistics in forms such as moments and quantiles 

is common. It is also common in some fields to report the fit of some simple parametric 

families of distributions to the observed degree distribution (e.g., exponential 

distribution).

The degree distribution is useful as a composite summary of how the degree 

varies across vertices in the graph, but it does not provide any information on precisely 

which vertices are connected to which others. To capture information of this sort, it is 

helpful to establish summaries that describe the patterns of association among vertices of 

given degrees. In fact, such summaries can be quite important, as two graphs may have 

identical degree sequences and yet otherwise differ noticeably in the way their vertices 

are paired. A natural starting point is to define a two-dimensional analogue of the degree 

distribution, capturing the relative frequency with which the two vertices at the end of an 

arbitrarily selected edge in the graph have a given pair of degrees, and this is commonly 

captured by the concept of degree correlation.
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2.1.1.3 Centrality Measurements

When trying to figure out the “importance” of a vertex in a network graph, 

measures of centrality are used to quantify such “importance.” Centrality indices are to 

quantify an intuitive feeling that in most networks some vertices or edges are more 

central than others. As documented by Brandes and Erlebach [8], many vertex centrality 

indices were introduced for the first time in the 1950s: e.g., the Bavelas index [118], 

degree centrality, or a first feedback centrality, introduced by Seeley [119]. Given many 

different measurements o f centrality, however, not every centrality index was suitable to 

every application. In this section, rather than conducting as a comprehensive review and 

comparison of all centrality measurement, this dissertation focuses primarily on three key 

measurements.

The first is closeness centrality. It measures the notion that a vertex be “close” to 

the other vertices [8], [102]. It is measured using the following formula, which calculates 

the inverse of the measure of the total distance of a vertex from all others:

C> )=Y \  (3)
L ueVdlstiv’u)

where o(s ,11 v) is the geodesic distance between the vertices. The shortest path or 

distance between all pairs of vertices in G (network graph) is needed for calculating the 

centrality. This measure assumes the graph G [$ connected, while all vertices in principle 

will have centrality ct.,(v) = 0 , being of infinite distance from at least one other vertex.

It is evident that the focus of closeness centrality lies, for example, on measuring 

the closeness of a person to all other people in the network. People with a small total
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distance are considered as more important than those with a high total distance. Many 

variants of closeness-based measures have been developed. The measure defined in Eq. 

(3) is the most commonly employed.

Another popular class of centralities is based on the perspective that “importance” 

relates to where a vertex is located with respect to the paths in the network graph and 

betweenness centrality measures the extent to which a vertex is located “between” other 

pairs of vertices [8], [120]. Therefore, it is commonly referred as shortest-path 

betweenness centrality. Betweenness centrality score is defined as the following formula,

,(v)= I  Z&if (4)

where o(s ,t  I v) is the total number of shortest paths between s and t that pass through 

v , and a(s ,t)  = ^  (s,t I v). There are two steps when calculating the collection o f all 

betweenness centralities cB(v): (1) calculating the lengths of shortest paths among all 

pairs o f vertices, and (2) computing the summation for each vertex in the formula above. 

The betweenness centrality index was introduced in [121] and is found in a wide field of 

applications.

There are many other indexes for indicating centrality of a vertex in a network 

graph. One o f these measures indicates the notion of “status” or “rank.” This index 

embodies the cognition that the more central the neighbors of a vertex are, the more 

central the vertex [8].

All centrality measures defined above have had many variations and extensions. 

One example is the variation to the betweenness centrality, where instead of counting all
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shortest paths passing through a vertex, modifying the underlying path set is suggested, 

such as, the shortest paths of length bounded by some k  or shortest paths that are 

disjointed in their vertices.

2.1.1.4 Density and Clustering Coefficient

Density (D) is an indicator for showing the intensive level of edges in a network 

structure. It is defined as the ratio of the number of edges (E) to the possible potential 

number of edges for a network model. This can be calculated by the formula,

IE
D = — — —  (5)

N ( N - l )

where, E  is the number of the edges in the network graph, and N  is the size of the 

network.

The concept of density defined in Eq. (5) can be used at a local level and help 

define a measure of local density. This local density can characterizes the extent to which 

subsets o f vertices are dense. Such measures are commonly based on ratios of the number 

of edges among a subset of vertices to the total number of possible edges. For example, in 

a graph G with no self-loops and no multiple edges, the local density of a subgraph 

S  = (VS,ES) can be defined as,

A
2ES

AWv-1)
(6)
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where, Es is the number of the edges in the subgraph S, and Ns is the size of the subgraph.

From Eq. (6), it is apparent that the interpretation of Ds depends heavily on the 

choice o f subgraph S. If S = G Ds then denotes the overall density of the graph G. Yet,

if S  = Sv is the set of neighbors of a vertex v e V  and the edges between them, D$

produces a measure of density in the immediate neighborhood of v. This particular 

measurement is also known as the clustering coefficient [7], [8], [102],

Given the definition S  = SV, the clustering coefficient can be used to estimate the 

situation of “all my friends know each other.” It has become a standard quantity used in 

the analysis of network structure [8]. In fact, these values are tested quite often in real- 

world networks. It is reported that local clustering coefficient increase when the vertex 

degrees decrease, and vice versa. For example, Watts and Strogatz [41] proposed D(SV) 

as a summary of the extent to which there is “clustering” of edges local to v and propose 

that the average of D(SV) over all vertices be used as a clustering coefficient for the 

overall graph [120]2.

2.1.1.5 Connectivity and Cuts

Considering the connectivity of a graph G, a basic and intuitive question is 

whether a given graph can be separated into distinct subgraphs. If it cannot, it is 

necessary to quantify how close to being able to do so it is [120], Intimately related to 

these issues are questions associated with the flow of “information” in the graph.

In fact, these measures of clustering can be expressed alternatively in terms of the 
density of triangles among connected triples. A triangle is a complete subgraph o f order 
three. A connected triple is a subgraph of three vertices connected by two. Intuitively, a 
measure of the frequency with which connected triples “close” to form triangles will 
provide some indication of the extent to which edges are ‘clustered’ in the graph.
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If a graph G is connected, every vertex is reachable from every other (i.e., if for 

any two vertices, there exists a walk between the two); a connected component of a graph 

is a maximally connected subgraph. Often it is the case that one of the connected 

components in a graph G dominates the others in magnitude, in that it contains the vast 

majority o f the vertices in G. Such a component is called, borrowing terminology from 

random graph theory, the giant component.

An intuitive way to gauge such a giant component or a given graph is diameter. A 

common notion of distance between vertices on a graph is defined as the length of the 

shortest path(s) between the vertices (which is set equal to infinity if no such path exists). 

This distance is often referred to as geodesic distance, with “geodesic” being another 

name for the shortest path(s). The value of the longest distance in a graph is called the 

diameter of the graph.

What is closely related to the measurement of diameter is the average shortest 

path length (L). Average shortest path length indicates the steps from one node in the 

network to another. It is defined as the average number of edges that must be traversed in 

the shortest path between any two pairs of vertices in the network [41].

2.1.1.6 Graph Partitioning

Partitioning refers to the segmentation grouped naturally. The concept is of 

critical importance where the phenomena like “cohesion” or “solidarity” are concerned

[103], [122], Formally, a partition L = {C,,...,C^} o fafm itese t S is a decomposition of

S into K disjoint, nonempty subsets Ck such that U*=lCk =S  [7], [8], [102]. Partitioning 

takes care about finding the groups of vertices that naturally generated and vertices in
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each group demonstrate a “cohesiveness” regarding to some internal patterns. Rather than 

randomly grouped together, the “cohesive” subsets of vertices indicates that these 

vertices within a group are well connected among each other and are well separated from 

the vertices of the other groups. The partitioning problem is often referred to as 

“community detection” in complex networks research as well.

Compared to the definition of graph partitioning, hierarchical clustering is 

referred to as a more general concept and the former one is usually considered to be the 

variations of the latter one in data analysis.

Hierarchical clustering refers to many different methods used to explore the space 

of all possible partitions ^  in a defined network graph. Some of these methods are 

classified as agglomerative, based on merging processes for the successive partitions 

[123]-[125]. Some are classified as divisive, based on the refinement o f partitions through 

the process of splitting [120]. In both of these methods, the candidate partition is 

modified in a way that minimizes the cost for measuring and there is lots of costs 

measuring methods have been proposed. However, in the analysis part of this study, the 

detailed measuring of hierarchical clustering is not going to be tested. No formula is/was 

provided for any methods consequently.

2.1.1.6 Assortativity

Assortativity, indicating a phenomenon wherein some vertices have priority to 

link with each other, based on a certain characteristics, usually refers to the term of 

assortative mixing in some of the social network research [87], [126], [127]. Relatively, 

assortativity coefficients refer to measuring the extent of assortativity mixing in a given
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network, which is described as the variations on the concept of correlation coefficients 

[120], The vertex characteristics can be categorical, ordinal, or continuous. When taking 

the categorical case as the consideration, suppose that each vertex in graph G is labeled 

according to one of M categories, the assortativity coefficient is defined to be,

  'HLjfii 'jLgfi+f+i n X

1- 1 , / , / . ,  ( )

f
where, is the fraction of edges in G that join a vertex in the ith category with a vertex

in the jlh  category, and and ^+< indicate the /th marginal row and column sums o f the 

resulting matrix.

The value ra lies between -1 and 1. It is a value of zero if only randomness is 

involved in the linking among the vertices. It is a value of 1 if there is a perfect 

assortative mixing among the linkings. It is a value o f -1 if there is a perfect 

disassortative mixing and every edge connects vertices of two different categories in the 

graph.

2.1.2 Levels of Analysis

An axiom of SNA is that instead of properties of the units themselves, social 

phenomena should be primarily conceived of and investigated through the properties of 

relations between and within the units [4], Newman et al. [20] point out that the social 

network is self-organizing, emergent and complex, such that a globally coherent pattern 

appears from the local interaction of the elements that make up the system. The question
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is how scientists locate the scale of the networks. In practice, a different network scale 

leads to different computation quantity, computation speed, and a different level of 

consideration about the components of complexity. In light o f this, social networks are 

analyzed at the scale in relation to the research questions. Generally, there are three levels 

of social network analysis scale and they are listed in the following section [8].

2.1.2.1 Micro-level

As noted by Brandes and Erlebach [8], research at this level particularly starts 

with the individual, or a small group of individuals under a specific social environment 

set. It can be categorized as follows.

1. Actor level. This analysis unit is often about an individual (e.g. actor and ego- 

centered network). As noted by Wasserman and Faust [7], “ego-centered network 

consists of a focal actor, termed ego, as set of alters who have ties to ego, and 

measurements on ties among these alters.” Respectively, data of this kind of 

networks are obviously relational but limited, as links from each other are 

measured only to some alters. The measurements of these networks include size, 

density, centrality, strong or weak tie, bridge, etc.

2. Dyadic level. Dyad, originating in sociology, is a group of two people. Research 

at this level refers to one-mode dyadic networks about two single actors from one 

set of actors or two-mode dyadic networks about two actors from different set of 

actors [7], The measurement of these networks is mainly about studying the 

structure o f relationship, tendencies toward mutuality, etc.
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3. Triadic level. Triadic relationship consists of one more individual than dyads. The 

measurements of such networks include balance, transitivity, and tendencies to 

reciprocity or mutuality.

4. Subset level is mainly about relation among a small subset of the network. The 

measurements of research are distance, reachability, cliques, and so on.

2.1.2.2 Meso-level

The population size of meso-level research ranges between micro-level and

macro-level. Interestingly, meso-level research usually focuses on revealing the

connections between micro- and macro- levels. It can be categorized as follows.

1. Organizations. Research on organizations focuses mainly on analyzing either 

intra-organizational or inter-organizational ties among actors of a social group 

sharing a collective goal.

2. Randomly distributed networks. Random networks have been studied since the 

1950s, when Erdos and Renyi [128] and Gilbert [129] independently defined such 

networks. In 1980s, exponential random graph models of social networks became 

state-of-the-art methods in SNA [105]-[107], The models are generally used for 

representing social structures commonly observed in many human social 

networks. More details are introduced when the specific model is described.

3. Scale-free networks. Scale-free network model refers to networks whose degree 

distribution follows a power law. This model framework is explained in detail in 

the following section.
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2.1.2.3 Macro-level

Rather than tracing interpersonal interactions, macro-level analyses generally 

trace the outcomes of interactions, such as economic or other resource transfer 

interactions over a large population [11], [37], Research at this level can be categorized 

as follows:

1. Large-scale networks. Generally, these networks are used for exploring the 

research problems in social and behavioral sciences and economics.

2. Complex networks. Complex networks provide an alternative prospective of SNA 

by emphasizing social complexity. This is different from the linearization 

relationships scholars used to exploring, which refers to the complex connections 

between elements that are neither purely regular nor purely random.

2.1.3 Network Topologies

Graph theory has its origin in the work of Euler in the eighteenth century [4], The 

early work is mainly about solving problems of “small graphs with a high degree of 

regularity” [36].

Graphs, as defined by graph theory, are commonly used to represent individuals 

and other social actors by points and to represent their social relations by lines. Graphs 

represent the essential topological properties of a network by treating the network as a 

collection of nodes and edges [4], A graph is defined as a pair o f sets G = {P, E}, where 

P  is a set of N  nodes (or vertices and points) and £  is a set of edges connecting two 

elements of P [36]. Defined more formally by Kolaczyk [102], a model for a network 

graph refers to one of the collection:
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{/>e( G ) ,G e g :0 e 0 }  (8)

Here, g  is a collection of possible graphs, Pe is a probability distribution on g, 0  

indicates a vertex o f parameters in the range of 0  The richness of network graph greatly 

derives from how to specify P(-).

In the 1960s, two mathematicians, Erdos and Renyi [128] introduced the random 

graphs theory after Erdos discovered that applying probabilistic approach is useful in 

solving problems in graph theory. The study about random graphs has led to ideas very 

similar to those of statistical physics, and scholars believed that random networks could 

serve as the representations of many real world complex networks.

In practice, network models have been used for dealing with different problems, 

such as, exploring the mechanisms for generating commonly observed properties in the 

real world networks or testing the importance of certain target characteristics given a 

network graph.

In the following part of this section, three well-known and well-accepted network 

models are introduced: Erdos-Renyi model, Watts Model and Barabasi-Albert model.
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2.1.3.1 The Erdos-Renyi Model (ER model)

The Erdos-Renyi network model is one of the classical random network graph 

models. From the mathematical perspective, random graph models are arguably taken as 

the most developed class of network graph models.

In Erdos and Renyi’s classic article on random graphs, they defined the random 

graph as N labeled nodes connected by a number of edges, m .m  is a random number 

chosen from N ( N - 1)/2 possible edges [128], The ER model constructs a family of

random graphs: indicated by GN , namely the size of the network N, and the probability 

p  that each pair of nodes is connected. In a summary, let G (N ,m )  indicate a graph with 

N nodes and m links connected with the nodes, and it appears with a probability as 

follows,

P(G(N, m)) = p m{ 1 -  p f ~ m, where M  = S — (9)

The graphs o f GN are also called Poisson random graphs, since in the limit o f large N

the binomial degree distribution converges to a Poisson distribution [11], [130], [131]. It 

is possible to create random graphs that have different degree distribution as summarized 

by Pacheco and Evans [132] and called the configuration model. The configuration 

model is a popular method for building up such kind of networks; it consists of: a) 

choosing a degree distribution; b) drawing a sequence of degrees from that distribution; 

and c) randomly connecting pairs of nodes.
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2.1.3.2 The Watts-Strogatz Model (WS model)

The Small-World model generated by Watts and Strogatz is arguably one of the 

important innovations in modem network graph modeling [41], [42]. Explicitly, such 

types of models are designed for fulfilling the properties observed from the real world 

networks, often through the incorporation of the simple mechanism. The explorations of 

these models are usually involved with the relevant topic of communication, in the term 

of general and broad sense. Averagely, the structure of the small world networks brings 

the benefit of transmitting information quickly based on the ‘neighbor to neighbor’ 

exchanging feature. Small world network models have been used as the context o f the 

spread of news, gossip, rumors, and even infectious disease.

Small world phenomena observed from real world refers to the networks featured 

by a small world characteristic that the networks (random graph) have short average path 

length. As demonstrated by many empirical studies, the real world networks own a small 

world characteristic, meanwhile, they have unusually large clustering coefficient [36], 

[131]. Low dimensional small world networks have been learned and tested for a long 

time by scholars, and many features of networks are understood, such as, clustering 

coefficient is independent of network size. However, all the network models share the 

combination of high clustering coefficient and large path length. The first successful 

attempt to generate the network models with high clustering coefficient and small path 

length which was close to the features of real world networks was those derived by Watts 

and Strogatz [41],

As emphasized by Watts [43], “their identification of a universal class of 

networks; that is, a family of networks that share certain aggregate properties regardless
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many of their individual details.” Watts and Strogatz [41] significantly contribute to the 

literature of network analysis by making several related but distinct points of small world 

networks, Fig. 1(a) illustrates the rewiring process of WS model when p  locate in [0, 1], 

and (b) indicate the changing process regarding to different p  values of these two 

characteristics: path length (L(p)) and clustering coefficient (C(p)) for WS model.

1. Real world networks are neither completely ordered nor completely random, but 

display the distinct properties of both of them. “Order” refers to a uniform one

dimensional lattice. Each node in the lattice is connected with its k  nearest 

neighbors. “Randomness” here refers to the variable parameter p  (rewiring 

probability) that specifies the probability o f randomly rewired links.

Watts and Strogatz [41] quantified these properties with “simple 

statistics”. The average shortest path length L defined to measure the average 

number of edges that must be traversed in the shortest path between any two pairs 

of vertices in the networks [43].

2. Clustering coefficient C defined to measure local density, which is the 

cliquishness of a typical neighborhood [41],

3. Quantified by Watts and Strogatz [41], whenp  = 0, completely ordered, the

network is “large” and “highly clustered”. When p =  1, completely random, the

network is “small” and “poorly clustered”. These statistics indicate “path lengths 

are short only when clustering is low” [43], Interestingly, the model outputs two 

correlation relationships that the property of clustering is high relative to the 

randomness, conversely to it, average shortest path length significantly decrease 

when randomness is increased.
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4. Since the requirements to the candidates belonging to “small world networks” for 

any networks are “relatively weak”, Watts and Strogatz [41] predict that there are 

many real world networks that can be regarded as “small world networks” . They 

claim that this network structure could have “dramatic implication to the 

collective dynamics o f a system.”

Arguably, based on his observation and analyses of the small world experiments 

by Travers and Milgram [133], Kleinberg [134] pointed out that social networks not only 

have the property of “small”, but also have the “searchable” property. When links are 

uniformly random rewired, the Watts and Strogatz model, proved by Kleinberg [134], 

displays a short global path length, but does not display “searchability.” He thus proposed 

“a class of generalized small world networks comprising an underlying d-dimensional 

lattice, and random links superposed on lattice, where the probability p  of being

connected randomly is p  r~y [134], where r indicates the lattice distance from one 

node to the target node. He proved that only when y  =  d  (the dimensions of lattice), the 

network would be “small” and “searchable” . The arguments of Kleinberg suggest that the 

network structure is important both from the local view, and from the global view in the 

sense of “searchability” of the information or resources of individuals.

