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ABSTRACT
THERMO-ELASTO-PLASTIC BEHAVIOR OF BIAXIALLY LOADED STEEL
BEAM-COLUMNS INCLUDING THOSE FROM
WORLD TRADE CENTER TOWERS
Yanhong Zhao
Old Dominion University, 2013
Director: Dr. Zia Razzaq
An experimental and theoretical investigation into the behavior of biaxially loaded
steel beam-columns is conducted including the effects of high temperature. Systems of
materially nonlinear differential equations of beam-column equilibrium are first
formulated for both ambient and high temperature conditions. An iterative finite integral
procedure is formulated and programmed to solve the governing differential equations.
To check the validity of the theoretically predicted behavior and strength of the beam-
columns, a series of forty-two laboratory tests are conducted at both ambient and high
temperature up to 950°F. Upon achieving a good agreement between the predicted beam-
column behavior and that observed in the experiments, the theory developed is then
applied to predicting the behavior and strength of typical beam-columns which were used
in the 110-story World Trade Center (WTC) buildings. Thermo-elasto-plastic stiffness

degradation and load-moment interaction curves are generated for typical WTC beam-

columns which existed in the impacted area during 9/11 attacks.
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Moments due to plastification

Moments due to residual stress

Moment due to thermal deformation

Load vector in the governing equation

Load vector

Vector of the second order derivative of deflection
Applied axial load

Axial load due to plastification

Axial load due to residual stress
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Axial load due to thermal expansion

Reaction force

Temperature

Total deflection in x-direction

Total deflection in y-direction

Deflection due to applied load or raised temperature in x-direction
Deflection due to applied load or raised temperature in y-direction
Midspan initial member crookedness in x-direction

Midspan initial member crookedness in y-direction

Initial beam-column crookedness at nodal point i in x-direction
Initial beam-column crookedness at nodal point i in y-direction
The second order derivative of u

The second order derivative of v

Normal strain at ambient and elevated temperature

Residual strain

Average axial strain

Thermal strain

Strain rate

Bending curvatures about x and y axes
Yield stress at ambient and elevated temperature
Compressive and tensile residual stress
Stress rate

Cross-sectional deformation vector
Cross-sectional deformation rate vector
Cross-sectional integration

End rotation
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CHAPTER

1. INTRODUCTION

1.1 Introduction

This dissertation presents the outcome of an experimental and theoretical elasto-
plastic study of the behavior of biaxially loaded steel beam-columns including those from
110-story World Trade Center (WTC) buildings. The outermost vertical support structure,
that is, the periphery of these buildings, was made-up of hollow rectangular section
beam-columns fabricated by welding four steel plates. A number of beam-columns,
which were carrying the usual service loads, were suddenly subjected to increased loads
and high temperature caused by fire during and right after the terrorist attack. The study
presented herein deals with predicting the behavior of beam-columns under biaxial
bending, axial load, and high temperature. In addition, experiments are conducted on
small-scale steel members having a hollow square cross section to verify the validity of
the theoretical prediction model developed.

The study presented herein also investigates the influence of the sequence of applied
axial load, biaxial bending moments, and high temperature. The theoretical analysis is
based on an equilibrium approach involving formulation and a numerical solution of
simultaneous ordinary differential equations. Due to the materially nonlinear or elasto-
plastic nature of the problem, the numerical solution procedure developed is iterative.
The experimental study is conducted at room temperature as well as at high temperatures
up to about 950°F. The capability of the theoretical prediction model developed,
however, is not limited to this temperature. Specifically, the theoretical analysis of the
WTC beam-columns is presented with temperatures up to about 1600°F. The variation of
material properties with temperature is accounted-for in the analysis.

Development of a theoretical solution algorithm is a challenge when dealing with
nonlinear differential equations having coefficients which vary with the degree of
inelastic action at any load level, as well as with high temperature. An iterative procedure
exploiting a technique called the finite integral approach is adopted for the theoretical
portion of this study. To obtain the load-, temperature-, and deformation-dependent

coefficients of the ordinary nonlinear differential equations governing the overall



behavior of the beam-columns, the finite integral approach is intertwined with a cross-
sectional elasto-plastic tangent stiffness procedure.

A comparison of the theoretically predicted behavior of the beam-columns is made
with that observed in the laboratory at both room temperature and high temperatures.
After validating the theoretical analysis procedure using the experimental results,
predictions are made about the expected behavior and strength of representative WTC

beam-columns at both room and high temperatures.

?

1.2 Literature Review
1.2.1 Studies Conducted at Ambient Temperature

In the 1960’s, Galambos and Ketter (1, 2) developed the solutions for the wide-
flange beam-columns under combined bending and thrust in the presence of end restraints.
Galambos and Prasad (3) presented the ultimate strength tables for wide-flange beam-
columns bend by end-moments about their major axis, which gave the critical
combinations of length, end moments and axial force when failure occurs. In 1966, Lu
and Kamalvand (4) investigated the maximum carrying capacity of steel columns
subjected to combined axial thrust and lateral load.

Chen and Atsuta (5, 6) published a comprehensive literature review and summary of
steel beam-column research conducted up to 1976. Reference 5 described two-
dimensional beam-columns problems. Reference 6 provided a comprehensive source of
information on biaxially loaded beam-columns under various load conditions. Since 1976,
a vast number of papers have been published on the behavior and strength of steel beam-
columns. A brief overview of a few publications have closer relevance to the present
research is given below.

In 1980, Chen (7) studied the influence of end-restraints on stability of the column in
the presence of initial crookedness and residua stress. It was found that end conditions
had a significant influence on column behavior, which should be considered to determine
the resistance design factor.

In 1983, Razzaq (8) theoretically investigated the effect of end restraint on steel
column strength by dealing with the response of minor axis of the column cross section.

The columns were partially restrained by linear, elastic-plastic, or nonlinear end restraints



in the presence of initial crookedness and residual stress. It was found that the presence of
partial end restraints and initial imperfections have a very significant effect on the
column behavior and strength.

In 1985, Razzaq and Calash (9) theoretically studied the influence of biaxial partial
restraints on the response of the hollow rectangular steel nonsway columns with or
without biaxial crookedness and residual stresses. Inelastic stiffness degradation and
strength characteristics of the columns were predicted.

In 1986, Razzaq and McVinnie (10) performed theoretical and experimental study of
the inelastic behavior of rectangular tubular steel columns subjected to nonproprotional
biaxial loading. Special gimbals were developed to simulate biaxial end hinges. Test
results were shown to be in good agreement with those from theoretical analysis.
Additionally, it was found that twisting may be neglected for columns of hollow square
or rectangular sections.

In 1990, Darbhamulla (11) conducted a theoretical study of imperfect nonsway
beam-columns with nonproportional biaxial loads. Two types of sections were considered,
I-section and a hollow rectangular section. It was found that the effect of nonproportional
loading on the beam-column strength was quite significant. In addition, a second-order

finite-difference solution was formulated to solve the nonlinear equilibrium equations.

1.2.2 Studies Conducted at High Temperature

In 1995, Poh and Bennetts (12) developed a general numerical model to analyze the
nonlinear behavior of load-bearing members under elevated temperature conditions. The
method took into account the combined actions of axial force and biaxial bending,
external restraints, temperature variation over the cross section and along the member,
material nonlinearity, geometric nonlinearity, unloading and reloading, residual stresses
and initial crookedness. Poh and Bennetts (13) compared the results obtained by using
this numerical procedure with the data from 18 steel [-section column tests. The model of
column is shown in Figure 1. The tests were with different heating rates, axial loads, load
eccentricities and end-support conditions (unrestrained, rotationally restrained, and

axially restrained). It was found that a reasonable prediction of the behavior of the



columns was obtained when the Eurocode 3 stress-strain relationship was used by using
this developed numerical method.

Around 1997, Franssen and Talamona et al (14, 15) studied the stability of steel
columns in case of fire by means of numerical programs and experimental tests. Centrally
loaded as well as eccentrically loaded H-section columns were considered. The rotation
about the major axis of columns was fixed, and for minor axis is free. The buckling
coefficient was proposed for predicting the maximum load of centrally loaded columns
under fire. A P-M interaction formula was proposed for eccentrically loaded columns
under fire.

In 1998, Ali and Shepherd et al. (16) conducted theoretical and experimental studies
on the performance of axially restrained steel I-section columns during fire with three
parameters: slenderness ratio (A= 49, 75, 98), degree of axial restraint ( a; =
0,0.1,0.2,0.3) and loading ratio (a; = 0,0.2,0.4,0.6). The slenderness ratio, A, was
defined in relation to the effective length of the column to the radius of gyration of the
cross-sectional area. The axial restraint, a;, due to the surrounding structure, was defined
by expressing the structure stiffness in relation to the column axial stiffness. The load
ratio, a; , was defined in relation to the ultimate load of the particular section under test.
It was found that imposing and increasing the axial restraint can reduce the fire resistance
of the column, increase the value of restraint force generated and reduce the critical
temperature corresponding to zero load-carrying capacity, for all values of slenderness
tested. The magnitude of additional restraint force generated decreased with increasing
load ratio.

In 2002, Cabita-Neves et al. (17) developed a simple mode to illustrate the possible
type of behavior of heated steel columns with elastic restraint to the thermal elongation,
and the reasons why the critical temperature of axially loaded slender steel columns with
thermal restraint can sometimes be lower than the critical temperature of the same
columns free to elongate. Also, it was found that columns having slenderness, that is
greater than 80 are the most affected by thermal restraint.

In 2007, Takagi and Deierlein (18) evaluated the design equations for structural steel
members at elevated temperatures through comparisons with nonlinear finite element

simulations. The comparative analyses of AISC specifications and Eurocode 3 provisions



for laterally unsupported I-shaped columns, beams, and beam-columns at temperatures
between ambient to 800°C was conducted. It was found that AISC provisions
significantly over-estimate the nominal strength of columns, beams and beam-columns at
elevated temperatures; however, a good agreement is achieved between EC3 provisions
and simulations results.

In 2009, Yang and Hsu (19) conducted a series of experimental studies to examine
the behavior of H-shape steel columns subjected to central loading. The influence of the
width-thickness ratio, slenderness ratio, residual stress and effective column length on the
structural performance in fire was investigated. It was found that the influence of the
width-thickness ratio and slenderness ratio is significant for column behavior at
temperatures below 1022°F (550°C); however, temperature is the dominate factor to
influence column behavior at temperatures above 1022°F (550°C). Also, it was found the
residual stress had been released in the fire event and its influence on column strength
could be neglected.

In 2010, Kodur and Dwaikat et al. (20) reviewed high-temperature constitutive
relationships for steel currently available in the American and European Standards. It
was found that the Eurocode high-temperature stress strain relationship gives a more
realistic fire resistance prediction than does the use of ASCE stress strain relations.
Kodur and Dwaikat (21) used the finite element computer program, ANSYS, to study the
fire response of steel I-section beam-columns under realistic fire, load and restraint
scenarios. The parametric studies show that the fire scenario, load level, and degree of
end-restraint have significant influence on the behavior of beam-columns under fire
conditions.

Around 2010, Wang and Moore (22) investigated the effect of thermal restraint
on column behavior in a frame. The rest of the frame is assumed to be an axial restraint
on the column. It is found that the effect of thermal restraint has to be taken into
consideration in the fire resistant design of steel columns. This effect generally increases
the axial compressive force in the column and is particularly detrimental for slender

columns.



1.2.3 The World Trade Center Disaster

FEMA (2002) (23) described the 9/11 event: “On the morning of September 11,
2001, two hijacked commercial jetliners were deliberately flown into the WTC towers.”
56 minutes after the struck, the south tower collapsed. The north tower collapsed 103
minutes after the jetliner crashed into it. Building 7 of the World Trade Center also came
down almost seven hours after the Twin Towers had come down. FEMA (2002) also
reported that the loss of human life: “A total of 2,830 people lost their lives in the
collapse of the WTC towers, including 2,270 building occupants, 157 airplane crew and
passengers, and 403 firefighters, police personnel, and other emergency responders.”

The National Institute of Standards and Technology (NIST) (24) initiated a formal
federal building and fire safety investigation of the World Trade Center disaster in 2002.
One of its main objectives was to determine why and how the WTC1 and WTC2
collapsed following the initial impact of the aircraft, and why and how the 47-story
WTCT7 collapsed. The most probable collapse reason and sequence for the WTC towers
summarized by NIST is described below: some perimeter and core columns were
damaged and out of commission, which resulted in the redistribution of column loads to
adjacent perimeter columns and core columns via the hat truss and floor systems; the
subsequent fires weakened column and floor systems and triggered additional local
failure, which ultimately led to column instability; the global collapse ensued when
redistribution loads could not accommodate any further due to the progression of
initiation and horizontal column instability. “The working hypothesis for the collapse of
the WTC 7 building suggests that it was a classic progressive collapse including an
initiating event, a vertical progression at the east side of the building, a subsequent
horizontal progression from the east to the west side of the building, and global collapse”
(23). Reference 23 also developed the load-carrying capacity curves for critical columns
from WTC Building 7 based on the AISC column capacity formulas.

Miamis (25) from Purdue University studied the failure mechanism of the World
Trade Center Building 1 (the North Tower) through conducting a study about the effect
of high temperature on the behavior of the structural steel members. The temperature-

strength interaction curves for the columns from the WTC Towers were developed based



on the mathematical expression of the 1995 Eurocode 3 “buckling curves c.” Three
possible failure scenarios were presented in Reference 22: «
o The collapse sequence was initiated by bucking of the core columns as a result of
the fires that followed the aircraft impact.
e Failure of the exterior framing system because of buckling of the exterior columns
initiated the collapse.
¢ The initiation of the collapse sequence was caused by failure of the trusses that
supported the floor system.”
Abolhassan (26), a professor at the University of California at Berkeley, thought that
the World Trade Center Buildings should have stood longer, even after such a
catastrophic impact, and the collapse should not have been so nearly vertical. After
examining the construction documents, he said: “this building was so strange, and so
many violations of practice and code were introduced.” His simulation models also
proved that the two airliners wouldn’t have breached the structure if the WTC buildings
designs followed the codes and traditional systems.
To the best of author’s knowledge, no research has been published in the past on a
rigorous study of partially end restrained steel beam-columns under nonproportional

loading and high temperature.

1.3 Problem Definition

This dissertation focuses on a rigorous study of the influence of nonproportional
loads on the behavior of steel beam-columns including those from World Trade Center
Buildings at ambient and high temperatures. The influence of imperfections, flexible
connections, and the axial restraint to thermal expansion on the steel beam-column
strength and behavior is also investigated. Figure 2 shows the imperfect and partially
restrained beam-column AB, which is subjected to axial load P, and bending moments
M,y , Myy, Mgy, and Mg,,. Symbols K,y , kay, kpx, and kg, represent the stiffness of end
rotation restraints. Subscripts A and B refer to the beam-column bottom and top ends.

The theoretical analysis is based on an equilibrium approach which leads to a system
of materially nonlinear ordinary differential equations with appropriate boundary

equations. To obtain the load and deformation dependent coefficients of the differential



equations, a finite integral approach is used and intertwined with a cross-sectional elasto-

plastic tangent stiffness procedure. A series of experiments is conducted to study the

behavior of the steel beam-columns under nonproprotional loading at ambient and high

temperatures in order to verify the inelastic theoretical procedure presented here.

1.4 Objectives and Scope

The principal objectives of this research are to:

1.

Develop a finite integral based solution algorithm for predicting the behavior of
biaxially loaded steel beam-columns at ambient and high temperatures.

Study the experimental behavior of small-scale steel beam-columns under
nonproportional biaxial loading and with hollow square section at both ambient
and high temperatures to validate the theoretical analysis procedure.

Investigate the influence of partial end rotational restraints on the behavior of
steel beam-columns at ambient and high temperatures.

Determine the influence of material unloading on the beam-column inelastic
response when loaded nonproportionally.

Quantify the influence of axial restraint to thermal expansion on the behavior of
imperfect steel beam-columns at high temperature.

Conduct an in-depth analysis of the behavior of beam-columns which were used

in the outer structure of the 110-story WTC buildings at high temperature.

The primary motivation for this research is to study the effects of high temperature on

rectangular tube steel beam-columns under nonproportional loading, and then to

apply the theory developed for a formal study of the WTC members used in the outer

vertical support system.

1.5 Assumptions and Conditions

The following assumptions and conditions are adopted in this study:

1.
2.

Small deflection theory is applicable.

The beam-column material has an elastic-perfectly plastic normal stress-strain
relationship at both ambient and high temperatures with material elastic unloading.
The compression and tension stress-strain relationships are the same.

Any induced torsional effects are negligible.



Plate local buckling does not occur in the member.
Member shear deformation and axial shortening are negligible.

Only axial and biaxial bending equilibrium conditions are considered.

© N o ow

The external loads are nonproportional in nature and are applied gradually, that is,
no dynamic effects are included.

9. Plane sections remain plane including during high temperature induction.

10. The partial rotational end restraints are either linear or elasto-plastic.

11. Creep effects due to high temperature are negligible.

12. The temperature distribution over the cross section and along the member covered

by the furnace used in the experimental study is uniform.
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CHAPTER
2. EXPERIMENTAL INVESTIGATIN

Presented in this chapter is the outcome of an experimental study of the inelastic
behavior of steel beam-columns under nonproportional loading in the presence of

ambient and high temperatures.

2.1 Test Apparatus

The apparatus for the experimental study has four major components. These include
a pair of gimbals, partial rotational restraints to simulate flexible beam-column end
connections, a high temperature furnace, and a setup to apply biaxial bending moment.

Each of these parts of the apparatus is described in the following sub-sections.

2.1.1 Gimbals

Razzaq and McVinnie (10) developed a method for testing biaxially loaded steel
beam-columns. The apparatus involved the design of a pair of steel gimbals later included
in a textbook by Singer et al. (27). The same type of apparatus shown in Figure 3 was
designed and fabricated at Old Dominion University and used by Sanders (28) for a study
of angle section columns; however, it was modified to provide partial rotational end
restraint about one of the gimbal principal axes at both top and the bottom.

Sanders (28) described the fixtures as follows: “At each end, the base plate of the test
specimen bolts to a machined flat on a cross shaft which serves as the first free axis,
called x axis. The cross shaft is supported by a tapered conical roller bearing between two
opposite faces of a four sided gimbal box. The alternate faces of the box, in turn, are
bolted to spindles supported in a second set of conical tapered bearings, forming the
second orthogonal free axis called y axis. The supporting bearings for y axis are attached
to a fixed supporting structure for the top gimbal, and a linear slide powered by a
hydraulic jack with an inline load cell at the bottom gimbal.” Figure 4 shows one of the
gimbals. This arrangement provides nearly frictionless rotation of the entire gimbal about
the center-line of the stub shaft that corresponds to the x axis shown in Figure 4. The net
effect of the arrangement described is that rotation of the specimen ends is permitted

about any horizontal axis.
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2.1.2 Flexible Connections

To provide the partial rotational end restraint about one of the gimbal principal axes,
Lock Plate A shown near the left bottom part of Figure 3 is replaced by a 22-inch long
steel flat bar shown in Figure 5, which is called Machined Arm. This process created a
partial rotational restraint about the y axis identified in Figure 4. Bolt the Machined Arm
with the cross shaft of the gimbal and then they can move together, as shown in Figure 6.
The Cantilever Beam shown in Figure 6 was a sandwich beam and was constituted by
four steel flat bars. The Machined Arm was connected with the Cantilever Beam by a
moveable Link as shown in Figures 5 and 6. The function of the Cantilever Beam is to
prevent the movement of the Machined Arm with the help of the link; meanwhile it
provides the rotational restraints for the gimbal about y axis. The stiffness of the
rotational end restrains, k, depends on the distance between the link and the center of the
gimbal, L, and the stiffness of the Cantilever Beam. It is assumed that the stiffness of the
Machined Arm and the Link is infinite.

Figure 6 shows the schematic of the flexible connection. The Machined Arm acts like
a cantilever beam with a point load, P, at the end, but herein the stiffness of rotational end
restraint is k instead of infinity. The end- rotation and moment of the Machined Arm are
represented by 8 and m, respectively. The deformation of the Machined Arm, A,y
equals the deflection of the Cantilever Beam A, _peqm. The end moment m is calculated

as Equation 2,

m=PL=k@ (1)
pI?
Barm=18 =—— (2)
P(L-4)3
Ac_peam= ——BET—" 3

where E and I are the Young’s modulus and the moment of inertial of the Cantilever

Beam. Enforce A = Ac—peam. k i solved as follows:

3E1L?

k= 7Ene (4)
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This flexible connection functions as a spring with stiffness k, providing rotational

end restraint for the gimbal in y axis.

2.1.3 Furnace

To generate high temperature conditions, a furnace with a capacity of up to 1000°F
was developed. Figure 7 shows the inside view of the furnace. The furnace frame is built
with silica refractory insulation boards and covered by the flat-thin aluminum. Four “
shaped flat-thin bronze pieces as heating elements are adhered the top and bottom board.
Other heating elements are four stainless steel bars which cross the bronze pieces and
stand at each corner of the furnace. This homemade electronic furnace is 28.0 in. in
height, 24 in. in length and 18.5in. in width. The controller shown in Figure 8 adjusts and
controls the heating process. The time-temperature curves of the furnace are shown in
Figure 9. The uppermost curve is the standard ASTM E119 (29) temperature-time
relationship, the lower three curves up to almost 950°F are based on the actual tests
utilizing the furnace developed for this research. The three curves corresponding to the

three different experimental runs were obtained to check the repeatability of the

temperature-time data.

2.1.4 Axial Load and Biaxial Bending Devices

A 50-kip capacity electronic compression load cell mounted atop of a hydraulic
jack is under the linear slide as shown in Figure 3. The hydraulic jack is mounted to the
laboratory test-bed. The axial load P can be applied by manually controlling the hydraulic
jack.

Biaxial moment is applied at the top end of the specimen, using a moment arm bolted
to the cross-shaft center of the top gimbal as shown in Figure 10. The m(;ment arm is
made of the steel flat with dimensions 1.0X 2.0 X 24.0 in.. The angle between the
moment arm and the x axis of the gimbal is adopted 45° for applying biaxial bending
moments and 0° for applying uniaxial moment respectively. A moment-producing load W
is applied near the end of the moment arm, providing a pair of moment components

Mg, and Mp,, , which are expressed as below:
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M'px =W ey (5)
Mp, =W e, (6)

The load W is applied through two 0.75-in. diameter tie rods, each about 75 inches
long. These rods are separated at the top and bottom by 12-inch long 0.5-in. thick steel
plates forming a closed ring shown in Figure 11. The top plate (A) sits on the machined
arm by means of a ball and socked arrangement, shown in Figure 10. The bottom plate is
attached to a 5-kip capacity compression load cell using a similar arrangement. The 5-kip
capacity load cell (D) is mounted atop another hydraulic jack (C), which is bolted on the
underneath of top plate (C) of a steel table. The steel table is mounted to the laboratory
test-bed. Manually control the hydraulic jack, and the load W can be produced. Figure 12

shows the setup for the ambient test.

2.2 Specimens and Test Procedure

A-hot-rolled hollow tube steel with the dimensions 1.5 X 1.5 X 0.125 in. is adopted
for all of the experiments. The length of the specimen is 37.5 in., including the thickness
of the end base plates as shown in Figure 13. Concentricity of loading is determined in
the manufacture of the test specimens. Good test results require both precise and accurate
work by a skilled machine shop in production of the specimens. For this investigation, the
machine shop is provided with sketches which located the centroid of each section on its
respective base plate relative to the holes for the base plate bolts. A jig is used during
assembly to assure that the centroid of each section is centered above the intersection of
the axes of the gimbal.

This is necessary to facilitate insertion of the specimen between the two gimbal
boxes, which must be rotated to clear the specimen. Once the specimen is settled down,
the alignment of bottom and the top gimbal should be checked. And then the specimen is
covered by the furnace symmetrically to conduct high temperature tests.

There are four dial gauges installed at each corner of the linear slide assembly to
make sure that there is no rotation happening on it. Two dial gauges are set up at the
midpoint of the specimen to measure the deflections in x and y axes for the ambient

temperature tests. Four more dial gauges are used to measure the specimen top and
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bottom end-rotation about x and y axes for tests at both ambient and high temperatures.
One thermal couple is mounted at midspan point to measure the temperature of the
specimen for high temperature tests.

Load and moments are applied slowly, with regular stops at intervals of load to
record the temperature, axial load P, moment-producing load W and dial gauge readings.
The member load-carrying capacity is reached when either the deformation reading
begins to increase without increasing any of load, moment and temperature, or the
applied load cannot be increased anymore and start dropping, the steel member load-

carrying capacity is reached.

2.3 Material Properties
2.3.1 Mechanical Properties at Ambient Temperature

To determine the material yield stress g, and Young’s modulus E, tension coupon
tests were performed in accordance with ASTM E8-04 (30), Standard test Methods for
Tension Testing of Metallic Materials. Four sub-size specimens are cut from all four sides
of the hollow tube section, shown in Figure 14. Two strain gauges are mounted on the
midpoint of each side of the sample. Strain gauge values are recorded at each load level.
The experimental stress-strain curves obtained from tension coupon tests are shown in
Figure 15. The stub column tests were also performed following the stub-column test
procedure-Technical Memorandum No.3 (31). The average oy and E values found are
about 58.7ksi and 29,000ksi, respectively.

In this investigation, an elastic-perfectly plastic stress-strain model including elastic
unloading for the steel beam-column material used in this research at ambient
temperature is adopted, shown in Figure 16, where E is the Young’s modulus, gy is the
yield stress, and &y is the yield strain. The o- € relationship during material loading is
expressed as below:
oc=Ec¢ for —ey <e<egy (7a)
o = +oy fore>¢gy (7b)

o = —0y fore < —gy (7¢)
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During material unloading, the o- € relationship follows the path BC shown in Figure
16 is presented below:
o=0;—E (g —¢) (8)

where & and o, present the strain and stress values of the former load level, respectively.

2.3.2 Mechanical Properties at High Temperature

References 19, 25, 29, 32, 33, 34, 35, 36, and 37 represent some of the important
investigations conducted in the past by various researchers to determine the structural
steel properties at high temperature. The well-established constitutive model of 2005
Eurocode3 (35) is adopted, herein. The steel yield strength oy and Young’s modulus Ep

at any temperature T are given as follows:

Oyr = ko'y,'r Oy 9
ET = k ET E . (10)
where kg, . and kg are reduction factors for the material yield stress and Young’s

modulus at high temperature T.

Reduction factor kg, ,. is defined for various temperatures ranges as follows:

For 20°C<T<400°C: kg, =1 (11a)
For 400°C < T < 500°C: ko, = —2.2*T/1000 + 1.88 (11b)
For 500°C < T < 600°C: ko, = —3.1+T/1000 + 2.33 (11¢)
For 600°C < T <700°C: kg, = —2.4+T/1000 + 1.91 (11d)
For 700°C < T <800°C: kg o = —1.2*T/1000 + 1.07 (11e)
For 800°C < T < 900°C: kg, = —0.5+T/1000 + 0.51 (11f)
For 900°C < T < 1200°C: Ky, = —0.2 + T/1000 + 0.24 (11g)
For 1200°C < T: k,.. = 0.0 (11h)

Uy;r
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Reduction factor kg . is defined for various temperatures ranges as follows:

For20°C<T <100°C: kg =1 (12a)
For 100°C < T < 500°C:  kgy = —T/1000 + 1.1 (12b)
For 500°C < T < 600°C:  kgp = —2.9 X T/1000 + 2.05 (12¢)
For 600°C < T <700°C:  kgy = —1.8 X T/1000 + 1.39 (12d)
For 700°C < T <800°C: kg r = —0.4 X T/1000 + 0.41 (12e)
For 800°C < T < 1200°C: kg7 = —0.125 X T/1000 + 0.15 (12f)
For 1200°C < T: kgr = —0.0 (12g)

In this study, an elastic-perfectly-plastic material stress-strain relationship at high
temperature T is adopted including material elastic unloading as shown in Figure 17.

During material loading, the following expressions are applicable:

Op = ET Er for — & < Er < Ery (13a)
ar = +0'y7' for Er . Ery (13b)
Or = —0Oyr forer < —gpy (13¢)

For the material unloading part, the a7- & relationship follows path BC as shown in

Figure 17for which:
or = ory — Er (Srf - 81‘) (14)

The thermal strain mode of the 2005 Eurocode3 (35) is adopted herein and presented

in Equation 15.

1.2 x 107°T + 0.4 X 107872 — 2.416 x 1074, For T < 750°C
&n =1411x1072 For 750°C < T <860 °C (15)
2x107°T - 6.2 x 1073, For 860°C < T < 1,200°C

It should be noted that there is negligible difference between the thermal strain model
proposed by ASCE (36) and that of EC3. The ASCE model assumes a continuously
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increasing thermal strain while the Eurocode model accounts for the phase change in the

temperature range of 750-850°C. Eurocode model assumes a constant thermal strain from
750°C to 850°C.

2.4 Load Paths

Referring to Figure 20, four different mechanical load paths are used for steel beam-
columns tests, as described below:
LP1: The axial load P is first applied incrementally and then held constant, followed by
gradually applying moment Mp,, until the load-carrying capacity of the member is
reached. This corresponds to the path OAE.
LP2: The moments Mg, is first applied and then held constant, followed by gradually

increasing axial load P until maximum load is reached. This corresponds to the path OGE.
LP3: The axial load P is first applied incrementally and then held constant, followed by
gradually increasing equal end moments Mg, and Mg, until the load-carrying capacity of
the member is reached, which corresponds to the path OAD.

LP4: The end equal moments Mp, and My, are first applied and then held constant,
followed by gradually increasing axial load P until the strength limit is reached. This
corresponds to the path OFD.

Figure 21 shows the load-temperature sequence for designed high temperature tests.
The symbols T, M and P represent the temperature, applied resultant moment and applied
axial load, respectively. In this investigation, seven different load paths are adopted as
described below:

OPT: The axial load is first applied incrementally and then held constant, followed by
elevating the temperature until the member collapses.

OTP: The temperature, T, is firstly increased from ambient temperature and then held
constant, followed by gradually applying axial load P until the member fails.

OMT: The bending moment is first applied incrementally and then held constant,
followed by elevating the temperature until the member fails.

OTM: The temperature T is firstly increased and then held constant, followed by

gradually applying bending moment M until the member collapses.
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OTPM: The temperature T is firstly increased from ambient temperature and then held
constant. Next, the axial load P is applied and held constant, followed by slowly applying
moment M until collapse occurs.

OTMP: The temperature T is firstly increased and then held constant. Next, the moment
M is applied and held constant, followed by axial load P until collapse occurs.

OMTP: The moment M is firstly applied gradually and held constant. Next, the
temperature is increased and then held constant, followed by applying axial load P until

collapse occurs.

In the above mentioned load paths, M represents either the uniaxial moment or the

resultant moment creating biaxial moments Mg, and Mp,, .

2.5 Boundary Conditions

Two different mechanical boundary conditions are used in the experimental study.
One type is based on pinned conditions about both x and y axes, and another is a
combination of partial rotational restraint about the y axis while the pinned conditions
about the x axis are maintained. The rotational stiffness of the connection is calculated by
using Equation 4.

In general, a member at high temperature has three different situations for the axial
restraint to thermal expansion, which are unrestrained, end restrained and partial end
restrained, shown in Figure 22. The setup of laboratory apparatus only allows two cases
happen: unrestrained and partial end restrained. The specimen can expand freely during
heating if the four screws are released, which bolt the bottom end of specimen to the
gimbal. The specimen has the axial restraint to thermal expansion caused the additional

compressive force if four screws are tightened during heating.

2.6 Experimental Results

The entire test results are summarized in Tables 1 through 5. All of the load-
deflection and end rotation curves are presented in Figures 23 through 34. All the letters
in the name of the specimen have special meaning. Herein, symbol RT represents the
ambient temperature; U represents uniaxial loading; P represents the pinned boundary

conditions; B represents the biaxial loading; S represents the partial boundary conditions;
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HT represents the high temperature. In these figures, Ty and T, represent the temperature
of 500°F and 900°F, respectively. All the values used in the tables and curves are

dimensionless and defined as below:

p=P/P, 16)
m, = M, /M,y (17)
m, = My /M,y (18)

where Py is the cross-sectional full plastification load; M,y and M,y are the yield bending
moments about x and y axes.

Table 1 summarizes the biaxial loading test results at ambient temperature with
pinned and partial rotational restrained boundary conditions. The maximum axial load for
RTBS-7 is 0.593, which is 7.8% higher than that of RTBP-1. For RTBS-8, the maximum
bending moment values for my and m, are 0.858 and 0.858, respectively, which are 5.6%
higher than those of RTBP-2. The boundary conditions for RTBS-7 and RTBS-8 are
partial rotational end restrained boundaries, and pinned boundary conditions for RTBP-1
and RTBP-2. These two comparisons show that the end restraint can increase the member
load-carrying capacity.

For the tests with specimens RTBP-3 through RTBP-6 at ambient temperature, the
boundary conditions are pinned. For RTBP-3, following load path LP3, the maximum
values for p, m, and m,, are 0.334, 0.465 and 0.465 respectively. For RTBP-4, following
load path LP4, the maximum values for p, m, and m, are 0.334, 0.465 and 0.465
respectively. The load path for RTBP-4 is exactly the reverse of RTBP-3, but their
maximum loads are same. For RTBP-5, following the load path LP4, respectively, the
maximum moment value for p, m, and m, are 0.239, 0.616 and 0.616 respectively. For
RTBP-6, following the load path LP3, the maximum moment value for p, m, and m, are
0.239, 0.661 and 0.661, respectively. The maximum moment for RTBP-6 is about 7.3%
higher than that of RTBP-5. It is found that the influence of load sequence on the
behavior of steel beam-column with pinned boundary conditions is not significant.

The boundary conditions for the tests with specimens RTBS-9 and RTBS-10 at
ambient temperature are partial rotational restrained in y axis and pined in x axis. The end

restraint spring stiffness is 107.53in-kip/rad. For RTBP-9, following the load path LP3,
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the maximum moment value for p, m, and m, are 0.257, 0.636 and 0.636, respectively.

For RTBP-10, following the load path LP4, the maximum moment value for p, m, and
m,, are 0.268, 0.636 and 0.636, respectively. The maximum axial load for RTBP-10 is
about 4.23% higher than that of RTBP-5. It is found that the influence of load sequence
on the steel beam-column with pinned boundary conditions about the x axis and partially
rotation restrained about the y axis is not significant.

