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ABSTRACT 

MASSIVE SPATIOTEMPORAL WATERSHED HYDROLOGICAL 

STORM EVENT RESPONSE MODEL (MHSERM) WITH 

TIME-LAPSED NEXRAD RADAR FEED 

Changqing Song 
Old Dominion University, 2008 

Director : Dr. Jaewon Yoon 

Correctly and efficiently estimating hydrological responses corresponding to a 

specific storm event at the streams in a watershed is the main goal of any sound water 

resource management strategy. Methods for calculating a stream flow hydrograph at the 

selected streams typically require a great deal of spatial and temporal watershed data such 

as geomorphological data, soil survey, landcover, precipitation data, and stream network 

information to name a few. However, extracting and preprocessing such data for 

estimation and analysis is a hugely time-consuming task, especially for a watershed with 

hundreds of streams and lakes and complicated landcover and soil characteristics. To deal 

with the complexity, traditional models have to simplify the watershed and the streams 

network, use average values for each subcatchment, and then indirectly validate the 

model by adjusting the parameters through calibration and verification. 

To obviate such difficulties, and to better utilize the new, high precision 

spatial/temporal data, a new massive spatiotemporal watershed hydrological storm event 

response model (MHSERM) was developed and implemented on ESRI ArcMap platform. 

Different from other hydrological modeling systems, the MHSERM calculated the 

rainfall run off at a resolution of finer grids that reflects high precision spatial/temporal 

data characteristics of the watershed, not at conventional catchment or subcatchment 



scales, and that can simulate the variations of terrain, vegetation and soil far more 

accurately. The MHSERM provides a framework to utilize the USGS DEM and 

Landcover data, NRCS SSURGO and STATSGO soil data and National Hydrology 

Dataset (NHD) by handling millions of elements (grids) and thousands of streams in a 

real watershed and utilizing the Spatiotemporal NEXRAD precipitation data for each grid 

in pseudo real-time. Specifically, the MHSERM model has the following new 

functionalities: 

1. Grid the watershed on the basis of high precision data like USGS DEM and 

Landcover data, NRCS SSURGO and STATSGO soil data, e.g., at a 30 

meter by 30 meter resolution; 

2. Delineate catchments based on the USGS National Digital Elevation Model 

(DEM) and the stream network data of the National Hydrography Dataset 

(NHD); 

3. Establish the stream network and routing sequence for a watershed with 

hundreds of streams and lakes extracted from the National Hydrography 

Dataset (NHD) either in a supervised or unsupervised manner; 

4. Utilize the NCDC NEXRAD precipitation data as spatial and temporal 

input, and extract the precipitation data for each grid; 

5. Calculate the overland runoff volume, flow path and slope to the stream for 

each grid; 

6. Dynamically estimates time of concentration to the stream for each interval, 

and only for the grids with rainfall excess, not for the whole catchment; 

7. Deal with different hydrologic conditions (Good, Fair, Poor) for landcover 

data and different Antecedent Moisture Condition (AMC); 



8. Process single or a series of storm events automatically; thus, the 

MHSERM model is capable of simulating both discrete and continuous 

storm events; 

9. Calculate the temporal flow rate (i.e., hydrograph) for all the streams in the 

stream network within the watershed, save them to a database for further 

analysis and evaluation of various what-if scenarios and BMP designs. 

In MHSERM model, the SCS Curve number method is used for calculating 

overland flow runoff volume, and the Muskingum-Cunge method is used for flow routing 

of the stream network. 
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CHAPTER I 

INTRODUCTION 

1.1 Watershed Storm Event Hydrological Response Models 

Flooding events are the most devastating weather related hazard in the United 

States (NRC, 1996) . Moreover, flood damage has increased in the United States in the 

last century (Pielke et ah, 2002). According to the U.S. Army Corps of Engineers 

(USACE, 2003), flooding causes more damage in the United States than any other severe 

weather related event—an average of $5.3 billion a year from 1994 to 2003. Flooding can 

occur in any of the 50 states or U.S. territories at anytime of the year. Floods happen 

when the water draining from a watershed, whether from rainfall or melting snow, 

exceeds the capacity of the river or stream channel to hold it (Association of State 

Floodplain Managers Inc, 1996). The main causes for a flood to occur include heavy 

and/or persistent rainfall, or an ice or debris jam that causes a river or stream to overflow 

and flood the surrounding area. 

Watershed level Storm Event Hydrological Response Models are widely used in 

the areas of water resource planning and management, flow forecasting, flood damage 

reduction, future urbanization impact study, planning and design of storm-water drainage 

systems, etc. Since the 1960s, quite a few computer models have been developed by 

federal and state agencies, universities and consulting companies (Zarriello, 1998; Wurbs, 

1997). Among these models, the Hydrologic Modeling System (HEC-HMS) and EPA 

The journal model used in this dissertation is based on ASCE (American Society of Civil Engineers) Journal of Water 

Resources Planning and Management. 
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Storm Water Management Model (SWMM) are the most well-known and routinely 

applied in water resource planning and management projects. The Hydrologic Modeling 

System (HEC-HMS) simulates precipitation-runoff and routing processes (US Army 

Corps of Engineers Hydrologic Engineering Center, 2000a). The EPA Storm Water 

Management Model (SWMM) is a dynamic rainfall-runoff simulation model used for 

single event or long-term (continuous) simulation of runoff quantity and quality from 

primarily urban areas (Rossman, 2007). Besides these two models, there are other well-

known models including Hydrologic Simulation Program Fortran (HSPF), CASC2D, 

CUHP, DR3M, HEC-1, PSRM, TR20, and others (Zarriello, 1998; Wurbs, 1997). These 

models usually include two parts, overland rainfall-runoff and rivers/channels routing. 

For the overland rainfall-runoff part, the models usually divide the study watershed into a 

collection of subcatchment areas that receive precipitation and generate runoff. For the 

routing part, the models simulate the movement of water flow in rivers/channels, or pipes 

during a given simulation period. Detailed discussion of these models is provided in 

Chapter II. 

In the last decade, the availability of new geospatial data sources and the use of 

Geographic Information Systems (GIS) in hydrological modeling has been progressively 

facilitating modelers with powerful tools to model the watershed and predict possible 

floods. The new data source includes high resolution USGS National Digital Elevation 

Model (DEM) data, Landcover raster data, NRCS SSURGO and STATSGO soil data, 

National Hydrography Dataset (NHD) stream network data and NCDC NEXRAD 

precipitation data. For most of the models, GIS software is used as a data preprocessor 

tool to extract the parameters of the watershed studied (Miles and Ho, 1999). A number 
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of researchers also utilized the data management, analysis and visualization capabilities 

of the GIS platform such as ESRI ArcView by linking or integrating the hydrologic 

model with GIS technology (Ye et ah, 1996; Ivanov et ah, 2004). 

1.2 Purpose 

Correctly and efficiently estimating hydrological responses corresponding to a 

specific storm event for the streams or rivers within a watershed is essential for any 

sound water resource management strategy. However, due to its complexity, hydrologic 

response within a watershed could vary tremendously. Such variations are in a sense a 

true system response of the watershed in question, and result from the temporal and 

spatial distribution of precipitation, topography, soil, land cover and streams' properties, 

and others within the watershed. Extraction and preprocessing such data for subsequent 

estimation and analysis is a very time-consuming task, especially for a watershed with 

hundreds of streams and lakes and complicated landcover and soil characteristics. 

Moreover, to manage such complexity, traditional models relying on simplification of 

watershed features and streams networks, logistically use average values for each 

subcatchment, and validate the model by adjusting the parameters via calibration and 

verification. Thus, existing difficulties and drawbacks in conventional Hydrological 

Storm Event Response (SERM) models can be summarized by: 

1. Lengthy and difficult assembly requirement of the huge amount of 

spatiotemporal data per analysis and subsequent design; 

2. Time-consuming, additional data processing requirement for interpreting 

model results; 
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3. Mostly for design orientation, lacking (real-time) prediction capability; 

4. The watershed is often over-simplified, and hundreds (even thousands) of 

streams and channels must be manually prepared for the model; 

5. Processes of calibration and verification are necessary for acquiring reliable 

results, because model results vary in complexity, functionality, and 

applicability to a given region or storm type; 

6. The new spatial dataset is not fully utilized, and, as a result, the internal 

variation of the subcatchments is neglected; 

7. For different landcover conditions and the Antecedent Moisture Condition 

typically used for various what-if design scenarios, the models have to repeat 

all the pre-processing including the parameters' estimation for each 

subcatchment. 

To obviate such difficulties and drawbacks, and to better utilize the new, high 

precision spatial/temporal data, a fully distributed watershed-scale, Spatiotemporal 

Massive Hydrological Storm Event Response Model (MHSERM) was developed and 

implemented in this dissertation research. Unlike other hydrological modeling systems, 

the MHSERM model can concurrently handle millions of elements (cells or grids) and 

thousands of streams in a real watershed and utilize the spatiotemporal NEXRAD radar 

precipitation data for each cell. The MHSERM model utilizes the public digital spatial 

data including USGS NED DEM, Landcover, SSURGO and STATSGO soil data, NHD 

Hydrology Dataset, and it automatically estimates parameters from these datasets for 

overland runoff calculations and stream network flow routing. To deal with hundreds of 

streams and lakes/reservoir/ponds within the watershed studied, the MHSERM model 

automatically generates and routes the flow sequence by utilizing NHD dataset. In 



5 

addition, users can also manually change/input the parameters of the streams and 

lakes/reservoir/ponds if localized survey data of better quality are available in hand. For 

the rainfall data, the MHSERM use the spatiotemporal NCDC NEXRAD radar data for 

input, moreover, the model fully utilizes the spatial distribution of the rainfall radar data 

to the grid/cell level. 

Specifically, The MHSERM model has the following new functionalities over 

conventional: 

1. Grid the watershed on the basis of high precision data like USGS DEM and 

Landcover data, NRCS SSURGO and STATSGO soil data, e.g., at a 30 

meter by 30 meter resolution; 

2. Delineate catchments based on the USGS National Digital Elevation Model 

(DEM) and the stream network data of the National Hydrography Dataset 

(NHD); 

3. Establish the stream network and routing sequence for a watershed with 

hundreds of streams and lakes extracted from the National Hydrography 

Dataset (NHD) either in a supervised or unsupervised manner; 

4. Utilize the NCDC NEXRAD precipitation data as spatial and temporal 

input, and extract the precipitation data for each grids; 

5. Calculate the overland runoff volume, flow path and slope to the stream for 

each grid; 

6. Dynamically estimates time of concentration to the stream for each interval, 

and only for the grids with rainfall excess, not for the whole catchment; 

7. Preset manually or estimate automatically the parameters for streams and 

waterbodies on the streams; 
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8. Deal with different hydrologic conditions (Good, Fair, Poor) for landcover 

data and different Antecedent Moisture Condition (AMC); 

9. Process single or a series of storm events automatically; thus, the 

MHSERM model is capable of simulating both discrete and continuous 

storm events; 

10. Calculate the temporal flow rate (i.e., hydrograph) for all the streams in the 

stream network within the watershed, save them to a database for further 

analysis and evaluation of various what-if scenarios and BMP designs. 

In MHSERM model, the SCS Curve number method is used for calculating overland 

flow runoff volume, Modified Clark (ModClark) method for transforming water to 

streams. The ModClark method can account explicitly for variations in travel time to a 

stream from all the grids in its contributing catchment (Kull and Feldman, 1998). The 

Muskingum-Cunge method, which is physically based, is used for flow routing of the 

stream network. The coefficients of the routing method are based on physical data such 

as cross section and Manning roughness n of the streams; this makes it more favorable 

for routing in the MHSERM. 
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CHAPTER II 

LITERATURE REVIEW 

2.1 Watershed Hydrological Storm Event Response Models 

Watershed hydrological Storm Event Response Models (SERM), sometimes 

called a Rainfall-Runoff model, simulate the natural processes of rainfall loss, overland 

runoff, flow routing in a river/channel/lake system, and get the spatiotemporal 

distribution of the flow of water within a watershed or a series of watersheds. Both in 

research and in professional practice, these models are the primary tool for exploring 

watershed-scale hydrologic processes and for addressing a wide spectrum of 

environmental and water resource problems (Singh and Frevent, 2006; Singh, 1995). 

Simulation of watershed hydrologic processes is difficult at best due to the complexity of 

the natural elements contributing to a runoff event. Thus, several watershed models were 

developed with the advances of computer technology in the 1960s. For example, 

Crawford and Linsley (1966) published the Stanford Watershed Model (SWM). SWM 

was the first model to simulate the whole hydrologic cycle for a basin (Singh and Frevert, 

2005). SWM was further transformed into the U.S. Environmental Protection Agency 

(EPA) Hydrological Simulation Program - FORTRAN (HSPF), which is also a core part 

of the EPA's Better Assessment Science Integrating Point and Nonpoint Sources 

(BASINS) (Donigian and Imhoff, 2002; Donigian and Hubber, 1991). 

With the rapid improvement of computer power and subsequent proliferation of 

the personal computer in the last four decades, many watershed-scale hydrological 
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models were developed by federal and state agencies, academic researchers and 

consulting and software companies. Several researchers provided comprehensive reviews 

for part of the existing models; (Singh and Frevent, 2005; Borah and Bera, 2003,2004; 

Singh and Frevent, 2002a, 2002b; Zarriello, 1998; Singh, 1995; WMO, 1992; Donigian 

and Huber, 1991). In their reviews, several watershed models were identified as SERM or 

having SERM-equivalent modules. Donigian and Huber (1991) listed thirteen watershed 

hydrological and nonpoint-source models including the Agricultural NonPoint Source 

Pollution Model (AGNPS) and Hydrological Simulation Program FORTRAN (HSPF). 

Zarriello (1998) compared and summarized the results from nine uncalibrated runoff 

models to observed flows in two small urban watersheds with distinctly different climatic 

and physiographic settings; Harvard Gulch, a semi-arid watershed near Denver, CO, and 

Surrey Downs, a coastal watershed in the Pacific Northwest near Seattle, WA. Among 

the nine models compared, HEC-1 (Hydrologic Engineering Center, 1990), HSPF, SCS 

TR-20 (Soil Conservation Service, 1983), and SWMM (The EPA Storm Water 

Management Model) are still widely used. Borah and Bera (2003) reviewed eleven 

watershed-scale hydrologic and nonpoint-source pollution models including AGNPS, 

HSPF, ANSWERS, SWAT and MIKE SHE. Additional model comparison studies can be 

found in a recent summary by Singh and Frevent (2005) that included 24 watershed 

models . Besides hydrological modeling and flow routing, some models also have 

capability to deal with pollutants transportation within the models. 

There are many watershed storm event response models available to engineers, 

hydrologists, and planners, with new ones appearing all the time (Akan and Houghtalen, 

2003). However, there are a few well-known and widely used general models in the U.S. 
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and elsewhere (Singh and Frevent, 2005). The models include the U.S. Army Corps of 

Engineers' Hydrologic Engineering Center Hydrologic Modeling System (HEC-HMS), 

The Environmental Protection Agency's Storm Water Management Model (EPA-

SWMM), The Canadian Distributed Hydrologic Model WATerloo FLOOD system 

(WATFLOOD), and The Runoff Routing Model (RORB) used in Australia, Europe 

TOPography-based hydrological MODEL (TOPMODEL) and Systeme Hydrologique 

Europeen (SHE). Further model descriptions are discussed next. 

HEC-HMS is the successor to and replacement for HEC's HEC-1 program and 

for various specialized versions of HEC-1. HEC-HMS is designed to simulate the 

precipitation-runoff processes of dendritic watershed system, it improves upon the 

capabilities of HEC-1 and provides additional capabilities for distributed modeling and 

continuous simulation (USACE, 2000a, 2000b). The current version (2007) runs in the 

Windows platform. The EPA-SWMM is a dynamic rainfall-runoff simulation model used 

for single event or long-term (continuous) simulation of runoff quantity and quality from 

primarily urban areas (Rossman, 2007). The current version (2007) is available for the 

Windows platform. SWMM 5 provides an integrated environment for editing study area 

input data, running hydrologic, hydraulic and water quality simulations, and viewing the 

results in a variety of formats (Rossman, 2007). WATFLOOD is an integrated set of 

computer programs to forecast or simulate flood flows in watersheds having response 

times ranging from one hour to several weeks. WATFLOOD has been under continuous 

development by University of Waterloo since 1972. The emphasis of the WATFLOOD 

system is on making optimal use of remotely sensed data by using Grouping Response 

Units (GRU) (Kouwen, 2007; Kouwen etal, 1993). The WATFLOOD consists of 
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mostly a set of FORTRAN programs for DOS, or various Unix platforms. The entire 

WATFLOOD system is bundled with hydrological modeling component of 

WATFLOOD, and a number of pre and post processors for WATFLOOD's data 

management system. RORB is a general runoff and stream flow routing program used to 

calculate flood hydrographs from rainfall and other channel inputs. The first version of 

RORB was released in 1975; it was a general runoff routing program for rural catchments, 

and written by Monash University, Australia. The current version (2005) runs in 

Windows platform. The model can handle spatially distributed catchement data, and 

applicable to both urban and rural catchments. It makes provision for temporal and spatial 

variation of rainfall and losses and can model flows at any number of gauging stations 

(Laurenson et al, 2006). TOPMODEL (1974) is a physically based, distributed 

watershed model that simulates hydro logic fluxes of water through a watershed on the 

basis of its distributed predictions on an analysis of watershed topography (Beven et al, 

1984, 1995; Beven and Kirkby, 1979). SHE (Systeme Hydrologique Europeen) is a 

distributed hydrological model using a physics-based representation of the underlying 

catchment processes (Abbott et al, 1986a, 1986b). SHE model's development was based 

on Freeze and Harlan's (1969) proposal about the blueprint of physics-based hydrological 

modeling. 