By far, the properties of small world networks have been deeply researched. 

Respectively, there are formulas for measuring and testing the properties, such as degree 

distribution, average path length, etc. More details are not given here and it is left to the 

reader to investigate them further.
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Fig. 1. The random rewiring procedure of Watts-Strogatz model. N =  20, k -  4. A s p  

increases the network becomes randomly disordered, (b) Characteristic path length (Lip)) 

and clustering coefficient (C(p)) for WS model. Two statistics are normalized 

respectively by L{0) and C(0)for a regular lattice [41].

Besides the well-known Watts small world model, there are other small world 

models as well. As noted by Kolaczyk and Csardi [120], some of them are the variations 

of the Watts model and have the amenable analytical calculation. Another popular one is 

the model where rewired edges are removed and a small number o f new edges are added 

to randomly selected pairs of vertices [135]. In terms of simulation, it is argued that these

C(p)/C(0) »
a
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models could be generated straightforwardly. There are some other studies that have 

generated the small world properties using different algorithms as well. For example, 

Kasturirangan [120] proposes a model, which starts from a one-dimensional lattice, then 

a small number of vertices are added to the center and each o f them is connected with a 

large number of vertices of the original lattice; Kleinberg [ 134] proposed a model, which 

starts with a two-dimensional lattice, then adds short-cuts between vertices with a 

probability varying inversely proportional to the distance between them.

2.1.3.3 The Barabasi-Albert Model (BA model)

Another type of network model is network growth model. Real-world networks 

keep growing in time. For instance, the World Wide Web, scientific citation networks 

and Internet links keep expanding the size of themselves. Commonly in these studies, a 

mechanism is particularly studied for how the network changes at a given time point and 

the focus could be vertex preference, copying, age and so on. The goal of this series of 

studies is to seek what properties emerge from the networks given a limited number of 

nodes and certain time scales. It could be a reasonable explanation to some specific topic 

if such properties match those features observed in the real world networks. Among these 

many algorithms broadly discussed by the researchers, a preferential attachment model is 

one of the hottest discussing topics.

Preferential attachment refers as a mechanism that embodies a principle of the 

observed fact ‘the rich get richer’. The driving motivation behind the introduction o f this 

mechanism, argued by Kolaczyk [102], was a desire to generate the heavy-tail degree
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distribution that is usually observed in the real world networks, which is broadly 

mentioned as scale-free networks.

The empirical results demonstrate that many large networks are scale-free; that is, 

their degree distribution follows a power law for large k. In network analysis, there is a 

separate development that focuses studying on this degree distribution [43]. Different 

from the considering angle that is the modeling network topology of small world 

networks, scale-free networks stress a research angle of modeling the network assembly 

and evolution. Argued by Albert and Barabasi [36], the goal of former models was to 

construct a graph with correct topological features, the scale-free networks model put the 

emphasis on capturing the network dynamics. Scholars believe that if the process that 

assembled the networks is captured correctly, the topology will be obtained correctly as 

well.

Barabasi and Albert [35] first and successfully addressed the power law 

distribution of degree observed in the networks. The BA model embodied two 

mechanisms: population growth and preferential attachment. The former mechanism 

straightforwardly indicate that network expand itself as new members join in it. The latter 

mechanism illustrates that newly arriving nodes a priori choose to connect with hubs that 

are well connected rather than poorly connected nodes. The algorithm of the BA model is 

the following:

1. Growth: the network starts with a small number ( w o )  of nodes, at each time step, a 

new node with m (1 < m <  m o )  edges that link the new node to m different nodes 

already present in the system.
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2. Preferential attachment: when choosing nodes to which the new node connects, 

the probability n  that a new node will be connected to node i depends on the 

degree kj of node /, such that,

n *. = ^ rr  (10)
y=i y

The network keep expanding itself follow these rules, after t time steps this 

procedure results in a network with N =  t + m Q nodes and m*t edges. An important 

conclusion of this network model is that the degree of most nodes is below the average. 

Only few of them “have many times better connected than average” (Watts 2004). 

Barabasi and Albert [35] employ “Power law” to describe the degree distribution. Power

law has the asymptotic form: p ( k ) ~ k~a Explained by Watts, the function means “the

probability of a randomly chosen node having degree k decays like a power of k, where 

the exponenta, typically measured in the range (2, 3), determines the rate of decay.” 

Summarized by Newman [131], although the BA model is elegant and simple when 

indicating some features of real world networks, it still lacks a number of features that are 

present in the real world networks, i.e., World Wide Web, such as:

1. The model is an undirected network model, where the real web is directed.

2. All vertices in the model belong to a single connected component. In the real 

Web, there are many separate components.
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2.2 Limitations and Variants of Network Emergent Models

Emergent models like the ER model and the BA model have attracted an 

exceptional amount of attention in the literature. In addition to the analytic numerical 

studies of the model, many researchers have proposed the extensions or modifications of 

the model that alter its behavior or make it a more realistic presentation of processes 

taking place in the real-world networks. The relevant extension to the BA model will be 

discussed in the second part of this section.

This dissertation intends to expand the scale-free network, focusing particularly 

on the extension and modification models on the BA model. In this section, more details 

about scale-free networks and their formation mechanisms will be discussed.

There have been many extensions and variations on the classic BA model since its 

generation, including the undirected network model as the BA model and the directed 

network model. Introduced by Kolaczyk and Csardi [120], these concerns have been 

mainly discussed:

1. Do these models generate the power law degree distribution?

2. What is the algorithm if the power law degree distributed model is generated?

3. What are the parameters affect the power law exponent?

4. Many variations on changing format of the edges, addition and removal.

Since this study is originated from the BA model as well, more specific

introductions to these extensions and variations will be discussed in the following 

section. Besides these mechanisms, another broadly discussed mechanism is the copying 

mechanism, which generates power law degree distribution as well. The distinct feature 

of copying mechanism is that it is often referred in the biological networks. Copying,
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here, refers to a normal observed tendency of reusing biological information when 

genomes of live organisms are evolving.

As discussed above, Barabasi and Albert [35] argued that the scale-free nature of 

real networks is rooted in two generic mechanisms share by many real networks. They 

found that earlier network models all assume that the network models started with a 

limited number of vertices and then randomly linked or rewired. However, a majority of 

real world networks are open systems whose size is growing over time. A convenient 

example is the network of World Wide Web, which grows exponentially because o f the 

addition of new web pages.

Second, Barabasi and Albert [35] found that earlier models assume that the 

probability that two nodes are connected is independent of the nodes’ degree. In contrast, 

Barabasi and Albert [35] argue that most of the real world networks exhibit preferential 

attachment; that is, the connections between nodes are strongly correlated to the edges of 

nodes. For example, they illustrated that a web page will more likely include hyperlinks 

to popular documents with already high degrees [36]. This is because such highly 

connected documents are more likely to be searched and thus making the website well 

known. The above-discussed two mechanisms— summarized as growth and preferential 

attachment mechanisms— inspired the introduction of the BA model. This was the first 

type of network model that had the power law degree distribution. At this point, it is 

obvious that growth and preferential attachment play the key role in the network 

development. However, are both of them necessary for the emergence of power law 

scaling?
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Barabasi and Albert [35] investigated two models that contain one o f two 

mechanisms to address the question above.

The first model keeps the growing character of the network but without the 

preferential attachment. The network model starts with a small number of nodes mo, a 

new node with m ( m < m0). Without the assumption of preferential attachment, the

authors assume that the new node connects with equal probability to the nodes in the 

system (i.e., random attachment); that is,

n ( ^  = — 7 7 7  (11)m0 + / - 1

This probability is independent of kj. The continuum theory predicts that that k (follows 

logarithmic time dependence, and for time / —»°° , the degree distribution decays 

exponentially. The exponential character of the distribution indicates that the absence of 

preferential attachment eliminates the scale-free character of such network. The second 

model starts with N  nodes and no edges. A node is selected randomly and connected with 

the probability n(£ ,) = kt /'Ljk l to a node i in the network. The model eliminates the

growth process, and the number of nodes is constant during the network evolution. Their 

simulation results indicate that the model exhibits power law scaling at the early time, but 

p{k)  is not stationary. At the final stage, the system reaches a state in which all nodes in 

this network connected. Hence, they conclude that both growth and preferential 

attachment are the necessary conditions for formation of scale-free scaling. In the 

following literature, scholars extend the scale-free networks specifically by focusing on
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one of the formation mechanisms or both. In the following part of this section, this 

dissertation will review some recent works based upon the BA model. The discussion has 

been split into four themes relating to (2.2.1) preferential attachment, (2.2.2) dynamic 

growth, (2.2.3) edges and (2.2.4) growth constraints.

2.2.1 Preferential Attachment ( II(k ,))

The BA model assumes that the probability FI(k() that a node attaches to node i 

is proportional to the degree k  of node /. The assumption involves two hypotheses: (1) 

II(&() depends on k\ (2) the functional form of n (k ;) is linear in k. Barabasi and Albert 

[35] stress that the studies have demonstrated that the degree distribution strongly 

depends on !!(£,) Hence, the precision of model of n (k ,)  is fairly important.

Some researchers like Jeong et al. [136], Newman [81], Pastor-Satorras et al. [137] 

estimate the functional form of n (k () through measuring the real network data, such as 

co-authorship network, the citation network of articles, the actor collaboration network, 

and the Internet at the domain level. They consider that functional form of n ( k () can be 

determined for networks for which the time each node joined the network is known. The 

process of capturing n (k ;) can be explained as follows:

1. Record the number of “old” nodes present in the network and their degree.

2. Measure the increase in the degree of the “old” nodes overtime interval A T , 

which is much shorter comparing to the age of the network.

3. According to the equation, n ( ^ )  = k: / 'LJkj , plotting the relative increase

Akt / Ak as a function o f the earlier degree k, for every node gives the II (k) 

function, where Ak  is the number of edges added to the network in the time AT.
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Finally, the obtained n(&;) supports the existence of preferential attachment.

Meanwhile, it appears that in each case n (£ () follows a power law: n(&) ~ k~a . In some 

cases, such as the Internet [136], the epidemic [137], the citation network [136], Medline, 

and the Los Alamos archive [138], We have a  = 1 , i.e., n ( £ )  that depends linearly on k 

as assumed in the BA model. For other networks the dependence is sub-linear, with 

a  = 0.8 ± 0.1 for the neuroscience co-authorship and the actor collaboration networks

Krapivsky et al. [139] proposed the effect of a nonlinear II(&() on network 

dynamics and topology. Instead of applying the equation IT(&,) = kt /£ ,£ , for adding new 

nodes, they calculate the average number of nodes N k (t ) with (k -1 ) incoming edges at 

time t. The time evolution of N k(t) follows (rate equation approach):

where M a(t) = 'LkaN k (t) is the ath moment of N k( t ) . The first term accounts for the 

process in which a site with (k -1 ) links is connected to the new site, thus increasing 

their degree to k. This happens with probability (k -1 )" / M n . k aN k describes new nodes 

connecting to nodes with k edges, turning them into nodes with (k +1) edges and hence 

decreasing the number of nodes with k edges. 5kx indicates that the continuous 

introduction of new nodes with a single outgoing edge. According to the distinct a value, 

they identified the two different cases: the sub-linear case and the super-linear

[136],

( 12)
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preferential attachment and conclude that the scale-free nature of the network is 

destroyed for nonlinear preferential attachment.

Dorogovtsev et al. [62] proposed an “attractiveness” model. At each time step a 

new site appears. Simultaneously, m new directed links coming out from no specified 

sites are introduced.

Let the connectivity qs be the number of incoming links to a site s, i.e., to a site 

added at time s. The new links are distributed between sites according to the following 

rule: The probability that a new link points to a given site s is proportional to the 

following characteristic of the site:

A = A  + qs (13)

Thereafter it may be called “attractiveness”. All sites are bom with some initial 

attractiveness A > 0 , but afterwards it increases because of the qs term. Parameter A, the 

initial attractiveness, determines the probability for “young” sites to get new links. They 

stress that they do not specify site from which the new links come out. The links may 

come out from the new site, from old sites, or even from outside o f the network. The 

results have no relationship with the outgoing links setting. Hence, the model that they 

consider is equivalent to the BA model in particular case of the initial attractiveness (A) 

equal to m. In a summary, the model they defined is describing the likelihood that an 

isolated node will be discovered, such as a new article being cited the first time. The

calculations indicate that the degree distribution follows P(k) ~ k~y with y - 2  + A l m .
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Consequently initial attractiveness does not destroy scale-free nature of the degree 

distribution; it only changes the degree exponent.

2.2.2 Dynamic Growth

The BA model assumes that the number of nodes and edges increases linearly in 

time, and consequently the average degree of the network is constant. Scholars 

investigated the effect of nonlinear growth rates on the network dynamics and topology 

as well.

There are many real world networks growth patterns are measured by researchers. 

For instance, the average degree of the internet in November of 1997 was 3.42, but it 

increased to 3.96 by December of 1998 [140], Similarly, the World Wide Web has 

increased its average degree from 7.22 to 7.86 in the five months between the 

measurements of Broder et al. [141]. The average degree of the co-authorship network of 

scientists has been found to continuously increase over an eight-year period [142].

Finally, comparison of metabolic networks of organisms of different sizes indicates that 

the average degree of the substrates increases approximately linearly with the number of 

substrates involved in the metabolism [136], The increase of the average degree indicates 

that in many real systems the number of edges increases faster than the number of nodes, 

supporting the presence of a phenomenon called accelerated growth.

Dorogovtsev and Mendes [130] studied the effects of accelerated growth on the 

degree distribution. In their model, at every step a new node is added to the network, 

which receives n incoming edges from random nodes in the system. Additionally the 

amount o f new edges is distributed, each of them being directed from a randomly 

selected node to a node with high incoming degree, with an asymptotically linear



59

preferential attachment Yl(km)oc A + km The authors show that accelerated growth,

controlled by the exponent a, does not change the scale-free nature o f the degree 

distribution, but it modifies the degree exponent.

2.2.3 Internal Edges, Rewiring and Edge Removal

One argument against BA modes is that the BA model only incorporates one 

mechanism for network growth: new nodes are kept connected with the aging nodes in 

the system. However, in the real world, a series o f microscopic events shape network 

evolution, including the addition to or rewiring of new edges or the removal of nodes or 

edges. Several models have been proposed to investigate the effect of selected processes 

on the scale-free nature of the degree distribution, offering a more realistic description of 

various real networks. Any local change in the network topology can be obtained through 

a combination of four elementary processes: addition or removal of a node and addition 

or removal of an edge. But in reality these events come jointly.

An extended model by Albert and Barabasi [143] incorporates new edges between 

existing nodes and rewiring of edges. The model algorithm is starting withm0 isolated 

nodes, each time step the model perform one of the following three operations:

1. With probability p, m (m <m 0) new links are added:

For this a node is randomly selected as the starting point of the new link, 

describing, for example, that a web developer decides to add a new hyperlink to a 

page. The other end of the link is selected with probability,



incorporating the fact that new links preferentially point to popular nodes, with a 

high number of connections. This process is repeated m times.

2. With probability q, m links are rewired:

For node i and the link ly connected to it are randomly selected. Next, this link is 

removed and replaced with a new link ly, that connects / with node ./' chosen with 

probability T\{kt ') given by equation above. This process is repeated m times.

3. With probability (1 -  p  — q) a new node is added:

The new node has m new links that with probability FI* are connected to nodes / 

already present in the system.

They conclude through the results of this model that in critical phenomena power 

law scaling is typically associated with universality, implying that the exponents are 

independent of the microscopic details of the model. The model demonstrated that no 

such universality exists for scale-free networks, the scaling exponents depending 

continuously on the network’s parameters. On the other hand, results indicate the 

existence o f a different criterion for universality based on the functional form of P{k). 

Their model predicts the existence of two regimes, the scale-free and the exponential 

regime. Some of the large networks investigated so far, such as the www or the actor 

networks, are described by scale-free networks. However, a number o f fundamental 

network models lead to a P{k) that decays exponentially, indicating the usefulness of the 

exponential regime as well.
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2.2.4 Growth Constraints

Scholars argue that nodes have a limited lifetime or a finite edge capacity 

(internet routers), thus they hsbr addressed some discussions on the topic.

Amaral et al. [144] suggested that while several networks do show deviations 

from the power law behavior, they are far from being random networks. For example, the 

degree distribution of the electric power grid of southern California is more consistent 

with a single-scale exponential distribution. Other networks, like the extended actor 

collaboration network, in which TV films and series are included, have a degree 

distribution in which power law scaling is followed by an exponential cutoff for a large k. 

In all these examples, there are constraints limiting the addition of new edges; for 

example, the actors have a finite active period during which they are able to collect new 

edges, while for the electrical power grid or neural networks there are constraints on the 

total number of edges a particular node can have, driven by economic, physical, or 

evolutionary reasons.

Amaral et al. [144] propose that in order to explain these deviations from a pure 

power law one must incorporate aging and cost or capacity constraints. The model 

studied evolves following growth and preferential attachment, but when a node reaches a 

certain age (aging) or has more than a critical number of edges (capacity constraints), 

new edges cannot connect to it. In both cases numerical simulations indicate that while 

for small k the degree distribution still follows a power law, for large k  an exponential 

cutoff develops.
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Dorogovtsev and Mendes [130] propose that in some systems the probability that 

a new node connects to a node i is not only proportional to the degree fc; of node but it 

also depends on its age. Papers or actors gradually lose their ability to attract more edges, 

the model assumes that this phase-out follows a power law. The calculations predict that 

the degree distribution depends on the exponent: power law scaling is present only for 

Y<  1, and the degree exponent depends on y . When y  > 1, power law scaling 

completely disappears, the degree distribution approaching an exponential.

2.3 Conclusion and Discussion

After reviewing key network descriptive statistics and network formation models, 

this chapter helps lay out the methodological and technical foundations for this 

dissertation. Moreover, a review of the relevant literature suggests that the current 

network formation models are inherently limited in revealing the impacts of agent 

heterogeneity in shaping network formation. Particularly, the BA model assumes that 

nodes with more links (i.e., “popular nodes”) are more likely to be connected when new 

nodes enter a system. More interesting, the BA model found that, as mentioned before, 

preferential attachment in a growing network leads to a power law degree distribution.

However, this line of research is problematic since it assumes all the nodes 

possess the same preference (instrumental preferential attachment) and overlooks the 

potential impacts of agent heterogeneity on network formation (intrinsic preferential 

attachment). When joining a real social network, people are not only driven by the 

instrumental calculation of connecting with the popular, but also motivated by the 

intrinsic affection of joining like-minded individuals. In other words, people are
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constantly weighing between popularity and proclivity in forming their social 

connections. The impact of this mixed preferential attachment is particularly 

consequential on such social networks as political communication.

