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ABSTRACT 

PARTITIONING METHOD FOR EMERGENT BEHAVIOR SYSTEMS MODELED 
BY AGENT-BASED SIMULATIONS 

O. Thomas Holland 
Old Dominion University, 2012 
Director: Dr. John Sokolowski 

Used to describe some interesting and usually unanticipated pattern or behavior, 

the term emergence is often associated with time-evolutionary systems comprised of 

relatively large numbers of interacting yet simple entities. A significant amount of 

previous research has recognized the emergence phenomena in many real-world 

applications such as collaborative robotics, supply chain analysis, social science, 

economics and ecology. As improvements in computational technologies combined with 

new modeling paradigms allow the simulation of ever more dynamic and complex 

systems, the generation of data from simulations of these systems can provide data to 

explore the phenomena of emergence. 

To explore some of the modeling implications of systems where emergent 

phenomena tend to dominate, this research examines three simulations based on familiar 

natural systems where each is readily recognized as exhibiting emergent phenomena. To 

facilitate this exploration, a taxonomy of Emergent Behavior Systems (EBS) is developed 

and a modeling formalism consisting of an EBS lexicon and a formal specification for 

models of EBS is synthesized from the long history of theories and observations 

concerning emergence. This modeling formalism is applied to each of the systems and 

then each is simulated using an agent-based modeling framework. 



To develop quantifiable measures, associations are asserted: 

1) between agent-based models of EBS and graph-theoretical methods, 

2) with respect to the formation of relationships between entities comprising 

a system and 

3) concerning the change in uncertainty of organization as the system 

evolves. 

These associations form the basis for three measurements related to the 

information flow, entity complexity, and spatial entropy of the simulated systems. These 

measurements are used to: 

1) detect the existence of emergence and 

2) differentiate amongst the three systems. 

The results suggest that the taxonomy and formal specification developed provide 

a workable, simulation-centric definition of emergent behavior systems consistent with 

both historical concepts concerning the emergence phenomena and modern ideas in 

complexity science. Furthermore, the results support a structured approach to modeling 

these systems using agent-based methods and offers quantitative measures useful for 

characterizing the emergence phenomena in the simulations. 
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CHAPTER 1 

INTRODUCTION 

From a systems perspective, the term emergence is used to describe some 

interesting and previously unanticipated patterns or behaviors while observing the 

evolution of a system over time. Large numbers of relatively simple interacting entities 

often characterize these systems and the measurements used to describe them are 

fundamentally different from those used to describe the entities that comprise them. For 

example, consider the ideal gas law. The state of an ideal gas is specified by its pressure, 

volume, and temperature; however, those measures are not applicable to describe a single 

molecule of the gas. In that case, measurements like molecular mass and bond energy are 

appropriate. Similarly, a house is typically measured in square feet, number of floors, 

etc., whereas the components that comprise the house are measured in board feet, 

pennies, and a myriad of other units applicable to the specific component. In either 

example, it is obvious that the simple collection of parts does not give rise to interesting 

and useful structure until those parts exist in relationship with one another. The 

components are the entities that comprise the system and the resulting system of interest 

is called the emergent. 

In its simplest form, the relationships between entities are well specified and 

linear, such as gears that give rise to a clock. Typically, when we refer to emergence, we 

are more interested in the resultant behavior that arises from entities that interact in non

linear ways, i.e., complex systems. Such complex systems abound in both the natural and 

man-made world. A significant amount of previous research has emphasized methods of 

systems implementation or specification with regard to many expected applications such 
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as collaborative robots (Shell, et al., 2005), software design (Jennings & Wooldridge, 

2000), supply chain analysis, social science, economics and ecology. While these are 

traditionally disparate problem domains, these and many other domains often 

demonstrate interesting and unexpected ensemble behaviors of patterns in space and time. 

The computer simulation of such systems are increasingly receiving greater interest as 

improvements in computational technologies combined with new modeling paradigms 

such as agent-based modeling support the simulation of ever more dynamic and complex 

systems specified at the entity level. It is now plausible for the emergence researcher to 

study in arbitrary detail, through computer simulation, the evolution of both real and 

notional systems that exhibit the emergence phenomena, with the prospect of revealing 

the underlying phenomenology, i.e., cause and effect relationships, which enable such 

systems. These systems, the behavior of which is the result of emergent phenomena, we 

refer to as Emergent Behavior Systems (EBS). 

This research posits that there exist several types, or classes, of EBS, which can 

be modeled using agent-based methods and distinguished by a tuple of the form 

E = [/(w(0),£Xw(0),S(w(0)] (1) 

where: 

u(t) is a sample path over time t for a given set of initial conditions, 

/ is a measure of the principal information flows in the system, 

Q is a measure of the complexity of the entities comprising the system, and 

S is a measure of the Shannon Entropy of the system. 
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1.1 Problem Statement 

Although the modem understanding of emergence acknowledges that it manifests 

itself in different forms depending on the domain of study, the fundamental characteristic 

of the phenomena of emergence is that relatively sophisticated ensemble behaviors tend 

to arise from the interactions of relatively simple entities. Although the concept of 

emergence is old indeed, with the first modern scientific interest beginning in the 19th 

Century, the progression of computing power has fueled an explosion of research into the 

nature of such systems and the complexity that characterizes them. The rapid rise in the 

interest in emergence appears to parallel the rise in the computing capability of the latter 

th 
half of the 20 Century to the present. The ability to explore large-scale interactions in 

simulation has even caused some to reconsider the meaning of complexity, complex 

systems, and simulations that model them (Varenne, 2009). 

A renewed interest in the emergence phenomena has resulted with many 

examples of complex systems exhibiting emergence observed in both the natural and 

manmade world. Figure 1 depicts the rapid growth of the interest in emergence by 

featuring many of the notable researchers who have published related materials. 
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Figure 1. History Timeline of Emergence Related Interests 

Modern modeling paradigms that emphasize the specification of individual 

components such as agent-based modeling (ABM) expediently support the computer 

simulation of these complex systems. Some popular examples of some natural systems 

modeled with ABM include aggregates of particles forming interesting material 

characteristics, the flocking/herding/schooling behaviors of many animals and the near-

optimal solutions achieved by many chemical trail forming insects such as ants (Bak, 

1996), (Barton, 2005), (Kassner, 2009). Telecommunications, military combat, 

transportation, logistics and other sophisticated systems-of-systems form an ever growing 

list of the man-made systems that exhibit emergence and are increasingly being modeled 

by entity-based methods such as ABM. 
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To explore some of the modeling implications of systems where emergent 

phenomena tend to dominate, this research examines three simulations based on natural 

systems where each is readily recognized as exhibiting emergent phenomena. To 

facilitate this exploration, a modeling formalism consisting of an emergent behavior 

lexicon and a formal specification for models of Emergent Behavior Systems (EBS) are 

synthesized from the long history of theories and observations concerning emergence. 

This modeling formalism is applied to each of the systems and each is then simulated 

using the agent-based modeling framework NetLogo (Wilensky, 1999). 

To develop quantifiable measures, associations are asserted: 

1) between agent-based models of emergent behavior systems and graph-

theoretical methods that support analysis related to information flow, 

2) with respect to the complexity of the relationships between entities 

comprising a system, and 

3) concerning the change in uncertainty of information, i.e. spatial entropy, 

observed as the system evolves. 

These associations form the basis for three measurements related to the 

information flow, entity complexity, and spatial entropy of the simulated systems and are 

used to: 

1) detect the existence of emergence 

and 

2) differentiate amongst these three systems. 
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1.2 Motivation 

With increased computational capability, and with the increasing desire to create 

autonomous or near-autonomous systems that can exhibit complex life-like behaviors, 

challenges arise in applying existing system formalisms to describe the constitution of 

those systems that achieve their objectives through the complex interaction of a multitude 

of simple parts from which a higher-order behavior arises. Complexity physics, artificial 

intelligence, computer science, statistics, biology, and social psychology (as well as some 

other disciplines) are rapidly converging upon a common observation: that as analysts 

and designers further explore their systems of interest, the robustness, richness, and 

diversity observed in both natural and manmade complex systems are more than the 

simple sum of the components. 

Interactions amongst constituent components at the local level affect, to varying 

degrees (both directly and indirectly), the behavior of the system of which they are a part. 

The resulting global level behavior in turn affects the local interactions of the 

components as shown in Figure 2. 

Emerging global 
Structure 

Local Interaction 

Figure 2. Local to Global to Local Feedback in an EBS 
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This observation of the complex interaction between local relationships and 

global feedback, which was previously theorized but more recently substantiated through 

advances in simulation science1, suggest that the level to which such interactions can be 

observed are in fact degrees of resolution, or scale. Depending on the perspective of the 

observer there is some level of emergent behavior, global at that scale, at which 

interesting and useful behaviors are observed. Consider an insect social system such as 

the beehive: at a certain scale, the beehive itself can be considered as a single entity with 

several measurable properties such as weight, volume and amount of honey. Clearly, 

modeling the beehive is driven by the perspective of the modeler: for example, it can be 

cast from a System Dynamics (SD) perspective as a simple set of difference equations 

that relate the quantity of honey produced to the presence and quantity of suitable 

flowers, the season of the year, or geographical location. However, since SD is prefaced 

on the assumption that internal causal structure of a system determines its dynamic 

tendencies, such an approach necessarily requires an aggregate perspective(Schieritz & 

Milling, 2003). It is not difficult to appreciate that modeling systems through feedback 

relationships without sufficient understanding of the causal relationships can obscure 

many of the underlying components (in this example those critical to honey production) 

and so result in a naive and inaccurate model. Such a "top-down" perspective applied 

without a satisfactory understanding of the causal relationships assumed can incorrectly 

subsume many critical details about the system, the environment, and their interaction. 

For example, we know from life-experience (because we can easily observe at the 

appropriate scale) that the beehive is not a single entity but rather the result of many 

1 As opposed to computer science - the term simulation science is increasingly common in the literature 
where computer simulations are the primary means of discovery and encompasses issues associated with 
computing hardware, software, and associated analysis methods. 
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interacting individuals governed by a relatively small rule set. Although, at one scale of 

interest, it might be convenient to view the beehive as a single honey producing entity, 

there are limits to what this scale really tells us about the system. Difference equations 

can readily be stated that relate honey production to seasons of the year, but it is only by 

peering within the hive that we can observe that the system is actually the result of the 

collective behavior of many other subsystems - its components - and that these 

components appear to function without any knowledge or regard to a greater plan, goal, 

-j 
or design of the hive . Consequently, a parametric "bottom-up" alternative approach to 

describing the beehive system considers the beehive at a level of resolution below that at 

which the beehive behavior is observed, that is at the scale of the individual bee. When 

we do so we see that the bee has various characteristics quite apart from those 

characteristics that describe the beehive. In fact, it is not even clearly discernible at all 

from examining a bee that at some level of population of bees a functioning beehive will 

come into being, i.e., emerge. This very apparent dichotomy between what is observable 

at the local level (bottom-up) and what is observed at the global level (top-down) is a key 

characteristic of emergent-based systems. Although a single bee cannot constitute a 

beehive, a sufficient number of bees do. This and other characteristics of such systems 

lead to a plethora of challenging questions such as, "How many bees does it take to make 

a hive?" When we turn this question around many applications, cost savings, and new 

capabilities are suggested. The speculative question, "How does nature specify a bee in 

2 
As another bee-related example, consider the formation of honeycomb. The hexagonal geometry of the 
honeycomb cell creates a nearly optimal solution to storage; maximizing area while minimizing energy 
used to produce the cell. It is highly unlikely that bees have embarked on a mathematical analysis to find 
this optimum geometry. Instead, it is far more likely that the individual goals of energy use minimization 
and space use maximization (combined with the increased strength of the hexagon over say the square or 
triangle) have resulted in this geometry after many generations of natural selection. 
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order to design a system to make honey?" is not so dissimilar from: "How should we 

specify an unmanned aerial vehicle such that a single operator can control scores of 

them?" or "How can we specify the number of nano-bots, given the practical limits of 

functionality that we can design into each, such that a tumor can be excised in a patient?" 

(Freitas, 2005). 

It is important to recognize that, as a modeling paradigm, there is historical debate 

as to the necessity or even the appropriateness of entity-based models with some arguing 

that highly complex systems should only be represented by SD methods in order to 

achieve a simplification of the more complex system (Scholl, 2001),(Parunak, et al., 

1998). Although SD provides a mathematically mature means to represent non-linear 

interactions, many systems of interest are not adequately understood in terms of causal 

relationships and this can lead to unsuccessful application of system dynamics. 

Individual-based paradigms such as ABM provide a complementary capability by 

emphasizing instead the specification of the components comprising a system. This is 

attractive to the modeler since in many systems more confidence exists in the 

understanding of the individual behavior of the components than in the causal 

mechanisms and feedback paths within the system. Macal and North emphasize that, 

"...systems that we need to analyze are becoming more complex in terms of their 

interdependencies," and they suggest that assumptions used to make certain problems 

"analytically and computationally tractable" lead to over simplification. They further 

observe that rapid advances in computational power make the individually-based models 

increasingly attractive (Macal & North, 2005). Schieritz and GroBler 2003 consider the 

practical limitations of SD with regards to modeling supply chains and suggest 
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combining SD with ABM as complimentary methods as a simultaneous top-down, 

bottom-up approach (Schieritz & GroIMer, 2003). Schieritz and Milling 2003 compare SD 

and ABM, noting that practitioners in each area have in large part ignored the other. They 

liken SD as "modeling the forest" while ABM is "modeling the trees." Concerning SD 

they note that "Only rarely information used for decision making is complete, unbiased 

and actual." (Schieritz & Milling, 2003). The behavior of an information-feedback 

system is highly sensitive to the kind of information used to make decisions and the 

accuracy of that information." Parunak, Savit, and Riolo (1998) discuss the forms and 

execution of the two modeling approaches and in arguing for an agent-base approach to 

supply network modeling assert, "Supply networks, like most systems composed of 

interacting components, exhibit a wide range of dynamical behavior that can interfere 

with scheduling and control at the enterprise level. Data analytic approaches based on 

assumptions such as stationarity are not generally effective in understanding these 

dynamics, because the commercial environment changes too rapidly to permit the 

collection of consistent data series long enough to support statistical requirements" 

(Parunak, et al., 1998). Nevertheless, ABM is often criticized for lacking the accepted 

theory and mathematical rigor inherent in system dynamics. Conversely, strong 

arguments can be made that entity-based models such as ABM are necessary to correctly 

model systems such as swarms that are finding greater application ranging from 

unmanned mobile platforms for military purposes to microscopic devices for medical 

treatment. Rouff et. al. considered the problem of verifying emergent behaviors in 

swarm-based systems, noting that there are potentially exponential interactions required 

to produce desired results and as such errors can result that are difficult to predict. They 
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point out that to include more advanced capabilities such as learning in such a system 

compounds the problem, causing the system to constantly change with implications not 

only to behavior assurance but to testing as well (Rouff, et al., 2004). As greater 

capability is demanded of systems, the desired highly complex and interactive 

characteristics required will likely result from the emergent behavior of interacting 

entities. The technology exists today to build such emergent behavior systems (EBS), but 

the theoretical framework to support modeling, analysis and validation of such systems is 

still in its infancy. 

1.3 Scope and Limitations 

To restrict the potential scope of this effort, we consider those systems where the 

principal entities of interest comprise a homogeneous population of entities that can be 

specified by finite state automata and where their state transitions are governed by a 

Finite Markov Decision Processes. A significant contribution of this research is in the 

formulation of an axiomatic taxonomy of emergent behavior and subsequent metamodels 

fundamental to establishing a modeling theoretic for the specification of the different 

classes within the taxonomy. Although excursions to systems composed of entities 

represented by non-Markovian processes (such as entities that learn from their actions) 

are tempting, this is considered an unnecessary complication to gain insight into the 

phenomena of emergence and consequently outside the scope of this research. 

Nevertheless, these results can pave the way toward continued research to develop a 

modeling theoretic by which heterogeneous populations with more sophisticated entities 

can be explored. 
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The phenomenon of emergence is by its very nature far reaching across many 

disciplines and schools of thought. Figure 3 depicts the research process of this 

dissertation beginning with a study of the historical context and literature search, which 

reveals the significance of System Dynamics, Agent-based Modeling, Graph Theory, and 

Statistics. This is enabled by the technology of Computer Simulation whereby insight to 

the nature of emergence supports a working definition of Emergent Behavior Systems 

including supporting lexicon and taxonomy. From here, axiomatic statements concerning 

the nature of such systems enable the development of analytical methods that can support 

a modeling theoretic for EBS. 

Continuing in reference to Figure 3: 

• Exploring previous researchers' efforts across many application domains 

reveals both computational and analytical methods that support the 

investigation of EBS. As a first step, this effort explores the history and 

background of emergence, computational science, modeling, physics, and 

mathematics to synthesize pertinent aspects of those domains into a consistent 

and fundamental set of definitions and lexicon expressing terms such as agent, 

emergence, etc., within an EBS modeling and simulation context. 

• From this synthesis of previous works, a working definition of emergence is 

derived and a modeling formalism for EBS is developed. Concurrently, the 

synthesis of previous works supports a notional taxonomy of EBS concerning 

sources of information flow, energy, and complexity. 

• The working definition, taxonomy and modeling formalism support the 

utilization of an agent-based modeling and simulation (ABMS) framework to 
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explore the emergence phenomena and add to the understanding of EBS by 

demonstrating methods that examine the relationships between measures of 

entity complexity within the system, the flow of information, the energy state 

of the system, and the measurement of emergent properties. 
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Figure 3. Dissertation Research Process 

Subsequent to the literature search and formulation of emergent behavior system 

taxonomy, canonical emergent behavior systems identified in the literature search are 

examined in simulation. Measures on the simulated systems (derived from the 

mathematical development related to variety, constraint, energy, etc.) are made and 

statistics gathered to explore characteristics that relate to classes of emergent behavior 

systems. Using agent-based modeling this research will consider familiar forms of 
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emergent behavior systems with observed emergent behavior, namely; 

Particle Systems 

Flocking Systems 

Stigmergy Systems 

These three systems are considered frequently in the literature and represent three 

recognized classes of emergent behavior systems. These are subject to the measures 

described above to form a categorical characterization G(u(t)). It is expected that E will 

form a feature set by which these systems can be partitioned such that E(u(t)) —> G{u{t)). 

1.4 Dissertation Organization 

This dissertation is organized into six principal chapters that discuss the problem 

being considered, the background in complex systems science, the description of the 

research, foundational elements of lexicon and taxonomy, simulations, and results. 

Figure 4 depicts the approach of this research and its mapping to the organization 

of the dissertation. 
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Figure 4. Approach Mapped to Dissertation Chapters 
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Each block corresponds to a step in the experimental process. The following describes 

each step of the experimental approach. 

Chapter 1, Introduction, includes the first step of the dissertation research, i.e., 

Statement of Problem. It addresses the thesis statement, motivation, approach, 

dissertation organization, and significance of the research. The problem statement 

presented in Section 1.1 is derived from the synthesis of the background and literature 

reviewed in detail in Chapter 2 and can be stated in general as, "How can we explore 

systems where emergent phenomena dominate through modeling and simulation?" 

Chapter 2, Literature Review and Synthesis presents the history and relevant research 

related to earlier efforts to understand, represent and analyze the nature of systems 

exhibiting emergent phenomena. As the second step in the research process, it examines 

the relevant historical context of the phenomena of emergence, past researchers' theories 

considering the nature of the phenomena, fundamental concepts leading to the language 

used to describe systems exhibiting emergence and analysis methods especially from 

graph theory and statistical mechanics. The ideas gleaned from previous researchers are 

synthesized in Section 2.3, Concepts and Lexicon, and Section 2.6, Challenges to 

Modeling Emergence and Emergent Behavior Systems, to establish a foundation and 

context for the subsequent simulation development and analysis. This foundation is built 

to develop a taxonomy for understanding emergent systems that leads to a working 

specification for modeling emergent behavior systems. To facilitate the exploration of 

emergent behavior systems through simulation, a modeling formalism for emergent 

behavior systems is derived and challenges arising from the nature of complex systems 

are considered. 



Chapter 3, Method and Approach establishes the boundaries of the dissertation 

research, describes the development of the simulations, analysis measurements and 

design of experiments used in the pursuit of the hypothesis. In this chapter, concepts are 

further refined to support the development of the models and analysis methods to follow. 

Here the basis for a modeling framework used in subsequent steps is applied and allows 

for the formulation of a concise hypothesis explored in the dissertation. 

Chapter 4, Analysis Framework frames the problem and defines metrics, i.e., the 

components required to state and test the hypotheses to examine the problem statement. 

The development of the three metrics to measure complexity and information flow are 

derived from graph-theory and the energy of the system based on Shannon Entropy is 

developed. 

Chapter 5, Simulation, Analysis and Results presents the application of the modeling 

formalism to the simulation of the three systems using the NetLogo agent-based 

modeling language. The outcome of the simulations runs and subsequent analysis of data 

are examined. Discussion of the results of the hypothesis tests are presented and 

discussed with respect to the success of the approach and metrics. 

Chapter 6, Conclusions, summarizes observations and conclusions based on the analysis 

of the results in Chapter 0. It also presents insights gained while conducting the research, 

observations on the methods and tools used, and topics for possible future research. 

Following the Bibliography are three appendices. Appendix A: Glossary, 

presents a brief collection of terms useful for quick look-up. Appendix B: MATLAB 

Code & Scripts, although not inclusive of all the MATLAB code developed in this study, 

presents the source code for the NetLogo data reading, graph transformations, and data 
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analysis. Appendix C: A Heuristic Measure of Entity Sophistication in Emergent 

Behavior Systems, presents a digression into a method to assess the sophistication of 

entities in an emergent behavior system (also see Chapter 3). Although not a critical 

component of the analysis done here, it was a result of the considerations of entity 

complexity and thought a worthy finding to include. 

1.5 Significance of This Work 

This research explores the relationship between the specifications of entities 

comprising systems and the characteristics that emerge as those entities interact with each 

other and their environment. Of particular interest are the definition of entity complexity, 

the role of entity population, and the significance of relationships between entity 

measures and system performance measures. 

There are several contributions to simulation science that result from this 

research, not least of which being the development of a taxonomy for emergent behavior 

systems based on specifications associated with complex systems, namely entity 

complexity, paths of information feedback, and information entropy. This lays the 

groundwork not just for the detection of emergence, but also for the analysis of such 

systems with potential application to validation of models of such systems. Another 

significant contribution is the comprehensive literature search and synthesis leading to a 

consistent lexicon for emergent behavior systems. It is not the intent of this research to 

offer new definitions of such terms as agent, emergent, etc., but rather to distill from 

earlier researchers the essence of those concepts into unambiguous and potentially 

axiomatically expressible definitions particularly suited to the modeling of emergent 

behavior systems. 
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1.6 Dissertation Products 

There are six principal products resulting from this research. These are: 

1. An emergence-focused Lexicon consistent with previous research, including a 

nomenclature describing the types of constraint in systems in Section 3.4 

2. A taxonomic categorization of systems characterized by primary feedback 

paths leading to emergent phenomena in Section 3.6 

3. A Formal Specification for modeling Emergent Behavior in Section 3.8 

4. A Heuristic to quantify the sophistication of entities comprising Emergent 

Behavior Systems in Appendix C: A Heuristic Measure of Entity 

Sophistication in Emergent Behavior Systems 

5. Three simulations of systems that demonstrate emergent phenomena written 

in the NetLogo framework described in Section 5.2 

6. Metrics useful to characterize emergence in the simulated systems described 

in Chapter 4 with their MATLAB implementations in Section 5.3 
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CHAPTER 2 

LITERATURE REVIEW AND SYNTHESIS 

Since Turing, researchers have envisioned computing machines with human-like 

qualities such as language, pattern recognition, and reasoning (Turing, 1950). Various 

computational models inspired by biological structures, e.g., artificial neural systems, 

cochlea models, artificial retina, and those inspired by information theory, e.g., Bayesian 

networks, simulated annealing, etc., have been implemented in the hope of imparting 

biological capabilities to machines. Early attempts applied a system dynamics approach, 

describing complex interactions through feedback loops and stocks and flows. Such 

models have produced notable success in aspects of pattern recognition and signal 

processing but typically fail to reproduce the more complex, adaptive, and collaborative 

behaviors observed in biological systems (Shmulevich, et al., 2002). 

Seeking to explore some of the more complex behaviors observed in nature, more 

recent efforts have applied parametric approaches to complex systems, contemplating the 

group behaviors of social structures, e.g., social insects, human organizations, etc., by 

describing the individual entities that comprise such systems, their interaction with each 

other and their environment (Tosic, 2006), (Carley, 2002), (Hudlicka & Zacharias, 2004). 

Consequently, there has been an increase of effort within the modeling and simulation 

community emphasizing the representation of social systems and the autonomous entities 

that comprise them. 

Significant advances in computer science, such as the advent of object-oriented 

design, multi-threading and the distributed information network of the internet, have 

provided a fertile soil for the growth of software agents, i.e., programming constructs that 
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maintain their own rule-base and instantiate themselves interactively within the software 

environment. This has resulted in many autonomous constructs such as "bots" and 

"crawlers" used in search engines and other network-based information harvesting 

(Bradshaw, 1997), (Nwana & Ndumu, 1999). Similarly, the field of distributed artificial 

intelligence (DAI) focuses on the application of cognitive agents, mini-expert systems if 

you will, with the ability to communicate with each other, share information and learn in 

order to solve complex problems (Jennings & Wooldridge, 1998). 

Models that are simulations of multiple interacting entities are often 

interchangeably referred to in the literature as individual, entity, or agent -based models. 

The entity-based paradigm is receiving greater attention as a method to model complex 

interactive systems such as biological systems and military operations (Wong, 2006). 

Probabilistic Boolean networks, cellular automata, genetic algorithms, and neural 

networks are some traditional examples of entity-based systems designed to exhibit 

complex life-like behavior. Recent progress in the implementation of multi-agent systems 

(MAS), made possible by the ever-increasing speed and computational capabilities of 

digital computers, has contributed to the multi-agent metaphor as a modeling technique 

supporting the concept of emergence as an engineering goal (De Wolf, et al., 2004). 

Increasing computational capability combined with the desire to create highly interactive 

systems that exhibit complex life-like behaviors, including cognitive ability, has driven 

ever increasing complexity in such approaches and poses challenges to existing modeling 

formalisms. 

Typically, the term emergence is used to describe some interesting and usually 

unanticipated state or sequence of states while observing a complex system over time. 
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This leaves the system modeler faced with the question, "What is emergent behavior and 

how should I deal with it?" Although there have been some significant efforts to describe 

emergence, there remains no universally accepted definition that results in axiomatic 

representation of the phenomena. As such, researchers adopt working definitions closely 

aligned with their domain of interest. Furthermore, the concept of emergence seems to 

elicit conflict between reductionist and holistic perspectives to modeling (Scholl, 2001), 

(Parunak, et al., 1998). Nevertheless, both camps admit that there seems to be some 

phenomena whereby quantitative interactions between entities in a system can lead to 

qualitative changes in that system which are different from, and irreducible to, the entities 

comprising it. The late 19th Century / early 20th Century psychologist C. Lloyd Morgan 

expresses this observation in his 1923 text "Emergent Evolution" (Morgan, 1923). Peter 

Corning summarizes the history of the concept of emergence in an excellent article in 

Complexity (Corning, 2002) and presents the many facets regarding definition (or the 

lack thereof) of the term. Previous research has frequently emphasized methods of 

systems implementation or specification with regard to specific applications such as 

robotics (Shell, et al., 2005), (Nicolescu & Mataric, 2002), supply chain analysis 

(Schieritz & GroBler, 2003), social science (Leon, 2005), and biology (Hawick, et al., 

2004). Although greatly different in application, these areas share in common the 

emergence of patterns of behavior and are complementary to the progress made in the 

related fields of multi-agent systems (MAS), DAI (Ferber, 1999) and Complex 

Dynamical Systems (CDS) (Boccara, 2004). Modeling and simulation provides a 

mathematically disciplined computational environment to describe the constitution of 

such systems, however without the existence of axiomatic formalisms and the associated 



22 

theoretical underpinnings, designing such systems will be similar to designing bridges 

before Newton wherein some designs which worked well in some applications did not 

always work in other applications. This was because the fundamental relationships were 

not sufficiently developed or understood. Just as Newton's physics provided the 

theoretical basis to describe the relationship between force and mass and so allowed the 

design of bridges with predictive properties, we seem to be at the forefront of a similar 

breakthrough that is based on the burgeoning discipline of modeling and simulation. It 

would seem that modeling and simulation stands poised to provide both the theoretical 

and computational faculties to explore the relationship between entity complexity and 

population and to enable the development of methods whereby locally simple, yet 

globally complex systems can be designed to exhibit intentional emergent behaviors. 

2.1 A Brief History of Emergence 

Any modern discussion of emergence would be remiss without considering the 

contributions of John Holland. Known as the originator of genetic algorithms, Holland 

has done much to popularize the wonder and promise of emergence in his first text 

"Hidden Order: How Adaptation Builds Complexity", which deals primarily with the 

concept of agents and "Emergence: From Chaos to Order" (Holland, 1998), (Holland, 

1995). With the broadest brush, Holland presents emergence as . .much coming from 

little" and notes that "it is unlikely that a topic as complicated as emergence will submit 

meekly to a concise definition...", and so he does not present a concise definition. Rather 

Holland's text, although rich in content and perhaps the best of any yet written, is more of 

a call to further research into the nature and analytical representation of emergence. 

Holland states, "In short, we will not understand life and living organisms until we 
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understand emergence." It is within the descriptions of emergence that Holland sets forth 

that a study (and broad definition) of emergent behavior systems begins to take shape, 

specifically that such systems fundamentally are "...composed of copies of a relatively 

small number of components that obey simple laws." 

The casual reader might be inclined to attribute to Holland the notion of 

emergence or the hypothesis that emergence may be a fundamental natural phenomena. 

However, the literature survey reveals that the concept has rather deep roots in 

philosophy, biology, social sciences, and mathematics. Not to disregard the significant 

contributions of Holland, in order to unearth a consistent intuition of emergence and to 

eventually scope a definition by which emergence phenomena can be quantitatively and 

parametrically represented, it is beneficial to understand the very beginnings of the 

interest in emergence. Searching beneath the works of Lorenz (Lorenz, 1963), Ashby 

(Ashby, 1956), and Turing (Turing, 1950), leads to the efforts of Reuben Ablowitz in the 

early 20th Century and who, in 1939, set forth a philosophical theory of emergence 

(Ablowitz, 1939), and, indirectly at least, introduced the key concepts of scale and 

observation to this theory. Citing references as early as 1843 that addressed philosophical 

issues such as causation, Ablowitz drew on the works of 19th and early 20th Century 

scientists and philosophers. In the collection of his thoughts, we can see the beginnings of 

what will later become known as complexity theory. Ablowitz asserts a definition of 

emergence that begins by making the distinction between "emergents" and "resultants". 

He states that an "emergent" is a "new quality of existence which results from the 

structural relation of its component parts." A "resultant" is a "property of the 

combination that can be foretold exhaustively from the individual elements." 
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As depicted in Figure 5 below, Ablowitz illustrates the distinction between the 

two metaphorically by considering bricks used to build a house: "...the weight of the 

house is a resultant of the individual weight of the bricks, but the peculiar characteristic 

of being a new entity called a 'house' is an emergent; you could not possibly tell from 

looking at a single brick what manner of object a house would be, unless you considered 

the structural relation the bricks were to assume." He points out that resultant properties 

are additive, whereas emergent properties are not. Indeed, this observation foreshadows 

the advent of modern chaos theory in the mid-Twentieth Century with its nonlinearity 

and sensitivity to initial conditions which became apparent with the advent of computers 

capable of many repeated calculations. 

Figure 5. Ablowitz's Resultant and Emergent 

Upon consideration, we can see that Ablowitz's philosophical study of emergence 

suggests a mathematical treatment; we can observe that the properties of the resultant are 

necessarily linear, whereas the structure imparted by interactions amongst components 

results in the inherently non-linear properties of the emergent. Albowitz's theory of 

emergence foreshadows the modern scientific interest in emergence and lays a 

philosophical foundation on which the application of chaos and complexity theory 

intertwine with computer science in the modern discipline of modeling and simulation. 



2.2 Modern Interpretation of Emergence 

While naturalists were considering the intricacies of the interactions of many 

entities, engineers were considering the practical aspects of statistical mechanics to 

electronic communications. In particular, Claude Shannon showed in 1948 that there was 

a duality between energy and information (Shannon, 1948). This discovery has resulted 

in a measure of uncertainty for the correct transference of information between 

transmitters and receivers, now known as Shannon, or Information Entropy. Information 

Entropy becomes particularly salient in regards to the study of EBS when considered 

from the perspective that such systems are essentially communication systems, owing to 

Ablowitz's assertion that that emergence is about the interrelationships between system 

components since, in most systems of interest, those interrelationships are manifested by 

the communication of some information. Within an EBS, communication can occur 

either directly between entities, or indirectly by the entities modifying their local 

environment i.e. stigmergy (Grasse', 1959), (Theraulaz & Bonabeau, 1999), (Chira, et al., 

2007). Shannon's Theory does not rely upon a particular means of communication aside 

from the conceptual model of there being a transmitter, a receiver, noise source, and a 

channel by which communication can occur. The information shared amongst entities 

should be of great interest to the modeler charged with representing an EBS, because 

what the entities in the system do in response to that information has a great deal to do 

with the overall system behavior. 

Shortly after Shannon's formulation, Ashby (Ashby, 1956) explored the nature of 

controllability in a complex system and noted that within any system, there is a possible 

variety of processes, but it is by the selective constraining of that variety by which useful 

results are obtained. Ashby's Law of Requisite Variety relates the complexity of an 



overall system to the complexity of the entities comprising that system. Statistical 

mechanics relates states of individual entities to overall system states. The Law of 

Requisite Variety similarly provides a means to express the constraint required on the 

entities of a system to achieve system performance. The two together suggest underlying 

phenomena critical to system behavior that is manifested by observable, i.e., measurable, 

self-organization. This idea has continued to be developed in more modern philosophical 

perspectives with regard to the validity of deductive processes; the idea here is that 

simpler elements are not sufficient to understand complex systems, but perhaps the 

dynamism of those components with dependence on their context gives rise to emergent 

explanations of the perceived phenomena (Baas & Emmeche, 1997). This perspective 

relies on the presence of an observer and suggests that emergence is a phenomena reliant 

on the experience of the unanticipated or "surprise". A counter perspective is that 

emergence is a phenomena that either exists or does not, regardless if an observer is 

present. For example, one could argue that humanity did not understand gravity for many 

millennia and perhaps is still does not understand it today. Nevertheless, gravity remains 

prevalent and so far, nothing has been observed to fall up. Other modern thinkers argue 

that emergence can be thought of as a quality or property of a system that exists whether 

the observer is present or not and the surprise of an observer has nothing to do with the 

existence of a property (Abbott, 2006). 

2.3 Concepts and Lexicon 

The first step toward a theoretical framework for the modeling and simulation of 

EBS is to establish a working glossary wherein the language of description translates into 

mathematical expression. This is needed not only to maintain consistency within a 
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disciplined study but any axiomatic expressions will need to be consistent with the 

mathematics to be developed. Largely, researchers in system dynamics, complexity, 

chaos, and computer science have made, when looked at in total, significant inroads to 

the mathematical definitions relative to emergent behavior systems. Unfortunately, 

because of little cross-disciplinary interchange (Scholl, 2001), a fair amount of energy 

must be expended to recognize that the varied terminology of traditionally distinct 

domains frequently express essentially similar ideas. 

This student has set about to view the varied definitions for emergence related 

terms in light of their mathematical basis whenever possible, and as such those terms are 

stated with careful consideration to an eventual mathematical expression. Definitions are 

vital to developing any theory; however, it is not the intent of this research to introduce 

just another set of definitions. Instead, the definitions developed in this research are a 

synthesis of the historically significant work of noteworthy researchers with the hope of 

reducing the present ambiguity in the science and establishing a foundational glossary 

useful to the modeling and simulation of emergent behavior systems. These definitions, 

drawing on the commonalities that have persisted over time, reflect the current language 

of complex systems, system dynamics, and modeling and simulation. In some cases, a 

simple one-sentence definition is not sufficient to communicate clearly the implications 

of the definition. In those cases, amplifying information is provided. It should be stressed 

however, that wherever possible, the foremost goal is the pretext that whatever is defined 

in words must be ultimately expressible mathematically. As an example, consider a 

general definition of an autonomous agent as given by Franklin and Graesser: 

"An autonomous agent is a system situated within and a part of an environment 
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that senses that environment and acts on it, over time, in pursuit of its own agenda and so 

as to effect what it senses in the future." (Franklin & Graesser, 1996) 

They even admit that this definition is "too large to be useful as is." Consider in 

contrast, the mathematically concise definition offered here, based in large part on the 

work of Crutchfield (Crutchfield, 1994): 

An agent is an autonomous stochastic dynamical system that attempts to build and 

maintain a maximally predictive internal model of its environment within the context of 

its inherent sensors, behavior sets, and effectors. 

