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A B S T R A C T

MARKOV CHAIN MONTE CARLO BAYESIAN PREDICTIVE 
FRAMEWORK FOR ARTIFICIAL NEURAL NETWORK 

COMMITTEE MODELING AND SIMULATION

Michael. S. Goodrich 
Old Dominion University, 2014 

Director: N. Rao Chaganty

A logical inference method of properly weighting the outputs of an Artifi

cial Neural Network Committee for predictive purposes using Markov Chain Monte 

Carlo simulation and Bayesian probability is proposed and dem onstrated on machine 

learning da ta  for non-linear regression, binary classification, and 1-of-k classification. 

Both deterministic and stochastic models are constructed to model the properties 

of the data. Prediction strategies are compared based on formal Bayesian predic

tive distribution modeling of the network committee output da ta  and a stochastic 

estimation method based on the subtraction of determinism from the given d a ta  to 

achieve a stochastic residual using cross validation. Performance for Bayesian pre

dictive distributions is evaluated using Bayesian methods, while performance for the 

residual based method is evaluated using conventional statistical techniques.
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C H A P T E R  1 

O V ER V IEW

1.1 IN T R O D U C T IO N

Historically, the modeling of Artificial Neural Networks (ANNs) for the simu

lation of stated input data  to stated output d a ta  has been framed as a m athem atical 

optimization problem, and for this reason, solutions have been pursued largely in the 

form of mathematical optimization frameworks. This basic methodology depends 

upon a calculus based analysis of a suitable m athem atical model of the network’s re

sponse to changes in parameters primarily through the first several orders of deriva

tives of embedded non-linear functions and is often enhanced with other kinds of 

optimization techniques such as simulated annealing, genetic algorithms, etc., which 

are designed to avoid giving a solution which is not the global best.1

As the complexity of the network increases and /o r as more hidden layers are 

added for deeper learning, the m athem atical forms of the optimization solution be

come rapidly problematic, for example greatly increasing the explicit coupling be

tween network parameters and complicating the partial derivatives of the network 

response with respect to the ever more deeply embedded or entangled network param 

eters and their derivatives. Further, this kind of “tuning” is point solution oriented,

raises deep questions about the proper objective of any such optimization, produces

'IEEE Transactions and Journals style is used in this thesis for formatting figures, tables, and 
references.
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randomized solutions from arbitrary starting states, and has accumulated a list of 

disturbing idiosyncrasies[30] calling into question the propriety of this approach.

Other researchers have framed the issue with a somewhat less m athem atical 

approach which does not use an explicit calculus based analysis of a m athem atical 

model of the network behavior, preferring instead Maximum Likelihood (ML) or 

Maximum A Posteriori (MAP) chiefly in the form of an Empirical Bayesian [2] based 

methodology, or other optimization based frameworks modified with some selected 

Bayesian enhancements. These approaches, however, are still optim ization based in 

spirit and suffer their own notable difficulties traceable to what might be termed 

greedy optimizations instead of more general information as probability discovery.

Improvements in ANN modeling and simulation should be of special interest 

to the Modeling and Simulation community in light of ANNs’ ubiquitous and generic 

representational capabilities for continuous functions[11] [23].

1.2 TH ESIS

It is our contention th a t the evolution of frameworks to model ANNs, since 

their inception approximately th irty  years ago, have not adequately explored the 

modeling of ANNCs from an inferential logic perspective without reference to point 

optimization. This gives rise to the following
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Thesis Statement: Modeling of data with Artificial Network Committees using

Bayesian Probabilistic Inferential methods as opposed to traditional mathematical 

point optimization methods provides for effective modeling of both deterministic and 

stochastic components o f the data fo r  predictive purposes as measured by the ability 

to model predictive outputs.

The purpose of this study is to dem onstrate the feasibility of basing ANNC 

modeling and simulation on the aforementioned constructive principles delineated in 

the following Proposed Solution section.

1.3 R E SE A R C H  O V ER V IEW

M athem atical O ptim ization  Fram ew ork The first real framework for ANN 

modeling, and still the preferred framework today, was first suggested by Werbos 

[54] but brought to fruition by, Rum elhart, Hinton, and Williams [47] and is con

cerned with determining the param eter values of a single network for a given data  

modeling problem of interest as an exercise in point optimization. This approach 

is fundamentally white box oriented, and the m ajor technique of this approach is a 

calculus based analysis of a m athem atical model of the network behavior in order to 

effect an error reduction via use of first (and often second) derivatives associated with 

the networks embedded non-linearities to  gradient descend a hyper-dimensional er

ror surface by backpropagating changes to the network parameters in order to reduce 

the network error as compared to the desired network output. Thus, the training of 

the network is tightly coupled to the m athem atical representation of the networks,



response.

A further consideration is the need for regularization or noise training inhibi

tion as the un-regularized technique risks tuning to the particular noise of the data 

sample being used for training. This approach also requires avoidance of certain 

deleterious behaviors associated with the explicit dependency on the derivatives of 

the non-linearities in the training algorithm. As was earlier stated, this is still the 

preferred framework by the ANN research community and is still the most active 

area of research with many variations and enhancements (mostly ad-hoc from our 

perspective) but suffers from a catalog of idiosyncratic deficiencies [30] calling its 

logical coherence into question.

Bayesian B ackpropagation  Fram ework A few researchers have departed from 

the main track of optimization-backpropagation and have begun to  investigate more 

Bayesian probability based methods. In the early 1990s another m ajor framework 

along this track was pioneered by Buntine and Weigend [7] known as Bayesian 

Backpropagation. This framework was still optim ization based but drew upon some 

Bayesian principles of probability. Buntine and Weigend took a Maximum Likelihood 

based approach using a naive hyper-prior distribution for network param eters (no 

explicitly modeled covariances among network param eters). Further, their method 

used Laplace approximations around promising regions of the ostensible posterior to 

achieve a Gaussian mixture distribution, with the noise param eter integrated via an 

improper scale-invariant Jeffreys prior.



M acK ay’s E vidence Fram ework In the later 1990s, David J. C. MacKay de

veloped [32, 33. 34] the Evidence Framework. In this framework, MacKay pursued 

the Empirical Bayes [2] methodology meaning that the Bayesian prior distribution 

was estimated from the data to be modeled using hierarchical Bayes techniques and 

equated to Maximum Likelihood estimation of the prior. This m ethod made further 

assumptions about the analytical forms of both the posterior and prior in order to 

simplify some further approximations of each. It is by far the most commonly used 

and enhanced “Bayesian” framework reported on in the literature to this day; how

ever, Bayesian purists consider Empirical Bayes to constitute a breach of Bayesian 

principles.

Mackay’s approach is the contemporary “Bayesian” method of choice, finding 

its way, for example, in the M atlab ANN Toolbox under the moniker M acKay’s 

Bayesian Regression (MBR). Quite recently, van Hinsbergen, van Lint and van Zuylen 

[57] used MacKay’s Evidence framework to build an ANNC in the context of travel 

time predictions for highway traffic.

N eal and M acK ay’s A u tom atic  R elevance D eterm in ation  FVamework

Neal and MacKay’s Automatic Relevance Determination Framework [35] took 

MacKay’s Evidence Framework a step further by providing an individual hyper

param eter for each network input so as to  provide a basis for discriminating against 

the relevance of each network input individually, ostensibly to facilitate pruning the 

network of irrelevant inputs.
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N eal’s Bayesian Learning for N eural N etw ork  Fram ework Neal s Bayesian 

Learning for Neural Networks framework[41] relaxed analytical modeling of the pos

terior from MacKay’s framework towards a more fully simulation based approach but 

still relied upon Empirical Bayes m ethods to handle the prior and thereby still re

tained a Maximum Likelihood optimization based core component. Neal structured 

his framework for infinite sized networks tha t converge asymptotically to Gaussian 

processes, retained ARD pruning, and used a complex MCMC sampler from the 

Quantum Chromo Dynamics (QCD) community.

T ip p in gs’s Fram ework Tipping [51] took ARD to its logical conclusion by pro

viding a separate hyper param eter for each actual weight, thereby greatly increasing 

the complexity of the prior and the maximum likelihood pre-processing/tuning of the 

prior in Empirical Bayes fashion to the specific problem set da ta  and attem pted  to 

prune the network at the individual network param eter level versus individual input 

level.

Lee Lee [31] attem pted to constrain the search for useful models with a uniform 

prior via linear independence conditions on the design matrix in the linear system 

processing for the final (output) layer of the network. It is not clear whether this 

technique is limited to the use of identity functions in the final layer, but this is a 

potentially useful technique in our framework as well, although it is of secondary 

importance as a practical efficiency gain for sampling.
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1.4 P R O P O SE D  SO L U T IO N

Our approach to Artificial Neural Network (ANN) Committee (ANNC) mod

eling and simulation for both regression and classification is based on a more formal 

accounting for the logically underdetermined nature of candidate models that char

acterizes the modeling of data  as a properly weighted superposition of decoupled 

deterministic and stochastic models. We model the residual uncertainty over a uni

verse of candidate models without making reference to  optimization. In so doing, 

we explore a methodology predicated on probability as uncertainty versus frequency. 

For this reason, an Objective Bayesian Probabilistic analysis is pursued as it refrains 

from any pre-tuning or pre-analysis of the Bayesian prior distribution with the data  

to be modeled.

The uncertainty over a universe of candidate models is due primarily to the 

presence of data that can only be characterized probabilistically or stochastically. 

Two approaches accounting for the uncertainty over a universe of candidate models 

proceed along the following conceptual lines: the first performs formal Bayesian 

predictive distribution modeling, and the second seeks an explicit separation between 

deterministic and stochastic models through a process of subtraction of determinism 

from the data to leave a stochastic residual. Simple statistical point estim ates of 

the residue then provide for a relatively inexpensive prediction interval estim ate for 

unencountered data based on the assumption of homoscedasticity.
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1.5 R E SE A R C H  O B JE C T IV E S

The principle research objectives of this study are to examine the feasibility 

of constructing robust probability distributions to predict the range and weighting of 

predictive outputs for ANNs for input data  not used in modeling the param eters of 

the ANN. Several ancillary research goals are also indicated to support the prim ary 

goals:

•  The feasibility of modeling the stochastic parameters of da ta  using formal 

Bayesian methods.

•  The feasibility of model based generalization via systematic extraction of the 

deterministic model component from d a ta  to comprise an explicit separation 

of deterministic and stochastic models which are the best inference as to  the 

composition of the data.

•  The feasibility of prior distribution regularization of ANN predictive perfor

mance.

•  The feasibility of prior distribution generalization of ANN predictive perfor

mance.

•  Do predictions based on formal predictive Bayesian probabilistic modeling out 

perform that of the more explicit attem pt to separate stochastic and determ in

istic models to form the more inexpensive predictive intervals?
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1.6 A N T IC IP A T E D  C O N T R IB U T IO N S

• A good performing methodology for formal Bayesian predictive distributions 

for ANNCs constructed from training data.

•  A robust methodology for separation of deterministic and stochastic models 

from their superposition with good inexpensive predictive performance charac

teristics.

1.7 D O C U M E N T  O U T L IN E

We summarize and critique the m ajor features of these previously developed 

frameworks (both optimization and “Bayesian” backpropagation), then investigate 

ANN committee (ANNC) modeling and simulation instead on a logic based concep

tual framework founded on plausible reasoning, information theory and a consistent 

probability calculus as a form of extended logic for underdeterminecP analysis. Such 

a framework is fundamentally ANN committee oriented.

2In mathematical contexts where analytic expression are involved, such as the ubiquitous linear 
system Ax — b, whenever the matrix A is singular or the vector x  has no unique solution, we are 
said to be dealing with an ill posed problem. Our proposed method does not expose us to this need 
for analytical inversion directly, and so we use the term underdetermined
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C H A P T E R  2 

T H E O R E T IC A L  B A C K G R O U N D

2.1 N E U R O D E S A N D  P E R C E P T R O N S

ANNs are networks of individual neurodes (artificial neurons). The first neu- 

rodes were originally inspired by biological research of the neurons in the human 

brain.

Nucleus Axon

Soma

Dendrites

Fig. 1. Biological Neuron.

T hreshold  Logic U n it McCulloch and Pitts(40] developed a crude model of the 

biological neuron called the Threshold Logic Unit (TLU) in 1943 with two-state 

output and a step activation function based on a threshold, and is depicted in Figure 

(2 ).
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Excitory ( Threshold.W

Two State
TLUInputs

O utpu t

Inhibitory

Fig. 2. M cCullough-Pitts TLU.

It had the following operational characteristics:

•  Binary outputs.

•  Each neurode has a single fixed threshold.

•  The neurode receives weighted or scaled inputs from excitatory synapses, all 

having identical positive weights oj.

•  Inhibitory inputs have an absolute veto power over any excitatory inputs.

•  At each time step the neurodes are updated by summing the weighted excita

tory inputs and setting the output to 1 if and only if the sum is greater than 

or equal to the threshold and if the neurode receives no inhibitory input.

H ebbian Learning Electronics based simulation of neurodes was greatly stimu

lated by Hebbian Learning which was the concept that connection weights would 

change to model learning (pattern recall) and was introduced in 1949 by Hebb[22], 

The first actual electronic simulation models of neurodes were studied in 1954 by
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Farley and Clark [15, 16] (IBM) as well as Rochester, Holland, Haibit and Duda [43], 

in 1956.

T he P erceptron  In 1958 the first Perceptron that was a single neurode with mul

tiple weighted inputs and step activation was developed by Rosenblatt [44, 45] who 

used Hebbian learning with thresholding and variable weights.

O x  

t ~ \  W:
Bias ( 1)  

W0

" \ W ;

Two StateStep
Function

SUM

Fig. 3. Rosenblatt Perceptron.

It had the following operational characteristics:

•  The weights and thresholds were not all identical.

•  Weights can be positive or negative.

•  There is no absolute inhibitory synapse.

•  The neurodes have two-state output.

•  Hebbian Learning.
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T he A D  A L IN E In 1960 the ADaptive LINear Element or ADALINE by Widrow 

and Hoff [55. 36] (Stanford) was the first neurode to use non thresholded summing 

junctions for weighted non-binary inputs and introduced the delta learning rule for 

goal directed and supervised learning. The ADALINE modeled its ou tpu t y  as

V = Y  x ku k +  b (1)
k = i

for some input vector x and scaling or weight vector u> plus a bias constant b. Defining 

x 0 — 1 and Uo = b, we can write the ADALINE’s output as simply y = x  • u).

D elta  Learning R ule The delta learning rule is affected by changing the ADA

LINE’s weight vector u> according to  the strategy

u> •<— a? -I- g (y — t) (2 )

where t is the target or training output and therefore the supervision, and rj is a 

learning rate. Thus is affected a form of gradient descent linear regression which 

converges to the least squares error. As is apparent from (1) the ADALINE suf

fered from the notable lim itation of only being able to  specify linear classification

boundaries.

M insky and P a p p ert’s C riticism  In 1969 Minsky and Pappert [38] were critical 

of the work to date exposing the linear-only classification boundary lim itation of 

single layer perceptrons as too severe for im portant applications and research funding 

was derailed for some time after this.



2.2 M U LTILA Y ER  N E T W O R K S

In 1974 Werbos [54] published work th a t would be the genesis of the modern 

era of ANNs based on the optimization backpropagation algorithm for feed forward 

networks that showed how to extend the Widrow-Hoff delta rule to  multiple layers, 

where some layers are embedded or hidden from the inputs. These hidden neurodes 

replaced the step function weighted and summed input transformations with continu

ous non-linear transforms. Subsequently in 1986, three independent research groups 

led by LeCun [29], Parker [42], and Rumelhart [47] developed multi-layer percep

trons with hidden layers and, using the Werbos inspired backpropagation algorithm, 

overcame the limitation of linear-only classification boundaries exposed by Minsky 

and Pappert, such that sufficiently complex networks are capable of determining 

arbitrarily complex classification boundaries (see Figure 4)

Fig. 4. Example Complex Non-Linear Classification Boundaries.
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2.3 T H R E E  LA YER  P E R C E P T R O N S

Theorems from Cybenko[ll]. and Hornik, Stinchcombe and W hite [23] de

veloped a few years later established that Three Layer Perceptron (TLP) networks 

with a weighted input layer, a hidden layer with continuous non-linearities, and a 

wighted output layer (with or without its own transform) of sufficient complexity 

were capable of approximating arbitrarily complex continuous non-linear functions 

to arbitrary accuracy [11, 23] and so began the modern era of ANNs of sufficient 

representational prowess for any/all non-linear regression and classification models. 

A typical example of this kind of network interconnection structure is depicted in 

Figure (5). Interest in this modeling technique has grown steadily to  the present day.

Bias (Tx,

Bias

Inputs

O utput

Fig. 5. Example Three Layer Feed Forward Perceptron Network.

Referring to Figure (5), the mapping of the N t inputs through N h hidden
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neurodes to the output of the TLP can be w ritten m athematically as

(  A  \
yp =  V0 +  2  ̂Uh^  ( u °h +  I (3)

h =  1 \  t=  1 /

where .r^ are the network input m atrix components (given) for the i th component 

of the pth input training pattern and yp is the network output for the pth pattern, 

the VP, V  matrices with elements ujth and respectively are the network weight 

parameters for the input to hidden layer and the hidden to  output layer respectively, 

and are non-linear functions in the hidden layer. Weights i/0 and u 0h are for the bias 

inputs for the output and hidden layers respectively. In the case of a multidimensional 

output vector y  versus a single output y, the network hidden to ou tpu t scaling weight 

vector u  becomes the m atrix V with elements uhk such th a t

Nh /  N* \
Vk =  Vok +  uhkV  ( U 0h +  ^ 2  u *hXpi ) ; k  =  1, • • • , N o  (4 )

h = i \  i = i  /

where N 0 is the number of elements in the output vector y.

2.4 B A Y E SIA N  P R O B A B IL IT Y

Cox’s theorem establishes the product rule of probability P ( H i H 2 \B) = 

P{Hi \ H2B ) P ( H 2 \B)  and the sum rule of probability P( H\ B)  +  P( H\ B )  =  1 as 

the unique rules of consistent probabilistic inference. The symmetry of the product
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rule leads immediately to Bayes’ Theorem:

(5)

In words the posterior probability of the hypothesis H conditioned on the da ta  D is 

determined as the product of the independent probabilities (likelihood) of the data 

conditioned on the hypothesis and the prior probability of the hypothesis. All of this 

is considered to be conditioned on an overarching background B,  especially the prior 

distribution. The factor P ( D ) is the marginalized probability (using the sum rule) 

of the data  over the universe of hypotheses and serves to normalize the distribution. 

Bayesian probability analysis is applied along two basic tracks.

In the first track known as param eter estimation, a single param eterized model 

is considered, and all possible values of its param eters are considered to be the 

universe of distinct actual models. In this case, the P ( D ) factor is considered the 

probability for this model as a class. In the second track, Bayes’ Theorem is used 

to grade model classes against one another. The upshot is that Bayes’ Theorem 

is able in principle to probabilistically compare different model classes as well as 

different parameter vectors within each model class, thereby providing a complete 

probabilistic analysis for a given application.

T yp es o f B ayesian ism  The Bayesian community has taken different approaches 

to dealing with the issue of posing the prior information required by the formal 

structure of Bayes’ Rule. We understand the Bayesian prior as the m om entum  term  

in the formal structure of Bayesian inference. Here we survey these approaches with
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some commentary:

•  A nalytical: Prior that is analytically conjugate to analytical posterior. An 

analytical convenience which is somewhat passe in the modern com putational 

era.

•  Subjective: Perfect encoding of background knowledge according to  the ana

lysts state of information about the application at hand.

•  O bjective: Uninformative or weakly informative priors. Designed to  downplay 

influence of prior and is against the spirit of Bayes Theorem.

•  Empirical: Prior estim ated from data[2]. The opposite of Objective Bayes and 

that gives undue weight to prior artificially tuning it to the data, violating Bayes 

Theorem and risks artificially narrowing posterior and predictive distributions.

•  Jeffreys: Ignorance/invariance priors. Ostensibly good where we are truly 

ignorant concerning background information. Often leads to improper (non- 

integrable) priors which may be a warning that this is a limiting condition and 

that there is no such thing as to tal ignorance.

•  Zellner: Maximize influence of data. Another approach th a t is designed to 

downplay influence of prior and is against the spirit of Bayes Theorem.

•  Bernardo: Reference priors[4] which maximize expected posterior informa

tion. An approach towards Bayesian “standardization.” May be useful in our 

proposed framework due to the nature of ANNC modeling.



Jaynes: Least Bias heuristic: Conditions priors by maximizing constrained 

information theoretic entropy. An overt approach to  removing bias from prior 

using information theoretic ideas.
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C H A P T E R  3 

R E SE A R C H  R E V IE W

3.1 M A T H E M A TIC A L B A C K P R O P A G A T IO N  O PT IM IZ A T IO N

The first real framework for ANN modeling and still the preferred framework 

today was first suggested by Werbos [54] but later developed by, Rum elhart, Hin

ton, and Williams [47] and is concerned with determ ining the param eter values of a 

single network for a given d a ta  modeling problem of interest as an exercise in point 

optimization. The major feature of this approach is a calculus based analysis of the 

mathematical model (3).

The optimization based training regimen is to affect an error reduction of the 

regularized sum-of-squares (SSE) network error in the form of

N p

R S S E  oc (tp -  yp)2 +  J 1 +  \ v y~] v 2 (6)
p =  1 UJ V

where the tp is the (given) training pa ttern  output and provides the supervised or 

target1 for the network to model, and the individual weight sum terms are so called 

regularizers th a t penalize larger param eter values2.

