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ABSTRACT

NAVAL AVIATION SQUADRON RISK ANALYSIS PREDICTIVE BAYESIAN 
NETWORK MODELING USING MAINTENANCE CLIMATE ASSESSMENT

SURVEY RESULTS

Harry Michael Robinson 
Old Dominion University, 2014 

Director: Dr. John A. Sokolowski

Associated risks in flying have resulted in injury or death to aircrew and 

passengers, and damage or destruction o f the aircraft and its surroundings. Although 

the Naval Aviation's flight mishap rate declined over the past 60 years, the proportion 

of human error causal factors has stayed relatively constant at about 80%. Efforts to 

reduce human errors have focused attention on understanding the aircrew and 

maintenance actions occurring in complex systems.

One such tool has been the Naval Aviation squadrons’ regular participation in 

survey questionnaires deigned to measure respondent ratings related to personal 

judgments or perceptions o f organizational climate for meeting the extent to which a 

particular squadron achieved the High Reliability Organization (HRO) criteria of 

achieving safe and reliable operations and maintenance practices while working in 

hazardous environments. Specifically, the Maintenance Climate Assessment Survey 

(MCAS) is completed by squadron maintainers to enable leadership to assess their 

unit’s aggregated responses against those from other squadrons.

Bayesian Network Modeling and Simulation provides a potential methodology 

to represent the relationships o f MCAS results and mishap occurrences that can be 

used to derive and calculate probabilities o f incurring a future mishap. Model 

development and simulation analysis was conducted to research a causal relationship



through quantitative analysis o f conditional probabilities based upon observed 

evidence o f previously occurred mishaps. This application would enable Navy and 

Marine Corps aviation squadron leadership to identify organizational safety risks, 

apply focused proactive measures to mitigate related hazards characterized by the 

MCAS results, and reduce organizational susceptibility to future aircraft mishaps.
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1. INTRODUCTION

1.1. PURPOSE

The main objective for pursuit of this research effort was to accurately model 

the impact o f naval aviation squadron maintenance on mishap occurrence. The 

purpose o f the developed model(s) would serve as an effective predictive tool for 

leadership to enable conduct of proactive risk management that would reduce 

likelihood for sustaining an aviation related mishap.

1.2. BACKGROUND

From its inception, flying has been accompanied by inherent, unique, and 

sometimes unforgiving risks. The exposure to these associated hazards results in 

injury or death to aircrew and passengers, and damage or destruction o f the aircraft 

and its surroundings. In the effort to improve aviation safety, post-crash inspections 

continue to be conducted to identify specific material and mechanical failure modes. 

Initially, attention was directed towards improving aircraft material defects. The 

iterative engineering process of developing and manufacturing better aircraft based 

upon lessons learned from previous material and component failures led to significant 

reductions in aviation mishap rates. Continued post-mishap analysis demonstrates 

that there has been a decrease in material failures as contributing causal factors; 

however, human error is still a leading cause of numerous aircraft accidents. [Nagel,
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Two approaches have been directed to mitigate the effects of human error.

First, application of Human Factors engineering and ergonomics enhanced the 

interfaces between the human operator and individual component system. Second, 

Human Factors programs were implemented to define and enforce acceptable 

standards in maintenance proficiency, aircrew skills, and safety in the effort to further 

reduce the risks associated with aviation. These programs served to train key 

personnel within the aviation field to improve their capabilities, knowledge, and 

imperviousness to committing errant actions. Aircraft mishap investigations continue 

to focus on human error. "Indeed, estimates in the literature indicate that somewhere 

between 70 and 80 percent of all aviation accidents can be attributed, at least in part, 

to human error." [Wiegmann & Shappell, 2003, p. 2] As shown in Table 1 below, 

during Fiscal Years 2011 and 2012, U.S. Navy and Marine Corps Aviation 

Characterization Factors, human factors error contributed to 61% of sustained Class A 

mishaps. [Naval Safety Center, 2013]

Table 1. U.S. Navy and Marine Corps Aviation Characterization Factors 
Leading up to Class A Mishaps for Fiscal Years 2011 and 2012 

[Naval Safety Center, 2013]

Characterization Factor 2011 2012 Total
Maintenance Failure only 1 1 2
Material Failure only 5 3 8
Aircrew Related Human Factors Error only 6 7 13
Maintenance / Material Failure Leading to Aircrew Related 
Human Factors Error 4 3 7

Undetermined 0 0 1
Total 16 15 31
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Since 1950, Naval Aviation has employed several intervention strategies to 

reduce the occurrences o f aircraft mishaps. A standard measurement to evaluate 

aviation safety performance uses the number of aviation mishap events per 100,000 

flight hours. Naval Aviation classifies mishaps under three different severity 

classifications and three mishap categories. Class A mishaps are the most severe and 

are described by the result in which the "total damage cost is $ 1,000,000 or more 

and/or aircraft destroyed and/or fatal injury and or permanent disability." 

[OPNAVINST 3750.6R, 2003, Appendix 3C] On October 6, 2009, the Class A cost 

threshold was revised to $2,000,000 total damage. Mishap severity categories range 

from Class A through Class C depending upon the cost of damage and amount of 

personnel injury sustained. A complete description of mishap type and severity can be 

found in Appendix A.

Figure 1 shows a clear reduction in the Class A mishap rate from 1950 through 

1980. However in recent years, the slope o f the incidence rate has leveled out at 

approximately 2 per 100,000 flight hours through application of various additional 

engineering and administrative control measures.
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Note:
•  NAMP-Naval Aviation Maintenance Program. Established 3 tiered maintenance 

system, organizational level at squadron, intermediate level, and depot level.

• FRS-Fleet Replacement Squadron designed to train aviators in their specific 
aircraft after earning wings in the training command and prior to fleet squadron 
assignment.

• NATOPS-Naval Air Training and Operating Procedures Standardization. A 
program consisting o f general and specific instructions that provide guidance and 
constraints for all naval aircraft and associated activities.

Figure 1. U.S. Naval Aviation Accident Rate and Intervention Strategies 
[U.S. Naval Safety Center, Aviation Statistics]

Former Secretary of Defense Donald Rumsfeld stated that "World-class 

organizations do not tolerate preventable accidents...! challenge all of you to reduce 

the number of mishaps and accident rates by at least 50% in the next two years. These 

goals are achievable, and will directly increase our operational readiness." [Rumsfeld,
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2003] The data presented in table 2 indicate that Naval Aviation has not met the 

Secretary's goals.

Table 2. Navy and Marine Corps Class A Mishap Rates For Fiscal Years 2000-2013 
per 100,000 Flight Hours [Source: U.S. Naval Safety Center]

Fiscal 
Year (FY) Flight Hours Mishaps Mishap Rate

FY00 1,460,003 29 1.99
FY01 1,479,915 19 1.28
FY02 1,577,217 36 2.28
FY03 1,516,049 37 2.44
FY04 1,360,632 30 2.20
FY05 1,229,555 22 1.79
FY06 1,218,498 20 1.64
FY07 1,260,083 16 1.27
FY08 1,243,350 21 1.69
FY09 1,225,297 15 1.22

FY10 1,175,929 11 0.94

FY11 1,244,903 16 1.29

FY12 1,175,830 15 1.28

FY13 1,084,016 12 1.11

FY00-13 18,251,277 299 1.64

Although the Naval Aviation's flight mishap rate declined over the past 60 

years, the proportion of human error causal factors has stayed relatively constant at 

about 80% [Naval Safety Center, 2010]. Efforts to reduce human errors have focused 

attention on understanding the aircrew and maintenance actions occurring in complex 

systems. In 1996, a Human Factors Quality Management Board was tasked to analyze 

and recommend processes, programs, and systems that would improve human 

performance with the purpose of reducing the aviation mishap rate. The board's 

recommendations included Naval Aviation squadrons' regular participation in survey
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questionnaires. These were designed to assess the operational and maintenance 

practices from a safety perspective as a tool for leadership to proactively employ the 

command's influence on the chain of events that may lead to an aircraft mishap. The 

Command Safety Assessment (CSA) surveys are taken by squadron aircrew and 

Maintenance Climate Assessment Survey (MCAS) are completed by squadron 

maintainers. Leadership may view anonymous results and compare their unit’s 

aggregated responses against those from other squadrons.

The Aviation CSA questionnaire was first used in 1996 to survey Navy and 

Marine Corps aviation units to measure respondent ratings related to personal 

judgments or perceptions of command climate for meeting the High Reliability 

Organization (HRO) criteria o f achieving safe and reliable operations and maintenance 

practices while working in hazardous environments. HROs two key characteristics 

were defined by Roberts as capability to proactively manage organizational 

complexity and tightly coupled operations. [Roberts, 1990b] These characteristics 

were further refined into the Model o f Organizational Safety Effectiveness (MOSE) 

that is based upon the framework by Roberts [1990a, 1990b] and Libuser [1994], The 

MOSE conceptual model consists of:

1. Process Auditing. Continuing analysis for hazard identification and establishment 

of corrective measures.

2. Reward System and Safety Culture. Use o f rewards and discipline to achieve and 

maintain desired safe behavior.

3. Quality Assurance. Policies and procedures that promote and reinforce high 

quality of work performance.



7

4. Risk Management. Processes to accurately perceive risk, identify hazards, and 

implement control measures.

5. Command and Control. Consists of unit climate, effectiveness o f leadership, 

policies, and management processes.

Subsequent to refinement and statistical validation, the 57 item CSA was 

conducted through secure internet-based evaluations that provide unit commanders 

feedback regarding their command climate, safety culture, workload, resource 

availability, estimated success of certain safety intervention programs, and other 

associated factors related to managing safe flight operations. [Ciavarelli, 2001 ] 

Aircrew respondents provide their assessments using a quantitative Likert-type, five- 

point rating scale (i.e., Strongly Disagree, Disagree, Neutral, Agree, or Strongly 

Agree). “These responses are given numeric values of 1, 2, 3, 4, and 5 respectively. 

For all but one of the survey's Likert items, a positive response to the Likert item 

implies that the respondent takes a view that his/her squadron is addressing that issue 

in a safe manner." [Schimpf, 2004b, p. 3]

The CSA was augmented by the 43 question Maintenance Climate Assessment 

Survey (MCAS) to determine the significance o f a unit’s maintenance effort in 

achieving safe flight operations. The MCAS is utilized to provide a maintenance 

centralized focus to measure an organization’s ability to safely conduct operations in 

terms of leadership, culture, policies, standards, procedures, and practices. [Figlock,

2004] It is one o f 14 climate assessment surveys used within the Department of 

Defense that provides individual response anonymity, organizational confidentiality,
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and restricted access to the results. A study conducted at the Naval Postgraduate 

School determined the MCAS survey adequately assesses a maintenance technician's 

perception of safety climate and that there is a positive correlation between the human 

errors in squadron mishaps and their corresponding survey results. [Adamshick, 2007]

Although research studies have been conducted to evaluate correlation of 

survey results to mishap occurrence, these have not resulted in providing a suitable 

metric that would support use of the survey results as a predictive tool to accurately 

assess the risk of a squadron incurring a future mishap. Over the last 10 years, the 

Navy-Marine Corps Class A - Aviation Mishap Rate has not significantly decreased 

despite leadership directives to do so. This research effort was undertaken to study the 

potential of a new methodology to achieve improved aviation safety by using MCAS 

response data as input for Bayesian Network Modeling to predict a squadron's 

likelihood to incur a future mishap.

1.3. PROBLEM  STATEM ENT

Decreases in naval aviation mishap occurrence rates and percentage of mishap 

causal errors related to human errors have plateaued in recent years. Although 

squadron CSA and MCAS participation has been conducted, related intervention 

programs implemented, and research efforts executed to analyze correlation between 

survey results and subsequent mishap occurrences, no definitive tool has been 

demonstrated to serve as a predictive model for risk analysis. As currently 

implemented, CSA and MCAS results comparisons to similar organizations do not 

adequately support squadron leadership / supervisors planning and execution o f risk
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management to prevent the potential occurrence o f an aviation mishap. Accurate 

predictive modeling would provide squadron leadership with better understanding and 

situational awareness to deploy proactive risk mitigation to reduce incurring future 

mishaps.

1.4. THESIS STATEM ENT

The Maintenance Climate Assessment Survey provides the means for Naval 

Aviation squadron leadership to obtain a measurement produced from internal 

organizational personnel. Although this metric tool may be used to compare results to 

other organizations flying similar Type/Model/Series aircraft, it has limited ability to 

serve as a predictive instrument for incurring a future mishap. Bayesian Network 

Modeling and Simulation provides a potential methodology that might be used to 

represent the relationships of MCAS results and mishap occurrences that can be used 

to derive and calculate probabilities of incurring a future mishap. Model development 

and simulation analysis will support defining causal relationships through quantitative 

analysis o f conditional probabilities based upon observed evidence o f previously 

occurred mishaps. This application would enable Navy and Marine Corps aviation 

squadron leadership to identify organizational safety risks, apply focused proactive 

measures to mitigate related hazards characterized by the MCAS results, and reduce 

organizational susceptibility to future aircraft mishaps
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1.5. RESEARCH QUESTIONS AND HYPOTHESES

The dissertation research was conducted to address the follow questions and 

corresponding hypotheses.

1.5.1. RESEARCH QUESTION 1

Does Bayesian Network Modeling provide a better predictor for future mishap 

occurrence than the MCAS frequency observation reference study of observed 

probabilities?

H1A: Use of Bayesian Network Modeling to represent the relationship between 

organizational MCAS results and mishap occurrence will provide improved 

methodology compared to MCAS frequency observed reference study analysis to 

predict occurrence of future mishaps.

Hlo: Use o f Bayesian Network Modeling to represent the relationship between 

organizational MCAS results and mishap occurrence will not provide improved 

methodology compared to MCAS frequency observation reference study analysis 

to predict occurrence of future mishaps.

1.5.2. RESEARCH QUESTION 2

Do any of the individual MOSE components serve as a better indicator for 

future mishap occurrence using Bayesian Network Modeling?

H2a : Use of Bayesian Network Modeling with specific individual component 

MCAS results will provide improved methodology compared to aggregated 

MCAS results to predict occurrence of future mishaps.
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H20: Use o f Bayesian Network Modeling with specific component MCAS results 

will not provide improved methodology compared to aggregated MCAS results to 

predict occurrence o f future mishaps.

1.6. RESEARCH EXPECTATIONS

The expected outcome and goal from this research was to derive an accurate 

computational Bayesian Network Model that:

1. Characterizes the causal relationships between MCAS results and aircraft mishap 

occurrence within a Naval Aviation squadron;

2. Enables model execution and analysis for both individual specific MOSE 

components and aggregated-averaged data;

3. Represents a Naval Aviation squadron’s defined relationship between maintenance 

safety climate and conduct of safe flight operations.

Research questions focused on the adequacy o f the computation model to accomplish 

the three above listed goals.

1.7. ASSUMPTIONS

Assumptions for this dissertation were made as they were required for model 

development, execution, and analysis. Initial general assumptions which shaped the 

overall effort include:

• ASSUMPTION 1. Design and implementation of a computational Bayesian 

Network Model using MCAS derived inputs does not substantially change the
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intent of the original framework. MCAS was implemented to capture maintenance 

related items within the MOSE framework.

• ASSUMPTION 2. Use o f a computational model to accurately produce 

conditional probability predictions that reflect causal network relationships 

between MCAS results and mishap occurrences continues to provide the means to 

accurately represent MOSE components.

• ASSUMPTION 3. Averaging aggregated organizational response scores of 

MCAS questions does not alter the accuracy o f survey results.

• ASSUMPTION 4: Changes in an organization's safety climate reflected by 

MCAS results occur at a linear rate for the time period between implementation of 

successive safety surveys

1.8. SCOPE AND LIM ITATIONS

This dissertation focuses upon establishing conceptual and computational 

Bayesian Network Models that reflect causal relationships between an organization's 

MCAS results and mishap occurrences. Data analysis was limited to information that 

was made available by the Naval Safety Center. Due to availability of furnished data, 

the scope of this research was limited to Naval and Marine Corps squadrons that flew 

aircraft that deployed onboard aircraft carriers. Mishap narrative and causal factor 

identification resulted from defined procedures for conduct of Aviation Mishap 

Boards for producing reports and were vetted via respective chains of command for 

ultimate concurrence and/or rejection of findings. Other internal and external aspects 

were not examined or modeled in this study.



13

1.9. M OTIVATION

The value of this research is to create a computational model that enables 

squadron leadership to identify defensive gaps in their organizations and to quantify 

associated risks. Ideally, subsequent to obtaining results from an MCAS survey, 

squadron leadership could compare the data to previous survey results and actual 

mishap occurrence and use the models developed from this research to proactively 

identify risks for future mishap occurrence. Model result would enable directed 

application of proactive risk management to mitigate potential mishap likelihood and / 

or severity. The ability to develop, test, and evaluate the desired model for application 

in Naval Aviation is supported by existing data and metrics.

Due to the tasking o f military aircraft and service members for use in armed 

conflict or supporting missions, military aviation represents a significant investment in 

financial and human capital. The Fiscal Year (FY) 2014 budget submission for the 

Naval Aviation Enterprise included $17.9 Million in Aircraft Procurement and $8.6 

Million in Operations and Maintenance. [Kelly, 2013]

Personnel, air vehicle, and weapons system attrition may be expected in 

combat as a result of engagements against an armed enemy. However, loss of or 

degradation to either military aircraft or related service members as the consequence 

of human error during maintenance evolutions adversely affects combat readiness and 

impairs the nation's capability to achieve its strategic, operational, and tactical goals. 

Analysis by the Naval Safety Center indicates that losses due to human error are 

greater than those sustained from direct enemy action in the Global War on Terrorism.
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During most recent participation in prolonged combat operations through the first 11 

months of FY 2006, Naval Aviation sustained 25 Class-A mishaps consisting of 21 

aircrew deaths and 17 aircraft destroyed compared against the combat loss o f a single 

AH-1W helicopter and 2 aircrew. "The vast majority o f our aviation losses are not 

because of engagements with enemy forces. Our losses overwhelmingly are due to 

mishaps." [Mayer, 2006. p. 2]

1.10. RESEARCH CONTRIBUTION

The contributions provided by this dissertation research include:

• Providing Naval Aviation squadron leadership with a tool to enable timely 

identification of risks related to their maintenance safety climate and use of 

proactive measures to reduce occurrence of future mishaps.

• In addition to Naval Aviation, this application o f Bayesian Network Modeling was 

designed to be of utility to other military and commercial aviation activities. This 

research was undertaken to provide a foundation that might be adapted for use by 

industries striving to achieve (near) error free processes for highly reliable and safe 

operation under hazardous conditions.

• Narrowing the research field for utility o f questionnaire surveys for measuring 

impacts of an organization's safety climate.

1.11. RESEARCH APPROACH AND ORGANIZATION

The research presents a formal simulation architecture that focuses on a 

Bayesian Network Model of risk and probabilities using the MCAS / MOSE
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framework as a supporting element. The derived computational model's purpose is to 

accurately represent the associated risks resulting from a squadron's maintenance 

safety climate in supporting the operational demands for providing aircrew with 

mission capable aircraft. Model input was derived through decomposition o f the 

MCAS by specific individual MOSE components. Validation of the model's 

credibility was accomplished using statistical comparison against Aviation Mishap 

Board investigation reports.

This dissertation consists of the chapters detailing the following sub-divisions:

1. Introduction

2. Literature Review

3. Methodology

4. Results

5. Interpretation, Conclusions, and Recommendations.
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2. LITERATURE REVIEW

2.1. DEFINITION OF TERM S

Safety is a desirable characteristic o f a squadron's culture; however, safety in 

itself is not the ultimate priority. If it were, no risks of any degree would be 

undertaken. "Risk is inherent in everything that the Navy does. Managing risk 

requires an in-depth understanding o f the issues and trade-offs associated with key 

decisions." [Mullen. 2006, p. 2 1 ] Mission accomplishment is of primary efficacy to a 

military organization. Safety is a critical trait in obtaining and executing combat 

proficiency to successfully achieve assigned tasking. Some degree o f risk is inherent 

to aviation, and safety allows for effective management of risk. These terms are 

further defined below:

• Safety. The result of preservation of human lives and material resources through 

conduct o f hazard detection, hazard elimination, and awareness enhancement o f all 

concerned individuals. [OPNAVINST 3750.7R, 2003] As such, safety does not 

include the absence of incurring a material failure or personal injury simply as a 

matter of insufficient exposure length. Safety applied to military aviation 

positively influences mission accomplishment. Losses or injuries sustained 

directly from combat or sabotage are not considered representative aspects o f a 

unit's safety posture. Reason defined safety as a dynamic non-event. A stable and 

reliable outcome is due to the application of constant change rather than 

continuous repetition. To achieve stability, a change in one system must be 

compensated for by changes in other parameters. [Reason, 1997, p. 37]
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• Hazard. Any real or potential risk that can cause personal injury, property 

damage, mission degradation, or damage to environment. The severity of a hazard 

is an assessment of the expected consequence, defined by degree of injury, 

occupational illness, loss, or damage that could occur from exposure to a hazard.

• Risk. The chance o f adverse outcome or bad consequences; such as injury, illness, 

or loss. Risk level is expressed as a function o f both hazard probability and 

severity. [OPNAVINST 3500.39, 2004]

2.1.1. ORGANIZATIONAL SAFETY, SAFETY CULTURE, AND SAFETY  

CLIMATE

As a means o f planning and performing operations related to and required for 

flight, safety is a critical feature in obtaining and executing combat proficiency to 

successfully achieve assigned tasking. However, in response to operational stress, 

safety requirements such as wearing protective equipment, reviewing checklists, and 

inspections by quality assurance representatives are often seen by front line operators 

as impediments to achieving short-term goals associated with flight operations. 

Whether at a local or global level, safety then may be considered an emergent 

behavior that is not completely captured by the behavior of individual organizational 

divisions or personnel. Safety is emergent in that it characterizes collective behavior 

that may be understood through study of the components in the context of the whole 

organization in which global emergent properties are formed from interdependent 

parts. [Bar-Yam, 1997] Achievement of safety requires the coordination o f the entire
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organization at each hierarchical level. The conflicting requirements for safety and 

combat readiness can lead to unpredictability and non-ergodicity.

An aviation squadron's organization is detailed in numerous instructions as to 

components, functions, and interrelationships. These are rational systems with formal 

structures and hierarchical organization. As such, a squadron exists in a positivistic 

reality where objective analysis and degrees o f causal linkage may be determined. 

However, applying analytic reduction to a squadron's organization does not reduce it 

to independent subsystems. Decomposition results in non-linear interactions and 

feedback channels, which often produces different behavior when examined 

individually or as part of the whole system. As an organization, the functions of an 

aviation squadron are easily bounded, reducible, frequently irreversible, and often 

contain multiple feedback loops, numerous people and process interactions, and non­

linear procedures.

Both safety culture and safety climate are used to describe attributes o f an 

organization to achieve its goals and accomplish its vision while reducing 

susceptibility to personnel injuries or equipment damage. Safety culture delineates an 

enduring trait that is reflective o f the fundamental values, norms, assumption and 

expectation that to some extent exist within the group’s societal culture. [O'Connor, 

et. al., 201 lb] The culture is passed on to successive generations within the 

organization. It serves to mold individual behaviors by systematic use of rewards, 

status expectations, power, authority, inclusion/exclusion of group boundaries, and 

underlying concepts for managing behavioral deviations. Organizational culture is



19

strongly influenced by its operational / associative structure and

leadership/subordinate relationships. [Ciavarelli, 2007]

An organization’s safety climate represents a significant component of a High

Reliability Organization. Safety climate is the surfaced manifestation o f culture and

refers to the shared perception organizational personnel that their leaders and

personnel are: genuinely committed to safety of operations; have taken appropriate

steps to implement and communicate safety standards, processes, and procedures; and

ensure adherence. [Goodrum, 1999] Their leaders are genuinely committed to safety

of operations, take appropriate measure to communicate safety principles, and ensure

adherence to safety standards and procures. [Ciavarelli, 2007] An organization’s

safety climate is considered to be a more visible manifestation o f the culture at a

particular moment in time. It is generally accepted that am organization's safety

climate at a specific point in time can be measured through use o f survey

questionnaires. [O’Connor et al, 2011 b]

Metrics of components that comprise an organization's safety climate are

considered to have utility as both lead and lag indicators.

“Safety climate introduces the notion that the likelihood of accidents occurring can 
be predicted on a basis of certain organizational factors. These organizational 
factors can be used as leading indicators to identify, in advance, the strengths and 
weaknesses of an organization that influence the likelihood o f accidents occurring. 
Once weaknesses are identified, remedial actions can be taken." [O'Connor et al., 
2011a, pp. 27-28]

2.1.2. RISK M ANAGEM ENT

Accident prevention initiatives are the primary means Naval Aviation has to 

reduce personnel losses and material costs associated with mishaps. [Schmorrow,
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1998] The purpose of this research is to provide a tool to conduct risk management 

enabling proactive measures to be taken to prevent aviation mishaps. Risk 

management is a process used to mitigate the undesirable effects of an event that may 

cause damage or loss to personnel or equipment. Figure 2, below, depicts a structure 

for implementing risk management as a continuous and iterative cycle.

Risk Management

Risk
Planning

Risk
A ssessm en t

Risk
Handling

Risk
Monitoring

4 11 1
i

1 1
Risk Risk

Identification Analysis

t t ........... ....................... '

Risk D ocum entation

Figure 2. Risk Management Structure [Bahnmaier, 2003, p. 6]

Steps include:

• Risk Assessment. Identification o f critical events and analysis to determine their 

impact. Risks are rated or prioritized based upon their respective probability of 

occurrence, severity of associated consequences, and relationship to other risks.

• Risk Planning. Conducted in response to continual risk assessments to determine 

impact of change in associated risks. This process defines and documents the 

strategy to assign adequate resources to mitigate risks enabling mission 

accomplishment.
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• Risk Handling. Identifies, evaluates, selects, and implements mitigation options to 

bound risk at an acceptable level given governing constraints and objectives.

• Risk Monitoring. Tracking and appraisal of the success of employed risk handling 

techniques through use o f performance evaluation metrics. It provides a feedback 

channel for the management cycle.

• Risk Documentation. Data gathering and maintenance to support assessment, 

handling, planning, and monitoring.

Conduct of aircraft maintenance provides the opportunity for inducing human 

error. To ensure aircraft are ready for tasking, they require both scheduled upkeep to 

accomplish routine periodic servicing as well as unscheduled maintenance to correct 

discrepancies that impede proper system operation. [Commander, Naval Air Forces 

Instruction (CNAFINST) 4790.2 Change 1, 2006] Aircraft maintenance includes 

troubleshooting to determine the exact source of a fault, component removal and 

replacement, repair o f defective items, preventive measures that decrease potential 

failures during flight, and servicing o f consumable items that are designed for wear. 

Quality assurance inspections are conducted on all maintenance actions to ensure the 

effort was correctly performed. Considerable maintenance efforts are expended for 

each flight, and maintenance man-hours per flight hours in the range o f 10-40 are 

common for the current inventory of fleet aircraft. As such, each maintenance action 

provides an opportunity for human error to adversely impact an organization's defense 

against a mishap.
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Design and use of a computational model that may be accurately used to 

calculate risks resulting from maintenance error would allow applicable squadron 

personnel to maximize use of Operational Risk Management (ORM). All naval 

activities are required to apply the ORM process in planning, training, and execution 

to optimize their operational capability and readiness. [OPNAVINST 3500.39B, 

2004, p. 2] This is accomplished through the five-step process of:

1. Hazard Identification

2. Hazard Assessment

3. Risk Decisions

4. Control Implementation

5. Supervision

The goal o f this dissertation was to provide a tool for the predictive risk 

assessment o f a squadron's maintenance organization to successfully accomplish its 

mission of providing and launching aircraft ready for tasking. The intent for the 

model output is to furnish squadron leadership accurate information to subsequently 

reach proper risk decisions, implement adequate controls, and provide required 

supervision to reduce aviation mishaps.

2.2. INFLUENTIAL W ORK

This section details key published works that led to crafting the problem and 

thesis statements and provided direction for this research.
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2.2.1. HIGH RELIABILITY ORGANIZATIONS

Roberts [ 1990b] investigated organizations that had achieved near error free 

operations for considerable periods o f time. An interdisciplinary research team 

selected three "high reliability” organizations (HROs) that maintained safe and 

reliable operations under hazardous conditions. HROs consistently conduct operations 

on the order o f tens of thousands of opportunities for experiencing a mishap without 

experiencing a catastrophic consequence due to human error. [Roberts, 1990b] 

Operational procedures were examined at Pacific Gas and Electric Company (operator 

of the Diablo Canyon nuclear power plant and Western U.S. electrical services power 

grid), Federal Aviation Administration (FAA) Air Traffic Control Centers, and U.S. 

Navy aircraft carriers. [Roberts, 1990a]

Roberts identified two groups of key traits in common among the three 

organizational examples to explain their respective successes. First, they were capable 

of managing complexity through reaction to unexpected sequences of events. On­

going training that presented several possible emergency situations prepared essential 

personnel to face actual crises. The HROs countered the effects of losses by providing 

for redundancy of essential personnel and equipment. Each establishment used 

advanced technology requiring high degrees of specialized understanding and 

interdependence requiring high degrees of generalized understanding. Each of the 

three entities assigned exceptional responsibility and accountability to low-level 

employees. The study revealed the HRO personnel understood and managed the 

potential for the interaction of systems that supported incompatible functions, took 

advantage of both direct and indirect sources of information, and educated their staffs
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concerning the complexities resulting from human-machine interfaces to minimize 

baffling interactions.

Second, the HROs were characterized for management controls o f tightly 

coupled, mechanistic, and brittle (in an engineering sense) operations. Due to 

execution of time dependent processes, specific functions were decomposed to achieve 

dispersed redundancy. Flexibility resulted from the coordination of component 

actions. The HROs defined one way to reach a goal and accepted minimal deviation 

in performance.

Weick and Sutcliffe [2007] expanded upon the concept of HROs through a 

social psychology approach to studying the effect of cognitive dissonance on 

performance. Introducing the themes of collective mindfulness and collective 

enactment, they described the impact of people on the behaviors of others.

Weick and Sutcliffe identified that HROs contain distinctive structures and their 

actions are a result o f mindful organizing for the unexpected as well as the expected 

through anticipation and containment.