In the following chapter, this dissertation proposes an integrative agent-based 

model o f preferential attachment encompassing both instrumental calculation and 

intrinsic similarity. Particularly, it emphasizes the ways in which agent-heterogeneity 

affects social network formation. This integrative approach can strongly advance our 

understanding about the formation of various networks.
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CHAPTER 3 

METHODOLOGY: AGENT-BASED MODELING

From the previous chapters, it is evident that a key difficulty in modeling network 

formation is that fairly simple specifications at the micro-level, even with minimal 

heterogeneity, can give rise to complex networks at the macro-level. Although there are 

many insights that one can derive analytically or induce empirically, there are still many 

network dynamics that cannot be seen so directly. By examining the behavior o f large 

computer-simulated societies is one possible way to try to observe this unseen behavior. 

Agent-based modeling provides one approach to generating this simulated society [148].

However, as with any form of analysis, there are important considerations in 

terms of how social networks should be formalized in agent-based modeling. This 

chapter, therefore, is dedicated to a review of extent studies on agent-based modeling and 

social network, a discussion o f the advantages associated with agent-based modeling in 

simulating network formation, and, finally, an explanation of operationalization of 

network formation based heterogeneous attachment.

3.1 Literature Review: An Agent-based Approach to Social Network Analysis

This section intends to address why ABM approach is suitable to SNA. 

Specifically it addresses the question from two angles: the theoretical and the analytical. 

Theoretically speaking, ABM is desirable because of its emphasis on complexity and 

emergence, which are the regarding features of social networks as well. Analytically 

speaking, ABM is preferably because it is computationally advantageous in dealing with 

complex systems.
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The importance of social networks analysis rests on three underlying assumptions 

about patterned relations and their effects [4], [7]. First, structural relations are more 

important for understanding observed behaviors than attributes of individuals. Second, 

social networks affect perceptions, beliefs, and actions through a variety of structural 

mechanisms that are socially constructed by relations among entities. The third 

assumption is that structural relations should be viewed as dynamic processes. Guided by 

these three assumptions, scholars have focused on different aspects of SNA. In recent 

decades, as the development of computational technology, there has been an explosion of 

such network analysis research [5], [25].

Up to this point, it has been found that although scholars have made important 

progress in SNA, the dominant guiding paradigm is unfortunately structure-oriented; that 

is, researchers focus mainly on systematic attributes of “regular” networks [4], [7], [8]. In 

this line of research, large-scale social networks are commonly regarded as complicated 

networks displaying certain variant attributes from the regular ones. Moreover, these 

studies have paid only limited attention to the emergent nature of network formation; that 

is, while isolated connection building between individual agents (or nodes, vertexes) by 

no means can exert any significant impact on the system, massive paralleling such 

interactions will lead to some fundamental systematic changes [37], This study suggests 

the introduction of an agent-based approach can strongly enhance our understanding of 

SNA, particularly through its two anchoring concepts: complexity and emergence.
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3.1.1 Complexity

A complex system, differing from complication common in a linear system, is 

composed of numbers of dependent elements [58]. These elements interact with each 

other through connections. The connections among them can be relatively simple and 

stable, or complicated and ever changing. Systems are formed by these elements along 

with their connections. In such systems, removing an element may destroy the overall 

system behavior, as well as the complexity [58], The remarkable thing about the 

complexity in the social worlds is that the social agents must predict and react to the 

actions of other agents (adaptation). Varying connections among the adaptive agents 

exacerbate these activities when adaptive agents become close to one another. The 

outcome o f such a system is that the relationships between social adaptive agents are 

highly nonlinear [58], so that the system is hard to decompose, and the complexity 

ensues.

3.1.2 Emergence

A key focus of ABM is that interacting automatous agents in the system lead to 

emergent phenomenon. Emergence can be regarded as a global phenomenon growing 

from localized, individual behavior. However, emergence, in most cases, disconnect with 

its details of local behavior. Consequently, emergent patterns still keep stable even if 

there are rational variations occurring in individual behavior [56]-[58].

Emergent behavior, in some cases, is considered as simply a reflection of 

scientific ignorance rather than some deeper underlying phenomenon. However, 

ignorance can drive the quest for understanding. Miller and Page [58], for instance, argue
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that two kinds of complexities can be well described by emergence: disorganized 

complexity and organized complexity. The feature of the former is that as the number of 

agents increases, individual variations begin to cancel one another out, and “system- 

wide” predictions become possible. It should be noted that, in this case, it is not 

observable how communication among agents and localized behavior aggregate into 

global phenomena that survive and last with the characteristics completely different than 

its components. Consequently, “explorations of complexity have begun to identify the 

emergent properties o f interacting agents for want of a better term, organized 

complexity” [58], In the case of organized complexity, agent variations no longer cancel 

one another out but, rather, become reinforcing.

A review of ABM research on networks reveals two main directions o f research. 

While many researchers interested in seeking the process of network formation, many 

others are working on exploring the diffusion under different types of networks, i.e., the 

transmission process in the context of varying network topologies. For example, Hamill 

and Gilbert [49], in exploring network formation, argue that currently there is no such 

network models fit well with sociological observations of real social networks, and they 

provided an ABM model based upon the social circle theory. This is different agents 

with unequal social reach that create a wide variety of artificial social worlds labeled with 

properties of real world observed large scale networks. Similarly, Mitrovic and Tadic 

[145] conducted an analysis of the empirical data and the ABM of the emotional behavior 

of users on Web portals where user interaction is mediated by posted comments. ABM 

here is used to simulate the dynamics and to capture the emergence of the emotional 

behaviors and communities. Gaston and des Jardins [146] provide the past findings of the
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structure of the artificial social network governing the agent interactions is strongly 

correlated with organizational performance. By the context of dynamic team formation, 

they proposed two strategies for agent-organized networks and evaluate their 

effectiveness for increasing organizational performance.

Up to this point, it is evident that social networks are complex, and information 

diffusion is an emergent phenomenon, which in turn suggests that an ABM approach is 

an appropriate tool for us to analyze the relationship between social network and 

information. Moreover, ABM is flexible, process-oriented, and adaptive. All o f these 

entail important implications to future studies of social network [57],

3.2 Agent-Based Model of Heterogeneous Attachment

In retrospect, it is evident that traditional tools have significantly constrained the 

theorization of various social systems. Existing models are more about static, 

homogeneous system models composed of either several or infinite amount of agents, 

regulated in a world in which time and space matter little. In sharp contrast, 

computational techniques, a powerful tool arising from complex systems research, allow 

for a flexible number of heterogeneous agents to interact in a dynamic processing system 

subject to the limits of time and space. For at least two methodological reasons, an ABM 

approach is suitable for SNA; these reasons will be discussed in turn.

First, while some scholars argue that the computation methods are the outcome of 

the confusion between theory and the tools used to develop theories, it is reasonable to 

argue that theories need to be judged by how well they improve our understanding about 

the world we are interact with, rather than the tools used to develop them [58]. As long as



69

the facts of the world are discovered or partially uncovered, theories are constructed 

withstand testing and tracing. In reference to SNA, ABM is usable for uncovering the 

network formation motivating factors intrinsic necessity of agents. Second, while many 

argue that computational models can only provide inductive proof, it is clear that 

axiomatic proof guaranteeing its outcome comes at the cost of being willing to 

sufficiently narrow the problem domain. The actual problem, on the other hand, is under 

what conditions the outcome is guaranteed. While the conditions of guarantee are 

exceedingly elaborate, it is possible that social scientists have the willingness to accept 

some inexactness in predictions in return for more favorable circumstances.

Finally, caution should be taken when differentiating between the computation in 

theory and computation as theory. Computation in theory is mainly accomplished through 

abstracting the behavior of the individual agents in the system into simplified agents. The 

collections of these agent-based objects, then, will be “solved” by allowing the objects to 

interact with each other using computation [58]. In contrast, computation as theory is a 

bottom-up simulation for providing a constructive existence proof of some propositions 

or for experiments to see if a set of rules can imply “lifelike” behavior, and top-down 

simulations that use the computer as a way to understand the implications of this set of 

abstraction-based objects. Obviously, in reference to SNA employing ABM, we will go 

through a bottom-up simulation process.

The review of the SNA literature in this dissertation is inevitably far from being 

exhaustive and leaves many recent developments in network analysis unexamined. 

However, several important conclusions stand out. First and foremost, it is evident from 

the literature that social networks are complex, and information diffusion is an emergent
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phenomenon, which in turn suggests that an ABM approach is an appropriate, if not the 

best, tool for us to analyze the relationship between social network and information.

Moreover, as listed in the earlier section, ABM is flexible, process-oriented, and 

adaptive. All of these entail important implications to future studies of social networks. In 

fact, an increasing number of scholars has started to use ABM methods to simulate the 

formation o f different networks. For instance, Hamill and Gilbert [49] argue that none of 

the standard network models fit well with sociological observations of real social 

networks, so they presented a simple structure for use in agent-based models of large 

social networks. Mitrovic and Tadic [145] applied ABM to investigate the dynamical 

network of bloggers’ communities. Lodhi et al. [147] proposed an agent-based network 

formation model for the Internet at the autonomous system level.

However, in general, ABM approach to network analysis only occupies a 

marginal place in the literature. Most scholars still rely on statistical methods to examine 

variant network structures, ranging from centrality of a given network or connectivity 

between vertexes (i.e., nodes). The emphasis on the static attributes of already existent 

networks, although helpful in providing a clearer description of given networks, 

inevitably downplays the relationship between network formation and network structure. 

If social networking is a complex adaptive system, its emergent process, rather than its 

ending status, can tell us more about its fundamental attributes. As argued by Epstein 

[148], “if you didn’t grow it, you didn’t explain its emergence.” For these reasons, it is 

surprising to note that only a very limited number of scholars are applying ABM to 

network analysis.
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Given these, an ABM approach to more complex social networks can strongly 

advance our understanding of network analysis. The research goal of this dissertation 

therefore is to expand one of the most influential network models in SNA; that is, the 

scale-free network. Myriad studies have been devoted to exploring the nature and origin 

of social networks [2], [4], [7], [8]. Despite the nuances and complexities documented in 

the literature, there are essentially two overarching theoretical models regarding 

motivations o f individuals: the instrumental model and the intrinsic model. Individuals 

are motivated to select friends that are either instrumental or intrinsic. This translates into 

an individual utility function of social networking as follows:

«,■(;') = K j +G,j - ( 15>

where «,-(/) represents individual Vs utility of linking with individual j ,  K l denotes the 

instrumental gains delivered by /  s popularity in the given social network, Gtj represents

the intrinsic benefits from the similarity between / and j .  With Eq. (15), we can find a 

static model of an individuals’ total utility in a given network, say, a network with n

agents, N  = {1,2,.. .,n } . We then can let g N represent the complete graph, where every 

player is connected to every other player, and let {g | g  c  represent the set of all

possible such graphs. If agent / and j  are linked in graph g, we write i j e  g . Therefore, for

a unique static graph g, each agent i e {l,2 ,.. . ,nj receives a payoff, ut ( g ) ,
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u, (g )  = X  ( 16)
y':ye« '*y

where, w represents the cost constraint in a particular mode of social networking and is 

assumed uniform across agents in this study. O f course, this simplification o f agents’ 

utility in a networked setting is hardly the complete story. How can this static formal 

statement help integrate substantive theories and abstract network model? And how can 

this static statement help construct a dynamic ABM model?

3.2.1 K, Network Position, and the Principle of Popularity

Two motivations that are of particular relevance to social networking are the need 

for cognition and the need for affect [71], [73], [75]. Need for cognition is fundamentally 

an instrumental concern and a stable disposition that explains individual differences in 

the tendency to use network to acquire such resources as information. Individuals who 

possess a high need for cognition have a strong motivation to connect with resourceful 

and well-informed people in a given social network. Consequently, individuals who are 

high in need for cognition are more likely to behave in line with the rational model. They 

should operate as if they possess a running tally of everyone’s relative position in a 

network, which in turn helps make their decision of networking.

Yet how can individuals1 running tally of network structure translate into abstract 

network models? Many works by sociologists have examined how individuals' 

instrumental concern can be realized in a network setting. One of the most influential 

such works is Granovetter’s “Strength of Weak Ties” (SWT) theory [77]-[78], in which 

weak, bridging ties are argued to be beneficial to individuals because of their potential in
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introducing novel information. Burt [1] later refines the argument by emphasizing the 

relationship between “structural holes” and “information brokers.” This, in turn, leads to 

Burt's conclusion that network brokers tend to enjoy various advantages because they can 

bridge otherwise isolated clusters. More recently, Podolny [79] argues that network 

structure matters not only because it serves as “pipes” of resources, but also because it 

acts like “prisms,” revealing important information about the inherent qualities of vertices 

(e.g., credibility). An individual's status (i.e., popularity) in a given network provides 

others a heuristic shortcut in assessing his/her credibility. In sum, these studies suggest 

that individuals motivated by need for cognition are tending to be connected with people 

o f high degrees in a network.

If individuals high in need for cognition are popularity-driven, what is its 

implication on network formation? Studies by statistical physicians on scale-free 

networks provide some clues. Yet, it should be noted that their concerns are mainly at the 

system level. As for large-scale complex networks, empirical results demonstrate that 

most of them are scale-free; that is, their degree distribution follows a power law 

distribution [80]-[82]. The BA model [35], [37] then is introduced to describe this scale- 

free emergent mechanism. The BA model suggests that the growth of network size and 

preferential attachment are the necessary conditions for the emergence of scale-free 

networks. In other words, a social network that is solely composed of individuals high in 

need for cognition tends to follow a power law distribution.

In many social networks, however, significant deviations from scale-free behavior 

have been reported. Although numerous variants of the BA model have been developed 

to reproduce the growth process of social networks, most of them still share the very key
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instrumental assumption that a vertex’s probability to be connected is determined 

primarily by its position (i.e., “popularity”) in a given network [60], [62]. The 

instrumental concern or the need for cognition, as elaborated above, is not the only 

motivation that governs individuals’ social networking. The need for affect is another 

important motivation of individual behavior.

3.2.2 G, Agent Heterogeneity, and the Principle of Proclivity

The need for affect, in sharp contrast to the need for cognition, is fundamentally 

intrinsic. It is a separate motivational construct that captures the degree to which people 

enjoy experiencing strong emotions [70], [72], [75], [83], Individuals who are high in 

need for affect are more likely to view emotions as useful when making various 

decisions. Because these individuals tend to enjoy experiencing strong emotions, their 

attitudes tend to possess a stronger affective basis. This is not to say that the attitudes of 

individuals who are high in need for cognition are unaffected by emotion. Almost all 

attitudes carry some affective component. Rather, the argument here is that individuals 

high in need for affect possess attitudes that carry a more intense affective charge, and 

while affect may induce “biased reasoning” in most people, individuals high in need for 

affect should be especially prone to biased processing [70]-[72].

What are the implications of this “biased reasoning” for social networking? Pujol 

et al. [84] have pointed out that the assumptions of BA models usually lack sociological 

grounding. Wong et al. [84] argued that many network models have not taken the 

advantages of sociological and psychological insights of how social networks may be 

formed. It is also problematic since it assumes all the nodes possess the same preference
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(instrumental preferential attachment) and overlooks the potential impacts of agent 

heterogeneity on network formation (intrinsic preferential attachment). When joining a 

real social network, people are not only driven by instrumental calculation o f connecting 

with the popular, but also motivated by intrinsic affection of joining the like. In other 

words, people are constantly weighing between popularity and proclivity in forming their 

social connections. The impact of this mixed preferential attachment is particularly 

consequential on such social networks as political communication. More importantly, the 

support for this assumption comes from the social theory: homophily.

McPherson et al. [26] argue that homophily is the principle that a contact between 

similar people occurs at a higher rate than among dissimilar people, and the similarity 

could be regarding many types of personal characteristic positions, including gender, 

religion, social class, education, and other intra-personal or behavioral characteristics. In 

fact, there are some models taking homophily into consideration, somehow not using the 

specific term but essentially the similar meaning. Robins et al. [86] presented network 

models for social selection process. Although characteristic positions affecting the social 

relationship formation are concerned, it is broken between the local behavior and the 

global pattern. In other words, there is no analysis for the properties of large social 

networks. Newman and Girvan [87] conducted a network model and discuss the 

mechanism of assortative mixing, which is, the nodes with similar degree level like to 

link with each other. However, it actually is a special case of preferential attachment, 

where the similarity of nodes is concerned.

This study proposes an integrative model of preferential attachment encompassing 

both instrumental calculation and intrinsic similarity, which is a term transformed from
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homophily. Particularly, it emphasizes the ways in which both agent-heterogeneity and 

network position affects social network formation. Agent-based modeling is chosen as 

the paradigm to conduct this study. This integrative approach can strongly advance our 

understanding about the formation of social networks.

3.2.3 m, Mass Media, and Individual Capacity

Up to this point, it is clear that both the principle of popularity and the principle of 

proclivity are key strategies adopted by individuals in social networking. Yet, it should be 

noted that the actual impact of these two principles is contingent on the costs of acquiring 

information and establishing connections; that is, the constraints of communication 

modes.

Scholars have long found that the individual acquisition costs o f information vary 

widely under different media settings. A key theme across many disciplines in social 

science is the question to what extent lower communications costs have make people 

more connected and less isolated [34], [88]. Recent years have seen an explosion of 

research on the topic. To some degree, the diffusion of ICT is at the heart of the latest 

surge of studies on social network. The development of the Internet has greatly increased 

the means by which people communicate with each other. In many respects, ICT appears 

closer to traditional media than to mass media in the sense that they are used as personal 

communication platforms.

A review of relevant literature suggests that competing views about the effects of 

technological innovation and its resulting impact on ordinary people provide the basis for 

a rich debate on the relationship between social isolation and the fragmentation of
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society. Whereas few doubt that technology has greatly expanded our capacity to connect 

with others, the impact o f technology on the perception of being connected is more 

controversial. For instance, many argue that ICT reduces or counteracts the impact of 

geography on structuring opportunities for social interactions, and second, they take time 

away from other face-to-face activities [89].

Rather than joining the existing debate on the exact impacts of ICT, this study 

intends to explore to what extent the network formation is constrained by different modes 

o f communication. An ABM approach to this problem helps elucidates the structural 

differences of social networks under different media setting.

3.3 Model Hypothesis and Assumptions

As stated in earlier sections, there are two critical assumptions underlying the BA 

model, i.e., the scale-free network. First, the network continuously expands with the 

addition of new vertices that are connected to the vertices already present in the system. 

Second, the probability that two vertices are connected is neither random nor uniform; 

instead, there is a higher probability that it will be linked to a vertex that already has a 

large number of connections.

At the agent-level, the scale-free network suggests that agents (i.e. vertexes) are 

instrumentally motivated to be connected to agents that are “popular.” To incorporate this 

type of preferential attachment, we can assume that the probability n  that a new vertex 

j  +1 will be connected to vertex i depends on the connectivity k, of that vertex, so that
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(17)

The BA model assumes that all the agents are homogenous, sharing the same 

instrumental preference of connecting with the popular. Although this homogenous 

instrumental preference attachment is useful in describing micro dynamics of many social 

networks, it is often compromised by agents’ inherent proclivity.