Similarly, the definition of emergence asserted in this dissertation is based on 

concepts in the works of Crutchfield (Crutchfield, 1994), Shalizi (Shalizi, 2003), and 

Boschetti et al (Boschetti, et al., 2005): 

Emergence is that phenomena in which patterns that are observed at a global-

level arise solely from interactions among lower-level components acting on rules that 

are executed using only local information without reference to the global pattern. 

Armed with such definitions, a modeling specification is offered in Chapter 3 to 

facilitate the exploration of emergent phenomena through a structured simulation 

framework. 

We will see in Chapter 3 that the EBS Taxonomy and the range of constraints on 

the variety of the system illustrate the breadth of the emergence phenomena; however, 

some reasonable generalizations can be made here leading to a convenient, if not 

technically precise, definition of emergence. A wealth of previous thought on emergence 

suggests consensus that an EBS should consist of multiple entities and that these entities 

share information in such a way as to constrain their inherent variety and to dissipate 
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their energy (or information) to achieve a (perceived useful) equilibrium. This way of 

thinking about EBS is couched in statistical mechanics and system dynamics and so 

suggests a sense of mathematical formalism to describe them. Additionally, the ideas 

explored by some recent researchers, benefiting from the parametric simulations made 

possible with modern computing technologies, offer a complementary view of EBS. 

However, nowhere in the discussions of EBS related works can we find the requirement 

that the entities comprising such systems must be of a certain kind, or be of a certain 

degree of complexity. With these concepts in mind, we are emboldened to assert a 

context-free definition of an Emergent Behavior System: 

An Emergent Behavior System is a natural or synthetic system that produces 

observable changes in state in the form of either spatial or temporal patterns resulting 

from interactions between the components comprising the system. 

This high-level definition would seem to address all the ideas noted by earlier 

researchers and spans the breadth of systems suggested by the Taxonomy from those 

comprised of very simple components to those where the individuals are varied and very 

sophisticated in their inner workings. This definition speaks to the nature of individual 

entities that have definition independent from their system (micro-level), the behaviors 

that govern the relationships between entities (the meso-level) and the global scale 

behavior that emerges (macro-level). The key word is "interactions" because that is what 

separates the linear resultant characteristics of a collection of entities from the complex 

emergent characteristics of a system of entities. It includes the thinking of many modern 

researchers that natural systems and increasingly manmade systems are increasingly 

heterogeneous in their composition with their constituents interacting without 



consideration of an overarching goal (Mittal, 2012). 

This is called a "context-free definition" because it is highly abstracted; useful for 

conceptual considerations but still too broad for a working definition within a specific 

context. We will see that we cannot escape the dependence on context (because of 

mechanisms of constraint and feedback), and that there exist classes of EBS that lend 

themselves to different modeling approaches (Holland, 1998). Nevertheless, the context-

free definition supports the continued development of a modeling and simulation lexicon 

from which we may develop a useful modeling formalism by which simulations of EBS 

can be described. Furthermore, we can begin with this definition to show that such 

systems can be abstracted to a useful degree by considering the complexity associated 

with the entities comprising the system, their interactions with each other, and the major 

paths of information feedback in the system. In this way, the context-free definition does 

help us develop an intuition about modeling EBS. 

2.4 Complexity and the Role of Modeling and Simulation 

Michel Baranger of the MIT Department of Physics asserts in "Chaos, 

Complexity, and Entropy" (Baranger, 2008) that "...the enormous success of calculus is 

in large part responsible for the decidedly reductionist attitude of most twentieth century 

science, the belief in absolute control arising from detailed knowledge." In short, Chaos 

was developed because the determinism of calculus fell apart with the discovery of 

certain equations with hypersensitivity to initial conditions such as the now famous 

Lorenz equations of weather (Lorenz, 1963). This has great impact in the area of 

dynamical systems as many examples exist of systems where uncertainties in initial 

conditions lead to exponential changes in system state. Chaos in the spatial domain 
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manifests itself in fractals, whereas chaos in the time domain results in a complex 

system-dynamics. Barringer connects spatial chaos (fractals) with temporal chaos and 

observes, "Every chaotic dynamical system is a fractal-manufacturing machine. 

Conversely, every fractal can be seen as the possible result of the prolonged action of 

time-chaos." The mathematical relationship amongst components, whether we study 

chaos or complexity, is inherently non-linear. Interestingly, the concepts of statistical 

self-similarity and chaotic dynamical systems align nicely with the ideas of scale (or 

resolution) in the study of emergent phenomena. The field of complexity then can shed a 

great deal of light on the nature of emergent phenomena, and therefore the properties of 

complex systems can provide a basis for a deeper understanding of emergent behavior 

systems. At this juncture it is valuable to enumerate the properties of complex systems as 

this will have direct bearing on the approach taken in developing an emergent behavior 

systems taxonomy. Although the notion of a complex system remains to be further 

refined, Baranger (Baranger, 2008) identifies the following properties that characterize 

such systems: 

1. Complex systems contain many constituents interacting nonlinearly. 

2. The constituents of a complex system are interdependent. 

3. A complex system possesses a structure spanning several scales. 

4. Complexity involves interplay between chaos and non-chaos. 

5. Complexity involves interplay between cooperation and competition. 

Although complex systems are often associated with what might be called 

emergent phenomena, Baranger's statements do not necessarily imply that EBS must 

always be complex. Indeed, although the behaviors exhibited by an EBS can be very 
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complex, such complexity need not be the result of complicated components. For 

example, Rodney Brooks (Brooks, 1991) has shown that highly adaptive, seemingly 

intelligent behavior can arise from simple stimulus/response entities or "reactive agents". 

In his seminal text "Introduction to Cybernetics", Ashby, defines variety in a 

complex system by considering the question of, given a set, how many distinguishable 

elements does it contain? Ashby's Law of Requisite Variety can be loosely stated that for 

appropriate regulation in a system as, "the variety of a regulator must be equal to or 

greater than the variety of the system being regulated." The implication is that a 

controller must have at least as many degrees of freedom as what it is controlling. The 

greater challenge may be found in the application of Ashby's Law to the discovery or 

specification of the variety of a system and its components. 

The upshot here is that the complexity of a system can be analyzed with respect to 

measures of variety and constraint of the system and that the Law of Requisite Variety 

provides a means to relate the complexity of constituent components, i.e., the entities that 

comprise the system, to the complexity of the system. Ashby's work defined both variety 

and constraint and relates the variety possible to the variety expressed through his Law of 

Requisite Variety. 

2.5 Emergent Behavior and the Agent Metaphor 

As is seen in the previous discussion, it is difficult to understand what it means to 

be emergent. Typically the terms emergence, emergent, or emergent phenomena come up 

in discussions of complex adaptive systems and multi-agent systems. Current literature 

seems to suggest that emergence results when agents interact, but what do researchers 

really mean by "agent" and consequently what level of entity complexity or 
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sophistication distinguishes agents from other components of a system? No modern 

treatment of systems composed of interacting entities can ignore the concept of agency. 

Germaine to our consideration of the term "agent" in regards to the primary entities in a 

system exhibiting emergent phenomena, we must draw some distinction between terms 

such as "agent-based", "entity-based", and "individual-based" models, especially where 

this applies to the modeling of EBS. 

Clearly, Ablowitz had no idea of what the modern thinking on agents would be 

and considered even very simple entities as components of an EBS (e.g., bricks). A 

review of more recent literature would suggest that almost any component of a system 

can be represented by an agent metaphor; the most simple components being modeled as 

agents with profoundly limited sense and respond behaviors (reactionary agents) and the 

most sophisticated components modeled as cutting-edge artificially intelligent engines 

(cognitive agents). One must ask, "Why agents?" and along with that, "Is then everything 

some kind of agent?" The answer to both questions necessarily degenerates to a 

philosophical debate founded on inconsistent and poorly defined terms used in rather 

broad applications. Broad and inconsistent terms give system modelers intense 

headaches. Since so many like to create systems of agents and then marvel at the often 

unexpected yet interesting ensemble behavior, let us first consider the components of a 

system in general and then the concept of agent specifically. 

The current literature is replete with references to the term "agent" whether it is 

with regard to "agent-based" (Parunak, et al., 1998), "agent-oriented" (Kim, et al., 1999), 

"autonomous agent" (Franklin & Graesser, 1996), rational agent (Russell & Norvig, 

1995), "multi-agent" (Ferber, 1999), etc. Unfortunately, one must struggle a little to 
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identify the unique characteristics of these terms when reading current literature, and 

many working definitions seem to be tightly coupled to the specific problem domain that 

is the area of interest of the respective researchers. This can (and has) lead to much 

inconsistency and confusion amongst the varied domain perspectives. For example, 

Graesser and Franklin presented a formal definition of an "autonomous agent" as a means 

to distinguish software agents from other programming constructs. Researchers have 

made some progress toward a more general description of such behavior based entities, 

such as Ashlock's and Kim's examination of representation of "finite state agents" by 

Cellular Automata (CA) which found that using the CA representation resulted in less 

cooperation in solving the prisoner's dilemma problem (Ashlock & Kim, 2005). With 

regards to "software agents" Nwana states, "We have as much chance of agreeing on a 

consensus definition for the word 'agent' as Al researchers have of arriving at one for 

'artificial intelligence' itself - nil!"(Nwana, 1996). As such, she presented her own agent 

typology derived from three minimal characteristics as shown in Figure 6. 

Agents 

Learn 

Autonomous, 

Smart 
Collaborative 
Learning Agents 

Collaborate 
Agents Interface 

Agents 

Figure 6. Nwana Agent Typology (Nwana, 1996) 
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Emergent phenomena are often associated with MAS. Not to be omitted, Ferber 

observes in his treatise on Multi Agent Systems that the term 'agent' "is used in rather a 

vague way" (Ferber, 1999). He then presents what he says is a "minimal definition" as 

summarized in Table 1. Key characteristics have been emphasized in bold. Being a 

"minimal definition" means that there is essentially no limit on what can be considered an 

agent. However, is the agent metaphor and the specification of MAS the best choice for 

the modeling of EBS? 

Beginning with Ferber's definition of agent within MAS, perhaps we can 

synthesize a workable definition of the fundamental entities comprising a model of an 

EBS. First, it is reasonable that an agent must exist within some environment: that would 

imply it has no meaning outside of its environment (or at least not the same meaning in 

different contexts) and the agent is itself something apart from its environment; so, an 

agent is not the system itself, but rather a part of a greater system. Secondly, not only do 

agents communicate according to Ferber, but they also communicate directly with other 

agents. This implies that an agent must not only be able to transmit information but also 

be able to receive it. Notice that this does not preclude communication with something 

other than agents as well. So, what does it really mean for agents to communicate? At its 

lowest level, communication can be defined as the transference of data. 
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An agent is a physical or virtual entity that 

a. is capable of acting in an environment, 

b. can communicate directly with other agents, 

c. is driven by a set of tendencies (in the form of individual 
objectives or of a satisfaction/survival function which it tries to 
optimize), 

d. possesses resources of its own, 

e. is capable of perceiving its environment (but to a limited 
extent), 

f. has only a partial representation of this environment (and 
perhaps none at all), 

g- possesses skills and can offer services, 

h. may be able to reproduce itself, 

i. has behavior that tends towards satisfying its objectives, talking 
account of the resources and skills available to it and depending 
on its perception, its representations and the communications it 
receives. 

Table 1. Ferber's Agent Definition (Ferber, 1999) 

Ferber suggests no restriction on what form that communication must take or by 

what medium it must be achieved, but he does indicate that it is direct. This implies that 

for something to be an agent it must be able to transfer data directly to other agents and 

not only by some consequential or secondary means; that is, agent-A sends a message 

intended to be received by agent-B; however, do entities comprising and EBS need such 

awareness? This is not a trivial consideration since communication in natural systems 

manifests both directly and indirectly. In some cases, one entity purposefully 

communicates to another entity with the expectation of a response. In other cases, the 

communication is simply the passing of information through secondary media such as the 
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posting of traffic signs by road designers or the pheromones deposited by certain social 

insects. In either case, information is transmitted and received, but in the first case, there 

is intent by the transmitting agent to communicate and an expectation that a receiving 

agent will respond. In the second case there is no such intended recipient or expectation, 

but data rather appears as a part of the environment whether it is created or received by 

entities in that environment (Theraulaz & Bonabeau, 1999). A key characteristic of EBS 

is the balance of variety and constraint that leads to organization, so in the EBS there is 

no requirement that an entity need know that the information it has just received is from 

another entity; it only needs to act on (or in response to) the information it receives. So 

this begs the question, what constitutes information in an EBS? The EBS modeler might 

consider that information is anything that imposes some constraint on an entity in a 

system such that there is elicited a change of state in that entity, i.e., any actionable data 

that facilitates a change of state in an entity. Either form of this working definition of 

information is necessarily recipient-oriented, that is the recipient's response (or lack of it) 

determines whether in fact received data is information, but the form of the data or its 

media is inconsequential. Either a radio transmission or a stone to the head may be 

sufficiently termed information if the receiving entity perceives it as such. 

Ferber's definition requires an agent to be goal seeking or seeking to optimize 

some utility function. To do so would require that it have some way of ascertaining the 

extent to which its actions allow it to attain its goal. Interrelated, perception relates to an 

agent's ability to sense (or measure) to some degree its environment or other entities and 

so leads to an internal representation within the agent of its world. Ferber points out that 

this perception is typically incomplete; a reasonable assertion given the practical limits 
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and uncertainties associated with any sensorium. This is fitting with our previous 

observation that in an EBS, responses are based on local information and entities have no 

understanding of the larger system. Having skills, and offering services implies that 

something an agent can do is of use to something else and that it can communicate (or it 

is understood) what it can offer to others. Reproduction is the only "may" meaning that it 

is not critical to the definition - just if it can, it can still be an agent. 

Precisely what is an agent, or constitutes agency, is not then a matter of assertion, 

but rather a matter of value. With regard to EBS for example, particle systems establish 

complex relationships and give rise to synergies of scale and threshold effects producing 

emergent phenomena such as avalanches (Corning, 2002). Typically one would never 

refer to a pebble as an agent, but agent methods can be (and increasingly are) utilized in 

the implementation of models of such systems. Unfortunately, given the many available 

definitions of agent, any and all of these components are often implemented as agents, 

leading to the need for innumerable modifiers. To facilitate this dissertation, we suggest 

that an EBS modeling lexicon needs to distinguish between the "agents" in a system and 

the "agent-based methods" of implementing them. (This is addressed in Chapter 3.) 

Therefore, for our purposes, we will speak generally of the entities that comprise a 

system, as opposed to some modified term of agent, and relegate the term agent to that of 

a particular programming paradigm. 

2.6 Challenges to Modeling Emergence and Emergent Behavior Systems 

It is good to recognize that emergent behavior (especially where we are 

concerned with the discovery of emergence or with the design of systems with intentional 

emergent behavior) can result from either collectives of interacting simple entities, such 
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as particles of sand that make up a dune, or from vastly more sophisticated entities such 

as people in a society. Similarly, computer simulations of entities give rise to emergence 

phenomena and range from simpler cellular automata (CA) to collectives of more 

sophisticated computational entities such as the afore discussed agents with all the 

complexity that the modem term connotes. In both naturally occurring and synthetic 

emergent systems we typically observe interactions amongst three readily recognizable 

components; 1) the boundaries of the system or the environment, 2) the less sophisticated 

entities within that environment (which we will later define as objects), and 3) the more 

sophisticated entities, or Actors, that tend to affect objects and other actors in the 

environment. 

Although it is common to assume that emergent behavior systems have their 

beginnings in the study of complexity, it is rather a "chicken-or-the-egg" issue. Clearly, 

the idea of emergence (at least philosophically) predates modern thoughts of complexity, 

yet it has only been the advances in recent history, primarily the advent of modern 

computing capability, that has fueled the explosion of research into complexity and as 

such lead to, if not the rediscovery, at least the renaissance of emergence. This new 

interest in the emergence phenomena has taken hold both from the perspectives of 

intentional emergence, i.e., where a system of entities are created with the intent to 

achieve an emergent system behavior, and unintentional emergence, where some 

unexpected system characteristic or behavior is observed or measured as data is garnered 

about the system. In either case, the ability to explore the emergence phenomena has been 

primarily facilitated by the rapid increase in computing capability. 

It is no wonder then that the complexity made possible with modern computers 
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would lead to emergent behaviors, whether intentional or not. Whether the goal is to 

detect, observe, or predict emergent phenomena in real systems, or to design systems 

with specific emergent properties, a great deal is being done without a working "calculus 

of emergence" - a situation not unlike civil engineering in the absence of Newtonian 

Physics as emphasized by Lyons & Arkin: "There is an analogy with the history of civil 

engineering: bridges and other major structures were constructed for thousands of years 

before the necessary mathematical tools were developed to guarantee their performance. 

In the 19th and 20th centuries, as such projects became more ambitious; some spectacular 

failures ensued due to the absence of effective performance guarantees." (Lyons & Arkin, 

2003) 

As computing capability has increased, our ability to create ever increasingly 

complex systems has increased. As early as the mid-1980s systems engineers observed 

the problems associated with systems of increasing complexity. As Harel states, "The 

literature on software and systems engineering is almost unanimous in recognizing the 

existence of a major problem in the specification and design of large and complex 

reactive systems. A reactive system, in contrast with a transformational system, is 

characterized by being, to a large extent, event-driven, continuously having to react to 

external and internal stimuli." (Harel, 1987) 

Given the rise of complexity in such systems, assuring the correct emergent 

behavior poses a challenging task. Lyons and Arkin explore this very problem with 

regard to robot-environment interaction and develop an analytical approach (based on the 

formalism of port automata) that reduces the combinatorial scale between robot actions 

and the environment (Lyons & Arkin, 2003). Lyons and Arkin applied the formalism of 
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Port Automata (PA) to the problem of robot-environment interactions with the hope of 

achieving some kind of performance guarantees. The authors describe the "open-ended" 

nature of robot-environment interactions and the need to assure behavior in this system. 

Their approach was to utilize the PA formalism emphasizing the role of communication 

events. Figure 7 depicts a way one PA can communicate with another in a single 

communication event. The small circles represent communication ports and the directed 

links communication events. 

Figure 7. Communication in Port Automata 

The similarities of this representation with that of both agent-based simulations 

and system dynamics are obvious: the similarities to agent-based simulations include the 

individual description of each PA, and similarities to system dynamics arise from the 

communication links, especially those cases of self-communication, i.e., loops, that in PA 

theory allow the storage of internal variables (a form of memory). Furthermore, the PA 

shares some obvious similarities with current definitions of agents such as the ability to 

communicate with each other and actions taken based on input. The A formalism for PAs 

is given by: 

PA = {Q,L,X,S,P,t) (2) 

where 
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Q is the set of states 

L is the set of ports 

X is the event set for each port X = (X \ i  e L)  

8 is the transition function 

P is the output map for the ports 

T is the set of start states 

More recently, Varenne has explored the role of computer simulation with 

regard to complex systems modeling. Varenne notes that prior to the ability to create 

sophisticated computer simulations, the very understanding of complexity has heretofore 

striven to represent complexity by modeling with simple notations and allowing the 

model complexity to manifest in the implementation (Varenne, 2009). 

The works of Wolpert et al address the need to relate individual agents to the 

performance of the collective they form (Wolpert, et al., 2000). The authors' approach 

was to create a top-down (system level) feedback of the global system (the world) to the 

entity level, i.e., assert a global utility function as a means to assess each agent's 

contribution toward achieving the desired collective goal according to: 

WLU n ( z )  =  G(z ) -G(z_ n ,CU n )  ( 3 )  

where, 

*7 is the designation of a specific agent, 

z is the state of all agents, and 

z is the state of all agents other than TJ 

The "wonderful life utility" described by WLUtj serves to moderate the affect of 
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an agent 77 on the system by measuring the difference between the world as it is and the 

world without the presence of the agent 77. In Wolpert's work, G is a global utility 

function and CL is a kind of "clamp" that effectively keeps an agent from changing. In 

this way, the agents are continuously assessed as to their contribution to achieving the 

global goal. This approach achieves a practical method by which agents of a certain type 

can be systematically adjusted, driving them toward a global behavior and has been 

successfully applied to multiple domains, e.g., autonomous rovers, constellations of 

communication satellites, and data routing. However, this approach does not for instance; 

provide a measure of the relationship between agent specification and the number of 

agents needed to achieve the global behavior. 

Whether the intent is to produce a simulation of an existing system, or to achieve 

an advanced behavior, e.g., autonomous weapons, simulation is critical. In the latter case, 

the simulation is the system. Lyons and Arkin assert, "Without the establishment of 

strong formalisms to describe emergent-based systems, advances in this area will not 

keep pace with needs, and perhaps more importantly, it will be very difficult to assure the 

behavior of such systems, which could lead to unintended and in some cases devastating 

results." 

Common usage of the term emergence often refers to the observation of higher-

level properties and behaviors in a system that, while obviously originating from the 

collective dynamics of that system's components, are neither to be found in nor are 

directly deducible from the lower-level properties of that system. To some extent, this 

research attempts to reconcile what might appear as opposing perspectives of emergent 

behavior, each perspective previously suggesting a different and often conflicting 
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modeling approach. The first perspective sees simulations of systems that are 

characterized by observable system behaviors but where the underlying entity 

characteristics are generally unobservable. This perspective encourages models that are 

top-down, closed, and generally lending themselves to some form of a global utility 

function. Causality is presumed and the system model emphasizes causality. The second 

perspective takes the view that a good deal can be known about the entities comprising a 

system but the full nature and extent of the interactions between the entities is not known. 

The key distinction between these perspectives is that the first is top-down whilst the 

second is bottom-up, i.e., generally specified and observable at the entity level. The 

second perspective typically lacks sufficient global-level observations to support 

statistical representations of the behavior of the system, as is often the case in many 

natural occurring events. Table 2 summarizes the distinction between the two 

perspectives. 
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Top-down Perspective Bottom-up Perspective 

• System specified at the global level 

• Global behaviors are what they are 

• Entity characteristics unknown 

• Entity interaction rules unknown 

• System Dynamics 

• Boundless trade space 

• System specified at the entity level 

• Desirable Global behaviors are 
specified 

• Entity characteristics are known 

• Entity interaction rules axe known 

• Agent-based Simulations 

• Bounded trade space 

Table 2. EBS Modeling Perspectives 

To illustrate these two modeling perspectives, consider the oft-cited classic 

system dynamics example of the predator-prey modeling of foxes and rabbits (Hawick, et 

al., 2004). An example of the top-down perspective results from the naturalist's 

observations of an ecosystem consisting of two populations, one of rabbits, another of 

foxes. The top-down perspective would involve some estimation of both populations over 

some time in which the increases and decreases would be noted with a basic assumption 

that the dynamics are correlated. In fact, this is exactly the system dynamics approach in 

which a set of difference equations can be stated that describe the observed behavior such 

as: 

(4) 

P — P - D *P -4- A * P  * P  
Fn F{n- \ )  F  1  F(n- i )  T  ̂  1  F(n-1) 1  fl(n-l) (5) 

In (4) and (5), BR is a constant representing the rabbit birth rate, DF is the fox 

death rate, PR is the rabbit population, FR is the fox population, and A is an empirically 

defined interaction constant. The state of the system is incremented with each n step. As 
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can be readily seen, the rabbit population will decrease in the presence of foxes, with a 

greater number of foxes causing a greater decrease in rabbits. Arguments can be made as 

to the validity of this model, but no one can deny that a great deal of ecological science is 

aggregated in the assignment of the interaction constant A. Additionally, the birth and 

death rates are assumed to be effectively independent of any other factors, which is a 

modeling simplification that may or may not be valid. Although a system dynamics 

approach as this one has clear advantages (such as computational speed resulting from 

mathematical simplicity), an argument could be made that such an approach does not 

"faithfully represent" the system of interest and so can lead to many false conclusions 

about the problem domain. At the very least, real rabbit and fox populations would have 

to be observed over time to determine valid values for the constants A, B, and D. Also, 

one could argue that this modeling approach is inherently limited and potentially 

misleading: A, B, and D could in fact aggregate many unknown variables in the 

environment. Of course, such arguments are always subject to the intended use of a 

model. 

From the bottom-up perspective, the naturalist would observe the characteristics 

of the individual entities, i.e., foxes and rabbits, and specify a behavioral model at the 

level of the individual. Such a modeling approach allows the modeler to focus on the 

entities (with the assumption that it is easier to specify the components of a system than 

the phenomena governing the interaction of those components) and emphasizes the rules 

that govern their interaction. Hawick, Scogings, and James used just such an approach to 

discover interesting emergent characteristics of predator-prey systems, specifically the 

emergence of what they termed "defensive spirals", i.e., spatially spiral patterns formed 
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by the prey as they flee the predators (Hawick, et al., 2004). The following table lists the 

characteristics that they used in building fox and rabbit models, resulting in a predator-

prey system at the entity level. 

Prey or "rabbit" rules Predator or "fox" rules 

Move away from a fox if the fox is 
adjacent 

Eat a rabbit if the rabbit is adjacent 

Breed if a rabbit is adjacent and less 
than 5 rabbits are nearby 

Move towards a rabbit if it is nearer than 80 
spatial units and this fox is hungry 

Move towards a rabbit if the rabbit is 
nearer than 20 spatial units 

Breed if a fox is adjacent and less than 3 foxes 
are nearby 

Move to a randomly selected adjacent 
position 

Move towards a fox if it is nearer than 80 
spatial and this fox is not hungry; 

Move to a randomly selected adjacent position 

Table 3. Predator - Prey Rules (Hawick, et al., 2004) 

With regards to models of emergent behavior systems, we can ascribe either the 

top-down or the bottom-up perspectives depending on the domain of the model, that is, 

whether it is representing what is observed in an existing system, or whether a system is 

being designed where there is some aggregate complex behavior as a goal (as is often the 

case of models implemented as agent-based simulations.) 

At first blush, the quantitative study of systems comprised of multiple interacting 

entities appears intractable. For example, consider that a system composed of 100 

interacting entities each with 10 possible behaviors is but a collection of 1000 behaviors, 

yet when they interact the possible combinations of those behaviors produces a behavior 

space as high as of 10100 . Such magnitudes of computation are problematic even in light 



of modern computer capabilities. At the time of this writing, Japan's K Computer3 holds 

the record as the world's fastest super computer at 10.51 x 1015 floating-point operations 

per second (Anon., 2011). Assuming a best possible ability of one decision process per 

flop, the K Computer would require something on the order of 1077 years to exhaustively 

compute such a decision space. Intractable indeed considering that the estimated age of 

the universe is about 17 x 109 (17 billion) years (van den Bergh, 1995). Although we 

cannot explore every possible state for even reasonably small EBS, it is not uncommon at 

all to identify entity-based systems or to build agent-based simulations with such a 

population and behavior set. Amazingly, models of such systems exist all around us and 

achieve high degrees of success and organization.. Since we are not able to examine 

exhaustively the behavior space of such systems, we must consider new metrics 

consisting of non-exhaustive measures. 

3 RIKEN Advanced Institute for Computational Science, 
http://www.aics.riken.jp/en/over/riken.html 
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CHAPTER 3 

METHOD AND APPROACH 

In the journal Nature, Tamas Vicsek stated, "If a concept is not well defined, it 

can be abused. This is particularly true of complexity, an inherently interdisciplinary 

concept... with no underlying, unified theory." (Vicsek, 2002). The USMC Doctrinal 

Publication, MCDP 1, Warflghting (U. S. Marine Corps, 1997), discusses complexity 

from the perspective of military operations where war is described as a "complex 

phenomena" and each "belligerent" is described as a "complex system." The belligerents 

are complex because "...each belligerent is not a single, homogeneous will guided by a 

single intelligence. Instead, each belligerent is a complex system consisting of numerous 

individual parts." It goes on to say, "Each element is part of a larger whole and must 

cooperate with other elements for the accomplishment of the common goal. At the same 

time, each has its own mission and must adapt to its own situation." 

MCDP 1 Warflghting further states that, "As a result, war is not governed by the 

actions or decisions of a single individual in any one place but emerges from the 

collective behavior of all the individual parts in the system interacting locally in response 

to local conditions and incomplete information." 

Cosma Shalizi, in his chapter on Methods and Techniques of Complex Systems 

Science: An Overview in Complex Systems Science in Biomedicine by Thomas S. 

Deisboeck, J. Yasha Kresh. (Deisboeck & Kresh, 2006), begins by stating that a complex 

system "is one with many parts, whose behaviors are both highly variable and strongly 

dependent on the behavior of the other parts." Hubler (Hubler, 2005) looks at complexity 

from a physics perspective and defines complex systems as "...open systems, where the 
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flow of a medium through the system is large. To make a system complex we increase 

the throughput until something unexpected occurs: a pattern emerges in the system as the 

system starts to oscillate." He defines a complex system as being composed of many 

subunits with nonlinear interactions and feedback. He also notes, "In contrast to many 

other physical systems, the emerging behavior of complex systems often depends on 

historical events." Michael Baranger (Baranger, 2001) notes that "the constituents of a 

complex system are interdependent." Bar-Yam observes in "About Engineering 

Complex Systems: Multiscale Analysis and Evolutinary Engineering (Bar-Yam, 2005), 

that "...the behavior of complex systems is ultimately unstable and that as a system 

becomes more complex the interfaces between its parts become increasingly important." 

Clearly, there is great importance placed on the notion of complexity not just of a 

system but even that of its constituents. The various manifestations of complexity tend to 

produce many varied measures of this important characteristic. Depending on one's 

interest or perspective, complexity measures exist for computational (Steinman, et al., 

2010), stochastic (Rissanen, 1989), statistical (Shalizi, 2001), structural (Kowaliw, 2008), 

and many other kinds of complexity. Shalizi (Shalizi, 2001) examined measures of 

complexity from a theoretically general perspective of complex systems science. 

Beginning from a statement of Occam's razor that".. .entities are not to be multiplied 

beyond necessity", Shalizi observed that a model should be no "rougher" than necessary. 

As such then, complexity is that set of minimum characteristics that describe the intricacy 

of a system. Attempting to identify a useful measure for agent complexity is no less 

problematic and one should avoid the introduction of yet another measure, but the 

literature is rather vague at best. A literature survey reveals many approaches and 
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conflicting definitions of complexity with regard to agent-based, emergent, or adaptive 

systems. Dominique Chu, in his article "Criteria for Conceptual and Operational Notions 

of Complexity" (Chu, 2008), asserts that complexity as a "formal notion" should be 

abandoned in regards to such systems. 

Is there a useful measure for complexity or something like it that can be applied 

to EBS, especially those that are represented by ABMs? A good starting point is to 

consider what we mean when we talk about agent complexity. Concerning systems 

represented by agent-based methods, there are at least two kinds of complexity to 

consider, the first is the complexity of the individual agent(s) comprising the system and 

the second is the complexity imparted to the system by an individual agent. Recognize 

that in an ABM there is the issue of the ABM itself as a model of some known or 

speculative system and that some entities in the system are in fact formed of multiples of 

agents working in concert. However, the agents comprising the ABM are in themselves 

models, designed to function in a suitably representative manner ascribed to some 

notional or real entity. With regards to ABMs (which is the approach taken here to study 

EBS) it is intuitive to reason that the capabilities of an entity affect its ability to interact 

with its environment and other entities in it. As such, complexity could be as simple as 

the number of states an entity can make available to the system. How should that be 

measured? What would that be for say a system of particles vice a system of advanced 

robots, or even a system of social entities such as terrorists? For the system of particles, 

the states might be simply: 1) bumping into a boundary, 2) bumping into another particle, 

3) position and 4) velocity. Which ones are important? If all the particles are the same 

then it seems that their complexity should be the same even though they do not have to be 
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in the same state at all times. Now compare the particle system to a swarm of 

autonomous military robots. In both cases, we are dealing with a collection of many like 

entities but it is easy to appreciate that the design of the latter is significantly more 

complicated than the representation of the former. However, if the latter are so 

constrained that their capabilities are so inhibited as to reduce them to particles 

effectively, then just with what complexity should we, as modelers of EBS, be 

concerned? 

3.1 Entity Complexity in EBS 

One might begin an argument that complexity in an EBS is related to inherent 

constraint, i.e., the limits an entity enforces on itself based on "the rules of the road". The 

ratio of inherent constraint to an entity's possible abilities might be a useful metric, but is 

this what we mean by entity complexity? Another perspective that might be of interest is 

the number of relationships an entity can support, i.e., the number of communication 

pathways by which the entity can receive actionable data. For a simple particle system 

this would simply be the energy exchanged during collisions; for the military swarm, this 

could be any number of communications related information exchange characteristics 

e.g., packet length, data rates, information content, etc.; for a terrorist network, this could 

be telephone conversation events, financial transactions, etc. Complexity from this 

perspective might be relative to the sensorium of the entity as these define the 

fundamental interaction pathways. For a system of particles, this would be the result of 

direct contact. For ants, this might be touch and smell. For birds in a flock, it might be 

sight and sound. This thinking seems to suggest that an entity's complexity is in some 

way related to the selection of responses available to the entity based on information it 
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can receive. In this way of thinking about complexity the states the entity can provide to 

the system, compounded by the relationships the entity can sustain by its inputs and 

outputs might in some way define the complexity of the entity. 

Another perspective of complexity might consider the "autonomy" an entity has 

within the system. This notion is attractive in that it seems intuitive that the more 

autonomous an entity is the more complex or sophisticated it is likely to be. Clearly, the 

particles are more autonomous than say the barriers in a particle simulation. Similarly, 

birds are more autonomous than particles, etc. However, this might merely be a 

secondary result from the complexity described in the paragraph above. What is desired 

is some way of combining the various notions of autonomy, communication and an 

entity's ability to affect its environment in a quantitative specification. 

The foregoing discussion suggests that agent complexity is not the true measure of 

interest with regard to Emergent Behavior Systems, or at least is not the only measure. 

Here it is important to return to the lexicon of EBS and recognize that the use of an agent 

as a modeling metaphor or programming method is merely a means to represent the 

entities that comprise the EBS. Typically, our entities of interest are actors in the EBS 

and are subject to all the constraints imposed by the relationships in the EBS. The extent 

to which they interrelate is one kind of complexity while their individual internal 

workings are another kind. Therefore, we consider our definitions again and choose the 

term sophistication when we wish to describe the inner workings of an entity and the 

term complexity when we wish to speak of an entity's significance in the system with 

regard to the relationships formed in the EBS. These terms and their definitions make 

immanent sense when we consider that the word sophistication comes from the Greek 
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root sophos meaning wise and complexity comes from the Latin complexus meaning 

entwined. With this distinction in mind, we can recognize that the sophistication of the 

entities, which are the actors in an EBS, is an individual property of the actors, whilst the 

complexity of that actor is dependent on the environment of which it is a part, that is, 

within its context of observation. Now we can see how a sufficiently constrained actor 

may provide very limited complexity regardless of its sophistication. So with this 

perspective, the complexity associated with an entity in an EBS is more related to the 

effect or importance that entity has in the structure of which it is a part, i.e., how it is 

entwined with others, and not in the actual specification of the entity itself. This entity 

complexity is measured at a local level but is meaningful only in context of the global 

system. The entity complexity is subject to change in an EBS as the system evolves; the 

entity sophistication remains a constant. Therefore, when we speak of complexity within 

an EBS we are referring to the concept of entity complexity. We will use the term 

sophistication when we speak of the design of a particular entity. Stating these definitions 

succinctly: 

Entity Sophistication: the measure of the intrinsic processes required by an entity 

necessary for it to manifest its range of functionality. 

Entity Complexity, the measure of an entity's influence on the system arising from 

sustained relationships with other entities. 

Appendix C: A Heuristic Measure of Entity Sophistication in Emergent Behavior 

Systems, presents a heuristic of entity sophistication derived from the characteristics used 

to describe agents and applied to the EBS concept of entity. This heuristic is derived from 

the agent taxonomy of Moya and Tolk but takes the perspective that "agents" are a 
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descriptive architecture or implementation method, as opposed to a class of entity to be 

represented by some other paradigm. This distinction is reasonable when one considers 

that objects as inanimate as a rock or as elaborate as a human can be represented by an 

agent with the appropriate characteristics. However, in the EBS context a rock might 

indeed be an entity that is part of an EBS such as an avalanche. Given such 

consideration, the avalanche is the EBS comprised of rock entities that can be modeled 

using agent-based methods and specified with the appropriate properties. In Section 4.3 

we will present a measure of entity complexity within the system that will serve as a 

metric of complexity of the EBS. 

3.2 Graph Theory Concepts and Relevance to EBS 

Recalling Ablowitz's bricks, keep in mind the distinction made previously 

between entities and agents where "agents" is viewed as a descriptive architecture, or 

implementation method as opposed to a class of entity to be represented by some other 

paradigm. This distinction is reasonable when one considers that objects as inanimate as a 

rock can be represented by an agent with the appropriate characteristics. However, in the 

EBS context a rock might indeed be an entity that is part of an EBS such as an avalanche. 