Anticipation includes both application o f early warning mechanisms and 

control of undesirable events. Components for anticipation include:

• Preoccupation with failure through sensitivity to early signs of failure

• Reluctance to simplify by further investigating to determine and analyze causes

• Sensitivity to operations in understanding dynamic and non-linear organizational 

inter-relationships.
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For unanticipated consequences that occur, containment serves to limit damage 

and exposure. Elements of containment are:

• Commitment to resilience by maintaining operational functionality during high 

demand events by absorbing strain and preserving functionality during adversity; 

maintaining ability to regain functionality after untoward events; and learning / 

applying lessons from previous events.

• Deference to expertise regardless of organizational hierarchy.

2.2.2. NORM AL ACCIDENT THEORY

Perrow developed the Normal Accident Theory (NAT) after examination of 

the incident at the Three Mile Island Nuclear Power Plant in 1979. He proposed that 

two related characteristics, complex interactions between system components and tight 

coupling, made certain technologically advanced systems susceptible to unavoidable 

accidents. He contrasted the two theories stating that HRO "believes that if only we 

try harder we will have virtually accident-free systems even if their inter-relationships 

and feedback represent complexity (i.e., difficult to quantify)and tightly coupled, 

while NAT believes that no matter how hard we try we will still have accidents 

because o f intrinsic characteristics of complex/coupled systems." [Perrow. 1999. p. 

369] Perrow acknowledged that the four HRO fundamentals are sufficient for linear, 

looser coupled systems, but trying harder would not prevent a systems accident. He 

found fault with attempts to make safety the first priority, and he elicited reasons for 

organizations not achieving increased learning. Perrow characterized NAT and HRO 

disparities concerning systems prone to multiple errors resulting in unanticipated
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interactions that defeat the constraints of safety systems. He identified the following 

characteristics that determine the scope of inevitable failures: operating scale 

experience, experience with critical processes, information errors, close proximity of 

"elites" to the system, organizational control over personnel, and organizational 

density within the system environment.

2.2.3. COM M AND SAFETY CLIM ATE SURVEYS

A common method to obtain data that provides measurement of an 

organization's safety climate is through use o f survey questionnaires. This analysis of 

this information has been used over the past two decades to demonstrate relationships 

across many safety climate components and mishap occurrence rates in a variety of 

high-risk industries. [O’Connor et al., 201 la] Naval Aviation uses several surveys for 

defining organizational safety climate. Climate assessment surveys are used as a 

measurement of an organization's capability to safely conduct operations in terms of 

leadership, culture, policies, standards, procedures, and practices. [Figlock, 2004] 

These include those administered at the squadron level, Fleet Readiness Centers 

(previously referred to as Aircraft Intermediate Maintenance Departments and 

Aviation Depots), higher headquarters, support personnel, and contractors. Surveys 

provide for respondent anonymity, organizational confidentiality (due to limited 

access to survey results), World Wide Web implementation, and comparative analysis 

to prior results and like squadron flying similar aircraft. Quantitative data are 

generated by: demographic questions (e.g., rank, years o f experience, service, status, 

parent command, and location); closed-ended questions and Likert-scale responses;
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and qualitative data are supplied through open-ended questions and free text responses 

to describe unit specific issues.

The squadron level surveys are the Command Safety Assessment and 

Maintenance Climate Assessment Survey. In 2004, Vice Admiral Zortman, 

Commander, U.S. Naval Air Forces ordered mandatory compliance for all aviation 

squadrons to complete assessment surveys semiannually and within 30 days following 

a change of command. [Buttrey, 2010] The CSA provides aircrew interpretation of 

key organizational issues that relate to a command's influence on the organizational 

safety climate factors that may lead to an aircraft mishap. It was developed using the 

HRO framework for entities that operate in high-risk environments, but have fewer 

failures than would be predicted. Similarly, the MCAS was designed as a diagnostic 

tool to capture the maintainers' perspective of risk management and safety climate.

The MCAS was developed two years after the CSA and added a sixth component to 

the MOSE conceptual model, Command and Functional Relationships (C/FR). C/FR 

consists o f the internal organizational communications paths for timely distribution of 

information to support safe job accomplishment, coordination, and execution of 

aircraft maintenance.

Schimpf used both squadron CSA and MCAS data for statistical comparison 

against actual mishap occurrence. He used MathCAD software to develop a 

mathematical model to predict the frequency o f squadrons experiencing 0, 1,2, 3, or 4 

mishaps within 12 months post survey and a provide a means to relate the safety 

climate survey score to a quantitative measure o f mishap likelihood. [Schimpf, 2004b]
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Schimpf s research project for the School of Aviation Safety, Naval 

Postgraduate School at Monterey, California had the primary goal of quantitatively 

defining a squadron's probability of incurring a mishap based upon survey results. 

"Toward this aim, a MathCAD model was implemented to simulate the mishap 

probability process. This simulation generated an equation that predicts the frequency 

of squadrons experiencing zero, one, two, three, or four mishaps within 12 months 

post survey and also provides a means to relate survey score to a quantitative measure 

of mishap likelihood." [Schimpf, 2004b. p. 20] The research showed quantitative and 

descriptive statistical relationships between survey results and squadron safety 

performance using the following assumptions:

• Gaussian distribution of survey results.

• Numbers of mishap events within a fixed period are the result of a Poisson 

process.

• Future mishap probability increases in an exponential manner corresponding to the 

average survey score (i.e., increased risk resulting from lower average score, and 

vice versa).

Schimpf developed a mathematical model using a Gaussian score distribution 

with each datum contained within distribution generating a Poisson distribution of 

mishaps proportional to the probability. The Poisson distribution was modified by 

exponential variation of average risk (denoted as “a ” in the Poisson equation) 

dependent on survey score.
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P.. , (n,x)  — P.M i s h a p  v  ’  /  ( , (A)/5, , a ( - v ) )  where (EQ1)

G Y « m j V/w

v-A
<7 (EQ 2)

/i = 0, 1,2, ... (EQ 3)

where n is the number of mishaps that have occurred in the last 12 months since 

the MCAS

[Schimpf, 2004b, p. 21]

In a follow on study, Schimpf and Figlock averaged all 43 MCAS survey items 

to derive a metric o f overall safety climate which was compared to individual unit 

performance. The analysis was based on the sample of 17,228 completed MCASs 

from 168 Naval Aviation squadrons (65% Navy and 35% Marine Corps). Mishap data 

were provided by the U.S. Naval Safety Center for the period from August 10, 2000 

through April 1, 2004. This study was conducted to explore the potential relationship 

between safety climate score and occurrences of mishaps. As shown in Figure 3, there 

were substantial differences in incurred mishap occurrence among the safety climate 

quartiles. The aviation units in the lowest quartile (interval 2.90-3.59) had nearly 

twice the number o f accidents (94 versus 49) in the 24 month time frame. [Ciavarelli, 

2007]

a  = a(x)  =  a 0e (EQ 4)
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Figure 3. MCAS Survey versus Mishaps Within 24 Months After Survey 
[Ciavarelli, 2007, Schimpf and Figlock, 2006]

■ Class C 

Class B 

□ Class A

Conditional probabilities of future mishap occurrence within 24 months after survey 

based upon the frequency events for quartile distribution shown in Figure 3, above, 

were computed. The equation for conditional probability used was:

Conditional Probability (Qj)  = frequency / total occurrence, such that:

£ f=1 Conditional Probability (Qj) =  1 (EQ 5)

The conditional probability data are depicted in Table 3 below:
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Table 3. Conditional Probability of Future Mishap Occurrence within 24 Months 
after Survey Dependent upon MCAS Quartile Results

Quartile/ 
Class Mishap Category

Qi Q2 Q 3 Q 4

Alpha 0.3231 0.2923 0.1846 0.2000
Bravo 0.3243 0.3514 0.2432 0.0811
Charlie 0.3987 0.1699 0.2157 0.2157
Total A, B, and C 0.3686 0.2275 0.2118 0.1922

2.2.4. HUM AN ERROR

Human error has resulted in numerous well-known catastrophes resulting in 

significant loss o f life and equipment destruction. Some recent examples include the 

Tenerife runway collision in 1977 [Weick, 1990], Three Mile Island in 1979 [Bowen, 

1983], Bhopal methyl isocyanate release in 1984 [Fischer, 1996], Challenger 

destruction [Rogers, 1986], Chernobyl tragedy o f 1988 [World Nuclear Association, 

2006], and Columbia mishap in 2003. [Columbia Accident Investigation Report, 

2003] Effects of industrial growth, technology, and automation have significantly 

increased the inherent consequences o f mishaps due to human error.

In his seminal work, Human Error. Reason asserted "that the relatively limited 

number of ways in which errors actually manifest themselves are inextricably bound 

up with the 'computational primitives' by which stored knowledge structures are 

selected and retrieved in response to current situational demands." [Reason, 1990a, p. 

1] He defined the nature of error, reviews influential studies on human error, and 

presented a Generic Error Modeling System which categorized three basic error 

types: skill-based slips and lapses; rule-based mistakes; and knowledge-based 

mistakes. He addressed the human input to mishaps occurring in fields o f high-risk,



32

complex technologies, and he distinguished between active and latent errors. Active 

errors are committed by personnel who implement controls that have immediate 

impact on system operation. Latent errors most commonly reside within higher 

organizational levels and "may lie dormant for a long time, only making their presence 

felt when they combine with other 'resident pathogens' and local triggering events to 

breach the system's defenses." [Reason, 1990a, p. xi] The author stated that latent 

errors pose a greater threat to technologically advanced systems than active failures 

and are much harder to recognize. He defined dynamics of accident causation with the 

trajectory o f an accident opportunity having to penetrate several defensive layers. 

These layers served as a defense-in-depth representing the complex inter-relationships 

between latent failures and a variety of local triggers. As shown in Figure 4, Reason 

characterized the chances of an opportunity trajectory finding aligned holes in 

successive defensive layers at any one time as very small. This research effort was 

undertaken to develop models that would represent multiple characteristics that 

comprise a naval aviation squadron’s defenses against mishap occurrence.
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Figure 4. Dynamics of Accident Causation [Reason, 1990a, p. 208]

Investigation data for mishaps provided by the Naval Safety Center identified 

that human error or failure causal factors were identified for 91% of 244 Class A, 76% 

of 207 Class B, and 54% of 606 Class C mishaps which occurred between October 

1999 and August 2009. [O’Connor et al., 201 la]

2.2.5. HUM AN FACTORS ANALYSIS AND CLASSIFICATION SYSTEM

Wiegmann and Shappell in 2000, adapted Reason's theory to produce a model 

o f accident causation. They depicted latent and active failures as producing "holes" 

within layers categorized as Unsafe Acts, Preconditions for Unsafe Acts, Unsafe 

Supervision, and Organizational Influences. Depending upon the alignment of the 

"holes" or gaps in each layer, the failures may provide the opportunity for a single 

vector of causal elements to pass unimpeded and result in a mishap. This model, 

shown in Figure 5, represents a mishap as the result of aligned failures or absence of 

defenses in each layer. “It is well established that mishaps are rarely attributed to a 

single cause, or in most instances even a single individual. Rather, mishaps are the
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end result of a myriad of latent failures or conditions that precede active failures." 

[Office of the Chief of Naval Operations Instruction (OPNAVINST) 3750.6R, 2003, 

0 - 1]

Latent FailuresOrganizational
Influences

unsafe 
Supervision

CJ
Preconditions

r :

Unsafe Acts

Unsafe 
Acts

Latent Failures

Latent Failures

Active Failures

Failed or Absent 
Defenses

Mishap

Figure 5. Swiss Cheese Model of Accident Causation 
[Shappell & Wiegmann, 2000, p. 4]

Through decomposition of the four layers into their respective causal elements, 

Wiegmann and Shappell developed the Human Factors Analysis Classification System 

(HFACS) shown in Figure 6, as an accident investigation and analysis tool 

[Wiegmann & Shappell, 2003] Each layer is comprised of categories which represent 

specific causes for failed or absent defenses against mishaps. Human errors that are 

the consequence of aircrew, maintenance personnel, and supervisors represent three 

prevalent categories in aviation. [Fry, 2000] HFACS is used throughout the 

Department o f Defense and many different government agencies for post-mishap 

investigation and analysis of human error.
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Figure 6. Human Factors Analysis and Classification System 
[Shappell and Wiegmann, 2000]

Wiegmann and Shappell [2003] developed HFACS to provide aviation mishap 

investigators with the required tools to analyze the causal effects o f human error. The 

development of HFACS was an iterative process of verification and improvement. 

HFACS categorization and decomposition were empirically derived and refined 

through the analysis of the causal factor data listed in numerous mishap investigations.

Supplementary extensions of the HFACS have been developed to focus 

specifically upon a common subset of related human factors errors that may present 

causal factors for a mishap. The Maintenance Extension is a subset of the HFACS 

domain that provides a unique perspective for analyzing the impact of individual 

malpractices and organizational / supervisory failures in triggering an aviation-related
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casualty or loss. The HFACS-ME uses a three-tiered order of effects perspective to 

precisely characterize a lapse in the respective defensive layers found within an 

aviation unit's maintenance department. A breakdown of contributing mishap causal 

factors, organized by first, second, and third order tiers is listed below in Table 4.
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Table 4. HFACS-ME Taxonomy [OPNAVINST 3750.6R, 2003, 0-16]

First Order Second Order Third Order

Management Conditions

Organizational

Inadequate Processes 
Inadequate Documentation 
Inadequate Design 
Inadequate Resources

Supervisory

Inadequate Supervision 
Inappropriate Operations 
Uncorrected Problem 
Supervisory Misconduct

Maintainer Conditions

Medical
Adverse Mental State 
Adverse Physical State 
Unsafe Limitation

Crew Coordination
Inadequate Communication 
Inadequate Assertiveness 
Inadequate Adaptability/Flexibility

Readiness

Inadequate Training/Preparation 
Inadequate Certification/Qualification 
Personnel Readiness 
Infringement

Working Conditions

Environment
Inadequate Lighting/Light 
Unsafe Weather/Exposure 
Unsafe Environmental Hazards

Equipment
Damaged/Unserviced
Unavailable/Inappropriate
Dated/Uncertified

Workspace
Confining
Obstructed
Inaccessible

Maintainer Acts

Error

Attention/Memory 
Knowledge/Rule 
Skill/Technique 
J udgment/Decision

Violation

Routine
Infraction
Exceptional
Fragrant

The HFACS-ME framework provides an effective methodology for classifying 

mishap causal factors resulting from maintenance errors. Its capability mirrors that of 

the overall system with full applicability in scope from near miss to major damage and 

significant personnel loss. A study of aircraft mishap information contained within the 

Maintenance Error Information Management System (MEIMS) database analyzed the 

third order effects (found in Table 4) for correlation. Of 1,016 aviation mishaps that
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occurred between 1996 and 2001 in which maintenance issues were attributed as 

causal factors, 4,235 associated third-order factors were identified. As shown in 

Figure 7, there is a non-uniform distribution o f causal factors with the highest 

frequencies falling under the first-order classifications of unsafe management 

conditions and unsafe maintainer acts.
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Figure 7. Mishap Occurrence Percentage for Selected HFACS-ME Third- 
Order Factors (n=l,016) [Source, Krulak, 2004, p. 431]

"It is apparent from the graphical frequency data that the different HFACS-ME 

factors are associated in dissimilar ways in aviation mishaps. In the simplest form, 

some factors are far more likely to be seen in a mishap than others. These differences 

are important because an understanding of which factors cause the most mishaps may 

improve the focus o f safety programs, and direct scarce resource to where the largest 

safety impact can be made." [Krulak, 2004, p. 431 ]
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Schmorrow conducted a study o f 470 Naval Aviation Maintenance Related 

Mishaps (MRMs) that occurred from Fiscal Years 1990 through 1997. Analysis 

included coding the mishap data causal factors from the Naval Safety Center using the 

HFACS-ME to account for the scope o f error types. Determination was made using 

the second order error types. Results are shown in Table 5.

Table 5. Frequency of Error Type by Accident Type and Class 
[Schmorrow, 1998, p. 64]
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FM 68 80 0 4 0 0 0 13 126 52
FRM 8 17 0 0 0 1 1 2 27 9
AGM 75 185 6 16 2 22 2 63 217 121
Class A 30 42 0 2 0 2 1 10 47 25
Class B 25 41 1 3 0 3 0 6 44 21
Class C 96 199 5 5 2 18 2 62 279 136
Total 151 282 6 20 2 23 3 78 370 182
*M-Flight Mishap FRM-Flight Related Mishap AGM -Aircraft Ground Mishap

The study revealed that over 95% of the identified human error causal factors were 

attributed to five error types (listed in descending order): Error, Supervisory / 

Squadron, Violation, Organizational / Unforeseen, and Crew Resource Management. 

[Schmorrow, 1998, p. 64]
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2.3. RESEARCH CONTEXT

Supplementary literature that supports the conduct of this research for 

Modeling and Simulation domain for framework, theory, and formalisms used in 

conceptual and computational model development efforts included:

• Law, A. & Kelton W., Simulation Modeling and Analysis. This text book offered 

many state-of-the art areas within the field of Modeling & Simulation including 

software, validation and verification, input modeling, processes, statistical design, 

and analysis.

•  Zeigler, B., Praehofer, H., & Kim, T., Theory o f Modeling and Simulation: 

Integrating Discrete Event and Continuous Complex Dynamic Systems. This 

manual introduced formalisms, and specifications that define applicable 

components and extensions. Approaches to frameworks, system morphisms, 

verification and validation, design methodology, and system entity structures are 

presented.

2.4. USE OF SURVEY RESULTS TO ASSESS ORGANIZATIONAL SAFETY

Organizational surveys completed by workforce personnel provide a means to 

obtain both quantitative and qualitative data regarding perceptions of the unit's 

characteristics. Quantitative results are provided through use of questionnaires that 

use a scaled answering mechanism. Qualitative data are normally obtained through 

use of open ended questions enabling the respondent to provide less-constrained 

details on their individual opinions. Surveys provide a broad-based appeal that impart 

an implied sense of legitimacy, compare favorably with other methods to gain
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meaningful data in ease o f use and base effectiveness. They may be used to explore 

and understand employee opinions and attitudes, assess behaviors and attributes in 

employee day-to-day work experiences, obtain baseline measures for benchmarking 

change, and drive organizational change and development. [Church and Waclaswki, 

1998]

Application of survey questionnaires are used develop and define 

organizational safety climate metrics. Guldenmund [2000] stated, “Organizational 

climate is commonly conceived of as a distinct configuration with limited 

dimensionality surveyed through self-administered questionnaires. Such measures are, 

up to a certain point, objective and semi-quantitative. Organizational culture is often 

determined phenomenologically, i.e. through observations and interviews, through 

trial-and-error, mutual comparison and the like. Such measures are regarded as 

qualitative and thus difficult to quantify.” [p. 221] Safety climate survey 

questionnaires enable statistical comparisons among different variables and 

components as well as means to quantify changes that occur between successive 

occurrences of the survey being taken [O’Connor et al., 201 lb] Command climate 

assessment surveys serve to provide senior leadership with an instantaneous metric to 

evaluate their safety climate at the time of administration. The assessment survey's 

goal is to provide useful information that enables advanced identification of issues that 

may increase risk and mishap occurrence. Ideally, the early ascertained, lead 

indicators allow leadership the opportunity to employ proactive risk mitigation efforts 

to rectify those situations before a mishap occurs. [Buttrey, 2010] Safety surveys have 

wide applications not only in Naval Aviation, but also are used in evaluation of
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clinical healthcare delivery, industry. A relationship was suggested from safety survey 

results demonstrating that employee perceptions o f the safety systems are related to 

management's commitment to safety and related to sustained injury rates. [O'Toole, 

2002]

The Maintenance Climate Assessment Survey contained 43 questions that were 

answered via computer entered radio button selection as shown in Figure 8.

0 o o o o
Strongly Disagree Neutral Agree Strongly
Disagree Agree

oN /A

o Don't 
Know

Figure 8. Maintenance Climate Assessment Survey Response Options 
Source: Aviation Climate Assessment Survey System

This represented a bi-directional rating Likert scale quantitative five point range as 

shown below

1 = Strongly Disagree
2 = Disagree
3 = Neutral
4 = Agree
5 = Strongly Agree
No points were assigned for responses o f either N/A or Don’t Know

Additional details regarding use of Likert Scales can be found in section B.l of 

Appendix B.
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2.5. DISCRETE EVENT SIM ULATION M ODELING TECHNIQUES

A wide range of techniques are available for computational modeling. 

Simulations of models possessing continuous states and times are traditionally 

represented using differential equation systems. [Ziegler et al., 2000] Simulation 

using discrete event models involves representing a system's evolution over time 

through state variables that (are considered to) change instantaneously at separate 

points in time. Events are the term used to define the point in time when an 

instantaneous occurrence may change the system's state. [Law and Kelton, 2000] 

Discrete event simulations may reflect either a standardized, incremental time-advance 

feature (i.e., simulation clock) in which state variable metrics are provided or use non- 

uniform time increments that reflect state variable metrics that occur at a point in time 

concurrent with a significant event affecting a state variable component. Discrete 

event formalisms use a stepwise mode of execution to define a model’s state at a 

particular point in time and how the respective state’s change in the future, and 

environmental influences. [Ziegler et al., 2000]

This section reviews five discrete event simulation techniques and lists 

advantages and disadvantages for their use for predictive risk analysis modeling based 

upon MCAS survey results:

2.5.1. BAYESIAN NETW ORK MODEL

Bayesian Network Models (BNMs) rest on the application o f Bayes Theorem: 

If A and B are events with P(B)>0, then
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P ( B \ A ) P ( A )

p (A \ B) ~ — 7m—  (£Q6)

[Jackman, 2009, p. 9] They are discrete event models of domains with inherent 

uncertainty. BNMs are represented by graphical structures that consist of nodes and 

arcs. The nodes correspond to random state variables and arcs represent the direct 

probabilistic relationships between the connected variables. These probabilistic 

relationships are quantified through use of probability distributions which are usually a 

conditional probability table associated to the nodes. [Bayesia, 2001, p. vi]

The goal for use of BNMs is to produce statistics that update conditional 

probabilities in light o f observed evidence. This supports a quantitative method to 

evaluate the model’s subjective sense, i.e., probability as a degree of belief. BNMs 

allow for calculation o f all the possible combinations o f causal connections between 

nodes relating only neighboring nodes. Bayesian networks contain a built-in 

independence assumption. [Chamiak, 1991] Components o f Bayesian Networks 

include:

• A set of variable and a set o f directed edges between variables

• Each variable has a finite set of mutual exclusive states.

• The variables together with the directed edges form a Directed Acyclic Graph.

• To each variable A with parents B i  B„ there is attached a conditional

probability table P  (A \ B t  B n). [Jensen, 1996, p. 18]

BNMs may be used for determining model causality where understanding of 

what's occurring is incomplete. With Directed Acyclic Graphs containing prior 

probabilities of all root nodes and conditional probabilities of all non-root nodes given
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all possible combinational of direct predecessors, the conditional probabilities of 

network nodes are calculated given the values of observed nodes. [Chamiak, 1991]

An example of a BNM is show in Figure 9

Figure 9. Example of a Bayesian Network Model

Advantages for use o f BNMs include capability to:

• Readily accommodate a variety of knowledge sources and data types including 

incomplete data sets.

• Allow one to learn about causal relationships by transparent representations 

between system variables

• Support use observed knowledge to determine the validity of the acyclic graph 

represented in the BNM.

• Facilitate use o f prior knowledge. Causal networks represent prior knowledge 

whereas the weight of the directed edges can be updated in a posterior manner 

based on new data.



46

• Perform relatively straightforward construction o f prior knowledge through use of 

“causal” edges between any two factors that are believed to be correlated.

• Provide an efficient method for preventing the over fitting of data.

Some disadvantages for use o f BNMs are:

• There is no universally accepted method for constructing a network from data.

• Potential difficulty for experts to agree on model structure.

• Limit to the spatial and temporal scales that can be represented in one BNM.

• Inability to support feedback loops. [McCloskey, 1999; Heckerman, 2006; 

Landscape Logic, 2009]

2.5.2. HIDDEN M ARKOV MODEL

Hidden Markov Models (HMMs) are a subset o f Bayesian modeling defined as 

a statistical model employing doubly stochastic process with an underlying stochastic 

process that is not directly observable through another set of stochastic processes that 

produce a sequence o f observed results. Transition functions are utilized to represent 

the dynamics occurring in the unobservable space. This modeling technique is 

represented by the following characteristics:

• N , the number of states in the model with individual states denoted as

S = { S / ,  S ?,... ..S’v/ and the state at time t as q,. (EQ 7)

• M,  the number of distinct observation symbols per state. Observation symbols 

match to the model's output. Individual symbols are denoted as

E = /v /, \ ' 2  vM}. (EQ 8)
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• Probability distribution of state transition:

A - {a , ,} where a,l= P ( q , . / = Sj | q,  = S,)  for 1 < i , j  <N. (EQ 9)

• Probability distribution of the observation symbol in state j ,

B  ~  {bj(k)}  where b,{k) = P [ v k at t  \ q, = 5/] for I  < j  < N  a n d  

I < k < M .  (EQ 10)

• The initial state distribution for n  = rti where

ni = P[qi = Si] (EQ 11)

• Input variable values for N, M ,  A,  B ,  and n  are used by the HMM to produce an 

observation vector sequence:

0 = 0 1 , 0 2, ..  . O r  (EQ 12)

[Bilmes, 2002; Rabiner and Juang, 1986, p.5; Rabiner, 1989, p. 259]

Given a finite sequence o f hidden states, probabilities o f all possible transitions 

are multiplied by probabilities of observed output symbols to determine the overall 

probability of all output symbols produced in the current path of transitions to that 

point. Model parameters must be valid probabilities and conform with:

a i j  =  1 . 1 %  b j ( k )  =  1 (EQ 13)

a u  >  0 , b j ( k )  >  0 (EQ 14)

[Boussemart, 2011]

Computational HMMs require the ability to address three issues in:

• Evaluation: Determining the probability that a given sequence is produced by the 

HMM;
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• Decoding: Determining the most probable path of hidden states, given a sequence 

of observable symbols; and

• Learning: How to adjust the model parameters for A,  B ,  and n  to maximize the 

likelihood that the HMM could produce the observed string of symbols.

HMMs are used for automatic word, speech, and hand gesture pattern recognitions, 

and health state modeling. [ Bilmes, 2002; Rabiner and Juang, 1986; Rabiner, 1989, 

Kadous, 1995]. A depiction o f an HMM is shown in Figure 10 below.

Observable States

Figure 10. Example o f a Hidden Markov Model

Advantages of use of HMMs include the capability to:

• Provide a solid statistical foundation for modeling

• Use efficient learning algorithms
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• Develop flexible and general models to represent sequencing properties

• Incorporate prior knowledge into the model's architecture through initializing 

close to something believed to be correct

• Support use prior knowledge to constrain the training process

• Combine individual HMMs into larger HMMs

HMM utility presents the following disadvantages:

• They contain a large number o f unstructured parameters

• Accurate modeling requires large amounts o f data

• Conditional independence properties are inaccurate if there are too few hidden 

states, or if there are inaccuracies in the observation distributions

• They make very large assumptions about the data through the Markovian 

assumption that emission and transition probabilities depend only on the current 

state. [Kadous, 1995; Bilmer, 2002; Salifu, 2003; Zoltan and Zoltan, 2006]

2.5.3. NAIVE BAYESIAN MODEL

Naive Bayesian Models (NBMs) are the simplest form o f a Bayesian network, 

in which this technique “naively" assumes that all attributes are independent given the 

value o f the class variable. [Zhang, 2004] By making this assumption, the probability 

distribution may be efficiently represented as the product o f many simpler 

distributions:

P ( A t , A 2  A n , C )  =  P (C )n?= i P M  I Q  ( E Q  15)



50

As a special case o f a Bayesian network, Naive Bayes attribute variables A| ....A n over 

and cluster variable C, in which the parent of each Aj is C and C has no parents. The 

efficiency gains over general Bayesian networks come from using this restricted 

structure. [Lowe, 2005, p. 4] An NBM schematic is depicted in Figure 11.

Figure 11. Naive Bayesian Network

NBMs use a generative based approach in which a conceptual framework combines 

prior knowledge and observed data. It functions as a basic - conditional probabilistic 

classification algorithm through application of Bayes' Theorem by making strong 

(naive) assumptions about the independence of observed characteristic variables. 

Probabilities are calculated by dividing the percentage of pairwise occurrences where 

both conditions occur simultaneously by the percentage of singleton occurrences 

where only the prior event occurs. NBMs use the assumption that all the predictors 

are conditionally independent of the each other. [Oracle, 2005; de Kok and Brouwer, 

2010]
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NBM advantages include:

• Fast, simple, easy to implement, and affords highly scalable building and scoring

• It is one o f the most efficient and effective inductive learning algorithms for 

machine learning and data mining that provides competitive performance in 

classification. [Zhang, 2004]

• Good results obtained in many cases with strong applications for use as a text 

classifier for anti-spam e-mail filtering [Schneider, 2003]

NBM disadvantages include:

• A loss of accuracy may be induced due to the assumption o f class conditional 

independence

• Often, dependencies exist among attribute variables

• Model results often demonstrate produced conditional probabilities that over fit to

observed non-coherent data (i.e., noise in the data)

• Naive Bayesian assumes that events that don’t occur in the data are deemed to 

have impossible probabilities.

2.5.4. ARTIFICIAL NEURAL NETW ORK MODEL

Artificial Neural Network Models (ANNMs) are a form of Artificial

Intelligence (Al) that use a network o f nodes and highly interconnected synapses to

represent modeled processes. They are widely recognized to have begun by

McCulloch-Pitts regarding the representation of functioning of neurons in the 1940s

through development o f a computational modeled binary decision machine that
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applied weights to input activations, summed the products, and produced output 

activations. ANNM structure is largely distributed in parallel as opposed to sequential 

processing found in other forms of Al. This non-linearity affords flexibility, the 

means to learn to acquire knowledge by adaptation of internal parameters applied to 

previous examples and generalize. ANNMs are considered to be totally connected 

when all the outputs from a level connect with all the nodes in the following level. 