Table 2 summarizes the uniaxially bending test results with pinned and partial rotation
restrained boundary condition at ambient temperature and different load paths. The result
for partial rotation restrained specimen RTUS-17 (1.620) is 27.9% higher than that of
RTUP-11 (1.266) with pinned boundary conditions, which shows that the end restraint
can increase the member maximum load. The maximum value p for RTUP-13(0.406),
following load path LP1, is about 5.1% higher than that of RTUP-12 (0.386), following
load path LP2. The maximum value m,, for RTUP-14 (0.995), following load path LP2,
is about 3.6% higher than that of RTUP-15 (0.960), following load path LP1. The
maximum value p for RTUS-18 (0.398), following load path LP2, is about 3.1% high
than that of RTUS-17 (0.386), following load path LP1. The maximum value m, for
RTUP-20 (1.034), following load path LP1, is about 4.1% higher that of RTUP-19
(0.993), following load path LP2. The results show that the influence of load path on the
steel beam-column subjected to uniaxial bending is not significant.

Table 3 summarizes the dimensionless maximum loads values for 10 uniaxial
bending tests at 500°F. The load-temperature sequence for tests HTUP-1 through HTUP-
5 is heating the specimen to 500°F without axial resistant to thermal expansion firstly,
and then gradually starting to apply the mechanical load. For HTUPR-6, the load-
temperature sequence is applying bending moment firstly, and then heating the specimen
to 500°F, and lastly applying axial load p until the member fails. Obtained results show
that at 500°F, the load-carrying capacity of the member is independent upon the load-
temperature sequence for beam-column with pinned boundary condition and under
uniaxial loading. However, for the partial boundary condition, the maximum moment m,
for HTUS-10 (0.694) is 16.6% higher than that of HTUS-9 (0.595), which shows that the
member load-carrying capacity is dependent on the load sequence at partial boundary
condition. By comparing the results HTUP-1 to HTUS-7, and HTUP-2 to HTUS-8, it
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indicates that end restrain can increase steel beam-column failure load at high
temperature.

Table 4 presents the dimensionless maximum test results for biaxial bending tests at
500°F with pinned boundaries in both x and y axes. For this group of tests, the specimens
were heated firstly with or without axial resistant to thermal expansion and then different
biaxial bending moments were applied. There is no axial resistant to thermal expansion
for tests HTBP-11 to 13; the tests for HTBPR-1 through HTBPR-4 are with axial
resistant to thermal expansion. The maximum p value for HTBPR-1 is 0.502, which is 7.5%
(0.035) higher than that of HTUP-2 (0.467). The maximum m, and m, value for
HTBPR-2 is 0.741, which is 7.1% (0.049) higher than that of HTBP-11 (0.692). The
above two comparisons indicate that axial restraint to thermal expansion doesn’t affect
the load-carrying capacity at 500°F. By comparing the results HTBP-12 with HTBP-13
and HTBPR-3 with HTBPR-4, it shows that the load sequences do not have a significant
influence on the load-carrying capacity for pinned members even at high temperature
500°F.

Table 5 collects the test results at 900°F with pinned boundary conditions. All the
tests in this group are with axial resistant to thermal expansion. For HTBPR-6, the
specimen was heat to 900°F firstly and then the axial load p was applied gradually until
collapse occurs. For test HTBPR-7, the axial load p of the same magnitude reached in
HTBPR-6 is firstly applied incrementally and held constant; then the specimen was
heated until the critical temperature was reached. The axial load p value starts dropping
fast when the temperature is getting around 750°F, which indicates that the collapse
occurs and critical temperature is reached. For HTBPR-8, the specimen was heated to
900°F, and then the biaxial moment was applied gradually until the maximum value is
reached. The peak value for m, and myis 0.214. For HTBPR-9, biaxial moment of the
same magnitude obtained in HTBPR-8 was firstly applied gradually, and then held
constant and then the specimen was heated until the critical temperature was reached. The
biaxial moment value started decreasing when the temperature is closing to 775°F. For
test HTUPR-10, the specimen was heated to 900°F, and then uniaxial moment was
applied gradually until the collapse occurs with the peak value, 0.402. For test HTBPR-

10, uniaxial moment of the same magnitude obtained in HTBPR-10 was firstly applied
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incrementally and then held constant and the specimen was heated to fail. When the
temperature was near around 750°F, the moment started dropping fast which means that
the load-carry capacity is reached. The critical temperature for the member with load-
temperature sequence heating the member firstly and then applying mechanical load, is
about 16.7% lower than that of applying mechanical load firstly and then increasing the
temperature. These results show that the load-temperature sequence has a definite effect
on the member strength.

Table 6 compares the maximum values obtained from ambient temperature high
temperature tests. It is clear that high temperature can reduce the load-carrying capacity
of steel members. Also the axial restraint to thermal expansion can significantly reduce
the failure load for member at high temperatures. For example, for only applying the
axial load test, the maximum axial load at ambient temperature is 0.617, at 500°F with no
restraint to thermal strain is 505; at 900°F with restraint to thermal strain is 0.123. For
only applying biaxial bending moments, the maximum bending moment m,. and m,, at
ambient temperature is 0.811, at 500°F without axial restraint to thermal expansion is
0.761; at S00°F with axial restraint to thermal expansion is 0.0.741; for 900°F with axial
restraint to thermal expansion is 0.214. Same to the uniaxial bending tests, the maximum
applied load values at the ambient temperature, 500°F and 900°F are 1.266, 1.100 and
0.402, respectively.

Figures 23 and 24 show the moment versus deflection and rotation curves for
uniaxial loading tests at the ambient temperature with pinned (RTUP-11, RTUP-12 and
RTUP-15) and partial rotational restrained boundary conditions (RTUS-16, RTUS-17 and
RTUS-20). All the curves start with linear part and then follow with plastic part until the
maximum loads are reached. With the initialed applied axial load p equals to 0.0, 0.233
and 0.386, and the maximum uniaxial bending moments equal to 1.266, 0.960 and 0.648,
respectively. It is clear that increasing the initial applied axial load can reduce the
uniaxial moment-carrying capacity. Their corresponding deflections at failure are 0.490,
0.476 and 0.441, respectively. It is found that the maximum deflection is small if the
applied axial load is relative large.

Figures 25 and 26 describe load versus midspan deflection and end rotation curves

for uniaxial bending tests at ambient temperature. For tests with pinned boundaries, the
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maximum axial load p values are 0.550, 0.406 and 0.233 with initially applied uniaxial
moment m,, equal 0.0, 0.648 and 0.995, respectively. For tests with partial rotational end-

restraints, the peak value for p reaches to 0.593, 0.398 and 0.371 having initialed applied

uniaxial moment m,, 0.0, 0.933 and 0.993, respectively. It is clear that increasing the

initial applied uniaxial bending moment can reduce the axial load-carrying capacity. Also,
it is found that the partial rotational end-restraints do increase the strength of steel beam-
columns.

Figures 27 through 30 describe the moment- and load- deflection and end rotation
curves for biaxially loading tests at ambient temperatures with pinned and partial
rotational restrained boundaries. All the curves start with linear part following with
plastic part, which is similar with that of uniaxial bending tests. The influence of end
rotational restrain on the behaviors of steel beam-column subjected to biaxial loading is
significant, which increases the member load-carrying capacity.

Figure 31 depicts the moment versus end rotation curves for the uniaxial bending
test at T1= 500°F and T2= 900°F. All the curves start with elastic part following with
plastic part. At last part the slope of the curve is close to zero. The slope for the moment
versus end rotation curve at 900°F is smaller than that of at 500°F. The slope of the curve
for the test with partial boundary condition is larger than that with pinned boundary
conditions. It is clear that the rotational end-restraint increases the steel member strength
limit and the high temperature reduces the steel member strength. Additionally, the
initially applied axial load reduces the maximum value of the uniaxial bending moment.

Figure 32 illustrates the load versus end rotation curves for tests at 500°F with pinned
or partial rotation restrained boundary conditions. The maximum rotation for the test with
only applying the axial load is smaller than that of with combined loading of axial load
and moments. Both the maximum load values and the slope of curves for partial
boundary conditions are larger than those of with pinned boundary conditions.

Figures 33 and 34 show moment- and load- end rotation curves for tests with biaxial
loading at 500°F and 900°F with pinned boundary conditions with or without axial
restraint to thermal expansion. The shape of curves is the same with those of from
uniaxial loading tests at high temperatures. In Figure 31, the slope of the curve for the test

with specimen HTBPR-6 is even smaller because the axial restraint significant affects the
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steel member load-carrying capacity. The load-temperature sequence for HTBPR-6 is
that the specimen was heated to 900°F firstly with axial restraint to thermal expansion
firstly and then the axial load was applied gradually until it fails. The rotation curve does
not start from the zero value (around 0.004 rad.) because of the additional compressive
force incurred by restrained thermal expansion. In other words, heating the steel members

with axial restraint to thermal expansion is equivalent to applying an axial load.

2.7 Temperature-load Relationship

Table 7 summarizes the dimensionless maximum loads for tests at temperatures of
T, = 72°F, T, = 500°F, and T3 = 900°F. The value p represents the dimensionless
maximum axial load values when only the axial load was applied. The symbol
m,, represents the dimensionless maximum bending moment for the tests when only
uniaxial bending moment about y axis was applied. The last column of Table 7
corresponds to the case only applying biaxial bending moment, which is, m, and m,, are
simultaneously applied about both x and y axes until the maximum moment values are
obtained. Figure 35 describes the temperature versus applied axial load or moment curves
from those three tests mentioned above. What is the critical temperature corresponding to
zero load-carrying capacity? The Lagrange polynomial interpolation (38) is adopted to
develop the relationship between the temperature and the maximum load. Then the

relationship between the dimensionless maximum load Y and temperature T is presented

~as below:

(T-T)(T-T3) (T-T)(T -T3) (T-T)(T~-T3)

e ¢ P TC A Sy Py T Py 8 Sl ¢ A o e

(19)

Substitute the values Y; = p; = 0.550, Y, = p, = 0.502 and Y; = p; = 0.123into
Equation 19 and the relationship between the temperature and dimensionless maximum

load p can be developed as shown below:

p(T) = (—8.819 x 10~7) T2 + 0.00019891 T + 0.60726 (20)
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In order to determine the value of T which will result in a zero axial load capacity,
p(T)in Equation 20 should be set equal to zero. Thus, with p(T) = 0.0 in Equation 20,

the following limiting temperature value is obtained:
T, =991.3°F.

Substitute the values Y; = my; = 1.266, Y, =m,, = 1.100and ¥; = m,; = 0.402

into Equation 19 and the relationship between the temperature and dimensionless

maximum bending moment my can be expressed as shown below:

m,,(T) = (1.63551E — 6) T2 + 0.000545 T + 1.236522 (21)

In order to determine the value of T which will result in a zero uniaxial moment
capacity, m, (T) in Equation 21 should be set equal to zero. Thus, with m,(T)= 0.0 in

Equation 20, the following limiting temperature value is obtained:
T,,=1051.8°F

Substitute the values Y; =m,, =my, = 0811, ¥, =m,, =my, =0.741 and
Y3 = my3 = my3 = 0.241 for biaxial bending tests into Equationl9 and then the

relationship between the temperature and dimensionless maximum biaxial bending

moment my and my can be expressed as shown below:
my(T) =m, (T) = (—1.38878E — 6) T? + 0.006627 T + 0.7748 (22)

In order to determine the value of T which will result in a zero load-carrying
capacity, m,(T) =m, (T)in Equation 22 should be set equal to zero. Thus, with
m,(T) =m,(T) = 0.0 in Equation 22, the following limiting temperature value is

obtained:
T.;=1005.9°F.

The collapse temperature T, for the member without any applying load and moments

is solved by getting the average of T,, T,.; and T,3:
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T, = (T, + Top + T2)/3 = 1016°F.

Therefore, the failure temperature is 1016°F for the steel beam-column with cross
section 1.5 X 1.5 x 0.125in., yield stress 58.7ksi and Young’s modulus 29000ksi and a

specified axial restraint to thermal expansion.
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CHAPTER
3. THEORECTICAL ANALYSIS FOR STEEL BEAM-COLUMNS
AT AMBIENT TEMPERATURE

The theoretical analysis of the behavior of nonproportionally loaded imperfect
nonsway steel beam-columns at ambient temperature is presented in this chapter. The
imperfections include cross-sectional residual stresses and initial member crookedness.
The materially nonlinear ordinary differential equilibrium equations for nonsway
imperfect beam-columns are developed. An iterative procedure exploiting a technique
called the finite integral approach is formulated. To obtain the load and the deformation
dependent coefficients of the differential equations, the finite integral approach is
intertwined with a cross-sectional elasto-palstic tangent stiffness procedure. The
modeling study of end restraints for the beam-column is conducted. The influence of load
sequence on the behavior of steel beam-columns having I-section or hollow rectangular

section is investigated.

3.1 Theoretical Analysis at Ambient Temperature
3.1.1 Thrust-moment-curvature Relations

Figures 36 and 37 show the discretized hollow rectangular and I-shaped sections
with width B, depth D, and wall thickness ¢ for the flange and t,, for the web,
respectively. Each wall of the cross section is divided into subareas. The symbol
A; represents a typical elemental area. The residual stress distribution patterns for hollow
rectangular section and I-section shown in Figures 18 and 19 are used. The elastic-
perfectly-plastic stress-strain relationship for steel beam-column material including
elastic unloading is adopted, shown in Figure 16

The normal strain &, at a point (x, ¥) of the cross section subjected bending moments

M, and M,, about x and y axes and axial force P is expressed as:

E=g+ Py —Pyx+e, (23)
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in which & is the average axial strain; @, and @, are the bending curvatures about the x

and y axes, respectively; &, is the residual strain. The cross sectional equilibrium

equations for the axial thrust, bending moments about x-axis and y-axis can be written as:

P=-[,0dA (24)
My=[,0ydA (25)
M, =—[,0xdA (26)

Substitute the elastic-perfectly plastic stress-strain relationship into Equation 17

through 19, and then the cross-sectional equilibrium equations are able to be expressed:

P=—[,,0dA~ [, 0y dA (27)
My=/[,0.ydA+][ ap0r Y dA (28)
My=—[,0.xdA-[ a0 X dA (29)

in which dA is an elemental area of the cross section and o is the normal stress on that
area; the subscripts e and p refer to the elastic and plastic elements, respectively, of a
partially plastified section; [ arepresents the cross-sectional integration. Since plastic

behavior is load path dependent and usually requires step by step calculations that
follows the history of loading, it is only possible to establish the relationship between the
infinitesimal generalized stresses increments dand the infinitesimal generalized strains & .

The strain rate is presented below:
E=6+ Py —Pyx +&, (30)

Due to the residual stress is independent of time, therefore &, = 0. The strain rate

equation can be written as
£=£y+y—Pyx (31)
The stress-strain rate relationship is given by:

6=E € (32)
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in which E,, the tangent modulus, equals E if the material is elastic; it equals zero if the
material is in plastic range. The cross-sectional load and deformation vectors, {f} and {8},

are expressed as follows:

{f}1= {P M, My }T (33)
{6} ={¢, & q’y }T (34)
The responding cross-sectional load and deformation rate vector are expressed as:

{f} = {P Mx My }T (35)
{6} ={& dsx (ﬁy }T (36)

The elements of load vector rat { f } are calculated as follows:

P=—fddA=—jEte'dA (37
A A

Mx=f6ydA=]Ete'ydA (38)
A A

My=—]ddi=fEte'di (39)
A A

The relationship between the load rate vector {f } and deformation rate vector {8} is

expressed as follows:

{f}=K1{8} (40)
where [k] is the cross-sectional tangent stiffness matrix, which is defined as below:

k}=| [E.ydA [E,y*dA —[E.xydA (41)
~[E,xdA —[E.xydA [E.x*dA

All the elements in the [k] matrix are constant throughout the elastic range. However,
in the material plastic range, the elements of [k] matrix are functions of the current state
of stress and strain as well as the properties of the material and cross section. Tangent

stiffness E, equal zero for the yield area, therefore, only the area of the elastic core will
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contribute to the integration in Equation 41. In other words, the further increment of
external forces is withstood by the remaining elastic area of the section only.

Thus, given an axial load P, and a pair of bending moments M, and M, the strain
distribution can be found while following Equation 40. In other words, by cross-section
tangent stiffness method the compatible €,, ¥, and @, are able to be obtained, which
satisfies the equilibrium for P, M, , and M,,. Santathadaporn and Chen (41) presented the
tangent stiffness method for biaxial bending. Figure 38 (41) shows the convergence of
this method, which starts with a known state A and incrementally converges to the next
state B for which only load vector is known. Using the solved strain distribution, the
internal resisting forces are evaluated by numerical summation over the discretized cross
section shown in Figures 36 and 37. This is readily done by replacing the integrals in
Equations 27 through 29 by summations and dA by A;. The maximum load-carrying
capacity of the cross section is reached if the determinant of the tangent stiffness

matrix [k] is approaching zero.

3.1.2 Equilibrium Equations for Nonsway Beam-column

An imperfect and partially restrained nonsway beam-column AB with length L is
shown in Figure 1. The origin of the longitudinal coordinate z is at A. The total deflection

U and V including member initial crookedness are given by:
U=u+u, (42)

V=v+v, (43)
where u and v represent the deflections incurred by the applied load and moments; u,;
and v,; represent the initial crookedness in the xz and yz planes, respectively, and given

by:

Uy = U, Sin (7_23) (44)
Vpi = ¥, Sin (%) (45)

In Equations 42 through 45, u, and v, are the mid-span initial amplitudes taken as
L/1000 for a crooked member and as L/100,000 for a nearly straight one.
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If the end restraint moments at ends A and B of beam-column are represented,
respectively, by my,, myy,, mp, and mg, then the total external moments M, and M, at

any location z are expressed as follows:

M, =PV —my, + M, +2zR, (46)
M, =—-PU+my, — M, +2zR, 47
where R, and R, are given by :

Ry = (May — Mgy, — myy +mp,)/L (48)
Ry = (—MAx + Mgy, + my, — me)/L (49)

Substituting Equations 7 and 23 into the first term on the right hand side of each of
Equations 27 through 29, the following materially nonlinear ordinary differential

equations are obtained:

a1 tapv'+a3u’' —P,—~P =P (50)
A1 60+ Az V"' + a3 U’ + Myyp + My, = M, (51
azq & + as; v+ ass u'’ — Myre - Myp = My (52)

in which @, = v" , &, = —u", and the primes designate differentiation relative to z. As
the quantities, a;; terms are constant coefficients throughout the elastic range. However,
for the partial yield section, a;jterms become functions of v” and u”. The symbols P,
M,,. and M, represent the resultant axial load, bending moment about x-axis, and
bending moment about y-axis, respectively, due to the residual stress from the cross-
sectional elements, which are in elastic range. Symbols P, , M,, and M,,,, represent the

summation of the axial load, the bending moment about x-axis, and the bending moment
about y-axis, respectively, from the plastic areas. All the terms are defined as below:

a,, = —E A, (53a)

12 = E Sye (53b)



a3 = E Sye
Az1 = ESye
Azz = —E Iye

a3 =-E Ixye

azy = —E Sy,
azy = Elyye
az; =E |,

A, = [, dA
See = [ 4, ydA
Sye = [, x dA

Le=[,,y*dA
Le=[, x*dA
Liye = fAexydA
P=/[, 0.dA

P, =praydA
Myre = J 4,0,y dA
Myre =, 0rx dA
Myp = [ ,, 0v y dA
My, = praydi

o, =Ee¢,
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(53c)
(53d)
(53¢)
(33D
(33g)
(53h)
(53i)
(33))
(53k)
(531)
(33m)
(53n)
(530)
(33p)
(33q)
(33r)
(33s)
(53t)
(53u)

(53v)

where A and Ajrepresents the elastic area and the plastic area, respectively. At the global

level, Equation 50 is enforced by first solving it for &, explicitly. And then & , M, ,
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and M, are substituted into Equation 51 and 52 utilizing Equation 46-49, which results

into the following two materially nonlinear ordinary differential equations as shown

below:
(—EsgeSye + EAeliye Ju" + (—Esge? + EAelye)v" + AP v
L—-z z
-A, I my, — 4, -l:me = Fyapptiea + Fyre +Fp (54)

(=Esfe + EAcLye)u” + (=EsyeSye + EAglye V" + AP u

L

where Frappliea and Fyqpprieqarepresent the moment vectors due to the applied moment

_..Ae

z
My + A, 7 Mey = Fyappiiea + Fyre +yp (55)

and axial load; Fy,. and Fy,, represent the moment vector caused by the residual stress in
the elastic area; F,, and F,, represent the moment vector due to the plastification. All the

terms are defined below:

(z-1L) z
anpplied = —Sye P+ A.(—P vy + L My, _ZMBx) (56a)
Fere = —Sye Fre + Ag Myre (56b)
Fxp = —Sxe Py + A My, (56¢)
(z-1L) z
Fyapplied = ""'Sye P+ Ae(—P Ug + I MAy - 'I:MBy) (56d)
Fyre = —Sye B+ A, Myre (56¢)
Ep = =5ye By + Ac My (56f)

3.2 Boundary Connections
3.2.1 In-plane Inelastic Analysis of Continuous Beam

Figure 39 shows a continuous and symmetrical beam on four simple supports A,
B, C and D. The plastic moment for span AB and CD is represented by m, and
M, represents the plastic moment of spanBC. The relationship between m,, and M,
depends on the cross-sectional dimension distribution along the beam, M, might be
larger, equal or smaller than m, . Herein, it is assumed that the material properties are

same along the beam AD. In Figure 39, (a) shows the case for M, > m,; (b) shows the
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case for M, < m, ; (c) shows the case for M,, = m,.The applied moment M, is located
at the support B and C, respectively. The maximum value for the applied moment, M,,
depends on the relationship between M, and m,,.The symbol © describe the slope at the
support B and C. The inelastic relationship between the applied moment M, and end
rotation © for beam BC is able to be developed based on the moment-curvature (M-®)
curve. Here, the symbol M represents the internal moment of cross section.

The relationship M-® is developed for the hollow rectangular cross section herein.
Figure 40 shows the plastification pattern, stress, and strain distribution. The inelastic

moment-curvature relationship can be presented as follow:

Elasti : Mm_2 57
asticrange: 4= o (57)
First inelasti M _BD® BD? (qby)z ) -
irst inelastic range: w, =8l 7L \@ & (58)
2
_ , M BD® D(D-2t)(B-2t,) D3, Py
Second inelastic range: _M—;— Bl - 81, - 121, (—5) (59)

where My is the yield moment about x axis; ®y is the curvature responding to My. The
curvature @ can be expressed explicitly from Equation 57 through 59. Then, the end

rotation @ can be evaluated by using the moment area theorem, which is shown below:

L/2
9=| @dz (60)
0

Equation 60 is also available for the inelastic range analysis. Therefore, the inelastic
moment-slope relationship is able to be developed.

Inelastic analysis the beam ABCD to get the relationship between M, and © can be
simplified to analyze the beam BC, shown in (¢) of Figure 39. The beam BC is a simple
support beam with the partial rotational restraints at end B andC. Symbols k and m
represent the spring stiffness and resistant moment, respectively.

If my, = My, the relationship between m and 6 follows Equation 61a and 61b:

M
m=ko; 0505(—-,;’-”—) (61a)

Mp
m= Mp; 8> (TC—) (61b)

If m, <M, , the relationship between m and 8 follows Equation 61c and 6ad:
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m
m=ko; oses(T”) (61c)

My
m = my; 6= (D) (61d)

The analysis presented in this sub-section is used to obtain the results presented in

Section 3.7 and Section 5.3.3.

3.2.2 Boundary Conditions

Figure 41 describes three different connections m - @ relationships. Line OAB, line
OAC and line OAD describe the linear model, bilinear model and elastic-plastic model,
respectively. Symbols m and 8 represents the resistant moment and end rotation,
respectively. The relationship between m and 6 for linear connection model is expressed
in Equation 62 as below:

m=k,0; 6 =0 (62)
where kg is the stiffness of the spring. For the bilinear model, the relationship between m

and @ is expressed in Equations 63a and 63b as below:
m=k,0;, 0<0<8, (63a)
m=mg+ky(60—6,); 8=26,=20 (63b)

where k, is the initial spring stiffness and is reduced to k, if the rotations is larger than
8, . For the elastic-plastic model, the relationship between m and 8 is expressed in

Equations 64a and 64b as below:
m=k,6; 056<86, (64a)
m=mg; 8 26,=20 (64b)

where k, is the initial spring stiffness and m,, is the plastic moment for the spring.
Symbols 6y, 0py, 64y and g, represent the end rotations of the beam-column
shown in Figure 1, which are the first derivative of deflection. The relationships are

expressed as below:
Oax = v'(0); B4y = u'(0); Opx = v'(L); 5y = u'(L) (65)
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Since the column ends are not allowed to sway, the following four boundary
conditions are enforced:
v(0) = v(l) = u(@0) =ull) =0 (66)
The boundary conditions prescribed in this section will be utilized in solving

Equations 54 and 55.

3.3 Finite Integral Formulation

Finite integral method is a promising method of solving differential equations. It is
generally of superior accuracy by comparing with the well-known finite-difference
method. Finite integral method has been used successfully in the past by Brown and
Trahair (40) to obtain numerical solutions of linear ordinary differential equations on
sequential computers. An example of the application of this method for the nonlinear
analysis of single angle columns is given by Usami and Galambos (42). Briefly, the
procedure involves replacing the continuous differential equations which must be
satisfied everywhere by a series of simultaneous equations which represent the
differential equations at a series of discrete points. All but the highest differential
coefficients in these equations are eliminated by replacing them by linear combinations of
the highest differential coefficients and of the constants of integration, these
combinations being determined by the method of finite integrals. The resulting
simultaneous equations may be combined with the boundary conditions and solved for
the highest differential coefficients. The discrete values of the dependent variables are
then calculated by back-substitution into the finite integral expressions.

If the variation of a function f over an interval z; < z < zj,;such thatz;,; —z =

h is approximated by a parabola:

f=az’+bz+c (67)
and fitted to three adjacent values of f, it can be shown that:

[ fdz =35 fi+8 fisr = fird) (68)
[74° f dz = S (4 £+ 16 fir + 4 fis2) (69)

For an integral defined by:
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ith

li = ] f dz (70)
0
The matrix equation formed by single Equation 62 and 63 is written as:

h
{i}= 17 [N {f} | (71)
in which :
B=04L1...... ny (72)
F=hhlu- ¥ (73)

and N is a square matrix of size n + 1 defined by:
0 0 0 0 00

5 8 =1 0 0 0
4 16 4 00 0
416 9 8 -1 0 « - -

INl=|4 16 8 16 4 0 - - - (74)

4 16 8 16 9 8

If the function [ like f is approximated by a series of parabolas, the second integral

m of the function f given by:
ith ith (ith
mi=f ldz=f f fdzdz (75)
0 0o Jo
can be approximated by:
B A2
m=(g5) W20 (76)
Thus, for a function F, the integrals
ith
F" = ] FV dz (77)
0
ith cith
F' =f f FVdzdz (78)
o Jo
ith (ith pith
F/ = f f f FVdzdzdz (79)
o Jo Jo

ith pith (ith pith
F,= f f f f FV dz dz dz dz (80)
0 0 0 0
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can be approximated, respectively, by :

(F") = 2= [N (F) )
@ =(2) wr e 52)
@)= () WP ) #3)
= (1) ™) (5)

Here, [N]*= [N] [N]; [N]°= [N] [N] [N]; [N]* = [N] [N] {N] [N].

Besides u" and v",u, v, u'(0),u'(L), v'(0), and v'(L), these lower order derivatives

are to be expressed in terms of the respective second order derivatives of u and v. Thus:

Z
u' = f u”dz + A, (85)
0
Z r2Z
u=j f u'dzdz+ Ay z + A, (86)
0 Jo
zZ
v = f v'dz + B, (87)
0
FA V4
v=f f v'dzdz+ B, z+ B, (88)
o Jo

in which A; and B; are constants of integration. These four constants are evaluated using

boundary conditions given by Equation 57 and 58 as follows:

1 L pL
A1=—-—f [u” dz dz
LJy Jo

A2=0
1 L oL
B, =—- v dzdz
0 Y70
Bz=0

Therefore, u and v can be expressed by u" and v" as follows:
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z pz 7 (Ll
u=] ] u"dzdz—zj fu"dzdz
0 Jo 0 Jo
Z rZ z L ,L
v=f f v"dzdz—zf fv”dzdz
0 Jo 0 Jo
h R\ 1
—_— __2 2 m _ (2) "
u= VP @) -(35) 7 @[N] (89)
h hy\2 1
— (—2 2y o) 2
v= () NP0 (12) L

@|N ) (90)

The solutions for u’(0), w'(L), ¥'(0) and v'(L) are shown below:

0 L L L (L
1 1
u’(0)=f u”dz-—-—f ju"dzdz=——f fu”dzdz
0 L)y Jy Lly Jy

V@)=~ 7 ({‘5)2 [v2] @y O1)
u'(l) = fLu” dz —% foLu” dz dz
W@ = o [99) - 1 () W) wn 52)

Similarly, for v'(0) and v'(L) :

v'(0) = --}(%)2 (V2] ) (93)
@) =5 [V - 7 ({’5)2 (V2] ) (94)

where [N,Ez) ] is the last row of the matrix product [N]? and [N,Sl)] is the last row of the

matrix[N].
Substitution u, v, u'(0), u'(L), v'(0), v'(L) into Equation 47 and 48 gives the

following system of 2n simultaneous nonlinear equations :
[K1{4"} = {F} (95)

where [K] is the global stiffness matrix of the order 2n X 2n; the vector {4 }consist of

the second order derivatives of u and v and is described as follows:
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(AH} —_ {ullv"}T — {u;l ué’ uél ...... ué;l_l) u;{ vil vé’ vél ...... vé;"—l) vrlll} (96)

The moment vector [F] is expressed as below:
- {anpplied} + {F;cre} +{Fxp}

{Fyapptica} + {Fyre} +Ep}

[F] (97)

The problem presented in this chapter is reduced to solve Equation 95 repeatedly for
various external load levels until the beam-columns reach the state of collapse. In the
elastic range, F, and F,, are zero vectors and the rest moment terms are able to be
explicitly defined and Equation 95 can be solved directly. In the inelastic range, however,
the elements in global stiffness matrix [K] and the components of vector of F,
and F,, would be functions of u" and v"' at each load level. When the determinant of [K]

matrix is coming to zero, the member load-carrying capacity is reached.

3.4 Solution for Nonsway Beam-columns at Ambient Temperature
3.4.1 Solution Procedures

Razzaq and Calash (9) presented a finite-difference based algorithm for solving
nonlinear governing equations for columns with biaxial flexure. Herein, a finite integral
based algorithm is developed for solving nonlinear governing equations for beam-
columns with partial end-rotation restraints. The solution steps are expressed as below:

1. Evaluate the initial cross-sectional properties at n nodes along the member length
and assemble the initial global nonsway beam-column stiffness matrix [K] in
Equation 96.

2. Specify small external loads and formulate {F}, following Equation 97.

3. Solve the second order derivatives vector {A”} in Equation 96 and then use
Equation 89 and 90 to solve the deflection vector{A}.

4. Compute the external nodal forces {f}, and deformations {6}, defined in
Equation 33 and Equation 34, respectively, in the elastic range corresponding
to {F},.
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5. Increase {F}to{F}, = {F}; + {6F}, in which {6F} is the resultant load
increment vector. Solve {A"'} and {A} and then compute the external force vector
{f}, corresponding to{F},.
6. Using{f};, {f}2, {6}1and €, compute {5}, using the tangent stiffness procedure
as defined in Reference 41 for all cross sections.
7. Solve for an updated {A"'} and {A} after assembling [K] utilizing the cross-section
properties obtained in step 6.
8. With the undated {A"} and{A} in step 7, formulate the load vector{F},. If
[{F}3 — {F};] < @ where «a is the tolerance, go to step 10.
9. Set{F}, = {F}s; {f}z = {f}3and go to step 6.
10. Set {F}, = {F}s; {f}1 = {f}; and repeat steps 5-10 until the load-carrying.
The procedure described herein is carried out using constant load increments
throughout the elastic range. In the inelastic range, the load increments are successively
reduced to avoid severe imbalance between the external load and the internal forces. The

maximum load is obtained within 0.0001 times the cross-sectional yield capacity.

3.5 Load Paths

Different load paths are designed for the uniaxially and biaxially loaded beam-
columns, which are the same as those of Darbhamulla (11) used.

Referring to Figure 20, two different load paths are used for uniaxially loading at
ambient temperature, which are described below:

NP1: The axial load P is first applied incrementally and then held constant, followed
by gradually increasing equal end moments until the load-carrying capacity of the
member is reached. This corresponds to the path OAE for the member minor axis
analysis, or OAB for the member major axis analysis.

NP2: The equal end moments corresponding to the load-carrying capacity obtained
in NP1 are applied first incrementally and held constant, followed by gradually
increasing axial load P until the member collapse occurs. This corresponds to the path
OGE and OCB for the member minor and major axis analyses, respectively.

Referring to Figure 20, six different load paths are used for biaxially loading at

ambient temperature, which are described below:
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NP3: The axial load P is first applied incrementally and then held constant, followed
by gradually increasing equal end moments M, and M,, until the load carrying capacity
of the member is reached. The moment ratio is held constant and taken as follows:

M. /M, = 1./, (98)
where 7, and 7, are the major and minor axis radius of gyration. This load path
corresponds to OAD.

NP4: The end equal moments M, and M,, are first applied proportionally following
Equation 90 until the peak moment values from NP3 are attained, and then P is applied
until the member collapses. NP4 corresponds to the path OFD.

NP5: The axial load P of the same magnitude as in NP3 is applied first, M, achieved
in NP3 is applied next, followed by M, until collapse occurs. NP5 corresponds to the
load path OABD.

NP6: This load path is the reverse of NP5 in which M, achieved in NP3 is applied
first, followed by M, achieved in NP3, and lastly followed by P until collapse occurs.
NP6 corresponds to load path OGFD.

NP7: The axial load P of the same magnitude achieved in NP3 is applied first,
M, achieved in NP3 is applied next, followed by M, until collapse occurs. This
corresponds to load path OAED.

NP8: This load path is the reverse of NP7, in which M, achieved in NP3 is applied
first, followed by M, achieved in NP3, and finally followed by P until the load-carrying
capacity is reached. NP8 corresponds to load path OCFD.