Given such consideration, the avalanche is the EBS comprised of rock entities that can be 

modeled using agent-based methods and specified with the appropriate properties. Still, 

the influence of any one rock is limited because of its limited connectedness to the other 

rocks. In fact, its only connectedness is in the touching of adjacent rocks. This 

connectedness can be represented graphically by vertices representing the rocks and 

edges indicating whether they are touching or not. Figure 8 depicts a pile of rocks as a 

simple graph of vertices and edges. 
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o 

Figure 8. A Pile of Rocks Depicted as a Graph 

In consideration of Ablowitz's "structural relation" assertion, one can think of the 

information that describes the pile of rocks in terms of vertices and edges of a graph. 

Later we will describe some specific mathematical relationships wherein the entities 

comprising a system are represented by vertices and the information shared between them 

is represented by edges. To facilitate this understanding, here we review some 

fundamental graph terminology and notation. 

If we define a graph as a pair G = (V,E), where V = V(G) is a finite set { v y ,  . .  

.,v„}, that is, a set of vertices, and E=E(G) is a finite set {ey,. . ,em}, that is, a set of 

edges, we usually write vw for the edge {v,w}. We refer to the number of vertices n as 

the order of the graph and the number of edges m as its size. We can encode the graph G 

in terms of the order of the vertices. The label v/y, represents the edge from v, to vj and 

similarly vyv, is the edge from vy to v,. In the case where v,vy represents the same edge as 

VjV„ we say that G is an undirected graph and the edge is bidirectional. Otherwise, we say 

that the graph G is a directed graph or digraph. Although there are several distinct ways 

to represent a graph, here we will only consider a binary matrix A where each row and 

column correspond to a vertex. We call this matrix the adjacency matrix and it is of the 

form A = (iay), where altJ = 1 if and only if there is an edge between vertex i and vertex j. 

For this study we will also assume that a vertex has no edge to itself so aH = 0. In the 
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case of the undirected graph, the adjacency matrix is symmetric since ay = aJt. Figure 9 

shows an undirected graph and its corresponding adjacency matrix. 

Figure 9. An Undirected Graph and its Corresponding Adjacency Matrix 

The set of neighbors of a vertex v in G can be denoted by NQ(V). (This can be 

more generalized by letting UcV, that is, the subset of all vertices. We can then call 

N( U) the set of neighbors of a vertex.) The degree do(v) = d(v) of a vertex is simply the 

number of edges at v which is also the number of neighbors. This way of representing 

entity relationships is straightforward when considering a system such as a pile of rocks. 

Clearly the more relationships, i.e. greater d(v) , of a vertex, the greater its influence in 

the system. In Figure 8, the centermost vertex has d(v) = 6 and because of its presence 

there are four other vertices with d(v) = 4. If it is removed as in Figure 10, then the 

maximum degree in the system is d(v) = 3. In fact, if any other vertex had been removed 

instead the result would be d(v) > 5; so clearly that central-most vertex is of significant 

value to the system, i.e., that particular vertex is critical to the definition of the system. 

0 1 0 0 0 1 
1 0  1 1 1 1  
0 10 10 0 
0  1 1 0  1 0  
0 10 10 1 
1 10 0 10 
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Figure 10. Removing the Centermost Vertex 

The average degree of G is given by: 

d(G)sf\ldM <«> 

The average degree quantifies globally what is measured locally by the vertex 

degrees, i.e., the number of edges of G per vertex (Diestel, 2005). In this regard, we now 

have a local measure, i.e., at the entity level, of a global influencer that exists not just in a 

Euclidean space, but also more abstractly in a relation space, i.e., at a system level. This 

can be considered one variable associated with the state of the system. Compare Figure 8 

where d(G) - 36/10 = 3.6 with Figure 10 where d(G) = 24/9 = 2.67 

The removal of the central rock suggests that perhaps that rock is more significant 

to the system than the others are; however, we do see from the graph of Figure 10 that 

there is still relationship among the remaining rocks. From an information flow 

perspective, we can see that there exists at least one path between any pair of vertices. 

This causes us to ponder whether the complexity of an entity involves not just degree in 

the graph but the extent to which the connectedness of the graph depends on a particular 

vertex. We will further develop this thought in Section 4.3 and develop a measure for 

entity complexity within the system as well as a measure related to information flow in 
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the system. In advance of these developments, it is useful here to take a short digression 

to review some fundamental graph definitions and discuss their relevance to EBS. 

Simple Graph: As depicted in Figure 9, a simple graph is an undirected graph with no 

loops, i.e., no vertex has an edge to itself, and no more than one edge between any two 

vertices. 

Relevance: The simple graph represents the entity-relative configuration of a structure in 

an EBS. A structure, in general, is minimally represented as a simple graph. For example, 

in Figure 9 we could say that the entity represented by v; is in relationship with entities 

represented by and v6. 

Regular Graph: A regular graph as shown in Figure 11 is a simple graph in which every 

vertex has the same degree. 

Relevance: Entities in an EBS that are described by a regular graph are assured at least 

two paths of information flow. No entity is more important than another is. For the 

simplest of regular graphs, like that shown in Figure 11, the loss of any entity, or the loss 

of information flow to or from any entity, fundamentally changes the structure of which it 

is a part. 
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0  1 0  0  0  1  
10 10 0 0 
0 10 10 0 
0 0 10 10 
0 0 0 1 0 1 
1 0 0 0 1 0 

Figure 11. Regular Graph 

Complete Graph: Figure 12 shows a regular graph in which every pair of vertices is 

joined by an edge. This is called a complete graph. The number of edges |2s| in a complete 

graph is given by: 

This is the maximum number of edges that can exist in a simple graph. 

Relevance: A structure in an EBS could be represented by a complete graph if every 

entity sustains a relationship with every other entity in the structure. Maximally 

connected, this kind of structure would be robust concerning information flow through 

the system as there would be a maximal set of information paths available. 

2 
(7) 
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0  1 1 1 1 1  
1 0  1 1 1 1  
1 1 0  1 1 1  
1 1 1 0  1 1  
1 1 1 1 0  1  
1 1 1 1 1 0  

Figure 12. Complete Graph 

Directed Graph: A directed graph is one in which the edges exist in only one direction. 

Relevance: The directed graph represents information flow between entities in a 

structure. The arrows are in the direction of the relationship. Referring to Figure 13, we 

can read this graph in EBS terms as, "4 and 5 are in a relationship with 6," or "4 is in 

relationship with 6 and 2," etc. We could also say, "5 and 4 take information from 6." 

The convention taken in this study is that the direction of the arrow is in the direction of 

the relationship; information flow is then in the direction against the arrow. 

With directed graphs, we consider the number of inward directed edges at a vertex 

as the indegree and the number of outward directed edges at a vertex the out degree. For 

example, v<5 of Figure 13 has an indegree of 2 and an out-degree of 1. We can also say 

that the degree of vg is, d(v6) = din(v6) + dou,(v6) = 3, which is the same degree of v6 if the 

graph was undirected. As such, when we speak of "the degree of a vertex" unless stated 

otherwise we mean the sum of the indegrees and the outdegrees. 
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0 0 0 0 0 0 
1 0 0 0 0 0 
0 10 0 0 0 
0 1 0 0 0 1 
0 0 0 0 0 1 
1 0 0 0 0 0 

Figure 13. Directed Graph 

Path: A path is a sequence of vertices such that from each of the vertices there is an edge 

to the next vertex in the sequence. For the tree graph of Figure 15 the set of vertices 

Vp= {1,2, 3} and the edges connecting them form a path from v/ to v3. We usually refer 

to a path simply by the sequence of its vertices. In this case we could write P = {v/, vz 

vj}. The number of edges in a path is its Path Length. A cycle is a simple path except that 

beginning and ending vertices are the same. 

Figure 14 depicts a special type of path where each vertex is visited exactly once. 

The path P = {v/,vj,v5,V2,v6, v4} is a Simple Path, meaning that no vertices (and 

consequently no edges) are repeated. This example has a path length of 5. Since all 

vertices are used exactly once, we call this path a Hamiltonian Path or H-Path. We can 

also say that the path P is a spanning tree of the graph since it contains no cycles. If the 

first vertex of the path and the last vertex of the path are the same, that is, if there is an 

edge V}V4, then a cycle does exist and that path is called a Hamiltonian Cycle. 

Other paths from v/ to v4 include P = { v/, v4 }, P = { v/ ,  V5, v^, v4}, etc. The 

characteristic path length is the mean over all pairs of vertices of the number of edges in 
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the shortest path between two vertices. This is also known as the mean minimum (or 

average) path length. 

Relevance: The characteristic path length suggests a measure of information flow in a 

structure in an EBS. 

Figure 14. A Hamiltonian Path Through a Simple Regular Graph 

Tree Graph: Referring to Figure 15, a tree is an undirected simple graph that has no 

cycles, but would if an edge was added. 

Relevance: A tree can represent possible paths of information flow in an EBS. 

0 1 0 0 0 0 
1 0 1 0 1 0 
0 1 0 0 0 0 
0 0 0 0 1 0 
0 1 0 1 0 1 
0 0 1 0 1 0 

Figure 15. Tree Graph 
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Bipartite Graph: A bipartite graph is one in which the vertex set can be partitioned into 

two sets such that every vertex in one set is adjacent only to vertices in the other set. 

Although different spatially, the two graphs shown in Figure 16 are equivalent 

relationally. 

Relevance: Although structures in an EBS might be geometrically different, the 

relational equivalence suggests similar information flow characteristics. Stigmergic 

systems would appear to suggest representation by bipartite graphs. 

0 1 0 1 0 1 
1 0 1 0 1 0 
0 1 0 1 0 1 
1 0 1 0 1 0 
0 1 0 1 0 1 
1 0 1 0 1 0 

Figure 16. Bipartite Graph 

Disconnected Graph: A disconnected graph is one in which the vertex set can be 

partitioned into two or more sets such that every edge in one set shares no edges with the 

others. In Figure 17, the graphs V(Go) = {1 3 5} and V(G/) = {2 4 6} are disconnected 

graphs of V(G) = {1 2 3 4 5 6}, also known as subgraphs. 



65 

Relevance: In an EBS Context of Observation in which the entities are represented by the 

graph G, there may exist many disconnected graphs. Usually these are the structures in 

the EBS. In graph theory terminology, these are called subgraphs or components. The 

leftmost graph in Figure 17 suggests a spatially single structure, however there are 

actually two distinct structures since there is no relationship between the subgraphs given 

by V(Go) and V(Gi). Although the spatial configuration of the structures defined by V(GQ) 

and V(G/) may be relevant to the EBS of which they are part, there is no relationship 

between the two. 

0 0 10 10 

Figure 17. Disconnected Graph 

3.3 Information Theory (Entropy) 

In 1948 Claude Shannon published his now famous "A Mathematical Theory of 

Communication" (Shannon, 1948) wherein he developed information entropy as a 

measure of uncertainty for the correct information transference between a transmitter and 

receiver. Information entropy becomes particularly salient in regards to the study of 
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multi-agent systems and to emergent behavior systems in general when considered from 

the perspective that such systems are essentially communication systems. Recalling 

Ablowitz's assertion, that emergence is about the interrelationships between components 

in a system, in most systems of interest, those interrelationships are manifested by the 

communication of some information. Either, this communication can occur directly 

between entities, or indirectly by the entities modifying their local environment4; 

Shannon's Theory does not rely upon a particular means of communication aside from 

the conceptual model of there being a transmitter, a receiver, noise source, and a channel 

by which communication can occur. 

Signal Received 

Signal 

Message Message 

Information 

Source 
Receiver Transmitter 

Noise 

Source 

Destination 

Figure 18. Schematic of Shannon's General Communication System 

Shannon showed that there is information - energy duality that can be understood 

by means of statistical mechanics, i.e., thermodynamics. Thermodynamics in essence is 

about the relationship between ordered and disordered energy. In physics and chemistry, 

disordered energy is heat. Statistical mechanics strives to derive the laws of 

thermodynamics using statistics. Entropy (the Second Law of Thermodynamics) is a 

4 
The later method is termed stigmergy and is characteristic of many natural agent systems, e.g., 
pheromone trails of ants, territorial markings of canines, etc. 
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measure of heat, or more specifically disorder in a system and observes that closed 

systems progress to disorder over time. Fundamentally, entropy S is defined in terms of 

temperature T and heat Q by: 

AC AQ 
&s = Y~ (8> 

This is called the macro definition of entropy commonly used in physics and 

chemistry. Statistical Mechanics takes a micro view of physics and identifies the macro 

definition of entropy with the number of microscopically defined states Q accessible to a 

system, that is 

S  = &lnQ (9)  

where k is Boltzmann's constant (1.4xl0'16 erg/deg). 

The Second Law of Thermodynamics might seem counter to the observation of 

emergent phenomena that appear to become more organized as time progresses; in fact, 

we observe natural emergent behavior systems organizing with great efficiency. 

However, this is achieved without violation of the Second Law because of the coupling 

between the macro levels of the system with the disorganizing process at the micro 

levels. Parunak (1997) referred to this as an "entropy leak" that drains disorder away 

from the macro level to the micro level and observed that insect colonies leak entropy by 

depositing pheromones whose molecules evaporate and spread through the environment 

under Brownian motion. 

Shannon's formulation of the Second Law considers the rate at which information 

is produced and by taking a statistical mechanics approach considers a set of possible 

events pi, p2, ...,pn. The question to be asked is, "How much choice is involved in the 
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selection of an event?" or, rather, "How uncertain is the outcome?" Shannon showed that 

if there is such a measure H(pi, p2, ...,pn) then it must have the following properties: 

1. H should be continuous in the p,. 

2. Uncertainty should increase with equally likely events as the number of events 

increase. That is, if all the p, are equal, then pt = — and H should be a 

monotonically increasing function of n. 

3. In addition, if H is decomposed, the result is a weighted sum of the 

decomposition of H 

Shannon showed that the only //that can satisfy all three properties is of the form 

where x is a chance variable and K is a positive constant which amounts to a selection of 

units of measure. From the similarity of his result with the measure of entropy in 

statistical mechanics, Shannon refers to (10) as the entropy of the set of probabilities and 

which we now call Information or Shannon Entropy. 

Such a relationship between entities, their complexity, and system measures finds 

merit in work such as that by Parunak and Brueckner (Parunak & Brueckner, 2001), who 

observed that the Shannon Entropy of a multi-agent system is a measure of coordination 

of agents within a system. If we consider the case of entities that can only be in one state 

at a time, then Shannon's entropy equation can be stated as: 

n 

(10) 

(11) 

where p> is the probability that entity /' is in a specific state. 
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3.4 Mechanisms of Feedback (Sources of Constraint) 

Ashby defined variety in relation to a set of distinguishable elements as either 1) 

the number of distinct elements or 2) the logarithm to the base 2 of the number, the 

context indicating the sense used. 

Consider the set {a,a,b,b,b,c,c,c,a,b,c}. Regardless of the quantity of elements in 

the set, the number of distinct elements is 3 {a,b,c} and the measure of variety can be 

expressed logarithmically as 

where m is the number of distinct elements in the set, or in the case of finite state 

automata the number of unique states possible. (Base 2 is reasonable since a system 

represented as finite state automata can be in one and only one state at a time.) For the 

case of 3 distinct elements, v = logj3 so v = 1.585. In essence then, it can be said that the 

complexity of a system is directly related to the number of unique states that describe the 

system. 

Ashby also defines the concept of constraint, which can be useful in describing 

the relationship between two sets. Constraint relates the variety of a system's components 

to the variety of the system itself. This would suggest that constraint is an essential aspect 

of system complexity (dealt with extensively in Ashby.) His example of British Traffic 

Signals (a simple state machine) illustrates the concept: 

v = log 2 m (12) 

( 1 )  ( 2 )  ( 3 )  ( 4 )  ( 1 )  . . .  

R e d :  + + 0 0 +  

A m b :  0  +  0  +  0  

G r n :  0  0  +  0 0  

0 
0 
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Table 4. States of the British Traffic Signals (Ashby, 1956) 

The British Traffic Signal has 4 distinct states, red, red and amber, green, and 

amber. Notice that if the lights were allowed to activate independently the states would 

be as shown in Table 5. 

( 1 )  ( 2 )  ( 3 )  ( 4 )  ( 5 )  ( 6 )  ( 7 )  ( 8 )  

R e d :  0  0  0  0  + + + + 

A m b :  0  0  + + 0  0  4- + 

G r n :  0  + 0  + 0  + 0  + 

Table 5. Traffic Signal with Independent States 

The second table presents the set of all possible states the traffic signal could 

attain, but the first table presents only those states allowed by the system controller. This 

is an example of how the controller constrains the variability of a system. In the first, i.e., 

constrained, case the variety of the system is v = logj 4 or v = 2. In the second case 

v = log8 or v = 3. 

It can be said that the system controller constrains the state space. For general 

discussion, let's define Vs as the variety found in the constrained system and Vp the 

variety available to the system if it were unconstrained. If the traffic signal system were 

completely unconstrained, then the system variety Vs would equal that of the total 

possible variety Vp. If it were only allowed one state then Vs would be zero (since 

log21 = 0). We can define the intensity of constraint / to be proportional to the reduction 

in the number of possible arrangements that the controller allows. The portion of the 

possible variety that is allowed by the controller can be defined as the fraction of the 
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system variety, 

(13) V. 

Therefore the intensity of constraint of the British Traffic Signal system is -—- = o.5. 

If the traffic signal system were unconstrained then 1 = 0 and if it were allowed only one 

state, i.e., maximally constrained, then /-> oo. 

Another interesting aspect of this system is to observe that each light can be either 

on or off, thus each have exactly 2 states which gives a v = 1 for each light. Observe that 

the variety of the non-constrained system is simply the sum of the varieties of the 

components, i.e., 3, which is the total possible variety of the system. So in this case, 

VP=NV (14) 

where v is the variety of each component. As is the case with the traffic signal it is 

assumed that each component is identical and therefore of the same variety, but in 

general for a system 

where N is simply the number of components comprising the system. This 

generalization implies that only the states of the components that influence the state of 

the system are of concern and consequently supports Ashby's assertion that, "It will be 

noticed that a set's variety is not an intrinsic property of the set: the observer and his 

powers of discrimination may have to be specified if the variety is to be well defined." 

N 

(15) 
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(Ashby, 1956) 

Ashby's observations suggest that how much can be known about a system is 

directly related to the level of detail, or scale, at which the system can be observed: this 

will become paramount in the analysis of emergent behavior systems, both from the 

perspective of observing such systems and specifying systems designed to exhibit 

emergent behavior. 

If we only consider a system composed of identical components then, 

mi=m1=--i% and by substituting (12) into (14), 

N 

V = Y log2 {mn) = log2 (m,) + loga (/Wj) + log2 (/n,) • • • 
»=i (16) 

= log2 mN = iVlog2 m 

The states that the constrained system can take on comprise the variety of the 

system. In that case 

V s = \ o g 2 M  ( 1 7 )  

where M is the number of unique states of the constrained system. Rearranging (13) and 

substituting (16) and (17) we can state the intensity of constraint I for a system as: 

r V N log2 m t 

T' lwJT <18> 

With regard to a system comprised of a number of finite state automata, m is the 

possible number of states of each automata, and M is the number of states exhibited by 

the system. Applied to the traffic signal example where N = 3 for the three lights that 

comprise the traffic signal, m = 2 since each light can be in one of two states (either on or 
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off), and M= 4 is the number of allowed states for the traffic light system, the intensity of 

3 constraint is / = — -1 = 0.5 as observed earlier. Equation (18) then is a general definition 

of intensity of constraint and the value of / is a characteristic of the system. 

Constraint can originate from various sources within an EBS. As was described 

previously, the reduction in variety i.e., increasing constraint implies a decrease in 

uncertainty, which can be expressed by measures of entropy. Neither Shannon's nor 

Ashby's assertions require a specific source for constraint. When we talk about 

constraint within an EBS we are referring to any mechanisms that reduce the variety 

available to the entities comprising the system. Depending on the kind of EBS, we can 

observe that there are predominant sources of constraint in play. These predominant 

sources of constraint are those mechanisms that reduce the available variety through 

globally created actions on the locally defined entities. This is depicted at a high level of 

abstraction in Figure 19 showing the global or macro-scale influence on the local or 

meso-scale entities which themselves are defined by micro-scale properties. 

Correspondingly, the local actions at the meso-scale influence the global (macro-scale) 

system. This can be thought of as information pathways related to the primary mediums 

of communication amongst entities that create feedback loops between the meso- and 

macro- scales of the system. 
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macro  ̂ meso 

/TISL 

• n ̂ ^ —-

Figure 19. Micro- to Meso- Scale Relationship 

In natural systems exhibiting emergent phenomena such as social insects, we 

observe that interactions between entities occur both directly and indirectly. These 

include; 

1) Inherent constraint (self-imposed limits), 

2) Contextual constraint (objects in the environment reduce variety), 

3) Entity obtrudent constraint (direct entity to entity communication), 

4) Stigmergic constraint (entities communicate indirectly by affecting the 

environment). 

These modes of constraint limit the variety available to the entities and tend to 

determine what characteristics of the micro-level are manifested at the meso-level. 

This idea of constraint within a system leading to some kind of ordered or desired 

system states is valuable to the goals of the EBS modeler. The sources of those 

constraints become fundamental to the representation of the entities comprising the 

system. The following sections discuss the different types of constraints and their role in 

an EBS. 
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3.4.1 Inherent Constraint 

Foremost we observe that the very nature of an entity can restrict it in the variety 

from which it might otherwise avail itself. In this case, we are referring to constraints that 

are defined at the micro-scale, manifest at the meso-scale and are not dependent on the 

context of the entity. These are most often characteristics or abilities possessed by an 

entity that which we often think of as defining it. These built-in restrictions are referred 

to as inherent constraints as depicted in Figure 20. Examples of such inherent constraints 

include physical size, the field-of-view of an animal, the flight ceiling of an airplane, scan 

rate of a radar, etc. 

Figure 20. Inherent Constraints Are Built-in Restrictions 

For example, modeling a flock of birds might likely require the modeler to specify 

the field of view of a bird as a meso-scale property of the actor; the micro-scale 

components of the bird, such as position of eyes on its head, and other aspects of avian 

physiology that give rise to the meso-scale specification, are usually not of interest. Of 

course, this all depends on the context of observation and the assertion that the bird, and 

not its eyeball, is the actor in the EBS. 



76 

3.4.2 Contextual Constraint 

Contextual constraints arise from limits imposed by entities comprising the 

environment. Examples are physical boundaries or barriers; objects that require an actor 

to take some action. Contextual constraints are related to the positions occupied by the 

entities within the context of observation, which are often fixed both spatially and 

temporally. 

Figure 21. Contextual Constraints Result From Objects Constituting the Environment 

Particle systems are often strongly constrained by their context as illustrated in 

Figure 20. In such cases, objects within the context of observation form persistent 

structures that are not affected in general by the actors in the system. Intensity of 

constraint tends to remain constant over time and energy tends to be dissipative. As such, 

entropy is reduced as the system seeks equilibrium. 

3.4.3 Entity Constraint 

Actors may directly communicate with each other providing information that 

leads to constraint. This communication is usually the result of some obvious interaction 

and may be as simple as one actor "seeing" another. Both entities need not be of the same 

type. An actor might "read" information from an object (such as a book). The information 
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transfer is from the object to the actor in this case. 

Figure 22. Entity Constraints Result From Direct Interaction Between Entities 

It is important to bear in mind that information, i.e., actionable data, is relayed by 

the actor's sensorium and effectors and so can take on many forms. The constraint may 

be mutual when information is exchanged such as when ants engage in antennation, or 

obtruded such as when a sniper kills his enemy (in which case the intensity of constraint 

is admittedly rather severe). 

3.4.4 Stigmergic Constraint 

Stigmergy, a term coined by French biologist Pierre-Paul Grasse, results in entity 

behaviors that are a consequence of the effects produced in the local environment by 

previous behavior (Grasse1, 1959). It is the indirect transfer of information from one 

actor to another that results when one modifies the environment and the other responds to 

the new environment later. This indirect information transfer is common in biological 

societies such as ants and other social insects. Stigmergy provides a coordination 

mechanism at the meso-scale whereby entities of the system need have no knowledge of 

the macro-scale. In this way, such systems appear very organized, yet this organization 

arises without any planning or central control. 
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Figure 23. Stigmergic Constraint Results When Entities Communicate Indirectly 

Although sometimes referred to as "cooperation without communication" (Cao, et 

al., 1997) in the EBS sense, actionable information is transferred so there is indeed 

communication. The higher information content of the Stigmergic structure intensifies 

constraint within the EBS. In this way, a form of macro-scale memory emerges. 

3.5 Measuring Constraint 

Examination of the constraints described here is possible using the Information 

Entropy of Equation (11) if we can identify 

1) the states available to the system and 

2) the probability of finding the system in each of those states. 

In all cases in the previous section, the representative systems are specified in a 

discretized space. Although the actors (indicated by the circles) may move about more or 

less in a continuous manner, the system states can be regarded with respect to actor 

location on a superimposed grid. This is the approach taken by Parunak and Brueckner 

(Parunak & Brueckner, 2001), where they describe two ways of measuring entropy: one 

being location-based and the other direction-based. Both approaches are discrete and rely 

on defining a grid to cover the system. This is the approach used in this research and is 
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further described in Chapters 4 and 5. 

The challenge for the EBS modeler is specifying a model to determine p, in 

Equation (11). Guerin and Kunkle (Guerin & Kunkle, 2004) did this for pheromone 

following ants. This is a good example of meso-scale considerations. Figure 24 depicts 

the possible next-state transitions of Guerin and Kunkle's pheromone following ant. 

> -4 < • 
t 

Figure 24. Guerin's and Kunkle's Pheromone Following Ants is an Example of Meso-scale 
Inherent and Stigmergic Constraints. 

In this model, the ant moves from its current position on the grid to any one of 

five available positions. This limit of five is the result of an inherent constraint of the ant 

in that it cannot move backwards. The probability of moving to a possible position pj is 

given by, 

P i = -
(19) 

where iia) is the pheromone level at position j and a is used to increase the probability 

that the next position will be the one with the greatest pheromone level. The /? term is a 

random base, which introduces uncertainty to the system and can be thought of in 

physical terms as heat (or noise). 
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3.6 A Working Taxonomy for Emergent Behavior Systems 

As we have seen, Ashby's Law of Requisite Variety relates the number of control 

states of a system to the number of variations in control to achieve an effective response. 

Simply stated, requisite variety says that even if there is a sufficient number of control 

states designed into a system (variety), it still won't achieve its goals unless the system 

can execute a sufficient number of actions. Ashby's seminal work is foundational to 

modern cybernetics and provides a departure for establishing a means to classify systems 

exhibiting emergent phenomena with respect to constraining factors in the system. 

Perhaps the best recent works that have explored the classification of emergent behaviors 

are papers by Yaneer Bar-Yam (Bar-Yam, 2004), (Bar-Yam, 2004) and a paper by 

Jochen Fromm (Fromm, 2005). Bar-Yam generalizes Ashby's law to develop a 

relationship between the available behaviors of the system's subcomponents as they are 

defined at different scales. This concept of multi-scale variety suggests that emergent 

behavior is a matter of resolution; i.e., a hierarchy can exist wherein EBSs comprise 

EBSs. The challenge then in detecting, modeling, or designing EBSs is in determining 

what resolution, i.e., scale, is appropriate to the observer's, modeler's or designer's 

intended use. 

Type A: Emergent Behavior (Micro to macro) 
Type 0: Parts in isolation without positions in the whole 
Type 1: Parts with positions to whole (weak emergence) 
Type 2: Ensemble with collective constraint (strong emergence) 
Type 3: System to environment relational property (strong emergence) 

Type B: Dynamic emergence of new types of systems "new 
emergent forms" 

Table 6. Bar-Yam's Types of Emergence (Bar-Yam, 2004) 
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Fromm presents four categories or types of emergence based on different 

feedback types wherein the classification of emergent behavior systems according to 

feedback mechanisms serves as a fundamental discriminate amongst such systems. Table 

7 cites the characteristics of Fromm's categories. 

Type I Simple/Nominal Emergence without top-down feedback 
Type la Simple Intentional Emergence 
Type lb Simple Unintentional Emergence 

Type II Weak Emergence including top-down feedback 
Type Ila Weak Emergence (Stable) 
Type lib Weak Emergence (Instable) 

Type III Multiple Emergence with many feedbacks 
Type Ilia Stripes, Spots, Bubbling 
Type Illb Tunneling, Adaptive Emergence 

Type IV Strong Emergence 

Table 7. Fromm's Four Types of Emergence (Fromm, 2005) 

Neither Bar-Yam nor Fromm were considering emergence from the perspective of 

a systems modeler. In this dissertation, Fromm's and Bar-Yam's ideas on feedback and 

scale are modified by considering some of the ideas of pattern formation and complexity 

detection developed by Crutchfield (Crutchfield, 1994) and Shalizi (Shalizi, 2003) to 

form a taxonomy of emergent behavior systems helpful to the modeler. This results in: 

1) Dispensing with Fromm's concepts of "strong emergence" and "supervenience" 

as both are essentially a catchall for the unknown and rather qualitative in 

nature. Instead, we introduce the use of evolutionary agents at the local level 

where feedback from either the global or local levels can cause individual 

entities to add or delete from their governing rule set, and 
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2) The definition of five types of emergent behavior systems with four subtypes, 

in which the principal discriminating features are feedback types and pattern 

formation at the scale of observation. The taxonomy presented here builds on 

the thoughts of both Bar-Yam and Fromm with ideas about complex systems, 

with intent to model such systems in simulation. 

Type 0 Constituent (Non- Emergence) 

Type 1 Nominal Emergence 
Type la Intentional Emergence 
Type lb Unintentional Emergence 

Type 2 Moderated Emergence 
Type 2a Moderated Stable 
Type 2b Moderated Unstable 

Type 3 Multiple Emergence 

Type 4 Evolutionary Emergence 

Table 8. The Five Types of EBS 

3.6.1 Type 0: Constituent (Non-Emergence) 

Type 0 emergence is in fact no emergence at all. It is the order of emergence 

assigned to an isolated part of a whole. In 1939, Ablowitz described how a pile of bricks 

is not a house until the relationship between the bricks has been defined (Ablowitz, 

1939). A brick or a single gear of a watch in isolation is Type 0 emergent: not a system in 

itself, but rather a component, or potential component, of a system. Concerning feedback 

mechanisms, stated earlier as the key discriminator that is foundational to this taxonomy, 

Type 0 identifies a part observed in isolation without regard to its location or 

connectedness to the system or whole of which it is a part. Although this zero order of 

emergence may seem trivial at first, it is necessary in order to establish the fundamental 
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precept that "collective behaviors are not contained in the behaviors of the parts" (Bar-

Yam, 2004). Ablowitz's pile of bricks is representative of Type 0 emergence - the 

potential is there for emergence, but the connectivity between entities is non-existent. 

3.6.2 Type 1: Nominal Emergence 

Type 1 Emergence is characterized by feedback that is local-to-global only. It is 

governed by feed-forward processes, i.e. there are no feedback mechanisms from the 

global-to-local involved. In Type 1 Emergence, positions, momenta, and interactions 

between the components comprising the system describe the behaviors of the system 

wholly. In Type 1 Emergence each component always has the same behavior, i.e., has a 

single state, and each components' state is independent of the: 

1) other components' states, 

2) global state of the system, and 

3) environment. 

Since the behavior of each component is independent of the other components' 

states, the system is completely deterministic, measurable by aggregate statistics, and 

therefore predictable. Causality is from the "bottom-up" as each subcomponent's behavior 

in aggregate forms the system behavior. 

Type 1 is further subdivided into Type la in which the emergence is intentional, 

e.g., a designed machine such as a clock in which each component is specifically 

designed to carry out a specific function. Some examples include clocks (components 

being gears, springs, etc.), engines (with pistons, valves, crankshafts), and traditional 

software (composed of various code segments). 
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Type la can be referred to as Nominal Intentional Emergence and typically 

exhibits the following characteristics: 

• Typical of "ordinary machines" 

• Constituent components function independently 

• No top-down feedback (global to local) 

• Results in Brittle Systems (Inflexible, not adaptable) 

• Locally dependent (e.g., one gear turns the next). 

Whether either Type la Emergence has varied or identical components, the 

behavior of the resulting system emerges from the completely specified interaction of 

individual components. Type lb Emergence is distinguished by the interaction of many 

loosely coupled unorganized but equal components. Since the interaction is unspecified, 

Type lb can be called Nominal Unintentional emergence. Type lb systems are readily 

represented by statistical quantities. In Type lb emergent systems, it is convenient to 

consider each component as a constituent "particle" that comprises the system. Examples 

include gases, which can be described by properties like pressure, volume, temperature, 

and avalanches, e.g., a line of dominoes falling or the critical slope of a sand pile (Bak, 

1996). The key to identifying a system as Type lb emergent is whether the aggregate can 

be described by properties that do not apply to the particles or not. For example, a single 

domino has width, height, etc., but the falling line of dominoes has a wave front that 

propagates at a rate dependent on the spacing of the dominoes. Likewise, the 

thermodynamic properties of a volume of gas are not properties of the individual gas 

molecule. Some characteristics of Nominal Unintentional Emergence include: 

• Typical of particle systems (e.g., gasses) describing a large number of "agents" as 
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the sum of an average property 

• Constituent components are "particles" that in aggregate are described by 

properties inapplicable to the constituents 

• No top-down feedback, but peer-to-peer interaction is present (particles interact 

with each other locally, e.g., one domino knocks down its neighbor) 

• Scale preserving interaction results in waves, chain-reactions, avalanches, etc. 

3.6.3 Type 2: Moderated Emergence 

Type 2 Emergence is primarily distinguished by feedback from the system to the 

components, i.e., top-down feedback from the global-level to the local-level. This is the 

form of emergence typically associated with Multi-Agent Systems, wherein the 

interactions of many agents react to global influences yet at the local-level give rise to 

patterns observable at the global-level. These resultant patterns are the emergent 

phenomena: they are not directly specified in the agent interaction rules but can usually 

be revealed via simulation. Causation is much more complex than in Type 1 emergence 

since Type 2 Emergence includes both direct and indirect interaction between the agents 

Direct interaction amongst the agents (at the local-level) can lead to the formation of 

clusters that in turn can influence the behavior of the agents. Indirect interaction occurs 

global/ 

Global 

Local 

Figure 25. Type 1-Nominal Emergence 
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when agents (whether individually or by clusters) change the state of the system at the 

global-level that in turn affects the agents at the local-level. Flocking, schooling, or 

herding are examples of Type 2 emergent behavior with direct feedback as the 

individuals of the group attempt to stay close to each other (attraction) but not so much so 

that they collide (repulsion). Indirect feedback can only occur if the agents can 

manipulate the system at the global-level via persistent local changes. The pheromone 

trail following behavior of ants is an example of Type 2 emergent behavior with indirect 

feedback. 

Type 2 Emergence, whether it is direct or indirect, can be further classified 

according to the net effect of the feedback. In Type 2a emergent behavior, the feedback 

from the global to the local is net negative and so imposes constraint, or moderating 

influence, on the actions of the agents and generally results in a stable global system. The 

bottom-up influences of the agents are regulated by the top-down feedback from the 

global system including the environment. In this way, Type 2a - Moderated Stable 

Emergent Behavior depends on complementary bottom-up, top-down processes. Flocking 

birds or schooling fish that rely on moving close, but not too close, and free-market 

economies in consumer-production balance are examples of Type 2a emergent systems. 

Some key characteristics of Type 2a Moderated Stable Emergent Behavior are: 

• Typical of many social-biological systems, e.g., insects 

• Stable: balance between exploration, diversity, and randomness (like the ant 

example) 

• Top-down Feedback is net negative - local affects global which tends to regulate 

local 
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• Results in stable patterns and grouping. 

Global Local 

Figure 26. Type 2- Moderated Emergence 

In Type 2b emergence, feedback from the global to the local is net positive and 

typically results in rapid, often exponential, changes in the system and general instability. 

Type 2b emergent behavior systems often exhibit runaway spirals, race conditions, or 

explosions. As in Type 2a, interactions between entities can cause the temporary 

formation of clusters at the local level, but without the stabilizing influence of net-

negative feedback these clusters are not persistent therefore making Type 2b unstable. 

Some characteristics of Type 2b Moderated Unstable Emergent Behavior systems are: 

• Typical of social catastrophes 

• General instability 

• Top-down (global) feedback is net positive and does not regulate local interactions 

• Results in the rapid rise of unstable patterns or groupings and catastrophic events 

3.6.4 Type 3: Multiple Emergence 

Type 3 Emergent Behavior combines the characteristics of Type 2a and Type 2b 

emergent behaviors: it describes systems that exhibit both net positive and net negative 



88 

feedback. Such systems can be chaotic, yet maintain long-term stability. This can be 

described by short-term positive and long-term negative feedback. Foraging ants that rely 

on the replenishment and evaporation of pheromone trails and similar reaction-diffusion 

systems (also called activator-inhibitor systems) typify Type 3 Emergence. Some 

characteristics of Type 3 Multiple Emergence include: 

• Typical of "reaction-diffusion" systems 

• Adaptive, turbulent, chaotic, exhibiting both stable and unstable characteristics 

• Short-term positive feedback checked by long-term negative feedback 

• Results in biological-like pattern formation, e.g., "Game of Life" behaviors. 