They are partially connected if some o f the links in the network are not facilitated 

[Russell, 1991; Alvarez, 2006; Leverington, 2009; Boussemart, 2011]. A graphical 

representation of a totally connected ANNM is shown in Figure 12.

Figure 12. Artificial Neural Network Model

Applications for ANNMs cover many different fields o f engineering and 

science including speech synthesis, pattern recognition, diagnostic problems, medical 

illnesses, robotic control and computer vision. [Russell, 1991]
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The advantages for use o f ANNMs include the capabilities to:

• Perform tasks that cannot be done through a linear program

• Continue operations when a node fails by its parallel nature

• Learn without the need to be reprogrammed

• Implicitly detect complex nonlinear relationships between independent and 

dependent variables

• Detect all possible interactions between predictor variables.

Disadvantage in using ANNMs include the

• The weighting is usually not interpretable. This leads to inability to provide

explanatory power captured in the intermediate process. It is key to understand

that ANNMs are “black box” operations and have limited ability to explicitly 

identify possible causal relationships

• Requirement for training to operate.

• Necessity o f high processing time for large neural networks.

• Susceptibility to over fitting

• Need to resolve methodological issues in model development due to its empirical

nature. [Tu, 1996; NeuroAI, 2007, Boussemart, 2011]

2.5.5. SUPPORT VECTOR M ACHINE MODEL

Support Vector Machine Models (SVMMs) use supervised learning algorithms

to conduct binary and multi-class discriminatory classification by taking training data

as input to produce an optimal hyper-plane that categorizes new examples. This
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output represents the largest minimum distance between training examples by 

achieving the widest margin across the training data. The original SVMM was 

invented in 1963 by Vladimir N. Vapnik and it denotes a modem outgrowth of 

ANMMs that support highly accurate modeling. This technique uses linear models to 

implement nonlinear class boundaries by transforming input space using a nonlinear 

mapping into a new space. A linear model constructed in the new space may be used 

to represent a nonlinear decision boundary in the original space. SVMMs may apply a 

sigmoid kernel function to transform low dimensional training samples to higher 

dimensional solutions (for linear separability problem) and use Quadratic 

Programming (QP) to find the best classifier boundary hyper-plane. [Boswell, 2002; 

Zhang, 2011; Pedregosa et al., 2011; Tomuro, 2011; DTREG, 2013] A depiction o f a 

SVMM is displayed in Figure 13.

t X  Maximum 
N Margin

Xl

Figure 13. Support Vector Machine Model Classification
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SVMMs have been applied to crowd monitoring systems, intrusion detection,

distracted driving classification, insolvency analysis, predicting common diseases,

decision tree predicative modeling, and image classification. [Auria and Moro, 2008;

We, 2010; Boussemart, 2011]

The advantages of SVMMs are:

• They deliver a unique optimal solution in comparison to ANNMs which have 

multiple solutions associated with local minima

• Effectiveness in high dimensional spaces

• Production o f very accurate classifiers with generally high prediction accuracy

• They are less susceptible to over fitting

• Ability to provide a good out-of-sample generalization. By choosing an 

appropriate generalization grade, SVMMs can be robust, despite cases in which 

the training sample has some bias.

The disadvantages of SVMMs include:

• Requirement for long training time and difficulty in understanding the learned 

function of weights.

• If the number of features is much greater than the number o f samples, the method 

is likely to give poor performances.

• SVMMs do not directly provide probability estimates

• They require extensive computations and therefore run slow comparatively.

[Auria and Moro, 2008; Yu, W, et. al, 2010; Pedregosa et al., 2011; Tomuro, 2011; 

Zhang, 2011]
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3. M ETHODOLOGY

3.1. DESCRIPTION

This dissertation was pursued to conduct research and development o f an 

accurate Discrete Event Model for predictive risk analysis of mishap occurrence based 

upon input derived from Maintenance Climate Assessment Survey responses and 

corresponding organizational mishap report summaries. It involved the following 

research components:

• Real World Applicability: Basic Research attempting to clarify underlying 

processes.

• Purpose: Causal-Comparative Study. Determination if there was an 

association or relationship between variables derived from event sequences and 

conditions that had already occurred. This was conducted to attempt to 

determine the reason for the observed results and differences.

• Goal: Descriptive Survey. Measurement of attitudes obtained by asking the 

same set of questions to a large number o f individuals. In this case the 

personnel who were assigned and / or conduct maintenance within a Naval 

Aviation squadron.

• Perspective: Historical. Research that was based upon previous events. 

[Fraenkel, Wallen, and Hyun, 2012]



57

3.2. APPROACH

Research consisted of evaluation of instrumentation for provided, available, 

quantitative data, definition o f key variables, and selection o f Bayesian Network 

Modeling as the discrete event modeling framework followed by, development of 

applicable conceptual models, and construction / implementation of computational 

models. Actual squadron MCAS response data were aggregated for each organization 

(i.e., aviation squadron) and cross matched against corresponding aviation mishap 

report summaries as system input to ascertain model performance and determine 

conditional probabilities distributions for mishap occurrence. The research supporting 

model development was conducted in an iterative process. Verification and validation 

was performed throughout the developmental research to confirm computational 

model correctness and to enable assessment of the dissertation problem statement and 

research questions.

3.3. NAVAL AVIATION ORGANIZATIONAL CONSTRUCT AND  

PROCESSES

A preliminary analysis o f a Naval Aviation squadron as an organization was 

conducted to include decomposition, review of instructions, and definition of 

processes. The results are contained within Appendix C.
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3.4. EVALUATION OF INSTRUM ENTATION FOR PROVIDING DATA

3.4.1. DATA SOURCES

Initial data for this research effort were requested in 2005 from the U.S. Navy. 

Data requests included MCAS results, maintenance statistics, and mishap investigation 

report results. This information was necessary to define a methodology that the data 

would support, conduct o f further model development, and refinement from the 

conceptual phase to a computational model that could be executed and analyzed.

USN and USMC aviation squadrons conduct periodic surveys by maintainers 

and aircrew to assess safety issues within their command. Since results are not 

releasable outside of the command, sanitized data were requested that did not provide 

identification o f specific squadrons. In order to validate model results, additional data 

were requested that would provide mishap report summaries that included:

• The summary o f mishap events

• The causal factors identified by the mishap investigation board and approved upon 

review by the chain of command.

It was necessary that the mishap summaries could be associated with the respective 

squadrons' MCAS results from a recent previous survey.

After numerous unsuccessful attempts to obtain requested information, the 

Naval Safety Center (NSC) in Norfolk, Virginia was approached in 2008 as a 

repository o f both MCAS data and mishap reports. NSC functions to support the 

Naval Safety Program by providing guidance and direction, safety data and program 

services, and the marketing of safety. NSC's mission is to provide safety assistance
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and advice to senior Navy and Marine Corps leadership in order to enhance the 

services" warfighting capability, preserve resources, and improve combat readiness by 

preventing mishaps and saving lives. [Naval Safety Center, 2010]

The NSC Safety Data Manager offered to sanitize both MCAS results and 

matching mishap reports and coordinated to release the double blind data. This was 

vetted by the CNAF Judge Advocate General and approved by Safety Officer 

contingent upon certification by the Safety Data Manager that all the provided 

information was sanitized. An updated list of detailed data requirements was requested 

from NSC. This is categorized below:

Communication with the Dissertation Faculty Advisor and NSC Safety Data 

Manager was undertaken to determine an acceptable number o f mishap report 

summaries to be used to achieve statistical significance. From Fiscal Year 2000 

through 2009 there had been 2,300 surveys from 369 commands and the Navy/Marine 

Corps had experienced 1,696 Class A-C mishaps from 384 commands. A summary of 

mishaps sorted by classification (A, B, C) and year is provided in Table 6.
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Table 6. Naval Aviation Mishaps Class A-C for Fiscal Years 2000-2009
[Scott, 2009]

Fiscal Year Class A Class B Class C Total
2000 32 21 115 168
2001 21 16 114 151
2002 39 32 106 177
2003 40 29 138 207
2004 34 35 133 202
2005 26 28 131 185
2006 24 37 125 186
2007 19 39 118 176
2008 24 40 102 166
2009 8 21 49 78
Total 267 298 1,131 1,696

The Safety Data Manager requested that this research data inquiry be limited in 

scope by defining the following characteristics required: timeframe, severity, and/or 

airframe. In coordination with the Dissertation Faculty Advisor, the decision was 

made to limit the request for mishap summary reports to squadrons that incurred only 

Class A mishaps and to receive a minimum number of 50 mishap summary reports 

that could be matched against corresponding MCAS results. Additional clarification 

was provided to limit mishap results to those squadrons that comprised aircraft carrier 

air wings, since they incurred similar types of operations and tempos. The 

Type/Model/Series included:

•  E-2C •  EA-6B •  F-14 »C-2A
•  F/A-18 •  S-3B •  SH-60 «HH-60

The Safety Data Manager and Customer Support Division Head at the Naval 

Safety Center took the MCAS data and removed identification containing each 

squadron's name (i.e., VAW-XXX) and replaced it with a unique 3 digit numeric code
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to designate the specific squadron. This 3 digit code was matched against the mishap 

summary reports for Class A mishap incidents which occurred in corresponding 

squadrons. The squadron names in the mishap report summaries were replaced with 

the respective 3 digit code aligned to the squadron. The MCAS data were provided in 

a tabular spreadsheet and the mishap summary report was furnished in text format.

3.4.1.1. MCAS RESULTS DATA

The MCAS results were provided by the Naval Safety Center in tabular 

spreadsheet format for 2,300 aggregated sets of survey data. 2,114 o f the unit survey 

results came from U.S. Navy and Marine Corps squadrons taking the survey, and 186 

survey results were derived from organizations representing Aircraft Intermediate 

Maintenance Departments, Fleet Repair Centers, Naval and Marine Corps Air 

Stations, Marine Air Logistics Squadrons, Research Developmental Test and 

Evaluation outfits, and other entities. Each set o f results for a specific unit was 

assigned a unique 3 digit identification code which served to blind the true identity of 

unit. Each set o f aggregated survey data included information contained within Table 

7.
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Table 7. MCAS Results Raw Data Terminology

Data Description
First Appear Serial Using the 3 digit squadron identification code, this indicated the 

first time within this total data presentation that a single 
particular unit participated by taking the MCAS

Squadron Appear 
Serial

Using the 3 digit squadron identification code to provide a single 
set o f MCAS results from a participating unit

Number of 
Respondents

Total number of individuals who participated in the survey. This 
value ranged from a minimum of 10 to a maximum of 742. The 
mean number of respondents for the 2,300 sets of survey data 
was 118 with a standard deviation o f 73.76

Community Represented the type of squadron or unit, (e.g., VAQ, VAW, 
etc.)

Squadron Service Either U.S. Navy or U.S. Marine Corps
First Survey Date The time and date the first respondent submitted a survey
Mean Survey Date Represented a computation o f the mean time and date that the 

survey was taken in the window between First Survey Date and 
Last Survey Date

Last Survey Date The time and date that the last respondent submitted a completed 
survey

Mean Likert Score 
Response to 
MCAS Question

Represented the computed mean value for the aggregated Likert 
Scores from the surveys in the Squadron Appear Serial

The text containing the 43 close-ended MCAS questions and quantitative 

Likert Scale values per response option are contained in Appendix D.

The mean time of survey results covered the span from August 23, 2000 

through January 6, 2009. The breakdown of surveys by the communities that compose 

a Carrier Air Wings is provided in Table 8.
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Table 8. Survey Breakdown by Community and Aircraft

Community Primary Mission Aircraft Surveys
HS/HSC Helicopter ASW/Combat SH-60F and HH-60H 159
VAQ Tactical Electronic Warfare EA-6B 138
VAW Airborne Early Warning E-2C 106
VF Fighter F-14B and F-14D 30
VFA Strike Fighter F/A-18A, F/A-18C, F/A- 

18D, F/A-18E, and F/A-18F
421

VRC Logistics C-2A 18
VS Sea Control S-3B 57

Total 930

3.4.1.2. AVIATION M ISHAP SUM M ARY RESULTS

The Naval Safety Center provided a written summary of the Class A mishaps 

that had occurred in Navy squadrons that comprised Carrier Air Wings for the period 

from October, 1, 2002 through July 20, 2009. Aviation mishap investigations were 

conducted in accordance with the Naval Aviation Safety Program Instruction 

(OPNAVINST 3750.6 series). Per instruction, a mishap investigation panel was 

convened by the Commanding Officer of the reporting unit that was the custodian for 

the aircraft or aircrew involved. (For mishaps involving multiple squadrons, the 

senior Commanding Officer appointed the board members from involved units.) 

Upon completion o f the investigation and analysis, the mishap investigation report 

was reviewed by the Commanding Officer and was routed up through the chain-of- 

command hierarchy. Each sequential reviewing authority is empowered to make 

changes to board determinations and recommendations. The final approved version 

was archived at the Naval Safety Center. The summary provided as data for this 

research was taken from the final mishap investigation reports and contained the 

information provided in Table 9.



64

Table 9. Class A Mishap Summary Report Data Terminology

Data Description
Event Serial 
Number

5 digit serial number used to uniquely identify the mishap event

Aircraft Type / Model / Series used to designate aircraft (e.g., E-2C)
Activity Name Corresponded to Squadron Appear Serial in Table 16. The unique 

3-digit number used to indicate a single set of MCAS results from a 
participating unit

Event Date Date of mishap occurrence
Event
Summary

Included the following information:
• Description of incident, equipment damage/loss, and personnel 

injury/loss
• Narrative summary o f mishap
• List of causal factors attributed to:

o Aircrew / Personnel 
o Material 
o Supervisory 
o Facilities 
o Maintenance

The mishap summary data included 57 separate mishap events that involved 67 

aircraft and their aircrew.

3.4.2. CONSIDERATIONS FOR USE OF LIKERT SCALE DATA

The MCAS was composed of 43 questions which evaluate six separate areas. 

The number of questions per area is depicted in Table 10.

Table 10. Distribution o f MOSE Areas within MCAS

MOSE Question Area Number of respective 
questions

Percentage of 
total questions

Process Auditing 6 14.0%
Reward System and Safety Culture 8 18.6%
Quality Assurance 6 14.0%
Risk Management 9 20.9 %
Command & Control 8 18.6%
Communication/Functional Relationships 6 14.0%
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Through use of multiple questions, the MCAS reduces measurement errors 

inherent with single item questions that tend to be less valid, less accurate, and less 

reliable than their multiple item equivalents. [Nunnally and Bernstein, 1994] Details 

concerning Likert Scale as metric data is contained in Appendix B, Section B.2.

In order to evaluate the utility o f Likert Scale derived data, two characteristics 

o f the test / survey were evaluated: Reliability and Construct Validity. “Scales, as 

measuring instruments, are evaluated primarily on the basis o f two criteria: reliability 

or the proportion o f scale score variance that is not error variance, and validity, or the 

proportion of scale score variance that accurately represents the construction or the 

proportion of criterion variance that is predicted by the scale." [Dawis, 1997. p. 486] 

"M easu rem en t e rro rs  a re  induced  from  th e  m easu rem en t in s tru m e n t's  sy stem ic  b iasing  

or random error. Validity references the degree o f bias in the measurement instrument 

while reliability is a reference to the random error introduced by the measurement 

instrument. Validity and reliability are independent of each other. Validity is often 

thought o f as the 'accuracy’ o f the scale while reliability is its 'precision.' Scales that 

lack validity have systematic biases to them, while those that lack reliability have 

large random errors associated with their measurement.” [DeCoster, 2005. p. 7]

In December 2012, a study was published on the conduct o f construct validity 

testing for the MCAS [Brittingham, 2012] investigating the relationship between 

Naval Aviation Mishaps and Squadron Maintenance Safety. This research examined 

the construct of the squadron maintenance safety climate survey and its possible 

relationship to aviation mishaps. The raw data employed included MCAS responses
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from 126,058 maintainers between August 2000 and August 2005 and included the 

same data responses in this dissertation research during that same timeframe.

The author surmised that MCAS content validity, along with factor analysis, 

should yield six distinct categories, corresponding to the six components o f the Model 

of Organizational Safety Effectiveness (MOSE) including Process Auditing, Reward 

System and Safety Culture, Quality Assurance, Risk Management, Command and 

Control, and Communications / Functional Relationships. The research conclusions 

were:

• Through data analysis, specifically, factor analysis, the MCAS was found to be an 

inadequate tool with questionable validity for gauging maintenance safety climate.

• It has one main factor on which every MCAS question loads.

• With one main factor, the MCAS is not providing the results in content areas as 

originally planned.

• The analysis o f the data clearly shows that with only one factor, versus six which 

would correspond to the six MOSE categories, the MCAS is not measuring what it 

was intended to measure.

3.4.3. MCAS RELIABILITY

Reliability is a quantitative assessment used to describe the consistency of 

(repeated) measurements derived from a test. Additional information on reliability is 

contained within Section B.3 of Appendix B.
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Computed Cronbach Alpha Coefficients for reliability of each of the six 

MOSE components across all the aircraft Type / Model / Series groups are shown 

below in Table 11.

Table 11. Computed Cronbach Alpha Values for MOSE components o f Respective
T/M/S Communities

Type / 
Model / 
Series
Community

PA RS/SC QA RM C2 C/FR Average Standard
Deviation

HS 0.944 0.936 0.848 0.898 0.956 0.935 0.920 0.040
VAQ 0.939 0.919 0.925 0.878 0.948 0.914 0.921 0.024
VAW 0.942 0.921 0.941 0.899 0.960 0.940 0.934 0.021
VF 0.938 0.924 0.900 0.904 0.956 0.915 0.923 0.021
VFA-I
Seat 0.944 0.933 0.928 0.897 0.960 0.942 0.934 0.021

VFA-2
Seat 0.966 0.947 0.943 0.914 0.971 0.951 0.949 0.020

VS 0.973 0.967 0.968 0.905 0.981 0.969 0.972 0.006

The above table indicates strong reliability for all 6 components for each o f the 

squadrons that comprise a carrier air wing.

3.5. DEFINITION OF KEY VARIABLES

3.5.1. SQUADRON M AINTENANCE DISCRETE EVENT MODEL  

COM PONENTS

The purpose of this research's Bayesian Network Modeling was to accurately 

represent the conduct o f squadron maintenance as an event-based entity in order to 

clarify knowledge of the system and comprehend the relationship to safety and human
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error. Boundaries for the Bayesian Network Modeling were defined by selecting an 

initial list of model components. Components are entities that were supportable by the 

available data and necessary to properly represent system behavior in accordance with 

the model's purpose. Components within the defined boundary were classified as 

either endogenous or exogenous. Endogenous components contain variables involved 

in providing direct and observable impact to the system. Exogenous elements classify 

components whose values were not directly affected by the system. [Albin, 1997, p. 

10] Excluded components were listed to assure the constructed model was appropriate 

for the purpose o f this research. The initial boundary layer was defined to include 

elements within the sphere of direct influence by the aviation squadron organization. 

Endogenous and Exogenous elements are listed in Table 12. A brief description of 

each component is provided below:

Table 12. Initial Maintenance Discrete Event Model Components

ENDOGENOUS EXOGENOUS EXCLUDED
• Previous MCAS Results
• Current MCAS Results
• Future MCAS Results
• Inter-Period MCAS 

Quartile Transition
• Inter-Period Mishap 

Occurrence
• Future Mishap 

Occurrence

• Previous Organizational 
Climate

• Current Organizational 
Climate

• Maintenance Required
• Maintenance Conducted
• Aircraft Flight 

Operations
• Collateral Damage
• Preventative 

Maintenance
• Operational demand
• Assigned Personnel
• Assigned Aircraft
• Available Parts 

Inventory
• Quality Assurance 

Inspections
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3.5.2. ENDOGENOUS COMPONENTS

• Current MCAS Results. This describes the results of responses from the most

recent iteration o f MCAS that had been conducted within the organization, 

o Likert scale value responses for each of the 43 close-ended questions were 

averaged across all participant responses, 

o Where appropriate, all 43 MCAS responses were aggregated by equal 

weighted averaging to provide a single Likert scale value, 

o Additionally, questions which composed specific MOSE areas (i.e., Process 

Auditing, Reward System, Quality Control, Risk Management, Command and 

Control, and Communications / Functional Relationships) were aggregated by 

equal weight averaging to provide single Likert scale values, 

o Since Question #21 was written with negative connotation (i.e., evaluation of a 

condition that adversely affected safety), in order for all responses to be 

aligned, the inverse o f the value was obtained by subtracting the response 

value from 6 (e.g., response of strongly disagree = 1; 6 - response value; 6 - 

1=5; becomes strongly agree), 

o When results of multiple units were obtained, quartiles for the distribution 

were defined. An organization's aggregated and averaged Likert scale value 

were assigned a quartile ranking as depicted below in Table 13.

Table 13. MCAS Result Quartile Distribution

Quartile Description
Q i Lowest Likert scale values, 0 < x < 25%
q 2 25% < x < 50%
Q 3 50% < x < 75%
q 4 Highest Likert scale values, 75% < x < 100%



Previous MCAS Results. This describes the results of responses from the MCAS 

administered immediately prior to the Current MCAS Results. Its numerical value 

was derived similarly to the means used for Current MCAS Results using 

corresponding Likert Scale values and quartiles as defined in Table 13, above.

The time increment between Previous and Current MCAS Results was not 

constant and varied considerably among the organizations.

Future MCAS Results. This describes the results o f responses from the MCAS 

administered immediately subsequent to the Current MCAS Results. Its numerical 

value was derived similarly to the means used for Current MCAS Results using 

corresponding Likert Scale values and quartiles as defined in Table 13, above.

The time increment between Previous and Current MCAS Results was not 

constant and varied considerably among the organizations.

Inter-Period MCAS Transition. This component represents the change in 

corresponding quartile assignment based upon aggregated and averaged Likert 

scale values derived from two immediate iterations for administering the MCAS 

(i.e., the delta in quartile obtained between Previous and Current MCAS Results). 

This was calculated by:

o Inter-Period MCAS Transition =

Current MCAS Results -  Previous MCAS Results (EQ 16)

o The value of the transition could be calculated by the numerical difference 

in the whole number change in quartiles (i.e., range of -3, -2, -1, 0, 1,2, 3) 

Inter-Period Mishap Occurrence This element is used to describe whether or not 

an Aviation Flight Mishap occurred during the time inter-period between
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successive administrations of the Past and Current MCAS and associated 

responses. The range of responses was binary, either YES or NO.

• Future Mishap Occurrence. This factor describes whether or not an Aviation 

Flight Mishap occurs during the time inter-period between success delivery of the 

Current and Future MCAS and respective responses. The range o f responses was 

binary, either YES or NO.

3.5.3. EXOGENOUS COM PONENTS

• Current Organizational Climate. Although not directly observable or measurable, 

this element was defined to represent the capability of the Current MCAS Results 

to accurately represent an organization's existing climate with respect to 

operational safety within the context o f the MOSE foundation. This definition 

enabled application of HMMs which contained hidden states (safety climate), 

observations (MCAS) results, and probabilities of observation and transition 

occurrences.

• Previous Organizational Climate. Similar to Current Organizational Climate, this 

component described the adequacy of the Past MCAS Results to accurately 

represent the organization’s operational safety climate during the time period 

between administration of the Past and Current MCASs.

3.5.4. EXCLUDED COM PONENTS

Endogenous and exogenous components listed above were supportable by the

sufficiency and scope of the data provided by the U.S. Naval Safety Center for this
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research effort. Within this section, excluded components are listed which are within

a sphere of influence that could impact MCAS Results and Mishap occurrence;

however, insufficient data were provided to enable their definition or development.

• Maintenance Required. A measure of the work effort necessary to facilitate 

attainment of operational aircraft. This includes required pre- and post-flight 

servicing and inspections, preventative maintenance, and the correction o f known 

discrepancies that are sufficiently severe as to prevent aircraft from being 

characterized as safe for flight.

• Maintenance Performed. This is an overarching classification of the types of 

maintenance performed by the squadron comprised o f inspections, servicing, 

handling, on-equipment corrective and preventive maintenance, incorporation of 

technical directives, and record keeping and reports preparation.

• Aircraft Flight Operations. Actual flights in which the aircraft are launched and 

the assigned mission is successfully completed.

• Collateral Damage. Impairment to linked system elements which are caused by 

component breakdown, incorrect operation, or failure and result in creation of new 

Aircraft Discrepancies. Collateral damage may also be caused from incorrectly 

performed maintenance.

• Preventative Maintenance is a subset o f maintenance performed, and it describes 

the effort which is conducted to maintain the aircraft in adequate material 

condition to accomplish assigned missions. Preventative maintenance is a 

proactive effort undertaken to mitigate creation of Aircraft Discrepancies and 

related component failures.
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• Operational Demand. Operational demand. A measure o f the demand placed 

upon the squadron thorough assignment of respective missions. Operational 

demand is composed of two inputs: tasking and employment scheduling, 

o Tasking. The number of flight sorties required to be flown in order to fulfill 

training or currency requirements from the squadron's operations department 

or those missions assigned from superior commands, 

o Employment scheduling. For operational squadrons that deploy, Naval 

aviation has adopted the Fleet Response Plan based on a notional 27-month 

Inter-Deployment Readiness Cycle (IDRC) which includes 6 months for 

aircraft maintenance, followed by 6 months for training, and a 15 month 

employment window. During the employment window the squadron is 

expected to sustain a high degree o f readiness which may include forward 

deployed operations. A depiction o f the IDRC is shown in Figure 14. The 

IDRC driven employment schedule is the critical driver for squadron receipt of 

operational funding, personnel, aircraft and associative weapons systems (e.g., 

laser designators, forward looking infra-red pods, etc.) inventory, required 

readiness levels, and operational demand.
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Figure 14. Inter-Deployment Readiness Cycle 
[CNAF Training and Readiness Review Conference, 2003]

• Assigned Personnel. Sufficient manpower is required to be assigned to the 

squadron in order to accomplish assigned missions. Personnel are ordered into the 

squadron to fill billets listed in the authorized manpower documents, and they are 

rotated out when their tours of duty are complete.

• Assigned Aircraft. Represents the number o f aircraft assigned to the organization 

that are maintained and tasked to meet Operational Demand.

• Available Parts Inventory. Very few replacement parts are assigned directly to the 

squadron inventory. These replacement spare items are normally limited to 

consumable components or bit / piece parts such as hardware (nuts, bolts, etc.) or 

other items that routinely require removal and replacement due to wear. Primarily 

specific replacement components are maintained in a ready-for-issue status by 

respective supply departments located at either naval air station or shipboard from 

which the squadron is operating. A lack o f parts availability may be mitigated 

through cannibalization of parts from other aircraft. This results in additional 

maintenance performed to remove the needed component from one airframe and
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the subsequent effort to replace it when the needed spare part becomes available 

through the supply system.

• Quality Assurance Inspections. Inspections of conducted maintenance that ensures 

quality workmanship. Quality Assurance (QA) is fundamentally employed to 

prevent the occurrence of defects. The concept embraces all events from the start 

o f the maintenance operation to its completion and is the responsibility o f all 

maintenance personnel. [CNAFINST 4790.2 Vol. 1, 2005, p. 14-2.] Highly 

skilled representatives are assigned to the QA division to inspect maintenance 

work for conformance to technical requirements and to audit work centers for 

evaluation of plans, policies, procedures, products, directives, and records.

3.6. SELECTION OF BAYESIAN NETW ORK M ODELING AS THE  

DISCRETE EVENT M ODELING FRAM EW ORK

Prior to conceptual model development, the five unique discrete modeling 

techniques described in Section 2.7 were comparatively evaluated for utility for this 

research application. Primary considerations were utility for execution based upon 

data set provided by the U.S. Naval Safety Center, ability to accurately represent and 

determine model causality relationships between respective, successive MCAS results 

and mishap occurrence; wherewithal to generate probability distributions for statistical 

comparison; flexibility to enable generation and execution of a set of models with 

minor modifications in causal relationships; and minimum impact of inherent 

disadvantages associated with the modeling technique for this research effort. A 

presentation o f the comparison evaluation is summarized in Table 14.
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Table 14. Comparative Evaluation Analysis of Utility for Discrete Event Modeling
Techniques

Technique

Characteristic

Represent and 
Determine 
Model 
Causality

Generation of 
Probability 
Distributions 
for Statistical 
Comparison

Flexibility for 
Minor
Modifications

Minimum 
Impact of 
Inherent 
Disadvantage

Bayesian Network 
Model (BNM) ✓ ✓ ✓ ✓
Hidden Markov 
Model (HMM) ✓ ✓ ✓ X
Naive Bayesian 
Model (NBM) X ✓ X X
Artificial Neural 
Network Model 
(ANNM)

X X ✓ X
Support Vector 
Machine Model 
(SVMM)

X X ✓ X

3.6.1. M ODEL CAUSALITY

The BNM and HMM techniques contained the requisite capabilities to support 

detailed representation of model causality o f specific nodes contained within the 

models. BNMs support use for determining model causality where there is an 

incomplete understanding of all occurring events and enable learning about the causal 

relationships between system variables. Although BNMs provide for causality 

representation, the naive assumption of a single parent and cluster o f same generation 

child nodes inhibits defining multiple parent-child relationships for multiple sequels 

and branching. ANNM use of neural nets in a similar fashion as a “black box" does 

not afford sufficient explanatory power regarding the underlying relationships to 

represent or determine causal relationships. ANNMs have limited ability to explicitly
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identify possible causal relationships. SVMs possess limited capability to represent 

the dynamics of underlying processes and causalities. [Boussemart, 2011, p. 334]

3.6.2. GENERATION OF PROBABILITY DISTRIBUTIONS FOR  

STATISTICAL COMPARISON

BNMs are built upon direct probabilistic relationships between the connected 

variables that are quantified through use of probability distributions As a subset of 

BNMs, HMMs also provide a solid statistical foundation for modeling. NBM 

definition for efficient generation of a probability distribution represented as the 

product of many simpler distributions provides sufficient capability for statistical 

comparison of model probability outputs. ANNMs and SNNMs are discriminative in 

that they may generate conditional probability distributions but do not allow 

generation of samples from the joint distribution. Discriminative modeling techniques 

contain limitations in their predictive power due to their reliance on conditional 

probabilities. [Boussemart, 2011, p 29] Additionally, a disadvantage o f SVMMs 

includes that this technique does not directly provide probability estimates.