For the double symmetrical section, NP7 and NP8 are redundant and correspond,

respectively, to NP5 and NP6.

3.6 Numerical Study for Nonsway Beam-columns at Ambient Temperature

In this section, the behavior of imperfect beam-columns with I-section or hollow
rectangular section subjected to different load paths noted as LP1 through LP4 are
investigated. The influence of rotational end restraints, load sequence, initial crookedness

and residual stress are studied.
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3.6.1 Approach Corroboration

To assess the accuracy of the computational procedure, comparisons are made
between some published and predicated results. Razzaq (8) theoretically studied the
influence of partial end restraints on the behavior of imperfect columns. The imperfect
include the initial crookedness and residual stress. Razzaq (10) also conducted
experimental tests to study the inelastic behavior of biaxially loaded hollow rectangular
steel columns. Tables 8 and 9 summarize the comparisons of the predicted results to
those of from Reference 9 and 10 for some cases, which show that a good agreement is
reached between the results from references and this investigation.

Birnstiel (43) experimentally observed the behavior of isolated steel H-columns
loaded eccentrically with respect to both principal axes of the end cross sections. Sharma
and Gaylord (44) theoretically studied the strength of steel columns with I-section under
biaxially eccentric loading. The maximum loads predicted in this investigation are in
good agreement with those in References 43 and 44; the comparisons are summarized in

Tables 10 and 11, respectively.

3.6.2 Connection Modeling

In the early 1960’s, Lewitt, Chesson, and Munse (45) experimentally studied the
behavior of flexible riveted and bolted beam-to-column connections and the factors
which influence their moment-rotation characteristics. It was found that the experimental
moment-rotation curve was nonlinear. To get a better representation of the connection
stiffness, or to simplify the analysis technique, a number of simplified models have been
proposed, as shown in Figure 42. Rathbun (47) proposed a linear model, in which the first
initial stiffness presents the behavior of connection for the entire loading range. To get a
better representation, Romstad and Subramanian (48) used the bilinear model, in which
the initial slope of the moment-rotational line was replaced by a shallower line at a
certain transition moment. Razzaq (8) had developed the piecewise linear model, a direct
extension of the bilinear model in which the nonlinear m-8 curve for the connection is
represented by a series of straight line segments.

Darbhamulla (11) used a set of piecewise-linear models to study the effect of

various m-0 models on the load-carrying capacity of centrally loaded I-section columns
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and uniaxially loaded I-section beam-columns. It was found that the effect of the m-0
relationships on the column peak loads about minor and major axis was not significant.
Six m-6 models, shown in Figure 43, were used to investigate the strength of uniaxially
loaded W8 x 31 section beam-columns. The information about the beam-column is
described below: length of beam-column is 15 ft; an axial load P and an end moment,
Mg,, at the member top, are applied, which are in a proportional manner such that the
ratio between P and My is 2.25 (P/Mp, = 2.25); atz = 0, a pinned condition is used
which means k,, = k4, = 0.0.; whereas, a partial rotational end restraint is provided at
z = L to simulate the sub-assemblage used in Reference 46, which means kz,= 0.0 and
kgy # 0.0. Six different kinds of models, a2 through f2, are used to find the peak load of
the beam-column. It was found the peak load varied in a small range from 0.64 to 0.71.
The maximum load obtained by Chen and Lui (46) was 0.64 comparing with these results.
In this investigation, the m-8 model, e2 shown in Figure 43, is adopted and the peak load

is 0.65, which is perfectly matching with those from References 11 and 46. The elastic-
plastic model e2 was called the power model proposed by Colson (49).

3.6.3 Imperfect Beam-column Behavior

Herein, a 144-inch long hollow square section with the dimensions 7xX7x0.375 steel
beam-columns with E and gy equal 29,000ksi and 46ksi, respectively, is adopted. The
residual stresses, if present, follows the pattern shown in Figure 18, and ¢, and o,

values are taken as 0.50, and—0.20,,, respectively. For the initial out-of-straightness, the

midspan amplitudes are taken as L/100,000 and L/1000 for the nearly straight and
initially crooked beam-column.

Figure 44 shows the load versus deflection curves for the pinned imperfect columns
with hollow square section. Symbols NS, UC and BC represent that column is nearly
straight, uniaxially crooked and biaxial crooked, respectively. Symbols NR and WR
represents that t the residual stress is absent and present, respectively. The dimensionless
peak load p is 0.997 for the NS-NR-column; 0.935 is for the NS-WR-column; 0.907 is for
UC-NR-column; 0.864 is for the UC-WR-column; 0.871 is for the BC-NR-column; 0.828
is for the BC-WR-column. It is found that residual stress and initial crookedness reduce

the maximum load for the columns. The effect of initial crookedness on the load carrying
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capacity is larger than that of residual stress. The corresponding bending stiffness
degradation curves for these columns are shown in Figure 45. The dimensionless

determinant D is defined as follows:

D = |[K:11/1[K:o (98)

in which |[K;]lo= determinant for zero axial load. Razzaq (8, 9) clearly compared and
summarized the effects of residual stress and initial crookedness on the behavior of the
column. The curves shown in Figures 44 and 45 are same in nature to those in Reference
9.

Figures 46 and 47 show the load versus deflection curves and bending stiffness
degradation curves for the imperfect beam-column with initially applied uniaxial moment
equal to 0.5My_The dimensionless peak load p is 0.445 for NS-NR-beam-column; 0.472
is for NS-WR-beam-column; 0.427 is for the UC-NR-beam-column; 0.451 is for the UC-
WR-beam-column; 0.425 is for the BC-NR-beam-column; 0.450 is for the BC-WR-
beam-column. The influence of initial crookedness on the strength limit of beam-column
is not significant when the applied moment is relatively larger. However, the influence of
residual stress on the behavior of the beam-column is significant. The effect of residual
stress at beginning of applying axial load is minuscule. Figure 47 shows that D-p
relationship remains identical in the elastic range for those six beam-columns. Beyond
the elastic range, the D-p curves follow different descending paths, depending upon the
type of imperfections. A comparison of the inelastic portions of the D-p curves for beam-
columns with residual stresses to those without residual stresses reveals that although the
former group experience earlier stiffness degradation due to early yielding, they are still

stronger that the latter group

3.6.4 Behavior of Uniaxially Loaded I-section Beam-columns

Darbhamulla (11) had studied the behavior of uniaxially loaded I-section beam-
column. Four load paths LC1 through L.C4 were adopted, which are described below:
LC1: Corresponding to the load path LP1, a relatively large axial load is applied first
incrementally and held constant, followed by gradually increasing equal end moments

until the member collapses.
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LC2: The maximum end moments corresponding to the load condition LC1 are applied
first incrementally and held constant, followed by a gradually increasing the axial load
until the member collapses, thus following load path LP2.

LC3: Corresponding to the load path LP2, relatively large equal end moments are
applied first incrementally and held constant, followed by gradually increasing the axial
load until the member collapses.

LC4: The maximum axial load corresponding to the load condition LC3 is applied first
incrementally and held constant, followed by gradually increasing equal end moments
until the member collapses thus following the load path LP1.

It was found that the load paths had no significant effect on the member strength for
the major axis, but it did affect the minor axis if the beam-column was with elastic
restraints. Also, it was found that the maximum loads were not load path dependent in the
presence of elastic-plastic restraints.

Herein, the same numerical study the effects of load sequence for uniaxially loaded
I-section beam-columns is conducted. The chosen beam-column is described below: the
cross section is W8x31and the length is 144in.; the material properties follow the stress-

strain law shown in Figure 16; here E and g, are taken as 29,000ksi and 50ksi; the

residual stress follows the type shown in Figure 20 when it is present; the elastic m-©
model is adopted with spring stiffness kg, = 0 in-kip/rad, k,; = 13,333 in-kip/rad,
ka3 = 24,000 in-kip/rad, individually. In addition, the behavior of the beam-column
with elastic-plastic end springs is also studied; the initial spring stiffness is k, and the
plastic spring moment limit value m,=100 in-kips.

Table 12 summarizes the maximum dimensionless peak loads for the major and
minor axis analyses using load path through LC1 to LC4 with elastic restraints. Here,
p = P/Pr,m = M pgjor/Mmajor-y 0t M = M pinor/Mminor-y. By comparing the
results, it is found that the load-carrying capacity is almost same for the beam-column
with pinned boundary conditions; in other words, the member strength is not load path
dependent for the member with pinned conditions. The maximum loads for the major axis
are nearly the same, suggesting that the load paths have no significant effect on the
member strength. However, the peak loads for the minor axis are load path dependent;

moreover, LC1 and LC2 provide nearly same peak loads, while LC3 and LC4 exhibit a
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substantial difference in the maximum loads. In the absence of initial residual stress, m
for LC4 is 3.3% less than that for LC3 when the stiffness is kg3. The difference is 11.1%
when the initial residual stresses are included.

Table 13 collects the maximum dimension peak loads for elastic-plastic restraints
and load paths through LC1 to LC4. The results indicate that the maximum loads for both
the minor axis and major axis are not load path dependent in the presence of elastic-
plastic restraints.

To further study the effect of load sequence on the behavior of I-section beam-
column under uniaxial bending about minor axis. A analysis with 144-inch long W8x31
steel member with elastic restraints are conducted. Load paths NP1 and NP2 are adopted.
Table 14 collects all the maximum dimensionless load values, which indicates that the
member load-carrying capacity is load path dependent for such load combination with
relative large moment and small axial load. For example, for the member with spring
stiffness kq and axial load p = 0.362, the maximum moment is 4.500 for load path NP2,
which is 23.3% larger than that of NP1 (3.649).

3.6.5 Behavior of Biaxially Loaded I-section Beam-columns

In this study, twisting is neglected for studying the biaxially loaded I-section beam-
columns based on the past research from Birnstiel (43) and Sharma and Gaylord (44).
Darbhamulla (11) had investigated the effects of nonproportional loading on biaxially
loaded I-section beam-columns with elastic partial restraints. It was found that the load
path dependency was obviously in the nonproportionally loaded I-section beam-columns.
In this investigation, the same case, a 144-inch long W8X31 section member with
residual stress and elastic partial restraints was adopted. The initial crookedness was
taken as L/1000. The residual stress follows the type shown in Figure 19, g,, = —0.30y.
The material properties follow the stress-strain law shown in Figure 17; here E and o,
are 29,000ksi and 50ksi. The elastic m-O model is adopted with spring stiffnessk,, =
13,333 in-kip/rad.or k43 = 24,000 in-kip/rad. Load paths NP3 and NP4 are used. The
moment ratio is held constant and taken as follows: M,/M,=r,/r,. Here, the major axis
of cross section W8x31 is called x axis; the minor axis is called y axis. Table 15

summarizes the maximum dimensionless loads for various load conditions, herein, m,=
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M,/Myy and m;=M,/M,y. The results show that load path dependency is obviously

present in the non-proportionally loaded I-section beam-columns when the applied
moments are relative larger. Otherwise, load path independence is not significant. The
interaction curve between p and my‘, shown in Figure 48 describes the characteristic. For
the load combination with relative larger axial load, the interaction curves of NP3 and
NP4 almost coincide for the range with relative larger axial load. However, when the
axial load is getting small, the difference between moments from NP3 and NP4 is getting

larger.

3.6.6 Behavior of Hollow Rectangular Beam-columns

Razzaq and McVinnie (10) theoretically and experimentally studied the behavior of
biaxially loaded hollow rectangular columns and found that twisting could be neglected
for columns with hollow-square or rectangular section. Darbhamulla (11) studied the
hollow rectangular beam-columns subjected to different load paths NP3 through NP8 as
defined in Section 3.5.2. It was found that the maximum loads for beam-column with
pinned boundary conditions was load path independent; however, it was load path
dependent for beam-columns with elastic spring restraints for certain load combinations.
In this section, the same cases are investigated to further study the effect of load path on
the load-carrying capacity. The details of the studied beam-columns are described below:

Hollow square sections, 7.0 X 7.0 X 0.375 in. and rectangular, 8.0 X 6.0 X 0.375
in. are used herein. The specimen length is 144in. long; the initial midspan amplitude is
taken as L/1000. The residual stress distribution follows the pattern shown in Figure 19.
The material stress-strain relationship follows the model shown in Figure 16. The
rotational end restraints are identical for both ends about the x and y axes. The three
beam-columns designated as BC1, BC2 and BC3 are studied:

BC1: hollow square section with k= k,,= 0 k-in/rad

BC2: hollow square section with k= k3= 24,000k-in/rad

BC3: hollow rectangular section with k= k;3=24,000k-in/rad

Tables 16 through 18 summarize the dimensionless maximum load for
nonproportionally loaded imperfect beam-column BC1, BC2 and BC3, respectively.

Table 16 shows that the strength limits are exactly same for beam-column BC1 with load
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paths through NP3 through NP6, which indicates that load path doesn’t affect the load-
carrying capacity of the steel member with pinned boundaries. However, in Tables 17
and 18 for the beam-columns BC2 and BC3, significant load path dependence is found
for the load combinations with the relative larger bending moments. For example, the
load path effect is not significant or can be ignored if p is larger than 0.25 for load path
NP3 through NP8. Figures 49and 50 shows the interaction curves for hollow square
beam-column BC3 with load path NP5 and NP6 ,which shows that the interaction curves
for NP5 and NP6 almost coincide to the same line when the load combination has a

relative small p value. The same rule can be found in the interaction curves for load path
Np7 and NP8 for BC3, shown in Figures 51 and 52.

3.7 Dilemma with Large External Moment

For the member with rotational end restraints and only subjected bending moment,
the maximum applied moment will be a large value when the cross section is fully
plastified. There are always a few elements of cross section near the neutral axes, which
are hardly getting plastified. The explanations for this appearance is that the end springs
following the elastic model take over most of the applied external moment. It is found
that near the range of fully plastified, the increase of the internal moment is very small.
Section 3.2.1 also explains this phenomenon. The resistant moment equal the end rotation
times the stiffness of the restraint, which will be large if the end rotation is large. The
most part of applied moment is killed by the end restraints. Figure 53 describes the
relationship between the internal moment and the end rotation, which shows that the
curve is getting flat at the last part indicating that near the fully plastified the internal
moment increase slowly. Using the different load-steps, the difference between the
internal moment gained from the numerical analysis and cross section plastic moment is
less than 3%. Figure 54 shows the load versus deflection curve for beam-column BC3,

which indicates that the relative large displacements near the collapse load.

3.8 Comparisons of Theoretical and Experimental Results

The comparisons between the theoretical results and experimental results at ambient

temperature are collected in Tables 19 and 20. The ratios between predicted and tested
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results ranged from 0.96 to 1.14 for pinned boundary conditions. The ratios ranged from
1.08 to 1.20 for partially fixed boundary conditions except RTUS-16. The good
agreement is achieved between the experimental results and theoretical results. The ratio
between predicted and tested result is 1.44 for RTUS-16. The values are relatively higher
than that of pinned boundary conditions. One of reasons for that is that the end spring
restraints do not function properly which means there is movement between the machined
arm and the gimbal shaft during testing, shown in Figure 6. For pinned boundary
conditions, load path does not have a significant effect on the beam-column load carrying
capacity.

Figures 55 compare the experimental and theoretical moment versus deflection
curves for beam-columns under uniaxial loading and different load combination and with
pinned boundary conditions. There is one thing need to be mentioned that in the symbol
‘exp’ and ‘pre’ in the figures represent the value from experimental test and predicted
from theoretical analysis, respectively. For the case of only applying uniaxial bending
(p = 0.0), at the beginning part two curves coincide. After the moment value is larger
than 0.567, the deflection value from experimental tests is larger than that of from
predicted results. The maximum value from experimental test is about 6.7% high than
that of predicted value. For the case of p = 0.23, two curves coincide at the beginning
part; the predicted curve is away from theoretical one with the increase of moment. The
predicted maximum moment value is about 11.7% higher than that of experimental result.
For the case of p = 0.39, the predicted deflection value is about 4.4% larger than that of
experimental value at the same moment value. It is found that a good agreement is
reached between the tested and predicted results.

Figure 56 compare the experimental and theoretical load versus deflection curves for
beam-columns under uniaxial loading and different load combination and with pinned
boundary conditions. For the case of only applying axial load (m = 0.0), two curves
coincide until near the peak value. The predicted maximum axial load value is about 14.0%
higher than that of experimental value. For the case of m = 0.648, two curves are perfect
matching. The predicted maximum load value is almost the same with that of

experimental value. For the case of m = 0.995, the predicted maximum load value is
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about 6.0% larger than that of experimental value. It is found that a good agreement is
reached between the tested and predicted results.

Figures 58 to 59 exhibit the phenomenon the material unloading for biaxially loaded
imperfect beam-column RTBP-5 with load path NP3. Figure 58 shows the stiffness
degradation curve D-p. Before applying the axial load, some elements of the beam-
columns are plastified. Figure 47 demonstrates the distribution of the plastic area for
nodes 5, 6, 7, 8 and 9. The plastified elements are shaded dark. The studies herein are
based on adopting a total of 228 element areas for each of 9 nodes along the member
length. Some of the plastified elements unload elastically, thereby resulting in an increase
in the beam-column stiffness. Figure 59 shows the plastified elements corresponding to
the state after applying the axial load.

The stiffness degradation curve in the Figure 57 for load path NP3 shows valleys in
the form of near-abrupt changes (called by Darbhamulla in Reference 11) in D which
indicates that the beam-column suddenly loses a considerable stiffness followed by an
immediate gain with a small variation in the loads. When the member of the elemental
areas was increased to 912, the number and shapes of these valleys decrease but this did
not affect the peak loads, as shown Figure 57. Additionally, it was found the number and
shape of these valleys could both increase and decrease, with the change of load steps.

The good thing is this change doesn’t affect the peak load too much: less than 3.0%.
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CHAPTER
4. THEORECTICAL ANALYSIS FOR STEEL BEAM-COLUMNS
AT HIGH TEMPERTURE

The theoretical analysis of the behavior of nonproportionally loaded steel beam-
columns at high temperatures is presented in this chapter. The analysis is conceptually
similar to the beam-column analysis at ambient temperature. However, it is complicated
by the presence of elevated temperatures on the internal forces and the material properties.
There are three different axial restraints to the thermal expansion considered: rigid axial
restraint, finite axial restraint and no restraint. Critical temperature corresponding to the
zero load-carrying capacity is estimated and also the critical load is determined with a

specified high temperature.

4.1 Total Mechanical Strain for Steel Beam-column at High Temperature

It is assumed that the initially crooked beam-column AB, shown in Figure 1 is
subjected to uniform temperature T, axial load P and biaxial bending moment M, and M,,.
The responding discretized hollow rectangular and I-shaped sections are shown
schematically in Figures 36 and 37. The total mechanical strain &7, at a point (x,y) of a
cross section includes mechanical or stress-related strain, being a function of both the
applied stress and the temperature, and thermal strain being a function only of

temperature, T, which is expressed in Equation 97.

er =Er + Py y — Pyrx + &4y, (99)
in which &,7 is the average axial strain; @,; and P,y are the bending curvatures about
the x and y axes, respectively; &, is the thermal strain or the part of thermal strain which
will cause the stress change. Herein, one thing needs to be mentioned. The residual stress
€. is missing in the total normal strain equation because the residual stress releasing
happens with high temperature. The mechanical strain also follows the sign rule: tensile
strain is positive and compressive is negative.

A heated member experiences thermal expansion due to thermal gradient. The
classifications of axial restraint to thermal expansion in the US or relative to ASTM E119

are shown in Figure 22 (50). For the beam-column with free axial expansion, the thermal
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strain will not change the stress state. In other words, &;), equals zero. The cross section

mechanical strain can be expressed below:
€1 =&+ Pur Yy — Pyrx (100)

For the beam-column with rigid axial restraint to thermal expansion, it will be hardly
allowed to expand. The member deformation in length is zero throughout the elevated
temperature increasing. Therefore, the mechanical strain will be equal and opposite of the
thermal strain. The cross section mechanical strain related to stress state for this case can

be expressed below:
Er =Eq +Pur ¥y — Pyr X — &4 (101)

The mechanical strain caused by the axial restraint to thermal expansion is compressive,
which is negative.

For the beam-column with finite axial restraint, the deformation of beam-column in
length is AL and the responding strain is AL/L. For this case, the mechanical strain &/,

can be expressed as a part of thermal strain, shown in Equation 100.

AL
Ech = Etp — A (102)

The corresponding cross sectional normal strain at a point(x, y) can be expressed below:

AL
Er =&+ Pyr Yy — Pyr X — (sm - —L—) (103)

If the axial restraint to thermal expansion is assumed to the axial spring, the stiffness

of the spring k. is computed as follows:

EA) (104)

ks =a (—
ts L

where o is axial spring stiffness parameter, and E, A and L are elastic modulus of steel at

the ambient temperature, cross-sectional area and span length, respectively. Then the

developed extra compressive force, Py , is able to be expressed as:

AL EA AL
Pr=kes (fth ‘T) = “(T) (fm "T) (105)
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It needs to be mentioned that the axial restraint is assumed to remain at the
geometrical centroid of the beam-column. In other words that the axial spring only has

axial deformation.

4.2 Temperature-thrust-moment-curvature Relations

The cross sectional equilibrium equations for the beam-column shown in Figure
1subjected the axial thrust, bending moments about x and y axes, and high temperature

are described as below:

P=-[,ordA (106)
Mc=[,0rydA (107)
M, = —[ ,or xdA (108)

Substitute Equations 13a, 13b and 13c into Equations 106 through 108 and the

equilibrium equations are presented below:

P* = —[ ,,0r dA~ [, 0yr dA (109)
My=[,0erydA+] ap Ovr ¥ dA (110)
M, = —fAe Oer X dA — prayrx dA (111)

where P* is the summation of applied axial load P and the additional compressive force
caused by restrained thermal strain; d4 is an elemental area of the cross section; o, and
ayr are the normal stress and the yield stress at temperature T; the subscripts e and p
refer to the elastic and plastic elements, respectively, for a partial plastified section,

f adenotes cross sectional integration. Equations through 109 to 111 are expressed below:
P*=—[, ErerdA—| Ap07 dA (112)

My=/[,ErerydA+| ap Ov7 ¥ dA (113)

My=—f, ErerxdA—[ ap0rX dA (114)
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It is same as that of the ambient temperature analysis, the relationship between the
infinitesimal stress and strain increment need to be established to get the beam-column
plastic behavior with high temperatures. The mechanical strain rate &7 at high

temperature is presented in Equation 115.

€ = & + Dy ¥y — Dyr x + &1 (115)
The stress-mechanical strain rate relationship at elevated temperatures is presented by the
following Equation 116:

or = Epy &7 (116)

in which Er; equals Ey if the material is in the elastic range; it equals zero if the material
is in the plastic range. The cross-sectional load and deformation vectors, {fr} and {6},

can be expressed as follows:

{fT} ={P* M, My }T (117)
{6T} = {807' + Egh ¢x (py }T (118)
The responding cross-sectional load and deformation rate vector are expressed as follows:
{fr} =P M, M, )" (119)
(O} = {dor + &6 Pur Oyr ) (120)

The elements of load vector rat {f } are able to be calculated:

P*=—[, Er rdA (121)
M,=[,ErerydA (122)
My,= —f, ErérxdA (123)

where P* is the summation of the change of the applied axial load and the change of the
additional axial load caused by temperature gradient. The relationship between the load

rate and mechanical strain vectors at high temperature is expressed as:

{fr} = [kr] {Sr} ' (124)

where [ky] is the cross-sectional tangent stiffness matrix, which is defined below:
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~[EpdA —[EpydA J ErexdA
[kr] = fE'rt ydA [Ep y*dA —[ Er¢ xy dA (125)
—f ETt xdA ""f ETt xy dA f ETt x? dA

All the elements in the k matrix are constant throughout the elastic range. However,
in the material plastic range, those elements are functions of the current state of stress,
strain and temperature as well as the properties of the material, cross section and
temperature. Thus, given an axial load P, a pair of bending moments M, and M,, and the
specified high temperature T, compatible €,r, @,y and Pyr can be found following
Equation 124. The solution procedure is the same with that of the ambient temperature

analysis.

4.3 Equilibrium Equations for Beam-columns at High Temperature

Substitute Equation 100 into Equations 112 through 114 and the differential

equilibrium equations for beam-column at high temperature are obtained below:

aq11 &1 + aq; vT" + ay3 uT" + Pth - Pp = p* (126)
az1 Eor + Az2 V"' + Qg3 Up" — Mypp + My, = M, (127)
Qaszq &1 + asz; vT” + Az u'r" + Myth - Myp = My (128)

where v;" = =@, , anduy" = ®yr; P*, M, and My are the external axial load and
biaxial bending moments; Pyy, Myen and M,y are the axial force and bending moments

about x and y axes, respectively, due to the restrained thermal strain for the area in elastic

range; By, My, and M, are the axial force and moment parameters for the elements
which are already plastified. The coefficients a;, are defined in Section 3.1.2.

The external moments M, and M,, at any location z can be expressed as follows:

z
M, = My —my, + P*(vr +v,) — Z(MAx — Mg, + mp, —my,) (129)

V4
M, = =My, — myy, — P*(ur +u,) + Z(MAy — Mgy + Mgy, — Myy) (130)
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At the global level, &yris solved explicitly in Equation 115 and then &4, M, and
M, are substituted into Equations 116 and 117. This results into the following two

materially nonlinear ordinary differential equations:

(E'I'Aelxye - ETsxesye)uT" + (ETAelxe = E’I‘Sxez)vT” + AeP* Ur

L-z

zZ
—A, I Mpx — A, szx = Fxapplied,T +Fep (131)

(ErAclye — ErsZo)ur” + (ErAeliye — ErSeeSye)vr" + AcP* up

z
-A, I myy + A, ZmByz Fyapptiear +Fp (132)

where F,, and F,,, symbolize the moment vectosr due to the plastification, following
Equations 49c and 49f, respectively; Fygppliear and Fygppiica,r are the moment vectors

due to restrained thermal expansion and the applied load and moments for the elastic area,

which are expressed below:

) ) (z-1) z

anpplied,T = —Sye P*+ A (—P* v + L My, - ZMBx) (133)
. \ (z-1) z

Fyappu'ed,T = —Sye P*+ A, (—P"uy + L MAy - ZMBy) (134)

By using the finite integral method, uy, vy and their first order derivatives are able to
be expressed by the second order derivative, as defined in Section 3.3. If the beam-
columns over [0, L] are divided into (N-1) equivalent segments, the following Equation

124 will be 2N simultaneous nonlinear equations.

[Kr] {7} = {Fr} (135)

where [K7] Is the global stiffness matrix of the order 2N X 2N; the vector {A7} consist

of the second order derivatives of u; and v is expressed as below:
Y — 4,0 2! \T . [ ! " " " "o sl "
{a7} = {ur vr'} = {ur, ugp - Urtn-1) Ytn V71 V712 """ Vr(n-1) UTn} (136)

The moment vector {Fr} is described as below:
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an ie P;C
{FT}= { ppl d,T}+[ P} (137)

{F yapplied,T} + {F yp }
The problem of inelastic behavior and the strength of beam-column at high
temperature is reduced to solving the Equation (135) for external loads and temperatures
up to the collapse condition. The boundary conditions are the same as that of the ambient

temperature analysis, as defined in Equations 65 and 66. In the elastic range, {Fxp}

and {pr } are zero vector and other moment terms are able to be explicitly defined and
Equation 135 can be solved directly. In the inelastic range, however, the elements in
matrix [K7] and the components of vectors of {F;p } and {pr }would be functions of u”,

v"" and temperature T at each load level. As the determinant of [Ky] matrix approaches

to zero, the maximum strength of the beam-column is reached.

4.4 Solution Procedures at High Temperature

The numerical solution procedure for analysis of the elastic-plastic behavior of
nonsway steel beam-columns at high temperature is basically the same as that given by
Section 3.4.1 , which is described as below:

1. Specify the small external nodal loads and low temperature, Py, My;, My, and Ty,

and formulate {F7}, using Equation 137.

2. Solve for the second order derivatives vector {A;''} in Equation 135 and then use
Equations 89 and 90 to solve the deflection vector{A}.

3. Compute the external nodal forces {fr}; and deformations {6r}; defined in
Equations 119 and 120, respectively, in the elastic range corresponding to{Fr},.

4. Increase {Fr} to{Fr}; = {Fr}; + {6F;} , in which {6F;} is the resultant load
increment vector. Solve Equation 135 for {A;''} and then compute the external
force vector {fr}. corresponding to {Fr},.

5. With the known{fr},, {fr}, and {d7}; compute {7}, by using the tangent
stiffness procedure in Reference 26 for all cross sections.

6. Solve for the updated {A;"'} and{Ay} after assembling [K7],utilizing the cross-

sectional properties obtained in step 5.
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7. With the updated {A;"'} in step 6, formulate the load vector{Fr}.

8. If [{Fr}3 = {Fr}2] < a where «a is the tolerance taken as 0.01% , go to step 10.

9. Set{Fr}; = {Fr}s; {fr}2 = {fr}sand go to step 5.

10. Set {Fr}; = {Fr}s; {fr}1 = {fr}; and repeat steps 5-11 until the strength limit is

reached.
The procedure described herein is carried out using constant load or temperature

increments throughout the elastic range. In the inelastic range, the load increments are
successively reduced to avoid severe imbalance between the external load and the

internal forces.

4.5 Behavior of Beam-columns without Axial Restraints to Thermal Expansion

Herein, the imperfect nonsway steel beam-columns with hollow square section,
7x7x0.375in, and the length of 144 in. are adopted. Young’s modulus E and yield stress
oy values at ambient temperature are taken as 29,000ksi and 46ksi, respectively. The
stress-strain relationship at high temperature follows the elastic-perfect-plastic model,
shown in Figure 17. The initial biaxial crookedness is taken as L/1000. It is assumed that

temperature distribution along the length of the member is uniform.

4.5.1 Effects of Initial Crookedness

Table 21 summarizes the dimensionless axial load values for beam-columns with
pinned boundary conditions and initially applied biaxial moment equals 0.0, 0.4 and 0.7,
respectively, at different temperatures. The bending moments are only applied at the top
end of the members. BC means the biaxial crookedness, which is taken as L/1000. NS
means nearly straight, the initial crookedness is taken as L/100,000. The effect of initial
crookedness on the strength limit of column is significant, especially at ambient
temperature. The influence is lesser if the temperature rises. For the beam-columns, the
effect of initial crookedness is relative small. The critical temperature of nearly straight
members equals that of with initial crookedness. For the member with the relative larger
moment, the influence at high temperature can be ignored. Figure 60 describes the load
versus temperature curves for the member with or without initial crookedness. If the

temperature is not higher than about 750°F, the member load-carrying capacity almost is
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the same as that of the ambient temperature, but above 750°F, it drops quickly. Figure 61
compares the stiffness degradation curves for the initially crooked and nearly straight
beam-columns with biaxial moments my = my= 0.4 at 68°F, 800°F, 1200°F and 2000°F,
respectively. It shows that the crookedness speeds the stiffness dropping when the
maximum loads is reached; the higher the temperature is, the faster the stiffness drops;

and the higher the temperature is, the smaller the influence of crookedness is.

4.5.2 Effects of the Rotational End Restraints

To illustrate the influence of end rotational restraints on the behavior of steel beam-
columns at high temperature, the following spring stiffness is adopted:

kcy=0.0 kip-in/rad

ke,=13,000 kip-in/rad

kc3=24,000 kip-in/rad

kes= 2.4 x 10" kip-in/rad

Herein, kc;=0.0 kip-in/rad represents the nearly pinned condition, kc,=13,000 kip-
in/rad and kc3=24,000 kip-in/rad represent the partial boundary condition and kcs= 2.4 X
1012 kip-in/rad simulates a nearly fixed condition. The linear elastic model is adopted for
the relationship between the resistant moment and the rotation. The beam-columns with
equal end restraints and initially applied biaxial bending moments (m,=m,= 0.6) are used.
The obtained results are collected in Table 22. It is clear that the rotational restraint can
significantly increase the failure temperature and load-carrying capacity of steel members.
For example, for pinned condition the failure temperature is about 943°F; it is about
1450°F for partial condition with the spring stiffness 24,000 Kip-in/rad; the failure
temperature is around 2200°F for fixed condition. Figure 62 shows the load versus
temperature curves for hollow square beam-columns under biaxially loading with
m,=m,=0.6 and with different end rotation restraints. It is also clear that the end restraint

can increase the ductility of the members.

4.5.3 Temperature versus Deflection Curves

The strength limit under the given temperature is calculated, and then the load

versus deflection curve at a specified temperature is able to be drawn. Figure 63 describes
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the load versus deflection curves for pinned columns at ambient and high temperatures.
The curves are smooth line because the elastic modulus value doesn’t change at the
specified temperature. It is found that all the curves start with a linear part and then
followed by a nonlinear part. Near the strength limit, the curves are almost flat. The flat
part is long if the temperature is high. The slope of the curve of ambient temperature is
larger than that of at high temperature which is reducing with the increase of temperature.
At a specified high temperature, the slope might be zero.

Figure 64 shows the load versus deflection curves for the pinned beam-columns
under biaxial loading with my= my= 0.4 at ambient and high temperatures. The
characteristics for the shape and the slope of the curves are similar with those for pinned
columns shown in Figure 63. There are some fuzzes shown in the curve of T= 800°F.
One of reasons for that is that the beam-column suddenly loses a considerable stiffness
followed by an immediate gain with a small variation in the loads, which will affect the
development of the deflection. Another phenomenon corresponding it is that there are
valleys in the stiffness degradation curves shown in Figure 57. The deflection may have a
large increase if the beam-column loses a considerable stiffness, which will decrease after
an immediate gain in the stiffness with a small variation in the loads.

The temperature versus deflection curves can be plotted after calculate the critical
temperatures corresponding to zero load-carrying capacity for steel beam-columns
subjected the constant service load. Table 23 summarizes the obtained critical
temperatures for the pinned steel beam-columns without axial restraint to thermal
expansion at different load combinations. It is found that the increase of the carrying
loads reduce the critical temperature. Figure 65 shows some of corresponding
temperature versus deflection curves. It is found there are “knee point” existed in the
curves because of the change of elastic modulus value. The number of knee points in the
curve depends on the number of changes of the elastic modulus value at the temperature
range from ambient temperature to the critical temperature. The inflexion-point is
appeared where the value of the elastic modulus changes. The effect of the change of the
elastic modulus also can be found in the stiffness degradation curve shown in Figure 66.