Considering this dissertation research's goal of developing a massive watershed 

hydrological Storm Event Response Models (MHSERM) that can utilize massive spatial 

or spatiotemporal digital datasets by tightly integrating with GIS, five watershed models 

sharing varying degrees of spatiotemporal capabilities were further summarized in Table 

2.1. 
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Table 2.1 Summary of Five Storm Event Hydrological Response Models 

Model 

HEC-
HMS 

SWMM 

WATFLO 
OD 

RORB 

TOPMOD 
EL 

Watershed 
representatio 
n 

Sub-Basins 
delineated 
manually with 
assumption of 
Homogeneity; 
1-D Dendritic 
network of 
channels 

Homogenous 
Subcatchments; 
1-D network 
channels, sewers, 
pipes etc. 
The combination 
of Grouped 
response units 
(GRU's) and grids 
(size 1km-25km); 

The watershed 
divided into 
Subareas, the 
actual channel 
network 
represented by a 
network of model 
storages. 

a variable 
contributing area; 
Channel networks 

Watershed 
Parameters 
Input 

Parameters 
estimated by 
other program, 
and manually 
input by user 

Estimated by 
other program, 
and manually 
input by user 

The data files 
for catchment, 
rainfall, 
parameters 
prepared before 
model running 
The data files 
for catchment, 
rainfall, 
parameters 
prepared before 
model running 

The data files 
for catchment, 
rainfall, 
topographic 
index map 
prepared before 
the 
TOPMODEL 
running 

Map 
Display 

Schematic 
link-node 
map; 

Schematic 
link-node 
map; 

Grids (from 
support 
modules) 

N/A (Data 
files) 

N/A (Data 
files) 

Rainfall Loss 

SCS CN; 
Initial and 
Constant; 
Green and Ampt; 
SMA; 
And more 

ET loss 
Horton 

ET loss; 
Philip's 
infiltration 
equation 

(i) Initial loss 
followed by a 
runoff coefficient 
(constant 
proportional rates 
of loss and of 
runoff), 
(ii) Initial loss 
followed by a 
constant 
(continuing) loss 
rate. 
the exponential 
Green-Ampt 
model 

Runoff on 
Overland 

Clark UH; 
Snyder UH; 
SCS CN; 
ModClark; 
Kinematic Wave; 
And more, ,, 

Kinematic Wave; 
Unit Hydrograph 

Hortonian runoff 
model 

Routing 
method or 
Channel 
Flow 

SCS Lag; 
Muskingum; 
Modified Puis; 
Kinematic 
Wave; 
Muskingum-
Cunge; 
Straddle-
Stagger; 
And more... 
Kinematic Wave 
Dynamic Wave 

Muskingum-
Cunge; 
Manning 
Formula 

The rainfall-excess is operated on by 
a catchment storage model 
representing the effects of overland 
flow storage and channel storage to 
produce the surface runoff 
hydrograph. 

the continuity 
equation, Darcy's 
Law, the 
assumption that the 
saturated hydraulic 
conductivity 
decreases 
exponentially as 
depth below the 
land surface 
increases. 

Clark's 
Time-Area 
method 

Most of the above models are distributed models. Obviously, the real watershed 

has spatially varying soil characteristics, land covers, terrain, streams' network and 

rainfall intensity; therefore, distributed hydrological modeling is more suitable and has 
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more potential to improve estimates of stream flow and water levels both for hydrological 

simulation and for flood forecasting than non-spatial, conventional lumped-sum 

parameter models (Smith et al, 2004). Furthermore, the availability of new digital spatial 

data sources, advancements in remote sensing technology and the application of 

Geographic Information Systems (GIS) improve watershed-scale modeling and provide 

powerful tools to accurately model the rainfall-runoff process and corresponding flood 

prediction. 

2.2 Geographical Information Systems (GIS) application in the Storm Event 

Response Models 

A GIS is a computer-based information system that enables capture, modeling, 

manipulation, retrieval, analysis and presentation of geographically referenced data 

(Worboys, 1995). It provides a framework for understanding our world and applying 

geographic knowledge to solve problems and guide human behavior. GIS offers a 

cognitive spatial representation of complex hydrologic and hydraulic systems and present 

a more comprehensive view of the target region by incorporating related spatial data into 

traditional water resources databases (Martin et al., 2005). 

For the distributed watershed hydrological response modeling, GIS provides 

hydrologists a powerful platform to collect, manage, display, analyze and store digital 

spatial dataset such as Digital Elevation Model (DEM), soil and land cover, stream 

network, rainfall radar data, etc. GIS is capable of incorporating related spatial data into 

traditional water resources databases in order to present a more comprehensive view of 
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the target region (Martin et al, 2005). There have been three approaches to utilize GIS in 

water resources areas: loose coupling (Linking Interface), tight coupling (Combining 

Interface) and embedded coupling (Integrating Interface) (Martin et al., 2005; Wesseling 

et al, 1996). The loose coupling (Linking) method denotes that GIS can only act as a 

data preprocessor tool, and users have to do data exchange manually between models and 

GIS (Miles and Ho, 1999), e.g. the Geospatial Hydrologic Modeling Extension (HEC-

GeoHMS) for HEC-HMS. GeoHMS uses ArcView GIS and its Spatial Analyst extension 

to develop a number of hydrologic modeling input, and the results are imported back to 

HEC-HMS for simulation (USACE, 2003b). In a tight coupling (combining) model, the 

GIS platform can be the center of model input, management, output and visualization, 

and the data exchange between models and GIS is symbiotic. The USEPA watershed 

modeling system BASINS can be classified as a tight coupling (combining) model. It 

combines the in-stream water quality model QUAL2E with the watershed loading and 

transport models HSPF and SWAT, and utilizes ArcView GIS as a display and 

interpretation interface, but each model remains separate and acts as a plug-in module 

rather than being embedded within GIS (Martin et al., 2005; Whittemore and Beebe, 

2000). In the embedded coupling (integrating) method, the model simulation is written in 

an integrated programming language within GIS, or the GIS module and is then inserted 

into the model environment. For example, a map-based subsurface and surface 

hydrologic model was developed entirely within ArcView GIS and applied to simulate 

surface and subsurface flow on the Niger River Basin in West Africa (Ye, 1996). 

Despite the broad application of GIS in watershed modeling, GIS technology was 

not specifically developed for engineering modeling (Martin et al., 2005). The 
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hydrological models usually use extensive spatial data to describe the spatial variety of a 

small area, the flow direction in as stream network, as well as temporal dynamics of 

precipitation, runoff and channel flow. However, the GIS data model is an efficient 

spatial relationship database, which doesn't include the temporal dimension. The data 

model is designed to uniformly process vast quantities of data specific to individual 

layers of information over a large spatial region (Maidment, 1993). 

Environmental Systems Research Institute (ESRI) is a leading GIS software 

company, and a number of models have been coupled with ESRI GIS platform in last 20 

years. ESRI had a major upgrade of their desktop GIS software from ArcView to ArcGIS 

since 2000. One of the most important upgrades is that the new ArcGIS platform is now 

composed of ArcObjects. ArcObjects is an embeddable and programmable toolbox 

extension of ESRI GIS, and with ArcObjects, users can embed GIS maps/functionality in 

other applications, build and deploy custom desktop applications, configure/customize 

ArcGIS applications, and extend the ArcGIS architecture and data model (Burke, 2003). 

The new ArcGIS software is designed to facilitate the development of custom 

applications that are compatible with other Windows-based programs (Whiteaker et al., 

2004). Geodatabases is the default data structures for the ArcGIS, which is more robust 

than the older yet popular ArcView system database. Geodatabase provide a well-

structured, intuitive framework for storing spatial data, tabular data, and relationships 

amongst data (Johnson et al., 2005). Thus, with many new features available in the GIS 

platform, various model functionalities can be easily integrated into GIS platform by 

using general programming language like Visual C++ or Visual Basic. In addition, the 

new data model of the geodatabase structure is better suited for hydrological modeling. In 
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collaboration with several prominent universities (Consortium of Universities for the 

Advancement of Hydrologic Sciences) and ESRI, Maidment (2003) introduced Arc 

Hydro, a geospatial and temporal data model for water resource application that operates 

within ArcGIS. Arc Hydro describes natural surface water systems including hydro 

networks, drainage systems, river channels, hydrography, and time-series data. Therefore, 

Arc Hydro is a data structure or a data model that supports hydrologic simulation models, 

but it is not itself a simulation model. 

2.3 Public Digital Spatial Datasets Applied In SERM 

The accurate representation of the watershed topography, soil and vegetation 

properties, and streams network requires a huge amount of different spatial datasets. 

There are plenty of spatial datasets maintained by government agencies and made 

publicly accessible on-line including Digital Elevation Model (DEM), landcover data, 

soil data, and hydrology dataset. Distributed watershed hydrological Storm Event 

Response Models (SERM) rely on these spatial datasets to describe and characterize a 

watershed's topographic surface, soil and vegetation properties, stream network and 

waterbodies. 

2.3.1 Digital Elevation Model (DEM) 

The Digital Elevation Model (DEM) is generally used to represent the surface of 

watershed in SERM. Computer programs are used to process the raw DEM data to 

extract topographic attributes including the boundary of watershed and sub watersheds, 

the overland flow slope and path, the delineation of streams etc. The National Map 

Seamless Server of the US Geological Survey (USGS) provides national DEM data 
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download at no cost with ESRI ArcGRID format and various spatial resolution such as 1 

arc second/3 Om/7.5 minute unit, or 1/3 arc second and/or 1/9 arc second 

(http://seamless.usgs.gov). Topographic representation through DEMs has increased our 

capability of modeling the surface and subsurface hydrologic processes that govern the 

rainfall-runoff conversion (Vivoni and Sheehan, 2000). 

There are two major data structures designed to represent the Earth's surface in 

GIS: Grid and TIN (Triangulated Irregular Network) (Bernhardsen, 1999). The grid in 

GIS is an array of fixed-size square cells arranged in rows and columns. The numeric 

value is stored with these cells to represent the elevation of the grid space. Each grid cell 

is referenced by its x,y coordinate location. Obviously, the smaller the size of a grid cell, 

the higher the level of accuracy in describing the terrain of interest. In contrast to grids, 

TIN is made up of irregularly distributed nodes and lines with three-dimensional 

coordinates resulting from trilateration that are arranged in a network of non-overlapping 

triangles. In the TIN models, the x-y-z coordinates of all points, as well as the triangle 

attributes of inclination and direction are stored. The area with little variation are 

described with fewer data than the similar area with greater variation, so compared to the 

grid model, the TIN model is cumbersome to establish but more efficient to store (Vivoni 

etal, 2004; Bernhardsen, 1999). 

The terrain analysis based on DEM data is widely used to delineate watersheds or 

catchments, derive the stream network, and calculate the slope and the distance from each 

cell to the outlet (Ivanov et al, 2004a and 2004b; Tarboton, 2003; Tarboton and Ames, 

2001; Wilson and Gallant, 2000; Tarboton etal, 1991; Fairfield and Leymarie, 1991; 

http://seamless.usgs.gov
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Band, 1986). Tarboton (2003) provides an ArcMap toolbar, TauDEM (Terrain Analysis 

Using Digital Elevation Models), a set of tools for the analysis of terrain using digital 

elevation models. The analysis includes the functions of channel network delineation, as 

well as delineation of watersheds and subwatersheds draining. Ivanov et al. (2004a, 

2004b) introduced a TIN hydrologic model. However, the watershed boundary and the 

stream network are derived from DEM raster data, that are used as lines for the 

generation of TIN (Vivoni et al, 2004). 

2.3.2 Landcover Raster Dataset and Soil Data 

In a hydrological Storm Event Response Models (SERM) model, land use 

properties, with soil properties are used extensively to determine the partitioning of 

incident rainfall into infiltration and runoff (Vivoni and Sheehan, 2000). For physical 

infiltration models, the soil hydraulic parameters are estimated by the surface soil texture. 

For example, for Green and Ampt (1911) model, the porosity and the suction head can be 

estimated by the percentage of sand and clay (Rawls and Brakensiek, 1985; Rawls et al., 

1983, 1989). For the Horton method (Horton, 1940) and Modified Horton method (Akan, 

1993, 1992), the initial infiltration capacity, final infiltration capacity and exponential 

decay constant can be estimated by soil type (Akan and Houghtalen, 2003; Terstriep and 

Stall, 1974). For the Soil conservation Service Curve Number (SCS CN, now called the 

Natural Resources Conservation Services, NRCS), an empirical combined loss model, 

landcover and soil data is used to determine the CN number, which can be used to 

calculate the initial loss and rainfall excess based on the SCS empirical runoff equation 

(SCS, 1986). 
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For the spatially distributed land cover/land use data set, the National Land Cover 

Dataset (NLCD) is available from the National Map Seamless Server of the USGS 

(http://seamless.usgs.gov/). There are two types of land cover dataset: NLCD 1992 and 

NLCD2001. NLCD 1992 is based primarily on the unsupervised classification of 

LANDS AT TM (Thematic Mapper) 1992 imagery. It has 21-category land cover 

classification derived at the approximate Anderson et ah, (1976) Level II thematic detail, 

is provided as raster data with a spatial resolution of 30 meters (1 arc-second) 

(Vogelmann et al, 2001). The raster files are available in GeoTIFF, ArcGrid, or BIL 

format. The extent of land cover coverage is expressed in geographic coordinates 

(latitude/longitude) and referenced to the North American Datum of 1983 (NAD83). 

NLCD 2001 was produced more recently in 2001, and is a compilation of across all 50 

states and Puerto Rico as a cooperative mapping effort of the MRLC 2001 Consortium 

based on nation-wide LANDS AT 5 and 7 imagery (Homer et ah, 2004). NLCD 2001's 

raster data files are also available in GeoTIFF, ArcGrid, or BIL format with a spatial 

resolution of 30 meters (1 arc-second) and referenced to the NAD83 datum. NLCD2001 

has 29 classes of land cover data such as 'Evergreen Forest', 'Cultivated Crops', 'Woody 

Wetlands' etc. 

The Natural Resources Conservation Service (NRCS) of United States 

Department of Agriculture (USDA) has archived and distributed two types of soil spatial 

dataset: State Soil Geographic Database (STATSGO) and The Soil Survey Geographic 

Database (SSURGO). Both the soil map data can be publicly downloaded from NRCS 

soil data mart (http://soildatamart.nrcs.usda.gov/) in an ESRI shape file format based on 

the NAD 1983 datum. STATSGO was renamed to the U.S. General Soil Map 

http://seamless.usgs.gov/
http://soildatamart.nrcs.usda.gov/
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(STATSGO). The source map for STATSGO was 1:250,000 USGS topographic 

quadrangles, and the approximate minimum area delineated per STATSGO coverage was 

625 hectares (=1,544 acres). The STATSGO covers multi-county, river basin, state, 

multi-state and regional areas and are designed for regional planning and management 

uses; however, it is not as detailed enough for sub-county level due to the low resolution. 

Every STATSGO polygon is linked to the Soil Interpretations Record (SIR) attribute data 

base, which includes over 25 physical and chemical soil properties such as available 

water capacity, soil reaction, period of flooding, depth to seasonal water table, and depth 

to bedrock, as well as interpretations of soil properties for engineering uses, and for 

cropland, woodland, rangeland, pastureland, wildlife, and recreation development - the 

similar information available in the USGS County Soil Survey (Watermeier, 2004). 

SSURGO map data are derived from detailed soil survey maps at scales between 

1:12,000 and 1:63,360. Information from soil survey sheets is recompiled onto a 3.75-

minute digital orthophoto quarter quadrangle (DOQQ), a 7.5 minute digital orthophoto 

quadrangle (DOQ) or other planimetrically accurate base maps, and in turn, producing 

georeferenced data compatible with and readily usable in GIS programs. The soil map 

units are linked to attributes in the Map Unit Interpretations Record (MUIR) relational 

database, which includes over 25 physical and chemical soil properties and 

interpretations for use, as in STATSGO (Watermeier, 2004; NRCS, 1995). 

2.3.3 The National Hydrography Dataset (NHD) 

The National Hydrography Dataset (NHD, 2000) is a newly combined dataset that 

provides hydrographic data for the United States. It was developed by the U.S. 

Environmental Protection Agency (USEPA) and the U.S. Geological Survey (USGS). 
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The hydrographic data can be defined as the surface water features such as lakes, ponds, 

streams, rivers, springs and wells. Within the NHD, surface water features are combined 

in order to form "reaches," that provide the framework for linking water-related data to 

the NHD surface water drainage network. These linkages enable the analysis and display 

of water-related data in networked, sequential upstream-to-downstream order. This 

surface water hydrography feature was compiled from a combination of topographic 

maps and additional sources. The NHD is available nationwide at a medium resolution at 

1:100,000-scale and in much of the Country at a higher resolution of 1:24,000-scale or 

better (l:12,000-scale). Various formats of the NHD are available in ESRI geodatabase 

format (NHDinGEO), in ESRI Arc/INFO coverage format (NHDGEOinARC), and in 

ESRI shape file format (NHDGEOinShape). Organization and cataloging of NHD is 

based on the traditional USGS 8-digit hydrologic cataloging units (HUCs), that whole 

catalog can be accessible from USGS NHD website (http://nhd.usgs.gov/data.html). For 

regional-level catalogs of HUC is also accessible from USGS pre-staged personal 

geodatabases website (ftp://nhdftp.usgs.gov/SubRegions). The Characteristics of the 

NHD are summarized as below (USGS, 1999): 

1. It is a feature-based dataset that interconnects and uniquely identifies the stream 
segments or "reaches" that make up the Nation's surface water drainage system; 

2. Unique reach codes (originally developed by the USEPA) are provided for 
networked features and isolated water bodies; 

3. The reach code structure is designed to accommodate higher resolution data; 

4. Common identifiers uniquely identify every occurrence of a feature; 

5. It is based on the content of the USGS 1:100,000-scale or 1:24,000 data, giving it 
accuracy consistent with those data; 

http://nhd.usgs.gov/data.html
http://nhdftp.usgs.gov/SubRegions
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6. Data are in decimal degrees on the North American Datum of 1983; 

7. Names with GNIS identification numbers are included for lakes, other water 
bodies, and many stream courses; 

8. It provides flow direction and centerline representations through surface water 
bodies. 

With the stated features and its public availability, NHD is a very important data 

source for establishing stream network, delineating watersheds, tracing upstream 

pollutants, and studying flood plains with the help of GIS in the last several years. The 

NHD data, along with DEM, was recently added to the EPA's Better Assessment Science 

Integrating Point and Nonpoint Sources (BASINS) version 3.1. EPA's BASINS is a 

multipurpose environmental analysis system designed for regulatory modeling by 

regional, state, and local agencies performing watershed and water quality-based studies 

(Duda et ah, 2005). Furthermore, NHD is frequently used to create stream network for 

flood analysis (Judi et ah, 2007), and upstream tracing of pollutants (Samuels et ah, 

2003). For the study of watershed and streams delineation in the areas with the problem 

of map scale and lack of adequate DEM vertical resolution, Di Luzio et ah (2004, 2002) 

integrated the NHD layer into the DEM in order to correct the certain hydrologic features 

of a watershed that may become obscured or oversimplified during the digital delineation 

process by "stream burning" in the ArcView-SWAT (AVSWAT). The algorithm used in 

the research simply adds 500 m to all off-stream DEM cells in addition to the DEM 

values, and assigns all stream grid cells with the elevation values from the original DEM. 

AVSWAT is an ArcView GIS extension written in AVENUE programming language 
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and a GIS based hydrological system linking the Soil and Water Assessment Tool 

(SWAT) water quality model and Arc View GIS. 

