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ABSTRACT 

SPATIAL ANALYSIS OF 
TRAVEL BEHAVIOR AND RESPONSE TO TRAVELER INFORMATION 

Xin Wang 
Old Dominion University, 2012 
Director: Dr. Asad J. Khattak 

Transportation planners have long recognized that it is urgent to integrate 

emerging spatial analysis with travel behavior studies. A clearer understanding of the 

spatial interactions among travelers and the complex environment they face has the 

potential to reap benefits of the ongoing technologies of travel behavior, spatial analysis 

and Advanced Traveler Information Systems (ATIS). 

Considering that spatial patterns have been overlooked in the literature of travel 

behavior and ATIS, the main objective of this research is to use robust methods of spatial 

analysis to enhance the understanding of how the associations between traveler decisions, 

built environment and socio-demographic characteristics are organized spatially. This 

dissertation takes a significant step towards filling this gap by using innovative spatial 

data description methods, e.g. geo-imputation, dynamic buffer analysis, spatial statistics 

to model the travel behavior of both the general population and university students. 

This study starts by developing a unique database from extensive behavioral data 

combined with a variety of spatial measurements, taking advantage of increased GIS 

capabilities. Five different activity-based databases from different regions are used, 

combined with their related socio-demographic and land use data. Among them are two 

general population travel surveys from North Carolina, which were conducted in 



Charlotte and at the Greater Triangle in 2003 and 2006, respectively. The Virginia Add

on for the general population was conducted in 2008, while two waves of the Virginia 

University Student Travel Survey (USTS) were conducted in 2009 and 2010. The general 

population and the university students are compared with each other in terms of how they 

traveled and responded to ATIS. 

Issues addressed in this dissertation include two aspects. The first one is how to 

describe data in space more accurately. When there is a need to know the exact locations 

of residences (geo-coordinate), but such information is unknown, geo-imputation is used 

as a fundamental method of assigning synthetic locations randomly to these residences 

based on available zonal information. After locating the residences by using geo-

imputation, dynamic buffer analysis is used to capture locally built environment 

characteristics around residences, which place emphasis on capturing accessibility. 

The second issue is modeling travel behavior in space. Particular emphasis is 

placed on modeling associations between trip making, trip decision changes and their 

associated explanatory variables. The general population is compared with the university 

students who represent an energetic and technology-savvy subgroup of the population. 

Different spatial scales are used for these two groups: the regional level is used for the 

general population; the university campus is used as a special trip generator for the 

university students. 

At the regional level, a unique model structure, i.e. Geographically Weighted 

Regression (GWR), is used to allow associations to change across space, referred to as 

spatial heterogeneity. Significant spatial heterogeneity is found in the associations 

between trip-making and built environment, as well as in the model of travelers' 



information acquisition behavior and their travel decision adjustments. The spatial 

heterogeneity in the trip-making models suggests that there is higher spatial variability in 

favor of the statement that better land use design can help reduce auto trips. It is 

important to note that these potentially useful insights would have remained uncovered if 

using a non-spatial model that does not take spatial heterogeneity into account. 

At the special trip generator level, when local models don't work well, the 

university campus is studied as a case which represents a combination of livable 

environments and a group of people who have different life cycles compared with the 

general population. Particular spatial analysis is applied to capture the association 

between trip-making and students' residential proximity to campus. The models confirm 

there are rings of mobility around the campus. Different from the traditional travel 

demand model for the general population, this varied level of mobility of students based 

on their residential proximity of campus is important and must be considered in the 

students' travel demand model. 
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1. INTRODUCTION 

1.1 Motivation 

The goal of travel, as a derived demand, is to satisfy peoples' need for activity 

participation in the context of their socio-demographic factors and space and time. The 

impacts of socio-demographic factors have been largely captured in studies. However, a 

stumbling block in traditional travel behavior models is that the geographical nature of 

trips is rarely considered, and there is a lack of systematic framework to explain the 

spatial phenomena that emerges from complex interactions among travelers. As urban 

areas are the space where the majority of people live, work and participate in activities, 

intangible urban spatial constraints may be imposed upon transportation systems, 

imposing spatial patterns on how people travel and participate in activities. Therefore, 

exploring the geographical nature of travel behavior is important. 

Interest in analyzing spatial data has grown considerably in the scientific research 

community, especially with emerging technologies of geographic information system 

science (GISc) and applied spatial statistics. Over the last decade, there have been a 

number of developments in the field of spatial data analysis, theoretical and practical, 

which are capable of providing indicative details of information hidden in space by 

providing solid supports for spatial data mining and spatial statistics. However, current 

GIS applications in the travel behavior field are still focused on data assembling and 

visualization using thematic maps, which do not explain travel behavior well. Meanwhile, 

transportation is moving from a data-poor to a data-rich environment (Miller and Shaw, 
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2001). Increasingly, available travel behavior surveys have provided detailed thematic 

and geographically referenced data for disaggregated activity participations and travel 

behaviors, coupled with the widespread availability of open source and proprietary tools 

(Buliung and Remmel, 2008) for spatial analysis. The availability of high quality travel 

survey data, the growth of geographical eco-demographic databases, and the emergence 

of new quantitative techniques have the capability to generate considerable research 

activity. 

In this context, a research field integrating spatial analysis and travel behavior can 

enhance the understanding of their mutual interdependencies. By doing so, we won't 

limit our long-term capability to reap the benefits of the ongoing technologies of both 

travel behavior and spatial analysis. 

Several issues related to combining spatial analysis and travel behavior study 

using behavior data with detailed geographic references are addressed and discussed in 

greater detail in the following sections. 

1.2 Spatial Data Representation 

How various components of travelers' behavior are properly represented is the 

fundamental question of spatial analysis and modeling. Most currently available travel 

behavior survey data and socio-demographic data are represented by using predefined 

geographical boundaries, e.g. TAZ (Traffic Analysis Zone), Census Tract, and Census 

Block. These boundaries have been used as standard units of delivering survey results 

and are consistently used by researchers and governmental agencies to estimate and 

predict travel demand and to inform travel behavior studies. As a simplified 

representation of urban space, the predefined boundaries have provided an easy way to 
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contain and store socio-economic data by clustering information based on geographically 

boundaries. 

However, problems exist. Studies have documented that spatial data aggregation 

based on a pre-defined boundary can cause the Modifiable Areal Unites Problem (MAUP) 

and affect the outcomes of transportation planning models significantly (Shawn Turner, 

1997, Paez and Scott, 2005, Fotheringham and Wong, 1991). MAUP occurs when the 

spatial zoning system used to collect and/or report geographic data is "modifiable" or 

arbitrary. Variation of spatial effect can occur when data from one scale of areal units are 

aggregated into larger or smaller areal units, similar to "ecology fallacy." When the 

MAUP problem exists in spatial analysis, it introduces significant variability in the 

coefficient estimates as well as standard errors (Kwigizile and Teng, 2009). The MAUP 

is especially critical for trip generation since spatial aggregation into zoning systems can 

substantially affect the results from travel demand analysis (Miller, 1999). The trip 

generation results depend on how the TAZs are defined, and the result would be different 

if delimitation of TAZs are changed, even for the same region with the same socio-

economical inputs if aggregated or partitioned in different ways (Kwigizile, 2007). 

Moreover, using predefined boundaries can cause the "edge effect"- ignoring the 

similarity or interdependences that occur among locations within and outside of the 

boundaries (Miller, 1999, Griffith, 1983). The definition of the boundary of those sub-

classifications will influence the estimation of the coefficients, referred to as the 

(undesirable) "boundary effect" (Miller, 1999). 

To alleviate the above problems, there is a need to find a better way to represent 

spatial data, which can overcome the predefined boundary and use data which is free of 
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predefined boundaries, e.g. disaggregate data. However, unfortunately, both the current 

travel behavior data and widely used socio-economic data, including NHTS (National 

Household Travel Survey), ATUS (American Time Use Survey), Census and CTPP 

(Census Transportation Planning Programs) data, do not release the data with detailed 

location information due to privacy concerns. NHTS provides detailed information for 

each trip made by household members in their travel days, but the specific locations of 

where they live, work and travel to are usually masked by being aggregated into a bigger 

geographic unit, e.g, census block group. Also, socio-economic information, such as 

densities of population and employment, is based on a predefined geographical unit. 

Hence, there is the need to extract useful information on the disaggregated level from 

available aggregated level data. By doing so, more local measurements (built 

environment) in the neighborhood of residences, working locations and travel 

destinations can be obtained. 

13 Capturing Spatial Characteristics 

The relationship between built environment and travel demand has attracted much 

attention in past years, especially recently with the development of the neo-traditional 

movement, the so-called New Urbanism, with the statement that proper neighborhood 

design can impact travel behavior and reduce automobile dependency and use. However, 

no consensus exists. Further, the conclusions of these studies usually cannot be compared 

directly due to different studies using different methodologies to capture built 

environment. An agreed-upon conceptualization of "built environment" is lacking 

(Handy, 2005). In most cases, proxy variables such as local accessibility with certain 

distance to residences or destinations are used to represent local environment 
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characteristics (e.g. roadway characteristics such as length) and connected node ratio 

within buffer areas around residences. However, it may not capture the built environment 

accurately since the round buffers with fixed sizes may cover unusable land use in space, 

e.g. water bodies. In general, how to capture built environmental measurements more 

effectively and accurately is an important issue. 

Besides the local neighborhood measurements, from a regional perspective, 

special generators are introduced in the travel demand modeling to represent certain types 

of facilities whose trip generation characteristics are not fully captured by the standard 

trip generation module or whose travel pattern cannot be easily captured by the standard 

travel survey. Regional travel demand analysis is somewhat rough in the treatment of 

activity participation in a metropolitan area with significant diversity. There are some 

spatial generators which combine special subgroups of population and special land use. 

They are concentrations of unusual activities in urban area, which merit special 

consideration in travel demand modeling. Such generators might include university 

campuses, military bases, big hospitals, large scale transportation hubs, special 

recreational sites such as sports stadiums, and large regional shopping centers. These 

special generators may be relatively few in number, but can impact regional traffic since 

they may produce or attract mass daily trips, and they represent a significant portion of 

trips and include special travel patterns with both temporal and spatial features. Their 

influence on the nearby roadway network system could not be adequately captured in 

regional model. Therefore, they justify special surveys as well as particular analysis. 

Doing so allows the travel demand model to better replicate the real scenario of the study 

area. However, although most MPOs have incorporated special generators in their travel 
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demand models and many appear to be interested in developing more effective special 

generator procedures (Mamun et al., 2010), most of the travel demand models for special 

generators are tinkering with trip generation models, similar to traffic impact analysis. 

Also, the emphasis is placed on obtaining better trip generation rates, e.g. those suggested 

by NCHRP 365, instead of concentrating on understanding the specialty of travel 

behavior relative to those generators and the subgroup of the population bound by those 

generators. 

1.4 Spatial Modeling 

Issues have arisen with regard to describing travel behavior's spatial nature and 

how to model its spatial relationship effectively. Spatial analysis considerations are 

seldom recognized or accommodated in travel modeling (Bhat and Zhao, 2002), e.g. 

conventional statistical models fail to capture certain important properties of spatial data, 

such as clustering, dispersion, and systematic variability across space. All of these violate 

basic assumptions of independence and homogeneity implicit in conventional statistical 

analysis. Violation of these assumptions, in turn, leads to information loss, biased and/or 

inefficient parameters and the possibility of seriously flawed interpretation, conclusions 

and policy prescriptions (Griffith and Layne, 1999). Given these potential pitfalls, spatial 

effects, though often regarded as nuisances, can be perceived as opportunities to obtain 

deeper insights (Paez and Scott, 2005). 

In reality, the utility of spatial units which are close to each other can be 

correlated due to commonly unobserved spatial elements. For instance, residents living in 

the same spatial cluster may share similar life attitudes or life styles due to personal 

preference, social or environmental reasons. Thus, people/households living in close 
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proximity exhibit parallel behaviors, giving rise to similar observations for trip outcomes 

(e.g. duration, activity frequency, vehicle-mile travelled) (Buliung and Kanaroglou, 2007). 

This situation can cause spatial dependence, which is defined as situations where high 

variable values cluster near other similarly high values and low values cluster near 

similarly low values (Fotheringham et al., 2000). 

At the same time, most models for trip frequency and activity participations 

assume the association between dependent variables, and explanatory factors are fixed 

across space. For instance, in the traditional trip generation model, the amount and type 

of trips in a TAZ are functionally associated with household characteristics such as 

income, vehicle ownership, family size and other socio-economic factors, e.g. density and 

type of development. These associations are assumed to be uniform for every spatial 

location. Both suggested trip rates based on cross classification and regression models are 

average trip rates which do not consider spatial variance, although urban or suburban 

areas are differentiated in some cases, e.g. NCHRP 365 suggested different trip rates for 

urban vs. suburban areas. However, this segmentation is still very rough, especially in the 

last few decades when American cities experienced vast physical sprawl and 

fragmentation (Chorus et al., 2007b). Therefore, ignoring spatial heterogeneity in travel 

behavior modeling may be problematic from both statistical and real condition 

perspectives. 

1.5 Research Objectives 

Considering that spatial patterns have long been overlooked in the travel behavior 

literature and amongst practitioners as well, this dissertation is meant to take a significant 

step towards filling this gap. 
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The purpose of this study is to detail important elements of spatial analysis and 

travel behavior methodologies and discuss their applications. When considering whether 

spatial pattern is needed to be included into activity participation and travel decision 

analysis, there are two basic questions as, Cliff and Ord (1981) stated regarding this 

aspect: 1) Is the spatial pattern displayed by the phenomenon significant in some sense 

and therefore worth interpreting? 2) Can we obtain any information on the process which 

has produced the observed pattern from an analysis of the mapped distribution of the 

phenomenon? Therefore, this study is mean to develop an integrated research capable of 

incorporating the spatial analysis into travel behavior models by considering these issues: 

• How to take advantage of the current available behavior data with masked 

location information to conduct spatial analyses based on disaggregated level. 

• How associations between activity participations and built environment are 

organized spatially and the ultimate consequences of such patterns. 

• Other than targeting a capturing built environment in a very local 

geographical scale, how we can learn from analyzing a special trip generator-

Is there a centripetal travel behavior style around special generator? 

• How travelers respond to Advanced Traveler Information Systems or ATIS 

from a spatial perspective. Does their information acquisition behavior and 

travel decision adjustment change across space? 

This dissertation, as integrated research of spatial analysis, travel behavior and 

travelers' response to ATIS, predominantly focuses on increasing our understanding of 

the complex spatial aspects of travel behavior and decision change based on ATIS. It 
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covers a diverse array of topics and provides an in-depth analysis of a broad set of case-

studies. The contents range from behavior data processing to spatial statistical modeling; 

from exploring the general impact of built environment on travel behavior to case study 

of the special generator in space; and from traveler's travel behavior to their responses to 

the diffusion of innovative and "high-impact" advanced traveler information systems. 

The unifying theme is to enhance the connections between spatial analysis and travel 

behavior modeling by applying a collection of spatial analysis techniques, e.g., geo-

imputation, spatial heterogeneity, buffer shapes, etc., to unique behavioral datasets, which 

place heavy reliance on combining empirical travel behavior data with spatial contextual 

effects. The use of spatial analysis methods in this dissertation will reflect and emphasize 

the significance of spatial contextual effects in explaining travel decisions. 

1.6 Summary of Data Sources 

The study required extensive data collection on activity-travel data at micro level 

and related land use, as well as socio-demographic data with GIS support. Various travel 

behavior datasets from different areas are used in this dissertation. All of them have used 

trip diary to collect travel data, which satisfied the research. These data include: 

• Regional travel survey of Charlotte, North Carolina conducted in 2003; 

* Regional travel survey of the Research Triangle, North Carolina conducted in 

2006; 

• National Household Travel Survey (NHTS) Virginia Add-on survey, 

conducted in 2008; 

• University Student Travel Survey (USTS), sponsored by Virginia Department 

of Transportation (VDOT), part of Virginia University Student Travel survey 
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as Virginia Add-on complement, which were conducted in 2009 and 2010. 

The target populations of the survey were university undergraduate and 

graduate students. Four universities in Virginia were involved in the first 

USTS, including two universities in urban areas - Old Dominion University 

(ODU) and Virginia Commonwealth University (VCU) and two universities 

in suburban areas - the University of Virginia (UVA) and Virginia Tech (VT). 

ODU and VT were also involved in the second USTS. 

The first three travel surveys utilized standard household travel survey methods, 

in which all of the household members were asked to record their trips for a specified 24-

hour period using a specially designed travel diary. The sampling plan included both 

geographic and demographic goals to ensure that the survey is representative of the 

region's population and activity-travel patterns. The travel survey database usually 

contains four different levels of data: personal data, household data, vehicle data and trip 

data. The surveys relied on the willingness of regional households to 1) provide 

demographic information about the household, its members and vehicles; 2) have all 

household members record all travel-related details for a specific 24-hour period, 

including trip purpose, mode, and travel time information for each trip. These detailed 

travel information are used to capture the daily travel behavior of travelers. 

The USTS survey is the transformed-to-internet version of National Household 

Travel Survey (NHTS) and regional surveys, which was used partly because online 

surveys offer an efficient means of collecting data for college students. The USTS 

instrument was designed to resemble the NHTS. However, the first round survey 
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conducted in 2009 suffered from the problem of underreporting and incompleteness due 

to response burden (average finishing time is over 40 min). Therefore, the second round 

of surveys was conducted in 2010 at ODU and VT. The second survey obtained a higher 

response rate and higher trips reported due to a substantial reduction of response burden 

by revising and refining the survey instructions (Khattak et al., 2011, Son et al., 2012). 

The Triangle survey, Charlotte survey and USTS provide the exact location 

(latitude and longitude) information for all the respondents, their trip origins and 

destinations. This exact location information is critical for creating built environment 

variables and estimating spatial models. Given that the Triangle and Charlotte survey 

were conducted earlier, the NHTS Add-on provides the latest national household travel 

survey for Virginia residents. The USTS provides data for a unique environment, the 

university campus, which was traditionally underrepresented in regional travel demand 

models and not well understood. Therefore, USTS can serve as a case study for the 

special trip generator. Only the Triangle survey and first USTS provides ATIS usage and 

responding information regarding traveler information sources, information acquisition 

frequencies and travel choice changes based on the information received, which allows 

the analysis of how travelers respond to ATIS. 

Therefore, the Charlotte and Triangle data are used to evaluate the accuracy of 

geo-imputation, a method used to create point based location given the accurate location 

information is known. Then the geo-imputation method is applied to assign exact location 

for residences in Virginia add-on data. Based on the assigned synthetic locations, the 

built environment characteristics can be calculated and used as regressors in activity 

models. University data is used to show the unique travel behavior of university students. 
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Finally, the Triangle data is used again to show how travelers respond to ATIS in a 

spatial context, and USTS first wave data is used again to be compared with the general 

population from the Triangle area. 

1.7 Chapter Structure 

It should be noted here that some chapters consists of papers that have been 

published, forthcoming, or submitted for publication in a scientific peer-reviewed journal. 

Some of the contents may be related, and some methodological overlaps between 

chapters exist. Therefore this dissertation is organized by topics. The structure of this 

dissertation is shown in Figure 1: 

Literature review Chapter 2 

r 

Research framework Chapter 3 

r 

Deal with zonal data Chapter 5 Chapter 4 

* • s \ / \ 
Spatial heterogeneity Chapter 5 Chapter 7 

r 

Case study: University student subgroup chaDter 6 ChaDter 7 

1 

Trip making 
behavior 

V J 
Response to 

ATIS 
V J 

1 r 

Conclusion Chapter 8 

Figure 1. Chapter structure 
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Chapter 2 provides a synthetic review of the literature that is relevant for the study 

of the spatial pattern of activity participation, travel behavior and how traveler response 

to ATIS (Advanced Traffic Information Systems). Considering the dissertation covers a 

relatively wide range of topics, only reviews of relevant studies were kept. Chapter 3 

presents the conceptual framework and design of this study. Chapter 4 elaborates on geo-

imputation as a method to assign synthetic location randomly, which can present spatial 

data fairly by using available aggregated zonal data. The method presented in Chapter 4 

is used in Chapter 5 as a fundamental method to deal with spatial data with aggregated 

geographical unit. Both Chapter 5 and Chapter 6 discuss trip making behavior; while 

Chapter 5 focuses on general population, Chapter 6 focuses on university students instead. 

In Chapter 6, the university campus is also studied as a case study of special generator. 

Chapter 7 analyzes the role of ATIS to support travel decision, and general population 

and university students are compared with each other. Spatial heterogeneity is addressed 

in both Chapter 5 and Chapter 7. While Chapter 5 emphasizes the spatial heterogeneity of 

the associations between built environment and trip making, Chapter 7 emphasizes 

several issues related to the role of traveler information to support travel decision, 

including the two-stage process of information delivery, the spatial heterogeneity of how 

traveler response to ATIS and comparison between the general population and university 

students in terms of how they acquire and respond to traveler information. In Chapter 8, 

the results are discussed from an overall perspective and suggestions for further research 

are also given. 
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2. LITERATURE REVIEW 

The objective of this chapter is to provide a brief summary of the methodologies 

used by various researchers and to present state-of-the-art efforts to combine spatial 

analysis with travel behavior. 

2.1 Spatial Data Representation 

The spatial data used in transportation studies has long been focused on using 

aggregated data, such as socio-demographic data based on predefined TAZ level. Using 

zonal data is a "container" view of space, in which space is reduced to a receptacle or 

carrier points of spatial phenomena (Fotheringham and Wegener, 2000). When spatial 

data is aggregated into larger zones, some important properties within zones, e.g. spatial 

distributions and spatial interactions are lost. 

Studies have shown that using aggregate data based on zonal level can introduce 

spatial aggregation error to statistical models. The agglomeration of individual, geo-

referenced observations into larger spatial zones can smooth local variation, leading to 

errors in measurement of geographical variables, and this error in turn affects the 

estimation of statistical models that incorporate spatially-aggregated variables (Luo et al., 

2010). Ecological fallacy (shows that the model coefficients estimated based on 

aggregated data differ from those at the individual level) and the well-known modifiable 

areal unit problem (MAUP) (Paez and Scott, 2005, Fotheringham and Wong, 1991) are 

two major problems related to aggregation error (Luo et al., 2010). Also, studies show 

that TAZ and census-tract-based analyses are too large to correctly reflect patterns of 
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development on the ground, thus they yielded poor measures of nucleation and land-use 

mix measurement (Moudon et al., 1997). In addition, spatial aggregation was found to 

increase the magnitude of correlation coefficients in early studies (Gehlke and Biehl, 

1934, Hillsman and Rhoda, 1978, Openshaw and Taylor, 1979). 

The literature also indicates that the impacts of aggregate error may depend on 

different geographical levels and the study area (Luo et al., 2010, Hewko et al., 2002). 

Generally, the literature has suggested that using finer resolution data is the best way to 

reduce aggregate level errors (Hewko et al., 2002). 

The capability to capture the exact location of either residence, work place or 

other travel destinations has played an important role in examining the spatial 

characteristics of daily household activity-travel behavior. Knowledge of exact geo-

locations can facilitate: 

• Geometric measurement to capture built environment characteristics or 

individual accessibility, e.g. urban design or connectivity measures focused on 

local network geometry (Brownson et al., 2009, Buliung, 2004, Dill, 2003). 

• Accurate calculation of vehicle miles traveled or daily household kilometers 

traveled (DHKT) (Buliung 2006). 

• Activity space calculation, e.g. Household Activity Space (HAS) (Buliung 

2006), spatial footprint analysis (Fan and Khattak, 2008a), spatial dispersion 

measurements such as Standard Distance Circle (SDC) and Standard 

Deviation Ellipse (SDE) (Buliung, 2004, Schonfelder and Axhausen, 2003). 
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• Exploration of spatiotemporal behavior of individuals and calculating space-

time accessibility measurements, e.g. household trajectories in space—time 

(Miller, 2005) and space-time prisms (Kim and Kwan, 2003). 

As geocoded data are increasingly used to link to socioeconomic, demographic, or 

built environmental data to meet the needs of the analyses mentioned above, an important 

preliminary step is the assignment of a point-level location to the address of each entity 

— a process known as geocoding. However, researchers have mentioned potential 

positional error introduced through geocoding, and these geocoding errors can result in 

considerable bias in spatial analyses (Rushton et al., 2006, Zinszer et al., 2010, Hay et al., 

2009). In particular, the existing geocode method, like street geocoding (interpolated 

method), is rarely completely successful in practice. In fact, it is common for 10%, 20%, 

or even 30% of the addresses to fail to geocode using standard software and street files, 

and this proportion can be even higher for particular sub-regions of interest (Zimmerman, 

2008). 

Despite the geocode errors, the more important issue is that the exact geocode 

information is usually unavailable in the public use database due to disclosure avoidance. 

This is the case for widely-used surveys such as the US Census and American 

Community Survey (ACS), including the Census Transportation Planning Package 

(CTPP) (Krenzke et al., 2011). Additional privacy concerns arise as a consequence of 

being able to accurately represent the location of individuals using geocoding as well as 

the ability to link disparate data sources. Geographic identifiers support such linkages 

because data are easily combined when common identifiers such as names, phone 

numbers, driver's license numbers, or home or work addresses are present in different 
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databases (Rushton et al., 2006). Therefore, various technologies have been used to 

provide masked data to avoid violating the pledge of confidentiality. These technologies 

include data swapping, rounding (Fienberg et al.), collapsing categories, applying 

thresholds, table suppression, and generation of synthetic data (Zayatz et al., 2010). Also, 

census surveys often release more detailed information based on larger geographic units, 

e.g., more information can be found at the census tract level than the census block level 

(Zayatz et al., 2010). Due to changes in technology and the continued concern for loss of 

privacy, the Census Bureau has instituted a Disclosure Review Board (DRB), which 

reviews all tables before their release to ensure confidentiality of responses. Data 

dissemination rules initiated by the DRB have caused significant loss of detailed spatial 

data for CTPP 2000, and are expected to cause even further losses when applied to 

products related to the American Community Survey (Cambridge Systematics et al., 

2009). For the National Household Travel Survey (NHTS) and its add-on surveys, the 

location information has been masked and only aggregated zonal information is typically 

available to researchers instead of exact lat/long point-based information. Generally, 

disclosure avoidance measures pose significant challenges for exploring activity 

participation and travel behavior at a micro-scale spatial level, despite the substantial 

improvement in spatial analysis methodologies. 