Below the temperature of about 212°F, there is no stiffness degradation happened. Above
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that point, the stiffness starts lessening which causes the decrease of the slope of

temperature versus deflection curve.

4.5.4 Beam-column Behavior at 1000°F

From the ambient temperature investigation, it is found that the member load-
carrying capacity is load path dependent for the load combinations with relative larger
moments. In this section, the effect of the load path on the beam-columns behavior at
high temperature is studied. Figure 62 shows that the member peak loads start changing
above about 750 F. Therefore, high temperature of 1000F is chosen as the environmental
temperature to investigate the behavior for nonproportional loaded initially crooked
beam-columns at high temperature. The beam-column is heated to 1000F first without
axial restraint to thermal expansion and then the mechanical loading is started, which
follows the load paths through NP1to NP8, as defined in Section 3.5. And it is assumed

that the temperature distribution along the beam-column length is uniform.

The behavior of uniaxially loaded W8X31 beam-columns about major and minor
axis is studied firstly. The dimensions and material properties at ambient temperature are
defined in Section 3.6.4. The equal rotational end restraints follow the elastic model with
spring stiffness kg3 = 24,000 in-kip/rad. Table 24 summarizes the maximum
dimensionless peak load with load paths LC1 through LC4 for the major and minor axes.
It is clear that the peak loads for the major axis are nearly the same for different load
paths, suggestion that the load paths have no significant effect on the member strength
limit even at high temperature. However, when the beam-column is loaded about the
minor axis, it is found that the maximum load is load path dependent if the load
combination with the relative larger moment. For example, LC1 and LC2 provide nearly
the same maximum loads, while LC3 and LC4 exhibit a substantial difference in the
maximum loads. The maximum moment value for LC4 is 24.1% greater than that for

LC3 when the temperature is 1000 F.

The behavior of biaxially nonproportionally loaded W8X31 beam-columns with
equal end restraints is studied with high temperature 1000°F. The end rotation restraints

with stiffness ka3 (24,000 in-kip/rad.) follows the elastic model. The members are heated
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to 1000°F without the axial restraint to thermal expansion and then the mechanical
loading is started following the load paths NP3 and NP4. The results obtained are
reported in Table 25. Load path dependence is obviously present for biaxially
nonproportionally loaded I-section beam-columns with partial restraints at high
temperature. The influence is very significant for the load combination with the relative

large bending moments.

The next study is about the behavior of biaxially loaded beam-columns with hollow
square section and equal end restraints. The end rotational restraints follow the elastic
model with initial stiffness, kg3 =24,000 in-kip/rad. The same steel beam-column is
adopted, which is defined in Section 3.6.6. The mechanical load paths follow NP3
through NP6. The results obtained are summarized in Table 26, which indicates that the
influence of the load sequence on the beam-column load-carrying capacity is significant
at high temperature especially for the load combination with a relative large bending

moment. Specifically, the value for the maximum biaxial bending moment my and my is

1.085 at the given axial load p= 0.25 for load path NP3, however, the maximum axial
load p is 0.197 for load path NP4 instead of 0.250 in load path NP3, which is 21.2% less
than that of in load path NP3. Two more examples: the maximum bending moment m, is
0.825 for load path NP5 instead of 1.085 in NP3 and NP4, which is about 24% less than
those of in load path NP3 and NP4; the maximum axial load is 0.191 in load path NP6
replacing of 0.250 in load path NP3, which is about 23.6% less than that of in load path
NP3.

The last study in this section is about the behavior of biaxially nonproportionally
loaded hollow rectangular beam-columns. The equal end restraints follow the elastic
model with stiffness, k;3=24,000in-kip/rad. The same hollow rectangular steel beam-
column is adopted, which is defined in Section 3.6.6. The load-temperature sequence is
that the member is heated to 1000°F first and then the mechanical loading is started,
which follows the load paths NP3 through NP8. The obtained results are summarized in
Table 27. The influence of load path on the member strength limit at high temperature is

significant, especially for the load combination with relative larger moments.
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4.5.5 Effects of Load-temperature Sequence

The strength limits values shown in Tables 21, 22, 24, 25, 26 and 27 are evaluated
by calculating the maximum load of the beam-column under a specified temperature,
called “load approach”. The strength limits values in Table 23 are gained by calculating
the critical temperature that the member can sustain under the given loads, called
“temperature approach”. Are these two approaches similar to evaluate the steel beam-
column strength limit? Does the load-temperature sequence affect the load carrying
capacity? These problems are to be studied in this section. It needs to be mentioned that

there is no axial restraint to thermal expansion when the temperature is increasing, herein.

Nine different load-temperature sequences referring to Figure 21 are used, which are

defined below:

OTMP: Raise the temperature T first and hold constant, and then gradually apply m, and

my simultaneously and hold constant, followed by P until the member collapse.

OTPM: Raise the temperature T first and hold constant, and then incrementally apply P
and hold constant, followed by applying M, and M,, simultaneously until the member

collapses.

OMTP: The biaxial bending moments M, and M,, are applied first and hold constant, and
followed by raising the temperature T gradually, and lastly apply the axial load P until the

collapse occurs.

OMPT: The biaxial bending moment M, and M, are applied simultaneously first and hold

constant, and then apply axial load P and hold constant, and lastly raise the temperature

until it fails.

OPTM: The axial load P is applied firstly and held constant, followed by appling biaxial
bending moment M, and M, simultaneously and holding them constant, which is
followed by raising the temperature T gradually, and lastly apply the axial load P until the

collapse occurs.
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OTMMP: Raise the temperature T first and hold constant, and then apply bending
moment M, only and hold constant, and then apply M,, gradually and hold constant, and

then lastly apply the axial load P until the member fails.

OTPMM: Raise the temperature T firstly and hold constant, and then apply P
incrementally and hold constant, and then apply uniaxial bending moment M, gradually

and hold constant; and then lastly apply the uniaxial bending moment M, until the

member load-carrying capacity is reached.

OMMPT: The bending uniaxial moment M, is applied firstly and held constant, and then
the bending moment M,, is applied and held constant, and then axial load P is gradually

applied and held constant, and lastly the temperature is raised until it fails.

OPMMT: The axial load P is gradually applied first and held constant, and then the
uniaxial bending moment M, is applied and held constant, and then uniaxial bending
moment M, is incrementally applied and held constant, which is lastly followed by

raising the temperature T until the collapse occurs.

The 144-in. long steel beam-column with the hollow square section 7 X 7 x 0.375
in. and biaxial initial crookedness is adopted. The values of E and o, at ambient
temperature are taken as 29,000ksi and 46ksi. Table 28 prescribes the member load-
carrying capacity including the maximum values of the axial load, bending moment and
temperature with different load-temperature paths for pinned boundaries. The peak values
for different load-temperature-sequence are nearly same, indicating that strength is not

load-temperature sequence dependent for pinned boundary conditions.

For the partial boundary conditions, the equal rotational end restraints following the
elastic model with initial stiffness k,3 = 24,000 in-kip/rad. is used. All the results
obtained are summarized in Table 29. It is clear that the influence of load-temperature
sequence for steel beam-column behavior with partial boundary conditions is small and

can be negligible.
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4.6 Beam-column Behavior with Rigid Axial Restraint

Steel beam-columns with rigid axial restraint to thermal expansion, when exposed to
an environment with raising temperature, additional axial compressive forces are
developed due to the restrained thermal expansion. The steel beam-columns as defined
in Section 4.6.5 also are used to study the effects of the rigid axial restraint on the
member behavior. It is found that the critical temperature is about 268°F if increase the
temperature until the steel beam-column fails, which is particularly low. It indicates that
steel beam-columns with rigid axial restraint are very susceptible to the increase of

temperature and will most certainly fail prematurely.

Figures 67 describes the additional compressive force versus temperature curve for
columns with rigid axial restraint to thermal expansion, which indicates that at around the
temperature of 268°F the additional compressive force already equal about 0.8Py and it
increase linearly with the increase of temperature. Figure 68 shows the corresponding
temperature versus deflection curve and Figure 69 shows the stiffness degradation curve
and the temperature versus deflection curve for the steel beam-column with rigid axial
restraint to thermal expansion. These curves resemble those from the case, that is, only

applying axial load until the member fails at ambient temperature.

4.7 Comparing Theoretical with Experimental Results at High Temperature

The comparisons of the theoretical and the theoretical dimensionless peak load for
steel beam-columns without axial restraints to thermal expansion at 500°F are given in
Table 30. The load-temperature sequence for this group tests is that members are heated
to S00°F first without axial restraint to thermal expansion and followed by the mechanical
loadings. For HTUP-1, only applying axial load at 500°F, the ratio between the predicted
and the tested maximum axial load is 1.106. For HTUP-2 only subjected to the uniaxial
moments at 500°F, the ratio between the predicted and the tested maximum bending
moment is 1.261. For HTUP-3 with the initial applied uniaxial moment m,, = 0.595 at
500°F, the ratio is 0.1374. For HTUP-4 and HTUP-5, the ratios are 1.478 and 1.571,
respectively. For HTUS-7 through HTUS-10 with partial rotational end restraint, the

ratios between the predicted and the tested maximum load value is 1.207, 1.148, 1.256
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and 1.294, respectively. For specimens HTBP-11 through HTBP-13 with partial
rotational end restraint, the ratios between the predicted and the tested maximum moment
value is 1.207, 1.137, 1.190 and 1.190, respectively. Table 31 collects the comparisons
between the experimental and the predicted maximum load values for the beam-columns
with axial restraints to thermal expansion at 500°F. The ratios between the predicted and
tested results range from 1.075 to 1.215.

Figure 70 compares the experimental and theoretical axial load versus end rotation
curves for the members HTUP-2 and HTUP-3, respectively. Figure 71 compares the
experimental and predicted bending moment versus end rotation curves for members
HTUP-1 and HTUP-4. Referring to Figures 70 and 71, it is seen that shapes of the
experimental and theoretical curves are very similar. Specimen HTUP-2 and HTUP-3
(Fig 71) indicates very good correlation with theory, showing slightly larger experimental
rotation. The tested results and those predicted results have a good agreement. The
HTUP-1 and HTUP-4, at the beginning part a good correlation is achieved between the
curves. But near the peak value, for HTUP-1 the experimental peak load value is larger
than the predicted one; for HTUP-4, the predicted peak values is slightly higher than the

experimental one.

The comparisons for the rest specimens are similar with specimen HTUP-1 or
HTUP-4. At the beginning part, the predicted and theoretical load versus rotation curves
has good correlation, but near the peak load, two curves are slightly away from each

other.
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CHAPTER
5. INELASTIC BEHAVIOR OF WORLD TRADE CENTER BEAM-COLUMNS

The purpose of this chapter is to analyze the behavior of the steel beam-columns
which were used in the outer structure of the 110-story World Trade Center buildings.
Both ambient and high temperature conditions are considered. After the air plane attack,
a number of beam-columns were destroyed and thus the rest of the beam-columns ended
up having to carry additional loads. The high temperature due to the fire after the aircraft
impact resulted in a very dramatic reduction in the load-carrying capacity of the beam-

columns.

5.1 World Trade Center Towers

The World Trade Center (WTC) towers were designed and built during the period
from 1966 to 1973. FEMA (2002) describes the general information about the building:
“The WTC towers, also known as WTC1 and WTC2, were the primary components of
the seven building World Trade Center complex. Each tower encompassed 110 stories
above the plaza level and seven levels below. WTC1 (the north tower) had a roof height
of 1,368 feet, briefly earning it the title of the world’s tallest building. WTC2 (the south
tower) was nearly as tall, with a roof height of 1,362 feet. A rectangular service core,
with overall dimensions of approximately 87 feet by 137 feet, was present at the center of

each building, housing 3 exit stairways, 99 elevators, and 16 escalators.”

On September 11, 2001, two hijacked commercial jetliners were deliberately flown
into the WTC towers. After the two aircrafts impacted the buildings, fireballs erupted and
jet fuel ignited fires. Regarding the aircraft impact on the two towers, FEMA (2002)
reported that: “The north tower was struck between floors 94 and 98, with impact rightly
centered on the north face. The south tower was hit between floor 78 and 84 toward the
east side of the south face.” The south tower collapsed 56 minutes after it was struck. The
north tower collapsed too after 1hour and 43 minutes the jetliner crashed into it. The
Federal Emergency Management Agency (FEMA) in 2002 reported that: “A total of
2,830 people lost their lives in the collapse of the WTC towers”. The FEMA report in
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2002 suggested that the heat-induced failures in the buildings core columns initiated a

progressive collapse.

5.2 Structural Features of WTC Towers

Generally, a skyscraper is modeled as a large cantilever vertical column and the
wind load rather than the gravity load dominated the structural design. In order to make
the towers capable of withstanding the wind load, the lightweight “perimeter tube” design
was chosen. On each of the facades a vierendeel girder type wall was formed by 59 box-
section columns which were rigidly connected to panels at each floor level, as shown in
Figure 72. These walls were interconnected to transmit shear at the corner of the building;
they form a torsional rigid framed tube which is fixed to the foundations and transmits all
wind loads. Adjacent exterior columns were connected at each floor level by deep steel
spandrel plates, as shown in Figure 73 (FEMA, 2002). There are twelve grades of steel,
having yield strengths varying between 42ksi and 100ksi, being used to fabricate the
perimeter column and spandrel plates as dictated by the computed gravity and wind
demands. Plate thickness also varied both vertically and around the building perimeter, to
accommodate the predicted loads and minimize differential shortening of columns across
the floor plate. The upper floors of the buildings had less wind load and building mass to
support. Thus, on higher floors, the thickness of steel plates making up the columns
decreased, becoming as thin as 0.25 in. near the top down from as thick as 3.0 in at lower
floors. Figure 74 shows the typical cross sections for the exterior column, which is box-
shaped and welded from four plates. Section A is for the WTC beam-columns near the
bottom of the building; Section B is for the WTC beam-columns near the impact area;

and Section C is for the members near the tower top.

The structural core extending from its bedrock foundation to its roof supports the
tower. The cores are rectangular pillars with numerous large columns and girders. There
are no intermediate columns between the perimeter walls and core system. The floor
diaphragms connect them, providing large expanses of uninterrupted floor space. In total,
47 columns constituted the core system only carrying the vertical loads inside the core,
aligned in five rows of eight and one row of seven columns as shown in Figure 72. The

core columns with box-section are continuous for their entire height, going from their
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bedrock anchors in the sub-basements to near the tower top. “9-11 Research.com (51)”
describes the dimension of core columns: “Like the perimeter columns, the thickness of
the steel in the core columns tapered from bottom to top. Near the bottoms of the towers
the steel was 4.0 in. thick, whereas near the tops it may have been as little as 0.25 in.
thick. Some of these columns have outside dimensions of 36 X16in. Others have larger
dimensions, measuring 52x22 in.” Figure 75 shows the typical dimensions and thickness
for the core columns. Section D was used for the columns near the bottom area and
Section E was used for the top area of the tower. There are two grades of steel used with

yield strength 36ksi and 42ksi, respectively for the core columns.

5.3 WTC Steel Member Behavior

The stress-strain relationship for WTC beam-column material at high temperature
follows the elasto-perfect plastic models as shown in Figure 17. The reduction factors for
yield stress and Young’s modulus at high temperature follows the EC3 (2005) model,

defined in Section 2.3. The linear partial rotational end restraint with stiffness k, equals

El

10E! . . . . . .
0, - and - respectively is used. Herein, moment of inertia, I, is the average value of

I, and I,,. Three stiffness values of axial restraint to thermal expansion are used, 0,

EA

- and %4, respectively. Here, E, A, [ and L are the material elastic modulus at ambient

temperature, cross-sectional area, moment inertia and length for WTC member,
respectively. Assume 144-inch long WTC beam-columns with biaxial initial crookedness
L/1000. The residual stress is not included herein because it is released at high

temperature. All the load values shown in the Tables and Figures are dimensionless.

5.3.1 Exterior WTC Column Behavior at High Temperature

The exterior column of WTC Tower 1 with Section C (located near the tower top)
shown in Figure 74 is selected to investigate the behavior at high temperature. The yield

stress g, and elastic modulus at ambient temperature is 42kst and 29,000ksi.

Table 33 collects the obtained dimensionless maximum axial loads for the WTC
columns with different end rotation restraints and axial restraints to thermal expansion. It

is found that the effect of partial rotational restraints on the maximum load of the WTC
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column is significantly at ambient temperature. For example, at ambient temperature the

maximum load value for WTC columns near the tower top with partial rotational end

restraints is 0.970, 0.982 and 0.986 for partial restraints with k, equal 0.0, EL—' and 1—078—1,

respectively. However, it is found that the influence of partial end restraints at high
temperature for WTC near the tower top is not significantly. Specifically, the maximum

load value for WTC columns without axial restraint to thermal expansion at 1600°F is

0.072, 0.073 and 0.073, which are pretty close to each other, for k, equal 0.0, EL-I-

and -10—:-1-, respectively. Therefore, the influence of partial rotational end restraints on the

critical temperature corresponding to zero load-carrying capacity of WTC column is not
significant. The effect of axial restraint to thermal expansion on the WTC columns load-
carrying capacity is significant. For example, the temperature corresponding to zero load-
carrying capacity is about 1600°F, 600°F and 450°F for the WTC columns for k, equal
0, ELé and -2%-4-, respectively.

Figure 76 presents the load versus temperature curves for the WTC columns near the
tower top. It is clear that the influence of temperature on the strength of the WTC
columns with free axial restraint to thermal expansion is small with a temperature lower
than 750°F and load-carrying capacity is almost same with that of ambient temperature;
while the temperature is between about 750°F and 1400°F, the strength drops linearly;
above 1500°F, the dropping speed gets slower, but the load-carrying capacity is close to
zero. However, for the WTC columns with axial restraint to thermal expansion, the load
carrying capacity is linearly dropping with the increase of temperature.

Figure 77 shows the load versus deflection curves for WTC columns with pinned
boundary conditions and free axial restraint to thermal expansion at the temperature of
68°F, 800°F and 1200°F, respectively. The slope of the load versus deflection curve is
decreasing with the increase of the temperature. One of the possible reasons for that is the
value of Young’s modulus decrease when the temperature increases. The slope may be
zero at a specified high temperature. The shape of the curve at high temperature is similar
with that of at ambient temperature, which always starts with linear part and follows with
inelastic part. The last part of curve is nearly flat, which means without the increase of

load, the deflection continue to increase.
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Figure 78 shows the stiffness degradation curves for pinned WTC columns near the
tower top with or without axial restraint to thermal expansion at 68°F, 800°F and 1200°F,
respectively. It shows that somewhat moderate structural stiffness degradation is
observed with increasing axial load and with temperatures of up to 800°F. However,
severe stiffness degradation is observed at 1200°F. It is observed that the influence of
axial restraint to thermal expansion on the stiffness degradation of WTC columns is
significantly. Even at the low temperature of 400°F, the severe stiffness degradation
already happens. It is clear that the axial restraints reduce the member load-carrying
capacity because of the additional compressive force caused by the axial restraint to

thermal expansion at high temperature.

Figures 79 through 81 show the temperature versus deflection curve, the temperature
versus stiffness degradation curve and the temperature versus compressive force curve
for WTC column with rigid axial restraint, respectively. It is clear that the column with
rigid axial restraint is almost fully plastified at 238°F. Figure 79 exhibits that the
additional compressive force caused by axial restrain to thermal expansion is linearly
increasing until the member load-carrying capacity is reached. Figure 80 shows the
midspan deflection is almost linearly increasing with increase of temperature until
bucking happens. Figure 81 shows that that ¢ bucking happens when the column lost
about 25% of stiffness. In short, the column load-carrying capacity is very sensitive to the

axial restraint to thermal expansion and it fails in very low temperature.

5.3.2 Exterior WTC Beam-column Behavior at High Temperature

Table 34 summarizes the dimensionless maximum load p for WTC beam-columns
near the tower top under biaxial loading with m,/m, = r,/r,and m,= 0.7 and with

different end rotation restraints and axial restraints to thermal expansion. The linear
10E1

. . . . . EI . .
partial rotational end restraint with stiffness k, equals 0, - and respectively, is

. . . et e A
adopted. The axial restraint to thermal expansion with stiffness ks equal 0, —ELﬁ and % ,

respectively, is used. It is found that the influence of the partial rotational end restraint on
the beam-column load-carrying capacity is significant at both ambient and high

temperatures. For example, the dimensionless maximum axial load value for WTC beam-
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columns without axial restraint to thermal expansion is 0.323, 0.551 and 0.814 for k,
equals 0 - and respectlvely The maximum load for k, equals 228! is more than

two times increase than that of k, equals 0. The critical temperature respondmg to zero

load-carrying capacity for WTC beam-columns without axial restraint to thermal
expansion are 1000°F, 1200°F and 1650°F for k, equals 0, -—and respectlvely It

is also observed that the effect of axial restraint to thermal expansion on the critical

temperature of WTC beam-columns is significant. Specifically, the critical temperature

for pinned beam-columns is 1000°F, S00°F and 400°F for k., equal 0, E’: and ﬁ

respectively; and the critical temperature for partially restrained beam-columns with k,

equals % is 1200°F, 500°F and 400°F for k. equal 0, % and -2-5-'-4-; critical temperature

for partially restrained beam-columns with k, equals '}Biﬂ is 1600°F, 600°F and 400°F
for ks equal 0, — andz-’?i

Figure 82 describe load versus temperature curves for WTC beam-columns from
impacted area under biaxial loading (my/m, = r,/r,and m, = 0.7) with different
boundary conditions and axial restraint to thermal expansion. It is obvious that the end
restraints increase the WTC member strength at ambient and high temperatures. It is also
clear that the influence of axial restraint to thermal expansion on the WTC member

strength and behavior is significant.

5.3.3 Load-moment Interaction Relationship

To study the interaction relationship between load and moment, the exterior WTC
column with Section B shown in Figure 74 from the impacted area around 94-98 stories
is investigated. The yield stress and elastic modulus at ambient temperature are 55ksi and
29,000ksi, individually. Assume that the beam-column is initially crooked with the value

L/1000 and without residual stress. Pinned and end restrained boundaries are considered.
The initial spring stiffness for linear rotational end restraint is k; = Herem moment

initial [ is the average value of I, and I,,. For stiffness of axial restraint to the thermal
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expansion, three values, 0.0, —Eié and -2-?-, are adopted where E, A and L is the beam-

column elastic modulus, cross section area and length at ambient temperature.

Table 35 summarizes the dimensionless maximum loads for WTC beam-columns
from impacted area under uniaxial loading (my only) for partially rotation restrained
boundary conditions. It is clear that load-carrying capacity of the WTC beam-columns
reduces with increases of temperature. For example, in Table 35 for the case of k.= 0.0
and the initially applied axial load p = 0.25, the maximum value m, is 2.664 at 600°F but
it is 1.504 at 1500°F. Also, it is found that the strength of WTC beam-columns is very
sensitive to the axial restraints to thermal expansion. For example, for the case of only

applying bending moment m,, the maximum applied external moment my is 1.589 for

k:s=0.0 at 1500°F, it already drops to 0.893 at 400°F if k.= f;ﬂ. Furthermore, it drops to

0.522 for ks =2 % at 400°F. Also, it is clear that the increase of axial force reduces the

moment-carrying capacity of WTC beam-columns. For example, for WTC columns

under uniaxial loading with axial restraint to thermal expansion k.= —Eié and partial

. . El . .
rotational end restraints k,, == and at the temperature of 400°F, the maximum moment is

0.377 if p=10.0, and it is 0.136 if p = 0.110 and it is zero if p = 0.135.

Tables 36 and 37 summarize the dimensionless maximum loads for WTC beam-
columns from the impacted area under uniaxial loading (my only) for pinned and rotation
partially restrained boundary conditions. Tables 38 through 40 summarize the
dimensionless maximum loads for WTC beam-columns from the impacted area under
biaxial loading with a different ratio of m, to m, for pinned and rotation partially
restrained boundaries. Similar rules are found about the influence of temperature and

axial restraint to thermal expansion on the strength of WTC beam-columns.

Figure 83 describes the interaction curves for WTC beam-columns from impacted
area under uniaxial loading (m, only) with partial rotational end restraints and without
axial restraint to thermal expansion at different temperatures. It shows a dramatic
reduction in strength with an increase of temperature, which also can be found in Figures

84 through 99.
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5.3.3 Dilemma with Large Load-carrying Capacity at 600°F with k.= 0.0

It is found that the moment-carrying capacity of WTC beam-columns from the
impacted area without the axial restraint to thermal expansion at the temperature of 600°F
is larger than that at ambient temperature. The interaction curve of 600°F envelops that of
68°F, which can be found in Figures 83, 86, 90, 93 and 96. One of reasons for that is the
way adopted to determine the yield stress and elastic modulus values at high temperature.
In the temperature range of 20°C < T < 400°C, the reduction factor for yield stress is
less than 1.0, as defined in Equation 11. However, for elastic modulus, it is 0.784 which
is less than 1.0, as defined in Equation 12. Therefore, the end rotation at 600°F is larger
than that at ambient temperature which means that the resistant moment provides by
rotational end restraints is large at 600°F than that at 68°F. Based on the analysis in
Section 3.2.1, the large applied moment can be carried by the WTC beam-columns at
600°F. For the WTC beam-columns with axial restraint to thermal expansion, this

phenomenon disappears because the additional compressive force incurred due to thermal

expansion overcomes the increased applied external moment if the temperature is below

400°C (752°F).

5.4 Behavior of Beam-column from North Tower after Airplane Impact

First, it is important to discuss the initial damage on the exterior framing system of
the North Tower after the air plane impact. Based on the existing photography material
identifying columns that were destroyed by the impact, the damage of the exterior wall
can be easily quantified. FEMA (2002) supplies the visual evidence of the damaged
columns in the impressed region. Table 41(25) prescribes the number of columns that
were severely damaged after the impact for each of the impacted floors. It was stated in
Reference 37 that: “following the aircraft impact, the structural damage to the exterior
columns of the north face was compensated by redistribution of the load to the remaining
perimeter columns of the building, through the deep spandrel beams that connected the
exterior columns. Because of the unique structural system of the North Tower, in which
the exterior system was connected to the core by bar joists which were not designed to

transfer moment, the load resisted by the perimeter columns was not redistributed to the
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core.” After the airplane impact, the service load and the environmental temperature were

changed.

In the north side of 94™ floor of the building, 21 out of 59 columns were damaged. If
the load-carrying capacity of each facade is assumed as 1.0, then the total load-carrying
capacity for whole floor is 4.0. Due to the fact that 21 columns were damaged in the
north side, 35.6% (21/59= 0.356) of resistance ability was lost due to the aircraft impact.
That also means the service load of the columns changed; the change rate n is calculated

as follows:

_ 40 _
M= 10710+10+10-0356 11 (138)

Before the aircraft impact, assuming all the loads are live loads; then the largest

approximated existing service loads Py, My and M, are calculated:

PP,
P, = fGn (139)
®,M |
My = — 6"" (140)
o.M
Myo = 1.6ny (14’1)

where: P,, M, and My, are the nominal compressive, flexural strength about x and y

axis, respectively; @, = 0.85 , the resistance factor for compress; ¢, = 0.9, the
resistance factor for flexure. After the aircraft impact, the new service load can be

calculated and

Piew =1F, (142)
Mypew = MMy, (143)
Mynew = ﬂMyo (144)

The yield stress and elastic modulus for the column at ambient temperature are 55ksi

and 29,000ksi, individually. The column length is 144 in with cross section B. According
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to the Steel Construction Manual (52), P,, Mp,and M,,, are calculated and equal 0.497,

0.818 and 0.884, respectively.

Regarding the aircraft impact on the two towers, FEMA (2002) described that:
“Each plane banked steeply as it was flown into the building, causing damage across
multiple floors.” FEMA (2002) also reported that: “As the two aircraft impacted the
buildings, fireballs erupted ... and jet fuel spread across the impact floor and down
interior shaft ways, igniting fires.” Evidently, the exterior beam-columns forming the
vertical support structure experienced high temperature.

After the air plane attack, the load was redistributed. Some of columns were out of
commission and the rest of columns needed to carry the entire floor load. The incurred
fire after the air plane attack increased the building temperature. Table 42 compares the
critical temperature, which corresponds to a zero load-carrying capacity, of WTC beam-
columns from the impacted area with existed and new service loads responding to before
and after airplane impact. It is assumed that the service load does not change during the
increase of temperature. The critical temperatures were 1086°F and 1056°F for WTC
columns from the impacted area with service load of 0.497(existed) and 0.547(new),
respectively, which are about 2.8% differences. The critical temperature are 1058°F and
1025°F for WTC beams from impacted area with service moment m,, of 0.818 (existed)
and 0.911 (new), respectively, which are about 3.2% differences. However, the critical
temperature are 815°F and 658°F for WTC beam-columns under biaxial loading from
impacted area with existed and new service load, which are about 23.8% differences. It
is clear that the change of the critical temperature for the WTC beam-columns from the
impacted area under biaxial loading after airplane impact is significant.

The British Standard (BS) (53) temperature-time curve is adopted to develop the
time versus deflection curve for WTC columns, herein, which is expressed in Equation
145 below:

T = Ty + 34510g(0.133t + 1) (145)

where t represents the time in second; T represents the temperature in Celsius; Ty

represents the temperature at the start of the fire and usually Ty = 20 °C. It is stated in
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Reference 54 that the standard fire curve for ASTM E119 is prescribed by a series of
points rather than an equation but is almost identical to the BS curve.

Figure 99 presents the temperature versus deflection curves for WTC columns near
the impacted area and under a service load of 0.547 with different end. It is found that the
WTC column from the impacted area with a dimensionless axial service load of 0.547
became unstable at about 1000°F. Figure 100 shows the time versus deflection curves,
which show the same characteristics with the temperature versus deflection curves. It
shows that the critical temperature of the WTC columns from the impacted area and

under a service load of 0.547 will be reached in about five minutes after airplance impact.
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CHAPTER

6. CONCLUSIONS AND RUTURE RESEARCH

6.1 Conclusions

Within the range of parameters considered in this dissertation, the experimental and
theoretical study conducted on the behavior of biaxially loaded steel beam-columns
resulted in the following main conclusions:

1. The finite integral approach for solving the materially nonlinear system of differential
equations predicted the experimentally observed behavior of steel beam-columns quite
accurately.

2. The predicted beam-column load-deflection relationships were in good agreement with
those based on the experiments for both ambient and high temperature conditions.

3. Both at ambient and high temperatures, the strength of hollow rectangular and I-
section beam-columns loaded about the minor axis is found to be load path dependent
when the applied moment plays a dominant role compared to the axial load. Similar
influence of load path was observed for the beam-columns with biaxial loading.

4. At high temperature, the strength of biaxially loaded beam-columns has significant
dependence on the load versus temperature sequence.

5. The strength of beam-columns is reduced due to initial member crookedness at both
ambient and high temperatures.

6. Axial restraint to thermal expansion significantly decreases the strength of both
uniaxially and biaxially loaded beam-columns which were used in the impacted area of
the World Trade Center (WTC) towers.

7. The strength of beam-columns is reduced drastically at temperatures above 750°F. This
type of effect was also observed for the strength of the WTC beam-columns.

8. For the WTC columns analyzed, somewhat moderate structural stiffness degradation is
observed with increasing axial load and with a temperature of up to 800°F. However,
severe stiffness degradation is observed at 1200°F.

9. The WTC columns which were used in the impacted area became unstable at about

1000°F in the presence of a dimensionless axial service load of 0.547.
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10. The WTC columns with rigid axial restraint to thermal expansion reached nearly full
plastic condition at a temperature of 238°F.