2.4 The Next Generation Weather Radar (NEXRAD) Precipitation Data and 

Its Application in SERM 

For the Storm Event Response Models (SERM), time series precipitation data is 

the key input. Rain gauge data have been used as the primary source for the precipitation 

data input. For rain gauge data, interpolation may be necessary due to the sparse rain 

gauge distribution within the watershed, which would not be ideal for capturing the 

spatial variability associated with precipitation, especially for scattered storms. It is also 

very difficult for the rain gauge stations to provide real-time data, which is necessary for 

real-time or near real-time flood prediction. To obviate such difficulties, more and more 

researchers use the Next Generation Weather Radar (NEXRAD) radar data as the rainfall 

input in hydrological models. The NEXRAD radar data of the National Weather Service 

(NWS) became available in 1990's. 

2.4.1 The NEXRAD Data 

The Next Generation Weather Radar (NEXRAD) program of the National 

Weather Service (NWS) has deployed a network of approximately 160 weather radars 

throughout the United States and at selected overseas sites since 1988. This system is a 

joint effort of the United States Departments of Commerce (DOC), Defense (DOD), and 

Transportation (DOT). The controlling agencies are the National Weather Service (NWS), 

Air Force Weather Agency (AFWA) and Federal Aviation Administration (FAA), 
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respectively. The weather radar is formally known as the Weather Surveillance Radar-

1988 Doppler (WSR-88D), which provides highly sensitive, fine-resolution 

measurements of reflectivity, mean radial velocity, and spectrum width data and generate 

up to 39 categories of analysis products derived from the basedata every five to ten 

minutes. WSR-88D systems have been modified and enhanced during their operational 

life to meet changing requirements, technology advances, and improved understanding of 

the application of these systems to real-time weather operations. (Klazura and Imy, 1993). 

Real-time and Historical NEXRAD data can be accessible from the website of 

National Climatic Data Center (NCDC) of National Oceanic and Atmospheric 

Administration (NOAA) of U.S. Department of Commerce (http://www.ncdc.noaa.gov/). 

There are two kinds of NEXRAD data: Level-II data and Level-Ill data. Level II data are 

the three meteorological base data quantities: reflectivity, mean radial velocity, and 

spectrum width. From these quantities, further computer processing generates numerous 

meteorological analysis products known as Level III data. The archive data is 

autocumulative, and available data range is from 1991 to 1-day minus from today. Real-

Time Level-Ill images and data are also available from the National Weather Service, 

and this Real-Time Level-Ill data is a critical data source for real-time or near real-time 

flood prediction in SERM. NCDC also provides a Java NEXRAD Viewer which 

visualizes WSR-88D Level-II and Level-Ill NEXRAD Radar data from the NCDC 

Archive and a Java NEXRAD Data Exporter that allows the export of NEXRAD data to 

common scientific formats such as Shapefile, Arc/Info ASCII Grid and more 

(http://www.ncdc.noaa.gov/oa/radar/radardata.html). 

http://www.ncdc.noaa.gov/
http://www.ncdc.noaa.gov/oa/radar/radardata.html
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2.4.2 The Comparison of The Rain Gauge Data and NEXRAD Data 

Although the NEXRAD can provide real-time rainfall data with better spatial and 

temporal resolutions than the current rain gauge networks, the accuracy of radar-based 

rainfall estimates is still under evaluation due to the complex nature of the radar-rainfall 

measurement process and the errors due to incorrect hardware calibration and ground 

clutter contamination (Over et al, 2007; Jayakrishnan et al, 2004). It should be noted 

that the rain gauge becomes the only reference available to check the validity and 

accuracy of NEXRAD data, but the gauge data itself has random, systematic, and 

representative or sampling errors, especially for time scales less than 10-15 minutes (Xie 

et al, 2006; Habib et al, 2001). 

There are several comparative studies on correlationship between Stage III 

NEXRAD data and co-located rain gage data since 1998 as shown in Table 2-2. Because 

of the modifications to the Stage III algorithms during 1996, including removal of bi-scan 

maximization during image mosaicking (Over et al, 2007; Young et al, 2000), studies 

with the Stage III data after 1996 would be more meaningful. 
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Table 2-2 The Recent Researches on Correlationship between Stage III NEXRAD Data 
and Co-located Rain Gage Data Since 1998 

Researchers 
Pereira Fo et al. 
(1998) 

Johnson et al. 
(1999) 

Wang et al. 
(2000) 

Stellman et al., 
(2001) 

Jayakrishnan et 
al. (2004) 

Xie et al. 
2006 

Westcott and 
Knapp, 2006 

Over et al. 2007 

Area 
The Lake Altus 
area in 
southwest 
Oklahoma 

Eight basins in 
the southern 
plains region of 
the United 
States 

Eight basins in 
the region near 
the Oklahoma-
Arkansas-
Missouri state 
boundaries 

The Flint River 
basin, 
specifically the 
Culloden basin 
located in 
central Georgia 
south of Atlanta 

the Texas-Gulf 
basin 

the Sevilleta 
National 
Wildlife Refuge 
(NWR), located 
in central New 
Mexico 
In the vicinity 
of the Fox River 
in northeastern 
Illinois 

DuPage County, 
Illinois 

Data 
185 NEXRAD Stage III hourly maps of 
precipitation accumulation and Rainfall 
measurements from the Oklahoma 
Mesonetwork. 
From June 1995 to July 1996 
Over 4,000 pairs of Mean areal 
precipitation values (MAPX) derived 
NEXRAD stage III data and Mean areal 
precipitation (MAP) values derived (by 
Thiessen polygon weighting) from a 
precipitation gauge network over a 3-year 
time period. 

Mean areal precipitation (MAPX, 1 hr) 
derived from The NEXRAD Stage III 
data, River Forecast Centers (RFC)'s 
operational rain gage data (MAPO, 6hr) 
and NCDC's historic rain gage data 
(MAPH, lhr) from June 1, 1993 to 
December 31, 1997 
NEXRAD stage III mean areal 
precipitation (MAPX) and rain gauge-
derived mean areal precipitation (MAP). 
Jun 1996-Jul 1998. 

NEXRAD Stage III and 24-h 
accumulations from 545 raingages for the 
period 1995-99 
NEXRAD Stage III product and 
a network of gauge (10 stations) 
precipitation estimates during 1995 to 
2001 

NEXRAD Multi-sensor precipitation 
estimates (MPE) compared to point 
measurements of daily precipitation from 
precipitation gages in the vicinity of the 
Fox River for the period February 2002-
September 2004 
The NEXRAD data used in this 
comparison consist of Stage III (1997-
2001) and Multisensor Precipitation 
Estimate (MPE) (2002-2005) gridded 
hourly products. 
The rain-gage data used in this study are 
from a network of 27 radio-telemetered 
tipping-bucket rain gages for the period 
from July 1997 through September 2005 
was carried out at the daily time scale. 

Result 
The stage III analysis has a 40 
percent underestimate of 
accumulative rainfall. 

Over the long term, mean areal 
estimates derived from NEXRAD 
generally are 5-10% below gauge-
derived estimates. For storm events, 
a slight tendency for NEXRAD to 
measure fewer yet more intense 
intervals of precipitation is 
identified. 
The radar-based MAPX are in good 
agreement with the gauged MAPO 
for most of the basins, and The 
reminder of the basins have MAPX 
values being lower than MAPO 
values at a range of 3-6%.. 

Results show that the radar 
(MAPX) underestimates gauge-
derived rainfall (MAP) by 38% at 
the end of the 2-yr period. This 
underestimate is most pronounced 
during the winter months of 
November-April when MAPX 
underestimates MAP by 50%. 
Comparisons during the summer 
(May-Oct) indicate that MAPX is 
similar to MAP. 
Overall under-estimation over the 
period from 1995-99 but over-
estimation during 1998-99 
NEXRAD underestimates rainfall 
accumulation in the nonmonsoon 
season, and overestimates rainfall 
accumulation in the monsoon 
season. 

In comparison to the daily gage 
data, however, the multi-sensor 
precipitation estimates were on 
average 25 percent lower 
throughout the year. 

(1) July 1997 through September 
1999; 
On average NEXRAD under
estimated the rain-gage rainfall by 
about 25% 
(2) October 1999 through October 
2001; Over-estimated the gage 
rainfall by about 9% 
(3) February, 2002 through 
September 2005. 
Under-estimated the gage rainfall 
by about 3 % . 
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Clearly, NEXRAD kept improving its data processing over the history of the 

technology based on the above studies. Moon et al (2004) used both NEXRAD stage III 

data and rain gauge data to simulate stream flow by SWAT in the Trinity River Basin, 

Texas. The accuracy of the model results suggests that NEXRAD is a good alternative to 

rain gauge data. Jayakrishnan's (2004, 2001) study also suggested that NEXRAD was 

more accurate when compared to rain gauge data based on improved data processing 

algorithms and on-going developments after 1998. Jayakrishnan compared NEXRAD 

and rain gauge data in the Texas-Gulf basin, and the study stated that rain gauges with 

more than 20% underestimation dropped from 75% in 1995 to 6% in 1999. From Young 

et al. (2000), the NEXRAD Stage III underestimates the gauge rainfall because the Stage 

III data has fewer precipitation hours in the case of light precipitation. Also, the Stage HI 

data works well in warmer or monsoon seasons (Xie et al, 2006; Seo and Breidenbach, 

2002; NWS, 2002). Statistical comparisons of the rain gauge and NEXRAD data shows 

that the NEXRAD radar data have a good agreement with recent rain gauge data (Over et 

al., 2007) and can be represented as the observed rainfall as rain gauge data. NEXRRAD 

data provides the better real-time, spatially and temporally distributed rainfall estimates 

available with the current technologies (Moon et al, 2004). 

2.4.3 The Application of NEXRAD Data in the SERMs 

For SERMs, the spatial-temporal rainfall, as the driving force behind all 

hydrologic processes, may be the most critical input data. The rain gauge data is used as 

the primary source for SERMs, and users used to have to do mathematical interpolation 

due to the generally sparse rain gauge network especially for large watersheds. Compared 
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to rainfall data derived from rain gauge measurements, rainfall estimates from NEXRAD 

capture the spatial as well as temporal variability associated with rainfall, and do so in a 

near real-time fashion (Moon et al, 2004). 

Based on the advantages listed above, researchers recently began to utilize 

NEXRAD rainfall estimates for flood modeling, near real-time flood prediction, and 

water resource management. Knebl et al. (2005) presents a regional scale flood modeling 

study for the San Antonio River Basin (about 4000 square miles) incorporating Summer 

2002 storm events with a new framework that integrates NEXRAD Level III rainfall, GIS, 

and a hydrological model (HEC-HMS/RAS). In the study, Stream network and 12 

subbasins were delineated by HEC-GeoHMS with DEM. For the rainfall-runoff part, the 

4><4 km grid, a resolution consistent with the resolution of NEXRAD data, was used by 

HEC-HMS. Hydrographs extracted from the rainfall-runoff model were saved as time 

series data and inputted directly into the hydraulic model. Similar research was also done 

with similar framework for small basins like the Salado Basin (222 square miles) and the 

Rosillo Creek Basin (29 square miles) (Whiteaker et al, 2006; Robayo et al, 2004). 

Giannoni et al. (2003) simulate extreme floods (the 27 June 1995 Rapidan River flood, 

VA) by combining radar rainfall estimates and a distributed hydrologic model. Rainfall 

estimates at the 1 km horizontal scale and 5 min time scale are used to reconstruct flood 

response to the Rapidan storm at basin scales ranging from 1 to 295 km2. The Rapidan 

storm was a multi-cell thunderstorm with a characteristic horizontal scale of 

approximately 8-10 km. A radar-based flood warning system for Houston, TX utilizes 

the real-time NEXRAD rainfall (resolution is up to lKm x lKm) coupled with the real

time lumped model (RTHEC-1) and a distribute model to achieve more accurate, greater 
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lead time and timely flood forecast estimates (Fang et ah, 2006; Vieux et ah, 2005; 

Bedient et ah, 2003). Besides flood modeling, NEXRAD data is also utilized for a 

continuously hydrologic simulation. Zhang et ah (2004) compared six years of 

continuously simulated hydrographs from an eight-subbasin model to those from a 

single-basin (or lumped) model of the Blue River basin (1,232 km2) in Oklahoma. 

Subdividing the basin into eight subbasins captures spatially variable rainfall reflected in 

NEXRAD and produces improved results without greatly increasing the computational 

and data requirements. NEXRAD is also integrated with SWAT model for long-term 

daily simulation (Jayakrishnan et ah, 2005; Moon et ah, 2004). Daily NEXRAD rainfall 

data consist of NEXRAD hourly data at 4Km x 4 Km grid cell was used for these studies. 
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CHAPTER III 

STUDY AREA 

3.1 Study Area: Rivanna River Basin 

The following criteria was used to identify the case study watershed for this 

dissertation research: 

• Size of the watershed would be about 500-1000 square miles, so that the 
watershed is easier to handle, at the same time, would provide sufficient 
spatial variability and complexity to test the capability of MHSERM; 

• The watershed should contain USGS gauge stations both on branches and 
mainstream, and measured data should be available from gauge stations; 

• The watershed would locate in the State of Virginia; 

• Regardless of how complex the stream network might be, the overall shape of 
the stream network would be dendritic because the Muskingum-Cunge routing 
method can't handle multiple downstream branches; 

• The watershed would have very high peak flood flows with usually abundant 
rainfall, and would have a limited surface water reservoirs storage capacity. 
The local government usually controls the outflow of reservoirs during a big 
storm event, thus it can't be simulated by the routing method only. 

After examining numerous watersheds in Virginia, the Rivanna River Basin was 

selected for the case study area by satisfying the above criteria. 

The Rivanna River is a tributary of the James River located in the mountains and 

foothills of Central Virginia as shown in Figure 3.1. The Rivanna river basin spans the 

Blue Ridge Mountains in the west to the James River in the east (The Rivanna River 

Basin Roundtable, 1998). In the National Hydrography Dataset (NHD, 2000) hierarchical 

levels, the Rivanna Subbasin is at the fourth level and has 8-digit Hydrologic Unit Code 

(HUC), 02080204. From the first level to the third level, the Rivanna Subbasin belongs to 
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the Mid-Atlantic Region (HUC: 02), the Lower Chesapeake Subregion (0208), and the 

James River Basin (020802). The James River Basin occupies the central portion of 

Virginia and covers 10,206 square miles or approximately 25 percent of the 

Commonwealth's total land area. The Rivanna River Basin is a 761 square mile (486,900 

acre, 1971 square km) fan-shaped sub-basin representing approximately 2% of Virginia's 

total land area and 7.5% of the drainage of the James River watershed. The Basin is 

bordered by the Rapidan River basin to the north, the South Anna River basin to the east, 

the South Fork Shenandoah River basin to the west, and the Rockfish and Hardware 

River basins to the south. The Virginia Department of Conservation and Recreation 

(VADCR) has divided the Rivanna River Basin into ten hydrologic units (HU). The 

Rivanna River and its tributaries drain major portions of Albemarle and Fluvanna 

Counties, relatively small portions of Greene and Orange Counties, the City of 

Charlottesville, the town of Columbia, the village of Palmyra, and a tiny fraction of 

Nelson County (The Rivanna River Basin Roundtable, 1998). 

Figure 3.1 Rivanna River Basin, a Tributary of the James River, Central Virginia 
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Table 3.1 Rivanna River Basin by Hydrologic Unit (Rivanna River Basin Roundtable, 
1998) 

HU Name 

Mechums River 

Moormans River 
Buck Mountain Creek 
S. Fork Rivanna/Ivy Creek 

N. Fork Rivanna/Swift 
Run/Preddy Creek 
Upper Rivanna River 

Middle Rivanna River/Buck 
Island Creek 
Mechunk Creek 
Lower Rivanna River/Ballinger 
Creek 
Cunningham Creek 

Area 
(km2) 
257 

201 
93 
141 

437 

153 

184 

160 
243 

94 

Major communities, Subdivisions, and 
Landmarks 
Crozet, Batesville 

Doylesville, Brown's Cove 
Free Union, Boonesville 
Along 29 north from Northfields to 
Forest Lakes subdivisions, South Fork 
Reservoir, and Ivy 
Advance Mills, Dyke, Stanardsville 

Charlottesville and Ragged Mountain 
Reservoir 
Shadwell 

Cismont, Cobham, Cash Corner 
Lake Monticello, Palmyra, Carysbrook 

Fluvanna Ruritan Lake 

The Rivanna Basin is subject to very high peak flood flows with usually abundant 

rainfall and has a limited surface water reservoirs/lakes storage capacity. USGS reports 

stated that the mean annual runoff of lands in the Rivanna Basin is about 16 inches, most 

of this runoff water cannot be stored, and flows directly into the James River. Three types 

of weather events including the summer super-cell rainstorm, a hurricane event, and a 

winter rain-snowmelt event can generate unusual floods in the basin on an annual basis. 

With continuing urbanization, and concomitant creation of impervious areas, the flood 

potential will increase. USGS has four surface water gauge stations in the basin to 

provide real time flow data as listed in Table 3.2 and Figure 3.2. Automated 

measurements are commonly recorded at 5-60 minute intervals and transmitted to the 

USGS National Water Information System (NWIS) database every 1-4 hour. There is 
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only one long-term gauging station measuring precipitation in the basin. It is located at 

the University of Virginia's McCormick Observatory on Observatory Hill, near the 

Basin's geographic center. The State Climatology Office provided precipitation data of 

this station, which is located at the University of Virginia's Clark Hall. The data were 

used to represent the entire basin (Rivanna River Basin Roundtable, 1998). 

Table 3.2 Real Time Flow Data from Four Surface Water Gauge Stations, Rivanna Basin, 
Central Virginia 

Site 
Number 
02031000 

02032250 

02032640 

02034000 

Site Name 

MECHUMS RIVER NEAR 
WHITE HALL 
MOORMANS RIVER 
NEAR FREE UNION 
N F RIVANNA RIVER 
NEAR EARLYSVILLE 
RIVANNA RIVER AT 
PALMYRA 

Decimal 
Latitude 
38.10263608 

38.14069020 

38.16346740 

37.85791920 

Decimal 
Altitude 
-78.59279350 

-78.5558478 

-78.42473230 

-78.26583730 

Datum 

NAD83 

NAD83 

NAD83 

NAD83 

From the Rivanna River Basin Roundtable (1998), most of the region is now 

covered by the forest classification (approximately 64%). The second largest land cover 

classification is grazed pasture land (approximately 20%). 5+ acre residences in 

woodlands and one-acre residences are the third largest land cover classifications at 

approximately 4%. The mowed lawns/ moderately grazed pasture/golf courses and the 

ungrazed grass/shrubland each comprise approximately 2% of the land cover in the basin. 