3.6.5 Type 4: Evolutionary Emergence 

This last class of emergence introduces a fundamental difference in the 

underlying assumptions of the entities comprising the system. Emergent behavior 

systems of Types 1 through 3 are premised on constituent entities that are governed by an 

internal set of rules that are immutable. Although the entities need not be identical, their 

individual properties essentially do not change: the values of those properties change, but 

there is no addition or deletion of the number of properties each entity possesses. The 

global 

+ 

Figure 27. Type 3 - Multiple Emergence 
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entities comprising Types 0 through 3 can be described by a finite set of state changes. 

Type 4 Evolutionary Emergent Behavior is distinguished by changes in the governing 

rule sets within the local entities, i.e. from a state space perspective, each entity may, by 

various means, add to or delete from its governing rule set. Very dynamic indeed, this 

fourth order emergence allows individual entities to change their very definition in 

response to either local or global influences. Genetic algorithms are a form of Type 4 

emergence. Many aspects of biological systems would fall into this category. Some 

characteristics of Type 4 Evolutionary Emergent Behavior systems include: 

• Typical of biological entities 

• Entities can learn from experience 

• Adaptive at both global and local levels 

• Feedback can be of any type and multiple in sources 

• Results in highly complex adaptive systems. 

Global 
•* Si" -j >. 
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Local 

Figure 28. Type 4 - Evolutionary Emergence 

3.7 The Role of Constraint in the EBS Taxonomy 

We now see that there is a relationship between the variety available to a system 

and the paths of information. This is expressed in terms of the Type la (Tla) and Type lb 
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(Tib) classes respectively: a system of a single state can be thought of as infinitely 

constrained, as is the Tla EBS and an unconstrained system exhibits the characteristics of 

the Tib EBS. 

In Type 0 emergent behavior, there is no emergence at all. Since the system 

transitions to no state, the system exhibits exactly one state and Vs = 0 in Equation (18). 

Likewise there is no change of state of the components so the variety of each component 

v is also 0. Intensity of constraint for such a system is undefined. 

In a  Tla emergent behavior system, the interactions between enti t ies is  strongly 

directed; relationships between entities comprising the system are strictly ordered. 

Consider two gears, one with ten teeth and the other with twenty. The interaction of these 

two components can be arranged in only one way and the only achievable gear ratio of 

the system is 1:2. To have a functioning system each component can have only one of 

two states. The two states are engaged or not engaged. Variety for the components from 

(1) is therefore 1. The unconstrained variety of the system comprised of the two gears is 

consequently Vp = 2. For the system to work it can only have one state so Vs = 0. So for a 

Tla emergent system we see that /—*x>, which is the ultimate constraint. This is to be 

expected given that this geared system can only be defined for what it is when 

constructed in one way. 

Tib emergent behavior is  dist inguished by interaction between l ike-enti t ies where 

there is no strict ordering. There is no feedback from the global to the local, i.e., no 

outside influence affects the Tib system. Variety for such a system is simply the sum of 

the v's of the components so Vs = therefore there is no intensity of constraint, i.e., 1 = 

0. 
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The Type 2 (T2) emergent behavior system includes feedback from the global to 

the local level. The system constituents are affected not only by interactions amongst 

themselves but also by influences from outside the system that tend to moderate the 

system. In T2 emergence, the global to local feedback can have a net negative (T2a) or 

net positive (T2b) influence. T2a moderation tends to stabilize the system. T2b tends to 

drive the system toward instability. Intensity of constraint in such a system varies as the 

system affects the entities comprising the system and the entities affect the system. For 

the case of a system composed of finite state automata (the assumption is that the 

components state space is static), this makes / a function of time as the states of the 

system vary in time. So (18) becomes, 

/ (0  =  -^-l  =  Z^L_i 
Kf(0 log2 M ( t )  

(20) 

and 

d . d 
I ( t )  

d ( t )  d ( t )  K i t )  \ s 

d ( t )  

N log 2 m 

l o g 2  M ( t )  
-1 

d  N \ o g ( m ) M ' ( t )  

d ( t )  M ( t ) l o g 2 ( M ( t ) )  (21) 

If I is increasing then the system is tending toward T2a, if decreasing then the 

system is moving toward T2b. Type 3 emergent behavior would indicate a damped 

oscillation, at times increasing I and at times decreasing /, with an overall tendency to 

increase I. In (21) this could only be caused by a decreasing number of states available to 
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the system. 

The problem with (20) and (21) is that it is assumed that the only influence on 

intensity of constraint is the number of states of the system. However, / could have just as 

easily been increased by increasing Vp: for simplicity it has been assumed that Vp is 

constant. However we must consider under what conditions Vp can change; if the 

components of the system are identical finite state automata then m does not change (at 

least not in TO - T3). However, as the components interact in response to influences of 

others and their environment they will at times combine to form structures within the 

system, i.e., new meta-components with influences affecting the system being some 

combination of the states of the components. This is an interesting observation that is 

beyond the scope of the current study, but perhaps worthy of further investigation. 

3.8 Defining Emergent Behavior Systems 

Recalling Section 2.3, can we simply apply Ferber's definition of agent to all 

entities in an EBS? At first blush, one might answer "Yes", but the more thoughtful 

answer would have to be "No". Although Ferber's definitions of agent and MAS go far in 

describing EBS, these definitions exclude many forms of EBS unless Ferber's definitions 

are modified for each case. Consider that Ablowitz's brick can be made to fit the agent 

definition if we were to dial down certain values of Ferber's characteristics. However, a 

brick is very different from a sophisticated cognitive agent. To reconcile this point we 

must depart from the discussion on agents and return to what we mean by an EBS; then 

with some understanding of what might be expediently addressed by agent methods 

within the EBS context we can move toward a more formal definition of EBS useful to 

the modeler. 
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Although Ablowitz's definition of emergence suggests a non-linear quality 

stemming from entity interactions, continued research for the subsequent six decades has 

led to additional insight to the nature of emergent phenomena. Holland (Holland, 1998) 

points out that a key characteristic of emergent systems is the persistence of patterns even 

though the components change. Bonabeau et al (Bonabeau, et al., 1995) observed that 

"there is no real agreement on what it should imply for a phenomenon to be emergent." 

They examined emergence from the perspective of Artificial Life and Cognitive Science, 

presenting examples from modern biology, chemistry, economics, and physics. Their 

examples identified additional characteristics of emergent systems such as the existence 

of levels whereby lower level components give rise to new characteristics at a higher 

level, global coherence arising from local rules, and the necessity of an observer by 

which emergence can be recognized. The upshot of the modern understanding of 

emergence is that it takes on different forms depending on the domain of study, but can 

indeed arise from very simple entities. Bonabeau et al reasoned the need for a framework 

for characterizing emergence; a result in keeping with Holland's assertion that, "The 

uncertainty of definition forces us to rely on partial descriptions, which in turn rely 

heavily on context." 

In a subsequent paper, Bonabeau et al present the concept of emergence through 

a framework built on levels of organization, levels of detection, and theories of 

complexity. The authors argue that these reveal some characteristics of emergent 

phenomena and assert that any recognition of a phenomena to be emergent is in itself 

subject to the existence of an observer (Bonabeau, et al., 1995). They include the local 

perception of actors and their ability to act locally, initial states of organization, evolution 
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over time, etc and note, . .the emergent aspect of a phenomena is related to the point of 

view of an observer of this phenomena: it is not intrinsic to the phenomena, but related to 

the global system (phenomenon + observer)." This insight has presents an important 

consideration for the EBS modeler; specifically, what is (or what should be) the point of 

view of the observer, i.e., the necessary perspective and level of resolution required in the 

model? For the modeler, we must ask, can we formalize the definition of an EBS that is 

consistent with the fundamentals discussed earlier and building on more recent progress 

in MAS? To do so will require us to further decompose the concept of an EBS and revisit 

our context-free definition. However, in doing so, we will arrive at a modeling formalism 

for EBS that is useful for identifying the critical elements of an EBS model and a basis 

for communicating EBS model characteristics. 

First, to call something a system it must be distinguishable apart from other 

systems, i.e. it must be bounded or rather it must exist within some context. In general, 

we are quite comfortable with the notion of observing systems spatially within a volume. 

Typically, we call such a context the environment. If we were to ask a child (the 

observer) to identify the parts of a scene of fish schooling in the water, he might identify 

a school of fish that seem to stay together as they move in the water. The water (or at 

least the child's perception of it) is the environment in which the school exists. The fish 

do not really do fishy things if taken out of the water, so they only have meaning in the 

water, i.e., in their environment. They certainly cannot school on the sidewalk! The child 

will also observe that there might be octopi and seahorses in the water, as well as jellyfish 

and seaweed. The child will tell you they are not the same as the school of fish, but the 

fish must swim around them. Those entities are not the fish, but they also occupy the 
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environment. Therefore, there is the school of fish, and their environment composed of 

water along with the other things in the water. Although the fish swim in the water and 

respond to it, they are unable to affect substantially the water. However, they can bump 

into, avoid, communicate with, etc., the other animals in the water. Nevertheless, from 

their perspective, and recognizably from the perspective of the child-observer, these are 

just entities in the environment. Therefore, it seems that the concept of an EBS is 

meaningful only within the context of the environment perceived by the observer. We 

must conclude that a formal definition of an EBS to support modeling must include some 

definition of environment. 

Second, by definition, a system is composed of discrete units that we can call 

entities. Entities can occupy the environment, but do they have characteristics that can 

distinguish them apart from the environment? Asked simply, what is an entity? Referring 

again to Ferber, an agent is obviously an entity, but should all entities be treated the same 

or referred to the same way in specification? Clearly, the fish in the previous example 

are agents in the Ferber sense, and that can be easily extended to the octopi and 

seahorses, but what about the seaweed or a piece of flotsam? Surely, neither would 

qualify as an agent. Still, the flotsam has characteristics that govern how it behaves in the 

water, and the fish can influence it by pushing it, eating it, etc. The question to be 

considered then is not so much how something is represented, but rather what role does it 

play? 

If we assume that entities are the atomic components of an EBS that are 

observable at the scale of observation and that entities through some means can interact 

with other entities in the environment, then how they interact and those means of 



interaction become crucial to the EBS modeler. Entities must be observable in the 

environment. Entities can influence each other. Consider if one of the fish dies; then that 

fish is now flotsam. It is still an entity within the system, but from the modeler's 

perspective, it now belongs more to the environment than to the set of agents in the 

school. Additionally, the fish, by virtue of maintaining their positions relative to and in 

concert with each other, form the school. That school is a system within the system, i.e., a 

structure with aggregate characteristics not readily deducible from the parts. 

Finally, recall that we have made the argument that the term "agent" refers more 

to a method of implementation than to a specific role in an EBS. To emphasize this 

distinction, we adopt the term actor for a fish in the school. For the modeler, objects apart 

from those that are the primary actors in the system would seem to define the 

environment of an EBS. It is the difference between a fish in a school and a dead fish; an 

entity that was once an agent has become an object. The flotsam, whether it is a dead fish 

or something else, is still contained in the environment and if it were to fall to the ocean 

floor and become encrusted with barnacles it might then be considered part of, that is an 

object making up, the environment. With this trite example, we conclude that within any 

context of observation an entity may be an actor, or object, within the environment. 

Additionally we observe, that although these entities can form structures that persist, as 

time progresses the roles of entities can and do often change. Furthermore, Ferber's 

definition of "agent" no longer confuses the discussion since we now recognize "agent" 

as an implementation means of EBS entities. The notions of actor, object, and 

environment define the modeler's context of observation. Figure 29 depicts the context of 

observation and dynamics of the relationships between entities and the environment of 
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which they are a part. 

Context of Observation 

Objects 

A n 

Actors 

U V 
Environment 

Figure 29. The Context of Observation 

The modeler cannot discount the context of observation and the roles the entities 

play within it. All entities comprising the system are observable at the scale of 

observation. Objects do not use information but can react to actions (you bump into a 

wall, and the wall makes a noise; you push a ball and it does not argue with you). Objects 

can be a source of information (like a book). Objects are entities and actors are entities -

what distinguishes objects from actors is the form of interaction they can participate in, 

i.e., the role they can play. This means that actors can at times act as objects for other 

actors, depending on the state they have assumed. The distinction arises from the 

perceived relationships and the formation of structure at the time of observation. 

Consequentially, these entities, i.e., actors and objects, exist within the environment and 

are at various times considered part of it. Now we have at least a conceptual idea of what 

roles constitute an EBS for modeling purposes; we readily see that there is an observer, 

an environment, actors, and objects. We also observe that these roles change in time, i.e., 
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there is an evolution of the system. Table 9 summarizes the characteristics of the entities 

comprising an EBS. 

Environment 

Observable 

Situated 
Does not respond to actions 

Does not use information 
Can be a source of information 

^ Entities \ 

J Objects Actors L* 

• Observable 

• Passively reacts to actions 

• Do not use information 

\ • Can be a source of /A 

/ information y* 

• Consequentially InteraclN. 

with the environment 

• Does not make decisions 

• Observable 

• Sense their Environment 

• Actively Respond to 
Actions / 

Use information \ 

ASl* Can be a source of 
\S information 

• Initiate actions 

• Seek goals 

Table 9. The Characteristics of the Different Types of Entities in an EBS 

Ferber presented a formal specification identifying as separate kinds of entities 

the agents, objects, and environment comprising the general MAS. Here we suggest a 

similar specification for the purposes of modeling EBS. Compared to MAS, the EBS 

formalism distinguishes the distinct functions of actors, objects, and structures, which 

nevertheless are entities of the system. Therefore we state a basic specification for an 

EBS as 

£flS«(C,{4{4M,7) (22 

where 
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atHe-.pM (23) 

is the spatial and temporal context of observation defining the environment that contains 

all entities, i.e., where Pe(t) is the position of an entity e at time of observation t 

E is the collection of all entities that are actors A and objects O or structures S 

within the context of observation such that, 

E  =  { e :  e  e  ( A k j O y j S ) r \ c )  (24) 

where 

O is the subset of entities called objects where Vo g A :Oe E 

A is the subset of entities called actors where Vo g O : A e E 

S is the set of structures formed by entities in relationship such that 

These structures can take on the roles of actors or objects within the context of 
observation. 

R is the set of relationships forming the links between entities such that 

where Bt and^ are the behavior sets governing the i,h and j,h entities forming a 

relationship such that B is the collection of entity behaviors that can potentially 

affect other entities within the context of observation such that 

S={e:et i—>ExR} (25) 

(26) 

B^er.e^E^y.ib^B} (27) 

¥ is the set of states attainable by the system which emerges from the 

relationships amongst the entities such that, 
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¥»{^=>(£x*)} (28) 

and T is the time base. 

This attempt at a formal definition produces a declarative model that views the 

EBS as a sequence of changes in state. It also serves to define the components of an EBS 

and their relative roles formally. In light of this formalism, we restate the definition of 

some key terms relative to EBS in Table 10. 



101 

EBS Term Definition 

Entities the collection of objects and actors comprising an EBS. 

Context of Observation that portion of a system perceived by an observer that defines 
the environment of interest. 

Environment the spatial and temporal context of observation defined by 
objects and containing all actors 

Actor an entity comprising an autonomous stochastic dynamical 
system that attempts to build and maintain a maximally 
predictive internal model of its local environment within the 
context of its sensorium, behavior sets, and effectors. 

Object an entity contributing to the environment of an EBS that is 
not an actor within the context of observation. 

Structure A group of entities within the context of observation, which 
are in relationship and persist for some time. 

Relationship an information flow between entities forming interactions 
governed by the behaviors of the entities 

Behavior the set of rules inherent to an entity that govern its 
relationships to other entities 

Information any data that elicits a change of state in an entity. 

Table 10. EBS Specification Terms 
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CHAPTER 4 

ANALYSIS FRAMEWORK 

The previous three chapters provided some background and rationalizations to: 

1) describe the concept of emergence in systems of interacting entities, 

2) understand some of the factors that affect emergent behavior systems, and 

3) express a system model with the intent of examining emergence 

phenomena through simulation. 

In the remaining chapters, we will apply the ideas of the first three chapters to the 

development and implementation of three simulations of emergent behavior systems. We 

will develop and apply metrics to these three simulations to explore the concepts 

described earlier. 

Recall that this research posits that the emergence phenomena in simulations of 

EBS can be described by system properties related to 1) the complexity associated with 

the role of the entities comprising a system, 2) the information (or energy) flow between 

the entities, and 3) the information uncertainty associated with the system. We set forth 

to examine these properties by relating the entities in a simulation to a graph 

representation and defining metrics for principal information flow, complexity of entities 

within the system, and organization uncertainty in the form of information entropy. 

4.1 Framing the Problem and Defining Metrics 

Ashby's Law of Requisite Variety as discussed in Chapter 3, can be interpreted to 

state that a complex system can only be effectively regulated if the variety of the 

regulator is equal to or greater than the possible variety of the system being regulated. 
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This regulation of variety, i.e., constraint is manifest as phenomena that tends to reduce 

the variety at the meso-scale structure and are related to the primary mediums of 

communication amongst the entities in the system. In natural systems exhibiting 

emergent phenomena such as social insects, we often observe that interactions between 

entities occur both directly and indirectly. These interactions are regulated by the 

following constraining modes: 

1) Inherent Constraint (self-imposed limits), 

2) Contextual Constraint (objects in the environment reduce variety), 

3) Peer Constraint (obtrudent, i.e., direct entity to entity communication), and 

4) Stigmergic Constraint (entities communicate indirectly by affecting the 

environment). 

The dissertation touches on these different constraint mechanisms both in regards 

to the taxonomic delineation of EBS types and the principal paths of information flow in 

the system. The metrics described here examine the three systems where different 

constraints dominate, namely inherent, peer, and Stigmergic constraints. Foundational to 

the modeling of EBS, is the distinctions between data, information, and communication. 

In this dissertation, we have defined information as any actionable data, i.e., data that 

causes an entity to change state, within the context of observation. Communication is the 

sharing of information; relationships, as evidenced by the formation of structures, are 

established when communication occurs and are sustained. 

We have seen that graph theory methods provide a means to measure the ability 

of data to flow in a structure. In particular, representing the EBS in graph terms supports 

the examination of information flows and feedback, i.e., paths that form loops. 
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The flow metric is related to the sequence of vertices that can represent the 

principal actors in a structure and is determined by the characteristic path length, i.e., the 

mean over all pairs of vertices of the number of edges in the shortest path between two 

vertices. 

The complexity metric deals with the relative importance an actor maintains in the 

emergent structures in the system. Again, graph theoretic measures readily apply. Stated 

another way, the entity complexity metric represents a measure of the significance of an 

entity to the structure of which it is a part and can be thought of as a measure of 

"relatedness" of the structure. This metric is developed from the local clustering 

coefficient c(vj for a vertex v* and is given by the proportion of links between the vertices 

within its neighborhood and the number of links that could possibly exist between them. 

Shannon Entropy is a measure of uncertainty or disorganization of the system. In 

its essence, it provides a measure of system disorder as it relates to the entities 

comprising the system. In the course of this dissertation study, two approaches to the 

estimation of Shannon Entropy were implemented. The first dealt with representations of 

the system state in terms of the systems spatial geometry. This approach is in agreement 

with that described by Parunak and Brueckner (Parunak & Brueckner, 2001) and is well 

suited to systems where system state is easily defined as some spatial relationship 

between actors. A more general approach developed here is in keeping with the emphasis 

on relationship within the EBS. As opposed to a Euclidean-space perspective, this 

approach depends on the relation-space of the system. That is, the state vector defining 

the system at any time is a measure of the number of structures in the system and 

normalized mean degree of the structures in the system. The three systems simulated in 
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this study lend themselves to spatial state representations. We will focus on the spatial 

state form of the entropy metric in explaining its application, however in the analysis of 

the systems we consider the relation-space concept as well and discuss it in Chapter 6. 

Figure 30 summarizes pictorially the three metrics and their relationship through graph 

methods. The following sections detail the mathematical implementation of these 

concepts into EBS metrics 

4.2 The Information Flow Metric - Characteristic Path Length 

As it has been established that structure formation is dependent on relationship 

and that relationship is sustained information flow, one way to characterize an EBS is by 

some measure of the information flow in the system. Recalling Chapter 3, we see that a 

strong case is made for the representation of relationship by graph-theoretic methods. We 

saw that there is a distinction between directed and undirected representations. At this 

Information Flow 

Characteristic Path Length 

Complexity 

Clustering Coefficient 

^ ' 

Organization 

Shannon Entropy 

Figure 30. EBS Metrics 
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point, a concrete example will aid in the rationalization of the choice of a form of graph 

path length. Although numerous domain examples can be found in the literature, we will 

now speak in terms more closely related to the simulations in the next chapter with the 

intent to facilitate clarity of the concept behind the flow metric. 

In the Particle System Simulation, particles can interact with each other either 

directly through collision, or through the formation of spring-like connections. If the 

spring connections are able to persist, these particles form structures that in turn can 

interact with other entities in the environment. The spring relationship is based on 

Hooke's Law and the spring constant is given as k. The higher the value of k, the stronger 

the spring is. (A damping factor represents a contextual constraint that is somewhat 

representative of the viscosity of a fluid.) They can also interact through collision with 

the boundaries of their space or with objects that can be placed in the context of 

observation. A plot of the internal energy is an indicator of communication events as it 

identifies whenever any particle contacts another object. The exponential decay arises 

from the dampening factor. Each communication event is detectable by an abrupt change 

in this energy as shown in Figure 31 where the left image shows a structure falling to the 

floor and the right shows communication events indicated by energy changes. Here there 

are approximately 5 communication events, one for each time a particle encounters the 

floor as the structure bounces. This data is communicated throughout the system since it 

is fully connected with a k = 50 and rest-length of 4. The communication events are 

propagated through the structure in a time depending on the value of k and other 

constraints in the system. The pushing and pulling of the springs between the particles 

form communication events (information flow). In the absence of any dampening this 
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would be seen as an oscillation of the structure. There is information outflow from the 

floor to the colliding particles and this is propagated to the other particles through their 

relationship to each other. 

I Total 
•internal 
•External 

Figure 31. Communication Events Indicated by Energy Changes 

This is further illustrated in Figure 32 where we can see the inflow and outflow of 

information (or energy.) 

Information Inflow 

toej at instance of 

collision, t0. 

direction of motion at t3 direction of motion at t. 

Information 

Outflow from e2 to 

ej at instance of 

collision, to. 

Figure 32. Inflow and Outflow 
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It is easy to see that a communication event can create a change of state in an 

entity. What is interesting is when a communication event is propagated through a 

structure as depicted in Figure 33. Here the characteristic of interest is the length of path, 

i.e., the route by which a number of entities can share information and the interaction of 

inflow and outflow. The principle information flow is given by the path available to the 

information at the time of the communication event. In Figure 33, entity e3 strikes entity 

e4 initiating a communication event at time tO. At time to e3 and e4 are in relationship 

with communication event CO. However, the path available to CO is e3, el, e2, i.e., three 

entities. Note that to have meaning, a communication event must occur between two or 

more entities since there must be inflow and outflow. If there were only a single entity in 

a system then there is nothing for it to communicate to so no path exists, no state change 

can occur. 

Persistent 

information 

paths 

Non-

persistent 

information 

path 

Figure 33. Persistent and Non-Persistent Information Flows 

In the EBS, entities form sustained relationships manifesting as structures within 

the context of observation. Information circulates as the structure responds to various 

information from the macro to meso-scales. These flows of information through the 
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actors comprising the structures form networks that vary in time and precipitate the 

evolution of the structures. 

Erdos and Renyi are recognized as having laid the foundation for the study of 

random graphs (Erdos & Renyi, 1959), (Erdos & Renyi, 1960). A random graph is one in 

which given N vertices, any two vertices have a finite probability p of being joined by an 

edge. The random graph then has an average degree « pN. Newman, Strogatz, and Watts 

observed that random graphs have a long history of representing coupled dynamical 

systems such as social networks, epidemiology, food webs, etc., and can offer insight 

into patterns characteristic of the social structures formed by self-organizing systems 

(Newman, et al., 2001), (Watts & Strogatz, 1998). However, they point out that 

measurements derived from network models based on random graphs differ significantly 

from the graphs derived from real data; an observation that suggests that additional social 

structure exists that is not captured by the random graph. Whereas truly random graphs 

produce degree distributions that are Poisson distributed, Newman et al observed that 

many real-world networks exhibited degree distributions that are power-law distributed 

(Newman, et al., 2002). Newman et al showed that for many large, sparse networks found 

in nature, the number of edges in the shortest path between two vertices averaged over all 

pairs of vertices is a metric with intuitive meaning to these dynamical systems. For 

instance, the average of the shortest path lengths of a network of friends is the average 

number of people connecting two friends. (We will discuss Newman et al again in the 

following presentation of the clustering coefficient.) Newman et al observed, "the 

average distance, which is a global property, can be calculated from a knowledge only of 

the average numbers of first- and second-nearest neighbors, which are local properties. It 
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would be possible therefore to measure these numbers empirically by purely local 

measurements on a graph such as an acquaintance network and from them to determine 

the expected average distance between vertices" (Newman, et al., 2001). 

Their observations suggest that the average of minimum path length, which is 

also called the characteristic path length (CPL), is a good measure of information flow in 

a system, yet still a measure based on local properties; a concept attractive to the nature 

of EBS. One idea explored in this dissertation is that the relationships established as an 

EBS evolves can be represented by graphs and that these graphs can characterize 

emergence from non-emergence. As such, the CPL of the graph representing the EBS 

should be distinguishable from a similar random graph, i.e., a random graph of the Erdos 

and Renyi type with the same average vertex degree. This supports the formulation of an 

information flow metric based on the CPL for graphs representing an EBS. Figure 34 

shows some example graphs and the result of applying the flow metric of characteristic 

path length developed for this study. Section 5.3 presents the MATLAB design for this 

measure and Appendix B: MATLAB Code & Scripts, presents the actual MATLAB 

code. 

In summary, the flow metric is related to the sequence of vertices that can 

represent the principal actors in a structure and is determined by the CPL, i.e., the mean 

over all pairs of vertices of the number of edges in the shortest path between two vertices. 
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Figure 34. Some Structures Shown as Graphs and Their Characteristic Path Length 

4.3 The Complexity Metric - Clustering Coefficient 

Here we again observe that graph representations of EBS are not completely 

random as relationships are subject to the constraints at play and neither are they 

completely regular since at any given set of observations the graph can be seen to change. 

(However, they may become regular subject to constraints as well.) Watts and Strogatz 

introduced the measure of the clustering coefficient as a measure of connectedness in 

networks that "rewire" and exhibit varying amounts of disorder (Watts & Strogatz, 1998). 

Referring to the examples of Figure 35, the local clustering coefficient c(v$ for a 

vertex v, is given by the proportion of links between the vertices within its neighborhood 

and the number of links that could possibly exist between them. For a directed graph, eu 

is distinct from eJt, and therefore for each neighborhood N, there are k,(k, - 1) links that 
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could exist among the vertices within the neighborhood (&, is the total (in + out) degree of 

the vertex). Thus, the local clustering coefficient for directed graphs is given as 

( v < )  =  T T J  C ( V , ) =  k \k  -1)  :  V y ' ' V t  6  e , k  6  E  ( 2 9 )  

An undirected graph has the property that e,y and eJt are considered identical. 

Therefore, if a vertex v, has k, neighbors, edges could exist among the vertices within the 

neighborhood. We can then consider the idea of a clustering coefficient of a particular 

vertex v defined for the neighborhood of v denoted as c(v) (Newman, et al., 2001). We 

define c(v) as the fraction of edges that actually exist in the neighborhood of v relative to 

the total possible number of edges that can exist in the neighborhood of v. If kt is the 

number of neighboring vertices of v„ then, if the graph is assumed to be undirected, the 

fa. (fa. — J \ 
maximum number of edges that can exist in the neighborhood of v is ——^ and if 

the number of existing edges in the neighborhood of v is given by |{tfv}| then we can 

define the local clustering coefficient of the vertex v, as 

2 i e j k} 
/ 

c(v,) = 
k , (k ,  -1)  > k >~ 2  

: V v 4  eN„e J t eE P0)  

0  , * , =  1  

The significance of c(v) is that it indicates the extent to which the vertices in the 

neighborhood of v are also neighbors to each other. The smaller c(v) is, the more 

dependent those in the neighborhood of v are on the existence of v. If c(v) is 1, then the 

neighbors of v are still connected even if v is removed. If c(v) is 0 then all the neighbors 

of v depend on it as illustrated by v0 in the third graph of Figure 35. 
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One implication of the clustering coefficient to EBS is that if neighbors of a single 

vertex are neighbors to each other as well, then they do not wholly depend on that vertex 

for their relationship. Stated another way, if the clustering coefficient associated with an 

entity in an EBS is high, then its neighbors do not rely on it very much. The 

corresponding entity in an EBS does not contribute significantly to the structure of which 

it is a part. If the clustering coefficient is low, that entity plays a more significant role in 

the structure of which it is a part and as such, its presence in the structure is more 

important to the existence of the structure. In studies of scale-free networks, i.e., 

networks in which the degree distributions exhibit a power-law distribution, Barabasi and 

Albert observed that the clustering coefficient of scale-free networks were about five 

times higher than that of random graphs(Barabasi & Albert, 2002). 

Consider the three simple graphs shown in Figure 35, all of which have the same 

number of vertices but different edge sets. G1 is a complete graph and can be thought of 

as representative of an EBS in which each entity has a direct relationship with every other 

entity. G2 is incomplete with several subgraphs, and G3 is a tree, representative of an 

EBS where the structure, i.e. all relationships, is dependent on the single entity v0. 

We can further define a global clustering coefficient C(G) of a graph G as the 

mean of the local clustering coefficients in G. 

C(C) = ~f|>,) (31) 

where | V | is the number of vertices in the graph with d(v) > 2 . 
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C(G)=1 

c v„ =1 

c(v,)= 

c(v,) = 1 

C(G): 
21 
6 

^(v0) = 0 

c(v,) = ...c(v4) = 

C(G) = 0 

0.766 

Figure 35. Graphs for Clustering Coefficient 

Another measure of complexity associated with a vertex is its degree. Indeed, 

both degree and clustering coefficient are both local graph measures of a vertex's 

connectedness. Earlier in the development of this dissertation, the normalized mean 

degree was identified as a complexity measure and is included in the definition of the 

state vector based on the relation-space perspective. However, the clustering coefficient 

factors in not only the connectedness of a vertex but also the importance of a vertex to 

those to which it is connected. The global clustering coefficient then provides insight into 

both the connectedness and the strength of dependencies of entities in the system; this is a 

measure not only of the information paths associated with an entity, but of how reliant the 

emergent structure is on that entity. Chapter 5 presents the MATLAB algorithm to 

compute the clustering coefficient and Appendix C lists the MATLAB code. 
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4.4 The Organization Metric - Shannon Entropy 

Recall that in the previous chapter, we discussed how Claude Shannon showed 

that the only H that can satisfy all three properties of the macro definition of entropy with 

the number of microscopically defined states is a function of the form 

Where x is a chance variable and K is a positive constant that amounts to a 

selection of units of measure. From the similarity of his result with the measure of 

entropy in statistical mechanics, Shannon referred to this as the entropy of the set of 

probabilities, which we now call information entropy. An information source provides 

large entropy (|//(x)| large) if its contents are of random nature; entropy is small if the 

source contains regular structures. This phenomenon can be observed in time varying 

systems of interacting entities when some spatial patterns appear more frequently than 

others do. If we consider this formation of structure with regard to Ashby's Law of 

Requisite Variety (Ashby, 1956), a cause of decreasing disorder is increasing constraint; 

in a system, this reduction of the uncertainty is indicative of increasing structure. 

Therefore, we should expect to see decreasing entropy as an EBS evolves to an orderly 

state. The challenge to the modeler is to determine what defines the state of a system. For 

the three systems explored here, we consider the state of the system described by the 

positions of the entities in Euclidean space. In the particle and stigmergic EBS, the 

locations of the emergent structures are taken to be the state of the system. For the 

flocking system, we consider the direction of the flock. Both of these measures are based 

on the work of Parunak and Brueckner (Parunak & Brueckner, 2001). 

N - 1  

(32) 
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Computationally implementing (32) to analyze emergent behavior systems 

requires observations of the states accessible to the system and the determination of the 

probability of finding the system in each of those states. This can be accomplished 

parametrically with a simulation of a system and using the Monte Carlo method to build 

an estimate of H(x) by counting the occurrence of each observed state. Since many EBS 

manifest as spatial-temporal patterns, the states of the EBS can be expressed in terms of 

the locations of the entities comprising the system. This location-based approach and the 

sampling in time to produce the necessary observations suggest an approach that is 

discrete in both space and time. The following steps explain the location-based approach. 

Step 1: Gridding 

Parunak and Brueckner developed a gridding method to specify system states in 

multi-agent systems. This method is adopted here with slight modification for the 

computation of (32). Figure 36 depicts the method. Here anmxm context of observation 

(8 x 8 in Figure 36) is gridded into nxn cells (here 4 x 4) to produce a state vector of the 

form 

c0 o • • c0 3 0 

,x • • 0 
w . . o 

C3,0 C3,3 0 

Each c in the vector is the count of entities in that cell at time t. For the 4 x 4 grid 

shown, each state y is given by a vector of 16 elements. Each element is the entity count 

in that cell. 

0 0 0 

2 2 0 

2 2 0 

1 1 0 

(33) 
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count location 

2 {1,1} 

2 {1,2} 

2 {2,1} 

2 {2,2} 

1 {3,1} 

1 {3,2} 

0 all others 

Figure 36. Spatial Gridding Method for System State Representation 

Step 2: Determine Probability of States 

Multiple simulation runs beginning with random initial conditions can be used to 

generate the set of p, needed for (3). At each time-step of the simulation, the state vector 

*¥ is produced. The count of each W across the simulation runs at each time-step can be 

used to estimate the probability p\ at each time-step t in the manner, 

count of ¥,(1) 

R 
(34) 

where R is the number of simulation runs. 

Step 3: Compute Entropy 

Once the states are identified and counted for each time step, (32) can be 

computed. In computing (32), recall that K is a constant. For this analysis, K is assumed 

to be 1. The form of (32) as used in this analysis is 
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/?-l 

-Z#(01ogA(0 
S{t )=-M (35) 

log R 

Equation (35) is the Shannon Entropy estimate at time t for the system but 

normalized by dividing by log/? so that the case S = 1 indicates maximum disorder. 

Application of the Method 

Applying equation (35) to calculate the entropy of a system gives rise to two 

questions: 

1) Should the extents of the grid be the extents of the context of observation? 

2) What size grid should be used? 

The first question is more a matter of choice based on the goals of the analysis. 

The research here is concerned with the meso-scale entropy; therefore, the gridding is 

limited to the extents of the spatial positions of the particles, i.e. the structure formed by 

the entities in relationship. Figure 37a shows the initial configuration for a sample system 

and Figure 37b shows the same system after one-thousand time-steps. In both figures, a 

box has been drawn to indicate the meso-scale area. The meso-scale system state plots for 

the first state and last state are shown at grid sizes of 3,4, 5,6, 7, 8, 9, and 10 in Table 

11. Grid sizes beyond 8 do not add significant resolution as can be seen on the plot of the 

count of unique states versus grid size n shown in Figure 38. This data suggests that grid 

sizes above about six or seven do not provide additional resolution to the measure of the 

Entropy for this system. At finer grid sizes, the grid covers the structure at about the same 

scale as the context of observation. The knee in this plot at 4 and the essentially linear 

slope to 8 suggests that a gridding somewhere between 4 and 8 is sufficient. A coarser 

gridding would tend toward greater generalization of the system. It may be possible to 



determine analytically this gridding, but that is a topic suggested for future study. 
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a. Initial Configuration b. Final Configuration 

Figure 37. Initial and Final Configurations of a Sample System Showing Meso-Scale Boundaries 
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Figure 38. Effect of Gridding Size on Count of Unique States if/ 
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Grid 
size 

F i r s t  S t a t e  L a s t  S t a t e  
U of 

unique 
states 

3 • • 53 

4 •1 • 82 

5 • • 94 

6 • • 108 

7 • • 126 

8 • • 144 

9 • • 148 

10 • • 150 

Table 11. Meso-scale System State Plots 

If a system changes randomly then no one state should be more likely to occur 

than any other, i.e., the occurrence of a specific state should be nearly a random variable. 