3.6.3. FLEXIBILITY FOR M INOR M ODIFICATIONS

BNM use o f Directed Acyclic Graphs containing causal linkages and observed 

probabilities are easily adaptable to support minor changes to defined relationships 

between state variables. Likewise, HMMs may be used to develop flexible and general 

models to represent sequencing properties and may be constructed to combine 

individual HMMs into larger HMMs. Since NBM uses only one parent and one level
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of child nodes, this technique was adjudicated not to have sufficient flexibility to 

support minor modifications to modeling causal relationships between the state 

variables. Both ANNM and SVM techniques were evaluated to have sufficient utility 

to incorporate minor adjustments in conceptual and computational development and 

modification.

3.6.4. MINIM UM  IM PACT OF INHERENT DISADVANTAGES

Disadvantages o f BNM technique include lack of a universally accepted 

method for constructing a network from data and potential difficulty for experts to 

agree on model structure. Neither of these was considered significant adverse to this 

research effort. HMM disadvantages o f necessity to obtain large amounts o f data for 

accurate modeling and potential for generating inaccurate conditional independence 

properties if there are too few hidden states or inaccuracies in the observation 

distributions were considered to present the potential for substantial challenges due to 

limited data provided by the U.S. Naval Safety Center. NBM's inherent disadvantage 

of the potential for a loss o f accuracy induced due to the assumption of class 

conditional independence where often there exists dependencies among attribute 

variables was evaluated to be an unwanted characteristic for selection. The manner in 

which ANNMs store knowledge as weights between nodes and the limitations in 

interpretation of the weights result in "black box" appraisal of the results. These 

inherent disadvantages of ANNM were assessed to be undesirable. SVMs require 

supervised learning and a priori labeled data. They are suitable for use with 

categorical data but do not possess similar capabilities for temporal data.



79

3.6.5. SUMMARY O F DISCRETE EVENT M ODELING COMPARISON

Based upon the information presented above and as depicted in Table 14, 

BNM technique was selected as the best fit for this research effort. In contrast, all the 

other techniques contained a documented limitation that impaired their uses for this 

purpose.

3.7. CONCEPTUAL MODEL DEVELOPM ENT

Subsequent to selection of BNMs as the best methodology for this research 

effort, Bayesian Network conceptual models were initially constructed to accurately 

represent the causal relationship between the endogenous and exogenous components 

listed in Table 12, above. Arcs were incorporated to detail the direct probabilistic 

relationships between the connected variables. Inherent in the conceptual design, 

Bayesian Network modeling was the goal to produce statistical output data that would 

update conditional probabilities in light o f observed evidence. Per Section 2.7 above, 

the BNM conceptual models included the following attributes:

• A set of variable and a set o f directed edges (i.e., arcs) between variables

• Each variable has a finite set of mutual exclusive states.

• The variables together with the directed edges form a Directed Acyclic Graph.

• To each variable A with parents Bi, .... Bn there is attached a conditional 

probability table P (A | B |. ..., Bn).
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Review of the inherent disadvantages for application of BNMs (lack of 

universally accepted method for model construction, potential disagreement on model 

structure by subject matter experts, limitation on spatial / temporal scale 

representations, and inability to support feedback loops) was determined to have little- 

to-no relevant impact on this research effort. Evidentiary data for the respective 

probability distributions would be derived from the actual squadron / unit MCAS 

results and corresponding mishap summary reports.

3.7.1. SYSTEM FORMALISM

The BNM foundation resulted in use of a classical Discrete Event System

Specification (DEVS) to specify and describe the notation required to relate input and

model state derivatives for model development. The classical DEVS framework

enabled representation of the BNM for depicting and evaluating causal relationships

between the selected components. The DEVS structure is defined as:

D E V S  = (X , Y, S, 4v„ Smh ta ) where (EQ 17)

X  is the set of inputs
Y  is the set o f outputs
S  is the set of s e q u e n tia l  states
8ext: Q  x X  —> S  is the e x te r n a l  s ta te  tr a n s i t io n  fu n c t io n
Si,„: S  —> S  is the in te r n a l  s ta te  tr a n s i t io n  fu n c t io n

Q = {(s , e )  ] s e  S , 0 = e  = t a ( s ) } is the to ta l  s ta te  set (EQ 18) 
e  is the t im e  e la p s e d  since last transition 
A: S  —> Y  is the output function 
ta: S  — >  R q.oo is the set positive reals with 0 and oo 

[Zeigler, et. al, 2000, p. 75-6, Joslyn, 1996]

Application of the DEVS formalism to the BNM defined variables and causal 

relationships resulted in the following classifications:
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• Input Set X : o Previous MCAS Results
o Current MCAS Results
o Future MCAS Results
o Inter-period MCAS Transition
o Inter-period Mishap Occurrence
o Future Mishap Occurrence

• Output Set Y: o Probability distributions for MCAS Result set variables when
Inter-Period / Future Mishap Occurrence values are set
exclusively to Yes or No

• Sequential States S: o Quartile (1 through 4 dependent upon MCAS Results)

• Time advance function ta: non uniform nor constant time period between 
iterations o f completing successive MCAS surveys

3.7.2. BAYESIAN NETW ORK APPLICATION

Conceptual modeling processes were undertaken to leverage a key features of 

BNM that is they provide a suitable method for decomposing a probability distribution 

into a set of local distributions. Although the component nodes would contain 

quantitative data, the arcs defining causal relationships would represent qualitative 

aspects for the model. The separation of the qualitative representation o f the 

influences between variables from the numeric quantification o f the strengths o f the 

influences presented a significant advantage for knowledge engineering. BNM 

conceptual development supported first focusing on the specific qualitative structure 

of the domain followed by quantifying the influences. This was employed to ensure a 

complete specification o f the joint-probability distribution. (Haddawy, 1999)

Table 15 contains a list o f component variables, respective abbreviations, and 

description o f the appropriate ranges of data. Depictions and overall narrative of the 

BNM conceptual models are provided below.
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Table 15. Component Abbreviations and Data Ranges

Abbreviation Component Variable Data Range
PMR Previous MCAS Results Quartile 1 through 4
CMR Current MCAS Results Quartile 1 through 4
FMR Future MCAS Result Quartile 1 through 4

1MT Inter-period MCAS Transition
Lower: Qi -»  Q, where i > j 
Neutral: Qj Q, where i=j 
Higher: Q, -»  Q, where i < j

IMO Inter-period Mishap Occurrence Yes, No
FMO Future Mishap Occurrence Yes, No

3.7.3. BAYESIAN NETW ORK CONCEPTUAL M ODEL NUM BER 1

P M R

C M R I M O

F M O

FigurelS. Bayesian Network Conceptual Model #1

As depicted in Figure 15, this model is based on the following qualitative 

description of the causal relationships between selected components:
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• Previous MCAS results have an impact on both current MCAS results and whether 

an inter-period mishap occurred

• Inter-period mishap occurrence (Yes/No) impacts current MCAS results and future 

mishap occurrence

• Current MCAS results impacts future mishap occurrence.

3.7.4. BAYESIAN NETW ORK CONCEPTUAL M ODEL NUMBER 2

P M R

C M R I M O

F M O

Figure 16. Bayesian Network Conceptual Model #2

This model shown in Figure 16 is similar to Model #1 above; however, it 

removes the direct influence of the inter-period mishap occurrence on the future 

mishap occurrence.
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3.7.5. BAYESIAN NETWORK CONCEPTUAL MODEL NUMBER 3

I M O

C M R I M T

F M O

Figure 17. Bayesian Network Conceptual Model #3

This model displayed in Figure 17 is based on the following qualitative 

description of the causal relationships between selected components:

• Previous Inter-period Mishap Occurrence (Yes / No) has an impact on Current 

MCAS Results

• Inter-period MCAS result quartile transition impacts current MCAS results and 

future mishap occurrence

• Current MCAS Results impacts Future Mishap Occurrence.
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3.7.6. BAYESIAN NETWORK CONCEPTUAL MODEL NUMBER 4

I M O

C M R I M T

F M O

Figurel8. Bayesian Network Conceptual Model #4

Figure 18 presents a model is similar to Model #3 above; however, it removes the 

direct influence o f the inter-period MCAS results quartile transition on the future 

mishap occurrence.
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3.7.7. BAYESIAN NETWORK CONCEPTUAL MODEL NUMBER 5

I M O

C M R I M T

F M O

F ig u re  19. B ay esian  N e tw o rk  C o n cep tu a l M odel #5

This model as shown in Figure 19 is similar to Model #3 above; however it 

adds the causal impact of inter-period mishap occurrence on inter-period MCAS 

results quartile transition.

3.8. COM PUTATIONAL MODEL DEVELOPM ENT, CONSTRUCTION, 

AND IM PLEMENTATION

This process adapted the conceptual model using software to construct an 

executable program that provided a simulated abstraction of the Bayesian Network 

models. As the conceptual model was a first-step transformation o f the real world 

system, the computational model expressed a second-step transformation into an
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operational entity that was represented by a software coded and a computer 

recognizable version of the conceptual model. Key features in a computational model 

included both composability and interoperability. '‘Composability is concerned with 

how to create different models that are semantically consistent. Interoperability is 

focused on the software used to support communication and synchronization at 

runtime." [Godding. Sarjoughian, and Kempf, 2004, p. 232] The computation model 

was designed to allow for study of the causal relationships between model components 

of the represented Bayesian Network Model through generation of probability 

distributions to match model output.

GeNle software version 2.0.4535.0 was built on June 1, 2012 by Decision 

Systems Laboratory (DSL), University of Pittsburgh was selected for programming 

the computational model. GeNle (acronym taken from Graphical Network Interface) 

was designed to provide a developmental environment for building graphical decision- 

theoretic models [DSL, 2010]. It is implemented in Visual C++ and interfaces with 

the Structural Modeling, Inference, and Learning Engine (SMILE) software also 

developed by DSL. SMILE operates and independent library of C++ classes for 

reasoning in graphical probabilistic models, such as Bayesian networks and influence 

diagrams and using them for probabilistic reasoning and decision making under 

uncertainty. [DSL, 2007]

The Conceptual Bayesian Network Models #1-5 as shown in Figures 15 

through 19 were refined subsequent to definition of the necessary causal relationships. 

Models were executed using actual MCAS results and mishap summary report data. 

Bayesian Network Computational Models were implemented within the GeNle
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software programs based upon the following node variables and equations. Input 

values were provided from actual MCAS results and corresponding inter-period / 

future mishap occurrence. Output probabilities were derived through model execution 

by setting conditions o f respective nodes.

3.8.1. BAYESIAN NETW ORK COM PUTATIONAL M ODEL NUM BER 1

BNM Computational Model #1 node variables and model equations are 

depicted below in Tables 16 through 19.

Table 16. BNM Computational Model #1 Prior MCAS Result Quartile Probabilities

PMR Quartile Probability *
PMR Qi P(PM R  Q,) ~ 0.25
PMR Q2 P  (PMR Q2) = 0.25
PMR Q3 P  (PMR Q3) ~ 0.25
PMR Q4 P  (PMR Q4) = 0.25

Note: * - n = the total number o f observations.
Where n / 4 is equal to an integer, all P (PMR Qi) = 0.25.

£ ? = l  P  ( P M R  Q , )  =  1 (EQ 19)

Table 17. BNM Computational Model #1 Conditional Probabilities o f Inter-Period 
Occurrence Mishap Given Prior MCAS Result Quartile

PMR Quartile / 
IMO

PMR Qi PMR Q2 PMR Q3 PMR Q4

YES / ’ (YES | 
PMR Qi)

P  (YES | 
PMR Q2)

P  (YES | 
PMR Q3)

P  (YES | 
PMR Q4)

NO P  (NO 
PMR Q 0

P  (NO | 
PMR Q2)

P  (NO | 
PMR Q3)

/ ’ (NO | 
PMR Q4)

For /= 1 to 4,
P  (IMO = YES | PMR Qj) + P  (IMO -  NO | PMR Qi) = 1 (EQ 20)
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Table 18. BNM Computational Model #1 Conditional Probabilities o f Current MCAS
Results Quartile Given Inter-period Mishap Occurrence Given Prior MCAS Result

Quartile

PMR PM1*Q> PM1* q 2 PM1* Q a PM1I Q a
IMO YES NO YES NO YES NO YES NO
CMR P P P P P P P P
Qi (CMR (CMR (CMR (CMR (CMR (CMR (CMR (CMR

Q i l Q. 1 Qi 1 Q. 1 Q i l Q. 1 Q. I Q. 1
IMO = IMO = IMO = IMO - IMO = IMO = IMO = IMO =
YES | NO | YES | NO | YES | NO | YES | NO |
PMR PMR PMR PMR PMR PMR PMR PMR
Qi) Qi) Q 2 ) Q 2 ) Q 3 ) Qa) Q 4 ) Q 4 )

CMR P P P P P P P P
Q2 (CMR (CMR (CMR (CMR (CMR (CMR (CMR (CMR

Qzl 02 I Q 2 I Q 2 I Q2 | Q 2 I Q 2 I Q 2 I
IMO = IMO = IMO = IMO = IMO = IMO = IMO = IMO =
YES | NO YES | NO YES | NO | YES | NO |
PMR PMR PMR PMR PMR PMR PMR PMR
Qi) Q . ) Q 2 ) Q 2) Qa) Qa) Q 4 ) Q 4 )

CMR P p P p P P P P
Q3 (CMR (CMR (CMR (CMR (CMR (CMR (CMR (CMR

Qal Qsl Qal Qal Qal Qal Qal Qal
IMO = IMO = IMO = IMO = IMO = IMO = IMO = IMO =
YES | NO | YES | NO YES | NO | YES | NO |
PMR PMR PMR PMR PMR PMR PMR PMR
Q . ) Qi) Q 2 ) Q 2 ) Qa) Qa) Q 4 ) Q 4 )

CMR P P P P P P P P
Q4 (CMR (CMR (CMR (CMR (CMR (CMR (CMR (CMR

Q 4 | Q 4 | Q 4 | Q4 | Q4 | Q 4 I Q4 | Q4|
IMO = IMO = IMO = IMO = IMO = IMO = IMO = IMO =
YES | NO | YES | NO | YES | NO | YES | NO |
PMR PMR PMR PMR PMR PMR PMR PMR
Q.) Q.) Q 2 ) Q 2 ) Qa) Qa) Q 4) Q4)

For /= 1 to 4, and IM O  YES or NO, 
£ } = 1  P  ( C M R  Q j  | I M O  | P M R  Q O  =  1

(EQ 21)
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Table 19. BNM Computational Model #1 Conditional Probabilities o f Future Mishap 
Occurrence Given Current MCAS Results Quartile Given Inter-period Mishap

Occurrence

IMO Y1ES N0
CMR CMR CMR CMR CMR CMR CMR CMR CMR

Q i Q 2 Q 3 Q4 Q i Q2 Q b Q 4
FMO = P P P P P P P P
YES (FMO (FMO (FMO (FMO (FMO (FMO (FMO (FMO

= YES = YES = YES = YES -  YES -  YES = YES = YES
CMR | CMR | CMR | CMR | CMR | CMR CMR | CMR

Q .  1 Q 2 | Q s l Q 4 | Q i l 0 2  I Q 3 | 0 4  |
IMO = IMO = IMO = IMO - IMO = IMO = IMO = IMO =
YES) YES) YES) YES) NO) NO) NO) NO)

FMO = P P P P P P P P
NO (FMO (FMO (FMO (FMO (FMO (FMO (FMO (FMO

= NO = NO | = NO | = NO | = NO | = NO | - N O  | -N O  |
CMR CMR CMR CMR CMR CMR CMR CMR
Q. 1 02 | QbI Q4 I Q. 1 Q 2 I Qsl Q4 |
IMO = IMO = IMO = IMO - IMO - IMO = IMO = IM O -
YES) YES) YES) YES) NO) NO) NO) NO)

For IMO = YES or NO and / = 1 to 4,
J $ m o = y b s P  (FM O  | C M R Q j  | I M O )  =  1

(EQ 22)

3.8.2. BAYESIAN NETW ORK COM PUTATIONAL M ODEL NUM BER 2

BNM Computational Model #2 node variables and model equations are 

depicted below in Tables 20 through 23.
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Table 20. BNM Computational Model #2 Prior MCAS Result Quartile Probabilities

PMR Quartile Probability *
PMR Qi P  (PMR Q,) = 0.25
PMR Q2 P  (PMR Q2) = 0.25
PMR Q3 P  (PMR Q3) = 0.25
p m r q 4 P  (PMR Q4) ~ 0.25

Note: * - n = the total number of observations.
Where n / 4 is equal to an integer, all P  (PMR Q,) = 0.25.

Z f = 1  P ( P M R  Q , )  =  1

(EQ 23)

Table 21. BNM Computational Model #2 Conditional Probabilities o f Inter-Period 
Mishap Occurrence Given Prior MCAS Result Quartile

PMR Quartile / 
IMO

PMR Qi PMR Q2 PMR Q3 PMR Q4

YES P  (YES | 
PMR Q 0

P  (Y ES | 
PMR Q2)

P  (YES | 
PMR Q3)

P  (YES | 
PMR Q4)

NO P  (NO | 
PMR Q 0

P  (NO | 
PMR Q2)

P  (NO | 
PMR Q3)

P  (NO | 
PMR Q4)

F or i=  1 to  4,
P  ( I M O  -  Y E S  | P M R  Q i )  +  P  ( I M O  =  N O  | P M R  Q i )  =  1

(EQ 24)
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Table 22. BNM Computational Model #2 Conditional Probabilities o f Current MCAS
Results Quartile Given Inter-period Mishap Occurrence Given Prior MCAS Result

Quartile

PMR PM1*Q> PMl* q 2 PMl* Q s PMl* q 4
IMO YES NO YES NO YES NO YES NO
CMR P P P P P P P P
Q i (CMR (CMR (CMR (CMR (CMR (CMR (CMR (CMR

Qi 1 Q i l Q . l Qi 1 Q i l Q . l Q . l Q . l
IMO = IMO = IMO = IMO = IMO = IMO = IMO = IMO =
YES | NO YES | NO YES | NO | YES | NO |
PMR PMR PMR PMR PMR PMR PMR PMR
Qi) QO 02 ) QO Qs) Qs) Q 4) QO

CMR P P P P P P P p
Q 2 (CMR (CMR (CMR (CMR (CMR (CMR (CMR (CMR

0 2  I Q2 I Q 2 I Q 2 I 02  1 0 2  1 Q 2 I 0 2  1
IMO = IMO = IMO = IMO = IMO = IMO = IMO = IMO =
YES | NO | YES | NO | YES | NO | YES | NO |
PMR PMR PMR PMR PMR PMR PMR PMR
QO QO QO Q 2) Qs) Qs) Q 4) QO

CMR p p p P p p P p
Q3 (CMR (CMR (CMR (CMR (CMR (CMR (CMR (CMR

Qal Qsl Qsl Qsl Qsl Qsl Qsl Qsl
IMO = IMO = IMO = IMO = IMO = IMO = IMO = IMO =
YES | NO | YES | NO | YES | NO | YES | NO |
PMR PMR PMR PMR PMR PMR PMR PMR
QO QO QO QO Qs) Qs) QO QO

CMR P P p P P P P P
Q4 (CMR (CMR (CMR (CMR (CMR (CMR (CMR (CMR

Q4 | Q4 | Q4 | Q4 | Q4 | Q4 | Q4 | Q4 |
IMO = IMO = IMO = IMO = IMO = IMO = IMO = IMO =
YES | NO | YES | NO | YES | NO | YES | NO |
PMR PMR PMR PMR PMR PMR PMR PMR
QO QO QO Q 2) Qs) Qs) QO QO

For i =  1 to 4, and IM O  YES or NO, 
£ j = 1  P ( C M R  Q j  | I M O  | P M R  Q Q  =  1

(EQ 25)
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Table 23. BNM Computational Model #2 Conditional Probabilities o f Future Mishap
Occurrence Given Current MCAS Result Quartile

CMR Quartile
/
FMO

CMR Q, CMR Q2 c m r q 3 CMR Q4

YES P (Y ES| 
CMR Q,)

P  (YES | 
CMR Q2)

P  (YES | 
CM RQ 3)

P  (YES | 
CMR Q4)

NO P  (NO 
CM RQ i)

P  (NO 
CMR Q2)

P (N O | 
CMR Q3)

P  (NO | 
CMR Q4)

For /= 1 to 4, 
P  (FMO = YES | PMR Qi) + P  (FMO = NO | PMR QO = 1

(EQ 26)

3.8.3. BAYESIAN NETW ORK COM PUTATIONAL M ODEL NUM BER 3

BNM Computational Model #3 node variables and model equations are 

depicted below in Tables 24 through 27.

Table 24. BNM Computational Model #3 Inter-period Mishap Occurrence

Inter-period
Mishap
Occurrence

Probability

IMO = YES P  (IMT = YES)
IMO = NO P  (IMT = NO)

P  (IMT -  YES) + P  (IMT = NO) = 1 (EQ 27)

Table 25. BNM Computational Model #3 Inter-period MCAS Transition

Inter-period MCAS 
Transition

Probability

IMT = HIGHER P  (IMT = HIGHER)
IMT = NEUTRAL P  (IMT = NEUTRAL)
IMT = LOWER P  (IMT = LOWER)

P  (IMT = HIGHER) + P  (IMT = NEUTRAL) +
P  (IMT = LOWER)= 1 (EQ 28)
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Table 26. BNM Computational Model #3 Current MCAS Results Given Inter-period 
MCAS Transition Given Inter-period Mishap Occurrence

IMO YES NO
IMT HIGHER NEUTRAL LOWER HIGHER NEUTRAL LOWER
CMR
Q.

P  (CMR Qi 
| IMT = 
HIGHER 
| IMO = 
YES)

P(CM R Q, 
| IMT = 
NEUTRAL 
| IMO = 
YES)

P  (CMR Qi 
| IMT = 
LOWER 
| IMO = 
YES)

P(CMR Q, 
| IMT = 
HIGHER 
| IMO = 
NO)

P  (CMR Qi 
| IMT = 
NEUTRAL 
| IMO = 
NO)

P  (CMR Qi 
| IMT = 
LOWER 
| IMO = 
NO)

CMR
Q i

P (CMR Q2 
| IMT = 
HIGHER 
| IMO =
YES)

P (CMR Q2 
| IMT = 
NEUTRAL 
| IMO = 
YES)

P(C M R Q 2 
| IMT = 
LOWER 
| IMO = 
YES)

P (CMR Q2 
| IMT = 
HIGHER 
| IMO =
NO)

P (CMR Q2 
| IMT = 
NEUTRAL 
| IMO = 
NO)

P (CMR Q2 
| IMT = 
LOWER 
| IMO = 
NO)

CMR
03

P (CMR Q3 
| IMT = 
HIGHER 
| IMO = 
YES)

P (CMR Q3 
| IMT = 
NEUTRAL 
| IMO = 
YES)

P (CMR Qi 
| IMT = 
LOWER 
| IMO = 
YES)

P (CMR Qi 
| IMT = 
HIGHER 
| IMO =
NO)

P (CMR Qi 
| IMT = 
NEUTRAL 
| IMO = 
NO)

P(CM R Qi 
| IMT = 
LOWER 
| IMO = 
NO)

CMR
q 4

/5(CMRQ4 
| IMT = 
HIGHER 
| IMO = 
YES)

P  (CMR Q4 
| IMT = 
NEUTRAL 
| IMO = 
YES)

P  (CMR Q4 
| IMT = 
LOWER 
| IMO = 
YES)

P  (CMR Q4 
| IMT = 
HIGHER 
| IMO = 
NO)

P  (CMR Q4 
| IMT = 
NEUTRAL 
| IMO = 
NO)

P (CMR Q4 
| IMT = 
LOWER 
| IMO = 
NO)

For IMT = HIGHER, NEUTRAL OR LOWER, and IMO= YES or NO, 
E ? =1 P  ( C M R  Qj | IM T  | I M O )  =  1

(EQ 29)



95

Table 27. BNM Computational Model #3 Current MCAS Results Given Inter-period 
MCAS Transition Given Inter-period Mishap Occurrence

CMR CM RQ, c m r q 2 c m r q 3 c m r q 4
IM T# H c L H N L H N L H N L
FMO 
= YES

*1 *2 *3 *4 *5 *6 *7 *8 *9 *10 *11 *12

° 
9

U- 
II

*13 *14 *15 *16 *17 *18 *19 *20 *21 *22 *23 *24

Notes: #: H=HIGHER, N=NEUTRAL, L = LOWER

* 1: P  (FMO = YES | IMT = HIGHER | CMR Q,)
* 2 :  P  (FMO = YES | IMT = NEUTRAL | CMR Q,)
* 3 :  P  (FMO = YES | IMT = LOWER | CMR Qi)
*4: P  (FMO = YES | IMT = HIGHER | CMR Q2)
* 5 :  P  (FMO = YES | IMT = NEUTRAL | CMR Q2)
* 6 :  P  (FMO = YES | IMT = LOWER | CMR Q2)
*7: P  (FMO = YES | IMT = HIGHER | CMR Q3)
* 8: P  (FMO = YES | IMT = NEUTRAL | CMR Q3)
* 9: P  (FMO = YES | IMT = LOWER | CMR Q3)
* 10: P  (FMO = YES | IMT = HIGHER | CMR Q4)
* 11: P  (FMO = YES | IMT = NEUTRAL | CMR Q4)
* 12: P  (FMO = YES | IMT = LOWER | CMR Q4)
*13: P  (FMO = NO | IMT = HIGHER |C M R Q ,)
*14: P  (FMO = NO | IMT = NEUTRAL | CMR Qi)
*15; P  (FMO = NO | IMT = LOWER | CM RQ ,)
*16: P  (FMO = NO | IMT = HIGHER | CMR Q2)
*17: P  (FMO = NO | IMT = NEUTRAL | CMR Q2)
*18: P(FM O  = NO | IMT = LOWER | CMR Q2)
* 19: P  (FMO = NO | IMT = HIGHER | CMR Q3)
*20: P  (FMO = NO | IMT = NEUTRAL | CMR Q3)
*21: P  (FMO = NO | IMT = LOWER | CMR Q3)
*22: P  (FMO = NO | IMT = HIGHER | CMR Q4)
*23: P  (FMO = NO | IMT = NEUTRAL | CMR Q4)
*24: P  (FMO = NO | IMT = LOWER | CMR Q4)

For IMT = HIGHER, NEUTRAL, or LOWER and i= 1 to 4,
I fmo^ e s P  ( F M O  | I M T  | C M R Q , )  =  1

(EQ 30)
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3.8.4. BAYESIAN NETWORK COMPUTATIONAL MODEL NUMBER 4

BNM Computational Model #4 node variables and model equations are 

depicted below in Tables 28 through 31.

Table 28. BNM Computational Model #4 Inter-period Mishap Occurrence

Inter-period
Mishap
Occurrence

Probability

IMO = YES P  (IMT = YES)
IMO = NO P  (IMT = NO)

P  (IMT = YES) + P  (IMT = NO) = 1 (EQ31)

Table 29. BNM Computational Model #4 Inter-period MCAS Transition

Inter-period MCAS 
Transition

Probability

IMT = HIGHER P  (IMT = HIGHER)
IMT = NEUTRAL P  (IMT = NEUTRAL)
IMT = LOWER P  (IMT = LOWER)

P  (IMT = HIGHER) + P  (IMT = NEUTRAL) + 
P  (IMT = LOWER) = 1 (EQ 32)
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Table 30. BNM Computational Model #4 Current MCAS Results Given Inter-period 
MCAS Transition Given Inter-period Mishap Occurrence

IMO YES NO
IMT HIGHER NEUTRAL LOWER HIGHER NEUTRAL LOWER
CMR
Qi

P  (CMR Q, 
| IMT = 
HIGHER 
| IMO = 
YES)

P  (CMR Qi 
| IMT = 
NEUTRAL 
| IMO = 
YES)

P  (CMR Qi 
| IMT = 
LOWER 
| IMO = 
YES)

P  (CMR Qi 
| IMT = 
HIGHER 
| IMO -  
NO)

P  (CMR Qi 
| IMT = 
NEUTRAL 
| IMO = 
NO)

P  (CMR Q, 
| IMT = 
LOWER 
| IMO = 
NO)

CMR
q 2

P  (CMR Q2 
| IMT = 
HIGHER 
| IMO = 
YES)

P (C M R Q 2 
| IMT = 
NEUTRAL 
| IMO = 
YES)

P (C M R Q 2 
| IMT = 
LOWER 
| IMO = 
YES)

P (C M R Q 2 
| IMT = 
HIGHER 
| IMO = 
NO)

P (C M R Q 2 
| IMT = 
NEUTRAL 
| IMO = 
NO)

P (C M R Q 2 
| IMT = 
LOWER 
| IMO = 
NO)

CMR
Q3

P  (CMR Q3 
| IMT = 
HIGHER 
| IMO = 
YES)

P  (CMR Q3 
| IMT = 
NEUTRAL 
| IMO = 
YES)

P(CM R Q3 
| IMT = 
LOWER 
| IMO = 
YES)

P (C M R Q 3 
| IMT = 
HIGHER 
| IMO = 
NO)

P  (CMR Q3 
| IMT = 
NEUTRAL 
| IMO = 
NO)

P  (CMR Q3 
| IMT = 
LOWER 
| IMO = 
NO)

CMR
Q4

P  (CMR Q4 
| IMT = 
HIGHER 
| IMO =
YES)

P  (CMR Q4 
| IMT = 
NEUTRAL 
| IMO = 
YES)

P  (CMR Q4 
| IMT = 
LOWER 
| IMO = 
YES)

P  (CMR Q4 
| IMT = 
HIGHER 
| IMO = 
NO)

P  (CMR Q4 
| IMT = 
NEUTRAL 
| IMO = 
NO)

P  (CMR Q4 
| IMT = 
LOWER 
| IMO = 
NO)

For IMT = HIGHER, NEUTRAL, or LOWER, and IMO= YES or NO, 
£ f = 1  P  ( C M R  Q i  I I M T  I I M O )  =  1

(EQ 33)

Table 31. BNM Computational Model #4 Future Mishap Occurrence Given Current
MCAS Results

CMR CM RQ, CM RQ 2 CMR Q 3 CMR Q4
FMO = 
YES

P  (FMO = YES) 
| CMR Q,)

P  (FMO = YES) 
I CMR Q2)

P  (FMO = YES) 
1 CMR Q i )

P  (FMO = YES) 
| CMR Q4)

FMO = 
NO

P  (FMO = NO) | 
CM RQ ,)

P  (FMO = NO) | 
CMR Q2)

P  (FMO = NO) | 
CMR Q i )

P  (FMO = NO) | 
CMR Q4)

For /'= 1 to 4,
P ( F M O  | C M R  Q O  =  1

( E Q  3 4 )
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3.8.5. BAYESIAN NETW ORK COM PUTATIONAL MODEL NUM BER 5

BNM Computational Model #5 node variables and model equations are 

depicted below in Tables 32 through 35.