Other classifications of interest include croplands at approximately 1% and /4-acre 

residences, 1/3- acre residences, and !4-acre residences collectively comprising 

approximately 2%. Water surface occupies the remaining 7%. 
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Figure 3.2 Subbasin Delineation and Location of Four Real Time Flow Data Surface 
Water Gauge Stations (listed in Table 3.2), Rivanna Basin, Central Virginia 

3.2 Data Preprocessing 

3.2.1. Synchronization of Projected Coordinate System 

The spatial datasets used in the MHSERM that cover the Rivanna river basin were 

obtained from the data servers of different government agency such as USGS, NRCS and 

NOAA. These datasets were further clipped and transferred to the same projected 

coordinate systems of UTM, State Plane, or other customized projected coordinate 
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system. For this dissertation study, a customized projected coordinate system named 

Virginia_ LambertConformalConic is defined as below: 

Projection: LambertConformalConic 

Datum: NAD 1983 

Linear Unit: meter 

False Easting: 0 

False Northing: 0 

Central_Meridian: -79.5° 

Standard Parallel 1:37.0° 

Standard Parallel 2: 39.8° 

Latitude of Origin: 36° 

All the spatial datasets are transformed to this coordinate system for this case study. 

3.2.2. USGS DEM 

The Digital Elevation Model data (DEM) was obtained from the National Map 

Seamless Server of the USGS in ESRI ArcGRID format with 1 arc second (30m/7.5 

minute unit) resolution. The DEM data comes with NAD 83 (Geodetic North American 

Datum 83) Geographic coordinate system, and cell size was at a 00.00028 degree scale. It 

was then transformed to the Virginia_ LambertConformalConic projected coordinate 

system, and the cell size was re-sampled to 30 meters by the ESRI Project Raster tool. 

Transformed and preprocessed data was subsequently clipped to the area slightly larger 

than the study area to ensure complete coverage over the study area, Rivanna River Basin 

by using the ESRI Raster Clip tool. 
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3.2.3. NLCD LandcoverData 

Similar to USGS DEM data, The National Land Cover Datasets (NLCD), 

NLCD 1992 and NLCD2001 were obtained from the National Map Seamless Server of 

the USGS. They were in the following format: 

Output Format: GeoTIFF 

USA Contiguous Albers Equal Area Conic USGS version 

X cell Size: 30.00 Meters 

Y cell Size: 30.00 Meters 

They were also transformed to the Virginia_ Lambert_Conformal_Conic projected 

coordinate system. The datasets are clipped to cover the study area. The relationship of 

the value of the cells and the land cover category was established for both NLCD 1992 

and NLCD2001 as illustrated in Table 3.3. 

3.2.4. NRCS SSURGO STATSGO 

The NRCS (Natural Resources Conservation Service) has archived and 

distributed two types of soil spatial dataset: State Soil Geographic Database (STATSGO) 

and The Soil Survey Geographic Database (SSURGO). For the Rivanna River Basin, 

SSURGO soil map data obtained from NRCS Soil Data Mart in an ESRI shape file 

format with Projected Coordinate System - UTM_Zone_18N. The same manner, 

STATSGO soil map was also obtained in an ESRI shape files format and with 

Geographic Coordinate System - GCS_North_American_1983. 
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Table 3.3 Land Cover Category Lookup Table for NLCD1992 and NLCD2001 
Dataset used in the Study 

NLCD 1992 
VALUE 

11 
12 
21 
22 

23 

31 
32 
33 

41 
42 
43 
51 
61 
71 
81 
82 

83 
84 

85 
91 
92 

Category 
Open Water 
Perennial Ice/Snow 
Developed, Low Intensity Residential 
Developed, High Intensity Residential 
Developed, 
Commercial/Industrial/Transportation 
Barren Land (Rock/Sand/Clay) 
Quarries/Strip Mines/Gravel Pits 

Transitional 

Deciduous Forest 
Evergreen Forest 
Mixed Forest 
Shrubland 
Orchards/Vineyards/Other 
Grassland/Herbaceous 
Pasture/Hay 
Row Crops 
Small Grains 

Fallow 

Urban/Recreational Grasses 
Woody Wetlands 
Emergent Herbaceous Wetlands 

NLCD 2001 
VALUE 

11 
12 
21 
22 

23 

24 
31 
32 
41 
42 
43 
51 
52 
71 
72 
73 
74 
81 
82 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

Category 
Open Water 
Perennial Ice/Snow 
Developed, Open Space 
Developed, Low Intensity 

Developed, Medium Intensity 
Developed, High Intensity 
Barren Land (Rock/Sand/Clay) 

Unconsolidated Shore 

Deciduous Forest 
Evergreen Forest 
Mixed Forest 
Dwarf Scrub 
Shrub/Scrub 
Grassland/Herbaceous 
Sedge/Herbaceous 
Lichens 

Moss 
Pasture/Hay 

Cultivated Crops 
Woody Wetlands 
Palustrine Forested Wetland 
Palustrine Scrub/Shrub Wetland 
Estuarine Forested Wetland 
Estuarine Scrub/Shrub Wetland 
Emergent Herbaceous Wetlands 
Palustrine Emergent Wetland (Persistent) 
Estuarine Emergent Wetland 

Palustrine Aquatic Bed 

Estuarine Aquatic Bed 
The table is based on The NLCD 1992 21 Land Cover Classifications definition at: 
http://landcover.usgs.gov/classes.php and The NLCD 2001 Land Cover Classifications definitions at: 
http://www.mrlc.gov/nlcd definitions.asp 

The SSURGO soil data for the Rivanna River Basin is composed of several 

counties' SSURGO soil survey map, i.e. Albemarle, Fluvanna, Greene, Louisa, Nelson, 

and Orange. The SSURGO maps from these counties were merged into one big file, and 

http://landcover.usgs.gov/classes.php
http://www.mrlc.gov/nlcd
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then transformed into the same projected coordinate system as DEM data for further 

data overlay. The merged shape file is transformed to the 

VirginiaLambertConformalConic and then clipped to the size of the study. The 

clipped shape file was then converted to an ESRI Raster format (set the MUKEY field as 

the cell value) with cell size as 30m by using ESRI Feature to Raster tool. Here, MUKEY 

field stand for a unique numerical code, by which each soil type defined in the attributes 

table. The STATSGO soil map was transformed to an ESRI Raster format with similar 

steps as SSURGO. 

3.2.5. National Hydrography Dataset (NHD) 

The NHD data used in this study were originally available in pre-staged personal 

geodatabases by subregion. Applicable pre-staged personal geodatabases was obtained 

from the USGS NHD ftp server in an ESRI geodatabase format (NHDinGEO) with 

medium resolution and with the Geographic Coordinate System 

(GCS_North_American_1983). The NHD dataset was clipped to the study area using 

steps listed below: 

1. Delete the HydroNet network in the GeoDatabase; 

2. Delete all the features outside of research area - Rivanna River Basin; 

3. Make sure there is no loops in the flowline network; 

4. Delete all the features that don't belong to the network; 

5. Create new dataset in the geodatabase with x/y domain that can cover the research 
area; 

6. Transform all the Feature classes to the Virginia_ LambertConformalConic 
projected coordinate system, and save them into the new dataset; 

7. Re-establish the network for the geodatabase. 
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3.2.6. NCDC NEXRAD 

Historical or archived NEXRAD data was obtained from the NCDC (National 

Climatic Data Center) website of NOAA. The SERM model developed in this 

dissertation, MHSERM was using the Level-Ill 1 hour precipitation data of station 

STERLING, which is located at Sterling, VA (ICAO ID: KLWX; Latitude: 

38°58'31.008"N, Longitude: 77°28'41.016"W). After the data files covering a storm 

event or a series of events were obtained, a Java NEXRAD Viewer provided by NCDC 

was used to export the data files to the ESRI shape files. Then the shape files were further 

transformed to the raster files for MHSERM using following procedure: 

1. Choose the files whose recording time are close to each time steps, these time 

steps will be used in the MHSERM as the intervals, e.g. 10 minutes, or 15 

minutes; 

2. The Shape files are transformed to the shape files with the 

VirginiaLambertConformalConic projected coordinate system; 

3. The Shape files are burned to Raster data by setting the cell's value as rainfall 

intensity; 

4. The rainfall intensity raster datasets are clipped to the size that covers the study 

area. 
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CHAPTER IV 

METHODOLOGY 

In this chapter, the methodology for developing a framework of a massive 

watershed scale storm event hydrological response model (MHSERM) is described. The 

MHSERM, integrated closely in an ArcGIS platform, is a fully distributed hydrological 

model. The model incorporates 5 modeling process-oriented components: (1) catchment 

delineation, (2) parameters extraction of Grid cells, (3) stream network establishment, (4) 

NEXRAD rainfall processing, and (5) overland runoff and flow routing. 

The MHSERM was closely integrated with the ArcGIS platform by programming 

with ESRI ArcObjects. ArcObjects are a set of computer objects specifically designed for 

programming with ArcGIS desktop applications (Burke, 2003; Zeiler 2001), which 

provides us a powerful tool to integrate external models. The functions of the MHSERM 

model are provided as an ArcMap toolbar as illustrated in Figure 4.1. 

Massive Spatiotemporal Watershed Hydrological Storm 3IHHS 

SubCatchment ^ Stream Network » Precipitation • Models About 

Figure 4.1 Massive Watershed Scale Storm Event Hydrological Response 
Model(MHSERM) Components in form of ArcMap Toolbar 

4.1 Catchment Delineation Based on NHD Data 

The terrain analysis based on DEM data is widely used to delineate watersheds or 

catchments, derive the stream network and calculate the slope and the distance from each 



40 

cell to the outlet (Ivanov et ai, 2004a and 2004b; Tarboton, 2003; Tarboton and Ames, 

2001; Wilson and Gallant, 2000; Tarboton et a/,, 1991; Fairfield and Leymarie, 1991; 

Band, 1986). To delineate catchments or sub water sheds, most traditional methods rely 

only on flow direction dataset and another "starter" dataset (Jenson and Domingue, 1988). 

The flow direction dataset is calculated based on the elevation gradient estimated from 

DEM, and the starter dataset is used to mark the outlets of the catchments. However, in 

physical actuality, rainfall runoff goes to the rivers/streams as lateral flow before it goes 

to the outlet of the catchment. Also, logistically and computationally it can be very time-

consuming to calculate flow directions for the whole watershed based solely on 

algorithms of computing flow directions using a watershed-scale, high-resolution DEM 

data set. In this dissertation, a new method was developed to delineate the catchments. 

This method utilizes NHD river/stream flowlines as the end of rainfall overland runoff, 

and the catchments are defined as the DEM grids whose rainfall runoff will go to the 

same river Reach of the NHD. This is more realistic in the natural system because the 

rainfall runoff usually goes to the streams or ponds, not to the outlet directly. 

4.1.1 Remove Pits and NoData Cells in a DEM 

DEMs almost always contain depressions (pits) that hinder flow routing (Jenson 

and Domingue, 1988), as well as some "NoData" grids that do not contain any value. The 

first step is to fill the depressions and the NoData grids in the DEM. The NoData grids 

are assigned with an approximate interpolated from the surrounding grids' value. The pits 

are removed using ESRI filling pits methods within the RasterHydrologyOp class. The 

method is to create an adjusted "depressionless" DEM in which the cells contained in 
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depressions are raised to the lowest elevation value on the rim of the depressions 

(Jenson and Domingue, 1988). 

4.1.2 Flowline Raster Dataset 

To delineate catchments, NHD Flowline data are used to get the streams 

information. The flowline data is converted to Raster format by the ArcGIS 'Feature to 

Raster' tool. This process is usually called 'burn.' During the 'burn,' the cell size is set to 

the same with the cell size of DEM data, e.g. 30m. In this process, OBJECTID, a key 

value for each stream object in the NHD flowline dataset, was selected as the value of 

'burned' flowline cells. The cells of DEM that are overlaid with flowline raster cells are 

marked with the OBJECTID as shown in Figure 4.2. 

4.1.3 Flow Direction Calculation Based on the Steepest Path to the Streams 

With the depressionless DEM prepared with ESRI filling sinks methods and with 

the flowline raster, flow direction was estimated and built for each cell. It can be 

emphasized enough that correct estimation of flow direction from a cell or within a 

catchment in a collective sense is the most critical step toward the correct and accurate 

estimation of runoff triggered by single or series of storm events. 

To mark the flow directions in a DEM grid, a standard method of assigning its 

flow to one of its eight neighboring directions was used (Martz and Garbreche, 1992; 

Jenson, 1991; Jenson and Domingue, 1988; Tarboton etal, 1988; Band, 1986; 

O'Callaghan and Mark, 1984). For example, flow direction of a cell is divided by 8 

directions from the center of the cell, marked with the value of 2X (x is from 0 to 7, from 
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East to Northeast), and is encoded to correspond to the orientation of one of the eight 

neighbor cells (Jenson and Domingue, 1988) as shown below in Figure 4.3. 

Determination of the flow direction is based on the assumption that overland runoff will 

flow along the steepest path. The slope is calculated by dividing the elevation difference 

with the distance. Here, the distance is the cell's size for the non-corner cell, or multiple 

1.414 (21/2) for the corner cell. 
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Figure 4.2 Cells of DEM Overlaid with Flowline Raster Cells 
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Figure 4.3 Gradient-based Determination of the Overland Runoff Flow Direction 

The traditional algorithm to calculate the flow direction from DEM data is a 

Forward Search method to find the steepest path from a starting grid to the side of the 

DEM data (Jenson and Domingue, 1988). With this method, the slopes to each of one 

grid's eight directions are computed, and the flow direction is assigned to a neighbor cell 

that has the largest slope, but if the largest slope occurs at more than one neighbor, the 

method has to mark the grid and repeat the steps until it can determine the downstream 

grid. Since the method needs to search the path to the edge of the DEM data, the 

calculation is very time-consuming even for an average-sized DEM data, especially for a 

flat terrain area with a minimum elevation gradient presents. 

In this dissertation research, an Upstream Search method is introduced to 

calculate the flow directions and the catchments. This method utilizes the NHD flowline 
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dataset as another input data source besides the DEM data for estimating flow 

directions, and calculates the flow path from the downstream end, i.e. streams, 

waterbodies or DEM data edges toward upstream in a reverse direction. Table 4.1 

describes the Upstream Search method procedures to calculate the flow direction using 

DEM and NHD flowline data concurrently. The cells in the flow direction raster are 

encoded with the following values: 0, 1,2,4, 8, 16, 32, 64, 128 and >1000 (specifically 

for stream cells). The resulting flow direction raster is generated in ESRI Grid format as 

shown in Figure 4.4. 

Table 4.1 Upstream Search method Procedures to Calculate the Flow Direction 

Step 
1 
2 
3 
4 

5 

6 

Procedures 
Mark all the grids on the DEM edge, Streams and Waterbodies as starting grids; 
Mark the flow distance as 0 for starting grids, and other grids are -999 as N/A; 
Calculate all grids' 8 direction slopes; 
Compare the slope values of the neighbor grids of the starting grids, the result 
will be one of the below two situation: 
the largest slope occurs at the starting 
grids: 

1) If the largest slope occurs only at 
one starting grid, assign the flow 
direction to that grid, and mark the 
flow distance from the current grid to 
the flowline grids, or waterbodies 
grids, or edge grids; 
2) If the largest slope occurs at more 
than one starting grids, the program 
compares the distances from current 
grid to the starting grids, assgin the 
flow direction to the grid with the 
shortest distance, and then mark the 
flow distance to the flowline grids, or 
waterbodies grids, or edge grids; 

The largest slope occurs at the other 
grids, not the starting grids 

1) The program does nothing, the grid 
is still marked as 'To be determined' 
with value -999; 

Now, the grids with known flow direction from step 4 are also considered as 
starting grids with flow distance value; 
For the grids still encoded as -999, repeat the step 4 until all grids has flow 
direction assigned. 
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4.1.4 Catchments Delineation 

With the flow direction raster and reverse flow direction raster that records the 

upstream grid, overland accumulation area to the stream is obtained by tracing the flow 

path to stream cells, and as a result, catchments are delineated successfully. The 

procedures for delineating catchments are listed in Table 4.2. 

Table 4.2 Procedures for Delineating Catchments with Flow Direction Raster and 
Reverse Flow Direction Raster 

Step 
1 

2 

3 
4 

Procedure 
Extract the cell's value of the flow direction raster and reverse flow direction 
raster; 
If the cell's flow direction code is 0 or >1000 (stream cells), set the value to 
the cell of catchment raster dataset; 
If the cell's flow direction code is 1,2,4,8,16,32,64,128, 
Trace the flow path down to any stream cells, and set the code of the stream 
cell to this cell. 

The cells within a contributing area to a NHD flowline (stream) are coded with 

the flowline's OBJECTID flag. Aggregation of the networked cells through flowline is 

then defined as a catchment. Application of the automated delineation procedure 

produced 886 catchments for the entire study area of the Rivanna river basin resulting 

catchment delineations are shown in Figure 4.6. 
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Figure 4.4 Encoded Flow Direction Raster in ESRI Grid format for 
Upstream Search Method 
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Figure 4.5 Flow Direction Assignment and Aggregation of 

the Networked Cells through Flowline 
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Figure 4.6 886 Catchments Delineated by Automated Procedure, Rivanna river basin, 

Central Virginia 

4.2 Parameters Estimation for Each Cell 

The massive watershed scale storm event hydrological response model 

(MHSERM) conceptualized, developed and implemented in this dissertation research is 

designed to estimate the parameters for millions of cells automatically. Cell parameters 
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are for estimating runoff from a single or a series of storm events, and include NRCS 

runoff curve number (CN), Manning's roughness coefficient, the true flow distance to 

streams or waterbodies, and the downstream slope. NRCS CN method is an empirical 

procedure presented by NRCS (formerly known as SCS, the Soil Conservation Service) 

(SCS, 1986). It is a combined loss model to calculate rainfall excess resulting from a 

given rainfall, which accounted for interception, depression storage, evaporation and 

infiltration together for loss calculations (Akan and Houghtalen, 2003). The CN number 

is determined by combining the hydrologic soil groups, land cover type and its 

hydrologic condition. In the study, the entire study area was divided into millions cells as 

the same resolution of DEM (e.g. 30m by 30m), and each cell's CNs for Good, Fair and 

Poor land cover conditions were estimated. 

Because MHSERM can simulate a watershed at various resolutions of DEM 

desired, millions of cells representative of a selected DEM resolution also need their 

respective CN values assigned to reflect spatial variability within the watershed. The task 

of manually assigning CN values to these millions of cells, respectively, is simply not 

logistically sound, even if it is attainable. To solve this core problem, a method was 

developed in this dissertation to estimate and assign the CNs for millions of cells 

automatically. 