Training proceeds by making use of the first (and often second) derivatives

associated with the non-linearities to  hackpropagate changes in the network weight

1 except that they are contaminated with noise and the noise component of the training pattern 
output is not part of our desired target.

2Known as parameter shrinkage in the Statistics literature or weight decay in the ANN literature. 
They generally serve to indirectly inhibit training to the noise component of the target (training) 
outputs and also to provide for better generalization  or performance on data not used in training.
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parameters via a Widrow-Hoff Delta rule (2) of the form

A(\V, V ){0) = - a V ^ R S S E  +  0A {W , V ){~1] (7)

such that the current change (designated by superscript (0 )) is composed of the scaled 

current gradient of the RSSE where the gradient is performed in the hyperspace of 

all the elements in the V, W  matrices, a  is a learning rate param eter which scales 

the rapidity of the descent, and ft is a momentum factor for the previous change 

(designated by superscript (-1)) designed to make the operation less likely to  be 

trapped in a local minima.

This approach is still the preferred framework to  date as evidenced by the 

vast amount of historical and current research literature devoted to it w ith many 

variations and enhancements (mostly ad-hoc from our perspective), but it suffers 

from a catalog of idiosyncratic deficiencies [30]. It should be further noted that this 

framework is not particularly committee oriented.

Inspection of equations (3)-(7) should convince the reader that this framework 

becomes rapidly more complex with size and/or as embedded layers are added?, is 

increasingly susceptible to numerical instabilities, explicitly couples parameters with 

other parameters and their derivatives, and in general risks not scaling well fo r  size 

or network complexity in light o f its resultant explicit mathematical form .4

3Considered highly desirable currently to support so called deep learning.
4See practically any text on Artificial Neural Networks for a full elaboration.
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3.2 B A Y E SIA N  B A C K  P R O P A G A T IO N

Buntine and Weigend [7] (BfcW) took a different Maximum Likelihood based 

optimization approach with their Bayesian Backpropagation framework. This frame

work drew upon some Bayesian principles of probability to pose a Bayesian prior 

distribution for the network weight param eters lj (and similarly for u) in hyper

parameterized form such that,

here using a zero-mean Gaussian with precision a  and an improper5 Jeffreys scale 

invariant hyper prior for the precision which is integrated out or marginalized. This

B&W used a noise-scaled SSE likelihood function with the noise param eter integrated 

or marginalized out to perform Maximum Likelihood analysis that, when combined 

with their prior distribution, facilitates a search for relative maxima in the resulting 

simplified posterior. They then used the Laplace approximation for the log of the 

posterior around those promising regions to form a Gaussian m ixture approximation 

of p(w, v\D) where D  is the training data.

In our approach, we eliminate all dependence on hyper-priors, early marginal

ization of hyper-prior and noise parameters, and use o f any/all convenient analytical 

approximations.

°We consider use of improper priors, though somewhat customary, to be a breach of princi
ple based on the Cox axioms. We intend to use only proper prior distributions in our proposed 
framework. See [52], [12], [28] for discussion of this issue.

6No explicitly modeled covariances among parameters.

results in the same simple naive6 hyper-prior distribution for all network parameters.
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3.3 E V ID E N C E  F R A M E W O R K

Continuing along the basic direction established by B&W. David J. C. 

MacKay developed [32. 33, 34] his Evidence Framework. In this framework. MacKay 

pursued the Empirical Bayes [2] methodology estim ating the prior distribution from 

the data  to be modeled using hierarchical Bayes techniques. MacKay used a single 

param eter hyper-prior in the form of

The network weights were first integrated out to set the hyper-param eters a , 0 s.t.,

and equated to a Maximum Likelihood estim ation of both the prior in the form 

p(w, v\a ',  D) and the likelihood function as p(D\w. v, /?').

The critical thing to notice is that now the prior is dependent on the actual 

training data - including the particular noise sample in the data - in a way that di

rectly conflicts with Bayesian probability and in particular Cox’s Axioms. Edwards 

et al.[14] show that MacKay’s method is prone to over-fitting.

(and similarly for v) and a likelihood function in the form of

( 10)

( 1 1 )
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MacKay’s method is by far the most commonly used and enhanced "Bayesian" 

framework reported on in the literature and continues to  be the m ethod of 

choice[19][37][14][53][8] for Bayesian methods for ANNs. Recently, for example, van 

Hinsbergen, van Lint and van Zuylen [57] use MacKays Evidence framework to  build 

an ANNC in the context of travel time predictions for highway traffic.

3.4 A U T O M A T IC  R E L E V A N C E  D E T E R M IN A T IO N  F R A M E W O R K

Neal and MacKay’s Automatic Relevance Determination Framework [35] 

(ARD) took MacKay’s Evidence Framework a step further into more complex hyper

priors for the input to hidden unit network weights w by providing an individual 

hyper-parameter for each network input in the form

so as to provide a basis for discriminating against the relevance of each network input 

individually, ostensibly to facilitate pruning the network from irrelevant inputs. A 

report by Husimer, Penny, and Roberts documents experiments where ARD fails[24].

3.5 E M P IR IC A L  BA Y ES FO R  IN F IN IT E  N E U R A L  N E T W O R K S

Neal’s framework for Bayesian Learning for Neural Networks [41] was ori

ented towards infinite sized networks, relaxed analytical modeling of the posterior 

from MacKay’s framework - a sure improvement - but still relied upon an Empirical

( 12 )
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Bayes core to handle the prior. However rather than doing maximum likelihood esti

mation of the prior as MacKay did. Neal tuned his prior to the da ta  by including the 

priors’ hyper-parameters in the MCMC sampling of the network’s param eters in the 

network output function. He also retained ARD pruning and used a sophisticated 

MCMC sampler from the physics community.

While Neal relaxed analytical modeling of posterior, he used analytical con

veniences (with hyper-parameters) for the prior (by his own admission) arguing for 

justification that the connection between prior and problem is sufficiently obscure. 

Neal’s framework, while more sophisticated than  M acKay’s, has not seen significant 

further exploration by the ANN community perhaps because it is deemed too esoteric 

and lacks the practical and more manageable aspects of MacKay’s framework.

(and similarly for v) thereby greatly increasing the complexity of the prior and the 

maximum likelihood pre-processing/tuning of the prior to problem set da ta  using 

Empirical Bayesian methods, and attem pted to  prune the network at the individual 

parameter level versus input level as had both MacKay and Neal.

3.6 E X T E N D E D  A R D  F R A M E W O R K

Tipping[51] took the previous ARD frameworks to their logical conclusion by

providing a hyper parameter for each actual weight in the form

(13)
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3.7 O T H E R  R E SE A R C H

Lee [31] attem pted to constrain the search for useful models with a uniform 

prior via linear independence conditions on the design m atrix in the processing for the 

final (output) layer of the network. It is not clear whether this technique is limited 

to the use of identity functions in the final layer, but this is a potentially useful 

technique although it is oriented towards practical efficiency gains for sampling.

3.8 ISSU E S W IT H  C U R R E N T  A P P R O A C H E S

We list issues to be considered going forward for both backpropagation and 

Bayesian training techniques.

M athem atical O ptim ization  Fram ework

•  Must normalize data at all layers to avoid squashing function saturation and 

thus vanishing of derivatives

•  Training of weights is coupled to other weights and their derivatives at gradient 

level (versus the joint probability level)

•  Choice of non-linearity is dictated by idiosyncrasies of backpropagation m ath

ematical details.

•  No guarantee of convergence to desirable solution.

•  Must deal with bias and variance of solutions.

•  Solution is dependent on order of training patterns.
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•  Loses some data for training to support test set for early stopping.

•  Best solutions require linear decorrelation of input vector components (e.g. 

PCA)

•  Training efficacy is dependent on choice of squashing function

•  Training is highly sensitive to m athem atical details of network structure, which 

becomes progressively more complex and non-linear as network layers are added 

or expanded.

•  Training instabilities can result in classification problems if represented at 

squashing function asymptotes.

•  Solution is point solution oriented versus interval oriented.

Bayesian Fram eworks

•  Are Maximum Likelihood oriented

•  Use Empirical Bayes pre-tuning of the prior distribution.

•  Use analytic approximations to the posterior

•  Analytically integrate hyperprior distributions to form prior distribution.
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3.9 ISSU E S N O T  A D E Q U A T E L Y  A D D R E S S E D

P olya’s P lausib le R easoning George Polya was interested in modeling plausible 

reasoning to extend classical logical syllogisms, e.g. Modus Ponens P  —» Q: P  Q 

and Modus Tollens P  —> Q; -iQ ->P, for purposes of inductive reasoning. A

good example is to consider a widespread conviction that P  —»• Q ,Q  P  which 

is in fact the fallacy of affirming the consequent. This brings up the issue of how 

to have a calculus o f evidence for a model. Like Polya, we are instead interested in 

ideas such as P  Q \Q  P  becomes more/less plausible when compared to  some 

P I  —>■ Q. More specifically, P  —> Q; Q P  becomes more/less plausible compared 

to P I as a function of the relative strength of —>•, logical implication. How then also 

to characterize the strength of —»? I.e., implication (—») is itself no longer a Boolean 

value. We are interested in a consistent calculus concerning evidence (in the form of 

data) for a model, where the remaining issues would seem to be how to make this 

rigorous and well founded logically.

P robability  vs. Frequency While there a number of axiomatic or theoretical

systems for probability7, the actual history of probability has primarily reflected two

differing perspectives known generally as frequentist and Bayesian8. It was actually

the logical concept of probability that was earliest in the works of Bayes, Bernoulli,

Laplace, Gauss, Karl Pearson, DeMorgan, and Borel[4], P.S. Laplace and other

physicists of his time achieved notable success with astronomical predictions using

this logical probabilistic view. These works, however, were not axiomatized and

7e.g., Kolmogorov, de Finetti, Keynes to mention but a few
8We prefer logical and frequentist as the logical view actually preceded the frequentist view.
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were considered too subjective to be a proper basis for probability9 by m athem ati

cians who subsequently developed the frequentist school that arose from a desire to 

achieve more mathematical rigor in the works of Cournot, Ellis, Boole, Venn, Fischer, 

Neyman, (Egon) Pearson, and Yates and Cochran (ANOVA).

The frequentist approach shifted the focus from state of investigator infor

mation from which to draw logical inferences, ostensibly to measurement of real 

frequency properties of a system under study and thereby essentially changed the 

definition of probability to one of physical frequency related to chance or random 

ness, and this view held sway from the late 1800s to the mid 1900s. In the early 

20th century the original inferential viewpoint was defended primarily by Sir Harold 

Jeffreys.

By the time of the 1990s, powerful Monte Carlo sampling com putational tools 

proved to give Bayesian methods in particular great assistance though classical statis

tics are still textbook orthodoxy and are what is most widely practiced.

C ox’s A xiom s o f C on sisten cy  W ith a paper published in 1946 [9] and a follow 

up book in 1961 [10], R.T. Cox argued for the axiomatic basis for conducting infer

ence that the degrees of plausible reasoning, when represented by real numbers, must 

conform to or be necessarily inconsistent. Cox was interested in knowing whether 

a calculus of consistent plausible reasoning in the real number system could be es

tablished, without assuming so, from elementary desiderata10 of consistency which

9Henceforth we shall always mean the logical/inductive view with this term. When this term 
would imply frequency, we shall use that term.

10Latin: things wanted or needed
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would also comport with Boolean algebra and common sense11. He was able to dis

cover two resulting functional equations that when solved recovered the product and 

sum rules of conditional probability to w ithin an arbitrary scale factor from which 

Bayes’ Theorem follows directly.

Cox understood his result as identifying the uniquely consistent rules of prob

abilistic inference and considered his theorem as an extension to the ordinary propo- 

sitional logic of Boole12 covering all values in the closed interval [0,1], thereby es

tablishing a comprehensive logic of propositional uncertainty which is to be applied 

for logically underdetermined problems. Cox’s results argue fo r  the proper form  of 

Bayesian probability which would preclude, fo r  example, Empirical Bayes. Jaynes 

understood Cox’s result as the “most im portant conceptual contribution to  the un

derstanding of probability since the tim e of LaPlace” .[26]

u Cox[10] argued that common sense is not to be dismissed but is used even in formal mathemat
ical proofs and is therefore residual, and we are on safe grounds using it.

12Bayes Theorem reduces to classical logic (e.g. modus ponens, modus tollens) when the likelihood 
function degenerates to a delta function. In this case, we have P {D \H ') =  SH>H; thus, P{ H' \ D)  -x 
P(H')6ff>fj  or D  —» H; D /.  H  which is modus ponens.



31

C H A P T E R  4 

M A R K O V  C H A IN  M O N T E  CAR LO  B A Y E S IA N  

P R E D IC T IV E  F R A M E W O R K  F O R  AR TIFIC IA L  

N E U R A L  N E T W O R K  C O M M IT T E E  M O D E L IN G  A N D

SIM U L A T IO N

The key principle upon which to establish this predictive framework is iden

tification of properly weighting the outputs of different ANNs forming an ANNC 

in order to compute point and interval estimates of interest. As a logical m atter, 

any modeling of output data from input da ta  must necessarily be modeled deter- 

ministically, probabilistically, or a combination of both. Additionally, certain flexible 

residual researcher free choices must also be identified, and their impact on predictive 

modeling must be assessed.

4.1 N O N  L IN E A R  R E G R E S S IO N  M O D E L IN G

We elucidate our concept for modeling the superposition of parameterized 

deterministic and stochastic models for non-linear regression modeling.

4.1.1 D E T E R M IN IS T IC  A R T IFIC IA L  N E U R A L  N E T W O R K  M O D E L

Referring to Figure (5), for one-dimensional output (a simple scalar value) we 

model the anticipated deterministic portion of t, the training or supervisory value 

for an individual training pattern, using a Three Layer Perceptron (TLP) Artificial
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Neural Network (ANN) model which conditionally maps an input vector x  to  an 

output y based on the values of the network param eter matrices W  and V.

We designate y (x | W, V ) as the conditional output of the  TLP when the input is x 

and values of the network weight param eters are W  and V. We limit our analysis 

to a single scaler output for the network since other output elements in a higher 

dimensioned output vector would be computed in parallel with their own distinct set 

of parameters (c.f., equation (4) for an arbitrary TLP) and, if correlated with the 

chosen single output element, might serve better as additional informative inputs.

Many choices for hidden neurode continuous non-linearities are available. 

Generally, a sigmoidal shape is recommended, and we choose the inverse tangent 

for all work going forward (see Figure (6)). Inverse tangent is desirable primarily 

because it ranges equally on either side of zero.

(14)

1.5

0 5

•0 5

•1

■1.5
-10 -5 10

Fig. 6 . Inverse Tangent.
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4.1.2 ST O C H A ST IC  M O DEL

By adding a parametric stochastic model e( ae) to the determ inistic TLP 

model (14), we now seek to model t as

t ~  y ( x  | W , V )  +  e(<7e). (15)

Unless we have specific information concerning the nature of the anticipated stochas

tic portion of the data, according to the Principle of Maximum Entropy, we should 

always choose the highest entropy distribution possible to model this portion of the 

data; accordingly, we choose an iid, uncorrelated, zero-mean Gaussian white noise 

model with a parametric variance, such that

e(er£) - 0 (O ,<4 ) (16)

where (p is the Gaussian pdf, and our task now is to determine good values for

w y , a bl.

4.1 .3  M A X IM U M  E N T R O P Y  B A S E D  LIK ELIH O O D  F U N C T IO N

For a collection of N t training patterns from (15) and (16) we can now write 

t, y as vectors over that collection and now have

(17)
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where S  is now the full covariance m atrix over the dimension of the vector t. W ith 

the individually and identically distributed assum ption the covariance m atrix has no 

off-diagonal components, the diagonal elements are the same value, and this becomes

N t

t  -  y  ~  ( 18)
n —1

Equation (18) is known as a naive model since it does not account for possible 

parameter covariances and is another way of specifying a  WGN model. The reason 

for choosing WGN is twofold: (1) the ANN is expected to model all deterministic 

mappings from the input data  to the output data  including any serial correlations 

and (2) the Gaussian distribution has the highest entropy of any two param eter

distributions and is motivated by application of the PM E as that noise figure which

assumes the least information about the stochastic residue.

For one-dimensional ANN output, equation (18) is to be used in Bayes Rule 

(5) as the likelihood function

P L(t|y , ct2) =  0 ( t -  y  | 0, a 2) (19)

along with some prior distribution, the prior being determined as discussed subse

quently.

Let us define 0 =  (IT, V). i.e. the param eters for just the deterministic por

tion of the to tal model such that the to tal model parameters are now w ritten as
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0  =  {9.(Jm). The likelihood (19) can be w ritten as

N t

P ( t I 0 , x) =  Y l  0 [tk -  Vk (xk \9)  I 0, al\] (20)
k= 1

where N t is the number of training input patterns.

4.1 .4  B A Y E SIA N  A N N  P R IO R  D IS T R IB U T IO N S

We argued previously th a t the Cox Axioms of Consistency dictate a form of 

Bayesian Analysis that precludes the Empirical Bayes methodology used in previous 

frameworks in which Bayesian techniques were utilized since th a t m ethod condi

tions the Bayesian prior on the d a ta  to be modeled. We argued the proper form of 

Bayesianism is that of equation(5), where the relationship between prior and likeli

hood is structured as one of independence. This effectively shifts the thrust of the 

ensuing analysis from optimization to logical inference.

A N N  W eight P aram eter S u b jective  Prior

We argue that the obscure explanatory relationship between ANN weight pa

ram eter with the input to output functional mapping effectively precludes any serious 

notion of a Bayesian subjective prior based ostensibly on background knowledge of 

the chosen data and network details.
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A N N  W eight P aram eter R eference P rior

We utilize a Bayesian A N N  reference prior based on our interpretation of the

meaning of the Gaussian Distribution as characterizing essential background informa

tion concerning the characteristic or expected scale within which the proper values of 

the network parameters are to be found. Figure (7) depicts a Jeffreys scale invariant 

prior and a Gaussian prior; both  mean =  0. The Gaussian curve has precision /?, and 

we note that this Gaussian curve is above the Jeffreys curve in a characteristic scale 

region symmetric on both sides of the mean of zero. The Jeffreys prior is strictly 

improper (due to an infinite singularity at the origin) and is generally considered to 

represent the limit of total scale ignorance.

We therefore interpret the Gaussian distribution as giving extra prior weight

ing to a certain characteristic scale within which we expect to find the network’s 

parameter values. Our experience has shown tha t certain characteristic scales are 

apropos for scale network param eters which tend to  become smaller as the network 

complexity grows, whereas location param eters should be modeled with relatively 

broad uninformative priors. We therefore construct prior distributions based on 

these principles.
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Fig. 7. Jeffreys vs. Gaussian.

Stochastic M odel Prior

Prior distributions for the model param eter au of the stochastic model portion

of the composite model discussed in section 4.1.2, require a different approach than  

the ANN weight parameters. These are necessarily scale parameters and are positive 

only. For this reason, we model the prior distribution for abi with Gam m a distribu

tions of either a broad flavor to express high uncertainty concerning the stochastic 

residual or a narrow flavor if we wish to  make the model consider a more definite 

residual stochastic model and express at least some notion of a proper weighting of 

a noise parameter prior that has not degenerated to  a Jeffreys distribution. Figure 8 

shows that a chosen Gamma distribution will express a priori skepticism (less than  

Jeffreys) both concerning certain small and certain large values of erw and a priori 

confidence in a certain region (greater than  Jeffreys).
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Gamma(2,l) vs. Jeffreys
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Fig. 8. Jeffreys vs. G am m a(2,l).

4.1 .5  M O D EL P A R A M E T E R  P O S T E R IO R  D IS T R IB U T IO N :

We proceed to infer all model param eters using Bayes’ Rule which here be

comes

P ( © |  t , x )  o c P ( t  | 0 , x ) P o (©) .  (21)

These distributions are a means to an end, namely providing the proper averag

ing of committee models to compose the EDCM and also the Bayesian predictive 

distribution and credible intervals.

4 .1 .6  M C M C  H Y P O T H E SIS  S A M P L IN G

Our model parameter posterior probability expression (21) represents a collec

tion or committee of models weighted probabilistically. In determining an appropriate 

ANNC to model given data, the crucial consideration is determ ination of an adequate 

number of candidate ANN models over which to evaluate the range of uncertainty.
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In multidimensional and typically high-dimensional param eter spaces it is necessary 

to utilize advanced sampling techniques from Markov Chain Monte Carlo (MCMC) 

since the volume of the solution space increases exponentially with network size.

A N N  W eight Param eter S am pling For ANN weight param eter sampling, 

we use a conventional Metropolis Markov Chain Monte Carlo sampling procedure 

whereby a proposed new param eter vector element value for say 9 ^  is produced 

from the current one 9 by drawing a sample from a Gaussian distribution as a 

proposal distribution of a variance specified fo r  each individual parameter and where 

the mean value for the proposal distribution is always the current value. The new 

values are accepted with probability:

vidually. In cases where the proposed value is rejected, the current value is retained 

as the “new” value.

S tochastic M odel Param eter Sam pling For ANN stochastic model param eter 

abi sampling, we also use a Metropolis Markov Chain Monte Carlo sampling proce

dure that is similar to importance sampling. In this case, we used a fixed Gamma 

distribution - the same as the prior distribution - to determine a proposed new value 

for abi and then apply the Metropolis acceptance/rejection step (22). This procedure 

is conceptually similar to importance sampling.

min 1 (22 )

where P  and P [ 9 ^ j  are determ ined using Bayes Rule (21) for each 9k indi-
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4.1 .7  E X P E C T E D  C O M M IT T E E  D E T E R M IN IS T IC  M O D EL

Formally our Bayesian expected value for an ANNC output y ' for some input 

x ' is determined as

However using MCMC, we calculate this expectation by summing over the posterior 

Markov Chain (of non warm-up length N mc) as

to form the Expected Committee Deterministic Model (ECDM).