To overcome the problem of lacking exact location, several methods can be 

applied to disaggregate spatially aggregate data within a spatial unit such as an urban 

district or a census tract. Raster cells or pixels can be used as addresses by considering 

different densities within the zone (Fotheringham and Wegener, 2000), but this method 

requires density parcel data and cannot represent point address directly. 
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Besides using raster or pixel data, geographic imputation can be applied to assign 

point based location, which has been applied in various fields, especially in epidemiology 

and the medical field. Specifically, geo-imputation is usually used to deal with data that is 

missing location information. Researchers exercise options to exclude cases with missing 

location information or to include them and assign locations with a lower level of spatial 

precision (Henry and Boscoe, 2008). However, excluding cases may cause geographic 

selection bias (Henry and Boscoe, 2008). One method used for geo-imputation is to 

assign the persons or households in proportion to a geographic unit's (e.g., town's) 

population or other variables that include race, age and gender-specific population 

distributions within the tolerances of available information on geography (e.g., postal ZIP 

code or county) and demography (Henry and Boscoe, 2008). However, this method can 

only disaggregate larger zonal level data to finer zonal level, but it still does not provide 

exact geo-location information. To circumvent this, the centroid (the geometric center of 

a polygon) or weighted centroid point can be used for geo-imputation (Hewko et al., 

2002). Furthermore, synthetic assignment has been used to give a random location to the 

entity. For example, random locations can be assigned to observations within polygons, 

and the process can be repeated many times using Monte Carlo simulation to estimate 

associated uncertainty (Luo et al., 2010). Generally, the literature has suggested that 

using finer resolution data is the best way to reduce aggregate level errors (Hewko et al., 

2002). However, the key question of whether geo-imputation results in statistically 

significant errors, in general, has not been answered. 
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2.2 Spatial Statistics in Transportation 

Spatial models in the social sciences have a long tradition, which date back to 

1820s (Fotheringham and Wegener, 2000). However, because spatial models are data-

hungry, the real rise of spatial modeling occurred in the 1960s with the general 

availability of large, fast computers (Fotheringham and Wegener, 2000). Interest has 

increased in how to link spatial analysis, GIS technology and transportation (Miller, 1999, 

Buliung and Kanaroglou, 2007) since transportation data often has spatial attributes, 

while conventional database systems cannot make much use of the spatial or location 

attributes of a data set (Taylor et al., 2000). 

The general philosophy of capturing spatial patterns in transportation focuses on 

capturing spatial dependence and spatial heterogeneity. Bhat and Zhao (2002) highlighted 

the need to accommodate spatial issues in travel modeling, and proposes a specific spatial 

model formulation (mixed ordered logic model) in the context of activity stop generation. 

Their results underscore the importance of accommodating and testing for the presence of 

unobserved heterogeneity in the modeling of stop-making decisions. Significant 

heterogeneity in the response to some factors was found. For instance, propensity to stop 

for shopping relates to the level of accessibility, but this effect may be important only 

when accessibility levels are low. However, this study used a zonal based data; therefore, 

it only captured the heterogeneity across zones (Pdez and Scott, 2005). 

Spatial dependence, referred to as the spatial autocorrelation problem, describes 

the situation when there is a tendency for variables to display some degree of systematic 

spatial variation (Paez and Scott, 2005). Furthermore, the spatial dependence violates the 

independence assumption of regression, which can cause bias and misspecification in the 
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model. For example, all the cases that are very poorly fitted by the model might be in one 

part of the map. A common specification in the spatial analysis literature for capturing 

such spatial correlation is to allow alternatives that are contiguous to be correlated (Bhat 

and Guo, 2004). Spatial lag operator (contiguity weight matrix which represents the 

contiguity of observations) was also included in the error term. If the coefficient of this 

spatial lag operator is statistically significant (5% level), the spatial dependence is 

important to address. A positive coefficient means that similar observations are clustered. 

Alternatively, significant negative spatial correlation indicates that neighboring 

observations are more dissimilar. Significant research (Garrido and Mahmassani, 2000, 

Bhat and Guo, 2004, Kwigizile and Teng, 2009) has been conducted studies to capture 

this spatial dependence. 

Spatial heterogeneity describes another situation when the mean, variance or 

covariance structure changes over space (Paez and Scott, 2005). Traditional regression 

models assume that the dependent variable has the same variance for all correlates, which 

is often not the case in real-life transportation situations. If spatial heterogeneity exists 

and is not accounted for, then the model may have biased parameters, misleading 

significance levels and/or inaccurate forecasts (Paez and Scott, 2005). Geographically 

Weighted Regression (GWR) is a tool that captures spatial heterogeneity by estimating 

model parameters locally instead of globally (Fotheringham et al., 2002, Paez et al., 2002, 

Lloyd, 2007). In GWR, the estimated parameters, which capture associations of variables 

(e.g., association of congestion or socioeconomic factors with information acquisition), 

can vary over space. The local parameters are estimated for each variable in a spatial 

context. In doing so, more detailed local associations of variables are provided and the 
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key assumption of global models, where "one size/model fits all" is relaxed. Furthermore, 

GWR is often interpreted as a "smoother", which can be used to approximate the 

observed variable surface to a higher level of accuracy, a feature that makes it attractive 

for various aspects of urban analysis (Paez and Scott, 2005). From a policy maker's angle, 

GWR can improve regional analysis and policy making since the subsequent policy 

inferences would be poorly suited to many local settings (Ali et al., 2007). 

Although the GWR model has been used in other fields such as social science, 

environmental, investigation of industrialization, etc., studies of GWR applications in 

transportation are less common. Zhao and Park (2004) applied GWR to estimate AADT 

(Annual Average Daily Traffic) on non-expressway roads based on available AADT 

information on similar roads; the results indicated that the GWR models are able to better 

explain variations in data and to predict AADT with smaller errors than the OLS 

(Ordinary Least Squares) model. Chow et al. (2006) investigated the spatial variations by 

using the GWR model to estimate the relationships between transit use and potential 

ridership predictors. Results indicated that the GWR model improved accuracy in 

predicting transit use for HBW (Home Based Work) purposes over linear regression 

models. Du and Mulley (2006) looked at the relationship between transport accessibility 

and land value with the implication of a local model and GWR, which revealed that 

nonstationarity existed in the relationship between transport accessibility and land value. 

Clark (2007) found the local model produced by GWR is more accurate in estimating the 

relationship between income and car ownership. Hadayeghi et al. (2003) found that GWR 

was a significant improvement over the global model when using GWR in accident 

prediction models to test spatial variations in the estimated parameters from zone to zone. 
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Overall, several studies have applied GWR successfully, and improvements have been 

found in goodness of fit and forecasts over other traditional global models. 

23 Spatial Analysis and Travel Behavior 

The relationship between accessibility, urban form, built environment and travel 

behavior has had a rich history over the past decade. Examining the spatial characteristics 

of daily household activity-travel behavior has important implications for understanding 

and addressing urban transportation issues (Buliung 2006). Understanding spatial patterns, 

activity participation, and their relationships is a primary objective in the travel behavior 

research agenda. There are several studies which review relevant work (Krizek, 2003, 

Chatman, 2005, Ewing and Cervero, 2001, Ewing and Cervero, 2010, Joh, 2009, Crane, 

2000, Van Wee, 2002). However, there is debate about whether land use or specially 

designed community with certain characteristics of built environment is associated with 

special travel behavior. Some studies support the notion that connections between land 

use and travel behavior exist (Shay and Khattak, 2005, Khattak and Rodriguez, 2005, 

Kockelman, 1997, Parthasarathi, 2011, Fan, 2007), while others challenge them (Boarnet 

and Crane, 2001, Crane, 2000). Despite the clear evidence of a connection in those 

studies supporting the connection, some argued that the association between built 

environment and travel behavior is not direct, even weak (Boarnet and Sarmiento, 1998, 

Crane and Crepeau, 1998, McNally and Kulkarni, 1997). To a great extent, personality, 

attitudes, and socio-economic factors are stronger correlates with travel behavior than 

land use variables (Stead, 2001, Cao, 2009, Handy et al., 2005). Specifically, results from 

Boarnet and Crane (2001) indicated that urban form influenced travel behavior (if the 

influence exists) not directly, but through altering the price of travel. These inconsistent 
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findings further indicate a complex relationship between urban form and travel behavior, 

which may be sensitive to different geographical scales, types of data, alternative 

behaviors and statistical assumptions. 

Still, many believe that through better design, the built environment will impact 

travel behavior and reduce automobile use. Srinivasan (2001) found that spatial 

characteristics measuring nonwork opportunities (nonwork accessibility and commercial-

residential balance) were significant in affecting incremental travel time and trip linking 

during home-based nonwork tours, as corridors rich in nonwork opportunities and close 

to highways tend to encourage trip linking, but destinations or home locations with such 

characteristics tend to discourage trip linking. Also, pedestrian and transit-oriented design 

and developments that encourage proximity of commercial land uses (such as banks and 

shops) to residences have been found to be negatively associated with single-occupant 

vehicle use (Kockelman, 1997). Many cities, especially metropolitan regions, have 

implemented land use policies to guide long-term transportation plans with the purpose of 

VMT reduction, congestion mitigation and air quality improvement. 

Geographic Information Systems (GIS) are convenient platforms for theoretical 

and applied transportation and urban analysis (Miller, 2003). A specific branch of GIS 

applied to transportation issues, commonly known as GIS-T, has emerged as a new area 

in the last couple of decades (Miller and Shaw, 2001). New GIS technology is being 

applied to create new spatial variables to capture the built environment, e.g., network 

connectivity (Dill, 2003, Parthasarathi et al., 2011), network topology (Xie and Levinson, 

2007), accessibility (Xie and Levinson, 2007, Thill and Kim, 2005, Fan and Khattak, 

2009), land use mix (Kockelman, 1997), monocentric and polycentric urban structures 
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(Veneri, 2010, Schwanen, 2001), and spatial structure of neighborhoods and 

transportation corridors in metropolitan areas (Srinivasan, 2001, Srinivasan, 2002). 

Generally, collecting spatial data is expensive and time-consuming. Therefore, combining 

built environment characteristics with travel demand is not common in practice— 

although finer spatial detail (than TAZ level) is increasingly being captured to model in 

some of the regional travel demand models, e.g. NYMTC (New York), ARC(Atlanta) 

(Vovsha et al., 2004). 

2.4 Spatial Analysis and Travelers' Response to ATIS 

Studies regarding travel information acquisition and the impact of information on 

travelers and transportation system are abundant (Polak and Jones, 1993, Levinson, 2003, 

Toppen et al., 2004, Toledo and Beinhaker, 2006, Chorus et al., 2007a, Chorus et al., 

2007b, Wang et al., 2009, Zito et al., 2011, Choo and Mokhtarian, 2007, Dia and Panwai, 

2010). Given the multitude of studies in this area, there are also comprehensive reviews 

of the literature (Lappin and Bottom, 2001, Chorus et al., 2006a). 

Not all travelers seek traffic information to facilitate their travel decisions. The 

2006 Greater Triangle Household Travel Survey data showed that about one-half of the 

respondents (49%) reported that they did not acquire travel information from electronic 

sources and never seek regional travel information (Khattak et al., 2008). Investigation in 

the San Francisco Bay Area (Khattak et al., 2003a) also suggested that a significant gap 

exists between access and use (100% vs. 66.4%) . A panel survey of the Seattle-area in 

2000 (Peirce and Lappin, 2003) showed that travel information was used by 12% of the 

survey respondents and 3.2% of all the trips conducted by the respondents. The survey 

also found that the most common source of travel information is radio traffic reports. 
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Existing evidence shows that travel information usage is associated with various 

factors, including the traveler's knowledge (Peirce and Lappin, 2003), owning electronic 

devices such as mobile phones and being willing to use internet (Polydoropoulou et al., 

1996, Peirce and Lappin, 2003, Yim et al., 2002). However, personal characteristics such 

as gender and income are not always found to be significantly associated with 

information usage (Peirce and Lappin, 2003, Petrella and Lappin, 2004). Trip 

characteristics are found to influence travel decisions substantially especially when: (1) 

the distance and duration of the trip is longer (Kitamura et al., 1994, Englisher et al., 

1996, Peirce and Lappin, 2003, Fan and Khattak, 2008b) (2) the trip is arrival-time 

sensitive (Peirce and Lappin, 2003) and (3) substantial variability or uncertainty exists 

about travel times(Peirce and Lappin, 2003, Chorus et al., 2007b). 

Among travelers who seek traffic information, only a subset adjusts travel 

decisions. Investigation in the San Francisco Bay Area showed that 33.1% of respondents 

changed their decision (Khattak et al., 2003a). The number in Greater Triangle area was 

34.6 % (Khattak et al., 2003b), and in Seattle, about 37 % of the information-using trips 

also involved some resultant change in travel behavior (Peirce and Lappin, 2003). A 

study of "SmarTraveler" users in the Boston area found that about 30% of the users 

changed their travel behavior "frequently" in response to information and 96 % changed 

their trips "occasionally"(Englisher et al., 1996). 

Researchers have found multiple factors associated with travel decision changes: 

journey related attributes such as unexpected delays or travel time congestion, e.g., due to 

incidents, roadway construction, or special events (Khattak et al., 1996, Polydoropoulou 

et al., 1996, Chorus et al., 2007a); different information form (Wang et al., 2009, Polak 
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and Jones, 1993, Khattak et al., 2008); personal attribute such as gender, age and income 

(Polak and Jones, 1993, Mannering et al., 1994, Abdel-Aty et al., 1997); cognition or 

travelers' knowledge (Adler and Blue, 1998); contextual and national factors (Polak and 

Jones, 1993); and the frequency of information and travel information usage (Khattak et 

al., 2008). 

Some of the models available in the literature have considered spatial 

characteristics (Fan and Khattak, 2008b) by including categorical variables of land use 

type in the correlation, such as land use type or density measurements as regressors. 

However, most of the land use measurements are still based on predefined land units, e.g., 

traffic analysis zones. The edge effect still remains, that is to say the geographical 

patterns between the correlations may not be consistent with these defined land units. The 

spatial measurements based on a finer scale were barely considered as an explanatory 

variable in traveler information delivery mechanism literature. 

2.5 Summary of Literature Review 

Much of the focus has been placed on understanding links between non-spatial 

travel activities and socio-demographic factors by researchers as well as practitioners. 

Research on both spatial analysis and activity based travel behavior model has been 

insightful, yet combining these methods still needs exploration: 

• Although there is consensus that using disaggregate data to estimate discrete 

models can obtain better results than aggregate models, modeling the spatial 

data based on accurate point location is not easy due to the lack of point-based 

data, which involves private information disclosure issues. To alleviate this 

problem, researchers have used centroid of geographic boundary to represent 



27 

the locations within that boundary when there is need to capture built 

environment based on the locations. However, no one has evaluated how 

accurate this method is, since it seems to be the best solution given the present 

circumstances. Furthermore, to the best of the author's knowledge, no 

imputation method has been proposed as a better data representation method 

to create synthetic residences with geographic information. 

• As stated previously, current models relevant to studying associations between 

built environment and travel behavior as well as studies of traveler 

information delivery mechanism have relied on traditional statistical models 

where the associations are fixed in the study region. This lacks spatial 

interpretation and cannot be visualized as an interactive thematic map. More 

importantly, it hides possible important implications of these associations, e.g. 

spatial heterogeneity. It is not clear whether considering spatial heterogeneity 

is necessary when exploring the factors impacting travel decisions, including 

trip making and travel plan changes in response to ATIS. 

• Using aggregated zonal characteristics such as population density, average 

characteristics of a geographical boundary, or circular buffers around a 

residence to measure land use variables does not accurately capture the built 

environment characteristics around a residence. Moreover, no practice that 

incorporates spatial variations in built environment with trip generation can be 

found. There are substantial gaps and potential for improvements in 

knowledge of how built environment correlates with travel. 
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• It is very common to conclude, in general, by using travel behavior surveys 

based on a relatively large scale, e.g. city or using the survey based on local 

community. However, comparative study is less common, e.g. how a certain 

group of population looks different from the general population in terms of 

how they travel and respond to ATIS, especially when they are exposed to 

different spatial contexts. 
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3. RESEARCH DESIGN 

The purpose of this chapter is to provide a conceptual framework for discussion. 

The questions of interest here are the links between the spatial patterns, travelers, and 

their travel behavior, which not only refer to their travel decisions, but also includes their 

responses to the advanced traveler information systems. 

3.1 Overview of Conceptual Structure 

Two concepts are fundamental to both spatial analysis and transportation: site and 

situation. Site refers to the geographical characteristics of a specific location, while 

situation concerns the site's relationships with regard to other locations. Therefore, 

modeling the site and situation lies in the core of integration of spatial analysis and travel 

behavior. Meanwhile, emphasis is also placed on addressing the spatial pattern of 

different scales. Figure 2 presents the study objects of different scales. On the residence 

level, emphases have been placed on modeling the site from a microscopic perspective, 

e.g. capturing the built environment around the residences. On the district level, 

consideration has been given to both site and situation, while on the city level, modeling 

the situation of its components is highly significant and should be focused upon. 
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Residence 

Distnct 

Built Environment: Site 

University Campus: 
Site & Situation 

City: Situation 

Figure 2. Study objects of different scales 

3.1.1 The Model Structure 

In an urban transportation system, people who travel, their travel behavior, and 

the environment of space in which they travel are three important dimensions. To better 

understand their interrelationships, the Social Cognitive Theory (SCT) (Bandura, 1986) is 

borrowed here. It hypothesized that there are reciprocal relationships between the 

characteristics of a person, the behavior of a person, and the environment in which the 

behavior is performed. However, the two-way influence between those three elements 

does not mean the strength of the associations between each pair is perfectly symmetrical, 

nor does it mean that the interactions happen simultaneously (Bandura, 1986). Similarly, 

it is a hypothesis that travelers, their travel behavior, and the environment (includes not 

only the physical environment but also the soft environment, e.g. information technology 
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development) are intertwined with each other. Figure 3 is a simplified representation of 

the interplay between the elements. Since the causality of these relationships cannot be 

effectively captured in statistical models, correlation can instead be captured. The 

emphasis is to study the travel behavior and the factors related to it. 

Travel 

ATIS 

Walk more Young student 

Drive more General Population Metropolitan region 

Decision change 

Campus as 
special generator 

denotes association > denotes evolvement 

Figure 3. Conceptual framework 

More interestingly, there is a sequential evolvement in travelers' life stages and 

their travel behaviors. As the life stage changes, the environment surrounding the traveler 

also changes, which is accompanied by a different mobility level, and consequently, the 

different travel behavior. Assume there is a traveler. When he was still a single 

undergraduate student, he lived on-campus in order to have greater access to educational 

and other activities and also to interact socially with his peers. The campus acted as the 
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core of his daily life, akin to a relatively insulated and physically bounded environment. 

As most of his trips were of a short distance, he usually walked or bicycled. Later on, he 

enrolled in a graduate program and got married. He no longer lived close to campus, 

considering the need to seek balance between his study and work. The campus then acted 

more like a routine anchor, not necessarily being the core of his daily life. He had to drive 

much more due to the distance between school and home, but he still walked when he 

was around the campus. Later on, like other people in the general population, he had a 

job and a family after graduation, prompting his decision to move to a suburban 

community. He needed to find a balance between travel, work, and personal business, 

e.g., parenting responsibilities. Driving alone and carpooling with his family became his 

dominant trip mode. In short, from a traveler's life changes, travel behavior with 

substantial evolution over time can be observed. Similarly, in the same urban region with 

a mixed population, it is important to study the disparity of travel behavior among 

different subgroups of the population. A case study for a certain subgroup of travelers 

may improve understanding of special travel needs and subsequently benefit the accuracy 

of the regional travel demand model. 

Besides the long-term travel behavior evolvement based on personal life changes 

mentioned above, another evolvement of travel behavior is short-term travel decision 

adjustment based on the traveler information received. This change has been brought by 

the unprecedented development of traveler information distribution in recent years. 

Compared with the last decade, both personal electronic devices and information 

technologies have advanced considerably. Today, people can quickly access the internet 

or connect with a GPS service through portable devices such as smart phones and tablets, 
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via which traveler information can be acquired almost anywhere, anytime. This soft 

environment represented by the rapid availability of information has changed people's 

travel decisions by distributing both pre-trip and real-time en-route travel information 

more quickly, widely, and effectively. To sum up, the accessibility to travel information 

and its possible impact to travel behavior is worth studying. 

3.1.2 A Special Trip Generator 

The conceptual structure of a special trip generator with an alternative friendly 

environment is presented in Figure 4. The hypothesis is that a ring of mobility associated 

with this special trip generator exists. If a university campus is the special trip generator 

here, the figure shows three rings, each characterized by specific mobility considerations. 

" Transit 

• Drive 

H Walk/bike 

Figure 4. Conceptual structure of a special trip generator 

Figure 4 shows three different rings according to how far it is from the center. The 

center of the special trip generator (A) is the core area, similar to an on-campus 

environment, which often related to a mixed land use and alternative mode friendly 
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environment. In such a context, the pedestrian space is the dominant trip mode, as most 

origins and destinations are accessible by sidewalks and bicycle facilities including 

bicycle path and parking racks, which favor non-motorized trips. The ring area around A 

is the near-generator area (B), which represents areas adjacent to core areas. The walking 

and bicycling space may lose some of its importance compared to the core area, but it is 

still dominant in this area. The outer ring area is the peripheral area (C), where mobility is 

dominantly provided by motorized transportation, with walking and cycling servicing 

very few residual functions, which are often leisure-oriented. 

3.1.3 The Bispace Model 

The premises in the previous section are only a mono-dimensional model if only 

non-spatial attributes such as social-economic properties without a spatial label are 

considered in the model. In a mono dimensional model, there is no need to consider how 

the dependent and independent variables are distributed on a map; they are both 

unmappable. However, if the location information is added into this mono-dimensional 

model, it becomes bi-dimensional; as for every variable, how it looks from space is 

stressed. That is to say, in the bispace model, both the site and situation are captured. The 

bispace model is necessary, because if observing from space, all the three elements show 

spatial patterns: land use clusters partially due to zoning systems; the population clusters 

based on people's economic status, e.g. communities with properties of different price 

level; and the environment and personal characteristics that may influence the travel 

decision together or separately, which shape travel behavior clusters in space. This 

tendency usually is more distinct with a conglomeration of certain groups of populations 

or special land use in space, such as colleges or military bases. As all three elements are 
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embedded in space, spatial impacts are imposed on the site and its relationships. To this 

end, the mono-dimensional model seems plain as it discards the spatial projection of the 

data and the spatial relationships among the data. The mono-dimensional model yields an 

incomplete analysis of the data and the related factors. 

Therefore, a bispace model must satisfy one or both of the following criteria: 1) 

capture the site-specific characteristics of the sample (site); 2) capture the spatial 

distribution of the samples and their associations (situation). Therefore, a spatial model 

actually becomes a model of the object investigated in bispace (space, attribute). Its 

outcomes are dependent on the geographical positioning of objects within the model. 

That is to say, the results from a spatial model will not remain the same when we 

rearrange the sample to change the spatial distribution of values under investigation. 

3.2 Overview of Methodologies 

The methodological scope of this study is relatively detailed and extensive as the 

dissertation is an interdisciplinary study, integrating advanced GIS technology and spatial 

statistics into travel behavior analysis. A wide variety of different research methods are 

applied for answering the research questions, including: 

• Literature reviews; 

• GIS data mining and data processing: Analyzing quantitative spatial data, 

including econo-demographic data from census surveys, travel survey data, 

land use data. Behavior data with geographical information are stored and 

managed by GIS software. GIS software is used to combine data from 

different sources based on geographical location despite the different format 

from their original sources. This can aid the data processing step in the later 
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analysis, e.g. error and outlier identification, proximity analysis (buffer area 

analysis), built environment variable creation, network analysis, data 

clustering and extracting. Geo-imputation is used to assign synthetic locations 

to samples whose exact locations are unknown but are needed for research 

purposes; 

• Cross-sectional study: it is used to capture the various associations in this 

study. These associations include those between built environment and trip 

making; those between students' personal and residential characteristics and 

trip making; and those between various factors and people's response to ATIS, 

etc. A shortcoming of using cross-sectional surveys is that only a picture of 

associations at one specific point in time is obtained, and it may not reveal 

long-term variance clearly. Though effort is made to compare young college 

students with the general population to emphasize the difference in travel 

preference due to different life stages, the data is not a time-series and 

demonstrates only a very general tendency of travel decision made by younger 

college travelers versus travelers from the general population. 

* Spatial model: it is used to define the relationship between travel behavior in 

geographic reality and how that reality is captured in the form of a statistical 

model containing both associations between variables and emphasizing these 

associations on locations. To meet this need, the spatial models are combined 

with a cross-sectional study. 
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• Spatial analysis: includes the development and application of statistical 

techniques for the proper analysis of spatial data which, as a consequence, 

makes use of the spatial referencing in the data. 

• Visualization of modeling results: instead of showing the associations 

obtained from models merely by mathematical equations, it is important to 

display the spatial pattern using GIS visualization. Interactive GIS 

visualization also allows for the ability to explore different layers of the map, 

to easily target research region by zooming in or out, to do a query or to 

change the visual appearance of the map based on the need for different 

themes. Since visualization can provide a more direct picture of how factors 

or associations change in space, it can benefit policy or decision making also. 

In combination, these methods aim to provide a coherent and integrative answer 

to the research questions. In summary, two relationships are emphasized in this 

dissertation: 1) the association between travel behavior and built environment (physical 

environment); 2) the association between travel decision and ATIS (soft environment). 

Two cases are discussed around the topics: 1) the general population and 2) the university 

student. Three scales are explored: 1) residence level; 2) generator level; and 3) regional 

(city) level. A summary of different perspectives and relative methodology is presented 

in Figure 5. 
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Info acquisition 

General Population 

Data collection 

Travel Decisions 
• Trip rate 
• Trip mode 

College Student 
• Young people 
• Lower income 
• Busy schedule 

Spatial Analysis 
• Special generator 
• Ouster analysis 

Data Process 
• Geo-imputation 
• Capture built envir 

City 
• Buitt environment 
• Density 
• Accessibility 

Regression model 
• Aspatiat global model 
• Local model capturing 
Spatial heterogeneity 

Change Decisions 
• Change depart time 
• Change mode 
• Cancel trip 
• Change route 

Campus (special generator) 
• On-Campus 
• Near-Campus 
• Farther-from-campus 

toATIS 

Life stage evolve 

Decision evolve 

Figure 5. Summary of methodology 

3.3 Methodology Specifications 

The methodologies used in the following chapters are presented here: 

3.3.1 Geo-imputation: a Synthetic Method 

Geographic imputation is a method used to assign synthetic point locations to 

geographical data which have only zonal information instead of exact point information 

(latitude/longitude). Therefore, it is an effective method to disaggregate data from a 

larger geographic unit. Random points are first assigned within the zone given the zone 

ID is known. Random assignments are repeated several times, similar to a simulation 

procedure. Later on, the random assignments are compared with each other to check 

whether different assignments lead to similar results. If similar results can be obtained, it 
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means the random error could be neglected, and the synthetic points can be used to 

replace the actual location. Since geo-imputation is a fundamental method used by this 

study to process spatial data before modeling, determining its accuracy is important; 

therefore a special discussion is provided in Chapter 4. The data used by later chapters 

will be processed by applying this method. 