4.2.1 Determine Hydrologic Soil Groups Automatically Based on SSURGO and 

STATSGO Soil Dataset 

To estimate one cell's CN, the hydrologic soil group of the cell must be 

determined first. The SCS (1986) classifies soils into four groups (A, B, C and D) 
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according to their minimum infiltration rate. With respect to soil textures, group A 

includes sand, loamy sand, and sandy loam; group B includes silt loam and loam; group 

C includes sandy clay loam; group D includes clay loam, silty clay loam, sandy clay, silty 

clay and clay (Akan and Houghtalen, 2003). To determine the hydrologic soil type for 

millions of cells, a method was developed to use the NRCS soil spatial dataset, State Soil 

Geographic Database (STATSGO) and The Soil Survey Geographic Database (SSURGO) 

dataset in the ArcGIS platform. Although SSURGO spatial dataset has a higher 

resolution and more detailed information than STATSGO, the study area may not be 

completely covered by SSURGO dataset as summarized in Table4.3. To obviate partial 

deficiency in applicable SSURGO dataset, alternative STATSGO dataset was used as a 

supplement dataset. The detailed steps for determining hydrologic soil type for the cells 

using SSURGO/STATSGO composite are listed in Table4.4. 

Table 4.3 The Availability of NRCS SSURGO Spatial Dataset for Rivanna River 
Basin till 02/29/2008 

Counties 
Albemarle 
Fluvanna 
Greene 
Louisa 
Nelson 
Orange 
Charlottesville City 

NRCS County Code 
VA003 
VA065 
VA079 
VA109 
VA125 
VA137 
VA540 

SSURGO Availabile? 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
No 
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Table 4.4 Procedures for Determining Hydrologic Soil Type for the Cells 
using SSURGO/STATSGO composite 

Step 
1 

2 
3 

4 

5 

6 

Procedure 
Merge the SSURGO Spatial datasets of the corresponding counties, 
and Clip the datasets to a little bigger than the study area; 
Transfer the projection to the same one with other dataset; 
Transfer the SSURGO Spatial dataset to ESRI Raster (use the 
MUKEY value); 
Set up a look up table to link the MUKEY with Hydrologic Soil 
Type; 
If the available SSURGO dataset can't cover the whole study area, 
STATSGO dataset will be used to extract the soil information of the 
area (Figure 4.7); 
Determine the hydrologic soil type for all the cells (Figure 4.7). 

4.2.2 Estimate NRCS CN Number 

NRCS (SCS ) CN number for each cell was estimated by overlaying the landcover raster 

dataset over hydrologic soil type raster dataset estimated in the previous step. SCS (1986) 

provides the runoff CN tables for urban areas, cultivated agricultural lands, other 

agricultural lands, arid and semiarid rangelands. A look up table (LUT) was established 

based on SCS tables and USGS landcover classification. Combining the cell's hydrologic 

soil type and land cover class, the MHSERM estimates a cell's CN number by matching 

conditions in the look up table. Since land cover type can have different hydrologic 

conditions (Poor, Fair, Good), the MHSERM generates three different CN raster datasets 

that can be used effectively without re-estimation when the hydrologic condition for the 

cell changes or when various what-if scenarios reflecting a different BMPs are evaluated. 

Figure 4.7 illustrates overlaying of hydrologic soil type raster dataset with landcover 

raster dataset for CN estimation. Figure 4.8 illustrates CN estimation for different 

hydrologic conditions (Poor, Fair, Good) of hydrologic soil type raster dataset. 
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Figure 4.7 Overlaying of Hydrologic Soil Type Raster Dataset with Land Cover Raster 

Dataset for CN Estimation. 
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Figure 4.8 CN estimation for different hydrologic conditions (Poor, Fair, Good) of 

hydrologic soil type raster dataset 

4.2.3 Estimate Manning Roughness Value for Cells 

Overland flow is a special type of open-channel flow with a very shallow depth 

(Akan and Houghtalen, 2003). For describing such overland flow, Manning's roughness 

factor (n) is an effective roughness coefficient that includes the effect of raindrop impact; 

drag over the plane surface; obstacles such as litter, crop ridges, and rocks; and erosion 
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and transportation of sediment (SCS, 1986). SCS (1986) also gives a table of Manning's 

n values for sheet flow for various surface conditions. MHSERM was designed to 

estimate overland Manning roughness value 'n' for each cell automatically by its 

landcover value and SCS table. The resulting Manning roughness value assignment to 

cells is shown in Figure 4.9. 

4.2.4 Calculate the Downstream Flow Slope and Distance to the Streams or 

Waterbodies for Cells 

The flow slope and flow distance to the receiving streams or waterbodies in a cell 

are calculated based on the DEM dataset and flow direction dataset prepared in previous 

steps, as well as with NHD flowline dataset and the NHD waterbody dataset. Procedures 

are described in Table 4.5, that calculate the flow slope and distance to the 

streams/waterbodies of cells for one catchment. MHSERM then goes through all 

catchments and repeats the procedures. Calculated results are stored in an ESRI Grid 

raster format as shown in Figure 4.10. 
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Figure 4.9 Manning Roughness Value Assignment to Cells 
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Table 4.5 Procedure for Calculating Flow Slope and Flow Distance 
to the Receiving Streams or Waterbodies 

Step 
1 

2 
3 

4 
5 

6 

7 
8 

9 

Procedures 
Extract the boundary of the catchment from the catchment raster 
dataset; 
Locate one start cell within the catchment; 
Record the elevation of the start cell from DEM data, set the 
distance =0; 
Get the downstream cell on the basis of Flow direction dataset; 
If the downstream cell is a stream cell or waterbody cell, extract the 
cell's elevation from DEM dataset, sum the flow distance between 
these two neighbor cells, calculate the elevation drop between the 
start cell and this cell, then calculate the slope by divide the 
elevation drop with distance; 
If the downstream cell is not a stream cell or waterbody cell, sum 
the distance by adding the flow distance between these two neighbor 
cells, then go to step 4 to get the next downstream cell; 
Loop all the cells within the catchment; 
Set 1 for the slope and distance of stream/waterbody cells, and -1 
for the slope and distance of the cells outside of the study watershed; 
Loop all the catchments in the catchment raster dataset. 

Ooimstream Slope Raster Flo* Distance Raster 

Figure 4.10 Flow Distance to stream and Slope to stream Raster 
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4.3 Establishment of Stream Network Based on NHD Data 

The NHD dataset in ESRI geodatabase format (NHDinGEO) has built-in network 

(HYDRONET) for its flowline data that provides the flow direction as shown in Figure 

4.11. ESRI ArcGIS was used to trace the flowline by using its Network Analyst utility. 

However, a hydrological model cannot route flow by only using traced flowline 

information. Further routing sequence and the stream's geometric parameter are still 

required for correct flow routing. MHSERM was implemented with a method to establish 

the stream routing sequence and set the stream's parameters, as well as link the 

lake/reservoirs with the stream network. 

4.3.1 Establish the Flow Routing Sequence for the Stream Network 

MHSERM estimates the stream's routing sequence by extracting the flow 

direction information stored in the NHD HYDRONET. The resulting stream's routing 

sequence is stored in a Microsoft Access database first. For recording the routing location 

of a flowline/stream object, three attributes are essential. These three attributes are its 

rank from the outlet (=sequence), the downstream flowline's ID ^connectivity), and the 

linked waterbody object's ID (identification). The waterbodies are then linked with the 

flowline objects by recording their ObjectID with the related flowline's data to complete 

the flow routing sequence. 
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Lake/Reservoir 

2031000 

* USGS River Gage Station 

Figure 4.11 Network (HYDRO_NET) for Flowline in NHD dataset, in ESRI Geodatabase 

Format (NHDinGEO) 

For example, the initial starting rank is set at the outlet, and the first upstream 

flowline object is recorded as 1000, and the second one is 1001, and so on as illustrated 
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in Figure 4.12. As the example map shown in Figure 4.12, the flowline 95879 is ranked 

1000, and its two upstream flowlines, 94780 and 101625 are ranked 1001. The two 

upstream flowlines also have an attribute to record the downstream flowlines objected, i.e. 

95879 in this example. The waterbody with ObjectID 69 is then linked with flowline 

90997. Since a flowline does not have an upstream flowlines, it is marked as "leaf." 

1000) » 

• Outlet 

Figure 4.12 Streams Routing Sequence via Upstream Search Method Rank utilizing Rank 

from the Outlet (=sequence), Downstream Flowline's ID (=connectivity), and 

Linked Waterbody Object's ID (identification) 
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4.3.2 Extract Streams' Parameters 

Basic geometric and physical parameters representative of flowlines and 

waterbodies are critical components for developing the flow routing sequence in a stream 

system. Two types of parameters are utilized by the MHSERM, one of which can be 

extracted from the available public dataset like the stream's slope and length, and the 

other is which can be heuristically assumed like the cross section profile. Because the 

cross section profiles of the streams are very difficult to obtain, MHSERM assumed and 

generalized that the stream cross section would be a triangular shape, but different values 

can be set by users, if necessary, for slope H and V for any flowline objects in the 

database. At the same time, MHSERM can calculate the overland accumulation area for 

each flowline object, and its total upstream area. The main parameters for a flowline 

object are listed in Table 4.6. 

Table 4.6 Main Parameters for a Flowline Object for Developing the Flow Routing 
Sequence in a Stream System 

Parameter 
Length 

Slope 

Overland 
Accumulation 
Area 
Upstream 
Contribution 
Area 
Manning's 
Roughness 
Coefficient n 
Cross Section 

Methods 
The length of a flowline object is extracted from the flowline object's 
property automatically. 
The slope of a flowline object is calculated by dividing the elevation 
drop with its length; the elevation drop of the flowline is calculated 
from DEM data automatically. 
The Overland Accumulation Area of a flowline object is calculated on 
the basis of the catchment raster data. 

The Upstream Contribution Area of a flowline object is calculated with 
the overland accumulation area and the NHD stream network data. 

User can set n value for each flowline object. The estimation of n can be 
found in the table of Manning's Roughness Coefficient n (Henderson, 
1966). 
The cross section of a flowline object is assumed as a triangular shape, 
and the side slope H:V can be set by users. 
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4.3.3 Extract Waterbodies' Parameters 

Waterbody data is included in the NHD dataset and represents various impounded 

waterbodies such as lakes, reservoirs, ponds, etc. Besides some waterbodies isolated from 

the stream network, most of the waterbodies are within the stream network. For flow 

routing purposes in the stream network, MHSERM considers only waterbodies within the 

stream network since the Stage-Area or Stage-Storage data for those non-stream network 

waterbodies is not available. MHSERM assumes the trapezoidal body for all the 

waterbodies, and a rectangular weir control at the bottom of its outlet as illustrated in 

Figure 4.13. For a waterbody, the surface area is extracted from NHD Waterbody data set 

by MHSERM, and users can set its width and length based on the surface area and shape, 

as well as the side slope. Also, users can set the length and the coefficient of the 

hypothetical weir control. The waterbodies are added to the flow routing network by 

writing its ObjectID into the corresponding flowline's record. 

L+2zd 

Figure 4.13 Elements of a hypothetical trapezoidal waterbody to represent the 
waterbody in MHSERM (the figure is from Akan and Houghtalen, 2003 
and slightly modified). W and L are the width and length of a regular 
rectangular base, z is a side slope, d is the flow depth. 
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4.4 The Temporal-Spatial Overland Runoff Calculation Based NEXRAD 

Radar Data 

Compared to rainfall data derived from physical rain gauge measurements, 

rainfall estimates from NEXRAD radar capture the spatial as well as temporal variability 

associated with rainfall to the watershed, and do so in a near real-time fashion (Moon et 

al, 2004). MHSERM takes advantage of NEXRAD precipitation radar data as the 

temporal-spatial rainfall input. As a full-scale distributed model, MHSERM thus provides 

a GIS framework to best utilize the spatial variability of NEXRAD data on very detailed 

spatial terrain, landcover and soil data. Also, MHSERM can utilize the shortest possible 

interval of the NEXRAD data (less than 10 minutes), which provides a new paradigm for 

near real-time flood prediction. 

4.4.1 Rainfall Excess Calculation for a Storm Event or a Series of Storm Events 

Rainfall Excess calculation uses the rainfall intensity raster data extracted from 

NEXRAD data as its input data. The rainfall intensity raster was first clipped to the study 

area, and then further transformed to the same projection with DEM data for subsequent 

overlay. MHSERM utilizes ArcGIS to display the intensity data as a series of raster as 

shown in Figure 4.14. In the figure, four samples of the NEXRAD precipitation intensity 

raster of the Rivanna River basin show us the spatiotemporal variability of a scattered 

storm event. The storm moves from the north to the south of the basin. 

MHSERM utilizes a setting file to configure how the model to manage the rainfall 

data. The setting file defines the number of intervals for a single or a series of storm 

events, start and end time, storm event numbers, AMC condition for these events, start 
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interval and end interval number for each event, etc. as listed in Table 4.7. With 

configuration in this setting file, the cumulative rainfall raster series are firstly calculated. 

MHSERM calculates the cumulative rainfall depth of each cell for each event. For this 

purpose, the cell size of the cumulative rainfall raster is set the same size of the cell for 

DEM raster, or Curve Number (CN) raster, thus the rainfall excess for each cell can be 

calculated by MHSERM. 

Table 4.7 MHSERM Example Setting File for Rainfall Data. 

Row 
Number 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

12 
13 
14 
15 
16 

17 
18 
19 
20 

21 
22 
23 

Contents 

Rasters count: 
215 
Start: 
20070824 19:59 
end: 
20070827 02:10 
Interval: 
15 minutes 
Storm Event Number: 
3 
the start, end interval and AMC condition 
(1,2, or 3) for these storm events: 
0 
15 
1 
88 
0 

133 
2 
196 
0 

214 
3 
1 

Definition 

The total interval number for the simulation. 

The start time of the storms 

The end time of the storms 

The interval time of the NEXRAD data used 

The number of the storm events 
For the AMC condition, 1 means drier, 2 is 
normal, and 3 means wetter. 
The start interval number for the first event 
The end interval number for the first event 
The AMC-I for the first event 
The start interval number for the second event 
Consider the event as the same event with the 
last one? 0 means yes, and 1 is not. 
The end interval number for the second event 
The AMC-II condition for the second event 
The start interval number for the third event 
Consider the event is the same with its foregoing 
event, 0 means yes, and 1 is not. 
The end interval number for the third event 
The AMC-III condition for the third event 
Consider the event as the same event with the 
last one? 0 means yes, and 1 is not. 
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Table 4.7 (Continued) 
74 

25 

57 
58 
59 
70 
71 
72 

286 
287 
288 

0 
0824 20:00 
0824 1959 
1 
0824 20:15 
08242016 

15 
0824 23:45 
0824 2345 
16 
0825 00:00 
n/a 

88 
0825 18:00 
0825 1759 

The interval number 
The time for this interval 
The NEXRAD raster name 

The last NEXRAD raster of event 1. 
'n/a' means no precipitation between events 

The first NEXRAD raster of Event 2. 

MHSERM calculates the rainfall excess for each cell using the NRCS (SCS) 

runoff curve number method with cumulative rainfall raster. With three hydrologic 

conditions and three AMC conditions, MHSERM can have nine different rainfall excess 

intensity raster series for a storm event. Rainfall excess is calculated with the SCS runoff 

equation shown below (Akan and Houghtalen, 2003): 

R = 
(P-Ia) + SD 

(4.1) 

R 
(P-0.2SD)2 

P + 0.8Sn 
(4.2) 

where 

(If P> IaOr P>0.2 SD; otherwise R=0.) 

R=rainfall excess (unit: inches), 

P=cumulative rainfall (unit: inches), 

Ia = initial abstraction (unit: inches), and 

SD = soil moisture storage deficit at the time runoff begins (unit: inches). 
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Figure 4.14 NEXRAD Precipitation Intensity Data as a Series of Input Raster Data, 

Rivanna River Basin, Central Virginia 

If P, R, and SD are in inches, then the SCS runoff equation is expressed as 

SD = 
1000-lOCJV 

CN 

L = 0.2Sr 

(4.3) 

(4.4) 
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The initial CN for each cell is extracted from one of Good, Fair or Poor CN rasters 

based on the user-defined hydrologic condition. Then, the CN is adjustedwith the AMC 

condition. CN numbers corresponding to AMC-I and AMC-II conditions are computed 

by using the below equations (Chow et al, 1988). 

4 2CN = ^^_u (4_5) 

10-0.058C7V/7 

23C7V 
CN1U=—^^ (4.6) 

' 10 + 0.13CJV/7 

Where CNn is the curve numbers extracted from the CN raster for a cell, which is 

corresponding to AMC-II condition, and CNi and CNm are curve numbers for AMC-I 

and AMC-III, respectively. 

With the rainfall excess for each cell at every interval, MHSERM calculates the 

rainfall excess intensity for each cell at every interval by the following relationship: 

,- = Ri ~ Ri-x 

At (4.7) 

where ie is the rainfall excess intensity at i th interval, the unit is in/hr; Rj is the rainfall 

excess at i th interval; Rj.i is the rainfall excess at i-1 interval; At is the length of an 

interval in hours. 

The rainfall excess intensity for the study area is also saved as a series of raster with the 

same resolution of DEM data shown in Figure 4.15. 
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Figure 4.15 The Example Rainfall Excess Intensity Rasters 
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4.4.2 Estimation of the Variable Time of Concentration of Catchments for Each 

Interval 

The rainfall runoff is considered as lateral flow for streams in the MHSERM, so 

the time of concentration of a catchment is the time of the excess rainfall runoff from the 

farmost cell that has excess rainfall flowing to a stream. Due to the temporal and spatial 

variability of a storm event, the far most cell of a catchment with non-zero rainfall excess 

could vary for every interval. Furthermore the rainfall excess intensity is not constant for 

the whole event. MHSERM was designed to calculate the rainfall excess at each cell 

level, it can reflect and capture the temporal and spatial variability of a storm event to 

estimate the variable time of concentration for each catchment. 

MHSERM estimates the time of concentration by using the kinematic Time-of-

Concentration formulas (Morgali and Linsley, 1965). From Akan and Houghtalen (2003), 

the time of concentration for overland flow in a rectangular catchment can be calculated 

as: 

(4.8) k06S03iOA 

where 

Tc =time of concentration 

L = flow length 

n = Manning roughness factor 

k=1.0m1 / 3 /s= 1.49ft1/3/s 

S = average slope of the catchment in the flow direction, and 

i = rate of rainfall excess (assumed constant) 

The equation then becomes: 
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_ 0.94Z°V6 

c " ;°-4S0-3 (4.9) 

where Tc is in minutes, L is in feet, and i is in inches per hour. 