11. The load-moment interaction curves developed for the WTC beam-columns loaded
uniaxially or biaxially show a dramatic reduction in strength with an increase in

temperature.
6.2 Future Research

The combined effects of biaxial loading, applied torsion and high temperature on the
behavior and strength of steel members need to be investigated in the future. Reliable and
practical analysis and design procedures for conducting collapse analysis of steel building

structures should also be developed.
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APPENDICES
APPENDIX A: TABLES
Table 1. Dimensionless maximum loads for beam-columns under biaxial loading at
ambient temperature
Specimen N Dimen:sionless
No. Load Path Boundary Conditions Maximum
Loads
p 0.550
RTBP-1 OA,P x-pinned, y-pinned my --=
my ---
p -
RTBP-2 OF, M x-pinned, y-pinned my, 0.812
my, 0812
p 0.334
RTBP-3 | OAD, P+M x-pinned, y-pinned m,  0.465
my  0.465
p 0.334
RTBP-4 OFD, M+P x-pinned, y-pinned m, 0.465
my  0.465
p 0.239
RTBP-5 OFD, M+P x-pinned, y-pinned my 0616
my 0.616
p 0.239
RTBP-6 OAD, P+M x-pinned, y-pinned my 0.661
my 0.661
p 0.593
RTBS-7 OA,P x-pinned, y-partially fixed | my ---
my ---
P —
RTBS-8 OF,M x-pinned, y-partially fixed |* m,  0.858
my 0.858
p 0.257
RTBS-9 OAD, P+M | x-pinned, y-partially fixed my 0.636
m, 0.636
p 0.268
RTBS-10 | OFD, M+P | x-pinned, y-partially fixed | my 0.636
m, 0.636
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Table 2. Dimensionless maximum loads for beam-columns under uniaxial loading at

ambient temperature
Specimen Dimensionless
No. Load Path | Boundary Conditions Maximum Loads
RTUP-11 OGM | x-pinned; y-pinned p 0.000
my 1.266
RTUP-12 | OAE,P+M | x-pinned; y-pinned P 0.386
my 0.648
RTUP-13 | OGE,M+P | x-pinned; y-pinned p 0.406
my 0.648
RTUP-14 | OGE,M+P | x-pinned; y-pinned P 0.233
my 0.995
RTUP-15 | OAE,P+M | x-pinned; y-pinned p 0.233
my 0.960
RTUS-16 | OGM |x-pinned; y-partially fixed | P 0.000
my 1.620
i i P 0.386
RTUS-17 | OAE,P+M | x-pinned; y-partially fixed
my 0.932
RTUS-18 | OGE,M+P | x-pinned; y-partially fixed | P 0.398
my 0.932
i : p 0.371
RTUS-19 | OGE,M+P | x-pinned; y-partially fixed
my 0.993
i i P 0.371
RTUS-20 | OAE,P+M | x-pinned; y-partially fixed
my 1.034
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Table 3. Dimensionless maximum loads for beam-columns uniaxial loading at 500°F
with or without axial restraint to thermal expansion

Specimen No. | Load Path | Boundary Conditions i)/;ar?(?;mu:);lllie;:ds
o P
HTUP-1 OT™ X-pinned, y-pinned m, 1.100
. _ P 0.467
HTUP-2 OTP x-pinned, y-pinned m, —
. . P 0.270
HTUP-3 OTMP x-pinned, y-pinned my 0.595
. - p 0.270
HTUP-4 OTPM x-pinned, y-pinned m, 0.601
. . p 0.257
HTUP-5 OTPM x-pinned, y-pinned m,  |0.590
. . P 0.268
HTUPR-6 OMTP x-pinned, y-pinned m, 0.595
HTUS-7 OTM x-pinned, y-partially fixed f;y 127
. . p 0.534
HTUS-8 oTpP x-pinned, y-partially fixed m, .
. ) p 0.352
HTUS-9 OTMP x-pinned, y-partially fixed m, 0.595
' . p 0.352
HTUS-10 OTPM x-pinned, y-partially fixed my 0.694




Table 4. Dimensionless maximum loads for beam-columns under biaxial loading at
500°F with or without axial restraints to thermal expansion and pinned boundaries

Specimen Load Boundary condition Dimensionless
No. Path Maximum Loads
P —
HTBP-11 O™ x-pinned, y-pinned my 0.761
my 0.761
p 0.233
HTBP-12 OTMP x-pinned, y-pinned my 0.460
my 0.460
p 0.233
HTBP-13 OTPM x-pinned, y-pinned my 0.426
my 0.426
P 0.502
HTBPR-1 OTP x-pinned, y-pinned my ---
my -
P —
HTBPR-2 O™ x-pinned, y-pinned my 0.741
my 0.741
P 0.156
HTBPR-3 OTMP x-pinned, y-pinned my 0.460
my 0.460
P 0.156
HTBPR-4 OTPM x-pinned, y-pinned my 0.470
my 0.470
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Table 5. Dimensionless maximum load for beam-columns with different load-
temperature sequences

Specimen Load Path | Boundary Condition | Maximum Loads or
No. Temperature
P 0.123
. . My ="
HTBPR-6 OTP X-pinned, y-pinned m, .
T 900°F
P 0.123
: , my
HTBPR-7 OPT x-pinned, y-pinned m, .
T 758°F
P —
. . my 0.214
HTBPR-8 O™ x-pinned, y-pinned m, 0214
T 900°F
P —
, _ m, 0.214
HTBPR-9 OMT x-pinned, y-pinned m, 0214
T T75°F
P —
HTUPR-10 | OTM x-pinned, y-pinned | my 0.402
T 900°F
P —
HTUPR-11 | OMT x-pinned, y-pinned | my 0.402
T 750°F
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Table 6. Comparisons of dimensionless maximum loads for tests with or without axial
restraints to thermal expansion at different temperature

Applied | Load Path | Temperature and Boundary Dimensionless
Load Conditions Maximum Value
72°F 0.617
500°F, unrestrained 0.505
p OTP
500°F, moderately restrained 0.502
900°F, moderately restrained 0.123
72°F 0.811
500°F, unrestrained 0.761
my =my O™ )
500°F, moderately restrained 0.741
900°F, moderately restrained 0.214
72°F 1.266
my o™ 500°F, moderately restrained 1.100
900°F, moderately restrained 0.402

Table 7. Summary the dimensionless maximum loads with pinned-pinned boundary

conditions
o Dimensionless Maximum Load
i Temperature, T; F
P my my = my
1 72.0 0.550 1.266 0.811
2 500.0 0.502 1.100 0.741
3 900.0 0.123  0.402 0.214
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Table 8. Comparisons of predicted and previously published results for imperfect beam-

columns
Case No k (in- Dimensionless pmax
inRef.9 | /™ | kipirad) | v Ref 9 | Predicted
49 53.73 0 1/100,000 | L/1000 | 0.855 |0.858
52 53.73 5397.22 | L/100,000 | L/1000 | 0.890 | 0.885
55 53.73 15506.94 | 1./100,000 | L/1000 | 0.928 | 0.922
73 53.73 0 L/1000 L/1000 | 0.81 0.824
76 53.73 5397.22 | L/1000 L/1000 | 0.858 [ 0.862
79 53.73 15506.94 | L/1000 L/1000 {0.908 | 0.901
105 48.65 0 L/100,000 | L/1000 | 0.869 | 0.856
107 48.65 5397.22 | L/100,000 | L/1000 | 0.91 0.906
109 48.65 15506.94 | L/100,000 | L/1000 | 0.942 0.942
121 48.65 0 L/1000 L/1000 | 0.799 | 0.800
123 48.65 5397.22 | L/1000 L/1000 | 0.844 0.844
125 48.65 15506.94 | L/1000 L/1000 | 0.894 | 0.890

Table 9. Comparisons of predicted and preciously published dimensionless maximum

load for pinned beam-column with nonproportional loading

Case No. | Cross-sectional | L (in.) E p Mppax
inRef. 10 |  dimensions (10°ksi) ReF 10 | Predicted
1.5%2.0x0.1238 | 53.475 264 |0.326 0.715 0.695
4 1.5%2.0%0.1238 | 53.775 27.0 [0.187 0.958 0.923
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Table 10. Comparison of predicted and previously published dimensionless maximum

load for pinned beam-columns with biaxially eccentric load

Length | Area. | Eccen. | Eccen. Dimensionless Maximum Load p
S t' . .
SO i, in® | e (in) ey (in) T;{::tfe% ;n Cog : fu t::;l 1 Predicted
H 6x6 96 9.67 1.61 2.78 0.329 0.329 0.328
H5xS5 | 120 6.76 | 238 | 2.51 0.189 0.195 0.194

Table 11. Comparison of predicted and preciously published dimensionless maximum
load for pinned-end beam-columns with biaxially eccentric load

Section Length Areza. €x €y Dimensionless Maximum Load p
in. in (in.) (in.) Ref. 44 Predicted
Wi2x65 | 180 19.1 | 184 | 3.76 0.199 0.185
W12x65 | 270 19.1 | 184 | 3.76 0.169 0.167
W12x65 | 360 19.1 | 184 | 3.76 0.144 0.149

Table 12. Maximum dimensionless loads for uniaxially loaded beam-columns with linear
partial rotational end restraints and load paths LC1 through LC4 (W8x31, L=12ft)

o Spring load Major axis Minor axis Major axis Minor axis
stiffness LCt LC2 |LCI LC2 | LC3 LC4 | LC3 LC4
0 ke p 0.950 0.950{0.935 0.935{0436 0.436|0.140 0.140
m | 0.067 0.067|0.178 0.178 | 1.00 0.999 | 4.000 3.870
03 K p 0.710 0.710]0.625 0.625 [ 0.154 0.154|0.260 0.261
m | 0.190 0.190|0.087 0.087 | 0.900 0.898 | 0.850 0.850
03 ke p 0.750 0.751 [ 0.800 0.800 [ 0.380 0.380|0.025 0.025
m |0271 0271]0.178 0.178 | 1.050 1.050 | 3.400 4.160
03 s p 0.800 0.804 { 0.850 0.853 | 0.417 0.417|0.108 0.108
m |[0.320 03200244 0244 | 1.00 1.020 | 4.000 4.445




Table 13. Maximum dimensionless loads for beam-columns with load paths through
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LC1 to LC4 and elastic-plastic partial rotational end restraints (ka2; mpjasic =100 in-kips;

W8x31, L=12ft)

Bending axis | Load | LCl LC2 LC3 |LC4
. p | 0800 | 0801 | 0.138 | 0.138
MajorAxis || 0186 | 0186 | 1.000 | 1.000
. . p | 0800 | 079 | 0.090 | 0.090
Minor Axis | | 0130 | 0130 | 1.400 | 1.400

Table 14. Maximum dimensionless loads for uniaxially loaded beam-columns with linear
partial rotational end restraints (W8x31, L=12ft)

gg?f?liss %Z;? Maximum External Loads
N 0.000| 0242| 0493 0.860| 0.862
m, | 3.800] 3.000| 1.500] 0.001| 0.000
kaz Npl 12 0.000| 0242] 0493 0860 0.862
m, | 3.800| 3.709| 1.500| 0.035] 0.000
N 0.000 | 0362| 0458 0.663| 0.894
X m, | S5.114| 4500] 3.000| 1.500| 0.000
» Npl 12 0.000 | 0362| 0458| 0663 0.894
m, | 5.114| 3.649| 2.894| 1.496| 0.000
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Table 15. Maximum dimensionless loads for biaxially loaded beam-columns with linear
partial rotational end-restraints and load paths NP3 and NP4 (L=12 ft.; W8x31)

Sping Load .
Stiffncss | Path Maximum External Loads
p 0.000 0.250 0.500 0.750 0.810
NP3 my 3.520 0.925 0.531 0.109  0.000

m* 2063 0542 0311 0.064 0.000

Kaz p 0000 0302 0501 0750 0.810
NP4 | m, 3520 0925 0531 0.109 0.000

m* 2063 0542 0311 0064  0.000

p 0000 0250 0500 0750 0.854

NP3 | m, 3456 1.127 0815 0303 0.000

ks m* 2020 0660 0478 0.177  0.000

p 0000 0339 0486 0750 0.854
NP4 m, 3456 1.127 0815 0303 0.000
m* 2020 0660 0478  0.177  0.000
Note: m, =my/m,y, my is dimensionless applied external moment and myy is

dimensionless yield moment about x axis.

Table 16. Maximum external loads for pinned beam-column BC1 with hollow square
section and different load paths

Load Path Maximum Dimensionless Loads
p 0.00 0.25 0.50 0.75 0.87
NP3 my 0.78 0.55 0.30 0.11 0.00
my 0.78 0.55 0.30 0.11 0.00
p 0.00 0.25 0.50 0.75 -
NP4 my 0.78 0.55 0.30 0.11 ---
my 0.78 0.55 0.30 0.11 ---
p 0.00 0.25 0.50 0.75 ---
NP5 my 0.78 0.55 0.30 0.11 ---
my 0.78 0.55 0.30 0.11 -
p 0.00 0.25 0.50 0.75 -
NP6 My 0.78 0.55 0.30 0.11 -
my 0.78 0.55 0.30 0.11 -—
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Table 17. Maximum external loads for partially restrained imperfect beam-column BC3
with hollow square section (k= k,3) and different load paths

Load Dimensionless Maximum Loads

Path
p 0.00 0.10 0.25 0.50 0.75 0.93

NP3 | m, 2.01 1.70 1.24 0.83 0.37 0.00
m, 2.01 1.70 1.24 0.83 0.37 0.00
my 2.01 1.70 1.24 0.83 0.37 -

NP4 | my 2.01 1.70 1.24 0.83 0.37 -
p 0.00 0.01 0.18 0.51 0.75 --
p 0.00 0.10 0.25 0.50 0.75 -

NPS | my 2.01 1.70 1.24 0.83 0.37 ---
my 0.39 0.85 1.12 0.84 0.37 -
my 2.01 1.70 1.24 0.83 0.37 ---

NP6 | my 0.39 0.97 1.24 0.83 0.37 -
P 0.00 0.00 0.19 0.51 0.75 -




97

Table 18. Dimensionless maximum loads for beam-column BC5 with rectangular section

and linear rotational restraint (k= k,3) and different load paths

Load Path Dimensionless Maximum Loads

p 0.0 0.05 0.10 0.25 050 075 092

NP3 my 2.05 1.99 1.70 1.18 082 037 0.0
m, 2.18 2.05 1.81 1.25 087 039 0.0

my 2.05 1.99 1.70 1.18 082 037 -

NP4 m, 2.18 2.05 1.81 1.25 087 039 -
p 0.0 0.01 0.01 0.22 050 076 -

p 0.0 0.05 0.10 0.25 050 0.75 -

NP5 my 2.05 1.99 1.70 1.18 0.82 0.37 -—-
my 0.7 0.75 0.98 1.20 0.8 041 -

m, 2.18 2.05 1.81 1.25 0.87 039 -

NP6 my 0.0 0.01 0.66 1.18 082 037 -
p 0.0 0.0 0.0 0.23 0.50 0.76 ---

p 0.0 0.05 0.10 0.25 0.50 0.75 -—-

NP7 my 2.18 2.05 1.81 1.25 0.87 0.39 -—-
my 0.0 0.0 0.37 1.13 0.81 0.40 -

my 2.05 1.99 1.70 1.18 082 037 ---

NP8 my 0.70 0.79 1.13 1.25 087 039 -
p 0.0 0.0 0.0 0.23 0.50 0.76 -
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Table 19. Comparisons between experimental and predicted dimensionless results for
biaxial loading beam-columns at ambient temperature

Specimen

Load

Boundary

Maximum Dimensionless

o Loads Predicted/Tested
No. Path Conditions Load | Tested | Predicted
p 0.550 0.624 1.13
RTBP-1 | OA pinned my --- --- ---
my --- --- ---
P - — -
RTBP-2 | OF pinned my 0.812 0.811 1.00
my 0.812 0.811 1.00
p 0.334 - -
RTBP-3 | OAD pinned my 0.465 0.486 1.05
my 0.465 0.486 1.05
p 0.326 0.334 1.02
RTBP-4 | OFD pinned my 0.486 --- -
my 0.486 --- -—-
p 0.239 0.257 1.08
RTBP-5 | OFD pinned my 0.616 - -—
my 0.616 --- ---
p 0.239 --- -
RTBP-6 | OAD pinned my 0.661 0.645 0.98
my 0.661 0.645 0.98
P 0.593 0.641 1.08
RTBS-7 | OA | partially fixed | my --- --- ---
my --- - ---
P — - —
RTBS-8 | OF | partially fixed | my 0.858 1.012 1.18
my 0.858 1.012 1.18
p 0.257
RTBS-9 | OAD | partially fixed | my 0.636 0.765 1.20
my 0.636 0.765 1.20
p 0.268 0.317 1.18
RTBS-10 | OFD | partially fixed | my 0.636 - ---
my 0.636 - -

Note: Partially fixed: x-axis is pinned and y-axis is partially fixed.
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Table 20. Comparisons between experimental and predicted dimensionless maximum
loads for uniaxial loading at ambient temperature

Specimen | Load Boundary Dimensio;less Maximum :
No. Path Conditions oads : Predicted/Tested
Load | Tested | Predicted

RTUP-I1] 0G| pinned m | 1266 | 1216 0.96
RTUP12| OAE | pimed | o | gos | ogm | ros
wrirss oo | | 2 | 208 ] S | %
RTUP-14 | OGE |  pinned Epy o g:ggg o
RTUP-15 | OAE pinned n‘:y %?; 01'?0373 .
RTUS-16 | OG | partially fixed n‘:y P {44
RTUS-17 | OAE | partially fixed nl:, gggg %?:96 L7
RTUS-18 | OGE | paraly fixed | ° psodl I o
RTUS-19 | OGE | partially fixed nlz, 8:;;; 8:;;5 .
RTUS-20 | OAE | partially fixed n‘:y (1):(3);1 ??Z; 11
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Table 21. Dimensionless axial load for imperfect pinned beam-columns with initially
applied biaxial moment and different high temperatures

m,=my=0.0 m=my=0.4 m,=my=0.7
Temp.°F | BC NS | Temp.°F | BC NS | Temp.°F| BC | NS
68 0.872 | 1.000 68 0.544 | 0.577 68 0.307 | 0.321
300 0.867 | 1.000 300 0.537 | 0.569 300 0.304 | 0.316
600 0.844 | 1.000 600 0.505 | 0.536 600 0.283 | 0.295
750 0.827 | 1.000 700 0.491 | 0.522 750 0.270 | 0.270
800 0.782 | 0.941 800 0.444 | 0471 800 0.208 | 0.214
900 0.687 | 0.819 900 0.362 | 0.362 810 0.192 | 0.195
1050 0.479 | 0.576 1050 0.160 | 0.167 840 0.072 | 0.072
1200 0.285 | 0.352 1085 0.069 | 0.069 --- -—- ---
1500 0.088 | 0.102 --- ~-- --- -—- -—- ---
1800 | 0039 | 0.043 | -
2100 | 0.009 | 0.010 | -

Note: BC means biaxially crooked; NS means nearly straight.




Table 22. Maximum dimensionless load p for biaxial loading pinned beam-columns
under biaxial loading with m,= m,= 0.6 at different temperatures

Temp. °F Maximum Axial Load p k equal to (kip-in/rad.)

) 0 13300 24000 infinity
68 0.406 0.643 0.707 0.964
300 0.399 0.637 0.704 0.963
500 0.382 0.636 0.712 0.962
600 0.373 0.635 0.716 0.962
700 0.362 0.633 0.718 0.961
750 0.353 0.633 0.719 0.961
800 0.310 0.575 0.660 0.904
850 0.258 | 0.545 0.623 0.846
900 0.198 0.496 0.572 0.788
940 0.067 0.465 0.528 0.737
943 0.034 0.457 0.524 0.732
1000 -- 0.389 0.449 0.637
1100 --- 0.233 0.321 0.471
1200 --- 0.089 0.220 0.339
1220 -—- 0.000 0.185 0.312
1300 - - 0.122 0.215
1350 --- --- 0.102 0.184
1400 --- --- 0.050 0.152
1450 - --- 0.000 0.120
1500 -- --- 0.098
1550 --- - --- 0.085
1600 - - --- 0.072
1700 --- --- --- 0.053
1800 --- - --- 0.042
1900 --- - --- 0.032
2000 --- --- 0.021
2050 - == - 0.015
2100 --- - - 0.010
2150 - - --- 0.005
2180 - - --- 0.001
2200 --- --- --- 0.000
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Table 23. Critical temperatures for hollow square pinned steel beam-columns under

biaxial loading with different load combinations

Critical Temperature (°F) and Biaxial Moments
P my,= my= 0.2 my=my= 0.5

0.05 1265 977

0.1 1226 971

0.2 1130 938

03 1052 854

04 983 674

0.5 899 ---

0.6 788 ---
0.68 365 -
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Table 24. Dimensionless maximum loads for uniaxially loaded beam-columns with load
paths LC1 through LC4 and elastic rotational restraints at 1000°F (W8x31)

Load Major axis Minor axis Major axis Minor axis
LC1 LC2 | LC1 | LC2 | LC3 | LC4 | LC3 | LC4
p 0.600 | 0.600 | 0.600 | 0.600 | 0.171 | 0.171 | 0.044 | 0.044
m 0.127 | 0.127 | 0.105 | 0.105 | 1.200 | 1.300 | 4.000 | 4.964
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Table 25. Maximum loads for biaxially loaded imperfect beam-columns with elastic
rotational restraints and various load paths at 1000°F (W8x31; k;3=24,000 in-kip/rad.)

Load Path Maximum External Loads
p 0.000] 0.050| 0.100| 0.250| 0.400| 0.619
NP3 my 2280 | 1.256| 1.085| 0.866| 0.621 | 0.000
my* | 1.337| 0.735| 0.635| 0.506| 0.364 | 0.000
my 2280 | 1.256| 1.085| 0.866| 0.621| 0.000
NP4 my* | 1.337| 0.735] 0.635| 0.506| 0.364| 0.000
p 0.000 | 0.001| 0.004| 0237 0370} 0.619

Note: my =my/myy;

my is dimensionless

dimensionless yield moment about x axis.

applied external moment and myy is

Table 26. Maximum external loads for biaxially loaded imperfect beam-columns with
elastic rotational restraints and various load paths at 1000°F (7x7x0.375 in.; k.3=24,000

in-kip/rad.)
Load path Dimensionless Maximum Loads
p 0.050 0.100 0.250 0.400 0.628
NP3 my 1.824  1.483 1.085  0.615 0.000
my 1.824  1.483 1.085  0.615 0.000
my 1.824 1.483 1.085  0.615 -
NP4 my 1.824  1.483 1.085  0.615 -
p 0.001 0.002 0.197 0.401 -
p 0.050 0.100 0250 0.400 ---
NPS my 1.824  1.483 1.085  0.615 ---
my 0546 0965 0.825 0.613 ---
my 1.824  1.483 1.085  0.615 ---
NP6 my 0.707 1.483 1.085  0.615 ---
P 0.000 0.001 0.191  0.400 ---




Table 27. Maximum loads for biaxially loaded beam-columns with elastic rotational
restraints and various load paths at 1000°F (8x6x0.375 in.; k;3=24,000 in-kip/rad.)

Load path Dimensionless Maximum Loads

p 0050 0.100 0250 0350 0500 0.625
NP3 my, 1615 1410 1.041 0723 0342 0.000
my 1714 1496 1105 0.767 0363 0.000

mey 1.615 1410 1.041 0723 0342 ---

NP4 my 1714 1496 1.105 0.767 0.363 ---

p 0001 0.005 0200 0.352 0.500 ---

p 0050 0.100 0250 0350 0.500 -

NP5 my 1615 1410 1.041 0.723 0342 -

my 1513 1321 0985 0.761 0.363 ---

my 1714 1496 1.105 0767 0.363 ---

NP6 my 0563 1410 1.041 0723 0342 ---

p 0.000 0.001 0.200 0348 0.500 -

p 0050 0.100 0.250 0350 0.500 ---

NP7 my 1714 1496 1105 0767 0.363 -

my 0387 0776 0720 0.693 0.344 -

my 1615 1410 1.041 0723 0.342 -

NP8 my 1714 1496 1.105 0.767 0.363 ---

p 0001 0.001 0196 0348 0.501 ---
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Table 28. Dimensionless maximum loads for biaxially loaded beam-columns with
different load-temperature sequences at pinned boundary conditions (7x7x0.375 in.)

Load Path | Load/Temp. Maximum Values for Load and Temperature
T(°F) 600 600 900 900 1200 1200
OTMP | my/my 0.650 0.100 0550 0.100 0220 0.050
P 0.109 0.724 0.069 0556 0.040 0213
T (°F) 600 600 900 900 1200 1200
OTPM [P 0.109 0.724 0.069 0.556 0.04 0.213
m,/m, 0.650 0.100 0550 0.100 0220 0.050
my/my 0.650 0.100 0550 0.100 0220 0.050
OMTP | T(°F) 600 600 900 900 1200 1200
p 0.109 0.725 0.069 0.556 0.040 0.213
m,/m, 0.650 0.100 0550 0.100 0220 0.050
OMPT |P 0.109 0.724 0.069 0556 0.040 0.213
T(°F) 602 604 902 900 1200 1200
P 0.109 0724 0.069 0.556 0.04 0213
OPTM | T(°F) 600 600 900 900 1200 1200
m,/my 0.650 0.100 0.069 0.100 0220 0.050
T(°F) 600 600 900 900 1200 1200
my 0.650 0.100 0550 0.100 0220 0.050
OTMMP my 0.650 0.100 0550 0.100 0220 0.050
p 0.109 0.724 0.069 0556 0.040 0213
T(°F) 600 600 900 900 1200 1200
p 0.109 0.724 0.069 0.556 0.040 0213
OTPMM my 0.650 0.100 0.550 0.100 0220 0.050
my 0.650 0.100 0.549 0.100 0220 0.049
my 0.650 0.100 0.550 0.100 0220 0.050
m 0.650 0.100 0550 0.100 0.220 0.050
OMMPT py 0.109 0.724 0.069 0557 0.040 0213
T(°F) 600 602 900 900 1196 1200
P 0.109 0.724 0.069 0556 0.040 0213
my 0.650 0.100 0550 0.100 0220 0.050
OPMMT my 0.650 0.100 0550 0.100 0220 0.050
T(°F) 604 604 900 900 1200 1200
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Table 29. Dimensionless maximum loads for biaxially loaded beam-columns with
different load-temperature sequences and partial boundaries and without axial restraint to
thermal expansion (7x7x0.375 in.)

II;::;? Load/Temp. Maximum Values for Load or Temperature
T(°F) 600 600 900 900 1200 1200
OTMP | my/my 1.500 0.500 1400 0.500 1.200 0.500
P 0.072 0.689 0.059 0559 0031 0233
T (°F) 600 600 900 900 1200 1200
OTPM |P 0.072 0.689 0.059 0559 0031 0233
my/my 1.851 0496 1.747 0496 1.607 0.522
m,/my 1.500 0500 1.400 0.500 1.200 0.500
OMTP | T(°F) 212 600 752 900 1200 1200
p 0.000 0.686 0.000 0.557 0.023 0.232
my/my 1.500 0.500 1400 0500 1200 0.500
OMPT |P 0.001 0.680 0.003 0.559 0.031 0.233
TCF) 68 68 68 922 1208 1202
P 0072 0.689 0.059 0.559 0.031 0.233
OPTM | T(°F) 600 600 900 900 1200 1200
m,/my 1.851 0494 1714 0496 1.607 0.491
T(°F) 600 600 900 900 1200 1200
my 1.500 0.500 1.400 0.500 1.200 0.500
OTMMP my 1.500 0.500 1400 0500 1200 0.500
p 0.066 0.688 0.057 0.559 0.028 0.232
T(°F) 600 600 900 900 1200 1200
p 0.072 0.689 0.059 0559 0031 0233
OTPMM my 1.500 0.500 1400 0.500 1200 0.500
m, 1.958 0493 1.843 0492 1569 0.488
my 1.500 0.500 1.400 0.500 1.200 0.500
OMMPT | ™ 1.500 0.500 1.400 0.500 1.200 0.500
p 0.000 0682 0.003 0.559 0.031 0233
T(°F) 68 68 68 922 1202 1198
P 0.072 0689 0059 0.559 0.031 0.233
my 1.500 0.500 1400 0.500 1200 0.500
OPMMT my 1.500 0474 1400 0.500 1200 0.500
T(°F) 212 68 212 922 1202 1200




Table 30. Comparisons between the experimental and predicted results for beam-

columns at 500°F without axial restraints to thermal expansion

Speci Load Dimensionless
p C;Ig"e" PZ?h Load | Maximum Values | Predicted/Tested
’ Tested Predicted
HTUP-1 | OTM | m, 1.100 1.217 1.106
HTUP-2 | OTP p 0.467 0.589 1.261
] . 1.
uturs | otmp | P 0.270 0.371 374
m, 0.595
P 0.270
HTUP- OTPM
TUP-4 m, 0.601 0.888 1.478
P 0.257
HIUP-5 | OTPM m, 0.590 0.927 1.571
HTUS-7 | OTM | m, 1.270 1.533 1.207
HTUS-8 OTP p 0.534 0.613 1.148
. 442 1.
utuss | otmp | P 0.352 0.44 256
m, 0.595
p 0.352
HTUS-10 | OTPM m, | 0694 0.898 1.294
m, 0.761 0.886 1.164
HTBP-11 | OTM m, 0.761 0.886 1.164
P 0.233 0.265 1.137
HTBP-12 | OTMP | m, 0.460
my 0.460
P 0.233
HTBP-13 | OTPM | m, 0.426 0.507 1.190
m, 0.426 0.507 1.190
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Table 31. Comparisons between the experimental and predicted results for beam-
columns with axial restraints to thermal expansion at 500°F

Specimen | Load Dimensionless Maximum Value )
P No. Path Load Tested Predicted Predicted/Tested

HTBPR-1 OTP P 0.502 0.548 1.092
my 0.741 0.797 1.076

HIBPR-2| OTM 1= 0.741 0.797 1.076
P 0.156 0.244 1.564

HTBPR-3 | OTMP my 0.46 --- —
my 0.46 --- ---
| 0.156 -— ———

HTBPR-4 | OTPM my 0.47 0.571 1.215
my 0.47 0.571 1.215

HTUPR-5 | OMTP |—P 0.268 0.288 1.075
m, 0.595
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Table 32. Comparisons between the experimental and predicted results for tests at S00°F
with axial resistant to thermal expansion and different load-path sequences

Specimen Load Maximum Dimensionless Value )

No. Path Tested Predicted Predicted/Tested
T 900°F

HIBPR-6 | OTP P 0.123 0.297 2.415
p 0.123

HTBPR-7 | OPT T 758°F 1061 °F 1.400
T 900°F

HTBPR-8 | OTM m, 0.214 0.327 1.528
m, 0.214 0.327 1.528
m, 0.214

HTBPR-9 | OMT my 0.214
T 775°F 1007 °F 1.299
T 900°F

HIUPR-101 OTM m, 0.402 0.474 1.179
m, 0.402

HTUPR-11 | OMT T 750°F 1043 °F 1.391
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Table 33. Dimensionless maximum axial load p for WTC columns with different end

rotational restraints and axial restraint to thermal expansion at different temperatures

Temp. Dimensionless Maximum Axial Loads for End Rotation Stiffness Equal to
°F 0.0 for ks equal to EI/L for ks equal to 10EI/L for ks equal to
00 EA/L 2EA/L {0.0 EA/L  2EA/L | 0.0 EA/L  2EA/L
68 0970 0970 0970 | 0982 0982 0982 | 0.986 0.98 0.986
200 {0970 0.715 0.644 | 0982 0.717 0.649 | 0.986 0.725 0.651
300 |0.968 0.533 0417 | 0982 0.536 0419 | 0985 0.544 0413
400 |[0.968 0362 0202 | 0982 0365 0.197 { 0985 0369 0.192
450 10968 0.278 0.097 | 0.982 0.284 0.094 | 0985 0286 0.088
600 | 0.967 0.046 - 0.982 0.051 --- 0.985 0.052 ---
800 (0909  -- 0.925 - 0.927 --- ---
1000 |0.640  --- - 0.651 - --- 0.652 --- ---
1200 |0.340  --- --- 0.346 --- --- 0.346 --- -
1400 |0.151  --- - 0.155 --- --- 0.154 - -
1600 |0.072  --- --- 0.073 - - 0.073 --- ---

Table 34. Dimensionless maximum axial load p for WTC beam-columns under biaxial
loading (m,/m, = /1, m,= 0.7) with different end rotational restraints, axial restraint to

thermal expansion and temperatures

Temp. Dimensionless Maximum Axial Loads for End Rotation Stiffness Equal to
°F 0.0 for k¢ equal to EI/L for k¢ equal to 10EI/L for ks equal to
0.0 EA/L 2EA/L|0.0 EA/L  2EA/L | 0.0 EA/LL.  2EA/L
68 0360 0360 0360 | 0552 0.552 0.552 | 0.810 0.810 0.810
200 |0360 0249 0304 | 0552 0442 0354 | 0810 0.591 0.437
300 [0.357 0.123 0.034 | 0552 0284 0.145 | 0.810 0397 0.156
400 (0335 0033 00 | 0554 0.100 00 | 0811 0131 0.0
500 {0323 00 - | 0551 00 - | 0814 0031 -
600 |0319 — | 0546 — | 0818 00 -
800 (0239 - — | 0496 - — | 0770 -
900 |0.109 - --- 0.288 --- e 0.666 - ---
950 |0.019 - — | 0285 - — | 0606 -
1000 | 0.00 - — | 0194 - — | 0535
1050 | - = - — | 0096 — | 0.463
1200 | - - 0.0 — | 0284
1400 | - — | 0.125
1600 | --- - - --- - 0.055
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Table 35. Dimensionless maximum external loads for partial rotational restrained beam-
columns from WTC building under uniaxial loading (my only) at different temperatures
and axial restrains to thermal expansion k,= EI/L)

ks Temp. (°F) Dimensionless Load for m,/m,=0.0
68 p 0.000 0.250 0.500 0.750 0.983
my, 2.750 2.426 1.426 0.621 0.000
600 p 0.000 0.250 0.500 0.750 0.983
my, 3.104 2.664 1.489 0.649 0.000
0 900 p 0.000 0.250 0.500 0.750 0.804
my,  2.788 2.213 0.993 0.191 0.000
1200 p 0.000 0.100 0.200 0.300 0.345
my, 2452 1.956 0.935 0.284 0.000
1500 p 0.000 0.025 0.050 0.075 0.100
my, 1.589 1.504 0.877 0.372 0.000
200 p 0.000 0.200 0.400 0.600 0.733
my 1.736 1.115 0.700 0.291 0.000
p 0000 0200 0350 0500  0.552
300
EA/L my 1.203 0.769 0.454 0.147 0.000
400 p 0.000 0.100 0.200 0.300 0.379
my 0.893 0.643 0.427 0.219 0.000
550 p 0.000 0.050 0.080 0.110 0.135
my, 0377 0.252 0.193 0.136 0.000
200 p 0.000 0.200 0.400 0.600 0.652
my, 1.448 0.960 0.541 0.134 0.000
p 0.000 0.100 0.200 0.300 0.416
2EAL 300 my, 0.962 0.709 0.498 0.289 0.000
400 p 0.000 0.050 0.100 0.150 0.196
my  0.522 0.374 0.258 0.165 0.000




112

Table 36. Dimensionless maximum external loads for pinned beam-columns from WTC
building under uniaxial loading (my only) at different temperatures and axial restrains to
thermal expansion k.= 0.0)

ks Temp. (°F) Dimensionless Maximum Loads
63 p 0.000  0.250 0.500 0.750 0.971
my 1.454  1.181 0.719 0.328 0.000
600 p 0.000  0.250 0.500 0.750 0.969
my 1.454  1.152 0.686 0.314 0.000
0 900 p 0.000  0.200 0.400 0.600 0.794
my 1.191  0.948 0.573 0.273 0.000
1200 p 0.000  0.100 0.200 0.300 0.341
my 0.513  0.371 0.192 0.056 0.000
1400 p 0.000  0.050 0.100 0.153 -
my 0230 0.157 0.072 0.000 -
200 p 0.000  0.200 0.400 0.600 0.734
my 1.303 0922 0.670 0.343  0.000
300 P 0.000  0.150 0.300 0450  0.557
EA/L my 1.000  0.807 0.468 0.199  0.000
400 p 0.000 0.100 0.200 0.300 0.383
my 0.598  0.453 0.304 0.164  0.000
550 p 0.000  0.050 0.100 0.136 -
My 0.255 0.190 0.116 0.000 ---
200 p 0.000  0.200 0.400 0.600 0.654
my 1.178 0.814 0.555 0.119 0.000
0.000  0.150 0.300 0.400 0.418
2EA/L 300 fnx 0.753  0.430 0.216 0.066 0.000
400 p 0.000  0.050 0.100 0.150 0.198
my 0.345 0.273 0.203 0.122 0.000
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Table 37. Dimensionless maximum external loads for partially restrained exterior beam-
columns from WTC building under uniaxial loading (my only) at different temperatures
and axial restraints to thermal expansion (k, = EI/L)