To capture the impact of agent heterogeneity on network formation, this 

dissertation proposes two more assumptions. First, vertexes are intrinsically different 

from each other on certain aspects. A convenient example is party affiliation [4], With 

respect to US political party orientation, people can be labeled as Democrats and 

Republicans. Second, the probability that two vertices are connected is not solely 

determined by the connectivity of the existing vertexes. It is also determined by the 

instinct similarity between vertexes. Specifically, there is a higher probability that a new 

vertex will be linked to a vertex that shares similar characteristics. In other words, a new 

Democrat, when entering a social network, is prone to forming a connection with another 

Democrat but not a Republican. At the agent level, this theory suggests that agents are 

intrinsically rational, which implies that they are motivated to select parties that are 

characteristically proximate. This in term can be translated into a distance between 

vertexes.

(18)
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where C, represents the characteristic position of vertex i; Cn+ i represents the 

characteristic position of a new vertex N  + 1 that is about to join the existing network. A 

smaller Euclidean distance translates into more utility and hence contributes to the 

likelihood that the new vertex will be attached to vertex /. It should be noted,

Therefore it is possible to characterize this as intrinsic (or heterogeneous) preferential 

attachment in contrast to Barabasi and Albert’s instrumental preferential attachment [35].

This dissertation assumes that homophily is another key driven mechanism, 

comparing to the mechanism of preferential attachment, for leading the social agents to 

make decisions for forming the different structures of the social networks. When joining 

a real social network, people are not only driven by instrumental calculation of 

connecting with the popular, but also motivated by intrinsic affection of joining the like. 

In other words, people are constantly weighting between popularity and proclivity when 

forming their social connections.

In light of this, the probability U can be updated as a new vertex N  + 1 will be 

connected to vertex i depends on the connectivity k, of that vertex as follows,

(19)

(20)
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In this way, this heterogeneous attachment model can be used to describe and guide the 

emergence o f real world social networks. In this model, it is imperative to introduce a 

parameter of the relative weight of instrumental preference, U is a weighted product of FI, 

the instrumental preferential probability, and P, that intrinsic preferential probability. In 

light of this, the BA model is only a special case of this integrative model.

The impact o f this mixed network formation is particularly consequential on such 

social networks as political communication. For instance, when people appear in a new 

community and start to build their network, the two endogenous driven mechanisms 

would lead people to build up their social networks. Under the extremely conditions, by 

following the preferential attachment, people are only interested in linking with the 

popular people, so that the people have bigger potential to expand their networks. By 

following homophily, people would be more like to connect with the other people that 

have similar intrinsic properties with them, since they might be looking for a more 

comfortable social ambience or they even could gain more confidence from people 

owning the similar characteristic. Certainly, the latter is a human behavior factor, which 

is labeled as “intrinsic” intention to construct network in this study. In the real world, 

most people make decisions based on both mechanisms in different levels instead o f in 

the extreme situations. The following chapter discusses the way of weighting for 

balancing these two mechanisms and the method o f modeling homophily.

3.2.1 Model Assumptions

The heterogeneous attachment model proposed in this study therefore is rested on 

the following three key assumptions:
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1. Heterogeneity: Vertices (i.e., agents) are intrinsically different from each other 

on certain aspects. All of the relevant characteristics of vertices are captured by a

finite set of c > 1 types: {l,2,...,c} . Based on this finite set of relevant

characteristics, it is possible to construct C/, representing the characteristic position 

o f node i.

2. Dynamic Growth: The network continuously expands by the addition o f new 

vertices. The network starts with a small number (w o) of nodes, at each time step t, 

a new node with m edges that link the new node to m different nodes already 

present in the system.

3. Heterogeneous Attachment: The probability that two vertices are connected is 

jointly determined by the connectivity of the existing vertices and the intrinsic 

similarity between vertices. The joint probability that a new vertex at time step t + 1 

will be connected to vertex / depends on,

t '  = / ( * „ C „ C „ 1) = ^ - + ( l - A ) - « ( C „ C „ , ) ,  (21)
I JI

where A is a weighted product of the instrumental preferential probability and 

intrinsic preferential probability. Connectivity of node i at time step t thus is ku .

The probability of a new node and a random existing node are connected for 

intrinsic purpose at time t + 1 can be captured by S (.), in which S(C t,Cl+])

decreases as C’̂  (C;,C ; j increases for i * j . C,+1 is the characteristic position of a
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new node entering the network at time step t + 1, and C, is that o f node i already in 

the network,

4. Media mode: The global constraint is captured by agents’ overall capacity in 

connecting, m.

Though Eq. (22) represents a generic means of determining the probability of 

attachment based on distance between two agents, a simplified version is used in this 

model because only the two types case is considered. In the original setting of the

simulation in this dissertation, let C € {"Blue","Red"}, and,

8 {C ,„C , )  =

1 f o r r , = C
+ N  1+1 1

u  (22) £-----  fo rC ,+l*C,
MN<+N,

where N x is the number of nodes C,+1 = C ,, N d is the number of nodes C,+11 C ,. Given 

there is a binary difference on the agents’ characteristic position, and the above function 

provides a better performance than the Euclidean distance illustrated in Eq. (22).

Together, the above four assumptions suggest that each new node makes m new 

edges to remain in the network. Rather than solely attracted to the popular nodes, new 

nodes also weigh the extent to which other nodes are similar to themselves. The relative 

weights of this mixed preference are captured by X. It is apparent that, X = 1 will give rise 

to a purely rationality-driven social network (which are classical scale-free networks), 

and X = 0 will result in a value-driven social network. Also note that replacement is
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assumed for the case when incoming nodes make more than one new edge. This 

assumption is made for simplicity. In the simulation, if a node is attached twice the 

second attachment is ignored and a new attachment is made.

3.4 Operationalization in NetLogo

In order to illustrate and model heterogeneous attachment, this study uses 

different colors to denote the different attributes of agents as stated in Hypothesis 1. 

Specifically, for the purpose of simplicity there are two types of agents in the system: 

blue agents and red agents. Assumption 2 is modeled by allowing the size of agents to 

increase at each tick, a default time unit in NetLogo. It should be noted that this study 

focuses primarily on the topology of social networks obtained on the final stage. 

Therefore, we assume simple dynamic growth of agents in this model. The network will 

stop growing when there are 10,000 agents in the network. As implied in Eq. (21) of 

Assumption 3, when X = 1 a purely rationality-driven social network (i.e., a classical 

scale-free network) is expected to emerge, and when X = 0 a value-driven social network 

is expected to be generated. Agents in the model would take the same color agents into 

their homophily consideration. The same process will repeat for 30 times for each X ,

X e  {0,0.25,0.5,0.75,1}.

More specifically, the simulation process can be described as the following steps:

1. Start with m + 1 connected nodes with random values (red/blue color).

2. A new node with a random value (red/blue color) wants to join the networks.

3. The nodes existent in network (for first run, the original m nodes) are in the 

choosing queue.
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4. The incoming node weighs between popularity and proclivity. It chooses m 

node(s) from the queue to connect by calculating the probability given in Eq. (21). 

The node with higher probability in the existing network is more likely to be 

connected.

5. Loop from step 3.

6. Each run of simulation stops when there are 10,000 nodes in the network.

7. The simulation stops when the model runs 30 times for each 

k e  {0,0.25,0.5,0.75,1}, and m e  {1,2,3}.

The following schematic example is for translating the model into real world 

instance. A new person living in a community has to building up a network relationship 

with other ones in the same community. At the point of determining which person he or 

she wants to link with, he or she is concerned with a balance between two features of 

other people: “Is he or she popular?” and “Is he or she a person more like me?” Relying 

on the result of his or her balancing, he or she makes a choice and links himself or herself 

in this community network. After joining, he or she will be evaluated by others if there 

are new persons joining to this community. The model outcome proves that super hubs 

are generated if people only care about “I want to link myself to a more popular people, 

in other words, people with more resources”. That is, the the BA model is generated for 

the special case for X = 1.

The main goal of this piece of work is to study how the intention from people 

affecting the structure of scale-free networks. Theoretically, network formation processes 

are affected by adding more heterogeneity to automatous agents. Based on the modified 

model introduced in the section, the network model is simulated respective to different
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values of people’s intention rate “A”, w here“A” indicates the objective choice from 

people between linking to the person with more links or the one “more like me”. The X 

variable has five different values and they are listed and explained in Table 1.

Table 1

THE SUBSTANTIAL MEANINGS OF X,

X values Categories

People are only concerned about “Are you more like me?” or “Are we in
0

the same party?”

People are concerned more about “Are you on my side”, but also care
0.25

about “Do you have more links?” a little bit.

0.5 People are concerned about these two parameters equally.

People are more concerned about “Do you have more links?”, but also
0.75

care about “Are you on my side?” a little bit.

1 People only care about “How many links do you have?”

In summary, nodes in Netlogo are colored in red or blue to denote the difference 

or similarity between each other. The initial condition of the model starts with m nodes 

and these m + 1 nodes are connected with each other arbitrarily, without considering the 

probability calculating. After the initial stage, one node with a random color is generated
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in each time step and it decides to link with m existing nodes based on the proclivity and 

the popularity probability calculating. There are no separated nodes or networks 

generated accordingly. The simulation will be stopped when there are 10,000 nodes in the 

network and it would be run 30 times under each value setting of m and k. The simulation 

will be run for 450 times in total. The network degree data would be outputted and used 

for data analysis.

The network structures are generated according to different intention rate values 

based on the integrative model. Illustrated in Fig. 2, as we can observe from the network 

structures of each graph, the network structures demonstrate that they are getting more 

clustering as the value of k increases, and the size of the hubs are getting bigger. 

Explaining it in another way, the power (or resource) is distributed unevenly. For clarity 

reason, only 502 nodes are shown in these graphs.



(e) X = \

Fig. 2. Visualization of simulated networks, m = 1 and different X values.
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Visually and roughly, we can observe a pattern across the five graphs as the value 

of k increases. When the value of k increases, there are more super nodes (nodes with a 

large number of links) in the system. When k value decreases, nodes are connected more 

evenly and there are almost no observable super nodes. In other words, we could explain 

this correlation as a result of people making decisions according to preferential 

attachment. There would be many more monopolies that owned lots of social resources in 

the emergent social networks. When people make decisions upon the heterogeneous 

attachment, the social resources may be evenly distributed. However, this is only an 

observation and a rough inference based on the model visualization we have so far. As 

suggested Barabasi and Albert [35], degree distribution of preferential attachment follows 

a power law distribution. Degree distribution refers to the number of linker of each node. 

Instinctively, degree distribution of heterogeneous attachment should follow exponential 

distribution. In the next section, a statistical analysis on the degree distribution outputted 

from our agent-based model is provided.

In this dissertation, an integrative framework is proposed to understand the 

impacts of preferential attachment on the emergence of social networks. Particularly, this 

dissertation emphasizes that when joining a real social network, people are not driven 

simply by instrumental calculation o f connecting with the popular, as stated in the BA 

model. They are also motivated by intrinsic affection of joining the like. In other words, 

people are constantly weighting between popularity and proclivity in forming their social 

connections.
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3.5 After Simulation and Beyond Network Statistics

Researchers o f SNA have long employed a variety o f measurement to describe 

structural characteristics of a network [4], [7], [8]. In this dissertation, many vertex- and 

local-level measurements will be used to examine various properties of simulated 

networks. These network metrics provide a convenient way to evaluate the impacts of 

heterogeneous attachment on network formation. For the definitions and details of these 

measurements, please see Chapter 2. These measurements serve valuable purposes in 

describing and understanding network features that might bear on particular research 

questions. However, it should be noted that a single network metric is inherently limited 

in revealing the complex nature of a particular network. Beyond simple descriptive 

network statistics, many analytical methods have been introduced to explore the complex 

emergence of networks. The reasons are multiple.

First, social behavior is complex, and stochastic models allow us to capture both 

the regularities in the processes giving rise to network ties while at the same time 

recognizing that there is variability that we are unlikely to be able to model in detail. 

Second, statistical models also allow inferences about whether certain network 

substructures—often represented in the model by one or a small number of parameters— 

are more commonly observed in the network than might be expected by chance. Third, 

sometimes, different social processes may make similar qualitative predictions about 

network structures and it is only through careful quantitative modeling that the 

differences in predictions can be evaluated. Therefore, it is important, if not necessary, to 

go beyond simple network statistics and search for a well-fitting analytical model of a 

simulated or observed network and in a particular statistical model.
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In this section, the degree distribution analytical method proposed by Clauset et 

al. [149] is discussed. With respect to the post-simulation analysis in this dissertation, this 

method is employed for the final statistical analysis as well.

3.5.1 Degree Distribution

Degree distribution provides a way to fit a given social network into a statistical 

model. Following statistical analysis techniques on the power law distribution provided 

by Clauset, Shalizi and Newman [149], it is possible conduct an analysis on the degree of 

distribution of the data generated from the simulation. The main goal of this statistical 

analysis is to learn to what degree distribution changes according to the different X 

values, and furthermore, to test the hypotheses that when A. = 1, it is reasonable to 

conclude that the degree distribution follows a power law distribution and when A = 0 , 

the exponential or Poisson distribution is better to describe the degree distribution.

The first group of graphs puts 30 runs of data points in one figure with each 

different X value. The Y-axis indicates the degree and the X-axis indicates the 

regarding numbers with the degree. Fig. 3 shows that there are big differences with 

different values. When X is close to 1, there are some nodes with a high degree, but 

most o f the nodes have lesser degree. Roughly, the graph with degree distribution of 

X = 1 shows a feature of big tail. However, when A is close to 0, the feature of big 

tail dispersed.
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Mathematically, a quantity jc obeys a power law if it is drawn from a probability 

distribution:

As noted by Watts (2004), the probability of a randomly chosen node having degree x 

decays like a power of x, where the exponent a, typically measured in the range of 

2 < a  < 3 , determines the rate of decay (smaller a implies slower decay, hence a more 

skewed distribution). A distinguishing feature of power law distributions is that when 

plotted on a double logarithmic scale, a power law appears as a straight line with negative 

slope a. Argued by Clauset et. al [149], few empirical phenomena obey power laws for all 

values of x. Usually, the power law applies only for the values greater than some 

minimum xmjn. Basically, power law distribution has two different settings: continuous 

distributions with the continuous real number and discrete distributions with discrete set 

o f positive integers. Since the data of this model are positive integers, the probability 

distribution should follow the form of:

p ( x ) (23)

p ( x )  = P r (X  = x)  = Cx a. (24)

This density function diverges at x = 0, implying a lower bound xmjn > 0 to the power law 

behavior. The normalizing constant can be calculated as in the following equations:



Based on the power law distribution, provided by Clauset, Shalizi and Newman [149], the 

approach is used for analyzing the data generated from the simulation to test how the 

value of X affects the degree distribution, and the system behavior of the network 

formation process. Specifically, this dissertation will conduct a two-step analysis:

1. Estimate the parameters of power law distribution: xmm and scaling parameter X.

2. Compare the power law with alternative hypothesis. Here, a likelihood ratio test 

method is approached. For each alternative, if the calculated likelihood ratio is 

significantly different from zero, then its sign indicates whether or not the 

alternative is favored over the power law distribution.

3.5.2 Estimating Parameters

There are two key parameters that need to be estimated in a power law model: 

xmin and scaling parameter alpha. The fundamental idea in Clauset, Shalizi and Newman 

[149] is the lower bound jcmjn should make the probability distributions of the measured 

data which are above this lower bound and the best-fit power law model as similar as 

possible. The Kolmogorov-Smimov or KS statistic is commonly used as a measurement 

o f quantifying the distance between the two probability distributions, which indicates the 

maximum distance between the cumulative distribution functions (CDFs) of the 

measured data and the fitted model:
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D  = max |S (x) -  P  (x )| (26)

where S(x) is the CDF of the simulated data for the observations with the value greater 

than xmin, and the P(x)is the CDF for the power law model that best fits the data in the 

region x  > xmm. Hence the x mm is selected to be the xmm that minimizes the value o f D.

Referring to the estimating, the method of maximum likelihood provably gives 

the accurate parameters estimates with the limit of large sample size. Assuming the data 

are drawn from a distribution following a power law for x > xmin, the scaling parameter

estimation under discrete case can be derived through maximum likelihood estimators 

(MLEs) as:

where x/, / = 1,...,«, are the observed values of x such that x/ xmin-

Following this procedure, we can estimate the parameters for the data from the 

simulation. According to the experiments of our simulation, with 5 different X values, 30 

repeated runs based on 10,000 data points would be estimated in the following chapter.

3.5.3 Comparing Alternative Distributions

While above estimated parameters indicate whether power law is an appropriate 

distribution in describing simulated networks, they provide no information about relative

-1

2

(27)
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fitness of power law distribution against alternative distributions. This section provides a 

brief discussion about the statistical test if the simulated data are possibly drawn from a 

power law distribution. Is it still possible that another distribution, such as an exponential 

or a Poisson distribution, might give a fit as good or better? Given the method mentioned 

in the above two sections, we only need to run through the whole process again for 

different distribution candidates. Relying on the p-values, we make the judgment of 

accepting or rejecting the hypothesis.

pW = Pr(J = x) = Cni,e-i' (28)

where,

C = l e Xx'
exp (29)

log-norm al (30)

where,

log-normal (31)
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While Eq. (28) and Eq. (29) defines an exponential model to fit the degree distribution of 

the simulated network, Eq. (30) and Eq. (31) provides a way to fit a log-normal 

distribution. After the simulated network data are fitted against these two alternative 

distributions, we can conduct a test examining which distribution model fits the data best.

3.6 Conclusions and Discussion

In summary, three important methodological issues to this study are discussed in 

this chapter. First, this chapter elaborates why the agent-based modeling (ABM) 

approach is the one of the best solutions to simulating the dynamic formation of social 

networks. The flexibility of ABM allows for an exploration o f heterogeneous agents in 

complex networks. The theoretical structure for this research then is provided; that is, 

besides the instrumental connection originated from the need of cognition, the intrinsic 

connection originated from the need of affect is another key driving mechanism to 

structure the social networks.

The main technical challenge in this simulation experiment is how to model agent 

heterogeneity. The agent heterogeneous attachment hypothesis and operative automata in 

simulation are introduced. In order to differentiate the agents, binary colors are used for 

agents to identify the similarity between each pair. The potential impact of different 

communication capacity is also discussed. Finally, the degree distribution analysis 

method is explained. This method helps to investigate the aggregate properties observed 

from the global view parameters.
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CHAPTER 4 

RESULTS AND APPLICATIONS

The discussion in the previous chapters has described the theoretical backgrounds 

and modeling procedures of agent-based simulations required for heterogeneous network 

formation. From the previous theoretical discussions, it is still not clear what the actual 

impacts were for the nature of heterogeneous attachment and the individual capacity on 

various properties o f the resultant social networks. The results presented in this chapter 

address this crucial question by examining various properties of simulated social 

networks generated based upon different combination of popularity-proclivity parameter, 

X, and individual capacity, m.

For this examination, a large number of simulated social networks were generated 

based on individuals’ heterogeneous attachments. These network properties encompass 

vertex-level, local-level, and global-level network statistics. Through examination of the 

relationships of these network statistics to the heterogeneous attachment, X, and 

individual capacity, m, the following questions will be addressed: To what extent does 

agent heterogeneity affect actual formation of social networks? More specifically, when 

people are popularity- and proclivity-orientated, will the resultant social network be 

better connected, equally connected, or efficiently connected?