4.1.8 P A R A M E T E R  M A R G IN A L  D IS T R IB U T IO N S

Using MCMC, we can calculate a marginalized distribution for (say) the pa

rameter (Jbi as an estimate of the true value of crt characterizing the stochastic portion 

of the given data t  by summing over the MCMC chain using the posterior values in 

the chain for (21) as

e

followed by normalization to achieve formal interval information.. Distributions for 

the components of the param eter 6 would be similar.

(23)

(24)

(25)
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4.1 .9  P A R A M E T E R  E X P E C T E D  V A L U E S (ST O C H A ST IC  M O D E L )

Using MCMC, we can calculate an expectation for model param eters such as 

ctu over the chain as

and serve as point estimates. Expectations for the components of the param eter 9 

would be similar.

4.2 P R E D IC T IV E  M O D E L IN G

The central thrust of our effort is in evaluating our thesis, namely that our 

method provides effective predictive modeling. Both Banks, et. al.[3], and Avrill 

and Law[l] appear to agree th a t “The most definitive test o f a simulation model’s 

validity is to establish that its output data closely resemble the output data that would 

be expected from the actual (proposed) system” [ 1]

4 .2 .1  N O N -L IN E A R  R E G R E SSIO N

Non linear regression is principally about regression statistics and this is pri

marily concerned with statistical properties of the residual data after the regression fit 

has been subtracted. Good statistical characterization of this residual then provides 

for prediction of new output data  from new inputs as they relate probabilistically to 

the EDCM output for the new input.

(26)
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B ayesian P red ictive  D istr ib u tion s (B P D )

We model formal Bayesian Predictive D istributions capable of predicting the

probabilistic excursion from an EDCM for previously unseen data according to formal

our parameterized deterministic model (14). Due to the uncertainty in the network 

deterministic parameters 6 and due to  the presence of stochasticity in the given data 

t, we make this prediction in the form of a probability distribution P  (y' \ x ' , (t ,x ))  

as properly reflective of the uncertainty in 0 , where in essence we are making a 

predictive model for x' based on the given d a ta  (t, x) and our choices of network 

model structure, Bayesian likelihood model, and Bayesian prior distribution. This is 

most directly accomplished by formally marginalizing (integrating out) the param eter 

vector © from the joint probability distribution for 0  and arbitrary outputs y' from 

arbitrary inputs x' as

Bayesian principles and then make output predictions for some arbitrary input x' to

= N e  f  d (0 )  Pq (0 )  P  (t | 0 ,  x) P  (y' | 0  x', x, t)
</©

X <j> y  -  y (x ' I 0) 0 . ffN] (27)

where F© is the distribution function for 0  and we have made use of Bayes Rule 

(21) (the learned posterior distribution), or the conditional likelihood (20) for the
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given data  and the prior distribution for the param eters (an investigator free choice), 

and N s  is a normalization constant. This is the integral of our posterior weighted 

likelihood function.

Using MCMC, we calculate approximate (though asymptotically exact) 

Bayesian predictive distributions for an arbitrary output y' from an arb itrary  in

put x' based on (27) as

-I Nme
P  {y'\x\  (t, x)) ~  (j> ([y' -  y  (x' \ 0n)} | 0, (ctw) J . (28)

m c n =  1

Using these distributions, Bayesian Credible Intervals (BCI) of 90%, 95%, 99% are 

then determined as intervals of the indicated percentage of the to tal probability 

computed by equation (28) .

Stochastic R esidue M eth od  (SR M )

Our SRM approach takes a different approach and seeks reliable predictions

on unseen data by achieving a suitable stochastic residue as a form of inexpensive 

interval estimation based on point estimates of the descriptive statistics of the resid

ual.

In this approach, we subtract the ECDM (24) from the given data  model t in 

the training phase to form the stochastic residue model t — E  [y | x]. This results in 

a practical separation of the deterministic from the stochastic portion of the given 

data.

The descriptive statistics - if they are suitably suggestive - are then used to



44

frame a zero mean Gaussian stochastic model of the indicated standard deviation 

asrm which is then applied to the residual o f the data withheld from  training and 

reserved for predictive performance tests. If the associated skew 7srm and kurtosis 

Ksrm are not too severe, there should be good predictive agreement between these 

data and the predictive residual.

It should be noted that the SRM approach is not coupled in any way to  our 

method of producing an EDCM using Bayesian probability and MCMC. For this rea

son, it is applicable in principle for any trained network regardless of training met hod, 

Bayesian or optimization, and will be the primary basis for making comparisons to 

solutions provided by the M atlab ANN Toolkit.

4.2.2 TL P N O N -L IN E A R  C L A SSIFIC A T IO N

Classification problems are mappings to  discrete labels th a t are typically en

coded numerically, where the input d a ta  may either be continuous or discrete.

B inary C lassification

For binary classification data, we have the training output d a ta  m atrix T  as

a collection of binary encoded values either 0 or 1. The dimension of the output 

vector for each input pattern is now Na = 1, so th a t the matrices T  and Y  are 

now just vectors. These binary values are interpreted as degenerate probabilities of 

observing the training output data. For this reason, there is no additive noise in the 

training data, and there is no apparent need for an additive stochastic model such as 

equation(16). We therefore model the given degenerate probability m atrix T  (41) as
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our general deterministic ANN model Y  (40) such th a t the probability of observing 

(say) the first element of T .  which is t y ,  is the corresponding element of Y  namely 

y i  where y x is interpreted using the Bernoulli D istribution such that

P i t y  \ y y )  =  y \ ' ( I  -  y y ) 1 - 1' (29)

as now there is no parameterized likelihood function. Here the network output Y  

is interpreted as the network’s answer as to the probability th a t the input X  (35) 

corresponds to the output T  given the Bayesian posterior probability distribution 

over the deterministic only ANN param eter set 8 equation (21) in the modified form

P  (8\ T, X )  <x  P  (T  \ X )  P 0 (8 ) . (30)

For the predictive data, Y  is by convention the networks predictive probability that

the proper classification of the input is the class represented by the value of ’1’. For

the entire training output m atrix T , the likelihood of observing T  for input X  is 

interpreted using the Binomial Distribution as:

N t

F ( r | « . x )  =  J ] ^ ( i - , / t) 1*“ (31)
* = 1

which on a log scale is

N t

logh( P ( T  | 8 . X ) )  = Y 2 tkl°9b(yk) + (1 -  tk)logb ( 1 -  yk) (32)
fc= i
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and is the so called cross-entropy error function{6\ of the backpropagation learning 

method. H ere it is used in our m eth o d o lo g y  as a tru e  B ayesian  p robab ilistic  

likelihood and not an error function . It is worth repeating that unlike the 

backpropagation method, we are not doing optimization (minimization) but are using 

MCMC to build a computed jo in t Bayesian posterior probability distribution of the 

parameters associated with the ANN deterministic output (6) in order to construct 

the resulting ANNC EDCM and which represents direct modeling of probabilities.

O ne o f M any C lassification

For more than two classes, a so-called 1-of-C  classification problem, the like

lihood function becomes

c  N t

P  (T  | 8, x) =  n  I I  (33)
c=  1 n = 1

and the activations of the output layer, which are the right hand side of (40), are 

subsequently softmaxed [39] to form a winner-take-all non-linearity to indicate the 

winning class such that the appropriate element of the network output vector y 

assumes the value ’1’ while all others assume the  value ’O’ to be used with the given 

training data T (41) to compute (33). This is accomplished by passing each row of 

the m atrix Y (40) with elements ypc, c = 1. • • • , C  through the transform ation

ex p ( E( y pc))

Vrc £ ? . .« ? ( £ ( % « ■ ) )
(34)
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which results in one of the output vector elements assuming the value one and all 

other elements the value zero as the network prediction for the m atrix T  (41). This 

is known as a 1-of-C binary coding scheme. Differences between this prediction and 

the given training data  (T), which is also 1-of-C binary encoded, are then used to 

compute the misclassification where 5% is the custom ary figure of merit.

4.3 G E N E R A L  D E T E R M IN IS T IC  T L P  SIM U L A T IO N

Our method is applicable for any feed forward ANN regardless of structure, 

in a supervised learning context for both  regression and classification. Further, it 

benefits from the virtue that it is generally insensitive to the complexities of network 

structure unlike conventional backpropagation training where the analytical expres

sions for the derivatives of especially the more deeply embedded neurodes or the 

more numerous embedded neurodes becomes progressively more complex and entan

gled with other parameters and their derivatives (c.f. section 3.1) not to mention 

progressive susceptibility to the vagaries of numerical computation.

Since it has been established th a t all ANNs are equivalent in modeling capa

bilities to TLPs [6], we limit our study to TLPs for practical reasons. In the case of 

an ANN with TLP structure, we utilize a convenient m atrix structured com putation 

as follows. Let N t be the number of training input vectors, Nt the length of the input 

vector, Nh the number of neurodes in the hidden layer, N a the length of the output 

vector.
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Q uasi M atrix  Form ulation We organize the simulation of an arbitrarily com

plex TLP operating on arbitrarily complex input and output da ta  as a quasi-m atrix 

computation according to  the following algorithm:

1. Organize the N t given input da ta  (row) vectors x  each of length TV* for each 

pattern  into a matrix of dimension N t x N{. Next, prepend a column of Is 

to this m atrix to represent the bias input for each pattern  into the following 

m atrix with dimensions N t x (iV* +  1) such that:

/
1 x n

\
XiN,

\
1

(35)

2. Organize the input (with biases) to neurode scaling weights into the follow

ing m atrix with dimensions (iV) +  1) x N^:

W

(  \
U}Ql ■ • •

C C j V j l  ■ ■ ■ ^ 'N ,N h

(36)

3. Form the hidden layer activation m atrix with dimensions N t x Nh as:

A = X W . (37)

4. Process each element of the m atrix A  through the chosen neurode activation
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function y){ - ■ •) to form the m atrix A v .

5. Prepend a column of Is (again to represent the bias) to the processed (squashed) 

m atrix A v to form the outpiit layer activation m atrix Q with dimensions N t x 

(N h + 1) such that:

Q (X \W )

( \
1 Q l i  • '  ' Q i N h

\ 1 Q N t l  ■■■ Q N t N h j

(38)

6 . Organize the neurode output (with biases) to output scaling weights Uho into 

the following m atrix with dimensions (N^ + 1) x N a such that:

/

V

\
^01 ' ' ' ^0  N 0

l' N h I • • •  u N h N 0

(39)

7. Form the output m atrix of the ANN with dimensions N t x N a as:

Y { X \W ,V )  = QV. (40)

It is straightforward to verify that this prescription yields the TLP output (3) 

for all components of the output vectors for all input training patterns as the 

matrix Y.

8. Finally, organize the N t given output da ta  (row) vectors t  each of length N a
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for each pattern into the m atrix T  of dimension N t x Na such that:

/ \

T  = (41)

\ t Npi

4 .4  C O N S T R U C T I O N

The primary tools utilized for this effort were:

•  the R computing environment for statistical and probabilistic modeling as well 

as algorithmic development,

•  the M atlab ANN Toolbox for optimization backpropagation based ANN mod

eling,

• the Gnumeric spreadsheet for general use,

•  the C computing language for our system ’s implementation on a Linux Oper

ating System platform,

•  the Numerical Recipes in C source code library for general numerical compu

tational support,

•  the Gnuplot environment for graphics and data  visualization.
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C H A P T E R  5

EVALUATIVE M E T H O D O L O G Y  A N D  E X P E R IM E N T A L

D E S IG N

G eneral R em arks Simulation output analysis generally requires us to determine 

the essential nature of the simulation at hand, namely term inating versus non- 

terminating and then for non-terminating, one of steady state, cyclic, or other for 

output measuresfl]. In the case of A N N /TLP supervised learning simulation, there 

is no natural termination criteria other than  one derived from the learning procedure 

itself, namely an arbitrary run length or achievement of steady sta te  values for an 

error figure in the case of backpropagation or sufficient exploration of a param eter 

hyperspace in the case of MCMC.

This places our effort in the non-term inating MCMC category where the size 

of the MC must be adequate for representing the sought after invariant joint prob

ability distribution of the network param eters so tha t the committee model of the 

network deterministic output properly represents the effect of the supervised learning 

process, including residual uncertainty as to the proper deterministic model.

As no sure method exists to determine MCMC convergence[5], these con

siderations indicate the use of face-validation to examine the process diagrams for 

the MCMC parameter sampling to assure us that the param eter space has been 

adequately sampled via attainm ent of steady state variation of network param e

ter values as reflected by the MC. O ther strategies for MCMC generally involve
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use of sampling refinements to inhibit excessive random walk behavior, for example 

Metropolis-Hasting sampling versus Metropolis sampling.

5.1 O V E R V IE W

Since our thesis leads to a new conceptual framework for ANN modeling and 

simulation, it seems appropriate to conduct a two phased evaluation. Firstly, we 

propose a learning empirical evaluation for how the system is performing concerning 

the goal of learning from data. This would seem to align well with Measures o f Per

formance (MOP) which are oriented towards measuring what the system is actually 

doing in terms of learning performance.

Secondly, we propose a predictive empirical evaluation concerning how effec

tively the system uses what has been learned to  make predictions. This would seem 

to align well with Measures o f Effectiveness (MOE) which are oriented towards mea

suring how effective the modeled system is towards its ultim ate goal of modeling 

given data  and predictions of not previously encountered data.

We employ cross validation approaches for BPD, SRM, and Mat lab SRM 

within the context of K-Factorial test matrices for each to test learning and predic

tion responses for a range of settings and to explore some basic sensitivity testing 

and to see if more optimal learning and prediction settings are indicated for both 

regression and classification.
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G eneralization  To achieve effective predictive modeling with ANNs, it is impor

tant to achieve good generalization. Traditional ANN training methods have gener

ally sought generalization by pursuing good regularization, which is an overt attem pt 

to inhibit training to the stochastic portion of the da ta  albeit indirectly by param eter 

shrinkage modifications to the objective function of the optimization based training 

approach, (c.f. Section 3.1). We prefer a more direct approach by attem pting

to model both deterministic and stochastic parameters of the combined model using 

MCMC model param eter sampling and model param eter set evaluations as Bayesian 

hypotheses; we assess the capabilities of our system to achieve good generalization by 

examining both the training and predictive performance of our system under varying 

conditions and the connection between the two.

For each factor combination design point in the K-factorial design m atrix, 

a separate cross validation with a fixed number of repeated trials is performed as 

outlined below.

5.2 CRO SS V A LID A TIO N

We use repeated random sub-sampling cross validation for both  our method 

and the M atlab ANN Toolbox on common d a ta  modeling problems and then com

pare results. This method repeatedly randomly splits the dataset into training and 

validation data (also test data for M atlab) for each trial. For each such split, the 

model is trained on the training data, and predictive accuracy is assessed on the 

validation data as discussed in section 5.3.
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The statistics for each measured quantity in the cross validation are then cal

culated across the trials. We list below the cross validation tria l steps common to 

both our method and ANN training/testing with the M atlab ANN Toolbox.

C om m on

•  The given problem data  is randomly shuffled for each trial so th a t training,

testing (if required), and predictive sets are unique for each trial.

• Training data for each trial is always completely in sample, whereas th a t for

validation (and testing if needed) is always out of sample.

• For each trial, an EDCM is produced th a t is a strictly deterministic model.

• For each trial, a residuals da ta  set for both training and prediction are con

structed by subtraction of the EDCM training solution from the (shuffled) 

training data for the trial. In this manner, trial stochastic models of length N t 

for the training portion, and Np for the predictive portion are produced.

•  Each cross validation typically consists of 1000 independent trials but may be 

more or less depending on circumstances.

•  Cross validation measurements are computed as averages across trials. When 

interval information for the measurement is reported, it is calculated as (3 x 

Standard Error of the Mean) for the set of all trials of the cross validation 

experiment to form a 99% confidence interval for the measurement.
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We list below the cross validation trial steps used for BPFANN for both  BPD and 

SRM.

B P F A N N  B P D /S R M

•  There is no requirement to form a test residue d a ta  set.

•  Pre warming of MCMC chains is used so that no data  is collected or analyzed 

on cold chains. Chain pre-warming is done by training on non-partitioned data  

with non aggressive stochastic model param eter settings so as to  produce only 

a loose fit.

•  Data for each trial is partitioned into training and predictive subsets according 

to a 85%/15% partitioning rule in order to provide a counterpart match to 

the M atlab Toolbox defaults. Note th a t here we absorb th a t portion of data  

normally used to support early stopping backpropagation optimization (15%) 

into the training (learning) portion as an advantage of our m ethod since it does 

not require an independent test set to aid in the training phase.

•  Each trial runs for 1000 MCMC transitions for each param eter on the pre

warmed MCMC chain.

•  For each trial, the resultant EDCM is constructed from the Markov Chain 

produced in the trial.

•  For each trial, a residuals da ta  set is produced as the difference between the 

given data  and the trial EDCM.
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M atlab  SR M

•  D ata for each trial is partitioned into training, testing and predictive subsets 

according to the 70%/15%/15% default partitioning rule needed to  support 

backpropagation optimization training with early stopping generalization.

•  For each trial the resultant EDCM is the natural point solution of the back

propagation method chosen. It is not a true committee model, but we retain 

tha t nomenclature for easy comparison w ith BPFANN.

•  For each trial, a residual’s da ta  set is produced as the difference between the 

given data and the trial EDCM.

5.3 CR O SS V A LID A TIO N  M E A S U R E M E N T S

We delineate the measurements and ensuing analysis of the training and pre

dictive outcomes for cross validation trials.

5.3.1 N O N -L IN E A R  R E G R E SSIO N  M O D E L IN G

ANN modeling is a form of non-linear regression modeling; therefore, our 

measurements are concerned with statistical characterization of the EDCM models 

and associated data residual, where this residual is defined as the subtraction of the 

EDCM model from the given data  to form the stochastic residue as discussed in the 

mechanics of our method Chapter 4, and is true both for our Bayesian and also M at

lab ANN Toolbox solution methodologies. Proper probabilistic characterization of
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the training residual comprises our MOP. Similarly, proper probabilistic characteri

zation of the predictive residual comprises our MOE. The measured d a ta  per cross 

validation trial that comprise our MOP are as follows.

E D C M  M easurem ents

•  Mean Square Error of the training residual considered as putative zero mean

data,

•  Pearson’s R of the EDCM compared to the training portion of the given data,

•  The first ten (or fewer) autocorrelation coefficients of training/predictive resid

uals,

•  The first four statistical moments (mean, standard deviation, skew, kurtosis) 

of training/predictive residuals.

A u to  C orrelation C oefficients We also measure the auto-correlation coefficients 

of the residual data according to the formula

_  E[(X.
<7

for lag r  and interpret these da ta  in conjunction with the statistical moments de

scribed as to the quality of the ANN data  modeling effort for a given example.

M ean Square Error We also include a measurement of Mean Square Error (MSE) 

as a datum  of historical interest to the ANN community and especially to facilitate 

direct comparison to  the results achieved by the M atlab ANN Toolbox. MSE will



prove to be an interesting measurement since i t ’s minimization in training is not 

the proper goal as explained in Section 3.1. We include it to provide a common 

measurement with the optimization backpropagation approach as it is implemented 

in the M atlab ANN Toolbox. From equation (18) this is calculated as

P earson’s R  Pearson’s R is included as a common measurement with the M atlab 

ANN Toolbox, and from equation (18) is calculated according to the prescription

R esidual S ta tistica l M om en ts We measure the first four statistical moments of 

the da ta  residual obtained after subtraction of the EDCM from the training data, 

namely mean (//srm), standard deviation (ersrm), skew (7 srm), and kurtosis (Ksrm). 

For SRM, the primary purpose is to test conformance of the predictive residual to a 

zero-mean WGN signature as characterized by the value of asrm determ ined by the 

training portion of the data only as described earlier in section 4.2.1. From equation 

(18) our formulae for these da ta  are

(43)

r  = (44)
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®srm ^  ^ ( ( G  V n )  R s r m ) (46)

( s r r n
J2nU((tn -Vn)- Rsrm)3

(47)

s r m )  J q

( E [ ( ( *  ~ V ) ~  R s r m ) 2 } ) 2  ~

E[((t - y )  ~  H s r m ) 4 ] (48)

SR M  M easurem ents

•  Percentages of residual da ta  th a t occur within the ± l a srrn, ±2crsrm, ±3crsrm,

± 4 asrrn, ± 5 a srm. ± 6crsrm excursion envelopes from zero where the value of a srm 

are those produced by the training procedure. These values are to  be compared 

against the known figures for a Gaussian Distribution of the same variance. This 

is the primary evaluation criteria for  the Stochastic Residue Method.

The residual mean (xsrm is expected to  be near zero, and we interpret the standard 

deviation asrm as the SRM estimation of the param eter o, in equation (16). Any 

measured excess skew 7srm and kurtosis Ksrm are interpreted as defects in the deter

ministic modeling intended to achieve a zero-mean WGN residue. Since finite samples 

from zero-mean WGN data generators typically indicate some measured skew and 

kurtosis, we particularly look for excess skew and kurtosis.

Bayesian C redible Intervals

Formal Bayesian Probability Distribution evaluation proceeds along the lines

described in the Bayesian Predictive Distributions Section (4.2.1), where for each 

trial for learning evaluation we restrict our attention to the da ta  used for training
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and, likewise, for predictive evaluation we use the da ta  withheld from training.