3.3.2 Network Based Buffer: Capturing Built Environment 

Studies of spatial analysis often use circular buffers around residences to measure 

land use around a residence, including buffers with a radius from 0.25 miles to 1.0 mile 

(Brownson et al., 2009). However, a circular buffer around a residence is not accurate 

enough to capture built environment as it may contain area and roadway segments which 

are not accessible to this residence, even contain unusable land use such as a large body 

of water. 

Furthermore, with a fixed radius buffer, a circular buffer does not fully represent 

the local accessibility of a residence, since accessibility mainly depends on the network 

instead of how far it can be covered by direct distance. Therefore, different from the 

circular buffers with a fixed distance, a network buffer around a residence is created by 

connecting the farthest points along the roadway which areaccessible to the residence 

within a fixed travel distance. A benefit of the network buffer is that it is adaptive to the 

roadway around the residence with no fixed shape. 

Figure 6 shows some examples of using circular buffers versus a line-based 

network buffer, all with a buffer size of 0.25 miles (equivalent to 15 minutes walking 

distance). From the graphs, although the church and restaurant are within the 0.25-mile 

circular buffer of the residence, they actually belong to the other community which does 
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not have a direct road connection with the residence. Similarly, there is only one bus stop 

within 0.25 miles in Figure 6 (b) but a circular buffer will cover two bus stops. Thus, it 

can be seen that using a circular buffer cannot capture the actual built environment 

accurately. Also, a larger area of the network buffer usually represents a grid network 

around the residence with higher local accessibility since the network buffers are closer 

to a circle when a residence has accessibility in all directions with a grid style 

neighborhood, as shown in Figure 6(c). 

Figure 6. Examples of using different buffers 
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Several measurements can be calculated to capture the neighborhood type within 

the network buffer, including total length of all the roadways, number of intersections, 

number of cul-de-sacs, and the area of the network buffer. Land use characteristics have 

shown greater associations with walking using line-based road network buffers than 

circular buffers (Oliver et al., 2007). Also, researchers need to carefully consider the most 

appropriate buffer with which to calculate land use characteristics. Literature in 

epidemiology has applied network buffers to explore correlations of built environment 

with physical activity and health issues such as obesity (Brownson et al., 2009). However, 

network buffers have not been used widely in transportation for measuring spatial 

characteristics. 

3.3.3 GWR: Spatial Heterogeneity 

Spatial regression methodology is used in this study to capture spatial 

heterogeneity, also known as spatial variance of association. Geographically Weighted 

Regression (GWR) is a non-parametric methodology used for the investigation of 

geographical drifts in regression parameters. Specifically, GWR relaxes the assumption 

that estimated parameters in traditional regression models hold globally. Note that GWR 

performs a regression for each residence / using a subset of the residences that are 

spatially proximate to /; this nearby area is named "kernel," similar to a buffer area 

(shown in Figure 7). The size (distance in space) of the kernel is termed "bandwidth". If 

fixed bandwidth is used for every regression location, then the number of residences 

(local sample size) for each regression will be different as residences are not usually 

distributed evenly in the space. In areas with higher residential density, the local sample 

size will be larger, while in areas with sparse residences, the local sample size will be 
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smaller (demonstrated by Figure 8). This causes a problem for some residences, as there 

are no other residences in its kernel when a fixed bandwidth is used. To fix this problem, 

an adaptive kernel can be used, which ensures the bandwidth is selected so that each 

residential location in the sample has the same local sample size. 

X regression point tvj It tt*wai0H of data point/at regression point/ 
• data point is the dwtonce between regression point/and data point/ 

Figure 7. Definition of kernal and bandwidth 

Source: (Fotheringham et al., 2002) 

• data point 

Figure 8. Demonstration of local regressions 

Source: (Fotheringham et al., 2002) 
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After the kernels are chosen, the local models are weighted and estimated by 

using sub-samples (households) within the kernel of each regression location, where the 

weights of each household are inversely proportional to their distance from the regression 

location. This means that the households near the regression location (household i) 

contribute more in the local model. For each location, both the sub sample within the 

kernel and the weights are different so that the results of local calibration are unique to a 

particular location. By plotting the results of these local calibrations on a map, surfaces of 

parameter estimates, or any other display which is appropriate, can be generated. 

Therefore, when GWR is applied, key decisions must be made regarding 1) a weighting 

function (the shape of the kernel), and 2) the bandwidth of the kernel (the size of the 

kernel). The weighting function usually has a minimal effect on results, while bandwidth 

may affect results markedly (Lloyd, 2007). Only if there is little variation in the local 

observations do the global observations provide reliable information on the local areas. 

For each residential location, both the sub sample within the kernel and the 

weights are different so that the results of local calibration are unique to the particular 

location. In its most basic form, the GWR model is described as follows (Fotheringham et 

al., 2002): 

Vi = Pio + ILi PikXik + * (Equation 1) 

Yi = dependent variable for sample i (i = 1, 2,. . . , n, where n is the number of 

observations); 

fii0= constant for sample i; 
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f3ik= the parameter at location z for explanatory variable Xjfc; 

xik = explanatory variables of the kth parameter for residence i, 

e, = error term at location i, 

p = number of estimated parameters. 

Considering different type of dependent variables, e.g. trip frequency is a non-

negative count variable, whether access ATIS or not is a binary variable, different forms 

of GWR are provided here. 

For Logistic GWR: 

In (odds ratio of Probi) =ln(Pi0 + ££=1 fr^x^ + £j) (Equation 2) 

For Poisson GWR: 

InCft) = Pto + Ip
k=t Pikxik + Ei (Equation 3) 

Note that for each location, the fi parameter can be different. The model is fitted 

using a technique known as iteratively reweighted least squares (Fotheringham et al., 

2002). Adaptive kernel, the bi-square kernel, is used to calculate the weights. Adaptive 

kernels are useful when there is a large variation in the geographical density of the 

observed data (Fotheringham et al., 2002). The kernels have larger bandwidths where the 

data are sparse in space and have smaller bandwidths in locations where samples are 

plentiful. The weights are defined by: 

Wij = i (llui u|ll /^»i) ] i/||ui—Uj|| < Gi (Equation 4) 
^0 otherwise 
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The parameter G (the bandwidth) regulates the kernel size, and ||Uj—Uj|| is the 

distance between residential locations / and j. When calibrating the model, the kernel 

bandwidth is determined by minimization of the Akaike Information Criterion (AIC), 

which is a measure of goodness of fit and allows finding a model that best explains the 

data with fewer estimated parameters. The AIC of the model with bandwidth G is given 

Where RSS(G) is the residual sum of squares with bandwidth G; N is the number 

of observations; K(G) denotes the effective number of parameters in the model with 

bandwidth G, respectively. However, since the degrees of freedom for GWR models are 

typically small, a small sample bias adjustment in the AIC calculation is appropriate. The 

Corrected Akaike information Criterion (AICc) is then used to address this bias (Chow, 

1976, Fotheringham et al., 2002). AICc is defined as follows: 

by: 

AIC(G) = Nln(RSS(G)) + 2 K(G) (Equation 5) 

RSS(G)=Sf=1£t
2 (Equation 6) 

AICc(G) = AIC(G) + 2 K(G) (K(G)+1) 

N-K(G)-1 
(Equation 7) 

Given the characteristics of non-parameter models (no fixed model for the whole 

sample), the likelihood ratio test cannot be done to evaluate these models. The current 
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statistical tests that answer whether the GWR model is better than a global regression 

include Monte Carlo simulations and the Leung test. However, they are still questionable 

(Paez et al., 2002). While the Lagrange Multiplier (LM) test is reported by some 

researchers as a better test (Paez et al., 2002), it cannot be done using available 

commonly-used estimation software. AIC is widely used to compare global models with 

local models, or to assess local models with local models with different bandwidths 

(Fotheringham et al., 2002, Lloyd, 2007). Improvements in the AIC that are larger than 2 

or 3 are typically used in relevant literature as criterion to judge whether the 

improvements due to local models are large enough (Fotheringham et al., 2002, Lloyd, 

2007). If the effective number of parameters K is small relative to the number of 

observations N, then the difference between AIC and AICc is negligible (Chow, 1976). 
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4. THE ACCURACY OF GEO-IMPUTATION 

As stated in previous chapters, understanding travel behavior and its connection 

with infrastructure and land use is critical for travel demand modeling. Especially given 

the new developments in spatial analysis, integrating built environment variables in 

estimation of disaggregate travel demand models is gaining momentum. To better 

understand associations between travelers' behavior and their residential location and 

surrounding land uses/infrastructure, researchers first calculate built environment 

characteristics surrounding residential locations and use the variables as correlates in 

behavioral models. To create new variables in buffers surrounding a residence, exact geo-

coordinates of survey respondents' residences are needed. This spatial information can 

then be integrated and analyzed to explain travel behavior of survey respondents. 

Unfortunately, conventional travel behavior surveys such as NHTS and census surveys 

do not publicly reveal the exact residential location of respondents due to confidentiality 

concerns. In such situations, if the respondent's zone of residential location is known, 

then zonal average socio-demographic measurements can be used as correlates in models 

to represent the average land use variables surrounding a specific residential location. 

However, using zonal averages can create measurement errors and reduce the local 

variation that may exist in reality. 

This chapter presents a method: geo-imputation, which can overcome the problem 

of not knowing the exact geo-coordinate location of a household. It can assign household 

to an exact geo-coordinate location (lat-long). Analyses are conducted to evaluate 
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whether such assignments of geo-coordinates are relatively accurate and if so what are 

the implications. 

4.1 Data Description 

Spatial information was extracted from the exact geo-coordinate level data from 

Charlotte, North Carolina (N=3,310 households), and the Research Triangle, North 

Carolina (N=4,724 households). Not all samples from the surveys are used for this 

analysis. Only those with TAZ information are used; therefore, the final dataset is 

composed of 4,724 households from the Research Triangle area and 3,310 households 

from the Charlotte area. 

Figure 9 shows the study areas and sampled household locations in both regions. 

Other data used in this analysis include boundary files, e.g. TAZ, census block, tract, 

public maintained roadway, transit stop and other GIS based files. 

Figure 9. Study areas and actual residences 
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Among the 1,408 TAZs in the Research Triangle area that have at least one 

household sample, the number of sampled households in TAZs varies from 1 to 38, with 

the lower number in suburban regions and higher samples in urbanized regions. The 

central part of the Greater Triangle Area is highly populated, while the western part is 

mainly farmland with a few residential areas. Among the 1,422 TAZs in the Charlotte 

Area that have at least one household sample, the number of sample households in TAZ 

varies from 1 to 19, with the highest sample density concentrated in the central part. 

4.2 Methodology of Geo-imputation 

4.2.1 Framework 

The methodological framework for the geo-imputation is presented in Figure 10. 

Aggregate households into TAZ 

Synthetic/centroid assignment: 
Create Ni random points in TAZi 

Create centroids for 
Census blocks 

Create buffer areas around assigned residences 

Compare access variable in buffers for actual, centroid, & 
synthetically assigned residences 

0.25/0.50/0.75 
mile buffers 

Roadway network 
Transit stops file Ni (number of residences in TAZ) 

Original household travel data file 

Calculate access variables in residential buffers 

Figure 10. Methodology framework of geo-imputation 
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A key issue is that of agreement or concordance between accessibility measures 

based on actual geo-coordinates and those created with synthetic semi-random 

assignment Actual residences are more likely to be clustered together in locations with a 

higher density of roadways, whereas synthetic semi-random assignment will provide 

more scattered residences. Therefore, the synthetically-based accessibility measures may 

have a relatively higher random error, reflected in higher dispersion, i.e., greater variance 

or standard deviation. However, the extent of systematic errors is unclear. Systematic 

errors can be observed if the means of the calculated synthetic accessibility variables are 

consistently above or below the means based on actual residential locations. 

Both TAZ and census block are used as the base to assign synthetic residence. 

The reason to use the census block is that, if the TAZ level assignment cannot obtain 

equivalent synthetic residences as actual one, further assignment would be conducted to 

test whether using smaller geographic units can reduce the error in the accessibility 

measure and obtain a more realistic distribution of roadway length in buffers. If the TAZ 

level assignment can obtain reasonable synthetic residences, using a smaller level to 

assign is not needed due to substantial heavier calculation burden. 

The households in both databases are firstly aggregated to the zone (TAZ or 

census block) level, the most commonly used geographic unit in transportation analysis. 

Then the total number of residences in each zone can be obtained. Two assignment 

methods (block centroid and synthetic semi-random) are applied with the condition that 

the total number of randomly assigned residences for each zone equals the aggregated 

number of sampled residences in that zone. The synthetic assignment is constrained to 

residences on local or arterial roadways, avoiding freeways or ramps as physical 
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locations of residences. Next, buffers of various sizes (0.25, 0.5, and 0.75 miles) are 

created around these the centroid and synthetically assigned residences. Accessibility 

measures of roadway length and transit stops within each buffer are calculated. The 

analysis is repeated using the finer level of census block instead of TAZ. Then the 

calculated average roadway length and transit stops for each TAZ and different buffer 

sizes are compared using statistical tests. Specifically, the roadway miles in buffers are 

analyzed for the exact residential locations, block centroid locations, and synthetic 

roadway-based randomly assigned residential locations. While the synthetically assigned 

locations/addresses will not, in all likelihood, be the true addresses, comparisons with the 

true addresses will allow for determining the extent of the errors in accessibility variables. 

Lastly, inferences are drawn about the geo- imputation. 

4.2.2 Synthetic Assignment 

A sample assignment screenshot is provided in Figure 11. 

Figure 11. Assigning residences to each TAZ along roadways 
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Synthetic residences are created in relevant TAZs using ArcGIS. An ArcToolBox 

called "Create Random Points" is used to randomly place a specified number of points 

within an identified area. If Ni households are located in TAZ i based on the travel survey, 

then Ni synthetic random points are created within TAZ i. A previous study (Khattak and 

Wang, 2011) has shown that synthetic semi-random assignment, which adds a constraint 

that all residences must be located along roadways, is a more realistic method than using 

completely random assignment of residences. Synthetic semi-random assignment is the 

preferred method to randomly assign residence in TAZs. Therefore, the roadway network 

is used as the constraining feature. All the residences are assigned along roadways, and 

with a further constraint that they cannot be located on freeways, bridges and ramps. 

4.2.3 Creating Zonal Centroids to Represent Residences 

Instead of semi-randomly assigning the residences to certain roadways, 

researchers usually use the centroid of a zone (the geometric center) to represent 

residential locations (Sultana, 2002, Jones et al., 2010). Using a centroid is a convenient 

way of obtaining synthetic locations of residences. However, the location of a centroid in 

a zone is not necessarily a reasonable place to locate residences, e.g., residences can end 

up in unusable land, away from roadways. In this study, the census blocks which have at 

least one household sample are selected for comparison of actual residences, census 

block centroid assignment and synthetic assignment. Buffers of various sizes are created 

around census block centroids to calculate accessibility measures. 

4.2.4 Buffer Sizes 

Different buffer sizes are used to test their associations with calculated roadway 

length. Three different sizes (shown in Figure 12) are used to create circular buffers 
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around each household's residential location in the sample. A residence is highlighted, 

showing the roadway surrounding the residence and two transit stop locations in the 

circular buffer. The buffer sizes are respectively 0.25, 0.5, and 0.75 miles. Using a 

walking speed of 3 mph, 0.25 miles will be a 5-minute walk and 0.75 miles will be a 15-

minute walk. These buffer sizes are selected based on the feet that micro-factors in the 

neighborhood are well captured within these thresholds. Evidence in the literature 

indicates that travelers typically are willing to walk to public transit a distance of 0.25 to 

0.75 miles (O'Sullivan and Morrall, 1996). Furthermore, built environment research also 

uses these buffer sizes to analyze walkability or transit access around residences 

(Brownson et aL, 2009, Kligerman et aL, 2007). 

0.25 miles buffer 

in 
0.50 miles buffer 

0.75 miles buffer 
E3 

Figure 12. Three buffer sizes used for each residence in the dataset 

4.2.5 Comparison of Accessibility Measurements 

Comparing average roadway length within buffers 
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Roadway length in a buffer is a measure of network connectivity and network 

accessibility. Student t-statistics were used to test the statistically significance of 

difference (5% level) between accessibility measures in buffers when using synthetic 

assignment and actual residential locations. Only the means of samples in the geographic 

unit are compared. This is because we cannot directly compare actual residence with a 

particular synthetic residence since there are multiple synthetic residences in most of the 

zones. That is, one-to-one equivalence (matching) of a particular synthetic residence with 

an actual residence is not possible within the scope of this study. 

Comparing roadway leneth within buffers bv zone 

To compare roadway length within buffers by zone, average roadway length is 

calculated for each zone. Figure 13 demonstrates the calculation of average roadway 

length in three hypothetical zones. 

( Actual residence X Synthetic residence G CentroM 

N-3 
Avg. 01-3 

| Zonal Av wag* | Avg. X1-3.5 
Ava. Xc-2.8 

N-1 
Avg. 02=3.2 
Avg. X2= 3.6 
Ava. Xc-2.9 

N*>2 
Avg. 03-3.4 
Avg.X3«3.8 
Ava. Xc-3.1 

Figure 13. Demonstration of calculating zonal average 

Each zone has three different average roadway lengths in buffers that are 

associated with the actual (observed) residence, and the synthetic residence if all the 
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sampled residences are coded at the zone centroid. A sample calculation of the mean of 

roadway length for the actual residence (Oj), synthetic residence (Xj), and the centroid 

(XcO is shown. 

After obtaining the means for the zones, several goodness-of-fit measures are 

calculated to compare the actual values with synthetic values. These included: 

Percent root mean squared error (PRMSE) is a widely used measure of accuracy 

to gauge the differences between values predicted by a model or an estimator and the 

values actually observed in the field. 

(y UvgX,  -  AvgO ,} KN -1)}5 * 100 
PRMSE= ^ 1 \ (Equation 8) 

fc jAvgOj /N)  
Where: 

AvgXj is the mean of accessibility variables in buffers around synthetic 

residences in zone j; 

AvgOj is the mean of accessibility variables in buffers around actual residences in 

zone j; 

N is the number of zones. 

Mean absolute percentage error (MAPE) is the absolute difference between 

observed and synthetic value, divided by the actual value. This measure is used to 

overcome the disadvantage of PRMSE heavily weighting extreme values by squaring 

them. 
(Y ( |  AvgX -  AvgO,  |  j  AvgOi)Y 100 

MAPE= -=* — (Equation 9) 
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4.3 Comparison Results 

4.3.1 Roadway Length Comparison on Different Geographical Unit 

The descriptive statistics of roadway length in buffers around synthetic residences 

(TAZ level and block level), block centroid and actual residences are listed in Table 1. 

Table 1. Descriptive statistics for roadway length at different levels 

a) for the Research Triangle, NC 

Assignment Mean Min 

TAZ level 
Synth. 

Assgmt. 

1st 

2nd 

3rd 

4th 

Block Centroid 

Block level 
Synth. 

Assgmt. 

1st 

2nd 

3rd 

0.26 

0.26 

0.27 

0.26 

0.00 

0.25 

0.25 

4th 

0.27 

0.25 

Max 

7.02 

7.84 

8.27 

8.09 

8.16 

8.24 

8.20 

8.18 

8.27 

SD 

1.05 

1.05 

1.06 

1.06 

1.26 

1.04 

1.03 

1.04 

1.04 

Variance 

1.10 

1.09 

1.12 

1.12 

1.58 

1.07 

1.07 

1.07 

1.08 

%SD/ 
Mean 

51 

51 

51 

52 

67 

50 

49 

49 

49 

Variance/ 
Mean 

0.53 

0.53 

0.54 

0.55 

0.83 

0.51 

0.51 

0.51 

0.51 

Actual Res. 0.00 8.20 1.04 1.08 48 

1st 0.54 25.60 3.97 15.73 55 
TAZ level 

Synth. 
Assgmt. 

2nd 0.72 26.21 3.99 15.89 55 

3rd 0.54 25.91 3.98 15.85 55 

4th 0.55 26.25 3.97 15.75 55 

Block Centroid 0.02 26.84 4.19 17.57 62 

1st 
Block level 

Synth. 
Assgmt. 

2nd 

3rd 

4th 

7.32 

7.34 

7.34 

7.36 

0.51 26.93 3.90 15.24 53 

0.54 26.69 3.93 15.46 54 

0.65 26.65 3.91 15.31 53 

0.59 26.80 3.93 15.41 53 

0.50 

2.18 

2.21 

2.20 

2.18 

2.48 

2.08 

2.11 

2.09 

2.09 

Actual Res. 7.51 0.51 26.67 3.96 15.71 53 2.09 

TAZ level 
Synth. 

Assgmt. 

1st 15.23 1.19 45.98 8.46 71.60 56 

2nd 15.19 1.06 45.57 8.49 72.11 56 

3rd 15.24 1.08 46.40 8.47 71.70 56 

4th 15.26 1.04 44.27 8.44 71.24 55 

4.70 

4.75 

4.70 

4.67 

Block Centroid 15.11 0.04 45.77 8.58 73.69 59 4.88 

Actual Res. 15.53 1.48 45.19 8.32 69.28 54 4.46 
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b) For Charlotte, NC 

Buffers Assignment Mean Min Max SD Varianc 
e 

%SD/ 
Mean 

Variance/ 
Mean 

% 
difference 
of means 

1st 0.26 5.98 0.96 0.92 46.83 0.45 -3.76% 
TAZ level 

Synth. 
Assgmt. 

2nd 0.28 5.96 0.96 0.92 47.06 0.45 -4.23% TAZ level 
Synth. 

Assgmt. 3rd 0.15 6.41 0.96 0.93 46.83 0.45 -3.76% 

TAZ level 
Synth. 

Assgmt. 
4th 0.26 6.53 0.96 0.93 46.60 0.45 -3.29% 

0.25 Block Centroid 0.00 6.20 1.11 1.29 59.36 0.69 -12.21% 
Miles 1st 2.09 0.29 6.24 0.95 0.91 45.45 0.44 -1.88% 

Block level 
Synth. 

Assgmt. 

2nd 2.08 0.30 6.14 0.95 0.90 45.67 0.43 -2.35% Block level 
Synth. 

Assgmt. 3rd 2.10 0.29 6.26 0.94 0.88 44.76 0.42 -1.41% 

Block level 
Synth. 

Assgmt. 
4th 2.08 0.26 6.02 0.94 0.89 45.19 0.43 -2.35% 

Actual Res. 2.13 0.01 6.25 0.96 0.93 45.07 0.44 Base 

1st 0.83 20.37 3.55 12.61 49.58 1.76 -3.89% 
TAZ level 

Synth. 
Assgmt. 

2nd 0.81 20.09 3.53 12.48 49.16 1.74 -3.62% TAZ level 
Synth. 

Assgmt. 3rd 0.83 21.48 3.57 12.74 49.58 1.77 -3.36% 

TAZ level 
Synth. 

Assgmt. 
4th 7.21 1.00 21.13 3.56 12.64 49.38 1.75 -3.22% 

0.50 Block Centroid 0.10 21.42 3.79 13.53 53.46 1.91 -4.83% 
Miles 1st 7.31 0.76 21.42 3.52 12.38 48.15 1.69 -1.88% 

Block level 
Synth. 

Assgmt. 

2nd 7.28 0.86 21.59 3.51 12.30 48.21 1.69 -2.28% Block level 
Synth. 

Assgmt. 3rd 7.29 0.77 21.27 3.50 12.25 48.01 1.68 -2.15% 

Block level 
Synth. 

Assgmt. 
4th 7.27 0.68 21.51 3.52 12.39 48.42 1.70 -2.42% 

Actual Res. 7.45 0.54 21.38 3.59 12.89 48.19 1.73 Base 

1st 15.22 1.54 38.27 7.51 56.38 49.34 3.70 -3.24% 
TAZ level 

Synth. 
Assgmt. 

2nd 15.22 1.76 37.71 7.49 56.05 49.21 3.68 -3.24% 

0.75 

TAZ level 
Synth. 

Assgmt. 3rd 15.21 1.84 38.27 7.53 56.67 49.51 3.73 -3.31% 
Miles 

TAZ level 
Synth. 

Assgmt. 
4th 15.25 1.57 39.03 7.50 56.32 49.18 3.69 -3.05% 

Block Centroid 15.29 1.27 38.88 7.74 56.16 50.62 3.67 -2.80% 

Actual Res. 15.73 1.41 41.41 7.69 59.05 48.89 3.75 Base 

Note: Centroid values are the descriptive statistics weighted by number of samples in each block 
Grey cell indicates the sample mean is statistical significantly different (5% level) from the 

actual mean 

The four synthetic semi-random assignments yielded similar results. This 

indicates that synthetic assignments are reasonably stable. Furthermore, synthetic semi-

random assignments have consistently smaller means for roadway length in buffers 

compared with the actual residences. This is partly because in synthetic assignments 
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residences are not as closely clustered as in real-life. Hence the synthetically assigned 

residences have a greater chance of being in areas with lower density of roadways. The 

differences between random assignment and actual residences in terms of roadway length 

in buffers are statistically significant (5% level) for smaller buffer sizes (0.25 and 0.50 

miles). Furthermore, the difference in mean, which measures the extent of errors in the 

variable, is larger for smaller buffer sizes (5% for 0.25 miles buffer but about 2% for 0.75 

miles buffer). However, systematic errors may be limited as reflected in the means of 

synthetic assignment being lower and higher for 0.25 and 0.5 mile buffers respectively 

compared with the actual residences. There is empirical evidence for random errors 

reflected in larger standard deviations of the synthetic assignments compared with actual 

residences, especially for TAZ level assignment. However, the random errors are 

alleviated when random assignment is based on the census block level. 