Kis Temp. (°F) Dimensionless Maximum Loads

68 p 0.000 0.250 0.500 0.750 0.983
my 3.038 2.669 1.586 0.660 0.000
600 p 0.000 0.250 0.500 0.750 0.983
my 2.977 2.445 1.523 0.654 0.000
0 900 p 0.000 0.250 0.500 0.750 0.804
my 2.876 2.380 1.050 0.169 0.000
1200 p 0.000 0.100 0.200 0.300 0.345
my 2.425 2.069 0.977 0.285 0.000
1500 p 0.000 0.025 0.050 0.075 0.100
my 1.694 1.445 0913 0.386 0.000
200 p 0.000 0.200 0.400 0.600 0.733
my 1.830 1.165 0.669 0.262 0.000
300 p 0.000 0.200 0.350 0.500 0.552
EA/L my 1.167 0.723 0.410 0.107 0.000
400 p 0.000 0.100 0.200 0.300 0.379
my 0.803 0.585 0.374 0.164 0.000

550 p 0.000 0.050 0.110 0.135 -

my 0.283 0.173 0.053 0.000 -
200 p 0.000 0.200 0.400 0.600 0.652
my 1.524 0.924 0.502 0.107 0.000
p 0.000 0.100 0.200 0.300 0.416
2EA/L 300 my 0.870 0.656 0.445 0.236 0.000
400 p 0.000 0.050 0.100 0.150 0.196
my | 0.414 0.305 0.196 0.092 0.000




Table 38. Maximum external nonproportional loads for pinned exterior WTC beam-
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columns at different temperatures and axial restraints to thermal expansion (my/m, = r,/rx

and k,=EI/L)
ks Temp. (°F) Dimensionless Load for my/m,=ry/ry
68 p  0.000 0.250 0.500 0.750 0.983
my, 1.749 1.528 1.140 0.522 0.000
600 p  0.000 0.250 0.500 0.750 0.983
m, 1.994 1.648 1.216 0.533 0.000
0 900 p  0.000 0.250 0.500 0.750 0.804
m, 1.871 1.453 0.857 0.149 0.000
1200 p  0.000 0.100 0.200 0.300 0.345
my 1.675 1.236 0.827 0.239 0.000
1500 p  0.000 0.025 0.050 0.075 0.100
m, 1.106 0.895 0.708 0.351 0.000
200 p  0.000 0.200 0.400 0.600 0.733
my 1.367 1.006 0.578 0.179 0.000
300 p  0.000 0.200 0.350 0.500 0.552
my 1.026 0.511 0.249 0.070 0.000
EA/L 400 p 0.000 0.100 0.200 0.300 0.379
myx  0.498 0.336 0.212 0.106 0.000
500 p 0.000 0.050 0.080 0.110 0.135
my 0.262 0.204 0.173 0.141 0.000
200 p  0.000 0.200 0.400 0.600 0.652
m, 1.342 0.851 0.423 0.072 0.000
300 P 0.000 0.100 0.200 0.300 0416
2EAL me 0702 0440 0268  0.142  0.000
400 p 0.000 0.050 0.100 0.150 0.196
my  0.245 0.181 0.132 0.084 0.000




Table 39. Dimensionless maximum external loads for pinned exterior WTC beam-
columns under biaxial loading at different temperatures and axial restraints to thermal

expansion (my/m,=0.5 and k, =EI/L)
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kis Temp. (°F) Dimensionless Load for my/m,=0.5
68 b 0000 0250 0500 0750 0983
m, 2726 2036 1428 0612  0.000
600 |p 0000 0250 0500 0750  0.983
m, 3073 2197 1507 0630  0.000
90 |p 0000 0250 0500 0750  0.804
0 m, 2942 1916 1009  0.186  0.000
1200 |p 0000 0100 0200 0300 0345
m, 2542 1670 0977 0283  0.000
1500 |p 0000 0025 0050 0075  0.100
m, 1494 1223 0911 0402  0.000
200 |p 0000 0200 0400 0600  0.733
m, 1822 1143 0682 0247  0.000
300 |p 0000 0200 0350 0500 0552
m, 1142 0660 0345 0100  0.000
EAL 400 |p 0000 0100 0200 0300 0379
m. 0677 0466 0298 0150  0.000
500 |p 0000 005 0080 0110 0.135
m, 0368 0293 0251  0.196  0.000
200 |p 0000 0200 0400 0600 0652
m, 1653 0967 0514 0093  0.000
300 |p 0000 0100 0200 0300 0416
2EAML m, 0817 0588 0372 0202  0.000
400 |p 0000 005 0100 0150  0.19
m, 0347 0266 0195 0115  0.000




Table 40. Dimensionless maximum external loads for pinned exterior WTC beam-
columns under biaxial loading with different temperatures and axial restraints to thermal

expansion (my/m,=2 and k, =EI/L)
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ki Temp. (°F) Dimensionless Load for my/m,=2

68 p 0.000 025  0.500 0.750  0.983
my 1.443 1.035 0.738 0.325 0.000
600 p 0.000 0250 0500 0750  0.983
my 1.668 1.110  0.777  0.323 0.000
0 900 p 0.000 0250 0500 0.750  0.804
my 1.564 0969  0.524  0.088 0.000
1200 p 0.000  0.100 0200 0300  0.345
my 1.369 0830 0498  0.141 0.000
1500 p 0.000 0.025 0.050  0.075 0.100
my 0.862 0.615 0.456 0.202 0.000
200 p 0.000 0200 0400 0.600  0.733
my  0.895 0.573 0.338  0.120  0.000
300 p 0.000 0200 0350  0.500 0.552
EA/L my 0574 0327  0.170  0.048 0.000
400 p 0.000 0.100 0.200 0.300 0.379
my 0335 0.231 0.148 0.074 0.000

500 p 0.000  0.080  0.110  0.135 ---

my 0.180 0.142  0.102 0.000 ---
200 p 0.000 0200 0400 0600  0.652
my  0.809 0.483 0.254  0.045 0.000
YEA/L 300 p 0.000 0.100 0.200 0.300 0.416
my  0.404 0.292 0.182  0.099  0.000
400 P 0.000 0.050  0.100  0.150  0.196
m, 0.165 0.130  0.095 0.060  0.000




Table 41. Number of exterior columns damaged in each of the impacted floors for the
North Tower of WTC (Ref. 25)

Floor No. Number of Columns out of
commission
94 21
95 15
96 15
97 13
98 4

Table 42. Temperature corresponding to zero load-carrying capacity for WTC beam-
columns at service load

Dimensionless Service Load

Critical Temp. °F

Po

Prew

Mo

Mxnew

my,

Mynew

Po-0.5 my,
Prew-0.5Mynew
Po-0.5(myg+my,)
Prew-0.3(MynewtMynew)

0.497

0.547

0.818

0911

0.884

0.972

0.497-0.404
0.547-0.455
0.497-0.404-0.442
0.547-0.455-0.486

1086
1056
1058
1025
1058
1025
901
827
815
658
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APPENDIX B: FIGURES
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Figure 1. Model of beam-column under high temperature (13)
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Figure 2. Biaxially loaded imperfect beam-column with partial rotational end restraints
and high temperature
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Figure 5. Flexible connection in one axis
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Figure 6. Schematic of flexible connection
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Figure 7. Furnace inside view

Figure 8. Heating furnace and controller
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Figure 9. Furnace time-temperature exposure curve
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Figure 10. Connection between the moment arm and top gimbal



125

Top Plate A

Moment Arm

Tie Rod

Top Plate B of Steel
Table

| Hydraulic Jack C

Load Cell D

Bottom Plate E

Figure 11. Picture for the moment device
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Figure 12. Setup for ambient temperature test
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Figure 14. Typical tensile coupon
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Figure 16. Material stress-strain relationship at ambient temperature
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Figure 21. Loading paths for nonproportional loading at high temperature
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Figure 22. Various types of end restraints for thermal expansion
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Figure 23. Moment versus deflection curves for uniaxial loading tests at ambient
temperature
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Figure 24. Moment versus end rotation curves for uniaxial loading tests at ambient
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Figure 25. Load versus deflection curves for uniaxial loading tests at ambient
temperature
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Figure 26. Load versus end rotation curves for uniaxial loading tests at ambient
temperature
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Figure 27. Moment versus deflection curves for biaxial bending tests at ambient

temperature
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Figure 28. Moment versus end rotation curves for biaxial loading tests at ambient
temperature
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Figure 29. Load versus deflection curves for biaxial loading tests at ambient temperature



07 r

Dimensionless Axial Load p

136

— « —m=0.616 (RTBP-5)

——+— m=0.465 (RTBP-4)

—+— m=0 (RTBP-1)

- - - m=0.636(RTBP-10)
—e— m=0(RTBS-7)

20 30 40 50
End Rotation (0.001 rad.)

Figure 30. Load versus end rotation curves for biaxial bending tests at ambient
temperature
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Figure 31. Moment versus end rotation curves for uniaxial loading tests at high

temperatures: T1=500°F, T2=900°F
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Figure 32. Load versus end rotation curves for uniaxial bending tests at the high
temperature of 500°F without axial restraint to thermal expansion
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Figure 33. Moment versus end rotation curves for beam-columns under biaxial loading at
T1=500°F and T2=900°F
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Figure 37. Discretized I-shaped sections subjected to axial load and biaxial bending
moments
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Figure 42. Idealized and actual models for partial end rotation restraints
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Figure 43. Linear and bilinear approximations of restraint moment and rotation curve
for beam-column (11)
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Figure 44. Load versus deflection curves for pinned imperfect hollow square columns
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Figure 47. Bending stiffness degradation curves for pinned hollow square imperfect
beam-columns under uniaxial bending with my= 0.5My

0.8

0.6

0.4

Dimensionless Load P

0.2

0.0 0.5 1.0 1.5 2.0 25
Dimensionless External Moment my*

0.0

Figure 48. Interaction curves for biaxial loaded partially restrained
W8x31 section beam-column with k= kg,
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Figure 49. Interaction curves for biaxially loaded partially restrained imperfect
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Figure 50. Interaction curves for biaxially loaded partially restrained imperfect
hollow square beam-column BC2 for load paths NP5 and NP6
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Figure 51. Interaction curves for biaxially loaded hollow rectangular beam-column BC3
with linear partial rotational restrains for load paths NP7 and NP8
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Figure 52. Interaction curves for biaxially loaded hollow rectangular beam-column BC3
with linear partial rotational restrains for load paths NP7 and NP8
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Figure 55. Comparisons between predicted and experimental moment versus deflection
curves for beam-columns with pinned boundary conditions
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Figure 56. Comparisons between predicted and experimental load versus deflection
curves for beam-column with pinned boundary conditions
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Figure 57. Stiffness degradation curves for RTBP-5 with 228 and 912 elemental areas

for each of 9 nodes along the member length
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Figure 61. Stiffness degradation curves for pinned beam-columns with m,= my= 0.4 and

without axial restraints to thermal expansion at different temperatures
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Figure 62. Load versus temperature curves for biaxially loaded beam-columns with
m,=my= 0.6 and different end rotation restraints without axial restraints

Dimensionles Load p

to thermal expansion

10 ¢

—— T=68-8C
------ T=800-BC
- - = - T=1200-BC
— .. - T=2000-BC

0.1

0.2 0.3

Mid-span Deflection (in.)
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Figure 64. Load versus deflection curves for pinned beam-columns under biaxial loading
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Figure 65. Temperature versus deflection curves for pinned beam-columns with
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Figure 66. Stiffness degradation curves for pinned beam-columns with m,= my=0.2
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Figure 68. Temperature versus deflection curve for columns with
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rigid axial restraint to thermal expansion
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Figure 70. Load versus rotation curves for experimental and predicted results
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Figure 76. Load versus temperature curves for WTC columns near the tower top
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Figure 77. Axial load p versus mid-span deflection curves at different temperature for
WTC columns with pinned end conditions and free axial restraint to thermal expansion
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Figure 80. Mid-span deflection versus temperature curve for WTC columns near the
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Figure 82. Load versus temperature curves for WTC beam-columns near the tower top
under biaxial loading (m,/m, =, /r,and m,= 0.7) with different end restraints
and axial restraints to thermal expansion
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Figure 83. Interaction curves for WTC beam-columns from impacted area under uniaxial
loading (m, only) with k.= 0 and partial rotational end restraints
at different temperatures
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Figure 85. Interaction curves for WTC beam-columns from impacted area under uniaxial
loading (m, only) with k.= % and partial rotational end restrained
at different temperatures
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Figure 86. Interaction curves for WTC beam-columns from impacted area under uniaxial
loading (m, only) with k., = 0.0 and pinned boundaries at different temperatures
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Figure 87. Interaction curves for WTC beam-column from impacted area under uniaxial
loading (m,, only) with k¢ = EZA? and pinned boundaries at different temperatures

1.0

0.8

0.6
&

0.4

0.2

0.0

0.0 1.0 2.0 3.0
m,,

Figure 85. Interaction curves for WTC beam-column from impacted area under uniaxial
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Figure 86. Interaction curves for WTC beam-column from impacted area under uniaxial
loading (m, only) with k,; = 0 and fixed boundaries at different temperatures

Figure 88. Interaction curves for WTC beam-column from impacted area under uniaxial
loading (m,, only) with k;; = FLﬁ and fixed boundaries at different temperatures
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loading (m,, only) with ks = 2 % and partial rotational end restraints
at different temperatures
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Figure 90. Interaction curves for WTC beam-column from impacted area under biaxial
loading (m,, /m, = 0.5) with k;; = 0 and partial rotational end restraints
at different temperatures
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Figure 91. Interaction curves for WTC beam-column from impacted area under biaxial
loading (m,, /m, = 0.5) with k;; = E; and partial rotational end restraints
at different temperatures
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Figure 92. Interaction curves for WTC beam-column from impacted area under biaxial
loading (m,, /m, = 0.5) with k;; = 2 ETAand partial rotational end restraints
at different temperatures
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Figure 93. Interaction curves for WTC beam-column from impacted area under biaxial
loading (m, /m, = n,/r, ) with k;; = 0 and partial rotational end restraints
at different temperatures
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Figure 94. Interaction curves for WTC beam-column from impacted area under biaxial
loading (m,, /m, =1,/r, ) with ks = %ﬂand partial rotational end restraints
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Figure 95. Interaction curves for WTC beam-column from impacted area under biaxial
loading (my, /m, =7, /r, ) with ks = 2 % and partial rotational end restraints
at different temperatures
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Figure 96. Interaction curves for WTC beam-column from impacted area under biaxial
loading (m,, /m, = 2) with k;; = 0 and partial rotational end restraints
at different temperatures
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Figure 97. Interaction curves for WTC beam-column from impacted area under biaxial
loading (m,, /m, = 2) with k;s = ETAand partial rotational end restraints
at different temperatures
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loading (m,, /m, = 2) with k;s = 2 -Ef-and partial rotational end restraints
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APPENDIX C: COMPUTER PROGRAM

This appendix presents the complete computer program based on the theory
presented in this dissertation. It consists of one maim program, fourteen subroutine
programs and two input date files. The program can be used to analyze the behavior and
the strength of beam-columns with partial rotational end restraints and with box section,
I-section or hollow rectangular section at ambient and high temperatures. The input

parameters for the program are defined below:

Wi Width of top flange of cross section

Tl Thickness of top flange

D2 Depth of web plate

T2 Thickness of web plate

W4 Width of bottom flange of cross section

T4 Thickness of bottom flange

YB Distance between the top and bottom flange
INPT Number of nodes along the beam-column length
NHI1 Number of layers in the top flange

NV1 Number of elements across the top flange

NH2 Number of elements across the web plate

NV2 Number of layers in the web plate

NH4 Number of layers in the bottom flange

NV4 Number of elements across the bottom flange
RTYE Young’s modulus of the material at ambient temperature

RTSIGMAY Yield strength of the material at ambient temperature
LP Load path

NPVALUE Applied constant axial load

NMXVALUE Applied constant moment about x axis
NMYVALUE Applied constant moment about y axis

NTVALUE Constant temperature

EL Beam-column length

KBX Rotational restraint about x axis at end A



KBY

KTX

KTY
DELX
DELY
SIGMARC
BCT

CS
TEMPDI

Rotational restraint about y axis at end A
Rotational restraint about x axis at end B

Rotational restraint about y axis at end B

Initial crookedness in the x direction

Initial crookedness in the y direction

Residual stress

BCT=1 that means there is no axial restraint to thermal expansion
BCT=2 that means there is rigid axial restraint to thermal expansion
BCT=3 that means there is fine axial restraint to thermal expansion

Stiffness for the axial restraint to thermal expansion

Temperature
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One sample output is presented below, where symbol Mgy represents the applied

moment at end B; symbol Ux represents the midspan deflection in x direction; symbol Y 5

represents the rotation about y axis of end A; symbol D represents the dimensionless

determinant.

Temp. (°F)

800
800
800
800
800
800
800
800
800
800
800
800
800
800
800
800
800
800
800
800
800

]
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.003
0.005
0.008
0.010

Mey
0.000
0.000
0.001
0.008
0.015
0.022
0.029
0.036
0.043
0.050
0.057
0.064
0.071
0.078
0.086
0.093
0.100
0.107
0.107
0.107
0.107

U,
0.000
0.001
0.006
0.011
0.016
0.021
0.026
0.031
0.036
0.041
0.046
0.051
0.056
0.061
0.066
0.071
0.076
0.076
0.077
0.077
0.077

Ya
0.000
0.000
0.000
0.000
0.000
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.002

1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
0.998
0.996
0.995
0.993




The programs are attached below.

PROGRAM MAINPROGRAM

IMPLICIT NONE

INTEGER INPT,NH1,NV1,NH2,NV2,NH4,NV4,NE1,NE2,NE4,TOT

REAL*8 YBAR1,YBARZYBAR3,IX1,1X23,X4

INTEGER DD,DK,DE,DG.L1]

REAL*S8 W1,T1,D2,T2,W4,T4,YB,B1,EL,H,PYE,DELX,DELY,HB
PARAMETER(DD=42,DK=42,DE=1000,0G=100000)

REAL*8 A,IXIY,IXY.SX.SY,KBX KBY KTX,KTY

REAL*S YE,PY,MXYY,MYYY,SIGMAY SIGMARC,SIGMART

REAL*8 AE(DD),SXE(DD),SYE{DD),IXE(DD),IYE(DD),IXYE(DD,U0(DD),V0({DD)
REAL*8 X(DE),Y(DE),AD(DE),STR(DE),Z(DD)

REAL*8 N1(DD,DD),N2(DD,DD),N3(DD,5D),N4(DD,DD),N5(DD,DD),N6(DD,DD)
REAL*8 ELD1(6),ELD2(6),FLD1(DD,5),FLD2(DD,5)

REAL*8 U1(DD),V1(DD),U2(DD),V2{DD),uU3(DD),V3(DD)

REAL*8 DELTAU1(DD}.DELTAV1(DD),DELTAU2(DD), DELTAV2(DD),USLOP(DD) VSLOP(DD)
REAL*8 EXMX1(DD),EXMY1(DD),EXMX2(DD),EXMY2(DD)

INTEGER GLOBLEN, TANGENTN,ICRAMER )

INTEGER  ALPHAP ALPHAMX ALPHAMY,LP,COMBP,COMBMX,COMBMY,DPMXY
REAL*8 DP1,DMX1,DMY1,DP2,DMX2,DMY2

REAL?*8 MIDU(3),MIDV(3),RATIO1,RATIO2,RATIO

REAL*8 AP(DG),AMBX(DG),AMTX(DG},AMBY(DG) AMTY(DG)

REAL*8 MDFU(DG),MDFV(DG),ITER(DG), ABMAXUSTRN(DG)

REAL*8 THETABX(DG),THETATX(DG), THETABY(DG), THETATY(DG)

REAL*S PSPECIAL,MXSPECIAL, MYSPECIAL MPSPECIAL,

REAL*8 NPVALUE,NMXVALUE,NMYVALUE,CONVERGE,BELTA1,BELTA2

REAL*8 PHIXY,PHIYY,PHIXBAR(DD},PHIYBAR(DD)

REAL*S THETAP,LOADPP,MAXS(DD,2),GLMAXU (DG,DD,2)

REAL*8 GSN(DD,DE),GSS(DD,DE),GSN1{DD,DE),GSS1{DD,DE),GSN2(DD,DE)
REAL*8 GSS2(DD,DE),GSN3(DD,DE),GSS3(DD,DE))

INTEGER NPE(DD),MAXNP,K,BCT,UPDATEN,ALPHAT, COMBT,DT

REAL*8 RTYE,RTSIGMAY,GR,SR TVECTOR

REAL*B SIGMAP,SIGMAU,STRNTH,EPSILONY PATH(DD),APATH(DG),PTOT(DD)
REAL*8 BUSTRN(DD,DE), BUS}J(DD),GBUS,UE}J(DD,4), MDUE(DG,4)

REAL*8 JURN(DD,DE) JSTRESS(DD,DE),DM,WAO(DK,DK)

INTEGER JITE(DD,DE),ITP(DD,DE),iTE2(DD,DE),ITP2(DD,DE),JITE1(DD,DE),JITP1(DD,DE)
REAL*8 DVR1(DD,3),DVRZ(DD,3),DVR3(DD,3),DVR(DD,3),CURVATURE(DG)
REAL*S CV1,CV2,CV3,CV4,CV5,CV6,PEPSILON1,PEPSILON2, MAXLOAD,MPP
REAL *8 DETT1, DETTN, DETERMINANT(DG), DETRATIO(DG)

REAL*8 EXTMX(DG),EXTMY(DG),GDVR1(DG),GDVR2(DG),GDVR3(DG)

REAL*8 TEMPERATURE(DG),TEMPD,TEMPD1,TEMPD2,TEMPD3, SUMRESI
REAL*8 GSTRESS(DG,DE),GSTRAIN(DG,DE),PTMR,DELTAT,EPSILONYO, NTVALUE
REAL*8 AINTERMXO(DG),AINTERMXMID(DG),AINTERMYC(DG),AINTERMYMID{DG),CS
COMMON/M1/ W1,T1,02,T2,W4,T4,YB,NH1,NV1,NH2,NVZ, NH4,NV4
COMMON/M2/ RTYE,SIGMARC,RTSIGMAY

COMMON/M3/ KBX,KBY,KTX,KTY,DELX,DELY

COMMON/M4/ INPT,ELHB

COMMON/M5/ THETAP

COMMON/Mé/ BCT,PTMR, CS

OPEN(1FILE="WTCSECTION-EC3.DAT")

READ (1,*) W1,71,D2,T2,W4,T4,YB,INPT.NH1,NV1,NH2,NV2,NH4,NV4,RTYE,RTSIGMAY
CLOSE(1)
OPEN(ZFILE="WTCLOAD-2013.DAT")

READ (2,*) LP,NPVALUE,NMXVALUE,NMYVALUE NTVALUE,EL,KBX KTX ,KBY,KTY &

&,DELX,DELY,SIGMARC, THETAP,BCT,CS,PTMR TEMPD1  CLOSE(2)

£V1=0.001D0

€V3=0.005D0

CV6=0.001D0

CV2=0.5D0

CV4=0.1D0

CV5=0.05D0

PEPSILON1=1.0D0

PEPSILON2=2.0D0

DELTAT=1

NE1=NH1*NV1

NE2=NH2*NV2*2

NE4=NH4*NV4

TOT=NE1+NE2+NE4

YBAR1=(WI*T1*T1/2+D2*T2*(T1+D2/2)*2+ W4*T4*(T1+YB+T4/2))/(W1*T1+D2*T2*2+ W4°T4)

YBAR2=YB+T1-YBAR1

YBAR3=T1+D2-YBAR1

A=W1PT14D2*T2*2+W4A*T4

IX1=W1*T1#*3/12+W1*T1*(YBAR1-T1/2)**2
IX23=(T2*D2**3/12+D2*T2*(D2/2+T1-YBAR1)**2)
IX4=W4*T4**3+W4*T4*(YB+T1-YBAR1+T4/2)**2

IX=IX1+2*1X23+1X4

Y=T1*W13/12+ T4*W4**3/12+(D2°T2**3/12+ D2 T2*(W4/2+T2/2)**2)*2
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IXY=SQRT(IX*IY)
TEMPD=68
CALL TEMP(TEMPD,SIGMAY,YE STRNTH,EPSILONYO)
PY=SIGMAY*A
MXYY=(SIGMAY*IX)/MAX(YBAR1,YBAR3)
MYYY=(2*SIGMAY*1Y)/W1
PHIXY=SIGMAY/YE/MAX(YBAR1,YBAR3)
PHIYY=2*SIGMAY/YE/W1
GR=SQRT(IX/A)
SR=EL/GR
H=EL/(INPT-1)
ILP=1,0nly apply axial load until it fail at temperature TEMPD1.
ILP=2, only apply My until it fail at temperature TEMPD1.
ILP=23, ONLY APPLY Mx UNTILE IT FAlLat temperature TEMPD1
'LP=22, apply Mx and My simutaneously until it fail at temperature TEMPD1.
ILP=3, apply axial load P firsity and then keep it as constant and then apply My until it failat temperature TEMPD1.
1LP=32, apply axial load P firsity and then keep it as constant and then apply MX until it fallat temperature TEMPD1 .
1LP=4, apply My firstly and then keep it as constant and then apply P until it fail at temperature TEMPD1.
ILP=42,apply MX firstly and then keep it as constant and then apply P until it fail at temperature TEMPD1.
ILP=5, apply axial load P firstly and then keep it constant and then apply Mx and My simutaneously until it failat temperature TEMPD1.
ILP=6, apply axial load Mx and My simutaneously firstly and then keep them as constant, and then apply P until it falat temperature TEMPD1.
ILP=8, aly P firstly, and then apply Mx, finally ppapply My until it failat temperature TEMPD1.
ILP=9, apply MY firstly, and then apply Mx, finally apply P until it fail at temperature TEMPD1.
ILP=10, apply Mx firstly and then apply My until it fail at temperature TEMPD1.
ILP=11, apply My firstly and then apply Mx until it faflat temperature TEMPD1.
ILP=12, apply P and My simutaneously until it failat temperature TEMPD1.
ILP=90, only increase the temperature only until it fail with rigid thermal restraint.
{LP=91, apply axial load first and keep it constantly and then increase the temperature untile it fail.
ILP=96, apply Mx and My simutaneously firstly and thena pply P; keep them as constant and raise the temperture until it fail
ILP=97, apply mx and my firstly, and increase temperature and keep them constantly and apply axial load
ILP=98, apply p and then apply mx and my firstly; keep them constantly and increase the temperature
{LP=922, apply mx and my firstly at the temperature TEMPD1 and then increase the temperature until it fail
1LP=93, apply mx firstly and then Increase the temperature until it fail
PSPECIAL=NPVALUE*PY
MXSPECIAL=NMXVALUE*MXYY
MYSPECIAL=NMYVALUE*MYYY
ELD1(1)=0.000D0
ELD1(2)=0.0D0
ELD1(3)=0.0D0
ELD1(4)=0.0D0
ELD1(5)=0.0D0
ELD1(6)=TEMPD1
IF (LP.EQ.1.0R.LP.EQ.3) THEN
ALPHAP=1
ALPHAMX=0
ALPHAMY=1
ALPHAT=0
ELSE 1F(LP.EQ.2.0R.LP.EQ.4) THEN
ALPHAP=1
ALPHAMX=0
ALPHAMY=1
ALPHAT=0
ELSE IF(LP.EQ.23) THEN
ALPHAP=1
ALPHAMX=1
ALPHAMY=0
ALPHAT=0
ELSE IF(LP.EQ.32) THEN
ALPHAP=1
ALPHAMX=1
ALPHAMY=0
ALPHAT=0
ELSE IF(LP.EQ.42) THEN
ALPHAP=1
ALPHAMX=1
ALPHAMY=0
ALPHAT=0
ELSE IF(LP.EQ.5) THEN
ALPHAP=1
ALPHAMX=1
ALPHAMY=1
ALPHAT=0
ELSE IF(LP.EQ.6) THEN
ALPHAP=1
ALPHAMX=1
ALPHAMY=1
ALPHAT=0
ELSEIF (LP.EQ.22) THEN
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ALPHAP=0
ALPHAMX=1
ALPHAMY=1
ALPHAT=0
ELSE IF(LP.EQ.7) THEN
ALPHAP=0
ALPHAMX=0
ALPHAMY=1
ALPHAT=0
ELSEIF(LP.EQ.8)THEN
ALPHAP=1
ALPHAMX=1
ALPHAMY=1
ALPHAT=0
ELSEIF(LP.EQ.9)THEN
ALPHAP=1
ALPHAMX=1
ALPHAMY=1
ALPHAT=0
ELSEIF{LP.EQ.10)THEN
ALPHAP=0
ALPHAMX=1
ALPHAMY=1
ALPHAT=0
ELSEIP(LP.EQ.11)THEN
ALPHAP=0
ALPHAMX=1
ALPHAMY=1
ALPHAT=0
ELSEIF(LP.EQ.12)THEN
ALPHAP=1
ALPHAMX=0
ALPHAMY=1
ALPHAT=0
ELSE IF(LP.EQ,90) THEN
ALPHAP=0
ALPHAMX=0
ALPHAMY=0
ALPHAT=1
ELSEIF (LP.EQ.91)THEN
ALPHAP=1
ALPHAMX=0
ALPHAMY=0
ALPHAT=1
ELSEIF (LP.EQ.96.0R. LP.EQ.97.0R, LP.EQ.98.0R.LP.EQ.922.0R LP.EQ.93)THEN
ALPHAP=1
ALPHAMX=1
ALPHAMY=1
ALPHAT=1
ELSEIF (LP.EQ92)THEN
ALPHAP=0
ALPHAMX=0
ALPHAMY=1
ALPHAT=1
ELSE
ENDIF
CALL SEC(X,Y.AD)
CALL RESIDUALSTRESS(STR)
SUMRESI=0.0
DO 04211=1, TOT
SUMRESI=SUMRESI+STR(I)*AD(I)
0421 CONTINUE
GLOBLEN=1
DO 701 [=1,INPT
DO 707 ]=1,TOT
GSN(1f)=STR(J)/SIGMAY
GSS(1.J)=STR(J)/SIGMAY
NTE(1))=1
NTP(1))=0
707 CONTINUE
DVR(1,1)=0.0
DVR(1,2)=0.0
DVR(1,3)=0.0
701 CONTINUE
CALL GLOB(ELD1,GSN,GSS,DVR JITE,JITP,DVR1,EXMX1,EXMY1,MAXS,GSN1,GSS1,JITEL}JITP1,UE]}, DETT1,WA0)
CALL TEMP(ELD1(6),SIGMAY,YE,STRNTH,EPSILONY)
DO 07211=1,INPT
PTOT(1)=0.0



DO 0722 J=1,TOT
PTOT(1)=PTOT(1)+GSS1(L])*AD(J)*SIGMAY
0722 CONTINUE
PATH(I)=PTOT(I)}+ELD1(1)
0721 CONTINUE
DETERMINANT(GLOBLEN)=DETT1
DETRATIO(GLOBLEN)=DETT1/DETT1
DO 407 I=1,INPT
GLMAXU(GLOBLEN,},1}=MAXS(1,1)
GLMAXU(GLOBLEN,[,2)=MAXS(1,2)
407 CONTINUE
GBUS=0.0
DO 442 I=1,INPT
BUSJ}(1)=0.0
DO 443 J=1,TOT
BUSTRN(1,])=ABS(JURN(L}))
BUSJJ{(1)=MAX(BUS]J(I),BUSTRN(L]})
443 CONTINUE
GBUS=MAX({GBUS,BUSJJ(I))
442 CONTINUE
ABMAXUSTRN(GLOBLEN)=GBUS
DO 905 1=1,INPT
FLD1(1,1)=ELD1(1)
FLD1(1,2)=EXMX1(1)
FLD1(1,3)=EXMY1(T)
FLD1(.4)=-PTOT(I)
FLD1(1,5)=ELD1(6)
905 CONTINUE
DO 902 I=1,INPT
DELTAV1(I)=-DVR1(1,2)
DELTAU1()=DVR1(1,3)
902 CONTINUE
CALL INTEGRALCOEFFICIENT {N1,N2,N3,N4,N5,N6)
CALL MULTIPLICATION (N6,DELTAV1,INPT,INPT,1,VSLOP)
CALL MULTIPLICATION (N6,DELTAU1,INPT,INPT,1,USLOP)
CALL MULTIPLICATION (N3,DELTAULINPT,INPT,1,U1)
CALL MULTIPLICATION (N3,DELTAVLINPT,INPT,1,V1)
MIDU(1)=U1((INPT+1)/2)
MIDV({1)=V1((INPT+1)/2)

MAXLOAD=MAX(ABS(ELD1(1)),ABS(ELD1(2)).ABS(ELD1(4}))

THETABX(GLOBLEN)=VSLOP(1)
THETATX(GLOBLEN}=VSLOP(INPT)
THETABY(GLOBLEN)=USLOP(1)
THETATY(GLOBLEN)=USLOP(INPT)
DETERMINANT(GLOBLEN)=DETT1
AP(GLOBLEN)=ELD1(1)/PY
AMBX(GLOBLEN)=ELD1(2)/MXYY
AMTX(GLOBLEN)=ELD1(3)/MXYY
AMBY(GLOBLEN)=ELD1(4}/MYYY
AMTY(GLOBLEN)=ELD1(5)/MYYY
APATH(GLOBLEN)=-PATH(5)/PY
AINTERMXO(GLOBLEN)=EXMX1(1)
AINTERMXMID(GLOBLEN)=EXMX1(6)
AINTERMYO(GLOBLEN)=EXMX1(1)
AINTERMYMID(GLOBLEN)=EXMX1(6)
GDVR1(GLOBLEN)=DVR1(1,1)
GDVR2(GLOBLEN)=DVR1(1,2)
GDVR3({GLOBLEN)=DVR1(1,3)
MDFU(GLOBLEN)=MIDU(1)
MDFV(GLOBLEN)=MIDV(1)
MDUE(GLOBLEN,1)=UEJJ((INPT+1)/2,1)
MDUE(GLOBLEN,2)=UEJJ((INPT+1)/2,2)
MDUE(GLOBLEN,3)=UEJJ((INPT+1)/2,3)
MDUE(GLOBLEN,4)=UEJJ((INPT+1)/2,4)
CURVATURE(GLOBLEN)=DVR1((INPT+1)/2,3)
TEMPERATURE(GLOBLEN)=ELD1(6)
DO 04307 1=1,INPT
IF(LEQ.(INPT+1)/2)THEN
DO 04301 J=1,T0T
GSTRESS(GLOBLEN,J)=GSS1(1,})
GSTRAIN(GLOBLEN,}=GSN1(1,})