However, it is important to recognize that to be truly random the motion of the particles 
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would have to be random in their positions from observation to observation, i.e., a 

random walk. Since the goal of any simulation is to be representative of some real or 

notional system, a random walk of particles is a significant deviation from the nature of 

the system being simulated; so in this analysis we make use of "the minimally 

constrained case" as opposed to the "random case". In terms of EBS, an unconstrained 

case would remove any sustained information flows from the system but would still 

allow particles to collide with each other and entities comprising the environment; in this 

way, the nature of the system is maintained. If a system is indeed minimally constrained, 

then the entropy should be very nearly 1 according to equation (35) at each time-step. To 

verify this observation, a system of particles with randomly generated initial positions, 

velocities and headings was constructed. The particles' heading and velocity maintain 

their initial values unless affected by another particle or barrier by collision. This 

represents a minimally-constrained system by not allowing any relationship between 

entities but still allows the fundamental characteristics of the system to be present. Four 

runs were made, each with 10,000 time steps. The only difference being the initial 

positions, velocities, and headings. The following plots in Figure 39 show the occurrence 

of states for each of the four runs. The horizontal axis is the number of unique states and 

the vertical axis is how many times that state occurred. For example, the first plot shows 

that there were just over 600 unique states in the system and that some of them occurred 

as much as about 100 times. The last plot shows the number of unique states (2007) for 

all four runs. 
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Figure 39. State Occurrence of a Minimally Constrained System 

Table 12 shows the mean, standard deviation, coefficient of variation, and Shannon 

Entropy for each of the data sets of Figure 39. 
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Mean std cv S 

OC1 16.4745 14.4769 0.8787 0.9459 

OC2 25.6410 21.8984 0.8540 0.9445 

OC3 20.1613 18.7476 0.9299 0.9375 

OC4 16.6113 15.0589 0.9065 0.9451 

OCX 19.93 18.5365 0.9301 

Table 12. A Minimally Constrained Case Data Analysis 

OC1 is the count of states in run 1 (state 1 is OCl(l) which occurs 16 times.) The 

mean of OC1 is the mean of the occurrences of all states that occur during run 1. We can 

observe that the standard deviation of run 1 differs from the mean by 12.13%. The 

coefficient of variability indicates the occurrence of states is highly variable; therefore, 

the system does not occupy any one state significantly more than any other does, which is 

to be expected of the unconstrained system. 

4.5 Hypothesis Tests 

A hypothesis is a proposition that is consistent with known data, but has been 

neither verified nor shown to be false. 

A null hypothesis (Ho) is a statistical hypothesis that is tested for possible 

rejection under the assumption that it is true, usually that the observations are the result of 

chance. 

The hypothesis contrary to the null hypothesis (Hi), usually that the observations 

are the result of a real effect, is known as the alternative hypothesis. In this study, we are 

asking two questions about the three simulated emergent behavior systems. This suggests 
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two hypotheses must be tested using observed data from the EBS with the 

appropriateness of the second hypothesis dependent on the success of the first. These two 

hypotheses, call them HI and H2, can be simply stated in question form as: 

H I :  F o r  e a c h  t y p e  o f  E B S ,  c a n  e m e r g e n t  p h e n o m e n a  b e  d e t e c t e d ?  

H2: Assuming the presence of emergence in each of the three EBSs, can the three 

types of EBS be discriminated? 

The bulk of this section will concern itself with the statistical definitions of these 

questions. 

4.5.1 Digression on Constraint and Randomness 

The first hypothesis, HI, must seek to determine if a system that is exhibiting 

emergence can be recognized apart from one that does not. We will accept, for the sake 

of discussion, that if the state of a system at any given observation is explainable by 

random assignment of the state variables then it is likely that no emergence phenomena 

are present. In terms of our three measures, we would expect a high amount of variability 

in the measure of system complexity (£?), no persistent information flows if) leading to 

formation of structures, and no decrease in entropy (S) of the system over the set of 

observations. However, the term random is not straightforward when we are talking 

about a model of an EBS and deserves some discussion. As identified earlier, the various 

types of constraint that influence an EBS are of fundamental consideration. At first blush, 

it might seem appropriate to consider a random assignment of the state variables. For 

example, the particle system would be just a random scattering of particles absent of all 

constraints. However, in the case of a particle system, does a simple random scattering 
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make the system truly random? At least in the strictest sense the answer would seem to be 

"No" since there are certain contextual considerations that if removed would 

fundamentally change the system. Recall that in the specification of an EBS, entities that 

are not actors as well as the context of observation define the EBS. For instance, even 

randomly distributing the particles is subject to the bounds of the space in which they are 

contained; change the container and you have changed the system. This fundamental 

spatial limit is an example of a contextual constraint discussed earlier. Similarly, if the 

particle system of consideration is affected by gravity, do we consider the random system 

to be without gravity? If these types of constraints are removed, is the random system still 

representative of the true system? Perhaps a more realistic random case for a particle 

system would maintain the context of observation and retain contextual and certain 

inherent constraints, i.e., all particles (in the particle system) must still exist within the 

spatial bounds, cannot occupy the same point in space, etc., but in short the system 

should still be recognizable as a particle system. This suggests that it is likely better to 

consider instead a form of the system where certain constraints remain but others are 

minimized. This form of the system would be one in which the mechanisms that enforce 

sustained relationships between actors are missing; as such the actors cannot form 

structures as described in the EBS specification. We can call this form of the system the 

minimally constrained system. The minimally constrained system will minimize the 

effects of variable constraints (or those that emerge during the evolution of the system) 

yet still maintain the characteristics governed by non-varying constraints, e.g., gravity. To 

an observer, the minimally constrained system will still be recognized as the system 

under study but will exhibit the nearly-random behavior we have in mind and not exhibit 
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the emergence phenomena. In this way, we can examine the EBS across the three 

measures by comparing the constrained case (emergence) to the minimally constrained 

case (non-emergence) and still have confidence that we have not fundamentally changed 

the nature and context of the system. From a model-based analysis perspective, this does 

place the responsibility of choosing which constraints to be minimized on the analyst. We 

will subsequently describe the minimally constrained condition for each EBS under 

study. Assuming of course that a system demonstrates emergence phenomena and as such 

is an EBS, the second hypothesis will examine the proposed measures of the EBS with 

regard to the three types of EBS of this study and see if these measures form a feature set 

to distinguish one type of EBS from another. 

4.5.2 Hypothesis HI 

Hypothesis: A system exhibiting emergence phenomena is indistinguishable from that 

system when it is not. 

Based on the discussion in the previous section, we can refine this statement as: 

• Null Hypothesis Hoi: For the systems under study, each is 

indistinguishable from its minimally constrained version. 

• Alternative Hypothesis Hi 1: each is distinguishable from its minimally 

constrained version. 

As is typical, we will be seeking to accept the alternative hypothesis by rejecting 

the null hypothesis. Therefore, we will be looking to see if there is a statistical difference 

between a system that is minimally constrained and the same system when it exhibits 

emergence. 
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4.5.3 Hypothesis H2 

Hypothesis: There exist several types, or classes, of emergent behavior systems 

which can be modeled using agent-based methods and that each class can be specified by 

a tuple of the form 

£ = [/•(«(?)), n(»(r)),S(w(/))] (1) 

where: 

u(t) is a sample path over time t for a given set of initial conditions, 

/ is a measure of the principal information flows in the system, 

Q is a measure of the complexity of the entities comprising the system, and 

S is a measure of the Shannon Entropy of the system. 

Null Hypothesis Ho2: The three types of emergent behavior systems in this study 

are indistinguishable by the measures specified by (1). 

Alternative Hypothesis Hi2: The measures specified by (1) can distinguish the 

emergent behavior systems used in this study. 

Here we are interested in the cases where emergent phenomena are observed and 

we consider whether the three measures are sufficient to distinguish amongst the systems. 

Specifically, we are interested in the systems when emergence has manifested. 

4.5.4 Hypothesis Test for Principal Information Flow f 

The principal information flow metric is the average of the minimum path 

lengths, i.e., the characteristic path length (CPL), of the system within the context of 

observation. The null-hypothesis can be stated asH0:fc=fu, where fc is the CPL for the 
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constrained system and fvis the CPL for the minimally constrained system. The 

alternative hypothesis then is, Hx\fc*fv. In this case we are comparing means of the 

data from matched subjects (the constrained and minimally constrained systems are 

observed at each time t, subject to the same initial conditions), which suggests the use of 

a paired t-test. If we consider a test parameter 6- fc—fv then we can rewrite the previous 

as H0:9=0 and Hx : 6 * 0. Since it is unreasonable to expect fcto be exactly fuwe are 

interested instead where they differ, i.e., within the alpha of the t-test. 

4.5.5 Hypothesis Test for Complexity Q 

The global clustering coefficient (GCC) presented in Section 4.3 is examined in 

both the constrained and minimally constrained cases. The approach is the same as in the 

previous section; the null-hypothesis can be stated as H0 =f\;, where Qc is the GCC 

for the constrained system and Q(/ is the GCC for the minimally constrained system. We 

consider as the alternative hypothesis//, As above, if we consider a test 

parameter 6=C\ -Q, then we can rewrite the previous as Hq : 0=0 and Hx : 6 * 0. 

4.5.6 Hypothesis Test for Entropy S 

The Shannon Entropy estimate given by Equation (35) and as with the previous 

metrics, we will consider the measure in comparison of the constrained and minimally 

constrained cases such that H0 :SC =SV and Hx :SC ^Sa. As in the others, we will 

consider the test parameter 0=S c ~S u  so that H 0  :<9=0 and H x  :  6  *  0.  
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CHAPTER 5 

SIMULATION, ANALYSIS AND RESULTS 

To this point, the examination of emergent behavior systems has been kept to an 

abstract or theoretical level. In this chapter we will now exercise the ideas developed in 

previous chapters to produce the simulation models of the three types of EBS of this 

study. This chapter will describe: 

1) the motivation for and the design of the study simulations based on the 

previously presented EBS modeling formalism, 

2) the instantiation of those designs in the NetLogo ABM framework, 

3) the design of the EBS metrics in MATLAB, and 

4) the analysis of the data produced by the EBS simulations 

The three EBS selected for this study represent three fundamentally different 

classes of systems where emergence phenomena characterize the systems. These three 

systems are particles, flocking (or herding), and stigmergy. The actors in each EBS are 

representative of a different level of entity sophistication and each derives its principal 

information from distinct paths. 

The particle system simulation is an interpretation of Hooke's Law where unit 

mass particles form structures through spring-like connections. Hooke's Law has found 

wide application in domains as diverse as robotics and biology (Hamdi, et al., 2005), 

(Oddershede, et al., 2002). Particles interact directly and the flow of information is very 

physical, either through direct contact with each other or their environment, or by the 

formation and breaking of the spring connections. Without any global to local feedback 

mechanisms, the particle system simulation can be an example of Type lb emergence. 
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We will conduct these experiments using a damping factor that insures that the net 

feedback is negative and as such is an example of Type 2a emergence. Additionally, the 

use of traditional "agents" to represent such a physical system emphasizes the assertion 

that "agent-based" is more of programming method or paradigm as each actor is very 

simple in its sophistication. 

The Flocking system simulation is an implementation based on Craig Reynold's 

Boids algorithm (Reynolds, 1987), (Reynolds, 1999), which has found broad application 

such as to crowd behavior modeling (Chiang, et al., 2008). Three simple behaviors based 

on each actor's observation of other actors near it suggest a Type 2a emergence. The 

"boids" of the flocking simulation and the ants in the Stigmergic simulation are examples 

of more sophisticated traditional agents. 

Stigmergy can be loosely defined as communication through the environment. 

The simulation examined here is that of trail forming ants and demonstrates the traits of 

Type 3 emergence described in Chapter 3. In this case, a spatiotemporal structure in the 

form of an ant trail emerges rapidly from positive feedback as ants deposit pheromone 

when they are carrying food. It then is moderated with negative feedback as the chemical 

trail disperses and evaporates. 

5.1 Applying the EBS Modeling Formalism 

For each of the simulated EBS systems, we identify the actors and objects, the 

environment, and how these form the context of observation according to the ideas of 

Chapter 3. We make the distinction between what is micro-scale, i.e., belonging to the 

definition of the actors and what is meso-scale, i.e., what belongs to the interaction 

between actors. 
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5.1.1 Particles 

The Particle System simulation is a demonstration of agent-based modeling 

applied to representing a well-defined physical system of masses and springs governed by 

Hooke's Law. The actors are points of unit mass. Relationships are governed by the 

spring-like behavior. Constraints include effects of gravity, objects in the environment, 

damping, etc. as shown in Table 13. 
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Factor Value Range Description 
particle-number 1 - 100 the number of particles in the system 

spring-constant 0 -100  the value of spring constant 

rest-length 0 - max shear-point the rest length of the spring separating two 
particles that occurs when the force on the 
spring is zero 

shear-point 0 -120  the distance at which a spring will break 
damping 0 -10  a decay factor, representing the viscosity of a 

fluid medium. Higher values cause quicker 
decay of energy 

Conditions 
damping-only yes/no particles are subject only to the decay of 

damping 

gravity-only yes/no particles are affected by gravity only 
neither yes/no particles are affected by neither damping nor 

gravity 

both yes/no particles are affected by both damping and 
gravity 

initial-condition uniform-no-velocity 
uniform-rnd-velocity 
random-no-velocity 
random-rnd-velocity 

particles can be initially uniformly 
distributed in a circle about the center of the 
context of observation with a diameter equal 
to the rest-length, or randomly placed within 
the context of observation, either with or 
without an initial random velocity 

Table 13. Factors and Conditions for the Particle System Simulation 

The actors in this simulation are not typically associated with the common usage 

of the term "agent". Indeed, this simulation was developed in part to demonstrate that the 

agent metaphor might perhaps be more properly considered a programming paradigm 

(much like object-oriented programming) as opposed to a specific modeling construct 

only useful for certain types of representations. Information flows in the particle system 
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when one particle interacts with another in such a way as to influence its behavior. The 

idea that information is "actionable data" is maintained; specifically, data is transferred 

from one particle to another by means of their relationship. For example, billiard balls 

transfer data when one strikes another. The data (velocity, momentum) is transferred on 

striking and the resulting reaction is the effect of the "actionable data". For the system of 

masses and springs here, the relationship is given by F=-kx, so any action taken by one 

particle is transferred to particles to which it is connected (in this example, all have the 

same k but x varies). As such, any time a particle strikes an object, information from that 

strike propagates throughout the system. In this way, the state of the particle system is 

affected whenever any particle of the system strikes another particle, the floor (ceiling) or 

wall. Figure 40 identifies the entities in the particle system simulation as well as how 

energy can propagate through the structures. 

Particle System (a 
Structure) 

A* —| 

/ 

Wall (an Object) 

Floor (an Object) 

Figure 40. The Particle System Simulation Is an Interpretation of Hooke's Law 
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5.1.2 Flocking 

The Flocking System simulation demonstrates self-organization of a group of 

entities like a flock or herd. Based on only a few simple rules of behavior, namely 

Reynolds' three rules of "alignment", "separation", and "cohesion", the flocking 

simulation illustrates a system where entities make decisions based on their perception of 

other entities. Figure 41 illustrates the three behaviors. "Alignment" means that a bird 

tends to turn so that it is moving in the same direction that nearby birds are moving. 

"Separation" means that a bird will turn to avoid another bird that gets too close. 

"Cohesion" means that a bird will move towards other nearby birds (unless another bird 

is too close). When two birds are too close, the "separation" rule overrides the other two, 

which are deactivated until the minimum separation is achieved. A unique extension 

developed in this simulation is the addition of the rule of "color". "Color" means that a 

bird will prefer others with his color. All these rules are set as preferences that are applied 

to all the birds in the simulation. 

Alignment: 
Steer toward the ave 
heading of local floe 

< > 

A ^ 

Cohesion: 
Steer towards the average 
position of local flockmates 

1 
Separation: 
Steer to avoid crowding 
local flockmates 

A > 

Figure 41. Reynolds' Alignment, Separation, and Cohesion Behaviors 
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Table 14 shows all the factors and conditions that affect behaviors in the flocking 

simulation. Figure 42 shows how the components of the flocking system are interpreted 

within the EBS specification. 
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Factor Value Range Description 
population 1 -200  the number of birds in the system 

colors 1 - 10 the number of distinct colors. Each bird is 
assigned a color at the time it is created. 

affinity 0 -100  the degree of preference a bird has for birds 
of its color. 0 is attracted to all birds equally, 
100 is only attracted to birds of same color. 

fov 10-360  fov in combination with the vision factor 
defines a cone of awareness for a bird. A 
value of 90 yields a fov of 45 degrees on 
either side of the direction of travel of the 
bird. A value of 360 means that a bird is 
aware of all other birds around it, ahead or 
behind. 

vision 0 -35  the distance (in patches) that a bird can see. It 
is the radius of the fov. 

min-separation 0 -5  the minimum distance (in patches) a bird will 
attempt to maintain from other birds 

max-align-turn 0 -180  the maximum turn in degrees a bird will 
make to remain aligned in the direction of its 
flock mates 

max-cohere-turn 0 -180  the maximum turn in degrees a bird will 
make to steer toward the center of its flock 
mates 

max-separate-
turn 

0 -180  the maximum turn in degrees that a bird will 
make to avoid colliding with another bird 

mean-bird-
speed 

0 - 2 in 0.1 increments the mean speed assigned to a bird at the time 
of its creation. Only used if Vary speed? is 
true 

Conditions 
Varyspeed? yes/no if yes, birds are assigned a speed about the 

mean-bird-speed. Also, if true, bird speeds 
change based on various other conditions 
during the simulation run. 

AllowLeaders? yes/no if yes, a bird that follows no other bird is a 
leader. A leader can have greater range and 
variation of speed if Vary speed? is true. 

Table 14. Factors and Conditions for the Flocking Simulation 
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Bird (an Actor) 
A bird that has 
followers butfotows 
nootwbalgadtc". 

Flock la Structure) 
The links are 
directional with the 
arrow pointing in (he 
direction of the bM(*) Floor (an Object) 

Figure 42. Interpreting the Components of the Flocking Simulation in Terms of the EBS 
Simulation Specification 

5.1.3 Stigmergy 

The Stigmergy System simulation illustrates information flow between actors 

through the environment. It is also an example of collective intelligence, in this case 

where the ant-hill "knows" where the food is located, but the individual ants do not. Ants 

search randomly for food until they come upon a chemical trail deposited by ants that 

were carrying food. A form of stability is achieved when the number of ants is sufficient 

to sustain a path to the food. This is the popular pheromone following behavior that is 

central to ant-inspired self-organizing and path following algorithms (Dorigo, et al., 

1999), coordination of mobile robots (Beckers, et al., 1994), and control of unmanned 

military robotic vehicles (Parunak, et al., 2001). 

Figure 43 illustrates the conceptual representation of ants bringing food back to 

their anthill. The flow of information in this stigmergic system is from an ant, to an object 

in the environment, then to another ant when it traverses that location in the environment. 
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In the approach taken here, ants wander about in search of food (red patches.) When they 

find food they pick some up and begin dropping pheromone into each patch (green 

patches) while they make their way back to the nest (black patches). This pheromone 

tends to spread out (diffuse) and to decrease in strength over time (evaporate). Wandering 

ants (brown) move about randomly searching for food or a trail to follow. When a 

wandering ant encounters a trail, it attempts to determine the direction that the 

pheromone is strongest (sniffing). The implication is that there will exist an increase in 

activity, and therefore pheromone deposits, closest to the found food supply. Ants that 

find a trail (blue) follow it in the direction of increasing intensity (uphill), which will 

usually be toward the food. The ants hold a limited supply of pheromone that is 

replenished each time they pick up food. They can exhaust their supply if the nest is too 

far from the food. A nest-scent helps the ants find their direction to the nest once they 

pick up food. 

Information flow is from a carrying-ant to a patch, then from a patch to a sniffing-

ant. There is also information flow from patch to patch, as the pheromone diffuses. 

Figure 44 shows the stigmergy system of Figure 43 described as a graph. Notice 

that the green vertices share information with each other in a bidirectional way. This is in 

analogue to the dispersion of the pheromone across patches. The red vertices (numbers 1, 

10, and 6), representing ants carrying food, have information flow from themselves to the 

green vertices. Likewise, the blue vertices represent ants following the trail; they take 

information from the green vertices. The numbering of the lattice in Figure 43 and the 

labeling of the graph in Figure 44 is somewhat in keeping with the numbering convention 

used in NetLogo for its World and Turtles. 
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0 1 2 3 4  5 6 7 8  9  

Figure 43. Simulating Pheromone Following Ants 

The resulting graph of the stigmergy system is fundamentally different from that 

of the previous systems. In both of those cases, relationships are primarily between like 

actors and the structures that result are comprised of those primary actors. Information 

flow is characteristically bidirectional in the particle simulation and directional in the 

flocking simulation. In the stigmergy example here, we see directional information flow 

associated with one mechanism, namely between the ants and the patches, and 

bidirectional flow associated with the patches. Notice that there is no direct 

communication between the ants in this model, but instead communication is through the 

intermediation of the patches with pheromone as shown in Figure 44. 
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Figure 44. Information Flow in the Stigmergic System 

Observe that by identifying each patch as an actor, very large adjacency matrices 

can result. For example, a context of 100 x 100 patches with 100 ants produces an 

adjacency matrix that is 10,100 x 10,100; computing graph metrics such as those used in 

this study on matrices of this order is challenging to available computing resources. We 

can reduce this computational demand if we observe that the spread of pheromone in the 

patches produces structures that we can aggregate into a single vertex, or super-node in 

the graph representation of the system. In doing that, Figure 44 becomes like that of 

Figure 45. 
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Figure 45. Super-node Representation of the Stigmergic System 

This greatly reduces the computational size of the resulting system graph to the 

number of ants and the number of contiguous pheromone patches (structures). 

Table 15 lists the factors and conditions that affect behaviors in the stigmergy 

simulation. Figure 46 shows the components of the stigmergy system interpreted within 

the EBS specification. 
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Factor Value Range Description 
Ants 1  -200  the number of available to the system. 

pheromone 1 -10  This is the amount of pheromone an ant gets 
each time it is replenished. If it is not high 
enough, the ant will run out before it reaches 
the anthill. 

use-nest-scent? on/off A nest-scent, similar to the pheromone trail, 
is used to help ants find the anthill. 

Conditions 
diffusion-rate 0 -10  This governs how fast the pheromone 

spreads to adjacent patches. 0 is never 
spreads while 10 is very rapid spreading. 

evaporation-rate 0 -10  This governs how readily the pheromone 
evaporates. 0 is no evaporation while 10 is 
very quick evaporation. 

endless-food? on/off When set on, food does not diminish as it is 
picked up. 

Table 15. Factors and Conditions Affecting the Stigmergy Simulation 
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Food (an Object) J 

Trail (a Structure) 
Formed by the spread of 
pheromone 

Ant (an Actor) 
Brown a wandering 
BtUfts on a trail wL 

Figure 46. Interpreting the Components of the Stigmergic Simulation in Terms of the EBS 
Simulation Specification 

5.2 NetLogo Models 

First introduced in 1999, NetLogo is a open source product produced by the 

Center for Connected Learning and Computer-Based Modeling at Northwestern 

University (Wilensky, 1999). NetLogo is designed for the simulation of multi-agent 

systems combining both a rich agent-oriented programming language and a simple but 

convenient graphical user interface in a tool for prototyping simulation developed for 

research applications (Sklar & Davies, 2005), (Sklar, 2007). NetLogo offers a 

combination of features that exemplify the EBS formalism described in Chapter 3. For 

example, the idea of NetLogo's "turtles" and "patches" facilitates the EBS entity 
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concepts of actors and objects. 

NetLogo includes a tool called "Behavior Space" to facilitate Design of 

Experiments (DOE). BehaviorSpace automates model runs so that a model can be run 

many times, systematically varying the model's settings and recording the results. As 

shown in Figure 47, experiments can be constructed with control of any factor in a 

NetLogo simulation, including full control of the random seed. Reporters are 

programming structures within a simulation that process and return data in a way 

prescribed by the programmer. The two key reporters in all three simulations are "plist" 

and "link-list". The reporter "plist" returns the position of every actor in the simulation. 

The reporter "link-list" returns a list of each actor and the others actors with which it is in 

relationship. This link list is used to create the adjacency matrix and other graph 

representations in later analysis. Using Behavior Space, data from any reporter can be 

saved at each time-step, i.e., NetLogo tick, or at the end of a run. 
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Figure 47. NetLogo's BehaviorSpace 

A sample portion of an output file created with this setup produces data in the 

format shown below. 

"BehaviorSpace results (NetLogo 4.1)" 
"Particles_1004 07. nlogo" 
"PS061610-1" 
"06/16/2010 12:32:08:936 -0400" 
"min-pxeor","max-pxeor","min-pycor","max-pycor" 
"0","50","0","50" 
"[run number]","damping","shear-point","random-
seed", "particle-number","[step]","plist","link-list" 
"4","0","5","23456", "4", "0", "[[12 42] [1 7] [22 4] [18 
2 ]]","[[ 0 ] [1] [2] [3]]" 
"3","0","5","23456","4","0"," [ [7 17] [42 41] [22 13] [47 
45]]","[[0] [1] [2] [3]]" 
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"4","0","5","23456","4","1","[[12.04 42.05] [1 6.87] 
[21.899812069678646 3.9699064082561013] [18.030187 930321354 
2.060093591743899]]","[[0] [1] [2 3] [3 2]]" 

Here we see some of runs number 3 and 4. This is actually in order of completion 

of a segment of a run. We can see that Run 4, damping = 0, step = 0 occurred before Run 

3, damping = 0, step = 0. This is to be expected given that this experiment was on a four-

processor workstation. Behavior Space assigns runs to processors, so we see Run 4, step 

= 1 output after Run 3, damping = 0, step = 0. 

The first bracketed set of data is that from the plist reporter. In this simulation, the 

plist reporter reports the ordered list of particle positions. Here, Particle-0 is at position 

xcor - 12, ycor = 42, Particle-1 is at [1,7], Particle-2 at [22,4], and Particle-3 at [18,2]. 

"4","0","5","23456","4","0","[[12 42] [1 7] [22 4] [18 
2 ]]","[[ 0 ] [1] [2] [3]]" 

The second bracketed set is the data from the link-list reporter. This reporter 

produces an ordered list of particles that are linked. In the previous line we see that no 

particles are linked. However, looking at Run 4, step =1 we see 

]"/"[[0] [1] [2 3] [3 2]]" 

Showing that Particles 0 and 1 have no links, Particle 2 is linked to Particle 3 and 

(as to be expected) Particle 3 is linked to Particle 2. 

Understanding how the data output is formatted is critical to the MATLAB 

functions that are used to process and analyze this data. 

5.2.1 Particles NetLogo Model 

This model illustrates an EBS where the concept of entropy change is a result of 
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the redistribution of energy in a system to available microstates. These are subject to 

three forms of constraint; a) inherent, b) contextual, and c) entity. Inherent constraint 

arises from each entity's subjection to damping and gravity. Contextual constraint arises 

from barriers such as the boundaries of the environment. Entity constraint arises from the 

direct entity-to-entity communication governed by spring-constant, shear-point, and rest-

length. 

The attributes of this simulation can be set to represent a number of stuctures 

composed of a number of particles that are bound together with Hookian springs, with 

particular equilibrium length and spring constants. For instance, if gravity is permitted in 

the environment, a ball of particles starts above the "ground" and when allowed to fall 

under the influence of gravity rebounds off the ground or any other barriers it encounters. 

Energy is conserved in this process, nevertheless the height of the ball of particles 

decreases with each bounce as the initial potential energy of the system is transferred to 

disordered vibrations of the internal particles. External mechanical energy, such as 

potential energy and ordered kinetic energy is transferred to internal potential energy of 

the springs and disordered kinetic energy. It is possible to investigate how the rate at 

which this energy is redistributed relates to factors such as the strength and length of the 

springs, the number of particles, and the barriers it encounters. Also of interest are the 

final equilibrium configurations of the structures and when this equilibrium occurs. 

Particles are created randomly or in a prescribed manner around the center of the context 

of observation. In the simulation each particle interacts pair-wise with every other 

particle via a Hooke's Law F = -kx force, where x is the distance between the two 

interacting particles minus the equilibrium length of the spring. The particles will not 



pass through each other but collide fully elastically. The motion is simulated numerically 

based on Newton's second law F = ma. In order to have precision with the simulation 

and to conserve energy we use a fourth order Runge Kutta. There are options to include a 

number of other forces in the simulation. A damping force serves to gradually dampen 

out the motion so that the particles can reach an equilibrium configuration, much as if the 

particles were in a viscous medium. The simulation is interactive. For example, when an 

equilibrium is established, damping can be turned off and gravity turned on to allow the 

structure to fall. It is also possible to have both damping and gravity at the same time, and 

neither. The elastic, gravitational and kinetic energy of each particle is calculated at each 

time step. The internal energy is set equal to the total elastic energy of the particles and 

the kinetic energy that is in excess of the center of mass kinetic energy. The total energy 

is the total gravitational potential energy and the center of mass kinetic energy. Particles 

form structures if they are closer than the shear-length. If their separation exceeds the 

shear-length then the spring is broken. Figure 48 shows the graphical user interface (GUI) 

of the particle simulation. The upper left portion of the GUI has buttons and sliders to set 

factors that describe particle characteristics and simulation controls. On the middle left 

are the controls for initial conditions and the environment, e.g., gravity on/off, etc. The 

lower left are user selectable visualization settings. These settings allow for the 

visualization of the connections between particles, indication of particle-to-particle 

collisions, etc. The right side provides run-time plots and update of data. Included in 

these plots are the kinetic and dynamic energy in the spring system as well as EBS related 

metrics of then number of structures, the size of structures, and the normalized mean 

degree of the graph associated with the system. The center of the GUI is NetLogo "World 



View" which is the EBS context of observation. The dots are the particles, i.e., the actors 

of interest. The background is composed of NetLogo patches. A patch is the unit of 

spatial measure for the system and is in this case a 100 x 100 patch area. Just like the 

turtles that are the agents in a NetLogo simulation, each patch is an agent as well but 

unable to move like the turtles. The patches along the borders have traits that the particles 

recognize. Particles bounce off the borders in elastic collision. The buttons along the 

bottom are intended to allow the user to explore the placement of barriers within the 

environment or to add particles interactively. 

Actor factors 
& 
Simulation 
Controls and 
Setup 

Simulation 
Conditions/ 
Environment 

'Ulnfffli WJ™ 

Runtime Data and 
System State 

Context of 
Observation 

Visualization 
Options 

Figure 48. The Particle Simulation GUI 
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5.2.2 Flocking NetLogo Model 

The flocking simulation is somewhat based on the flocking of birds where birds 

of different colors prefer grouping together. In this model, the flocks that emerge appear 

to identify a de facto leader. This leader is simply the only bird in a flock that does not 

see another bird to follow. In this way, a leader "emerges". In a sense, there are not any 

leaders: only birds that are not following. 

These rules affect not only a bird's heading but its speed as well. Each bird tries 

to move at the average speed of its flock mates but even this speed can be statistically 

varied. (This can be thought of as adding noise to the speed property.) 

Figure 49. The Flocking Simulation GUI 
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5.2.3 Stigmergy NetLogo Model 

The stigmergy simulation represents the considerations addressed in Section 

5.1.3. As can be seen in Figure 50, the simulation allows factors to be varied and 

scenarios to be run. Since the patches are actors of interest in this simulation, the 

resulting link lists are much larger than those of the previous simulations are. The 

computation of the structures and the normalized mean degree are very computationally 

intensive with matrices of this scale. Instead, system status information is plotted in real

time, showing remaining food and the percentage of ants carrying food. The link lists 

produced for analysis implement the concept of the super-node described in Section 0. 

Figure 50. The Stigmergy Simulation GUI 
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5.3 EBS Metrics in MATLAB 

Appendix B contains MATLAB code listings for all the analysis functions 

developed for this study. The following sections detail the algorithms and use of the 

three EBS metrics. In each case, the basis for the measurements are related to the 

representation of the interacting entities in the form of graph vertices and edges. To 

facilitate that, the simulations produce output of relations in the form of an adjacency, or 

link list as described previously in Section 5.2. This link list is used to create the graph 

adjacency matrix of the form described in Section 3.2. The MATLAB function 

make_adjacency_lists .m extracts the link list from data files created in NetLogo 

and the function list2mat. m produces the corresponding adjacency matrix. At the 

MATLAB command line, this looks like 

>> SAM = list2mat(LL) 

Where LL is the link list and SAM is the resulting adjacency matrix. 

5.3.1 Information Flow (Characteristic Path Length) 

The argument for use of the characteristic path length (CPL) as a measure 

associated with information flow in an EBS was made in Section 4.2 . To compute the 

CPL for a graph given by an adjacency matrix, two functions are used: 

pat hlength. m returns a matrix of the distances between vertices in a graph, 

charpath. m finds the mean distance (path length) between every pair of 

vertices. 

The MATLAB command line expression looks like 

>> charpath(pathlength(SAM)) 
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A characteristic of the adjacency matrix is that the distance between any pair of 

vertices can be found by raising the matrix to a power corresponding to the distance. For 

example, the tree graph shown in Figure 15 of Section 3.2 has easy to recognize paths. 

Its adjacency matrix is given by, 

0 1 0 0 0 0 
1 0 1 0 1 0 
0 1 0 0 0 0 
0 0 0 0 1 0 
0 1 0 1 0 1 
0 0 0 0 1 0 

The matrix A shows the paths of length 1 between every pair of vertices. Squaring 

A will show the paths of length 2 between pairs of vertices and the diagonals show the 

degree of a vertex (if the graph is undirected.) In general, raising a graph to the power 

will identify the number of distinct paths of length k between vertices. 

10 10 10 
0 3 0 1 0 1 
10 10 10 
0 10 10 1 
10 10 3 0 
0 10 10 1 

(37) 

If we let S/c = A + A2 + ... Ak, the first k for which the (i, j) entry in S* is the count 

of the paths from vertex i to vertex j in k steps or less. If the entry is 0, then there is no 

path of length k between the two. 

The function pathlength. m computes the shortest path lengths between all 

vertices in a graph by incrementally raising the adjacency matrix of degree n to 

increasing powers until either there are no elements equal to zero, or the (n-l)st power 
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has been reached. It then records the first power at which the (i,j) element became non

zero. Self-loops are not allowed. For the example used here, the function is applied as, 

» pathlength(A) 

Which produces the output 

ans = 

Inf 1 2 3 2 3 
1 Inf 1 2 1 2 
2 1 Inf 3 2 3 
3 2 3 Inf 1 2 
2 1 2 1 Inf 1 
3 2 3 2 1 Inf 

This result is the minimum path length between any pair of vertices. This is called 

a distance matrix. The function charpath. m operates on the distance matrix to produce 

the average shortest path length, i.e., the global mean of the distance matrix, excluding 

any Infs. The function includes some other graph statistics as well that are not used in 

this discussion. To compute the flow metric for this study, i.e., the CPL, given any 

adjacency matrix A, the CPL is computed using the MATLAB functions developed here 

as 

>> CPL = charpath(pathlength(A)) 

For the example of Figure 15 of Section 3.2 , CPL = 1.9333. 

5.3.2 Complexity (Global Clustering Coefficient) 

In Section 4.3 we described the foundation for the choice of the global clustering 

coefficient (GCC) as a measure of complexity of an EBS. Recall that the clustering 

coefficient for each node in a simple graph is given by the ratio of the number of triangles 

that can be formed on that node and the number of triads in which that node is central. As 
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we discussed in the previous section, we know that the square of A will give the number 

of paths of length 2 and raising it to the third power will give the number of paths of 

length 3. Again, we look to another practical quality of the adjacency matrix, specifically 

that we can find the number of triangles with a vertex v in the center by looking at the 

diagonal elements of A3 as these will be the paths of length 3 that start and stop on vertex 

v. We have to divide that result by 2 since the triangles are counted both directions. The 

number of triads with v central is given by d(v)*(d(v)-l)/2 where d(v) is the degree of v. 

The clustering coefficient for the graph is the average of the clustering coefficients for 

those nodes which have a clustering coefficient, i.e., those with d(v)>l. 

The MATLAB function that computes the clustering coefficient is 

clusco. m which computes the clustering coefficient from the adjacency matrix of a 

simple graph. It returns both the clustering coefficient of each individual vertex as well as 

the global clustering coefficient for the graph. 

The MATLAB code for clusco. m can be seen in Appendix B: MATLAB Code 

& Scripts. Referring to the middle graph of Figure 35 in Section 4.3, the corresponding 

adjacency matrix is 

0 1 0 0 1 
1 0 1 0 1 
0 1 0 1 1 
0 0 1 0 1 
1 1 1 1 0 

The clustering coefficients for this graph are computed with 

>> [eg,cn]=clusco(A) 

which returns 

eg = 0.7667 which is the GCC for A, and 
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cn = 1.0000 0.6667 0.6667 1.0000 0.5000 

which is the clustering coefficient at each vertex in A. 

Clustering coefficient is defined for simple graphs only. The function clusco. m 

will take a directed graph and convert it to a simple graph, i.e., undirected and no self-

loops. 

5.3.3 Organization (Shannon Entropy) 

In Section 4.4 we presented the foundational argument for the use of Shannon 

Information Theory, i.e., Shannon Entropy as an information measure of organizational 

uncertainty in the EBS. Recall that computing the form of Shannon's expression used as 

the entropy metric (Equation 35) requires observations of the states accessible to the 

system and the determination of the probability of finding the system in each of those 

states. This is accomplished parametrically from the simulation of a system and making 

repeated runs with varying initial conditions. At each time-step of the simulation, the 

probability of each observed state is estimated by counting the number of times that state 

was observed. 