Practical m atters dictate that discretized linear grids be centered on the 

EDCM value abscissa locations and extend on either side along the abscissa axis 

at each EDCM ordinate point sufficiently to test probability values for the antici

pated excursions from the EDCM. Probability values along this test grid are then 

assessed using equation (28), and simple count statistics are accumulated as to the 

number of values in the training or predictive da ta  portion that are included in the 

indicated 90%, 95%, 99% credible intervals.

As a practical m atter, these key values of the credible intervals are typically 

located between predictive grid points and are linearly interpolated. Statistics are 

accumulated on the size of these intervals over the complete set of cross validation 

trials. For BPD the predictive residual is used to test conformance with the Bayesian 

Credible Intervals also determined by the training portion of the da ta  only as dis

cussed in Section 4.2.1. Measured da ta  includes

•  Percentages of residual d a ta  that occur within the 90%, 95%, and 99% Bayesian 

credible intervals using equation (28) for both  training and predictive partitions 

of the given data set for BPD predictions.

•  W idths of the 90%, 95%, and 99% Bayesian credible intervals measured in the 

same units as the network output.

M atlab A N N  T oolbox

In this case, we proceed with the same measurements described for EDCM

and SRM except that the M atlab EDCM is computed as a simple arithm etic average
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committee model over all point solutions produced per individual trial.

5.3.2 C LA SSIFIC A T IO N

Classification measurements are conceptually simple as we make a direct head- 

to-head comparison of our network’s output d a ta  to the given da ta  to  directly com

pute the misclassification percentages for both the training and predictive da ta  por

tions as indicated in Section 4.2.2.

5.4 K -FAC TO R IA L D E SIG N

We utilize a K-Factorial trial stim ulation and analysis as elaborated in Law 

and Kelton[l], such that a separate cross validation is performed, as discussed previ

ously, for each design point in the K-Factorial design matrix. The various purposes 

of this approach are:

•  network committee performance assessment diagnostic,

•  sensitivity testing,

•  relate MOE and MOP.

The general recommendation for factor settings is to space them such as not to depart 

from a linear system response between factor setting changes.

5.4.1 2? FA C TO R IA L D E SIG N  FA C T O R S FO R  B P F A N N  N O N -L IN E A R  

R E G R E SSIO N

The three factors for the design are as follows:



62

1. Nh as the number of hidden neurodes in a TLP to  represent size or complexity 

of the network (Section 4.3). This factor is listed simply as the number of 

neurodes in the hidden layer.

2. Prior distributions for the ANN weight matrices W,V in the form of the stan

dard deviations of zero mean Gaussians (Section 4.1.4). This factor is listed as 

a triple. The triple consists of the zero-mean Gaussian distributions w ith speci

fied standard deviations for the network param eters in the following order: ui0h 

where h is arbitrary, ujtn where i > 0 and h is arbitrary, and finally Uh where h 

is arbitrary. For example, the triple (</>(0,1), 0 (0 ,ICC1), 0(0, 10)) specifies zero- 

mean Gaussians of standard deviations of 1,10_1, and 100 respectively. The 

actual prior then is the product of these so specified distributions as appro

priate over the actual number of param eters in the matrices W,V. See section 

4.1.4.

3. Gamma distribution shape param eters for the stochastic model param eter <rw 

of the Likelihood function (Sections 4.1.3, 4.1.4).

23 Factorial D esign  for E D C M  M easu rem en ts

Figure 9 is the Design Matrix for the EDCM measurements for our 23 factorial

design where the setting for each factor is intended to be the smaller numerical 

value for each factor and the ‘4- ’ for the higher where in general these values are prob

lem dependent. For the responses /?*,, we have listed the measurements elaborated 

on in Section 5.3 for MSE,R, /isrm, (7srm, 7srm, Ksrm, and ACC.
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A B C D E F G H 1
1 Nh W,V Gamma MSE R Mean St£>v Skew Kurt
2 - - - R1 R1 R1 R1 R1 R1
3 + - - R2 R2 R2 R2 R2 R2
4 - + - R3 R3 R3 R3 R3 R3
S + + - R4 R4 R4 R4 R4 R4
6 - - + R5 R5 R5 R5 R5 R5
7 + - + R6 R6 R6 R6 R6 R6
8 - + + R7 R7 R7 R7 R7 R7
9 + + + R8 R8 R8 R8 R8 R8

Fig. 9. 23 EDCM Measures K-Factorial Matrix.

For Figure 10, the number of columns are for the ACC responses for the 

indicated lag value.

A B C D E F G H 1 i K L M
1 Nh W,V Gamma 1 2 3 4 5 6 7 8 9 10
2 - - - R1 R1 R1 R1 R1 R1 R1 R1 R1 R1
3 + - - R2 R2 R2 R2 R2 R2 R2 R2 R2 R2
4 - + - R3 R3 R3 R3 R3 R3 R3 R3 R3 R3
5 + + - R4 R4 R4 R4 R4 R4 R4 R4 R4 R4
6 - - + R5 R5 R5 R5 R5 R5 R5 R5 R5 R5

- + - + R6 R6 R6 R6 R6 R6 R6 R6 R6 R6
8 - + + R7 R7 R7 R7 R7 R7 R7 R7 R7 R7
9 + + + R8 R8 R8 R8 R8 R8 R8 R8 R8 R8

Fig. 10. 23 EDCM ACC Measures K-Factorial Matrix.

23 Factorial D esign  for SR M  M easu rem en ts

Figure 11 is the design m atrix for the SRM measurements for our 23 SRM

factorial design for the responses R we have listed the measurements elaborated 

on in Section 5.3 for SRM. Note th a t we have also included measurements for the 

3xStandard-Error-of-the-M ean (designated as 3SEM) resulting from the trial statis

tics for the cross validation to characterize a 99% confidence interval for the associated
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measurements.

A B C D E F G H 1 J K
1 Nh W,V Gamma I s 3SEM 2s 3SEM 3s 4s 5s 6s
2 - - - R1 R1 R1 R1 R1 R1
3 + - • R2 R2 R2 R2 R2 R2
4 - + - R3 R3 R3 R3 R3 R3
5 + + - R4 R4 R4 R4 R4 R4
6 - - + R5 R5 R5 R5 R5 R5
7 + - + R6 R6 R6 R6 R6 R6
8 - + + R7 R7 R7 R7 R7 R7
9 + + + R8 R8 R8 R8 R8 R8

Fig. 11. 23 SRM K-Factorial Matrix.

In Figure 11, the column designated as ’Is ’ is for the data inclusion percentage 

response for ±1  x asrm about the EDCM and likewise for columns ’2s’, . . . ,  ’6s’.

23 Factorial D esign  for B P D  M easurem ents

Figure 12 is the design m atrix for the BPD measurements for our 23 BPD

factorial design where for the responses /% we have listed the measurements elab

orated on in Section 5.3 for BPD. Note that we have also included measurements 

for the 3xStandard-Error-of-the-M ean (designated as 3SEM) resulting from the trial 

statistics for the cross validation to characterize a 99% confidence interval for the 

associated measurements. Columns designated by percentages are for residual data  

inclusion, and those listed as ’CP are for the widths of the Bayesian credible intervals.
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.1 A 1 B 1 C | D ! E | F |i G | H 1! t 1 J 1 K I L

1 1 Cl Cl Cl
2 l Nh W,V G am m a 90% 3SEM 95% 3SEM 99% 3MSE 90% 95% 99%

3 1 - - - Rl Rl Rl Rl R l R l

« 1 + • - R2 R2 R2 R2 R2 R2
5 l - + - R3 R3 R3 R3 R3 R3

« 1 + + - R4 R4 R4 R4 R4 R4

7 1 - - + R5 R5 R5 R5 R5 R5

8 1 + - + R6 R6 R6 R6 R6 R6

9 1 - + + R7 R7 R7 R7 R7 R7
10 | + + + R8 R8 R8 R8 R8 R8

Fig. 12. 23 BPD K-Factorial Matrix.

23 Factorial Effects

Single factor effects for each of the three factors upon each of the responses

are calculated according to the conventional prescription:

e\ = — (R -2 — R \  +  Ra — R 3  +  R% ~~ Ro +  Rg — R 7 ) (49)

6 2  =  — (i?3 — Ri  +  R 4  — i?2 d- R 7  — R 5  +  Rg ~  R&) (50)

eg =  — (/?5 — R{ +  Rq — i?2 +  R 7  — Rg +  Rg — R 4 ) . (51)

Two factor effects for each combination of two of the three factors upon each of the 

responses are calculated according to the conventional prescription:

e 12 — 2 ^2 ~~ ^3  + Rs — R 7 ) — 2  (-^2 — Rl + R6 — Rbi^j (52)

e i3 =  2  ^ 2  ^  ~  ^ 7  ̂— 2  ~  _

e23 = 2  \ 2  "̂ 8 _  — 2 — ^  — ^ 2)^ • (54)
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Finally, the only three factor combination interaction is

ei 23 2 i  (fl8 -  fl7) -  i  -  fl5) -  i  (ft, -  f t)  + 5 ( f t  -  f t ) (55)

Interpretations of these effects is straightforward, namely:

•  ek\ the average change in response due to  factor k moving from setting to

•  ek f  difference between the average responses when k  and j  have the same sign 

and when they have opposite signs. ( e kj  =  e j k )

•  ekjm‘. three factor interaction as half the difference between the average two 

factor interaction between factors k , j  when m  is ’+ ’ and when m  is ( e kj m 

has the same value for all perm utations of the labels k , j , m) .  The literature 

notes that the interpretation of this effect can be obscure.

5.4.2 22 FA CTO RIA L D E SIG N  FO R  M A T L A B  A N N  T O O L B O X  N O N 

L IN E A R  R E G R E SSIO N

The results from ANN train ing/testing from the M atlab ANN Toolbox will 

serve as a comparative baseline of best-of-breed commercial software. The default 

methodology of the Toolbox is to train  the network via optimization backpropaga- 

tion by dividing the data into a 70%/15%/159c split for training/testing/prediction. 

•Testing’ in this context generally means monitoring the network error to stop tra in

ing when it begins to  increase after reaching a minimum, a technique known as early
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stopping that is endemic to optimization based methods such as the baekpropaga- 

tion training method. Also included is a training method derived from MacKay's 

Evidence (MBR) framework and should provide at least some opportunity for com

parisons to that method.

M atlab ANN Toolbox performance will also be compared to  our system 's 

M OE/M OP using the EDCM and SRM measurements (section 5.3), except that the 

design m atrix for M atlab is a 22 Factorial Design where the design factors are:

•  Network Complexity as the number of hidden neurodes ( ,  Ar̂ ).

•  Training M ethod as one of Scaled Conjugate Gradient or a derivative of 

Mackay’s Bayesian Regression (MBR) Framework. SCG =  MBR =

Figures 13, 14, and 15 are the design matrices for the EDCM and SRM measurements 

for M atlab results.

A B C D E F G H
1 Nh Mthd MSE R Mean StDv Skew Kurt
2 - - Rl Rl Rl Rl Rl R l
3 + - R2 R2 R2 R2 R2 R2
4 • + R3 R3 R3 R3 R3 R3
5 + + R4 R4 R4 R4 R4 R4

Fig. 13. 22 EDCM K-Factorial Matrix.
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A B C D E F G H 1 1
1 Nh Mthd I s 3SEM 2s 35EM 3s 4s 5s 6s
2 - - Rl R l Rl Rl R l Rl
3 + - R2 R2 R2 R2 R2 R2
4 - + R3 R3 R3 R3 R3 R3
5 + + R4 R4 R4 R4 R4 R4

Fig. 14. 22 SRM K-Factorial Matrix.

A B C D E F G H 1 J K L
1 Nh Mthd 1 2 3 4 5 6 7 8 9 10
2 - - Rl Rl Rl Rl R l R l Rl R l R l Rl
3 + - R2 R2 R2 R2 R2 R2 R2 R2 R2 R2
4 - + R3 R3 R3 R3 R3 R3 R3 R3 R3 R3
5 + + R4 R4 R4 R4 R4 R4 R4 R4 R4 R4

Fig. 15. 22 ACC K-Factorial Matrix.

Single factor effects for each of the two factors upon each of the responses are 

calculated according to the conventional prescription:

e\ — -  (i?2 — R\ + R a — Rs) (56)

e2 =  2 (-^3 — R\ + R i — R 2 ) • (57)

Two factor effects for the combination of the two factors upon each of the responses 

are calculated according to the conventional prescription:

Interpretations of these effects is straightforward, namely:
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•  ek: the average change in response due to factor k  moving from setting to

•  ekj: difference between the average responses when k  and j  have the same sign 

and when they have opposite signs, (ekj =  elk)

5.4.3 N O N -L IN E A R  R E G R E SSIO N  D E S IG N  P O IN T  R A T IO N A L E

B P D F A N N : The rationale for the design point choices for BPDFANN are as fol

lows:

•  Choices for Nh represent less complex versus more complex networks for a 

modeling application.

• The ’+ ’ prior setting is for a relatively broader and less discriminating prior for 

9  and may be chosen to represent a uniform prior, while the prior setting is 

to be more discriminating (localized) and may represent our notion of a general 

reference prior based on broad experience with our system.

•  Priors for are intended to coerce relatively less/more aggressive noise tra in

ing inhibition, and express at least some notion of a proper weighting for a 

noise parameter prior that has not degenerated completely to a Jeffreys scale 

ignorant distribution.

M atlab: The rationale for the design point choices for M atlab are as follows:
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•  Choices for Nh represent less complex versus more complex networks for a 

modeling application.

•  The method setting is recommended for general use by M atlab for tradi

tional optimization style training. The ’+ ’ setting is for M acKay’s Bayesian 

Regularization (section 3.3) and should provide an interesting comparison to 

our system.

5.4 .4  22 FA CTO R IA L D E SIG N  FO R  B P F A N N  C L A SSIFIC A T IO N

Figure 16 is the Design Matrix for the misclassification percentage measure

ments for our 22 factorial design where the setting for each factor is intended to 

be the smaller numerical value for each factor and the ‘+ ’ for the higher where in 

general these values are problem dependent. For the responses R k, we have listed 

the measurements elaborated on in Section 5.3.2. Factor effects will also be assessed. 

The rationale for the design choices is the same as discussed above.

A 1 B C
i  i Nh W,V MlsClass
2 1 - - Rl

3 i + - R2

«  i - + R3
5 1 + + R4

Fig. 16. 22 BPFANN Classification K-Factorial Matrix.
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5.4.5 22 FA CTO R IA L D E SIG N  F O R  M A T L A B  A N N  T O O L B O X  C L A S

SIFIC A TIO N

Figure 17 is the Design Matrix for the miselassification percentage measure

ments for our 22 factorial design where the setting for each factor is intended to 

be the smaller numerical value for each factor and the ‘+ ’ for the higher where in 

general these values are problem dependent. For the responses Rk- we have listed 

the measurements elaborated on in Section 5.3.2. Factor effects will also be assessed. 

The rationale for the design choices is the same as discussed above.

A 1 B c
1 1 Nh Mthd MtsClasm
2 1 - - Rl
3 I + - R2
4 i - + R3
5 I + + R4

Fig. 17. 22 M atlab Classification K-Factorial Matrix.

5.5 DATA

Use of synthetic da ta  sets (via simulation) is the ideal way to accomplish our 

aims since the correct answers are in hand (ground tru th ), and da ta  not used in the 

construction phase of the ANNC modeling can be generated at will. In addition, 

we test against selected problems studied in the research literature to  include those 

available from the Univ. Calif, at Irvine Machine Learning Database (UCIMLDB).
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C H A P T E R  6

E X PE R IM E N T A L  C A SE  S T U D Y  R ESU LTS A N D

A N A L Y SIS

6.1 N O N -L IN E A R  R E G R E S S IO N  C A SE  S T U D Y  I

In this case study, we analyze a da ta  set produced by simulation from a known 

deterministic function

from a Gaussian distribution with mean 0 and standard deviation of two. We generate 

this Noisy m ath Function (NMF) training output da ta  t of length 200 such th a t

where x = —100, ••• ,100. W ith the 85%/15% train/predict partitioning this is 

170/30 patterns respectively. The first four descriptive statistical moments (mean, 

standard deviation, skew, kurtosis) of the true stochastic portion are: = 0.0155.

of =  1.88, 7e =  0.039. Kf — 0.0126. Ground tru th  MSE for those figures is 3.54. 

Both noised and de-noised curves are shown in Figure 18.

(59)

and a known stochastic model e <— =  0 , o 2 =  2) tha t is random variates drawn

tx =  f (x)  +  e (60)
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M ath Function

20
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Fig. 18. Noisy M ath Function.

Simulation generated data  affords the opportunity to assess system performance in 

light of known quantities, also known as ground truth.

6.1.1 B A Y E SIA N  C R E D IB L E  IN TER V A LS

From a Standard Normal Distribution for the given values of the true stochas

tic data  (from a known Gaussian distribution), we may calculate the sizes of Bayesian 

Credible Intervals (BCIs) for 90%, 95%, 99% actual da ta  inclusion about the EDCM 

that we might expect from good BCI modeling as follows:

•  90% BCI width =  2 x 1.65 x a( =  6 .2,

•  95% BCI width =  2 x 2 x cre =  7.52,

• 99% BCI width =  2 x 2.575 x <re =  9.68.



6.1.2 CR O SS V A LID A TIO N

We perform a cross validation study on this data for 1000 trials for both 

BPFANN (BPD/SRM ) and M atlab (SRM) w ith the parameter setting matrices for 

both the 23 and 22 cross validations as listed in Tables 1 and 2 as per sections 5.4.2 

and 5.4.1.

Table. 1: 23 NMF Factorial BPFANN Design Point Settings

Design Point N h Po(9) P0((Tbl) = r (shape, scale)
( . . . ) 3 0(0,1), 0(0. 1 0 - 1). 0(0 ,10) r (2 ,0 .5 )
( + - - ) 5 0(0,1), 0 ( 0 ,1 0 -1), 0 (0 ,10) r (2 ,0 .5 )
(- +  -) 3 0(0,100), 0(0,100), 0(0, 100) r (2 ,0 .5 )

(+ +  -) 5 0(0,100), 0(0,100), 0(0,100) r (2 ,0 .5 )
( - - + ) 3 0(0,1), 0 ( 0 ,1 0 -1), 0 (0 ,10) r(2, i .5)

( + - + ) 5 0(0,1), 0 ( 0 ,1 0 -1), 0 (0 ,10) r ( 2 , i . 5 )
(- +  +) 3 0(0,100), 0(0, 100), 0(0,100) r ( 2 , i . 5 )
(+ +  +) 5 0(0,100), 0(0,100), 0(0,100) r(2, i .5)

Table . 2: 22 NMF Factorial M atlab Design Point Settings

Design Point N h Training Method
(- -) 3 SCG
( + - ) 5 SCG
(- +) 3 MBR
(+ +) 5 MBR

Cross V alidation R esponses

The SRM and BPD 23 cross validation results for BPFANN are in Figures

19, 20, 21, and 22, and the results for M atlab SRM are in Figures 28, and 29. For 

Figure 19, columns F and M were added as described previously, since ground t ruth 

data is available for this particular case study.
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V? *■ 1 * ; b c  I D 1 E ] F ! G | H • 1 J 1 *  1 L | M ! N ] o P 1 Q
1 J Train 3.54 P redict
2 J Mi W,V Gamma MSE R GTR M ean StDv Skew Kurt MSE R GTR M ean StDv Skew K urt
3 1 • - - 3.61 0.84 0.8 0.02 190 0.1 -0.1 3 69 0.909 1 0.09 1.85 0.1 -0.2
4 1 * - - 2.97 0.87 0.61 -0.04 1.72 0.0 0 4 4 32 0.892 0.98 0.12 2.04 0.6 13
5 1 - + - 3.58 0.84 0.8 0 02 1.89 0.1 -0.1 3 87 0 908 1 0.13 189 0.0 -0  3
6 1 ♦ ♦ - 2.99 0.87 0.62 -0.03 1.73 0.0 04 418 0.9 0 98 0.08 2.00 0.7 1.4
7 1 - - + 3.61 0.84 0.8 0.05 189 0.1 -0  3 4 37 0.897 0 99 0.20 2.06 0 3 -0 2
8 1 ♦ - + 3.24 0.86 0 74 0.01 1.80 0.1 -0.2 366 0.912 0.99 0.21 1 87 0 3 -0.3
9 1 • * + 3.59 0.84 0.8 0.04 1.89 0.1 -0.3 45 0.891 0.99 0.24 2.07 03 0 0
10 1 + + + 322 0.86 0.74 0.03 1.79 0.1 -0 2 368 0 912 0.74 0.13 1 89 0.2 -0  2
11 1 a l -0 .5 0.02 -0.12 -0.04 -0.13 -0.07 0.3 -0.1 000 -0.07 0.0 0.0 0 3 0.7
12 1 •2 0.0 0.00 0.00 0.01 0.00 0.01 -0  03 0.0 000 -0.06 0.0 0.0 0.0 01
13 1 «3 0.1 -0.01 0.07 0.04 0.03 0.04 -0.42 0.0 0.00 -0.06 0.1 00 -0  1 -0 7
14 1 a l2 0.0 0.00 0.00 0.01 0.00 000 -0  01 -0.1 0.00 -0.06 0.0 0.0 0.0 00
15 1 c l3 0.1 -0.01 006 0.02 0.04 0.10 -0.17 -0 .6 0.02 -0 0 6 0.0 -0.2 -0 .4 -0 .9
16 1 *23 0.0 0.00 0.00 0.00 0.00 0.01 0.00 0.0 0.00 -0.06 0.0 0.0 0.0 0.0
17 1 •1 2 3 0.0 0.00 0.00 0.00 -0.01 0.01 0.01 0.1 0.00 -0.06 0.0 0.0 0.0 -0 1