Table 32. BNM Computational Model #5 Inter-period Mishap Occurrence

Inter-period
Mishap
Occurrence

Probability

IMO = YES P  (IMT = YES)
IMO = NO P  (IMT = NO)

P  (IMT = YES) + P  (IMT = NO) = 1 (EQ 35)

Table 33. BNM Computational Model #5 Inter-period MCAS Transition Given
Inter-period Mishap Occurrence

Inter-period Mishap 
Transition

IMO = YES IMO = NO

IMT = HIGHER P  (IMT = HIGHER | 
IMO = YES)

P  (IMT = HIGHER | 
IMO = NO)

IMT = NEUTRAL P  (IMT = NEUTRAL | 
IMO = YES)

P  (IMT = NEUTRAL | 
IMO -  NO)

IMT = LOWER P  (IMT = LOWER | 
IMO = YES)

P  (IMT = LOWER | 
IMO = NO)

For IMO = YES or NO
P  (IMT = HIGHER | IMO) + P  (IMT = NEUTRAL | IMO) +
P  (IMT = LOWER | IMO)= 1 (EQ 36)
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Table 34. BNM Computational Model #5 Current MCAS Results Given Inter-period 
MCAS Transition Given Inter-period Mishap Occurrence

IMO YES NO
IMT HIGHER NEUTRAL LOWER HIGHER NEUTRAL LOWER
CMR
Qi

P  (CMR Qi 
| IMT = 
HIGHER | 
IMO = 
YES)

P  (CMR Qi 
| IMT = 
NEUTRAL 
| IMO = 
YES)

/ ’ (CMR Qi 
| IMT = 
LOWER | 
IMO = 
YES)

P  (CMR Q] 
| IMT = 
HIGHER | 
IMO =
NO)

P  (CMR Q, 
| IMT = 
NEUTRAL 
| IMO = 
NO)

/ ’ (CMR Qi 
| IMT = 
LOWER | 
IMO =
NO)

CMR
Qi

P (C M R Q 2 
| IMT = 
HIGHER | 
IMO = 
YES)

P (CMR Q2 
| IMT = 
NEUTRAL 
| IMO = 
YES)

P  (CMR Q2 
| IMT = 
LOWER | 
IMO = 
YES)

P (C M R Q 2 
| IMT = 
HIGHER | 
IMO =
NO)

P (CMR Q2 
| IMT = 
NEUTRAL 
| IMO = 
NO)

P (CMR Q2 
| IMT = 
LOWER | 
IMO =
NO)

CMR
Q3

P  (CMR Q3 
| IMT = 
HIGHER | 
IMO = 
YES)

P (CMR Q3 
1 IMT = 
NEUTRAL 
| IMO = 
YES)

P  (CMR Q3 
| IMT = 
LOWER | 
IMO = 
YES)

P ( C  M R Q 3 
| IMT = 
HIGHER | 
IMO =
NO)

P  (CMR Q3 
| IMT = 
NEUTRAL 
| IMO = 
NO)

P  (CMR Q3 
| IMT = 
LOWER | 
IMO =
NO)

CMR
Q4

P  (CMR Q4 
| IMT = 
HIGHER | 
IMO = 
YES)

P {  C M R Q 4 
| IMT = 
NEUTRAL 
| IMO = 
YES)

P ( C  M R Q 4 
| IMT = 
LOWER | 
IMO = 
YES)

P  (CMR Q4 
| IMT = 
HIGHER | 
IMO =
NO)

P  (CMR Q4 
| IMT = 
NEUTRAL 
| IMO = 
NO)

/ ’ (CM RQ4 
| IMT = 
LOWER | 
IMO =
NO)

For IMT = HIGHER, NEUTRAL, or LOWER and IMO= YES or NO,
4

P  (CMR Qi | IMT | IMO) =  1

(EQ 37)
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Table 35. BNM Computational Model #5 Future Mishap Occurrence Given Inter­
period MCAS Transition Given Current MCAS Results

CMR CM RQ, c m r q 2 CMR Q3 c m r q 4
IM T# H N L H N L H N L H N L
FMO 
= YES

*1 *2 *3 *5 *6 *7 *8 *9 *10 *11 *12

FMO 
= NO

*13 *14 *15 *16 *17 *18 *19 *20 *21 *22 *23 *24

Note: #: H=HIGHER, N=NEUTRAL, L= LOWER

* 1: 
* 2 : 
* 3:
* 4 -
*5:
* 6 :
* 7:
* 8:

P  
P  
P  
P  
P  
P  
P  
P

* 9 :  P  
*10: P  
*11: P  
*12: P  
*13: P  
*14: P  
*15: P  
*16: P  
* 1 7 : P  
*18: P  
*19: P  
*20: P  
*21: P  
*22: P  
*23: P  
*24: P

(FMO
(FMO
(FMO
(FMO
(FMO
(FMO
(FMO
(FMO
(FMO
(FMO
(FMO
(FMO
(FMO
(FMO
(FMO :
(FM O :
(FMO
(FMO
(FMO
(FMO
(FMO
(FMO
(FMO :
(FMO

YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO

IM T : 
IM T : 
IM T : 
IMT = 
IM T : 
IMT = 
IMT = 
IMT = 
IMT = 
IMT = 
IM T : 
IM T ; 
IM T : 
IM T : 
IM T : 
IM T : 
IMT : 
IMT ; 
IMT : 
IMT : 
IMT : 
IMT : 
IMT : 
IMT :

HIGHER
NEUTRAL
LOWER
HIGHER
NEUTRAL
LOWER
HIGHER
NEUTRAL
LOWER
HIGHER
NEUTRAL
LOWER
HIGHER
NEUTRAL
LOWER
HIGHER
NEUTRAL
LOWER
HIGHER
NEUTRAL
LOWER
HIGHER
NEUTRAL
LOWER

CM RQ ,)
I CMR QO 
CMR Q 0 
CMR Q2)

I CMR Q2) 
CM RQ 2) 
CMR Q3)

| CM RQ3) 
CMR Q3) 
CMR Q4)

| CMR Q 4) 
CMR Q4) 
CMR Q 0 

| CMR Q 0 
| CMR Q 0 
CMR Q2)

| CMR Q2)
I CMR Q2) 
CMR Q3)

I CMR Q3)
I CMR Q3) 
CMR Q4)

| CMR Q4) 
|C M R Q 4)

For IMT = HIGHER, NEUTRAL, or LOWER and i= 1 to 4,

T.™ o=yeS P  ( F M O  | I M T  | C M R  Q , )  =  1

(EQ 38)
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3.9. EVALUATION M ETHODOLOGIES

In order for the derived computational Bayesian Network Models outputs to be 

of utility in serving as a predictive tool for naval aviation squadron leadership to 

measure likelihood of incurring a future mishap, the models' performance would 

indicate higher probabilities of future mishap occurrences for worse MCAS result 

performance. Worse MCAS result performance is considered to be those with lower 

quartiles of compared, averaged Likert Scale response values. This translates to either 

lower quartile or transition from previous to current MCAS that decremented to a 

lower quartile. Ideally the probability density distribution would show that the 

probability of a future mishap occurring is greater for the MCAS results of the lower 

quartiles. Mathematically this is expressed as

P fm o  (Qi)  >  P m o  ( Q 2 )  >  / ’fm o  ( Q 3 )  >  P fm o  ( Q 4 ) ,  where Y,t=i P f m o  (Qi)  =  1
(EQ 39)

This is pictorial displayed in Figure 20 below.

P ( Q i )

0.5

0.4

0.3

0.2

0.1

0

Qi Q2 Q3 Q4
Figure 20. Ideal Probability o f Mishap Occurrences Given MCAS Quartile

Results
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3.9.1. SKEWNESS

The statistical attributes in Figure 20 demonstrate a unimodal distribution and 

asymmetry with higher number of occurrences in the lower quartiles (Qi and Qi) vice 

those occurring in the upper quartiles (Q3 and Q4 ). This is right skewness, i.e., the 

asymmetric distribution o f the quartiles with the decreasing “tail" to the right side of 

the chart. Although it is common for right skewness that the mode occurs at a lesser 

value than the median which occurs at a lesser value than the mean, it is not unusual 

for right tailed asymmetry in discrete distributions to violate this rule o f thumb [Von 

Hippel, 2005], Addition details concerning Skewness may be found in Section B.3 of 

Appendix B.

The equations denoted as B and E from Table 66 in Appendix B, possessed the 

best average rank values. These two equations were both used for the evaluation of 

the BNM model outputs with Equation B designated as Skewnessi and Equation E 

designated as Skewness2 as shown below in Table 36. This ensured that at least one of 

the skewness tests did not result in a non-parametric value of zero.

Table 36. Skewness Equations

Designation Equation

Skewnessi
max — m e d i a n  
m e d i a n  — m i n

Skewnessi

1
2 (m in +  m a x ) 

m e d i a n
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Using Skewnessi and Skewness? Equations B and E, the potential 

characteristics of skewness ranges for the distribution of the quartile probabilities are:

• Right Tailed 0 < x < l  (EQ 40)

• Symmetric x = l  (EQ41)

• Left Tailed x > 1 (EQ 42)

To summarize the desired attributes for a BNM to serve as a meaningful 

predictive tool to measure likelihood o f incurring a future mishap, the model's discrete 

output o f probability density distribution attributes include:

• Unimodal distribution

• Qi is the mode

• Right tailed asymmetry

• /’fmo (Qi) > P?mo  ( Q 2 )  > / ’fmo ( Q 3 )  > /’fmo ( Q 4 ) ,  where Z f =1 PFM0 ( Q i )  =  1
(EQ 43)

Additionally, to serve as predictive tool to measure likelihood of n o t  incurring 

a future mishap, the model’s output of discrete probability density distribution 

attributes include:

• Unimodal distribution

• Q4 is the mode

• Left tailed asymmetry

•  / ’fm o  (Qi) <  / ’ fm o  (Q2) <  / ’ fm o  (Q3) <  / ’ fm o  (Q4), where £ f = i  P F m o  ( Q i )  =  1
(EQ 44)
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3.9.2. SLOPE

Slope was the metric used to serve as a quantitative comparative means to 

evaluate performance of probability density functions that were unimodal and aligned 

in Skewness. The larger absolute value of derived slope was considered to be o f a 

higher utility for serving as a predictive tool. The equations for calculating slope 

values were:

• Slope = P ( Q 4) - P (  Qi) / 4 for comparison o f quartile probabilities of 

occurrence (EQ 45)

• Slope = P  (Higher) -  P  (Lower) / 3 for comparison o f quartile transition 

probabilities of occurrence. (EQ 46)
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4. RESULTS 

4.1. DATA PREPARATION

4.1.1. MCAS DATA PREPARATION

The 2,300 aggregated sets of survey data were culled to retain only those from 

organizations that were components of aircraft carrier air wings. Data from the 

remaining 930 MCAS results were organized in a Microsoft Excel ® tabular 

spreadsheet to present survey results categorized by Type / Model / Series (T/M/S) 

aircraft, squadron / organizational unit (as denoted by squadron serial number), and in 

successive chronological order based upon Mean Survey Date. This sorting 

demonstrated that there were 136 distinct units that participated in the MCAS. Likert 

value responses were averaged across the span of 43 aggregated questions, and 

subsequently across each o f the six MOSE functional component areas shown in Table 

37 below.

Table 37. MOSE Functional Components of the MCAS

MOSE Functional Component Area Question Numbers
Process Auditing (PA) 1 -6
Reward System and Safety Culture (RS / SC) 7 -1 4
Quality Assurance (QA) 1 5 -2 0
Risk Management (RM) 21 -2 9
Command and Control (C2) 3 0 -3 7
Communication / Functional Relationships (C / FR) 3 8 -4 3

The Likert value for Question 21 was inverted on the 1-5 scale to account for 

its negative connotation. Embedded software functionality within Excel was used to
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determine MCAS results quartile boundaries and assign result placement in the 

quartile continuum of Qi, Q2, Q3, and Q4 with Q t containing the lowest score values 

and Q4 containing the highest score values.

4.1.2. AVIATION M ISHAP SUM M ARY DATA PREPARATION

Select data from the Class A - Aviation Safety Mishap Summary Reports were 

organized in corresponding Microsoft Excel ® tabular spreadsheets to arrange results 

in chronological order o f the mishap date. These reports involved a total of 67 

aircraft. Additional data included the mishap event serial number, applicable T/M/S, 

identification of primary causal factors, and brief description of the incident. Mishap 

Summary data were cross-referenced with the MCAS results spreadsheets, and where 

applicable and based upon mishap occurrence date, were inserted between MCAS 

results bounded by the Mean Survey Dates. Cross matching mishap summary data to 

corresponding MCAS result data was not achieved for nine mishaps. The reasons for 

these and frequencies o f occasions are depicted in Table 38 below.
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Table 38. Reasons For Mishap Summary Data Without 
Corresponding MCAS Survey Results

Reason Frequency
Unit First Appear Serial Number in Mishap Summary Data 
corresponds to Fleet Logistics squadron (VR) which does not fly 
Type / Model / Series aircraft assigned to a Carrier Air Wing (CVW)

1

Unit First Appear Serial Number in Mishap Summary Data that no 
corresponding organization within the 2,300 provided MCAS 
response data

1

Mishaps occurred in Research, Test, Development, and Evaluation 
(RDTE) Squadrons that were not representative o f subordinate 
components o f a CVW

2

Date of occurrence contained within the Mishap Summary report 
was earlier than the corresponding unit's first MCAS response Mean 
Survey Date

5

O f the remaining individual 58 aircraft mishaps, only 55 had corresponding matches 

for both Previous and Current MCAS Result Quartiles (PMR Qi and CMR Qj).

4.1.3. GENERATION OF INPUT DATA FOR BAYESIAN NETW ORK  

MODELS

Linked worksheets from the MCAS results and Aviation Mishap Summary 

data supported the process to calculate observational frequencies and percentages 

necessary to define the node probability distributions for the Bayesian Network 

computational models described in Section 3.7. Previous and Current MCAS Results 

(PMRs and CMRs) were provided and represented by respective quartile assignments.

Inter-period MCAS Transitions (IMTs) by quartile were computed by 

comparing results of two chronologically successive results taken from the same unit 

and determining the numerical value representing the shift in quartile. (Example: if 

PMR was in Q^ and CMR was in Qi, then IMT = LOWER for a decrement of 2).
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Initial chronological MCAS results for each unit were deemed to be “Not Applicable" 

for IMT.

Inter-period Mishap Occurrence (IMO) value was the binary result (i.e., YES 

or NO) as to whether a reported mishap summary existed with an incident date 

between the current and previous MCAS Mean Survey Dates. Similarly, Future 

Mishap Occurrence (FMO) value was the binary result as to whether a reported 

mishap summary existed with an incident date immediately after current MCAS 

results but prior to the next subsequent MCAS Mean Survey Date.

For each applicable listed mishap, the immediately previous and subsequent 

MCAS responses averaged Likert scale values, quartile placement, and transition 

values were determined.

4.2. AGGREGATED INPUT DATA FOR REFINED RESEARCH QUESTION  

1 BAYESIAN NETW ORK M ODELS

The BNM input probability distributions for the 930 aggregated MCAS result 

data (responses to Questions 1 through 43) are contained in Tables 39 through 49 and 

presented in Figures 21 through 26, below.
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Table 39. BNM Computational Models #1 and #2 Prior MCAS Result Quartile
Observed Frequencies and Probabilities

PMR Quartile Quartile Likert 
Scale Value 

Lower Bound

Quartile Likert 
Scale Value 

Upper Bound

Observed
Frequency

Probability

PM RQi 3.159 <3.588 233 0.2505
PMR Q2 3.588 < 3.692 232 0.2495
PMR Q3 3.692 < 3.796 232 0.2495
PMR Q4 3.796 <4.431 233 0.2505

Total 930 1.0000

Table 40. BNM Computational Model #1 and #2 Observed Frequencies and 
Conditional Probabilities o f Inter-Period Occurrence Mishap Given Prior MCAS

Result Quartile

PMR Quartile PMR Qi PMR Q2 PMR Q3 PMR Q4
Observed Frequency 233 232 232 233
Final Unit Quartile Observations 36 37 31 32
IMO = YES 16 16 14 12
IMO = NO 181 179 187 189

Total 197 195 201 201
Probability

Inter-period Mishap=YES 0.0812 0.0821 0.0697 0.0597
Inter-period Mishap=NO 0.9188 0.9179 0.9303 0.9403

Total 1.0000 1.0000 1.0000 1.0000
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Table 41. BNM Computational Model #1 and #2 Observed Frequency and 
Conditional Probabilities o f Current MCAS Results Quartile Given Inter-period 

Mishap Occurrence Given Prior MCAS Result Quartile

PMR PMR Qi PMR Q2 PMR Q3 p m r q 4
IMO YES NO YES NO YES NO YES NO

Observed Frequency
CMR
Qi

9 75 7 41 2 34 0 18

CMR
Qi

1 66 3 53 2 40 1 34

CMR
03

3 27 1 53 4 63 2 46

CMR
q 4

2 15 4 32 5 51 9 91

Total 15 183 15 179 13 188 12 189
Probability

CMR
Q.

0.6000 0.4098 0.4667 0.2291 0.1538 0.1809 0.0000 0.0952

CMR
q 2

0.0667 0.3607 0.2000 0.2961 0.1538 0.2128 0.0833 0.1799

CMR
Q3

0.2000 0.1475 0.0667 0.2961 0.3077 0.3351 0.1667 0.2434

CMR
Q4

0.1333 0.0820 0.2666 0.1787 0.3847 0.2712 0.7500 0.4815

Total 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Note: # - There are only 55 individual aircraft mishaps that had corresponding matches 
with both Previous and Current MCAS Response Quartiles. Three o f the 58 had no 
subsequent MCAS response data after the mishap occurrence date.



Table 42. BNM Computational Model #1 Conditional Probabilities o f Future Mishap 
Occurrence Given Current MCAS Results Quartile Given Inter-period Mishap

Occurrence

IMO Y1ES NO
CMR CMR CMR CMR CMR CMR CMR CMR CMR

Q. 02 Q3 q 4 Qi Qi 03 Q4
Observed Frequency

FMO 
= YES

0 1 1 1 18 5 7 15

FMO 
= NO 18 5 7 15 130 152 157 157

Total 18 6 8 16 148 157 162 172
Probability

FMO 
= YES

0.0000 0.1667 0.1250 0.0625 0.1216 0.0318 0.0427 0.0872

FMO 
= NO 1.0000 0.8333 0.8750 0.9375 0.8784 0.9682 0.9573 0.9128

Total 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

20
lMO=YES

20
IMO=NO

15 15

% 10 • / . 10
5 5

0
0 16.67 12.50 6.25

0 Ha IB
Q. Q2 Q3 

CMR
Q4 Qi Q2 Q3 

CMR
q 4

Figure 21. BNM Computational Model #1 Conditional Probabilities of Current 
MCAS Survey Results by Quartile Preceding Future Mishap Occurrence Given Inter- 

Period Mishap Occurrence Equals YES or NO
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Table 43. BNM Computational Model #2 Observed Frequency and Conditional
Probabilities of Future Mishap Occurrence Given Current MCAS Result Quartile

CMR Quartile
/
FMO

CMR Qi CMR Q2 C M R Q 3 CM RQ 4

Observed Frequency
YES 18 6 8 16
NO 148 157 164 172

Probability
YES 0.1084 0.0368 0.0465 0.0851
NO 0.8916 0.9632 0.9535 0.9149

Total 1.0000 1.0000 1.0000 1.0000

15

10

%

5

3.68 4.65

Qi Q2 Q3 Q4
Figure 22. BNM Computational Model #2 Conditional Probabilities of 

Current MCAS Survey Results by Quartile Preceding Future Mishap
Occurrence
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Table 44. BNM Computational Model #3, #4, and #5 Inter-period Mishap Occurrence
Observed Frequency and Probabilities

Inter-period
Mishap

Occurrence

Observed
Frequency

Probability

IMO = YES 53 0.0661
IMO = NO 749 0.9339

Total 802 1.0000

Table 45. BNM Computational Model #3 and #4 Inter-period MCAS Transition 
Observed Frequency and Probabilities

Inter-period MCAS 
Transition

Observed Frequency Probability

IMT = HIGHER 260 0.3275
IMT = NEUTRAL 307 0.3866
IMT -  LOWER 227 0.2859

Total 794 1.0000
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Table 46. BNM Computational Model #3, #4, and #5 Current MCAS Results Given
Inter-period MCAS Transition Given Inter-period Mishap Occurrence Given

Observed Frequency and Probabilities

IMO YES NO
IMT HIGHER NEUTRAL LOWER HIGHER NEUTRAL LOWER

0 3served Frequency
CMR
Qi

0 9 8 0 75 94

CMR
Qi

1 3 3 66 53 74

CMR
q 3

3 2 2 81 65 46

CMR
04

8 6 0 101 93 0

Total 12 20 13 248 286 214
Probability

CMR
0 .

0 0.4500 0.6154 0 0.2622 0.4392

CMR
q 2

0.0833 0.1500 0.2308 0.2661 0.1853 0.3458

CMR
03

0.2500 0.1000 0.1538 0.3266 0.2273 0.2150

CMR
04

0.6667 0.3000 0 0.4073 0.3252 0

Total 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Table 47. BNM Computational Model #3 and #5 Future Mishap Occurrence Given 
Inter-period MCAS Transition Given Current MCAS Results Observed Frequency and

Probabilities

CMR CMR Qi c m r q 2
IM T# HIGHER NEUTRAL LOWER HIGHER NEUTRAL LOWER

Observed Frequency
FMO = 
YES

0 4 4 5 1 4

FMO = 
NO 0 69 78 54 41 62

Total 0 73 82 59 42 66
Probability

FMO = 
YES N A # 0.0548 0.0488 0.0847 0.0238 0.0606

FMO = 
NO N A # 0.9452 0.9512 0.9153 0.9762 0.9394

Total N A # 1.0000 1.0000 1.0000 1.0000 1.0000

CMR c m r q 3 c m r q 4
IM T# HIGHER NEUTRAL LOWER HIGHER NEUTRAL LOWER

Observed Frequency
FMO = 
YES 3 3 2 4 4 0

FMO = 
NO 70 56 37 92 79 0

Total 73 59 39 96 83 0
Probability

FMO = 
YES

0.0411 0.0508 0.0513 0.0417 0.0482 N A *

FMO = 
NO

0.9589 0.9492 0.9487 0.9583 0.9518 N A *

Total 1.0000 1.0000 1.0000 1.0000 1.0000 NA *

Notes: # - Not Applicable due to inability to transition 
from a lower quartile than CMR Qi 

* - Not Applicable due to inability to transition 
from a higher quartile than CMR Q4
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inability to transition from a 
lower quartile than CMR Qi 

* - Not Applicable due to 
inability to transition from a 
higher quartile than CMR Q4

Figure 23. BNM Computational Model #3 Conditional Probabilities o f MCAS 
Survey by Quartile Preceding Future Mishap Occurrence Given Inter-MCAS 

Transition Equals HIGHER, NEUTRAL, or LOWER
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Figure 24. BNM Computational Model #3 Conditional Probabilities o f Inter-MCAS 
Transition Preceding Future Mishap Occurrence Given Current MCAS Results Equal

Qi, Q 2 , Q 3, or Q4

Table 48. BNM Computational Model #4 Future Mishap Occurrence Given Current 
MCAS Results Observed Frequency and Probabilities

CMR CM RQ, CMR O2 CMR Q3 CMR Q4
Observed Frequency

FMO = YES 8 10 8 8
FMO = NO 147 157 163 171

Total 155 167 171 179
Probability

FMO = YES 0.0516 0.0599 0.0468 0.0447
FMO = NO 0.9484 0.9401 0.9532 0.9553

Total 1.0000 1.0000 1.0000 1.0000
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Figure 25. BNM Computational Model #4 Conditional Probabilities of 
Current MCAS Results Quartiles Preceding Future Mishap Occurrence

Table 49. BNM Computational Model #5 Inter-period MCAS Transition Given Inter- 
period Mishap Occurrence Observed Frequency and Probability

Inter-period Mishap 
Transition

IMO = YES IMO = NO

Observed Frequency
IMT = HIGHER 12 248
IMT -  NEUTRAL 21 286
IMT = LOWER 13 214

Total 46 748
Probability

IMT = HIGHER 0.2609 0.3316
IMT = NEUTRAL 0.4565 0.3824
IMT = LOWER 0.2826 0.2860

Total 1.0000 1.0000
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Figure 26. BNM Computational Model #5 Conditional Probabilities of 
Inter-MCAS Transitions Preceding Future Mishap Occurrence

4.3. DATA RESULTS FOR RESEARCH QUESTION 1 BAYESIAN  

NETW ORK MODELS

The five BNM computational models were executed by setting evidence that 

either the Future Mishap Occurrence did happen (i.e., P  (FMO = YES) = 1) or did not 

happen (i.e., P  (FMO = NO) = 1). This enabled calculation o f the nodal probability 

distribution for each characteristic. The data are contained in Tables 50 through 54 

and Figures 27 through 31 below.
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Table 50. BNM Computational Model #1 Nodal Probability Distribution

F M O  = Y E S N O

P M R  Q i 0 .2 6 2 6 0 .2 4 9 6

P M R  Q 2 0 .2 3 4 9 0 .2 5 0 6

P M R  Q 3 0 .2 4 6 8 0 .2 4 9 7

p m r q 4 0 .2 5 5 7 0 .2501

C M R  Q i 0 .3 7 2 4 0 .2 2 5 5

C M R  Q 2 0 .1 3 4 5 0 .2 6 0 7

c m r q 3 0 .1 7 0 7 0 .2 5 6 0

C M R  Q 4 0 .3 2 2 3 0 .2 5 7 8

FMO = YES FMO = NO
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Figure 27. BNM Computational Model #1 Nodal Conditional Probabilities
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Table 51. BNM Computational Model #2 Nodal Probability Distribution

FMO = YES NO

PMR Q, 0.2626 0.2496
PMR Q2 0.2349 0.2506
PMR Q3 0.2468 0.2497
p m r q 4 0.2557 0.2501

C M R Q i 0.3724 0.2255
CMR Q2 0.1345 0.2607
CMR Q3 0.1707 0.2560
c m r q 4 0.3223 0.2578

FMO = YES FMO = NO
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Figure 28. BNM Computational Model #2 Nodal Conditional Probabilities
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Table 52. BNM Computational Model #3 Nodal Probability Distribution

FMO = YES NO

CMR Q, 0.2410 0.2347
c m r q 2 0.2904 0.2485
c m r q 3 0.2333 0.2511
CMR Q4 0.2354 0.2656

IMT Higher 0.3418 0.3267
IMT Neutral 0.3549 0.3883
IMT Lower 0.3034 0.2850

FMO = YES FMO = NO

%

50

10

30

21.10 29.04 23.33 23.54

0 20 

10
23.47 24.85 25.11 26.56

0

PMR PMR

FMO = YES FMO = NO

Higher Neutral Lower Higher Neutral Lower
IMT “ IMT

Figure 29. BNM Computational Model #3 Nodal Conditional Probabilities
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Table 53. BNM Computational Model #4 Nodal Probability Distribution

FMO = YES NO

CMR Q, 0.2394 0.2348
CMR Q2 0.2963 0.2482
C M R Q j 0.2312 0.2513
CMR Q4 0.2330 0.2657

IMT Higher 0.3183 0.3280
IMT Neutral 0.3803 0.3869
IMT Lower 0.3014 0.2851

FMO = YES FMO = NO

%

%

29.6323.94 23.12 23.30

%

23.48 24.82 25.13 26.57

FMO = YES FMO = NO

Higher Neutral Lower 
IMT

Higher Neutral Lower 
IMT

Figure 30. BNM Computational Model #4 Nodal Conditional Probabilities
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Table 54. BNM Computational Model #5 Nodal Probability Distribution

FMO = YES NO

CMR Q, 0.2419 0.2357
CMR Q2 0.2912 0.2491
C M R Q 3 0.2328 0.2509
CMR Q4 0.2341 0.2643

IMT Higher 0.3416 0.3262
IMT Neutral 0.3554 0.3890
IMT Lower 0.3030 0.2849

FMO = YES FMO = NO
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Figure 31. BNM Computational Model #5 Nodal Conditional Probabilities



125

4.4. DATA RESULTS FOR RESEARCH QUESTION 2 BAYESIAN  

NETW ORK M ODELS

The five BNM computational models were executed for each of the six MOSE 

components by evaluating performance for the specific questions in each category.

This was done by setting evidence that either the Future Mishap Occurrence did 

happen (i.e., P  (FMO = YES) = 1 or did not happen (i.e., P  (FMO = NO) = 1) enabling 

calculation o f the nodal probability distribution for each characteristic. The data are 

contained in Appendix E.
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5. INTERPRETATION, CONCLUSIONS, AND RECOM M ENDATIONS

5.1. PRELIM INARY EVALUATION OF DATA SET

Prior to evaluating the output from the Bayesian Network Models, a 

preliminary evaluation of the research input data was conducted. The research data 

provided by the U.S. Naval Safety Center contained information from 930 MCAS 

results of carrier air wing based squadrons conducted from 2000-2009 and 58 Class A 

mishap events for which there were corresponding MCAS result data for a survey 

administered prior to the mishap date. The initial examination compared the 2000- 

2009 data provided for this research against the April 2004 reference data shown in 

Figure 3 [Ciavarelli-2007, Schimpf, Figlock-2006] from Section 2.2.3. The 

aggregated MOSE component Likert Score values from the most recent 2000-2009 

MCAS result data distribution (without developed Bayesian Network Modeling 

execution) in squadrons that had subsequently incurred a Class A mishap prior to the 

next administration of the MCAS are shown below in Figure 32.
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Figure 32. Previous MCAS Results for Subsequent Class A Mishap 
Occurrences on Data Provided by the U.S. Naval Safety Center

The discrete quartile distributions for occurrence frequency of mishaps and 

probabilities from the reference study conducted in April 2004 and the data provided 

for this research covering 2000-2009 are displayed in Tables 55 and 56 below.