Whereas Section 4.4 addressed the states of the system as a gridding of the 2D 

context of observation, it is incumbent on the simulationist or systems engineer to specify 

what constitutes the system states. Since in practicality the system states are dependent on 

the nature of the system and the intent of the study of that system, the implementation of 

the entropy metric in this study is generalized so that any state representation can be used 

for the computations. In particular, the system states monitored in the simulations, 

namely structure count and normalized mean degree, form a convenient state vector that 
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is independent of some problematic system characteristics. For example, in the flocking 

simulation, flocks are the structure of interest and the richness of their interaction is 

represented in the normalized mean degree. This is invariant with respect to the direction 

(or orientation) of the flock or the particular position of the flock. This seems to be a 

reasonable assumption given that a flock may change speeds and directions many times 

during observation. However, if positions and orientations were the characteristics of 

interest, the same MATLAB code developed here could be used. In that case, the state 

vector would consist of such measurements such as the spatial positions of each bird, the 

orientation of the flock, the number of birds in a flock, etc. The gridding technique 

described in Section 4.4 is perfectly acceptable to the MATLAB code developed here; the 

computation of the entropy metric is applicable to any form of state representation. As 

described in Section 5.2, the simulations produce a real-time readout of system state 

defined by structure count and normalized mean degree. For this study, the system state 

vector is of the form given by 

S(t) = [C(t), Dn(t)] 

where, 

C(t) is the number of graph components (EBS structures) at time t 

Dn(t) is the normalized mean degree at time t of the system 

considering all the actors so that Dn(t) = mean(d(t))/(N-l) 

where N is the number of Actors (N-l is the maximum degree of a vertex if the system 

were fully connected.) 

The MATLAB functions that enable this analysis consist of the following 

principal functions. Note that there may be other functions called in these functions that 
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aren't necessarily identified here. Please refer to Appendix B: MATLAB Code & Scripts. 

ebssv. m creates an EBS state vector of the form S(t) = [C(t), Dn(t)] and 

statecountx. m examines all states of the system in an experiment, comparing each to 

each other to count how many unique states are in the system and how many times they 

occur, f indstatex. m is a helper function (see Appendix B: MATLAB Code & 

Scripts.) N is the set of row vector observations of the form: 

N(l,:) = svl sv2 ... svm — first observation 
N(2,:) = svl sv2 ... svm — second observation 
N(n,:) = svl sv2 ... svm — nth observation 

shannonx. m takes a matrix N as one observation set of states that result from Monte 

Carlo experiments, typically for a given time step in a simulation. N is of the form 

N(r,c,s) where r and c are the rows and columns identifying each state vector of the state 

matrix and s is the sample index. This function depends on statecountx . m. 

The following command line examples describe the four steps for computing the 

estimate of the Shannon Entropy. The test data set is the result of a Monte Carlo approach 

where the simulation is run repeatedly. The example shown here is for 10 runs, i.e., 10 

different random seeds each with 1000 time-steps. 

Step 1: Get the filename and the data. 

>> TMCPS = 'C:\Users\Thomas\Emergent Intelligent 
Behavior\Dissertation\Experiments\Particle 
System\Particles_12 0817x Test-MCP-shannon-table.csv A 

Step 2: Get the adjacency lists for each run. 

>> TMCPSal= make_adjacency_lists(TMCPS,1:10); 
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Step 3: get the state vector matrices for all runs. Keep them in a cell array for easy access. 

» for n=l:10;TMCPSsv{n}=EBSSV(TMCPSal,1:1000,n);end 

The state vector matrix for just one run, in this case the first random seed rim can be 
found with the following: 

>> TMCPSsvl=EBSSV(TMCPSal, 1: 1000, 1) ; 

Step 4: Compute the Shannon Entropy for each run. 

>> for n = 1:10; TMCPSse(n)=shannonx(TMCPSsv{n});end 

5.4 Preliminary Analysis 

In this preliminary analysis of the systems, we are simply exploring the nature of 

the systems as they evolve in order to gain insight into what might be expected when 

simulation factors are varied. System behavior is easy to observe given the visualization 

incorporated into the simulations. A useful observation is that since it appears that the 

systems are increasingly non-random as constraint increases, a comparison of the metrics 

f Q, and S may be made between the minimally constrained and constrained systems, 

i.e., between non-emergent and emergent forms of the systems. We are particularly 

interested in inspecting the states of the different systems in the non-emergent and 

emergent forms. 

5.4.1 Preliminary Inspection of the Particle System 

To explore this conjecture in the particle simulation, we consider the EBS under 

study when the actors form random relationships. In the case of the particle system 

simulation, this would be when the particles are distributed randomly and with varied 
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values of the shear-point factor. In the particle simulation, increasing the shear-point has 

the effect of increasing the likelihood that one particle is in relation to another. As such, 

the EBS in the minimally constrained case can be considered a nearly-random graph with 

the probability of a vertex adjacent to another being dependent on the value of the shear-

point factor. The effect of increasing shear-point for a single random arrangement of 

particles in the EBS can be seen in Figure 51 where the value of shear-point is increased 

from 5 to 25. 

shear-point = 5 shear-point = 1 5 shear-point = 25 

Figure 51. The Effect of Increasing the shear-point Factor 

5.4.2 Preliminary Inspection of the Flocking System 

Similar to the preliminary analysis of the particle system, we identify the actors of 

the flocking system as the birds and assess the effect of increasing constraint on the 

system. In this case, the constraint factor(s) that are varied are those that affect the birds' 

ability to maneuver. As Reynold's behaviors consider alignment (max-align-turn), 

cohesion (max-cohere-turn), and avoidance (max-separate-turn), we construct a scenario 

with these factors maximized to create the minimally constrained case. In this manner, 

the birds have the most variety available to them. Note that this is not just the random 
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flight of birds, but the system allowed the greatest variety. To achieve something nearly 

random, we can constrain the factors governing the birds' behaviors such that one bird 

cannot influence another. Figure 52 shows a screen shot of the minimally constrained 

system while Figure 53 shows the system with max-align-turn, max-cohere-turn, and 

max-separate-turn set to 0 to produce a nearly random system. A factorized study of the 

factors would identify combinations of values leading to specific system characteristics 

but in this study, we are only considering the presence of emergence. Therefore, to 

facilitate analysis, we consider only varying one of the factors, namely max-align-turn. 

Figure 54 shows some final configurations of the system as max-align-turn is 

progressively increased. In both Figure 52 and Figure 54, the simulation is shown with 

links between birds visible; this allows for the structure formed by the relationships to be 

observed during runtime. 

Figure 52. An Example of the Minimally Constrained Flocking System 
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Figure 53. An Example of the Nearly Random Flocking System 



With a max-align-turn = 0, 

many flocks form and break 
apart. 

As max-align-turn increases, in 
this case to 2 degrees, flocks 
become larger and fewer. Still, 
flocks are not very stable. 

At a max-align-turn = 4 
degrees, we see still fewer 
flocks with more birds. 

With a max-align-turn = 6 

degrees, we see the trend toward 
a single large flock. 

In the extreme case of max-
align-turn = 180, a tight flock 
forms quickly as birds rapidly 
adjust to maintain alignment 
with their flockmates. 

•turn in the Flocking System 
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To investigate the nature of the effect of increasing variety, we also examine 

scenarios of increasing vision; although the birds are not affected by seeing the other 

birds, the information pathways, and in a graph the edges, are present. Figure 55 shows 

three nearly random scenarios, each with the same initial conditions. In the top 

screenshot, the birds' range of vision is 5 patches. The middle is 10 and the bottom is 15. 

vision = 5 
mean degree = 0.2842 

vision = 10 
mean degree = 1.1112 

vision = 15 
mean degree = 2.4744 

Figure 55. Flocking Nearly-Random Scenarios 
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We observe that the nearly random scenario results when the values governing the 

birds' ability to align and turn are minimized, i.e., highly constrained. The minimally 

constrained system, i.e., the one with the most variety, consistently produces a single 

structure system with a normalized mean degree of 1. 

5.4.3 Preliminary Inspection of the Stigmergy System 

As was pointed out, the stigmergy system depends on indirect interactions 

between entities. Unlike the particle and flocking systems where we are mostly 

concerned with a single type of actor, the stigmergy system demonstrates information 

flow between different types of actors, namely between the ants and the patches. 

To achieve a nearly-random scenario, we set the pheromone of the ants to 0 and 

set use- nest-scent? to off. 

Figure 56. Stigmergy Nearly-Random Scenario 



166 

Figure 56 shows the nearly-random system with 152 ants. Ants cannot drop 

pheromone and so no trails can be formed. They are unable to sense the nest so they 

encounter food randomly, and take it to the nest randomly. Figure 57 shows the 

Stigmergy simulation after over 1000 time-steps in the simulation. In this nearly-random 

scenario resulting from highly constraining the system by not allowing any pheromone or 

nest scent, ants encounter food and pick it up, but they are unable to efficiently find the 

nest. As they randomly come across the nest, they deposit food, resulting in 

approximately 70% of the ants carrying food. 

In Figure 58, we show the results of a minimally constrained scenario. Here, 

variety is maximized and ants have unlimited pheromone. The presence of so much 

pheromone overwhelms any useful path formation. The resultant behavior is much like 

the nearly-random scenario with high constraint, exhibiting nearly 70% of ants carrying 

food at dynamic equilibrium. 

Figure 57. Inefficiency in the Nearly-Random Stigmergy Scenario 
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Figure 58. Minimally Constrained Stigmergy Scenario 

Setting use-nest-scent? on allows ants that have found food to efficiently return to 

the nest. About 10% of ants are carrying food since they quickly deposit it at the nest as 

shown in the top image of Figure 59. Subsequent images in Figure 59 show the effect of 

varying the amount of pheromone an ant has available to deposit on the patches. As 

pheromone is increased, ants have a greater likelihood of finding a path the food. 
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Ants Carrying Food 

100 

I 
# 
0 

Time 1220 

With use-nest-scent? on, ants return food to the 
nest more efficiently, but finding food is still 
random. Approximately 10% of ants are carrying 
food. 

Ants Carrying Food 

Time 620 

A pheromone setting of 25 allows some trail to be 
formed. About 20% of ants carry food. 

Ants Carrying Food 

1220 

With pheromone = 50, approximately 25% of ants 
are carrying food. 

Ants Carrying Food 

100 

1 

* 
0 

Time 1220 

At pheromone - 100, approximately 30% of ants 
are carrying food. 

Figure 59. Effects of Increasing Pheromone Level in the Stigmergy System 
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When the ants cannot deposit pheromone in the patches, no relationships are 

formed. No communication occurs and so no information network is established between 

the ants. Sensing the nest and allowing the formation of a trail improves the efficiency of 

the ants getting food to the nest. 

The unique nature of this stigmergy system has significant implications for the 

analysis metrics. Since the information flow is from the ants carrying food, i.e., those 

depositing pheromone to the super-node, then from the super-node to those ants who are 

following the trail, the path lengths between ants will always be either 0 or 2. The 

characteristic path length for the system will then always be between 0 and 2. Similarly, 

since all information flow is through the structure represented by the super-node, the 

global clustering coefficient will always be 0. 

5.5 Design of Experiments 

For the particle system, H1 depends on the statement of the minimally constrained 

version of the system. Given the factors associated with constraint, one way of specifying 

the minimally constrained version of this system is to consider a random placement of 

particles with a spring constant of zero. This reduces entity constraint while maintaining 

the context of the simulation. Exploratory experiments with the system when the 

damping factor is zero yields a constantly changing location of particles where the 

normalized mean degree and structure count continuously changes but maintains an 

approximate average values of 0.03 and 11 respectively. Changes in spring constant or 

rest length do not change these values. This indicates that a minimally constrained 

version of this system can be represented by a randomization of the position of the 

particles. In this case, the critical factor that affects system metrics is the shear-point as 
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was seen in Section 0. Figure 60 shows five instances of the minimally constrained case. 

Figure 61 shows the EBS relation-space state vector parameters of structure count and 

normalized mean degree for the minimally constrained case. 

Sc = 12, NMD = 0.02694 Sc = 10, NMD = 0.0302 Sc = 8, NMD = 0.03265 

Sc = 8, NMD = 0.02204 Sc = 10, NMD = 0.03102 Sc = 8, NMD = 0.02857 

Figure 60. Five Instances of the Minimally Constrained Case 
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Minimally Constrained Particle System 
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Figure 61. Structure Count and NMD for the Minimally Constrained Particle System 

Now we construct an experiment to produce data for the particle system where 

constraint is systematically increased. In this experiment, we will start the system with 

the same initial conditions and allow it to evolve until it reaches equilibrium. The fifty 

particles are randomly distributed about the context of observation. An initial random 

velocity is assigned to each particle. We will look at the system as an inherent constraint 

varies. Table 16 shows the factors for the inherently constrained particle system 

simulation and considerations for the experiment. 
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Factor Value Notes 
particle-number 50 The number of particles in the system is the same as in 

the minimally constrained case. 

spring-constant 50 The initial energy in the system is produced by the 
initial placement of the particles and the resulting 
force of the springs connecting them. 

rest-length 1 to 10 The particles will seek this length, varied from l(high 
constraint) to 10 (no constraint) 

shear-point 10 This is the distance at which a spring will break and 
release its particles. For this experiment it is held 
constant and kept small enough to reasonably reduce 
the influence of contextual constraint attributed to the 
boundaries of the context. 

damping 1 A damping value of 1 allows the entities in the system 
to interact for a longer time. 

Conditions 
damping-only yes Damping is an environmental constraint. 
gravity-only no 
neither no 
both no 
initial-condition random-md-velocity Initial state of the system is randomized both in 

particle position and velocity (high disorder to start) 

Table 16. Experiment Considerations for the Inherently Constrained Particle System 

Table 17 identifies the enumerations for the simulation runs, referred to as Test-

IC. Rest-length is the single factor that is varied. The system is allowed to evolve until 

equilibrium. Each factor value is iterated over 100 random seeds to produce 1000 

enumerations. 
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Enumerations (run number) for Test-IC 

Factor (rest-length) 

1 2 3 4 5 6 7 8 9 10 

1 1 101 201 301 401 501 601 701 801 901 

2 2 102 202 302 402 502 602 702 802 902 

3 3 103 203 303 403 503 603 703 803 903 
T3 

<D 
<D : : 
e o 

T3 
99 99 199 299 399 499 599 699 799 899 999 

C 

Qi 100 100 200 300 400 500 600 700 800 900 1000 

Table 17. Factorial Experiment for Inherent Constraint in the Particle System 

In this experiment, the inherent constraint increases as the rest-length increases. 

That is to say, when the rest-length is very small relative to the shear-point, the particles 

have more opportunity to establish relationships without breaking relation when the 

shear-point is exceeded. As the rest-length increases, there is less opportunity to move 

without exceeding the shear-point. Also, note that a particle that exceeds the shear-point 

may be freer to form bonds with other particles, but it has very little leeway in doing so. 

The intensity of constraint, Ic, for this experiment is then stated as, 

j _ rest-length 
c shear- point 

If rest-length is equal to shear-point then particles are beyond the influence of 

other particles and the Ic =1, the maximum constraint. As rest-length decreases, there is 

more variety available to the particles, i.e., the intensity of constraint is lower. 

Figure 62 shows the extremes of the rest-length influence and Figure 63 shows 
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sample system response with increasing rest-length5. By varying only the rest-length, the 

system goes from creating neatly uniform balls to non-symmetrical dragons. 

Ic = 0.9. 7 structures, NMD = 0.12163 /c = 0.2.7 structures, NMD = 0.04082 

Figure 62. Inherent Constraint - High Ic on Left, Low on Right 

1: sc = 7, NMD = 0.21959 2: sc = 7, NMD = 0.17061 3: sc = 7, NMD = 0.20245 4: sc = 6. NMD = 0.16327 5: sc = 8, NMD = 0.13878 

6: sc = 6, NMD = 0.20571 7: sc = 4. NMD = 0.15755 8: sc = 6, NMD = 0.05061 9: sc = 13 , NMD = 0.02367 10: sc = 0, NMD = 0 

Figure 63. Typical System Results for Increasing rest-length 

5 An interesting observation that is evident in the analysis of the next section as well, in running this 
simulation there appears to be a value of rest-length where the resultant structures rapidly become 
characteristically different from those of lesser rest-lengths. 
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5.5.1 Flocking System 

In Section 0 we created a nearly random scenario of the flocking system by 

reducing the factors that allow the birds to take information and act on it. We also 

considered a scenario where the variety available to the system was maximized. We 

observed the effect of increasing the value of the max-align-turn factor. For this 

experiment, we select factor values that produce satisfying flocking and vary just one 

factor, max-align-turn, while keeping others constant. Table 18 lists the considerations 

for the flocking experiment. Table 19 enumerates the runs. Each run is for 1000 time-

steps and data is collected at each time-step. 

Factor Value Notes 
population 50 The number of birds in the system is the same as in the 

minimally constrained case. 
colors 1 We limit the experiment to a single color of bird 
affinity 100 The birds have strong attraction to their color. (Since there 

is only one color this doesn't matter.) 
vision 10 Birds can see for 10 patches. 
fov 240 A good value similar to that of most real flocking birds. 
min-separation 2 Birds can get close. 
max-align-turn 0 to 24 This is the factor we choose to vary in steps of 2 
max-cohere-turn 4 
max-separate-turn 12 

seedval 1 to 10 We will run the experiment 10 times with different random 
initial conditions 

Conditions 
Vary speed? false Birds fly at a constant speed. 
Allow Leaders? false Leaders not allowed 

Table 18. Experiment Considerations for the Flocking System 
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Enumerations (run number) for Flocking Experiment 

Factor (max-align-turn) 

0 2 4 6 22 24 

"O 1 1 11 21 31 1 1 1  1 2 1  

u 
C/5 
c 

2 2 12 22 32 1 1 2  122 

o 
•o 
c 

3 3 13 23 33 1 1 3  123 
«a 

oC : 

9 9 19 29 39 1 1 9  129 

10 10 20 30 40 120 1 3 0  

Table 19. Factorial Experiment for the Constrained Flocking System 

In this experiment, the intensity of constraint decreases as the value of max-align-

turn increases, i.e., more variety is available to a bird with increasing ability to turn to 

align itself. For convenience, we state the intensity of constraint as 

/c=1"i^j <40> 

where m = max-align-turn. 

Figure 64 shows the system for the same initial conditions at 500 time-steps with 

a sampling of values for max-align-turn. Observe that the normalized mean degree 

increases as the variety in the system increases. 



177 

max-align-turn = 0 
sc = 5 

nmd = 0.04379 

max-align-turn = 4 
sc = 2 

nmd = 0.07951 

max-align-turn = 12 
sc = 2 

nmd = 0.18707 

max-align-turn = 24 
sc = 1 
= 0.23852 

Figure 64. Typical Flocking System Response to Increasing max-align-turn 

5.5.2 Stigmergy System 

As was seen in Section 0, the scenario that is most like random movements of ants 

the one with use-nest-scent? - off and pheromone = 0. In this case, no information flows 

and consequently the patches do not change state or make connections to other patches. 

To determine the HI hypothesis for the stigmergy system, we will use the minimally 

constrained version of the system and compare to higher values of pheromone with use-

nest-scent? = true. Recall Figure 59 where pheromone is increased progressively; Table 

20 shows the factors settings for the HI test. We will compare the effects of increasing 

pheromone to the case where pheromone - 0. 
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Factor Value Notes 
ants 100 The number of ants in the system is the same as 

in the minimally constrained case. 

pheromone 0-100 The amount of pheromone available to each ant 
is increased with each experiment from 0 to 100 
in increments of 10. 

use-nest-scent? on The ants will follow the scent of the nest once 
they pick up food. 

diffusion-rate 5 Pheromone diffuses to surrounding patches. 
evaporation-rate 10 A faster rate of evaporation is used. 

Conditions 
endless-food? on Food supply does not decrease 

Table 20. Experiment Considerations for the Constrained Stigmergy System 

Table 21 records the enumerations for the simulation runs, referred to as Test-SC. 

The only factor that is varied is pheromone. The system is run for a warm-up period of 

500 time-steps. This allows for all ants to leave the nest and for trails to be established. 

With endless food, this sustained trail is considered an equilibrium condition. Each factor 

value is repeated for 100 random seeds to produce 1000 enumerations. 
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Enumerations (run number) for Stigmergy Experiment 

Factor (pheromone) 

10 20 30 40 50 60 70 80 90 100 

1 1 1 0 1  201 301 401 5 0 1  6 0 1  701 801 901 

c/i 

£ 
2 2 102 202 302 402 502 602 702 802 902 

o ~a 
s 3 3 103 203 303 403 503 603 703 803 903 

Qi 
: 

99 99 199 299 399 499 599 699 799 899 999 

100 100 200 300 400 500 600 700 800 900 1000 

Table 21. Factorial Experiment for the Constrained Stigmergy System 

The intensity of constraint, Ic for this experiment is simply, 

pheromone 
1( = 1 (A 1 \ 

max(pheromone) y j 

When pheromone is large, the Ic is small. When pheromone = mctx(pheromone) 

in the experiment, the Ic is minimized and indicated as 0. Figure 56, Figure 57, and 

Figure 59 in Section 0 showed the effect of increasing the value of pheromone. 
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5.6 Analysis and Results 

As described in Chapter 4, we look to see how the metrics associated with the 

definition of the system scenarios that produce nearly-random behavior compare to the 

metrics when the system is constrained to exhibit emergence. For the HI analysis, where 

we seek to discriminate emergence from non-emergence, we use a t-test with an alpha of 

0.05 on each of the metrics and using MATLAB's statistical analysis capabilities. To 

examine the metrics' ability to differentiate the three systems, i.e., the H2 analysis, we 

examine the data across all three metrics using a one-way analysis of variance (ANOVA). 

5.6.1 Presence of Emergence in the Particle System - HI 

Table 22, Table 23, and Table 24 present the results of the t-test against data 

produced by the simulation experiment. The mean of the nearly-random scenario is 

shown in the upper left of the tables. We observe that for each of the three metrics the 

null-hypothesis Hoi, that the system in emergence is unrecognizable from when it is not, 

is strongly rejected. 

In the case of the flow metric, i.e., the characteristic path length (CPL), we report 

p-values = 0. Reporting p-values of 0 is indicating that we would not observe the 

minimally constrained value in the data. However, when we examine this data, which is 

measured when the system is in equilibrium, we see consistent formation of structure 

with the system always producing the same result for strong constraints. 
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Ac = 1.8354 

Ic p-value 95% confidence interval Ho (accept/reject) 
0.1 0 1 1 reject 
0.2 0 1 1 reject 
0.3 0 1 1 reject 
0.4 0 1 1 reject 
0.5 0 0.9999 1.0003 reject 
0.6 0 0.9998 1.0010 reject 
0.7 0 1.3322 1.3786 reject 
0.8 0 2.8614 3.2885 reject 
0.9 0 2.3638 2.6494 reject 

Table 22. HI Results for the Flow Metric (CPL) in the Particle System 

Figure 65 is a box plot showing the minimally constrained results for CPL and the 

data for the system as the factor rest-length ranges from 1 to 10. Here we can see that 

between the 8th and 9th increments, i.e., 7 < rest-length < 8, a transition occurs that is 

characteristically different from when the constraint was higher. We believe that this can 

be attributed to the fundamental physical characteristic of the particle simulation since the 

rest-length in this region is approaching the shear-point value, when exceeded will yield 

no path between particles (see the last two images of Figure 63). 

Figure 66 shows typical plots for three values of rest-length. The top plot is lower 

constraint while the bottom is highest. Here we can see that when the difference between 

shear-point and rest-length is greater (top), there is more opportunity for the system to 

share information and form structures quicker. In the top plot, stability is achieved by 

about time-step 300, while in the more constrained systems it is not achieved until around 

500. 
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Figure 65. Comparing Flow (CPL) of the Particle System as Constraint Increases 
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Figure 66. Comparing CPL at rest-length = 4 (top), 7, and 9 (bottom). 
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Figure 67 plots the 1- p-value for CPL in the region where the system transitions 

to stability. Here we can clearly see when the null-hypothesis begins to be rejected and 

the stable structure emerges. 

1 

0 9 8  

0 96 

0 9 4  
cx 

0 9 2  

0 9 

0 88 

0 86 
0 20 4 0 60 80 100 120 

tick 

Figure 67. Plot of 1- p-value for CPL 

Similar results are recorded for the complexity metric of global clustering 

coefficient (GCC). Figure 68 shows the GCC for the experiment as Ic increases in 

columns 1 through 10. Observe that there is a transition point between 9 and 10 where 

the system's complexity would likely be similar to the nearly-random complexity if data 

were taken at 8 < rest-length < 9. Column 11 is the data for the nearly random scenario. 

Region where HO rejection, 

I.e., structure begins to emerge 



184 

^MC = 0.2553 

Ic p-value 95% confidence interval Ho (accept/reject) 
0.1 4.0068e-011 0.8735 0.9545 reject 
0.2 0 0.9043 0.9233 reject 
0.3 0 0.8958 0.9142 reject 
0.4 0 0.8996 0.9188 reject 
0.5 0 0.8868 0.9063 reject 
0.6 0 0.8808 0.9021 reject 
0.7 0 0.6580 0.6841 reject 
0.8 0 0.3729 0.4012 reject 
0.9 0 0.1115 0.1357 reject 

Table 23. HI Results for the Complexity Metric in the Particle System 
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Figure 68. Comparing Complexity (GCC) of the Nearly-Random Particle System to the System 
as Inherent Constraint Increases 

3 4 5 6 7 8 

1-10 - increasing ic. 11 2 nearly-random scenario 

The data analysis for the Shannon Entropy (SE) is shown in Table 24 and in 

Figure 69. Notice how this metric reveals a condition in the system where there is a 
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sudden drop in entropy after a period of increasing entropy. The SE for the nearly-

random scenario is in column 11 of the plot. 

5^=0.8118 

Ic p-value 95% confidence interval Ho (accept/reject) 
0.9 3.2311e-009 0.4094 0.4829 reject 
0.8 3.3760e-011 0.3974 0.4445 reject 
0.7 9.9117e-008 0.4278 0.5271 reject 
0.6 5.1240e-008 0.4453 0.5340 reject 
0.5 1.5253e-007 0.4969 0.5820 reject 
0.4 4.0634e-005 0.5697 0.6829 reject 
0.3 0.0015 0.6366 0.7541 reject 
0.2 7.0165e-010 0.5100 0.5571 reject 
0.1 2.3690e-009 0.5023 0.5571 reject 

Table 24. HI Results for the Entropy Metric in the Particle System 
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Figure 69. Comparing Entropy (SE) in the Particle System as Constraint Increases 



186 

5.6.2 Presence of Emergence in the Flocking System - HI 

As with the particle system data, we make a similar analysis of the flocking 

system, comparing the nearly-random scenario to the emergence scenario. Table 25 

summarizes the t-test results. Here we can see that Hoi is rejected when Ic < 0.75 but not 

for large values. This is not unexpected since the preliminary analysis suggested that 

when the actors in the flocking system were highly constrained the system appeared to 

exhibit random-like behavior. 

Lc =1-9272 

Ic p-value 95% confidence interval Ho (accept/reject) 
0 0.0023 2.7876 4.7959 reject 
0.08 4.8490e-006 3.3794 4.2698 reject 
0.16 0.0062 2.5508 4.7422 reject 
0.25 3.9435e-005 2.9513 3.8465 reject 
0.33 4.8404e-004 2.7015 3.8490 reject 
0.42 2.7555e-005 2.6668 3.2728 reject 
0.5 0.0239 2.1500 4.3895 reject 
0.58 0.0052 2.5747 4.6722 reject 
0.67 0.0149 2.3022 4.5963 reject 
0.75 0.0013 2.6897 4.1697 reject 
0.83 0.0641 1.9015 2.6632 accept 
0.92 0.3849 1.7110 2.4363 accept 
1 0.2651 1.6745 2.0059 accept 

Table 25. HI Results for the Flow Metric in the Flocking System 

Figure 70 is a box plot of the flow metric, CPL, for the flocking system as Ic 

increases. CPL for the nearly-random scenario is in column 14. Here it can be seen that 

the system becomes more random-like in a transition between columns 10 and 11, 

corresponding to Ic of 0.75 and 0.83. Figure 71 shows the value of the flow metric over 

1000 time-steps at three different values of max-align-turn. Here the random-like 

behavior of the highly constrained case (bottom plot) is evident. 
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Figure 70. Comparing Flow (CPL) of the Flocking System as Constraint Increases 
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Figure 71. Comparing CPL for Varying Constraint in the Flocking System 
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Table 26 and Figure 72 show the results of the statistical analysis for the 

complexity metric, i.e., GCC. For the experiment here, the Hoi for the GCC is rejected. 

QMC = 0.252f 

Ic p-value 95% confidence interval Ho (accept/reject) 
0 3.2965e-012 0.6810 0.7228 reject 
0.08 1.1680e-013 0.6931 0.7223 reject 
0.16 1.3505e-012 0.6967 0.7357 reject 
0.25 2.4269e-013 0.6896 0.7211 reject 
0.33 2.9932e-013 0.6874 0.7195 reject 
0.42 1.1418e-012 0.7046 0.7436 reject 
0.5 5.3948e-010 0.6615 0.7348 reject 
0.58 4.3183e-012 0.6710 0.7131 reject 
0.67 2.7115e-010 0.6465 0.7115 reject 
0.75 9.6625e-010 0.6163 0.6863 reject 
0.83 1.7550e-009 0.6003 0.6724 reject 
0.92 2.6812e-007 0.4465 0.5242 reject 
1.0 8.9379e-005 0.3421 0.4336 reject 

Table 26. HI Results for the Complexity Metric in the Flocking System 
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Figure 72. Comparing Global Clustering Coefficient (Q) as Constraint Increases 

Figure 73 shows the progression of GCC over 1000 time-steps of the simulation. 

Similarly to the flow metric, we observe random-like behavior at higher constraint. 
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Figure 73. Comparing GCC at Varying Constraint in the Flocking System 

Table 27 and Figure 74 present the results of the t-test for the organization metric 

SE. Column 14 of the box plot of Figure 74 shows results for the nearly-random scenario. 

For the experiment, the null-hypothesis is rejected. 
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Swc= 0.9452 

Ic p-value 95% confidence interval Ho (accept/reject) 
0 1.0173e-004 0.6913 0.8212 reject 
0.08 5.1353e-005 0.7112 0.8232 reject 
0.16 2.9789e-004 0.6928 0.8364 reject 
0.25 1.9269e-005 0.7467 0.8331 reject 
0.33 1.3928e-006 0.7450 0.8123 reject 
0.42 1.1165e-005 0.7796 0.8479 reject 
0.5 8.0970e-004 0.7259 0.8638 reject 
0.58 2.6657e-004 0.7393 0.8552 reject 
0.67 3.5028e-004 0.7865 0.8782 reject 
0.75 3.3297e-006 0.7955 0.8503 reject 
0.83 4.7705e-009 0.8101 0.8358 reject 
0.92 3.2655e-010 0.7930 0.8150 reject 
1.0 5.6393e-011 0.7524 0.7755 reject 

Table 27. HI Results for the Entropy Metric in the Flocking System 
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Figure 74. Comparing Entropy (S) of the Flocking System as max-align-turn Increases 
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1-13 = increasing Ic 14 = nearly-random scenario 
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5.6.3 Presence of Emergence in the Stigmergy System - HI 

As has been discussed, the nature of the stigmergy system is such that when no 

pheromone can be deposited, no communication between actors can occur. In this 

situation, / = 0 and Q = 0 . The results of the t-test on the stigmergy simulation for the 

flow and organization metrics are shown in Table 28 and Table 29 respectively. 
i 

o
 

II 

Ic p-value 95% confidence interval Ho (accept/reject) 
1.0 4.0604e-007 1.0666 1.5188 reject 
0.9 3.9655e-009 1.4763 1.8153 reject 
0.8 0 1.8354 1.8848 reject 
0.7 0 1.8714 1.9059 reject 
0.6 0 1.9014 1.9268 reject 
0.5 0 1.9239 1.9314 reject 
0.4 0 1.9371 1.9427 reject 
0.3 0 1.9402 1.9467 reject 
0.2 0 1.9518 1.9542 reject 
0.1 0 1.9513 1.9544 reject 

Table 28. HI Results for the Flow Metric in the Stigmergy System 

SMC =0.9977 

Ic p-value 95% confidence interval Ho (accept/reject) 
1.0 9.6777e-011 0.4892 0.5538 reject 
0.9 3.1467e-011 0.5385 0.5903 reject 
0.8 8.3307e-011 0.5828 0.6347 reject 
0.7 7.1815e-011 0.6067 0.6549 reject 
0.6 9.3517e-012 0.6205 0.6579 reject 
0.5 1.7504e-011 0.6384 0.6765 reject 
0.4 1.9224e-010 0.6684 0.7134 reject 
0.3 2.8457e-010 0.6867 0.7310 reject 
0.2 2.1604e-012 0.7104 0.7349 reject 
0.1 2.8332e-010 0.6937 0.7369 reject 

Table 29. HI Results for the Entropy Metric in the Stigmergy System 
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The plot shown in Figure 75 shows the change in CPL for a pheromone level of 

70 during the first 600 time-steps of one simulation run. Figure 76 shows how the CPL 

changes as pheromone increases. The first approximate 100 time-steps correspond to the 

time it takes the ants to move from the nest to the food. The increasing value of 

pheromone supports increasingly larger patch structures. With smaller pheromone values, 

a frequency of increasing and decreasing CPL can be seen as in the top plot of Figure 76. 

Here, ants rapidly deplete their pheromone before new ants arrive and relationships are 

quickly established but then broken. 

_j 
Q. O 

0 6  
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Figure 75. CPL Plot for the First 600 Time-steps at pheromone = 70 
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Figure 76. CPL in the Stigmergy System as pheromone Increases 

Figure 77 shows how increasing Ic affects CPL. 
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Figure 77. Comparing Flow in the Stigmergy System as Ic Increases 



195 

1 

09 

0 8  

CO 

07 

0 6  

0 5 

Figure 78. Comparing Entropy of the Stigmergy System as Ic Increases 

5.6.4 Discerning the Three Systems - H2 

Recall from Section 0, that the Ho2 is that the three EBS in this study are 

indistinguishable by the measures. The alternative hypothesis Hi2 is that the metrics can 

distinguish them. 

We look at the results of the three metrics across the three systems when they are 

in equilibrium and examine the three metrics for each of the three simulations using a 

one-way analysis of variance (ANOVA) where the null hypothesis is that all samples are 

drawn from populations with the same mean and thus indistinguishable. 

The ANOVA results for the flow metric (CPL) is shown in Figure 79 with 

summary statistics in Table 30. 

early-random = 0.9977 

2 3 4 5 6 7 8 9  1 0  

1 = nearly-random scenario, 2-11 = increasing Ic 
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6 

5 

4 

3 

2 

1 

Source SS df MS F 

Columns 24.5015 2.0000 12.2507 16.9594 

Error 19.5036 27.0000 0.7224 

Total 44.0050 29.0000 

p-value 1.6954e-005 

Particles Flocking Stigmergy 

mean 1.8051 3.7918 1.9529 

Table 30. ANOVA Results for CPL 

+ 

§ 
§ " -

I • » 
Particles Flocking Stigmergy 

Figure 79. CPL for Each System in Emergence 

We can see that the F-statistic is larger than 1 and the p-value is very small, thus 

we reject Ho2 and surmise that the three systems are not indistinguishable by the CPL. 

However, the ANOVA test essentially says the three are not the same but we observe in 
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Figure 79 that the mean for Stigmergy is within the upper quartile of the data for 

Particles. We examine just those two and obtain the plot shown in Figure 80. An 

ANOVA analysis here yields p = 0.306 and we conclude that the Ho2 hypothesis is 

accepted, i.e., the CPL is not able to discern Particles from Stigmergy in this case. 

a. o 

Particles Stigmergy 

Figure 80. CPL for Particles & Stigmergy. 

Similar ANOVA analysis is performed for the complexity metric (GCC). The 

results are shown in Figure 81 and Table 31. Here we see that the F-statistic is very much 

larger than 1 and the p-value is 0, thus we reject Ho2 and conclude that the systems are 

distinguishable by the GCC. 
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Figure 81. GCC for Each System in Emergence 

Source SS df MS F 

Columns 4.577 2.0000 2.288 1691.6 

Error 0.03653 27.0000 0.001353 

Total 4.613 29.0000 

p-value 0 

Particles Flocking Stigmergy 

mean 0.9140 0.7019 0 

Table 31. ANOVA Results for GCC 

Figure 82 and Table 32 present the results of the ANOVA analysis for the 

organization metric SE. We observe an F-statistic larger than 1 and a p-value that is very 

near 0 and thus reject H02. 
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Source SS df MS F 

Columns 0.5676 2.0000 0.2838 72.1104 

Error 0.1063 27.0000 0.0039 

Total 0.6739 29.0000 

p-value 1.4805e-011 

Particles Flocking Stigmergy 

mean 0.4461 0.7563 0.7153 

Table 32. ANOVA Results for SE 

Particles Flocking Stigmetgy 

Figure 82. SE for Each System in Emergence 
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However, similar to the analysis between the Particle and Stigmergy with the 

CPL, here we see that mean of Stigmergy falls within the lower quartile of Flocking. 