Fig. 19. Noisy M ath Function EDCM 23 Cross Validation Results.
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A B c D E F G H 1 J K L M
1 T rain ACC
2 Nh W,V G am m a 1 2 3 4 5 6 7 8 9 10
3 - - - 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0.0 0 0 0.0
4 + - - 0.0 0.0 0.0 0 0 0.0 0.0 0.0 0.0 0.0 0.0
S - + - 0.0 0.0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
6 + + - 0.0 0.0 0.0 0.0 0.0 0.0 00 0.0 0.0 0.0
7 - - ♦ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
8 + - + 0 0 0.0 0.0 0.0 0.0 0 0 0 0 0.0 0 0 0.0
9 - + + 0 0 0.0 0 0 0.0 0.0 0.0 0.0 0.0 0,0 0.0
10 + + + 0 0 0.0 0 0 0 0 0.0 0 0 0.0 0.0 0 0 0.0
11 c l 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
12 c2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0.0
13 c3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
14 e l2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
15 e l3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
16 C23 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
17 a l2 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
18
19 P red ic t ACC
20 Nh w ,v G am m a 1 2 3 4 5 6 7 8 9 10
21 - - - 0.0 -0 .1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
22 + - - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
23 - + - 0.0 0.0 0.0 0.0 0.0 -0 .1 0.0 0.0 0.0 -0 .1
24 + + - 0.1 0.0 -0 .1 0.0 0.0 0.0 0.0 0.0 -0 .1 0.0
25 - • + 0.0 0.0 0,0 0.0 0.0 0.0 -0.1 0.0 -0 .1 0.0
26 + - + 0.0 0 0 0 0 0.0 -0 .1 0.0 0 0 0.1 0.1 0.0
27 • •t + 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0.0
28 + + + 0.0 0,0 0.0 -0 .1 0.0 0.0 0.0 0.1 0.0 0.0
29 c l 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
30 c2 0.0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0,0 0.0
31 e3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
32 e l2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
33 e l3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
34 c2 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
35 c l 2 3 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Fig. 20. Noisy M ath Function ACC 23 Cross Validation Results.
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.) A ! B C ! 0 E i F G H J 1 K L "  I N 0 P Q R s  i
1 i Train Predict
2 1 68% 96% 99.7% 100% 100% 100% 68% 96% 99 7% 100% 100% 100%
3 J Nh W,V Gamma I s 3SEM 2t 3SEM 3* 4ft 5ft 6ft 1ft 3SEM 2s 3SEM 3 s 4 s 5s 6ft
4 1 - - - 68% 0.3% 95% 0.2% 100% 100% 100% 100% 67% 2 6% 95% 1.3% 100% 100% 100% 100%
S 1 ♦ - - 71% 0.4% 95% 0.2% 100% 100% 100% 100% 67% 2 6% 90% 1.3% 96% 100% 100% 100%
6 1 - + - 68% 0.4% 94% 0.2% 100% 100% 100% 100% 66% 2 6% 94% 1.4% 99% 100% 100% 100%
7 ! 4 + - 71% 0.4% 95% 0.2% 100% 100% 100% 100% 68% 2 6% 91% 1.3% 96% 100% 100% 100%
B 1 . - + 65% 0.4% 97% 0.2% 100% 100% 100% 100% 62% 2.6% 93% 1.2% 100% 100% 100% 100%
9 1 + - + 70% 0.4% 95% 0.2% 100% 100% 100% 100% 67% 2.4% 93% 1.2% 100% 100% 100% 100%
10 1 * + + 65% 0.4% 97% 0.2% 100% 100% 100% 100% 63% 2.9% 93% 1.1% 99% 100% 100% 100%
11 1 + + + 70% 0.4% 96% 0.2% 100% 100% 100% 100% 67% 2.4% 92% 1.2% 100% 100% 100% 100%
12 1 •X 4% -1% -0% 0% 0% 0% 3% -2% -1% 0% 0% 0%
13 I *2 0% 0% 0% 0% 0% 0% 0% 0% -0 % 0% 0% 0%
14 l •3 —2% 2% 0% 0% 0% 0% -2% -0% 2% 0% 0% 0%
15 l •12 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
1C i •13 1% -1 % 0% 0% 0% 0% 2% 2% 2% 0% 0% 0%
17 i •23 0% 0% 0% 0% 0% 0% 0% -0% 0% 0% 0% 0%
IB i •123 0% -0% -0% 0% 0% 0% -1% -0% 0% 0% 0% 0%

Fig. 21. Noisy M ath Function SRM 2̂3 Cross Validation Results.

a  I B 1 C 1 D 1 E i F i 5  : H | i 1 J 1 K «-1 M 1 N | 0  1 P 1 0  1 A 1 5 1 T 1 U 1

1 1BPD Train a a a Predict a a a
J ____ 1 Nh W,V G am m a 90% 3SEM 95% 3SEM 99% 3SEM 90% 95% 99% 90% 3SEM 95% 35EM 99% 3SEM 90% 95% 99%
3 I - - • 89% 0.2% 93% 0.2% 98% 0.2% 62 7.4 9.8 90% 1.7% 93% 1.7% 99% 1.7% 62 74 98
4 1 + - - 89% 0.3% 94% 0.2% 99% 0.1% 5.7 6 8 89 64% 2 1% 90% 1.5% 95% 0 7% 5.7 6 8 89
* 1 - + - 89% 0.2% 93% 0 2% 98% 0.2% 6 2 74 9,7 88% 1.8% 93% 1.6% 98% 07% 6.2 74 9.7
6  1 + + - 89% 0.3% 94% 0.2% 99% 0.1% 5 7 68 89 86% 2.0% 90% 1.3% 96% 05% 5.7 68 89
7 1 - " + 93% 0.2% 96% 0.2% 99% 0.2% 64 76 10.0 89% 1.7% 92% 1.4% 96% 1.0% 6.4 76 10.0
a  | + - + 86% 0.2% 94% 0.2% 99% 0.1% 6.0 7.1 9.4 86% 1.8% 91% 1.5% 98% 0,7% 6.0 7.1 9.4
9 j - + + 93% 0.2% 96% 0 2% 99% 0.1% 64 7 6 10.0 89% 1.6% 92% 1.1% 95% 0.8% 6.4 7 6 10 0
10 | + + + 88% 0.2% 94% 0.2% 99% 0.1% 60 7 1 9.3 85% 1.9% 90% 1.3% 98% 0.7% 6.0 7 1 93
ii_J •1 -3% -0% 0% -0.4 -HLS -0 7 .. -4% ~2% -0% -0 .4 —0 3  -0.7
12 | •2 0% 0% 0% 00 00 00 -0% -0% -0% 00 0.0 00
13 | •3 2% 1% 0% 0 3 0 3 0 3 0% -0% -0% 0 3 0 3 0 3
14 J •12 0% 0% 0% 00 0.0 00 1% 0% 0% 0.0 0.0 00
15 | •13 -2% -1% -0% 0.0 0 0 0.1 0% 1% 3% 0.0 00 0.1
«  ! •23 -0% -0% 0% 00 0.0 0.0 -0% -0% -0% 00 0.0 0.0
*7 1 •123 0% -0% 0% 0.0 0.0 00 -1% -0% -0% 00 0.0 00

Fig. 22. Noisy M ath Function BPD 23 Cross Validation Results.

B P F A N N  C ross V alidation F in d in gs

Table 3 summarizes our findings from Figures 19. 20, 21, and 22 for the

training response, while Table 4 summarizes our findings for the predictive response.
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Table. 3: 23 Factorial BPFANN Training Cross Validation Findings

Design Point EDCM SRM BPD
( - - - )
( + - - ) low M SE/G TR
(- +  -) low ± 2<7srm
(+  +  -) low M SE/G TR low ± 2a sr„(
( - - + ) low ±crsrm
( + - + ) low 90% BCI
(- +  +) low E(Tsrlrt

(+  +  +)

Table. 4: 23 Factorial BPFANN Predictive Cross Validation Findings

Design Point EDCM SRM BPD
( . . . )

( + - - ) right skew/leptokurtosis low ± ( 2, 3)asrm low 90%,95%,99% BCI
(- +  -)

(+  +  -) right skew/leptokurtosis low ±(2, 3)asrm low 95%,99% BCI
( - - + ) low ± ( l ,2 )ersrm

( + - + ) low 90%,95% BCI
(- +  +) low ± ( 1, 2)aSrm low 95%,99% BCI

(+  +  +) low 95% BCI

B P F A N N  C ross V alidation  C om m entary

We provide commentary on both  BPD and SRM predictive modeling for this

case study.

SR M  D ata  Sum m ary

•  Highest a8rm responses closest to  true value of af .

•  Design point predictive SRM models within ± 3 S E M :

•  Design point predictive SRM models marginally within ±.3SEM : (+ ,-,+ ), 

(+ ,+ ,+ ).
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•  Design point predictive SRM models outside ± 3 S E M :

,+ ,+ ).

•  SRM responses not affected by prior distribution setting for 6  as evident by 

factor effect e2.

B P D  D ata  Sum m ary

•  Highest BCI widths (columns S,T,U Figure 22) are closest to  correct values 

expected for Gaussian distribution for the true stochastic signature. We note 

that design point models (- i+ r )  are most correct to two significant figures 

(Section 6.1.1) and very close to the ground tru th  values we would expect.

•  Design point predictive BPD models within ± 3 S E M :

•  Design point predictive BPD models outside ± 3 S E M :

1+ 1+) X+?->+)) (+ ,+ .+ )•

•  BPD responses not affected by prior distribution setting for 0  as evident by 

factor effect e2.

C orrespondence betw een  Training and P red ic tiv e  R esp on ses

• There is a consistent pattern  of negligible auto correlation for both training 

and predictive data  regions (Figure 20) across all design points.

•  Column E (Figure 19) is Pearson’s R for the design point EDCM compared to 

the training data while column F is Pearson’s R for the design point EDCM
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compared to the true de-noised deterministic data. Column F shows a con

sistent pattern of better fits to the ground tru th  training deterministic data 

for the simpler networks (factor effect e l )  indicating that the more complex 

networks are over-fitting. The same pattern  is present for the prediction data 

although less severe.

•  More complex networks consistently lower the MSE (Figure 19) for training as 

also shown by factor effect e l ;  however, e l  also shows th a t Pearson's R for the 

fit of the EDCM to the true deterministic data  also suffers and is an indication 

of over-fitting on both counts.

•  For training we note little skew/kurtosis of concern as indicated by columns 

I,J.

•  For the predictive data (Figure 19), fits to the true deterministic d a ta  are 

uniformly good except for the (+ ,+ ,+ )  design point which is conspicuously 

poor.

•  For the predictive data, factor effects in Column M (Figure 19) rows 11-17 show 

a consistent pattern of poorer fits to  the ground tru th  da ta  as all factors go 

from their lower to higher settings.

•  Several design points at the low end of predictive performance show MSE values 

close to ground tru th  for training but are noticeably larger for predictive data. 

By contrast, the best performing design points for prediction show consistent 

values of MSE from training to predictions and are also near the ground tru th
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value.

•  For predictions we note the onset o f skew/kurtosis as indicated by columns P, Q, 

fo r  the design points noted in training fo r  suspiciously low M SE scores.

Effect o f  Bayesian Prior on R eg u la riza tio n /G en era liza tio n

Figure 23 shows the effects of the Bayesian prior distribution on the values

of the network parameters u  and v as sampled by the Metropolis MCMC sampling 

procedure discussed in Section 4.1.6 and other measurements reported previously for 

the Noisy Math Function using the same split between training and predictive data 

used previously for all 200 patterns. Figures reported are for predictive data.

A B C D E F G
1 Prior (-3,-3,2) (-2,-2,2) (-1 ,1 ,2 ) (0,0,2) (1,1,2) (2,2,2)
2 EDCM
3 MSE 11.7 4.9 4.21 5.4 5.81 5.58
4 R 0.21 0.71 0.72 0.75 0.83 0.78
5 Mean -02 0,0 0.2 -0 .1 0.2 -0 .4
6 StdDev 3.06 2.07 2.08 2.24 2.28 2.29
7 Skew -0 .3 0.1 0.2 0.1 0.3 0.2
8 Kurt 0.4 - 0 ,4 -0 .2 0.3 0.0 -0 .2
9 SRM
10 Is 76% 62% 61% 61% 58% 60%
11 2s 95% 95% 93% 91% 91% 92%
12 3s 99% 99% 99% 99% 98% 98%
13 BPD
14 90% 94% 89% 87% 83% 87% 86%
15 95% 95% 95% 93% 92% 92% 94%
16 99% 98% 99% 99% 97% 97% 97%
17 90% Cl 11.7 6.79 6.45 6.68 6.75 7.02
18 95% Cl 14 8.09 7.68 7.96 8.04 8.36
19 99% Cl 18.3 10.6 10.1 10.5 10.6 11
20 MCMC
21 s ig b l 3.6 2.07 1.97 2.04 2.06 2.14
22 WO 0.0043 0.044 0.37 4.4 45 467
23 Wi 0.0041 0.043 0.32 3.7 42 392
24 V 352 324 74 48 41 45

Fig. 23. Effects of Bayesian Prior on Regularization.
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Row 1 of the above figure gives the value of the prior distribution and 

is encoded such that, for example, a prior designation of (—2. —2 . 2) —»•

0 (0 ,1O~2),0(0,1O~2),0(O.102) as previously reported. Values for EDCM, SRM and 

BPD measurements for the predictive da ta  in the same format used previously ap

pear under each different prior setting. The MCMC section at the bottom  reports the 

maximum absolute value of the indicated param eter observed in MCMC sampling 

where W0 is for the hidden unit bias weights (o>0h), W) designates the hidden unit 

input weights (cuhi), and V  designates the hidden unit to  output weights (i/h0) of the 

deterministic model equation (14). Mean value for abi observed in MCMC sampling 

is listed as “sig_bl” .

These results show that for the Bayesian prior setting ( - 1 , - 1 ,2 )  (or 

0 (0, 1O_ 1) ,0 (0 , 1O_1) ,0 (0 , 102)) we find the following:

•  lowest MSE,

•  EDCM asrm value of 2.08 is closest to ground tru th  <rt value of 1.88,

•  SRM measurements depart somewhat from ideal,

•  BCI measurements close to ideal,

•  BCI widths closest to ground tru th  values 62, 7.52, 9.68,

• MCMC sampling for abi closest to ground tru th  value of 1.88,

•  maximum observed magnitude for uo. u:,, u from MCMC sampling always at 

the same order of magnitude as the associated prior setting.
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This last observation shows conclusively that the Bayesian prior is regulating as ex

pected for all settings. It is im portant to note, however, that the expected associated 

generalization varies somewhat as the prior setting departs from this nominal value. 

An unexpected response was that BPFANN maintains close to nominal values for 

Bayesian predictive distributions over a broad range of prior settings. In certain 

extreme cases such as the prior (-3-3,2), BPFANN opts for larger values of abi and 

scores a respectable but misleading predictive performance due to a poor EDCM 

fit. Figure (24) shows BCI predictive envelopes for the 90% BCI for priors (-3-3,2) 

to (0,0,2) in order left-to-right, top-to-bottom . Figure (25) is for priors (1,1,2) to 

(2,2,2). Figures (26) - (27) show histograms for the sampling of a bi for priors in the 

same order as the related BCI plots.

-10

-15
20 40 60 80 100 120 140 160 180 20 40 60 80 100 120 140 160 180

15
20 6040 80 100 120 140 160 40 60180 20 60 100 120 140 160 180

Fig. 24. 90% BCI Performance by Bayesian Prior.
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Fig. 25. 90% BCI Performance by Bayesian Prior
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Fig. 26. au MCMC Sampling by Bayesian Prior.
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Fig. 27. er*,/ MCMC Sampling by Bayesian Prior.

From the above figures we note the following:

• BCI envelopes for prior (-1,-1,2) look best and track ground tru th  deterministic 

model best. Compare to  Figure (18).

• Histogram for MCMC erw sampling for prior (-1,-1,2) has best shape and ap

pears to be best centered near the ground tru th  value of 1.88.

•  The too narrow prior (-3,-3,2) samples for au in a suboptimal region far away 

from the correct value of 1.88

•  The broader than optimal priors increasingly sample for am away from the 

optimal region.

M atlab  C ross V alidation F indings

Table 5 summarizes our findings from Figures 28 and 29 for training response.

Table 6 summarizes our findings from Figures 28 and 29 for predictive response.
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¥ 5 3 i *  i B f C 0  1 E ! F G H 1 I ! 1 1 K 1 L i *  ! N ] o
1 J  SRM
2 _J Train +/- 0.01 + /- 0  001 Gauss ACC
3 1 MSE R GTR 1 2 3 4 5 6 7 8 9 1 0
4 J - 3.98 0.435 07 2 5 -0 .1 0 .0 0.1 0 .0 0.0 0.0 0.1 - 0 .1 0.1 0 0
5 1 ♦ - 3.68 0.498 0.876 - 0 .2 - 0 .1 0.0 0.0 0.0 0.0 0.1 - 0 .1 0.1 0.1
6 1 - + 3 6 8 0  501 09 2 3 -0 .2 - 0 .1 0.1 0.1 0.0 0.0 0.1 - 0 .1 0.1 0 .0
7 1 * ♦ 3 6 6 0  504 0.926 - 0  2 - 0 .1 0.0 0 0 0.0 0.0 0.1 - 0 .1 0.1 0.1
8 1 a l -0 .2 0.03 0.1 - 0 .1 0.0 0.0 0.0 0.0 0.0 0 .0 0.0 0 .0 0.0
9 1 a2 -0 .2 0.04 0.1 0.0 0 .0 0.0 0.0 0.0 0.0 0.0 0 .0 0 0 0.0
10 1 •  12 0 1 - 0  01 0 0 0.0 0.0 0 0 0 0 0.0 0.0 0 .0 0.0 0 0 0 0
11 1
12 J Predict Gauss ACC
13 1 MSE R GTR 1 2 3 4 5 6 7 8 9 10
14 1 - - 3 3 2 0.841 0.895 0.0 0 .0 - 0 .3 -0 .1 -0 .1 0.1 - 0  1 - 0 .1 0 .0 0.1
15 1 * - 3.17 0 8 0 9 0.871 0.0 0 .0 - 0 .3 0 .0 0.0 0.2 - 0 .1 - 0 .2 - 0 .1 0.1
16 1 - + 3.19 0.868 0.921 0.0 0 .0 -0 .4 0 .0 0.0 0.1 -0 .1 - 0 .2 - 0 .1 0.1
17 1 * + 3.22 0 8 5 8 0.912 0.0 0 .0 -0 .4 -0 .1 0.0 0.1 - 0 .1 - 0 .1 0 .0 0.1
18 1 •1 -0 .0 6 -0.02 -0 .0 2 0.0 0 .0 0.0 0 .0 0.0 0.0 0 .0 0 .0 0 .0 0.0
19 I a2 -0 .0 4 0.04 0.03 0.0 0.0 0.0 0 .0 0.0 0.0 0.0 0 .0 0 .0 0.0
20 1 •12 0.05 0.01 0.00 0.0 0 .0 0.0 0 .0 0.0 0.0 0 .0 0 .0 0 .0 0 .0

Fig. 28. Noisy M ath Function M atlab EDCM 22 Cross Validation Results.

I M A B C | D E | f G i H 1 ' 1 I | K L I M
1 1 SRM +/- 0.3% +/- 0 .2%
2 1 T rain Gaums 68% 84% 96% 99.7% 100% 100% 100%
3 1 M ean StD v Skew K urt I s r2 s 2 s 3 s 4 s 5 s 6 s
4 1 - - 0.03 1.99 0.00 0.00 69% 81% 95% 100% 100% 100% 100%
5 1 + - 0.03 1.92 -0 .14 -0 .10 68% 82% 96% 100% 100% 100% 100%
6  1 - + 0.02 192 - 0  05 - 0  04 66%  - 65% 96% 100% 100% 100% 100%
7 1 + + 0.03 191 -0 .04 0 04 68% 84% 96% 100% 100% 100% 100%
8 1 e l 0.01 -0 0 4 -0 0 7 -0 .01 -0% -0% 1% -0% 0% 0% 0%
9  1 c2 0.00 -0.04 0.02 0.05 -1% 3% 1% -0% 0% 0% 0%
10 1 e l2 0.00 0.02 0.04 0.04 1% -0% -0% 0% 0% 0% 0%
u  | +/- 0 .3% +/- 0.2%
12 1P red ic t 68% 84% 96% 99.7% 100% 100% 100%
13 1 M ean StDv Skew K urt I s r2 s 2 s 3 s 4 s Ss 6 s
14 I - - 0.09 1.82 0.30 -0 .08 70% 90% 97% 100% 100% 100% 100%
15 J + - 0.02 2.06 0.38 0 74 64% 86% 93% 99% 100% 100% 100%
16 1 - + 0.08 2.04 0.48 -0 .26 63% 84% 96% 100% 100% 100% 100%
17 1 + + 0.04 1.89 0.38 -0 .13 67% 86% 97% 100% 100% 100% 100%
18 I e l -0.06 0.04 -0 .01 0.47 -1% -1% -1% -1% 0% 0% 0%
19 1 e2 0.01 0.02 0.09 -0 .53 -2% -3% 1% 0% 0% 0% 0%
20 1 e l2 0.01 -0 .1 0 -0 .04 -0 .17 2% 1% 1% 0% 0% 0% 0%

Fig. 29. Noisy M ath Function M atlab SRM 22 Cross Validation Results.