04301 CONTINUE
ELSE
ENDIF

04307 CONTINUE
GLOBLEN=2

99  IF (ABS(ABMAXUSTRN(GLOBLEN-1)).LT.PEPSILON1)THEN
BELTAZ=CV2
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ELSEIF(ABS(ABMAXUSTRN(GLOBLEN-1)).GE.PEPSILON1.AND.ABS{ABMAXUSTRN(GLOBLEN-1)).LE.PEPSILONZ)THEN
BELTAZ=CV4
ELSEIF(ABS(ABMAXUSTRN{GLOBLEN-1)).GT.PEPSILON2)THEN
BELTA2=CVS

ELSE

ENDIF
IF(ABS(THETABX(GLOBLEN-1)).GE.0.5.OR ABS(THETABY(GLOBLEN-1)).GE.5.0) THEN
GOTO 1000

ELSE

ENDIF

IF(LP.EQ.5)THEN
IF(ELD2(1).LT.PSPECIAL)THEN
COMBP=1

COMBMX=0

COMBMY=0

COMBT=0

BELTA1=CV1

ELSE

COMBP=0

COMBMX=1

COMBMY=1

COMBT=0

BELTA1=CV3

ENDIF

ELSEIF(LP.EQ.6)THEN
TEMPD=TEMPD2
IF(ELD2(2).LE.MXSPECIAL)THEN
COMBP=0.0

COMBMX=1

COMBMY=1

COMBT=0

BELTA1=CV1
ELSEIF(ELD2(3).GT.MXSPECIAL)THEN
COMBP=1

COMBMX=0

COMBMY=0

COMBT=0

BELTA1=CV3

ELSE

ENDIF

ELSEIF(LP.EQ.32)THEN
TEMPD=TEMPD2
IF(ELD2(1).LT.PSPECIAL)THEN
COMBP=1

COMBMX=0

COMBMY=0

COMBT=0

BELTA1=CV1

ELSE

COMBP=0

COMBMX=1

COMBMY=0

COMBT=0

BELTA1=CV3

ENDIF

ELSE{F(LP.EQ42)THEN
TEMPD=TEMPD2
IF(ELD2(3).LT.MXSPECIAL)THEN
COMBP=0

COMBMX=1

COMBMY=0

COMBT=0

BELTA1=CV1

ELSE

COMBP=1

COMBMX=0

COMBMY=0

COMBT=0

BELTA1=CV3

ENDIF

ELSEIF(LP.EQ.2Z)THEN
COMBP=0

COMBMX=1

COMBMY=1

COMBT=0

BELTA1=CV1
TEMPD=TEMPD2
ELSEIF(LP.EQ.1)THEN



COMBP=1
COMBMX=0

COMBMY=0

COMBT=0

BELTA1=CV1

BELTAZ=CV2
ELSEIF(LP.EQ.91)THEN
IF(ELD2(1).LE.PSPECIAL)THEN
COMBP=1

COMBMX=0

COMBMY=0

COMBT=0

BELTA1=CV1

ELSE

COMBP=0

COMBMX=0

COMBMY=0

COMBT=1

BELTA1=CV1

ENDIF

ELSEIF(LP.EQ.2)THEN
COMBP=0

COMBMX=0

COMBMY=1

COMBT=0

BELTA1=CV1
ELSEIF(LP.EQ.23)THEN
COMBP=0

COMBMX=1

COMBMY=0

COMBT=0

BELTA1=CV1
ELSEIF(LP.EQ.7)THEN
IF(ELD1(4) LT.MPSPECIAL)THEN
PRINT®, "MPSPECIAL IS NOT REACHED YET AND LOADING NEED CONTINUE'
GOTO 9

ELSE

PRINT®, ‘THE SPECIAL MEOMENT IS REACHED AND THEN GO TO UNLOADING PART"
GOTO 9999

ENDIF

ELSEIF(LP.EQ.3)THEN
IF(ELD1(1).LT.PSPECIAL)THEN
COMBP=1

COMBMX=0

COMBMY=0

COMBT=0

BELTA1=CV1

ELSE

COMBP=0

COMBMX=0

COMBMY=1

BELTA1=CV3

ENDIF

ELSEIF(LP.EQ.4)THEN
IF(ELD1{5).LT.MYSPECIAL)THEN
COMBP=0

COMBMX=0

COMBMY=1

COMBT=0

BELTA1=CV1

ELSE

COMBP=1

COMBMX=0

COMBMY=0

COMBT=0

BELTA1=CV3

ENDIF

ELSEIF(LP.EQ.8)THEN
IF(ELD1(1).LT.PSPECIAL)THEN
COMBP=1

COMBMX=0

COMBMY=0

COMBT=0

BELTA1=CV1

ELSE
IF(ELD1(2).LT.MXSPECIAL)THEN
COMBP=0

COMBMX=1
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COMBMY=0

COMBT=0
BELTA1=CV3

ELSE

COMBP=0

COMBMX=0
COMBMY=1.0D0
COMBT=0
BELTA1=CV6

ENDIF

ENDIF
ELSEIR(LP.EQ.9)THEN
IF(ELD1(4).LT.MYSPECIAL)THEN
COMBP=0

COMBMX=0
COMBMY=1.0D0
COMBT=0
BELTA1=CV1

ELSE
IR(ELD1(2).LT.MXSPECIAL)THEN
COMBP=0
COMBMX=11.0D0
COMBMY=0

COMBT=0
BELTA1=CV3

ELSE

COMBP=1.0D0
COMBMX=0
COMBMY=0

COMBT=0
BELTA1=CV6

ENDIF

ENDIF
ELSEIF(LP.EQ.10)THEN
|F(ELD1(2).LT.MXSPECIAL) THEN
COMBP=0

COMBMX=1
COMBMY=0

COMBT=0
BELTA1=CV1

ELSE

COMBP=0

COMBMX=0
COMBMY=1.0D0
COMBT=0
BELTA1=CV3

ENDIF
ELSEIF(LP.EQ.11)THEN
IR(ELD1(4).LT.MYSPECIAL)THEN
COMBP=0

COMBMX=0
COMBMY=1

COMBT=0
BELTA1=CV1

ELSE

COMBP=0

COMBMX=1
COMBMY=0

COMBT=0
BELTA1=CV3

ENDIF
ELSEIF(LP.EQ.12)THEN
COMBP=1

COMBMX=0
COMBMY=1
BELTA1=CV1
COMBT=0
TEMPD=TEMPD2
ELSEIF(LP.EQ.90) THEN
COMBP=0

COMBMX=0
COMBMY=0

COMBT=1
BELTA1=CV1

ELSEIF (LP.EQ96)THEN
IF(ELDl(S}.GE.MYSPECIALAND.ELD1(1).GE.PSPECIAL)THF.N
COMBP=0

COMBMX=0
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COMBMY=0

COMBT=1

BELTA1=CV1
ELSEIF(ELD1(S).GT.MYSPECIALAND.ELD1(1).LT.PSPECIAL)THEN
COMBP=1

COMBMX=0

COMBMY=0

COMBT=0

BELTA1=CV1
ELSEIF(ELD1(5).LE.MYSPECIALAND,ELD1{1).LE.PSPECIAL)THEN
COMBP=0

COMBMX=1

COMBMY=1

COMBT=0

BELTA1=CV1

ELSE

ENDIF

ELSEIF(LP.EQ.97)THEN
IF(ELD1(5).GE.MYSPECIAL.AND,ELD1(6).GENTVALUE) THEN
COMBP=1

COMBMX=0

COMBMY=0

COMBT=0

BELTA1=CV1
ELSEIF(ELD1(5).GT.MYSPECIALAND.ELD 1{6).LT NTVALUE)THEN
COMBP=0

COMBMX=0

COMBMY=0

COMBT=1

BELTA1=CV1
ELSEIF(ELD1(S).LE.MYSPECIALAND,ELD1{6).LE.NTVALUE)THEN
COMBP=0

COMBMX=1

COMBMY=1

COMBT=0

BELTA1=CV1

ELSE

ENDIF

ELSEIF{LP.EQ.98)THEN
IF(ELD1(1).GE.PSPECIAL.AND.ELD1(2).GE. MXSPECIAL)THEN
COMBP=0

COMBMX=0

COMBMY=0

COMBT=1

BELTA1=CV1
ELSEIF(ELD1(1).GT.PSPECIALAND.ELD1(2).LT.MXSPECIAL)THEN
COMBP=0

COMBMX=1

COMBMY=1

COMBT=0

BELTA1=CV1
ELSEIF(ELD1(1).LE.PSPECIAL.AND.ELD1(2),LE.MXSPECIAL)THEN
COMBP=1

COMBMX=0

COMBMY=0

COMBT=0

BELTA1=CV1

ELSE

ENDIF

ELSEIF(LP.EQ.922)THEN

IF(ELD1(5).GT.MYSPECIAL)THEN

COMBP=0

COMBMX=0

COMBMY=0

COMBT=1

BELTA1=CV1

ELSEIF(ELD1(5).LE.MYSPECIAL)THEN

COMBP=0

COMBMX=1

COMBMY=1

COMBT=0

BELTA1=CV1

ELSE

ENDIF

ELSEIF(LP.EQ.92)THEN

IF(ELD1(5).GT. MYSPECIAL)THEN

COMBP=0

COMBMX=0
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COMBMY=0
COMBT=1
BELTA1=CV1
ELSEIF(ELD1(5).LEMYSPECIAL)THEN
COMBP=0
COMBMX=0
COMBMY=1
COMBT=0
BELTA1=CV1
ELSE
ENDIF
ELSEIF(LP.EQ.91)THEN
{F(ELD1(1).GT.PSPECIAL)THEN
COMBP=0
COMBMX=0
COMBMY=0
COMBT=1
BELTA1=CV1
ELSEIF(ELD1(5).LE.PSPECIAL)THEN
COMBP=1
COMBMX=0
COMBMY=0
COMBT=0
BELTA1=CV1
ELSE
ENDIF
ELSEIR(LP.EQ.93)THEN
IF(ELD1(2).GT.MXSPECIAL)THEN
COMBP=0
COMBMX=0
COMBMY=0
COMBT=1
BELTA1=CV1
ELSEIF(ELD1(2).LE.MXSPECIAL)THEN
COMBP=0
COMBMX=1
COMBMY=0
COMBT=0
BELTA1=CV1
ELSE
ENDIF
ELSE
ENDIF
9 DP1=BELTAZ*BELTA1*PY*ALPHAP*COMBP
DMX1=BELTA2*BELTA1*MXYY*ALPHAMX*COMBMX
IF(LP.EQ.22.0R LP.EQ.5.0R.LP.EQ.6.0R.LP.EQ.97.0R.LP.EQ.98)THEN
DMY1=DMX1*SQRT(IY/IX)
ELSE
DMY1=BELTAZ*BELTA1*MYYY*ALPHAMY*COMBMY
ENDIF
DT=ALPHAT*COMBT*DELTAT
ELD2(1)=ELD1({1)+DP1
ELD2(2)=ELD1{2}+DMX1
ELD2(3)=ELD1(3)+DMX1
ELD2(4)=ELD1(4)+DMY1
ELD2(5)=ELD1(5)+DMY1
ELD2(6)=ELD1(6)+DT
CALL BMP(ELD2,GSN1,GSS1,FLD1,DVR1,JITELJITP1,DVR2,EXMX2,EXMY2,ICRAMER, NPE,MAXS,GSN2,GSS2,JITE2 }ITP2,UEJDETTN.&
&UPDATEN)
PRINT*, 'UPDATEN=', UPDATEN
ITER(GLOBLEN)=UPDATEN
IF (ICRAMER.EQ.1) THEN
DETTN=0.0
GOTO 1000
ELSE
ENDIF
GBUS=0.0
DO 942 1=1,INPT
BUSH(1)=0.0
DO 943 }=1,TOT
BUSTRN(L,{)=ABS(GSN2(L}))
BUS}J(1)=MAX(BUSJJ(1),BUSTRN(L]))
943 CONTINUE
GBUS=MAX(GBUS,BUSJJ(1))
942 CONTINUE
CALL TEMP(ELD2(6),SIGMAY,YE,STRNTH,EPSILONY)
DO 0719 1=1,INPT
PTOT{1)=0.0



DO 0720 J=1,TOT
PTOT(1)=PTOT(1)+GSS2(L])*AD(J)*SIGMAY

0720 CONTINUE
PATH(1)=PTOT(1)+ELD2(1)

0719 CONTINUE
MAXNP=NPE(1)
DO 917 I=1,INPT
MAXNP=MAX({MAXNP,NPE(1})

917 CONTINUE
DO 602 1=1,INPT
DELTAV2()=-DVR2(1,2)
DELTAU2([)=DVR2(1,3)

602 CONTINUE
CALL INTEGRALCOEFFICIENT {(N1,N2,N3,N4,N5,N6)
CALL MULTIPLICATION (N6,DELTAV2,INPT,INPT,1,VSLOP)
CALL MULTIPLICATION (N6,DELTAUZ,INPT,INPT,1,USLOP)
CALL MULTIPLICATION (N3,DELTAUZ,INPT,INPT,1,U2)
CALL MULTIPLICATION (N3,DELTAV2,INPT,INPT,1,V2)
MIDU(2)=U2((INPT+1)/2)
MIDV(2)=V2((INPT+1)/2)
AP(GLOBLEN)=ELD2(1)/PY
AMBX(GLOBLEN)=ELD2(2)/MXYY
AMTX(GLOBLEN)=ELD2(3)/MXYY
APATH(GLOBLEN)=-PATH(5)/PY
AMBY(GLOBLEN)=ELD1(4)/MXYY
AMTY(GLOBLEN)=ELD1{5)/MXYY
EXTMX(GLOBLEN)=EXMX2(1)
EXTMY{GLOBLEN)=EXMY2(1)
MDFU(GLOBLEN)=MIDU(2)
MDFV(GLOBLEN)=MIDV(2)
DETERMINANT(GLOBLEN)=DETTN
DETRATIO(GLOBLEN)=DETTN/DETT1
THETABX(GLOBLEN)=VSLOP(1)
THETATX(GLOBLEN)=VSLOP(INPT)
THETABY(GLOBLEN)=USLOP(1)
THETATY(GLOBLEN)=USLOP(INPT)
ABMAXUSTRN(GLOBLEN)=GBUS
MDUE(GLOBLEN,1)=UEJJ((INPT+1)/2,1)
MDUE(GLOBLEN,2)=UEJJ((INPT+1)/2,2)
MDUE(GLOBLEN,3)=UE}J((INPT+1)/2,3)
MDUE(GLOBLEN, 4)=UEJJ((INPT+1)/2,4)
CURVATURE(GLOBLEN)=DVR2((INPT+1)/2,3)
AINTERMXO(GLOBLEN)=EXMX2(1)
AINTERMXMID(GLOBLEN)=EXMX2(6)
AINTERMYO(GLOBLEN)=EXMY2(1)
AINTERMYMID(GLOBLEN)=EXMY2(6)
TEMPERATURE(GLOBLEN)=ELD2(6)
DO 04308 1=1,INPT
IF(LEQ.(INPT+1)/2)THEN
DO 04302 }=1,TOT
GSTRESS(GLOBLEN,})=GSS2(L))
GSTRAIN(GLOBLEN,J)=GSN2(L])

04302 CONTINUE

ELSE
ENDIF

04308 CONTINUE
DO 918 I=1INPT

GLMAXU(GLOBLEN,1,1)=MAXS(1,1)
GLMAXU(GLOBLEN,1,2)=MAXS(1,2)
918 CONTINUE
DPMXY=MAX{DP1,DMX1,DMY1)
IF(DETRATIO(GLOBLEN).LE.0.0)THEN
GOTO 1000
ELSE
MIDU(1)=MIDU(2)
ELD1{1)=ELD2(1)
ELD1(2)=ELD2(2)
ELD1(3)=ELD2(3)
ELD1(4)=ELD2(4)
ELD1(5)=ELD2(5)
ELD1(6)=ELD2(6)
DO 703 1=1,INPT
DVR1(},1)=DVR2(1,1)
DVR1(,2)=DVR2(1,2)
DVR1(1,3)=DVR2(1,3)
FLD1(,1)=ELD2(1)
FLD1(1,2)=EXMX2(1)
FLD1(1,3)=EXMY2(l)
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FLD1(1,4)=-PTOT(l)
FLD1(1,5)=ELD2(6)
703 CONTINUE
DO 705 1=1,INPT
DO 704 )=1,TOT
GSN1{1,)=GSN2(1,))
GSS1(1))=GSS2(L})
JITEA(L]=)ITEZ(L))
HTPL(LP=NTP2(1])
704 CONTINUE
705 CONTINUE
GLOBLEN=GLOBLEN+1
GOT0 99
ENDIF
1000 PR‘NT#,’."“*“'
DO 201 1 =1,GLOBLEN
PRINT*,'TF=",TEMPERATURE(I), P="AP(I},' MY='AMBY([)AMTY(1), MX="AMBX(I),AMTX(l), U="MDFU(l), V='&
&MDFV(1},' ' 'BX="THETABX(I),",'TX' THETATX(I), BY=",THETABY(I), ", TY', THETATY(1)
201 CONTINUE
888 END

SUBROUTINE BMP(ELD2,GSN1,GSS1,FLD,DVR1 JITE1,]JITP1,DVR2,EXMX2,EXMY2,ICRAMER NPE,MAXS,GSN2,GSS2 JITEZ JITP2,UEJ],&
&DETT,UPDATEN)
! This subrotine program is to solve external moment/stress/strain responding to ELD2.
IMPLICIT NONE
INTEGER INPT,NR,TOT,DD,DK,DE
INTEGER NH1,NV1,NH2,NV2,NH4,NV4, NE1,NE2,NE4
REAL*8 YBAR1,YBAR2,YBAR3
INTEGER L.1L.K
REAL*8 W1,T1,D2,T2,W4,T4,YB,B1,EL,H,PYE,DELX, DELY, HB
PARAMETER(DD=42,DK=42,DE=2000)
REAL*8 AIIY,IXY,SX,SY,1X1,1X23,1X4
REAL*8 YE,PY,MXYY,MYYY SIGMAY SIGMARC SIGMART
REAL*8 KBX,KBY KTX,KTY
REAL*8 X(DE),Y(DE),AD(DE),Z(DD)
REAL*8 N1{DD,DD),N2(DD,DD),N3{DD,DD),N4(DD,DD},N5(DD,DD),N6(DD,DD)
REAL*8 ELD2(6),ELD1(6),FLD(DD,5), TLOADA(3), TLOADB(3),FT(3),UPLOAD(3),FDT(3),PATH1({DD)
REAL*8 EXMX1(DD),EXMY1(DD),EXMX2(DD),EXMY2(DD),EXMX3(DD),EXMY3({DD),DEXMX(DD),DEXMY(DD}
REAL*8 MAXEMX,MAXEMY,CONVERP,CONVERMX,CONVERMY
REAL*8 PHIXY,PHIYY,PHIXBAR(DD),PHIYBAR(DD),MAXS(DD,2)
REAL*8 GSNO(DD,DE),GSS0(DD,DE),GSN1(DD,DE),GSS1(DD,DE),GSN2(DD,DE),GSS2(DD,DE),BSTRN(DE),BSTRES(DE)
REAL*8 GLOBK1{DK,DK),GLOBK2{DK,DK)
REAL*8 TEMPD,RTYE RTSIGMAY,PTMR,CS,KS,CSTIFNESS(DD)
REAL*8 JURN(DD,DE),JSTRESS(DD,DE},BUSTRN(DD,DE)},GBUS
REAL*8 DVRO(DD,3},DVR1{DD,3),DVR2(DD,3),DVR3(DD,3),TDVR(DD,3),BVR1}}(3), TDVRJ}(3)
REAL*8 UE])(DD,4),FUEJ(DD,4),DETT
REAL*8 STRESS(DE),USTRN(DE),GSN3(DD,DE),GSS3(DD,DE)
REAL*8 DELTAP{DD), STRNTH,STRNTHA,STRNTHB,DSTRNTHB,EPSILONY
INTEGER GLOBLEN,TANGENTN,ICRAMER J§,UPDATEN,NPE(DD),BCT,NPE1(DD),NPLASTIC
INTEGER JITEO(DD,DE),JITPG(DD,DE) JITE1(DD,DE),}ITP1(DD,DE) JITE2(DD,DE),}iTP2(DD,DE),JITE3(DD,DE),JITP3(DD,DE)
INTEGER ITE(DE),ITP{DE),BITE(DE),BITP(DE)
COMMON/M1/W1,T1,D2,T2,W4,T4,YB,NH1 NV1 NH2,NV2 NH4,NV4
COMMON/M2/ RTYE,SIGMARC,RTSIGMAY
COMMON/M3/ KBX KBY,KTX KTY,DELX,DELY
COMMON/M4/ INPT,EL,HB
COMMON/M6/ BCT,PTMR,CS
CALL SEC(X,YAD}
NR=2*INPT
NE1=NH1*NV1
NE2=NH2*NV2*2
NE4=NH4*NV4
TOT=NE1+NE2+NE4
YBAR1=(W1*T1*T1/2+D2*T2*(T1+D2/2}*2+W4*T4*(T1+YB+T4/2))/(W1*T1+D2*T2*2+W4*T4)
YBAR2=YB+T1-YBAR1
YBAR3=T1+D2-YBAR1
AW T1+D2*T2*2+W4*T4
IX1=W1*T1**3/12+W1*T1*(YBAR1-T1/2)**2
1X23=(T2*D2**3/12+D2*T2*(D2/2+T1-YBAR1)**2)
1X4=W4*T4**3+W4*T4*(YB+T1-YBAR1+T4/2}**2
IX=1X1+2*1X23+1X4
1Y=T1*W1**3/12+T4*W4**3/12+4(D2*T2**3/12+D2*T2*(W4/2+T2/2)**2)*2
IXY=SQRT(IX*1Y)
TEMPD=68
CALL TEMP(TEMPD,SIGMAY,YE STRNTH,EPSILONY)
KS=CS*A*YE/EL
CALL TEMP(ELD2(6),SIGMAY,YE,STRNTH,EPSILONY)
PY=SIGMAY*A
MXYY=(SIGMAY*IX)/MAX(YBAR1,YBAR3)
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MYYY=(2*SIGMAY*IY}/W1
PHIXY=SIGMAY/YE/MAX(YBAR1,YBAR3)
PHIYY=2*SIGMAY/YE/W1
CONVERP=0.0001*PY
CONVERMX=0.0001*MXYY
CONVERMY=0.0001*MYYY
CALL GLOB(ELD2,GSN1,GSS1,DVR1JITE1{ITP1,DVR2,EXMX2,EXMY2,MAXS,GSNO,GSSO0,JITEG JITPO,UE]},DETT,GLOBK1)
DO 904 I=1INPT
ELD1(1)=FLD(1,1)
EXMX1(1)=FLD(1,2)
EXMY1(i)=FLD(1,3)
904 CONTINUE
UPDATEN=1
699 PRINT?*, ******ypdate the external moments vector=",UPDATEN
JI=1
799 TANGENTN=1
TLOADA(1}=FLD(}j,4)
TLOADA(2)}=EXMX1(J])
TLOADA(3)=EXMY1(}})
DO 611 I=1,TOT
BSTRN(I)=GSN1{J}.1)
BSTRES(I)=GSS1{J.1)
611 CONTINUE
CALL TEMP(FLD(J],5),SIGMAY,YE,STRNTHA EPSILONY)
CALL TEMP(ELD2(6),SIGMAY,YE STRNTHB,EPSILONY)
899 CSTIFNESS()])=0.0
DO 0724 1=1,TOT
CSTIFNESS(JJ)=CSTIFNESS(J])+AD()*YE*JITE1(J].I)
0724 CONTINUE
IF(BCT.EQ.1)THEN
DELTAP(jj)=0.0
ELSEIF(BCT.EQ.2)THEN
DELTAP(JJ)=STRNTHB*CSTIFNESS(J])
ELSEIF(BCT.EQ.3)THEN
DELTAP(JJ)=STRNTHB*CSTIFNESS(J])*KS*EL/(KS*EL+CSTIFNESS{}))
ELSE
ENDIF
TLOADB(1)=ELD2{1)+DELTAP(Jf)
TLOADB(2)=EXMX2(}})
TLOADB(3)=EXMY2(}})
FT(1)=TLOADB(1)-TLOADA(1)
FT(2)=TLOADB(2)-TLOADA(2)
FT(3)=TLOADB(3)-TLOADA(3)
IF(BCT.EQ.1)THEN
BVR1JJ(1)=DVR1(j],1)
ELSEIF {BCT.EQ.2)THEN
BVR1JJ(1)=DVR1(J],1)
ELSE
BVR1}J(1)=DVR1(J],1)
ENDIF

BVR1}J(2)=DVR1(J},2)
BVR1JJ(3)=DVR1(j],3))
DO 1030 i=1,TOT
BITE(1)=ITE1()),1)
BITP(D=/ITP1(J],1)
1030 CONTINUE
CALL TANGENTSIFF(ELD2(6).BVR1}},BITE,BITP,FT,TDVRJ],ICRAMER)
TDVR(J],1)=TDVRJ}(1)
TDVR(J],2)=TDVR}j(2)
TDVR(]],3)=TDVR}J(3)
IF(ICRAMER.EQ.1)THEN
PRINT*,'ICRAMER=", ICRAMER
GOTO 999
ELSE
ENDIF
CALL INTERLOAD(ELD2(6),BSTRN,BSTRES, TDVR]],UPLOAD,ITE,ITP,USTRN,STRESS,NPLASTIC)
FDT(1)=ABS(TLOADB(1)-UPLOAD(1))
FDT(2)=ABS(TLOADB(2)-UPLOAD(2))
FDT(3)=ABS(TLOADB(3)-UPLOAD(3))
IF (FDT(1).LE.CONVERP.AND.FDT(2).LECONVERMX.AND.FDT(3).LE.CONVERMY.OR. TANGENTN.GE.30) THEN
NPE(}])=NPLASTIC
DO 508 1=1,TOT
GSN2(J},1)=USTRN(1)
GSS2()],1)=STRESS(I)
NTE2(JL)=ITEQ)
JITP2(J)1)=ITP(1)
508 CONTINUE
GOTO 99



ELSE
TLOADA(1)=UPLOAD(1)
TLOADA(2)=UPLOAD(2)
TLOADA(3)=UPLOAD(3)
DVR1(JJ,1)=TDVR(},1)
DVR1(J},2)=TDVR(},2)
DVR1(J].3)=TDVR(}.3)

DO 1061 1=1,TOT
ITE1(J),1)=ITE(T)
NTPL(L)=ITP(])

1061 CONTINUE
TANGENTN=TANGENTN+1
GOTO 899
ENDIF

99 jj=li+1
IF(J}.LE.INPT} GOTO 799

CALL GLOB(ELD2,GSN2,GSS2,TDVR JITE2 JITP2,DVR3,EXMX3,EXMY3, MAXS,GSN3,GSS3,JITE3 JITP3,UE],DETT,GLOBK2)

IF(DETT.LE.0.0)THEN
GOTO 999
ELSE
ENDIF
DO 504 I=1,INPT
DEXMX(1)=ABS(EXMX3(1}-EXMX2(1})
DEXMY(I)=ABS(EXMY3(I)-EXMY2(1))
504 CONTINUE
MAXEMX=DEXMX(1)
MAXEMY=DEXMY(1)
DO 505 I=1,INPT
MAXEMX=MAX(MAXEMX,DEXMX(1))
MAXEMY=MAX(MAXEMY,DEXMY(I})
505 CONTINUE
IF(UPDATEN.LE.9)THEN
IF (MAXEMX.LE.CONVERMX.AND.MAXEMY.LE.CONVERMY) THEN
PRINT* THE CALCULATION CAN MOVE TO THE NEXT LOAD LEVEL'
DO 515 J=1,INPT
DVR2(J,1)=TDVR(},1)
DVR2(},2)=TDVR(},2)
DVR2(},3)=TDVR(],3)
515 CONTINUE
GOTO0 999
ELSE
PRINT* 'OVERALL CONVERGENCE IS NOT SATISFIED YET'
UPDATEN=UPDATEN+1
DO 513 I=LINPT
ELD1(1)=ELD2(1)
EXMX1(1)=EXMX2()
EXMY1(1)=EXMY2(l)
DVR1(1,1)=TDVR(l,1)
DVR1{1,2)=TDVR(1,2)
DVR1(1,3)=TDVR(1,3)
EXMX2(1)=EXMX3(I)
EXMYZ(1)=EXMY3(1)
DO 514 J=1,TOT
GSN1(1))=GSN3(L))
GSS1(1))=GSS3(1))
HTEL(L))=]ITE2(1})
JITPL(L])=JITP2(1]}
514 CONTINUE
513 CONTINUE
GOTO 699
ENDIF
ELSE
GOTO 999
ENDIF
999 END

!‘tl'l’tt“‘

SUBROUTINE INTERLOAD(TEMPD,BSTRN,BSTRES,ST,UPLOAD,ITE,ITP,USTRN,STRESS,NPLASTIC)

IMPLICIT NONE

INTEGER DD,DE,DK,TOT,NH1,NV1,NH2,NV2, NH4,NV4,NE1,NE2,NE4,],BCT

PARAMETER(DD=42,DK=42,DE=2000)
REAL*8 W1,T1,02,T2,W4,T4,YB,B15T(3)

REAL*8 X(DE),Y(DE),AD(DE),BSTRN(DE),BSTRES(DE)

INTEGER ITE(DE),ITP(DE),NPLASTIC

REAL*8 UPLOAD(3),STRESS(DE),USTRN(DE),MAXUSTR(2),UE(4)

REAL*8 TEMPD,RTYE, SIGMARC, RTSIGMAY, SIGMAY, YE,PTMR,STRNTH,EPSILONY,CS KS

COMMON/M1/W1,T1,D2,T2,W4,T4,YBNH1,NV1, NH2 NV2 NH4,NV4
COMMON/M2/ RTYE,SIGMARC,RTSIGMAY
COMMON/M6/ BCT, PTMR,CS
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NE1=NH1*NV1

NE2=NH2*NV2*2

NE4=NH4*NV4

TOT=NE1+NE2+NE4

CALL TEMP(TEMPD SIGMAY,YESTRNTH,EPSILONY)

UPLOAD(1)=0.0

UPLOAD(2)=0.0

UPLOAD(3)=0.0

CALL TSTRAIN(TEMPD,BSTRN,BSTRES,ST,ITE,ITP,STRESS,USTRN,NPLASTIC, MAXUSTR,UE)

CALL SEC(X.Y.AD)

DO 100 1=1,TOT

UPLOAD(1)=UPLOAD(1)-STRESS(I)*SIGMAY*AD(I)

UPLOAD(2)=UPLOAD(2)+STRESS(1)*SIGMAY*Y()*AD(1)

UPLOAD{3)=UPLOAD(3)-STRESS(I)*SIGMAY*X(1)*AD(f)
100 CONTINUE

END

SUBROUTINE TANGENTSIFF(TEMPD,ST1,ITE,ITP,FT,ST2,ICRAMER)
{The subroutine is used to calculate the deformation vector by using tangent stiffness method.
IMPLICIT NONE
INTEGER INPT,TOT,ICRAMER,DD,DK,DE,L}
REAL*8 W1,T1,D2,T2,W4,T4,YB
INTEGER NH1,NV1,NH2,NV2 NH4,NV4,NE1 NE2 NE4
PARAMETER(DD=42,DK=42,DE=2000)
INTEGER ITE(DE),ITP(DE),NPLASTIC,BCT
REAL*8 ST1(3),STRESS{DE),USTRN(DE),ST2(3)
REAL*8 X(DE),Y(DE),STR(DE),AD(DE)
REAL*8 Q1,Q2,Q3,Q4,Q5,Q6,Q7,Q8,Q9,F1,F2,F3,FT(3}
REAL*8 DX1(3),DETST1,DETST2,DETST3,DETCR
REAL*8 YE SIGMARC,SIGMAY, MAXUSTR(2),EPSILONY
REAL*8 TEMPD,STRNTH,RTYE,RTSIGMAY,UE(4),PTMR,CS,KS
COMMON/M1/ W1,T1,D2,T2,W4,T4,YB,NH1,NV1 NH2 NV2,NH4,NV4
COMMON/M2/ RTYE SIGMARC RTSIGMAY
COMMON/M6/ BCT,PTMRCS
NE1=NH1*NV1
NE2=NH2*NV2*2
NE4=NH4*NV4
TOT=NE1+NE2+NE4
ICRAMER=0
CALL TEMP(TEMPD,SIGMAY,YE.STRNTH,EPSILONY)
Q1=0.0
Q2=0.0
Q3=0.0
Q4=0.0
Q5=0.0
Q6=0.0
Q7=0.0
Q8=0.0
Q9=0.0
CALL SEC(X,Y.AD)
DO 103 I=1, TOT
Q1=Q1-AD(I)*ITE(1)
Q2=Q2-Y(I)*AD(I)*ITE(I)
Q3=Q3+X{[)*AD{I}*ITE(l)
Q4=Q4+Y(I}*AD(D)*ITE(})
Q5=05+Y(1)**2*AD(1)*ITE(1)
Q6=Q6-Y(I)*X(1)*AD(I)*ITE(I)
Q7=Q7-X(1)*AD(IJMITE(])
Q8=Q8-X(1)*Y(I)*AD(I)*ITE(1)
Q9=Q9+X(I)**2*AD(I)*ITE(1)
103 CONTINUE
F1=FT(1)/YE
F2=FT(2)/YE
F3=FT(3)/YE
DETCR=Q1%(Q5*Q9-Q6*Q8)-Q2*(Q4°Q9-Q6*Q7)+Q3*(Q4*Q8-Q5*°Q7)
DETST1=F1*(Q5*Q9-Q6°Q8)-Q2*(F2*Q9-Q6*F3)+Q3*(F2*Q8-Q5*F3)
DETST2=Q1*(F2*Q9-Q6°F3)-F1*(Q4*Q9-Q6*Q7)+Q3*(Q4*F3-F2*Q7)
DETST3=Q1*(Q5*F3-F2*Q8)-Q2*(Q4*F3-F2*Q7) +F1*(Q4*Q8-Q5*Q7)
IF (DETCR.EQ.0.0) THEN
ICRAMER=1
GOTO 99
ENDIF
DX1(1)=DETST1/DETCR
DX1(2)=DETST2/DETCR
DX1(3)=DETST3/DETCR
ST2(1)=ST1(1)+DX1(1)
ST2(2)=5T1(2)+DX1(2)
ST2(3)=5T1{3)+DX1(3)



99 END

H

SUBROUTINE TSTRAIN(TEMPD,BUSTRN,BUSTRES,ST.ITE,ITP,STRESS,USTRN,NPLASTICMAXUSTR,UE)

IThis subroutine s to calculate the total strain in each element.
IMPLICIT NONE
INTEGER 1,),KJJ, KK, NH1,NV1, NH2,NVZ,NH4,NV4,NE1, NE2 NE4
INTEGER INPT,TOT,DE,DD
PARAMETER (DD=42,DE=2000)
REAL *8 W1,T1,D2,T2,W4,T4,YB HB
REAL*8 EL,YE,SIGMARC SIGMAY,EPSILONY
REAL*8 X(DE),Y(DE),STR(DE),AD(DE),A,IX,IY,IXY,SX,SY
REAL*8 ST(3),STRN(DE),USTRN(DE),STRESS(DE)
INTEGER ITE(DE),ITP(DE),NPLASTIC,BCT
REAL*8 PUSTRN(DE),NUSTRN(DE),BPUSTRN,BNUSTRN,MAXUSTR(2)
REAL*8 BUSTRN(DE),BUSTRES(DE),UE(4),DL
REAL*8 TEMPD,STRNTH,SIGMAP,SIGMAU,RTYE,RTSIGMAY,PTMR,CS KS
COMMON/M1/W1,T1,D2,T2,W4,T4,YB,NH1,NV1,NHZ NV2,NH4,NV4
COMMON /M2/ RTYE,SIGMARC,RTSIGMAY
COMMON/M4/ INPT,ELHB
COMMON/M6/ BCT, PTMR,CS
NE1=NH1*NV1
NE2=NH2*NV2*2
NE4=NH4*NV4
TOT=NE1+NE2+NE4
CALL TEMP(TEMPD,SIGMAY,YE STRNTH,EPSILONY)
CALL SEC(X.Y,AD)
CALL RESIDUALSTRESS(STR)
A=W1*T1+D2*T2*2+W4*T4
DO 701 I=1, TOT
STRN(1)=ST(1)+ST(2)*Y(1)-ST(3)*X(1)+STR(1)/YE
USTRN(I)=STRN(i)/EPSILONY
IF(ABS(USTRN(1)).GE.ABS(BUSTRN(I)))THEN
IF(USTRN(I).GE.1.0D0)THEN
STRESS()=1.0
ITE(1)=0
ITP(1)=1
ELSEIF(USTRN(I).LE.-1.0DO)THEN
STRESS(I)=-1.0
ITE(N)=0
ITP(1)=1
ELSE
STRESS(1)=USTRN(})
ITE(l)=1
ITP(1)=0
ENDIF
ELSEIF(ABS(USTRN(I}).LT.ABS(BUSTRN(}}))THEN
STRESS(1)=(USTRN(I)-BUSTRN(1)+BUSTRES(1})
ITE()=1
ITP(1)=0
ELSE
ENDIF

701 CONTINUE
NPLASTIC=0
DO 702 1=1,TOT
IF (ITP(1).EQ.1)THEN
NPLASTIC=NPLASTIC+1
ELSE
ENDIF

702 CONTINUE
MAXUSTR(1)=USTRN(1)
MAXUSTR(2)=USTRN(TOT)
END

SUBROUTINE GLOB(ELD,GSN,GSS,DVR JITE JITP,DVR1,EXMX1,EXMY1,MAXS,GSN1,GSS1,JITELJITP1,UE}},DETT,GLOBK)
1The subroutine program is to solve goverment equations using the former load level stiffness matrix.