Previous studies on the origins and formations of social networks have focused 

primarily on examining impacts of various generative mechanisms. While such studies 

provide important insights about the abstract mechanisms of network formation, very few 

of them juxtapose their generative models with empirical social networks (e.g., Hamill
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Gilbert [49]). Thus there is only limited knowledge about the empirical applications and 

implications o f these abstract models that has been obtained.

Recognizing these issues, findings emerged from the agent-based simulation 

results and analyses have been applied to exploring data of real world social networks. 

Specifically, when examining the relationships of heterogeneous attachment, X, and 

individual capacity, m, to various network statistics of a simulated social network, 

reliable measures for differentiating different levels of X are identified. Employing these 

measurements, the extent to which people are popularity- or proclivity-oriented in real 

social networks can be explored. To do so, the diffusion o f different kinds of emotions in 

Sina Weibo (a Chinese Twitter-like social media) was examined. A comparison of the 

network patterns can help reveal different micro-foundations of diffusion of different 

emotions.

4.1 Network Descriptives

To what extent does the above-discussed heterogeneous attachment affect various 

properties of social network? The answer to this question is not only of critical 

importance to the evaluation of the impacts of heterogeneous attachment on network 

formation but, more importantly, such analyses can help identify the reliable and valid 

aggregate measures for individuals’ heterogeneous attachment at the micro level. After 

all, in most cases it is impractical to survey how individuals balance between 

“popularity” and “proclivity.” Particularly, when multiple networks are under 

consideration, researchers require measures that are effective in differentiating the extent 

o f heterogeneous attachment and the level to which they are comparable over a broad
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variety of networks. Therefore, the goal in this section is two folded: (1) examine the 

effects of heterogeneous attachments on various properties of the simulated networks, 

and (2) identify reliable measures for heterogeneous attachment by evaluating and 

comparing different network properties.

Specifically, this section focuses on two classes of network properties. First, the 

relationship of heterogeneous attachment to various popular network statistics such as 

centrality measures, average path length, and diameter [7], [8], [21], [43], [102], Then 

this section explores to what extent heterogeneous attachment affect degree distribution 

of simulated networks. Finally, a comparison of different measure is delivered.

4.1.1 Vertex-level Statistics

Centrality measures, in gauging the relative importance of nodes in a given 

network, perhaps are the most intuitive network statistics. This study here presents the 

impacts of heterogeneous attachment on three different centrality measures: degree, 

closeness, and betweenness centrality [3], [4], [7], [8], [102].

The relationship of average degree score to the nature of heterogeneous 

attachment X and individual capacity m must be examined first. For a given network 

graph G  = {V ,E ) , the degree dv of a vertex v , as discussed in Chapter 2, calculates the

total number of edges in E incident upon the vertex v . The standard deviation of each of 

the simulated networks, therefore, provides one of most intuitive measures about the 

connectivity o f a particular network. In this dissertation, since the simulated networks are 

assumed to be undirected, no differentiation is made between in-degrees and out-degrees.
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Fig. 4. The relationship of the standard deviation in degree score to k and m.

To examine the impacts of k and m on standard deviation in degree o f the 

simulated networks respectively, the degree over all the vertices in the thirty simulated 

networks for each combination of k and m values must be calculated. The results are 

presented in Fig.4, and three findings stand out. First, after examining each of the three 

subgraphs, it was found that the nature of individuals’ heterogeneous attachment, k, 

strongly affects the standard deviation in degree of simulated networks. Specifically, 

when controlling for m, the partial correlation between k and the standard deviation in 

node degree is 0.902 and is statistically significant. With larger values of k, the network- 

wise variation in degree centrality increases as well. In other words, as individual agents 

become more popularity-oriented, on average they tend to be less equal in possessing 

social links in a given social network. Therefore it is suggested that popularity orientation 

tends to make a social network less equally connected.

Second, after comparing the three subgraphs, significant and positive impacts of 

individual capacity was found. The partial correlation between m and the standard 

deviation in node degree is 0.897 and is statistically significant when k is controlled. That
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is, with better networking media and stronger individual capacity, the resultant social 

network tends to be less equal in connectivity and higher in the standard deviation of 

degree score. Finally, it is evident that the standard deviation in the degree scores are 

sensitive to both the nature of heterogeneous attachment X and individual capacity, m. 

Considering actual social networks vary simultaneously in these two dimensions, it is 

suggested that the standard deviation in degree score cannot serve as a reliable measure 

for heterogeneous attachment.

The degree score, though intuitive, only provides limited information about the 

connectivity of a network graph. It is therefore necessary to further examine the 

relationship o f the average closeness centrality score to the nature of heterogeneous 

attachment X and individual capacity m. For a given network graph G = ( V , E ) , the

closeness score cd (v) of a vertex v , as discussed in Eq. (3) in Chapter 2, captures the

notion to what extent a vertex v is “close” to the other vertices in a given graph. Average 

closeness score, therefore, provides another way to gauge the connectivity of a particular 

network. It should be noted that, that this measure assumes the graph G is connected, as

otherwise all vertices in principle will have closeness centrality cd (v) = 0 which is a 

result of infinite distance from at least one other vertex.
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Fig. 5 The relationship of the average closeness score to X and m.

To examine the impacts o f X and m on average closeness centrality score of the 

simulated networks respectively, its specific values were calculated over all the vertices 

in the thirty simulated networks for each combination of X and m values. The results are 

presented in Fig. 5, and three findings stand out. First, after examining each o f the three 

subgraphs, it is evident that the nature of individuals’ heterogeneous attachment, X, 

appears to strongly affect the average closeness centrality score of the simulated networks. 

The partial correlation between X and the standard deviation in node degree is 0.739 and 

is statistically significant when m is controlled. With larger values of X, the network-wise 

closeness centrality score increases as well. In other words, as individual agents become 

more popularity-oriented, on average they tend to be much closer to each other in a given 

social network. Therefore it is suggested that popularity orientation tends to make a social 

network more closely connected.

Second, after comparing the three subgraphs, significant and positive impacts of 

individual capacity, m was found. By controlling the value of X, the partial correlation 

between m and the standard deviation in node degree is 0.968. That is, with better
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networking media and a stronger individual capacity, the resultant social network tends to 

be more closely connected and higher on average degree score. Finally, it is evident that 

the average closeness centrality scores are sensitive to the nature of heterogeneous 

attachment X and individual capacity m, and thus the average closeness centrality score 

cannot serve as a reliable measure for heterogeneous attachment.

It should be noted that closeness score provides only the central tendency about 

the extent to what individual agents are close to each other. There is limited knowledge 

about to what extent such “closeness” varies across different agents. Yet the variations in 

the measure of closeness centrality score are of critical importance to our understanding 

about the relative “inequality” in connectedness. To a certain extent, the variations in 

closeness centrality scores can reveal the extent to which the simulated networks are 

evenly clustered.
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Fig. 6. The relationship of variations in closeness score to X and m.

Specifically, the variations in the closeness centrality scores over all the vertices 

in the thirty simulated networks for each combination of X and m values were calculated.
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The results are presented in Fig. 6, and three conclusions are drawn. First, after 

examining each of the three subgraphs, it was found that the nature of individuals’ 

heterogeneous attachment, X, strongly affects the variations in the closeness centrality 

scores of the simulated networks. Specifically, when controlling for m, the partial 

correlation between X and the standard deviation in closeness centrality score is 0.931 and 

is statistically significant. As the values of X increase, the variations in the closeness 

centrality scores enlarge as well. In other words, when individual agents become more 

popularity-oriented, they tend to form a less equal network in which some agents are 

much closer to each other than others. Therefore it is suggested that popularity orientation, 

though making a social network better connected, tends to introduce unequal access for 

agents. Some agents are in more advantageous positions than others.

Second, after comparing the three subgraphs, significant and positive impacts of 

individual capacity, m was found. After a partial correlation analysis that controlled for X, 

the result is 0.623 and is statistically significant. That is, with better networking media 

and stronger individual capacity, the resultant social network tends to be higher in 

variations in the closeness centrality score. In practical terms, the introduction of new 

communication tools and advancements in individual capacities fail to solve the 

inequality in mass communication. On the contrary, it tends to enlarge the existing gap in 

a given social network. Finally, it is evident that the variations in the closeness centrality 

scores are a function of both the nature of heterogeneous attachment X and individual 

capacity m. Considering the fact actual social networks vary simultaneously in these two 

dimensions, it is concluded that the variations in the closeness centrality scores cannot 

serve as a reliable measure for heterogeneous attachment.
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As addressed in Chapter 2, the closeness centrality score is one of many vertex-

level measures for a given social network G = (V ,E j .  Another important vertex-level

centrality measure is the betweenness centrality score. This centrality score intends to 

capture the perspective that “importance” relates to where an agent is located regarding 

the paths in the social network and this particular measure gauges the extent to which an 

agent is located “between” other pairs of agents. In light of this, the average of the 

betweenness centrality score provides another intuitive measure about the sparseness of a 

particular network. Therefore, a calculation of the betweenness centrality scores of all the 

vertices in all thirty simulated networks for each combination of A and m values was 

made.
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Fig. 7. The relationship of the average betweenness score to A and m.

Firstly, an examination of the impacts of A and m on the average betweenness 

centrality scores of the simulated networks respectively is conducted, and the results are 

presented in Fig. 7. After examining and comparing the three subgraphs, three
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conclusions are drawn are drawn. Firstly, examinations of each of the three subgraphs 

suggest that the nature of individuals’ heterogeneous attachment, X, strongly affects the 

average betweenness centrality score of the simulated networks. The partial correlation 

between the two is -0.517 and is statistically significantly. That is, with larger values of/i., 

the network-wise betweenness—the average number of shortest paths from all vertices to 

all others that pass through each node in a network—centrality score decreases 

accordingly. In other words, as individual agents become more popularity-oriented, on 

average they tend to become less “important” to each other in the sense that they are less 

likely “between” other pairs of agents. Therefore it is concluded that popularity 

orientation tends to make a social network less interconnected in the sense that there will 

be a smaller number of agents located in the paths of other pairs of agents.

Second, a comparison the three subgraphs indicated significant and negative 

impacts of individual capacity, m, and the partial correlation between m and the average 

betweenness centrality score is -0.890. With better networking media and stronger 

individual capacity, the resultant social network tends to be less interconnected and lower 

in the average betweenness centrality scores. Finally, it is evident that the average

betweenness centrality scores are sensitive to the nature of heterogeneous attachment 

and individual capacity m. Considering actual social networks vary simultaneously in 

these two dimensions, it is argued that the average betweenness score cannot serve as a 

reliable measure for heterogeneous attachment.

Similar to the previous discussion about the closeness centrality score, it is 

evident that that average betweenness centrality score provides only the central tendency 

about the extent to what individual agents are close to each other, which in turn leaves us
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uninformed about to what extent such “betweenness” varies across different agents. Yet 

the variations in the measure o f betweenness centrality score are o f critical importance to 

our understanding about the relative “inequality” in the interconnectedness of a given 

network. To a certain extent, the variations in betweenness centrality scores can reveal 

the extent to which the simulated networks are evenly interconnected.
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Fig. 8. The relationship of variations in betweenness score to X and m.

To do so, the variations in the betweenness centrality score for all thirty simulated 

networks for each combination of X and m values are calculated, and the results are 

presented in Fig. 8. Three conclusions are drawn. Firstly, after examining each of the 

three subgraphs, it was found that the nature of individuals’ heterogeneous attachment, X, 

strongly affects the average degree of simulated network. Particularly, when m = 2 and 3 

with larger values of X, the network-wise variations in the betweenness centrality score 

increases as well. The overall partial correlation when m is controlled is 0.096. In other 

words, when individual agents become more popularity-oriented, they tend to form a less 

equal network in which some agents are more likely located in paths of other paired
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agents. Therefore it is suggested that popularity orientation not only makes a social 

network less interconnected but also tends to introduce unequal “betweenness” for agents. 

Some agents are more interconnected than others.

Second, after comparing the three subgraphs, significant and negative impacts of 

individual capacity, m, were found, and the partial correlation score is -0.879. That is, 

with better networking media and stronger individual capacity, the resultant social 

network tends to higher in variations in the betweenness centrality score. In other words, 

the introduction of new communication tools and advancement in individual capacities 

fail to make social networks more interconnected. On the contrary, it tends to enlarge the 

existing gap in the betweenness for a given social network. Finally, it is evident that the 

variations in the betweenness centrality scores are a function o f both the nature of 

heterogeneous attachment X and individual capacity m. Considering actual social 

networks vary simultaneously in these two dimensions, it is apparent that the variations in 

the betweenness centrality scores cannot serve as a reliable measure for heterogeneous 

attachment.

To take stock of the above, in this section, the impacts are examined for the nature 

of heterogeneous attachment X and individual capacity m on three different vertex-level 

measures o f simulated network; that is, degree, closeness centrality, and betweenness 

centrality score. In general, there are three important findings. Firstly, for all three vertex- 

level measures, significant impacts of the nature of individuals’ heterogeneous 

attachment, X, were found. Specifically, as the values of X increase, the resultant social 

networks tend to be higher in the average degree and the closeness centrality score, but 

lower in the average betweenness score. However, it should be noted that impacts o f X
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tend to be quite uneven. When individual agents become more popularity-oriented, they 

tend to less equal across all three measures, meaning variance increases. Second, 

significant impacts of individual capacity, m, were found. While m is positively 

associated with the degree score and closeness centrality score, it bears a negative 

correlation with the betweenness centrality score. Third, it is evident that none of these 

vertex-level measures can serve a reliable indicator for heterogeneous attachment, /.

4.1.2 Local Network Statistics

Vertex-level measures, though intuitive, provide only limited information about 

the properties of a given social network. Recognizing this, many local, or meso-level, 

network measurements have been introduced by scholars [4], [7], [8], [102]. These 

measurements help reveal important information about connectivity o f a given network.

In this subsection, two local network statistics are focused on; that is, transitivity and 

diameter.

As addressed in Chapter 2, transitivity of the graph has long been a standard 

network statistics in the literature of SNA. As reveal in the name of the term, it is simply 

referred to the “fraction of transitive triples.” Transitivity, therefore, helps highlight the 

extent to which triangular relationship is common in a particular social network. In other 

words, transitivity tells us where the friend of your friend is also a friend of yours.
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Fig. 9. The relationship of the transitivity score to X and m.

To explore the impacts of X and m on the extent to which triangular relationship is 

common in the simulated network, the transitivity score was calculated in the thirty 

simulated networks for each combination of X and m values.3 The results are presented in 

Fig. 9, and three findings stand out. First, after examining each o f the three subgraphs, it 

was found that the nature of individuals’ heterogeneous attachment, X, strongly and 

positively affects the transitivity scores of simulated network. Specifically, when 

controlling for m, the partial correlation between the two is 0.628. That is, with larger 

values of X, the network-wise transitivity score increases as well. In other words, as 

individual agents become more popularity-oriented, they tend to form more triangular 

connections among each other.

Second, after comparing the three subgraphs, significant and positive impacts of 

individual capacity, m, were found, and the partial correlation score is 0.980. That is, with 

better networking media and stronger individual capacity, the resultant social networks

3 It should be noted that when m= 1, the transitivity score remains zero for any given 
simulated network.
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tend to be higher in the transitivity scores and encompass more triangular relationships. 

Finally, it is evident that the transitivity scores are sensitive to the nature of 

heterogeneous attachment X and individual capacity m. Considering actual social 

networks vary simultaneously in these two dimensions, it is evident that the transitivity 

score cannot serve as a reliable measure for heterogeneous attachment.

The relationship o f the diameter score to the nature of heterogeneous attachment X 

and individual capacity m was further examined. As elaborated in Chapter 2, diameter is 

introduced to describe the common notion of “distance” in a given graph; that is, the 

length of the shortest path(s) between the agents. It should be noted it is usually set equal 

to infinity when no such path exists. As for diameter, the measure is retrieved by 

calculating the longest distance in a particular graph (i.e., the geodesic distance, for more 

details see Chapter 2).
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Fig. 10. The relationship of the diameter to X and m.

To empirically examine the impacts of X and m on diameter, the diameters of the 

thirty simulated networks for each combination of X and m values were calculated. The
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results are presented in Fig. 10, and three findings stand out. First, after examining each 

of the three subgraphs, it was found that the nature of individuals’ heterogeneous 

attachment, X, moderately and negatively affects the average diameter of simulated 

network. Specifically, the corresponding partial correlation between the two is -0.318. 

That is, with larger values of X, the network-wise diameter decreases substantively as 

well. In other words, as individual agents become more popularity-oriented, the social 

network that they form tends to be tightly connected. Therefore it is suggested that 

popularity orientation tends to make a social network more tightly connected.

Second, after comparing the three subgraphs, significant and negative impacts of 

individual capacity, m, were found, and the partial correlation score is -0.889. That is, 

with better networking media and stronger individual capacity, the resultant social 

network tends to be more tightly connected and lower in overall diameter. Finally, it is 

evident that the diameter scores are a function of both the nature of heterogeneous 

attachment X and individual capacity m. Considering actual social networks vary 

simultaneously in these two dimensions, the diameter of a social network cannot serve as 

a reliable measure for heterogeneous attachment.

4.1.3 Global Network Statistics

Besides the vertex-level and meso-level network statistics, some system-level, i.e. 

global, network statistics were also examined. Unlike the previously discussed measures, 

these measures focus more on systematic properties of a network, providing some 

important insights on the overall nature of a particular social network. Specifically, three
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global network statistics were examined: the average path length, the articulation points 

(i.e., the number of cuts), and finally the assortivity degree.

The average shortest path length is a common measure of the global network 

structure in the literature of SNA [41]-[43]. Generally, it intends to gauge the notion of 

the “steps” from one vertex in the network to another. More specifically, the average 

shortest path length is calculated as the average number of edges and links that must be 

traversed in the shortest path between any two pairs of nodes in a particular network. The 

average shortest path length is a global measure simply because determining the shortest 

path length between any two vertices requires information about the entire graph. For this 

particular reason, the average shortest path length is employed in many SNA such as the 

small world phenomena [41 ]-[43],
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Fig. 11. The relationship of the average shortest path length to X and m.

To examine the impacts of X and m on the average shortest path length 

respectively, the average path length was calculated. The results are presented in Fig. 11, 

and three findings stand out. First, after examining each of the three subgraphs, it was
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found that the nature of individuals’ heterogeneous attachment, strongly affects the 

average shortest path length of simulated network, and the corresponding partial 

correlation between the two is -0.517. With larger values of X, the average shortest path 

length decreases substantively. In other words, as individual agents become more 

popularity-oriented, on average they tend toward social networks in which the average 

number o f edges and links that must be traversed between any two pairs of nodes in a 

particular network is low. Therefore it can be concluded that popularity orientation tends 

to make a social network more efficiently linked.

Second, after comparing the three subgraphs, significant and negative impacts of 

individual capacity, m, were found, and the corresponding partial correlation is -0.890. 