87

Table. 5: 22 Factorial M atlab Training Cross Validation Findings

Design Point EDCM SRM
( - - ) Highest MSE, lowest R .R gt low ±L\J 2(J srxxx
(+  - ) low ±\j2(Jsrm
(- +  ) low ±<7srm

(+  +  )

Table. 6: 22 Factorial M atlab Predictive Cross Validation Findings

Design Point EDCM SRM
( - - )

( + - ) low ± 1, ± 2<Tsrm
(- +  ) low ±2(7STm
(+  +  ) low ±crsrm

M atlab  SR M  Cross V alidation  C om m entary

•  Design point predictive SRM models within ± 3 S E M :  (+ ,+ ).

•  Design point predictive SRM models outside ± 3 S E M :

•  MacKay’s Bayesian Regression (MBR) m ethod appears to  give good general

ization only for network with larger complexity.

V isual C om parison o f  B P F A N N  to  M atlab

Comparisons of both highest and lowest predictive performers in terms of the

design point choices for both BPFANN and M atlab example composite EDCM mod

els to the actual ground tru th  noise-free deterministic data  are provided in Figures 

30, 31, 32, 33, 34, and 35. The M atlab composite models are a simple average of 

all models produced during training. The BPFANN composite models are produced 

from the total MCMC chain produced during training.
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In the BPFANN diagrams. Figures 30 and 31, the smooth heavier line is the 

ground tru th  deterministic model (compare to Figure 18); the other relatively smooth 

line is the composite EDCM; the light noisy line is given data; the dotted enveloping 

lines are the SRM ± 2<rsrrn lines, and the solid enveloping lines are the 95% BCI lines.

In the M atlab diagrams, the smooth heavier line is the ground tru th  deter

ministic model (compare to Figure 18). The other relatively smooth line is the 

composite EDCM, the light noisy line is given data, the solid enveloping lines are 

the SRM ±2ersrm lines.

20

10

-10

-15 20 100 120 140 160 180 2004 0 60 80

Fig. 30. Noisy Math Function BPD /SRM  (-,-,-) Ground T ruth  Comparison.

The best performing predictive BPFANN design point (-,-,-) composite model in 

Figure 30 appears on the whole to be performing very well.
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N M F v s  BPFA N N  < - ,+ ,+ )  + / -  9 5 %  B C I a n d  + / -  2  S ig  s r m

_20 « -      ,   —...     „ ,      ------
10  20  30 4  0  50  6 0  70 8 0  9 0  1 0 0  1 1 0  1 2 0  1 3 0  140  1 5 0  1 6 0  170  ISO 1 9 0  2 0 0

Fig. 31. Noisy Math Function BPD/SRM  (-,+ ,+ ) Ground T ruth Comparison.

The worst performing predictive BPFANN design point (-,+ ,+ ) composite model in 

Figure 31 appears on the whole to be slightly over-fitting in some regions and slightly 

under-fitting in others.

M atlab EDCM w ith  G round T ruth an d  4•/- 2Sig SRM

10 20 too .10 140 150 160

Fig. 32. Noisy M ath Function M atlab SRM Ground Truth Comparison.
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The best performing predictive Mat lab design point composite model in Figure 

32 appears on the whole to be slightly over-fitting in some regions and slightly under

fitting in others.

M atlab (+-) EDCM with G round Truth an d  +/- 2Stg SRM

-?Q                     —  ..................
10 10 10 AO SO 60 70 80 90 100 110 120 110 140 ISO 160 170 180 190 200

Fig. 33. Noisy M ath Function M atlab SRM (+-) Ground T ruth  Comparison.

The worst performing predictive M atlab design point (+,-) composite model in Figure 

33 appears on the whole to be slightly over-fitting.

S tochastic  R esidual Figure 34 is a comparison of histograms of the residual data  

for the entire set of trials in the cross validations for best performing design points 

for both BPFANN and Matlab, while Figure 35 is a comparison of histograms of the 

residual data  for worst performing design points for each. The values listed for /isrrn. 

^arm  ̂ larm> and Ksrm in Figures 19 and 29 are derived from these distributions but 

computed by the procedure described in section 5.2.



8PFANN I-.-,-I Teaming Efrors BPFANN Pre<*«ton Errors

Fig. 34. Noisy Math Function M atlab BPFANN Residual Comparison.

Histograms of the stochastic residuals over all trials in the selected cross val

idations in Figure 34 for the best predictive performers show a departure from the 

expected Gaussian shape for M atlab for the predictive data; otherwise, all others 

are approximately Gaussian with approximately the correct ground tru th  standard 

deviation value of 1.88.
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M atlab  N h= 5 BR ItaimnQ  E rreri M a tla b  Nh-*5 BR P red icnon  E n o ^

BPFANN !• .♦ .+ )  Ttaimng Efrors

2 0

B Pf ANN ( .♦ .* >  Pred iction  Errors

2 0

Fig. 35. Noisy M ath Function M atlab BPFANN Residual Comparison.

Histograms of the stochastic residuals over the entire set of cross validation trials in 

Figures 35 for the worst predictive performers are slightly less Gaussian shaped than 

their best performer counterparts, but they are still near the correct ground tru th  

standard deviation value of 1.88.
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BPFANN S igm a S am p lin g  H istogram

16000 -j---------------------------------------------------------------------------------— ----- --
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BPFANN (-, +  ,+ ) S igm a S am pling  H istog ram  

700 0  -j------------------------------------------------------------------------------------------------
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Fig. 36. Noisy M ath Function BPFANN a bl Sampling.

Histograms of the abi sampling for the BPFANN design point models and (-

,+ ,+ ) derived from their respective MCMC chains in Figure 36 indicate sampling 

centered on approximately the correct ground tru th  value of 1.88 in both  cases, with 

the lower predictive performance model (-,+ ,+ ) showing a slightly greater spread in 

the sampling. The values listed for obi in Figure 22 are derived from these distri

butions but are computed by the procedure described in section 5.2 using MCMC 

estimate of the marginalized posterior distribution equation (25).

i i .
1 1 5
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6.2 C A SE S T U D Y  II N O N -L IN E A R  R E G R E SSIO N

In this case study we analyze a data set [58] th a t provides a measure of the 

workability of high strength eoncrete[59]. The data set includes 103 data  points. 

There are 8 input variables and 3 output variables in the data set. Here we model 

only the first output (the harder of the three) for predictive test purposes.

Input A ttr ib u te  Inform ation  Input variables (component kg in one A/ 3 con

crete):

•  Sequence Number

•  Cement

•  Slag

•  Fly ash

• W ater

•  Super-Plasticizer

•  Coarse Aggregate

• Fine Aggregate

O utput A ttr ib u te  Inform ation  Slump Flow (cm). Raw d a ta  for the output 

Slump Flow is depicted in Figure 37.
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30

20

20 8040 60 100

Fig. 37. Concrete Slump.

6.2.1 CRO SS V A LID A TIO N

We perform a cross validation study on this d a ta  for 1000 trials for both 

BPFANN (BPD/SRM ) and M atlab (SRM) with the param eter setting matrices for 

both the 23 and 22 cross validations as listed in Tables 7 and 8 as per sections 5.4.2 

and 5.4.1. Colored items stand out for particular commentary.

Table. 7: 23 Factorial Bayesian MCMC Design Point Settings.

Design Point N h Po(0) Poi&bi) =  T(shape, scale)
( . . . ) 4 0 (0 , 1), 0 (0, 10" 1), 0 (0 , 10) F ( 2 , 1)
( + - - ) 8 0 (0 , 1), 0 (0, 10- 1), 0 (0 , 10) F ( 2 , 1)
(- +  -) 4 0 (0, 100), 0 (0 , 100), 0 (0 , 100) F ( 2 . 1)
( + + - ) 8 0 (0, 100), 0 (0 , 100), 0 (0 , 100) F ( 2 , 1)
( - - + ) 4 0 (0. 1), 0 (0 , 10- 1), 0 (0 , 10) r ( 2 , 2 )

( + - + ) 8 0 (0, 1), 0 (0, 10- 1), 0 (0 , 10) r ( 2 , 2)
(- +  +) 4 0 (0 , 100), 0 (0 , 100), 0 (0 , 100) r ( 2 , 2 )
(+  +  +) 8 0 (0, 100), 0 (0 , 100), 0 (0 , 100) r ( 2 , 2 )
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Table. 8: 22 Factorial M atlab Design Point Settings.

Design Point Nh Training Method 
_T) 4 SCG

(+  -) 8 SCG
(- + ) 4 MBR
(T +) 8 MBR

C ross V alidation R esponses

The SRM and BPD 23 cross validation results for BPFANN are in Figures 38,

39, 40, and 41, and the results for M atlab SRM in Figures 42 and 43.

j  A 1 8  1 c  I D 1 E S F I 6  1 »  1 ' I J | K | L I M | N | O I
l j  T rain P re d ic t
2 j  Nh W,V Gam m a M5E R M ean StO v Skew K urt MSE R M ean StD v Skew K urt
3 1 - - - 292 0.788 - 0  38 5.39 -1 .1 3.4 32.3 0.724 0.10 5.27 - 0 6 0.5
4 1 ♦ - - 12.9 0.912 0.01 3.58 0.1 1.0 20.7 0.836 0.44 4.36 0.3 0.2
S J ♦ - 29.7 0.787 -0 .35 5 38 -1 .1 3.2 2 9 8 0.714 -0 .13 5.4 - 0  6 0.5
6 1 ♦ + - 12.7 0.912 -0.02 3.57 0.1 1.1 19.6 0.861 0.63 4.28 0.4 0.2
7 1 - - + 29.9 0.783 -0.37 5.46 -1 .1 3.2 322 0.716 0.17 5.2 -0 .4 0.1
8 1 ♦ - 12.8 0.912 0.00 3.57 0.1 1.0 20.2 0.85 0.46 4.21 0 3 0.2
9 1 - + + 29.2 0.787 -0.37 5.39 -1 .2 3.4 30.8 0.729 0.02 5.26 -0 .5 0.2
10 1 + + + 12.8 0.912 -0.02 3.57 0.1 1.1 19.1 0.846 0.59 4.22 0.4 0.2
X L 1 a l -1 6 .7 0.13 0 3 6 -1 .S 3  1.25 -2 .3 -1 X 4 0.13 0 3 -170 0.9 -0 .1
12 1 •2 -0.1 0 00 0.00 -0.02 -0.02 0.03 -1 .5 0.01 0.0 0 0 0.0 0.0
13 1 a3 00 0.00 - 0 0 1 0.02 0.00 0.01 0.0 0.00 0.0 -0 .1 0.1 -0 .2
14 J e l2 0.0 000 -0 0 2 0.02 0.00 0.00 0.4 0.00 0.2 -0 .1 0.0 0.0
15 1 e l3 -0,1 0 .0 0 0 .0 0 -0 .02 -0.01 -0.02 -0 .5 0 .00 -0 .1 0 .0 -0 .1 0.1
16 1 e2 3 -0.2 0 .0 0 0 .0 0 -0 .01 -0.01 0.10 0 .3 0 .00 0 .0 0 .0 0 .0 0 .0

17 1
J e !2 3 04 0 .0 0 0.01 0.02 0.01 -0.09 -0 .3 -0.01 0 .0 0 .0 0 .0 0 .0

Fig. 38. Concrete Slump Flow EDCM 23 Cross Validation Results.
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, 1 A B C I D ! E 1 F I G I H I 1 j J 1 K I L ! M i

1 J  T rain ACC
2 J  Nh W,V Gam m a 1 2 3 4 5 6 7 8 9 10
3 - - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4 J + - - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5 J + - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
6 J  + + - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
7 J - ♦ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
8 J  + - + 0.0 0.0 0.0 0.0 0.0 0.0 0,0 0.0 0.0 0.0
9 J + + 0.0 0.0 0.0 0.0 0.0 00 0.0 0.0 0.0 0.0
10 J  + + + 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
11 1 c l 0.0 0.0 0.0 0.0 0.0 0 0 0.0 0.0 0.0 0.0
12 e2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
13 ! •3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
14 t •  12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
15 1 •1 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
16 1 •2 3 0.0 0.0 00 0.0 0.0 0.0 0.0 0.0 0.0 0.0
17 1 •1 2 3 0.0 0.0 00 0.0 0.0 0.0 0.0 0.0 0.0 0.0
18 1
19 J  P red ic t ACC
20 J  Nh w ,v G am m a 1 2 3 4 5 6 7 8 9 10
21 J - - 0.0 -0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
22 J  + - - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
23 J + - 0.0 0.0 0.0 0.0 0.0 -0.1 0.0 0.0 0.0 -0.1
24 J  + + - 0.1 0.0 -0.1 0.0 0.0 0.0 0.0 0.0 -0.1 0.0
25 J - + 0.0 0.0 0.0 0.0 0.0 00 -0.1 0.0 -0.1 0.0
26 J  + - + 0.0 0.0 0.0 0.0 -0.1 0.0 0.0 0.1 0.1 0.0
27 J + + 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
28 J  + ♦ + 0.0 0.0 0.0 -0.1 0.0 0.0 0.0 0.1 0.0 0.0
29 1 •1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
30 •2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
31 1 •3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
32 1 •1 2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
33 1 •1 3 0.0 0.0 0.0 0,0 0.0 0.0 0.0 0.0 0.0 0.0
34 -1 •2 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
35 1 •1 2 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Fig. 39. Concrete Slump Flow ACC 23 Cross Validation Results.
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?  .V  '" ) A B C 0 1 E i F G H J K <- M { N O i * 0 R 5
1 J Train P rw N ct
7 I 68% 96% 99 7% 100% 100% 100% 68% 96% 99 7% 100% 100% 100%
3 | Nh W,V G am m a I s 3SEM 2 s 3SEM 3 s 4 s 5 s fts Xs 3SEM 2 s 3SEM 3 s 4 s S s 6 s
4  [ - - . 75% 1.1% 96% 0.3% 98% 99% 100% 100% 70% 34% 96% 0.3% 98% 99% 100% 100%
5 J + - - 69% 1.2% 95% 0.2% 98% 100% 100% 100% 61% 3.4% 85% 1.9% 98% 100% 100% 100%
6  J - ♦ - 75% 1.3% 96% 0.2% 98% 99% 100% 100% 69% 3.4% 96% 1.9% 98% 98% 100% 100%

7 J ♦ + - 69% 1.4% 95% 0.2% 98% 100% 100% 100% 61% 3.7% 87% 1.7% 98% 100% 100% 100%

*  i - - ♦ 75% 1.3% 96% 0.2% 96% 99% 100% 100% 70% 3.4% 96% 1.9% 98% 99% 100% 100%

9  1 ♦ - + 69% 1.3% 95% 0.2% 98% 100% 100% 100% 61% 3 7% 87% 2.0% 97% 100% 100% 100%
10 | - + + 76% 1.3% 96% 0.2% 98% 99% 100% 100% 69% 3.4% 96% 1.9% 98% 99% 100% 100%

.... J ♦ + ♦ 70% 1.3% 95% 0.2% 96% 100% 100% 100% 62% 3.7% 87% 1.8% 98% 100% 100% 100%
I7 1 • 1 -6% -2% 0% 1% 0% 0% -8 % -10% -2 % 1% 0% 0%

..... J «2 0% -0% -0 % -0% 0% 0% 0% 0% 0% -0% 0% 0%
14 | « 3 0% 0% -0 % -0% 0% 0% 0% 0% 0% 0% -0 % 0%
15 | * 1 2 -0% -0% -0 % -0% 0% 0% 1% 1% 0% 0% 0% 0%
1ft | * 1 3 - 0% -0% 0% 0% 0% 0% -0 % 0% -0 % 0% 0% 0%
17 | * 2 3 1% 0% 0% -0% 0% 0% 0% -1% -0 % 0% 0% 0%

_ » ...... 1 • 1 2 3 -0% -0% 0% 0% 0% 0% 0% -0% -0 % -0 % -0 % 0%

Fig. 40. Concrete Slump Flow SRM 23 Cross Validation Results.

A , B 1 C D E F G j H * J | K L M N : O *  1 0 * s T U
1 BPD Tk-atn Cl a Cl P r c d k t Cl Cl Cl
2 Nh W,V G am m a 90% 35EM 95% 3SEM 99% 3SEM 90% 95% 99% 90% 3SEM 95% 3SEM 99% 3SEM 90%  9 5 %  99%
3 - . - 93% 0.3% 96% 0.2% 98% 0.2% 15.4 18.4 24 1 89% 2 4% 96% 2.0% 97% 1.9% 15.4 18.4 24 1
4 + - - 91% 0.3% 94% 02% 97% 0.2% 11.7 13.9 18.3 82% 2.4% 8S% 2.0% 90% 1.8% 11 7 13 9 18.3
5 - + - 93% 0.3% 96% 0.2% 98% 0.2% 15.4 18.4 24 1 90% 2.4% 97% 2.0% 97% 1.9% 154 18.4 24.1
6 + - 91% 0.3% 94% 0.2% 97% 0.2% 11.7 13.9 18.3 84% 2.5% •8% 1.9% 90% 1.8% 11.7 13.9 183
7 - - + 94% 0.3% 97% 0.2% 98% 0.2% 16.2 19.3 2 5 4 93% 2.4% 97% 2.0% 98% 1.9% 16.3 19.4 25.4
8 •F - + 91% 0.3% 94% 0.2% 97% 0.2% 120 14 3 18.7 84% 2.0% 87% 1.9% 93% 2.2% 12.0 14 3 187
9 - + + 94% 0.3% 97% 0.2% 98% 0.2% 16.2 19.2 25.3 92% 2.4% 96% 1.9% 98% 1.9% 162 1 9 3 25 3
10 + + + 92% 0.3% 95% 0.3% 97% 0.1% 11.9 14 2 1 8 7 84% 20% 88% 1.9% 92% 1.9% 11 9 14 2 18.7
11 • 1 -2% -2% -1% -4 .0 -4 .7 -6 .2 -8% -10% -7 % -4 .0 -4 .8 -6 ,2
12 • 2 -0% 0% 0% 0.0 -0 .1 0.0 0% -0% -0 % -0 .9 -1 .0 -1 .4
13 • 3 1% 0% 0% 0.5 0 6 0.8 2% 1% 2% -2 .3 -2 .7 -3 .6
14 •1 2 0% 0% 0% 0.0 0.0 0 0 0% 0% -0% -2.1 -2 .6 -3 .4
15 • 1 3 -1% 0% -0% -0 .3 -0 .3 - 0  4 -1% 1% 1% - 1 3 -1 .6 -2 .1
16 • 2 3 0% 0% 0% 0.0 -0 .1 0 0 -1% -1% -0% -3 .1 -3 .7 -4 .8
17 •1 2 3 0% 0% -0% 0.0 0.0 0.0 -0% -0% -0% -0 .7 -0 .8 -1 .1

Fig. 41. Concrete Slump Flow BPD 23 Cross Validation Results.

B P F A N N  C ross V alidation  F indings

Figure 38 shows a consistent pattern  of lowest MSE, highest R, lowest crsrm,

lowest residual 7srm, and Ksrm for the more complex networks as opposed to the 

lowest, as clearly captured by the factor effect e l  for both training and prediction. 

Presence of substantial excess skew and kurtosis in the training response translates
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much less to the prediction response. From Figure 39. we note little residual auto

correlation for both training and prediction. In Figure 40 we note th a t all networks 

report good figures for training whereas the less complex networks have consistently 

acceptable figures for Gaussian inclusion percentages based on <Jsrm for predictions, 

and the more complex networks are off the mark. Figure 41 shows the same pat

tern as for SRM data  with the less complex networks giving consistently acceptable 

prediction figures based on BCIs.