Table 55. Mishap Occurrences

Data Set Mishap Occurrence Frequency of 
Aggregate Likert Scale Result 

Quartiles
0 . 0 2 Q3 Q4

April 2004 Study Class A Mishaps 21 19 12 13
April 2004 Study Class A, B & C Mishaps 94 78 54 49
Dissertation Research Data for Class A 
Mishaps with associated MCAS results from 
2000-2009

16 16 14 12
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Table 56. Mishap Probabilities

Data Set Mishap Probability o f Aggregate 
Likert Scale Result Quartiles

Qi 02 Q3 Q4
April 2004 Study Class A Mishaps 0.3231 0.2923 0.1846 0.2000
April 2004 Study Class A, B & C Mishaps 0.3418 0.2836 0.1964 0.1782
Dissertation Research Data for Class A 
Mishaps with associated MCAS results from 
2000-2009

0.2759 0.2759 0.2414 0.2069

A Chi Squared Distribution Test for Homogeneity was conducted to compare

the data received from the U.S. Naval Safety Center covering 2000-2009 for this

research against the study result data from April 2004 by Ciavarelli, Schimpf, and

Figlock that is displayed in Figure 3. This was conducted to assess that the U.S.

Naval Safety Center provided data set was proportionally representational. The test

statistic evaluation was

? v i (Observed-Expected ) 2
* 2 =  L m  quart i les  ----------- <EQ 47)

Test metrics used the four quartiles for comparison of the cells resulted in three 

degrees o f freedom (i.e. n = 4 - 1), using a one sided P-value. (DeVeaux et al., 2012). 

The critical value for 3 degrees o f freedom and a  = 0.05 is 

^o.o5,3 = 1 1-345.

• The null hypothesis for this preliminary evaluation was that the data sets had the 

same distribution o f counts.

• The alternate hypothesis was that the distributions were different.



The derived Chi Squared statistic for comparing the U.S. Naval Safety Center 

provide data against the April 2004 Reference Class A Mishap occurrences yielded 

X 2 = 1.4799, and the derived Chi Squared statistics for comparing the U.S. Naval 

Safety Center provide data against the April 2004 Reference Class A, B, and C 

Mishap occurrences yielded X 2 =1.6174. Neither comparison X 2 exceeded the critical 

value indicating that there was no significant difference for 3 degrees of freedom and 

a  = 0.05. Therefore the null hypothesis was retained serving to demonstrate that the 

research data from 2000-2009 provided by the U.S. Naval Safety Center was 

representative in comparison to the April 2004 reference study.

5.2. EVALUATION OF DATA SUPPORTING ANSW ER TO RESEARCH  

QUESTION 1

Research Question 1 queried whether Bayesian Network Modeling provided a 

better predictor for future mishap occurrence than the probabilities generated from the 

MCAS frequency observations in the reference study. Comparison o f the probability 

density distributions and their respective attributes for the results from the April 2004, 

Ciavarelli, Schimpf, and Figlock published study labeled here as “Reference”, 

research data provided from the U.S. Naval Safety Center covering 2000-2009, and 

output from the Bayesian Network Models #1 through #5 are presented in Tables 57 

through 59.
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Table 57. Attributes of Probability Density Distributions o f MCAS Result Likert 
Scale Quartiles Followed by Actual Mishap Occurrence

Model
MOSE
Charac

-teristic

Proba -  
bility 

Variable

Depiction Mode Skew­
ness 1

Skew­
ness:

Slope

Reference 
Class A 
Mishaps

A ll# CMR Unimodal Q . 0.6250 0.8125 -0.0308

Reference 
Class 
A, B & C  
Mishaps

All CMR Unimodal Q i 0.5988 0.7994 -0.0409

U.S. Navy 
Safety 
Center 
Provided, 
2000-2009 
Research 
Data Set 
for Class 
A Mishaps

All CMR Bimodal Q 1 . Q 2 0.8125 0.9063 -0.0172

Note: #- All indicates aggregation of all 6 MOSE components into a single metric 
value: Process Auditing (PA), Reward Systems / Safety Culture (RS/SC), Quality 
Assurance (QA), Risk Management (RM), Command and Control (C2), and 
Communications and Functional Relationships (C/FR)
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Table 58. Attributes of Probability Density Distributions o f Bayesian Network Model 
(BNM) Output When Future Mishap Occurrence FMO = YES

Model
MOSE
Charac

-teristic

Proba -  
bility 

Variable

Depiction Mode * Skew­
ness i

Skew-
ness2

Slope

BNM #1 All
PMR Bimodal Q i ,  Q 4 1.0101 1.0050 -0.1725
CMR Bimodal Q i » Q 4 0.9728 0.9864 -1.2525

BNM #2 All
PMR Bimodal Q u  Q 4 0.9767 0.9883 -0.3025
CMR Bimodal Q i ,  Q 4 0.9751 0.9876 -1.1750

BNM #3 All
CMR Unimodal Qi 0.8818 0.9409 -0.1400
IMT Unimodal Neutral 0.9259 0.9629 -1.2800

BNM #4 All CMR Unimodal Qi 0.8667 0.9334 -0.1600
IMT Unimodal Neutral 0.9668 0.9834 -0.5633

BNM #5 All CMR Unimodal Q2 0.8758 0.9379 -0.1950
IMT Unimodal Neutral 0.9257 0.9628 -1.2867

Note: * - For comparison of PMR and CMR probability distributions, the mode was a 
quartile (i.e., Qi). For IMT probability distributions, the mode was either Higher, 
Neutral, or Lower transition o f quartiles.

Table 59. Attributes of Probability Density Distributions o f BNM Output When
FMO = NO

Model
MOSE 

Charac - 
teristic

Proba -  
bility 

Variable

Depiction Mode Skew-
nessi

Skew-
ness2

Slope

BNM #1 All
PMR Uniform None 0.9992 0.9996 0.0125
CMR Unimodal Q2 1.0568 1.0284 0.8075

BNM #2 All
PMR Uniform None 1.0016 1.0008 0.0225
CMR Unimodal Q2 1.0568 1.0284 0.8000

BNM #3 All CMR Unimodal Q« 1.0695 1.0348 1.0300
IMT Unimodal Neutral 0.9199 0.9600 -1.3900

BNM #4 Ail CMR Unimodal 04 1.0704 1.0352 1.0300
IMT Unimodal Neutral 0.9177 0.9589 -1.4300

BNM #3 All CMR Unimodal 04 1.0627 1.0314 0.9533
IMT Unimodal Neutral 0.9205 0.9602 -1.3767
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A review of Table 58 demonstrated that for cases in which future mishaps did occur 

subsequent to the MCAS result data, that there were no sets of BNM output using 

either Previous / Current MCAS Result (PMR / CMR) for BNMs #1 and #2, or 

Current MCAS Results (CMR) /Inter-Period MCAS Transition (IMT) for BNMs #3, 

#4, or #5 that met the desired attributes o f modality, skewness, and slope. Since no 

BNM outputs met all criteria for desired attributes, no statistical analysis was 

conducted to evaluate the significance of the models' performance. Therefore the null 

hypothesis for Research Question 1 listed below could not be rejected.

Hlo: Use o f Bayesian Network Modeling to represent the relationship between 
organizational MCAS results and mishap occurrence will not provide 
improved methodology compared to MCAS frequency observation reference 
study analysis to predict occurrence of future mishaps

In evaluating the converse utility in table 59 for those cases in which a future 

mishap did not occur subsequent to the MCAS result data, as shown in the shaded 

rows, the use o f BNMs #3, #4, and #5 output o f PMR quartiles met the desired 

attributes. No reference data were available for MCAS results of squadrons that did 

not incur an aviation mishap, precluding statistical analysis for comparison to the 

results of the derived data contained in Table 57, above. Face inspection o f the results 

indicates that there are indications for the BNMs #3, #4, #5 that fourth quartile 

performance resulted in higher probability o f not incurring a future mishap.
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5.3. EVALUATION OF DATA SUPPORTING ANSW ER TO RESEARCH  

QUESTION 2

Research Question 2 inquired whether any of the individual MOSE 

components served as a better indicator than aggregation o f all six MOSE components 

for future mishap occurrence using Bayesian Network Modeling. Comparison of the 

probability density distributions and their respective attributes for the results from the 

output from the Bayesian Network Models #1 through #5 broken out by the aggregate 

and individual MOSE components are presented in Appendix F.

Review o f Tables 100 through 101 in Appendix F indicates (as shown in the 

shaded rows) demonstrates that the desired attributes for modality, skewness, and 

slope, dependent upon FMO equal to YES or NO, were evident for these select cases. 

These select cases demonstrating the desired attributes are displayed below in Tables 

60 and 61.

Table 60. Attributes of Probability Density Distributions for Specific MOSE 
Components and Select BNM Outputs When FMO = YES

Model
MOSE
Charac

-teristic

Proba -  
bility 

Variable

Depiction Mode Skew­
ness i

Skew-
ness2

Slope

BNM #1 QA PMR Unimodal Q. 0.9238 0.9619 -0.7825
BNM #1 RM PMR Unimodal Q. 0.9026 0.9513 -1.1575
BNM #2 QA PMR Unimodal Qi 0.9448 0.9724 -0.8050
BNM #2 RM PMR Unimodal Q. 0.9201 0.9601 -0.9700
BNM #2 C2 PMR Unimodal Qi 0.9596 0.9798 -0.6525
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Table 61. Attributes of Probability Density Distributions for Specific MOSE 
Components and Select BNM Outputs When FMO = NO

Model
MOSE
Charac
-teristic

Proba -  
bility 

Variable

Depiction Mode Skew-
nessi

Skew­
ness:

Slope

BNM #3 All CMR Unimodal Qa 1.0695 1.0348 1.0300
BNM #3 QA CMR Unimodal Qa 1.0247 1.0124 0.2233
BNM #3 RM CMR Unimodal Qa 1.1231 1.0616 1.6433
BNM #4 All CMR Unimodal Qa 1.0704 1.0352 1.0300
BNM #4 QA CMR Unimodal Qa 1.0243 1.0121 0.2300
BNM #4 RM CMR Unimodal Qa 1.1236 1.0618 1.6400
BNM #4 C/FR CMR Unimodal Qa 1.0454 1.0227 0.7300
BNM #5 All CMR Unimodal Qa 1.0627 1.0314 0.9533
BNM #5 RM CMR Unimodal Qa 1.1222 1.0611 1.6233
BNM #5 C/FR CMR Unimodal Qa 1.0392 1.0196 0.6800

An inspection of the two tables above indicates that there were no specific pairing of 

MOSE component and BNM demonstrated better desired behavior as a predicting tool 

when both:

• MCAS result performance was in a lower or the lowest quartile when a future 

mishap did occur, and

• MCAS result performance was in a higher or the highest quartile when a future 

mishap did not occur.

A summary o f individual examples that contained probability variable quartile 

distributions that met desired attributes is shown below in Table 62.
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Table 62. MOSE component and Corresponding Bayesian Network Model Outputs 
Demonstrating Desired Probability Distribution

MOSE
component BNM FMO

Probability 
Variable Quartile

Aggregate #3, #4, #5 NO CMR

QA
#1, #2 YES PMR
#3, #4 NO CMR

RM
#1, #2 YES PMR
#3, #4, #5 NO CMR

C2 #2 YES PMR
C/FR #4, #5 NO CMR

Table 62, above, displays that:

• None o f the BNMs using aggregation of the six MOSE components demonstrated 

all desired traits to serve as a predictive tool for future mishap occurrence (i.e., 

when FMO = YES). There were 3 instances for BNM #3, #4, and #5 using 

aggregated MCAS data that displayed suitable traits when future mishap 

occurrence did not occur (i.e., when FMO = NO).

• There is no single MOSE component that meets desired attributes for serving as a 

predictive tool for both when future mishap occurrences occur and do not occur.

As stated in Section 3.9.1 above, satisfactory model performance would support 

utility as a predictive tool for both future likelihoods to incur and not incur a future 

mishap. None of the developed Bayesian Network Models when applied to 

individual and aggregate MOSE components displayed satisfactory predictive 

performance for both outcomes in which FMO = YES and FMO = NO.

Since none of the output data from BNMs using input aggregated from all six 

MOSE components demonstrated acceptable criteria for all probability distribution
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traits, no statistical analysis was conducted to evaluate the significance of the models' 

performance when compared to input from individual MOSE component. Therefore 

the null hypothesis for Research Question 2 listed below could not be rejected.

H2o: Use of Bayesian Network Modeling with specific component MCAS 
results will not provide improved methodology compared to aggregated MCAS 
results to predict occurrence o f future mishaps.

5.4. ANALYSIS

5.4.1. EVALUATION OF BAYESIAN NETW ORK M ODELING FOR  

PREDICTING FUTURE M ISHAP OCCURRENCE

In evaluation o f data produced from the developed and executed Bayesian 

Network Models, for Research Questions 1 and 2, the null hypotheses could not be 

rejected. Examination of the model outputs and their characteristic traits did not 

support using Bayesian Network Models o f sequential MCAS results as a predictive 

tool to gauge likelihood for incurring or not incurring a future mishap.

For Research Question 1, in comparison of the aggregated MCAS data for all 

MOSE components to the April 2004 reference study detailed by Ciavarelli in 2007, 

Schimpf, and Figlock in 2006, none of the Bayesian Network models developed for 

this research demonstrated improved performance.

For Research Question 2, statistical analysis of Bayesian Network modeling 

results from specific MOSE component input compared to aggregated input from all 6 

MOSE components was not conducted as the models using aggregated data did not 

demonstrate all required traits for probability distribution. Additional analysis was
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conducted to determine if any specific MOSE component used in a defined BNM had 

superior performance than the others.

Consideration was given for utility of statistical analyses to compare results for 

specific MOSE components and BNM outputs for those cases in which output 

performance met desired attributes for predicting future mishap occurrence. The one­

sided paired /-test was selected for use to compare paired differences in slopes from 

one given specific MOSE component -  BNM case listed below in Table 63 against the 

others.

Table 63. Previous MCAS Result Quartile Probability Distributions for Specific 
MOSE component -  BNMs with FMO = YES

MOSE
component

BNM Qi q 2 q 3 Q4 Slope

QA
#1 0.2705 0.2493 0.2410 0.2392 -0.0078
#2 0.2737 0.2405 0.2443 0.2415 -0.0081

RM #1 0.2847 0.2409 0.2360 0.2384 -0.0116
#2 0.2761 0.2447 0.2419 0.2373 -0.0097

C2 #2 0.2715 0.2388 0.2443 0.2454 -0.0065

The null hypothesis for this additional evaluation was that the slopes for the specific 

MOSE component -  BNMs were essentially similar while the alternate hypothesis was 

that one o f the slopes demonstrated significantly better performance than the others. 

This calculation was accomplished using the statistic for paired /- test. (DeVeaux et 

al„ 2012)
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t n - 1 =  d  h ° / s E ( d )  ’ where: (E(^ 48)

d  = mean of pairwise differences
S ti = standard deviation o f mean s of pairwise differences
n  = number of pairs
n - l  -  degrees o f freedom

_ 5* /
S E { d ) = y  standard error for the mean, applied to the differences

(EQ 49)

For this analysis: n  = 4, Degrees of Freedom was n - l =  3, with a  = 0.05, the one-sided 

critical t value for negative slopes was t0,05 3 = -2.3534 such that for the derived t 

value to exceed the critical value, it had to be less than -2.3534. Results of the paired 

t-test one-sided statistical analysis are shown below in Table 64.

Table 64. Paired t-Test One Sided Analysis o f MOSE component -  BNM Slopes

Basis Slope Slope
Value

Derived / -Statistic 
compared to other 

MOSE component- 
BNM slopes

Exceeds 
Critical / value 
such that it is 

less than 
-2.3534

QA-BNM #1 -0.0078 1.0478 NO
QA-BNM #2 -0.0081 0.7765 NO
RM-BNM#! -0.0116 -5.4475 YES
RM-BNM #2 -0.0097 1.1162 NO
C2- BNM #2 -0.0065 3.1770 NO

As shown in the gray shaded row above, only the MCAS data results using the Risk 

Management MOSE component for Previous MCAS Results with BNM #1 

demonstrated all the desired attributes for probability distribution with a quantifiable 

slope value that exceeded the one-side, paired /-tests critical value. This enabled
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rejection of the null hypothesis indicating that for the use o f the Risk Management 

MOSE component as input data for BNM #1, PMR provided significantly improved 

performance than the other tested BNMs; however its slope value of -0.0116 did not 

outperform the April 2004 reference study published by Ciavarelli in 2007 and 

Schimpf and Figlock in 2006 for Class A mishaps (-0.0308) / Class A, B, and C 

mishaps (-0.0409) or the dissertation research data set (-0.0172) depicted in Table 64 

above.

5.4.2. APPLICATION OF BAYESIAN NETW ORK M ODELING FOR 

PREDICTING FUTURE M ISHAP OCCURENCE

Bayesian Network Models developed for this research did not demonstrate 

sufficient performance to meet the intended goal o f providing squadron leadership 

with a tool that could be used for predicting future mishap occurrence. The modeling 

and simulation o f Bayesian Networks is a valid methodology for existing data to 

determine conditional probability, i.e., the probability of an event given that we know 

some other event has occurred. However the developed and executed models in this 

research did not add improved quantitative metrics for representing the relationship 

between sequential MCAS results and future mishap occurrence / non-occurrence. 

Reasons that may have impacted Bayesian Network Model performance include:

• Data provided by the U.S. Naval Safety Center did not support development of 

Bayesian Network Models that demonstrated desirable traits for use as a predictive 

tool.
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• Poor construct validity of the MCAS to accurately reflect six distinct categories, 

corresponding to the six components of the Model of Organizational Safety 

Effectiveness.

• The state variable nodes and their inter-relationships in the developed conceptual 

Bayesian Network Models did not capture key elements necessary to produce 

results that could be used as a predictive tool.

• Use of Likert Scale data did not adequately establish significant state variable 

nodes for Bayesian Network Model execution that supports predictive tool use. 

Additional related components to this involve:

o Quartiles were used to differentiate levels of performance from squadron 

MCAS performance. This was done to enable direct comparison with the 

April 2004 reference study published by Ciavarelli in 2007 and Schimpf 

and Figlock in 2006 . This coarse level of gradation with only four discrete 

values may not have demonstrated sufficient distinction to enable 

meaningful model output, 

o Quartile transition was defined as a state variable to reflect direction of 

movement in quartiles from sequential MCAS results. Characterization of 

direction o f change as Lower (Q, —> Q, where i > j ) or Higher (Q, —» Q, 

where i < j) may not have demonstrated a sufficient level of fine distinction 

to enable meaningful model output.
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5.4.2.1. REVIEW  OF ASSUMPTIONS

Assumptions listed in Section 1.7 were reviewed for potential adverse impact on

research results.

• ASSUMPTION 1

o Statement: Design and implementation o f a computational Bayesian 

Network Model using MCAS derived inputs does not substantially change 

the intent of the original framework. MCAS was implemented to capture 

maintenance related items within the MOSE framework, 

o Review: The use o f MCAS results as input data for computational 

execution of Bayesian Network Models should not have imparted any 

substantial change to the intent of the original MCAS framework nor led to 

incorrect assessments of squadron maintainers' perspective of 

organizational risk management and safety climate.

• ASSUMPTION 2

o Statement: Use o f a computational model to accurately produce

conditional probability predictions that reflect causal network relationships 

between MCAS results and mishap occurrences continues to provide the 

means to accurately represent MOSE components, 

o Review: The reliance o f computational Bayesian Network Models to 

accurately produce conditional probability predictions that reflect causal 

network relationships between MCAS results and future mishap 

occurrences should not have introduced means to inaccurately represent 

MOSE components. Simulation through basic Bayesian Network
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Modeling cannot incorporate feedbacks and dynamics. [Albert, 2012] The 

five discrete models contained in this research had no feedback 

mechanisms to distort representation of MOSE components.

• ASSUMPTION 3

o Statement: Averaging aggregated organizational response scores of MCAS 

questions does not alter the accuracy o f survey results, 

o Review: Averaging aggregated organizational responses should not have 

altered accuracy o f MCAS results. Aggregated results were used in 

computation model execution to derive results which were directly 

comparable to the April 2004 reference study published by Ciavarelli in 

2007 and Schimpf and Figlock in 2006 to evaluate models’ performance.

ASSUMPTION 4
o Statement: Changes in an organization’s safety climate reflected by 

MCAS results occur at a linear rate for the time period between 

implementation o f successive safety surveys 

o Review: Discrete event modeling contains an inherent limitation for 

reflecting changes in state variables between observation times. Without 

use of either dynamic modeling techniques or additional observation points 

within a given time period, the use of only two sequential MCAS results 

constrains derivation of a linear rate of change for the for the time period 

between implementation of successive safety surveys.



143

5.4.2.2. ADDITIONAL FACTORS INFLUENCING EVALUATION OF 

RESEARCH M ODELS’ PERFORM ANCE

A useful model to serve as a tool for squadron leadership was to demonstrate 

performance for accurately predicting likelihood for both when future mishap will and 

will not happen. Although model execution was conducted for both outcomes of 

FMO = YES and FMO = NO, there were limitations in comparative evaluation against 

a reference for MCAS results in which a future mishap did not occur.

• The reference study April 2004 published by Ciavarelli in 2007 and Schimpf and 

Figlock in 2006, contained only data that represented the quartile distributions and 

frequency of mishap occurrences. No complementary MCAS result data were 

available for squadrons that did not incur mishaps. Additionally, no breakdown of 

aggregated MCAS survey results into individual MOSE components were 

available for the April 2004 reference study.

• Disparities in frequency number of events for when future mishaps did and did not 

occur were also significant. There were

o Only 58 instances in which corresponding mishaps occurred and only 55 

that had corresponding previous and current MCAS results (PMR and 

CMR).

o 736 instances in which there were a matched set of previous and current 

MCAS results and no future mishap occurrence.

• The data provided contained MCAS administered between the dates of September 

7, 2000 and January 6, 2009 and mishap occurrence dates between October 18, 

2002 and August 15, 2007. The potential exists that there were additional mishap
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occurrences with dates subsequent to that of the last MCAS result and prior to the 

administration of the next MCAS.

5.5. CONCLUSIONS

This dissertation presented a methodology for developing conceptual and 

computational Bayesian Network Models to generate conditional probability 

predictions that would be useful as an improved predictive tool for squadron 

leadership. The goal behind employment of these methods was to accurately represent 

the modeling causal network relationships between MCAS results and future mishap 

occurrences. Through leveraging definition o f state variable nodes and their directed 

path connections, resultant conditional probabilities, this endeavor sought to closely 

associate successive MCAS survey results with observed mishap occurrence. 

Comparison o f Bayesian Network Model outputs to reference data and simple / tabular 

presentation of mishap occurrence frequency to quartile placement failed to 

demonstrate improved performance. As such, this dissertation research effort was 

unsuccessful in formally establishing and validating the application of the Bayesian 

Network Modeling methodology in the context for its use for evaluating successive 

MCAS results as a predictive tool for future mishap occurrence.

5.6. RECOM M ENDATIONS

This research addressed an important topic area in striving to develop a 

computational model that would serve as a predictive tool for squadron leadership to 

conduct risk analysis, apply risk management, and reduce susceptibility for future
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mishap occurrence. The costs in manpower and equipment are worthy concerns to 

assist aviation squadron leadership and our nation with a methodology that will serve 

to reduce mishap occurrence rates and improve our combat readiness.

Although this research did not produce the desired results, it has served to 

narrow the field o f study in this area while providing avenues for future research that 

may serve to achieve the goals of this effort. Recommendations for forthcoming 

scholarly exploration in this field include suggestions regarding data and modeling:

• Data:

o Coordinate and liaison with U.S. Naval Safety Center for obtaining 

additional data that would provide for finer levels of detail and / or 

definition of other critical state variables for expressing causal network 

relationships. Additional data would support model execution for:

■ Squadrons flying supplementary Type/Model/Series aircraft other 

than those that comprise a carrier air wing;

■ Inclusion of both Class B and Class C mishaps;

■ Incorporation of aircraft / equipment damage and personnel injuries 

located in submitted squadron Hazard Reports. These incidents do 

not meet the minimal criteria set for Class C mishaps; however, 

they would provide higher observed frequencies than reliance on 

only Class A mishap data.

o Conduct further analysis on reference data study by Schimpf and Figlock 

(as shown in Figure 3) to evaluate results and respective quartile 

distributions for those squadrons that did not experience a future mishap
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occurrence within 24 months after survey. This would support better 

comparison of modeling results, 

o Collaborate with US Naval Safety Center for potential changes to the 

MCAS questions that would improve construct validity in supporting 

unique features of all six MOSE components. This would address the 

current issue in which every MCAS question loading on one main factor.

• Modeling

o Perform model execution using single specific questions in each o f the 6 

MOSE components and perform evaluation to determine if there is a 

solitary question that may serve as necessary input for the developed 

computation models to produce an operational predictive tool. Initial 

consideration should be given to the questions which comprise the Risk 

Management Characteristic in execution of BNM #1. This case had all the 

desired traits for probability distributions and best slope value 

performance.

■ This is aligned to the results of research conducted of MCAS results 

for U.S. Navy Fleet Logistic Support squadrons, “The two MOSE 

components of greatest concern as identified by aviation 

maintenance personnel of the Fleet Logistics Support Wing while 

participating in the MCAS are Communication/Functional 

Relationships and Risk Management. The focusing intervention 

efforts in those two areas should be a priority." [Goodrum, 1999, p. 

42]
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■ However, since the Cronbach Alpha Coefficient values as shown in

Table 11, in Section 3.4.3 are all greater than 0.9 demonstrating 

excellent reliability, this may not be sufficient to result in improved 

performance over that of the individual MOSE components, 

o Investigate whether the developed computation models demonstrate 

improved performance for a specific Type / Model / Series (T/M/S) 

squadron. Potential exists that tighter scope application may have 

applicability for a specific T/M/S. Within the limitations o f the data 

provided by the U.S. Naval Safety Center, issues with this recommendation 

involve the disparity in numbers o f similar T/M/S squadrons and their 

associated mishap occurrences / rates, 

o Further refine definition of the state variable for Inter-Period MCAS 

Transition (IMT) of quartiles to account not only for direction of 

movement (i.e., Higher, Neutral, or Lower), but also quantify the amount 

o f quartile movement. The potential exists that the scalar value for 

quartile transition (with potential range of (-3, -2, -1, 0, 1,2, 3) may serve 

to impart more utility in the results of model execution, 

o Try use of other discrete event modeling techniques defined in Section 2.7 

such as Hidden Markov Model (HMM) or Naive Bayesian Model (NBM). 

Although Artificial Neural Network Model (ANNM), and Support Vector 

Machine Model (SVMM) methodologies could be used, they possess 

inherent disadvantages. ANNM “black box" operations may not afford 

meaningful understanding of causal relationships between state variable



and SVMM contains a limitation for dealing with temporal data 

relationships and in providing direct probability estimates.

Investigate and determine applicability o f dynamic modeling techniques. 

This will require additional data to support development of a conceptual 

and computational dynamic model that uses a Differential Equations 

System Specification (DESS).
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APPENDIX A. NAVAL AVIATION M ISHAP CLASSIFICATION

A .I. M ISHAP CATEGORY [OPNAV1NST 3750.6S, Paragraph 313, 2014]

• CLASS A MISHAP: A class A mishap is one in which the total cost o f damage to 

Department o f Defense (DoD) or non-DoD property, aircraft or Unmanned Aerial 

Vehicles (UAVs) is $2 million or more, or a naval aircraft is destroyed or missing, 

or any fatality or permanent total disability o f personnel results from the direct 

involvement o f naval aircraft or UAV. A destroyed or missing UAV is not a class 

A unless the cost is $2 million or more.

• CLASS B MISHAP. A class B mishap is one in which the total cost of

damage to DoD or non-DoD property, aircraft or UAVs is $500,000 or more, but

less than $2 million, or results in a permanent partial disability, or when three or 

more personnel are hospitalized for inpatient care (which, for mishap reporting 

purposes only, does not include just observation or diagnostic care) as a result o f a 

single mishap.

• CLASS C MISHAP. A class C mishap is one in which the total cost o f damage to 

DoD or non-DoD property, aircraft or UAVs is $50,000 or more, but less than 

$500,000, or a nonfatal injury or illness that results in 1 or more days away from 

work, not including the day of the injury.

• CLASS D MISHAP. A class D mishap is one in which the total cost of

damage to DoD or non-DoD property, aircraft or UAVs is $20,000 or more, but

less than $50,000; or a recordable injury (greater than first aid) or illness results 

not otherwise classified as a class A, B, or C mishap
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A.2. M ISHAP SUB-CATEGORY [OPNAVINST 3750.6S, Paragraph 314, 2014]

• FLIGHT MISHAP (FM). A flight mishap is where there is intent for flight and 

reportable damage to a DoD aircraft or UAV or the loss of a DoD manned aircraft. 

Explosives, chemical agent, or missile incidents that cause damage to an aircraft or 

UAV with intent for flight are categorized as FMs. Mishaps involving factory new 

production aircraft until successful completion of the postproduction flight are 

reported as contractor mishaps.

• FLIGHT RELATED MISHAP (FRM). A mishap where there is intent for flight 

and no reportable damage to the aircraft or UAV itself, but the mishap involves a 

fatality, reportable injury, or reportable property damage. A missile that is 

launched from an aircraft or UAV departs without damaging the aircraft, and is 

subsequently involved in a mishap is reportable as a guided missile mishap.

• AIR GROUND MISHAP (AGM). A mishap where there is no intent for flight 

that results in reportable damage to an aircraft or UAV, or death or injury 

involving an aircraft or UAV. This applies to both on land and on board ship. 

