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ABSTRACT

HALONITROMETHANE TREATMENT USING ADVANCED OXIDATION 
PROCESS: RATES, MECHANISMS AND KINETIC MODELING

Stuart Kirkham Cole 
Old Dominion University, 2005 
Director: Dr. Mujde Erten-Unal

Halonitromethanes (HNMs) are low molecular weight halogenated disinfection-by- 

products (DBPs) found to be formed during ozonation, chlorination, or chloramination o f  

waters containing natural bromide ion and nitrogenous organic matter. This work 

identifies the absolute rate constants for the oxidative hydroxyl radical (*OH) and 

reductive hydrated electron ( eaq) extinction o f HNM compounds. Three forms o f  HNMs 

included in this study are the chlorinated, brominated, and mixed halogenated 

compounds. Electron pulse radiolysis and transient absorption spectroscopy were used to 

measure *OH and eaq radical absolute reaction rate constants for a total o f  nine HNMs.

To elucidate the decomposition reaction mechanism, six HNMs were exposed to 60Co 

gamma (y) irradiation at various times (absorbed doses). The disappearance o f  the parent 

compound in the 60Co irradiated samples was monitored and the mass balance o f  ionic 

residuals was determined. Using reaction rate constants and the mechanistic data, a 

preliminary reaction mechanism was proposed and used in a kinetic model to describe the 

removal o f the HNMs in aqueous solution. The model was then extended to simulate the 

electron beam process on waters o f  defined chemical composition and used for estimating 

the economics o f  the treatment o f  trichloronitromethane at large scale.
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1. INTRODUCTION AND LITERATURE SEARCH

1.1. Purpose

Radiation chemistry has been studied extensively for many years, and in 1914 Debieme 

suggested that free radicals formed in the water might be responsible for the chemical 

action o f  radiation (Spinks and Woods, 1964). The study o f  radiation exposure to matter 

has been fundamental towards the advances in the nuclear power industry, radiation 

biology, food safety, and medicine. The interaction o f radiation with water (radiolysis) 

provides environmental scientists and engineers a process capable o f  fulfilling the need 

for finding safe alternatives in water treatment. The exposure o f  water to ionizing 

radiation produces free radicals. Free radicals consist o f  an atom or group o f atoms 

possessing one or more unpaired electrons (Leigh, 1990) and their formation is complete 

at 10 7 seconds (Buxton et al., 1988), the time after the passage o f  ionizing particles such 

as gamma (7 ) or fast electrons, have produced tracks and spurs within the water medium. 

At 10 5 seconds, the radicals react with the solute followed by diffusion o f  the radicals 

and molecular products in the bulk o f  the water (Spinks and Woods, 1964).

The purpose o f  this study was to investigate the degradation o f  halonitromethanes 

(HNMs) summarized in Table 1.1 as an undesired disinfection-by-product (DBP) 

contaminant in water by use o f  free radical chemistry.
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Table 1.1. Halonitromethanes (HNMs) identified in this study.

Purity (%) CAS Number

Chlorinated Species

Chloronitromethane 92 9(a) 1794-84-9

Dichloronitromethane 98.7(a) 7119-89-3

Trichloronitromethane (Chloropicrin) 9 9 4 0 ) 76-06-2

Brominated Species

Bromonitromethane 9 9 (b) 563-70-2

Dibromonitromethane 92.1(a) 598-91-4

Tribromonitromethane (Bromopicrin) 99.900 464-10-8

Mixed Halogen Species

Bromochloronitromethane 89.5(a) 135531-25-8

Bromodichloronitromethane 92.2(a) 918-01-4

Dibromochloronitromethane 91.6(a) 1184-89-0

(a,As determined by Gas Chromatography/Mass Spectrometry (GC/MS). 
(b)As determined by Nuclear Magnetic Resonance (NMR).