Comparing just those two, we see the plot shown in Figure 83 we get a p = 0.1923 and 

must accept the null hypothesis, i.e., SE does not discern Flocking and Stigmergy. 

w or 

Flocking Stigmergy 

Figure 83. SE for Flocking and Stigmergy 
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CHAPTER 6 

CONCLUSIONS 

This study presented a workable definition of emergence couched in information 

flow and relationships between entities. The definition emphasized the description of 

system components in a way that is useful to the modeler of systems that exhibit 

emergence phenomena. The ambiguities often associated with agent-based modeling 

terminology were reduced by treating ABM as a programming method and defining a 

language for EBS based on the concepts of entities, actors, objects, etc. These concepts 

readily translated to the implementation of some sample simulations that exhibit 

emergence. It offered a classification scheme (taxonomy) for EBS based on the type of 

information feedback predominant in a system The three simulations illustrated three 

system types according to the defined taxonomy, namely Type lb (particles), Type 2a 

(flocking), and Type 3 (stigmergy). Beyond just illustrating the EBS type according to 

the taxonomy, each simulation demonstrated a particular interesting aspect of information 

flow. It is important to note that these are but three examples of many varied systems 

where emergence is commonly recognized and are in no way intended to be conclusive or 

complete with regard to representing emergent phenomena. The particle simulation was 

developed as an example of information flow that is direct between entities and where the 

information flow is always bidirectional. The flocking simulation demonstrated 

information flow that at times is directional and at other times bidirectional but where the 

behavior of each entity is not related to direct interactions as in the particles, but is based 

instead on each entity's sensing of those within its sensorium. The stigmergy simulation 

demonstrated a system where the flow of information between entities is intermediated 
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through entities comprising the environment. Whereas some may consider the flocking 

system as stigmergic as well, we observe a key distinction between the flocking system 

and the stigmergy system used here. In the flocking system, information is shared 

between similar actors. In the stigmergy system, information is shared between actors 

(ants) through an intermediary object (patches) different from the perceived actors. We 

believe that this is more in keeping with the definition of stigmergy offered by Grasse' 

and is somewhat a different perspective from some other works that would likely 

consider flocking simulations as stigmergic (Burbeck, 2004-2007). 

Three metrics based on measures related to: 1) paths of information flow, 2) 

relative complexity, and 3) organization of the system, were explored within each of the 

simulated EBS. These metrics were developed around ideas based in graph theory and 

information entropy and the results suggest that emergence may be quantifiable in 

simulations of EBS. 

By identifying the EBS as a distinct class of systems with unique modeling 

requirements, this research, through the definitions put forth, the interpretation and 

implementation of simulations based on those definitions, and the system metrics 

developed, points to a general method for measuring emergence in simulations of 

emergent behavior systems built from an entity-based perspective. Description 

ambiguities arising from too much dependence on agent formalisms are avoided by 

considering agents not as the fundamental components of an EBS but rather as an 

implementation paradigm for constructing the entities of the EBS. The approach 

demonstrated in this study allows the EBS modeler to describe the EBS in terms like 

actor, object, and structure, each with clearly definable roles. 
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6.1 Suggested Near-Term Applications of this Work 

Although emergent phenomena has been observed throughout history, advances 

in computing technology now make possible the simulation of systems formed of many 

interacting entities from which complex spatial and temporal patterns and behaviors 

emerge. Such Emergent Behavior Systems present unique challenges to the modeling and 

simulation community. 

It is hoped that this research will stimulate further interest within the modeling 

and simulation community to exert leadership concerning EBS by 1) attempting to 

resolve the ambiguities and vagaries resulting from the heretofore unrecognized 

commonalities across varied problem domains, and 2) supporting a more generalized 

approach to the modeling of systems where emergence is of interest. In this way, it is 

hoped that through computer simulation we may come to a greater scientific 

understanding of the phenomena of emergence. 

An initial step in this direction is offered here in the beginnings of an EBS 

Lexicon. Much remains to be done to better develop the working vernacular that will lead 

to axiomatic representation of emergent phenomena, but we believe this effort is a good 

start. Continuing efforts will no doubt produce axiomatic definitions based on ideas from 

statistical mechanics, complexity, and information sciences. As computing capabilities 

continue to increase rapidly, simulation seems poised to provide a virtual laboratory 

where arbitrary system parameters can be represented and measured; as such, modeling 

and simulation will serve as a kind of Petri dish to cultivate and study emergent 

phenomena. Progress in simulation science will provide the needed discipline and 

consistent forms of specification to achieve greater understanding of emergent 

phenomena and the modeling, analysis, and design of Emergent Behavior Systems. 
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6.2 Observations and Areas for Continued Research 

This has been an arduous study. Much like the nature of emergence itself, the 

beginning was very broad and high-level, then diving deep into the representation of 

interactions between entities, and returning again to the surface to better understand the 

manifestation of phenomena of meso-level components at the macro-level. This study is 

foundational and provides a starting point for a great deal of further research. The 

following sections present some additional thoughts that occurred during the conduct of 

the study as well as some suggested departure points for additional research. 

6.2.1 EBS Relationships to Small World Networks 

In their study of natural networks, Newman, Watts, and Strogatz observed that 

large random graphs have Poisson degree distributions (Newman, et al., 2002). This 

suggests that graphs that are non-random are not likely to exhibit degree distributions that 

are Poisson. This would seem to be a valid premise for addressing the detection of 

emergence such as Hypothesis HI. The approach that was taken in this study considered 

the EBS if the factors that contribute to emergence were minimized. If the EBS is really 

just a random occurrence, then it should yield something close to a random graph. If it is 

a random graph, then it should be Poisson in its degree distribution. If it is not random, 

then it will be something other than Poisson. 

The following figure shows plots of the degree distributions for each of the values 

of shear-point for the particle system EBS shown in Figure 51 of Section 0. 
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Figure 84. Plot of Degree Distributions for Figure 51 
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The Poisson distribution is defined as function 

A e f ( k , X )  =  
k\ (42) 

where 

e is the base of the natural log 

k is the number of occurrences of an event 

X is the expected value of k , i.e., the mean 

Figure 85 plots the Poisson random data generated for k = 50 samples and a mean 

A equal to each of the average degrees of Figure 84. 
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Figure 85. Poisson Distributions Generated from the Mean Degrees of Figure 84 

Just from this small sampling, it appears as if the minimally constrained EBS has 

the characteristics of a nearly-random graph. Figure 86 plots data from 100 simulation 

runs and compares that to the Poisson distribution. 
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Correlation 1.0000 0.9999 1.0000 0.9976 1.0000 0.9804 
Coefficient 0.9999 1.0000 0.9976 1.0000 0.9804 1.0000 

Figure 86. Comparison of the Minimally Constrained Particle System to the Poisson Distribution 

Upon inspection of the plots in Figure 86, for the three values of shear-point of 

the particle system shown, we can see that the nearly-random case is indeed similar to the 

Poisson distribution. This suggests that the nearly-random case approaches the 
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characteristics of a random graph. This would seem to support the supposition that a 

minimally constrained system should exhibit the characteristics of a random graph. 

However, when this same approach is applied to the flocking system simulation, 

we see a different result with degree distribution that is not Poisson for the nearly-random 

case. Figure 87 shows the correlation of the mean degree between some samples of the 

minimally constrained case to the Poisson distribution of the same mean. The top row is 

the test distributions for vision equal to 5, 10, and 15 patches. The bottom row is the 

corresponding Poisson distribution with same mean as the samples. Shown at the bottom 

are the p-values for testing shown for the hypothesis of no correlation. Each p-value is 

the probability of getting a correlation as large as the observed value by random chance, 

when the true correlation is zero. 
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Figure 87. Correlation of Mean Degree Distribution of the Flocking System 
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Whereas the mean degree of the particle system seems very Poisson distributed 

when minimally constrained, the flocking system does not. This observation might be 

attributable to the fact that the particle system shares information in a bidirectional 

manner as opposed to the more mixed directional and bidirectional processes of the 

flocking system. It may be that certain types of EBS demonstrate non-Poisson 

characteristics. Continued study in this area might identify additional details to refine the 

EBS taxonomy and offer a kind of validation of models of certain systems, or metrics 

applicable to the engineering of certain complex systems. 

6.2.2 The Information Flow Metric 

One reason for the choice of the characteristic path length for the information 

flow metric used in this study was that the measure of the average path length scales with 

the number of vertices. We believe that it might be more meaningful, especially when 

comparing dissimilar systems (such as the H2 analysis) to normalize the metric such that 

the average path length for the system is compared to the graph diameter given by the 

Erdos-Renyi random graph diameter estimate, 

n - ln^> 
KR ~ , , , N ln(*) 

where N is the number of vertices and k is the average of the vertices' degrees. Like the 

average path length, Der scales with the number of vertices as well. The diameter 

estimate has some interesting qualities concerning random graphs (Barabasi & Albert, 

2002): 

• If k < 1 then the graph is composed of isolated trees 

• If k > 1 then there is a giant cluster 
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• If k > ln(N) then the graph is fully connected 

It might be possible to associate these characteristics to certain types or certain 

aspects of complex systems by this normalized flow metric. 

It is envisioned that computing this metric would be as follows: As before, the 

average path length for the system is numerically determined by first generating the 

adjacency matrix for the system, and then successively raising the matrix in power either 

until there are no elements equal to zero or the n-ls> power has been reached. This results 

in a distance matrix from which the characteristic path length is computed as was done in 

this study. The normalized flow metric is then computed as 

f = —-
der 

where DER is computed using the values of N and k from the EBS. 

Figure 88 shows the normalized flow metric applied to four sample graphs. Compare this 

to Figure 34 in Section 4.2. 
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Figure 88. The Normalized Flow Metric. 

6.2.3 The Complexity Metric 

In 1976, Thomas McCabe published a technique to assess the complexity of 

software programs (McCabe, 1976). McCabe observed that a software program could be 

represented by a directed graph where the vertices represented functional blocks of the 

program and the edges represented the transitions between blocks, i.e., branches to other 

blocks of code. Representing software code in this manner is referred to as the program 

control graph. He observed that the program control graph is a strongly connected, that is 

a path exists from any arbitrary vertex, to any other arbitrary vertex (we can also say that 

a vertex is reachable from any other vertex). McCabe's complexity relates to the 

number of control paths through a program and is similar to the clustering coefficient 

applied in this study. This is likely relatable to the ideas of local connectivity and 
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hierarchical linkages (Waters, 2006) and (Berge, 2001). 

6.2.4 The Entropy Metric 

Although Parunak and Brueckner identified the Shannon Entropy of a multi-agent 

system as a measure of coordination of agents within a system (Parunak & Brueckner, 

2001), recall that in general, entropy relates the number of microscopically defined states 

accessible to a system to the probability of finding the system in a specific state. The 

critical question is how to identify system states? Their approach considered a spatio-

temporal system (specifically, robots on a 2D plane) and superimposes a grid. The 

number of agents occupying squares in the grid at any time distinguishes states of the 

system. The identification of system state then is the position of entities in the Euclidean 

space resulting in a location-based entropy. In this study, we sought a more general 

solution derived from a graph-theoretic approach. This is a reasonable approach in light 

of the axiom that interesting structure arises from the relationships established through 

the interaction of components: the formalism of vertices and edges provides an analytical 

means to represent system states as relationships amongst agents in a general sense, or at 

least in a sense that is invariant to physical geometry. Granted, this is not always 

appropriate, or at least may not be sufficient. For instance, if the intent is to drive a set of 

entities to a specific geometrical configuration, a Euclidean state space may be best. In 

the prosecution of this dissertation, both approaches were examined with comparable 

results especially in the nearly-random scenarios (as would be expected). However, the 

relation-space approach was very applicable to the flocking system, where the flock 

direction can change frequently and the flocks' positions change continuously. In that 
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case, the actual direction was not of interest - instead, the size and organization of flocks 

were. Similarly, the particle simulation when examined in the relation-space is invariant 

to structure position or orientation. This may be an advantage to some systems. However, 

if the positions of the structures within the context of observation are important, then the 

location -based entropy applies. 

This could be particularly useful in the modeling and analysis of communication, 

logistic, and social systems, i.e., those where the structures of interest are dynamic and of 

high dimension. We expect that by looking at the relation-space as system state, certain 

relationships will be manifested at that level of abstraction that might otherwise be 

unrecognized with more traditional Euclidean organization measurements. In the analyses 

of this dissertation, where relation-space was considered, it consisted of the number of 

structures in the system and the normalized mean degree. This could have just as well 

been the characteristic path length or any other graph metric. More work needs to be done 

to determine what features should describe system states for certain domains. It may be 

that certain classes of systems are best described by specific features. 

6.3 Other Considerations 

Equation (21) in Section 3.7 expresses intensity of constraint as a function of 

time. The metrics developed in this study looked at the systems when they were 

organizationally stable. We believe that a great deal of insight to EBS could be obtained 

if the trends of these metrics were analyzed over time. It might be that certain patterns in 

the metrics could be indicative of nascent or eminent behaviors. The CPL of the 

Stigmergy system shown in the top plot of Figure 76 shows a periodicity related to the 

depletion of ant pheromone that results in a physical gap between the trail to the food and 
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the anthill. Other, more useful systems might demonstrate similar characteristics. 

The computational requirements of systems comprised of many entities increases 

as N2. Although hundreds of entities do not pose a particular problem to today's even 

modest computers, many systems of interest could easily result is many thousands of 

entities. As an example, the Stigmergy system developed here considers both ants and 

patches as entities. Using a context consisting of a 50 x 50 grid of patches and 100 ants 

produces an adjacency matrix that is 2600 x 2600 (6,760,000 elements). Although easily 

within the abilities of high-performance parallel processors, such contexts often produce 

sparse matrices. That was included in the rationale of the super-node approach in this 

study. Still, mixed entities with very large computational spaces are likely to become of 

more interest. The observation here of the super-node, i.e., the coalescing of the many 

patches in relationship to a single structure may be indicative of a special characteristic of 

such systems. We suggest that continued research into the nature of the emergence 

phenomena may reveal computational shortcuts, like the super-node, that can reduce the 

computational demand and be revealing of causal mechanisms in other systems. 

It is hoped that this research would offer some steps toward reconciling the 

systems dynamics and entity-based perspectives by establishing metamodels that allow 

the top-down perspective to measure or regulate the bottom-up perspective. Starting with 

the fundamental case of a collection of homogeneous agents, a question that stands to be 

examined is that of emergent progression, i.e., must systems comprised of such simple 

interacting entities progress through a sequence of distinct behavioral classes like that 

shown in Figure 89 (if they progress at all)? If so, can the onset of emergence be 

detected and can the patterns of emergence be predicted? The results of this research may 



214 

contribute to the formal specification of certain complex systems and the validation of the 

designs of those systems. 
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APPENDICES 

APPENDIX A: GLOSSARY 

This glossary provides a quick definition of some of the terms in this dissertation. 
Some terms, particularly those that are fundamentally related to the dissertation, are more 
technically defined elsewhere in the dissertation text. 

In an EBS an Actor is an Entity comprising an autonomous stochastic 
dynamical system that attempts to build and maintain a maximally-
predictive internal model of its Environment within the context of its 
Sensorium, behavior sets, and Effectors. See Section 3.8. 

an autonomous stochastic dynamical system that attempts to build and 
maintain a maximally-predictive internal model of its environment 
within the context of its inherent sensors, behavior sets, and effectors. 
See Section 2.5. 

Communication: the transference of data. See Section 2.5 

Complexity: In EBS, this is related to the selection of responses available to an 
entity based on information it can receive and is measure of the an 
entity's influence on the system arising from sustained relationships 
with other entities. Compare to Sophistication. See Section 3.1. 

Complex System: a system of many mutually interacting dynamical parts which are 
coupled in a nonlinear fashion. Such a system may be discrete (such as 
a cellular automata system or set of difference equations), or it may be 
continuous as in a system of differential equations. Because they are 
nonlinear, complex systems are more than the sum of their parts 
because a linear system is subject to the principle of superposition, and 
hence is literally the sum of its parts, while a nonlinear system is not. 
Most biological systems are complex systems, while most traditionally 
engineered systems are not. Many research disciplines are becoming 
interested in this branch of mathematical analysis because the digital 
computer has made theoretical exploration of such systems possible. 

EBS: Emergent Behavior System. A system that achieves its objectives 
primarily through the (often dynamic) interaction of a multitude of 
simple parts (or entities) through which a higher-order behavior arises. 
Such systems are often characterized by the fact that units used to 
describe the system are unrelated to the units used to described the 
components of the system. See Section 2.3 . 

Actor: 

Agent: 
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Emergence: 

Emergent: 

Entity: 

Environment: 

Information: 

Random graph: 

Resultant: 

Sensorium: 

Sophistication: 

Stigmergy: 

Variety: 

a complex system phenomena in which patterns that are observed at a 
global level arise solely from interactions among lower-level 
components acting on rules which are executed using only local 
information without reference to the global pattern. 

a new quality of existence which results from the structural relation of 
its components parts. See Section 2.1. 

Any Actor or Object within the Context of Observation. See Section 
3.8. 

The collection of Entities within an EBS Context of Observation. See 
Section 3.8. 

in an Emergent Behavior System, any actionable data that facilitates a 
change of state in an Entity. See Section 2.5. 

a graph in which the vertices and edges form connecting pairs at 
random. See Section 4.2 as well as (Bolllobas, 1985). 

a property of the combination that can be foretold exhaustively from 
the individual elements. See Section 2.1. 

The totality of those parts of an Actor that receive, process and 
interpret sensory stimuli. 

A form of complexity associated with the micro-scale of an entity and 
measurable independently of the context of that entity. See Section 3.1 
and Appendix C. 

communication that occurs indirectly between entities through the 
modification of their local environment. See Sections 3.4.4 and 5.1.3. 

The degrees of freedom available to an entity in an EBS. Also, Law of 
Requisite Variety refers to degrees of freedom possible in a system to 
the degrees of freedom available to a ssytem . See Section 3.4. 
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APPENDIX B: MATLAB CODE & SCRIPTS 

Name Type Purpose 
LBE MATLAB Function EBS Shannon Entropy 

Measure 

C o n v e n t i o n :  [ S E , N , B X , B Y ]  =  L B E ( X C ,  Y C ,  C s i z e ,  d i m )  
D e s c r i p t i o n :  L B E  i s  u s e d  t o  c o m p u t e  t h e  L o c a t i o n  B a s e d  E n t r o p y  o f  t h e  
d a t a s e t  p r o d u c e d  b y  H o o k e a n  S p r i n g s ,  O f a F e a t h e r ,  a n d  A n t s  o r  o t h e r  
a g e n t - b a s e d  m o d e l s  w i t h  d a t a  f o r m a t s  p r o c e s s a b l e  b y  P R E M E S H .  L B E  u s e s  
t h e  p o s i t i o n  o f  a l l  a c t o r s  ( A )  i n  a  2 D  c o n t e x t  o f  o b s e r v a t i o n  ( C O ) .  L B E  
i n v o k e s  a  2 D  h i s t o g r a m  ( s e e  h i s t 2 d )  w i t h  a  s q u a r e  g r i d  o f  b i n s  o f  o r d e r  
d .  
R e t u r n  V a l u e s :  N  i s  t h e  d i m  x  d i m  x  ( #  o f  o b s e r v a t i o n s )  m a t r i x  g i v i n g  
t h e  s t a t e  o f  t h e  s y s t e m  a t  e a c h  o b s e r v a t i o n .  E x a m p l e ;  N ( :  ,  :  ,  1 )  i s  
t h e  s t a t e  m a t r i x  f o r  t h e  f i r s t  o b s e r v a t i o n .  
R e l a t e d  F u n c t i o n s :  S H A N N O N ,  

f u n c t i o n  [ S E , N , B X , B Y ]  =  L B E ( X C ,  Y C ,  C s i z e ,  d i m )  
%  [ S E , N , B X , B Y ]  =  L B E ( X C ,  Y C ,  C s i z e ,  d i m )  
% 

% L o c a t i o n - b a s e d  E n t r o p y  c o m p u t a t i o n .  
% C o n v e n t i o n :  [ S E , N , B X , B Y ]  =  L B E ( X C ,  Y C ,  C s i z e ,  d i m )  
% D e s c r i p t i o n :  L B E  i s  u s e d  t o  c o m p u t e  t h e  L o c a t i o n  B a s e d  E n t r o p y  o f  
t h e  d a t a s e t  
% p r o d u c e d  b y  H o o k e a n  S p r i n g s ,  O f a F e a t h e r ,  a n d  A n t s  o r  o t h e r  a g e n t - b a s e d  
m o d e l s  
% w i t h  d a t a  f o r m a t s  p r o c e s s a b l e  b y  P R E M E S H .  L B E  u s e s  t h e  p o s i t i o n  o f  a l l  
a c t o r s  ( A )  
% i n  a  2 D  c o n t e x t  o f  o b s e r v a t i o n  ( C O ) .  L B E  i n v o k e s  a  2 D  h i s t o g r a m  ( s e e  
h i s t 2 d )  w i t h  
% a  s q u a r e  g r i d  o f  b i n s  o f  o r d e r  d .  
% R e t u r n  V a l u e s :  S E  i s  t h e  S h a n n o n  E n t r o p y .  
% N  i s  t h e  d i m  x  d i m  x  ( #  o f  o b s e r v a t i o n s )  m a t r i x  g i v i n g  t h e  s t a t e  o f  
t h e  s y s t e m  a t  
% e a c h  o b s e r v a t i o n .  E x a m p l e ;  N ( :  ,  :  ,  1 )  i s  t h e  s t a t e  m a t r i x  f o r  t h e  
f i r s t  o b s e r v a t i o n .  
% 

% X C  a n d  Y C  a r e  r x c  m a t r i c e s  w h e r e  r  i s  t h e  n u m b e r  o f  o b s e r v a t i o n s  
% a n d  c  i s  t h e  n u m b e r  o f  p a r t i c l e s  i n  t h e  s y s t e m .  
% X C  i s  t h e  m a t r i x  c o n t a i n i n g  t h e  x - c o o r d i n a t e s  a n d  Y C  t h e  y - c o o r d i n a t e s  
% c o r r e s p o n d i n g  t o  e a c h  p a r t i c l e ' s  p o s i t i o n .  N o t e  t h a t  X C  a n d  Y C  m u s t  b e  
o f  
% t h e  s a m e  d i m e n s i o n .  
% C s i z e  i s  t h e  d i m e n s i o n  o f  t h e  C s i z e  x  C s i z e  c o n t e x t  o f  o b s e r v a t i o n .  
% d i m  i s  a  s c a l a r  w h i c h  d e f i n e s  t h e  d i m  x  d i m  g r i d  r e s o l u t i o n  o f  t h e  
^ m e a s u r e .  
% S E  i s  a  c o l u m n  v e c t o r  w h e r e  e a c h  r o w  i s  t h e  e n t r o p y  m e a s u r e  f o r  e a c h  
% o b s e r v a t i o n .  
% T h e  C o n t e x t  o f  O b s e r v a t i o n  i s  a s s u m e d  t o  b e  a  p o s i t i v e  v a l u e d  
p a r t i o n e d  
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% s p a c e  w i t h  ( 0 , 0 )  b e i n g  t h e  l o w e r  l e f t  c o r n e r  a n d  ( m a x X p ,  m a x Y p )  b e i n g  
t h e  
% u p p e r  r i g h t  c o r n e r .  
% R e t u r n  V a l u e s :  [ S E , N , B X , B Y ]  
% S E  i s  t h e  c o m p u t e d  e n t r o p y .  
% N  i s  t h e  d i m  x  d i m  x  l e n g t h ( X C )  s t a t e  m a t r i x  o f  t h e  s y s t e m .  T h e r e  a r e  
a s  
% m a n y  N s  a s  t h e r e  a r e  o b s e r v a t i o n s  ( l e n g t h  ( X C ) )  .  
% B X  a n d  B Y  a r e  t h e  c e n t e r s  o f  t h e  X  a n d  Y  b i n s .  
% 

% E x a m p l e :  S E  =  L B E ( X C , Y C , 1 0 , 2 )  w i l l  r e t u r n  t h e  S h a n n o n  E n t r o p y  m e a s u r e  
% b a s e d  o n  t h e  p a r t i c l e  p o s i t i o n s  a s  d e s c r i b e d  b y  X C  a n d  Y C  i n  a  1 0  x  1 0  
% c o n t e x t  o f  o b s e r v a t i o n  a n d  s u m m e d  i n  a  2  x  2  g r i d  o f  b i n s .  

%  > > >  S h o u l d  c h e c k  t h a t  X C  a n d  Y C  a r e  s a m e  d i m e n s i o n  < < <  
%  I f  d i m e n s i o n s  o f  X C  a n d  Y C  a r e  n o t  i d e n t i c a l  r e t u r n  o n  e r r o r .  
[ r x , c x ] = s i z e ( X C ) ;  
[ r y , c y ] = s i z e ( Y C )  ;  
i f  ( r x  ~ =  r y )  

d i s p ( ' E r r o r :  X C  a n d  Y C  m u s t  b e  o f  s a m e  d i m e n s i o n s :  r o w  a g r e e m e n t . ' )  
d i s p (  '  .  '  )  
r e t u r n  

e l s e  
i f  ( c x  ~ =  c y )  

d i s p ( ' E r r o r :  X C  a n d  Y C  m u s t  b e  o f  s a m e  d i m e n s i o n s :  c o l  
a g r e e m e n t . ' )  

r e t u r n  
e n d  

e n d  

%  » >  C o n t e x t  o f  O b s e r v a t i o n  i s  d i v i d e d  i n t o  b i n s  b a s e d  o n  D I M  < < <  
%  F i n d  b i n  c e n t e r s  B X  a n d  B Y .  

b c c  =  C s i z e / d i m ;  

B X c  =  z e r o s ( 1 ,  d i m ) ;  % p r e a l l o c a t e  t h e  m a t r i x  
B X c ( 1 ) = b c c / 2 ;  %  T h i s  i s  t h e  f i r s t  b i n ' s  c e n t e r .  
f o r  m  =  2 : d i m  

B X c ( m )  =  B X c ( m - 1 ) + b c c ;  
e n d  
B Y c  =  B X c ;  %  S i n c e  t h i s  i s  a  s q u a r e  g r i d d i n g  B Y  a n d  B X  a r e  t h e  s a m e ,  

t i c  

%  N i t t  =  f l i p u d ( h i s t 2 d ( X C ( 1 , : ) , Y C ( 1 , : ) , B X c , B X c ) ) ;  
%  f o r  i t t  =  2 : l e n g t h ( X C )  
%  N i t t  =  c a t ( 3 , N i t t , f l i p u d ( h i s t 2 d ( X C ( i t t ,  : ) , Y C ( i t t ,  : ) , B X c , B X c ) ) ) ;  
%  e n d  

N i t t = z e r o s ( d i m , d i m , l e n g t h ( X C ) ) ;  %  P r e a l l o c a t e  a r r a y  
l e n g t h ( X C )  
f o r  i t t  =  1 : l e n g t h ( X C )  
%  T h e  n e x t  l i n e  o f  c o d e  i s  u s e d  w h e n  g r i d d i n g  t h e  e n t i r e  s p a c e  a n d  y o u  
%  w a n t  t o  s p e c i f y  t h e  e x a c t  b i n  c e n t e r s ,  i . e . ,  m a c r o - s c a l e  s y s t e m  
s t a t e s .  
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% N i t t  ( : ,  : , i t t )  =  f l i p u d ( h i s t 2 d ( X C ( i t t Y C ( i t t B X c , B X c ) ) ;  
%  T h e  n e x t  l i n e  o f  c o d e  i s  u s e d  w h e n  g r i d d i n g  o n l y  t h e  s p a c e  d e m a r k e d  
b y  
%  m a x i m u m  p o s i t i o n s  o f  t h e  e n t i t i e s  i n  t h e  s y s t e m .  M a k e s  t h e  m e a s u r e  
%  i d e p e n d e n t  o f  s c a l e ;  i . e . ,  m e s o - s c a l e  s y s t e m  s t a t e s .  

N i t t  ( : , : , i t t )  =  f l i p u d ( h i s t 2 d ( X C ( i t t ,  : ) , Y C ( i t t , : ) , d i m ) ) ;  
e n d  

t o e  
i f  n a r g o u t  = =  0  

i m a g e s c ( N i t t ( : , : ,  1 ) )  
e l s e  

N  =  N i t t ;  
B X  =  B X c ;  
B Y  =  B Y c ;  
S E  =  s h a n n o n ( N i t t ) ;  

e n d  

t o e  
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Name Type Purpose 
STATECOUNT MATLAB Function Count unique states 

Convention: [ST,OC,OB] = STATECOUNT(N) 
Description: Examines all states of the system, comparing each to each other to count 
how many unique states are in the system and how many times they occur. N is the dim x 
dim observations of the observation matrix. 
Return Values: ST is the (dim:dim:#ofstates) matrix of all the unique states. OC is the 
vector of counts of each unique state. OB is the original number of samples examined. 

function [st,oc,ob] = statecount(N) 

%[ST,OC,OB] = STATECOUNT(N) 

% 

%STATECOUNT examines all states of the system, comparing each to 

each 
%other to count how many unique states are in the system and how 

many times 
%they occur. N is the dim x dim x observations observation 

matrix. 

% 
%Example: [ST,OC,OB] = STATECOUNT(N) will return (ST)the unique 

states in N 
%a count of their occurance (OC), and the total number of 

observations (OB) 
o  
o 

%Example: C = STATECOUNT(N) will return the number of unique 

states in N. 

% >>> Should check that N is a valid Observation Matrix <<< 
[r, c, dim] =size (N) ; 

if (r ~= c) 

disp ('Error: Invalid observation matrix, r & c must be of 
same dimension.') 

disp('.') 
return 

else 
if (dim == 1) 

disp('Warning: Only one observation.') 

end 

end 
octmp = 0; 
stc = 1; 

st = N(:,:,l); %The first state is the first unique state 

oc(l)=0; %keep building this list and compare all the rest 

[dr,dc,dd]=size(st); %to it and count them. 
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for m=l:dim 

[dr,dc,dd]=size(st); 
octmp=zeros(dd,1); 

for n=l:dd 

if isequal(N(:,:,m),st(:,:,n)) 
octmp(n)=octmp(n)+1; 
oc(n)=oc(n)+1; 

end 

end 
if sum(octmp)== 0 

stc = stc+1; 

st(: , :,stc)=N(:,:,m); 
oc(stc)=1; 

end 

end 

end 
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Name Type Purpose 
STATECOMPARE MATLAB Function Count a specific state 

Convention: STC = ST ATECOMP ARE(ST 1 ,ST2) 
Description: Compares the dim x dim ST2 to ST1. 
Return Values: STC(n) is the vector where each element is the count of STl(n) that 
occurred in ST2. 

function stc=statecompare(stl,st2) 

%STC=STATECOMPARE(ST1,ST2) 

% 
%STATECOMPARE Compares the dim x dim x m state matrix ST2 to the 

dim x dim 

%x n statematrix ST1. 
%STC is the n x 1 vector where each element is the count of 

ST1 (n) that is 

%found in ST2. The index of STC is the matching index of ST1. 

% >>> check that the rows and columns of ST1 and ST2 match 

[rstl,cstl,dstl]=size(stl); 
[rst2,est2,dst2]=size (st2); 
if (rstl ~= rst2) 

disp ('Error: State matrix row length mismatch.') 

return 

end 
if (cstl ~= cst2) 

disp('Error: State matrix column length mismatch.') 

return 
end 

stc=zeros(dstl,1); %preallocate stc 
for m=l:dstl 

for n=l:dst2 

if isequal(stl(:,:,m),st2(:,: , n)) 
stc(m)=stc(m)+1; 

end 

end 
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Name Type Purpose 
FINDSTATE MATLAB Function Find a specific state 

Convention: FS = FINDSTATE(ST ATE,STATELIST) 
Description: Used to search a state list for a specific state 
Return Values: returns the index in the list of states STATELIST of the state STATE . 

function fs = findstate(state,statelist) 

% FS = FINDSTATE(STATE,STATELIST) 

% used to search a state list for a specific state 

% returns the index in the list of unique states STATELIST of the 

state STATE 
% If the state STATE is not found in the list STATELIST a 0 is 
returned. 

% 

[rl,cl,dl]=size(statelist); 
[rs,cs,ds]=size(state); 

if (rl ~= rs) or (cl ~= cs) 

display ('Error: the rows and columns of the sample state 
must match that of the state list') 

return 
end 

for n = l:dl 

if isequal (state, statelist(:,:,n)) 
fs = n; 

return 
else 

fs = 0; 

end 
end 



232 

Name Type Purpose 
PROBN MATLAB Function Computes the probability of 

finding a particular state 

Convention: PN = PROBN(N,OC,STATELIST) 
Description: used to compute the probability of the occurrence of state PN. OC is the 
state occurrence vector corresponding the states in STATELIST 
Return Values: returns the probability of finding state N(:,: , n) in the set of N . 

function pn = probn(N,OC,statelist) 

% PN = PROBN(N,OC,STATELIST) 
% Description: used to compute the probability of the occurrence 

of state PN. 
% OC is the state occurrence vector corresponding the states in 
STATELIST 

% Return Values: returns the probability of finding state N(: , : 

, n) in 

% the set of N . 

[rl,cl,dl]=size(statelist); 
[rs, cs, ds]=size (N) ; 
if (rl ~= rs) or (cl ~= cs) 

display ('Error: the rows and columns of the sample state 

must match that of the state list') 

return 

end 
pn = zeros(l,ds); % preallocate the array 
for n = l:ds 

pn(n)= OC(findstate(N(: , : , n),statelist))/ds; 

end 
end 
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The following are Graph Theoretic related functions 
Name Type Purpose 
MAKEADJACENCYLISTS MATLAB Function Extracts adjacency list 

from a data file 

Convention: [ADJLIST]=MAKE_ADJACENCY_LIST(DATAFILE, RANGE) 
Description: Reads a DATAFILE of the type produced by NetLogo EBS simulations. 

Return Values: ADJLISTS, a cell array (TICK x ENTITY x RUN) 

Related functions: depends on GET_NETLOGO__ADJLIST 

function [AdjLists]=make_adjacency_lists(Datafile, Range) 

% [ADJLISTS] = MAKE_ADJACENCY_LISTS(DATAFILE, RANGE) 
% Datafile = string corresponding to a filename 

% like Datafile = 'C:\WORK\Emergent Intelligent 

Behavior\Dissertation\Experiments\Particle 

System\Particles_1007301 CE-Random-table.csv' 
% Range = the range of ticks to extract within Datafile 

% Returns a cell array ADJLISTS(TICK x ENTITY x RUN) 
% Datafile is a csv table of text Datafile of the type produced 
by NetLogo1s BehaviorSpace 
% tool. Where the data is in the form of some header information 

% "rnum","Factor 1","Factor 2""Factor n", "step","reporter 

data","link-list" 
% where "link-list" is a string of the form [[0 ...] [1 ...] 
[ m  . . . ] ]  
a 
o 

% Related Functions: depends on GET_NETLOGO_ADJLIST 

% 
o  
o 

o o  

[AL]=get_netlogo_adjlist(Datafile,1); 

[r,c,enum]=size(AL); %don't care about enum here. 

enum = Range; %This is the range of the enumerations. Set enum 

to l:enum to get all ticks 
%clear AdjList 
AdjList = cell(r,c,length(enum)); %Preallocate the cell array 

ndx = 1; %Get each adjacency list in the range 

for n=enum %Read the adjacency lists for the range of 

enumerations 

[AdjLists ndx) ] =get_netlogo_adj list (Datafile,n) ; 
ndx = ndx+1; 

end 
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Name Type Purpose 
FINDSTRUCT MATLAB Function Finds structures for a given 

time-step 

Convention: STRUCTURES=FINDSTRUCT(ADJLIST) 
Description: Identifies all structures in a CO at a given observation (tick). ADJLIST is 
a IxN cell array that is the adjacency list of the system at an observation, e.g., 
AdjList(3000,:) is the adjacency list for the system at observation 3000. 

Return Values: SCOUNT is the number of structures in the system 
STRUCTURES is a cell array of adjacency lists for each structure at an observation. 

Related functions: GETADJLIST, LIST2MAT 

f u n c t i o n  [ s c o u n t ,  S t r u c t u r e s ]  =  f i n d s t r u c t ( A d j L i s t )  
% A d j L i s t  i s  a  I x N  c e l l  a d j a n c e n c y  l i s t  w h e r e  N  i s  t h e  t o t a l  n u m b e r  o f  
n o d e s  
% A  s t r u c t u r e  i s  a n y  s e t  o f  n o d e s  t h a t  m a k e s  a  c o m p l e t e  g r a p h .  
% S t r u c t u r e s  i s  a  c e l l  a r r a y  o f  a d j a c e n c y  l i s t s  
%  > >  T o  F i x :  s t r u c t u r e s  s h o u l d  b e  2  o r  m o r e  i n  r e l a t i o n s h i p  
%  > >  a  s i n g l e  n o d e  s h o u l d  n o t  b e  c o n s i d e r e d  a  s t r u c t u r e .  
%  »  F i x  t h i s  t o  i g n o r e  i f  A d j L i s t  o n l y  h a s  a  s i n g l e  e n t r y .  