That is, with better networking media and stronger individual capacity, the resultant 

social network tends to be more efficiently connected and higher in the average path 

length. Finally, it is evident that the average path length is sensitive to the nature of 

heterogeneous attachment X and individual capacity m. Considering actual social 

networks vary simultaneously in these two dimensions, it is suggested that the average 

path length cannot serve as a reliable measure for heterogeneous attachment.

As addressed in Chapter 2, a basic question in SNA is whether a given social 

network can be separated into distinct sub-components or sub graphs. If there were not 

natural subcomponents, then there is a challenge in how to quantify the extent to which a 

given network can be cut into distinct subgraphs. The question is of particular importance 

when the flow of “information” in a particular social network is concerned. When a 

network contains a large number of “cut” points, it is vulnerable in the information flow.
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One way to capture this notion, as addressed in Chapter 2, to calculate the number 

o f articulation points, also known as the vertex-cuts. Specifically, the articulation points 

refer to a particular set of vertices in a particular network, whose removal will disconnect 

the graph, and a single vertex that disconnects the graph is called a cut vertex. 

Identification of such vertices can provide a sense of where a network is vulnerable (e.g., 

in the sense of a hacker attack, where disconnecting produces undesired consequences, 

such as a website hub in a computer network).
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Fig. 12. The relationship of the number of articulation points to k and m.

To examine the impacts of k and m on the number of articulation points in the 

simulated network respectively, all the articulation points were identified and counted in 

the thirty simulated networks for each combination of k and m values. The results are 

presented in Fig. 12, and three findings stand out. First, after examining each of the three 

subgraphs, it was found that the nature of individuals’ heterogeneous attachment, k, 

moderately affects the number of articulation points in the simulated networks. 

Specifically, the calculated partial correlation between the two when controlling for m is
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-0.186; that is, with larger values of X (especially when m = 1), the network-wise number 

o f articulation points drops significantly. In other words, as individual agents become 

more popularity-oriented, on average, the social network they form tends to be less 

vulnerable to removal of individual vertices. Therefore it is suggested that popularity 

orientation tends to make a social network more viable and less vulnerable.

Second, after comparing the three subgraphs, significant and negative impacts of 

individual capacity, m, were found, and the corresponding partial correlation is -0.858. 

That is, with better networking media and stronger individual capacity, the resultant 

social network tends to be less vulnerable and possess a smaller set of articulation points. 

Moreover, the impacts of individual capacity, m appears to be more evident than those of 

heterogeneous attachment, X . Finally, it is evident that the number of articulation points 

is a function of both the nature of heterogeneous attachment X and individual capacity m. 

Considering actual social networks vary simultaneously in these two dimensions, it is 

evident that the number of articulation points cannot serve as a reliable measure for 

heterogeneous attachment.

Another global measure of network structure that was examined is assortativity. 

Unlike the earlier two global measures probing the connectivity of a particular network, 

assortativity intends to explore the extent to which some vertices have priority to link 

with each other, based on a certain characteristics. As elaborated in Chapter 2, in some 

SNA research assortativity is also referred to the term of assortative mixing. For practical 

purposes, scholars rely on the assortativity coefficients to gauge the variations on the 

concept o f correlation coefficients as specified in Eq. (10). The value of the assortativity 

coefficient in a particular graph changes between -1  and 1. While the assortativity
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coefficient o f 0 indicates only randomness are involved in linking among all the vertices, 

the assortativity coefficient of 1 suggests there is a perfect assortative mixing.
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Fig. 13. The relationship o f the assortativity degree score to k and m.

So as to examine the impacts of k and m on the assortativity degree score o f the 

simulated network respectively, the assortativity mixing coefficients was calculated for 

the thirty simulated networks for each combination of k and m values. The results are 

presented in Fig. 13, and three conclusions are drawn. First, after examining each of the 

three subgraphs, it was found that the nature of individuals’ heterogeneous attachment, k, 

strongly affects the assortativity coefficients of the simulated networks. Specifically, 

when controlling for m the partial correlation between the two is -0.887 and is 

statistically significant. With larger values of k, the assortativity coefficients drop 

accordingly. In other words, as individual agents become more popularity-oriented, the 

networks they have are less likely to link with each other based on a certain characteristic 

(e.g., a node’s degree). Therefore it is suggested that popularity orientation tends to make 

a social network less assortatively mixed.
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Second, after comparing the three subgraphs, significant impacts of individual 

capacity, m, can be observed. Rather than a simple positive or negative impact, individual 

capacity, m, seems to amplify the impacts of heterogeneous attachments, A. In other 

words, there is a significant interaction between individual capacity, A, and heterogeneous 

attachment, m. The partial correlation is 0.832 and further confirms this. From a practical 

viewpoint, Fig. 13. shows that that with better networking media and stronger individual 

capacity, the resultant social network tends to have larger variations in the assortative 

coefficients. Finally, it is evident that the assortative coefficients are contingent upon 

both the nature of heterogeneous attachment A and individual capacity m. Considering 

actual social networks vary simultaneously in these two dimensions, it is suggested that 

the assortative coefficients cannot serve as a reliable measure for heterogeneous 

attachment.

4.1.4 Statistics of Graph Partitioning

A further look at the extent to which the simulated networks vary in terms of 

different measures of graph partitioning is conducted next. Generally speaking, graph 

partitioning refers to the segmentation of a graph’s objects into its natural subsets or sub

clusters; that is, the gathering of vertices into groups such that there is a higher density of 

edges within groups than between them. Many different disciplines require researchers to 

conduct graph partitioning [4], [7], [8], [102], and the aim is to locate and identify certain 

subsets of vertices that share and exhibit some forms of “cohesiveness” with respect to 

certain underlying relational structures. In biology, for instance, graph partitioning can be 

used to find possible protein complexes from existing protein interaction structures [109],
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In studies of social networks, graph partitioning seems even more important, since it 

helps detect community structures in a given network.

It should be noted that there is no consensus on how to describe and capture the 

“cohesiveness” among vertices in a particularly network. A “cohesive” cluster o f vertices 

is referred loosely to a subset of vertices that are closely connected within the cluster yet 

relatively shielded from vertices outside the cluster. In other words, graph partitioning 

intends to divide a large network into some small solidary groups. Given the large and 

ever increasing number of graph partitioning methods, this dissertation focuses mainly on 

two commonly cited methods of graph partitioning; that is, the method o f “fast greedy” 

[150] and “walk trap” [151]. Although far from being exhaustive, an examination on 

these two measures can provide some basic insights on the impacts of heterogeneous 

attachment on the “cohesiveness” among vertices in a given graph.

Early approaches such as the Kemighan-Lin algorithm, spectral partitioning, or 

hierarchical clustering work well for specific types of problems (particularly graph 

bisection or problems with well-defined vertex similarity measures), but perform poorly 

in more general cases [102], [120]. Modularity is a property of a network and a specific 

proposed division of that network into communities. It measures when the division is a 

good one, in the sense that there are many edges within communities and only a few 

between them. Non-zero values represent deviations from randomness, and in practice it 

is found that a value above about 0.3 is a good indicator of significant community 

structure in a network.

The calculation of the global maximum modularity over all possible divisions is 

computationally costly in general. First, a discussion is given on the implementation of



the fast greedy modularity optimization algorithm for finding community structure. The 

algorithm of a greedy optimization starts with each vertex being the sole member of a 

community of one, and then the algorithm repeatedly join together the two communities 

whose amalgamation produces the largest increase in the modularity.
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Fig. 14. Network communities for different values of X and m.
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Fig. 14 provides an intuitive demonstration about graph partitioning using the 

optimization method of “fast greedy.” Specifically, communities identified based upon 

the method of “fast greedy” is depicted as different colored areas, and vertices in the 

same colored areas then belong to the same community. An examination of Fig. 14 

suggests that both the heterogeneous attachment, A, and individual capacity, m, 

significantly affect the graph partitioning based on the method of “fast greedy.” To 

examine the relationship thoroughly, this dissertation examines the impacts of the 

heterogeneous attachment, X , and individual capacity, m, on (1) the number of 

communities, (2) the average size of network communities, and (3) the variations in the 

sizes of network communities.
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Fig. 15. The relationship o f the number of network communities to A and m  ̂based on 

the community detection method of “fast greedy” .

As for the impacts of A and m on the number of network communities, the total 

number o f “fast greedy” communities is counted in the thirty simulated networks for each 

combination of A and m values, and the results are presented in Fig. 15. There are three
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interesting findings. First, after examining each of the three subgraphs, it was found that 

the nature of individuals’ heterogeneous attachment, X , shapes the total number of “fast 

greedy” communities in the simulated networks. The partial correlation score o f 0.169 

suggests that the association between the two is statistically significant yet substantially 

moderate. With larger values of X , the network-wise number of “fast greedy” 

communities increases accordingly. In other words, as individual agents become more 

popularity-oriented, on average they tend to form more “fast greedy” communities in a 

given social network. Therefore it is suggested that popularity orientation helps create 

relatively isolated solidary groups in a social network.

Second and more important, after comparing the three subgraphs, significant yet 

negative impacts of individual capacity, m , were found, and the partial correlation 

between the two is -0.922 and is statistically significant. That is, with better networking 

media and stronger individual capacity, the resultant social network tends to be less 

internally segregated and lower in the number of “fast greedy” communities. Finally, it is 

evident that the number of “fast greedy” communities is sensitive to both the nature of 

heterogeneous attachment X and individual capacity m. Therefore, it is suggested that the 

number o f “fast greedy” communities cannot serve as a reliable measure for 

heterogeneous attachment.

Besides the total number of “fast greedy” communities in a social network, their 

sizes are of interest; that is, the number of vertices in each “fast greedy” community 

respectively. One way to do so is to calculate and compare the average size of “fast 

greedy” communities in the simulated networks.
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Fig. 16. The relationship of the average size of network communities to X and m, based 

on the community detection method of “fast greedy”.

In order to explore the impacts of X and m on the average size of “fast greedy” 

communities of the simulated networks respectively, their average size is calculated over 

for all the thirty simulated networks with each combination of X and m values. The results 

are presented in Fig. 16, and three findings stand out. First, after examining each of the 

three subgraphs, it was found that the nature of individuals’ heterogeneous attachment, X, 

strongly affects the average size of “fast greedy” communities in the simulated networks. 

Specifically, the partial correlation between X and the average size of fast greedy 

communities is -0.572 and is statistically significant. With larger values of X, the 

network-wise the average size of network communities drops as well. In other words, as 

individual agents become more popularity-oriented, on average they tend to form 

relatively smaller solidary groups in a given social network. Therefore it is suggested that 

popularity orientation tends to make a social network more sparsely isolated.

Second, after comparing the three subgraphs, significant and positive impacts of 

individual capacity are found, m, were found, and its partial correlation score with m is
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0.990 and is statistically significant. That is, with better networking media and stronger 

individual capacity, the resultant social network tends to have much larger “fast greedy” 

communities and higher in the average size of network communities. Finally, it is evident 

that the average size of network communities are sensitive to the nature of heterogeneous 

attachment X and individual capacity m. Considering actual social networks vary 

simultaneously in these two dimensions, it is apparent that the average size of network 

communities cannot serve as a reliable measure for heterogeneous attachment.

It should be noted that the average size of “fast greedy” communities provides 

only the central tendency about the extent to what individual agents are able to form 

relatively segregated solidary groups. There is limited knowledge about to what extent 

the relative size of these communities varies. Yet the variations in the measure of the 

average size of “fast greedy” communities are of critical importance to our understanding 

about the relative “disparity” in the clustering. To a certain extent, the variations in the 

average size o f “fast greedy” communities can reveal the extent to which the simulated 

networks are evenly clustered.
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Fig. 17. The relationship of the variations in the sizes of network communities to A and

m , based on the community detection method of “fast greedy”.

To examine the impacts of A and m on the variations in the sizes of “fast greedy” 

communities respectively, the standard deviation is calculated, and the results are 

presented in Fig. 17. Three conclusions are drawn. First, after examining each of the three 

subgraphs, it is found that the nature of individuals’ heterogeneous attachment, A, 

strongly affects the standard deviations of the sizes of “fast greedy” communities in the 

simulated networks, its partial correlation score is as high as 0.521 and is statistically 

significant. Specifically, with larger values of A, the network-wise variations in the size of 

“fast greedy” communities increase as well. In other words, as individual agents become 

more popularity-oriented, the “fast greedy” communities they formed tend to vary more 

significantly in a given social network. Therefore it is suggested that popularity 

orientation tends to make a social network less evenly clustered.

Second, after comparing the three subgraphs, significant and positive impacts of 

individual capacity are found, the partial correlation between the two is 0.996 and is 

statistically significant. That is, with better networking media and stronger individual
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capacity, the resultant social network tends to more uneven with regard to the sizes o f the 

“fast greedy” communities. Finally, it is evident that the standard deviations of the sizes 

of the “fast greedy” communities are sensitive to both the nature of heterogeneous 

attachment X and individual capacity m. Considering actual social networks vary 

simultaneously in these two dimensions, it is suggested that the variations in the sizes of 

the “fast greedy” communities cannot serve as a reliable measure for heterogeneous 

attachment.

As discussed above, the “fast greedy” optimization is only one of many ways to 

calculate the modularity in a given social network. This dissertation thus explores another 

popular method of the modularity calculation proposed by Pons and Latapy [151]. Pons 

and Latapy [151] propose a measure o f similarities between vertices based on random 

walks. Their approach is based on the following intuition: random walks on a graph tend 

to get “trapped” into densely connected parts corresponding to communities. They 

therefore begin with some properties of random walks on graphs. Using them, Pons and 

Latapy [151] further define a measurement of the structural similarity between vertices 

and between communities, thus defining a distance. This method “walk trap,” as noted by 

Pons and Latapy [151], has several important advantages. Not only does the method of 

“walk trap” capture well the community structure in a network, it can also be computed 

efficiently used in an agglomerative algorithm to compute the community structure of a 

network. This approach, by emphasizing the “distance,” can be regarded an expansion of 

existing spectral approaches of the problem.
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Fig. 18. The relationship of the number of network communities to k and m, based on the 

community detection method of “walk trap”.

Examining the impacts of k and m on the total number of the “walk trap” 

communities in the simulated network respectively is tried first. All the “walk trap” 

communities are identified, and the results are presented in Fig. 18. After examining the 

results, three conclusions can be drawn. First, after examining each of the three subgraphs, 

it was found that the nature of individuals’ heterogeneous attachment, k, strongly affects 

the total number of the “walk trap” communities in the simulated networks, and the 

corresponding partial correlation score is -0.661 and is statistically significant. 

Specifically, with larger values of k, the network-wise total number of the “walk trap” 

communities drops accordingly. In other words, as individual agents become more 

popularity-oriented, on average they tend to former fewer “walk trap” communities. 

Therefore it is suggested that popularity orientation tends to make a social network better 

interconnected.

Second, after comparing the three subgraphs, significant and positive impacts of 

individual capacity were found, m, and its partial correlation with the average size of



walktrap community is 0.718 and is statistically significant. That is, with better 

networking media and a stronger individual capacity, the resultant social network tends to 

have more “walk trap” communities and thus is more densely interconnected. Finally, it 

is evident that the total number of the “walk trap” communities is a function o f both the 

nature o f heterogeneous attachment X and individual capacity m. Considering actual 

social networks vary simultaneously in these two dimensions, it is evident that the total 

number of the “walk trap” communities cannot serve as a reliable measure for 

heterogeneous attachment.

Besides the total number of the “walk trap” communities in a social network, their 

relative size is also of interest; that is, the number of vertices and agents in each “walk 

trap” community respectively. One way to do so is to calculate and compare the average 

size of the “walk trap” communities in the simulated networks.
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Fig. 19. The relationship of the average size of network communities to X and m, based 

on the community detection method of “walk trap”.
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In order to explore the impacts of X and m on the average size of “walk trap” 

communities of the simulated networks respectively, their average size is calculated. The 

results are presented in Fig. 19, and three findings stand out. First, after examining each 

of the three subgraphs, it was found that the nature of individuals’ heterogeneous 

attachment, X, appears to affect the average size of “fast greedy” communities in the 

simulated networks. Specifically, when m is controlled the partial correlation between the 

two is 0.504 and is statistically significant. With larger values of X, the network-wise the 

average size of the “walk trap” communities increases as well. In other words, as 

individual agents become more popularity-oriented, on average they tend to form larger 

yet relatively more segregated solidary groups in a given social network. Therefore it is 

suggested that popularity orientation tends to make a social network more sparsely 

isolated.

Second, after comparing the three subgraphs, significant and negative impacts of 

individual capacity, m, were found, and the corresponding correlation is -0.516 and is 

statistically significantly. That is, with better networking media and stronger individual 

capacity, the average size of the “walk trap” communities decreases accordingly. Finally, 

it is evident that the average size of network communities are sensitive to the nature of 

heterogeneous attachment X and individual capacity m. Considering actual social 

networks vary simultaneously in these two dimensions, it is suggested that the average 

size of “walk trap” communities cannot serve as a reliable measure for heterogeneous 

attachment.

It should be noted that the average size of “walk trap” communities provides only 

the central tendency about the extent to what individual agents are able to form relatively
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segregated solidary groups. There is limited knowledge about to what extent the relative 

size of these communities varies. Yet the variations in the measure of the average size of 

“walk trap” communities are of critical importance to our understanding about the 

relative “disparity” in the clustering. To a certain extent, the variations in the average size 

o f “walk trap” communities can reveal the extent to which the simulated networks are 

evenly clustered.
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Fig. 20. The relationship of the variations in the sizes of network communities to X and m, 

based on the community detection method o f “walk trap”.

To examine the impacts of X and m on the variations in the sizes of the “walk trap” 

communities respectively, the standard deviation was calculated, and the results are 

presented in Fig. 20. Three conclusions were drawn. First, after examining each o f the 

three subgraphs, it was found that the nature of individuals’ heterogeneous attachment, X, 

does not exert a strong impact on the standard deviations of the sizes o f the “walk trap” 

communities in the simulated networks. Specifically, the partial correlation is 0.197 and
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substantially moderate, though statistically significantly. With larger values of k, the 

network-wise variations in the sizes of “walk trap” community exhibits limited changes.

Second, after comparing the three subgraphs, insignificant and individual of 

individual capacity, m, was found. That is, with better networking media and stronger 

individual capacity, the resultant social network tends to display no meaningful changes 

with regard to the variations in sizes of the “walk trap” communities. Finally, it is evident 

that the standard deviations of the sizes of the “walk trap” communities are sensitive to 

neither the nature of heterogeneous attachment k nor individual capacity m. Considering 

actual social networks vary simultaneously in these two dimensions, it is suggested that 

the variations in the sizes of the “walk trap” communities cannot serve as a reliable 

measure for heterogeneous attachment.

