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ABSTRACT 

ANALYSIS OF PRIMARY-SECONDARY INCIDENT EVENTS 
ON URBAN FREEWAYS 

Hongbing Zhang 
Old Dominion University, 2012 

Director: Dr. Asad Khattak 

Traffic incidents are a major source of congestion on urban freeways. Especially for 

large incidents, they typically block all or part of roadway facilities, cause traffic backup 

and increase the risk of secondary incidents occurring in their proximity. Approximately 

2% to 15% of all incidents are secondary incidents. They further complicate the traffic 

conditions, stretch response resources and result in responders' and travelers' severe 

injuries or fatalities. These significant operational and safety concerns have drawn 

national and international attention. However, relatively little is known about the 

characteristics, occurrence, correlations and associated traffic delays of primary and 

secondary incidents. The objective of this study is to understand the nature of primary 

and secondary incidents, assess their impacts and explore the implications in traffic 

operations, safety, and planning. Ultimately, the advances and findings in this research 

will contribute to promoting an effective incident management strategy to restore 

disrupted traffic flow as quickly and safely as possible and assist in the planning process 

to conduct a more accurate impact/cost evaluation for non-recurrent congestion on urban 

freeways. 

To achieve the objective, a queue-based secondary incident identification method was 

developed and applied based on detailed incident, traffic and geometric data sets from 

Hampton Roads, Virginia. This identification method can overcome the limitations in 



earlier studies and identify secondary incidents in both road directions. An innovative 

event categorization defines the term "primary-secondary incident event", as one 

characterized by a primary incident and one or more associated secondary incidents in 

both directions to capture traffic impact and incident adversity. Primary-secondary 

incident events are categorized on a three-point ordinal scale as: (1) an independent 

incident, i.e., an incident not associated with any secondary incidents; (2) one primary-

secondary incident pair; and (3) one primary with two or more secondary incidents in the 

same or opposite directions. Several key analyses were conducted to explore different 

aspects of primary-secondary incident events. 

To observe distributing pattern differences of primary-secondary incident events, two 

major interests: event frequencies in different categories and durations of primary 

incidents have been analyzed spatially and temporally. Frequencies of primary-secondary 

incident events and duration distributions of primary incidents both show considerable 

spatial and temporal differences across different event categories. The hotspots (i.e. 

locations that have higher frequency of primary-secondary incident events) were 

identified. 

To understand the occurrence of primary-secondary incident events, two proportional 

odds models were estimated to explore associations with various factors. In particular, the 

partial proportional odds model can relax parallel lines assumption and capture unequal 

contributions of explanatory variables across the event categories. The model suggests 

that with multiple-vehicle involvement, lane-blockage in a primary incident makes 

unequal contributions to the occurrence of different primary-secondary incident events, 

and they are particularly prone to multiple secondary incidents. 



This study sought to answer how soon does a secondary incident happen after a 

primary incident; how far is the secondary from the primary incident; and what factors 

are associated with near versus far secondary incidents. The appropriate methods and 

models have been developed to examine the spatio-temporal patterns of cascading 

incident events and identify associated factors. Time gaps were found to be positively 

associated with crashes, longer duration of primary incidents, and heavier traffic. In terms 

of distance, primary crashes, fires, lane-blockage and longer duration are associated with 

secondary incidents that occur at longer distances after its primary incident. The study 

found that distance and time vary systematically with characteristics of primary incidents. 

Regarding the clearance time of primary-secondary incident events, the event 

duration is defined and such events were further categorized as either contained events 

(i.e. clearance time of the secondary is earlier than that of primary incident) or extend 

events (i.e. clearance time of the secondary extends that of primary incident). The 

associated major factors were estimated and identified through rigorous statistical models. 

These two types of events show substantially different incident characteristics and 

operational response patterns. Primary incident characteristics are dominant in contained 

events while secondary incident characteristics play a substantial role in extended events, 

requiring substantial resources from response agencies. 

To quantify the total delay associated with primary-secondary incident events, the 

joint impacts of primary and secondary incidents have been taken into account. Shock 

wave analysis and microscopic simulations were used to understand and evaluate the 

associated critical parameters. Three critical contributing factors were evaluated: time gap, 

physical distance and traffic demand level. The analysis shows the traditional method 



which treats each incident independently will over- or under- estimate the actual delay of 

primary-secondary incident events. For those secondary incidents that end after their 

associated primary incidents, total delays increase as time gap increases and distance 

decreases. 

The study took a major step forward in the research of secondary incidents and 

expanded the knowledge of secondary incidents. Analyses provide valuable information to 

evaluate route performance, reduce the likelihood of secondary incidents, improve 

response to the complex associated incidents, manage traffic queues and minimize the 

traffic delay. The findings have been translated to the practical tools to support operational 

decisions and more informed planning. 
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CHAPTER 1 

INTRODUCTION 

1.1 Problem Justification 

Urban traffic congestion has been a serious concern in the US for many decades. The 

total cost associated with traffic congestion reached $115 billion in 2009 (Schrank et al., 

2010). Traffic incidents are a common occurrence on urban freeways and result in 

adverse impacts on traffic operations and safety. They contribute 25 to 60 percent of the 

congestion in urban areas (Iindley, 1987; Skabardonis et al., 1995; Ozbay & Kachroo, 

1999; Kwon et al. 2006). Incidents include crashes, disablement, abandoned vehicles or 

road debris etc. The majority of incidents on urban freeways occur on the shoulder and 

have relative minor impacts compared with large incidents (e.g., incidents like a crashed 

tractor trailer which spills cargo, a vehicle rollover in a tunnel, vehicle fires, and crashes 

involving several vehicles, major damage, deaths, and injuries). These large incidents are 

small portion of total incidents, but they have a huge effect on traffic operations. They 

typically block the partial or all lanes to close the transportation facilities for extended 

durations. McDade (1990) reported approximately one-third of the total incident delay 

that occurs in urban areas is due to lane-blocking incidents. Furthermore, these incidents 

are highly associated with the occurrence of secondary crashes or incidents. Research has 

showed that incidents can cause 2% tol5% secondary crashes or incidents (Raub 1997; 

Karlaftis et al, 1999; More et al, 2004; Khattak et al, 2009). These secondary incidents 

further compound the complexity of existing operational problems and cause major 

disruptions, which often require specialized equipment, a high degree of cooperation and 

coordination among the various response agencies, and substantially exacerbate travel 
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delay. Among secondary incidents, some tend to be more severe than their primary 

incidents. These include injuries or fatalities when individuals, such as vehicle occupants, 

safety patrol team or police, are struck by passing traffic as they exited their vehicles to 

affect repairs or offer assistance. In summary, secondary incidents present serious 

operational and safety concerns and threats to regional economic viability. 

Since secondary incidents, along with their corresponding primary incidents, are key 

contributors to travel time uncertainty and traffic congestion in urban areas, the Federal 

Highway Administration has clearly put secondary incidents as a top priority in 

addressing non-recurrent congestion. Regionally, the Virginia Department of 

Transportation (VDOT) indicated that traffic incidents are a major source of congestion 

in the state. To address this issue, it is assumed that the impact and risk of such incidents 

are minimized significantly by quick responses and effective incident management tactics 

and strategies. Therefore, recent VDOT-sponsored research suggests that VDOT should 

consider initiating a study on the role Safety Service Patrols (SSPs) in reducing primary 

and secondary incidents and mitigating delays in such situations (Dougald & Demetsky, 

2006). 

Many studies have analyzed incident characteristics and try to minimize the incident 

impacts. However, only a few studies have targeted the secondary incidents and no 

further study focus on multiple secondary incidents perhaps because they constitute a 

small percentage in the total incidents. Generally, a primary and its secondary incidents 

are expected to have longer durations than single incidents and therefore to result in 

larger impacts on traffic, but such cascading incident impacts have been ignored. The 

critical research issues are as follows. 
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First, knowledge about the characteristics of secondary incidents especially multiple 

secondary incidents are limited. Relative little is known about their characteristics 

including frequency, duration, temporal and spatial distributions and major associations 

of such event occurrence. 

Second, given the correlations between primary and secondary incidents, several 

important aspects such as temporal-spatial patterns, cascading event duration of primary-

secondary incidents, joint traffic impacts and the corresponding operational responses 

have not been fully investigated yet. 

Finally, the implications of secondary incidents for planning purpose and traffic 

operation have not been deeply explored. An important issue but lightly researched issue 

is how to predict (and prevent) secondary incidents associated with moderate and large 

incidents (i.e. primary-secondary pairs and primary-multiple secondary incidents). 

It is essential to develop a systematic research approach to identify and classify 

secondary incident, explore the primary-secondary incident events, and address their 

implications related to traffic operations, safety and planning. This research takes a major 

step towards understanding the occurrences of multiple secondary incidents, examining 

the associations between primary and secondary incidents, investigating event duration, 

assessing the joint impacts of multiple secondary incidents, presenting the potential 

benefits to an effective incident management. 

1.2 Research Objectives 

The primary objective of this study is to understand the nature of primary-secondary 

incident events and explore their implications for traffic operations, safety and planning. 
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Different categories for these events are established based on their scale and traffic/safety 

impacts. This requires the development of a comprehensive identification and 

classification method for primary-secondary incident events. After analyzing such events, 

a set of research questions are answered: 

• What are the characteristics of the primary-secondary incident events? 

• What are major factors associated with the occurrence of such events? 

• What do the spatio-temporal associations between primary and secondary 

incidents look like? What are the major factors of these associations? 

• How to define the primary-secondary incident event duration in term of clearance 

times? What are key factors associated with such event durations? 

• How to estimate/predict the joint impacts of primary and secondary incidents and 

what are the critical attributes associated with them? 

• What are the implications for traffic operations, safety and planning? 

1.3 Thesis Contributions 

The scholarly contributions from this study will facilitate further research on 

secondary incidents as follows: 

• This study developed a systematic research approach to explore multiple 

secondary incidents, which is complicated but important research issue. To 

overcome the some limitations in existing identification methods, a queue-based 

method has been developed to identify the secondary incidents in both directions 

on urban freeways. 
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• This study defined a concept of the primary-secondary incident event as a 

collection of multiple associated incidents. Instead of analyzing primary and 

secondary incidents separately, as in past research, a primary-secondary incident 

event links primary and its secondary incidents as a whole to account for their 

spatio-temporal associations, clearance time and jointed impacts. 

• This study conducts several deep and innovative analyses on primary-secondary 

incident events in term of characteristics, distributions, occurrence, spatio-

temporal associations, event duration and jointed traffic delays. These analyses 

provide new insights into the extent of secondary incident problem. 

The potential benefit from this study will help practices in traffic operations, route 

safety evaluation, and planning purpose as follows: 

• Help incident managers to determine when and where to allocate resources to 

critical segments proactively in order to dispatch and coordinate response 

agencies efficiently to carry out a quick and safe clearance procedure. 

• Help traffic operators to disseminate incident information to alert drivers 

approaching the incident sites through advance ITS systems and direct upstream 

traffic diverting to the alternative roads to minimize the non-recurrent traffic 

impacts. 

• Assist planner in identifying secondary incident hot-spots and incident-induced 

traffic choke points. Using the cascading event as an additional performance 

measures which can incorporate into the current transportation planning and 

regional cost evaluation process. 

• Transfer and apply this research methodology to another metropolis with heavy 
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traffic congestion and high secondary incidents problems, thus making this 

research beneficial on a national or international scope. 

1.4 Chapter Structure 

The research starts with a comprehensive literature review and identification of major 

gaps in the literature. In this context, Chapter 2 presents a synthesis of literature related 

to secondary incident identification, occurrence, duration analysis and non-recurrent 

traffic delay estimation. A conceptual framework of research method is described in 

Chapter 3. This chapter also details the study domain, data source, data processing and 

proposes several key analyses to answer the research questions. Chapters 4-8 present the 

corresponding methods or models, result analysis, conclusion and/or implications for 

each key analysis. Finally, Chapter 9 reviews research findings and makes 

recommendations for future research on secondary incidents. 



CHAPTER 2 

REVIEW OF LITERATURE 

Relevant literature was reviewed to assess the issues related to definition of secondary 

incidents, the factors influencing secondary incident occurrence, incident duration 

modeling, and traffic delay estimation. 

2.1 Defining a Secondary Incident 

Theoretically, if an incident causes (in part) another incident in the proximity of 

upstream traffic, the prior incident is termed as the primary incident and the following 

incident as secondary incident. However, it is often difficult to retrieve the primary-

secondary incidents relationship from the archived incident data. Due to the scarcity of 

quality incident data, many of previous research studies are based on the crash data only. 

Some early studies defined the secondary crash to be any of crash within a certain range 

in the vicinity (i.e. spatial threshold) and temporal period after a reported crash (i.e. 

temporal threshold). Raub (1997) and Karlaftis (1999) found that more than 15% of all 

crashes were secondary by using clearance time plus 15-minute period and one mile 

distance as identification criteria. Chang et al. (2003) adopted temporal and spatial 

threshold criteria as: two hours from the onset of a prior incident and two miles 

downstream of this prior incident location for the same direction. They also attempted to 

identify secondary incidents that occur in the opposite direction within one-half hour 

from the onset of a prior incident and a half-mile range around that prior incident at either 

downstream or upstream direction. They found that 6.8% of all incidents with lane 

blockage are secondary incidents. However, Moore et al. (2004) obtained the secondary 
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proportion of about 1.5% to 3% on Los Angeles freeways while using two hour and two 

miles as threshold criteria and excluding duplicities and chain reactions crashes. Although 

inconsistencies in identified secondary crash rates are possible as reflecting variations in 

road, traffic and safety situations in the different areas, it is also likely that lack of data on 

crash duration, or inaccurate spatial and temporal thresholds contribute to inconsistencies 

among studies. 

To overcome the static thresholds criteria used by most existing identification 

methods, Sun (2010) proposed a dynamic progression threshold method and discovered 

that the static and dynamic methods can differ by 30% in terms of identifying secondary 

incidents. Zhan et al. (2009) developed a method to identify secondary incidents based 

on an estimated maximum queue length. 4.9% were identified as primary incidents, 

which is much less than 7.9% from their earlier study (2008). Chou and Miller-Hooks 

(2010) applied a simulation-based secondary incident filtering (SBSIF) method in 6-

month achieved incident data and found that there is a significant reduced 

misclassification rate (e.g. reduction of 58% or greater) as compared with a static 

thresholds method. 

2.2 Factors Associated with the Occurrence of Secondary Incidents 

Various factors will impact the likelihood of the secondary incidents. Peak periods 

and weekdays are associated with more secondary incidents, and the clearance times are 

also associated with secondary incidents occurrence (Raub, 1997). In the study of 

Karlaftis et al. (1999), clearance time, season, vehicle type (car, semi) and lateral location 

are most significant factors for higher secondary incident likelihood. Odds of a 
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secondary crash increase by 2.8% for each minute the primary incident is not cleared. 

Chang (2003) stated that the likelihood of having secondary incidents increases 

consistently with the primary incident duration and congestion level based on statistical 

data. Hirunyanitiwattana (2006) found that secondary crashes occur more often during 

rush hour and a rear end collision is the predominant secondary collision type, which 

accounts for about two thirds of all secondary crashes. He also found that the typical 

secondary crash on a greater than four lane urban highway in California occurs during 

peak periods, and is a rear end, property damage only, crash and is caused by excessive 

speed. Zhan et al. (2008) identified five major factors influencing secondary incidents, 

which include the number of involved vehicles, the number of lanes, the duration of 

primary incident, the time of day, and the primary vehicle rolling over. In a later paper, 

Zhan et al. (2009) identified four factors associated with the likelihood of secondary 

crashes: primary incident type, primary incident lane blockage duration, time of day, and 

whether the incident occurred on northbound 1-95. Khattak et al. (2009) demonstrated 

that primary incident duration and secondary incident occurrence are statistically 

interdependent. 

2.3 Incident Durations: Associations with Spatial, Temporal, and Operational 

Factors 

Studies of incident durations are plentiful (Golob et al., 1987; Giuliano, 1989; Jones 

et al., 1991; Nam & Mannering, 1998). Incident durations have been estimated using a 

variety of techniques, broadly classified as: 
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• Standard regressions including log-normal distributions (Golob et al., 1987; 

Garib et al., 1997; Sullivan, 1997), analysis of variance (Giuliano, 1989), 

regression models (Khattak et al., 1995; Qi & Teng, 2008), discrete choice 

models (Lin et al. 2004) and Hazard-based models (Jones et al. 1991; Nam & 

Mannering 1998), 

• Decision trees (Ozbay & Kachroo, 1999), classification trees (Smith & Smith, 

2001; Kim et al., 2008) 

• Bayes classifier (Ozbay & Noyan, 2006; Boyles et al. 2007). 

Each approach has its own advantages and shortcomings. Standard regression offers 

more intuitive and easier interpretation. Hazard-based models show advantages in terms 

of recognizing that the likelihood of ending an incident depends on the elapsed time from 

the start of incident (Mannering, 1998). Decision Tree or Classification Trees can be 

effectively used to discover patterns with or without considering probabilistic 

distributions. However, the tree-based models require relatively large amounts of data are 

required. Appropriate use of these methods depends on specific research needs. 

In general, the incident duration is associated with incident characteristics, temporal 

characteristics, environmental effects, geographic information, and operational factors. 

The identified variables associated with incident durations are: incident type, the number 

of lanes blocked, the number of heavy vehicles involved in an incident (Ozbay & 

Kachroo, 1999; Kim et al., 2007), injury or fatality, peak hour (Nam & Mannering 1998; 

Ozbay & Kachroo, 1999; Kim et al., 2007), longer response time (Khattak et al. 1995), 

the location of traffic operations center, and the number of vehicles responding from each 

agency (Kim et al., 2007). Several of these variables are simply associative and not 
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necessarily causal, e.g., presence of more response vehicles does not mean that they are 

causing the incident to last longer, but simply that they are responding to a major incident. 

2.4 Traffic Delays Estimation for Incidents 

Traffic delay is the consequence of traffic congestion and has been widely used as a 

quantifiable assessment of travel experience. Generally accepted methods for delay 

calculations are: deterministic queuing (Moskowiz & Newman, 1963) and shock-wave 

analysis (Lighthill & Whitham, 1955; Richards, 1956). The deterministic queuing method 

requires a cumulative arrival curve, representing normal traffic demand in a freeway 

segment and a departure curve, representing the traffic volume passing through the 

location. If demand is less than capacity, then the departure curve exactly follows the 

arrival curve. If demand exceeds capacity, the two curves will split. The area between the 

two curves is the total vehicle hours of delay. The shock-wave analysis utilizes the fluid 

dynamic theory to define flow, density and speed for the description of traffic flow 

behavior and develop a formula for calculating total delay. Many studies calculated 

delays using either of these two methods. Morales (1987) first developed a deterministic 

queuing method to calculate the incident delay on a freeway. Wirashinghe (1978) used 

shock-wave analysis to determine individual and total delay upstream of incidents. 

Menendez and Daganzo (2004) applied shock wave analysis to assess the impact of 

incidents near bottlenecks. To check the interrelationship and consistency of these two 

models, Chow (1974), Rakha and Zhang (2005) conducted their investigations and both 

studies found the results from these methods to be identical if a static flow-density 

relationship is applied in the shock-wave analysis. However, both methods are limited by 
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static demands, which is unrealistic under peak hour or flow fluctuation situations. 

Khattak et al. (2004) used FREEVAL model, which faithfully replicates the freeway 

facility methodology in Chapter 22 of the 2000 Highway Capacity Manual (HCM 2000) 

to estimate incident induced delay for prioritizing and expanding freeway safety patrols 

service. There are two important improvements of FREEVALmode. First, it allows 

analyzing an entire freeway facility consisting of basic, ramp and weaving segments with 

time-varying demands and capacities at multiple intervals. Second, this model can handle 

both undersaturated and oversaturated traffic conditions (Eads et al. 2000). Since the 

above-mentioned methods do not consider route diversion situation in real life, Al-Deek 

et al. (1995) proposed a loop-detector based method to estimate single incident or 

multiple incident induced delays on freeways by capturing traffic demand variation due 

to diversion of traffic. With the development of more sophisticated car-following, lane 

change etc. models, microscopic simulation is a tool that can be easily used to estimate 

the incident induced delay. 

2.5 Summary 

Incidents are a major source of congestion, imposing substantial social and personal 

costs on road users and they negatively impact traffic operations. Substantial efforts have 

been made by researchers and management agencies to understand incident duration, 

secondary incidents and the possible impacts they produced. Several strategies have been 

applied to mitigate the impacts of both primary and secondary incidents. Researchers 

generally agree that secondary incidents are the ones occurring in the temporal and 
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spatial vicinity of primary incidents. The main factors associated with secondary incident 

occurrence can be summarized into four types: 

• Primary incident attributes, e.g., incident type, and number of vehicles involved, 

• Traffic condition, e.g., speed distribution, and traffic density, 

• Roadway condition (e.g., obstructions, inadequate lighting, curvature, and certain 

routes) 

• Environmental factors, e.g., time of day, and bad weather. 

The properties of primary incidents are believed to be the main factors that are 

associated with secondary incident occurrence. However, certain gaps are apparent: 

• There is still no standard definition of secondary incidents. Under- or over

estimated may occurred if the fixed thresholds are applied. Therefore, a dynamic 

threshold method seems promising but need further development and validation. 