M atlab C ross V alidation  F ind ings

Figure 42 shows a consistent pattern  of lowest MSE, and lowest asrm for tra in 

ing whereas the R values are remarkably consistent. Also for training, all design point 

except show considerable excess kurtosis. Gaussian SRM inclusion percentages 

are consistently acceptable for training with the exception of the (+ ,+ )  design point 

which is marginally off on one of the measures.
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SRM
2 J  T ra in
3 1
4 1 - .
S 1 + .
c 1 * +
7 1 * +
a 1 • 1
9 1 • 2
10 I • 1 2
u 1
12 ] P r e d ic t
13 1
14 1 - .
15 1 ♦ _
16 1 • +
17 1 *
IB 1 • 1
19 1 • 2
2 0 1 •  12

+/- 0.5 +/- 0 .004 ACC

MSE R 1

17 0.862 - 0 .1

15.5 0 .878 - 0 .2

1 4 4 0.885 - 0  2

12 0.903 - 0 .2

- 2 .0 0.02 - 0 .1

- 3 .0 0.02 0 .0

- 0 .2 0 .00 0 0

+/- 0.7 ACC

M SE R 1

13.1 0.952 0 .0

12 9 0.951 0 0

10.5 0 .962 0 .0

8.31 0.97 0 .0

- 1 1 9 0.00 0 .0

- 3  59 0.01 0 .0

-0 .5 0 0.00 0.0

0.0 0.1 0.0
- 0.1 0  0 0.0
- 0.1 0.1 0.1
- 0  1 0 0 0 0
0.0 0 0 0.0
0.0 0.0 0.0
0.0 0 0 0.0

2 3 4
0 .0 - 0 .3 - 0 .1

0 .0 - 0 .3 0 .0

0 .0 - 0 .4 0 .0

0 .0 - 0 .4 - 0 .1

0 .0 0 .0 0 .0

0 .0 0 .0 0 .0

0 .0 0 .0 0 .0

0.0 0.0 0.1
0.0 0 0 0.1
0.0 0.0 0.1
0.0 0 0 0 1
0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0

5 c 7
-0.1 0.1 -0.1
0.0 02 -0.1
0.0 0.1 -0.1
0.0 0.1 -0.1
0.0 0.0 0.0
0.0 00 0.0
0.0 0.0 0.0

8 9 10
-0  1 0 1 0.0
-0.1 0 1 0.1
-0  1 0 1 0.0
-0.1 0 1 0 1
0.0 0.0 0.0
0.0 0.0 0.0
00 0.0 0.0

8 9 1 0

- 0 .1 0  0 0 .1

- 0 .2 - 0 .1 0 .1

- 0 .2 - 0 .1 0  1

- 0 .1 0 .0 0 .1

0 .0 0 .0 0 .0

0 .0 0.0 0 .0

0 .0 0 .0 0  0

Fig. 42. Concrete Slump Flow M atlab EDCM 22 Cross Validation Results.

m m m A B 1 C | D E 1 F G | H 1 ' 1 j K <- I M
1 SRM +/- 0.4% +/- 0 .2%
2 Train G auss 68% 84% 96% 99.7% 100% 100% 100%
3 M«an StDv Skew K urt I s r2s 2s 3s 4s 5s 6s
4 - - -0 .1 0 4 .19 -0 .2 8 0 .39 72% 86% 95% 100% 100% 100% 100%
5 + . -0 .2 5 3 .94 - 0 .8 0 1.77 70% 88% 96% 99% 100% 100% 100%
6 - + -0 .0 7 3.81 -0 .5 2 2.44 74% 87% 95% 98% 100% 100% 100%
7 + + - 0  08 3.54 - 0 .4 5 8.53 84% 90% 94% 97% 99% 100% 100%
8 •1 -0 .0 8 -0 .26 -0 3 2 3.73 4% 2% -0 % -1 % -1 % 0% 0%
9 •2 0 1 0 -0 3 9 0.06 4.40 8% 2% -1 % -2 % - 1 % 0% 0%
10 •1 2 0.04 0.00 0.15 1.18 3% 0% -1 % 0% -0 % 0% 0%
11 +/- 0.3% +/- 0.2%
12 Predict 68% 84% 96% 99.7% 100% 100% 100%
13 M««n StDv Skew Kurt I s r2s 2s 3s 4s Ss 6s
14 . . 0.95 3.49 0.76 0.45 81% 93% 94% 100% 100% 100% 100%
15 ♦ - 0.65 3.54 -0 .1 0 - 0 .2 2 73% 81% 98% 100% 100% 100% 100%
16 . + 0.50 3.09 0.50 0.62 80% 88% 96% 99% 100% 100% 100%
17 + + 0.21 2 6 8 0.42 1.16 84% 92% 96% 99% 99% 100% 100%
18 •1 -0.29 -0.18 -0.47 -0.07 - 2% —4% 2% -0 % - 1 % 0% 0%
19 •2 -0.44 -0.63 0.13 0.78 S K 3% 0% -1 % - 1 % 0% 0%
20 •1 2 0.00 -0 .1 1 0.20 0 .30 3% 4% -1 % -0 % - 0 % 0% 0%

Fig. 43. Concrete Slump Flow' M atlab SRM 22 Cross Validation Results.

From Figure 42, we note little residual auto-correlation for both  training and 

prediction although slightly more than  for BPFANN. Prediction responses show a
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mixed pattern  of moment responses though SRM inclusion percentages are consis

tently good across all design points.

V isual C om parison o f  B P F A N N  to  M atlab

Comparisons of both highest and lowest predictive performers in term s of

the design point choices for both BPFANN and M atlab example composite EDCM 

models are provided in Figures 44, 45, 46, and 47. The M atlab composite models are 

a simple average of all models produced during training. The BPFANN composite 

models are produced from the total MCMC chain produced during training. In

the following figures, the heavy line is the given data, the long dashed central line 

is the EDCM, the outer enveloping dotted  lines are the SRM ± 2 a srrn lines, and the 

outer enveloping short dashed lines are the BPD ±95% BCI lines.

The worst performing predictive BPFANN design point composite

model in Figure 44 appears on the whole to be potentially over-regularizing as it 

is an open question whether the flat sections in the plot are actually noise or part 

of the underlying deterministic data not modeled by the associated EDCM. We also 

note tha t the BCI prediction envelope is consistently inside the counterpart SRM 

envelope.
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BPHkNN + /- 95%  BCI a n d  + /. 2 S lg .s rm
I 40

30

20

10

0

10

Fig. 44. Concrete Slump Flow BPD/SRM

The best performing predictive BPFANN design point (+ ,+ ,+ )  composite model in 

Figure 45 appears on the whole to give an EDCM which is following the given da ta  

fairly closely. Here we also note th a t the BCI prediction envelope is almost identical 

with the counterpart SRM envelope.

BPFANN ( + .+ ,+ )  +/* 9 5 %  BCI a n d  + /-  2  S»g_srm
10

Fig. 45. Concrete Slump Flow BPD /SRM  (+ ,+ ,+ ).

The worst performing predictive M atlab design point composite model in Figure
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46 appears on the whole to closely follow the given da ta  with its EDCM except in a 

few places where there are a few notable departures.

M atlab  w ith  +/• 2 S igm a (srm )
4 0

3 0

w20

10

0

1 0

20
6 12 24 30 36 42 48 54 60 66 72 7 8 84 9 0 9 6 102

Fig. 46. Concrete Slump Flow M atlab SRM

The best performing predictive M atlab design point (+ ,+ )  composite model in Figure 

47 appears on the whole to closely follow the given d a ta  with its EDCM.
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M atlab (+, + ) w ith +/- 2 S igm a (srm)
40

30

20

10

0

10
66 72 78 B4 90 1026 12 24 30 36 42 48 54 6018

Fig. 47. Concrete Slump Flow M atlab SRM (+ ,+)•

Stochastic R esidual Figures 48 and 49 are a comparison of histograms of the 

residual data  for each.

M a tla b  ( * .  +  } T rain ing  E rrors M a tla b  (+ , +  ) P re d ic t io n  E rro rs

BPFANN (* . * . + ! T ta im n g  E rrors BPFANN !+ . +  .+ )  P re d ic t io n  Eitocs

6 4  2 0  2 4  6

Fig. 48. Concrete Slump Flow M atlab BPFANN Best Performer Residuals.
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Histograms of the stochastic residuals over all trials in the selected cross val

idations show a consistent pattern  of superior Gaussian shape for the training data  

and are approximately the same size/shape over the predictive d a ta  portion.

M a tla b  l- . -i  T raining E rrors M a tla b  (P red iction  E rro rs

150 -

BPFANN ( . ) T tam ing  E rro rs BPFANN I-.- .- i P re d ic t io n  E rro rs

10 5 0

Fig. 49. Concrete Slump Flow M atlab BPFANN Worst Performer Residuals.

Histograms of the ctm sampling for the BPFANN design point models and (-

,+ ,+ ) derived from their respective MCMC chains in Figure 50 indicate a narrower 

and more Gaussian-like shape for the best predictive performer, w ith a mean value 

for ay similar to that obtained for a8rm by Matlab.
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BPFANN Sigm a S am p lin g  H istogram

8000

7000 - j

6 000 -

cscr 4 000 -

3000 -

2000  -

1000  -

2 2.5 3 3.5 4 4.5 5 5.5 6

BPFANN (+ , + ,+ ) S igm a S am p lin g  H istogram

6000

5000 -

>*
Vcz>cr 3000 -

2 000  -

1000  -

2 2.5 43 3.5 4.5 5 5.5 6

Fig. 50. Concrete Slump Flow BPFANN <jm Sampling.

6.3 C A SE S T U D Y  III C L A SSIFIC A T IO N

In this case study we analyze one of the best known data  sets in the pattern  

recognition literature. The data  set contains 3 classes of 50 instances each, where 

each class refers to a type of iris plant. One class is linearly separable from the other 

two; the latter two are not linearly separable from each other.

Input A ttr ib u tes The input attributes for each pattern  are:

•  Sepal length in cm

•  Sepal width in cm

•  Petal length in cm
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• Petal width in cm

O utput A ttr ib u tes O utput Classification is a one-of-three binary encoded selec

tion vector (see section 4.2.2) for the possibilities:

•  Iris Setosa

•  Iris Versicolour

•  Iris Virginica

6.3.1 CR O SS V A LID A TIO N

We perform a cross validation study on this d a ta  for 1000 trials for both 

BPFANN (BPD/SRM ) and M atlab (SRM) with the param eter setting matrices for 

both the 23 and 22 cross validations as listed in Tables 9 and 10 as per sections 5.4.2 

and 5.4.1.

Table. 9: 22 Iris BPFANN Design Point Settings

Design Point N h Po(0)
(- -) 1 0 (0 , 1), 0 (0 , 1), 0 (0, 1)
(+  -) 3 0 (0 , 1), 0 (0 , 1), 0 (0, 1)
(- +) 1 0 (0 , 100), 0 (0 , 100), 0 (0, 100)
(+  + ) 3 0 (0 , 100), 0 (0 , 100), 0 (0 , 100)
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Table. 10: 22 Iris Factorial M atlab Design Point Settings

Design Point N h Training Method
(- -) 1 SCG
(+  -) 3 SCG
(- +) 1 MBR
(+  + ) 3 MBR

Cross V alidation R esponses

The classification 22 cross validation results for BPFANN are in Figure 51,

and the results for M atlab classification are in Figure 52.

f U S A 1 8 C D 8 f  1
1 j Train Predict
2 I Nh w,v MlsClass 3SEM MteOcss 3SEM
3 | - - 3.6% 0.1% 3.6% 0.3%
4 J + - 2.0% 0.06% 2.1% 0.3%
5 | - + 1.6% 0.1% 1.7% 0.2%
6 | + + 4.2% 0.98% 9.4% 1.4%
7 | c l 0.5% 3.1%
8 | c2 0.05% 2.7%
9 | «12 1.1% 2.3%

Fig. 51. Iris BPFANN Classification Cross Validation Results.

B P F A N N  C ross V alidation  C om m entary

The table in Figure 51 shows a mixed pattern  of factor effects and interac

tions. The obvious best classifier is the smaller network with the uninformative prior 

showing strong consistency between training and predictive da ta  sets. The design 

point network (+ ,+ ) appears to be clearly over-fitting, while the other design point 

networks are remarkably consistent though they range somewhat in performance.
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A 1 B C D E F
i 1 Train Predict
2 Nh MtM MlsClau 3SEM MlsClau 3SEM
3 1 - - 2.1% 0.02% 1.6% 0.1%
4 1 ♦ - 0.9% 0.01% 4.6% 0.03%
5 1 - + 1.9% 0.22% 2.0% 0.91%
6 + + 1.2% 0.25% 3.6% 1.13%
7 1 e l -0.9% 2.3%
8 1 e2 0.0% -0.3%
9 1 e ! 2 0.1% -0.3%

Fig. 52. Iris M atlab Classification Cross Validation Results.

M atlab Cross V alidation C om m entary

As with BPFANN. the table in Figure 52 shows the smaller network to be

the best classifier in the predictive regime with the desirable pattern  th a t predictive 

classification is better than it is for training.

C om parison o f B P F A N N  to  M atlab

Training performance for M atlab is generally better than  BPFANN across

design points. Predictive performance is about par for the two different approaches 

each showing some sensitivity to its design factors (only one of which is common). We 

note that both systems are well within the traditional figure-of-merit misclassification 

rate of 5%.
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Fig. 53. Iris Misclassification by both M atlab and BPFANN.

In Figure 53 the raw output data  for the scoring is for all three classes before 

softmax output layer transforms are applied (See section 4.2.2). We note th a t both 

BPFANN and Matlab are misclassifying a small percentage for the two classes which 

are not linearly separable.
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6.4  C A SE S T U D Y  IV  C L A SSIFIC A T IO N

In this case study we analyze a Wisconsin Diagnostic Breast Cancer (WDBC) 

data set produced by a breast cancer study at the University of Wisconsin Clinical 

Sciences Center consisting of 569 to ta l patterns with 30 real-valued input features and 

a single binary classification output which encodes a diagnosis of either malignant or 

benign. Distribution of diagnoses in these patterns is 357 benign, and 212 malignant.

Input A ttr ib u tes The input attribu tes for each pattern  are: Three d a ta  mean, 

standard error, and largest value for each of ten real-valued features namely

•  radius (mean of distances from center to  points on the perimeter)

•  texture (standard deviation of gray-scale values)

•  perimeter

•  area

•  smoothness (local variation in radius lengths)

•  compactness (perim eter2/ area — 1.0)

•  concavity (severity of concave portions of the contour)

•  concave points (number of concave portions of the contour)

•  symmetry

•  fractal dimension
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of image data for cell nuclei are computed such that for instance, input feature 3 

is Mean Radius, input feature 13 is Radius S tandard Error, and input feature 23 is 

Worst Radius.

6 .4 .1  C R O S S  V A L I D A T I O N

We perform a cross validation study on this d a ta  for 1000 trials for both 

BPFANN (BPD/SRM ) and M atlab (SRM) with the param eter setting matrices for 

both the 23 and 22 cross validations as listed in Tables 11 and 12 as per sections 5.4.2 

and 5.4.1. The results for M atlab classification are in Figure 54, and the results for 

M atlab classification are in Figure 55.

Table. 11: 22 WDBC BPFANN Design Point Settings

Design Point N h Po(G)
(- -) 1 0 (0, 1), 0 (0 , 1). 0 (0, 1)
(+ - ) 2 0 (0 , 1), 0 (0 , 1), 0 (0, 1)
(- +) 1 0 (0 , 100), 0 (0 , 100), 0 (0, 100)

(+  +) 2 0 (0 , 100), 0 (0 , 100), 0 (0, 100)

Table. 12: 22 WDBC Factorial M atlab Design Point Settings

Design Point N h Training M ethod
(- -) 1 SCG
(+  -) 2 SCG
(- +) 1 MBR
(+  +) 2 MBR
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B P F A N N  Cross V alidation  C om m en tary

The table in Figure 54 shows a clear pattern  of increase of misclassification

rate for training due to increase in network complexity (effect e l )  and likewise for 

prediction. Moving to the broader prior settings decreases the misclassification rate 

with no appreciable interaction among factors.

A B C D E F |
1 i Train Predict
2 J Nh W,V MteClau 3SEM MIsCIc m  3SEM
3 J - 2.3% 0.1% 2.9% 0.2%
4 J + - 2.8% 0.06% 3.2% 0.2%
5 J + 2.1% 0.04% 2 4 % 0.1%
6 J + + 2.7% 0.05% 2.8% 0.2%
7 1 c l 0.5% 0.4%
8 1 e2 -0 .1 % -0 .4 %
9 1 e l2 0.0% 0.0%

Fig. 54. WDBC BPFANN Classification Cross Validation Results.

M atlab  Cross V alidation C om m entary

The table in Figure 54 shows a pattern  of decreasing misclassification for tra in

ing and prediction due to increasing the network complexity (effect e l )  and increase 

of misclassification for training and prediction due to use of Bayesian Regulation for 

training (effect e 2 ).
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.. j A 1 8 c  1 D E F |
1 Train Predict
2 J Nh Mthd MisClass 3SEM Mis Class 3SEM
3 J - 2.2% 0.03% 1.1% 0.1%
4 J + - 1.5% 0.01% 0.1% 0.03%
5 J + 2.2% 0.03% 1.1% 0.08%
6 J + + 2.4% 0.03% 1.3% 0.01%
7 e l -0.2% -0.4%
8 e2 0.4% 0.6%
9 e !2 0.2% 0.3%

Fig. 55. WDBC M atlab Classification Cross Validation Results.

C om parison o f B P F A N N  to  M atlab

Training performance appears about equal between BPFANN and Matlab;

however, M atlab’s predictive performance is noticeably superior especially for the 

more complex network and the Scaled Conjugate Gradient training method. We note 

that both systems are well within the traditional figure-of-merit misclassification rate 

of 5%.
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M a t l a b  (-, +  )

1
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Fig. 56. WDBC Misclassification by both M atlab and BPFANN.

Misclassification regions are the circled area shown for both M atlab and B P

FANN in Figure 56. Note that raw data  is shown before softmax output layer trans

forms are applied (See section 4.2.2)
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C H A P T E R  7 

C O N C L U SIO N S

Cross validation trials show acceptable to good predictive performance for 

varying levels of precision for all non-linear regression cross validations given that 

the design points were not pre-optimized to  give the best results but were chosen to 

explore a range of responses for various size networks and other modeling parameters. 

Performance on simulated da ta  gives additional confidence that performance on real 

world regression applications will continue to be valuable.

Bayesian predictive distribution modeling via inclusion of the Bayesian Like

lihood function param eter as an inferred param eter (i.e., sampled) was successful in 

regression cross-validation design point factor selections indicating th a t it is possible 

to gain accurate predictions at various levels of precision.

Training regularization via the Bayesian prior performs at a high level even 

for extended data sets as it effectively throttles the MCMC sampling algorithm to 

parameter scale regions specified by the prior. Prior regularization, however, is no 

guarantee of good predictive generalization unless the Bayesian prior is selected for 

parameter sampling regions that dem onstrate good modeling performance based on 

the greatest predictive precision.

SRM predictions also proved accurate to about the same level in the same 

factor design points that were successful for Bayesian predictive distributions. Given 

the point estimation nature of SRM and tha t it is com putationally considerably less
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expensive than formal Bayesian prediction modeling, this is indicated as a very valu

able and cost effective prediction strategy.

Classification performance was also consistently better than  the standard 

figure-of-merit misclassification rate of 5% for all cross validation trials for real world 

data.

Comparisons to the M atlab ANN Toolkit both  regression and classification 

were favorable given that the Toolkit is production software w ith many years engi

neering and refinements by practical use in many diverse fields of application. By 

contrast, software developed for this research effort is research grade produced by a 

single individual with limited opportunity for broad application or follow up refine

ments.
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C H A P T E R  8 

F U T U R E  R E SE A R C H

8.1 R E D U C E D  P A R A M E T E R  SPA C E  FO R M U L A T IO N

For regression problems, requiring the network output (40) to  equal the tra in

ing output data  (41) when the network input is (35) we now have

Q V  =  T  (61)

which can be formally solved for the m atrix V  as

UT =  [Qt Q ]~1Qt T  (62)

where we have used the Moore-Penrose Inverse for Q and

Y  =  QVt  (63)

is an alternate to (40) for the TLP output. Realistically, (61) would be solved with 

some choice of linear system solver.1 The prim ary benefit of (63) is th a t the weights 

in the m atrix V  have been entirely eliminated from any sampling considerations thus

reducing the dimension of the param eter space to be sampled by (Nh +  1 )N a. We

'This formulation is obviously sensitive to the ability of the chosen matrix solution methodology 
(e.g., Singular Value Decomposition) to average out the effects of the stochastic portion of the given 
data T.
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now have the choice of TLP output from (40) or (63) depending on whether we wish 

to sample for the components of V  or not. We stress that while the particular

matrix simulation articulated above is for a TLP, it can be replaced for ANNs with 

a non-TLP structure; the rest of the methodology is not in any way dependent on 

choice of (feed-forward, supervised) ANN structure. In such cases it may not in 

general be possible to reduce the param eter space to be sampled.

8.2 G E N E R A L IZ E D  N O R M A L  B A S E D  LIK ELIH O O D  F U N C T IO N

The SRM could model the stochastic residue of the training regimen using 

the Generalized Normal Density

f ( x \ / i , a , 0 )  = ---- - r - ^ - e x p f - —— — )̂ ; a , / 3 > 0  (64)
2aT  ( i j  V «  /

a2r(U
with mean n  and variance T./\ n , or in order to possibly model any residual skew

1 la )

and kurtosis in the training/predictive residual.

8.3 M C M C  M E T R O PO L IS H A S T IN G S  S A M P L IN G

The implications of using the Metropolis Hastings Markov Chain Monte Carlo 

(MHMCMC) sampling algorithm for the sampling of ANN param eter vectors (UoD) 

could be studied. MHMCMC requires use of a “correcting” distribution (to gain 

efficiency), and we propose that the prior distribution, however determined, is the 

only logical candidate as a m atter of principle.
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8.4 CRO SS E N T R O P Y  E V A L U A T IO N

Here we explore the prospect of an alternate Cross Entropy based solution 

that makes no reference to Bayesian probability.

8.4.1 S H A N N O N ’S IN F O R M A T IO N  T H E O R Y

Several years after Cox’s paper[9], in 1948 Claude Shannon published his fa

mous paper [48] on communication theory. In this paper Shannon was able to reason 

out in a manner not too dissimilar from Cox’s, a measure of probabilistic uncer

tainty2. In so doing, he recovered the entropy formula of the S tatistical Mechanics 

(SM) of J. W. Gibbs, namely that H  =  —k ^ 2 pp ■ log(jp). In words, the weighted 

value of log(p) over all accessible states.

8.4 .2  JA Y N E S P R IN C IP L E  O F M A X IM U M  E N T R O P Y

Physicist E.T. Jaynes [25] took note of both Shannon’s entropy result and 

Cox’s Axioms and subsequently caused a stir in the physics community by reformu

lating SM as a problem of inference under incomplete information of a physical system 

arguing for the information theoretic nature of such inference and also of entropy. 

Jaynes took the view that probability distributions were encoders of information 

concerning a logical state of incomplete knowledge w ith uncertainty in the Coxian 

sense. Jaynes in the same publication also established the Principle of Maximum

Entropy (PME) as a conditioning requirement for probability distributions in order

2The first use of the entropy measure for uncertainty was apparently due to Hartley [21] who 
used log2 N  for N equally uncertain outcomes. This is a special case for N equally likely outcomes 
of the Gibbs-Shannon formula.
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to achieve that proper state of knowledge of maximum but constrained uncertainty 

or, in his words, ‘‘to be maximally non-committal to what is not actually known." 

and which was to serve as an essential inferential heuristic of researcher honesty and 

ethical rationality. This theorem3 is vital in cases where there is a second level of 

uncertainty where not only is the point solution underdetermined but the uncertainty 

over a nexus of point solutions - expressed as a probability distribution - is itself not 

unique (underdetermined). In such cases, Jaynes councils us th a t the honest thing 

to do, for all such distributions, is choose the one with the largest entropy so th a t we 

discriminate among alternative models as little as the evidence (data) perm its under 

the circumstances.