Standard Deviations (SD) capture variations in the distribution of roadway 

accessibility. They are quite close for the four synthetic semi-randomly assigned 

residences and the actual residential locations. However, the block centroid shows larger 

standard variations than actual and synthetically assigned residences. To compare buffers 

with different means, the Coefficient of Variation (CV) is provided, which is a 

normalized measure of dispersion (also known as Relative Standard Deviation or RSD). 

The percentages of CV are below 100% indicating relatively low variance distributions 

and under-dispersion. Furthermore, for the same buffer sizes, synthetic semi-random 

assignment has slightly higher percent CV compared with actual residential locations. 

This implies that households tend to scatter more in space than in reality when assigned 

semi-randomly. Alternatively, clustering of households in real-life may reduce the 



59 

variability in the accessibility measure. Also, this may be due in part to the TAZ being a 

relatively large geographic unit, which gives higher levels of spatial freedom in semi

randomly assigning residences. Variance divided by mean captures the dispersion level in 

the distribution of roadway accessibility. If the sample variance is greater than the sample 

mean, the data shows over-dispersion; otherwise if the sample variance is smaller than 

the sample mean, it shows under-dispersion. The measurement of dispersion indicates 

that the roadway length is under-dispersion for small buffer size (0.25 miles) but it is 

over-dispersion for larger buffer sizes (0.50miles and 0.75 miles). 

The histogram distributions of roadway length in buffers around actual residences 

and synthetically assigned TAZ level, Census block level and centroid level residences 

are presented in Figure 14. 

a) For the Research Triangle, NC 
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b) For Charlotte, NC 

Figure 14. Distribution of roadway length variable for different level 

Note: The centroid-based distribution is weighted by number of samples in each block 
The horizontal axis represents the roadway length within the buffers, and the vertical axis 

represents the density. 

The distribution of roadway length in the above figure shows a bimodal 

distribution of roadway lengths for actual residences with a positive (right) skew. 

However, the distribution does not seem to be normal or lognormal. The differences 

between the mean and median are substantial for the centra id assigned residences and 

actual residences. This is partly because the block centroid may be located in unusable 

land. This may be the major reason for relatively large differences in block centroid and 

actual residences. 

If block centra ids are used as residential locations, as is the case in current 

practice, then the value of roadway accessibility measure is substantially less compared 



61 

with the actual locations of residences. Notably, the minimal roadway length for the 

block centroid is less than the buffer size (it can be zero for 0.25 miles buffer shown in 

Figure 14), so some of them may be located in unusable land. This may be the major 

cause of the large difference between the actual residences and block centroids. Also, the 

differences between block centroid and actual residences are statistically significant for 

all buffer sizes. Furthermore, block centroid assignments have substantially lower 

roadway lengths in smaller buffers (about 16% lower for 0.25 miles buffer and 9% lower 

for 0.5 miles buffer). This indicates that using census block centroids to represent the 

locations of residences can cause substantial errors. Table 2 presents the comparison of 

PRMSE and MAPE between assignments on TAZ level and census block level. 

Table 2. Error for roadway length in buffers around different levels 

a) For the Research Triangle, NC 

Buffers Assignment TAZ MAPE TAZ PRMSE Block MAPE Block PRMSE 

1st Synth. Assgmt. 22.15% 23.34% 19.62% 19.95% 

2nd Synth. Assgmt. 21.60% 22.94% 19.71% 20.88% 

0.25 Miles 3rd Synth. Assgmt. 21.31% 22.16% 19.48% 19.82% 

4th Synth. Assgmt 21.53% 23.33% 19.97% 20.31% 

Block Centroid 29.51% 32.23% 29.51% 32.23% 

"I* Synth. Assgmt. 16.06% 18.08% 13.10% 13.54% 

2nd Synth. Assgmt. 15.37% 17.56% 13.20% 14.06% 

0.50 Miles 3rd Synth. Assgmt. 15.41% 17.54% 12.79% 13.32% 

4th Synth. Assgmt 15.75% 17.55% 13.08% 13.48% 

Block Centroid 17.34% 24.24% 17.34% 24.24% 

1st Synth. Assgmt. 12.57% 14.03% - -

2nd Synth. Assgmt. 12.35% 14.09% - -

0.75 Miles 3rd Synth. Assgmt. 12.31% 13.66% - -

4th Synth. Assgmt 12.34% 13.90% - -

Block Centroid 11.73% 21.67% 11.73% 21.67% 
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b) For Charlotte, NC 

Buffers Assignment TAZMAPE TAZ PRMSE Block MAPE Block PRMSE 

1* Synth. Assgmt. 22.15% 23.34% 19.62% 19.95% 

2nd Synth. Assgmt. 21.60% 22.94% 19.71% 20.88% 

0.25 Miles 3rd Synth. Assgmt. 21.31% 22.16% 19.48% 19.82% 

4th Synth. Assgmt 21.53% 23.33% 19.97% 20.31% 

Block Centroid 29.51% 32.23% 29.51% 32.23% 

1* Synth. Assgmt. 16.06% 18.08% 13.10% 13.54% 

2nd Synth. Assgmt. 15.37% 17.56% 13.20% 14.06% 

0.50 Miles 3rd Synth. Assgmt. 15.41% 17.54% 12.79% 13.32% 

4th Synth. Assgmt 15.75% 17.55% 13.08% 13.48% 

Block Centroid 17.34% 24.24% 17.34% 24.24% 

1st Synth. Assgmt. 12.57% 14.03% - -

2nd Synth. Assgmt. 12.35% 14.09% - -

0.75 Miles 3rd Synth. Assgmt. 12.31% 13.66% - -

4th Synth. Assgmt 12.34% 13.90% - -

Block Centroid 11.73% 21.67% 11.73% 21.67% 

A traffic analysis zone or census block can contain more than one household 

sample. For zones with more than one sample, average roadway length for each 

TAZ/block is calculated. Averages by zones are then used to calculate the PRMSE and 

MAPE. The extent of errors from synthetic and block centroid assignments relative to 

actual residential locations indicates a lower systematic error with larger buffer sizes. The 

PRMSE and MAPE measures show that the errors for smaller buffer sizes (0.25 miles) 

are relatively large compared to larger buffers. Note that a value close to zero for these 

two measures means concordance between the actual and synthetically created 

accessibility variable. When the buffer size increases, the chance of overlap between 

actual and synthetic residences also increases, resulting in lower systematic error. These 

measures can be used for comparative purposes, though a PRMSE above 30% is often 
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considered high for transportation applications, which is beyond the range of acceptable 

accuracy. 

The results indicate that using smaller geographic units to semi-randomly assign 

residences can increase concordance between actual and synthetic assignments. 

Specifically, the difference of roadway length in 0.50 miles buffer between random 

assignment and actual residences is not statistically significant. Also, both the PRMSE 

and MAPE are relatively lower. However, since the computational burden increases 

substantially with a census block level synthetic assignment (using 3257 blocks instead of 

1400 TAZs); the improvement in concordance is rather marginal. 

4.3.2 Roadway Length Comparison on Urban vs. Suburban Area 

To explore positional differences between synthetic assignments and the actual 

residences, the TAZs are grouped into urban and suburban/rural classifications by using 

the Census 2000 Urbanized Areas boundary files. Figure 15 provides the urban vs. 

suburban/rural TAZ boundaries used in this analysis. 

a) in the Research Triangle b) in Charlotte Area 

Figure 15. Urban vs. Suburban TAZ boundary 
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The descriptive statistics for roadway length in buffers at the TAZ level by area 

type are provided in Table 3. 

Table 3. Descriptive statistics for roadway length at TAZ level for suburban/rural areas 

a) For the Research Triangle (unit=miles, N=3012 for urban, N=1712 for suburban) 

Buffer 

0.25 
Miles 

Urban 

suburban 

Assignment 

1 Synth. Assgmt. 
2  ̂Synth. Assgmt. 

3rd Synth. Assgmt. 

4 Synth. Assgmt 

Block Centroid 

Actual residence 

1 Synth. Assgmt. 

2nd Synth. Assgmt. 

3rd Synth. Assgmt. 

4 Synth. Assgmt 

Block Centroid 

Mean 

5.09 0.65 52.42% 

5.27 0.68 55.28% 

2.16 0.66 54.10% 

5.77 0.91 101.11% 
Actual residence 1.38 0.00 5.60 0.71 51.45% 

Max. 

7.02 
7.84 

8.27 

8.09 

8.16 
8.20 
4.57 

S.D. 

0.94 
0.94 

0.93 

0.95 

1.05 

0.93 

0.64 

%SD/Mean 

37.15% 
37.45% 

36.76% 

37.70% 

42.68% 

35.77% 

52.03% 

% difference 
of mean 
-2.6 

-3.46% 

-2.69% 

-3.08% 

-5.38% 

Base 

-10.87% 

-10.14% 

-10.87% 
-11.59% 

-34.78% 

Base 

1 Synth. Assgmt. 9.20 1.63 25.60 3.42 37.17% 

2"* Synth. Assgmt. 9.17 1.59 26.21 3.46 37.81% 

3  ̂Synth. Assgmt. 
urban 

9.18 1.39 25.91 3.44 37.47% 

4 Synth. Assgmt 9.19 1.52 26.25 3.42 37.21% 

Block Centroid 9.22 0.36 26.84 3.50 37.96% 

0.50 
Miles 

Actual residence 9.41 1.41 26.67 3.47 36.88% 

1 Synth. Assgmt. 

2nd Synth. Assgmt. 

suburban 
3"1 Synth. Assgmt. 

4th Synth. Assgmt 

Block Centroid 

0.54 15.85 1.95 52.00% 

0.72 15.88 2.02 54.01% 

0.54 16.04 2.03 54.13% 

0.55 14.87 2.01 53.46% 

0.00 16.77 2.42 69.14% 

Actual residence 4.20 0.51 17.49 2.19 52.14% 

-2.23% 

-2.76% 

-2.44% 

-2.34% 
-2.02% 

Base 

-10.71% 

-10.95% 

-10.71% 
-10.48% 

-16.67% 

1 Synth. Assgmt. 19.57 3.61 45.E 7.26 37.10% 

2nd Synth. Assgmt. 19.53 3.21 45.57 7.28 37.28% 

urban 
3 Synth. Assgmt. 19.58 3.92 46.40 7.23 36.93% 

4 Synth. Assgmt 19.59 4.07 44.27 7.22 36.86% 

Block Centroid 19.73 4.62 45.77 7.21 36.54% 

0.75 
Miles 

Actual residence 19.68 4.86 45.19 7.23 36.74% 

1 Synth. Assgmt. 1.19 27.85 3.61 47.63% 

2nd Synth. Assgmt. 1.06 32.89 3.73 49.54% 

suburban 
3"1 Synth. Assgmt. 1.08 24.17 3.73 49.21% 

4th Synth. Assgmt 1.04 27.42 3.71 48.62% 

Block Centroid 0.00 35.29 4.12 53.93% 

Actual residence 1.48 36.32 4.03 48.67% 

-0.56% 

-0.76% 

-0.51% 

-0.46% 

0.25% 
Base 

-8.45% 

-9.06% 

-8.45% 
-7.85% 

-7.73% 
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b) For Charlotte (unit=miles, N=2672 for urban, N=641 for suburban) 

Buffer Assignment Mean Min. Max. S.D. %SD/Mean 
% difference 

of mean 

0.25 
Miles 

Urban 

1* Synth. Assgmt. 0.29 5.98 0.91 40.09% -3.40% 

0.25 
Miles 

Urban 

2nd Synth. Assgmt. 0.28 5.96 0.90 39.65% -3.40% 

0.25 
Miles 

Urban 
3rd Synth. Assgmt. 0.31 6.41 0.90 39.47% -2.98% 

0.25 
Miles 

Urban 
4th Synth. Assgmt 0.26 6.53 0.90 39.47% -2.98% 

0.25 
Miles 

Urban 

Block Centroid 0.00 6.20 1.05 49.30% -9.36% 

0.25 
Miles 

Urban 

Actual residence 2.35 0.02 6.25 0.90 38.30% Base 0.25 
Miles 

suburban 

1* Synth. Assgmt. 1.14 0.26 5.51 0.59 51.75% -2.56% 
0.25 
Miles 

suburban 

2nd Synth. Assgmt. 1.09 0.27 4.17 0.52 47.71% -6.84% 

0.25 
Miles 

suburban 
3rd Synth. Assgmt. 1.11 0.15 5.18 0.54 48.65% -5.13% 

0.25 
Miles 

suburban 
4th Synth. Assgmt 1.14 0.30 5.59 0.60 52.63% -2.56% 

0.25 
Miles 

suburban 

Block Centroid 

1.17 

0.00 4.31 0.69 94.52% -37.61% 

0.25 
Miles 

suburban 

Actual residence 1.17 0.01 4.25 0.53 45.30% Base 

0.50 
Miles 

urban 

1st Synth. Assgmt. 

1.17 

0.99 20.37 3.29 40.77% -3.47% 

0.50 
Miles 

urban 

2nd Synth. Assgmt. 

1.17 

1.00 20.09 3.25 40.17% -3.23% 

0.50 
Miles 

urban 
3rd Synth. Assgmt. 8.13 0.93 21.48 3.29 40.47% -2.75% 

0.50 
Miles 

urban 
4th Synth. Assgmt 8.11 1.01 21.13 3.28 40.44% -2.99% 

0.50 
Miles 

urban 

Block Centroid 0.21 21.42 2.01 25.00% -3.83% 

0.50 
Miles 

urban 

Actual residence 8.36 0.54 21.38 3.31 39.59% Base 0.50 
Miles 

suburban 

1st Synth. Assgmt. 3.40 0.83 12.42 1.56 45.88% -3.68% 
0.50 
Miles 

suburban 

2nd Synth. Assgmt. 3.38 0.81 12.19 1.54 45.56% -4.25% 

0.50 
Miles 

suburban 
3rd Synth. Assgmt. 3.38 0.83 12.60 1.53 45.27% -4.25% 

0.50 
Miles 

suburban 
4th Synth. Assgmt 3.43 1.00 13.31 1.65 48.10% -2.83% 

0.50 
Miles 

suburban 

Block Centroid 0.10 11.38 1.73 57.67% -15.01% 

0.50 
Miles 

suburban 

Actual residence 3.53 0.68 11.43 1.49 42.21% Base 

0.75 
Miles 

urban 

1" Synth. Assgmt. 17.24 1.80 38.27 6.89 39.97% -2.87% 

0.75 
Miles 

urban 

2nd Synth. Assgmt. 17.24 1.76 37.71 6.85 39.73% -2.87% 

0.75 
Miles 

urban 
3rd Synth. Assgmt. 17.24 1.97 38.27 6.90 40.02% -2.87% 

0.75 
Miles 

urban 
4th Synth. Assgmt 17.25 1.87 39.03 6.88 39.88% -2.82% 

0.75 
Miles 

urban 

Block Centroid 17.29 2.01 38.88 6.81 39.39% -2.59% 

0.75 
Miles 

urban 

Actual residence 17.75 3.28 41.41 6.86 100.00% Base 0.75 
Miles 

suburban 

1* Synth. Assgmt. 6.90 1.54 19.47 2.64 38.26% -2.27% 
0.75 
Miles 

suburban 

2nd Synth. Assgmt. 6.85 1.96 19.97 2.66 38.83% -2.97% 

0.75 
Miles 

suburban 
3rd Synth. Assgmt. 6.87 1.84 20.39 2.67 38.86% -2.69% 

0.75 
Miles 

suburban 
4m Synth. Assgmt 6.89 1.57 19.75 2.69 39.04% -2.41% 

0.75 
Miles 

suburban 

Block Centroid 6.69 1.27 20.24 2.69 40.21% -5.24% 

0.75 
Miles 

suburban 

Actual residence 7.06 1.41 20.16 2.62 37.11% Base 

Note: Centroid values are the descriptive statistics weighted by number of samples in each block 
Grey cell indicates the sample mean is statistical significantly different (5% level) from the 

actual mean 
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The comparison between urban and suburban TAZ based synthetic results show 

that the differences between synthetic assignments and actual residences are concentrated 

in suburban/rural areas. Students' t-tests indicate that in suburban areas, statistically 

significant differences exist (5% level) between synthetic assignments and actual 

residences in terms of roadway length in all buffers. However, for the urban area, the 

difference is only significant for a smaller buffer size of 0.25 miles. Furthermore, 

roadway length in buffers is systematically lower than actual for the suburban/rural area. 

Also, roadway length in the smaller 0.25 miles buffer for urban area is two times that for 

suburban/rural areas. Also, the dispersion (standard deviation) in the urban area is higher 

than that of suburban/rural area. Suburban/rural areas have higher percent CV. 

Again, no statistically significant difference is found for larger buffer sizes (0.75 

miles) in the urban area of Charlotte. However, significant differences are found for 

smaller buffer sizes (0.25 miles). Unlike the Research Triangle Area, no significant 

difference is found in suburban/rural areas of Charlotte. More specifically, roadway 

accessibility in buffers using synthetic assignments is slightly lower than actual 

residences in urban areas of both the Research Triangle and the Charlotte region. 

However, the percentages are rather different for suburban/rural areas for these two 

regions (10% in suburban/rural area of Research Triangle, and 2% to 6% in 

suburban/rural areas of Charlotte). Overall, synthetic assignments in Charlotte gave 

relatively better concordance with actual residences in terms of the accessibility measure 

compared with the Research Triangle region, especially in suburban/rural areas. 
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4.3.3 Transit Stops in Buffers Comparison 

Due to limited availability of public transportation data, only Durham, Chapel 

Hill, and Raleigh from the Research Triangle are included in the analysis of transit 

accessibility measures. The distribution of transit stops in the area is shown in Figure 16. 

Figure 16. Transit stops in the Research Triangle Area of North Carolina 

Transit stops in buffers of different sizes are counted in the Research Triangle 

Area. Relevant descriptive statistics are shown in Table 4. Transit accessibility in 

residential buffers in terms of PRMSE is shown in Table 5. Note that most of the TAZs 

with one or more sampled residences had no transit stops. Such TAZs are excluded from 

further analysis transit accessibility. 
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Table 4. Descriptive statistics for number of transit stops 

TAZ level in Research Triangle, NC (N=1863) 

Buffer Assignment Mean Min. Max. S.D. SD/Mean % % difference of mean 

0.25 Miles 

1" Synth. Assgmt. 4.07 0 32 4.40 108.11% -0.73% 

0.25 Miles 

2nd Synth. Assgmt. 4.11 0 34 4.40 107.06% 0.24% 

0.25 Miles 3rd Synth. Assgmt. 4.10 0 34 4.51 110.00% 0.00% 0.25 Miles 

4th Synth. Assgmt 4.07 0 34 4.37 107.37% -0.73% 

0.25 Miles 

Actual Res. 4.10 0 25 4.41 107.56% Base 

0.50 Miles 

1* Synth. Assgmt. 14.92 0 68 13.58 91.02% 0.61% 

0.50 Miles 

2nd Synth. Assgmt. 15.13 0 71 13.64 90.15% 2.02% 

0.50 Miles 3rd Synth. Assgmt. 15.00 0 73 13.64 90.93% 1.15% 0.50 Miles 

4th Synth. Assgmt 15.04 0 72 13.60 90.43% 1.42% 

0.50 Miles 

Actual Res. 14.83 0 67 13.48 90.90% Base 

0.75 Miles 

1w Synth. Assgmt. 32.16 0 127 27.39 85.17% 0.78% 

0.75 Miles 

2nd Synth. Assgmt. 32.12 0 127 27.09 84.34% 0.66% 

0.75 Miles 3rd Synth. Assgmt. 32.15 0 127 27.03 84.07% 0.75% 0.75 Miles 

4th Synth. Assgmt 32.09 0 128 27.14 84.57% 0.56% 

0.75 Miles 

Actual Res. 31.91 0 126 27.34 85.68% Base 

Table 5. Errors in number of transit stops in Research Triangle Area 

Buffer Assignment TAZ PRMSE (N=1863) Block PRMSE (N=1160) 

0.25 Miles 

1st Synth. Assgmt. 44.56% 44.05% 

0.25 Miles 

2nd Synth. Assgmt. 49.74% 46.26% 

0.25 Miles 3rd Synth. Assgmt. 46.70% 44.39% 0.25 Miles 

4th Synth. Assgmt 51.11% 43.22% 

0.25 Miles 

Actual Res. Base Base 

0.50 Miles 

1* Synth. Assgmt. 25.30% 

NA 
0.50 Miles 

2nd Synth. Assgmt. 25.83% 
NA 

0.50 Miles 3rd Synth. Assgmt. 24.47% 
NA 

0.50 Miles 

4th Synth. Assgmt 26.61% 

NA 
0.50 Miles 

Actual Res. Base Base 

0.75 Miles 

1** Synth. Assgmt. 17.29% 

NA 
0.75 Miles 

2nd Synth. Assgmt. 17.06% 
NA 

0.75 Miles 3rd Synth. Assgmt. 17.34% 
NA 

0.75 Miles 

4th Synth. Assgmt 17.61% 

NA 
0.75 Miles 

Actual Res. Base Base 
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Transit accessibility did not differ statistically significantly (5% level) between 

buffers around synthetically assigned residences and actual residences. The number of 

transit stops for synthetic residences are slightly higher than that of actual residences. 

Due to their high dispersion, the percentages of CV are relatively high (more than 100% 

for the smaller buffer size). For actual residences, the CV is also relatively high, implying 

over-dispersion in transit accessibility. Furthermore, using a smaller spatial unit to assign 

synthetic residences did not improve the results, as indicated by PRMSE for TAZ level 

assignment versus a block level assignment. Nonetheless, synthetic assignments using 

larger buffer sizes (0.50 and 0.75 miles) can give greater concordance, e.g. PRMSE 

dropped by nearly one-half going from 0.25 miles buffer to 0.5 miles buffer. 

4.4 Summary of Findings 

This chapter determines the relative level of accuracy when exact geo-coordinate 

information is not available. Geo-coordinate imputation can potentially overcome the 

problem of not knowing the exact geo-coordinate location of a residence. It can 

synthetically assign a household to an exact location (lat-long). The question then is 

whether such assignment gives reasonably accurate results. This study explores if 

synthetic assignments of geo-coordinates are concordant with actual residential locations; 

and if so, what the implications for travel demand modeling are. Using behavioral travel 

surveys in North Carolina, 4,724 households in Research Triangle, NC and 3,310 

households in Charlotte, NC are extracted. These households are semi-randomly assigned 

to synthetic point locations within the TAZ or census block of the sampled residence. 

Three buffer sizes (0.25, 0.50 and 0.75 miles) are used to create boundaries around each 

residential location, and the roadway length within these buffers is calculated using 
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relatively detailed VDOT roadway centerline data available from ESRI. This is a key 

characteristic used to measure the built environment around a residence, e.g., a denser 

roadway network in a buffer implies greater connectivity and accessibility. The roadway 

length is calculated at both TAZ and census tract levels. Comparison between different 

assignments, different buffer sizes, and different geographic units are conducted. If the 

synthetic semi-random assignments can create equivalent residences that do not give 

statistically significant differences in accessibility measures from real residences, then the 

randomly assigned lat-long can be used to approximate residential locations and create 

new variables. By doing so, the confidentiality issue can be overcome to some degree. 

Although geo-imputation presented in this report does not produce the same effect 

on capturing roadway length in buffers around residences for different regions, (i.e., it 

works better in Charlotte than in the Research Triangle area), the comparison results can 

be summarized as follows: 

• Using TAZ information to synthetically assign residences is not equivalent to 

having actual household locations when analyzing roadway accessibility 

measures, i.e., roadway length within 0.25 mile buffers around residences. 

However, for larger buffer sizes (0.75 miles), the roadway accessibility 

measures created using synthetic assignment and actual residents are not 

statistically different (5% level), indicating good concordance with actual 

residences. For a 0.50 miles buffer, the results are mixed and depended on the 

study region. 
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• Assigning residences semi-randomly based on census blocks can provide 

greater concordance than synthetically assigning residences based on larger 

geographic units, (i.e., using the TAZ level). Lower PRMSE and MAPE are 

observed for the accessibility measures (roadway length and number of transit 

stops in buffers around residences) when census block is used for assigning 

residences. Census block assignment gave reasonable accessibility measures 

for 0.50 miles and larger buffer sizes. 

• The TAZ-based synthetic semi-random assignment gave shorter (2% to 5% 

less) roadway length in buffers compared to actual residences. The difference 

of roadway length between synthetic semi-random assignment and actual 

residence is larger in smaller buffers than in larger buffers, reflecting greater 

systematic measurement error when smaller geographic scales are used for 

analysis. 

• The measure of dispersion (variance divided by mean) shows that synthetic 

residences assigned based on the census block level are statistically very close 

to the dispersion of actual residences. However, synthetic residences based on 

the TAZ level have greater random error than synthetic residences based on 

the census block level. Furthermore, roadway length is under-dispersed for the 

small buffer size (0.25 miles). However, it is over-dispersed for larger buffer 

sizes (0.50 miles and 0.75 miles). 

• The standard deviation and percent Coefficient of Variation shows that 

residences have greater random error as they are more scattered in the TAZ 

boundary when synthetically assigned compared with actual residential 
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locations. Conversely, the actual residences are more closely clustered 

together in space, due to agglomeration, and therefore have smaller variance. 

• The results clearly indicate that using block centroid to represent residences, 

as is current practice, gives relatively large measurement errors when 

calculating accessibility measures of roadway length and number of transit 

stops in buffers. 
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5. BUILT ENVIRONMENT ASSOCIATIONS WITH TRIP MAKING 

By applying the geo-imputation method in the previous chapter, built 

environment measurements can be calculated based on the exact location of residences. 

This provides a basis to understand the connection between built environment and travel 

behavior. To appropriately implement land use policies, a fundamental question is 

whether there are associations between built environment and trip making and whether 

the implications from these associations can be generally used within a metropolitan area. 

This chapter addresses the association about the built environment and travel 

behavior from a spatial perspective by emphasizing spatial heterogeneity which possibly 

exists but has been rarely captured. The hypotheses intended for examination are whether 

built environments, including land use mixes and roadway density, are associated with 

different modes of trip to the same extent in study region. If yes, how to capture this 

potential spatial variation in association and what its implication is. A unique database 

using behavioral data combined with a variety of spatial data, taking advantage of 

emerging GIS technologies, is used for this purpose. Network analysis and geographical 

regression methods are used in this analysis to help answer the above questions. 