• Many studies only deal with crashes rather than the entire spectrum of incidents. 

The limited data typically is lack of accurate duration, may isolate influence from 

a non-crash prior incident in the downstream of crash and ignore some secondary 

non-crash incidents caused by a prior crash/incident. Thus they possibly under

estimated the number of secondary crashes/incidents as well as the impact of a 

primary crash/incident. 

• Most past studies separate the primary and secondary incidents in the analysis and 

disregards the correlations between primary and secondary incidents. Few of 

them focus on understanding the complex interrelationship between incident 

durations and the occurrence of secondary incidents. The spatio-temporal patterns 

of primary and secondary incidents have been not investigated yet. For instance, 
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how soon and how far does a secondary incident happen after a primary incident? 

What factors are associated with near versus far secondary incidents? 

• To assess impacts of primary and secondary incidents, compared with two single 

incidents, the interaction of primary and secondary incidents may have larger 

impacts on traffic operations and incident management. In term of traffic delay, 

the existing delay estimation models are suitable for analysis of single 

independent incidents. The delay caused by multiple associated incidents, i.e. 

primary-secondary incident pairs, has not been analyzed fully and need further 

research efforts. 
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CHAPTER 3 

METHODOLOGY 

3.1 Overview of Research Method 

Secondary incidents occur within the influence area of a primary incident. A primary 

incident can have one or more secondary incidents. The conceptual structure of research 

is shown in Figure 1. The key objective is to understand the primary-secondary incident 

events and explore their implications for traffic operations, safety and planning. 

The relevant data including incidents, road network, and loop detector data are 

obtained from local traffic management center or state transportation agencies. The next 

step uses the definition of the secondary incidents to develop a comprehensive secondary 

incidents identification method and follows by classifying identified secondary incidents 

into the different primary-secondary incident event categories for further analysis. 

Finally, several key analyses are proposed to explore the various aspects of primary-

secondary incident events. The implications of primary-secondary incident events for 

traffic operations and transportation planning will be deeply explored. The study provides 

new insights into the nature and impacts of the primary-secondary incident events. The 

detailed steps are discussed in the following sections. 
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Key Analyses: 

• Use temporal and spatial analysis techniques to explore primary-secondary 
incident events. 

• Employ statistical models to understand the occurrence of primary-secondary 
incident events. 

• Develop methods to discover the spatio-temporal associations (i.e. distance and 
time gap) of primary-secondary incidents events and use statistical models to 
estimate major factors associated with distances and time-gaps. 

• Develop methods to define cascading event durations and use statistical 
modeling to analyze their characteristics and associated major factors. 

• Develop methods to analyze the joint impacts of primary and secondary incident 
events and employ microscopic simulation to estimate associated total delay. 

Objective: 

Understanding primary-secondary incident events on urban freeways and 
explore their implications for traffic operations, safety and planning 

Data Acquisition: 

• Incident data including Date, Start time, Duration, Type, Lane blockage, Segment 
etc. 

• GIS network to visualize the incident data frequency and distributions 
• Traffic Data: AADT and Loop detector data 

Conclusions: 
• The extent of secondary incidents problem 
• Factors associated with such cascading incident event occurrence, 

associations, event duration and traffic delay. 
• Explore the implications of these key analyses 

Secondary incidents Identification and Classification: 

• Develop the identification method 
• Identify secondary incidents 
• Classify the primary-secondary incident events 

Figure 1 Outline of Proposed Research Methods 
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3.2 Study Domain Selection and Data Acquisition 

The scope of this study is limited to freeway incidents. Research prototype has been 

developed and applied in incidents on major freeways in Hampton Roads, Virginia. 

Hampton Roads is located in Southeastern Virginia and includes several municipalities, 

including cities of Virginia Beach, Norfolk, Suffolk, Portsmouth, Chesapeake, Hampton 

and Newport News (Figure 2). It has a population of approximately 1.6 million. The 

Hampton Roads Beltway links seven of the largest cities in Hampton Roads and 

experiences flows of 100,000 to 150,000 vehicles per day. The Hampton Roads Bridge-

Tunnel (HRBT), the Monitor-Merrimac Memorial Bridge-Tunnel (MMBT), and the 1-264 

Downtown Tunnel, High-Rise Bridge serve as major crossings, and are also traffic choke 

points with substantial recurrent traffic congestion. According to the VDOT published 

report (2008), nearly 80,000 incidents occurred in the Hampton Roads area during 2008. 

Thus, the area experiences major recurrent congestion during peak hours and incident-

induced traffic disruptions. They raise growing concerns for local economic 

development and transportation safety. 

Incident data for this study are obtained from the Hampton Roads Transportation 

Operations Center (HRTOC), which are primarily based on Safety Service Patrol (SSP) 

operational records. SSP provides incident management and offer assistance to motorists 

experiencing problems on freeways. At the time of the study, they covered more than 113 

miles, from Newport News to Virginia Beach, 24 hours a day, and 7 days a week. 

Incident records include incident ID, date, start time, incident duration, lane-effected, 

route name, direction, segment ID, etc. 2005 incident data was provided by HRTOC at 

the beginning of this study. Later, 2008 data became available. In 2008, the Virginia 
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Department of Transportation (VDOT) completed Phase 3 of the Hampton Roads Traffic 

Management System (HRTMS). With newly installed cameras, roadway detectors and 

variable message signs, HRTOC has extended their operation and response coverage for 

the total 113 miles of Interstate highways. Some improvements were made to the incident 

database collection program including the introduction of a local detailed segment 

location system. During this time, the coverage of service patrols was also extensive. 

Thus, the 2008 incident dataset is the most comprehensive data on incidents in the region. 

Incident data was archived based on fractional mile post-markers, thus providing 

relatively accurate location information (compared with databases used in various studies 

to-date). 

Figure 2 Freeway Safety Service Patrol Coverage in Hampton Roads 
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Road inventory data and historical traffic count data are relevant for the analysis. 

Road inventory data and loop detector data are obtained from the Hampton Roads 

Planning District Commission. Traffic counts are collected continuously by embedded 

sensors (loop detectors). The annual average daily traffic (AADT) data is obtained from 

VDOT. 

3.3 Traffic Data Analysis 

An accurate traffic demand was needed to estimate the queue length of a primary 

incident for secondary incidents identification. Detector data was used to create link-

based (prevailing) traffic profiles including weekdays and weekends. Traffic data in the 

form of AADT was acquired to determine traffic demand. To obtain prevailing traffic 

flow distributions for primary urban freeways in the Hampton Roads area, a 

comprehensive analysis was conducted on 2006 traffic counter data in the Hampton 

Roads area. The first step was to define the spatial and temporal coverage of traffic data 

matching with the SSP operational coverage shown in Figure 2. The second step was to 

pinpoint traffic counters into Hampton Roads GIS network. The appropriate counters 

were selected based on their physical locations, data availability and queues likely 

presence. In addition, every selected counter was matched with another one located 

proximately in its opposite direction as a pair to check the directional traffic pattern. Next, 

three continuous weekdays from Tuesday to Thursday and weekend (Saturday and 

Sunday) were selected from three months (July, August, and September). The selected 

counter data was used to display the information, examine consistency and repeatability, 

and estimate average daily traffic profiles and average daily traffic flow distribution. 
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Based on this analysis (Figure 3), the area shows substantial directional differences in 

traffic counts across some freeways. Finally, daily average traffic profiles in 

representative links were derived from the selected loop detector data to capture non-

homogeneous traffic and directional effects on some freeway sections. 

Figure 3 Average Daily Traffic Flow Distributions in Hampton Roads 



21 

3.4 Geo-Connection Creation 

Every incident was archived according to a roadway section before 2008. It was 

pinpointed to a fractional mile marker (measured in feet) after 2008, which provides more 

accurate location information. There are multiple reference mile-markers in each roadway 

section. Unfortunately, this local geo-coding system is not completely consistent with the 

Virginia statewide geo-coding system that is used to publish the link-based AADT and 

loop detector data. Thus extensive work is required to 1) create connections between the 

two geo-location systems, 2) collect detailed road geometry information, and 3) sort 

every road segment spatially from downstream to upstream for each route direction using 

location reference descriptions and Google maps. 

3.5 Secondary Incident Definition and Identification 

To identify secondary incidents on urban freeways in Hampton Roads, VA, a 

segment-based identification method was initially developed in our previous study 

(Khattak et al., 2009). Note that this identification method is only appropriate for 

incidents on urban freeways and does not take into account the incidents on non-limited 

access roadways. It is similar to the methods used in the reviewed literature—the only 

difference is that instead of using a fixed length to identify secondary incidents, the 

segment-based method uses the segment length as a spatial boundary. Therefore, the 

identification of secondary incidents is confined to each segment. Although this method 

is relatively easy to implement and use, it is more likely to under- or over-identify 

secondary incidents in some circumstances. Three possible limitations for the segment-
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based method and the previous research methods with a fixed spatial boundary are 

discussed next (Zhang & Khattak, 2010a). 

• Missed counting in the same direction. Figure 4 shows a freeway segment where 

crashes occur on two different segments. The crash C2 in Segment 2 is associated 

with the crash Ci in Segment 1. They are a pair of primary (Ci) and secondary (C2) 

crashes. Because C2 is beyond the spatial boundary of the prior incident Ci, this 

primary and secondary pair cannot be captured in the segment-based method or 

any fixed spatial boundary methods. 

1 1 1 
1 1 1 

Segment 1 jj^/ Seg1^2 Segment 3 j^/ 

zzzzz^z^j^^mjfizzzzMrzzzzz^s 

1 • 1 
Figure 4 Missed Counting Scenario in the Same Direction 

• Over-counting in the same direction. Figure 5 shows that crashes C4 in Segment 2, 

C5 and C6 in Segment 3, are associated with crash C3 in Segment 2. In reality, the 

primary crash is C3 and its multiple secondary incidents are C4, C5, and C6 but the 

segment-based identification can show two possible outcomes. Outcome 1: two 

primary and secondary pairs [(C3, C4) and (C5, Ce)] are identified if C6 occurs 

within the duration of C5. Such over counting can over-estimate the frequency of 

primary-secondary pairs. Outcome 2: Only one primary-secondary pair (C3, C4) 

with two missing secondary incidents (C5, C&) is identified, if C6 occurs beyond 

the duration of C5. Both outcomes will underestimate the magnitude of this 

primary-secondary incident event. 
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Segment 1 

Figure 5 Over Counting Scenario in the Same Direction 

• Missed counting in the opposite direction. Figure 6 shows that the crash C'3 in 

Segment 3 is associated with the crash C3 in the opposite direction and they are a 

pair of primary (C3) and secondary (C 3) crashes, possibly due to rubbernecking. 

Although several previous studies did not consider opposite direction incidents, 

this study identifies opposite direction secondary incidents. 

Segment 1 

••§ 
—• M 1 

Segment 1 Segment 2 Segment 3 

Figure 6 Missed Counting Scenario in the Opposite Direction 

The limitations of missed counting and over counting of secondary incidents in the 

same direction can be overcome if the actual queue length of primary incidents can be 

determined. Unfortunately, the observed queue length data is unavailable in most cases. 

To capture cross-segment large primary-secondary incident events and overcome the 
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limitation of the segment-based method, a dynamic queue-based method was developed. 

The method identifies secondary incidents in the same direction. If a spillback condition 

is induced by an incident at downstream, its queue length is calculated based on mainline 

traffic through a deterministic queuing model (D/D/l) (Al-Deek et al., 1998). The 

identification process is demonstrated in Figure 7. 

<u 

Figure 7 Illustration of Queue-based Secondary Incident Identification 

As shown in Figure 7, the horizontal axis is time and the vertical axis denotes the 

accumulative vehicles. Traffic arrives at the incident location according to curve Ac(t) 

that consists of a number of small time-dependent arrival rates (the time interval typically 
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is 15 minutes, representing the minimum period when a traffic arrival rate remains 

steady). The representative traffic profiles in road links are obtained from the traffic 

analysis in the previous section. The departure curve Dc (t) shows the departure from the 

incident bottleneck. The departure flow rate is initially fx , the reduced capacity of the 

bottleneck, which is equal to normal capacity times the percentage of remaining 

capacities (referred to Exhibit 22-6 of the 2000 Highway Capacity Manual) and then after 

the incident is cleared at timeTc, is the restored capacity,U. tn_x,tn represent the n-lth 

and nth time intervals from the incident start and q{tn) are corresponding queue 

lengths at tn_l,tn . \ is a constant arrival rate between tn_x and tn . The queue length 

calculation at a given time t can be expressed as: 

<?(0 = )+('" Ka t,K " ) for *„_,/< Tc (1) 

= V) for tn_ht>Tc (2) 

Note that when < Tc < tn, equation (1) still applied if t <Tc. Otherwise, when 

t>Tc, q(Tc) should be determined using equation (1) first, then Tc can replace in 

equation (2) to calculate^). 

If the queue length exceeds the length of the segment where the primary incident 

occurred, then the spatial boundary used to identify secondary incidents is extended to the 

adjacent upstream segment; if the queue still overflows this adjacent segment, then the 

spatial boundary is extended further to the upstream segment. This recursive process 

stops when the entire queue is accommodated. As shown in Figure 7, the estimated queue 

length of the incident Ci in Segment 2 extends to Segment 3. Incidents C3 and C4 are 
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covered by the spatial boundary (that includes Segments 2 and 3). If C3 and C4 are within 

the duration of the downstream primary incident Ci, they will be identified as secondary 

incidents associated with Ci. 

Note that queue lengths based on theoretical models are over-estimated sometimes, 

especially when they do not account for route diversions (Ullman & Dudek, 2003). 

Clearly, using observed queue back up to determine the farthest upstream segment where 

queue extended is desirable to complement derived queue lengths from traffic models. 

Unfortunately, observed queue lengths were not available for the data set analyzed in this 

study. However, given that the visual distractions of drivers extend beyond queues, the 

impacts of over-estimation may be mitigated. 

In addition, this secondary incident identification also considers secondary incidents 

in the opposite direction. To identify these secondary incidents, the length of the opposite 

segment is set as the spatial boundary. If an incident in the opposite segment occurs 

within the duration of the primary incident, then it is considered a secondary incident in 

the opposite direction. To further emphasize the rubbernecking impact and visual 

distraction caused by a primary incident in the opposite direction, the following two 

requirements must be met: 

1) There is no visual barrier in the median (similar to the study by Masinick and 

Teng, 2004). 

2) One of the following conditions exists: 

• Primary incident in the opposite direction is a crash. 

• Primary incident in the opposite direction is a non-crash; its location is in the 

left shoulder. 
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• Primary incident in the opposite direction is a non-crash; it causes a queue back 

up or blocks a lane. 

3.6 Primary-Secondary Incident Events Definition and Classification 

Given the correlations between primary and secondary incidents, the primary-

secondary incident events are defined in Table 1. Any event can be classified into one of 

the cells in this table. They go from no secondary in the same or opposite directions to 2 

or more in the same direction and opposite direction. Every event category will likely 

have some impact on urban traffic, with higher level categories having greater impacts on 

average. All the categories have been used in the categorization of primary-secondary 

incident events. 

Table 1 Categories for Events Showing Various Levels of Secondary Incidents 

Secondary Incidents 
Abbreviation 

0 Secondary incident 
in the opposite 
direction (O0) 

1 Secondary incidents 
in the opposite 
direction (O,) 

2+ Secondary Incidents 
in the opposite 
direction (02+) 

0 Secondary in the 
same direction (E0) 

So. Oo 20, Oi So, 02+ 

1 Secondary in the 
same direction (SO £1. Oo 2i.O, 21, o2+ 

2+ Secondary in the 
same direction (E2+) 

^2+> Oo ^2+, O! s2+, 02+ 

Note: All cells represent a secondary event. represents secondary incidents in the same direction; "O" 
represents secondary incidents in the opposite direction. 

The structure presented in Table 1 lends itself to having more categories on the 

ordinal scale. Considering the scarcity of multiple secondary events, this research 

simplified and aggregated the identified events presented in Table 2. Specifically, Table 2 

shows the categorization as follows: 1) an independent incident, i.e., an incident not 

associated with secondary events, 2) one pair event, i.e. one primary incident and one 
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associated secondary incident in the same or opposite directions, and 3) one primary 

incident with two or more secondary incidents in the same and/or opposite directions. 

This scale captures event adversity from a traffic management perspective, with the last 

category capturing multiple secondary events. 

Table 2 Ordered Secondary Events Classification 

Categories (J) Event Types Expected Event Adversity 

1 So. Oo Independent incident 

2 OoJ So. Oi Primary-secondary incident pair 

3 So. o2+; s 1, Oi; s 1,o2+; s2+, Oo; 
S2+. c ;̂ S2+, 02+ 

Primary-multiple secondary 
incidents event 

3.7 Key Analyses 

To answer the research questions, several key analyses in Table 3 are proposed to explore 

the primary-secondary incident events as follows: 

• To identify where and when multiple secondary incidents are more likely to occur 

on urban freeways, a detailed segment-based spatial analysis is conducted in GIS 

road network in both directions for primary-secondary incident events. Following 

the spatial analysis, a temporal analysis is designed and performed to examine 

monthly, weekly and daily variations of such events. The findings provide 

practitioners with valuable information on targeting service patrols in areas where 

are more prone to multiple secondary incidents. 

• To understand the occurrence of primary-secondary incident events and quantify 

key factors that include incident characteristics, roadway geometry and traffic flow. 
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Two proportion odds models are estimated based on three-point ordinal scale, 

which was defined in Table 2. 

• To answer what the spatio-temporal patterns between primary and secondary 

incidents look like, and to consider what are the major factors of these associations? 

The associations between the primary and secondary incidents can be 

characterized by time gap and distance. Time gap represents the amount of time 

between a primary incident and its first and second secondary incidents. Distance 

is defined as the separation between a primary incident and its secondary incident 

occurring locations. A deeper analysis of distance and time gap is conducted on 

the basis of a unique 2008 incident and roadway inventory database for Hampton 

Roads, Virginia. 

• To define the cascading event and analyze event duration, a unique event database 

based on incident and road inventory data from Hampton Roads, Virginia, is 

created. Single-pair events (one primary and one secondary incident) and large-

scale events (one primary and multiple secondary incidents) are analyzed. "Event 

duration" is defined as the time elapsed from the notification of a primary incident 

to the departure of the last responder from the event scene after removal of the 

primary and associated secondary incidents. The primary-secondary incident 

events can be further categorized based on the clearance time and deeply analyzed 

using through a set of rigorous models to answer what are associated factors with 

such events. 

• To examine traffic delays induced by primary-secondary incident events, the 

incident data combined with roadway inventory data from Hampton Roads were 
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analyzed to retrieve the attributes of primary-secondary incident pairs. Based on 

these empirical temporal and spatial associations between primary and secondary 

incidents, the critical parameters for delay estimation: time-gap, physical distance, 

relative lane blockage, and traffic demand level are evaluated through a 

microscopic simulation. 

Table 3 Key Analyses Summary 

Key Analysis Incident Data Used Tools/Models 

Spatial and temporal analysis for 

Primary-secondary incident events 
2005 GIS 

Factors associated with the likelihood of 

primary-secondary incident events 
2005 Ordered logit models 

Spatio-temporal patterns of primary and 

secondary incidents 
2008 

GIS, Ordinary linear 

regression 

Cascading incident event durations 2005 OLS, truncated regression 

Queuing delays associated with 

secondary incidents 
2005 

Kinematic wave 

Microscopic simulation 

A complete picture of primary-secondary incident events can be obtained after 

analyzing these important attributes and aspects of primary-secondary incident events, 

which including primary-secondary incident events characteristics, spatial and temporal 

distributions on urban freeways, major factors associated with such events, further 

categorization of the primary-secondary events based on incident clearance time. More 

importantly, traffic delays for such events can be evaluated through a microscopic 

simulation. Research findings and implications from this study provide new insights into 

secondary incidents in incident management, traffic safety and regional planning. 
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CHAPTER 4 

SPATIAL AND TEMPORAL ANALYSES OF PRIMARY-SECONDARY 

INCIDENT EVENTS 

To examine spatial and temporal distributions of primary-secondary incident events 

over road segments and identify where and when such events are more likely to occur, 

two major interests of classified incident events, the frequencies of different events and 

durations of primary incidents, are analyzed spatially and temporally (Khattak et al., 

2010). The segment-based frequencies of primary-secondary incident events along the 

major freeways are geo-coded into GIS network. Frequency spatial distributions over 

road segments can be used to observe the considerable pattern differences in both 

directions, and to identify primary-secondary event hotspots (i.e. locations that have 

higher frequency of primary-secondary incident events). Frequencies of primary-

secondary events grouped by month, weekday and hour were also performed to examine 

temporal variation over different time scales. Another important effort is to analyze the 

duration of primary incidents, which is a key surrogate indication of events clearance and 

analyzed in past studies. The average duration daily distributions for weekend and 

weekday are plotted to examine temporal distribution patterns. Overall, the results of 

spatial and temporal analyses are valuable for incident management to appropriately 

target service patrols teams, especially from the perspective of managing primary-

secondary incident events. 