This study includes identification o f  rate constants for free radical reduction-oxidation 

(redox) reactions with HNMs using free radicals generated by a Linear Accelerator 

(LINAC) and 60Co irradiator. Reaction mechanisms and rate constants for destruction o f  

HNMs were elucidated by exposure o f  six o f  nine HNM compounds to steady state 

ionizing radiation derived from a 60Co source which emits gamma particles by its natural 

decay scheme. The mass production o f  the parent ions (chloride, bromide, and nitrate) 

from the HNM compound and the byproduct compounds oxalate, formate, and total 

organic carbon (TOC) produced were also investigated. Those mass amounts, as 

byproducts, found remaining in solution were then applied quantitatively in a kinetic 

analysis. The rate constants derived from pulse radiolysis and mass data obtained from 

the 60Co steady state irradiations was then used in a mass action kinetic computer model

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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simulation to replicate and confirm a kinetic reaction mechanism. This degradation 

kinetic reaction mechanism was then adjusted and optimized according to known kinetic 

reactions. The mechanism was then incorporated into a kinetic computer model for 

simulation o f  a large scale electron beam irradiation facility. Based on these results, an 

energy cost for treatment o f HNMs in drinking water was estimated. The reaction rate 

constants, degradation mechanisms, quantification o f mass byproducts produced during 

destruction o f HNM, and identification o f  the required radiation dose levels to degrade 

HNMs w ill directly support the needs o f  scientists and engineers in treatment o f water.

This work was accomplished under controlled experimental conditions. Observations 

were made at constant temperature, pressure, and ambient pH. Solutions were prepared 

with ultra-pure de-ionized tap water from the Notre Dame Radiation Laboratory water 

treatment system to reduce potential for interference. Quality assurance and control was 

implemented by use o f  established laboratory procedures and data management practices.

1.2. Disinfection-by-products

Disinfectant chemicals are used in drinking water throughout the world as a means to 

maintain the health o f  the public and for the public’s protection from waterborne 

microbial pathogens. Disinfection-by-products (DBPs) are formed in water from the 

chemical reaction o f disinfection chemicals such as chlorine (Rook, 1974) and ozone 

(Richardson et al., 1999) with natural organic materials (NOM).

Chlorine, as a chemical disinfectant, has been found to be a source o f  haloform 

DBPs identified as trihalomethanes (THM’s). These THM’s are produced from the 

interaction between chlorine and NOM in the water (Krasner et al., 1996). DBP

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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production from use o f  chloramines has been found to be sensitive to pH, the chlorine-to- 

nitrogen ratio (Sayato et al., 1982; Thibaud et al., 1987), and natural bromide 

concentrations in the source water (Cavanagh et al., 1992; Thibaud et al., 1988). 

Recognizing the need to balance disinfection needs required for control o f pathogens with 

DBP production, water purveyors routinely test these variables to find optimal operating 

conditions to minimize their formation (Diehl et al., 2000). If naturally occurring 

bromide is present in water, it may be oxidized and react with NOM and then form 

brominated DBPs (Cavanagh et al., 1992). The DBPs such as THMs and five haloacetic 

acids (HAA 5) DBPs have been found to represent a health hazard in drinking water and 

are regulated by the U.S. Environmental Protection Agency, Safe Drinking Water Act, 

Stage I Disinfection Byproducts regulations to a maximum permissible contaminant level 

(MCL) in drinking water o f 80 and 60 pg L_1, respectively (U.S. Environmental 

Protection Agency, 1997).

The use o f  disinfectants such as ozone, chlorine, chloramines and chlorine dioxide 

when used in water treatment have also been found to produce DBPs such as 

trichloronitromethane (TCNM) and is a chlorinated form o f halonitromethane (Becke et 

al., 1984). When ozone is used in water treatment, chemical reactions may occur with 

both inorganic and organic compounds to form HNM DBPs that appears in three forms: 

chlorinated, brominated, or mixed halogenated (Cl~, B r ) DBPs (Richardson et al., 1999). 

Although these HNM DBPs are not currently regulated by the U.S. Environmental 

Protection Agency, they have been identified to be more potent mammalian cytotoxin 

and genotoxin, e.g., TCNM is 32.6 times more cytotoxic than dichloroacetic acid 

(DCAA) and trichloroacetic acid (TCAA) as two o f the regulated HAA5 (Plewa et al.,
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2004). The HAA5 compounds are currently regulated by the U.S. Environmental 

Protection Agency (1997).