IMPLICIT NONE

INTEGER INPT,NR,NH1,NV1,NH2,NV2 NH4,NV4,TOT,DD,DK,DE,NE1,NE2,NE4

INTEGER 1)J}.X
REAL*8 ELD(6),DELAPTH

REAL*8 P,MBX,MBY,MTX MTY

REAL*8 W1,T1,02,T2,W4,T4,YB,B1,EL H,PYE,DELX, DELY,HB,YBAR1,YBAR2
PARAMETER(DD=42,DK=42,DE=2000)

REAL*8 U0(DD),v0(DD),U(DD}, V(DD)

REAL*8 A,IX,IY,IXY.SX.SY.KBX.KBY KTX.KTY

REAL*8 YE,SIGMAY SIGMARC,SIGMART,PY, MXYY MYYY

REAL*8 ALP1(DD),ALP2(DD),ALP3(DD),ALP4(DD),ALP5{DD),ALP6(DD)

REAL*S GAM1(DD),GAM2(DD),GAM3(DD),GAM4(DD),GAMS(DD),GAM6(DD)

REAL*8 AE(DD),SXE(DD),SYE(DD),IXE(DD),IYE(DD),IXYE(DD),IX1,1X23,1X4
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REAL*8 X(DE),Y(DE),AD(DE),Z(DD)
REAL*8 PRE(DD),MXRE(DD),MYRE(DD),PP(DD),MXP(DD),MYP(DD),STR(DE}
REAL*8 N1{DD,DD),N2(DD,DD),N3(DD,DD),N4(DD,DD),N5(DD,DD),N6{DD,DD)
REAL*8 NA6(DD,DD),NG6(DD,DD),FX(DD),FY(DD)

REAL*8 WA(DK,DK),WAV(DK,DK),WF(DK,1),GLOBK(DK,DK)

REAL*8 DELTA(DK, 1),DELTAU(DD),DELTAV(DD)

REAL*S STRESS(DE),USTRN(DE)

REAL*8 DELTAVB(DD),DELTAUB(DD),THETAP,MBXP,MTXP,MBYP,MTYP

REAL*8 VSLOP(DD),USLOP(DD),MAXUSTR(Z),MAXS(DD,2)

REAL*8 GSN(DD,DE),GSS(DD,DE),BSTRN(DE),BSTRES(DE},GSN1(DD,DE),GSS1(DD,DE)
REAL*8 JURN(DD,DE),JSTRESS(DD,DE), UE(4), UEJJ(DD 4)

REAL*8 TEMPD,RTYE,RTSIGMAY,PTMR STRNTH,EPSILONY

REAL*8 PTH(DD),MXTH(DD),MYTH(DD)

REAL*8 DVR1(DD,3),DVR(DD,3),DVR}}(3),EXMX1(DD),EXMY1{DD),BVR})(3},DETT

INTEGER JITE1(DD,DE),JITP1(DO,DE) JITE(DD,DE) ITP{DD,DE),ITE(DE),ITP(DE),NPLASTIC

INTEGER BCT
REAL*S REMBY, REMTY, REMBX, REMTX, DL

REAL*8 SPRINGSRAIN(DD),PTOT(DD)

REAL*8 MPYT(DD),MPYB(DD),MPY(DD),CS, KS
COMMON/M1/W1,T1,D2,T2,W4,T4,YB,NH1,NV1,NH2, NV2 NH4,NV4
COMMON/M2/ RTYE,SIGMARC,RTSIGMAY

COMMON/M3/ KBX,KBY,KTX,KTY,DELX, DELY

COMMON/M4/ INPT,ELHB

COMMON/M5/ THETAP

COMMON/M6/ BCT,PTMRCS

NE1=NH1*NV1

NE2=NH2*NV2%2

NE4=NH4*NV4

NR=2*INPT

TOT=NE1+NE2+NE4

YBARLI=(W1*T1°T1/2+D2*T2*(T1+D2/2)*2+W4*T4*(T1+YB+T4/2)}/(W1*T1+D2*T2*2+W4*T4)

YBAR2=YB+T1-YBAR1
A=W1*T14D2Z*T2*2+W4*T4
IX1=W1*T1#+3/12+W1*T1#*(YBAR1-T1/2)}**2
1X23=(T2*D2**3/12+D2*T2*(D2/2+T1-YBAR1)**2)
IX4=W4*T4*3+ W4 T4*(YB+T1-YBAR1+T4/2)**2
IX=IX1+2*1X23+IX4
IY=T1*W1%3/12+T4*W4**3 /12+(D2%T2**3/12+ D2*T2*(W4/2+T2/2)**2)*2
[XY=SQRT(IX*1Y)
TEMPD=68
CALL TEMP(TEMPD,SIGMAY,YESTRNTH,EPSILONY)
KS=CS*A*YE/EL
H=EL/(INPT-1)
p=ELD(1)
MBX=ELD(2)
MTX=ELD(3)
MBY=ELD(4)
MTY=ELD(5)
CALL TEMP(ELD(6),SIGMAY,YE,STRNTH,EPSILONY)
MBXP=KBX*THETAP
MTXP=KTX*THETAP
MBYP=KBY*THETAP
MTYP=KTY*THETAP
H=EL/(INPT-1)
DO 1001 I=1,INPT
Z(1)=(1-1)*H
1001 CONTINUE
PYE=4.0D0*ATAN(1.0D0)
DO 1002 I=1,INPT
UO(1)=DELX*DSIN(Z(I)/EL*PYE)
VO(1)=DELY*DSIN(Z({}/EL*PYE)
1002 CONTINUE
CALL SEC(X.Y.AD)
CALL RESIDUALSTRESS(STR)
DO 801 I=1,INPT
DELTAVB(1)=-DVR(1,2)
DELTAUB(1)=DVR(1,3)
801 CONTINUE
CALL INTEGRALCOEFFICIENT (N1,N2,N3,N4,N5,N6)
CALL MULTIPLICATION (N6,DELTAVB,INPT,INPT,1,VSLOP)
CALL MULTIPLICATION (N6,DELTAUB,INPT,INPT,1,USLOP)
J)=1
3333 IXYE(]))=0.0
IXEQ))=0.0
IYE())=0.0
SYE(}})=0.0
SXE(]])=0.0
AE(J)=0.0
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PRE(J})=0.0
MXRE())}=0.0
MYRE(J])=0.0
PP())=0.0
MXP{j])=0.0
MYP(}})=0.0
PTH(})=0.0
MXTH(}})=0.0
MYTH(j}=0.0
DO 1030 [=1,TOT
STRESS(I}=GSS(L.)*SIGMAY
ITE(D=JITEQL)
ITP(1)=NITPLI)
1030 CONTINUE
DO 1004 1=1,TOT
AE()=AE(J)+AD(IJ4ITE())
SYE(J])=SYE(J)+AD{I)*X(I}*ITE())
SXE(I])=SXE(])+AD(N*Y{I*ITE()
IXYE(J])=IXYE(}])+AD(1)*X(1)*Y(1)*ITE(f)
IXEQ))=IXE(J}+AD(I)*Y(1)**2*ITE())
IYE())=IYE(])+AD(I)*X(1)** 24 TE()
PRE(J])=PRE(]))+AD(I)*STR(I)*I TE(l)
MXRE(J})=MXRE(}])+AD(I)*STR{I)*Y{I}*[TE(1)
MYRE(J))=MYRE(])+AD(I)*STR{I)*X (1)*ITE())
PP(J])=PP(Jj}+AD(1)*STRESS(I)*TP(l)
MXP(J])=MXP(J}}+AD(I)*STRESS{(1)*Y(I}*ITP(1)
MYP(I]}=MYP(}}+AD(I)*STRESS()*X(1)*ITP(1)
1004 CONTINUE
IF(BCT.EQ.1)THEN
PTH(J))=0.0
MXTH())=0.0
MYTH(J})=0.0
ELSEIF(BCT.EQ.2)THEN
PTH(JJ)=YE*STRNTH*AE(]))
MXTH(I})=YE*STRNTH*SXE()])
MYTH(J)=YE*STRNTH*SYE(])
ELSEIF(BCT.EQ.3)THEN
SPRINGSRAIN(J])=STRNTH-KS*EL*STRNTH/(YE*AE()]) + KS*EL)
PTH(J})=YE*SPRINGSRAIN(J])*AE()])
MXTH(J})=YE*SPRINGSRAIN(JJ)*SXE(}})
MYTH(J})=YE*SPRINGSRAIN(]J*SYE(I])
ELSE
ENDIF
ALP1(JJ)=IXYEQJ)*AEQ))-SXE(])*SYEQ))
ALP2(JJ)=AE())*IXEQ))-SXEQ])**2
GAM1(J)])=-SYE(])**2+IYE(S])*AE(}])
GAM2(J})=-SYE(JJJ*SXE(J])+IXYE(])*AEQ))
ALP3(J))=AE(J])*(P+PTH(}))/YE
GAM3(JN)=AE(JJ)*(P+PTH(I))/YE
ALPA(}])=-AE(J])*KBX/YE
ALPS(J])=AEQ))*KTX/YE
GAMA4(J])=-AE(}))*KBY /YE
GAMS(JI}=AE()|)*KTY/YE
=i+
IF(J].LE.INPT) GOTO 3333
CALL INTEGRALCOEFFICIENT (N1,N2,N3,N4,N5,N6)
DO 1005 I=1,INPT
DO 1005 J=1,INPT
NAG(1J)=ALP3(1)*N3(1,})+ALP4(1)*N4(1,])+ALP5(1)*N5 (L))
ALP6(1)=-AE(I) /YE*((P+PTH(1)}*VO(I)-MXRE(I)-MXP(1)+Z(1)/EL*(MTX-MBX)+ MBX+MXTH(I))
NG6(1,))=GAM3(I)*N3(1]}+GAMA4(1)*N4(1]}+GAMS(1)*N5(1,}]
GAMG{1)=AE(I)/YE*({-(P+PTH(1))*U0(i}+ MYRE(1) +MYP(1)-MBY-Z(1}/EL*(MTY-MBY)+ MYTH(I))
1005 CONTINUE
DO 1006 [=1,INPT
FX(1)=-SXE(1)/YE*(PP(1)+PRE(1}+P+PTH(I)- PTH{1))+ALP6(1)
FY(1)=-SYE(1)/YE*(PP(1)+PRE(f)+P+PTH(I)-PTH(I))+GAM6(1)
1006 CONTINUE
DO 1007 1=1,NR
IF(I.LE.INPT) THEN
WF(L,1)=FX(l)
ELSE
WF(L1)=FY(I-INPT)
ENDIF
1007 CONTINUE
DO 1008 I=1,INPT
PO 1008 J=1,INPT
IF(LEQJ)THEN
WA(L)=ALP2(1)+NAS(1))



ELSE
WA(L])=NA6(L})
ENDIF
1008 CONTINUE
DO 1009 I=1, INPT
DO 1009 J= INPT+1, NR
IF (1LEQ.(J-INPT)) THEN
WA(L))=ALP1(1)
ELSE
WA(L))=0.0
END IF
1009 CONTINUE
DO 1010 I=INPT+1,NR
DO 1010 J=1, INPT
IF ((IFINPT).EQJ) THEN
WA(L])=GAM2(I-INPT)
ELSE
WA(1,})=0.0
ENDIF
1010 CONTINUE
DO 1011 1= INPT+1, NR
DO 1011 J=INPT+1, NR
IF (LEQJ) THEN
WA(L))=GAM1({I-INPT)+NG6(I-INPT,J-INPT)
ELSE
WA(L])=NG6(I-INPT, J-INPT)
ENDIF
1011 CONTINUE
DO 0402 1= 1,NR
DO 0402 J=1,NR
GLOBK(1,])=WA(L})
0402 CONTINUE
CALL FINDDET(WA,NR,DETT)
IF{DETT.GT.0.0)THEN
CALL INVERT(WA,NR,WAV)
ELSE
GOTO 66
ENDIF
CALL MULTIPLICATION (WAV,WF,NR,NR,1,DELTA)
DO 1016 I=1,INPT
DELTAU(I)=DELTA(I+INPT,1)
DELTAV(I)=DELTA(1,1)
1016 CONTINUE
CALL MULTIPLICATION (N3,DELTAU,INPT,INPT,1,U)
CALL MULTIPLICATION (N3,DELTAV,INPT,INPT,1,V)
CALL MULTIPLICATION (N6,DELTAV,INPT,INPT,1,VSLOP}
CALL MULTIPLICATION (N6,DELTAU,INPT,INPT,1,USLOP)
DO 1041 I=1,INPT
DVR1(1,2)=-DELTAV(I)
DVR1(1,3)=DELTAU(l)
DVR1(],1)=(-P-PTH(I)-PRE(1)-PP(1}+ PTH(I)+YE*SXE(1)*DELTAV(I)+YE*SYE(I)*DELTAU(I)) /(YE*AE([})
EXMX1(1)=YE*(SXE(1)*DVR1(},1)-IXYE(1}*DELTAU(I)-IXE(1)* DELTAV(I))+MXP(I)+ MXRE(I)-MXTH(I)
EXMY1(1)=YE*(-SYE(I}*DVR1{l,1)+IXYE(I}*DELTAV(1)+IYE(1)*DELTAU(I)}-MYP(1)-MYRE(I)+MYTH(I}
1041 CONTINUE
=1
88 DO 10401=1,T0T
BSTRN(1)=GSN(J}.I)
BSTRES(1)=GSS(JL.1)
1040 CONTINUE
BVR}J(1)=DVR1(}],1)
BVR}}(2)=DVR1(j},2)
BVR}J(3)=DVR1(}},3)
CALL TSTRAIN(TEMPD,BSTRN,BSTRES,BVR]J,ITE,I TP,STRESS USTRN,NPLASTIC,MAXUSTR,UE)
DO 1042 I=1,TOT
JITEL(],D)=ITE(D)
JITPL()N=ITP())
GSN1(j),))=USTRN(I)
GSS1(J),1)=STRESS(1)
1042 CONTINUE
MAXS(J},1)=MAXUSTR(1)
MAXS(J],2)=MAXUSTR(2)
UEJ}(},1)=UE(1)
UEJj(J},2)=VE(2)
UEJ)(J},3)=VE(3)
UEJj (]]:4)=UE(4)
JI=]]+1
IF(JJ.LE.INPT)} GOTO 88
66 END

196
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SUBROUTINE TEMP(TEMPF.SIGMAY,YE,STRNTH,EPSILONY)
IMPLICIT NONE

REAL*8 SIGMAY, YE,RTSIGMAY,RTYE,SIGMARC
REAL*8 TEMPF,TEMPC,STRNTH,EPSILONY
COMMON/M2/ RTYE,SIGMARC,RTSIGMAY
TEMPC=(TEMPF-32)*5/9

IF(TEMPC.LT.750)THEN
STRNTH=0.000012*TEMPC+0.000000004*TEMPC**2-0.0002416
ELSEIF{TEMPC.LE.860.AND.TEMPC.GE.750) THEN
STRNTH=0.011
ELSEIF(TEMPC.LE.1200.AND.TEMPC.GE.860) THEN
STRNTH=0.00002*TEMPC-0.0062

ELSE

ENDIF

IF(TEMPC.LT.100)THEN

YE=RTYE*1.0

ELSEIF(TEMPC.LT.500.AND. TEMPC.GE.100) THEN
YE=RTYE*(-0.001*TEMPC+1.1)
ELSEIF(TEMPC.LT.600.AND.TEMPC.GE.500) THEN
YE=RTYE*(-0.0029*TEMPC+2.05)
ELSEIF(TEMPC.LT.700 AND.TEMPC.GE.600) THEN
YE=RTYE*(-0.0018*TEMPC+1.39)
ELSEIF(TEMPC.LT.800.AND.TEMPC.GE.700) THEN
YE=RTYE*(-0.0004*TEMPC+0.41)
ELSEIF(TEMPC.LT.1200.AND.TEMPC.GE.800) THEN
YE=RTYE*(-0.000225*TEMPC+0.27)
ELSEIF(TEMPC.GE.1200)THEN

YE=RTYE*0.0

ELSE

ENDIF

IF(TEMPC.LT.400)THEN
SIGMAY=RTSIGMAY*1.0
ELSEIF(TEMPC.LT.500.AND.TEMPC.GE.400)THEN
SIGMAY=RTSIGMAY*(-0.0022*TEMPC+1.88)
ELSEIF(TEMPC.LT.600.AND.TEMPC.GE.500)THEN
SIGMAY=RTSIGMAY*(-0.0031*TEMPC+2.33)
ELSEIF(TEMPC.LT.700,AND.TEMPC.GE.600)THEN
SIGMAY=RTSIGMAY*(-0.0024*TEMPC+1.91)
ELSEIF(TEMPC.LT.800.AND.TEMPC.GE.700)THEN
SIGMAY=RTSIGMAY*{-0.0012*TEMPC+1.07)
ELSEIF(TEMPC.LT.900.AND.TEMPC.GE.800}THEN
SIGMAY=RTSIGMAY*(-0.0005*TEMPC+0.51)
ELSEIR(TEMPC.LT.1200.AND.TEMPC.GE.900)THEN
SIGMAY=RTSIGMAY*{-0.000Z*TEMPC+0.24)
ELSEIF(TEMPC.GE.1200) THEN
SIGMAY=RTSIGMAY*0.0

ELSE

ENDIF

EPSILONY=SIGMAY/YE

END

SUBROUTINE RESIDUALSTRESS (STR)

{ The program Is to calculate the residual stress
IMPLICIT NONE
INTEGER NH1,NV1,NH2,NV2,NH4,NV4,TOT,|,DE,NE1, NE2,NE4
PARAMETER (DE=2000)
REAL*8 STR(DE),C1,C2 SIGMART,SIGMARC,YE, SIGMAY,EPSILONY
REAL*8 W1,T1,D2,T2,W4,T4,YB X(DE),Y(DE), AD(DE),YBAR1,YBAR3, W2
REAL*8 TEMPD,TALPHA RTYE,RTSIGMAY
COMMON/M1/W1,T1,D2,T2,W4,T4,YB,NH1,NV1,NHZ,NV2,NH4,NV4
COMMON /M2/ RTYE,SIGMARC,RTSIGMAY
CALL SEC(X,Y,AD)
NE1=NH1*NV1
NE2=NH2*NV2*2
NE4=NH4*NV4
TOT=NE1+NE2+NE4
W2=W4+2*T2
YBAR1=(W1*T1*T1/2+D2*T2*(T1+D2/2)* 2+ WA*T4*(T1+YB+T4/2))/(W1*T 1+D2*T2*2+W4*T4)
YBAR3=D2+T1-YBAR1
C1=(T1*W1+T4*W4+2*T2*D2}/(T1+T4+2*T2)/(2+SIGMARC/SIGMART+SIGMART/SIGMARC)
C2=SIGMARC/SIGMART*C1
SIGMART=SIGMARC*2.5D0
DO 200 1=1,TOT
IF(SIGMARC.EQ.0.0)THEN
STR(1)=0.0
ELSE
IF(LLE.NE1)THEN



IF(X(1).LE.(-W1/2+C1+C2).AND.X(1).GT.(-W1/2))THEN
STR(I)=-(SIGMARC+SIGMART)/(C1+C2)*(X(1)+W1/2}+SIGMART
ELSEIR(X(1).GT.(-W1/2+C1+C2).AND.X(1}).LE.(W1/2-C1-C2))THEN
STR(1)=-SIGMARC
ELSEIR(X(I).LE.(W1/2).AND.X(1).GT.(W1/2-C1-C2))THEN
STR(I}=(SIGMARC+SIGMART)/(C1+C2)*(X(f)-W1/2)+SIGMART
ELSE

ENDIF

ELSEIR(LGT.NELAND.LLE(NE1+NE2))THEN
{F(Y(1).LE.(-YBAR3+C1+C2).AND.Y(I).GT.(-YBAR3))THEN
STR(I)=-(SIGMARC+SIGMART)/(C1+C2)*(Y(1)+ YBAR3}+SIGMART
ELSEIF(Y(1).LE.{YBAR1-T1-C1-C2).AND.Y(1).GT.(-YBAR3+C1+C2})THEN
STR(1)=-SIGMARC
ELSEIF(Y(!).LE.(YBAR1-T1).AND.Y{f).GT.(YBAR1-T1-C1-C2))THEN
STR(1)=(SIGMARC+SIGMART)/(C1+C2)*(Y(1)-YBAR1+T1)+SIGMART
ELSE

ENDIF

ELSEIF(LGT.(NE1+NEZ))THEN
IF(X(1).LE.(-W4/2+C1+C2).AND.X(1}.GT.(-W4/2))THEN
STR(1)=-(SIGMARC+SIGMART)/(C1+C2)*(X(1}+W4/2) +SIGMART
ELSEIF(X(I).LE.(W4/2-C1-C2).AND.X(1).GT.(-W4,/2+C1+C2))THEN
STR(1)=-SIGMARC
ELSEIF(X(1).LE.W4/2.AND.X(1).GT.(W4/2-C1-C2))THEN
STR(1)=(SIGMARC+SIGMART)/(C1+C2)*(X(1)-W4/2)+SIGMART

200 CONTINUE

END

!

SUBROUTINE SEC(X,Y,AD)

IMPLICIT NONE

INTEGER NH1,NV1,NH2,NV2,NH4,NV4,NE1,NEZ,NE4,TOT,LL,LY,DE
PARAMETER(DE=2000)

REAL*8 W1,T1,D2,T2,W4,T4,YB,YBAR1,YBARZ X(DE),Y(DE), AD(DE),W2
REAL*8 XXB(DE),YYB(DE),ADB(DE)

COMMON/M1/ W1,T1,D2,T2,W4,T4,YB NH1,NV1,NH2,NVZ NH4,NV4
NE1=NH1*NV1

NE2=NH2*NV2*2

NE4=NH4*NV4

TOT=NE1+NE2+NE4

W2=W4+2*T2

YBAR1=(W1*T1*T1/2+D2*T2*(T1+D2/2)* 2+ WAST4*(T1+YB+T4/2))/(W1*T1+D2*T2*2+ W4*T4)

YBAR2=YB+T1-YBAR1
DO 101 1=1,TOT

IF (LLE.NE1) THEN

L=INT({1-1)/NH1)
K(D=(-W1/2+(I-L*NH1)*W1/NH1-W1/(2*NH1))
Y()=(YBAR1-L*T1/NV1-T1/2/NV1)
AD(I)=(W1/NH1)*(T1/NV1)

ELSE IF((LGT.NE1).AND.(LLE.(NE1+NE2))) THEN
L=INT((I-NE1-1)/NH2)

LY=INT((I-NE1-1)/(2*NH2))

IF (MOD(L,2).EQ.0) THEN
X()=(-W2/2+(I-NE1-L*NH2)*T2/NH2-T2/2/NH2)
Y(1)=(YBAR1-T1-LY*(D2/NV2)-D2/(2*NV2))
AD(I)=((D2)/NV2)*(T2/NH2)

ELSE
X(1)=(W2/2-T2+(I-NE1-L*NH2)*T2/NH2-T2/2/NH2)
Y(1)=(YBARL-T1-LY*(D2/NV2)-D2/(2*NV2))
AD(1)=((D2)/NV2)*(T2/NH2)

ENDIF

ELSEIF (1.GT.(NE1+NE2}) THEN
L=INT((I-NE1-NE2-1)/NH4)
X(1)=(-W4/2+(I-NE1-NE2-L*NH4)*W4/NH4-W4/(2*NH4))
Y(1)=(-YBAR2-T4-L*T4/NV4-T4/(2*NV4))
AD(1)=(W4/NH4)*(T4/NV4)

ENDIF

XXB(D)=X(1)/(W1/2)

YYB(1)=Y(1)/YBAR1

101 CONTINUE

END

SUBROUTINE INTEGRALCOEFFICIENT (N1,N2,N3,N4,N5,N6)
IMPLICIT NONE
INTEGER INPT,L},DD

198
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PARAMETER (DD=42)
REAL*8 N1(DD,DD),DN(DD,DD),N2(DD,DD),N3{DD,DD),N4(DD,DD),N5(DD,DD},N6(DD,DD}
REAL*8 H, Z(DD),EL,HB
COMMON/M4/ INPT,EL,HB
H=EL/(INPT-1}
DO 313 I=1,INPT
Z()=(I-1*H
313 CONTINUE
DO 301 1 =LINPT
DO 301 )= LINPT
DN(1,{)=0.0
301 CONTINUE
DO 302 1=4,INPT
IF (MOD(},2) .EQ. 0.0) THEN
DN(],I-1)=5.0
DN(1,)=8.0
DN(L1+1)=-1.0
ELSE
DN{1,1-2)=-1.0
DN{1,1-1)=8.0
DN(LD)=5.0
END IF
302 CONTINUE
DO 303 I =1,INPT
DO 303 j= 1,INPT
N1(1))=0.0
N2(1))=0.0
N3(1))=0.0
N4(L))=0.0
303 CONTINUE
N1(2,1)=5.0
N1(2,2)=8.0
N1(2.3)=-1.0
N1(3,1)=4.0
N1(3.2)=16.0
N1(3,3)=4.0
DO 304 1=4,INPT
DO 304 J=1,INPT
N1(1,])=N1{i-1,/)+DN{L])
304 CONTINUE
CALL MULTIPLICATION{N1,N1,INPT,INPT,INPT,N2)
DO 307 I= 1LINPT
DO 307 ]=1,INPT
N3(L)=(H/12)**2*(N2(1])-Z(1)*N2(INPT,})/EL)
307 CONTINUE
DO 309 )=1,INPT
N4(L])=(H/EL/12)**2*(Z(1)-EL)*N2(INPT,j)
309 CONTINUE
DO 3111=1INPT
DO 311)=1,INPT
N5(L1)=Z(1)*(H/12*N1(INPT J)-(H/12)**2*N2(INPT,})/EL)/EL
311 CONTINUE
DO 314 1= L,INPT
DO 314 J=1,INPT
N6(L])=H/12*N1(L}) +(-HB*H/12*N1{INPT,})-(H/12)**2*N2(INPT,]))/(EL+2*HB)
314 CONTINUE
END

SUBROUTINE MULTIPLICATION(A,B,M,L.N.C)
IMPLICIT NONE
INTEGER M,L,N,1JK,DK
PARAMETER (DK=42)
REAL*8 A(DK,DK),B(DK.DK),C(DK,DK)
DO 401 I=1.M
DO 402J=1N
C(L})=0.0
DO 403 K=1L
CULD=CALN+A(LK)*B(K])
403 CONTINUE
402 CONTINUE
401 CONTINUE
END

SUBROUTINE INVERT(CB,N,C)
IMPLICIT NONE

INTEGER JLNK.IJ,JLJK,JP,JQIRIZKLK],IK,KK,NK.KOUNT,DK
PARAMETER(DK=42)

REAL*S C(DK,DK},A(2000},L(2000),M(2000),D,CB(DK.DK)



REAL*8 BIGA,HOLD

DO 300}=1,N

DO 300 I=1,N

C(LN)=CB(.))
300 CONTINUE

KOUNT=0

DO 200 J=1,N

D0 200 I=1,N

KOUNT=KOUNT+1

A(KOUNT)=C(L))
200 CONTINUE

D=1.0

NK=-N

DO 80 K=1,N

NK=NK+N

L{K)=K

M(K)=K

KK=NK+K

BIGA=A(KK)

DO 20 J=K,N

1Z=N*(-1)

DO 20 I=K.N

1=1Z+1

10 IF(ABS(BIGA)-ABS(A(I]))) 15,20,20

15 BIGA=A(I])
L(K)=I
M(K)=}

20 CONTINUE
J=L(K)
1F(-K) 35,3525

25 KI=K-N
D030 I=1,N
KI=KI+N
HOLD=-A{KI)
JI=KI-K+]
A(KD=AQY)

30 A(JI)=HOLD

35 1=M(K)
IF(I-K) 45,45,38

38 JP=N*(I-1)
DO 40 J=1N
JK=NK+]
J1=]P+]
HOLD=-A(JK)
AQK)=AQT)

40 A(jI)=HOLD

45 IF(BIGA) 48,46,48

46 D=0.0
RETURN

48 DOSSI=1,N
IF(-K) 50,55,50

50 IK=NK+1
A(IK)=A(IK)/(-BIGA)

55 CONTINUE
DO 65 1=1,N

I]=1}+N
IF(I-K) 60,65,60
60 IF(J-K) 62,65,62
62 KJ=l}-1+K
A(I])=HOLD*A(K])+A(1))
65 CONTINUE
KJ=K-N
DO 75)=1N
KJ=KJ+N
IF(}-K) 70,75,70
70 A(K])=A(K}}/BIGA
75 CONTINUE
D=D*BIGA
A(KK)=1.0/BIGA
80 CONTINUE
K=N
100 K=(K-1)
IF(K) 150,150,105
105 I=L(K)

200



1F(1-K) 120,120,108
108 JQ=N*(K-1)
JR=N*(1-1)
DO 110 J=1,N
JK=]Q+}
HOLD=A(JK)
Ji=jR+]
A(K)=-A(1)
110 A(H=HOLD
120 J=M(K)
IF(J-K) 100,100,125
125 KI=K-N
DO 130 I=1,N
KI=KI+N
HOLD=A(KI)
J1=KI-K+J
A(KD)=-A(ID)
130 A{JI)=HOLD
GOTO 100
150 KOUNT=0
DO 205 J=1.N
DO 205 I=1,N
KOUNT=KOUNT+1
C(L])=A(KOUNT)
205 CONTINUE
DO 350 J=1,N
DO 350 1=1,N
CB(L))=C(L))
350 CONTINUE
RETURN
END

SUBROUTINE FindDet{WK, N,DETERMINANT)
IMPLICIT NONE

INTEGER 1], KN, L,DD,DE,DK

PARAMETER (DD=42,DK=42,DE=2000)

REAL*8 MATRIX(DK,DK), WK(DK,DK),DETERMINANT

REAL*8 m, TEMP
LOGICAL DetExists
1012 CONTINUE
DO 701=1,N
DO 80}=1,N
MATRIX(L))=WK(1,]}
80 CONTINUE
70 CONTINUE
L=1
DO10K=L,N-1
IF (MATRIX(K.K) .EQ. 0.0} THEN
DetExists = .FALSE.
DO201=K+1,N
IF (MATRIX(1,K).NE. 0.0) THEN
DO30}=1,N
TEMP = matrix(i,j)
matrix(L})= matrix(k.j)
matrix(k.j) = TEMP
30 CONTINUE
DetExists = . TRUE.
=1
EXIT
ENDIF
20 CONTINUE
IF (DetExists .EQV. .FALSE.) THEN
DETERMINANT = 0.0
RETURN
END IF
ENDIF
DO40)=k+1,n
m = matrix(},k)/matrix(k k)
DO50{=k+1,n
matrix(},1) = matrix(},1} - m*matrix(k.i)
50 CONTINUE
40 CONTINUE
10 CONTINUE
DETERMINANT =1
DO601=1,n
DETERMINANT = DETERMINANT * matrix(i,)
60 CONTINUE
END
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