4.1 Spatial Analysis of Primary-Secondary Incident Events Summary 

Based on 2005 incident data in Hampton Roads, incident distributions on major 

freeways are summarized in Table 4. Information about the length of major freeway, the 
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number of incidents and the conesponding frequency and percentage of incidents in each 

route direction is provided. It is evident that 1-64 EB and WB, 1-264 EB and WB show 

relative higher frequencies of incidents, owing to their length and heavy traffic. 

Thble 4 Summary of2005 Incidents on M^jor Freeways in Hampton Roads 

Routes Length (miles) 
Total Incidents 

Routes Length (miles) 
Frequency Percentage 

1-64 EB 53 10,813 28.92% 

1-64 WB 53 10,240 27.39% 

1-264 EB 25 6,838 18.29% 

1-264 WB 25 6,095 16.30% 

1-464 NB 5.8 460 1.23% 

1-464 SB 5.8 539 1.44% 

1-564 EB 2.9 309 0.83% 

1-564 WB 2.9 435 1.16% 

1-664 NB 20 832 2.23% 

1-664 SB 20 823 2.20% 

Total 213.4 37,384 100% 

The frequency and percentage of identified secondary incidents in each route 

direction for Hampton Roads are illustrated in Figure 8 and summarized in Table 5. 

Table 5 also reports the proportions of secondary incidents occurring on the same 

segments (i.e. the primary and its secondary incidents occur within a single segment), 

crossing segments (i.e. the spatial boundary covers multiple segments due to queue back 

up) and opposite direction. Note that the frequency presented in Table 5 is the total 

number of secondary events while the frequency in Table 4 is the total number of 
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incidents. Every event includes at least one or more associated incidents. Therefore the 

total numbers (single incidents and events that involve two or more incidents) presented 

in these two tables are different. Furthermore, a detailed segment-based spatial analysis 

was conducted in both directions for primary-secondary incident events and the results 

are shown in Figure 9. Three subplots display the spatial distributions of independent 

incidents, primary-secondary incident pairs and primary-multiple secondary incident 

events respectively. The actual height of vertical bar in the legend represents the count 

number that is marked in the right. Height variations reflect the segment-based event 

frequency distributions along each road direction. It shows that 1-64 (EB, WB), 1-264 (EB, 

WB), 1-564 (EB, WB) are problematic routes with high percentages of primary-secondary 

incident events. Furthermore, the interchange between 1-264 and 1-64 is a hotspot with 

the highest frequencies in all three-event categories. This information is valuable in terms 

of focusing patrol resources, from the perspective of secondary incidents. 

Secoadary Eveats Distrlbittoi 
12MM 

INN 

1M7* 99S9 —Frequency 

-•-Percentage 

1 1 1 **** 
1 

-

»7 

1.27* 1.MK « >2% 117% 2.27% 2.2C! 
J* # J* * JT # J* J* 

J? 4? 4? y  y  
Figure 8 Route Bound-Based Primary-Secondary Incidents Events Distribution During 2005 



Table 5 Summary of 2005 Events on M^jor Freeways in Hampton Roads 

\ Events 
Independent 

incidents 
£o, Oo 

Primary-secondary pairs 
£1, Ool £ o> Oi 

Primary-multiple secondary incidents events 
So, 02+; z 1, Oi; z 1,02+; £2+, Oo; £2+, Oi; £2+, O2+ 

Total 

Freq* 
(Pet.) ** 

Same direction 
£i, O0 

Opposite 
direction Freq. 

(Pet.) 

Same direction 
£2+. OQ 

Opposite 
direction 

Both directions 
£1. Oi; £1,02+; 
£2+, OiJ £2+, O2+ 

Freq. 
(Pet.) Freq. 

RoutesX 

Freq* 
(Pet.) ** 

Single 
segment 

Multiple 
segments 

£o. Oi 

Freq. 
(Pet.) 

Single 
segment 

Multiple 
segments 

£0,02+ Single 
segment 

Multiple 
segments 

Freq. 
(Pet.) 

1-64 EB 10,121 
(96.5%) 215 42 51 308 

(2.94%) 23 13 1 9 3 49 
(0.47%) 10,478 

1-64 WB 9,693 
(97.3%) 190 19 33 242 

(2.43%) 12 5 2 4 23 
(0.23%) 9,958 

1-264 EB 6,369 
(96.63%) 123 47 18 188 

(2.85%) 11 13 2 6 2 34 
(0.52%) 6,591 

1-264 WB 5,647 
(96.02%) 141 37 30 208 

(3.54%) 8 8 2 6 2 26 
(0.44%) 5,881 

1-464 NB 458 
(99.78%) 1 1 

(0.22%) 459 

1-464 SB 535 
(99.63%) 2 2 

(0.37%) 537 

1-564 EB 286 
(95.65%) 11 11 

(3.68%) 2 2 
(0.67%) 299 

1-564 WB 413 
(97.41%) 9 9 

(2.12%) 2 2 
(0.47%) 424 

1-664 NB 818 
(99.15%) 7 

7 
(0.85%) 825 

1-664 SB 817 
(99.63%) 3 

3 
(0.37%) 

820 

Total 35,157 
(96.93%) 702 979 

(2.70%) 
136 

(0.37%) 36,272 

Note that Freq.* —Frequency; Pet. **—Percentage 

u> 
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Figure 9 Spatial Distributions of Primary-Secondary Incident Events in Botb Directions 

4.2 Temporal Analysis of Primary-Secondary Incidents Events 

Temporal analyses of secondary events grouped by month, weekday and hour were 

also performed (Figure 10 and 11). Figure 10 shows independent incident distribution by 
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month. July and August have the highest numbers while the pattern of primary-secondary 

pair and primary-multiple secondary incidents event are somewhat different (Figure 11). 

The months of June, August and October show the higher number for primary-secondary 

pairs. The month with a highest frequency for primary-multiple secondary incident 

events is March. A relatively high number of such events persist from June to November, 

covering the summer months. Figures (12,13 and 14) contain 6 subplots that show the 

frequency distributions (left column) and incident duration variations (right column) for 

independent incidents (Figure 12), Primary-secondary pairs (Figure 13) and primary-

multiple secondary incident events (Figure 14). 

Note that the average incident durations for primary-secondary incident pairs and 

multiple secondary incident events are the durations of the primary incidents. The 

frequency distributions for independent incidents are similar to the flow patterns on 

weekdays and weekends. That is, they show a relatively lower frequency on weekends 

than on weekdays. For primary-secondary incidents pair, the frequency distribution 

seems to be concentrated in the mornings and afternoons. Multiple secondary incident 

events are noticeably only concentrated in the morning and afternoon peak periods. 

In terms of durations for independents incidents, the plot in Figure 12 (right) shows a 

narrow variation by time of day, except those occurring later in the night to early morning. 

Primary incident durations for the primary-secondary incident pairs show large variations 

in later night and morning hours (Figure 13 right). Interestingly, the durations during 

afternoon peaks are consistently low. For multiple secondary incident events (Figure 14 

right), the corresponding plot of primary incident duration shows a peak period pattern. 
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More importantly, the duration magnitudes of primary-secondary incident pairs and 

multiple secondary incident events are substantially larger than independent incidents. 

4500 
Independent 

Figure 10 Independent Incidents Distribution by Month 

• One-Pair • Large-Scale 

Figure 11 Primary-Secondary Incident Pairs and Primary-Multiple Secondary Incident Events 
Distributions by Month 
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Figure 12 Independent Incident Average Frequency Daily Distributions (Left) and Independent 
Incident Average Duration Daily Distributions (Right) For Weekday and Weekend 

1 2 3 4 5 6 7 8  9  1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 * 1 9  2 0 2 1 2 2  2 3  2 4  

200 

_ 1*0 J 160 
1 140 

I 120 

I 100 

i» 

r f :  
o 

12 3 4 5 6 7 8 9 101112131415161718192021222324 

Figure 13 Primary-Secondary Incident Pairs Average Frequency Daily Distributions (Left) and 
Primary Incident Average Duration Daily Distributions (Right) For Weekday And Weekend 
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Figure 14 Primary-Multiple Secondary Incident Events Average Frequency Dally Distributions (Left) 
and Primary Incident Average Duration Daily Distributions (Right) For Weekday and Weekend 
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4 .3 Summary 

This analysis characterizes events as primary incidents and their secondary incidents 

in the same and opposite direction. Roadways and hotspots that are likely to have 

multiple secondary incidents were identified based on a spatial analysis by using ArcGIS. 

Primary-secondary incident events grouped by month, weekday, and hour were also 

analyzed, with practical implications for focusing patrol resources spatially and 

temporally. Such information is useful for incident management. Overall, the results of 

spatial and temporal analyses are valuable for incident management to dispatch 

appropriately target service patrols teams, especially from the perspective of managing 

primary-secondary incident events. Comprehensive adverse event identification can aid 

in evaluating route performance to give special attention to routes with higher frequencies 

of primary-secondary incident events. 
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CHAPTERS 

FACTORS ASSOCIATED WITH THE LIKELIHOOD OF PRIMARY-

SECONDARY INCIDENT EVENTS 

To understand the occurrence of primary-secondary incident events and answer the 

question about what factors are associated with such incident events, two ordered logit 

models, proportional odds model and partial proportional odds model, are estimated 

separately. General proportional odds model follows a parallel lines assumption while 

partial proportional odds model accounts for the unequal contributions for some 

significant variables. The details are discussed in the following sections. 

5.1 Models to Estimate Likelihood of Primary-Secondary Incident Events 

In a simple logit model (proportional odds model), category ;'= 1 is defined as the 

minimum level of variable, j = 2 is the next order level and so on for the last category 

( j = k -1 ). In this study ;' = 1 represents the category of independent incidents; j = 2 

donates the primary-secondary incident pairs and j = 3 represents the last category of 

primary- multiple secondary incident events. The probability of a given Ith observation 

Yt (a total of /lobservations) above particular category ;is calculated by equation (3): 

exp(a, + x, .B, +x7JB7 +•••+xuB,) 
P(K > j) = ^^^ inL- = (3) 

l+exp(a; +xufix +*2,/?2 +"'+xu0,) ^ ^ K) 

Where is the intercept parameter for j category. The fi parameter represents the 

slope for each explanatory variable (xl,x2t-••xl), where I represents the number of 

explanatory variables. 
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Note that equation (3) for the proportional odds model requires that /? s follow a 

parallel lines assumption, which represents that independent variables contribute equally 

to all outcome categories. This means each variable only has one coefficient to apply all 

categories, i.e., P s will be the same for all values of j, and the it -1 regression lines are 

parallel to each other. However, it is important to test the parallel lines assumption, since 

one or more fi s may statistically differ across values of category j in some of cases. If 

the parallel lines assumption is violated, it needs different sets of coefficients in the 

model to describe the relationship between independent variables and outcome categories 

A partial proportional odds model has been proposed to overcome this limitation, 

allowing some P s to differ across categories (Zhang & Khattak, 2010a). For example, if 

the P for X 2 is different from the categories, then the probability of Y t  can be 

determined by: 

For both models, the dependent variable is odds of secondary events and the 

independent variables include the incident characteristics of primary incidents, road 

geometric variables and traffic information. The model specifications and analysis 

description is detailed in Table 6. 

STATA software was selected to perform these ordinal logit regressions. Note that 

ologit in STATA is used to estimate the simple ordered logit model. The estimates include 

l + exp(a. +x2ip2j  +'~ + xup t) 

Here, the explanatory variables vector (/ x 1): X - (x1 
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cut points, which equal the negatives of alphas expressed in Equation (3). Parallel line 

assumption test is performed by an add-in package (Williams, 2006). If the parallel lines 

assumption is violated, then a generalized ordinal logit/partial proportional model 

(gologit2) will be used to conduct further analysis. This package runs an iterative process 

to estimate partially proportional odds model, where the parallel lines constraint is only 

relaxed for those unjustified variables. After gologit2 regression, the parameter estimates 

for the constrained variables are the same while the estimated unjustified coefficients will 

be different for each category. Furthermore, STATA calculates the marginal effects, for 

each independent variable in both models, which corresponds to the difference in 

probability when independent variable changes from 0 to 1. 

Table 6 Ordered Logit Model Specification 

Variable Name Description 

Odd of Primary-secondary Incident Events 

Primary incident characteristics 

Incident type Binary variable (Crash =1; 0thers=0) 

Incident duration (>0) in Minutes 

Number of involved vehicles (>0) Number 

Outstate vehicle? Yes/No 

Lane blockage Percentage of lane blockage, ranging from 0 to 
100 

Truck/s involved Binary variable (Truck =1; Non-Truck =0) 

Road Geometry 

Segment length Mile 

Curve? (Yes/No) 

Traffic 

AADT AADT/(Lane*1000) 
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5.2 Model Results 

Table 7 provides descriptive statistics for independent variables broken down by three 

categories: Independent incidents, primary-secondary incident pairs, and primary-

multiple secondary incident events. Importantly, information about secondary incidents 

themselves is excluded partly because the primary and secondary incidents have an 

associative relationship and it is not suitable to have them both in a statistical model. 

Most incidents (96.93%, from Table 7) do not involve a secondary incident with an 

average of 14-minute duration; the second largest category is that of primary-secondary 

pairs (2.70%) having an average of 40-minute duration of the primary incident, and the 

multiple secondary events (0.37%) have even longer primary incident durations (68 

minutes), as expected. Note that these durations are for the primary incidents and if the 

secondary incidents lasted longer than primary incident, then there may be an additive 

extension to the event duration. The results suggest that a longer duration primary 

incident is associated with multiple secondary events, as expected. Truck involvement is 

relative higher in the last two categories than independent incidents. On average, the 

number of vehicles involved (in the primary incident) is increasing with higher secondary 

event adversity (from 1.07,1.42 to 2.07). Lane blockage, AADT/(Lane*1000) show 

similar trends. Shorter segment length (the length of the segment where primary incident 

occurs) seems to be associated with higher secondary event categories, implying that 

owing to proximate changes in roadway geometry, shorter segments are more prone to 

secondary incidents. Owing to their unfamiliarity with the network, out-of-state vehicles 

and their drivers seem to be associated with more secondary incidents. Overall, the 

descriptive statistics are reasonable in terms of their means and ranges. 
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Table 7 Descriptive Statistics of Independent Variables in Primary Incident Analysis 

Variables Number of 
Observations Mean Standard 

deviation Min Max 

Independent incident 
Crash? (yes/no) 35157 0.0742 0.2620 0 1 
Incident duration 
(minutes) 35157 13.4951 18.5178 1 470 

Truck involved? (yes/no) 35157 0.0350 0.1773 0 1 
Number of vehicles 
(number) 35157 1.0730 0.3566 1 11 

Out of state vehicle? 
(yes/no) 35157 0.1537 0.3586 0 1 

Lane blockage (%) 35157 1.6099 8.4512 0 100 
Segment length (miles) 35157 1.6348 0.8288 0.45 4.81 
Number of lane (number) 35157 3.0661 0.6551 2 4 
Curve? (yes/no) 35157 0.5351 0.4988 0 1 
AADT/(Lane*1000) 35157 20.3877 7.1400 5.4728 29.6667 

Primary-secondary pair 
Crash?* (yes/no) 979 0.3391 0.4737 0 1 
Incident duration 
(minutes) 979 40.3504 37.811 1 366 

Truck involved? (yes/no) 979 0.0562 0.2218 0 1 
Number of vehicles 
(number) 979 1.4178 0.8497 1 6 

Out of state vehicle? 
(yes/no) 979 0.1841 0.3854 0 1 

Lane blockage (%) 979 8.1339 18.2497 0 100 
Segment length(miles) 979 1.6209 0.8422 0.48 4.81 
Number of lane (number) 979 3.1869 0.6637 2 4 
Curve? (yes/no) 979 0.5638 0.4962 0 1 
AADT/(Lane*1000) 979 22.7759 7.8804 8 29.6667 

Primary-multiple secondary incidents event 
Crash? (yes/no) 136 0.5956 0.4926 0 1 
Incident duration 
(minutes) 136 67.8971 77.9269 5 793 

Truck involved? (yes/no) 136 0.0551 0.2213 0 1 
Number of vehicles 
(number) 136 2.0662 1.2835 1 8 

Out of state vehicle? 
(yes/no) 

136 0.2889 0.4532 0 1 

Lane blockage (%) 136 20.3914 26.2019 0 100 
Segment length (miles) 136 1.4688 0.6619 0.78 4.81 
Number of lane (number) 136 3.3015 0.6591 2 4 
Curve? (yes/no) 136 0.6029 0.4911 0 1 
AADT/(Lane*1000) 136 25.1633 10.6318 12 29.6667 

Note that all incident characteristics in the last two categories are for primary incidents only. For instance, 
incident duration is the duration of primary incident; the number of vehicles is the number involved in the 
primary incident. 
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Tables 8 and 9 show two ordered logit (proportional odds) models that capture the 

propensity toward more secondary incidents. The first model in Table 8 is a simple 

ordinal regression (proportional odds model) based on restrictive parallel lines 

assumptions about the estimated parameters. The model in Table 8 is a generalized 

ordered logit model with relaxed restrictions on model parameters that are applicable to 

various event adversity levels. More technically, autofit, a backwards stepwise selection 

procedure, showed that the assumption of the parallel lines model is violated. The main 

variables of interest in this case are the number of vehicles involved, and lane blockage. 

Thus a generalized ordered logit model was used to relax the constraints and re-estimate 

parameters, summarized in Table 9. 

Summary statistics show that both models are statistically significant (Likelihood 

ratio Chi-square tests are significant at 5% level). The McFadden's pseudo-R2 is only 

partially equivalent to R2 in Ordinary Least Squares (OLS) regression, which is the 

proportion of variance of the response variable explained by the predictors). The p-values 

for each individual independent variable are used to test the null hypothesis that this 

independent variable's coefficient is not statistically different from zero. If p-value is less 

than 0.05, then the null hypothesis can be rejected implying that the independent variable 

is statistically significant. The constants for these models are only used to estimate 

response probability. Note that in Table 9, the number of vehicles involved and lane 

blockage were re-estimated to have different coefficients across the ordinal categories. 

Effects of the constrained variables in Table 9 can be interpreted to be the same as the 

first simple ordinal regression model in Table 8. A positive indicates that higher values of 

the explanatory variable are associated with higher (secondary) event adversity. Both 
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models show that a crash longer incident duration, more involved vehicles, higher AADT 

and shorter segment length are associated with higher occurrence of secondary events. 

This is counterintuitive. The possible explanation is that a segment defined in this region 

consists of a basic freeway segment, and ramps or weaving segments. Within a short 

segment, merging or diverging create more intense conflict impact than in a longer 

segment. It possibly causes more secondary incidents in this or upstream segments. 