Damage to an aircraft when it is being handled as a commodity or cargo is not 

reportable as an aircraft mishap.
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APPENDIX B. INSTRUM ENT AND M ODEL M ETRICS 

B.I INTRODUCTION

This appendix section contains additional information providing detailed 

descriptions and background information regarding specific metrics that were used to 

support quantitative data generation and analysis for this research.

B.2. USE OF LIKERT SCALES

The scale is attributed to Rensis Likert who developed this technique for the

evaluation of attitudes. A significant amount of literature exists that describes

methodologies for using Likert scale derived data. Likert scales are commonly

aligned with use in marketing, business, social science, medicine and educational

research as well as the service sector. [Gliem and Gliem, 2003, Gob, et al„ 2007]

A common feature o f marketing research is the attempt to have respondents 
communicate their feelings, attitudes, opinions, and evaluations in some 
measureable form. To this end marketing researchers have developed a range 
of scales. Each o f these has unique properties.. .Some scales are at very best 
limited in their mathematical properties to the extent that they can only 
establish an association between variables. Other scales have more extensive 
mathematical properties, and some, hold out the possibility to establish cause 
and affect relationships between variables. [Crawford, 1998, p. 3-1.]

A scale is a collection o f items that provides a means to measure and quantify 

characteristics under evaluation. It serves as an instrument that is constructed by 

researchers in order to obtain quantitative data on variable for which appropriate 

standardized instruments are not available. [Dawis, 1987]
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B.2.1. LEVELS OF M EASUREM ENT

Scale scores are categorized by different levels of measurement that are 

commonly used. Their characteristics are defined below and are presented in 

hierarchical order (from lowest to highest) o f mathematical properties:

• Nominal. A categorical sale consisting of a set of frequency counts. A nominal 

scale often contains a list of categories to which items may be assigned. Chi- 

Square testing may be used to support hypothesis tests to determine whether two 

or more variables are associated and the strength of that relationship. However, it 

does not support use for establishing cause and effect relationships.

• Ordinal (also known as Rank Ordered). This measurement involves the ranking of 

characteristics being scaled. Except for the relative order o f items, there are no 

means to quantify or measure the distance between two scale values. For 

marketing, ordinal number scaling supports determining the order of preference of 

different brands, but it does not contain information about the interval between any 

two brands. Ordinal scales enable the same data analysis available from nominal 

scales. Additionally, positional statistics may be derived which include median, 

quartile, and percentile. Ordinal scales permit tests for order correlation of ranked 

data such as Spearman's Ranked Correlation Coefficient and Kendall's Coefficient 

o f Concordance. The use of mean and standard deviation are inappropriate for 

ordinal data.

• Interval. Also referred to as a cardinal scale, it has equal units of measurement, 

which allow for interpretation of the interval scale’s scores and quantifiable 

relative distances between them. The scale’s zero point is arbitrary and not
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necessarily an absolute true zero (e.g., zero degrees on the Fahrenheit temperature 

scale). Constants may be added or subtracted to an interval scale value without 

affecting the scale’s form; however, this does not apply to multiplication or 

division. Many common statistical analysis methods may be conducted using 

interval scale data. Cardinal measure scales express magnitude.

• Ratio. This scale has the same properties o f interval scales and includes a fixed 

origin or zero point. This provides an indication of the absolute distance o f any 

measured object from a true-zero point on the scale. Examples include lengths, 

time, and weights. Data from ratio measurement scales permit comparison of 

differences and relative magnitude.

[Crawford, 1998; Brown, 2000; Jamieson, 2004; Gob et al., 2007; Dawis, 1987] 

Both interval and ratio scales are considered to be continuous scales.

B.2.2. SCALE DESIGN AND FORMAT

Structured verbal scales contain individual items with a stimulus component 

and matching response section. The stimulus is written as sentence or phrase that 

describes a particular attribute or event related to a specific object. The stimulus can 

be drafted to ascribe different levels of exactness or generality. Response choices may 

vary in the measurement dimension (e.g., agree-disagree, important-unimportant) and 

the range o f associated scale point choices (2, 3, or 5 are most common. The response 

choices may be weighted or un-weighted, and the formats may one or two sided 

[Dawis, 1987] The Likert scale contains brief descriptions associated with each 

category option that are ordered in position with bipolar adjectives at the end point
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extremes on the scale (i.e., strongly disagree and strongly agree). As a monadic 

scale, the respondent evaluates only one object or question at a time. The Likert scale 

is described as

A set of items, composed o f approximately an equal number o f favorable and 
unfavorable statements concerning the attitude toward an object that is given to 
a group o f subjects. They are asked to respond to each statement in terms of 
their won degree o f agreement or disagreement. The specific responses to the 
items are combined so that individuals with the most favorable attitudes will 
have the highest scores while individuals with the least favorable (or 
unfavorable) attitudes will have the lowest. [Mclver and Carmines, 1981, pp. 
22-23]

B.2.3. LIKERT SCALE IM PLEMENTATION

Ideally, a Likert Scale evaluation is given to a large group o f individuals (N of 

at least 100). After survey completion the individual items are aggregated by item, 

similar groupings, and total score. A Likert scale is termed as a summated instrument 

scale meaning that the composite items are summed to produce a total score. 

Summated scales contain:

• Multiple items whose results are combined, averaged, or summed.

• Individual items that measure an aspect which possesses a property that may be 

represented by an underlying, quantitative measurement continuum.

• The individual items have no “correct" answer differentiating a summated scale 

from a multiple choice test

• Each individual item contains a statement to which the respondents are asked to 

select an answer that best serves to represent their rating. [Spector, 1992]
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Items (i.e., questions) are selected for use in a Likert Scale survey according to 

their capability to be discriminated between high and low scores on total score through 

use of a group-difference procedure. The difference in items means between high- 

and low-scoring groups (e.g., highest and lowest quartiles). The best discriminating 

items are then selected to constitute the survey, and a comprehensive scale score is 

obtained by summing individual items scores for the selected items. Likert Scale 

methodology implementation involves computation of:

• Total score(s)

• Item-total score correlations

• Alpha reliability o f the final set of items. [Dawis, 1997]

B.2.4. LIKERT SCALE DATA ANALYSIS

There are many different views on the processes to evaluate the data derived 

from Likert Scales. “In fact, there is no common standard accepted by the scientific 

community for the correct interpretation and analysis of such data. Interpretation and 

analysis often seem to be in a mismatch." [Gob et al., 2007, p. 602] Both ordinal scale 

based evaluations and interval/cardinal scale derived statistics are commonly used. 

Examples o f these disparate views include:

• Likert scales fall within the ordinal level of measurement. That is, the response 

categories have a rank order, but the intervals between values cannot be presumed 

equal...The legitimacy of assuming an interval scale for Likert-type categories is 

an important issues because the appropriate descriptive and inferential statistics 

differ for ordinal and interval variables, and if the wrong statistical technique is
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used, the researcher increases the chance of coming to the wrong conclusion about 

the significance (or otherwise) o f his research. [Jamieson, 2004, p. 1217]

• Likert scales are treated as yielding interval data by the majority of marketing 

researchers. [Brown, 1998, p. 3-12]

• Likert scaling presumes the existence o f an underlying (or latent or natural) 

continuous variable whose value characterizes the respondent's attitudes and 

opinions. If it were possible to measure the latent variable directly, the 

measurement scale would be, at best, an interval scale...It is probably that the 

Likert scale will be ordinal, but in any event, the population could be totally 

ordered by the magnitude o f the latent variable. [Clason and Dormody, 1994, p. 

31-32]

• Measurement versus statistics. There is an old and continuous debate.. .the 

proponents o f measurement hold that level o f measurement (nominal, ordinal, 

interval, and ratio) constrains the kind of statistical procedures that can be applied 

to the numerical data. The proponents o f statistics maintain that the level of 

measurement in not a constraining factor. Those who accept the latter view 

tolerate the use o f parametric statistics with scores from quasi-interval scales that 

actually are at the ordinal level o f measurement, a common practice that is 

criticized by proponents of the former view. [Dawis, 1987, p. 487]

• In methodological considerations it is generally acknowledged that attitude 

measuring scales should be considered ordinal. Nevertheless, many studies use 

cardinal statistics as sample means, sample variances, f-tests to analyze attitude 

data. [Gob et al., 2007, p. 602]
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• Under certain conditions, treating ordinal data is considered permissible or not 

permissible; however, no clear specification exists to identify the needed 

conditions for making a determination. [Vigderhous, 1977]

Likert Scale results have been considered as interval measurements for 

analysis of MCAS results. Much of the analysis conducted by Schim pf s study of the 

relationship between MCAS and Naval Aviation Mishaps [Schimpf, 2004b] and 

Goodrum's Assessment of the Maintenance Safety Climate in U.S. Navy Fleet 

Logistics Support Wing Squadrons [Goodrum, 1999] utilized statistical analysis to 

derive values such as means and standard deviations of responses to MCAS questions.

B.3. RELIABILITY

In research, the term reliability denotes "repeatability" such that a test result is 

considered reliable if it would repeatedly produce the same result when assessing the 

same object. [Trochim, 2006] Reliability, measured by computed coefficient values, 

demonstrates whether the test was correctly designed such that a certain collection of 

items accurately yield interpretable statements about individual differences.

[Cronbach, 1951 ] Specific definitions o f test reliability are defined by unique 

descriptors:

• Coefficient o f Stability-the degree to which the test score indicates unchanging 

individual differences in any traits. This may be evaluated through use of retest 

methodology i.e., giving the same test twice to the same group.
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• Coefficient o f Stability and Equivalence-the degree to which the test score 

indicates unchanging individual differences in the general and group factors 

defined by the test. Equivalent or parallel tests are techniques used to determine 

stability and equivalence

• Coefficient of Equivalence-the degree to which the test score indicate the status of 

the individual at the present instant in the general and group factors defined by the 

test. Internal consistency tests are generally measures of equivalence. This 

coefficient predicts the correlation of the test with a hypothetical equivalent test, as 

like the first test as the parts of the first test are alike. Split-half methodology 

correlates half the test items with the remaining items to determine if the separate 

half-tests have equal standard deviations. This is used to assess equivalence of 

simultaneously administered parallel tests that provides an estimate o f internal 

consistency.

• Hypothetical Self-Correlation-is the degree to which the test score indicate 

individual differences in any traits at the present moment. This requires 

independent simultaneous identical tests for evaluation. [Cronbach, 1947]

An internal consistency reliability estimate provides the reliability o f the 

instrument by computing how well the items that reflect the same construct yield 

similar results. Internal consistency reliability is a measure of how consistent the 

results are for different items for the same construct within the measure. [Trochim, 

2006] Methodologies for computing internal consistency reliability include: inter-
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item correlation, average item-total correlation, split-half reliability, and Cronbach's 

Alpha Test.

Cronbach adapted work by Kuder-Richardson to develop the means for 

computing a split half coefficient of equivalence. The use of Cronbach’s alpha test is 

a measure of internal consistency to evaluate reliability. It may be conducted with 

only a single test administration to furnish a distinctive estimate o f the reliability of a 

given test. Cronbach's alpha is the average value of the reliability coefficients one 

would have obtained for all possible combinations of items when split into two half­

tests. [Gliem and Gliem, 2003]. The equation for determining Cronbach’s alpha is:

.S"’=total test variance

Cronbach defined the coefficient alpha to be:

• The mean of all possible split-half coefficients

• The value expected when two random samples of items from a pool like those in

the given test are correlated

• The lower bound o f the coefficient or precision (i.e., instantaneous accuracy) and

lower bound for coefficient o f equivalence obtained by simultaneous 

administration of two tests having matched items

• The estimate and lower bound to the proportion of test variance attributable to

common factors among the items (i.e., the index of common factor concentration

(EQ 50)

where ^ n u m b er o f items
.vf=variance for item i
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• The upper bound to the concentration in the test of the first factor among the items. 

[Cronbach, 1951, pp. 331-332]

Table 65 depicts the scale of reliability determined by calculating Cronbach's 

Alpha coefficient for internal consistency [George & Mallery, 2003, p. 231].

Table 65. Cronbach’s Alpha Coefficient Reliability Scale

Alpha (a) Value Reliability
>0.9 Excellent
>0.8 Good
>0.7 Acceptable
>0.6 Questionable
>0.5 Poor
<0.5 Unacceptable

B.4. SKEW NESS

Numerous common statistical tests for skewness when applied to discrete 

probability distributions will result in a non-parametric value o f zero when the median 

is equal to the mean. The outcome is zero when the median equals the mean for 

calculating both the formal definition of skewness that derives the third moment o f the 

distribution and Pearson’s skewness coefficient [Tabor, 2010]. These equations are 

depicted below:

-  -  x) 3  /
3rd Moment of Distribution: n / , -----------------

(EQ 51)
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Pearson Skewness Coefficient 
3 ( m e a n  — m e d i a n ) /

/ is t a n d a r d  d e v i a t i o n

(EQ 52)

Tabor compared 11 different statistic formulas for computing skewness in 

terms of their power for detecting skewness using samples from strongly, moderately, 

and slightly skewed populations. The lower rank value is indicative of the higher the 

power for detecting a skewed population (i.e., rank 1 = most power). The tested 

statistics, estimates o f power, and average rankings are provided, below, in Table 66.
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Table 66. Comparison of Statistical Formulas for Skewness (Tabor, 2010)

Population Skew Strong Moderate Slight Aver­
Name Statistic Power Power Power age

(Rank) (Rank) (Rank) Rank
mean 0.42 0.21 0.098

7.33A median (8) (8) (6)

B
max -  median 0.84 0.31 0.107

2.67
median -  min (2) (1) (5)

c Q3 — median 0.28 0.10 0.065
9.5

median - (9) (9.5) (10)

D
max — Q3 0.85 0.26 0.090

4.5
Q i  ~  m in (1) (5.5) (7)

E
1
2 (m in +  max) 

median

0.56
(5)

0.30
(2)

0.126
(1)

2.67

F \  «?i +  Qi)
median

0.13
(11)

0.10
(9.5)

0.066
(9)

9.83

n
1
2 (m in + max) 0.49 0.27 0.118 4.17U

\  (Qx + Q3)
(6.5) (4) (2)

H
min +  Q1 + median +  Q3 +  max 0.49 0.26 0.110

5.33
5 (6.5) (5.5) (4)

I
|  l ( x - x f  j

0.68 0.28 0.113

S|H
->

M X i Xi to (3) (3) (3)
J

J
3 (mean — median) 0.64 0.22 0.085 6.33
standard deviation (4) (7) (8)

K
(Q3 — median) — (median — Qi) 0.26 0.09 0.061 10.67

_________ ___fia. z .Q i _______ _____ (10) (11) (11)

Note: * - Power estimates were taken to additional decimal place to support ranking
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APPENDIX C. NAVAL AVIATION SQUADRON ORGANIZATIONAL  

DESCRIPTION AND DECOM POSITION.

C .l. INTRODUCTION

The study commenced with a detailed analysis and decomposition of a Naval 

Aviation squadron to determine its function, objectives, and organizational constraints. 

This dissertation contains the initial systems analysis and mapping to support the 

groundwork for selection o f the type of computation model that was developed here 

within. For the purpose o f this research, a squadron is comprised of the personnel, 

aircraft, supplies, and support equipment placed under the responsibility o f a 

Commanding Officer (CO). The CO bears absolute responsibility for his command 

and is entrusted with the commensurate authority to successfully accomplish assigned 

duties. [U.S. Naval Regulations, 1990, p. 47, paragraph 0802] The squadron's 

purpose is to provide trained aircrew and Ready For Tasking (RFT) aircraft for 

assigned missions. Mission type orders are used to communicate the superior 

commander’s general intention and specifically direct the subordinated commander to 

accomplish an operational effect to support that intention. [Major Fischer, 1995, p. 6] 

Missions are assigned to individual units for accomplishment. Within Naval Aviation, 

these unit elements are normally squadrons although they may be assigned to wings 

that are the aggregated entity o f numerous squadrons. A squadron is a complex 

organization that consists of numerous departments and divisions whose actions must 

be coordinated. Major sub-divisions within a squadron include:
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• Maintenance: Provides RFT aircraft in support of the Operations Department, It 

is responsible for conducting scheduled and unscheduled repairs as well as 

preventative upkeep. Maintenance contains the largest share of squadron 

personnel. Its functions include production center assignment and coordination, 

material/supply support, tool control, quality assurance, and ground support for 

aircraft launch, recovery, and between flight aircraft servicing. The maintenance 

department was the significant focus of this research effort.

• Operations: Plans, schedules, and executes operational flights to complete mission 

assignments from higher command and internal squadron requirements.

• Safety: Implements Command Aviation Safety program to enhance readiness by 

preserving material resources and human lives through application of written 

policies, plans, and policies couples with the attitudes and practices that promote 

aviation safety. [OPNAVINST 3750.7R, 2001, p. 2-1]

A depiction is shown in Figure 33.

Commanding Officer

[ Safety j Maintenance Operations j

....."'“" I
Quality Assurance j Maintenance > Material 

Control
Maintenance

Administration

Production Divisions

Production Branches / Work Centers

Figure 33. Squadron Organization
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C.2. M AINTENANCE DEPARTM ENT ROLES AND RESPONSIBILITIES

The functions and objectives of the major units within the maintenance

department are described below:

• Maintenance Officer (MO). A squadron department head who leads, manages, 

and supervises the department. The Mo is responsible to the CO for the 

accomplishment of the department’s mission and aided by the Assistant 

Maintenance Officer (AMO). Per HFACS-ME (Table 4), the MO has impact on 

the first order effects for management conditions, maintainer conditions, and 

working conditions. The MO also has responsibility for accomplishment of 

personnel training that may influence human errors resulting from maintainer acts 

due to inadequacies in their (technical) knowledge, skill, and judgment.

• Maintenance Material Control. A division within the maintenance department led 

by the Maintenance Material Control Officer (MMCO). The MMCO reports 

directly to the MO and is responsible for the coordination and accomplishment of 

the department's productive effort and material support. Actions taken by 

Maintenance Material Control have bearing on management conditions and 

working conditions through tasking the squadron work centers,

•  Maintenance Administration. Assigned under the direction of the AMO, this 

division provides administrative services for the entire department. Work product 

includes correspondence, establishment and control o f reporting and record 

keeping systems, information and publication distribution, and clerical support. 

The Maintenance Administration division impacts management conditions.



Quality Assurance (QA). The QA division is manned by highly skilled personnel 

responsible for monitoring and ensuring the quality o f the department's 

workmanship. This is conducted through inspections and audits to prevent the 

occurrence of defects. QA covers all maintenance actions from start to 

completion. Prevention is essential to thwart maintenance failure and extends to 

personnel safety, equipment preservation, and throughout the entire maintenance 

effort. Additional actions include data collection and analysis. “Prevention is 

about regulating events rather than being regulated by them. QA is a planned and 

systematic pattern of actions necessary to provide adequate confidence the product 

will perform satisfactorily in service, and the monitoring and analyzing of data to 

verify the validity o f these actions.” [CNAFINST 4790.2, Vol. 1, 2005, p. 14-2] 

The QA division has oversight over all HFACS-ME first order categories: 

Management Conditions, Maintainer Conditions, Working Conditions, and 

Maintainer Acts.

Production Division, Branches, and Work Centers. Divisions are the largest 

functional component within the department that may be further divided into 

smaller groups of branches and work centers that are tasked to accomplish specific 

assignments. These units receive tasking from Maintenance Material Control to 

accomplish required scheduled and unscheduled actions in order to prepare an 

aircraft for flight and Ready For Tasking. Each functional entity is responsible 

for a functional area to which maintenance personnel are assigned. An example of 

common production components is shown in Table 67.
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Division Branch Work Center
Aircraft Power Plants Engines

Propellers
Airframe Structures

Hydraulics
Corrosion Control

Aviation Life Support 
Systems

Egress / Environmental 
Systems

Avionics / Armament Electronics Communications, 
Navigation, Radar
Fire Control

Electrical / Instrument
Reconnaissance / Photo

Ordnance
Line Plane Captain

Troubleshooter
Support Equipment

The individual units that conduct the maintenance production have influence 

on all HFACS-ME sub categories.

C.3. ORGANIZATIONAL RELATIONSHIPS

Two types o f relationships, line and staff, exist between functional entities 

internal and external to the maintenance department. A line relationship is used to 

describe the interaction between senior supervisory personnel and their subordinates. 

Line interaction by the supervisor includes direct tasking of work assignments to 

subordinates, performance appraisal, and responsibility for subordinates actions / work 

product to higher levels within or outside the squadron. Subordinate responsibilities in 

a line relationship include task completion and providing feedback as to assigned work 

status (to include impediments). Line relationship describes responsibilities and
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communications inherent in direction and management of a hierarchical aligned 

organization, (e.g., department, division, branch, and work center). The staff 

relationship exists between an advisory staff supervisor and a production line 

supervisor. “Staff elements are designed to be integral elements of the organization, 

wholly concerned with the exercise of servicing and supporting production elements.'* 

[CNAFINST 4790.2, Vol. 1, 2005, p. 8-1] Staff relationships provide the effective 

means for information flow across hierarchical levels and outside the line relationship. 

Line and staff relationships within the squadron are depicted in Figure 34.

Commanding Officer

------------ h ------------------------
i

| Safety — — *“ 4  Maintenance

\

'  r  _  — z " *
Quality Assurance , Maintenance / M aterial 

Control
Maintenance

Administration

X > 
X

N

k
Production Divisions

N
S

X
Production B ranches / W ork Centers

------------------- Line — Staff

Figure 34. Squadron Line and Staff Relationships

C.4. COM M AND RELATIONSHIPS

Squadrons as organizations are subordinate entities with line relationships to 

two separate superior commands; one which exercises administrative control, the other 

executes operational control. Administrative commands execute staff control of the 

resources and logistics support required by the subordinate unit to execute its
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operational tasking. Administrative commanders are responsible for the aircraft 

material readiness, manpower, personnel training, administration, and inspection of 

subordinate commands. Administrative commands are typically aligned as Type 

Wings comprised o f similar aircraft type, models, and series. Operational 

commanders exert line control, provide tasking and authoritative direction to 

subordinate squadrons to accomplish assigned missions that tactically employs their 

capabilities. Common operational commands are Navy carrier air wings or Marine 

Air Groups. Their responsibilities include the operational readiness, inspection, and 

overall performance o f squadrons under their command. As both administrative and 

operational commanders have overlapping responsibilities for subordinate unit safety 

and maintenance, their influence will require examination for incorporation in the 

design o f the computation model.

C.5. GOVERNING M AINTENANCE INSTRUCTION AND GOALS

There are numerous instructions and regulations that govern policies,

procedures, and responsibilities o f a Naval Aviation squadron. The primary

foundation for conducting maintenance on aircraft is the Naval Aviation Maintenance

Program (NAMP). The NAMP instruction is the overarching document that governs

all Naval Aviation maintenance.

'‘The maintenance of naval aircraft has continually changed and evolved over 
the lifetime o f Naval Aviation. Aircraft maintenance processes and procedures 
have become increasingly complex as aircraft and aircraft systems have 
become more complicated...The NAMP was established by Chief o f Naval 
Operations to provide an integrated system for performing aeronautical 
equipment maintenance and related support functions." [CNAF1NST 4790.2.
2006, p. 1]
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The Navy currently uses two distinct domains to differentiate the degree of 

repair capability to be accomplished. Organizational level maintenance is considered 

"on flight line", that is, routine preventative procedures done at specifically defined 

intervals or unscheduled repairs to restore non-properly functioning equipment. 

Unscheduled repairs are limited in scope primarily to replacement of major 

components or replaceable assemblies. Fleet Readiness Centers (FRCs) conduct more 

in-depth, “off flight line” repairs and have the capability to fix the components and 

replaceable assemblies making them Ready For Issue (RFI) for squadron use. This 

research was limited to organizational level aircraft maintenance.

The NAMP sets forth a standardized organization that assigns explicit 

responsibilities to "ensure effective management within a framework o f authority, 

functions, and relationships necessary to achieve improvements in performance, 

economy of operation, and quality of work." [CNAFINST 4790.2, 2006, Volume 1, p. 

8-1] The goal o f a properly implemented standardized maintenance organization is to 

improve the following key characteristics:

1. Personnel performance and training.

2. Aircraft, equipment, and system readiness.

3. Maintenance integrity and effectiveness for all material.

4. Safety.

5. Maintenance manpower and materials usage.

6. Maintenance work scheduling and planning

7. Work performance management and evaluation.

8. End product quality.



9. Combat readiness attainment and retention.

10. Personnel and aircraft continuity throughout inter-command transfers.

11. Environmental compliance.
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APPENDIX D. M AINTENANCE CLIM ATE ASSESSM ENT SURVEY

Table 68. Close-Ended MCAS Questions

Number Question
Process Auditing (PA)

1 The command adequately reviews and updates safety procedures.
2 The command monitors maintainer qualifications and has a program that 

targets training deficiencies.
3 The command uses safety and medical staff to identify / manage personnel 

at risk.
4 Collateral Duty Inspectors (CDIs) / Quality Assurance Representatives 

(QARs) routinely monitor maintenance evolutions.
5 Tool Control and support equipment licensing are closely monitored.
6 Signing off personnel qualifications is taken seriously.

Reward System And Safety Culture (RS / SC)
7 Our command climate promotes safe maintenance.
8 Supervisors discourage Standard Operating Procedures (SOP), Naval 

Aviation Maintenance Program (NAMP) or other procedure violations and 
encourage reporting safety concerns.

9 Peer influence discourages SOP, NAMP or other violations and individuals 
feel free to report them.

10 Procedural violations o f SOP, NAMP, or other procedures are not common 
in this command.

11 The command recognizes individual safety achievement through rewards 
and incentives

12 Personnel are comfortable approaching supervisors about personal problems 
/ illness.

13 Safety Non-Commissioned Officer (NCO), QAR, and CDI are sought after 
billets

14 Unprofessional behavior is not tolerated in this command.
Quality Assurance (QA)

15 The command has a reputation for quality maintenance and set standards to 
maintain quality control.

16 QA and Safety are well respected and are seen as essential to mission 
accomplishment.

17 QARs / CDIs sign-off after required actions are complete and are not 
pressurized by supervisors to sign-off.

18 Maintenance on detachments is o f the same quality as that at home station.
19 Required publications / tools / equipment / are available, current, 

serviceable, and used.
20 QARs are helpful, and QA is not “feared in my unit.
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Table 68 (Continued)

Number Question
Risk Management (RM)

21* In my squadron, multiple job assignments and collateral duties adversely 
affect maintenance.

22 Safety is part of maintenance planning, and additional training / support is 
provided as needed.

23 Supervisors recognize unsafe conditions and manage hazards associated 
with maintenance and the flight line.

24 I am provided adequate resources, time, and personnel to accomplish my 
job.

25 Personnel turnover does not negatively impact the command's ability to 
operate safely.

26 Supervisors are more concerned with safe maintenance than the flight 
schedule, and do not permit cutting comers.

27 Day / Night Check have equal workloads, and staffing is sufficient on each 
shift.

28 Supervisors shield personnel from outside pressures and are aware of 
individual workload.

29 Based upon my command's current assets / manning it is not over­
committed

Command and Control (C2)
30 My command temporarily restricts maintainers who are having problems.
31 Safety decisions are made at the proper levels, and work center supervisor 

decisions are respected.
32 Supervisors communicate command safety goals and are actively engaged 

in the safety program.
33 Supervisors set the example for following maintenance standards and 

ensure compliance.
34 In my command, safety is a key part of all maintenance operations, and all 

are responsible / accountable for safety.
35 Safety education and training are comprehensive and effective.
36 All maintenance evolutions are properly briefed, supervised, and staffed by 

qualified personnel.
37 Maintenance Control is effective in managing all maintenance activities.
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Table 68 (Continued)

Number Question
Communication / Functional Relationships (C / FR)

38 Effective communication exists up / down the chain o f command.
39 I get all the information I need to do my job safely.
40 Work center supervisors coordinate their actions with other work centers in 

maintenance.
41 My command has effective pass-down between shifts.
42 Maintenance Control troubleshoots / resolves gripes before flight.
43 Maintainers are briefed on potential hazards associated with maintenance 

activities.

*-Question is written with negative connotation asking individual to score their 
agreement-disagreement with a condition that adversely affects safety.

The MCAS used Likert scale response options as shown in Table 69.