In the MHSERM, the L (flow length) is the length of the flow path of the farmost 

cell with rain excess to stream; n (Manning roughness factor) is the average Manning 

roughness of the flow path; i (rate of rainfall excess) is the average rainfall excess 

intensity of the cells that have greater than O.lin/hr excess of a catchment at given 

interval; S is the slope of the flow path. The parameters can be extracted from the raster 

generated in the steps described early in this chapter. Table 4.8 summarizes information 

in this Chapter, describing procedures to generate target parameters from raster dataset. 

MHSERM saves resulting parameter estimates into a data file for every catchment for 

further calculation. 

Table 4.8 Section Information in Chapter IV describing Procedures to Generate 
Target Parameters from Raster Dataset 

Parameter 

L 

n 
i 
S 

Raster Dataset 

The Distance of the flow 
path to the Streams 
Manning 
Rainfall Excess Intensity 
The Slope of the flow path to 
the streams 

Section describing procedures to 
generate the target parameter 
4.2.4 

4.2.3 
4.4.1 
4.2.2 

4.5 Estimation of Base Flow 

4.5.1 Estimation of the Reference Flow for Each Stream at Time Step 0 

The reference flow for each stream at time step 0 is also considered as a base 

flow in the MHSERM. The estimation is based on a simple assumption that the base flow 
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of a stream is linearly related to its upstream accumulation area. Compared to the flow 

incurred by storm events, the base flow is assumed proportionally very small. For 

example, stream flows of the Rivanna river basin, which can be relied upon ninety 

percent of the time, are relatively small because the river basin is not a large watershed 

with poor ground water storage and in a hilly terrain (The Rivanna River Basin 

Roundtable, 1998). From the daily discharge data of USGS gauge station '02034000 

RIVANNA RIVER AT PALMYRA' listed in Table 3.2, the stream flows observed 

between storm events are usually less than 200 cfs, but the flows of the storm events can 

increase very quickly to 10000 cfs as shown in Figure 4.16. 

MHSERM calculates the upstream accumulating area for all the streams in the 

catchments, then estimates the base flow or the reference flow at time step 0 based on the 

linear equation in Equation 4.10 with the observed flow at the downstream gage station at 

time step 0. 

^ W (4.10) 

where 
Qio = the base flow or reference flow at time step 0 of a stream; 
Qgageo= the observed flow at the USGS gage station at time step 0; 
Aj = the upstream accumulation area of the stream; 
Agage = the upstream accumulation area of the stream where the USGS gage 

station located. 

Calculated base flow data for each stream is recorded into the stream's database 

and MHSERM was designed to also facilitate user flexibility for setting the base flow 

manually based on her/his own judgment or with other methods. 
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Figure 4.16 Daily Discharge Data of USGS gauge station '02034000 RIVANNA 

RIVER AT PALMYRA' 

4.6 The Lateral Flow Calculation and The Flow Routing in the Stream 

Network 

MHSERM delineates the catchments on the basis of the NHD flowline data and 

DEM data; it also considers the rainfall excess runoff as the lateral flow to the stream 

system. Then MHSERM establishes routing sequences for the stream networks based on 

the NHD HydroNet data. With the overland flow runoff and the stream network data, 
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MHSERM calculates the hydrographs of all the streams at their upstream and 

downstream ends, which can be used for flood prediction purpose. 

4.6.1 The Lateral Flow Volume Calculation 

MHSERM is a completely distributed model that can capture the temporal and 

spatial variability of a storm event in the catchments. To capture spatiotemporal 

variability of a storm event, the modified Clark (ModClark) method was used in 

MHSERM to calculate the lateral runoff of the streams. The ModClark in HEC-HMS 

(U.S. Army Corps of Engineers, 2000a) is a distributed parameter method to calculate the 

direct runoff. 

The ModClark method includes two parts, translation and storage. Translation 

component was accounted by using a grid-based travel-time model from MHSERM. 

With the ModClark method, a grid is superimposed on the watershed. For each cell of the 

grid representation of the watershed, the distance to the watershed outlet is specified in 

HEC-HMS. However, it is the distance to the stream or waterbodies in the MHSERM 

instead of the distance to the watershed outlet. The translation time to the streams or 

waterbodies for every cell is computed as: 

(4.10) 

where 

tceii - time of travel to the streams or waterbodies for a cell (hours); 

tc = time of concentration for the catchment at the current interval (hours); 

dceii = travel distance from a cell to the streams or waterbodies (feet) 
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dmax = travel distance for the cell with rainfall excess that is most distant from 
the outlet at the current interval (feet). 

The storage component in the ModClark method is accounted for by the linear 

reservoir model. The linear reservoir represents the effects of the short-term storage of 

water throughout a catchment, which plays an important role in the transformation of 

precipitation excess to runoff. From the HEC-HMS's Technical Reference Manual, the 

linear reservoir model begins with the continuity equation: 

dt (4.11) 

Where dS/dt = time rate of change of water in storage at time t (hours); It = average 
inflow to storage (cfs) at time t; and Ot = outflow (cfs) from storage at time t. 

And with the linear reservoir model, storage at time t is related to outflow as: 

St-ROt ( 4 1 2 ) 

where R = a constant linear reservoir parameter. A simple finite difference approximation 
for the continuity equation is: 

"t ~^AU + ^B^t-l (4.13) 

where CA, CB = routing coefficients. Then, The coefficients are calculated from: 

c At 

A R + 0.5M (4.14) 

cB=i-cA ( 415) 

The unknown parameter for a catchment in the MHSERM is R (a constant linear 

reservoir parameter), which can be set by user input in the model. The parameter can be 
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estimated by calibrating gauged precipitation and stream flow data. For example, R can 

be computed as the flow at the inflection point on the falling limb of the hydrograph 

divided by the time derivative of flow (Clark, 1945). In the MHSERM, users can set the 

R for each catchment and save the value into the related stream database. 

With the ModClark method, the rainfall excess runoff moves from its origin cell 

throughout the catchment to the streams or waterbodies, and is routed to the streams or 

waterbodies with a linear reservoir that represents the aggregated impacts of the surface 

storage of the catchment. This flow is considered as lateral flow for the later stream 

routing calculation. 

4.6.2 The Flow Routing in the Stream Network 

The flow routing method in the MHSERM is based on the Muskingum-Cunge 

method for flowlines. If there is a Waterbody object such lakes, reservoirs or ponds 

linked with the flowline, MHSERM assumes the Waterbody as a trapezoidal body with a 

rectangular contracted weir control at the bottom of its outlet as described in Section 

4.3.3 and Figure 4.13. The MHSERM calculates the Stage-Outflow relationship of the 

Waterbody using equation shown below (Akan and Houghtalen, 2003): 

Q^KwL^(hf'2 (4.16) 

Where 

Kw = dimensionless weir discharge coefficient, 

L = effective crest length (feet), and 

h = water depth above the crest (feet) 
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The Muskingum-Cunge Method 

The Muskingum method (Akan and Houghtalen, 2003) is used to calculate the 

outflow hydrograph at the downstream end of a channel reach given the inflow 

hydrograph at the upstream end. With the assumption of a linear equation for upstream 

inflow rate, storage of the channel, and downstream outflow rate, Muskingum method 

solves hydrologic storage equation for a channel reach in Equation (4.17) (Akan and 

Houghtalen, 2003): 

(4.17) dt * 

Where 
S = volume of water in storage in the channel reach; 
I = Upstream inflow rate; 
Q = Downstream outflow rate; 
t = time. 

The linear equation of Equation 4.17 is then 

S = K[XI + (l-X)Q] ( 4 1 8 ) 

Where 
K = travel time constant; 
X = weighting factor between 0 and 1.0. 

The K and X by themselves in the Muskingum method are weighting factors 

describing the relationship between inflow and outflow, and do not directly represent 

physical characteristics of the channel. However, Cunge (1969) expressed K and X in 

terms of various physical channel characteristics as 

K= L 

mV« (4.19) 
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X = 0.5(1- Q°/T° ) 
S0mV0L (4.20) 

Where 
Qo = a reference discharge; 
To = top width corresponding to the reference discharge; 
Vo = cross sectional average velocity corresponding the reference discharge; 
So — longitudinal slope of the channel; 
L = Length of the channel reach; 
m = exponent of the flow area A of the Open-Channel Rating Curve Equation 

Q = eAm , m=4/3 for a triangular channel section. 

For solving the Muskingum-Cunge Method, K and X need to be calculated 

repeatedly during routing process due to the variable reference discharge for each step. 

The reference discharge is updated at every time step as: 

_I1+I2+Q1 

3 (4.21) 

In case of routing without any lateral flow, Muskingum-Cunge routing equation becomes: 

Q2 = C012 + C,/j + C2Ql (4.22) 

where 

(At/K)-2X 
2(\-X) + (At/K) ( 4 2 3 ) 

C0 = 

(At/K) + 2X 
x~2(\-X) + (AtlK) ( 4 > 2 4 ) 

_2(l-X)-(At/K) 
2~ 2(l-X) + (At/K) ( 4 2 5 ) 

Cn+C,+C, =1 ^0 ' v—1 ' ^ 2 (4.26) 
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For the channel routing with lateral flow, Akan (1993) proposed below equation: 

Q2 = C0/2 + CJX + C2Q + C3(QLl + QL2) ( 4 2 ? ) 

where 
QLi = (L)qLi; 
QL2 = (L)qL2; 
qu = lateral inflow rate per unit length of channel at time ti; 
qL2 = lateral inflow rate per unit length of channel at time 12; 
L = length of the channel reach; 

At/K 
C3 

2(1-X) +(At/K) (4.28) 

Ponce and Theurer (1982) and Akan and Houghtalen (2003) indicated that the 

interval At should be smaller than one-fifth of the time from the beginning to the peak of 

the inflow hydrograph to obtain accurate result, and also the length of channel reach 

should be limited to: 

L<0.5(mV0At + Q^) 
m ° 0 (4.29) 

The reference discharge Qo in equation (4.29) is estimated by the equation (4.10) 

at time step 0. 

The Waterbody's Stage-Storage-Discharge Relationship 

MHSEPvM assumes a trapezoidal body for all the waterbodies, and a weir control 

at the bottom of its outlet as illustrated in Figure 4.13 and in Section 4.3.3. The 

relationship between the storage (S) and the flow depth (Akan and Houghtalen, 2003) 

becomes: 

S = LWd + (L + W)zd2 + - z2d 
3 (4.30) 



Stage-Discharge relationship for a waterbody with a single weir outlet (Akan and 

Houghtalen, 2003) can be then expressed with equation 4.16. 

The Parameters of Streams and Waterbodies 

To simulate the flow routing in the complicated stream system, MHSERM uses 

parameters to describe the shape and physical properties of the streams and waterbodies. 

These parameters include the length and the longitudinal slope of the streams; the area of 

the waterbodies are extracted from the NHD dataset and DEM data by MHSERM. 

Additional parameters can be estimated and set by users. These parameters include cross 

section shape and the manning roughness of the streams and the shape (the length, the 

width and the slope of boundary), the outlet length, the synthetic weir coefficient of the 

waterbodies. Estimated parameters are then saved in a Microsoft Access database for 

each stream and waterbody in the stream network. 

The Flow Routing in the Stream Network 

For flow routing in the stream network by the Muskingum-Cunge method with 

lateral flow (Equation 4.26), MHSERM first extracts all the overland runoff information 

for all the catchments over a duration with a given time step (interval) based on landcover 

condition, and all the stream's parameters and waterbodies parameters from the stream 

database created in preprocessing steps. With the stream's data, initial K and X are 

calculated by using Equations 4.18 and 4.19. Streams are then subsequently divided into 

a number of sections based on Equation 4.28. Whole routing process is consist of three 

nested loops: (1) a loop for all the time steps/ duration of the simulation, (2) a loop for all 
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the streams or waterbodies, and (2) a loop for sections of a stream. Muskingum-Cunge 

K and X value are constantly updated for each step based on variable reference flow and 

stream flow parameters outlined in Equations 4.18, 4.19 and 4.20. Resulting inflow and 

outflow for each stream over the duration of the simulation are saved into an Access 

database file, which can be easily transferred later to a spreadsheet program amd graphed. 

Steps implemented in the MHSERM for flow routing in the stream network are 

summarized in Table 4.9. 
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Table 4.9 Steps implemented in the MHSERM for Flow Routing 
in the Stream Network 

Steps Procedures 
Reading all the overland runoff information for all the catchments at all the time 
steps (intervals) based on landcover condition; 
Reading all the streams' parameters and waterbodies parameters; 

3 1 Calculating the reference flow for streams and waterbodies at time step 0; 
j l Calculate the initial parameters for streams like Kp, Xp (Equation 4.17,4.18); 
5 I Calculate the split's number with the initial parameters if a stream is longer than 

the length (Equation 4.28); 
Loop from time step 0 to the specified last time step (interval); 

Loop from the streams with highest rank (the far most stream) to the 
outlet based on the flow sequence data; 

6.1 

6.2 If the stream is linked with a Waterbody. 
No Yes 

6.3 Loop for the stream sections from 
the upstream to the downstream; 
6.3.1 

6.3.2 

6.3.3 

Calculate K and X for the 
section 

Calculate Q2 based on the stage-
storage-discharge relationship 
established on the basis of 
equation 4.29,4.36. 

Calculate the Q2 based on 
equation 4.26 till the last 
section 
Set the Q2 of the last section 
of the stream as the stream's 
Q2 

6.4 Add Qi, Q2 to the downstream 
stream's Ii, I2 and set Q2 as the 
current stream's Qi 

Set Qi; Q2 as the downstream 
stream's Ii, I2 and set Q2 as the 
current stream's Qi 

6.5 Go to the stream ranked next 
Save the results to an Access database (Fig 4.17) for each stream with inflow and 
outflow at all the time steps. 
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CHAPTER V 

RESULTS AND DISCUSSION 

The methodology and procedures implemented in the MHSERM model, 

described in Chapter IV, were applied to a study area of the Rivanna River Basin in 

central Virginia. Detailed discussion of the Rivanna River Basin and its spatial and 

temporal data characteristic, procedures for preprocessing the raw data, and preparing 

dataset for MHSERM model simulation can be found in the Chapter III. Base stream 

flows or observed stream flows of the Rivanna River Basin were obtained from USGS 

Virginia Water Science Center, and used in comparisons with MHSERM model results. 

The MHSERM model results are discussed on four parts: (1) catchments 

delineation, (2) stream network routing sequence, (3) direct runoff and (4) flow routing 

for storm events. The first two resulted from terrain analysis and network analysis, which 

include generation and estimation of parameter rasters such as SCS CN number and 

Manning value for each grid representing the study watershed. These first two model 

outcomes needed to be generated and estimated only once for a watershed due to their 

static nature. On the contrary, the third and fourth model outcomes, direct runoff and 

flow routing are specific for each storm event and needed to be simulated and estimated 

corresponding to the specific storm event series over time. 
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5.1 The Results of Catchments Delineation and Stream Network Routing 

Sequence 

The delineation of the runoff catching area for streams, i.e., catchments and 

network analysis were described in Chapter IV. The Rivanna River Basin was divided 

into 886 catchments that catch rainfall runoff for their stream networks. The average size 

of a catchment was about 550 acres (0.86 Mile2 or 2.2 km2). After a catchment's 

partitioning, a routing sequence was established for stream networks, that include 897 

flowlines and 85 impounded waterbodies as the result from MHSERM model is shown in 

Figure 5.1. By using the flowline's object ID, MHSERM model linked each catchment 

with its corresponding flowline, and the rainfall runoff calculated was considered as the 

lateral flow of the flowline and was then routed into the stream network system. 

5.2 The Hydrological Response of Storm Events 

Direct rainfall runoff and flow routing estimated by MHSERM were compared 

with two storm events occurred in the Rivanna River Basin, where almost 900 streams 

and 100 waterbodies are situated within its 2,000 km2 area. Some of physical parameter 

of the streams and waterbodies that cannot be extracted from the NHD dataset and DEM 

data, e.g. the cross section of streams and the shape waterbodies, and Manning roughness 

for the streams, were separately estimated by using general assumption or based on 

published general data as described in Chapter IV. 
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Fig. 5.1 MHSERM Model Results of 886 Catchments and Stream Networks consisted 
with 897 Flowlines and 85 Impounded Waterbodies, Rivanna River Basin, Central 
Virginia 

The MHSERM was used to estimate inflow and outflow hydrographs of the storm series 

for all streams within the Rivanna River Basin. The simulation outcome for all streams 

was resulted in a very large dataset. To manage such a large dataset and for easier 
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handling of data, simulation outcome datasets were stored in an Access database in a 

number of data tables, with a data table for a corresponding stream. In these tables, 

calculated surface flows at each time step over the duration of a simulated storm event 

were recorded for the corresponding stream as shown in Figure 5.2. 
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Figure 5.2 (Continued) 

To compare the simulation results with the observed values at USGS gauge 

stations, the corresponding stream's inflow data or outflow data was extracted first from 

the database. Depending on the location of the four USGS gauge stations, closest streams 

within the Rivanna River Basin were used for MHSERM simulation. If a gauge station 

is located closer to the downstream end of a stream, the outflow of this stream was used; 

if it is closer to the stream's upstream end, the inflow was used. Selected streams and an 



86 

upstream/downstream part of the stream use in the simulation are summarized in Table 

5.1. 

Table 5.1 The USGS Gage Stations and Their Corresponding Streams 

Site No. and Name 

02034000 
RIVANNA RIVER AT 
PALMYRA, VA 
02031000 
MECHUMS RIVER NEAR 
WHITE HALL, VA 
02032640 
N F RIVANNA RIVER NEAR 
EARLYSVILLE, VA 
02032250 MOORMANS 
RIVER NEAR FREE UNION, VA 

Stream ID 

86305 

102089 

86010 

93605 

Site is Close to Upstream or 
Downstream End? 

Downstream 

Upstream 

Downstream 

Downstream 

5.2.1 The Hydrological Response of Storm Event on 2003.09.18-2003.09.19 

5.2.1.1 The Introduction of Storm Event on 2003.09.18-2003.09.19 

The storm event occurred when Hurricane Isabel passed through the Rivanna 

River Basin in 2003 after it made a landfall near Drum Inlet, North Carolina on 1700 

UTC (=Coordinated Universal Time) September 18th as a Category 2 hurricane. The 

hurricane weakened to a tropical storm over southern Virginia, then lost its tropical 

characteristics as moved across western Pennsylvania on September 19* (Beaven and 

Cobb, 2003). On the basis of NEXRAD radar data used in the MHSERM simulation, the 

storm event began from the noon of September 18th with scattered light rainfall at about 

0.1-0.2 inch/hr. Then it intensified after 23:00 because of the influence of Hurricane 

Isabel; the most intense period was from 2:30 to 4:00 on September 19f with the rainfall 

intensity ranges at 0.8-1.5 inches/hr for most of the Rivanna River Basin. The rainfall 
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weakened quickly after 4:00 and moved out of the Basin from the north as illustrated in a 

series of temporal NEXRAD radar images in Figures 5.3(a) through (f). 