Perhaps the most noteworthy result is that the number of involved vehicles and lane 

blockage are highly associated with multiple secondary events. The variable primary 

incident duration is difficult to interpret, in the sense that response and clearance times 

may be longer if secondary incidents are involved. This interdependence between 

primary incident duration and occurrence of associated secondary incidents was studied 

(Khattak et al. 2009). Although the coefficient for truck involvement was negatively 

associated with higher scale events, it is not statistically significant (5% level). Out-of-

state vehicle also showed a negative relationship with the likelihood of adverse events, 

but it is not statistically significant either. The road geometric variable curves are not 

statistically significant in the models. The difference between the two models is that the 

partial proportional odds model accounts for unequal contributions of explanatory 

variables to different event categories. The number of vehicles involved and lane 

blockage in Table 9 are variables that have different contributions. They are significantly 

associated with the higher propensity to have secondary incident, and they have a greater 

associations in the higher category than in the lower category. This means that more 

vehicles involved and lane blockage in the primary incident are associated with increased 

propensity to have multiple secondary incidents. 
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Table 8 Proportional Odds Model for Ordinal Scale of Events 

Parameters 
Coefficients Marginal effects 

Parameters 
fi So, OQ Zi, Ooi So. Oi So, O2+... S2+, O2+ 

Primary Incident Characteristic 

Crash? 0.7478** -0.0204 0.0182 0.0022 

Incident duration 0.0222** -0.0004 0.0004 0.0000 

Truck involved? -0.0460 0.0009 -0.0008 -0.0001 

Number of vehicles 0.3121** -0.0062 0.0055 0.0007 

Outstate vehicle? -0.0591 0.0012 -0.0011 -0.0001 

Lane blockage (%) 0.0100** -0.0002 0.0002 0.0000 

Road Geometry 

Segment length -0.0836* 0.0017 -0.0015 -0.0002 

Curve? 0.0741 -0.0015 0.0013 0.0002 

Traffic 

AADT/(Lane*1000) 0.0886** -0.0018 0.0016 0.0002 

Constant 
6.2664 

Constant 
8.5480 

Summary Statistics 

Number of observations = 36272 

Log likelihood function =-4614.9856 LRchi2(10) = 1557.65 

PseudoR2 = 0.1444 Prob>chi2 = 0.0000 

Notes: * p<0.05, **p<0.001; Marginal effects in the table 6 and 7 represent the changes in the dependent 
variable with a unit change in the independent variable. 
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Table 9 Partial Proportional Odd Model for Ordinal Scale of Events 

Parameters 
Coefficients Marginal effects 

Parameters Si, Ooi 
S0, Oi 

So, 02+... 
£2+. °2+ 

So, Oo 
Si. Ooi 
So, Oi 

So, O2+... 
S2+, o2+ 

Primary Incident Characteristic 
Crash? 0.7781** 0.7781** -0.0215 0.0197 0.0018 
Incident duration 0.0222** 0.0222** -0.0004 0.0004 0.0000 
Truck involved? -0.0423 -0.0423 0.0009 -0.0008 -0.0001 
Number of vehicles 0.2783** 0.5145** -0.0055 0.0047 0.0008 
Outstate vehicle? -0.0531 -0.0531 0.0011 -0.0010 -0.0001 
Lane blockage (%) 0.0092** 0.0179** -0.0002 0.0002 0.0000 

Road Geometry 
Segment length -0.0825* -0.0825* 0.0016 -0.0015 -0.0001 
Curve? 0.0748 0.0748 -0.0015 0.0014 0.0001 

Traffic 
AADT/(Lane*1000) 0.0880** 0.0880** -0.0018 0.0016 0.0002 
Constant -6.2193** -9.0388** 

Summary Statistics 

Generalized ordered logit model significance 
Number of observations = 36272 
Log likelihood function = - 4600.2501 
PseudoR2 = 0.1471 

LR chi2 (11) = 1587.12 
Prob > chi = 0.0000 

Parallel Lines Assumption Test 
Testing parallel lines assumption using the .05 level of significance 
Step 1: Constraints for parallel lines imposed for duration (P Value = 0.9828) 
Step 2: Constraints for parallel lines imposed for curve (P Value = 0.5293) 
Step 3: Constraints for parallel lines imposed for crash (P Value = 0.2784) 
Step 4: Constraints for parallel lines imposed for truck (P Value = 0.1822) 
Step 5: Constraints for parallel lines imposed for aadt_ln_1000 (P Value = 0.1227) 
Step 6: Constraints for parallel lines imposed for outstate_vehicles (P Value = 0.0907) 
Step 7: Constraints for parallel lines imposed for length (P Value = 0.0624) 
Step 8: Constraints for parallel lines are not imposed for 

numvehs (P Value = 0.00026) 
laneblkpct (P Value = 0.00799) 

Wald test of parallel lines assumption for the final model: 

(1) [1]duration - [2]duration = 0 
(2) [ijcurve - [2]curve = 0 
(3) [ijcrash- [2]crash = 0 
(4) [1]truck - [2]truck = 0 
(5) [1]aadt_ln_1000 - {2Jaadt_ln_1000 = 0 
(6) [ijoutstate vehicles - [2]outstate vehicles = 0 
(7) [1]length - [2]length = 0 

chi2( 7) = 12.24 
Prob > chi2 = 0.0928 

An insignificant test statistic indicates that the final model does not violate the proportional odds/ 
parallel lines assumption 

Notes: * p<0.05, **p< 0.001; STATA software procedure gologit2 was used with autofit. 



49 

S3 Summary 

Two ordered logit (proportional odds) models explored various factors associated 

with the likelihood of primary-secondary events. A proportional odds model can be 

applied first and then the parallel line assumption shall be tested. If this assumption is 

violated, a partial proportional odds model is employed to further explore the factors that 

make unequal contribution across multiple outcome categories. Based on primary 

incidents characteristics, crashes and long durations were found to increase the frequency 

of secondary incidents associated with a primary incident. More importantly, multiple-

vehicle involvement and lane-blockage had a different contribution to the occurrence of 

secondary incidents, and they are particularly associated with more secondary incidents. 

Road geometric variables such as curvature and segment length were not statistically 

significantly associated with more secondary incidents. 

This analysis certainly facilitated analysis of multiple secondary events. It suggests a 

close relationship between a lane blockage and the occurrence of multiple secondary 

events. Quantified effects of key factors that include roadway geometry and incident 

characteristics can help reduce the likelihood of secondary incident occurrence. 

Especially, crashes, longer duration, multiple vehicles involvement, lane blockage, 

shorter segment length, and high traffic volume are major contributors to the occurrence 

of multiple secondary incidents. Therefore, when these conditions are present, operation 

managers can be particularly mindful of the occurrence of secondary incidents. Finally, 

the study suggested that multiple secondary events need further research attention. 
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CHAPTER 6 

SPATIO-TEMPORAL PATTERNS OF PRIMARY AND 

SECONDARY INCIDENTS 

Secondary incidents can occur in the vicinity of primary incidents, complicating 

traffic operations. While studies have examined factors associated with incident duration 

and secondary incident occurrence, a significant number of spatio-temporal variables in 

incident management are often overlooked. For example, how soon does a secondary 

incident happen after a primary incident? How far is the secondary from the primary 

incident? What factors are associated with near versus far secondary incidents? To answer 

these questions, a deeper analysis of primary and secondary incidents is conducted on the 

basis of a unique 2008 incident and roadway inventory database for Hampton Roads, 

Virginia. Time-gaps and distances for secondary incidents in the same direction are 

examined using appropriate statistical methods. This analysis contributes to incident 

management by rigorously analyzing time-gaps and distances between primary and 

secondary incidents and exploring their implications. The results can support more 

informed planning and operational decisions needed to respond in complex incident 

situations. 

6.1 Time Gap and Distance Calculation 

The associations between primary and secondary incidents can be characterized by 

time gap and distance. Calculation of the time gap between a primary incident and its 

secondary incidents involves differentiating the start times of the identified primary and 

secondary incidents. The distance between a primary incident and its secondary incident 
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also can be determined through aggregating distances between neighboring reference 

mile markers (Zhang & Khattak, 2011). Two kinds of associations between primary and 

secondary incidents were estimated: 

• The time gap between the first/second secondary incident and its primary incident 

in the same road direction 

• The distance between the first/second secondary incident location and its primary 

incident occurrence in the same road direction. 

6.2 Distribution of Time-Gap and Distance 

To examine the frequency distribution of time-gap and distance, two bivariate 

histograms were created to visualize the distributions of first secondary incidents and 

second secondary incidents in the same direction (Figure 15). It seems that a substantial 

number of secondary incidents occur in closer proximity to their primary incidents. As 

queues from primary incidents propagate, the potential distance between primary and 

secondary incidents increases (since majority of incidents are expected to occur at the end 

of the queue). As time passes, the queues begin to shrink after incident clearance, and the 

associated secondary incidents will start occurring in closer proximity to the primary. The 

proximity relationship is non-linear. Comparing the two corresponding histograms, it is 

evident that the initial secondary incident is more likely to occur in a narrow range of 

space and time relative to its primary incident, while the subsequent secondary incident in 

the same direction shows greater variation, as expected. Subsequent secondary incidents 

have a longer time-gap and occur at longer distances from the primary incident. Given 

their greater variability, they may be particularly challenging for incident managers. 
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SfrtUMtatcM  ̂ " 

Figure 15 Distribution of (a) Initial Secondary Incidents over Time and Space (b) Subsequent 
Secondary Incidents over Time and Space 

Further analysis of primary-first secondary incidents occurring in the same direction 

is presented in Figure 16. Once again, the time-gap distributions indicate that a large 

portion of secondary incidents occur very quickly after their primary incidents, and decay 

somewhat exponentially. However, the distance distribution appears as a skewed normal 

distribution. The mode of distance between the primary and first secondary incidents is 

0.72 miles and the average of distance is about 1.2 miles. This information can be 

valuable for incident managers in the region to help them optimize the locations of their 

patrol teams to reduce the occurrence of secondary incidents. It is recognized that if 

secondary incidents that occurred 10 hours after a primary vehicle was abandoned and 

spatially far away from the primary incident are contained in the data, it would result in 

bias and errors in the model estimation due to their longer time gap and distance, and 

may over-estimate the effects for such factors. After carefully checking these incidents, 5-

hour and 10-mile are used as temporal and spatial thresholds to clean out the extremes 

and outliers. 
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(a) (b) 

Figure 16 Distribution of Time Gaps (a) and Dutances (b) between the Same Direction Primary-
First Secondary Incidents 

Descriptive statistics and definitions of the variables used in analysis are presented in 

Table 10. A total of 1218 same direction incidents were identified and analyzed. The 

average time-gaps for the same direction incidents were about 34 minutes. The average 

spatial distance is about 1.2 miles (with a mode of 0.72). Other variables show reasonable 

magnitudes, and are used in regression analysis. They include incident types, incident 

durations, number of vehicles involved in a incident, detection sources, weather, roadway 

curves, ramps, freeway lanes, lane blocked, AADT per lane, peak hours (morning peak is 

from 6: 00 am to 9:00 am, afternoon peak covers 4:00 pm-7:00 pm, and weekend daytime 

10:00 am-7:00 pm). A purpose for doing this analysis is to investigate whether morning 

peak, afternoon peak or weekend make unequal contributions to the occurrence of 

secondary incidents. The AADT data were extracted from VDOT published results. The 

data were cleaned, error-checked and a few outliers in some of the variables were 

removed. 
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Table 10 Descriptive Statistics and Definition for Time-Gaps and Distances between Initial Secondary 
Incidents and Their Primary Incidents in the Same Direction 

Variable Definition Observations Mean Standard 
Deviation Min Max 

Time Gap— 
same dir. 

Time differences 
between same 
direction primary-
secondary pair 
(minutes) 

1218 33.8937 48.2504 0.08 385.32 

LN (Time 
Gap - same 
dir.) 

Log (natural) 
transform 1218 2.6347 1.4836 -2.5257 5.9541 

Distance Spatial Distance 
(feet) 1218 1.1515 1.7673 0 9.3585 

Incident type 
(base: others) 

Crash 1218 0.2438 0.4296 0 1 

Incident type 
(base: others) 

Debris 1218 0.0394 0.1946 0 1 
Incident type 
(base: others) Disablement 1218 0.4926 0.5002 0 1 
Incident type 
(base: others) 

Vehicle Fire 1218 0.0049 0.0700 0 1 

Duration Incident duration 
(min) 1218 67.4908 81.0994 0.2 413.8 

Numveh Number of vehicles 
Involved 1218 1.0584 0.1606 1 3 

Lnblkpct 
Lane blockage (%) 
=(# blocked 

/#lanes)*100 
1218 38.4729 39.8788 0 100 

DetSrc 
(base: others) 

Detection Source: 
SSP 1218 0.3818 0.4860 0 1 

DetSrc 
(base: others) CCTV 1218 0.4499 0.4977 0 1 
DetSrc 
(base: others) 

Phone Call 1218 0.0837 0.2771 0 1 

Rain Rain on segment 1218 0.0649 0.2464 0 1 

Curve Curve on segment 1218 0.3522 0.4778 0 1 

Ramp Ramp present 1218 0.9154 0.2783 0 1 

Traffic Peak 
(base: 
Offpeak) 

Weekday Morning 
Peak 1218 0.2356 0.4246 0 1 

Traffic Peak 
(base: 
Offpeak) 

Weekday Afternoon 
peak 1218 0.1445 0.3517 0 1 

Traffic Peak 
(base: 
Offpeak) 

Weekend daytime 1218 0.1281 0.3343 0 1 

AADT_1000ln (AADT/1000) per 
lane 1218 20.1178 5.1398 3.3333 33.5 
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6.3 Model Results 

To examine the major factors associated with distances and time gaps, ordinary least 

squares regression models were estimated. The dependent variables are as follows: 

• The time gap between the first secondary incident and its primary incident in the 

same direction. It was found that log transformation of the dependent variable is 

appropriate for modeling. 

• The distance between the first secondary incident and its primary incident in the 

same direction. The explanatory variables include the characteristics of primary 

incidents, road geometry, and traffic. 

Two sets of models were estimated with STATA software. Ordinary Least Squares 

(OLS) regression models were selected, rather than hazard-based duration models due to 

their simplicity, ease of coefficients' interpretation, and ease of predictions. The log-

transformed time-gap model for same direction secondary incidents, presented in Table 

11, shows that it is statistically significant overall (N=1218). A full model is presented 

with several explanatory variables for demonstration, and then a final model with non

significant variables removed is presented. About 40.3% of the variation in the dependent 

variable is explained by the full model, indicating a relatively good fit. The correlations 

between explanatory variables were tested using Variance Inflation Factors (VIF) and 

were reasonably low (VIF was much lower than 10, which is often used as a cutoff). The 

full model shows that longer time-gaps are associated with crashes and disablements. 

Longer primary incident durations, and detection by SSP, phone calls, and cameras are 

associated with longer time-gaps. A host of factors that includes adverse weather and 

roadway geometry are not statistically significant variables. The parameters can be 
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interpreted appropriately by taking their exponent. For example, in terms of percent 

change, crashes, as opposed to other types of incidents, are associated with e(0-8l25l> 
= 

2.25 or 125% longer time-gaps. 

Table 12 shows the results for (non-transformed) distances between primary and 

secondary incidents. It is statistically significant overall (N=1218). Again, a full model is 

presented with several explanatory variables for demonstration, and then a final model 

with non-significant variables removed is presented. About 13.8% of the variation in the 

dependent variable is explained in the full model, indicating a relatively weak fit. Again, 

the correlations between explanatory variables were tested and were not problematic. 

Crashes and fires are associated with secondary incidents that occur at longer distances, 

partly because such incidents cause longer queues. Longer primary incident duration is 

related to larger distances between a primary and its secondary incident (every minute is 

associated with a 0.0036 miles increase in distance). More lane blockage is positively 

associated with a longer distance between primary and secondary incidents. The time of 

day variable and some of the roadway variables are not statistically significant in the 

model. However, more traffic is positively associated with longer distances between 

primary and secondary incidents. 
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Table 11 Ordinary Least Squares (OLS) Models for Time Gaps between First Secondary Incidents 
and Their Primary Incidents in the Same Direction 

Parameters 

OLS Models LN(Time-gap) 

Parameters Full Model Final Model Parameters 
Coefficient 
Estimates p-Value Coefficient 

Estimates p-Value 

Primary Incident Characteristics 

Incident type 
(base: others) 

Crash 0.8152 0.000*** 0.7516 0.000*** 

Incident type 
(base: others) 

Debris 0.1394 0.457 0.1122 0.551 Incident type 
(base: others) Disablement 0.5740 0.000*** 0.5120 0.000*** 
Incident type 
(base: others) 

Vehicle Fire 0.6430 0.180 0.4516 0.351 

Incident duration (minutes) 0.0109 0.000*** 0.0113 0.000*** 

Number of vehicles involved 0.2127 0.309 

Lane blockage (%) 0.0004 0.710 0.0008 0.428 

Detection 
source 
(base: others) 

SSP 0.4600 0.001*** Detection 
source 
(base: others) 

CCTV 0.7524 0.000*** 
Detection 
source 
(base: others) Phone Call 0.5668 0.001*** 
Weather Condition 

Rain 0.1175 0.395 

Road Geometry 

Curvature present 0.0698 0.332 

Ramp present 0.0678 0.575 

Traffic Characteristics 

Peak 
(base:off-peak) 

Weekday 
morning peak -0.0562 0.502 

Peak 
(base:off-peak) 

Weekday 
afternoon peak -0.0444 0.660 Peak 

(base:off-peak) 
Weekend 
daytime -0.1785 0.094* 

(AADT/1000) per lane 0.0119 0.074* 0.0131 0.049** 

Constant 0.3151 0.311 1.1359 0.000*** 

Summary Statistics 

Number of obs: 1218 
F( 17, 1200)= 47.60 
Prob > F = 0.0000 
R-squared = 0.4028 

Number of obs: 1218 
F( 7, 1210)= 105.11 
Prob > F = 0.0000 
R-squared = 0.3781 

Note: * p <0.10, ** p<0.05, ***p<0.001 
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Table 12 OLS Models for Distances between First Secondary Incidents and Their Primary Incidents 
in the Same Direction 

Parameters 

OLS Models Distance (miles) 

Parameters 
Full Model Final Model 

Parameters 
Coefficient 
Estimates p-Value Coefficient 

Estimates p-Value 

Primary Incident Characteristics 

Incident type 
(base: others) 

Crash 0.7087 0.000*** 0.7213 0.000*** 

Incident type 
(base: others) 

Debris 0.6329 0.018** 0.5641 0.034** Incident type 
(base: others) Disablement 0.0818 0.585 0.0909 0.527 
Incident type 
(base: others) 

Vehicle Fire 3.2422 0.000*** 3.2564 0.000*** 

Incident duration (minutes) 0.0036 0.000*** 0.0037 0.000*** 
Number of vehicles involved -0.1913 0.522 
Lane blockage (%) 0.0038 0.009** 0.0036 0.011** 

Detection 
source 
(base: others) 

SSP 0.1546 0.424 Detection 
source 
(base: others) 

CCTV 0.3019 0.093* 
Detection 
source 
(base: others) Phone Call 0.2757 0.241 
Weather Condition 

Rain -0.0377 0.849 
Road Geometry 

Curvature present -0.4178 0.000*** 

Ramp present 0.0676 0.696 

Traffic Characteristics 

Peak 
(base: off-
peak) 

Weekday 
morning peak -0.1331 0.266 

Peak 
(base: off-
peak) 

Weekday 
afternoon 
peak 

-0.0607 0.674 
Peak 
(base: off-
peak) 

Weekend 
daytime 0.0206 0.893 

(AADT/1000) per lane 0.0407 0.000*** 0.0491 0.000*** 

Constant -0.2054 0.644 -0.4888 0.033** 

Summary Statistics 

Number of obs: 1218 
F( 17, 1200)= 11.31 
Prob > F = 0.0000 
R-squared = 0.1381 

Number of obs: 1218 
F( 7, 1210)= 24.07 
Prob > F = 0.0000 
R-squared = 0.1222 

Note: * p <0.10, **p<0.05, ***p<0.001 
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6.4 Limitations 

Possible contributing factors for length of time gap and distance are: temporal 

characteristics, environmental effects, geographic information, driver actions, incident 

characteristics, injury severity and operational factors. Hirunyanitiwattana (2006) found 

that rear end collision is the dominate incident type among secondary crashes, and 

accounts for about two thirds of all secondary crashes. Incident severity, driver factors, 

response variables are desirable in incident management perspective, unfortunately these 

variables currently are not available on the incident data being analyzed. 

6.5 Summary 

This analysis developed a unique database that takes advantage of more accurate geo-

location information to identify secondary incidents and analyze their spatial and 

temporal associations. Specifically, this analysis shows distributions of distances and 

time-gaps between primary and secondary incidents. On average, the distance is about 

1.2 miles and the time gap is 34 minutes. However, the distribution shows that many 

secondary incidents occur within a short time and distance of primary incidents. 

Comparative visualization of two bivariate histograms further showed that the time-gaps 

of tertiary (second secondary) incidents are more varied compared with the first 

secondary. 

Ordinary linear regression (OLS) models were estimated to investigate the 

relationship between time-gaps/distances and roadway/primary incident characteristics. 

Time-gaps were found to be positively associated with accidents, longer primary incident 

durations and heavier traffic. In terms of distance, crashes and fires are associated with 
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secondary incidents that occur at longer distances; and longer primary incident duration 

and lane blockage are related to larger distances between a primary and its secondary 

incident. Thus the study finds that distance and time vary systematically with 

characteristics of the primary incidents. 

From an incident management perspective, the results have certain implications. The 

time-gap and distance distributions provide a good sense of how soon and how far 

secondary incidents will occur after a prior incident. The models generate new knowledge 

of the factors associated with distance and time-gaps. This can help service patrol teams 

proactively prevent secondary incidents from occurring. The distance and time-gap 

analysis generates useful quantitative information for end of queue management. Based 

on statistical evidence from this study, secondary incidents seem to occur in or near the 

end of queue caused by prior incidents. The estimated distances represent the influence 

areas of the associated incidents. Such quantitative information can help to optimize the 

deployment location of new sensor and information dissemination technologies such as 

changeable message signs (CMS), which can effectively provide warnings to upstream 

traffic using flashers and signs, reducing the number of secondary incidents. In addition, 

information about secondary incidents can be disseminated to a broader audience via 

commercial radios, telephones, and televisions, so people can divert to alternate routes to 

avoid incident congestion. Overall, strong consideration should be given to 1) installation 

of end of queue management technologies in places where secondary incidents are more 

likely to occur, e.g. hotspot of primary-secondary incident events, and 2) the 

dissemination of specific secondary incident information (regarding distance and time 

from primary incident) to the public. 
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While the research method has been developed and applied in the Hampton Roads 

area, the research approach proposed in this study can be transferred to other regions, 

where similar comprehensive incident, traffic, and road geometry data are available. The 

prediction model can be calibrated based on local data. More broadly, the method can be 

extended to deal with more generic cases, e.g., when only the approximate location of 

incidents is known. The historical data on observed secondary incidents can provide 

quantitative information about the influence area of primary incidents. Future work can 

focus on the validation of secondary incidents and verification of statistical models. 
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CHAPTER 7 

ANALYSIS OF CASCADING INCIDENT EVENT DURATIONS 

Incident duration is a key performance measure for addressing incident-induced 

congestion problems and determining effectiveness of incident responses. It is defined as 

the elapsed time from the beginning of an incident (notification) until its clearance (when 

the last responder leaves the scene). Analysis of incident duration has drawn substantial 

research attention over past years. However, most existing duration analyses treat every 

incident as independent without consideration of associations between associated 

incidents such as primary and secondary incidents. A primary incident and its secondary 

incidents can be grouped into one event due to their spatial and temporal proximity. Such 

events have cascading impacts on traffic and are expected to have longer duration than a 

single independent incident. Though relatively rare, such cascading events are a major 

concern for transportation operations. Knowledge of the nature and characteristics of 

such cascading event is limited. It is also not clear how primary-secondary incident event 

characters and operational factors are associated with event durations. This analysis 

answers the following questions: How can the durations of cascading events be defined 

and analyzed? What factors are associated with such cascading events? What are the 

implications for incident management? 