5.1 Methodology to Capture Built Environment 

Buffer analysis is used to capture the built environments around residences. 

Instead of using buffers with a fixed size, network based buffers (0.25 miles) are created 

around residences by using GIS network analysis module. A dynamic network based 

buffer can effectively represent the accessible area within 0.25 miles of the residence. 

Then various built environment variables within the buffer are measured. 
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To capture land use mix, public facilities are counted within network buffers 

created around residences. They included the number of restaurants, shopping stores, 

banks, bus stops, and churches. To capture land development density around residences, a 

satellite image product NLCD land Cover 2001 data for Virginia is used. Specifically, the 

land cover data is a raster database which has attributes of different land cover categories. 

For instance, four different land cover types based on percent of impervious surfaces of 

total land cover are identified in the database, including open space, low intensity, 

medium intensity and high intensity developments. Open spaces are usually parks, golf 

course and so on; low intensity developments include single-family housing units and 

areas with a mix of buildings and vegetation with 20%-49% impervious surfaces; 

medium intensity development category includes single-family housing units and areas 

with 50%-79% impervious surfaces; high intensity developments are areas where people 

reside or work in high numbers, and usually include apartment complexes, row houses 

and commercial/industrial developments with impervious surfaces accounting for 80% to 

100% of the total cover. The area of each land cover category is calculated, and then 

divided by total area of the buffer to produce a percentage for each category, which is a 

proxy variable of land use density. 

5.2 Data Description 

The behavioral data are extracted from the Virginia Add-on survey of NHTS 

(National Household Travel Survey) conducted in 2008 (survey period was from April 

2008 through May 2009). The area studied is Hampton Roads, a region located in 

southeastern Virginia with a population of approximately 1.7 million. The households' 

descriptive statistics are shown in Table 6 and are selected based on the typical variables 
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used in household trip production models (e.g., as reflected in the present Hampton 

Roads regional travel demand model or NCHRP 365). 

Table 6. Descriptive statistics for Hampton Roads, VA data (N=3,151) 

Variable Mean Std. Dev. Min Max 

Daily trips NTRIP (frequency of total trips) 7.92 6.22 0 47 

Trip 
mode 

WALK/BIKE (walking or biking trips, 
binary variable) 

AUTOMOBILE (auto trip frequency) 

0.245 

6.957 

0.43 

5.704 

0 

0 

1 

45 

HHSIZE (household size) 2.39 1.231 1 10 

Household 
characteristics HHVEH (vehicles available) 

INCOME (Income, US$) 

2.143 

48.611 

1.137 

17.939 

o
 

C
M
 

10 

77.5 

FOOD (restaurants in buffer) 0.361 1.662 0 40 

Land use in 0.25 
miles road buffer 

area around 
residence 

SHOP (shopping stores in buffer) 

BANK (bank in buffer) 

BUS (bus stop in buffer) 

0.084 

0.073 

0.586 

0.379 

0.402 

1.612 

0 

0 

0 

5 

8 

17 

CHURCH (church in buffer) 0.123 0.519 0 7 

LENGTH (roadway length, km) 1.80 1.05 0.05 6.36 

Roadway network 
condition 

CNODE (number of intersections) 

DANGLE (Number of cul-de-sacs) 

10.49 

1.48 

7.05 

1.81 

0 

0 

47 

15 

Area (area of buffer, km2) 0.116 0.063 0.011 0.413 

Land cover 
Density DENSE (High density. %) 0.014 0.051 0 0.95 

Note: Income is based on coding the middle value of income categories to calculate the mean of 
household income. For instance, if household income is between $10,000 and $15,000, then the 
income is coded as $12,500 when calculating the sample mean. 

3,151 households are contained in the sample for study area, with limited geo-

location information due to privacy considerations. They are error checked and given a 
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random lat/long address at their census block level using the geo-imputation method 

described in the previous chapter. 

The reported household daily trip frequency is nearly 8.0; among them, 7.0 trips 

are made by driving and only 0.2 are made by walking and biking. Automobile trips are 

the dominant trips in this region; nearly 90% of all trips are automobile trips and more 

than 75% households reported that they do not walk or bicycle on the travel day. 

Socio-demographic variables are used as controls. The household characteristics 

include: average household size of 2.39, with 2.14 vehicles per household and an average 

annual household income of nearly $49,000. Overall, these numbers are reasonable and 

in-line with national statistics for similar urban areas. 

To capture the land use mixtures in the surrounding area, the count of public 

facilities within 0.25 miles (400 meters, equivalent to 15 minutes walking distance) of 

roadway buffers around sampled residences are calculated. The locations of restaurants, 

shops, banks, and stores are extracted from local yellow pages, which provide a fairly 

accurate database. Then they are spatially located (latitude/longitude) using a geocode 

tool. Within 0.25 miles from the residence, 11.3% (356 out of 3,151) households had 

restaurants, 6% (189) households had a shop or stores, 8.1% (256) households had 

churches, and 17.5% (552) had a bus stop. 

Roadway characteristics include roadway length, number of intersections and 

number of dead ends. The average roadway length in 0.25 miles network buffer is 1.1 

miles (1.8 km), the average number of intersections is 10, and there are 1.5 dangle points. 

A percentage of high density land cover is calculated for each buffer around 

residences. Land cover density statistics show that on average, only 1.4% of the land 
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cover within the 0.25 miles buffer of residence is developed with high density. However, 

the maximum number for this percentage is as high as 95% in denser areas. 

53 Model Result 

A-priori, better local road connectivity, mixed land use, and better public spaces 

will likely be associated with lower automobile trips. To estimate automobile trip 

frequencies, both the base model (with socio-demographic variables only) and enhanced 

model (with built environmental variables added) are presented. The global (traditional) 

Poisson regression models are compared with corresponding GWPR to examine 

statistical properties of the model. Table 7 presents the results of both global model and 

local models. All of these models are statistically significant overall, show a reasonable 

fit and provide similar estimation results (based on marginal effects). The marginal 

effects are presented to facilitate interpretation of the parameter estimates, i.e., the extent 

of correlation with daily trip frequency. Due to their high collinearity, the number of 

intersections and the area of buffer are dropped from the models. 
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Table 7. Global and local Poisson models for household automobile trip frequency 

Global model (Poisson) Local model (GWPR) 
Enhanced 

model Base model Enhanced model Base model 

P MFX P MFX pMin. jffLwr 
Quart. P Med. 

PU Pr 
Quart 

P 
Max. 

(Upr 

Lwr) 
>2S 
E 

P 
Min. 

/?Lwr 
Quart 

P 
Med. 

£Upr 
Quart. 

P 
Max. 

(Upr-
Lwr)>2 

SE 

Constant 0.834* 0.753* 0.403 0.725 0.852 0.944 1.139 Yes 0.430 0.650 0.778 0.852 1.106 Yes 

HHSIZE 0.220* 1.40 0.220* 1.399 0.111 0.207 0.220 0.234 0.302 Yes 0.112 0.206 0.219 0.233 0.306 Yes 

INCOME 0.006* 0.04 0.007* 0.043 0.002 0.005 0.006 0.007 0.011 Yes 0.002 0.005 0.006 0.007 0.011 Yes 

HHVEH 0.111* 0.70 0.114* 0.728 0.018 0.105 0.121 0.145 0.187 Yes 0.012 0.108 0.127 0.149 0.194 Yes 

FOOD 0.020* 0.13 -0.029 -0.011 0.019 0.066 0.259 Yes 

SHOP -0.027 -0.17 -0.443 -0.073 -0.009 0.040 0.328 Yes 

BUS 0.0001 0.00 -0.211 -0.017 0.004 0.017 0.044 Yes 

CHURCH -0.077* -0.49 -0.474 -0.127 -0.026 0.047 0.184 Yes 

LENGTH -0.021* -0.14 -0.224 -0.066 -0.011 0.016 0.090 Yes 

DENSER -0.619* -3.93 -7.253 -1.105 -0.738 0.638 1.454 Yes 

Summary Statistics 

Corrected AIC: 10,414 10,463 6,713 6,775 

Pseudo R2 0.170 0.168 N/A N/A 

MAD 3.57 3.58 3.48 3.53 

RMSE 4.80 4.82 4.65 4.71 

Sample size 3,151 3,151 3,151 (812 local sample size) 3,151 (812 local sample size) 

Log-likelihood -5,197 -5,206 N/A N/A 

Prob. > Chi2 0.000 0.000 N/A N/A 

LR Chi2 (9) 
LR Chiz 

(9)= 
4233.68 

LR Chi2 (3) 
4172.82 N/A N/A 

Chi' test for model improvement: prob> 
Chi2=0.0000 * N/A N/A 

Note: MAD -Mean Absolute Deviation = ~2lyi — y|; RMSE-Root Mean Square Error, Standard Deviation of the residuals 
* Statistically significant—95% level; MFX = Marginal effect of variables at the mean of that variable 
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Not all the built environmental variables show significant correlations with 

automobile trips in the global model after controlling for household characteristics. 

Specifically, the number of restaurants within buffers shows a statistically positive 

association with the number of automobile trips, but the number of churches in the buffer 

show negative association with the number of automobile trips. As for other facilities 

such as bus stops and shopping stores, the correlations with automobile trip frequency are 

not statistically significant. For network and land use variables, both the network and 

development density show significant negative associations with automobile trips. 

The comparison between the base model and enhanced model indicates that the 

including of built environment variables strengthened the models, reducing unexplained 

variation in the dependent variables, e.g., R2 values improved from 0.168 for base model 

to 0.170 for enhanced model. Also, the enhanced model shows better goodness-of-fit 

compared with the base models, i.e. less MAD (Mean Absolute Deviation) and RMSE 

(Root Mean Squared Error). Moreover, a Likelihood Ratio chi-squared test showed that 

adding built environment variables collectively results in statistically significant 

improvements to the model fit (5% level). 

By comparing AICc between the global and local models, the local model 

outperforms its counterpart, as the AICc values for local model is substantially lower than 

the global model. As a general rule, improvements in the AIC that are less than 3 in value 

could easily arise as a result of sampling error (Fotheringham et al., 2002), while here the 

difference between the global and local models is substantially greater than 3, indicating 

that the local models are statistically better than the global model. Furthermore, results 
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show that GWPR model has lower MAD and RMSE, compared with the corresponding 

global Poisson model. 

The global enhanced regression model only provides associations between 

automobile trip frequencies and built environment from an overall regional perspective, 

i.e., it represents the average relationship between correlates from a regional perspective. 

The marginal effect shows that on average, one more kilometer of roadway within the 

0.25 mile buffer around residence is associated with 0.14 fewer automobile trips. 

However, the spatial variation of this association is unknown, e.g., whether the 

association between automobile trips and roadway length in buffer is always negative in 

this region is unknown. GWPR can be used to detect spatial non-stationarity, exploring if 

parameters vary across space. It can uncover the possible local spatial deviations of 

explanatory variables. 

The R2 value for the global regression is 0.17 indicating that it still leaves about 

80% of the variance in auto trips. Some of this unexplained variance may result from the 

general assumption that relationships in the model are constant over space. Suppose, for 

instance, it is very likely that two similar households behave differently in terms of how 

they travel, even if both of them have the same roadway length in the neighborhood, but 

one is located in downtown area, while another one is located in an area close to beach. It 

is quite possible the household in downtown made fewer driving trips considering the 

congested traffic nearby, while the one close to beach made more driving trips to the 

beach. These variances based on different geographic features are not fully captured by 

global model, and they cannot be easily captured by simply creating a certain variable. 

One solution is to allow the association to change in space and let the local model search 
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for spatial pattern of associations which yield the optimal specification. If such variations 

in relationships exist over space, then the global trip-making model will clearly be a 

misspecification of reality because it assumes these relationships to be constant. 

Table 7 also provides the parameter summary for the GWPR model. The distinct 

difference between global and local estimation is that the global estimation has one set of 

model parameters for all observations in the sample, while the local model estimates a set 

of parameters for explanatory variables for each location. Thus the ranges of parameters 

are provided to show the range of parameters spatial variation. Theoretically all 

parameters can vary in space. However, it is important to determine if the spatial variance 

is significant enough to be captured by using the more complicated GWPR model. 

Estimation of a GWR model with more than 3,000 samples and nine variables is 

computationally intensive (e.g. it takes more than 20 hours on powerful personal 

computers). Global models will be appropriate if spatial variations (stationarity in space) 

are modest. To decide whether the spatial variation is statistically significant, the 

difference between the lower quartile and upper quartile of a parameter is compared with 

the standard error of estimate. If the difference is larger than two standard errors, the 

parameter is considered non-stationary in space (Fotheringham et al., 2002), implying 

that spatial variance is statistically significant. All explanatory variables show significant 

spatial variance. 

Based on the local parameter estimates for 3,151 households, an Inverse Distance 

Weighted (IDW) interpolation algorithm is used to assign values to unknown points in 

space. Thus a continuous parameter surface covering the whole region can be created. 

Also, a contour parameter surface is generated based on estimation which varies 
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continuously in space. This can give a better picture of where the coefficient is higher in 

space. Similarly, a local t-test graph can be generated to show whether the association is 

statistically significant across the study area. 

Note that only the socio-demographic characteristics are significant in the entire 

region. Figure 17 shows the variation in local t-statistic for number of LENGTH and 

FOOD within 0.25 miles buffer around residence, respectively. Although both LENGTH 

and FOOD are significant in the global model, there is a large portion in the study area, 

where they are not statistically significant (95% level). Figure 18 shows the magnitude of 

LENGTH and FOOD within 0.25 miles buffer association with automobile trips. 

a) LENGTH b) FOOD 

Figure 17. Local t-statistic in enhanced GWPR model. 
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Figure 18. Parameter estimated for LENGTH and FOOD in enhanced GWPR model 

Although roadway length within 0.25 buffers has a negative association with 

automobile trips in the global model, the local model shows conflicting signs for this 

variable, depending on the area. In the southeast of study region, this correlation becomes 

positive, while in the northwest of the coefficient map it shows a negative sign. The net 

effect of LENGTH still remains negative, which is reflected in the global model. For 

number of restaurants within a 0.25 miles buffer, all the areas with significance show 

positive association with automobile trips. Since the distribution of t-statistics showed 

spatial clusters, the model results are verified by estimating two unrestricted Poisson 

regression models using sub-samples that showed significant associations versus samples 

that showed insignificant association. The results from unrestricted models confirmed 

that indeed associations and their significance levels vary in space. 

Comparisons between the global and local models can be obtained by computing 

the residual of the predicted results using the models calibrated in this study. For the 



84 

global model, the fixed equation is applied to every household; for the local model, 

different equations are applied for each residence considering parameters vary by 

location. Figure 19 shows the residual level by comparing the results of global model and 

local model. 

Figure 19. Global model vs. local model - goodness of fit 

The darker region from Figure 19 is where the local model has smaller residual 

than global model, which represents better estimation. This indicates that using the global 

model for prediction can bring errors in certain areas, e.g., the downtown Norfolk. 

Relocating the trip productions will change the trip distribution in this region 

significantly, and it will have a substantial impact on subsequent steps, i.e., trip 

distribution, mode split, and traffic assignment. 
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5.4 Applications 

The model results show that simply defining an area as urban, suburban or rural 

and assigning it a higher or lower trip rate can be arbitrary. Figure 20 and 21 show the 

variation in parameter for household vehicles owned and household size respectively. 

Substantial spatial variation of these two parameters is found. Thus, the commonly used 

cross-classification tables by urban or rural area can be considered archaic when richer 

data are available for spatial analysis. Practically, by using the contour parameter map 

created by the local model (shown in Figure 21, Figure 22, Figure 23). Customized cross-

calculation table can be created for each location, providing a finer forecast of trip 

productions. 

HHVEH for auto trip modal 
•• Kigh: 0.193972 

Low : 00119426 

N 

Figure 20. Parameter estimates for HHVEH in GWPR base model 



Legend 
HHSIZE for auto trip mo«M 

Ugh: 0.297227 

Low: 0.112479 

Figure 21. Parameter estimates for HHSIZE in GWPR base model 

N 

Legend 
MCOME for auto trip model 
•• high: 0.0113167 

Figure 22. Parameter estimates for INCOME in GWPR base model 
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Comparisons between the global and local models can be obtained by computing 

the difference in predicted trip frequency using different models. For the global model, 

the fixed equation is applied to each TAZ; for the local model, different equations by 

TAZs are applied. Figure 23 shows the difference between predicted daily trips from 

these two models, using the same 2030 population, vehicle ownership, and other 

household characteristics available in the Hampton Roads travel demand model Since 

the global model is a spatial average of local models, both of these models, when applied 

for prediction purposes, should predict the same trip totals. Nevertheless, there is a small 

difference (less than 5%) in the total number of trips predicted by the global Poisson 

model and GWPR model. 

Figure 23. Differences in daily trip productions between global and local models 
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A positive value in Figure 23 implies that more trips are predicted using the local 

model. This indicates that using the global model for prediction can overestimate the 

travel demand in certain areas, e.g., the city of Norfolk, while the demand in areas such 

as northern Virginia Beach and areas north of Hampton Roads Bridge Tunnel (HRBT) is 

underestimated. Relocating the trip productions will change the trip distribution in this 

region significantly, and it will have a substantial impact on subsequent steps, i.e., trip 

distribution, mode split, and traffic assignment. 

5.5 Discussion 

Interpreting associations based on a global model can obscure spatial variations 

by providing the net result only. This chapter shows that a global model can provide a 

positive significant relationship for a coefficient that is only significant in a relatively 

small portion of the study region. In some cases, variables can show opposite signs, 

depending on the region. Therefore, global models have a tendency to mask complex 

information behind the average association, and in some cases provide misleading 

conclusions. These results suggest that 1) accounting for spatial variations in associations 

between built environment and automobile travel can help identify areas where focusing 

land use policies can have the highest impacts (by checking the map of parameters in 

local models), and 2) for regional level transportation models that attempt to integrate 

land use, analysis should take into account spatial variations, especially for metropolitan 

areas with substantial variations in socio-demographics and built environments. Simply 

using a pooled model without considering spatial heterogeneity can be misleading. 

Finding proper levels of spatial clusters, e.g. using neighborhood databases within a 
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regional survey, should be considered carefully when exploring the associations of built 

environmental variables with travel demand. 

It also demonstrates how new methods that capture spatial heterogeneity can be 

applied to improve travel demand models. The visualized coefficient maps obtained from 

the local models are valuable in quantifying spatial variations and in an easy-to-

understand format for policy makers, engineers, and planners. Moreover, this method can 

be of interest to policy makers who rely on travel demand forecasting models for decision 

making. The research can help advance the state-of-the-art in travel behavior research by 

using rigorous analysis techniques to incorporate spatial variations into travel demand 

models. Practitioners may capitalize on the greater spatial variability in parameters to 

develop locally-based strategies for trip reduction, especially where trips are particularly 

numerous. 



6. UNIVERSITY CAMPUS: A CASE STUDY OF SPECIAL GENERATOR 

The previous chapter showed evidences from the local models that spatial 

variances exist in the associations between built environment and trip-making, but these 

models are estimated based on data from relative large scale. For a relatively small scale 

such as university campus, the local models used to capture spatial heterogeneity may not 

be suitable. One reason is that GWR uses the moving windows regression method to 

estimate the data, which means a subgroup of samples around each location is used to 

estimate local models. This method works well in a relatively large region when samples 

are scattered in space, but it does not work well when samples are extremely clustered, 

which is the case for university students. Therefore a different spatial analysis should be 

applied, especially considering the university campus has its own characteristics, e.g. mix 

of population and alternative friendly environment. As a special location in space, 

campus serves as both a trip generator and a trip attractor, which has strong centripetal 

force to daily traffic. Especially in urban areas, the university students commute from a 

wide range of areas to the school; therefore, it's reasonable to speculate that there may be 

rings of mobility around the university campus. Moreover, university students are 

usually uncovered by traditional travel behavior surveys and are underrepresented in the 

travel demand model. To address this shortcoming, this chapter is to model the student 

travel behavior using particular spatial analysis. Consideration is given to their unique 

stage in their lives, the special nature of university students' personal characteristics, 

lifestyle (both working and studying) and the spatial factors of where they live and 

study/work. The insights gained from this study can serve as the basis for trip generation 
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in regional travel demand models, where university-dominated zones are treated as 

special generators. It can also shed light on how a university campus environment, which 

has a mix of land uses (e.g., office/classes, residential, and commercial), is alternative 

mode friendly and higher density, which is associated with students' driving and 

walking/bicycling behavior. 

6.1 Data Description 

6.1.1 Spatial Analysis of Trip Making 

On-campus and off-campus students usually show different travel behaviors, 

which may be due to the unique context in which universities campus provides, e.g., land 

use mix (academic buildings and students activity centers, shops), sidewalks, bicycle 

paths and bicycle parking facilities, etc. (Khattak et al., 2011). To obtain a more 

comprehensive view of how students' travel behavior varies by their residential status, a 

spatial analysis is conducted to group them based on residential proximity to the campus. 

The ODU campus is selected to conduct this spatial analysis since it represents a more 

complex situation in urban area. 

In ODU, due to limited dormitory space provided by the university and no 

dedicated graduate student housing, most students (81%) live off-campus. However, 

some of their residences are physically close to campus, even if they do not reside in 

campus dormitories. These near-campus students share a similar built environment as on-

campus students. Therefore, their travel behavior is expected to be similar, due to their 

proximity to the campus, but still different from the on-campus students, due to possible 

differences in socio-demographic characteristics. To better understand the travel behavior 

of near-campus students and those students who live farther from campus, GIS analysis is 
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conducted. While some of the campus buildings are intermingled with privately owned 

properties, a synthetic campus boundary is defined by using all campus buildings to 

create a standard ellipse (the shape of the ODU campus is better captured using the 

ellipse). Near-campus students are identified as those who live within 1 mile from the 

standard ellipse of campus buildings. The rest of students who live outside of the 1 mile 

buffer area are termed "farther- from-campus" students. 

Figure 24 shows the range of the synthetic campus boundary and sampled 

students' residences. The statistics shows that 19% of students live on-campus, another 

15% of students live near-campus, and the rest (66%) reside farther from campus, outside 

the influence area of the main campus. The finding from the spatial analysis provides 

input into the university student travel demand modeling. 
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Figure 24. Residential locations of on-campus and near-campus university students 
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6.1.2 Descriptive Statistics 

Table 8 shows the descriptive statistics of personal and travel characteristics and 

breakdown statistics for on-campus, near-campus and farther-from-campus students. 

Table 8. Descriptive statistics of ODU students compared with the general population 

Hampton Roads, VA population 

All students 
Mean 

(SD. min/max) 

On-
Campus 
students 

Near-
campus 
students 

Farther-
from 

campus 
students 

General 
population 

ofHR 

Sample Size (N) 1,468 275 (19%) 216 
(14.7%) 

977 
(67%) 6,543 

MALE 
(binary variable) 0.40 (0.49, 0/1) 0.39 0.50 0.38 0.47 

AGE (years) 24.78 
(7.81,17/81) 19.37 22.54 26.8 48 

Personal 
Property INCOME ($1,000) 16.54 

(20.04, 5/100) 7.53 10.65 22.38 N/A 

NVEH 
(no. of vehicles) 1.73 (1.12,0/7) 0.99 1.36 2.02 2.14** 

WORK 
(binary variable) 0.54 (0.50, 0,1) 0.20 0.49 0.64 0.52 

Academic 
FULLTIME 

(binary variable) 0.83 (0.37,0/1) 0.98 0.95 0.76 -

Property UNDERGRAD 
(binary variable) 0.79 (0.41,0/1) 0.99 0.77 0.74 -

NTRIPS (daily 
frequency) 5.26(2.81,0/15) 6.24 5.34 4.96 4.58 

Trip 
Property NTRIPS-AUTO 3.09 (2.52,0/15) 1.03 2.09 3.88 3.29 

NTRIPS-
WALKBICYCLE 2.04 (2.74,0/15) 4 94 3.09 1.00 0.34 

Travel 
day WEEKEND 0.37 (0.48,0/1) 0.25 0.36 0.41 -

Notes: fResults in the last column are for the Hampton Roads, VA general population based on 
NHTS (National Household Travel Survey) Virginia add-on sample collected in 2009. 

* SD means standard deviations. 
••Number of vehicles owned by the household is equivalent to the number of vehicles 

available for use by students. 
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In line with expectations, university students are young, busy (going to school and 

work) and have relatively low incomes. Most students are between 23 to 26 years old, 

with an average age of 25. Most respondents (79%) are undergraduate students. The 

average number of vehicles available for use is 1.73, and 96% of students have a driver's 

license. The average annual income is about $16,000, while 50% of students in the 

sample earn less than $10,000 per year. Income is based on coding the middle value of 

income categories to calculate the mean of household income. For instance, if the 

reported income is between $10,000 and $15,000, then the income is coded as $12,500 

when calculating the sample mean. On average, 83% of students are full-time students, 

and 54% of them worked for profit. Overall, these numbers are reasonable. 

The reported student daily trip frequency is, on average, more than 5 with a 

variance of 7.89; among them, 3 trips are made by driving with a variance of 6.35, and 2 

trips are made by walking/bicycling, with a variance of 7.5. The mean and variances of 

the total trip frequency distribution are close enough to expect that Poisson regression 

will be appropriate; for automobile and walking/bicycling trips, over-dispersion indicates 

that Negative Binomial regression may be appropriate. The average number of daily trips 

for students is significantly higher (5% level) than a sample of the general population of 

Hampton Roads. Students made substantially more walk/bicycling trips than the sample 

of the general population, especially those students who live close to the campus—the 

Virginia NHTS add-on sample showed that 90% of the trips are by motorized vehicles. 

For automobile trips, the on-campus and near-campus students substantially made fewer 

trips than the sample of general population. Interestingly, students residing farther from 
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the campus drive more than the regional population, partly because most of them (65%) 

are working while going to school. 

Moreover, differences in travel behavior are found between on-campus students 

and off-campus students. On-campus students are often younger, unmarried, full-time, 

and most of them are undergraduate students, as expected. Compared with off-campus 

students, on-campus students have a higher daily trip rate, different mode choices, and 

different trip purposes. They tend to drive less and walk more. More specifically, on-

campus students make 6.24 trips per day, compared with 5.34 trips (14.4% 

fewer total trips) for near-campus students, and 4.96 trips (20% less) for farther from 

campus students. However, on average the students in farther from campus region make 

nearly 2 more auto trips than near-campus students and near-campus students make 1 

more auto trip than on-campus students. Consistent with our expectation, proximity to 

campus seems to be associated with both travel demand and mode choice. 