P r in c ip le  o f M ax im u m  E n tro p y  Consider a parameterized system U tha t has 

some discrete parameter state space S  available to it under the conditions tha t cer

tain macroscopic values ac, c =  1 ,..,iV c are known. By macroscopic we mean that 

there exist N c scalar valued functions f c(s ) of the discrete state space index s G S, 

where the value for the function / c(s) for the state s is designated as f cs and each 

macroscopic value ar is the state space probabilistic expectation of the related function 

f c{S). W ith ps as the probability4 tha t the system is in the state s we have

p F  =  a  => [psf cs] =  ( f c(S)) = ac; c = l . . . ,N c. (65)
S

Alternatively, it is an heuristic.
4 uncertainty
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Now consider a probability mass function P  =  {s,ps} for the state space S  commen-

following question naturally arises: what is the proper selection o f {ps} fo r  the many

key to the solution is in the characterization of the term  proper. If we understand 

proper as least committal to what is not actually known, then we can obtain { s ,p s} 

by maximizing the informational entropy of { s ,p s} defined[48] as:

subject to (65). Thus we have a constrained optimization problem. It was just this 

problem that was solved analytically by physicist J. W illard Gibbs yielding the Gibbs 

Distribution unique for the stated  conditions6:

given macroscopic properties of a system in thermodynamic equilibrium and in a state of maximum 
(physical) entropy. E.T. Jaynes realized that Gibbs had in fact solved a general problem of infer
ence under uncertainty and that entropy is information theoretic in nature such that the inference 
necessarily is not a function of any information not given, unlike classical or orthodox statistics in 
particular which conditions its inferences on data not given or observed.

7Known in Statistical Mechanics as the Partition Function

surate with (65). In general0 {s .p s} is underdetermined by equation (65) and so the

possible {.s,ps} consistent with equation (65) over the state space S ? The

H( P)  = -  < log(p) > =  -  p jo g lp .)  =  - p  • log (p) (66)
S

- N c

p  =  Z ^ 1exp  (A F) => p s = Z  lexp  £  'V .fas (67)

where the normalizing constant Z  is7 given as

(68)

°Whenever N c  < size of the state space S.
6Gibbs apparently saw his effort as characterizing the population of different micro-states for
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and the vector A is given formally by

d
— l o g ( Z ( \ ) ) = a c. (69)

Princip le o f  M inim um  C ross E ntropy Consider a normalized discrete proba

bility mass function Q  =  {{«i , < 7 1 } , (jtv,}} for some N a states of a system U  

indexed by s such that

X >  = i = > J 2 ^ ~ 1 = 0- (7°)
s  s

Sans any other information, according to Laplace’s Principle o f Insufficient Reason, 

we must make the assignment8

«*=k  (n)

consistent with the normalization constraint, which though a primitive constraint, is 

all that is necessary to determine a unique probability distribution. Suppose we also 

have additional constraint information of the general form:

fcaQs =  ac; C =  1, N c = >  F q  — a  = 0. (72)

8Note that this can also be found by application of equation (67) where normalization is the
only available constraint.
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Instead of the entropy of Q

H(Q)  = ~ ^ q slog{qs) =  - q -  log fa) (73)
S

we consider the cross entropy2 of Q  with some given prior P  over a common state 

space S:

Hq]p (Q\P) = Eq | i o ff ( j )  |  =  £  q.log (Pj . (74)

In seeking the minimum  of equation (74), we are finding the distribution Q th a t is 

as close to P  as possible and is commensurate with (70) and (72). This is to  be 

understood as a conservative learning law in the sense that it seeks to obtain the 

m inimum  possible change to P  to obtain Q. M athematically this is accomplished 

by determining Q as minimizing (74) subject to (72). By inspection of (71)

and (74) we can see that the Principle of Maximum Entropy is a special case of the 

Principle of Minimum Cross Entropy when the reference (starting) distribution in the 

PME is the uniform  distribution. We use the method of Lagrange Multipliers

to minimize (74) subject to (72), and (70) with Lagrangian

L(Q. X, A„) = H( Q\ P)  +  A • ( F q  -  a) +  A0 -  1 j (75)

so that

V q. \ ,\0L{Q, A, A0) =  0 (76)

Cross Entropy is inconsistently defined across the literature both in algebraic form and sign.
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yielding

(77)

for say the equation concerning the sta te  s for Q implied by (76), where we must 

determine {A, Aq} to obtain a solution. Equation (77) reduces to

As A0 is clearly related to normalization, we absorb it into a normalization constant 

and write:

All that remains is to  determine {A, A0} via agreement with equations (72) and (70) 

using (79).

8.4 .3  CRO SS E N T R O P Y  E V A L U A T IO N

In all cases of use of MOEs and MOPs, we believe it to be feasible for some 

networks to explore use of the PME to independently transform the prior to  posterior 

directly as an independent comparison. We believe it is possible to develop a Mini

mum Cross Entropy' parameter distribution for ANNs based on the powerful ability 

of the maximum entropy distribution to  discriminate[27] among competing models

(78)

Thus,

qs =  p s e x p  (A0 -  1) e x p  I Acf t (79)

qs (X p se x p (80)
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yet at the same time in the least possible discrim inatory fashion possible[27]. leaving 

the most possible shaping influence for new data. The basic procedure would be to 

apply (70), (72) and (80) to the case of an arbitrary  ANN. The way to do this is to 

write the constraint values f cs in (72) in term s of the network output da ta  Y ,  and 

the constraint equation constants (given) using the training9 (ou tpu t10) data  m atrix 

T  which has the same dimensions as the network simulation output m atrix Y . This 

implies that the f cs in equation (72) are in fact the ypk of equation(3) such that the 

constraint index c ranges over the dimensions of the output Y . T hat is, c ranges over 

both p and k  of equation(3). Therefore, writing the f cs in equation(3) now as f pks 

we have

N h /  N t \

fpks = Vpks =  ann(p, k ,  s) = voks +  ^  vhkstp I wohs + wihsxpi ) , (81)
h= 1 \  i = 1 /

and the constraint constants ac in (72) now w ritten as apk are now the corresponding 

elements of the training data output m atrix t p k . Thus, we require

V ,  [QsVpks] =  t pk  ; n =  1 , . . ,  N p , k  =  1 , . . ,  N 0 (82)
S

as the specific form of (72). Note that the network param eter matrices W, V  now are 

indexed by state since the state space we are sampling over requires distinct values for

the network parameters (yielding distinct components for the output m atrix Y )  which

9 We are exploring a Maximum Entropy inference here. In our case the given data are our 
observations

*°We are of course using the training data input matrix as the desired or target network simulation 
output matrix Y  throughout.
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are encapsulated in the combined param eter matrices W , V. It is im portant

to note that equation (82) almost gets us there but not quite. The rub is that the 

training data T  is in general contam inated with noise, so we will have to deal with that 

contingency. One way to deal with it is to  realize th a t the expected network output 

which is the LHS of equation (82), will, depending upon choice of the complexity 

of the network, reflect some model based generalization, so it will not in general be 

the same as T. The magnitude of T  — E ( Y ) will, however, be our estim ate of the 

residual noise power in the data, so the basic strategy is to find a solution for A that 

minimizes it.

N um erical M ethod  S olu tion  A m atrix solution involves recognizing equation 

(82) as an instance of the ubiquitous Ax =  b linear system and use one of the many 

numerical methods for it. The essential caveat is th a t we would need to solve the 

system using the noise contaminated T  a t least at first as our best and perhaps only 

estimate for the true model.

Sim ulation Based Solution  An alternate, albeit more brute force solution, would 

be to use Monte Carlo simulation to  sample the components of A and iterate until 

the magnitude of the residual noise vector T  — E( Y)  reaches a steady state minimum, 

non-terminating simulation style.
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8 .5  M I N I M U M  C R O S S  E N T R O P Y  M O M E N T  P R I O R

We believe it should be possible to develop a minimum cross entropy moment 

based prior distribution for ANNs. The basic procedure would be to  replace the 

constraints in equation (72) with certain other macroscopic properties in the form 

of distribution moments of the training d a ta  descriptive statistics. We could use, 

for example, the first several moments of the training output, e.g. mean, variance, 

etc. In this case, for a one dimensional output vector we rewrite equation (72) with 

just two constraints: the first is the mean of the simulated network output for each 

dimension of the output; the second is the variance; e.g., for the mean we write

E{ y k) = Qs ̂  ̂  Vnks
71

^  Y ^ t nk = E ( t k ) ; k =  1,.., N0 (83)

and similarly for the variance

E ( E ( y k)2) -  ( E( y k))2 ~  E ( E ( t k)2) -  ( E ( t k))2 ; k =  1,.., N 0 (84)

with q  to satisfy both the moment constraints for the output vector mean (83) and 

output vector variance (84). For an output m atrix of column dimension N a, we 

have N 0 such pair equations. Even more compelling is to first normalize11 the data  

such that a minimum cross entropy prior could be produced th a t could serve as an 

Objective Bayesian reference prior distribution good for all ANN modeling efforts 

with the same input training data  but arbitrary  output training data.

11 Offset and rescale the training data so that its mean and standard deviation of each output 
dimension over all training patterns are 0,1 respectively. This is a standard technique in ANN error 
backpropagation training.



129

B IB L IO G R A P H Y

fll A. Law and W. Kelton, Sim,ulation Modelinq and Analysis, New York. McGraw- 
Hill. 2003.

[2] S. E. Ahmed and N Reid, Empirical Bayes and Likelihood Inference New York, 
Springer, 2001.

[3] J. Banks, J. S. Carson II, B. L. Nelson and D. M. Nicol, Discrete Event System  
Simulation, New York, Prentice Hall, 2001.

[4] J. M. Bernardo and A. F. M. Smith, Bayesian Theory, New York Wiley, 1994.

[5] S. Brooks and G. O. Roberts, “Assessing Convergence of Markov Chain Monte 
Carlo Algorithms” , Statistics and Computing, vol. 8 , pp. 319-335, 1997.

[6] C. M. Bishop, Pattern Recognition and Machine Learning, New York, Springer, 
2006.

[7] W. Buntine and A. Weigend, “Bayesian Backpropagation” , Complex Systems 
vol. 5, pp. 603-643. 1991.

[8] B. M. Ozyildirim and M. Avci, “Generalized Classifier Neural Network” , Neural 
Networks, vol. 39, pp. 1826, 2013.

[9] R. T. Cox, “Probability, Frequency, and Reasonable Expectation” , Am. Jour. 
Phys., vol. 14, pp. 113, 1946.

[10] R. T. Cox, The Algebra of Probable Inference, Baltimore, The Johns Hopkins 
Press, 1961.

[11] G. Cybenko, “Approximation by Superpositions of Sigmoidal Functions” . Math 
Control Signals Sys. vol 2, pp. 303-314, 1989.

[12] A. P. Dawid, M. Stone and J. V. Zidek, “Marginalization Paradoxes in Bayesian 
and Structural Inference” , Jour. Royal Stat. Soc. B, vol. 35, no. 2, pp. 189-233, 
1973.

[13] S. Dreiseitla and L. Ohno-Machado, “Logistic Regression and Artificial Neural 
Network Classification Models: A Methodology Review” , J. Bio Info, vol. 35, 
pp. 352359, 2002.

[14] P. J. Edwards. A. F. Murray, G. Papdopoulos, A. R. Wallace, J. Barnard, and 
G. Smith, “The Application of Neural Networks to the Papermaking Industry” , 
IEEE Trans. Neural Networks vol 10. pp. 1456-1464, 1999.

[15] B. Farley and W. A. Clark, “Simulation of self-Organizing Systems by Digital 
Computer” , IEEE Trans. Info. Theory, vol. 4, pp.76-84, 1954.



130

[16] B. G. Farley, “Self-Organizing Models for Learned Perception" in M.C. Yovits 
and S. Cameron (editors). Self-Organizing Systems. Oxford, Pergamon Press. 
1960.

[17] R. Fischer, “Moments and Product Moments of Sampling Distributions for R” . 
London Math. Soc.. vol 2(3), pg. 199, 1929.

[18] D. Foresee and M. Hagan, Gauss-Newton Approximation to Bayesian Learning. 
Proc. of the 1997 Int. Joint Conf. on Neural Networks, vol. 3, pp. 1930 - 1935, 
1997.

[19] R. Gencay and M. Qi, “Pricing and Hedging Derivative Securities with Neural 
Networks; Bayesian Regularization, Early Stopping, and Bagging” , IEEE Trans. 
Neural Networks, vol. 12, pp. 726-734, 2001.

[20] M. S. Goodrich, “Markov Chain Monte Carlo Bayesian Learning for Neural 
Networks” , ModSimWorld, Ham pton VA, Conference 2010, pp. 268-277.

[21] R. V. Hartley, “Transmission of Information” , Bell Systems Technical Journal, 
vol 7, pp. 535-563, 1928.

[22] D. O. Hebb, The Organization o f Behavior, John Wiley & Sons, New York, 
1949.

[23] K. Hornik, M. Stinchcombe, and H. W hite, “Multilayer Feed-forward Networks 
Are Universal Approximators” , Neural Networks, vol. 2, pp. 359-366, 1989.

[24] D. Husimer, W. D. Penny, and S. J. Roberts, “An Empirical Evaluation of 
Bayesian Sampling with Hybrid Monte Carlo for Training Neural Network Clas
sifiers” . Neural Networks, vol. 12, pp. 677-705, 1999.

[25] E. T. Jaynes, “Information Theory and Statistical Mechanics” , The Physical 
Review, vol. 106, no. 4, pp. 620-630, 1957.

[26] E. T. Jaynes, Probability Theory The Logic o f Science, Cambridge University 
Press, 2003.

[27] E. T. Jaynes, “On the Rationale of Maximum Entropy M ethods” , Proc. o f the 
IEEE, vol. 70, no. 9, Sept 1982.

[28] R. E. Kass and L. Wasserman, “The Selection of Prior Distributions by Formal 
Rules” , J. Amer. Stat. Assoc, vol. 91, no. 435, pp. 1343-1370, 1996.

[29] Y. LeCun, ’’Learning Processes in an Asymmetric Threshold Network” , in E. 
Bienenstock, F. Fogelman-Souli, and G. Weisbuch, G. (Eds), Disordered Systems 
and Biological Organization, pp. 233-240, Springer-Verlag, Les Houches, France. 
1986.



131

[30] Y. LeCun, L. Bottou, G. B. Orr. and K. Muller. “Efficient Backpropagation". 
Neural Networks: Tricks o f the Trade. Springer. 1998.

[31] H. K. H. Lee, “A Noninformative Prior for Neural Networks” , Machine Learning. 
vol. 50, pp. 197-212, 2003.

[32] D. J. C. MacKay, “Bayesian Interpolation” , Neural Computation, vol. 4. pp. 
415-447, 1992.

[33] D. J. C. MacKay, “A Practical Bayesian Framework for Backpropagation Net
works” , Neural Computation, vol. 4, pp. 448-472, 1991.

[34] D. J. C. MacKay, “The Evidence Framework Applied to  Classification Net
works” . Neural Computation, vol 4, pp. 720-736, 1992.

[35] D. J. C. MacKay, “Probable Networks and Plausible Predictions-a Review of 
Practical Bayesian Methods for Supervised Neural Networks” , Neural Compu
tation, vol. 11, pp. 1035-1068, 1995.

[36] R. L. Mattson, “The Design and Analysis of an Adaptive System for Statistical 
Classification” , S.M. Thesis, MIT May 22, 1959.

[37] M. C. Medeiros, A. Veiga, A. and C. E. Pedreira, “Modeling Exchange Rates: 
Smooth Transitions, Neural Networks and Linear Models” . Neural Networks, 
vol. 12, pp. 755-764, 2001.

[38] M. L Minsky and S. Papert, Perceptrons, A n  Introduction to Computational 
Geometry, Boston, MIT Press, 1969.

[39] D. J. C. MacKay, Information Theory, Inference, and Learning Algorithms, 
Cambridge University Press, 2003.

[40] W. S. McCulloch and W.H. P itts, “A Logical Calculus of the Ideas Immanent 
in Nervous Activity” , Bulletin o f Mathematical Biophysics, vol. 5, pp. 115-137, 
1943.

[41] R. M. Neal, Bayesian Learning fo r  Neural Networks, New York, Springer, 1996.

[42] D. B. Parker, ”A Comparison of Algorithms for Neuron-Like Cells” , in J.S. 
Denker (Ed.), Neural Networks fo r  Computing, pp 327-332, New York, American 
Institute of Physics. 1986.

[43] N. Rochester, J. H. Holland, L. H. Haibt, and W. L. Duda, “Tests on a Cell 
Assembly Theory of the Action of the Brain Using a  Large Digital Com puter” , 
IEEE Trans, o f Info. Theory, vol. 2, pp. 80-93, 1956.

[44] F. Rosenblatt, “The Perceptron: A Probabilistic Model for Information Storage 
and Organization in the Brain” , Psychological Review, vol. 65, pp. 386-408, 1958.



132

[45] F. Rosenblatt. “Perceptron Simulation Experim ents’". Proc. IEEE. vol. 48. pp. 
301-309, 1960.

[46] F. Rosenblatt, Principles o f Neurodynamics: Perceptrons and the Theory o f 
Brain Mechanisms, Spartan books. W ashington D.C.. 1962.

[47] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, "Learning Representations 
by Back-propagating Errors” . Nature, vol. 323, pp. 533-536, 1986.

[48] C. E. Shannon, "A M athematical Theory of Communication” , Bell System Tech
nical Journal vol. 27, pp. 379-423, 1948.

[49] J. E. Shore and R. W. Johnston. “Axiomatic Derivation of the Principle of 
Maximum Entropy and the Principle of Minimum Cross Entropy” , IE E E  Trans. 
Info. Theory, vol. 26, pp. 26-37, 1980.

[50] M. Tribus, Rational Descriptions, Decisions and Designs, Pergamon Press, 1969.

[51] M. E. Tipping, “Sparse Bayesian Learning and the Relevance Vector Machine” , 
J. Machine Learning, vol. 1, pp. 211-244, 2001.

[52] K. S. Van Horn, “Constructing a Logic of Plausible Inference: a Guide to Coxs 
Theorem” , International Journal o f Approximate Reasoning, vol. 34, Issue 1, 
September, pp. 324, 2003.

[53] F. Vivarelli and C. K. I. Williams, “Comparing Bayesian Neural Network Algo
rithms for Classifying Segmented Outdoor Images” , Neural Networks, vol. 11, 
pp. 427-437, 2001.

[54] P. J. Werbos, “Beyond Regression: New Tools for Prediction and Analysis in 
the Behavioral Sciences” , Ph.D. dissertation, Harvard University, 1974.

[55] B. Widrow, “Generalization and Information Storage in Networks of Ada- 
line Neurons” . In M.C. Yovits, G.T. Jacobi, and G.D. Goldstein (Eds.), Self- 
Organizing Systems. Washington D.C., Spartan Books. 1962.

[56] D. H. Wolpert, “On the Use of Evidence in Neural Networks” , Advances in 
Neural Information Processing Systems 5, Kauffman Publishers, 1993.

[57] C. P. I. van Hinsbergen, J. W. C. van Lint, and H. J van Zuylen, “Bayesian Com
mittee of Neural Networks to Predict Travel Times with Confidence Intervals” , 
Transportation Research Part C. vol. 17, pp. 498-509. 2009.

[58] I. C. Yeh, “Modeling Slump Flow of Concrete Using Second-order Regressions 
and Artificial Neural Networks” , Cement and Concrete Composites, vol. 29, no. 
6, pp. 474-480. 2007.

[59] V. Agrawal and A. Sharma, “Prediction of Slump in Concrete using Artificial 
Neural Networks. World Academy of Science, Engineering and Technology, vol. 
4, 2010.



133

V ITA

Michael. S. Goodrich
Department of Modeling and Simulation

Old Dominion University
Norfolk, VA 23529

E D U C A T IO N

Doctor of Philosophy, Engineering with a concentration in Modeling and Simula

tion, Old Dominion University, Norfolk, VA, May 2014

Master of Science, with a concentration in Physics, Old Dominion University, Nor

folk, VA, May 1992

Bachelor of Science, with a concentration in Physics, Old Dominion University, 
Norfolk, VA, May 1979

SEL EC T ED  PU B L IC A T IO N S

Goodrich, M.S., Markov Chain Monte Carlo Bayesian Learning fo r  Neural Net
works. ModSimWorld 2010.

Garcia, C. and Goodrich, M.S., Effects o f Health Care Policy Decisions on Physi
cian Availability. ModSimWorld 2010.

C O N F E R E N C E  P R E S E N T A T IO N S

Goodrich, M.S.. Markov Chain Monte Carlo Bayesian Learning fo r  Neural 
Networks. ModSimWorld 2010.

Garcia, C. and Goodrich. M.S.. Effects o f Health Care Policy Decisions on Physi
cian Availability. ModSimWorld 2010.

Typeset using DI^X.


	Old Dominion University
	ODU Digital Commons
	Spring 2014

	Markov Chain Monte Carlo Bayesian Predictive Framework for Artificial Neural Network Committee Modeling and Simulation
	Michael S. Goodrich
	Recommended Citation


	00001.tif