To this point, in this section, the impacts of the nature of heterogeneous 

attachment k and individual capacity m were examined on various network statistics of 

the simulated network at different levels; that is, vertex-, local-, and global level. After 

examining these associations, three general conclusions were drawn. First, for most 

network statistics, significant impacts of the nature of individuals’ heterogeneous 

attachment, k were found. Second, in parallel to the impacts of A , significant impacts of 

individual capacity, m, were found. Third, for almost every single network statistics, a 

joint impact of both k and m was found. In light of this, none of these vertex-level 

measures can serve a reliable indicator for heterogeneous attachment, k.
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4.2 Network Topologies: Degree Distribution

Different from the above discussed network statistics (netmetrics), another 

important way to characterize a network is the degree distribution, which is simply the 

histogram formed from the degree sequence, with bins of size one, centered on the non

negative integers. Mathematicians and physical statisticians particularly emphasize this 

approach, in that it provides a natural and reliable summary of the connectivity and other 

important properties in a graph network. This section therefore explores the extent to 

which the heterogeneous attachment, X, affects degree distribution of simulated networks. 

Since the actual degree distributions of the simulated networks can be modeled against 

different candidate distributions, a comparison of these different distributions is 

delivered.

When examining the degree distributions of actual social network, scholars 

commonly plot them on a logarithmic scale for both axes (i.e., on a log-log scale). The 

log-log plot provides an intuitive view about the skewness in these distributions, which is 

o f particular interests to researchers.

4.2.1 Fitting Power Law Distribution

When plotting the simulated network in log-log plots, for instance m -1  as 

demonstrated in Fig.21, interesting patterns with respect to the skewness. Specifically, 

while the majority of agents are of very low degree, a nevertheless nontrivial number of 

agents are of much larger degree. When X = 0.75 and 1, a roughly linear decay of the 

points can be found in each plot and over almost all the range of each distribution. This, 

in turn, suggests the presence of a power law component to these distributions. In other
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words, Eq. (32),

/>(*)«**"“ , (32)

holds approximately true [149]. However, when X is equaled to smaller values like 0.5,

0.25, and 0, the decay patterns increasingly deviate from a linear one. Therefore, Fig.21 

indicates that with decreasing values of X, the degree distributions of simulated networks 

increasingly deviate from the power-low distributions.
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Fig. 21. Degree distribution of a simulated network (log/log), m = 1.
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The method proposed by Clauset, Shalizi and Newman [149] was used to fit the degree 

distributions o f the simulated network against the power law distribution. In Fig. 21, the 

colored lines represent the estimated power law distribution based on the method 

proposed in Clauset, Shalizi, and Newman [149], Fig.21 is illustrative in revealing the 

associations. A comparison of the fitted lines further confirms the relationship between 

the value of X and the relative fitness of the power law distribution. The approach 

proposed by Clauset, Shalizi, and Newman [149] is used in this dissertation to analyze 

the network data generated from the simulation to test how the values of X affects the 

degree distribution, so as well as the system behavior of the network formation process. 

The below steps were followed:

1. Estimate the parameters of power law distribution: xmjn and scaling parameter a .

2. Compare the power law with alternative hypothesis. Here, a likelihood ratio test 

method is approached. For each alternative, if the calculated likelihood ratio is 

significantly different from zero, then its sign indicates whether or not the alternative 

is favored over the power law distribution.

As explained in Chapter 3, the first key statistics involved in estimating a power 

law distribution are the Kolmogorov-Smimov statistics. In order to estimate the key 

parameters of xmjl) and a , the Kolmogorov-Smimov or the KS statistic is commonly

used as a measurement of quantifying the distance between the two probability 

distributions, which indicates the maximum distance between the cumulative distribution 

functions (CDFs) of the measured data and the fitted model. Specifically, the
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Kolmogorov-Smimov statistics are calculated based on Eq. (32). The estimated 

parameter of xmm then is the one that minimizes the value of the Kolmogorov-Smimov.
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Fig. 22. The relationship of the Kolmogorov-Smimov statistics to X and m.

The impacts of X and m on the Kolmogorov-Smimov statistics were first explored. 

After calculating all the KS statistics of the simulated networks with each combination of 

X and m values, they were plotted in Fig. 22. Three findings stand out. Firstly, after 

examining each of the three subgraphs, it was found that the nature of individuals’ 

heterogeneous attachment, X, appears to affect the value of the Kolmogorov-Smimov 

statistics. Specifically, with larger values of X, the Kolmogorov-Smimov statistics for 

power-low distributions decreases accordingly. In other words, as individual agents 

become more popularity-oriented, the degree distribution of the network they have form 

is more likely to fit closely to a power law distribution, which is to be expected.

Second, after comparing the three subgraphs, significant impacts o f individual 

capacity, m, were also found. That is, with better networking media and stronger 

individual capacity, the more the negative impacts of heterogeneous attachment, X , have
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been amplified. In other words, with larger values of m, it was observed as having a 

much stronger impact of heterogeneous attachment, X. Finally, it is evident that the 

Kolmogorov-Smimov statistics are sensitive to the nature of heterogeneous attachment X 

and individual capacity m. Considering actual social networks vary simultaneously in 

these two dimensions, it is suggested that the Kolmogorov-Smimov statistics cannot 

serve as a reliable measure for heterogeneous attachment.

After calculating the Kolmogorov-Smimov statistics, it was then possible to 

identify the parameter xmm in fitting the power law distribution. It was possible to then 

examine the relationship of A and m to the values of xmjn. The results are presented in 

Fig. 23.
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Fig. 23. The relationship of the parameter xmin to A and m

An examination of Fig. 23 points to three general findings. First, after examining 

each of the three subgraphs, it was found that the nature of individuals’ heterogeneous 

attachment, A appears to affect the values xmm. Specifically, their corresponding partial
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correlation is -0.616 and is statistically significant. With larger values of X , xmill for

power-low distributions decreases accordingly. In other words, as individual agents 

become more popularity-oriented, the larger portion of the degree distribution of the 

network they have formed fits into a power law distribution.

Second, after comparing the three subgraphs, significant positive impacts of 

individual capacity, m , was found, and the partial correlation between the two is 0.692 

and is statistically significant. That is, with better networking media and stronger 

individual capacity, a smaller portion of the degree distribution of the network they have 

formed fits into a power law distribution. In other words, with larger values o fm , it is 

observed the degree distribution of resultant simulated networks deviate further from a 

power law distribution. Finally, it is evident that the values of xmm are a function of the 

nature of heterogeneous attachment X and individual capacity m . Considering actual 

social networks vary simultaneously in these two dimensions, it is suggested that the 

values of xmin cannot serve as a reliable measure for heterogeneous attachment.

Finally, the skewness or the “shape” of the fitted power law distribution was 

determined by the parameter a . Clauset, Shalizi and Newman [149] found that method 

of maximum likelihood provably gives the accurate parameters estimates with the limit of 

large sample size. Assuming the data are drawn from a distribution following a power 

law for x  > xmjn, the estimation o f scaling parameter ct under discrete case can be

derived through maximum likelihood estimators (MLEs) as describe in Eq. (27) of 

Chapter 3.



140

1 0 -

0 0.25 0.5 0.75 0 0.25 0.5 0.75 0 0.25 0.5 0.751 1 1
lam bda

Fig. 24 The relationship of the parameter a  to A and m .

In order to examine the relationship between heterogeneous attachment, A , and 

the scalar parameter of power law distribution, cc, all the simulated network data were fit 

against the power law distribution, and the results are presented in Fig. 24. An 

examination of Fig. 24 points to three general findings. First, after examining each of the 

three subgraphs, it was found that the nature of individuals’ heterogeneous attachment, A , 

appears to strongly and significantly affect the values of the scalar parameter a . 

Specifically, the partial correlation between the two is -0.873 and is statistically 

significant. With larger values of A , the scalar parameter a  for power-low distributions 

decreases accordingly. In other words, as individual agents become more popularity- 

oriented, the linear decay of the points in the log-log plots appears to be flatter.

Second, after comparing the three subgraphs, no impacts of individual capacity, m, 

is found. That is, with better networking media and stronger individual capacity, then 

there is no change to the patterns of the linear decay of the points in the log-log plots at 

all. In other words, the scalar parameter a  is found to be invariant to the changes in the 

individual capacities m. Finally, it is evident that the values of the scalar parameter (X is
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sensitive solely to the nature of heterogeneous attachment A . Considering actual social 

networks vary simultaneously in these two dimensions, it is suggested that the values of 

oc can serve as a reliable measure for heterogeneous attachment.

4.2.2 Comparing Distributions

While above estimated parameters indicate whether power law is an appropriate 

distribution in describing simulated networks, they provide no information about relative 

fitness o f the power law distribution against alternative distributions. This section 

provides a test to see if the simulated data are possibly drawn from a power law 

distribution. Is it still possible that another distribution, such as a log-normal or a Poisson 

distribution, might give a fit as good or better? The whole process of methods illustrated 

in the previous sections was used for the different distribution candidates. After 

comparing the relative fitness of these distributions, a judgment can be made on whether 

to accept or reject the hypothesis.

To answer these questions, the simulated network data based on the power- 

distribution were first compared to that based on the log-normal distribution. Following 

the specification described in Eq. (30) and Eq. (31), the degree distributions of the 

simulated networks is fitted against the log-normal distribution. The procedures are 

similar to those in fitting power law distribution. Rather than the distribution parameters, 

in this section the relative “fitness” of different distributions is of more interest. Therefore, 

one-sided tests for the power law distributions and the log-normal distributions 

respectively were conducted (for details about the test, see Chapter 3).The results are 

presented in Fig. 25.
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Fig. 25. One-sided test of the power law distribution against the log-normal distribution.

An examination of Fig. 25 leads to two general findings. First, after examining 

each of the three subgraphs, it was found that the nature of individuals’ heterogeneous 

attachment, X , appears to exert no meaningful impact on whether the power law 

distribution fits the simulated network data better. In other words, with changing values 

of X , there is no significant difference in using the power law distribution or the log

normal distribution to fit the simulated network data.

Second, after comparing the three subgraphs, no impacts of individual capacity, m, 

were found. That is, with better networking media and stronger individual capacity, there 

is no consistent and meaningful change in the one-sided test between the power law 

distribution and the log-normal distribution in fitting the simulated network data. That is, 

similar to the nature of heterogeneous attachment, the individual capacities m. exert no 

influences on the question whether the power law distribution or the log-normal 

distribution is a better fit.
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In light of this, it is evident that the test between the power law distribution and 

the log-normal distribution cannot serve as a reliable measure for heterogeneous 

attachment.

Besides the log-normal distribution, the Poisson distribution is another important 

distribution to describe the degree distribution of a given social network, particularly 

when the links or edges are formed completely randomly. Following the methods 

proposed by Clauset, Shalizi and Newman [149], the degree distributions of the simulated 

networks are fitted against the Poisson distribution. The procedures are similar to those in 

fitting power law distribution. One-sided tests for the power law distributions and the 

Poisson distributions, respectively, were also conducted. Results are presented in Fig. 26.
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Fig. 26. One-sided test of the power law distribution against the Poisson distribution.

An examination of Fig. 26 leads to three general findings. First, after examining 

each o f the three subgraphs, it was found that the nature of individuals’ heterogeneous 

attachment, X , strongly shapes whether the power law distribution outperforms the 

Poisson distribution in fitting the simulated data. Specifically, with larger values o f X ,
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particularly when X > 0.5 , it was found that the power law distribution is increasingly 

outperforming the Poisson distribution in fitting the simulated network data.

Second, after comparing the three subgraphs, significant impacts of individual 

capacity, m, were found on the relative fitness of the power law distribution and the 

Poisson distribution. With better networking media and stronger individual capacity, the 

impacts of the heterogeneous attachment have been amplified. In other words, with 

regard to the one-sided test between the power law distribution and the Poisson 

distribution in fitting the simulated network data, there are significant interactive effects 

of X and m.

Finally, it is evident that the one-sided test between the power law distribution 

and the Poisson distribution is sensitive solely to the nature of heterogeneous attachment, 

X . Considering actual social networks vary simultaneously in these two dimensions, it is 

suggested that the one-sided test between the power law distribution and the Poisson 

distribution cannot serve as a reliable measure for heterogeneous attachment.

Further comparisons were conducted to fitting the simulated network data based 

on the power-distribution with that based on the exponential distribution. Following the 

specification described in Eq. (28) and Eq. (29), the degree distributions of the simulated 

networks is fitted against the exponential distribution. The procedures are similar to those 

in the fitting power law distribution. It was also conducted one-sided tests for the power 

law distributions and the exponential distribution respectively, and results are presented 

in Fig. 27.
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Fig. 27. One-sided test of the power law distribution against the exponential distribution.

An examination of Fig. 27 points to three general findings. First, after examining 

each of the three subgraphs, it was found that the nature of individuals’ heterogeneous 

attachment, A , appears to significantly affect the one-sided test between the power law 

distribution and the exponential distribution. Specifically, with larger values of A , the p  

values o f the one-sided test between the power law distribution and the exponential 

distribution approach the value of 1 accordingly. In other words, as individual agents 

become more popularity-oriented, the power law distribution significantly outperforms 

the exponential distribution.

Second, after comparing the three subgraphs, no impacts of individual capacity, m, 

are found. That is, with better networking media and stronger individual capacity, there is 

no change to the results of the one-sided test between the power law distribution and the 

exponential distribution. In other words, it was found that the one-sided test between the 

power law distribution and the exponential distribution is invariant to the changes in the 

individual capacities m. Finally, it is evident that the one-sided test between the power 

law distribution and the exponential distribution is sensitive solely to the nature of
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heterogeneous attachment A . Considering actual social networks vary simultaneously in 

these two dimensions, it is suggested that the one-sided test between the power law 

distribution and the exponential distribution can serve as a reliable measure for 

heterogeneous attachment.

4.3 Validation and Application

To this point, the relationship of heterogeneous attachment to various popular 

network statistics such as centrality measures, average path length, and diameter have 

been examined. Moreover, the extent heterogeneous attachment affect degree distribution 

o f simulated networks was explored. It is evident that the nature of heterogeneous 

attachment strongly affects the formation of social network, and, more importantly, the 

scalar parameter of the power law distribution, a  can serve as a reliable measure o f the 

heterogeneous attachment.

A remaining question is the extent to which the model proposed in this 

dissertation helps reveal micro-dynamics in actual social networks. From the perspective 

of the agent-based modeling, this is about the issue of validation. Broadly speaking, 

validation in agent-based modeling concerns whether the simulation is a good model of 

the target. A model which can be relied on to reflect the behavior of the target is “valid.” 

Gilbert and Troitzsch [97] suggest that validity can be ascertained by comparing the 

output o f the simulation with data collected from the target. However, there are several 

caveats that must be borne in mind.

First, both the model and the target processes are likely to be stochastic (that is, 

based partly on random factors). Exact correspondence would therefore not be expected
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on every occasion. Whether the difference between simulation and data from the target is 

so large as to cast doubt on the model depends partly on the expected statistical 

distribution o f the output measures. Unfortunately, with simulations, these distributions 

are rarely known and not easy to estimate.

Second, many simulations are path-dependent: the outcomes depend on the 

precise initial conditions chosen because these affect the ‘history’ of the simulation. In 

other words, the outcomes may be very sensitive to the precise values of some o f the 

assumptions in the model.

Third, even if the results obtained from the simulation match those from the target, 

there may be some aspects of the target that the model cannot reproduce. Fourth, one 

must not forget the possibility that the model is correct, but the data about the target are 

incorrect, or, more often, are themselves a result of making assumptions and estimates. 

Another kind of difficulty arises when the model is intentionally highly abstract. It may 

be hard to relate the conclusions drawn from the model to any particular data from the 

target.

Given the ultimate purpose of validation is to explore the extent to which the 

model does reflect the behaviors of interest, it is suggested that validation of ABMs can 

be done at both the micro and macro levels, so their falsifiability is really of two separate 

kinds. Using the Kalick and Hamilton [142] model as a simple example, Gilbert and 

Troitzsch [97] argue that researchers can validate an agent-based model by answering the 

following two kinds of questions

(a) Does their assumption about individual agent preferences match what is known 

about human mate preferences? and
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(b) Does their model’s generated outcome match what is observed in human 

populations?

Moss and Edmonds’ [152] survey of the literature suggests that virtually all of the 

ABMs can be validated or compared to data at both of these levels. Of course, a match at 

both levels increases confidence in the validity of the model. Validation of the micro 

rules describing individual agent behavior is a task that is especially well suited for social 

psychology’s most familiar and powerful research technique, lab-based experimental 

studies.

However, it should be noted that the specific methods of validation are contingent 

highly on the specific research design and the accessibility of the data regarding the 

questions of interests. The tightness or looseness of the model-data comparisons involved 

in validation (at either the micro or macro level) is a very difficult issue. A model may be 

asked to match what Epstein [148, pp. 46] called “stylized facts” or qualitative, generic 

empirical regularities, such as that residential segregation exists in Schelling [153] or that 

partner attractiveness correlates Kalick and Hamilton [142]. These are the kinds of broad 

empirical generalizations that might be the chief results of a meta-analysis of a research 

area—general summaries of what is empirically known rather than detailed results of a 

single, specific study.

It is argued that in many cases, this level o f empirical validation is sufficient for 

the main purposes of ABM: the attaining of basic insights such as those offered by the 

models just mentioned (or many other examples in this dissertation). But in other cases, a 

much tighter and more precise match to data is demanded. Epstein [56] cited several 

examples o f economic ABMs that have been developed to explain highly specific
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patterns in data, such as the distribution of firm sizes in the economy. Whether one seeks 

to validate relatively general, qualitative patterns or to match data in exact quantitative 

detail depends on the overall goals of a model and on the availability of suitable data sets.

More specifically, with regard to the basic criteria of validations, Casti [77] gives 

the following axes along which the validity of simulation models can be evaluated:

• Empirical: Does the model agree with observed data that are relevant to the 

problem under consideration?

• Theoretical: Does the model contradict any established theories?

• Consistency: Does the model contain any logical contradictions?

• Faith: Do specialists in the area being modeled agree that the model produces 

believable results?

• Testing: Can the model be tested in the real world?

In this study, one enormous challenge is to conduct a micro-level validation of the 

agent-based model, which requires laboratory experiments testing under what 

circumstances individuals are popularity- or proclivity-oriented. Therefore, this study 

turns to the approach of the macro-level validation. Specifically, this study relies on data 

collected from social media in China to validate the proposed model. After applying 

findings emerged in previous section, a demonstration of the micro-foundation of the 

diffusion patterns of different emotions is given.

4.3.1 Emotional Diffusion and Sina Weibo Data

The content in online social media like Twitter or Sina Weibo (WiW-) is mainly 

recorded in the form o f text. Many approaches have been presented to mine sentiments
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from these texts in recent years. One of them is the lexicon-based method, in which the 

sentiment of a tweet is determined by counting the number of sentimental words, i.e., 

positive terms and negative terms. For example, Dodds and Danforth measured the 

happiness of songs, blogs and presidents [132]. They also employed Amazon Mechanical 

Turk to score over 10,000 unique English words on an integer scale from 1 to 9, where 1 

represents sad and 9 represents happiness. Golder and Macy [133] collected 509 million 

English tweets from 2.4 million users in Twitter, then measured the positive and negative 

affects using Linguistic Inquiry and Word Count (LIWC)4.

While another one is the machine learning based solution, in which different 

features are considered to perform the task of classification, including terms, smileys, 

emoticons and etc. The first step is taken by Pang et al. in [77], they treat the sentiment 

classification of movie reviews simply as a text categorization problem and investigate 

several typical classification algorithms. According to the experimental results, machine 

learning based classifiers outperform the baseline method based on human words list. 