Table 69. Likert Scale Response Option and Values

Option Value
Strongly Disagree
Disagree
Neutral
Agree
Strongly Agree |_5
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APPENDIX E. BAYESIAN NETW ORK M ODEL DATA FROM  

M AINTENANCE CLIM ATE ASSESSM ENT SURVEYS BY MODEL OF 

ORGANIZATIONAL SAFETY EFFECTIVENESS SPECIFIC  

CHARACTERISTIC

E .l. PROCESS AUDITING CHARACTERISTIC DATA RESULTS FOR 

BAYESIAN NETW ORK MODELS

Table 70. BNM Computational Model #1 Process Auditing Characteristic Nodal
Probability Distribution

FMO = YES NO

PM R Q i 0.2658 0.2494
PMR Q2 0.2415 0.2501
PMR Q3 0.2327 0.2507
p m r q 4 0.2600 0.2498

CMR Q[ 0.3738 0.2343
CM R Q2 0.1149 0.2577
CM R Q3 0.1882 0.2612
CMR Q4 0.3231 0.2468
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Figure 35. BNM Computational Model #1 Process Auditing Characteristic Nodal
Conditional Probabilities

Table 71. BNM Computational Model #2 Process Auditing Characteristic Nodal
Probability Distribution

FMO = YES NO

PMR Q, 0.2707 0.2490
PM RQ 2 0.2401 0.2502
PMR Q3 0.2343 0.2506
PMR Q4 0.2549 0.2502

C M R Q i 0.3739 0.2343
CMR Q2 0.1141 0.2578
CMR Q3 0.1877 0.2613
CMR Q4 0.3243 0.2466
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Figure 36. BNM Computational Model #2 Process Auditing Characteristic Nodal
Conditional Probabilities

Table 72. BNM Computational Model #3 Process Auditing Characteristic Nodal
Probability Distribution

FMO = YES NO

CMR Qj 0.2695 0.2417
CMR Q2 0.2687 0.2455
C M R Q 3 0.2014 0.2595
CM RQ 4 0.2603 0.2533

IMT Higher 0.3090 0.3112
IMT Neutral 0.3604 0.3854
IMT Lower 0.3306 0.3034
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FMO = YES FMO = NO
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Figure 37. BNM Computational Model #3 Process Auditing Characteristic Nodal
Conditional Probabilities

Table 73. BNM Computational Model #4 Process Auditing Characteristic Nodal
Probability Distribution

FMO = YES NO

CMR Q, 0.2680 0.2417
CMR Q2 0.2705 0.2455
C M R Q 3 0.2014 0.2595
CM RQ 4 0.2601 0.2533

IMT Higher 0.2976 0.3118
IMT Neutral 0.3894 0.3838
IMT Lower 0.3130 0.3044
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Figure 38. BNM Computational Model #4 Process Auditing Characteristic Nodal
Conditional Probabilities

Table 74. BNM Computational Model #5 Process Auditing Characteristic Nodal
Probability Distribution

FMO = YES NO

CM RQi 0.2701 0.2424
CMR Q2 0.2691 0.2458
c m r q 3 0.2013 0.2593
c m r q 4 0.2595 0.2525

IMT Higher 0.3086 0.3108
IMT Neutral 0.3611 0.3860
IMT Lower 0.3302 0.3032
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Figure 39. BNM Computational Model #5 Process Auditing Characteristic Nodal
Conditional Probabilities
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E.2. REW ARD SYSTEM  AND SAFETY CULTURE CHARACTERISTIC  

DATA RESULTS FOR BAYESIAN NETW ORK MODELS

Table 75. BNM Computational Model #1 Reward System and Safety Culture 
Characteristic Nodal Probability Distribution

FMO = YES NO

PM RQ, 0.2675 0.2492
PMR Q2 0.2357 0.2505
PMR Q3 0.2433 0.2500
PM RQ 4 0.2535 0.2503

CMR Qt 0.3525 0.2321
CMR Q2 0.1508 0.2485
CMR Q3 0.1868 0.2642
CMR Q4 0.3099 0.2532

FMO = YES FMO = NO
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Figure 40. BNM Computational Model #1 Reward System and Safety Culture 
Characteristic Nodal Conditional Probabilities
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Table 76. BNM Computational Model #2 Reward System and Safety Culture
Characteristic Nodal Probability Distribution

FMO = YES NO

P M R Q , 0.2635 0.2495
P M R Q 2 0.2456 0.2498
PMR Q3 0.2407 0.2502
P M R Q 4 0.2502 0.2505

C M R Q i 0.3506 0.2323
CM R Q2 0.1514 0.2484
CM R O 3 0.1853 0.2643
C M R Q 4 0.3127 0.2550

FMO = YES FMO = NO
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Figure 41. BNM Computational Model #2 Reward System and Safety Culture
Characteristic Nodal Conditional Probabilities
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Table 77. BNM Computational Model #3 Reward System and Safety Culture
Characteristic Nodal Probability Distribution

FMO = YES NO

CM RQi 0.2130 0.2413
CMR Q2 0.2306 0.2414
CMR Q3 0.2556 0.2589
CMR Q4 0.3008 0.2584

IMT Higher 0.3916 0.3267
IMT Neutral 0.3668 0.3625
IMT Lower 0.2416 0.3108

FMO = YES FMO = NO
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Figure 42. BNM Computational Model #3 Reward System and Safety Culture
Characteristic Nodal Conditional Probabilities



199

Table 78. BNM Computational Model #4 Reward System and Safety Culture
Characteristic Nodal Probability Distribution

FMO = YES NO

CMR Qi 0.2115 0.2414
CMR Q2 0.2352 0.2411
CMR Q3 0.2557 0.2590
CMR Q4 0.2976 0.2585

IMT Higher 0.3467 0.3291
IMT Neutral 0.3656 0.3625
IMT Lower 0.2877 0.3084

FMO = YES FMO = NO
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Figure 43. BNM Computational Model #4 Reward System and Safety Culture
Characteristic Nodal Conditional Probabilities



2 0 0

Table 79. BNM Computational Model #5 Reward System and Safety Culture
Characteristic Nodal Probability Distribution

FMO = YES NO

CM RQ, 0.2141 0.2426
CMR Q2 0.2313 0.2417
CMR Q3 0.2556 0.2591
CMR Q4 0.2990 0.2566

IMT Higher 0.3901 0.3251
IMT Neutral 0.3676 0.3632
IMT Lower 0.2423 0.3117

FMO = YES FMO = NO
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Figure 44. BNM Computational Model #5 Reward System and Safety Culture
Characteristic Nodal Conditional Probabilities
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E.3. QUALITY ASSURANCE CHARACTERISTIC DATA RESULTS FOR  

BAYESIAN NETW ORK M ODELS

Table 80. BNM Computational Model #1 Quality Assurance Characteristic Nodal
Probability Distribution

FMO = YES NO

PMR Qi 0.2705 0.2490
PMR Q2 0.2493 0.2495
PMR Q3 0.2410 0.2501
PM RQ 4 0.2392 0.2514

CM RQi 0.3464 0.2373
CMR Q2 0.1873 0.2617
CMR Q3 0.1856 0.2525
CM RQ 4 0.2807 0.2485

FMO = YES FMO = NO
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Figure 45. BNM Computational Model #1 Quality Assurance Characteristic

Nodal Conditional Probabilities
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Table 81. BNM Computational Model #2 Quality Assurance Characteristic Nodal
Probability Distribution

FMO = YES NO

PMR Qi 0.2737 0.2488
PMR Q2 0.2405 0.2502
PMR Q3 0.2443 0.2499
P M R Q 4 0.2415 0.2511

CM R Qi 0.3470 0.2372
CM R Q2 0.1884 0.2616
CM R Q3 0.1849 0.2526
CM R Q4 0.2797 0.2486

FMO = YES FMO = NO
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Table 82. BNM Computational Model #3 Quality Assurance Characteristic Nodal
Probability Distribution

FMO = YES NO

CMR Q, 0.1719 0.2464
C M R Q 2 0.4065 0.2475
C M R Q 3 0.1408 0.2530
CM RQ4 0.2808 0.2531

IMT Higher 0.2258 0.3197
IMT Neutral 0.4669 0.3743
IMT Lower 0.3073 0.3059

FMO = YES FMO = NO
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Figure 47. BNM Computational Model #3 Quality Assurance Characteristic Nodal
Conditional Probabilities
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Table 83. BNM Computational Model #4 Quality Assurance Characteristic Nodal
Probability Distribution

FMO = YES NO

CMR Qi 0.1748 0.2462
CMR Q2 0.4014 0.2478
C M RQ 3 0.1423 0.2529
CMR Q4 0.2815 0.2531

IMT Higher 0.3231 0.3145
IMT Neutral 0.3726 0.3794
IMT Lower 0.3043 0.3061

FMO = YES FMO = NO
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Figure 48. BNM Computational Model #4 Quality Assurance Characteristic
Nodal Conditional Probabilities
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Table 84. BNM Computational Model #5 Quality Assurance Characteristic Nodal
Probability Distribution

FMO = YES NO

CMR Qi 0.1727 0.2477
CMR Q2 0.4058 0.2470
CMR Q i 0.1411 0.2533
CMR Q 4 0.2804 0.2520

IMT Higher 0.2251 0.3184
IMT Neutral 0.4680 0.3747
IMT Lower 0.3069 0.3069

FMO = YES FMO = NO
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Figure 49. BNM Computational Model #5 Quality Assurance Characteristic
Nodal Conditional Probabilities
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E.4. RISK M ANAGEM ENT CHARACTERISTIC DATA RESULTS FOR  

BAYESIAN NETW ORK M ODELS

Table 85. BNM Computational Model #1 Risk Management Characteristic Nodal
Probability Distribution

FMO = YES NO

PMR Q, 0.2847 0.2479
PMR Q2 0.2409 0.2501
PMR Q3 0.2360 0.2505
PMR Q4 0.2384 0.2514

CM RQ, 0.3491 0.2106
CMR Q2 0.1924 0.2544
C M R Q 3 0.1704 0.2699
CMR Q4 0.2881 0.2651

FMO = YES FMO = NO
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Figure 50. BNM Computational Model #1 Risk Management Characteristic 
Nodal Conditional Probabilities
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Table 86. BNM Computational Model #2 Risk Management Characteristic Nodal
Probability Distribution

FMO = YES NO

PMR Qi 0.2761 0.2486
PMR Q2 0.2447 0.2498
P M R Q 3 0.2419 0.2501
P M R Q 4 0.2373 0.2515

CMR Qi 0.3468 0.2108
C M R Q 2 0.1901 0.2545
CMR Q3 0.1729 0.2697
C M R Q 4 0.2902 0.2650

FMO = YES FMO = NO
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Figure 51. BNM Computational Model #2 Risk Management Characteristic
Nodal Conditional Probabilities



208

Table 87. BNM  Computational Model #3 Risk Management Characteristic Nodal
Probability Distribution

FMO = YES NO

CM RQi 0.2991 0.2178
CMR Q2 0.2030 0.2532
CM RQ 3 0.2659 0.2619
c m r q 4 0.2320 0.2671

IMT Higher 0.4029 0.3473
IMT Neutral 0.2604 0.3708
IMT Lower 0.3367 0.2819
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Figure 52. BNM Computational Model #3 Risk Management Characteristic
Nodal Conditional Probabilities
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Table 88. BNM Computational Model #4 Risk Management Characteristic Nodal
Probability Distribution

FMO = YES NO

CM RQ, 0.2962 0.2179
CMR Q2 0.2065 0.2530
CMR Q3 0.2646 0.2620
CMR Q4 0.2327 0.2671

IMT Higher 0.3195 0.3517
IMT Neutral 0.3735 0.3648
IMT Lower 0.3070 0.2835

FMO = YES FMO = NO
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Figure 53. BNM Computational Model #4 Risk Management Characteristic
Nodal Conditional Probabilities
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Table 89. BNM Computational Model #5 Risk Management Characteristic Nodal
Probability Distribution

FMO = YES NO

CM RQi 0.2996 0.2181
CMR Q2 0.2029 0.2531
C M R Q 3 0.2658 0.2620
CMR Q4 0.2317 0.2668

IMT Higher 0.4027 0.3471
IMT Neutral 0.2607 0.3710
IMT Lower 0.3366 0.2819
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Figure 54. BNM Computational Model #5 Risk Management Characteristic
Nodal Conditional Probabilities



E.5. COM M AND AND CONTROL CHARACTERISTIC DATA RESULTS 

FOR BAYESIAN NETW ORK MODELS

Table 90. BNM Computational Model #1 Command and Control Characteristic Nodal
Probability Distribution

FMO = YES NO

PM RQ, 0.2731 0.2488
PMR Q2 0.2303 0.2509
PMR Q3 0.2482 0.2496
PM RQ 4 0.2484 0.2507

CM RQj 0.3749 0.2262
CMR Q2 0.1537 0.2623
CMR Q3 0.1708 0.2539
CMR Q4 0.3006 0.2576

FMO = YES FMO = NO
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Figure 55. BNM Computational Model #1 Command and Control
Characteristic Nodal Conditional Probabilities
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Table 91. BNM Computational Model #2 Command and Control Characteristic Nodal
Probability Distribution

FMO = YES NO

PMR Q, 0.2715 0.2489
PMR Q2 0.2388 0.2503
PMR Q3 0.2443 0.2499
PMR Q4 0.2454 0.2509

CMR Q! 0.3736 0.2263
CM RQ 2 0.1546 0.2622
CMR O3 0.1693 0.2540
CMR O4 0.3025 0.2575

FMO = YES FMO = NO
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Figure 56. BNM Computational Model #2 Command and Control
Characteristic Nodal Conditional Probabilities
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Table 92. BNM Computational Model #3 Command and Control Characteristic Nodal
Probability Distribution

FMO = YES NO

CMRQ[ 0.2728 0.2343
CMR Q2 0.2622 0.2535
CMR Q3 0.2039 0.2494
CM RQ 4 0.2611 0.2627

IMT Higher 0.2805 0.3180
IMT Neutral 0.3931 0.3983
IMT Lower 0.3264 0.2837

FMO = YES FMO = NO
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Figure 57. BNM Computational Model #3 Command and Control
Characteristic Nodal Conditional Probabilities
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Table 93. BNM Computational Model #4 Command and Control Characteristic Nodal
Probability Distribution

FMO = YES NO

CM RQj 0.2707 0.2344
CMR O2 0.2670 0.2533
CMR O3 0.2033 0.2495
CMR Q4 0.2590 0.2628

IMT Higher 0.3001 0.3170
IMT Neutral 0.4011 0.3978
IMT Lower 0.2988 0.2852
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Figure 58. BNM Computational Model #4 Command and Control
Characteristic Nodal Conditional Probabilities
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Table 94. BNM Computational Model #5 Command and Control Characteristic Nodal
Probability Distribution

FMO = YES NO

CMR Qi 0.2741 0.2353
CMR Q2 0.2621 0.2535
CMR Q3 0.2041 0.2498
c m r q 4 0.2597 0.2614

IMT Higher 0.2796 0.3174
IMT Neutral 0.3939 0.3987
IMT Lower 0.3265 0.2839
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Figure 59. BNM Computational Model #5 Command and Control
Characteristic Nodal Conditional Probabilities
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E.6. COM M UNICATION / FUNCTIONAL RELATIONSHIPS 

CHARACTERISTIC DATA RESULTS FOR BAYESIAN NETW ORK  

M ODELS

Table 95. BNM Computational Model #1 Communication / Functional Relationship 
Characteristic Nodal Probability Distribution

FMO = YES NO

PMR Qi 0.2613 0.2497
PMR Q2 0.2400 0.2502
PMR Q3 0.2280 0.2511
p m r q 4 0.2707 0.2490

CMR Q, 0.3520 0.2227
C M RQ 2 0.1366 0.2665
CMR Q3 0.1517 0.2576
CMR 04 0.3597 0.2532
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Figure 60. BNM Computational Model #1 Communication / Functional 
Relationship Characteristic Nodal Conditional Probabilities

Table 96. BNM Computational Model #2 Communication / Functional Relationship 
Characteristic Nodal Probability Distribution

FMO = YES NO

PMR Qi 0.2623 0.2496
PMR Q2 0.2371 0.2504
PMR Q3 0.2334 0.2507
p m r q 4 0.2672 0.2493

CMR Qi 0.3521 0.2227
CMR Q2 0.1371 0.2665
CMR Q3 0.1490 0.2578
CMR Q4 0.3618 0.2530
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Figure 61. BNM Computational Model #2 Communication / Functional 
Relationship Characteristic Nodal Conditional Probabilities

Table 97. BNM Computational Model #3 Communication / Functional Relationship 
Characteristic Nodal Probability Distribution

FMO = YES NO

CMR Qi 0.2023 0.2360
C M RQ 2 0.3535 0.2530
C M R Q 3 0.1730 0.2531
CMR Q4 0.2712 0.2579

IMT Higher 0.3268 0.3328
IMT Neutral 0.3291 0.3818
IMT Lower 0.3441 0.2854
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Figure 62. BNM Computational Model #3 Communication / Functional 
Relationship Characteristic Nodal Conditional Probabilities

Table 98. BNM Computational Model #4 Communication / Functional Relationship 
Characteristic Nodal Probability Distribution

FMO = YES NO

CMR Qi 0.2007 0.2361
CMR Q2 0.3568 0.2528
CMR Q3 0.1731 0.2531
c m r q 4 0.2694 0.2580

IMT Higher 0.3390 0.3322
IMT Neutral 0.3700 0.3796
IMT Lower 0.2910 0.2882



2 2 0

FMO = YES FMO = NO

%

50

40

30

20

10

0
Q2 O3 

PMR

35.68 26.9420.07 17.31

04

%

50

40

30

20

10

0
Q 1

23.61 25.28 25.31 25.80

Q2 Q3 
PMR

0 4

%

FMO = YES FMO = NO

Higher Neutral
IMT

Lower Higher Neutral Lower 
IMT

Figure 63. BNM Computational Model #4 Communication / Functional 
Relationship Characteristic Nodal Conditional Probabilities

Table 99. BNM Computational Model #5 Communication / Functional Relationship 
Characteristic Nodal Probability Distribution

FMO = YES NO

CMR Q, 0.2026 0.2368
CMR Q2 0.3541 0.2536
CMR Q3 0.1726 0.2524
CMR Q4 0.2707 0.2572

IMT Higher 0.3257 0.3315
IMT Neutral 0.3302 0.3829
IMT Lower 0.3441 0.2856
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Figure 64. BNM Computational Model #5 Communication / Functional 
Relationship Characteristic Nodal Conditional Probabilities



APPENDIX F. BAYESIAN NETW ORK MODEL DATA SUPPORTING  

ANSW ER TO RESEARCH QUESTION 2

Table 100. Attributes of Probability Density Distributions o f BNM #1 Output when
FMO = YES

Model
MOSE
Charac

-teristic

Proba -  
bility 

Variable

Depiction Mode Skew­
ness 1

Skew-
ness2

Slope

BNM #1 All PMR Bimodal Q l,Q 4 1.0101 1.0050 -0.1725
CMR Bimodal Q b Q4 0.9728 0.9864 -1.2525

BNM #1 PA PMR Bimodal Q b Q4 0.9712 0.9856 -0.1450
CMR Bimodal Q b Q4 1.0462 1.0231 -1.2675

BNM #1 RS/SC
PMR Bimodal Q b Q4 0.9873 0.9936 -0.3500
CMR Bimodal Q b Q4 0.9869 0.9934 -1.0650

BNM#1 QA PMR Unimodal Qi 0.9238 0.9619 -0.7825
CMR Bimodal Q b Q4 0.8737 0.9369 -1.6425

BNM #1 RM PMR Unimodal Qi 0.9026 0.9513 -1.1575
CMR Bimodal Q b Q4 0.8467 0.9234 -1.5250

BNM #1 C2
PMR Unimodal Qi 0.9865 0.9932 -0.6175
CMR Bimodal Q b Q4 0.8918 0.9459 -1.8575

BNM #1 C/FR
PMR Bimodal Q b Q4 0.9948 0.9974 0.2350
CMR Bimodal Q b Q4 1.0467 1.0233 0.1925
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Table 101. Attributes of Probability Density Distributions of BNM #1 Output when
FMO = NO

Model
MOSE
Charac

-teristic

Proba -  
bility 

Variable

Depiction Mode Skew­
ness i

Skew-
ness2

Slope

BNM #1 All
PMR Uniform None 0.9992 0.9996 0.0125
CMR Unimodal q 2 1.0568 1.0284 0.8075

BNM #1 PA
PMR Uniform None 1.0020 1.0010 0.0100
CMR Unimodal Q 3 1.0325 1.0163 0.3125

BNM #1 RS/SC
PMR Uniform None 1.0012 1.0006 0.0275
CMR Unimodal Q 3 1.0807 1.0404 0.5775

BNM #1 QA
PMR Uniform None 1.0060 1.0030 0.0600
CMR Unimodal Qi 1.0040 1.0020 0.2800

BNM #1 RM PMR Uniform None 1.0080 1.0040 0.0875
CMR Unimodal Q 3 1.1505 1.0753 1.3625

BNM #1 C2
PMR Uniform None 1.0012 1.0006 0.0475
CMR Unimodal Q 2 1.0471 1.0235 0.7850

BNM #1 C/FR
PMR Uniform None 1.0004 1.0002 -0.0175
CMR Unimodal q 2 1.0442 1.0221 0.7625

Table 102. Attributes of Probability Density Distributions of BNM #2 Output when
FMO = YES

Model
MOSE
Charac

-teristic

Proba -  
bility 

Variable

Depiction Mode Skew-
nessi

Skew-
ness2

Slope

BNM #2 All PMR Bimodal Q i, Q4 0.9767 0.9883 -0.3025
CMR Bimodal Q i, Q4 0.9751 0.9876 -1.1750

BNM #2 PA PMR Bimodal Qu Qa 0.9577 0.9789 -0.3950
CMR Bimodal Q i, Q4 1.0492 1.0246 -1.2400

BNM #2 RS/SC
PMR Bimodal Q b Q4 0.9643 0.9821 -0.3325
CMR Bimodal Q i, Q4 0.9920 0.9960 -0.9475

BNM #2 QA PMR UntamM Qi 0.944* 0.9724 -0.8050
CMR Bimodal Q b Q4 0.8678 0.9339 -1.6825

BNM #2 RM Qi 0.9101 0.9*01 -0.9700
CMR Bimodal Q b Q4 0.8625 0.9313 -1.4150

BNM #2 C2 PMR I lw im A I Q. 0.9596 0.979* -0.6525
CMR Bimodal Q b Q4 0.8932 0.9466 -1.7775

BNM #2 C/FR
PMR Bimodal Q b Q4 1.0024 1.0012 0.1225
CMR Bimodal Q b Q4 1.0442 1.0221 0.2425
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Table 103. Attributes o f Probability Density Distributions o f BNM #2 Output when
FMO = NO

Model
MOSE
Charac

-teristic

Proba -  
bility 

Variable

Depiction Mode Skew­
ness i

Skew-
ness2

Slope

BNM #2 All PMR Uniform None 1.0016 1.0008 0.0225
CMR Unimodal Q2 1.0568 1.0284 0.8000

BNM #2 PA
PMR Uniform None 1.0032 1.0016 0.0300
CMR Unimodal Q3 1.0321 1.0161 0.3075

BNM #2 RS/SC
PMR Uniform None 1.0028 1.0014 0.0250
CMR Unimodal Q3 1.0803 1.0401 0.5675

BNM #2 QA
PMR Uniform None 1.0040 1.0020 0.0575
CMR Unimodal q 2 1.0048 1.0024 0.2850

BNM #2 RM PMR Uniform None 1.0064 1.0032 0.0725
CMR Unimodal Q3 1.1492 1.0746 1.3550

BNM #2 C2
PMR Uniform None 1.0032 1.0016 0.0500
CMR Unimodal q 2 1.0471 1.0235 0.7800

BNM #2 C/FR
PMR Uniform None 1.0000 1.0000 -0.0075
CMR Unimodal q 2 1.0442 1.0221 0.7575

Table 104. Attributes o f Probability Density Distributions of BNM #3 Output when
FMO = YES

Model
MOSE
Charac

-teristic

Proba -  
bility 

Variable

Depiction Mode Skew-
nessi

Skew-
ness2

Slope

BNM #3 All
PMR Unimodal q 2 0.8818 0.9409 -0.1400
IMT Unimodal Neutral 0.9259 0.9629 -1.2800

BNM #3 PA PMR Bimodal q . , q 4 0.8580 0.9290 -0.2300
IMT Unimodal Neutral 1.0442 1.0221 0.7200

BNM #3 RS/SC
PMR Unimodal Q4 1.2543 1.1271 2.1950
IMT Unimodal Higher 0.7391 0.8696 -5.0000

BNM #3 QA
PMR Bimodal q 2, q 4 0.7289 0.8645 2.7225
IMT Unimodal Neutral 1.1775 1.0887 2.7167

BNM #3 RM
PMR Bimodal Qi» Q3 0.9916 0.9958 -1.6775
IMT Bimodal Hi, Low 0.8758 0.9379 -2.2067

BNM #3 C2
PMR Bimodal Qi, Q4 0.8692 0.9346 -0.2925
IMT Unimodal Neutral 1.0962 1.0481 1.5300

BNM #3 C/FR PMR Bimodal q 2, q 4 0.7992 0.8996 1.7225
IMT Unimodal Low 1.0352 1.0176 0.5767
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Table 105. Attributes o f Probability Density Distributions of BNM #3 Output when
FMO = NO

Model
MOSE
Charac

-teristic

Proba -  
bility 

Variable

Depiction Mode Skew­
ness 1

Skew-
ness2

Slope

BNM #3 All PMR Unimodal Q4 1.0695 1.0348 1.0300
IMT Unimodal Neutral 0.9199 0.9600 -1.3900

BNM #3 PA
PMR Unimodal Q 3 1.0525 1.0263 0.3867
IMT Unimodal Neutral 0.9845 0.9923 -0.2600

BNM #3 RS/SC
PMR Unimodal 0 3 1.0717 1.0358 0.5700
IMT Unimodal Neutral 0.9687 0.9843 -0.5300

BNM #3 QA PMR. Unimodal Q4 1.0247 1.0124 0.2233
IMT Unimodal Neutral 0.9730 0.9865 -0.4600

BNM #3 RM PMR Unimodal 04 1.1231 1.0616 1.6433
IMT Unimodal Neutral 0.8772 0.9386 -2.1800

BNM #3 C2 PMR Bimodal Q2, Q4 1.0500 1.0250 0.9467
IMT Unimodal Neutral 0.9337 0.9668 -1.1433

BNM #3 C/FR
PMR Unimodal Q. 1.0450 1.0225 0.7300
IMT Unimodal Neutral 0.9095 0.9547 -1.5800

Table 106. Attributes o f Probability Density Distributions of BNM #4 Output when
FMO = YES

Model
MOSE
Charac

-teristic

Proba -  
bility 

Variable

Depiction Mode Skew­
ness 1

Skew-
n essi

Slope

BNM #4 All
PMR Unimodal Q2 0.8667 0.9334 -0.1600
IMT Unimodal Neutral 0.9668 0.9834 -0.5633

BNM #4 PA
PMR Bimodal Q2, Q4 0.8570 0.9285 -0.1975
IMT Unimodal Neutral 1.0313 1.0156 0.5133

BNM #4 RS/SC
PMR Unimodal Q4 1.2386 1.1193 2.1525
IMT Unimodal Neutral 0.8886 0.9443 -1.9667

BNM #4 QA
PMR Bimodal Q2, Q4 0.7355 0.8678 2.6675
IMT Unimodal Neutral 0.9668 0.9834 -0.5633

BNM #4 RM
PMR Bimodal Qi> Q3 0.9893 0.9946 -1.5875
IMT Unimodal Neutral 0.9753 0.9877 -0.4167

BNM #4 C2
PMR Bimodal Q i, Q4 0.8598 0.9299 -0.2925
IMT Unimodal Neutral 0.9974 0.9987 -0.0433

BNM #4 C/FR
PMR Bimodal Q2, Q4 0.7937 0.8969 1.7175
IMT Unimodal Neutral 0.9084 0.9542 -1.6000



226

Table 107. Attributes of Probability Density Distributions o f BNM #4 Output when
FMO = NO

Model
MOSE
Charac

-teristic

Proba -  
bility 

Variable

Depiction Mode Skew-
nessi

Skew-
ness2

Slope

BNM #4 All PMR Unimodal Q4 1.0704 1.0352 1.0300
IMT Unimodal Neutral 0.9177 0.9589 -1.4300

BNM #4 PA
PMR Unimodal Q 3 1.0525 1.0263 0.3867
IMT Unimodal Neutral 0.9853 0.9927 -0.2467

BNM #4 RS/SC
PMR Uniform 0 3 1.0725 1.0363 0.5700
IMT Unimodal Neutral 0.9594 0.9797 -0.6900

BNM #4 QA PMR Unimodal Q4 1.0243 1.0121 0.2300
IMT Unimodal Neutral 0.9177 0.9589 -1.4300

BNM #4 RM PMR Unimodal Q4 1.1236 1.0618 1.6400
IMT Unimodal Neutral 0.8723 0.9362 -2.2733

BNM #4 C2
PMR Bimodal Q2, Q4 1.0504 1.0252 0.9467
IMT Unimodal Neutral 0.9384 0.9692 -1.0600

BNM #4 C/FR PMR Unimodal 04 1.0454 1.0227 0.7300
IMT Unimodal Neutral 0.9157 0.9579 -1.4667

Table 108. Attributes of Probability Density Distributions of BNM #5 Output when
FMO = YES

Model
MOSE
Charac

-teristic

Proba -  
bility 

Variable

Depiction Mode Skew­
ness 1

Skew-
n essi

Slope

BNM #5 All
PMR Unimodal Q2 0.8758 0.9379 -0.1950
IMT Unimodal Neutral 0.9257 0.9628 -1.2867

BNM #5 PA PMR Bimodal Q i, Q4 0.8546 0.9273 -0.2650
IMT Unimodal Neutral 1.0444 1.0222 0.7200

BNM #5 RS/SC
PMR Unimodal Q4 1.2452 1.1226 2.1225
IMT Unimodal Higher 0.7425 0.8712 -4.9267

BNM #5 QA
PMR Bimodal Q2, Q4 0.7286 0.8643 2.6925
IMT Unimodal Neutral 1.1782 1.0891 2.7267

BNM #5 RM
PMR Bimodal Qi> Q3 0.9900 0.9950 -1.6975
IMT Bimodal Hi, Low 0.8760 0.9380 -2.2033

BNM #5 C2 PMR Bimodal Q i, Q4 0.8650 0.9325 -0.3600
IMT Unimodal Neutral 1.0984 1.0492 1.5633

BNM #5 C/FR
PMR Bimodal Q i, Q4 0.7963 0.8981 1.7025
IMT Unimodal Low 1.0375 1.0187 0.6133



227

Table 109. Attributes of Probability Density Distributions of BNM #5 Output when
FMO = NO

Model
MOSE
Charac

-teristic

Proba -  
bility 

Variable

Depiction Mode Skew­
ness 1

Skew-
ness2

Slope

BNM #5 All PMR Unimodal Q4 1.0627 1.0314 0.9533
IMT Unimodal Neutral 0.9205 0.9602 -1.3767

BNM #5 PA
PMR Unimodal Q3 1.0483 1.0242 0.3367
IMT Unimodal Neutral 0.9849 0.9925 -0.2533

BNM #5 RS/SC
PMR Unimodal 03 1.0648 1.0324 0.4667
IMT Unimodal Neutral 0.9736 0.9868 -0.4467

BNM #5 QA
PMR Unimodal 03 1.0214 1.0107 0.1433
IMT Unimodal Neutral 0.9773 0.9886 -0.3833

BNM #5 RM PMR Unimodal 1.1222 1.0611 1.6233
IMT Unimodal Neutral 0.8776 0.9388 -2.1733

BNM #5 C2 PMR Bimodal O2, O4 1.0458 1.0229 -0.3600
IMT Unimodal Neutral 0.9352 0.9676 1.5633

BNM #5 C/FR PMR Unimodal Q« 1.0392 1.0196 0.6800
IMT Unimodal Neutral 0.9122 0.9561 -1.5300
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