7.1 Definition and Category of Event Durations 

The HRTOC incident database contains incident durations. Events consist of primary 

and its secondary incidents. Such cascading events are a major concern for transportation 

operations managers and therefore they are the focus on this analysis. After identifying 
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secondary incidents, a primary incident and its secondary incidents can be grouped into 

one event because of their spatial and temporal proximity. Event duration is defined as 

the time between the occurrence of a primary incident and clearance of all associated 

secondary incidents (Zhang & Khattak, 2010b). Two kinds of event duration patterns are 

possible: 

• Contained Event Duration: The contained event duration means that the durations 

of all secondary incidents are contained within primary incident duration, as 

shown in the Figure 17 (a). As a result, the entire event duration will be equal to 

the duration of primary incident. 

• Extended Event Duration: Extended duration means that the duration of one or 

more secondary incidents partially overlaps with primary incident duration but 

extends beyond the duration of primary incident as shown in Figure 17 (b). 

Event durations are calculated by first deriving the time gap by calculating the time 

difference between the start times of the primary and secondary incidents. The time to 

the end of a secondary incident is equal to the time gap plus the duration of the secondary 

incident. If the time to the end of the secondary incident is equal to or less than the 

duration of its primary incident, then this is a contained event, and its duration equals the 

primary-incident duration. Otherwise, it is an extended event, and its duration equals the 

time elapsed between the primary incident and the end of the secondary incident or 

incidents. 
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Figure 17 Illustrations of Contained (a) and Extended (b) Event Durations 

7.2 Event Duration Database 

To conduct statistical analysis on event durations, several steps were taken to convert 

the original vehicular incident records into the final event duration data format. Note that 

the original incident data are vehicle-based records, i.e. every vehicle, involved in an 

incident, has one record and those involved in the same incident have the same 

identification number. The steps are: 

1. Aggregate multiple vehicular records with the same incident identification 

number into one incident record. Every record has a unique identification 

number, and a new variable "number of vehicles involved" was created. 

2. Identify primary-secondary incidents based on incident records and link the 

primary and secondary incidents. 
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3. Extract primary and secondary incidents from the database and calculate the 

time gap between primary and secondary incidents. 

4. Aggregate incidents into events, with each row having total event duration, 

primary and secondary incident characteristics, and safety service patrol 

response information. 

The unique event database, created in this study, consists of the following columns: 

• Event Columns include event durations, and event type (Extended event = 1 or 

Contained event = 0). 

• Primary Incident Columns include the characteristics of the primary incident, 

such as incident identification number, occurrence date, day of the week, start 

time, incident type, lane blockage, the number of vehicles involved in the 

incident, segment code and response variables such as detection source, when 

safety patrol arrived on-scene, and other response agencies such fire department 

and police presence. 

• Time Gap Columns contain the amount of time between a primary incident and 

its first and second secondary incidents. 

• Secondary Incident Columns contain characteristics of the associated secondary 

incidents. 

• Weather Column contains weather conditions at time of incidents such as clear, 

rain, and snow. 

• Road Geometric Columns include the road segment information such as length, 

the number of lanes, if the segment is straight or curved, and ramp information. 

• Traffic Column includes AADT. 
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First, event duration summary and descriptive statistics are provided. To test 

significant differences between contained and extended event durations, a t-test is 

performed. Next, to identify correlates of contained and extended event durations, 

Ordinary Least Squares (OLS) regression models and truncated regression models are 

separately estimated for a comparative analysis. The OLS regression is selected due to its 

simplicity and intuitive interpretation of coefficients, while recognizing that event 

duration data are non-negative and the OLS sometime can give negative predictions. In 

addition, truncated regression accounts for event durations only being observable above a 

certain threshold and is conceptually more appropriate. In this case, marginal effects are 

needed to fully interpret the correlates. Separate models are estimated for 1) all event 

durations combined, 2) contained events only, and 3) extended events only. The 

explanatory or independent variables in these models include characteristics of primary 

and secondary incidents, road geometry, traffic information, and related incident response 

variables (incident detection source, and the time to arrival of safety service patrol at 

incident scene). A unique independent variable created in the database and used in the 

specification is the time gap between primary and its secondary incidents. It represents 

how soon the secondary incident occurs relative to the start of the primary incident. The 

detailed model specification is shown in Table 13. 

Note that some operational variables such as the presence of various response 

agencies may have an association with event durations but are not necessarily causal. 

These variables indirectly indicate the severity of an incident. The inclusion of these 

variables in a model is not appropriate, yet correlation analysis is used to measure the 
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strength and direction of their association. Statistical software package STATA was used 

to perform statistical analysis. 

Table 13 Model Specification Using Events Database 

Variable Name Description 

EventDur Event duration (minutes) 

PrilncType Primary incident type (Crash = 1, Otherwise = 0) 

PriLnBlk% Primary incident's percentage of lane blockage (0 to 100) 

PriNvehs Number of vehicles involved in primary incident 

SeclncType Secondary incident type (Crash = 1, Otherwise = 0) 

SecLnBlk% Secondary incident's percentage of lane blockage (0 to 100) 

SecNvehs Number of vehicles involved in secondary incident 

TimeGap The time difference from start of primary incident until secondary start 
(minutes) 

OnRamp On ramp presence (Yes = 1, Otherwise = 0) 

AADT/1000 Average annual daily traffic (per 1000 vehicles) 

FSPDet Service patrol vehicle detected incident (Yes = 1, Otherwise = 0) 

Time2Pri Response time for service patrol to primary incident (minutes) 

Time2Sec Response time for service patrol to secondary incident (minutes) 

£ Error term 

Mode! formula 

EventDur = /?„+/?, (PrilncType) + fi2 (PriLnBlk%)+ /?3 (PriNvehs) 

+ /?4 (SeclncType) + /?s(SecLnBlk%)+ (SecNvehs) 

+ /?7 (TimeGap) + /?8 (OnRamp) + /?9(AADT/1000) 

+ /?10  (FSPDet) + /?,, (Time2Pri) + fiX2 (Time2Sec) + e 
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7.4 Implications 

If contained and extended event durations are substantially different, then further 

exploration of the difference in associated factors will be valuable. The linear and 

truncated regression models can indicate how incident characteristics and response 

variables are associated with durations of contained or extended events. Exploration of 

correlations between event duration and presence of response agencies can illuminate 

how traffic operators respond to cascading incidents. This can in turn help set up 

measurable targets for preventing or mitigating the adverse effects of cascading events 

and provide insights into coordination of responses to these incidents and other 

operational improvements. 

7.5 Results 

7.5.1 Summary Statistics for Event Durations 

Table 14 presents the summary of event duration on major freeways in Hampton 

Roads. Independent incidents constitute a majority of the recorded incidents (97.4%), 

while one-pair events are 2.3% (frequency = 870) and large-scale events are 0.3% 

(frequency = 107). The average incident duration for single incidents is 14 min, but the 

duration for an event, including one-pair and large-scale events, are three and five times 

as long, respectively. These results suggest that single incidents and cascading events 

should be treated separately to understand (and minimize) the durations of cascading 

events. 
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Table 14 Summary Statistics for Various Incident Types 

Total Min 

(minute) 

Max 

(minute) 

Average 

(minute) 

Standard 

Deviation Count Percent 

Min 

(minute) 

Max 

(minute) 

Average 

(minute) 

Standard 

Deviation 

Independent 

incidents 
Single 36402s 97.4% 1 470 14.00 19.00 

Cascading 

Events 

Single-
pair 

870 
2.3% 
(89%) 

1.367 366 48.36 40.83 

Cascading 

Events 
Large-
scale 107" 

0.3% 
(11%) 7.65 416 76.71 35.14 

Cascading 

Events 

Total 977 
2.6% 

(100%) 
1.367 416 51.47 43.83 

Total 37379 100% 

a. Three outlier duration values were removed from the data (1247;1324;1377 minutes) 
b. Two extreme duration values were removed from the data (793; 4077 minutes) 

7.5.2 Comparison between Contained and Extended Event Durations 

The average durations for contained and extended events are shown in Figure 18 (a) 

and (b). The values shown are averages along with frequencies. The one-pair (i.e. 

primary-secondary incident pairs) contained and extended events break down about 

equally. The mean event duration for large-scale events (i.e. primary-multiple secondary 

incident events) is 1.5 times longer than the durations of primary-secondary pairs. The 

average duration of primary incident for contained events is on average longer than 

equivalent extended events; while the average duration of associated secondary incidents 

is usually shorter for the contained events compared with extended events (perhaps the 

duration of longer primary incident drives the fact that the secondary incidents are 

contained). 
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(a) 

m n 

(b) 

Figure 18 Summaries of Contained and Extended Events (a) One- Pair and (b) Large-Scale 

To estimate the difference between contained and extended event durations, a two-

sample t-test was performed. The one-pair contained event duration is statistically 
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significantly different from extended event durations (t = 2.93, p-value = 0.001), and on 

average 8 minutes longer. For large-scale event durations, both types of events last about 

76 minutes, on average, showing no statistically significant difference (t =-0.01, p-value 

= 0.98). 

7.5.3 Descriptive Statistics for Primary-Secondary Incident Pairs 

Table 15 presents the descriptive statistics for incident characteristics, roadway 

geometry, segment AADT, response variables (incident detection source and response 

times to primary and secondary incidents), and operational characteristics. The number of 

observations (observations), the mean value (mean), the standard deviation (SD), and 

minimum (min.) and maximum (max.) values are reported in the columns for all 

contained and extended events, respectively. If the primary incident is a crash (typically 

more severe), then the secondary incident has a higher chance of being contained in it 

(38.9% for contained events versus 21.2% for extended events). Furthermore, significant 

differences exist between contained and extended events when a primary-lane blockage 

occurs, a secondary incident is a crash, a secondary incident blocks lanes, more vehicles 

are involved in the secondary incident, and the time gap between primary and secondary 

incidents is longer. 

Table 15 also summarizes descriptive statistics for service response and operational 

variables. Service patrol vehicles detected about 83% of the incidents to which they 

responded. On average, service patrols were present at a primary incident site about 3 

min after detection of the incident. However, it took about 1 min, on average, to arrive at 

the secondary incident site after the detection, which indicated a prompt response. It 
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seems that, on average, the primary incidents for the contained events are more severe 

and it takes longer for service patrols to clear them. A fire department responded to about 

10% of primary incidents but 6% of secondary incidents in the database. The percentage 

of primary incidents in which police were present was about 30%, but the percentage of 

secondary incidents with police involvement was about 16%. Noticeable differences exist 

in fire department and police presence for contained and extended events. Fire 

department presence in primary incidents for a contained event was 8% more than for an 

extended event. Police response to primary incidents for contained events was 18% 

higher than extended events. However, the fire department and police response to 

secondary incidents shows otherwise. The fire department responded to about 6% more 

extended events, and the police were present in about 12% more extended events. Overall, 

the values seem reasonable, and there are no problematic outliers. 
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Table 15 Descriptive Statistics for Incident, Roadway, and Response Characteristic in 2005 

Variable Category Observations Mean Std. Dev Min. Max. 

Event duration (minutes) 
All 870 48.4 40.8 1.3 366.0 

Event duration (minutes) Contained 427 52.5 45.2 3 366.0 Event duration (minutes) 
Extended 443 44.4 35.6 1.3 259.1 

Primary is crash? 
All 870 0.299 0.458 0 1 

Primary is crash? Contained 427 0.389 0.488 0 1 Primary is crash? 
Extended 443 0.212 0.409 0 1 

Primary Lane blockage 
(%) 

All 870 7.222 17.669 0 100.0 Primary Lane blockage 
(%) Contained 427 9.758 21.2 0 100.0 

Primary Lane blockage 
(%) 

Extended 443 4.778 12.8 0 66.6 

Primary Vehicles 
involved (number) 

All 870 1.393 0.840 1 6 Primary Vehicles 
involved (number) Contained 427 1.541 0.998 1 6 
Primary Vehicles 

involved (number) 
Extended 443 1.250 0.622 1 5 

Secondary is crash? 
All 870 0.188 0.391 0 1 

Secondary is crash? Contained 427 0.140 0.348 0 1 Secondary is crash? 
Extended 443 0.235 0.424 0 1 

Secondary lane 
blockage (%) 

All 870 3.764 12.301 0 100.0 Secondary lane 
blockage (%) Contained 427 2.420 10.544 0 100.0 

Secondary lane 
blockage (%) 

Extended 443 5.060 13.672 0 100.0 

Secondary Vehicles 
involved (number) 

All 870 1.240 0.622 1 7 Secondary Vehicles 
involved (number) Contained 427 1.159 0.458 1 4 

Secondary Vehicles 
involved (number) 

Extended 443 1.318 0.740 1 7 

Time-gap (minutes) 
All 870 20.7 25.0 0.0 202.4 

Time-gap (minutes) Contained 427 23.0 28.5 0.0 202.4 Time-gap (minutes) 
Extended 443 18.4 20.8 0.0 164.0 

On ramp presence? 
All 870 0.871 0.335 0 1 

On ramp presence? Contained 427 0.867 0.340 0 1 On ramp presence? 
Extended 443 0.876 0.330 0 1 

AADT/(lane*1000) 
All 870 21.440 3.747 8.000 29.667 

AADT/(lane*1000) Contained 427 21.419 3.795 8.977 29.667 AADT/(lane*1000) 
Extended 443 21.460 3.705 8.000 29.667 

Service patrol detected? 
All 870 0.826 0.379 0 1 

Service patrol detected? Contained 427 0.808 0.394 0 1 Service patrol detected? 
Extended 443 0.844 0.363 0 1 

Response time for 
service patrol to primary 

(minutes) 

All 870 2.7 7.5 0.0 127.0 Response time for 
service patrol to primary 

(minutes) 
Contained 427 3.5 9.1 0.0 127.0 

Response time for 
service patrol to primary 

(minutes) Extended 443 2.0 5.5 0.0 62.9 
Response time for 
service patrol to 

secondary (minutes) 

All 870 1.1 3.5 0.0 36.6 Response time for 
service patrol to 

secondary (minutes) 
Contained 427 0.6 2.3 0.0 19.25 

Response time for 
service patrol to 

secondary (minutes) Extended 443 1.4 4.3 0.0 36.6 

Fire agency presence 
for primary? 

All 870 0.103 0.304 0 1 
Fire agency presence 

for primary? Contained 427 0.145 0.353 0 1 
Fire agency presence 

for primary? 
Extended 443 0.063 0.244 0 1 

Police presence for 
primary? 

All 870 0.292 0.455 0 1 
Police presence for 

primary? Contained 427 0.386 0.487 0 1 
Police presence for 

primary? 
Extended 443 0.201 0.401 0 1 

Fire agency presence 
for secondary? 

All 870 0.055 0.228 0 1 
Fire agency presence 

for secondary? Contained 427 0.023 0.151 0 1 
Fire agency presence 

for secondary? 
Extended 443 0.086 0.280 0 1 

Police presence for 
secondary? 

All 870 0.155 0.362 0 1 
Police presence for 

secondary? Contained 427 0.094 0.292 0 1 
Police presence for 

secondary? 
Extended 443 0.214 0.411 0 1 



7.5.4 Correlations between Event Durations and Operational Responses 

Operational responses by the fire department or police presence at an incident site 

may be associated with longer incident durations, but clearly do not cause longer duration 

events. The presence of fire department and police reflect a more severe event. 

Correlation coefficients between event durations and operational characteristics are 

reported in Table 16. Specifically, the correlations coefficients, which can range from -1 

to +1, indicate that the presence of fire department and police at primary and secondary 

incidents are correlated positively with longer duration events (although their magnitudes 

are not high). The presence of fire department and police in the primary incident are more 

closely associated with longer event durations, perhaps reflecting that they may be tied up 

with primary incidents than with secondary incidents in contained events. Further, 

regression analysis between total event duration and response variables showed that if the 

fire department is present at the scene of the primary incident, then the incident lasts an 

additional 16.8 minutes, and an additional 9.2 minutes (not statistically significant, 5% 

level) if the fire department is present at the scene of the secondary incidents. The police 

variable is also correlated. Regression analysis showed that presence of the state police 

onsite of the primary incident is associated with 22.2 minutes longer event durations, and 

if they are onsite for the secondary incident, then the event duration is 13 minutes longer. 

For a contained event, if fire department and police are present in at the primary incident 

site, both are statistically significant indication of a longer event. However, their presence 

on secondary incident sites shows no statistically significant association with event 

durations. The correlations indicate that for extended events, both incidents play a role 

and secondary incidents seem to attract more response resources than the contained ones. 
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Table 16 Correlations between Event Duration and Operational Response Characteristics 

Operational Variables 

Event Duration (minutes) 

Operational Variables All Events 
Contained 

Events 
Extended 

Events Operational Variables 

Corr. 
OLS 
Coef. 

Corr. 
OLS 
Coef. 

Corr. OLS 
Coef. 

Fire agency present for primary? 0.255 16.8** 0.225 18.0* 0.281 15.7** 

Police present for primary? 0.333 22.2** 0.255 17.7* 0.420 27.5** 

Fire agency present for 
secondary? 

0.144 9.2 0.056 0.1 0.252 9.2 

Police present for secondary? 0.200 13.0** 0.087 1.3 0.355 21.3** 

Constant 37.6** 42.9** 32.5** 

Summary Statistics for OLS Regression Model 

Number of Observations 870 427 443 

Test statistic 
F(4,865) 
=36.62 

F(4,422) 
=9.29 

F(4,438) 
=39.48 

Prob. > F 0.0000 0.0000 0.0000 

R2 0.145 0.081 0.265 

Note: * P-value <0.10; **P-value <0.05. Corr. represents correlation. The coefficients of OLS 
regression model are event duration changes for discrete change of dummy variable from 0 to 1. 

7.5.5 Regression Analysis 

Figure 19 (a) shows the frequency distribution of all event durations, and Figure 19 (b) 

shows all incident durations for primary and secondary incident pairs (large-scale events 

involving two or more secondary incidents are not included). The two histograms show 

somewhat different distributions. Figure 19 (a) indicates a positive skew. The mean and 

standard deviation for the distribution is 48.4 and 40.8 minutes, respectively. Figure 19 (b) 

shows a lognormal or log-logistic distribution, with many incidents having small 

durations. The mean is 28.6 minutes and the standard deviation is 33.2 minutes. 



76 

(a) (b) 

Figure 19 Duration Hbtograms for (a) Event Durations (N=870), and (b) Incident Durations of 
Primary and Secondary Pairs (N=1740) 

Three linear and truncated regression models (including their marginal effects) for 

event duration are reported in Table 17. Note that these models are for primary and 

secondary pairs, and do not include large-scale events. All models are statistically 

• j  

significant and the R for linear regression and a roughly estimated equivalent R value 

for truncated regression are reasonable. Note that truncated regression does not provide 

*} "J 
R and instead an equivalent R is estimated by first correlating and then squaring 

observed and predicted values. Both models show consistent and similar results. In the 

total model, the statistically significant and positive correlates of event duration include 

primary incident being a crash, the secondary incident is a crash, there are multiple 

vehicles involved in secondary incident, the time gap between the primary and secondary 

incidents is longer, and the response times for primary and secondary incidents are longer. 

The marginal effects of the truncated regression model are generally larger than the 

equivalent OLS model. For example, if the primary incident is a crash, then the event 

duration is 6.6 minutes longer according to the OLS model, but it is 11.5 minutes longer 

according to the truncated regression model. 
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The significant variables (5% level) in the contained and extended duration models 

are quite different. In the contained event duration model, the statistically significant 

variables are if the primary incident is a crash, time gap variables, and response times for 

primary and secondary incidents. The coefficients of significant variables in the 

contained event duration model generally have larger magnitudes than the equivalent 

total model. Longer time gaps between primary and secondary incidents are associated 

with longer event durations. Generally, the characteristics of primary incidents are 

dominant in the contained event duration model. For extended events, significant 

associations are observed when the secondary incident is a crash, the number of vehicles 

involved in secondary incidents, and time-gap; interestingly, secondary incident 

characteristics have larger magnitudes than primary incident characteristics. For example, 

if the secondary incident is a crash, then the event duration is lengthened by 14 minutes 

(according to the OLS model) or 19 minutes (according to the marginal effects in the 

truncated regression model). If one additional vehicle is involved in an incident, this 

would be associated with about 5 minute longer event durations in the extended event 

model (this variable is not statistically significant in the contained event model). 