6.2 Model Result 

After checking correlation between independent variables, final models are 

presented in Table 9. Poisson and negative binomial models are estimated for both the 

total daily trips and trips by mode; the zero-inflated Poisson model is estimated for 

automobile trips and walk/bicycle trips. Note that students' family members at home may 

influence their travel decisions. The survey requested information about students' 

families, including whether the students are married and whether they live with family or 

roommates. These variables are considered for inclusion in the model specification. 

However, these variables are either highly correlated with students' proximity to campus, 

or did not show significant association with the dependent variable, i.e., trip frequency. 
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Thus, they are dropped from the final models. Furthermore, availability of bicycle lanes, 

sidewalks and proximity to transit stops are considered in the model specification. 

However, due to the predominantly auto-oriented regional design, the alternative mode 

facilities are limited, especially for off-campus students. Only a few bus stops are 

available in and around the campus. Therefore, these variables are dropped from further 

consideration in the model. 

All models are statistically significant at the 0.05 level. The Poisson and Negative 

Binomial models for total trips provide very similar coefficients. The over-dispersion 

parameter (a) in the Negative Binomial model is close to zero, indicating that the simpler 

Poisson model may be acceptable (even if a is statistically significant). The automobile 

trip and walk/bicycle trip models have reasonable Pseduo-R2 values. The Pseudo-R2 for 

these models is higher for Poisson models indicating a better fit to the data. However, the 

Vuong test indicates that the zero-inflated Poisson model is more suitable compared with 

the standard Poisson regression model. Thus, it will be preferable to use the Poisson 

model for total daily trips and zero-inflated Poisson model for automobile and 

walk/bicycle trips. 
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Table 9. Trip frequency model results for Old Dominion University students 
Total Trips Auto Trips Walk/bicycle Trips 

Independent 
variable 

Poisson Model Negative 
Binomial Model Poisson Model Negative 

Binomial Model 
Zero-inflated 

Poisson Model Poisson Model Negative 
Binomial Model 

Zero-inflated 
Poisson Model 

Independent 
variable 

P IRR P IRR P IRR P IRR P IRR P IRR P IRR P IRR 

CONS. 1.536 
(0.000) -

1.535 
(0.000) -

-0.345 
(0.000) -

-0.376 
(0.000) -

0.651 
(0.00) -

1.756 
(0.000) -

1.459 
(0.000) -

1.546 
(0.003) -

WORK 0.098 
(0.000) 1.100 0.101 

(0.001) 1.106 0.211 
(0.000) 1.235 0.230 

(0.000) 1.256 0.123 
(0.000) 1.132 Insig. (dropped) Insig. (dropped) Insig. (dropped) 

NEAR-
CAMPUS 

-0.125 
(0.001) 0.882 -0.126 

(0.006) 0.880 0.634 
(0.000) 1.885 0.630 

(0.000) 1.877 0.156 
(0.064) 1.169 -0.246 

(0.000) 0.782 
-0.192 
(0.082) 0.830 

-0.189 
(0.000) 0.827 

FAR-
CAMPUS 

-0.180 
(0.000) 0.836 -0.182 

(0.000) 0.834 1.159 
(0.000) 3.186 1.150 

(0.000) 3.168 0.328 
(0.000) 1.389 -1.088 

(0.000) 0.337 -1.119 
(0.000) 0.334 -0.487 

(0.000) 0.614 

UNDERGRAD 0.191 
(0.000) 1.211 0.192 

(0.000) 1.212 0.144 
(0.001) 1.155 0.150 

(0.002) 1.162 0.103 
(0.009) 1.108 0.249 

(0.000) 1.283 0.410 
(0.000) 1.506 0.144 

(0.064) 1.155 

AGE Insig. (dropped) 
0.007 

(0.000) 1.007 0.007 
(0.007) 1.007 0.007 

(0.000) 1.007 -0.039 
(0.000) 0.962 -0.035 

(0.000) 0.969 
-0.010 
(0.039) 0.90 

NVEH 

Insig. (dropped) 
0.055 

(0.000) 1.057 0.063 
(0.001) 1.065 0.029 

(0.040) .03 
-0.041 
(0.023) 0.960 

-0.047 
(0.175) 0.955 

-0.055 
(0.004) 0.947 

FULL-TIME 0.126 
(0.001) 1.134 0.126 

(0.002) 1.134 

Insig. (dropped) 

0.514 
(0.000) 1.673 0.604 

(0.000) 1.733 0.301 
(0.004) 1..354 

INCOME Insig. (dropped) Insig. (dropped) -0.004 
(0.006) 0.996 -0.005 

(0.054) 0.942 Insig. (dropped) 

WEEKEND -0.160 
(0.000) 0.852 -0.159 

(0.000) 0.853 

Insig. (dropped) 

-0.421 
(0.000) 0.656 -0.448 

(0.000) 0.628 -0.137 
(0.004) 0.872 

Summary statistics 

Dependent 
variable 

NTRIPS (Daily number of trips) 
(total number of obs.=1,468) 

NTRIPS-AUTO 
(Total Number of obs.=1,468, Zero obs.=301) 

NTRIPS-WALK/BICYCLE 
(Total Number of obs.=1,468, Zero obs.=751) 

Prob. > Chi"1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Pseudo-R' 0.025 0.018 0.12 0.08 - 0.26 0.09 -

LR Chi" 179.89 125.19 848.72 489.79 87.40 1,938.96 494.03 253.53 
a - 0.073 - 0.188 - - 1.024 . 

Prob. a - 0.00 - 0.00 - - 0.00 . 

Note: ZIP binary model Y = 0.63(0.0)-0.92*WORK 
(0.0)-0.86*NEAR-CAMPUS (0.0)-3.75*FAR- CAMPUS 

(0.0) (p-values in parentheses) 

Note: ZIP binary model Y = -1,64(0.0)-0.64*FULL-TIME 
(0.0)+0.01 'INCOME (0.0)+1.01 *NEAR-CAMPUS 

(0.0)+2.53*FAR-CAMPUS (0.0) (p-values in 
parentheses) 

Note: P-value in parentheses; IRR means Incident Rate Ratios. 



98 

Table 9 also shows the Poisson models for zero and non-zero observations of 

automobile trips and walk/bicycle trips. Students who work and live near-campus or 

farther-from-campus are less likely to make zero automobile trips on their travel days; 

students who are part-time, live off-campus, and have higher income are more likely to 

make zero walk/bicycle trips on their travel days, as expected. 

Incident Rate Ratios are exponentiations of parameters, eP, and they facilitate the 

interpretation of coefficients, i.e., whether it is associated with an increase or decrease in 

the expected trip rate, when the value of the explanatory variable changes. As expected, 

the ratios show that undergraduate students, full-time students, and students who work 

are likely to make more daily trips; students who reside off-campus (including those who 

live near-campus or farther-from-campus) make fewer daily trips. Also, trip frequencies 

on weekends are lower than weekdays. Unlike the general population, total daily trips of 

students do not show significant association with the number of vehicles available to 

students or their income levels. The model can predict trip frequency as follows: if a full-

time undergraduate student is also working, and resides near-campus, then on a weekday 

he or she is expected to make 5.29 trips (= e(!536 + 0098 '0 l25+ 0I9I+ 0,26-°16^ based on the 

Poisson regression model for total trips. 

Some coefficients show different signs in automobile trips and walk/bicycle trips 

models. Especially for living conditions, compared with on-campus students, near-

campus students make nearly 90% more driving trips, while farther-from-campus 

students make four times as many driving trips, on average. The relationship is opposite 

for walk/bicycle trips. Compared with on-campus students, near-campus students make 

20% (=1-0.8) less walk/bicycle trips and farther from campus students make 70% less 
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walk/bicycle trips, holding other variables constant. In general, compared with on-

campus students, near-campus and farther-from-campus students walk less and drive 

more, but with a net consequence of relatively fewer total trips. Figure 25 shows there are 

clear tendency of how students travel, based on the different ring area around campus. 

• Nti ip(daily nuiiitwi uf liips) 
• Auto trips 

Walk/bike trips 

On-Campus Near-campus Farther-from campus 

Figure 25. University students' trip characteristics by residential locations 

6.3 Discussion 

Given the complicated associations based on the model results, the directions 

between associations are summarized in Table 10. 

Table 10. Associations found in the trip frequency analysis 

Variable NTRIPS model NTRI PS-
AUTO model 

NTRIPS-
WALK/BICYCLE 

model 

NVEH N/A + -

Personal INCOME N/A N/A N/A 
Characteristics AGE N/A + -

WORK + + N/A 

Living location 
FAR-CAMPUS - + -

Living location 
NEAR-CAMPUS - + -

Academic UNOERGRAD + + + 

condition FULL-TIME + N/A + 

Travel day WEEKEND - N/A -
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The results show that more active undergraduate students drive more, 

walk/bicycle more, and ultimately make significantly more trips than other students. 

Work for profit shows a significant association with total trips and automobile trips, but 

not with walk/bicycle trips. Also, age and number of vehicles show different signs in 

automobile trips and walk/bicycle trips, i.e., younger students walk/bicycle more while 

older students make more automobile trips. However, these associations cancel each 

other and do not show up in the total trips model, i.e., the age variable is not statistically 

significant. Vehicles available to students are associated with higher automobile trips and 

lower walk/bicycle trips, as expected. However, this variable did not show a statistically 

significant association (5% level) with total trip frequency. Full-time students make more 

walk/bicycle trips compared with part-time students. On weekends, students make fewer 

total trips, but this may due to less walking/bicycling trips, not necessarily mean they 

drive less. 

The model results confirm there is a ring of mobility around university campus as 

a special trip generator. Notably, the proximity of the students' residence to campus is 

strongly associated with their travel. Compared with on-campus students, near-campus 

students and farther-from-campus students made fewer daily trips. If breaking down trips 

by transportation mode, the percent of walking trips drops from 79% for on-campus 

students to 20% for far- from-campus students, while the percent of driving trips increases 

from 17% for on-campus students to 78% for far-from campus students. Large university 

campuses are major trip generators and can impact the regional traffic. The findings 

about student travel can also help design practical strategies to improve the traffic 

conditions in and around the university campus by establishing satellite communities near 
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the campus, e.g., providing better on-campus or near-campus student villages, 

encouraging traditional neighborhood developments within walking or bicycling distance 

from university campus (where feasible and appropriate), creating a pedestrian and 

bicycle friendly design on and near campus, adding public facilities in surrounding 

communities, and connecting regional transit corridors with university campuses. 
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7. TRAVELER INFORMATION AND TRAVEL DECISION CHANGES 

The rapid development of information technologies applications in transportation 

has provided customers with more diverse and dynamic information. Advanced traveler 

information systems (ATIS), part of intelligent transportation systems, are playing a key 

role in this regard. Nowadays, a variety of technologies, including the internet, telephone 

services, television/radio broadcasts, dynamic message signs, and in-vehicle/on-board 

devices are available to provide pretrip and en-route information to help travelers make 

more informed decisions (change route, mode, departure time or cancel trip). It is 

generally believed that providing travelers with relevant information on travel options has 

the potential to change their behaviors in ways that are beneficial to the efficient use of 

the transport system (Chorus et al., 2006b). Thus, it is important to understand how travel 

information is used and whether travelers are willing to make travel decision changes 

based on the traveler information they receive. 

Most of the current literature only concentrates on the non-spatial outcomes of 

travel decisions as well as traveler information delivery mechanisms. However, the 

association of various socio-economic and contextual factors may vary across space. For 

example, the usage of dynamic travel information may vary substantially across locales 

even for people with the same income level. It is desirable to ask: where are the parts of a 

region where people with higher/lower income or longer travel time are more sensitive to 

information acquisition and travel decision changes? Such a question cannot be fully 

answered directly by standard parameter estimation models —called a global regression 

model, since the estimated parameters are fixed and can be understood as a spatial 
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average in global models. Although unrestricted models can be estimated for various 

spatial sub-classifications and compared with a global or pooled model, this is often 

cumbersome and rarely done—the problem of fixed coefficient still exists within the sub-

classifications and the definition of the boundary of those sub-classifications will 

influence the estimation of the coefficients, referred to as the (undesirable) "boundary 

effect." 

Besides the spatial heterogeneity issue mentioned above, notably the information 

technology innovations which have developed rapidly recently, represented by wider 

internet access, there is no comparison study to explore whether there is change in terms 

of how travelers respond to this new tendency. Meanwhile, as a special young subgroup 

of the population, university students have greater access to information technology, 

especially when they are on campus. They may be likely to be pre-disposed to media 

usage for planning their travel and especially to using new online technologies well into 

the future (Son et al., 2011). Therefore, university students' information access is likely 

to be an important factor influencing their travel information acquisition. Given that the 

market segment of university students is known to be more technology-sawy than the 

general population, it would be interesting to compare the ATIS acquisition behavior 

between general population and also compare how they respond to ATIS based on the 

traveler information they received. 

To this end, this chapter attempts to understand the travelers' information 

acquisition and their travel decision adjustment based on the information received. 

Comparison between university students and general population is drawn to show their 

differences in preference. The spatial heterogeneity issue is captured by using GWR 
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again when analyzing larger metropolitan areas and the coefficients are mapped to show 

the spatial pattern of the associations. The insights gained from this study will serve as 

the basis for developing specific policy guidelines to encourage travel decision changes 

in response to traveler information received and to reduce travel uncertainty. 

7.1 Data Description 

The surveys which cover both ATIS usage and activity-based travel behavior are 

not abundant. Thus, the data used in the chapter from multiple sources. The information 

for general population is from the activity-based travel survey dataset in the Greater 

Triangle Travel Study conducted in 2006. The information for college students is from 

the activity-based travel survey for university students (USTS) conducted at four 

universities of Virginia in 2009. 

The information sources in the surveys include television, Internet, commercial 

radio, telephone or Traveler Information Hotline (511 in Virginia), Traveler Information 

Radio (TIR, in North Carolina) or Highway Advisory Radio (HAR in Virginia), and 

Variable Message Signs (VMS). Note that traveler information includes general pre-trip 

travel information such as commercial radio traffic reports, and television broadcasts of 

travel information, as well as en-route information available to travelers in the area such 

as the updates of traffic conditions and incident and travel advisories. The content of 

travel information available to travelers in the area is mostly qualitative traffic reports of 

congestion/delays, and real-time details of traffic incidents. Changes in travel decisions 

include changing departure travel time, mode, route and cancelling the trip. 
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7.1.1 The General Population Statistics 

The descriptive statistics for the general population in the Research Triangle are 

shown in Figure 26 and Table 11. The survey only investigated whether the traveler 

adjusted their travel decisions based on the information received for those who acquired 

the traveler information. Those who did not acquire the traveler information are excluded 

for the decision changes questions. The majority of respondents (51%) reported that they 

acquired travel information at least once a week, which means that 49% seek travel 

information less than once a week. 78% of information seeker, that is about 40% of all 

respondents, reported that they changed travel plans based on the traveler information 

received. 

49% 

All Households 
N=5107 

51% 

Non-info Seeker Info Seeker 
N=2,523 N=2,584 

Internet; N=607; 23.5% 

:a<So;N=1,245;48.2% 

.Television; N=1,762; 68.2% 

Variable message signs; N=153; 6% 

Traveler information radio; N=52,2% 
information; N=39;1.5% 

Changes No Changes 
N=2,u25 

Route Change 
N=1,770 

Start Time Change 
N=637 

Mode Change 
N=94 

Trip Cancellation 
N=272 

Figure 26. Traveler information acquisition for the general population 
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Table 11. Descriptive statistics for variables (Research Triangle, NC) 

Variable N Mean Std. 
Dev. Min Max 

Info Acquisition of traveler info or not (1=yes, 0=no) 5107 0.51 0.50 0 1 

Change Change travel plan or not (1=yes, 0=no) 5107 0.40 0.49 0 1 

Na 
Number of info sources accessed 

(based on info=1) 2584 1.49 0.73 1 5 

Work Work related travel time (minutes) 5107 26.04 43.08 0 673 

Nonwork Non-work related travel time (minutes) 5107 60.74 62.24 0 750 

Dummy_w Travel for work related purposes (1=yes, 0=no) 5107 0.43 0.50 0 1 

Dummy_nw Travel for nonwork related purposes 
(1=yes, 0=no) 5107 0.17 0.28 0 1 

Finfb Frequency of info acquisition (weekly) 5107 1.96 2.25 0 5 

Live Length lived at this address (year) 5107 6.68 3.51 0.5 10 

Income Household income (categories) 5107 6.289 3.09 0.75 10 

Age Age of respondent (household head, years) 5012 51.17 15.19 8 98 

Hhveh Household vehicle number 5107 2.01 1.02 0 8 

INTERNET Acquire info from internet or not 2584 0.23 0.42 0 1 

RADIO Acquire info from radio or not 2584 0.48 0.50 0 1 

TEL Acquire info from television or not 2584 0.68 0.47 0 1 

VMS Acquire info from variable message signs or not 2584 0.06 0.24 0 1 

TIR Acquire info from trans, info radio or not 2584 0.02 0.14 0 1 

OTHER Acquire info from other sources or not 2584 0.02 0.12 0 1 

Note: The travel time used in the analysis is that reported by the head of the household. 

Several variables in the dataset are categorical variables, e.g. household income, 

the length lived at current address and the frequency of traveler information acquisition. 

These variables are converted to continuous variables to save computational burden, 

complexity of interpretation, and loss in degrees of freedom. For this purpose, the mean 

method (Rossi and Conan-Guez, 2002) is used to recode interval data. That is, the mean 

of each interval is used to represent the category. For household income, 0.75 = income is 

less than $15,000, 2 = income is between $15,000 and $24,999, 3 = income is between 
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$25,000 and $34,999, 4 = income is between $35,000 and $49,999, 6.25 = income is 

between $50,000 and $74,999, 8.75 = income is between $75,000 and $99,999 and 10 = 

income is greater than $10,0000. There are 285 households who did not answer this 

question. These data are replaced by the mean of household income which is $62,890. 

The length a person lived at their current address is recoded as 0. 5 = <1 year, 1.5 

=1 to 2 years, 3.5 = 2 to 5 years, and 7.5 = 5 to 10 years, 10 = longer than 10 years. The 

average length a respondent had lived at their current address is 6.68 years. The average 

number of household vehicles is 2.0. Noting that there are some outliers with the variable 

age, 95 persons did not answer this question; the average age of the remaining 

respondents is 51 years. 

To capture the various information sources used, the number of information 

sources accessed variable (NA) is created, by counting the sources used to seek travel 

information; where 0 = 0 information source used, 1 = 1 information source used... 5 = 

5+ information sources used. The frequency of traffic information use (FINFO) is coded 

as 0 = never, 1 = at least once a week, 3 = 2-4 times per week, and 5 = 5+ times per week. 

The average number of information sources accessed is 0.76. Since NA and FINFO are 

only valid for people who were willing to use traveler information, they are only used as 

correlates in the Change model. 

The variable 'INFO' and 'Change' are binary. The spatial distributions of the 

variables 'INFO' and 'Change' are shown in Figure 27. From the graphs, they are slightly 

different, but generally, people who access traveler information and those who adjust 

their travel decision are distributed all around the study region—strong spatial clustering 

cannot be observed. 
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a) Information acquisition b) Travel decision change (l=yes, 0=no) 

Figure 27. Spatial distribution of two dependent variables 

In terms of travel time, trips with a "work" or "work related" purpose and all 

return trips from a woric place to home are defined as work-related travel. All the other 

trips are considered non-work related trips. The average non-work related travel time is 

longer than work related travel time (61 minutes vs. 26 minutes per day). Considering 

that differences in information usage/travel decision adaption may exist between travelers 

who traveled and those who did not make work or non-work related trips, two dummy 

variables are created. Among them, 'Dummy w' captures whether work related trips are 

reported; 'Dummy nw' represents whether non work related trips are reported. Nearly 43% 

of respondents did not make work related trips on the survey day and 17% of the 

respondents did not make non-work related trips on the survey day. 
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7.1.2 University Students Statistics 

The descriptive statistics of sampled university students' personal characteristics 

in four Virginia universities are shown in Table 12. 

Table 12. Sample characteristics for university student surveys 

Source: (Son et al., 2011) 

Urban Suburban 

ODU 
Ave. (SD) 

VCU 
Ave. (SD) 

UVA 
Ave. (SD) 

VT 
Ave. (SD) 

Sample size 962 661 996 1039 

Gender (%) Female 
38 
62 

32 
68 

38 
62 

48 
52 

ung£r 74 
26 

52 
48 

61 
39 

58 
42 

Residence (%) On-campus 
Off-campus 

21 
79 

12 
88 

36 
64 

27 
73 

Enrollment (%) Full-time 
Part-time 

80 
20 

83 
17 

96 
4 

96 
4 

Age (years old) 25.3 
(8.3) 

25.9 
(7.8) 

23.1 
(6.6) 

23.5 
(6.3) 

Annual income ($1000) 20.3 
(25.8) 

19.5 
(25.2) 

15.6 
(22.4) 

13.5 
(17.7) 

Commute distance (miles)1> 

(university/work) 
12.1 

(14.2) 
9.8 

(16.3) 
4.3 

(14.6) 
4.8 

(14.9) 

Commute duration (minutes)2) 

(university/work) 
23.6 

(21.1) 
19.4 

(17.6) 
15.1 

(192) 
14.6 

(25.5) 

Vehicle ownership (%) 91 
(29) 

90 
(30) 

72 
(45) 

82 
(39) 

Living year round (%) 82 
(38) 

75 
(43) 

39 
(49) 

43 
(50) 

NOTES: The maximum distance is truncated at 120 miles; 
The maximum duration is truncated at 180 minutes. 

University students are a young and low income group, as expected. The average 

age of survey respondents ranges from 23 to 26 years old across universities, and their 

average incomes are distributed from $13,500 to $20,300. Differences exist between 
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urban and suburban campuses in terms of their personal characteristics and the daily 

traffic conditions. The income and vehicle ownership of students from urban campuses 

are higher than those from suburban campus, and they are also more likely to live in the 

town year-round compared with their suburban peers. Also, urban campuses have more 

part-time students and more students living off-campus. The students from urban 

campuses report longer average commute (to university/work) distances. Furthermore, 

the comparison shows different preference on how to travel (shown in Figure 28). 
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• ODU 46.65 13.25 36.10 0.71 2.61 0.68 
• VCU 40.40 15.46 33.73 3.95 6.01 0.44 
lUVA 18.47 11.21 54.76 10.24 4.24 1.08 
i VT 27.63 13.76 40.76 11.40 5.81 0.63 
i VA Add-on V2 40.87 43.07 10.10 3.92 0.73 1.31 

Figure 28. Mode split of university students and Virginia's general population 

Note: Appropriate weights are applied when calculating the statistics for NHTS Virginia add-on 
data. 

The two urban campuses (ODU and VCU) have higher drive alone trips—more 

than 40% of trips are single occupant vehicle trips. The percentages for shared-ride trips 

are similar among all universities (between 11% and 16%). Walking accounts for a large 

proportion of the mode split, and this percentage is higher in the two suburban campuses, 
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where more than 40% of the trips are by walking. This difference could be due to a host 

of reasons that include different student population composition; different campus traffic 

management strategies, e.g. parking restrictions, walkability; and accessibility/proximity 

of campus buildings. 

Table 13 shows the information acquisition and travel decision changes by 

different university student respondents. Similar to the survey for the general population 

in the Research Triangle, a large portion of the sampled student population (42%) did not 

acquire travel information. However, most of students (from 75% to 86%) who acquired 

traveler information reported that they changed their travel decisions based on the 

information they received. 

Table 13. Information acquisition and travel decision changes 

Source: (Son et al., 2011) 

Urban Suburban 
ODU VCU UVA VT 

Weekly traveler information acquisition N=9192) N=652 2) N=957 2) N=935 2) 

Never 42% 52% 69% 68% 
At least once a week 33% 29% 19% 23% 

2-4 times a week 13% 11% 7% 6% 
5+ times a week 12% 8% 5% 3% 

Traveler information sources1> N=533 N=314 N=302 N=303 
The Internet 74% 88% 95% 97% 

Commercial radio 56% 46% 14% 11% 
Television 51% 46% 19% 22% 

Variable Message Signs (VMS) 37% 20% 10% 14% 
Highway Advisory Radio (HAR) 24% 6% 2% 4% 

Traveler Information Hotline (511) 10% 4% 4% 5% 
Other 5% 5% 6% 8% 

Travel decision change N=533 N=314 N=302 N=303 
Yes 86% 81% 78% 75% 
No 14% 19% 22% 25% 

Changes in travel decision1) N=459 N=253 N=236 N=225 
Route change 86% 77% 51% 51% 

Departure time change 69% 65% 63% 68% 
Mode change 7% 16% 46% 35% 

Trip Cancellation 28% 22% 22% 22% 
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If comparing students from different regions, the students from urban campuses 

are more likely to acquire travel information than those from suburban campuses. This 

may be due to greater amounts of traffic congestion in urban areas and better availability 

of travel information provided by various sources. Figure 29 shows the different traveler 

information sources accessed by students from different universities. Noting that there are 

differences in the daily travel context across students from urban and suburban campuses 

(longer vs. shorter average commute distances and durations), behavioral responses to 

ATIS also vary across such campuses. Besides the Internet, other media such as radio, 

television, and VMS are still frequently used by students in urban campuses, whereas the 

Internet is almost the single dominant source in suburban campuses. 

• UVA (suburban) 

• VT (suburban) 

• ODU (urban) 

• VCU (urban) 

Internet Commercial Television Variable Highway Other 
radio Message Advisory 

Signs (VMS) Radio/511 
(HAR) 

Figure 29. Traveler information sources accessed by students 

Only a small portion of the students who acquired travel information did not 

change their travel decisions (14%-25%). Figure 30 shows how the sampled students 

responded to the information they received. Although students from urban campuses take 
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the lead in all the ways of change, the difference between urban campus students and 

suburban campus student is more distinct when the changes are routes and departure time 

adjustments other than altering their travel modes or cancelling trips. 