Figure 5.3(a) Temporal NEXRAD Radar Image of Storm Event on 2003.09.18-
2003.09.19 at 2003.09.18 16:58 UTC. 

There is only light rainfall (0.2-0.4 In./hr) in the southeastern part of this area. 



Figure 5.3(b) Temporal NEXRAD Radar Image of Storm Event on 2003.09.18-
2003.09.19 at 2003.09.19 00:02 UTC. 

The rainfall was getting intensified as the Isabella reached this area from the 

southeast. 
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Figure 5.3(c) Temporal NEXRAD Radar Image of Storm Event on 2003.09.18-
2003.09.19 at 2003.09.19 03:02 UTC. 

From 3am to 4am 9/19/2003, the rainfall was the most intensified and 

concentrated, its intensity was about 0.8-1 in./hr in the southeastern part of this 

area. 
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Figure 5.3(d) Temporal NEXRAD Radar Image of Storm Event on 2003.09.18-
2003.09.19 at 2003.09.19 03:32 UTC. 

The rainfall center of this event moved quickly to the northwestern part of the area, 

its intensity was about 1.0-1.5 in./hr. 
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Figure 5.3(e) Temporal NEXRAD Radar Image of Storm Event on 2003.09.18-
2003.09.19 at 2003.09.19 04:02 UTC. 

The rainfall center of this event was moved to the center and northern part of the 

area, its intensity was about 0.6-1.0 in./hr. 



92 

Figure 5.3(f) Temporal NEXRAD Radar Image of Storm Event on 2003.09.18-
2003.09.19 at 2003.09.19 04:32 UTC. 

The rainfall center of this event was moved out of the area, its intensity was 

decreased to about 0.2-0.4 in./hr. 

The storm event brought about 2-4 inches of rainfall for Rivanna River Basin in a relative 

short time period over 2003.09.18-2003.09.19. From the cumulative rainfall depth raster 
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of this storm event shown in Figure 5.4, where most of the area had >2 inches rainfall, 

and the central and southern part even had >3 inches of the rainfall depth. The intense 

rainfall resulted in high surface flow in the stream system. As summarized in Table 5.2, 

the flow data at three USGS gauge stations indicated that the peak flow can be sharply 

increased to 150 times that of the base flow before the storm event. For example, at the 

downstream station, 02034000, the peak flow had reached 30000 cfs from its base flow 

of 622 cfs. 

Figure 5.4 Cumulative Rainfall Depth Raster for Storm Event, over 2003.09.18-
2003.09.19, Rivanna River Basin, Central Virginia 
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Table 5.2 Peak Flow Data Extracted from USGS Gauge Stations within the Rivanna 
River Basin over 2003.09.18-2003.09.19Storm Event 

Site No. and Name 

02034000 
RIVANNA RIVER AT 
PALMYRA, VA 
02031000 
MECHUMS RIVER NEAR 
WHITE HALL, VA 
02032640 
N F RIVANNA RIVER 
NEAR EARLYSVILLE, VA 
02032250 
MOORMANS RIVER 
NEAR FREE UNION, VA 

Peak Time 

0:45am, 9/20/2003 

7:00 am, 9/19/2003 

5:30am, 9/19/2003 

N/A 

Peak Flow (cfs) 

30000 

9620 

8340 

N/A 

Stream Flow before 
the storm event (cfs) 

622 

63 

54 

N/A 

5.2.1.2 The Simulation Results with MHSERM Model 

MHSERM was simulated to calculate rainfall excess for each grid by using the 

SCS CN method. Base CN's raster was created from non-storm condition of landcover 

and soil data, however, CNs' used in the simulation were further selected to reflect 

AMCs and landcover condition when the storm event started. MHSERM can simulate the 

hydrological response for nine conditions (three AMCs and three landcover conditions). 

From the water-data report for these stations (White et al, 2003), it is much wetter for 

Rivanna river basin in 2003 than usual years. The annual runoff at the USGS gage station 

02034000 is 26.09 inches, and the average value is about 14.85 inches for water years 

1935 through 2003. The surface flow data of USGS gage stations before the 9.18 storm 

event also shows this condition. The stream flows before the event for three stations 

(Table 5.2) are much higher than their daily median values in September from 1935 to 

2003. Thus, the AMC of the study site was normal to wetter conditions (AMC II or III) 

before the storm event. 
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For the storm event, the simulation period is from 12:30, 09/18/2003 to 7:00, 

09/21/2003 with a time step of 15-minute increment. The rain related to this storm event 

in the research area started (with 0.1 in./hr intensity) at 12:30, 09/18/2003, and stopped at 

7:00, 09/19/2001 based on NEXRAD radar data. 192 time steps (2 days) were added 

beyond the end of the storm event. Simulated hydrographs of the corresponding streams 

were extracted from the result database for six groups of AMC and Landcover conditions, 

i.e., AMC II and Poor Condition, AMC II and Fair Condition, AMC II and Good 

Condition, AMC III and Poor Condition, AMC III and Fair Condition, AMC III and 

Good Condition. These hydrographs were compared with the observed data from the 

USGS gauge stations 02031000, 02032640 and 02034000 (Figures 5.5, 5.6 and 5.7). 
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Figure 5.5 The comparison between the hydrograph observed at Station 02031000 and the 

calculated hydrographs of stream 102089 
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Figure 5.6 The comparison between the hydrograph observed at Station 02032640 and the 

calculated hydrographs of stream 86010 
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Figure 5.7 The comparison between the hydrograph observed at Station 02034000 and the 
calculated hydrographs of stream 86305 
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For the results of station 02031000 (Figure5.5 and Table 5.3), the simulated peak 

flow with the AMC Ill-Poor condition was the closest to the observed peak flow with a 

deviation of 2.7%. Simulated peak time was in the range of ± 1.0 hours of the observed 

peak time of station 02031000. 

Table 5.3 The observed and simula 
Condition 
Groups 

Observed 

AMC II-Poor 

AMC II-Fair 

AMC II-Good 

AMC Ill-Poor 

AMC Ill-Fair 

AMC Ill-Good 

Peak Flow (cfs) 

9620 

4941 

3108 

1933 

9878 

8179 

6692 

ted peak flow and peak time at station 02031000 

Peak Time 

2003.9.19 7:00 

2003.9.19 6:45 

2003.9.19 7:15 

2003.9.19 7:45 

2003.9.19 6:00 

2003.9.19 6:15 

2003.9.19 6:30 

Flow Deviation 
to Observed 
Peak Flow (%) 

0 

-48.6% 

-67.7% 

-79.9% 

2.7% 

-15.0% 

-30.4% 

Difference in 
Time to Peak 
(hr) 

0 

-0.25 

0.25 

0.75 

-1.0 

-0.75 

-0.5 

For the results of station 02032640 (Figure 5.6 and Table 5.4), the simulated peak 

flow with AMC Ill-Good condition was the closest to the observed peak flow with a 

deviation of-6.1%. Simulated peak time was a little bit late (0.25-lhour) compared to the 

observed peak time of station 02032640. 



Table 5.4 The observed and simulated peak flow and peak time at station 02032640 
Condition 
Groups 

Observed 

AMC II-Poor 

AMC II-Fair 

AMC II-Good 

AMC Ill-Poor 

AMC Ill-Fair 

AMC Ill-Good 

Peak Flow (cfs) 

8340 

5764 

3547 

2354 

12279 

9708 

7834 

Peak Time 

2003.9.19 5:30 

2003.9.19 6:15 

2003.9.19 6:30 

2003.9.19 6:30 

2003.9.19 5:45 

2003.9.19 6:00 

2003.9.19 6:00 

Flow Deviation 
to Observed 
Peak Flow (%) 

0 

-30.9% 

-57.5% 

-71.8% 

47.2% 

16.4% 

-6.1% 

Difference in 
Time to Peak 
(hr) 

0 

0.75 

1.0 

1.0 

0.25 

0.5 

0.5 

For the results of station 02034000 (Figure 5.7 and Table 5.5), The simulated 

peak flow with AMC Ill-Fair condition was the closest to the observed peak flow with a 

deviation of 2.2%, but there was a large time lag to the peak time of 16.5 hours compared 

to the observed peak time of station 02034000. 

Table 5.5 The observed and simula 
Condition 
Groups 

Observed 

AMC II-Poor 

AMC II-Fair 

AMC II-Good 

AMC Ill-Poor 

AMC Ill-Fair 

AMC Ill-Good 

Peak Flow (cfs) 

30000 

17623 

11298 

7823 

39260 

30673 

24375 

ted peak flow and 
Peak Time 

2003.9.20 0:45 

2003.9.19 8:45 

2003.9.19 9:00 

2003.9.19 9:15 

2003.9.19 8:00 

2003.9.19 8:15 

2003.9.19 8:15 

peak time at station 02034000 
Flow Deviation 
to Observed 
Peak Flow (%) 

0 

-41.3% 

-62.3% 

-73.9% 

30.9% 

2.2% 

-18.8% 

Difference in 
Time to Peak 
(hr) 

0 

-16 

-15.75 

-15.5 

-16.75 

-16.5 

-16.5 



From the results, it is evident that the AMC conditions had a dominant influence 

on the resulting surface flow, especially for the estimation of the peak flow. For these 

three stations 02031000, 02032640 and 02034000, simulated peak flow estimates 

matched closely to the observed peak flows under AMC III condition and were generally 

underestimated under AMC II condition. For example, with the same storm event, the 

simulated peak flows under the AMC II-Good condition was only 1/5-1/4 of the 

corresponding observed peak flow. The results also show that the simulated hydrographs 

have a sharper curve than the observed hydrographs, i.e., the rising limbs were a little bit 

time-lagged and the falling limbs decreased much faster, especially in case of station 

02034000 located in the downstream. 

5.2.2 Hydrological Response of Multiple Storm Events on August 24, 2007 

5.2.1.1 Introduction of Multiple Storm Events on 2007.08.24-2007.08.27 

Multiple storm events simulated with MHSERM were composed of three events 

over a duration of 40 hours. The hydrological response of the sequential events can be 

influenced by the foregoing ones, and MHSERM was designed to simulate a cumulative 

hydrological response within a series of storm events. Three storm events occurred from 

2007.8.24 20:00 to 2007.8.27 02:00 and registered in NEXRAD radar data. These events 

were cell storms that only covered part of the Rivanna River Basin at any one time step 

during the event and moved quickly over the area (Figures 5.8, 5.9 and 5.10). The first 

event started at 2007.8.24 20:00, moved quickly through the northern and western part of 

the area, and moved out after 23:00 as shown in Figure 5.8. The second storm event 

started at 2007.8.25 19:00, but it only intensified after 22:00 and moved from north to the 
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south, and exited the area completely after 2007.8.26 4:00 as shown in Figure 5.9. The 

third storm event started at 2007.8.26 21:00, moved through the area from the north to the 

south, and exited the area after 2007.8.27 01:30 as shown in Figure 5.10. 

From the maps of cumulative rainfall depth for the three storm events illustrated 

in Figure 5.11, the second storm event was by far the major event, which covered most of 

the Rivanna River Basin. On the other hand, the first storm event only covered the 

western part of the area, i.e. the upstream area of station 02031000 with a total rainfall 

depth of about 2-3 inches. The second storm event covered most of the area, especially 

for the upstream area of station 02032640, where the total rainfall depth was about 3-5 

inches. The third and last storm event was relatively moderate compared to two previous 

events. Its rainfall was received mainly at the southern part of the area, and the 

cumulative rainfall depth was about 1-2.5 inches. 
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Fig. 5.8 (a) Temporal NEXRAD Radar Image of the First Storm Event on 2007.08.24-
2007.08.27 at 2007.08.24 20:28. 

There is a cell storm in the northwestern part of this area. 
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Fig. 5.8 (b) Temporal NEXRAD Radar Image of the First Storm Event on 2007.08.24-
2007.08.27 at 2007.08.24 21:28. 

The cell storm moved into the northwestern part of this area, upstream of station 

02031000 and 02032250. 
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Fig. 5.8 (c) Temporal NEXRAD Radar Image of the First Storm Event on 2007.08.24-
2007.08.27 at 2007.08.24 22:31. 

The cell storm moved quickly along the western part of this area. 
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Fig. 5.8 (d) Temporal NEXRAD Radar Image of the First Storm Event on 2007.08.24-
2007.08.27 at 2007.08.24 23:01. 

The cell storm kept moving quickly along the western part of this area, and almost 

moved out the area. 
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Fig. 5.9 (a) Temporal NEXRAD Radar Image of the Second Storm Event on 
2007.08.24-2007.08.27 at 2007.08.25 22:29. 

The cell storm was moving into the northern part of this area. 
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Fig. 5.9 (b) Temporal NEXRAD Radar Image of the Second Storm Event on 
2007.08.24-2007.08.27 at 2007.08.25 23:25. 

The cell storm was moving into the northern part of this area, especially the 

upstream area of station 02032640. 
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Fig. 5.9 (c) Temporal NEXRAD Radar Image of the Second Storm Event on 
2007.08.24-2007.08.27 at 2007.08.26 00:28. 

The cell storm was still within the northern part of this area. 
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Fig. 5.9 (d) Temporal NEXRAD Radar Image of the Second Storm Event on 
2007.08.24-2007.08.27 at 2007.08.26 01:31. 

The cell storm almost covered the northern part of this area 
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Fig. 5.9 (e) Temporal NEXRAD Radar Image of the Second Storm Event on 
2007.08.24-2007.08.27 at 2007.08.26 02:30. 

The cell storm moved to the southern part of this area, and almost covered all the 

southern part of this area 
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Fig. 5.9 (f) Temporal NEXRAD Radar Image of the Second Storm Event on 
2007.08.24-2007.08.27 at 2007.08.26 03:29. 

The cell storm center moved out of this area, there is only light rain in the northern 

part. 
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Fig. 5.10 (a) Temporal NEXRAD Radar Image of the Third Storm Event on 2007.08.24-
2007.08.27 at 2007.08.26 21:31. 

There were two cell storms in the north. 
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Fig. 5.10 (b) Temporal NEXRAD Radar Image of the Third Storm Event on 2007.08.24-
2007.08.27 at 2007.08.26 22:30. 

The two cell storms both moved into the northern part of the area. 
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Fig. 5.10 (c) Temporal NEXRAD Radar Image of the Third Storm Event on 2007.08.24-
2007.08.27 at 2007.08.26 23:29. 

The eastern cell storm moved quickly to the south. 
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Fig. 5.10 (d) Temporal NEXRAD Radar Image of the Third Storm Event on 2007.08.24-
2007.08.27 at 2007.08.27 00:30. 

The eastern cell storm moved quickly to the south, and moved out of this area. 
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Event 1 

Figure 5.11 (a) Cumulative Rainfall Depth Raster for the First Event of Multiple 

Storm Events, over 2007.08.24-2007.08.27, Rivanna River Basin, 

Central Virginia 
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Event 2 

Figure 5.11(b) Cumulative Rainfall Depth Raster for the Second Event of Multiple Storm 

Events, over 2007.08.24-2007.08.27, Rivanna River Basin, Central Virginia 
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Event 3 

Figure 5.11(c) Cumulative Rainfall Depth Raster for the Third Event of Multiple Storm 

Events, over 2007.08.24-2007.08.27, Rivanna River Basin, Central Virginia 

With the three possible AMC conditions (AMC I, AMC II and AMC III), three 

landcover conditions (Poor, Fair and Good) and over three storm events, there are 81 
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possible combinations for MHSERM to simulate the hydrological response from the 

watershed. However, considering the actual surface flow data, we can make a reasonable 

assumption about the possible AMC conditions and reduce the number of combinations 

to be simulated. In this case, the AMC condition before these three storm events can be 

considered as 'Dry' on the basis of the flow data. From the surface flow data (Table 5.6) 

summarized from four USGS gauge station records and Water Data Report 2007 (U.S. 

Geological Survey, 2007), the flow was well below the mean values for August between 

1943 and 2007. Moreover, the peak flows occurred after the second storm event, and 

these peak flows were also not significant compared to the rainfall depths registered in 

the watershed. For the second storm event, AMC condition was still considered as 'Dry' 

or 'Normal' because the first storm event was really small and only passed through a part 

of the study area, resulting almost no significant contribution of precipitation to the 

watershed. To simplify the process, only the results of two AMC combinations with three 

landcover conditions are compared with the observed flow data (Table 5.7). 

Table 5.6 Flow Data Extracted from USGS Gauge Stations within Rivanna River Basin 

Site No. and Name 

02034000 
RIVANNA RIVER AT 
PALMYRA, VA 
02031000 
MECHUMS RIVER 
NEAR WHITE HALL, 
VA 
02032640 
N F RIVANNA RIVER 
NEAR EARLYSVILLE, 
VA 
02032250 
MOORMANS RIVER 
NEAR FREE UNION 

Peak Time 

5:45pm, 8/26/2007 

4:30am, 8/26/2007 

11:30pm, 8/25/2007 

4:30am, 8/26/2007 

Peak 
Flow 
(cfs) 

2640 

691 

1740 

185 

Observed Flow 
before the storm 
event (cfs) 

103 

15 

17 

4.5 

The August Mean 
Flow between 
1943-2007 (cfs) 

440 

52.3 

41.8 

29.4 
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5.2.1.2 Simulation Results for the Multiple Storm Events with MHSERM 

MHSERM simulated hydrological responses of the watershed for the three storm 

events with two AMC combinations and three landcover conditions, i.e. in total six 

groups of hydrographs for all the streams in the Rivanna River Basin. The hydrographs of 

these six groups at four streams where the four USGS gauge stations are located were 

estimated by MHSERM and compared with the observed gauge station records. Results 

are shown in Figures 5.12, 5.13, 5.14 and 5.15 for four USGS gauge stations. 

Combinations of AMC and landcover condition used in the simulation are listed and 

described in Table 5.7. 

Table 5.7 Combinations of AMC and landcover condition used in the Simulation for the 
2007.8.24-2007.8.27 Storm Events 

Combination Name 

AMC I-I-III-P 

AMC 1-I-III-F 

AMC I-I-III-G 

AMC I-II-II1-P 

AMC I-II-III-F 

AMC T-ll-III-G 

Description 

The AMC conditions for the 1st event, 2nd event and 3rd event are 

dry, dry and wet, respectively; the landcover condition is Poor. 