Table 17 Event Duration Regression Models Using 2005 Hampton Roads Incident and Road Inventory Data 

Independent 
Variables 

Total Models Contained Event Models Extended Event Models 

Independent 
Variables 

OLS Truncated OLS Truncated OLS Truncated Independent 
Variables 

Coef. P-value Coef. P-value Marg. 
Effect Coef. P-value Coef. P-value Marg. 

Effect Coef. P-value Coef. P-value Marg. 
Effect 

Primary Is crash? 6.625 0.018** 11.443 0.001** 9.976 7.999 0.024** 14.667 0.001** 13.153 3.429 0.431 6.687 0.267 5.734 

Primary lane 
blockage (%) 0.057 0.333 0.075 0.450 0.065 0.105 0.148 0.152 0.205 0.135 -0.093 0.408 -0.199 0.157 -0.168 

# of vehicles 
involved in primary -1.461 0.279 -1.393 0.403 -1.195 -2.063 0.210 -2.087 0.270 -1.857 -0.183 0.945 -0.127 0.972 -0.107 

Secondary is crash? 9.134 0.005** 14.346 0.010** 12.687 3.204 0.593 4.055 0.672 3.640 14.483 0.000** 21.852 0.002** 19.215 
Secondary lane 
blockage (%) 0.083 0.304 0.078 0.524 0.067 -0.002 0.986 -0.057 0.678 -0.051 0.137 0.169 0.174 0.279 0.147 

# of vehicles involved 
in secondary 4.626 0.023** 6.169 0.029** 5.292 5.050 0.278 7.452 0.266 6.630 4.919 0.027** 6.246 0.038** 5.269 

Time-gap (minutes) 1.150 0.000** 1.370 0.000** 1.175 1.211 0.000** 1.399 0.000** 1.244 1.030 0.000** 1.299 0.000** 1.096 

On ramp presence? 0.312 0.907 0.220 0.956 0.189 2.677 0.494 3.986 0.520 3.512 -2.550 0.487 -4.004 0.403 -3.422 

AADT/(lane*1000) 0.260 0.282 0.495 0.259 0.424 0.212 0.547 0.275 0.642 0.245 0.250 0.448 0.571 0.378 0.482 
Service patrol 
detected? 

-1.068 0.689 -2.441 0.625 -2.107 -3.312 0.393 -4.681 0.440 -4.200 1.616 0.663 1.713 0.929 0.601 

Response time for 
service patrol to 
primary (minutes) 

0.394 0.002** 0.574 0.009** 0.492 0.361 0.023** 0.526 0.066* 0.468 0.508 0.035" 0.704 0.007** 0.594 

Response time for 
service patrol to 
secondary (minutes) 

0.546 0.035** 0.824 0.008** 0.706 1.341 0.019** 1.852 0.060** 1.648 0.392 0.164 0.645 0.035** 0.544 

Constant 9.979 0.149 -17.085 0.155 11.034 0.293 -13.391 0.428 8.759 0.369 -18.758 0.295 

Summary Statistics 
Number of 
observations 870 427 443 

Test statistic F(12,857) =105.05 Wald Chi2(12) = 326.77 F(12,414) =64.07 Wald chi2(12)=264.32 F(9,500)=40.45 Wald chi2(12)=191.03 
Prob. > F / Waldchi* 0.000 0.000 0.000 0.0000 0.0000 0.0000 
Rz / Equivalent R2 0.595 0.562 0.650 0.553 0.530 0.532 
Note: * p<0.10; ** p<0.05 
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Longer response times are generally associated with longer event durations, as 

expected. Interestingly, longer response times to secondary incidents have relatively 

larger coefficients in the total model and the contained event model. This implies that 

response times are more critical in such situations. 

Overall, primary incident characteristics are dominant in contained incident events. 

They usually have long durations and involve more severe situations, requiring more 

response resources. The contained secondary incidents are less severe, on average. For 

extended events, both primary incident and secondary incident characteristics play a 

substantial role. The duration of primary incident is relatively shorter and the secondary 

incidents are longer and more severe, requiring substantial resources from response 

agencies. 

7.6 Limitations 

A limitation of the study is the model specification; some of the excluded variables 

can have a strong association. The number of personal injuries and the number of 

vehicles responding from each agency could be important factors in event duration, but 

were not available in the database obtained. Furthermore, accurate physical location for 

each incident was not available in 2005 dataset, so the distance between primary and 

secondary incident was unknown and therefore spatial effects could not be fully 

investigated. Future research can focus on validation of the secondary incidents, and 

estimation of alternative event duration models, e.g., hazard-based models and examining 

the traffic impacts of contained and extended events. 
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7.7 Summary 

The analysis contributes by analyzing cascading event durations. A unique event 

database is created, based on incident and road inventory data. One pair events (one 

primary and one secondary incident) and large-scale events (one primary and multiple 

secondary incidents) are identified and analyzed. Incident events are categorized as either 

contained or extended, and rigorous statistical methods are applied to explore 

associations with incident characteristics and response variables. The major findings are 

summarized as follows: 

• The average incident duration for single incidents in Hampton Roads is 14 minutes 

but the duration for an event including one-pair and large-scale events, are three 

and five times longer, respectively. 

• Contained and extended events show different characteristics and operational 

response patterns. For instance, one-pair contained events are on average 8 minutes 

longer than extended events. For large-scale event durations, both types of events 

last about 76 minutes in Hampton Roads, on average. 

• Factors associated with longer cascading event durations include the primary 

incident being a crash, secondary incident being a crash and multiple vehicles 

involved in secondary incidents, and longer time gap between the primary and 

secondary incidents. In addition, longer event durations were associated with 

longer service patrol response times. While police and fire presence was associated 

with longer event durations, they would not be necessarily adding time because 

these incidents were likely more severe. 
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• Primary incident characteristics are dominant in contained events, while secondary 

incident characteristics play a substantial role in extended events, requiring 

substantial resources from response agencies. 

The new findings have implications for incident management. Efforts must continue 

to minimize the occurrence and severity of cascading events. First, new event-based 

performance measures can be used by incident management agencies for planning 

purposes. The information provided in this paper can help traffic operations agencies 

identify problematic road segments, where such events occur, and develop realistic 

targets, e.g., to reduce not only incident durations but also event durations by a certain 

percentage over a period of time. Second, in the context of tighter transportation budgets 

and reduced levels of service patrols, the findings suggest that locations where cascading 

events occur should be spared from cutting service, and if possible more service response 

resources should be considered in such locations. Operationally, when severe secondary 

incidents occur, more response resources should be quickly devoted to the secondary 

incident site. Third, quick clearance can reduce the potential for incidents from cascading. 

For example, if detailed investigation of a minor accident can result in significant 

congestion and potentially a more serious secondary incident, then police and traffic 

operations should coordinate efforts to quickly clear the accident. Finally, further research 

is needed into preventing large-scale cascading events, e.g., by implementing quick 

clearance procedures, disseminating dynamic and detailed information about primary and 

secondary incidents to upstream travelers through a variety of sources, and close 

coordination between responding agencies. 
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CHAPTER 8 

EVALUATING QUEUING DELAYS ASSOCIATED WITH 

SECONDARY INCIDENTS 

Incidents cause substantial travel delays on urban freeways. To evaluate the 

effectiveness of potential incident management strategies and predict incident-induced 

traffic impact, travel delays are typically calculated for incidents by using deterministic 

queuing, shock wave analysis or simulation tools. Most existing methods treat every 

incident independently and use average incident durations for each type to estimate 

incident delay. However, not all incidents are independent as one incident can cause 

secondary incidents due to its queue backup. The total delays of primary and secondary 

incidents interacting in time and space would be different than a simple aggregation of 

delays caused by two isolated incidents. Available models to estimate traffic delays for 

primary-secondary incidents pairs may not be used directly since they cannot capture the 

interactions associated with these multiple incidents (Zhang et al., 2011). This analysis 

examines the total delays induced by primary-secondary incident pairs by jointly 

modeling their occurrences. The following research questions are addressed: What are the 

critical attributes of primary-secondary incident pairs? What are the differences in delays 

when primary and secondary incidents are analyzed separately versus jointly? What 

factors are associated with longer delays resulting from primary and secondary incidents, 

e.g., longer time gaps, longer distance between the primary and secondary incidents, the 

lane blocked by a secondary incident, demand levels? What are the implications for 

mitigating congestion induced by multiple associated incidents? 
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8.1 Critical Factors Affecting Total Delays 

To quantify vehicle delays caused by an incident, several key input parameters are 

needed. These include incident duration (the time period from the occurrence of the event 

to the clearance of the incident), traffic demand (arrival rates), and normal and reduced 

capacities. On the other hand, to quantify the total delays of both secondary and primary 

incidents and to model them jointly, two additional key parameters need to be considered: 

Time gap and distance between the two incidents. These are important because queuing 

delays depend on where (along the road) and when capacity and demand changes. Clearly, 

for an incident to be considered as secondary, it needs to be related to/caused by the 

primary incident. Therefore, for incidents occurring in the same direction of the highway, 

the distance between the two incidents should be within the extent of the (spatial) queue 

length of the primary incident. In terms of the time gap between the occurrence and 

clearance times of the two incidents, there are two main cases to be considered. Time gap 

is defined as the period between primary and secondary incident occurrences, which 

represents how soon the secondary incident happens after its primary incident. 

Adopting the definitions of contained and extended events illustrated in Figure 17, 

any primary-secondary incident pair can be categorized into one of these two types of 

events. For a contained event, the secondary incident is cleared before the primary 

incident ends. Its duration is contained entirely within the duration of the primary 

incident. For an extended event, the secondary incident is cleared after the primary 

incident ends. Therefore, the total event duration is extended beyond the duration of the 

primary incident. In addition, it is possible that the secondary incident can even occur 
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after the primary incident ends since the queue of the primary incident dissipates after a 

certain time period beyond the primary incident is cleared. 

8.2 Kinematic Wave Interoperation 

To gain a theoretical understanding of the impacts of time gap and distance between 

primary and secondary incidents on total delays, the shock wave analysis is employed to 

demonstrate how a primary-secondary incidents pair influences traffic flow on a basic 

freeway section shown in Figures 20-21. To illustrate the main points, several 

assumptions are made to simplify the presentation. For example, arrival and departure 

rates are assumed to be constant over certain time periods, and incident-reduced 

capacities for both incidents are the same. 

Another important assumption is conservation law. It simply states that vehicles 

cannot be created or lost in a highway without entering and exiting traffic. For stationary 

traffic with smooth flow q and density k, based on conservation law, to ensure that the 

rates of variation of flow and density in space x and time t are consist with the no 

entering/leaving traffic hypothesis, the conversation equation can be formulated as below 

(Daganzo, 1997): 

dq(t,x) dk(t,x) 
dx dt 

Based on the conversation law, the velocity of an interface separating two (t, x)-regions 

with different stationary traffic states can be further developed in the shock wave analysis. 

A triangular relationship between flow and density and several traffic states are 

shown in Figure 20. Letters correspond to different traffic states. Given a primary 

incident having occurred in the right lane, its secondary incident occurs within or in the 
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end of primary incident queue and blocked the same lane as its primary incident. This 

scenario is illustrated for a three-lane freeway section. 

The corresponding time-space diagram is shown in Figure 21 according to the flow-

density relation and traffic states defined in Figure 20. The continuous light lines are 

waves and the dark continuous lines represent the interfaces between the traffic states 

which vehicles pass through. The numbers represent the vertexes and are used to mark 

the area for delay calculation. Ds denotes the distance between the primary and 

secondary incidents. Tg is called time-gap. It is the time difference between start times of 

a primary incident and its secondary incident. Primary incident starts at Tis. After the 

primary incident have lasted Tg, the secondary incident occurs at T^ and ends at If 

this primary-secondary pair is a contained event (i.e. T2e <= Tie), the primary incident 

will be the active bottleneck during the event, the secondary incident does not cause any 

extra delays. When a secondary incident lasts longer (i.e. T2e > Tie), the event becomes an 

extended case and its overall impact gets complicated. At the very beginning of the 

extended event (i.e.T2e <= T^), similar to the contained event, the secondary incident just 

keeps the same speed of queuing propagation induced by primary incident and does not 

cause any additional delay. When T2e > T2„ the secondary incident starts to cause 

additional congestion, so the total delay induced by this extended event is greater than the 

total delay of the primary incident. The magnitude of the extra delay depends on the 

length ofT2e-T2i and on the distance between two incidents. 

Based on Figure 20 and 21, for traffic states A and B, the interface velocity Uab is 

given by: 
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uM = 
9B -1A 
kB ~kA 

(6) 

Where qA,qB represent the flows and kA,kB are the densities for the states A and B 

respectively. 

The total travel time for any homogeneous time-space region in Figure 21 can be 

found by multiplying its area by its density. The total delays caused by the incidents over 

the time-space region upstream of the incidents can be determined as follows: 

TotalDelays = Area of12568x(kB -kA)+Area of 2345 x{kc  -kA) 

+ Area of 678x (kc  -kA)+ Area of 4567 x {kc l  -kA ) 

Where kA,kB,kc  and kCA are the densities for each traffic states. 

Let Ts  =Tg + D2, where D2 is the duration of secondary incident; and 

(7) 

a 
w 

W~UAB 
, where w is the wave velocity shown in Figure 20. 

Di denotes the primary incident duration. Ds denotes the distance between primary-

secondary incidents. 

After expressing the areas of each homogeneous segment in terms of the known 

quantities, and substitutingT5,a ,kA,kB,kc and kCA into equation (7), the following 

expression is obtained: 

TotalDela$Ts ,D,) = 
w x (a — l) x {kB -kA) t  ((a-1)cavUAB + (a - 2)mw+ vw)x(kc  -KA) 

2v 
xr; 

a: : ( fc„ KA) I ~2a)at/̂ H' + (3~2a)avw+2{a-l)vw-(a-l>v2)x(k ( :-KA) , ^ ^ 

D, x(j, _ta) 
2 vw 

2 wv 

xD. 

xT,Ds 

(a + l)x(kB-kA) |  (-a1UAB+2av-a2v-w+aw + v)x.{kA-kc) (kA-kc l) 
2w 2vw w 

xZ). 

(8) 



Oe° 

laAtre 
X\** 

&Sr 



88 

Given a demand level qA, free flow speed, normal and reduced capacities, jam 

density, and the durations for primary and secondary incidents, time-gap and distance are 

two variables affecting the total delay in the equation (8). Considering the complexity of 

this second-order equation, the total delays can be evaluated by varying these two 

variables. For demonstration purposes, a three-lane freeway facility with a free-flow 

speed of 60 mph is selected. Both primary and secondary incidents last half an hour and 

block the right lane. The remaining capacity is assumed to be 49% of the total capacity, 

which is adopted from HCM 2000. The capacity and jam density are obtained from 

microscopic simulator PARAMICS, which is used to conduct further analysis analyses. 

The time-gap will be constrained within one to thirty minutes while the distance will be 

confined in the range from 165 feet to 5280 feet. With these input parameters, equation (8) 

is implemented in Matlab software to calculate total delays. The variation of total delay 

over time-gap and distance is plotted in Figure 22. The constant horizontal plane 

represents the simple sum of total delays of the primary and secondary incidents. 

•13201980284° 
Time Gap (minutes) Distance (feet) 

Figure 22 Total Delays as a Function of Time Gap and Distance 



89 

As it can be observed in Figure 22, the total delay increases with increasing time gap 

and decreasing distance between the primary-secondary incidents. Depending on the 

values of these two factors (i.e., time gap and distance), the total delay is either higher or 

lower than the simple sum of delays of two independent incidents that have the same 

characteristics. As explained above, this sum is indicated by the horizontal mesh that is 

parallel to the time gap - distance plane in Figure 22. 

To summarize, if the primary and secondary incidents are treated and analyzed 

independently, then the total delay contributed by these two incidents will be the simple 

summation of the delays calculated for primary and secondary incidents separately. This 

simple aggregation cannot capture the spatial and temporal interactive effects caused by 

primary and secondary incidents and result in overestimation or underestimation as 

illustrated in Figure 22. Thus, it can be concluded that time gap and distance between two 

associated incidents play a critical role in accurately estimating total delays of primary 

and secondary incidents. This is further demonstrated in microscopic simulations 

conducted in this study. The main objectives of this study are: 

a) To evaluate how total incident delay is impacted by the relative time and distance 

between the primary and secondary incidents. 

b) To analyze the extent to which the delays would be over or under estimated if 

primary and secondary incidents are modeled independently (i.e., without 

considering the interactions of their queues in time and space). 

To answer these research questions, a systematic approach is taken to model the 

scenarios that will likely be encountered in the real world as explained in the following 

section. 
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8J Methodology 

In order to evaluate how different factors contribute to the total delays caused by 

secondary incidents, a number of scenarios need to be developed. First, based on 

historical incident data, primary-secondary incidents are identified, and their 

characteristics are investigated. Based on the summary statistics of primary and 

secondary incidents, various scenarios are designed and tested in a microscopic 

simulation environment. After considering several popular simulation tools and their 

capabilities of modeling incidents, PARAMICS (2009) was selected for this study. 

PARAMICS is a widely used microscopic simulation tool, which provides a 

comprehensive incident module. An incident can be created by specifying where it occurs 

on the link, when it starts and ends, how many lanes are blocked and the average passing 

speed of vehicles passing by the incident site, etc. 

8.3.1 Analysis of Historical Incident Data 

To get an understanding of how time gap varies and of the durations of primary and 

secondary incidents in the real world, the 2005 incident database of Hampton Roads (HR) 

in Virginia is analyzed. The database was obtained from the HR Traffic Operations 

Center and the incidents were geo-referenced. Secondary incidents were identified as 

those occurring in the same direction as the primary incident and within the duration of 

the primary incident by using the queue based method (Zhang & Khattak, 2010a). 

Summary statistics for primary incident duration, secondary incident duration, and the 

time gap between them are provided in Table 18. Based on these results, the number of 

extended incidents is slightly larger (245) than contained incidents (213). The durations 
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of both primary and secondary incidents are similar (about 27 minutes) for the extended 

case, whereas the durations of secondary incidents for the contained case are very short 

(8.7 minutes, on average). The average time gap for contained incidents is slightly longer 

(22 minutes) than extended incidents (18 minutes). 

For contained events, the percentage and the mean for lanes blocked by primary 

incidents are about 20% (=42/213) and 1.48, respectively. Furthermore, the secondary 

incidents show that in 5% of the cases there is lane blockage (11/213); the mean number 

of lanes blocked in these cases is 1.18. Clearly, the contained secondary incidents are not 

very severe. On the other hand, for extended events, 12% of (29/245) primary incident 

cases show lane blockage with a mean of 1.10. The equivalent for extended secondary 

incident cases is 14% (34/245) with 1.20 lanes blocked, on average. Clearly, for 

contained events, more lane blockage severity and frequency are observed for primary 

incidents and less for the secondary incidents. However, nearly equal lane blockage 

severity and frequency of primary incident and secondary incident are observed for 

extended events. These results were used to guide simulation scenarios. 
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Table 18 Primary-Secondary Incident Pair Attributes for 3-Lane Freeway Segments 

in Hampton Roads During 2005 

Variables Observations Mean Standard 
Deviation Min Max 

Contained Incidents 

Primary incident duration(minutes) 213 50.61 42.32 4 244 

Time gap (minutes) 213 22.05 27.21 0.15 167.82 

Secondary incident duration 
(minutes) 213 8.72 11.90 1 70 

Lanes blocked by primary 42 1.48 0.71 1 3 

Lanes blocked by secondary 11 1.18 0.60 1 3 

Extended Incidents 

Primary incident duration (minutes) 245 27.00 22.89 1 118 

Time gap (minutes) 245 17.84 19.00 0.017 87.52 

Secondary incidentduration (minutes) 245 26.63 26.54 1 175 

Lanes blocked by primary 29 1.10 0.31 1 3 

Lanes blocked by secondary 34 1.20 0.47 1 3 

8.3.1 Simulation Network 

A 6-mile section of a three-lane freeway with 60 mph free flow speed was created in 

PARAMICS as the experimental network. Only one direction traffic flowed on this 

facility with a single mainline entrance and exit. Most of the default parameters within 

PARAMICS were kept the same except all vehicles were set to be passenger cars. 

8.3.2 Capacity Reduction Due to an Incident 

To estimate incident-induced total delays the capacity of the bottleneck created due to 

the incident needed to be determined. In all the scenarios considered in this paper it was 

assumed that only one lane is blocked. According to Exhibit 22-6 in HCM 2000, when 

one lane in a three-lane facility is blocked, the reduced capacity is only 49% of the 
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original roadway capacity. An even higher reduction was reported based on Hampton 

Roads traffic data (Smith at al., 2003). The incident reduced capacity and normal capacity 

cannot be directly defined in microscopic simulators. By measuring traffic throughput 

from several traffic counters as capacity, Hadi et al. (2007) simulated reduced capacities 

in several micro-simulators and found that, by using default parameter settings, they are 

lower than the reduction factors reported in the HCM 2000 for a one-lane-blocking 

incident on a three-lane freeway segment. Therefore, for this study, it was necessary to 

calibrate the models to match the specified capacities in HCM 2000. Since PARAMICS 

parameter "passing speed" near incident site is related to the remaining capacity, a 

sensitivity test was conducted to examine the relationship between reduced capacities 

versus a set of passing speeds. 