0.8 

0.6 

0.4 

0.2 

h j- J • ODU (urban) 

• VCU (urban) 

• UVA (suburban) 

• VT (suburban) 

Route change Departure time Mode change Trip Cancellation 
change 

Figure 30. How students change their travel decisions 

7.1.3 Comparison between the General Population and University Students 

Table 14 summarizes the comparison on the personal characteristics and 

information acquisition behavior between the general population and the university 

students. Notably, the survey of the Research Triangle was conducted earlier in 2006, 

three years before the USTS was conducted. Considering substantial changes have been 

brought forward by emerging tele-communication technologies during past few years, it 

is understandable that the percentage of traveler information sources accessed by 

travelers has changed. 
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Table 14. Information acquisition and travel decision changes 

Variable The general population 
University Student 

Variable The general population 
Overall Urban Suburban 

N=5107 N=3463 N=1571 N=1892 

INFO 51% 42% 54% 32% 

CHANGE 0.40 
(78% of 51%) 

0.34 
(80% of 42%) 

0.45 
(84% of 54%) 

0.24 
(76% Of 32%) 

FINFO 1.96 2.06 2.21 1.93 

INCOME 6.289 1.70 2.00 1.50 

AGE 51.17 24.30 25.54 23.30 

HHVEH 2.01 

INTERNET 23% 89% 79% 96% 

RADIO 48% 30% 52% 12% 

TEL 68% 33% 49% 21% 

VMS 6% 20% 31% 13% 

TIR/HAR(511) 2% 15% (6%) 25% (8%) 8% (5%) 

OTHER 2% 6% 5% 7% 

C_Route 87% 65% 83% 51% 

C_DPTime 32% 66% 68% 66% 

C_MODE 5% 27% 10% 39% 

C_CAN 13% 24% 26% 22% 

Overall, the average percent of student respondents who acquired traveler 

information is slightly lower than the general population (42% vs 51%). However, the 

percent of student respondents who adjusted their travel decisions based on information 

received are almost evenly matched with the general population. Considering that the 

Greater Triangle area is a metropolitan area, both the information acquisition and travel 

adjustment behavior of the general population in this region are closer to student 

respondents from an urban campus. In addition, substantial differences exist between 

university students and the general population in terms of the sources of information they 
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acquired and how they adjust their travel decisions. Figure 31 and Figure 32 show these 

discrepancies. 

i General population 

l University student 

The Internet Commercial Television Variable Highway Other 
radio Message Signs Advisory Radio 

(VMS) (HAR) 

Figure 31. Comparison of what ATIS sources accessed 

• General population 

• University student 

Route change Departure time Mode change Trip Cancellation 
change 

Figure 32. Comparison of how to change travel decision 

The general population depends on more traditional information sources, such as 

commercial radio broadcasts and television. The percents of the general population who 
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accessed information via television and commercial radio are 68% and 48%, respectively. 

These numbers for students are only 33% and 30%, respectively. Also, Internet, as an 

increasingly effective way of disseminating traffic information, is more widely used by 

university students compared with the general population. Besides the technology 

innovation in the past few years, this may also be due to different Internet coverage level, 

i.e. university students are 100% covered by the internet and they get used to using 

Internet in their daily lives. In addition, university students tend to use more en-route 

information than the general population. Specifically, about 20% and 15% student 

respondents checked VMS and highway transportation information radio, respectively. 

These numbers for the general population are much less, i.e. only 6% and 2%, 

respectively. 

Although the percent of reported changes based on the information received is 

almost identical for university students and the general population (78% vs. 80%), the 

difference is distinct in terms of how they changed their travel decisions. Most of the 

general population (close to 90%) made a route change, and only about 30% of the 

general population changed their departure time. This is not the case for university 

students, i.e. less (about 66%) student respondents reported they changed their routes, 

though this number is higher (83%) for students from urban campuses. However, a higher 

percent of students reported they changed the departure time (65%). Interestingly, few 

respondents from the general population changed trip model (less than 5%). The percent 

for university students is 27%; for suburban campus students, it is as high as 39%. The 

percent for urban campus students is relatively low since the Hampton Roads Area has 

very limited transit service. Similarly, only 13% of respondents from the general 



117 

population cancel their trips while the number for student respondents is almost two 

times. 

These differences somehow reflect the fact that students have greater use of 

alternative modes and their daily schedule is very different from the general population. 

The students have different time-to-travel compared with the general population, i.e., 

they participate in more activities during the mid-day and in the evening after 6:00 pm 

(Khattak et al., 2011). Therefore it may be easier for students to adjust their departure 

time since the congestion level during mid-day and evening would be less severe 

compared with peak hours. 

7.2 Model Framework 

7.2.1 Conceptual Framework 

A conceptual framework is established to address factors contributing to 

information acquisition as well as factors associated with travel decision changes. The 

framework, as shown in Figure 33, emphasizes the conditional link between information 

access/acquisition and travel decision change. The framework acknowledges there is a 

two-stage decision making process: 1) information access/acquisition; and 2) travel 

decision-making change. The latter stage is conditioned by the first stage, and those two 

stages are in turn influenced by socio-demographics and urban traffic conditions. 

Specifically, the conditionality between the two stages can be conceptualized as: before 

travelers adjust their travel decisions, they need to: a) own and be able to acquire 

information; b) perceive an adverse transportation condition, e.g., uncertainty, which 
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provides a motivation to acquire and use dynamic information; and c) use this 

information to make travel decision changes. 

Reduce 1 

uncertainty j 

Work-related 

Urban traffic conditions 

Non Work-related 
Travel time 

Technology 
ownership 

Socio-demographic condition 

HH/ individual 
characteristics 

Access and acquire information 

Radio VMS 

Route J Start Time ! 
Change • • _Change j 

Adjust travel decision-making or not 

J Mode 1 
i Change J 

! Trip 
• Cancellation 

Two-stage decision-making process 

Figure 33. Conceptual framework showing information acquisition and travel change 

Socio-demographic factors used in this analysis include individual characteristics 

and household attributes such as income and technology ownership. Urban traffic 

condition is presented using personal travel time. This is because for individual travelers, 

their judgment for the urban and traffic conditions are most likely to come from their own 

experiences on their intended routes, especially for the routes they routinely take. These 

experiences can be proximately measured by self-reported travel time. We expect 

differences between work-related travel and non-work related travel time. 

Hypotheses tested in this study are whether travelers are more likely to use travel 

information if they have longer work related travel time, longer non-work related travel 
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time, higher household income, and more household vehicles. Also, younger respondents 

are expected to be more likely to use travel information. The possibility of changing 

travel plans would be higher if more information sources are accessed (including internet, 

radio, television, variable message signs, traveler information radio), the frequency of 

information acquisition is higher, and work related travel time and non-work related 

travel time is longer. More years living at their current address may represent higher 

familiarity with the surroundings, which can possibly counteract information usage. 

However, in cases that the household members know there would be substantial 

uncertainty caused by traffic congestion or incidents, they may still prefer to seek travel 

information. Therefore, impact of residential tenure is expected to be mixed. 

The need to access and acquire information and adjust decisions exists before and 

during the trip. Figure 34 shows the logical thread of the hypotheses. 

Route i 
dxange i 

Staittime 
change 8:00; 

7:30; 
Seek 
AUS 

a) Pre-trip information usage 
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Figure 34. Pre-trip information usage vs. en-route information usage 

Figures 34 (a) and (b), respectively, illustrate two types of travel information 

acquisition: pre-trip and en-route. Both types of information acquisition are largely aimed 

to save travel time, but they are different in terms of when travel information is accessed: 

in the pre-trip stage (Figure 34 (a)), a traveler acquires travel information before leaving 

and may find out about the presence of congestion on the intended route; they can decide 

to avoid the congestion by rescheduling departure time or changing route or mode. In the 

en-route stage (Figure 34 (b)), traveler acquires travel information during the trip and 

may adjust the route to avoid possible delay during the remaining journey. The X-axis in 

the figures represents the spatial movement of the traveler, while the Y-axis shows a 

traveler's location in time. The figures show changes in travel time when the traveler 

acquires the information and makes the change. Generally, information access and 

acquisition costs time and resources. However, acquiring travel information can inform 

individuals if the estimated travel time exceeds the desired travel time, giving travelers 

impetus to reschedule departure times or take alternative routes. Travelers have an 
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incentive to seek travel information in order to reduce travel time uncertainty and to 

obtain certain benefits, e.g., travel time savings and knowledge of unexpected conditions. 

7.2.2 Sample Selection Model 

In order to capture both of these stages and explore the difference between factors 

that are associated with whether or not respondents seek travel information and travel 

change, a two-stage decision process is constructed. Since both stages are binary choices, 

i.e., seek information and change behavior, two probit models can be estimated. Clearly, 

behavioral changes are conditional on information acquisition, and this conditionality is 

captured appropriately in the sample selection model. 

The sample selection model handles a fundamental question: Given that the 

respondents use transportation information, will they change their trip plan or not. Only if 

the respondents answered yes to the first question—whether or not he or she used 

transportation information—is that respondent included in the sample for the second 

question—change travel plan or not. Therefore, when info = 1, the respondent uses 

information at least once per week; while info = 0 indicates that the respondent never 

used travel information. When info = 0, change travel plan or not is not observed. 

In the model, y is the dependent variable (change or not), which is observed only 

if a criterion, z - 1 is met (travel information is acquired). Specifically, if a traveler 

accesses/acquires travel information, then the change of traveler decision can be observed. 

The dependent variable y is related to independent variables x with the error term e. z* is 

unobserved and it can be estimated by independent variables v, with the error term, u. 

y = fi'x + e (change travel plan, binary probit) (Equation 10) 

z* = a'v + u (access/acquire info, binary probit) (Equation 11) 
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Here z* is not observed and has an observed counterpart z, which is determined 

by: 

z = 1 if z* > 0 and z = 0 if z* < 0 (Equation 12) 

x and v are two sets of explanatory variables that could contain either the same or 

different variables. In this research, work-related, non work-related travel time, age, etc. 

are common variables in both x and v, but variables that capture information sources (e.g., 

radio and internet) are only included in x. The model reports an index, p, to represent the 

correlation between the unobserved variables in the two equations. A statistically 

significant estimate for p indicates that modeling the change/adjustment decision and the 

access/acquisition decision simultaneously is superior to modeling them separately. 

7.3 Model Result 

7.3.1 Global Logistic Modeb 

The traditional logistic models for information acquisition and behavior adaption 

are estimated separately by the maximum-likelihood algorithm and the results are 

presented in Table 15. The first model has traveler information acquisition as the 

dependent variable. The second model has change travel decision or not as the dependent 

variable. Both of these models are statistically significant overall. 



123 

Table IS. Global logistic model results 

INFO Model CHANGE Model 

Independent Variable P T-stat. Marg. P T-stat. Marg. 

Intercept -0.133 -0.948 - -3.337 -13.739* -

WORK 0.004 4.028* 0.001 0.000 0.112 0.000 

Dummy_W -0.221 -2.983* -0.055 -0.224 -1.922 -0.047 

NWORK 0.002 3.813* 0.001 0.001 1.259 0.000 

Dummy_NW -0.010 -0.116 -0.003 -0.106 -0.760 -0.022 

NA - - - 1.700 20.014* 0.361 

LIVED 0.003 0.295 0.001 0.054 3.571* 0.011 

INCOME 0.053 4.932* 0.013 0.126 7.080* 0.027 

HHVEH 0.112 3.441* 0.028 0.076 1.442 0.016 

FINFO - - 0.532 20.701* 0.113 

AGE -0.011 -4.614* -0.003 -0.021 -5.543* -0.004 

Summary Statistics 

Number of obs. 5107 5107 

Local sample size 1489 2526 

Log-likelihood -3428.818 -1547.805 

AIC (Akaike Information Criterion) 6875.635 3117.609 

Note: * means significant at the 0.05 level. 
Marg. means marginal effects of the variable at its mean value, with other variables 

controlled. 

In the information acquisition model, in line with the expectation, the possibility 

of information acquisition is higher when the travel time is longer. Marginal effects show 

that one hour increase in work related travel time or non-work related travel time is 

associated with 6% higher possibility of travel information acquisition when the work 

related travel time is equal to its mean value. The negative coefficients of the dummy 

variable of work related time indicates that if the work related travel time is not available, 

these households are less likely to use traveler information. Marginal effects also show 
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that one additional vehicle in the household is associated with a 3% higher possibility of 

travel information usage for those households with average number of vehicles. If the 

respondent is ten years younger, then information acquisition possibility increases by 3% 

for those travelers with the average age (51 years). A ten thousand-dollar increase in 

household income would enhance the information usage possibility by 1.3% for those 

households with average income. The length of living at current address shows no 

significant association with information acquisition. 

In the travel decision adaption model, as expected, people's inclination of travel 

decision changes is positively associated with more information sources that he or she 

can access, accessing travel information more frequently, younger age, and higher 

income. The marginal effects show that one additional attempt to acquire travel 

information per week is associated with higher change probability by 11.3% at the mean 

of the information acquisition frequency. A respondent that is 10 years younger will have 

4% higher likelihood of travel decision change compared with the travelers of average 

age (51 years). The length of living at the address shows positive significant association 

with the likelihood of travel decision changes, which means on average, the longer the 

traveler lived at the address, the more likely they change their travel decisions. All travel 

time related variables, including work related and non-work related travel time, are not 

statistically significant in predicting travel decision change, while they are significant in 

information acquisition models. It seems that travel time is more closely associated with 

the acquisition of travel information rather than with changes of travel decisions for the 

Triangle area respondents. 
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The traditional logistic regression models explain the determinants of probability 

of travel information usage and travel decision changes from a global average point of 

view separately. For an information acquisition model, these analyses would be fine if the 

change or not change travel time data are completely at random. However, the decision to 

use information or not is made by the individual household. Thus, those who did not use 

information constitute a self-selected sample and not a random sample. It is likely some 

of the household with low income or no vehicle choose not to use travel information and 

this would account for their reluctance to change their travel plan. So, this model is likely 

to overestimate the chances of travel plan changes in the population. Therefore, there is 

need to account for the portion of sample on the non-using information households. For 

travel decision change model, the model could be underestimated due to sample selection 

error. The solution to this quandary is to use the Heckman selection model. 

7.3.2 Sample Selection Models 

The General Population Model 

Three models are listed in Table 16. The first two are probit models with sample 

selection. In order to capture differences in decision changes, two models with different 

dependent variables are estimated. One has a dependent variable of change or not, 

considering all changes such as time, mode, route or cancelling trip. The second model 

considers route change only. The third is a probit model without sample selection. 
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Table 16. Probit model with sample selection of travel behavior changes 

Dependent 
Change (time, mode, route) 

or cancel trip 
Model 1 

Change route 
Model 2 

Change (time, mode, route) 
or cancel trip 

Model 3 

P Marg. P Marg. 0 Marg. 

Finfo 0.0770*** 0.0182 0.0593*** 0.0170 0.3234*** 0.1131 

Work -0.0234 -0.0055 -0.0397 -0.0114 0.0281 0.0098 

Nonwrk -0.0138 -0.0032 -0.0277 -0.0080 0.0496** 0.0173 

Dummy_w -0.0602 -0.0143 -0.0546 -0.0157 -0.1718*** -0.0596 

Dummy_nw -0.0892 -0.0217 -0.1178* -0.0349 -0.0609 -0.0211 

INTERNET 0.3294*** 0.0680 0.1405*** 0.0386 1.2910*** 0.4813 

RADIO 0.2102*** 0.0470 0.3525** 0.0936 0.9754*** 0.3625 

TEL 0.0319 0.0075 0.0185 0.0053 0.8667*** 0.3134 

VMS -0.1446 -0.0366 -0.0383 -0.0112 -0.4615*** -0.1405 

TIR 0.3194* 0.0636 0.3734** 0.0909 0.8602*** 0.3316 

Lived 0.0270*** 0.0064 0.0219*** 0.0063 0.0391*** 0.0137 

Age -0.0047** -0.0011 -0.0056*** -0.0016 -0.0112*** -0.0039 

Constant 0.8977*** 0.8114*** -1.5006*** 

Dependent Info acquisition Info acquisition 

Lived -0.0006 -0.0003 -0.0010 -0.0004 

Work 0.1310*** 0.0523 0.1345*** 0.0537 

Nonwrk 0.0726*** 0.0290 0.0716*** 0.0286 

Dummy_w -0.1221*** -0.0487 -0.1096** -0.0437 

Dummy_nw -0.0023 -0.0009 -0.0089 -0.0036 

Income 0.0440*** 0.0176 0.0433*** 0.0173 

Age -0.0064*** -0.0025 -0.0066*** -0.0026 

Hhveh 0.0734*** 0.0293 0.0880*** 0.0351 

Constant -0.1590* -0.1770** 

P -.938 Prob>x2= 0.000*** -.963 Prob > x
2=0.000*** 

Number of obs. = 5107 Number of obs = 5107 Number of obs = 5107 

Censored obs. = 2523 Censored obs = 2523 

Uncensored obs. = 2584 Uncensored obs - 2584 Pseudo R  ̂ = 0.5499 

Wald Chi-square= 82.3 Wald Chi-square = 112.58 LR Chi-square = 3771.78 

Log likelihood = -4668.151 Log likelihood = -4869.41 Log likelihood = -1543.83 

Note: * p<0.10; ** p<0.05; *** p<0.01. 
Used average value of 51.17 to replace the missing data for Age variable; The unit for 

travel time is hour. The marginal effect listed in change model is for the probability of a positive 
outcome, Pr (change=l) at the mean of each independent variables; The marginal effect listed in 
info model is for the probability of the dependent variable of the selection model being observed, 
Pr(info=l), at the mean of each independent variable. 
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Chi-Square tests show that all models are statistically significant. To answer 

which model is suitable for information access/acquisition and decision change process, 

the results in Model 1 are compared with Model 3 (the same model as Model 1 but 

without sample selection). In Model 1, with sample selection, p can represent the 

correlation of the residuals in the selection and outcome equations, which is statistically 

significant. This indicates that the sample selection structure is preferable to the two 

separate probit models. Comparison also finds that all the predictors have a lower 

magnitude in Model 1. For instance, in Model 3, the frequency of travel information 

acquisition has a large coefficient (0.32), whereas in the sample selectivity model (Model 

1), the coefficient decreases to 0.077. This is reasonable because the model without 

sample selection assumes that all the travelers without information usage would not 

change their travel decisions. This could cause underestimation of the probability of 

decision changes in the population. 

The constant term is positive in Model 1 and Model 2 (with sample selection), but 

it is negative in Model 3 (without sample selection). This indicates that travelers 

generally are likely to adjust their travel decisions given that travel information is 

accessed and acquired. However, the model without sample selection overlooks this point 

by providing constant with wrong direction. Therefore, the model with sample selection 

is methodologically reasonable and sophisticated. Also it provides a more nuanced 

interpretation. 

In the information usage model, in line with our expectation, the possibility of 

information acquisition is higher when the travel time is longer. The effect size of work 

related travel time is larger than that of non work related travel time. One hour increase in 
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work related travel time is associated with higher possibility of travel information 

acquisition by 5%, while the same increase in non work related travel time increases the 

information acquisition possibility by only 3%. 

Consistent with the earlier expectations, factors associated with higher 

information acquisition possibility are higher number of household vehicles, more 

household income, and younger head of the household. Marginal effects show that one 

additional vehicle in household is associated with a 3% higher possibility of travel 

information usage. If the respondent is ten years younger, then information acquisition 

possibility increases by 2.5%. A ten thousand-dollar increase in household income would 

enhance the information usage possibility by 1.8%. 

In the change travel decision model, in line with our earlier expectations, the 

changes are more likely if the household acquires travel information more frequently. 

One additional attempt to acquire travel information per week would increase the change 

possibility by 1.8%. A respondent that is 10 years younger will have 1% higher 

likelihood of travel plan change. The length of living at the address, while showing no 

association with information acquisition, is significantly associated with the likelihood of 

travel plan change. Ten more years of living at the same address would be associated 

with higher likelihood of changes by 6.4%. 

Inconsistent with the expectations, all coefficients of travel time variables, 

including work related and non-work related travel time, are not statistically significant in 

predicting travel plan change, while most of them are significant in information 

acquisition models. It seems for the Triangle area respondents, travel time is more closely 
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associated with the acquisition of travel information other than being associated with 

travel decision changes. 

Among all information technologies, the Internet is associated with the highest 

propensity to change travel decisions, followed by radio. This study further found that 

television, VMS and highway traveler information radio are not statistically significantly 

associated with travel decision changes. This is interesting as statistics show that 

although television is the most widely used source to acquire travel information, it does 

not show an effective impact on travel decision change. The internet has a different result 

from television: while only 23% of respondents acquire travel information from the 

internet, it imposes the greatest influence on travel plan changes. The marginal effects 

show that the internet acquisition acts more strongly on the probability of changing travel 

plans than on the probability of changing routes (7% vs. 4% at the mean respectively). 

Radio and TIR provide the strongest effect on route changes, which is consistent with the 

literature. This may be due to more efficient information for en-route trips provided by 

radio. VMS is not statistically significantly associated with travel decision changes. This 

may be partially because of the low levels of VMS deployments in the Triangle area of 

North Carolina. 

The findings reaffirm an advantage of sample selection model. That is, by 

estimating a two stage model, it can easily capture the different influences of factors on 

the two stages separately. More specifically, it answered the question whether travel time 

is a factor which influences the second stage of travel decision adjustment directly or 

backhandedly through affecting the first stage of information acquisition. 
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An interesting finding is that the length of living at the current address is 

insignificantly associated with the information usage but significantly and positively 

associated with travel decision changes. Longer residential tenure can represent higher 

familiarity with the surroundings, e.g., more knowledge of alternate routes, which may 

counteract information access/acquisition. For instance, a long-time resident may be more 

adept at making decisions when encountering unexpected congestion, reducing their need 

to seek travel information. 

Student model 

The sample selection model for university student is also estimated to compare it 

with the general population model (shown in Table 17). Similar variables are used in 

student models for the purpose of comparison. To capture the special environment of 

university campus, a dummy variable is added to differentiate an urban campus from a 

university town. Also, commute duration in the student model denotes how long it will 

take to drive between a residence and campus, similar to work-related travel time in the 

model of the general population. Two binary probit sample selection models are 

presented with/without statistically insignificant (at 5% level) variables. Chi-Square tests 

show that both models are statistically significant. 
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Table 17. Probit model with sample selection of student travel behavior changes 

Source: (Son et al., 2011) 

Dependent 
variables 

Models 

Independent̂  ̂
variables 

Model 1 
(with all variables) 

Model 2 
(removed insig. variables) 

Dependent 
variables 

Models 

Independent̂  ̂
variables P Marg. P Marg. 

Travel plan 
change 
(1=yes, 
0=no) 

Commute Duration (hr) -0.0048 -0.0074 - -

Travel plan 
change 
(1=yes, 
0=no) 

Acquisition Frequency 0.2613** 0.0674 0.2541*** 0.0698 

Travel plan 
change 
(1=yes, 
0=no) 

Info Source: Internet 0.3436** 0.0990 0.2801** 0.0599 

Travel plan 
change 
(1=yes, 
0=no) 

Info Source: ComRadio 0.1685 0.0246 - -

Travel plan 
change 
(1=yes, 
0=no) 

Info Source: TV -0.0066 -0.0018 - -Travel plan 
change 
(1=yes, 
0=no) 

Info Source: VMS 0.4404** 0.1007 0.5255*** 0.1311 

Travel plan 
change 
(1=yes, 
0=no) Info Source: HAR 0.1827 0.0439 - -

Travel plan 
change 
(1=yes, 
0=no) 

Info Source: 511 0.2348 0.0545 - -

Travel plan 
change 
(1=yes, 
0=no) 

Off-Campus x Part-time 0.3747*** 0.0808 0.3207** 0.0958 

Travel plan 
change 
(1=yes, 
0=no) 

Urban Campus 0.2151 0.0338 - -

Travel plan 
change 
(1=yes, 
0=no) 

Constant -0.608 - 0.2243 -

Travel 
information 
acquisition 

(1=yes, 
0=no) 

Commute Duration (hr) 0.1677*** 0.0640 0.1626*** 0.0641 Travel 
information 
acquisition 

(1=yes, 
0=no) 

Off-Campus x Part-time 0.1198* 0.0498 0.1204* 0.0498 
Travel 

information 
acquisition 

(1=yes, 
0=no) 

Urban Campus 0.5421*** 0.2076 0.5434*** 0.2076 

Travel 
information 
acquisition 

(1=yes, 
0=no) Constant -0.5292*** - -0.5283*** -

Summary Statistics 

P 0.2259 -0.4575 

LR x2 of p 0.01 4.19 

Prob.> x2 0.9425 0.0407 

N (observations) 3398 

N (censored observations) 1981 

N (uncensored observations) 1417 

Log-likelihood at convergence -2858.552 -2862.0839 

Comparison Log-likelihood -2858.554 -2864.1785 

Wald x2 80.73 45.09 

Prob.> x2 0.0000 0.0000 

p2 (rho-squared) for separate models 0.04/0.07 0.04/0.06 

NOTES: • p<0.10; ** p<0.05; *** p<0.01. 
The marginal effects listed in the model are for the probability of a positive outcome, Pr 

(travel plan change or information acquisition^) at the mean of each independent variables. 
Observations with missing values for any of the variables are excluded. 
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Consistent with the general population model and expectations, commuting time 

is positively associated with higher possibility of information acquisition instead of travel 

decision changes. The marginal effects show that one hour increase in commute time (to 

university) has a statistically significant association with a higher possibility of travel 

information acquisition by 6.4%. The frequency of receiving information is also 

positively associated with changing intended travel plans, similar to the general 

population model. One additional attempt to acquire travel information per week is 

associated with 6.7% higher chances of travel decision adjustment, controlling for other 

variables. 

Different groups of university students show different possibilities of traveler 

information acquisition. Off-campus and part-time students are more likely to acquire 

travel information, and meanwhile, they have higher propensity to change their travel 

decision compared to other students. Their possibility to access traveler information is 5.0% 

greater than other subgroups, with all the other variables controlled. The indicator 

variable for campus type is also statistically significant, indicating that students in urban 

campuses are 20% more likely to acquire travel information compared with rural 

campuses. This implies that information seeking behavior is context-dependent, which 

may depend on different level of traffic congestion and availability of travel information. 

However, the campus location indicator does not show a statistical significance in the 

change model, implying that travel decision change behavior is not different across the 

campuses and may be transferable to other contexts. 

For information sources, only Internet and VMS are statistically significant in the 

change model. The Internet consistently shows its strong influence on travelers' decision 
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adjustment. However, different from the general population model, commercial radio and 

TIR no longer shows significant association with travel decision changes. Instead, VMS 

shows statistically significant association with travel decision changes for university 

student respondents in Virginia. This difference in terms of how various traveler 

information technologies impact travel decision change may be due to various factors, e.g. 

different level of information availability, traffic context and the preference of people. 