Different from most work which just categorized the emotion into negative and positive, 

Fan et al. [64] divided the sentiment into four classes, then presented a framework based 

on emoticons without manually-labeled training tweets and achieved a convincing 

precision.

This dissertation relies on data provided by Fan et al. [64] to validate the proposed 

model. Specifically, Fan et al. [64] argue that the following relationship in Twitter-like 

social networks does not stand for the social interaction, while if two users reply, retweet 

or mention each other in their tweets for certain times, the online social tie between them 

is sufficient to present an alternative means of deriving a conventional social network.

4 For more details, see http://www.liwc.net.

http://www.liwc.net
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Therefore, Fan et al. [64] constructed an interaction network from the tweets crawled 

from Weibo during April 2010 to September 2010, where interaction means the number 

that two users retweet or mention each other is larger than a threshold T. From around 70 

million tweets and 200,000 users, Fan et al. [64] crawled, an undirected but weighted 

graph G (V ,E ,T ) was constructed, in which V is the set of users, E  represents the set of

interactive links among V, and T is the minimum number of interactions on each link. For 

each link in E , the weight is the sum of retweet or mention times between its two ends in 

the specified time period.
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Fig. 28. Tweeters and their Tweets in Sina Weibo.
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In order to exclude occasional users that are not truly involved in the Weibo social 

network, Fan et al. [64] reserved only those active users in the interaction network that 

posted more than one tweet every two days, on average, over six months. And to 

guarantee the validity of users’ social interaction, if the number of retweets or mentions 

between two users was less than T, Fan et al. [64] would omit the connection between 

them. As shown in Fig. 29, by tuning T Fan et al. [64] were able to obtain networks of 

different scales. The number of nodes or edges varies for different interaction threshold T. 

In the following part of the present work, T -  30 is set to extract a large enough network 

with convincing interaction strength. Finally, Fan et al. [64] have set T -  30 and then the 

interaction network G contains 9868 nodes and 19517 links. The resultant dataset is 

publicly available.
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(a) An in teraction network. (b) Node colored by em otions.

Fig. 29. The giant connected cluster of a network sample with T = 30 from Fan et al. 

[64]. (a) is the network structure, in which each node stands for a user and the link 

between two users represents the interaction between them. Based on this topology, Fan 

et al. [64] color each node by its emotion, i.e., the sentiment with the maximum tweets 

published by this node in the sampling period. In (b), the red stands for anger and the 

green represents joy, the blue stands for sadness and the black represents disgust. The 

regions of same color indicate that closely connected nodes share the same sentiment.

After locating the active subset of the Weibo social network, Fan et al. [64] try to 

classify and identify the diffusion of different emotions. The emotion is divided into four 

classes, including anger, sadness, joy, and disgust. Fan et al. [64] then employ the 

Bayesian classifier developed in previous work. Relying on the method in [77], Fan et al.
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[64] use emoticons, which are pervasively used in Weibo, to label the sentiment of the 

tweets. At the first stage, 95 frequently used emoticons are manually labeled by different 

sentiments and then if a tweet only contains the emoticons of a certain sentiment, it 

would be labeled with this sentiment. From around 70 million tweets, 3.5 million tweets 

with valid emoticons were extracted and labeled. Using this data set as a training corpus, 

a simple but fast Bayesian classifier was built in the second stage to mine the sentiment 

of the tweets without emoticons, which are about 95% in Weibo.

The averaged precision of this classifier is convincing and particularly the large 

amount of tweets in the experiment can guarantee its accuracy further. Based on this 

framework, a sampled snapshot of interaction network with T = 30 is presented in Fig. 

29. As shown in Fig. 29(b), each user is colored by its emotion. Roughly, Fan et al. [64] 

find that closely connected nodes generally share the same color, indicating emotion 

correlations in Weibo network. Besides, different colors show different clusterings.

4.3.2 Fitting the Power Law Distribution against Sina Weibo Data

As revealed in the previous section, after fitting all the simulated network data 

against the power-distribution, this dissertation finds that while the nature of individuals’ 

heterogeneous attachment, X , appears to significantly affect the values of the scalar 

parameter a , it is invariant to the changes in the individual capacities m. This, in turn, 

suggests that the values of the scalar parameter a  in the fitted power law distribution can 

serve as a reliable measure for heterogeneous attachment. Therefore, this dissertation 

relies on the scalar parameter oc to validate the proposed model. To do so, the diffusion
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of four different emotions against the power law distribution is fitted using the 

procedures described in Section 4.2.1, and the results are presented in Fig. 30.
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Fig. 30. Fitting power law distribution against the diffusion of four types of emotions: 

anger, sadness, disgust, and joy.
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As revealed in Fig. 30, the grey spots represent the actual degree distribution of 

the diffusion patterns of the four different emotions, and the red lines highlight the fitted 

power law distributions. The different slopes across different emotions therefore are their 

respective “decaying” patterns; that is, the scalar parameter.

While Fig. 30 is intuitive in revealing the relative fitness of the power law 

distribution, the exact relationship between the diffusion patterns of different emotions is 

not known. After comparison, it seems that 1.5 < a  < a  . < a . ,<oc < 2 .2 .r  ’  a n g e r  sa d n e ss  d isg u s t j o y

Comparing these values of a  with Figure 4.21, they correspond to the values X of as 

follows,

0 .8> X >X , >X, > X . >0.6.anger .sadness disgust jo y

In light of this, for diffusion of different emotions, the micro-foundations vary. 

While for contagion of anger, individuals tend to be more popularity-oriented, in 

diffusion of joy people are more proclivity-oriented. Although there is no laboratory- 

based research testing specifically the micro-foundation of the four different emotions, 

some psychological studies do suggest that there is a stronger homophily effect in joy 

diffusion than that o f negative emotions. For instance, Schaefer, Kornienko, and Fox [154] 

investigate friend selection mechanisms responsible for similarity in depression among 

friends, and they find that people tend to withdraw friendship in reaction to such negative 

emotion like depression.

Mainly there are two important parameters tested in this study for exploring the 

process of the social network formation: X and m. X indicates people’s intention of social 

networking strategies and m indicates the average people’s social capacity. In this study,

X was found affected only by the alpha values when the social network data are fitted into
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the power law distribution, where the alpha value is the scale parameter of power law 

density function. Hence, estimating the alpha value provides a possible way of inferring 

the X value. Accordingly, different levels of popularity and proclivity could be used for 

labeling the variant network topology.

Mainly there are two important parameters tested in this study for exploring the 

process of the social network formation: X and m. X indicates people’s intention o f social 

networking strategies and m indicates the average people’s social capacity. In this study,

X is found affected only by the alpha values when the social network data are fitted into 

the power law distribution, where the alpha value is the scale parameter of power law 

density function. Hence, estimating the alpha value provides a possible way of inferring 

the X value. Accordingly, different levels of popularity and proclivity could be used for 

labeling the variant network topology.

m was found to be variant for all measurements in this study, accordingly, it is not 

with evidence for picking any index for measuring the m parameter. In other words, after 

calculating the network data affected by m and X, there is no index found that could be 

used for indicating the m value in the empirical network data. For proposing a reasonable 

way of validating the m value, an empirical study could be conducted, however, no 

empirical data were available for this validation. The study only limited the value of m to 

a maximum of three. Though it is expected that the current shown patterns would 

continue when m is greater than three this would need to be empirically tested. This 

further comparison has been left for future studies.
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4.4 Conclusion and Discussion

To what extent does agent heterogeneity affect actual formation of social 

networks? When people are popularity- and proclivity-orientated, will the resultant social 

network better connected, equally connected, or efficiently connected? Is there any 

reliable measure to detect the nature of heterogeneous attachment at the individual level? 

These are the critical questions this chapter has intended to answer. So in order to answer 

these questions, this chapter examined the relationship of heterogeneous attachment to 

various popular network statistics such as centrality measures, average path length, and 

diameter. Then this chapter also explored to what extent heterogeneous attachment 

affects degree distribution of simulated networks. Finally, a comparison of different 

measures was delivered.
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS

The emergence of relational interactions is an important phenomenon in our 

society from economic transactions to social networking. Unfortunately, in contemporary 

social network analysis, the studies o f network formation are skewed toward either an 

inductive statistical approach—empirical investigations of various factors in shaping 

actual formation of social networks, or a deductive approach—abstract inference of 

mathematical models in formalizing the social dynamics. As a consequence, our 

knowledge o f network formation is regrettably divided and inadequately integrated.

By introducing an emergent conceptualization of network formation, this study 

intends to bridge the competing inductive and deductive approaches to network 

formation, and attempts to systematically and empirically explore how different 

networking heuristics of agents lead to varying patterns of network formation. 

Particularly, it is argued that one way to advance agent-based modeling (ABM) of 

network formation is to “bring agent heterogeneity back in.” By explicitly modeling 

agent heterogeneity in our social networks, this study systematically evaluates to what 

extent individuals’ concern over proclivity-popularity affects various attributes of 

network.

Specifically, this study tries to answer the following critical questions: (1) How 

can social networks emerge with heterogeneous agents (i.e., agents with varying 

popularity and proclivity orientation)? (2) As agents become increasingly popularity- or 

proclivity oriented, how will various network attributes at vertex-, dyad-, local-, and
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system-level change? (3) How can findings that emerged from an ABM analysis help 

advance our understanding about real-world social networks?

This concluding chapter first summarizes the empirical findings discussed in the 

previous chapters. Subsequently, key empirical and theoretical implications of the 

findings will be addressed. Finally, the limitations of this study and possible directions 

for future studies will be discussed.

5.1 Summary of Major Findings

The exploration of network formation in this dissertation starts with the 

psychological needs of agents. Most deductive approaches to network formation appear 

to be problematic since individual psychologies are mainly overlooked. In order to model 

the emergence of social network in reliable and valid way, this study first clarifies the 

major psychological foundations o f social networking. By specifying these psychological 

foundations, this study was able to determine their corresponding networking heuristics 

in the process of network formation. Specifically, there are two individual psychologies 

that are particularly relevant in network formation.

A first important psychological need for individuals’ social networking is the 

need for cognition. Fundamentally, the need for cognition is instrumental and describes 

how individuals’ tendency to use their personal ties to acquire new information and 

resources. In light of this, people high in need for cognition are strongly motivated to 

connect with the “experts” or the “rich” in a given social network.

Second, the need for affect is another critical motivation for individuals’ social 

networking. Specifically, the need for affect points to the emotional construct and
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captures the degree to which people enjoy experiencing strong emotions in social 

networking. In contrast to need for cognition, people high in need for emotion tend to 

possess a “biased reasoning” in their social networking.

After clarifying the key psychological motivations, this study explores these 

motivations’ corresponding network heuristics. An examination of the competing 

psychological needs suggests that people will rely on different strategies in networking. 

Varying strategies can be used to satisfy different psychological needs. Specifically, this 

dissertation suggests that while people high in need for cognition tend to adopt a strategy 

of preferential attachment, people high in need for affect are more likely to use a strategy 

of homophily attachment. Together, individuals will use a combination of popularity- and 

proclivity-oriented strategies in their social networking.

However, a review of the existing literature on network formation suggests that 

recent studies, inspired by Barabasi and Albert [35], focus primarily on the preferential 

attachment (i.e., popularity-oriented strategy) and overlook the potential impacts of agent 

heterogeneity in network formation. Recognizing the limitation, this dissertation 

formulates a heterogeneous attachment model of network formation. This model starts an 

assumption o f heterogeneous agents; that is, agents are inherently different from each 

other on certain aspects. This assumption of agent heterogeneity in turn indicates that 

when making decisions about social networking, people are driven by both the 

instrumental calculation of connecting with the popular and the intrinsic affection of 

joining the like.

Based on this theory of heterogeneous attachment, this study constructed an 

agent-based model to simulate the dynamic emergence of social networks. Throughout
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the simulation, the degree of heterogeneous attachment is varied. Specifically, ranges 

between 0 and 1, and larger / indicate a stronger popularity orientation. Moreover, to 

explore the potential impacts of costs associated with networking, this study also varies 

ABM simulation on the average number of agent connections (i.e., m). With a different 

configuration of / and m, this study was able to simulate a repertoire of social networks 

with differing local dynamics.

In order to explore the relationship of heterogeneous attachment to network 

formation, this study analyzed the statistical association between / and m, on one hand, 

and various vertex-level, dyadic, local, and global attributes on the other hand. The 

results which emerged from partial correlation analysis indicate that all these network 

statistics vary significantly in accordance with different values of both / and m. The 

findings suggest that heterogeneous attachment significantly shapes the dynamic 

emergence o f social network.

Yet, since all the key network statistics correlate with both I and m, it is hard, if 

not impossible, to evaluate the extent to which a social network is proclivity- or 

popularity-driven according to these statistics. To solve this problem, this study further 

examined the relationship between / and m, on one hand, and the degree distribution of 

simulated networks on the other hand. Particularly, the simulated networks are fitted into 

different distributions (i.e., power law, log-normal, and exponential distributions), and the 

key distributions are calculated and compared. The results of partial correlation analysis 

suggest that the key parameter of power law distribution (i.e., /) can serve as a convenient 

indicator of heterogeneous attachment. Specifically, not only is a insensitive to different 

values of m, m bears a significant and negative association with a.
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Finally, as a preliminary effort of verification and application, this study 

examined the above relationship with real world data of social networking. Particularly, 

using data from Sina Weibo (a Chinese counterpart o f Twitter), this study explores the 

diffusion networks of four types of emotions (i.e., anger, sad, disgust, and joy). After 

applying the findings emerged from simulated studies, this study reveals that the 

diffusion o f anger tends to be the most popularity-driven, while joy is the least.

In summary, this dissertation has presented an ABM approach to exploration of 

dynamic emergence of social network, developed an integrated model of heterogeneous 

model, and provided a way to evaluate the degree heterogeneous attachment empirically. 

What does this study imply for future studies on social network analysis as well as for the 

studies on agent-based modeling? The following part of this chapter will address this 

important question.

5.2 Implications for Studies on Social Networks

The findings presented in this dissertation have important implications with 

respect to both social network analysis and agent-based modeling (ABM). Although most 

scholars focus either on an inductive empirical approach or a deductive mathematical 

approach, this dissertation points to a promising way to integrate these two competing 

paradigms; that is, the ABM approach.

On one hand, the ABM approach introduces more reliable computational 

simulation into empirical analysis of social networks and renders a rigorous way to test 

various findings emerged from empirical studies. On the other hand, the ABM approach
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can help develop more flexible frameworks, in which more complicated social theories 

can be modeled in a computational way.

5.3 Future Studies and Recommendations

It should be noted that this study assumes that the formation of social networks is 

unidirectional. Moreover, proclivity and popularity are assumed to be changing along a 

single continuum. That is, as proclivity increases, popularity decreases, and vice versa. 

However, relaxations on these two key assumptions could greatly expand the current 

study. First, if the formation of social networks is directional, the social dynamics could 

become quite complicated. In this case, in-degree and out-degree network statistics 

should be distinguished. Moreover, an introduction of directional assumption complicates 

the comparison and calculation of popularity and proclivity. For instance, in-degree 

popularity and out-degree popularity would have to be differentiated. Similarly, a 

distinction between in-degree proclivity and out-degree proclivity ought to be made. In 

combination, four sets of popularity-proclivity shape the dynamic formation of social 

network. Second, popularity and proclivity can change in the same direction. That is, 

people can be strongly motivated by both instrumental and intrinsic considerations. This, 

in turn, also leads to four different combinations of popularity-proclivity. Future studies 

are thus called for to explore these interesting dynamics.

As revealed in this study, the key parameter of power law distribution a is 

invariant under different values of m. It is also possible to construct invariant parameters 

using ratios of existing parameters. Specifically, the variation coefficient is defined as the 

ratio of the standard deviation to the mean. As for this particular study, the variation
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coefficient can be quite useful since the standard deviations of various network statistics 

and distribution parameters can be somehow correlated to their respective means. When 

the means are widely different, the variation coefficient is preferred. However, in this 

study, the key question is how X and m jointly affect the dynamic emergence of social 

networks. Thus analyses based on the variation coefficients are not employed due to the 

static nature o f the means in the generated networks. However, for the analysis of real 

world data, whose means of network statistics can vary considerably, the variation 

coefficient is recommended.

Future studies might be devoted to the ways in which network heuristics other 

than popularity- and proclivity-orientation might affect various vertex-, dyadic-, local-, 

and global-level network attributes. This dissertation argues that driven by the need for 

cognition and the need for affect, individuals can follow two simple strategies— 

connecting with people with similar interests and connecting with the rich—to form their 

social networks. Yet, additional local strategies like “a friend of my friend is a friend” 

can also serve as important heuristics to form social networks. Future studies, therefore, 

can benefit more from including more local strategies.

Second, future studies can benefit from modeling adaptive behaviors o f agents in 

a networked setting. In this study, only network formation was explored. Network 

formation, though important, consists of only one aspect of how individuals interact with 

each other. After a network has been formed, individuals can choose to maintain or 

disconnect social ties. The dynamics associated with network evaluation require more 

systematic exploration. As revealed in this study, ABM approach is particularly useful in 

investigating these adaptivity problems.
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Third, additional empirical studies are called for to validate and verify the model 

developed in this study. In this study, only second-hand data of social network were used 

to validate and verify the agent-based model. The current study can be strongly 

strengthened by more comprehensive data.
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APPENDICES 

Appendix: The Partial Correlation

between Various Network Properties and m  and X

Network properties m I Significance

degree (std.) 0.897*** 0.902*** both
closeness (mean) 0.968*** 0.739*** both
closeness (std) 0.623*** 0.931*** both
betweenness -0.890*** -0.517**’ both
betweenness -0.879*** 0.096* both

transitivity 0.980*** 0.628*** both
diameter -0.889*** -0.318*“ both

average path length -0.890*** -0.517*** both
articulation points -0.858*** -0.186*** both
assortativity degree 0.832*** -0.887*** both

fast greedy community (no.) -0.922*** 0.169*** both
size o f fast greedy community (mean) 0.990*“ -0.572*** both
size of fast greedy community (std.) 0.996***

„  _  _  _ *** 
0.521 both

walktrap community (no.) 0.718*’* -0.661*“ both
size of walktrap community (mean) -0.516*** 0.504*** both
size of walktrap community (std.) -0.053 0.197*“ X

power law distribution, xmin 0.692 -0.616*** both
power law distribution, a -0.065 -0.873*** X

exponential distribution, xmin 0.125*** 0.062 m
exponential distribution, a -0.926*’* -0.069 m

log-normal distribution, xmin 0.677*** -0.605*** both
log-normal distribution, p -0.088 -0.755*** X
log-normal distribution, a 0.253*** 0.900*** both

Poisson distribution, xmm 0.369*** 0.236*“ both
Poisson distribution, p 0.378*** 0.295*** both

power law vs. exponential, one-sided p -0.120* 0.817*** both
power law vs. log-normal, one-sided p -0.165*** 0.298*** both
power law vs. Poisson, one-sided p 0.315*** 0.805*** both
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