To obtain a reasonable capacity value, the passing speed was adjusted iteratively to 

keep the reduced capacity in line with the value suggested in HCM 2000. Various tests of 

passing speed near an incident site versus reduced capacities were performed in 

PARAMICS. Ten random seeds were selected to run the simulations under a high 

constant demand: 5000 vehicles per hour. The simulated incident with one-hour duration 

blocked the right lane in a three-lane basic freeway section. Three detectors were located 

downstream, nearby this incident site to measure the pass-through traffic as the reduced 

capacity. The relationship in Figure 23 is the best estimate of how the capacity depends 

on the passing speeds. Each point represents the average capacities from the ten random 

seeds. The error bar corresponds to one standard deviation. The average capacities show 

upward trends with increasing passing speeds. The capacity increases dramatically when 

the passing speed is increased in the low end (i.e. 10,15,20 mph) and then it increases 
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with a decreasing rate as passing speeds become larger (i.e. 25,30 mph). When passing 

speed is 15 mph, the reduced capacity is closest to the 49% remaining capacity. After 

selecting an appropriate passing speed, two sets of simulations will be conducted for 

contained and extended cases. 
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Figure 23 Incident Remaining Capacity vs. Passing Speed 

After selecting an appropriate passing speed that closely matched HCM2000 capacity 

reduction, two sets of simulations were conducted for contained and extended cases. 

8.3.3 Design of Scenarios 

To assess the impacts of primary-secondary incidents in simulation, numerous 

scenarios were designed to represent the incident blockage and traffic demand 
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fluctuations. The scenarios were partly based on analysis of real-life incidents in 

Hampton Roads (presented in Table 18). To allow traffic to be restored to normal flow 

after primary-secondary incidents, all the simulations were run for 3 hours. The scenarios 

were designed to consider all combinations of the variables: demand, time gap, and 

spatial distance. The basic assumption of secondary incident occurrence is that the 

physical location of the secondary incident is always inside or near the end of queue of 

the primary incident. To capture the spatial queuing extension caused by primary incident, 

the primary incident was simulated first and maximum queue length was obtained by post 

processing. The secondary incidents simulated here were located within or near the end 

of the queues caused by the primary incidents. Note that the queue length depends on 

simulation random seeds, traffic demand level and lane-blockage severity. In some cases, 

for a small time gap, the queue induced by primary incident may not reach far enough to 

the designated location of secondary incident when secondary occurs. 

The scenarios analyzed here are grouped by whether the secondary incident is 

contained within the primary or it extends beyond the duration of the primary, as 

illustrated in Figure 17. In addition, two levels of demand are considered: a moderate 

demand of 4,000 vehicles per hour and a high demand of 5,000 vehicles per hour. 

Common parameters in all incident scenarios included: 

• The primary incident always occurs 30 minutes after the simulation starts 

• Both primary and secondary incidents block only one lane, but secondary incident 

blocks the right lane or middle lane. 

The details of simulation scenarios are presented in Table 19. The incident durations 

and time gaps were selected to be close to the values reported in Table 16. For the 



distance between the two incidents, eight values were considered: 660 feet (-1/8 

miles),1320 feet (~l/4 miles), 1980 feet (~3/8 miles), 2640 feet (~l/2 miles), 3300 feet 

(~l/2 miles), 3960 feet (~6/8 miles), 4620 feet (~7/8 miles), and 5280 feet (~1 miles). 

Similarly, time gaps were increased from 5 to 30 minutes at 5 minutes incremental 

interval. 

Based on the parameter combinations in Table 19, a total of 192 simulation scenarios 

were designed. Each simulation case was run ten times with different speeds, so the total 

number of simulation runs was 1,920. The results were averaged to account for random 

variations in simulations. After simulating with and without incident conditions, the 

incident-induced total delay is calculated by differencing travel times observed in two 

cases (with and without incidents) for all vehicles that traveled during the simulation. 

Table 19 Scenarios for both Contained and Extended Incidents and Their Parameters 

Incident Durations (in minute) Incident Locations Correlations 

Demand 
(veh/hour) Event Type Primary Secondary Primary Secondary Time Gap 

(minutes) 
Distance 

(feet) 

4000 or 
5000 

Contained 45 15 

Right 
Lane 

Right 
Lane 

5,10,15, 
20, 25,30 

660 
1320 
1980 
2640 4000 or 

5000 

Extended 30 30 

Right 
Lane 

Right 
Lane 

5,10,15, 
20, 25,30 3300 

3960 
4620 
5280 

8.4 Simulation Results 

The analysis of the total delays for primary-secondary incident pairs based on the 

micro-simulation results is discussed in the next two subsections. For contained and 



extended events, two tables (Table 20 and 21) with the same structure are presented based 

on two-levels of demands. The "Correlation Parameters" column in the table lists the 

time gaps and distances between primary and secondary incidents. The "Total Vehicles 

Delay" column presents the delay results derived from two methods. The "Sum of two 

Incidents" column has only two aggregated values when two incidents are analyzed as 

independent events, regardless of their correlations. Their values are equal to the 

summation of the total delays of primary and secondary incidents derived from two 

separate simulations under two demand levels. The "Joint Analysis" column presents the 

simulation results when primary and secondary incidents are modeled concurrently in the 

same simulation run to capture the interactions of primary-secondary incidents. The two 

sub-columns list the results under two different demand levels. The last column contains 

the percentage change of joint analysis results compared with the result in the "Sum of 

two Incidents" column. In addition, the simulations results for each case are displayed in 

two 3D plots (Figures 24-25). The results are discussed below. 

8.4.1 Analysis of Total Delay for Contained Primary-Secondary Incident Pairs 

For contained events, the simulated total delays under two demand levels are 

presented in Table 20. Figure 24 displays the total delays over time-gaps and distances in 

3D plots. Based on these presentations, it is evident that the total delay increases 

substantially (up to five times) as the demand increases from 4000 vph to 5000 vph. So 

the demand level is a critical contributor to the total delay. 

In comparing results from two methods (i.e. sum of two separate incidents versus the 

joint analysis), total delays do not change substantially as time-gap and distance vary in 



the defined range because the secondary incident is contained within its primary incident. 

In other words, the primary incident governs the bottleneck. In term of the percentage 

change, the simulated total delay is less than the simple summed delay about -19% to -

5%. The magnitude is comparable to percentages of secondary incident in total delay 13% 

(i.e. 37/284) for moderate demand and 14% (189/1343) for high demand. The variations 

are similar to the level of the random variation within simulations. The results imply that 

the secondary incident in a contained case does not induce additional delays. So, their 

delays should not be counted in determining the overall delays. Therefore, the traditional 

method (i.e. simple summation of the delays of two separate incidents) over-estimates the 

actual delay induced by a contained case. 

Table 20 Simulation Results for Contained Primary-Secondary Incident Pairs 
(Ten Random Seed with Incident Passing Speed IS Mph) 

Correlations Total Vehicle Delay (veh-hr) Comparison of Total Delays 

Parameters 
Sum of two 
Incidents 

Joint Analysis (%) Difference 
(with the sum of two incidents) 

Time 
Gap 

(minute) 

Distance 
(feet) 

Primary 
(45 minutes) 
Secondary 

(15 minutes) 

Moderate 
Demand 

(4000veh/hr) 

High 
Demand 

(5000 veh/hr) 

Moderate 
Demand 

(4000 veh/hr) 

High 
Demand 

(5000 veh/hr) 

660 230 1109 -19.1 -17.4 
1320 250 1239 -12.0 -07.8 
1980 256 1159 -09.9 -13.7 

5 
2640 240 1134 -15.5 -15.6 

5 3300 235 1097 -17.3 -18.3 
3960 239 1111 -15.9 -17.3 
4260 249 1178 -12.3 -12.3 
5280 249 1122 -12.3 -12.3 

660 237 1169 -16.6 -13.0 
1320 253 1136 -10.9 -15.4 
1980 248 1123 -12.7 -16.4 

10 2640 249 1156 -12.3 -13.9 
3300 234 1087 -17.6 -19.1 
3960 242 1200 -14.8 -10.7 
4260 247 1154 -13.0 -14.1 
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5280 250 1183 -12.0 -11.9 

660 235 1136 -17.3 -15.4 

1320 256 1145 -09.9 -14.8 

1980 247+37 
=284 
under 

246 1187 -13.4 -11.6 

2640 

247+37 
=284 
under 254 1132 -10.6 -15.7 

15 3300 moderate 
demand 

(4000veh/hr) 

236 1170 -16.9 -12.9 

3960 

moderate 
demand 

(4000veh/hr) 241 1109 -15.2 -17.4 

4620 241 1176 -15.2 -12.4 

5280 246 1085 -13.4 -19.2 

660 241 1236 -15.2 -08.0 

1320 261 1207 -08.1 -10.1 

1980 251 1190 -11.6 -11.4 

20 
2640 247 1165 -13.0 -13.3 

20 3300 1154+189 236 1150 -16.9 -14.4 
3960 =1343 

under 
high demand 
(5000veh/hr) 

237 1117 -16.6 -16.8 
4620 

=1343 
under 

high demand 
(5000veh/hr) 

241 1091 -15.2 -18.8 
5280 

=1343 
under 

high demand 
(5000veh/hr) 248 1191 -12.7 -11.3 

660 

=1343 
under 

high demand 
(5000veh/hr) 

236 1154 -16.9 -14.1 

1320 253 1171 -10.9 -12.8 
1980 239 1134 -15.9 -15.6 

25 
2640 248 1153 -12.7 -14.2 

25 
3300 239 1114 -15.9 -17.1 
3960 239 1140 -15.9 -15.1 
4620 233 1156 -18.0 -13.9 
5280 237 1152 -16.6 -14.2 
660 250 1152 -12.0 -14.2 
1320 261 1127 -08.1 -16.1 
1980 254 1125 -10.6 -16.2 

30 
2640 247 1115 -13.0 -17.0 

30 
3300 247 1123 -13.0 -16.4 
3960 248 1120 -12.7 -16.6 
4620 254 1161 -10.6 -13.6 
5280 270 1186 -05.0 -11.7 
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1°TlrT~88oT3a^a8*,: 

Time Gap (miraAM) 0t«t«nce (feet) Time Gap (minutei) Distance (feet) 

(a) (b) 
Figure 24 Total Delays for Contained Cases which Both Primary and Secondary Incidents Blocked 

the Right Lane in a Three-Lane Freeway Facility under a Moderate Demand Level (a) and 
a High Demand Level (b) 

Note that the horizontal constant plane represents the summation of the total delays 

caused by primary and secondary incidents when they are treated as two independent 

incidents. It keeps a constant value over entire time gap and distance plane without regard 

to temporal and spatial correlations between primary and secondary incidents. The points 

with perpendicular represent the total delays specified by time gap and distance derived 

from the joint analysis. 

8.4.2 Analysis of Total Delay for Extended Primary-Secondary Incident Pairs 

For extended events, Table 21 presents the total delay estimation under various 

scenarios at two demand levels. Figure 25 presents the same results for a 3D visualization. 

Comparing the two columns under the "Joint Analysis" heading, it is evident that total 

delay will have a multiple-fold increase as demand changes from moderate to high. So 

the demand level is one of the most critical parameters in delay estimation. 

As indicated in Table 21, if the two incidents are treated as independent events, their 

delays are 229 and 1168 veh-hours for the moderate and high demand scenarios 
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respectively. Since both the primary and secondary incidents are 30-minute long, each 

causes the same amount of delay. 

Table 21 also provides the total delays when they are modeled jointly. These delays 

are either larger or smaller than the values reported under "Sum of Two Incidents" 

column. A justification for negative or positive percent changes in the "Comparison of 

Total Delays" column can be theoretically explained by referring to the shock wave 

analysis presented before. Obviously, time-gap and distance both affect the delay. Note 

most of negative percentage changes appeared at shorter time gaps (time gap = 5 or 10 in 

Table 21) because those secondary incidents are still contained in the queue influence 

area of its primary incident (i.e., <= T2, in Figure 21), this confirms the point that we 

made for a contained event. Given a sufficient large time-gap (i.e. greater than 15 minutes 

in this case), if distance is smaller, T^ tends to extend beyond Ta, and (T2e -T2O becomes 

positive and larger. Therefore, the percent changes are positive. The simple summation of 

the primary and secondary incidents induced delays will under-estimate the actual delays. 

On the other hand, when distance increases, (T^ -Ta) tends to be closer and eventually 

T2e is less than T2i (i.e. secondary incident will be contained within the influence area of 

its primary incident), the percentage will become negative again. The summation of the 

delays from two separate incidents will over-estimated the actual delay. Overall, the total 

delay variations in Figure 25 (a) and (b) are consistent with the pattern observed in Figure 

22, which is derived from the macroscopic shock wave analysis. 
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Table 21 Simulation Results for Extended Primary-Secondary Incident Pairs 
(Ten Random Seed with Incident Passing Speed 15 mph) 

Correlations Total Vehicle Delay (veh-hr) Comparison of Total Delays 

Parameters Sum of two 
Incidents Joint Analysis (%) Difference 

(with the sum of two incidents) 

Time Gap 
(minute) 

Distance 
(feet) 

Primary 
(30 minutes) 
Secondary 
(30 minutes) 

Moderate 
Demand 

(4000veh/hr) 

High 
Demand 

(5000 veh/hr) 

Moderate 
Demand 

(4000 veh/hr) 

High 
Demand 

(5000 veh/hr) 

660 149 717 -34.9 -38.6 
1320 168 809 -26.6 -30.8 
1980 146 716 -36.2 -38.7 

5 
2640 141 700 -38.4 -40.1 

5 3300 142 673 -38.0 -42.4 
3960 145 675 -36.7 -42.2 
4620 152 707 -33.6 -39.5 
5280 146 720 -36.2 -38.4 

660 191 903 -16.6 -22.7 
1320 114.5+114.5 

=229 

199 865 -13.1 -25.9 
1980 

114.5+114.5 
=229 179 877 -21.8 -24.9 

10 
2640 under 174 864 -24.0 -26.0 

10 
3300 moderate 168 839 -26.6 -28.2 
3960 demand 176 856 -23.1 -26.7 
4620 (4000veh/hr) 184 846 -19.6 -27.6 
5280 164 835 -28.4 -28.5 

660 232 1155 1.3 -1.1 

1320 229 1096 0 -6.2 

1980 200 1024 -12.7 -12.3 

2640 191 1031 -16.6 -11.7 

15 3300 194 968 -15.3 -17.1 

3960 194 968 -15.3 -17.1 

4620 584+584 189 943 -17.5 -19.3 

5280 =1168 
under 
high 

184 1008 -19.6 -13.7 

660 

=1168 
under 
high 289 1383 26.2 18.4 

1320 demand 
(5000veh/hr) 

281 1342 22.7 14.9 

1980 

demand 
(5000veh/hr) 250 1251 9.2 7.1 

20 2640 237 1201 3.5 2.8 20 
3300 226 1164 -1.3 -0.3 

3960 225 1132 -1.7 -3.1 

4620 211 1133 -7.9 -3.0 
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5280 210 1111 -8.3 -4.9 

660 324 1542 41.5 32.0 

1320 304 1498 32.8 28.2 
1980 274 1385 19.6 18.6 

25 
2640 260 1361 13.5 16.5 

25 
3300 242 1327 5.7 13.6 
3960 241 1299 5.2 11.2 
4620 228 1264 -0.4 8.2 
5280 197 1242 -14.0 6.3 

660 367 1790 60.3 53.2 
1320 340 1719 48.5 47.2 
1980 308 1639 34.5 40.3 

30 
2640 288 1591 25.8 36.2 

30 
3300 272 1547 18.8 32.4 
3960 265 1543 15.7 32.1 
4620 234 1423 2.2 21.8 
5280 211 1348 -7.9 15.4 

Time Gap (mirtfaa) Oatanee (feat) Tim# Gap (minutaa) Dutanc* (feat) 

Figure 25 Total Delays for Extended Cases which Primary and Secondary Incidents Blocked the 
Right Lane in a Three-Lane Freeway Facility under a Moderate Demand Level (a) and 

under a High Demand Level (b) 

Note that the horizontal constant plane represents the summation of the total delays 

caused by primary and secondary incidents when they are treated as two independent 

incidents. It keeps a constant value over entire time gap and distance plane without regard 

to the temporal and spatial correlations between primary and secondary incidents. The 
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points with perpendicular represent the total delays specified by time gap and distance 

derived from the joint analysis. 

8.5 Implications 

Based on these results the following practical considerations can be highlighted: 

• The demand level is a critical factor in determining the total delay caused by 

primary and secondary incidents. If primary and secondary incidents occur during 

peak hours, it is desirable to clear these incidents as soon as possible. 

Alternatively, diverting the traffic to the alternative roads is also another effective 

way to reduce traffic demand and mitigate, the total delay at these associated 

incidents sites. 

• In calculating the delay impacts or costs of incidents, it is important to identify 

secondary incidents and analyze them jointly with their primary counterparts, 

because their delays depend on their relations (in terms of location and time) to 

the associated primary incidents. 

• Not all secondary incidents are very problematic from the perspective of event 

durations and delays. When a secondary incident is cleared before its primary 

incident and both incidents block the same lane, the time gap and distance 

parameters do not impact results substantially and this secondary incident does 

not cause additional delays, and its primary incident controls the bottleneck 

capacity. 

• When the secondary incident is not contained (i.e., clearance time of the 

secondary extends that of the primary), incident responders and managers need to 

be more concerned about the secondary incidents that occur at larger time gaps 
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and/or closer to the primary incident since these will create larger total delays. 

This is true no matter where in the queue the secondary incident occurs. Therefore, 

such incidents need to be cleared as quickly as possible. 

8.6 Limitations 

This study only analyzes a basic 3-lane freeway segment for a demonstration 

purpose. If sufficient inputs such as geometric data, loop detector data in mainline as well 

as ramps for major freeways are available, then some critical roadway sections can be 

simulated and calibrated in PARAMICS to assess their impacts more realistically. In 

addition, traffic demand, incident durations and lane blockages could be varied with time. 

Additional scenarios are needed to obtain a more complete picture of delays when 

secondary incidents occur. While the simulation model behaves in accordance with the 

expectations, and provides reasonable outputs, a formal validation with field data has not 

been conducted yet. 

8.7 Summary 

This study contributes by providing a quantitative assessment of primary-secondary 

incident pairs in terms of their attributes through analysis of real-life data, and total 

delays through the kinematic wave and microscopic simulation. The temporal and spatial 

correlations between two associated incidents are considered in the total delay estimation. 

The major findings are summarized as follows: 

• In real-life situations, secondary incidents that extend the duration of the event 

(such as those that occur in close proximity to the primary incident and last longer 
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than the primary incident) are problematic. They are on average about the same 

duration as their primary counterparts (about 27 minutes on 3-lane roadways in 

Hampton Roads), and nearly equal in terms of lane blockage severity and 

frequency. Such events are also challenging from the induced delay perspective, 

as they are associated with longer delays. 

Given the durations and lane blockage severity of primary and secondary 

incidents, traffic demand, time-gap and distance between primary and secondary 

incident occurrences contribute substantially to the total delay. For instance, when 

the duration of the secondary incident is beyond that of the primary (i.e., extended 

case) the total delay increases as the time gap increases and the distance decreases. 

The traditional incident delay estimation approach, which treats incidents 

independently, does not consider the correlations between primary and secondary 

incidents in time and space and their co-effects. Thus it is unable to estimate the 

total delay caused by primary-secondary incidents accurately. Both 

underestimation and overestimation would be a problem for transportation 

planning to calculate the total delay costs. 

For real time delay prediction in traffic operations, underestimation of total delays 

will be a particularly serious problem. System managers may rely on this 

inaccurate information to make the response decision and may not realize the full 

extent of problems. 

It is essential to identify secondary incident and develop a new traffic delay 

estimation model that accounts for correlations between the primary and 

secondary incidents. Further development may extend to broader cases like 



107 

multiple incidents in close proximity or an incident close to a recurrent-bottleneck 

location. 

Future research will focus on analyzing additional scenarios where having a lane 

blockage due to incidents and/or recurrent bottlenecks, collecting field observations such 

as passing speeds, time-varying lane blockage information, and queue length etc. on 

associated incident sites, and developing a comprehensive traffic delay model for a real

time delay prediction for incident management and accurate cost evaluation for region 

planning purpose. 
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CHAPTER 9 

CONCLUSIONS AND RECOMMENDATIONS 

9.1 Summary of Findings 

Traffic incidents are a major resource of traffic congestion on urban freeways. Some 

incidents cause secondary incidents. Such cascading impacts on traffic further exacerbate 

congested freeway systems, stretch response resource and result in responders' and 

travelers' severe injuries or fatalities. Appropriate responses to such multiple associated 

incidents are limited by little understanding of their nature and under-estimation of their 

impacts. This study contributes by answering fundamental research questions about 

complicated primary and secondary incidents. The study explored primary-secondary 

incident events. Different categories for primary-secondary incident events are 

established based on their scale and traffic/safety impacts. The major accomplishments 

and finding are summarized as follows: 

• A queue-based methodology was developed to identify secondary incidents, 

capturing secondary incidents over multiple segments and in the opposite direction. 