7.3.3 Local Models 

Although the sample selection model can compensate for the error brought by 

ignoring data censoring, the associations shown by sample selection model are still 

globally fixed. It cannot answer the question of whether the potential spatial 

heterogeneity exists. Geographical Weighted Logistic Regression (GWLR) model is then 

estimated to capture the possible spatial heterogeneity of both the information acquisition 

and travel decision changes for the general population of the Research Triangle region. 

The GWLR is calibrated using the GWR 3 package, and the calibration took 24 hours 

with more than 5000 samples, much longer than estimation of conventional logistic 

model. 

The local estimation describes the situation at an individual location level. As 

there are 5107 households (regression locations) in the dataset, 5107 local models are 

estimated for INFO and CHANGE variables. Based on the local parameter estimates, a 

set of parameter surfaces are generated to reveal the spatial variations of these 

independent variables. An Inverse Distance Weighted (IDW) interpolation algorithm is 

used to assign values to unknown points based on the 5107 known household parameters, 

thus a continuous coefficient surface covering the whole region is generated. IDW 
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assumes that each measured point has a local influence that diminishes with distance, 

with higher weights given for locations closer to the prediction location than those 

locations farther away. 

Table 18 shows the parameter summaiy for GWLR model. It provides 

information about the extent of a parameter's spatial variance. 

Table 18. Parameter summary for GWLR models (N=5107) 

Variable Min. Lwr 
Quartile 

Upr 
Quartile Maximum Upr-

Lwr 
2*Std. 
Errors 

(Upr-Lwr)>= 
2*Std. Errors 

Intrcept -1.282 -0.443 0.397 0.839 0.840 0.28 TRUE 

Work -0.002 0.001 0.004 0.013 0.003 0.002 TRUE 

Dummy_w -0.717 -0.396 -0.138 0.170 0.258 0.148 TRUE 

INFO 
Model 

Nonwork -0.001 0.001 0.003 0.005 0.002 0.002 TRUE 
INFO 
Model 

Dummy_nw 

LIVED 

-0.487 

-0.056 

-0.092 

-0.003 

0.139 

0.039 

0.417 

0.058 

0.231 

0.042 

0.174 

0.018 

TRUE 

TRUE 

INCOM -0.067 0.009 0.052 0.153 0.043 0.022 TRUE 

HHVEH -0.229 0.101 0.168 0.409 0.067 0.064 TRUE 

AGE1 -0.030 -0.014 -0.008 0.008 0.007 0.004 TRUE 

Intercept -4.092 -3.545 -3.194 -2.804 0.352 0.486 FALSE 

Work -0.003 -0.002 0.001 0.004 0.002 0.002 FALSE 

Dummy_w -0.542 -0.255 -0.127 0.126 0.129 0.234 FALSE 

Nonwork 0.000 0.000 0.001 0.004 0.001 0.002 FALSE 

CHANGE 
model 

Dummy_nw -0.560 -0.448 -0.020 0.724 0.429 0.28 TRUE 
CHANGE 

model NA 

LIVED 

1.261 

-0.009 

1.589 

0.037 

1.782 

0.080 

2.222 

0.124 
0.193 

0.043 

0.17 

0.03 

TRUE 

TRUE 

INCOM 0.048 0.100 0.132 0.160 0.032 0.036 FALSE 

HHVEH -0.066 0.120 0.169 0.195 0.049 0.106 FALSE 

FINFO 0.388 0.531 0.583 0.623 0.052 0.052 TRUE 

AGE1 -0.032 -0.023 -0.017 -0.006 0.006 0.008 FALSE 

Theoretically, all parameters can vary in space when GWLR is used 

(Fotheringham et al., 2002). Therefore it is important to determine if the spatial variance 

is significant enough to be captured by using the more complicated GWLR model. If the 
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spatial variation is modest, it will be reasonable to use the global model known as 

stationarity in space. To decide whether the spatial variance is significant, the difference 

between the lower quartile and upper quartile of a parameter is compared with the 

standard error. If the difference is larger than two standard errors, then the parameter is 

non-stationary in space, indicating that spatial heterogeneity is statistically significant and 

misspecification exists in the global model (Fotheringham et al., 2002). From the results 

shown in the table, almost all explanatory variables show significant spatial variance in 

the INFO model. However, this is not the case for the CHANGE model. 

Figure 35 demonstrates an example of how the coefficients distribute on a 3D 

map for better understanding of the local models. Income in the CHANGE model is 

shown in this figure. The x-y dimension shows the geographical shape of study area. The 

altitude represents the income coefficient (p) in the CHANGE model. Results of both 

models (local and global) are shown on the same map for easy comparison. Since income 

in the global model has only one value (P=0.126), it produces a flat surface with the 

altitude of 0.053 in the space. However, the coefficient of income in local model 

produces a continuously changing surface (P changes between 0.05 and 0.16), which 

gives a hilly landscape. Although (3 changes, the average value of P is still equal to 0.126, 

which is equal to the result of global model. Figures 36 and 37 present the generated 

parameter surfaces for key variables with cell size of 1 km by 1 km. 
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Figure 35. Global vs. local change model (variable: income) 
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c) INCOME coefficient b) WORK coefficient a) NWORK coefficient 

d) NWORK t-statistic e) WORK t-statistic f) INCOME t-statistic 

Figure 36. Local model results and t-statistic for INFO model 
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U0IIM 

uwMcotmro 
(79-1411 

c) FINFO t-statistic d) NA t-statistic 

Figure 37. Local model results and t-statistic for CHANGE model 
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For the travel information acquisition model (Figure 36), although both work 

related and non-work related travel times are significant in the global model, these 

associations are not necessarily significant throughout the region. Moreover, non-work 

related travel time shows substantially different spatial distribution from that of work 

related travel time. For instance, the coefficient of work related travel time is only 

statistically significant in Person and Granville counties (Figure 36e); non-work related 

travel time is statistically significant in Orange, Durham and parts of Wake, Harnett, and 

Johnson counties (Figure 36d). It seems in urban areas, non-work related travel time 

tends to be significantly associated with information acquisition; but in suburban areas, 

work related travel time show significant association with information acquisition. For 

the coefficient of income, it has greater magnitude with information acquisition in the 

southeastern areas especially in Johnston Comity, Nash and Harnett County (Figure 36c). 

Although global coefficient shows 0.053 on average, while in these areas, it can be as 

high as 0.1, which is twice of the average level. In most other parts of the study area, the 

relationship between income and information acquisition is very weak, as shown by the 

pseudo t-statistic. 

For the decision change model, Figure 37 shows the spatial distribution of 

coefficient and t-statistic of FINFO and NA. This shows that in those areas with darker 

colors, additional higher frequency of information acquisition or more traveler 

information resources available to a person are associated with higher possibility of travel 

decision changes. Overall, relationship between travel decision changes with the 

frequency of information usage and number of traveler information resources is positive. 

However, compared with suburban areas, frequency of information usage has higher 
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marginal effects on probability of travel decision changes in urban areas, while number of 

traveler information resources has less marginal effects on travel decision adaption in 

urban areas. 

7.3.4 Comparison between Global and Local Models 

Goodness of fit measures for global vs. local models are summarized in Table 19. 

By comparing the AICs for the global and local models, it is clear that the local model 

has a smaller AIC than the global model (6722 vs. 6876 in the information acquisition 

model, 3105 vs. 3117 in the decision change model). Improvements in the AIC that are 

less than 3 in value could easily arise as a result of sampling error (Fotheringham et al., 

2002), while here the difference between the global and local models is greater than 3, 

which indicates that the local models are statistically better than the global model. 

Furthermore, MAD (Mean Absolute Deviation) and RMSE (Root Mean Square Error) are 

calculated to compare the accuracy of the two models. The results show that GWR model 

has lower MAD and RMSE, which indicates that GWR provides better predictions 

compared with the global model. 

Table 19. Goodness of fit measures for global vs. local models (N=5107) 

INFO model CHANGE model 

Global Local Global Local 

AIC (Akaike Information Criterion) 6876 6722 3117 3105 

MAD (Mean Absolute Deviation) 0.488 0.126 0.202 0.065 

RMSE (Root Mean Square Error) 0.505 0.154 0.329 0.114 
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7.4 Key Findings 

This chapter examines how the general population and university students are 

different in terms of their behavior with regard to traveler information acquisition and 

travel decision adjustment in response to the traveler information received. A 

comprehensive regional dataset of the Research Triangle area (2006) and a behavior 

survey targeting university students in Virginia (2009) are compared with each other. 

The comparison show that a large portion of the general population and the 

student population acquires traveler information; the percent of students from urban 

campuses is slightly higher than the general population, while the student from suburban 

campuses is much lower. Higher information acquisition percentages are observed on 

students from urban campuses (48% to 58%), compared to students from suburban 

campuses (31% to 32%). Furthermore, a large portion of students who access information 

(75% to 86%, depending on the university) is likely to change their decisions based on 

the information received. This percent is almost evenly matched with the general 

population. 

Students and the general population have very different preferences over the 

information source they acquired and how they changed their travel decision based on 

information received. Internet is information source accessed by students mostly, while 

the general population depends on more traditional information sources, such as 

commercial radio broadcasts and television.s radio. Also, en-route information sources 

such as VMS and highway transportation information radio are more frequently used by 

students than by the general population. It is also clear that the Internet has emerged as a 

key source of information access for younger, more technology savvy students. 
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Consideration of investments in these technologies, along with concomitant investments 

in data collection and data fusion are needed, to allow easier access and plan 

readjustment. When it comes to travel decision adjustments, fewer students change their 

travel routes (this percent for students from suburban campus are even lower), but a 

higher percent of students change their departure time, mode or cancel the trip. These 

differences are partially coming from the innovation of information technology that 

emerged recently, considering the surveys were investigated in different year. Also, the 

information distribution service level is different by regions. More importantly, it may 

relate to different travel preferences among students and the general population, e.g. a 

student has a relatively flexible schedule. 

In addition, a customized information delivery strategy for ATIS is desirable. 

Students in urban areas, where more route options exist, are likely to shift their routes 

requiring dynamic route information. Furthermore, students seem to alter their mode of 

travel relatively frequently, especially at suburban campuses, pointing to the delivery of 

multimodal information on and around campuses. Students need information that enables 

them to make mode choice decisions and information on public transit, bicycle and 

pedestrian facilities should be offered widely (e.g., on-campus and off-campus through 

multiple media) in order to facilitate readjustments of mode choices. This can result in a 

more dynamic readjustment of demand, potentially benefiting transportation network 

performance. 

A key issue is whether appropriate model specification is used. Using rigorous 

statistical regression models, factors associated with traveler information acquisition 

behavior and propensity to change travel plans are explored. Three different models are 
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presented, including traditional logistic model, the Probit model with/without sample 

selection and Geographical Weighted Regression model. Both of the previous two 

models are global models, where associations hold fixed across the study region. GWR is 

a local model, which can capture the spatial variance of the associations and show how 

the coefficients vary across space. However, the GWR model cannot deal with censored 

data, which is the case here given survey design. The sample selection model is a two-

step modeling approach which can deal with censored data, but it cannot capture spatial 

variance. 

A critical finding is that unobserved spatial heterogeneity exists in traveler 

information acquisition and travel decision adaption. This means that the associations 

between traveler information acquisition, travel decision changes and associated variables 

such as travel time and household income, varies significantly over the study area. These 

potentially useful insights, it should be noted, would have remained uncovered by the 

global models that assumed away heterogeneity. The results presented in this chapter 

support the application of GWR as an appropriate tool for providing insights into the 

spatial distribution of parameter estimates. The results highlight the importance of 

modeling local relationships when considering traveler decisions. 
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8. CONCLUSIONS 

This chapter summarizes the findings in the dissertation, draws conclusions, 

discusses the policy implications, and points out future research directions. 

8.1 Contributions 

8.1.1 Methodology 

From the perspective of the researchers and the policy makers, analytical 

techniques are a means to an end, since researchers always want to understand events and 

processes thoroughly by developing rigorous methodologies while policy makers want to 

benefit their strategic and tactical implementation from these methodologies. 

Accuracy of zeo-imputation 

A key purpose of doing residential buffer analysis is to understand the 

associations of travel behavior, especially walking, bicycling, and public transit use, with 

micro-environment factors around residences. In order to explore associations empirically, 

researchers estimate statistically-based regression models using trips (walking, bicycling, 

and public transit) as dependent variables and the built environment/accessibility in 

buffers as correlates. Geo-imputation is presented in this dissertation to assign synthetic 

point based location to residences which can be used together with dynamic network 

based buffer to capture built environment more accurately. However, the synthetic 

assignment of residential locations also introduces potential systematic errors in the 

relationships modeled when smaller buffer sizes are used. Smaller buffer sizes of 0.25 are 

considered more appropriate for explaining walking in a neighborhood and for accessing 
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public transit. The somewhat surprising result is that for larger buffer sizes (0.75 miles), 

the systematic errors are not substantial and the results indicate that synthetic assignment 

may be able to reproduce the relationship that may exist in reality for larger buffer sizes. 

Overall, geo-imputation is a more accurate method to assign location to residences 

compared with using centroid of a zone commonly used in current transportation 

literature. Geo-imputation can be used to replace exact geo-codes for transportation 

research purposes, if it is to be used in urban area or larger buffer sizes are to be used. 

Capturing built environment 

This study develops a unique database from behavioral data combined with a 

variety of spatial data. It applies GIS network analysis to capture built environmental 

characteristics in a dynamic network buffer around sampled residences. This method is 

more accurate since it can dynamically self-adapt its buffer size according to the 

accessibility and layout structure of the network around residences. More importantly, all 

the land use or public facilities covered by the network based buffer are actually 

accessible to the residences. However, this is the main drawback of the usual method of 

fixed buffer analysis. 

University campus as a special trip generator 

Large university campuses are major trip generators and can impact the regional 

traffic. The university-based travel demand model presented in this study can help 

improve the accuracy of regional models, especially in regions with larger student 

populations. Travel patterns for special generators (such as universities) are different 

from standard land uses and have received little attention in the conventional four-step 
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travel demand forecasting literature. More broadly, the methodologies developed based 

on university student trip generation models set good examples to develop demand 

models for other sub-populations or special generators such as military bases and large 

hospitals. The findings about student travel can also help design practical strategies to 

improve the traffic conditions in and around the university campus by establishing 

satellite communities near the campus, e.g., providing better on-campus or near-campus 

student villages, encouraging traditional neighborhood developments within walking or 

bicycling distance from university campus (where feasible and appropriate), creating a 

pedestrian and bicycle friendly design on and near campus, adding public facilities in 

surrounding communities, and connecting regional transit corridors with university 

campuses. 

Spatial heterogeneity 

Timely contribution has been made by this study to understand there is spatial 

heterogeneity in models of traveler behavior and how they respond to traveler 

information. Instead of using the standard global models, which tend to compromise 

spatial heterogeneity in favor of average estimates and simplicities, attention in this 

dissertation focuses on capturing the spatial variations of links between trip-making and 

built environment, as well as associations between contextual factors with traveler 

information acquisition and travel decision changes. 

Given the computing burden of estimating local models, the key question is 

whether or not the gains of simplicity and statistical efficiency of global models offset the 

losses from overlooking spatial heterogeneity. This study concludes that it is necessary to 

account for spatial heterogeneity in travel demand models and traveler information 
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delivery mechanisms models, especially in metropolitan areas with substantial variations 

in geographical environments. The local models, e.g. GWR (Geographically Weighted 

Regression) and its relatives, GWPR and GWLR provide a more accurate representation 

of capturing the unobserved spatial heterogeneity in such models. 

The direct use of the method is to map both the coefficient magnitudes and their 

statistical significances on a continuous surface, which provides an intuitive way to 

visualize spatial patterns of coefficients. This is distinct from commonly used (global) 

regression models which only reflect average associations; subsequently, it is not 

necessary to map global model results since it does not allow coefficients to change 

across space. Therefore, specific guidelines can be drawn based on these spatial patterns. 

Accounting for spatial variations in associations between built environment and trip 

making can help identify areas where focusing land use policies can have the highest 

impacts. Also, mapping the t-statistic can help to identify where certain policy have 

effective impact, given the factor is significant in that region. 

The broader purpose of this method is to demonstrate that taking advantage of 

state-of-the-art developments of GIS technologies is important since valuable insights can 

be obtained by incorporating spatial information in travel behavior models. 

8.1.2 Model Findings 

Built environment and trip-making 

For improved planning, understanding links between the built environment and 

travel is of great interest to researchers as well as practitioners. The mean and the 

variance of motorized trip frequency and their associated socio-demographic factors are 
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found to be not identical across the Hampton Roads metropolitan area. Importantly, the 

association between household auto trips and built environment variables varies 

significantly over the Hampton Roads Area. This suggests that simply applying a pooled 

model without considering spatial heterogeneity can be misleading. Finding proper levels 

of spatial clusters, e.g. using neighborhood databases within a regional survey, should be 

considered carefully when exploring the associations of built environmental variables 

with travel demand. 

The uniqueness of university campus 

Rather than tinkering with traditional trip generation models, the study develops a 

deeper understanding of various factors associated with students travel behavior. Notably, 

traditional travel demand model considers trip rates with socio-economic information 

such as household size, automobile ownership, and household income, which does not 

appropriately represent the travel patterns of university students. The expected 

differences due to distance from campus and related factors are highlighted in the 

university students' travel demand model. The ring of mobility is confirmed by using 

spatial analysis. These differences in different ring areas around university campuses are 

the likely consequence of their different socio-demographics, accessibility to the built 

environment of the campus and the types of activities available on and near campus. 

Linkages are quantified between university students' residential location, demographics, 

and their travel patterns. 

Interestingly, due to the concentration of campus buildings, university campuses 

usually represent more livable environments that are higher density, mixed use, and 

alternative mode friendly, offering greater access to activities in close proximity. Despite 
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the fact that some campuses under investigation are located in an automobile dominant 

urban area, walking/bicycling still has a relatively larger share for students residing on-

campus and near-campus. These findings are consistent with the findings from mixed-use 

traditional neighborhood developments that have shown less driving and more walking 

(Khattak and Rodriguez, 2005). 

The evolvement of personal mobility is also confirmed. Shown in Figure 38, on 

average, university students made more non-motorized trips and less motorized trips 

compared with the general population. This difference reflects a tendency that as 

travelers age, they walk/bike less and become more dependent on car travel than they 

were in young age. It relates to their different life stages and the associated changed built 

environment. 

80.0% 

60.0% 

40.0% 

20.0% -

0.0% 

• University-VT 

• University-ODU 

• Hampton Roads 

•the Great Triangle 

Drive Carpool Walk/bike Transit 

Figure 38. Mode split of university students and the general population 

Travel decision chanees based on traveler information 
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Overall, the contribution of this part is focused on the role of travel information 

access and acquisition in influencing travelers' propensity to "change course." Three 

issues relevant to traveler information delivery mechanisms have been highlighted in this 

dissertation. 

Firstly, this research contributes by comprehensively exploring and quantifying 

travel information access and their propensity to change travel decisions in response to 

the received information. There is clear evidence that exposure to travel information is 

related to the higher likelihood of adjusting planned travel. Also, travel information 

acquisition is positively related to longer travel times or commuting duration. The 

uncertainty in longer trips may motivate respondents to acquire information. However, 

longer trip times do not seem to play a critical role in the change decisions. Furthermore, 

travellers are generally reluctant to change their routine travel decisions, partly due to 

behavioral inertia. However, this reluctance may not be due to their inherent resistance to 

change, but to the lack of travel information. This implies positive news for information 

service providers—information users are inclined to adjust their travel decisions and 

derive associated benefits. 

Secondly, different modelling structures are used, highlighting different 

mechanisms during the process of traveller information delivery. The two-stage travel 

decision process sheds light on the two-stage links between information technology 

acquisition and travel decision processes, which is a lightly researched area in the 

literature. The local model GWR highlighted that there is spatial variations in both 

information acquisition and travel decision change process. Based on the spatial variance 

shown by local models, different resources may be focused on improving traveler 
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information acquisition options in suburban areas by providing diverse traveler 

information. While in urban areas, resources may be invested to encourage seeking 

traveler information more frequently, by providing high quality real-time travel 

information on specific routes, e.g., congestion levels, incident locations and durations, 

delay and detour information. Finally, policies can be formulated that set targets for 

higher travel information access and use by underserved populations. 

Thirdly, college students are used as comparison peer with the general population. 

Students as a young and lower income sub-population have a high proclivity to use 

alternative modes, nearly ubiquitous access to electronic media, and potentially high 

levels of use in the future, representing a younger segment of technology savvy early 

adopters of information technologies. The most used ATIS technologies are different for 

students compared with the general population, i.e. Internet and VMS for students and 

commercial radio for the general population. However, this may also be partially due to 

the emergence of new communication technologies given different survey years; 

therefore, this should be interpreted with caution. Also, transferability of information 

acquisition models is context-dependent; however, greater transferability of travel 

decision change is found given substantial differences in decision change behavior are 

not found across campuses. 

8.2 Limitations and Future Research 

8.2.1 Geo-imputation 

This study examines the issue of whether geo-imputation can be used to replace 

actual geo-coded location for research purposes. A limited set of accessibility variables 

are used, i.e., only roadway length and number of transit stops in the buffer area are 
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analyzed. Also, more research is needed to evaluate factors related to higher error levels 

of geo-imputation. For instance, if a residence is randomly assigned to a cul-de-sac 

(dangle point in roadway network) of a neighborhood, while it is located at the entrance 

of that neighborhood, then the calculated roadway length in its buffer area can be 

substantially lower compared with the actual situation. This means that synthetic 

assignments may not be able to reproduce the (average) relationship that may exist in 

reality for smaller buffer sizes. It will be interesting to explore whether using built 

environment accessibility variables obtained from geo-imputation can improve 

behavioral models, e.g., trip generation models. 

Methods can be used to increase the accuracy of geo-imputation further, e.g., by 

adding more constraints such as residential density and other demographic and land use 

constraints. However, the feasibility of such analysis will depend on availability of 

demographic and GIS data at detailed geographic levels, e.g., at the level of parcel. 

Another idea that can be explored is to use the socio-demographic information in the 

NHTS samples to assign them randomly within a specific area or neighborhood, e.g., 

higher income samples will be assigned to higher income neighborhoods and vice versa. 

Again, this will require detailed spatial information about demographics. To conduct 

more detailed analysis of the NHTS data, non-residential destination locations should be 

analyzed also. However, it is difficult to synthetically assign non-residential destinations 

and do substantive analysis of activity participation without knowing the actual 

destinations. 
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8.2.2 Model Issue 

A key issue is whether appropriate model specification is used. The study is 

limited by use of cross-sectional data from universities in a single state. 

Also, in ATIS usage and travel decision change model, simultaneity may exist 

between information acquisition and decision changes, which can cause the problem of 

endogeneity. However, this question cannot be answered by using a censored dataset, 

which is the case with this study. Moreover, the sample selection model and GWR are 

used to stress different modeling aspects, but they are mainly applied separately in this 

research. Future studies can incorporate sample selection into the logistic GWR model 

for investigating the conditional interactions between information usage and behavioral 

changes, which can make the best of both methods. 

8.2.3 Transferability Issues 

This dissertation uses the Virginia Add-on and the university surveys in Virginia, 

which are both implemented at a time of economic recession, higher unemployment 

levels, and higher gasoline prices. These macroscopic factors might influence travelers' 

daily travel, and also their response to traveler information. Therefore the conclusion 

from this time period may be not able to transfer to other time directly. 

The transferability of the findings from the GWR model to other urban regions is 

somewhat limited. The reason is that the spatial relationships that GWR captures is only 

valid for the targeted study region, which is to say, that any GWR model is based on the 

spatial characteristics of this particular region and possibly cannot be transferred to any 

other region. Also, only residential locations are used for weights calculation in GWR 

since most of socio-economic factors used in models are household characteristics. It 
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may be interesting to compare local models estimated based on other relevant locations, 

such as job location. 

8.3 Closing Remarks 

In general, this dissertation represents an attempt to combine spatial pattern 

analysis with the study of travel behavior and response to traveler information 

systematically. It is unique in several ways: 

It has contributed by first demonstrating how to create new types of data through 

innovative spatial analysis with GIS support, e.g. geo-imputation and network based 

buffers. They can give more accurate representation of behavior or spatial contextual 

factors in space. Transportation researchers or related professionals can use geo-

imputation to create synthetic geographical units which can help to avoid privacy issues 

while ensuring that the results are within the limit of acceptable accuracy. Also, a 

network based buffer is useful as it integrates network analysis with proximity analysis. 

This can enable researchers to capture the land use within certain driving distance 

accurately, instead of using Euclidean distance, which is simplified and not accurate to 

the real situation. 

In addition, from the modeling perspective, spatial heterogeneity is indeed 

important to account for in transportation models. It also suggests that subsequent policy 

inferences drawn from global models may be poorly suited to many local settings. 

Therefore, the spatial patterns of coefficients drawn from the model can help develop 

specific policy guidelines to achieve certain goal, e.g. encourage travel decision changes 

in response to travel uncertainty. For instance, using the spatial distribution of ATIS 

access, the population can be segmented according to their demographics, attitudes, and 
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their travel context. Private information providers can use this information to target their 

potential customers more precisely. It can also help transportation managers such as the 

Departments of Transportation identify areas that are underserved by ATIS and locations 

where travelers are more or less likely to adjust their decisions. Moreover, this method 

can be also used to improve travel demand modeling. For instance, current travel demand 

model involves using cross-tabulation table for different group of population. While 

based on local models, the unified cross-tabulation table for the study region can be break 

down or customized for TAZs, which provides better accuracy. 

Moreover, it is extremely useful and important to bring the data process and 

spatial modeling together. The reason is spatial modeling, as a data-hungry method, 

requires location information, which is usually not provided by current travel behavior 

data. The data process presented in this study can then be used effectively to compensate 

for this regret without compromising the reasonable accuracy. These two perspectives 

together come into being a robust methodology. 

Besides the methodological contributions, by offering travel behavior and 

response to traveler information analysis on different target group of population, this 

dissertation is able to give more explicit and more meaningful attention to understand 

their differences. Moreover, young university students are selected as a case study since 

they represent one of the most active segments of our population. Meanwhile, it 

illustrates that travel decision is inherently complicated, and the special group in the 

population deserves specific research efforts and policy implementation. It will help us to 

prepare for the future in a more sustainable and savvy manner with emerging traveler 

information systems. 
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