N x S { l }  =  [ ] ;  % A  t e m p o r a r y  c e l l  a r r a y  
% a l i s t  =  A d j L i s t ;  
S t r u c t u r e s { 1 } = [ ] ;  % S t a r t  w i t h  a n  e m p t y  s e t  
s c o u n t  =  1 ;  
n d e x  =  1 ;  % T h e  s e a r c h  n o d e  i n i t i a l  i n d e x  -  a l w a y s  s t a r t  
w i t h  t h e  f i r s t  n o d e .  
n o d e l i s t  =  [ ] ;  % L i s t  o f  a l l  s e a r c h e d  n o d e s .  
t l i s t  =  [  ] ;  
N = l e n g t h ( A d j L i s t ) ;  % N u m b e r  o f  a l l  n o d e s  t o  b e  s e a r c h e d .  
C N  =  1 : N ;  % T h i s  i s  t h e  m a s t e r  l i s t  o f  c a n d i d a t e  n o d e s .  
I n i t i a l l y  t h i s  w i l l  b e  a l l  

% n o d e s  i n  t h e  s y s t e m ,  i . e .  t h e  l e n g t h  o f  A L i s t .  

w h i l e  - i s e m p t y ( C N )  

t l i s t  =  g e t s l i s t ( A d j L i s t , C N ( 1 ) ) ;  
i f  l e n g t h ( t l i s t )  >  1  

f o r  n n  =  t l i s t  
S t r u c t u r e s { s c o u n t , n d e x }  =  A d j L i s t f n n } ;  
n d e x = n d e x + l ;  

e n d  

s c o u n t = s c o u n t  +  l ;  
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n d e x  =  1 ;  
e n d  
C N  =  s e t d i f f ( C N , t l i s t ) ;  

e n d  

s c o u n t = s c o u n t - l ;  
e n d  

f u n c t i o n  s t _ l i s t  =  g e t s l i s t ( a l i s t , n d x )  

a d j l i s t = a l i s t { n d x } ;  
s l i s t  =  [ ] ;  % t e m p l i s t  =  [ ] ;  

c h e c k l i s t  =  a d j l i s t ;  
w h i l e  - i s e q u a l ( s l i s t , c h e c k l i s t )  

t e m p l i s t  =  s e t d i f f ( c h e c k l i s t , s l i s t ) ;  
s l i s t  =  c h e c k l i s t ;  
f o r  n  =  t e m p l i s t  

t e m p l i s t  =  u n i o n ( t e m p l i s t , a l i s t ( n } ) ;  
e n d  

c h e c k l i s t  =  u n i o n ( t e m p l i s t , c h e c k l i s t ) ;  
e n d  
s t _ l i s t  =  c h e c k l i s t ;  

e n d  
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Name Type Purpose 
FINDALLSTRUCT MATLAB Function Finds all structures for all 

time-steps in an experiment 

Convention: ALLSTRUCTURES=FINDALLSTRUCT(ADJLIST) 
Description: Identifies all structures in a CO for all observations (ticks). ADJLIST is an 
MxN cell adjacency list where N is the total number of nodes and M is the number of 
runs in the sample set. 
A structure is any set of nodes that makes a complete graph.. 
Return Values: ALLSTRUCTURES, an MxP cell array where each P is the set of 
structures in the Mth sample, i.e., cell array of adjacency lists for each structure at each 
tick in an observation set. 
Usage: » structs=findallstruct(AL 1); 
» structs{l,l} 
ans = 

[1] [1x2 double] [1x5 double] [1x2 double] [11] 

» structs{l,5}{:} 
ans = 

1  
ans = 

2 9 
ans = 

3 4 7 8 10 
ans = 

5 6 
ans = 

1 1  

Related functions: FINDSTRUCT is used in FINDALLSTRUCT and is called 
repetitively. 
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Name Type Purpose 
CLUSCO MATLAB Function Compute the clustering 

coefficient 

Convention: [CG,CN]=CLUSCO(SAM) 
Description: Computes the clustering coefficient for each vertex (CN) and the global 
clustering coefficient (CG) for a graph represented by the simple adjacency matrix 
(SAM). 

f u n c t i o n  [ c g , c n ]  =  c l u s c o ( s a r a )  
% [ C G , C N ] = C L U S C O ( S A M )  
% S A M  i s  a n  a d j a c e n c y  m a t r i x .  I f  i t  i s  a  d i g r a p h  C L U S C O  w i l l  c o n v e r t  i t  
t o  a  
I s i m p l e  a d j a c e n c y  m a t r i x .  
% C G  i s  t h e  g r a p h  c l u s t e r i n g  c o e f f i c i e n t  
% C N  i s  t h e  c l u t e r i n g  c o e f f i c i e n t  a t  e a c h  n o d e  

%  T h e  c l u s t e r i n g  c o e f f i c i e n t  f o r  e a c h  n o d e  i n  a  s i m p l e  g r a p h  i s  g i v e n  
b y  
%  t h e  r a t i o  o f  t h e  n u m b e r  o f  t r i a n g l e s  t h a t  c a n  b e  f o r m e d  o n  t h a t  n o d e  
a n d  
%  t h e  n u m b e r  o f  t r i a d s  i n  w h i c h  t h a t  n o d e  i s  c e n t r a l .  
%  G i v e n  a n  a d j a c e n c y  m a t r i x  A ,  i t s  s q u a r e  w i l l  g i v e  t h e  n u m b e r  o f  p a t h s  
o f  
%  l e n g t h  2  a n d  r a i s i n g  i t  t o  t h e  t h i r d  p o w e r  w i l l  g i v e  t h e  n u m b e r  o f  
p a t h s  
%  o f  l e n g t h  3 .  W e  c a n  f i n d  t h e  n u m b e r  o f  t r i a n g l e s  w i t h  a  n o d e  n  i n  t h e  
%  c e n t e r  b y  l o o k i n g  a t  t h e  d i a g o n a l  e l e m e n t s  o f  A A 3  a s  t h e s e  w i l l  b e  
t h e  
%  p a t h s  o f  l e n g t h  3  t h a t  s t a r t  a n d  s t o p  o n  n o d e  n .  W e  h a v e  t o  d i v i d e  
t h a t  
%  r e s u l t  b y  2  s i n c e  t h e  t r i a n g l e s  a r e  c o u n t e d  b o t h  d i r e c t i o n s .  
%  T h e  n u m b e r  o f  t r i a d s  w i t h  n  c e n t r a l  i s  g i v e n  b y  d ( n ) * ( d ( n ) - 1 ) / 2  
%  w h e r e  d ( n )  i s  t h e  d e g r e e  o f  n .  
%  T h e  c l u s t e r i n g  c o e f f i c i e n t  f o r  t h e  g r a p h  i s  t h e  a v e r a g e  o f  t h e  
c l u s t e r i n g  
%  c o e f f i c i e n t s  f o r  t h o s e  n o d e s  w h i c h  h a v e  a  c l u s t e r i n g  c o e f f i c i e n t ,  
i . e . ,  
%  t h o s e  w i t h  d ( n ) > l .  
s a m  = ( s a m  + s a m ' )  >  0 ;  % m a k e  s u r e  t h a t  S A M  i s  s i m p l e ,  i . e . ,  u n d i r e c t e d  
a n d  
s a m  =  s a m  -  d i a g ( d i a g ( s a m ) ) ;  % n o  s e l f  l o o p s  
d n = s u m ( s a m ) ;  % v e c t o r  c o n t a i n i n g  d e g r e e  o f  e a c h  n o d e  
d d n = d n . * ( d n - 1 ) ;  % p o s s i b l e  n u m b e r  o f  l i n k s  o f  n e i g h b o r s  x  2  
s a m 3 = d i a g ( s a m A 3 ) ' ;  % v e c t o r  t h a t  i s  t h e  n u m b e r  o f  t r i a n g l e s  f o r  e a c h  
n o d e  x  2  
c n = s a m 3  . /  d d n ;  
%  t m p  =  - i s n a n ( c n ) ;  % t o s s  o u t  t h e  N a N s  
%  t c n = c n ( t m p > 0 ) ;  
t m p  =  i s n a n ( c n ) ;  
c n ( t m p ) = 0 ;  
t e n  =  c n ;  
e g  =  s u m ( t e n ) / n u m e l ( t e n ) ;  
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Name Type Purpose 
CHARPATH MATLAB Function Compute characteristic path 

Convention: [LAMBDA,EFFICIENCY,ECC,RADIUS,DIAMETER] = CHARPATH(D) 
Description: 

f u n c t i o n  [ l a m b d a , e f f i c i e n c y , e c c , r a d i u s , d i a m e t e r ]  -  c h a r p a t h ( D )  
% C H A R P A T H  C h a r a c t e r i s t i c  p a t h  l e n g t h ,  g l o b a l  e f f i c i e n c y  a n d  r e l a t e d  
s t a t i s t i c s  
% 

%  l a m b d a  =  c h a r p a t h ( D ) ;  
%  [ l a m b d a , e f f i c i e n c y ]  =  c h a r p a t h ( D ) ;  
%  [ l a m b d a , e c c , r a d i u s , d i a m e t e r ]  =  c h a r p a t h ( D ) ;  
% 

%  T h e  c h a r a c t e r i s t i c  p a t h  l e n g t h  i s  t h e  a v e r a g e  s h o r t e s t  p a t h  l e n g t h  
i n  
%  t h e  n e t w o r k .  T h e  g l o b a l  e f f i c i e n c y  i s  t h e  a v e r a g e  i n v e r s e  s h o r t e s t  
p a t h  
%  l e n g t h  i n  t h e  n e t w o r k .  
% 

%  I n p u t :  D ,  d i s t a n c e  m a t r i x  
% 
%  O u t p u t s :  l a m b d a ,  c h a r a c t e r i s t i c  p a t h  l e n g t h  
%  e f f i c i e n c y ,  g l o b a l  e f f i c i e n c y  
%  e c c ,  e c c e n t r i c i t y  ( f o r  e a c h  v e r t e x )  
%  r a d i u s ,  r a d i u s  o f  g r a p h  
%  d i a m e t e r ,  d i a m e t e r  o f  g r a p h  
% 

%  N o t e :  C h a r a c t e r i s t i c  p a t h  l e n g t h  i s  c a l c u l a t e d  a s  t h e  g l o b a l  m e a n  
o f  
%  t h e  d i s t a n c e  m a t r i x  D ,  e x c l u d i n g s  a n y  ' I n f s '  b u t  i n c l u d i n g  
d i s t a n c e s  o n  
%  t h e  m a i n  d i a g o n a l .  
% 

%  M e a n  o f  f i n i t e  e n t r i e s  o f  D ( G )  
l a m b d a  =  s u m ( s u m ( D ( D ~ = I n f ) ) ) / l e n g t h ( n o n z e r o s ( D ~ = I n f ) ) ;  

i f  i s n a n  ( l a m b d a )  % t h i s  i s  t h e  c o n d i t i o n  f o r  u n c o n n e c t e d  v e r t i c e s  
l a m b d a  =  0 ;  

e n d  

%  E c c e n t r i c i t y  f o r  e a c h  v e r t e x  ( n o t e :  i g n o r e  ' I n f ' )  
e c c  =  m a x ( D . * ( D ~ = I n f ) ,  [  ] , 2 )  ;  

%  R a d i u s  o f  g r a p h  
r a d i u s  =  m i n ( e c c ) ;  %  b u t  w h a t  a b o u t  z e r o s ?  

%  D i a m e t e r  o f  g r a p h  
d i a m e t e r  =  m a x ( e c c ) ;  

%  E f f i c i e n c y :  m e a n  o f  i n v e r s e  e n t r i e s  o f  D ( G )  
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n  =  s i z e ( D , 1 ) ;  
D  =  l . / D ;  % i n v e r t  d i s t a n c e  
D ( l : n + l : e n d )  =  0 ;  % s e t  d i a g o n a l  t o  0  
e f f i c i e n c y  =  s u m ( D ( : ) ) / ( n * ( n - 1 ) ) ;  % c o m p u t e  g l o b a l  e f f i c i e n c y  
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Name Type Purpose 
LIST2MAT MATLAB Function 

Convention: ADJMAT=LIST2M AT (ADJLIST) 
Description: Creates the adjacency matrix ADJMAT from the cell array ADJLIST 
which must be a cell array of the type created by GETADJLIST. 

Return Values: ADJMAT, a matrix of adjacencies of the form 

N, n2 . » • n„ 

n2 0 1 1 

; 1 0 1 

N„ 1 1 0 

Related functions: GETADJLIST 

function AdjMat = list2mat(AdjList) 
% AdjMat = list2mat(InputList) 
% Creates the adjacency matrix AdjMat from the cell array 

AdjList. 
% AdjList must be a cell array of the type created by 

getadjlist.m. 

% See also get_netlogo_adjlist.m 

[NumofRec NumofVert]=size(AdjList); % NumofRec is the 

number of rows (records) 
% NumofVert is the 

the number of vertices 
AdjMat=zeros(NumofVert,NumofVert, NumofRec);% preallocate the 

matrix 

for k=l:NumofRec 

for i=l:NumofVert 

[numrows,numcols]=size(AdjList{k, i}); %numrows should 

always be 1 

for j=l:numcols %numcols will be the number of items in 

the list 

indx = AdjList{k,i} (1,j); %indx is the index to the 

vertex 
if indx ~= i %diagonals are 0 

AdjMat(i,indx,k)=1; % 

%AdjMat(k,i,indx)=1; % 
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%AdjMat(Adj List{k,i} (1,j),i,k)=1; 
end 

end 
end 

end 
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Name Type Purpose 
SGAM MATLAB Function Used on individual 

structures. 

Convention: SAM=SGAM(SAL) 
Description: Creates a unique (starting with 1) adjacency matrix SAM from the cell 
array for a specified structure SAL which must be a cell array of the type created by 
using FINDSTRUCT. SGAM renumbers the vertices in SAL to create an adjacency 
matrix corresponding to the simple graph that defines the structure. 

Return Values: SAM is a 1 initialized adjacency matrix. 

Related Functions: SGAM uses LIST2MAT internally. SAM is used as input to 
CLUSCO which computes the clustering coefficient for a structure. 

Example Usage: Assume an adjacency list AdjList(M,N) where M is the number of 
observations and N is the number of vertices. Then,» AdjList{m,:} will return the 
adjacency list of the mth observation. Let's say that 
» AdjList{900,:} 
ans = 

1  
ans = 

2 14 
ans = 

3 4 
ans = 

4 3 
ans = 

5 6 7 15 
ans = 

6 5 15 
ans = 

7 5 15 
ans = 

8 10 11 12 13 
ans = 

9 11 
ans = 

10 8 11 12 13 
ans = 

11 8 9 10 
ans = 

12 8 10 13 
ans = 
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13 8 10 12 
ans = 

14 2 
ans = 

15 5 6 7 

FINDSTRUCT is then used to identify the structures that exist at the mth observation. 

» slist = findstruct(AdjList(900,:)) 
slist = 

[1] [1x2 double] [1x2 double] [1x4 double] [1x6 double] 

We can also see that there are numel(slist), i.e., 5, structures here. Note that technically a 
single entity is not a structure since it is in no relationship to another. 

Next, we extract just the adjacency list for a particular structure. 

» sal={AdjList{900,slist{2}}} 
sal = 

[ 1 x2 double] [ 1 x2 double] 

And now we use SGAM to return the 1-indexed adjacency matrix for that structure: 

» sam=sgam(sal) 
sam = 

0  1  

1  0  

In this case we see that structure-2 at observation 900 is simply two entities. 

We can see in slist that structure-5 consists of 6 entities. Let's extract the adjacency 
matrix just for structure-5. 

» sal={AdjList{900,slist{5}}} 
sal = 

[1x5 double] [1x2 double] [1x5 double] [1x4 double] [1x4 double] [1x4 
double] 
» sam=sgam(sal) 
sam = 

0  0  1  1  1  1  

0  0  0  1  0  0  

1  0  0  1  1  1  

1  1  1  0  0  0  

1  0  1  0  0  1  

1  0  1  0  1  0  
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function sam = sgam(sal) 
% Convention: SAM=SGAM(SAL) 

% Description: Creates a unique (starting with 1) adjacency 
matrix SAM 

% from the cell array for a specified structure SAL which must 
be a cell 

% array of the type created by using FINDSTRUCT. SGAM renumbers 
the 

% vertices in SAL to create an adjacency matrix corresponding to 
the simple 

% graph that defines the structure. 

% 

% Return Values: SAM is a 1 initialized adjacency matrix. 
% 

% Related Functions: SGAM uses LIST2MAT internally. SAM is used 
as input to 

% CLUSCO which computes the clustering coefficient for a 
structure. 

%SGAM simple graph adjacency matrix from adjacency list 

%This helper function takes a structure list and reassigns the 
numbering 

%so that the simple graph that represents the structure starts 
from 1. 

%Use the result of this e.g., 

%saj2={AdjList{948,structures{5}}} which will return the adjlist 
for 

%a particular structure 

%test2 = sgam(saj2) %which will start the new adjlist at 1 and 
compute the 

%corresponding adjacency matrix using list2mat 

%Use this to produce the adjmat just for a single structure 

nnum = 0; 

tsal{!}=[]; 

for m=l:numel(sal) %clean up empties 
if ~isempty(sal{m}); tsal{m}=sal{m};nnum=nnum+l; 

end 
end 
sal = tsal; 

nnum = numel(sal); %the # of nodes, this is the # of rows in sal 
%[nnum,~] = size (sal); 

for n = l:nnum %look at each row 

x=sal{n}(l); %get first label in row, we will be looking 
for it in the list 

for nn = l:nnum %again look at each row 
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mnum = numel(sal{nn}); %the # of nodes in the row 
ind=find(sal{nn}==x); %any in row that are x? 

sal{nn}(ind)=x; 

for m = l:mnum %the # of nodes in the row 
test = sal{nn}(m);%retrieve a node 
if test == x %is it the label we are checking? 

sal{nn}(m) = n;%if so, replace it with n 
end 

end 

end 
end 

sam = list2mat(sal); 
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Sample Scipts for Reading Data and Computing Metrics 

• Get the adjacency list for each run 
o » CP1 ALists = make_adjacency_lists(ALfilename, 1:100); 

• Compute the state vector for each run 
o » for n=l:100;SV(n,:) = EBSSV(CP1 ALists,l,n);end; 

• Compute the clustering coefficient for each run 
o » for n=l :100;CC(n)= clusco(list2mat(CPlALists(l,:,n)));end; 

• Computer the characteristic path length for each run 
o » for n=l :100;CPL(n)= 

charpath(pathlength(list2mat(CP 1 ALists( 1, :,n))));end; 

Computing the Characteristic Path Length for the Minimally Constrained Particle System 

for n=l :1000;MCPcpl(n)= charpath(pathlength(list2mat(MCPALs(l,:,n))));end; 

Computing the Clustering Coefficient for the Minimally Constrained Particle System 

for n=l:1000;MCPcc(n)= clusco(list2mat(MCPALs(l,:,n)));end; 

Retrieve the Adjacency Lists for rest-length = 1 in the Inherent Constraint Particle 
System 
TestICl= make_adjacency_lists(TestIC, 1:100); 



APPENDIX C: A HEURISTIC MEASURE OF ENTITY 

SOPHISTICATION IN EMERGENT BEHAVIOR SYSTEMS 

In the following discussion, ideas derived from the characteristics used to describe 

agents are applied to the EBS concept of entity. Keeping in mind the distinction between 

entities and agents; "agent" as viewed here is a descriptive architecture, or 

implementation method as opposed to a class of entity that may be represented by any 

coding paradigm. This distinction is reasonable when one considers that objects as 

inanimate as a rock or as elaborate as a human can be represented by an agent with the 

appropriate characteristics. In the EBS context, a rock might indeed be an entity that is 

part of an EBS such as an avalanche just as much so as a human who is part of a terrorist 

organization. Given such consideration, either the avalanche or the terrorist organization 

is an EBS comprised (mainly) of either rock entities or human entities, both of which can 

be modeled using agent-based methods and specified with the appropriate properties. The 

entities of interest are the actors in the system. 

This excursion into entity sophistication came about during the course of the 

dissertation study. It is included here in an appendix since, although it is not critical to the 

development, analysis, and results of the dissertation, it is an area of relative interest and 

should prove useful if further developed. That being said, the distinction this effort 

revealed regarding the distinction between "complexity" and "sophistication" is valuable 

to the modeler and the dissertation does make use of that distinction. 
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Extending the Agent Taxonomy to Characterize Entity Sophistication 

Synthesizing the predominant thinking in agent research, Moya and Tolk 

proposed a taxonomy for classifying agents according to three general characteristics: 1) 

reasoning, 2) perception, and 3) action. These three characteristics are described by the 

ten properties as shown in Figure C-l. 

Agent Characteristics 

Reasoning Perceoti ion Action 

Architecture I 

Tropistic 
-Deliberative 
- Hybrid 

Beliefs 

• Environment 
- Next goal (self) 

Next goal (others) 

—I Access I 

|— Complete 
'— Partial 

Accuracy 

Memory 

Goals 

- Implicit 
- Explicit 

T 

Communication 

— Local 
- Networked 
- Mobile 

Protocol 

- Historical environment 
- Past actions (self) 
- Past actions (others) 
-Action effects (self) 

Action effects (others) 

Negotiation 

Blackboard 
- Broker 
- Mediator 
- System 

Reactivity 

Figure C-l. The Agent Taxonomy of Moya and Tolk 

Since the exploration of synthetic EBS is made using agent-based methods, it is 

reasonable to examine agent-based models of EBS entities through the application of 

some form of the Moya-Tolk agent taxonomy. By assigning certain relative values to 

these characteristics, a heuristic for measuring the sophistication of an entity represented 

by an agent can be asserted. (At this time these relative values are specified as linearly 

monotonic although future work might suggest other functional relationships.) 

Following is a discussion on the concepts in the agent taxonomy and how these 

are extended to EBS entities in general. 
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The Reasoning Characteristic 

The Reasoning characteristic addresses an agent's ability to react to its 

environment, make decisions, seek to satisfy goals, and whether or not it has a belief 

structure. This characteristic is directly applicable to actors in an EBS and so we seek to 

assign value to; the type of architecture governing the cognitive structure of the actor, the 

internal representation or beliefs the actor can maintain, the volition the actor can assert 

in order to act to satisfy goals, and the extent to which the actor can react to events. 

Architecture 

The Architecture property refers to the cognitive architecture of the entity and 

speaks to why an entity behaves the way it does. Can it form abstractions, learn, and so 

forth, or does it simply react to information (stimulus)? On one end of the scale are 

entities that are purely reactive and do not suggest the ability to contemplate a goal, the 

actions of which are governed by a memory-less rule-based decision process. Such 

entities can be described as merely reacting without thought to external stimulation and 

are said to be tropistic. Contrary to the attribute of tropism is that of volition. Entities 

that exhibit volition are deliberate in their actions. The Architecture property does not 

deal so much with what an entity does but rather why it does what it does. Is it because it 

is just simply reacting to external forces, or is it contemplating its action with regard to 

attaining some objective? The measure of the Architecture characteristic is an indication 

of an entity's ability to exercise volition, that is, a cognitive process by which it decides 

on and commits to a course of action. Entities that are highly volitional may reason 

according to symbolic representation and manipulation. In one manner this can be 
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thought of as the entity's ability to choose to expend energy to change its state with hope 

of a worthwhile reward. In practice, it is unlikely that an actor will be either purely 

tropistic or purely volitional; instead, the laws of physics at the very least remain 

inviolable so there is always some degree of tropism. In our assigning of a value to the 

Architecture characteristic we will consider those actors that are limited to a first order 

response to external stimuli (more tropistic) as the less sophisticated actors and those that 

are capable of seeking a goal (more volitional) to be the more sophisticated. Figure C-2 

depicts the specification for the Architecture property. 

Increasing Architecture sophistication 

Tropistic 

T 

Deliberative Hybrid 

Purely Reactive 

A 

3 
2 
1 

Purely BDI Combined 

T D H 
Figure C-2. Architecture Property of the Reasoning Characteristic 
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Beliefs 

The ability of an entity to form and maintain abstractions about its environment, 

itself, or other entities is indicated by the Beliefs property. Such abstraction allows the 

entity to project future states, i.e., form expectations, and factor these expectations into its 

decision processes. An entity need not have a high Architecture measure to exhibit this 

property to some degree; indeed a simple state machine can make decisions based on 

local observations where the degree of expectation might be related to its sensorium and 

intricacy of its state machine. A simple particle, e.g., the rock in the avalanche, does not 

consider its environment but is merely subject to it; although it has no ability to ponder 

whether it should fall or not, the physics which govern its behavior causes it to move or 

remain at rest. This leads directly to the next property of Goals. 

Increasing forward projection capability 

Environment 
Next Goal 

Environment 
Self Others 

Can consider its environment 
Can consider its 

next action 
Can consider the 
actions of others 

B 

3 
2 
1 

En S Op 

Figure C-3. Beliefs Property of the Reasoning Characteristic 
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Goals 

The rock of the avalanche can be thought of as seeking the lowest potential 

energy level it can based on the constraints of its environment and interactions with other 

rocks. This is an example of an implicit goal. There is no volition on the part of the rock 

and it reacts essentially instantly to the forces acting upon it. On the other hand, a 

mountain goat standing in the path of the avalanche may have the explicit goal of 

reaching the top of the mountain. Its Beliefs give it pause for contemplation and it must 

decide if it is safer to step aside and continue its climb after the avalanche, or to try to run 

down the mountain to escape. In either event the goat's survival will depend on its ability 

to react appropriately, considering both immediate and long-term goals, all in a timely 

fashion. 

Increasing Goals sophistication 

Implicit 

Indirect goal description 
Nearly immediate reactions 

Explicit 

T 
Specific goals 

Contemplative 

lm Ex 
Figure C-4. Goals Property of the Reasoning Characteristic 



253 

Reactivity 

The ability of the entity to react appropriately in a timely fashion is its Reactivity. 

Moya and Tolk observe that reactivity tends to be more immediate for tropistic agents as 

they tend to be driven by implicit goals and less so for more deliberative agents. As a 

measure related to entity sophistication it is reasonable to assume that the more 

sophisticated agent representing an entity will exhibit a greater cogitation of a stimulus. 

Reactions that are non-volitional and strongly constrained by the environment will tend to 

be nearly immediate and indicative of the implicit goals associated with the less 

sophisticated agent. (Implicit goals need little logic on the part of the entity.) A trivial 

case is an entity such as a wall that does not change state but merely serves as a boundary 

such as for a particle. In such a trivial case there is no reaction on the part of the wall. 

Increasing reactivity sophistication 

Reactivity 
Immediate Delayed Optimized 

/ 

/ 
More tropistic Less tropistic 

A 

R 

3 
2 
1 

0 

I D 0 

Figure C-5. Reactivity Property of the Reasoning Characteristic 
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The Perception Characteristic 

Primarily affecting the beliefs property of an agent's architecture, the perception 

characteristic describes an agent's ability to be aware of its environment and other agents, 

its inherent errors in its awareness, and its cognizance of past causes and effects. 

Access 

The scope of an agent's ability to sense and access its environment, including 

other agents, is a measure of the potential influence or Access that agent can have. 

Russell and Norvig [Rusell and Norvig] describe the concept of rational agents and 

describe them in terms of sensors and effectors. They translate those abilities into 

measures of percepts and actions which are to be considered in forming performance 

measures of agent success. Russel and Norvig stated, "Obviously, there is not one fixed 

measure suitable for all agents. We could ask the agent for a subjective opinion of how 

happy it is with its own performance, but some agents would be unable to answer, and 

others would delude themselves. (Human agents in particular are notorious for "sour 

grapes"—saying they did not really want something after they are unsuccessful at getting 

it.) Therefore, we will insist on an objective performance measure imposed by some 

authority. In other words, we as outside observers establish a standard of what it means to 

be successful in an environment and use it to measure the performance of agents." The 

approach used here is similar. Until such time as truly objective measures of agency can 

be formulated, the values of these properties will necessarily be assigned subjectively. 

This thinking is extended to our interest in agents used to represent entities in a model of 

an EBS where the extent of an agent's access can range from none (a seemingly trivial 

case) to Objects defining local environment or other meso-scale Structures, to complete 
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access to the macro-scale environment (in EBS terms the Context of Observation). 

Increasing Access sophistication 

Complete Partial 

Directly senses or influences 

locally 

A 

3 
2 
1 

0 

Direct sensing or influence 

of the entire environment 

P c 
Figure C-6. Access Property of the Perception Characteristic 

Accuracy 

Whereas the Access property addresses an agent's scope of sense and influence, 

the Accuracy property deals with how precise the agent can be with its inherent ability to 

sense and influence. If its sensorium or effectors are of poor resolution or produces 

uncertain results then the agent will have a low accuracy of either sensing or influencing 

anything within its scope. Similarly, if the detail and precision of the agent is such as to 

allow it to produce very certain results, then it can be said to have a high degree of 

accuracy. For example, an agent that can look or move only in the direction of the four 

cardinal points would be less accurate compared to one that could consider eight. For 

some Objects in an EBS, such as a bounding wall, Accuracy is not applicable in the sense 
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it would be for the Actors in the EBS so it might be indicated by null or zero Accuracy, 

an admitted trivial case. 

Increasing Accuracy sophistication 

Accuracy 

inaccurate Accurate 

7 
Uncertain sensing of 

environment or others 

3 
Ay 2 

1 

0 

7 
Correct sensing of environment 

and others at all times 

Figure C-7. Accuracy Property of the Perception Characteristic 
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Memory 

Moya and Tolk define memory in an agent as its ability to consider past states, 

actions, and results to support decision-making. Clearly, the existence of memory directly 

affects the Goals and Reactivity properties of the Reasoning characteristic. The Moya-

Tolk perspective of agent memory is particularly well suited to assessing entity 

sophistication. Although emergent behavior can be exhibited by ensembles of memory-

less entities, many easily recognized EBS are comprised of entities with memory. These 

memory structures can be categorized as: 

Environment (I remember the last time I saw that door.), 

Action Self (I remember the last time I saw that door I opened it.), 

Action Others (I remember the last time I saw that door I opened it and zombies 

came out.), 

Effects Self (I remember the last time I saw that door I opened it, zombies 

came out and I fought them.), and 

Effects Others (I remember the last time I saw that door I opened it, zombies 

came out, I fought them and killed them.) 

Each step indicates a more sophisticated memory relationship thus suggesting a 

more sophisticated agent. 
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Meimry sophisticate 

Environment 
Actions Effects 

Environment 
Self Others Self Others 

Maintains a history of the 

environment 

M 

5 
4 
3 
2 
1 

o -V 

/ * Maintains a Maintains a 

Maintains a history Maintains a h.story history of actions history of actions 

of own actions of own a others' and their effects and their effects 

actions on self on self & others 

A 

E As Ao Es Eo 
Figure C-8. Memory Property of the Perception Characteristic 

The Action Characteristic 

The Action characteristic describes what manner of interaction an entity can have 

with other entities and its environment. Moya and Tolk recognized this characteristic as 

being dependent on many factors in a specific agent definition but identified 

communication and negotiation as the main capabilities. In this regard, the application of 

their agent taxonomy to entity sophistication deviates only in the specific properties 

identified. Whereas Moya and Tolk identify the properties of Communication, Protocol, 

and Negotiation, here we consider only Communication and Protocol for agents 

representing entities in an EBS. 
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Communication 

Moya's and Tolk's taxonomy examines Communication from the agent 

perspective of Magedanz, Rothermel, and Krause (Magedanz, et al., 1996) who 

emphasize a telecommunication environment and information services. Magedanz, et al 

proposed a taxonomy for intelligent agents that emphasizes agents whose purpose is to 

communicate information and in particular communication amongst networked computer 

systems. Since the concept of relationship is foundational to the study of EBS and 

relationship can be considered a form of communication between entities, the Moya-Tolk 

agent taxonomy is applied to entities in an EBS with some modification motivated by the 

ideas of perception and action. For the interest of EBS, we consider the following 

properties for the agent characteristic. 

Increasing Communication sophistication 

Local 

7 
Communicates 
directly with others 

Network Broadcast 
v 

Can communicate with others 
through relationships with Can communicate with all 
intermediary entities. others simultaneously. 

3 
2 
1 

0 
H h 

N B 
Figure C-9. Communication Property of the Action Characteristic 
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Protocol 

The Protocol property describes the manner in which an entity can communicate 

with others. Simpler entities that typically only interact with others by direct contact are 

obtrusive. If their interaction is by means of effectors that afford them some degree of 

freedom or volition with their interaction, then there is a more sophisticated value of the 

Protocol property. If the entity is able to communicate with others by establishing and 

maintaining paths for information transfers then the Protocol property has the greater 

sophistication value of dialog. 

Increasing Protocol sophistication 

Obtrusive 

r 
Effectors 

t 
Dialog 

Relationships can only Relationships by direct Relationships can be maintained 
occur by direct contact, contact using specialized through established paths of 

mechanisms. information transfer. 

A 

3 
2 
1 

0 

Figure C-10. Protocol Property of the Action Characteristic 
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The Entity Sophistication Heuristic 

Figure E-l 1 summarizes the previous discussion and shows the characteristics of 

entities comprising an EBS as they might be implemented by agent-based models. Figure 

E-l2 presents in a relational method to aggregate the entity characteristics' measures to 

form a measure of entity sophistication. 

Entity Characteristics 
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Past actions (self) 

Past actions (others) 

Action effects (self) 

Action effects (others) 

Communication 

Local 

Networked 

Broadcast 

-Obtrusive 

- Effectors 

Dialog 

Figure C-l 1. Entity Sophistication Derived from the Agent 
Characteristics of Moya and Tolk 
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Sophistication 
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Figure C-12: A Graph View of the Entity Sophistication Heuristic 
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The heuristic in table form: 
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Applying the Measure 

Applying the measure requires each entity to be assessed according to the 

properties within each characteristic of the heuristic. 

Spring-Particle System 

The spring-particle is the actor in this EBS. The properties of the spring-particle 

are: 1) spring-constant, which is from Hooke's Law, i.e., F = -kx where the force of the 

spring is related to the displacement of the spring x by the spring constant k, 2) damping, 

which is a loss factor that tends to decrease the velocity of the particles, 3) rest-length, 

which is simply the length of the spring where its displacement is 0 and 4) shear-point, 

which is the distance between any particle pair that if exceeded will remove their 

connecting spring, i.e., the spring breaks. Each of these spring-particle properties can be 
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interpreted with regard to the sophistication heuristic. 

Reasoning in the Spring-Particle System 

Architecture: The spring-particle actors manifest no intelligence but are purely 

reactive. As such these are wholly tropistic. None of the spring-particle properties affect 

the Architecture property. 

Beliefs: The spring-particle considers its environment only in that if it collides 

with another entity its spring is compressed from the force of the collision. Its own next 

goal is prescribed to seek equilibrium as the spring seeks its rest-length. This equilibrium 

will be static if the spring-particle is damped and will be dynamic if not damped. If the 

shear-point is set to 0 then the spring-particle does not react based on what others are 

doing but only in response to forces exerted directly on it; this is the minimally 

constrained case. Its Beliefs property spans Environment and Next Goal Self. The 

Reactivity of the spring-particle appears at first to be immediate, but is actually delayed 

according to response time of the spring. 
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Perception: The spring-particle has very limited scope of sense and influence as it 

can only consider forces directly acting on it and they must be from direct entity contact. 
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Therefore, its Access is Partial. However, what it is able to sense is accurate and precise 

so it demonstrates high Accuracy. On the other hand, since the spring-particle is purely 

reactionary and maintains no history of either its environment or interaction with others it 

is truly memoryless. 

Access Partial Complete As = 1 (P) 
£ _o 

V-» 
D. 

Accuracy Inaccurate Accurate Ay = 2 (A) P= 1 +2 
P = 3 

<D 
8 
<D 

CL 
Memory Environment Action Effects M = 0 

A. 

Action: The spring-particle entities have the potential to form fully connected 

networks and so can achieve broadcast level of sophistication in communication. 

Particles can interact through collision locally and can form networks. The entities in 

essence interfere with each other during contact and can communicate throughout a 

network when relationships (springs) are established. They do not achieve dialog since 

there is no expectation of return information. 

a Communication Local Network Broadcast C= 1 + 2 + 3  
A 6 + 3 
A = 9 .2 

o 
< 

Protocols Interference Effectors Dialog P = 1 + 2  
A 6 + 3 
A = 9 

Potential Problems with the Heuristic (Subjects for Further Research) 

The entity sophistication heuristic provides a means to distinguish amongst 

different types of entities where the entities are readily decomposable and the properties 

can be easily specified. However, are the property values correct? For example, the 
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Communication property of the Action characteristic assumes that Network is of greater 

sophistication than Local, and that Broadcast is of greater sophistication than Network. 

However, one can argue that broadcasting is a simpler communication method than 

establishing a network; therefore, Network should be the greater sophistication. One can 

also argue that all are a form of network, but the emphasis in the Communication 

property is the extent that a single entity can communicate with others; only with others 

which are adjacent (locally), to others through intermediary entities (networked), or to all 

others at once (broadcast). Additional research is needed to determine this. 

The Heuristic is built bottom-up, so the tendency is to build agents with the 

taxonomy in mind, which would produced an obvious measure of sophistication (pick 

your level of sophistication.) It would be very desirable to infer the properties of the 

characteristics from observed data. This could in essence provide a dynamic measure of 

sophistication with observations of entities over time. It is unknown at this time what 

inference or data-mining methods apply, but this would be a valuable investigation. 
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