This method used queue length and actual incident duration of a primary incident 

as spatial influence range and temporal threshold respectively to overcome the 

limitations of at least some earlier studies that have used fixed spatial and temporal 

boundaries. 

• Primary-secondary incident events are categorized on a three-point ordinal scale 

as: (1) an independent incident, i.e., an incident not associated with any 

secondary incidents; (2) one primary-secondary incident pair; and (3) one primary 

with two or more secondary incidents in the same or opposite directions. This 
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scale captures event adversity from a traffic management perspective, with the 

last category capturing multiple secondary events. Problematic routes, segments 

with high percentage of such events, and hotspots can be identified by using 

segment-based GIS presentation. Temporal patterns of primary-secondary 

incidents events can be examined using daily distributions of the frequency and 

incident duration of primary-secondary incidents events, grouped by month, 

weekday and hours. Such information is valuable for incident management. 

Service patrols can target the problematic routes and times that are associated 

with higher chances of multiple secondary events. 

• To understand the occurrence of primary-secondary incident events and quantify 

the associated factors, one proportional odds model and one partial proportional 

odds model were estimated based on primary incidents characteristics, roadway 

geometry and traffic flow. Longer duration crashes, shorter segments and heave 

traffic are associated with higher propensity for primary-secondary incident 

events. More importantly, partial proportional odds model can account for 

unequal contributions of explanatory variables across the event categories. 

Multiple-vehicle involvement and lane-blockage had a different contribution to 

the occurrence of primary-secondary incident events, and they are particularly 

associated with the events having two or more secondary incidents. 

• This study analyzed the temporal-spatial associations between primary and 

secondary incidents previously neglected in past researches. Rigorous statistical 

models were employed to investigate the relationship between time gaps/ 

distances and roadway, primary incident characteristics. Longer time gaps were 
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found to be positively associated with accidents, longer duration of primary 

incidents, and heavier traffic. In terms of distance, crashes and fires are associated 

with secondary incidents that occur at longer distances; and longer primary 

incident duration and lane blockage are related to larger distances between a 

primary incident and its secondary incident. Thus, the study found that distance 

and time vary systematically with characteristics of primary incidents. The time-

gap and distance distributions provide a good sense of how soon after and how far 

away from a prior incident a secondary incident will occur. The results support 

more informed planning and operational decisions needed to respond to complex 

incident situations. 

• Primary-secondary incidents events are further categorized as either contained or 

extended based on clearance order. A unique event database was first created 

based on incident, road inventory data and primary-secondary incident events. 

Instead of single incident duration, rigorous statistical methods were applied on 

event durations to explore associations with incident characteristics and response 

variables. 1) Contained and extended events show different characteristics and 

operational response patterns. For instance, primary-secondary incident pair 

contained events are on average 8 minutes longer than extended events. For 

primary-multiple secondary incidents event durations, both types of events last 

about 76 minutes, on average. 2) Factors associated with longer cascading event 

durations include the primary incident being a crash, secondary incident being a 

crash and multiple vehicles involved in secondary incidents, and longer time gap 

between the primary and secondary incidents. In addition, longer event durations 
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were associated with longer service patrol response times. 3) While police and fire 

presences are associated with longer event durations, they would not be 

necessarily adding time because these incidents were likely more severe. Primary 

incident characteristics are dominant in contained events, while secondary 

incident characteristics play a substantial role in extended events, requiring 

substantial resources from response agencies. 

• In calculating the delay impacts or costs of incidents, this study examined delays 

caused by primary-secondary incident pairs that occur on the same stretch of a 

freeway within a short time. The shock wave analysis and micro-simulation were 

employed to interoperate and model primary and secondary incidents occurrences 

jointly. Some concerns arisen from traditional methods in the delay estimation. 

The findings suggest that traditional methods treat all incidents independently and 

often under- or over-estimated the actual delay due to neglecting the associations 

between primary and secondary incidents. It is important to identify secondary 

incidents and analyze them jointly with their primary counterparts, because their 

delay impacts depend on their relation (in terms of location and time) to the 

associated primary incidents. When the secondary incident is not contained (i.e., 

clearance time of the secondary extends that of the primary), the secondary 

incidents occurring at larger time gaps will create longer total delays. 

Overall, this study explored nearly all of important aspects of primary-secondary 

incident events such as spatial and temporal characteristics for three types of events, 

important attributes (time-gaps and distances between primary and secondary incidents 
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start times), cascading event durations, associated delays. These finding provides new 

insights into secondary incidents in traffic operations, safety and planning. 

9.2 Research Findings Translation to Practice 

Findings from this study have been translated into two tools that enhance the incident 

management (Khattak et al., 2011, 2012): secondary incident identification and real-time 

incident predication that can be used throughout Virginia commonwealth and transferred 

to major metropolises. 

• Secondary incident identification tool is used to identify secondary incidents from 

historical database. After identification and categorization of primary-secondary 

incident events, frequency and durations can be used as additional performance 

measures to identify problematic routes, evaluate current practices in incident 

management and facilitate proactive planning to reduce the number of secondary 

incidents. 

• The real-time incident predication tool is capable to predicting important 

performance measures including incident durations, chances of secondary 

incident occurrence, and remaining delays. The model results can help traffic 

operations managers to develop effective incident management strategies to 

response secondary incident properly and mitigate the impacts of secondary 

incidents. 

• This research also provide valuable information for implementing the advanced 

ITS devices, disseminating travel information, minimizing traffic delay and 
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assisting planner to accurately estimate the cost/delay of incidents by using an 

advanced delay estimation models. 

9.3 Future Research 

• Due to data limitation, the high resolution traffic data for 2005 and 2008 were not 

available at study time. So the validation of primary-secondary incident events 

has not been conducted in this study. For future research, collaborating with 

traffic management centers, the field observations of primary and secondary 

incident events and high resolution traffic data can be collected through a 

sufficient period. The desirable measures are the durations of associated incidents, 

relative lane blockage, the time-gaps and distances between primary and their 

secondary incidents, queue lengths, travel time and delay, traveler information, 

injury severity, detailed response variables. 

• To estimate the total delays caused by different primary-secondary incident events 

in a real life, along with required input data, a comprehensive 

analytical/numerical model needs to be developed and calibrated based on 

historical data. Further theoretical investigation and more micro-simulations are 

needed to evaluate the impact of multiple secondary incidents on urban freeways. 

The future research can focus on exploring the complexity, optimization and 

validation of online prediction models that will be capable to handling the 

multiple associated incidents simultaneously over a large urban freeway network. 

Finally, a comprehensive model can be applied to predict the remaining delay for 
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traffic operations and estimate regional costs due to secondary incidents including 

congestion assessment and environment impacts for planning purposes. 

• This study is based on Hampton Roads area, Virginia. Further study of model 

transferability can be conducted in a national or international scope. The 

established methods and models can be applied in other metropolitan regions 

where similar data are available to check for model consistency or identify diverse 

incident management issues. 



115 

REFERENCES 

Al-Deek, H., Garib, A. &Radwan, A. E. (1995). New method for estimating freeway 
incident congestion. Transportation Research Record: Journal of the Transportation 
Research Board, Transportation Research Board of the National Academies, Washington, 
D.C., 1710,30-39. 

Al-Deek, H. M, Khattak, A. J., & Thananjeyan, P. (1998). A combined traveler behavior 
and system performance model with advanced traveler information systems. 
Transportation Research Part A, 32(7), 479-493. 

Boyles, S., Fajardo, D. & Waller, S. T. (2007). A naive bayesian classifier for incident 
duration prediction. TRB CD-ROM, Transportation Research Board, Washington, D.C.. 

Chang, G.L. & Rochon, S. (2003). Performance evaluation of chart - coordinated 
highways action response team - Year 2002. University of Maryland, College Park and 
Maryland State Highway Administration. 

Chow, W. A. (1974). Study of traffic performance models under incident conditions. 
Highway Research Record, HRB, National Research Council, Washington D.C., 567,31-
36. 

Chou, C., & Miller-Hooks, E. (2010). Simulation-Based secondary incident filtering 
method. ASCE Journal of Transportation Engineering, 136(8), 746-755. 

Daganzo, C. E (1997). Fundamentals of Transportation and Traffic Operations. 
Pergamon Press-Elsevier Science. 

Dougald, L., & Demetsky, M. (2008). Assessing the return on investment of freeway 
safety service patrol programs. CD-ROM, TRB Transportation Research Board, 
Washington, D.C.. 

Eads, B.S., Rouphail N. M., May, A. D., & Hall, F. (2000). Freeway facility methodology 
in Highway Capacity Manual 2000. Transportation Research Record: Journal of the 
Transportation Research Board, Transportation Research Board of the National 
Academies, Washington, D.C., 1494,171-180. 

Fries, R., Chowdhury, M., & Ma, Y. (2007). Accelerated incident detection and 
verification: a benefit to cost analysis of traffic cameras. Journal of Intelligent 
Transportation Systems: Technology, Planning, and Operations, 11(4), 191-203. 

Garib, A,, Radwan, A.E., & Al-Deek, H. (1997). Estimating magnitude and duration of 
incident delays. ASCE Journal of Transportation Engineering, 123(6), 459-466. 

Giuliano, G. (1988). Incident characteristics, frequency, and duration on a high volume 
urban freeway. Institute of Transportation Studies, University of California, Irvine. 



116 

Golob, T. F., Recker, W. W., & Leonard, J. D. (1987). An analysis of the severity and 
incident duration of truck-involoved freeway accidents. Accident Analysis and Prevention, 
19, 375-395. 

Hadi, M. A., Sinha, P. K., & Wang, A. (2007). Modeling reductions in freeway 
capacity due to incidents in microscopic simulation models. Transportation Research 
Record: Journal of the Transportation Research Board, Transportation Research Board of 
the National Academies, Washington, D.C., 1999,62-68. 

Hampton Roads Transportation Operations Center, Virginia Department of Transportation 
(2008), Hampton Roads Transportation Operation Center 2008Annual Report. Retrieved 
from http://www.virginiadot.org/travel/resources/2008_HRTOC_ANNUAL_REPORT.pdf. 

Hirunyanitiwattana, W., & Mattingly, S. (2006). Identifying secondary crash 
characteristics for California highway system. TRB CD-ROM, Transportation Research 
Board, Washington, D.C.. 

Jones, B., Janssen, L., & Mannering, F. (1991). Analysis of the frequency and duration of 
freeway accidents in Seattle. Accident Analysis and Prevention, 23,239-255. 

Karlaftis, M. G., Latoski, S. P., Richards, N. J., & Sinha, K. C. (1999). ITS impacts on 
safety and traffic management: an investigation of secondary crash causes. Journal of 
Intelligent Transportation Systems, (5)1, 39-52. 

Khattak A., Rouphail, N., Monast K., & Havel J. (2004). A methodology for prioritizing 
and expanding freeway service patrols. Transportation Research Record: Journal of the 
Transportation Research Board, Transportation Research Board of the National 
Academies, Washington, D.C., 1861,1-10. 

Khattak, A., Schofer, J. L., & Wang M-H. (1995). A simple time sequential procedure for 
predicting freeway incident duration. IVHS Journal, 2(2), 113-138. 

Khattak, A., Wang, X., &. Zhang, H. (2009). Are incident durations and secondary 
incident occurrence interdependent? Transportation Research Record: Journal of the 
Transportation Research Board, National Academies, Washington, D.C., 2099,39-49. 

Khattak, A., Wang, X., & Zhang, H. (2010). Spatial analysis and modeling of traffic 
incidents for proactive incident management and strategic planning. Transportation 
Research Record: Journal of the Transportation Research Board, National Academies, 
Washington, D.C., 2178,128-137. 

Kim, W., Natarajan, S., & Chang, G. (2008). Empirical analysis and modeling of freeway 
incident duration. Proceeding of the 11th International IEEE Conference on Intelligent 
Transportation Systems, Beijing, China. 

http://www.virginiadot.org/travel/resources/2008_HRTOC_ANNUAL_REPORT.pdf


117 

Kwon, J., Mauch, M., &Varaiya, P. (2006). The components of congestion: delay from 
incidents, special events, lane closures, weather, potential ramp metering gain, and excess 
demand. Transportation Research Record: Journal of the Transportation Research Board, 
Transportation Research Board, Washington, D.C., 1959,84-91. 

Lighthill, M. J., & Whitham G. B. (1995). On kinematic waves: a theory of traffic flow 
on long crowded roads. Proceedings of Royal Society, Series A, 229 (1178), 317-345. 

Lindley, J .A. (1987). Urban freeway congestion: quantification of the problem and 
effectiveness of potential solutions. Journal of Institute of Traffic Engineering, 57, 27-32. 

Lin, P., Zou, N., & Chang, G. (2004). Integration of a discrete choice model and a rule-
based system for estimation for incident duration: a case study in Maryland. TRB CD-
ROM, Transportation Research Board, Washington, D.C.. 

Mannering F., Jones B., Garrison D. H., Sebranke B., & Janssen, L. (1990). Generation 
and assessment of incident management strategies. Report No: WA-RD 204.3, Volume 2, 
Washington State Department of Transportation, Olympia, Washington. 

Masinick J. P., & Teng, H. (2004). An analysis on the impact of rubbernecking on urban 
freeway traffic. Center for Transportation Studies. Rep. UVACTS-15-0-62, Univ. of 
Virginia, Charlottesville, VA. 

McDade J. D. (1990). Freeway Service Patrols: A versatile Incident Management Tool. 
Compendium of Technical Papers, 60th Annual Meeting of the ITE, Orlando, FL, 120-124. 

Menendes, M., & Daganzo, C. (2004). Assessment of the impact of incidents near 
bottlenecks: strategies to reduce delay. Transportation Research Record: Journal of the 
Transportation Research Board, National Academies, Washington, D.C., 1867,53-59. 

Moore, J. E., Giuliano, G., & Cho, S. (2004). Secondary accident rates on Los Angeles 
freeways. ASCE Journal of Transportation Engineering, 130(3), 280-285. 

Morales, J. M. (1986). Analytical procedures for estimating freeway traffic congestion. 
Public Road, 50(2), 55-61. 

Moskowiz, K., & Newman, L. (1963). Notes on freeway capacity. Highway Research 
Records, HRB, National Research Council, Washington, D.C., 27,44-68. 

Nam, D., & Mannering, F. (2000). An exploratory hazard-based analysis of highway 
incident duration. Transportation Research Part A, 34(2), 85-102. 

Ozbay, K., & Kachroo, P. (1999). Incident Management in Intelligent Transportation 
Systems. Artech House Inc., Boston, MA. 



118 

Qi, Y., & Teng, H. (2008). An information-based time sequential approach to online 
incident duration prediction, Journal of Intelligent Transportation Systems: Technology, 
Planning, and Operations, 12(1), 1-12. 

Rakha, H., & Zhang W. (2005). Consistency of shock-wave and queuing theory 
procedures for analysis of roadway bottlenecks. TRB CD-ROM, Transportation Research 
Board, Washington, D.C.. 

Raub, R. A. (1997). Secondary crashes: an important component of roadway incident 
management. Transportation Quarterly, 51(3), 93-104. 

Skabardonis, A., Noeimi, H., Petty, K. F., Rydyzewski, D., Varaiya, R & Al-Deek, H. 
(1995). Freeway service patrol evaluation. California PATH Research Rep. UCB-ITS-
PRR-95-5, Univ. of California, Berkeley, CA. 

Schrank, D., Lomax, T., &Turner, S. (2010). TTI's 2010 Urban Mobility Report, Texas 
Transportation Institute, Texas A&M University. 

Smith, K., & Smith, B. L. (2001). Forecasting the clearance time of freeway accidents. 
Report No. UVACTS-15-0-35. University of Virginia, Charlottesville, VA. 

Smith, B., Qin, L., &Venkatanarayana, R. (2003). Characterization of freeway capacity 
reduction resulting from traffic accidents. ASCE Journal of Transportation Engineering, 
129(4), 362-368. 

Sullivan, E.C. (1997). New model for predicting incidents and incident delay. ASCE 
Journal of Transportation Engineering, 123(4), 267-275. 

Quadstone Paramics LTD (2009). The Paramics Manuals. 

Sun, C., & Chilukuri, V. (2010). Dynamic incident progression curve for classifying 
secondary traffic crashes. ASCE Journal of Transportation Engineering, 136(12), 1153-
1158. 

Ullman, G. L. & Dudek, C. L. (2003). Theoretical approach to predicting traffic queues at 
short-term work zones on high-volume roadways in urban areas. Transportation Research 
Record: Journal of the Transportation Research Board, Transportation Research Board of 
the National Academies, Washington, D.C., 1824,29-36. 

Vlahogianni, E. I., Karlaftis, M. G., Golias, J. C., & Halkias, B. M. (2010). Freeway 
operations spatiotemporal-incident characteristics and secondary-crash occurrence. 
Transportation Research Record: Journal of the Transportation Research Board, 
Transportation Research Board of the National Academies, Washington, D.C., 2178,1-9. 

Williams, R. (2006). Generalized ordered logit/partial proportional odds models for 
ordinal dependent variables. The Stata Journal, 6(1), 58-82. 



119 

Wirasinghe, B. (1978). Determination of traffic delays from shock wave analysis. 
Transportation Research, 12,343-348. 

Zhan, C., Shen, L., Hadi, M. A., & Gan, A. (2008). Understanding the characteristics 
of secondary crashes on freeways. TRB CD-ROM, Transportation Research Board, 
Washington, D.C.. 

Zhan, C., Gan, A., & Hadi, M. A. (2009). Identifying secondary crashes and their 
contributing factors. Transportation Research Record: Journal of the Transportation 
Research Board, Transportation Research Board of the National Academies, Washington, 
D.C., 2102,68-75. 

Zhang, H., & Khattak, A. (2010a). What is the role of multiple secondary incidents in 
traffic operations? ASCE Journal of Transportation Engineering, 136(11), 986-997. 

Zhang, H., & Khattak, A. (2010b). Analysis of cascading incident event durations on 
urban freeways. Transportation Research Record: Journal of the Transportation 
Research Board, National Academies, Washington, D.C., 2178,30-39. 

Zhang, H., & Khattak, A. (2011). Spatio-Temporal patterns of primary and secondary 
incidents on urban freeways. Transportation Research Record: Journal of the 
Transportation Research Board, National Academies, Washington, D.C., 2229,19 -27. 

Zhang, H., Cetin, M., & Khattak, A. (2011). Evaluating factors that impact queuing 
delays of secondary incidents. Best paper award, 18th World Congress on Intelligent 
Transportation Systems (ITS), Orlando, FLand submitted to Journal of Intelligent 
Transportation Systems. 



120 

VITA 
HONGBING ZHANG 

EDUCATION 

M.S. Atmospheric Science, Dept. of Earth and Atmospheric Sciences, 
Purdue University, West Lafayette, IN 

M.S. Geodesy and Surveying Engineering, Dept. of Civil Engineering, 
Tsinghua University, Beijing, China 

B.S. Geodesy, Zhengzhou Institute of Surveying and Mapping, 
Zhengzhou, China 

SELECTED PUBLICATIONS 

1. Zhang, H., Cetin, M., & Khattak, A. (2012) Queuing delays associated with 
secondary incidents" submitted to Journal of Intelligent Transportation Systems. 

2. Zhang, H., Zhang, Y., & Khattak, A. (2012) Analysis of Large-scale Incidents on 
Urban Freeways, Accepted for publication in Transportation Research Record: 
Journal of the Transportation Research Board, National Academies, Washington, D.C. 

3. Khattak, A., Wang, X., & Zhang, H. (2012). iMiT: A tool for dynamically predicting 
incident durations, secondary incident occurrence, and incident delays. Accepted for 
publication in IET Intelligent Transportation Systems. 

4. Zhang, H., & Khattak, A., (2011). Spatio-temporal Patterns of Primary and Secondary 
Incidents on Urban Freeways. Transportation Research Record: Journal of the 
Transportation Research Board, National Academies, Washington, D.C. 2229,19-27. 

5. Zhang, H., & Khattak, A. (2010). Analysis of Cascading Incident Event Durations on 
Urban Freeways. Transportation Research Record: Journal of the Transportation 
Research Board, National Academies, Washington, D.C. Vol. 2178,30-39. 

6. Khattak, A., Wang, X. and Zhang, H. (2010). Spatial Analysis and Modeling of 
Traffic Incidents for Proactive Incident Management and Strategic Planning. 
Transportation Research Record: Journal of the Transportation Research Board, 
National Academies, Washington, D.C., 2178,128-137. 

7. Zhang, H., & Khattak, A. (2010). What is the Role of Multiple Secondary Incidents in 
Traffic Operations? ASCE Journal of Transportation Engineering, 136(11), 986-997. 

8. Khattak, A., Wang, X., & Zhang, H. (2009). Are Incident Durations and Secondary 
Incident Occurrence Interdependent? Transportation Research Record: Journal of the 
Transportation Research Board, National Academies, Washington, D.C., 2099,39-49. 

AWARDS 

University Fellowship, Old Dominion University, Norfolk, VA, 2007 

Best Paper Award, 18th World Congress on Intelligent Transportation Systems (ITS), 
Orlando, FL, 2011 


	Analysis of Primary-Secondary Incident Events on Urban Freeways
	Recommended Citation

	tmp.1556128751.pdf.CPaID