The AMC conditions for the 1st event, 2nd event and 3 rd event are 

dry, dry and wet, respectively; the landcover condition is Fair. 

The AMC conditions for the 1st event, 2nd event and 3 rd event are 

dry, dry and wet, respectively; the landcover condition is Good. 

The AMC conditions for the 1st event, 2nd event and 3 rd event are 

dry, normal and wet, respectively; the landcover condition is Poor. 

The AMC conditions for the 1st event, 2nd event and 3rd event are 

dry, normal and wet, respectively; the landcover condition is Fair. 

The AMC conditions for the 1st event, 2nd event and 3rd event are 

dry, normal and wet, respectively; the landcover condition is Good. 
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The simulation period was from 8:00 PM, 08/24/2007 to 0:00 AM, 8/28/2007 (a 

total of 78 hours) with a 15-minute time step increment. Results indicate that a 

combination of AMC and landcover condition of AMC I-II-III-G simulated peak flows 

most closely to the observed peak flows (Fig. 5.12, 5.13, 5.14 and 5.15). 

2007-8-24 18:00 2007-8-25 6:00 2007-8-25 18:00 2007-8-26 6:00 2007-8-26 18:00 2007-8-27 6:00 2007-8-27 18:00 

Time 

Figure 5.12 MHSERM Outflow Hydrograph Estimates vs. Observed USGS Gauge 
Station 02031000, under six AMC-Landcover combinations 

Figure 5.12 shows the comparison of the hydrographs simulated for stream 

102089 vs. observed from USGS gauge station 02031000. The station is located on the 

northwestern corridor of the basin, through which all three storm events had passed. 

From the hydrographs in Figure 5.9, the observed peak flow registered at about 156cfs, 

691cfs and 422cfs, respectively. Among the estimated hydrographs from six different 

combinations, the closest hydrograph was estimated with a combination of AMC I-II-III-
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G (Table 5.8). Moreover, as MHSERM's results show, the peak flows estimates could be 

much higher if AMC and landcover condition were changed for this area (Table 5.8). 

Table 5.8 The observed and simulated peak flows for 2007.8.24-2007.8.27 events at station 
02031000 

Condition 
Groups 

Observed 

AMC I-I-III-P 

AMC I-I-III-F 

AMC I-I-III-G 

AMC I-II-III-P 

AMC I-II-III-F 

AMC I-II-1II-G 

Peak Flow 
(cfs) 
For Event 1 

156 

974 

358 

209 

974 

358 

209 

Peak Flow 
(cfs) 
For Event 2 

691 

502 

160 

91 

2939 

1656 

1007 

Peak Flow 
(cfs) 
For Event 3 

422 

1399 

742 

436 

1270 

746 

374 

Flow Flow Deviation 
Deviation to to Observed 
Observed Peak Flow (%) 
Peak Flow (%)for Event 2 
for Event 1 

0 

524% 

129% 

34.0% 

524% 

129% 

34.0% 

0 

-27.3% 

-76.8% 

-86.8% 

325% 

140% 

45.7% 

Flow Deviation 
to Observed 
Peak Flow (%) 
for Event 3 

0 

232% 

75.8% 

3.32% 

201% 

76.8% 

-11.4% 
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Figure 5.13 MHSERM Outflow Hydrograph Estimates vs. Observed USGS Gauge 
Station 02032250, under six AMC-Landcover combinations 
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Figure 5.13 shows the comparison of the hydrographs simulated for stream 93605 

and hydrograph observed on USGS gauge station 02032250. The first and third storm 

events had little influence on the surface flow in this location, and the second storm event 

alone resulted in an observed peak flow of 185cfs USGS gauge station 02032250. 

Simulated peak flow with AMC I-II-III-Good was about 209cfs, which is very close to 

the observed peak flow (Table 5.9). 

Table 5.9 The observed and simulated peak flows for Event 2 at station 02032250 
Condition Groups 

Observed 

AMC I-I-III-P 

AMC I-I-III-F 

AMC I-I-III-G 

AMC I-1I-III-P 

AMC 1-1I-III-F 

AMC I-1I-III-G 

Peak Flow (cfs) For Event 2 

185 

127 

47 

37 

1021 

459 

209 

Flow Deviation to Observed Peak 
Flow (%) for Event 2 

0 

-31.4% 

-74.6% 

-80% 

452% 

148% 

13.0% 
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Figure 5.14 MHSERM Outflow Hydrograph Estimates vs. Observed USGS Gauge 
Station 02032640, under six AMC-Landcover combinations 

Figure 5.14 shows a comparison of the hydrographs simulated for stream 86010 

and the hydrograph observed on USGS gauge station 02032640. The first storm event 

contributed little to the surface flow of this stream/station, and the second storm event 

resulted in a peak flow at 1740cfs, which is close to the simulated peak flow with 

condition AMC I-I-III-P; the deviation is about -2.87% (Table 5.10). However, there was 

about a 3.5-hour time lag in the time-to-peak simulated hydrographs compared to the 

observed time-to-peak of USGS gauge station 02032640. The rising limb of the observed 

flow is started at 22:00, and the peak time is about 23:30 August 25. In comparison, the 

simulated peak flow time was at 03:00 August 26 with a time lag of 3.5 hours. The cause 

for this time lag in hydrographs can be explained by NEXRAD radar data series where 

NEXRAD data registered almost no rainfall on the upstream area of station 02032640 

before 22:30 August 25. Thus, in a reverse manner, MHSERM actually responded to and 

— Observed 

— AMC I-I-III-P 

— A M C I-I-III-F 

— A M C I-I-III-G 

— A M C I-II-III-P 

— A M C I-II-III-F 

— AMC I-II-III-G 
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reflected well the spatiotemporal rainfall distribution registered in NEXRAD radar data, 

so that it can be stated that the more accurate NEXTRAD radar data quality in 

spatiotemporal rainfall distribution, the better MHSERM simulation results can be. 

Table 5.10 The observed and simulated peak flows for Event 2 at Station 02032640 
Condition Groups 

Observed 

AMC I-I-III-P 

AMC I-I-III-F 

AMC I-I-III-G 

AMC I-1I-III-P 

AMC I-II-III-F 

AMC I-II-III-G 

Peak Flow (cfs) For Event 2 

1740 

1690 

792 

597 

5222 

3492 

2600 

Flow Deviation to Observed Peak 
Flow (%) for Event 2 

0 

-2.87% 

-54.5% 

-65.9% 

200% 

101% 

49.4% 
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Figure 5.15 MHSERM Outflow Hydrograph Estimates vs. Observed USGS Gauge 
Station 02034000, under six AMC-Landcover combinations 
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USGS gauge station 02034000 is located the most downstream in the Rivanna 

River Basin compared to other three gauge stations used in this comparison. Since the 

location is fed by a much bigger contributing upstream area and therefore has more 

numbers of upstream streams and a larger cumulative flow, the gauge station was most 

difficult to estimate its hydrograph and peak flow. This can be possibly explained by the 

cumulative variability amplified in flow routing estimates of 886 catchments (as 

previously shown in Figure 4.6) at this USGS gauge station 02034000 location. From the 

observed data, the peak flow was 2640 cfs, at 5:45 PM, 8/26/2007. The simulated peak 

flow with AMC I-I-III-P was about 3110 cfs, but the falling limb of simulated 

hydrographs had a steeper gradient than that of the observed. 

Table 5.11 The observed and simulated peak flows for Event 2 at Station 02034000 
Condition Groups 

Observed 

AMC I-I-III-P 

AMC I-I-III-F 

AMC I-I-I1I-G 

AMC I-II-III-P 

AMC I-1I-III-F 

AMC I-II-III-G 

Peak Flow (cfs) For Event 2 

2640 

3110 

1723 

1198 

9619 

6258 

4599 

Flow Deviation to Observed Peak 
Flow (%) for Event 2 

0 

17.8% 

-34.7% 

54.6% 

264% 

137% 

74.2% 

5.2.3 The Summary of the Above Studying Cases 

From two case studies consisting of single storm event and a series of storm 

events, massive watershed scale storm event hydrological response model (MHSERM) 

showed its strength and its weakness. Simulated hydrographs were in better fits with 
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observed flow in upstream stations, i.e., USGS gauge stations 02031000, 02032250 and 

02032640, but in a moderate fit in the downstream station, i.e. 02034000 based on the 

results in section 5.2.2. 

The AMC and landcover conditions have the dominant influence on the estimated 

peak flow for these two storm events. From Tables 5.3, 5.4 and 5.5, the same storm with 

the condition AMC Ill-Poor can generate as five times of flow volume than the flow 

generated with a condition AMC II-Good. For example, the simulated peak flow was 

1933 cfs with AMC II-Good, and it was 9878 cfs with AMC Ill-Poor at station 02031000 

for the 2003.9.18-2003.9.19 storm event. With the same landcover condition, the peak 

flow simulated with AMC III condition could be still 2-3 times higher than the peak flow 

simulated with AMC II condition. For example, the peak flow was 3108 cfs with AMC 

II-Fair, and was 8179 cfs with AMC Ill-Fair condition at station 02031000 for the 

2003.9.18-2003.9.19 event (Table 5.3). 

Thus, it is very important to carefully choose the AMC-Landcover combinations 

that will best represent the characteristics of hydrologic features and vegetation of the 

studying area. In two case studies, the AMC condition was estimated by comparing the 

observed flows before the storm event with the historical mean monthly flows at the 

USGS gauge stations. If the observed flow is below the mean monthly flow, the AMC 

condition can be considered as I or II (i.e., dry or normal), or as II or III (i.e., normal or 

wet). There is no simple way to determine landcover conditions, so MHSERM can 

simulate the hydrological response for all three conditions (Poor, Fair and Good), which 

can give the users the ranges of results representative of best and worst scenarios. 
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5.3 Conclusion and Discussion 

5.3.1 Benefits of the MHSERM Model 

MHSERM provides a framework to quickly simulate the hydrological response to 

storm events by utilizing the new, high precision spatial dataset as well as the time-lapsed 

NEXRAD precipitation radar data feed. The high precision spatial dataset include the 

USGS Digital Elevation Model (DEM) and Landcover data, NRCS Soil Survey 

Geographic Database (SSURGO) and soil spatial dataset, State Soil Geographic Database 

(STATSGO) soil data and National Hydrology Dataset (NHD). Based on these datasets, 

MHSERM calculates rainfall runoff at a spatiotemporal grid/cell resolution, instead of 

conventional lumped-sum catchment or subcatchment scale; that can simulate detailed 

variations in terrain, vegetation, land cover and use, and soil far accurately since a 

spatiotemporal grid/cell resolution can be as small as the resolution of the USGS DEM 

data, which is typically 30 by 30 meters. 

MHSERM can produce several useful interim datasets including the grid 

discretization of rainfall runoff catchments contributing to the streams, SCS CN number, 

Manning roughness, the distance to the streams and corresponding time of concentration, 

the slope to the streams, etc. that describe overland and in-stream flows resulting from 

storm events. Unlike other conventional delineation methods, MHSERM delineates the 

contributing area by reverse-tracing upstream from the known streams or outlets, thus 

ensuring correct detection of gradient-based flow directions and subsequently ensuring 

correct delineation of runoff contributing areas. This backward method based on known 

NHD flowline data is far more efficient and much faster than other existing methods, 



especially for delineating a watershed composed of tens of millions of grids. The grid 

datasets of SCS CN number, Manning roughness, the distance and slope to the streams 

are then used to calculate the rainfall excess, time of concentration, etc. required for 

calculating overland runoff and resulting inflow and outflow hydrograph in the streams. 

The stream network is constructed automatically in the MHSERM. MHSERM 

can establish the stream network consisting of thousands of streams and impounded 

waterbodies by utilizing NHD hydrograph dataset. With this ability, MHSERM can 

simulate the flow routing in a complete actual stream network, not a schematic or 

simplified stream network. Some of the stream parameters such as length and 

longitudinal slope are also extracted and estimated based on the DEM and NHD dataset. 

With the time-lapsed NEXRAD precipitation radar data feed, MHSERM can 

capture the spatial variations in the catchments over incremental time steps during storm 

events. From two case study runs conducted for the Rivanna River Basin, the storm 

events can move very quickly and varied spatially-temporally over the watershed. 

MHSERM was conceptualized and designed to use a grid-based representation of the 

watershed to capture such spatiotemporal variations with great flexibility. Once the 

watershed grids are prepared, MHSERM can calculate the rainfall excess for each grid, 

and estimate the time of concentration only for those specific grids with rainfall excess at 

each time step. 

MHSERM is highly portable to any watershed by rapidly prepare and estimate 

physical parameters of the watershed from high precision spatial dataset as well as the 

time-lapsed NEXRAD precipitation radar data feed, which takes weeks and months 
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depending on the size of the watershed in interest. Among the physical parameters of the 

watershed, Antecedent Moisture Condition (AMC) and landcover conditions are two of 

the most dominant influences on rainfall excess calculation, and users can set different 

combinations of the conditions to further refine the simulation of the hydro logical 

response based on their experience and judgment. Other than parameters extracted from 

the existing datasets, MHSERM also uses a Microsoft Access database to store all input 

parameters for the flow routing and output estimates from the simulation, so that users 

can efficiently modify the parameters of stream/waterbody if more accurate data are 

available. 

5.3.2 Advantages of the MHSERM over Conventional SERM 

Applied on Complicated Natural Hydrological System 

Compared to a conventional hydrological modeling system like HEC-HMS, 

MHSERM has some obvious advantages, especially for handling a complicated, large 

natural system. The main advantages are summarized below: 

1. MHSERM can be quickly applied to a complicated and large watershed, but a 

conventional SERM usually requires tremendous amount of time and workload to 

prepare the data and simulate. A complicated and large watershed can comprise of 

hundreds of streams and impounded waterbodies, and be over 1000 square miles with 

innumerous spatial variations on terrain, land cover, soil and vegetation. It is almost 

not possible for a user to obtain all of the data in a conventional manner for a SERM 

to run for this watershed. However, MHSERM can finish the processing of required 

data in a couple of days by accessing on-line and extracting parameters from the 
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publically available, high precision dataset and with standard assumptions such as the 

shape of waterbodies and streams. 

2. MHSERM is a grid-based system, which provides the capability utilizing the high 

precision spatial data in a raster format, thus ensure spatial variability of the 

watershed is correctly represented, and subsequently, system responses from the 

watershed such as runoff are correctly simulated. A conventional SERM is usually 

based on a lumped-sum catchment/subcatchment scheme, simplified assumption of 

the hydrological homogeneity. The less detail of physical variability of the watershed 

a model has, the more obtuse the simulated responses from the watershed. 

The grid-based system gives MHSERM great flexibility in capturing small spatial 

variations of the terrain, soil and vegetation. The grid size used in the system is the 

same with the DEM data, e.g. 30 m by 30 m. But for a conventional SERM, the 

variations in a catchment are usually omitted. 

3. Stream network for flow routing is automatically established in the MHSERM on the 

basis of NHD data. For a conventional SERM, the users usually need to set up the 

network manually. This is a huge time and effort saving component of MHSERM 

compared to other SERMs. 

Hundreds of streams and waterbodies in a stream network make it very time 

consuming to set up the network manually for a conventional SERM; moreover, the 

MHSERM provides better visualization for the stream network since MHSERM is 

fully integrated with ArcGIS platform. 

4. MHSERM uses time-lapse NEXRAD precipitation radar data in increment of 5-6 

minutes updates, and it can capture the spatial variations at any time steps during 

storm events by overlaying watershed grids over NEXRAD grids. Few conventional 
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SERM can utilize NEXRAD precipitation data as an input, however these 

conventional SERM usually cannot capture the variations inside a catchment over 

time. 

5. MHSERM does not require repeated preprocessing or adjustment for new 

applications of simulating different storm events. Furthermore, MHSERM facilitates 

simulation under different combinations of AMC and landcover conditions for 

sensitivity analysis, and most of all, evaluation of various what-if scenarios. A 

conventional SERM requires a lot of adjustments for a new application of storm 

events even for the same watershed because AMC and landcover conditions can 

change and vary with the time. With, MHSERM, users can choose the different 

combination of AMC and landcover conditions for simulations as needed. 

6. MHSERM can be potentially used for pseudo-real-time flood prediction with time-

lapsed NEXRAD radar data feed. Because the NEXRAD radar data series is updated 

on-line in a near real time manner with a 5-6 minutes increment, MHSERM can take 

advantage of predicting the flood in a timely fashion. 

7. MHSERM can handle tens of millions grids, thousands of streams for the watershed 

in great detail. There is currently no conventional SERM that can match such 

capability and expandability. 
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5.3.3 Existing Issues and Future Recommendations 

Although the results of two MHSERM case studies showed reasonable fits 

between the simulated and the observed peak flows with specific combinations of AMC 

and landcover conditions, there are still several issues that need to be further addressed. 

1. The rising limb of the simulated hydrographs sometimes has a time lag compared 

to the observed hydrographs. MHSERM is using the SCS CN method to calculate 

the rainfall excess for each grid. With the SCS CN method, no rainfall excess 

exists before the rainfall depth reaches the grid's initial abstraction (la parameter, 

see Equation 4.4), which is 0.2 times soil moisture storage deficit. However, 0.2 

can be too big for some cases; some studies found that an la value of 0.05 was 

generally a better fit than a value of 0.2 (Hawkins et al, 2002; Jiang, 2001). 

MHSERM is still using 0.2 for la value however. In the future, MHSERM may 

utilize the physical rainfall loss formulas to correct this problem. 

2. The falling limb of the simulated hydrographs decreased faster than the observed 

hydrographs, especially for the downstream station 02034000 (even though the 

rising limb characteristic is a more important design variable for flood mitigation 

in general than falling limb characteristic). The main cause of this issue could be 

the subsurface flow, which is not currently accounted for in MHSERM. 

MHSERM only estimates the base flow on the basis of its contributing area, and 

the estimated base flow is used during the simulation period without accounting 

any further loss. For particular locations that have strong subsurface flow 
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component or a big watershed, the subsurface flow may not be neglected, and 

MHSERM may need integrating the subsurface flow in the future. 

3. The peak time occurred earlier on the simulated hydrographs than the observed 

hydrograph at the downstream station 02034000. This issue is observed only on 

station 02034000. For the first study case, the peak time of the simulated 

hydrographs was at about 8:30 PM September 19, but the observed peak flow 

happened at 0:45 AM September 20. It looks like a big delay at first, however, the 

observed flow increased very slowly after 8:30 PM September 19, from about 

23000 cfs to the peak flow at 30000 cfs. Thus, this delay may result from two 

possible causes: upstream reservoir routing adjustment, and the subsurface flow. 

MHSERM currently does not have the ability to simulate these issues and may 

need to further enhance reservoir routing as well as address subsurface flow in the 

future. 
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