The DBPs formed from the disinfection process can be reduced through use o f  

treatment processes designed for the removal o f  the NOM, TOC, or other DBP precursors 

before they interact with chemical disinfectants. These water treatment processes may 

include physiochemical processes such as flocculation and sedimentation, membrane 

(direct) fdtration, biological filtration, carbon absorption, or ion exchange (anion and 

cation resin). Other methods for control o f  DBPs include the use o f  a combination o f  

treatment strategies. The combination strategies may include any two or more 

conventional treatment processes or one implemented in combination with the application 

o f disinfection chemicals such as chloramines where it is used for residual disinfection. 

Chloramines, as a residual disinfectant, were found to reduce the potential for formation 

o f  THM DBPs in the water distribution system (Diehl et al., 2000).

1.3. Overview o f  Free Radical Chemistry

With the use o f  chemicals disinfectants such as chlorine and the expanded use o f  ozone 

(Richardson, 1999), the formation o f HNMs such as trichloronitromethane can be 

expected in drinking water (Hoigne and Bader, 1988). Surveys o f  multiple drinking 

waters have indicated the presence o f  chlorinated and brominated forms o f  HNMs 

(Weinberg et al., 2002). Means for their total removal may include advanced oxidation 

processes (AOPs), using free radical chemistry.

Free radical AOPs have been well studied for degradation o f  many environmental 

pollutants (Cooper et al., 2004) and for the elimination o f NOM as precursors to
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formation o f  THM DBPs in water (Cooper et al., 1996a). The free radicals produced by 

the electron beam and 60Co gamma (y) irradiation have been found to effectively remove 

THMs in water (Cooper and Cadavid, 1993) and degrade bromate to the bromide (BE) 

ion (Siddiqui et al., 1996). Electron beam irradiation, generating free radicals in water, 

have shown successful elimination o f  hazardous aqueous inorganic and organic pollutants 

(Mincher and Cooper, 2003), pesticides (Drzewicz et al., 2004; Zona et al., 2002), 

gasoline additive (MTBE) (Mezyk and Cooper, 2001), atrazine (Leitner et al., 1999), 

trichloroethylene (TCE) and tetrachloroethylene (PCE) (Cooper et al., 1993; Nickelsen et 

al., 2002), chloroform (Mak et al., 1996), (Tobien et al., 2000; Mak et al., 1997), benzene 

(Cooper et al., 1996b; Nickelsen et al., 1992), halogenated organics (ethane derivatives) 

(Lai et al., 1988), nitromethane (Asmus et al., 1964a), nitroparaffms (CH3NO2 , 

C2H5NO2 , C3H7NO2) (Sutton and Son, 1967), and organic solutes (Kalkwarf, 1968).

The basis for free radical AOP is the radiolysis o f  water. The purity o f water used as a 

solvent in radiation chemistry experimentation was a major consideration when aqueous 

solutions are irradiated (Spinks and Woods, 1964). Water used in this experimentation 

was pure water filtered and produced at the Notre Dame Radiation Laboratory with tap 

water as the source.

Free radicals in aqueous solutions are produced by the dissociation o f excited 

molecules and by ion reactions occurring as a dissociative, ion-molecular, or 

neutralization reaction in or near the tracks o f  ionizing particles. Radicals which do not 

undergo radical-radical reactions in this region o f high radical concentration in the spur, 

diffuse into the bulk o f  the medium and generally react with the substrate. The initial high 

concentration o f  free radicals, close to the radiation particle tracks, can lead to radical
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phenomena in radiation chemistry different from those where the radicals are formed by 

other means such as those produced chemically or photochemically and are more 

randomly distributed (Spinks and Woods, 1964).

The study o f the perturbing conditions from ionizing radiation exposure to water and 

the resulting reactions is known as radiation chemistry. Radiation chemistry is concerned 

with all processes which occur following the absorption o f  ionizing radiation into the 

aqueous medium until all products have been formed and all the absorbed energy from 

the radioactive particle has been thermalized. This occurs at an approximate timescale o f  

10~ 17 seconds after the ionization event (Mozumder and Magee, 1975a).

On a nuclear particle time scale, the study o f  radiation chemistry includes the period 

o f time from the moment o f the interaction o f  the ionizing particle (electron) to a time 

when the particle is thermalized. The overall time period is subdivided into three distinct 

stages and each stage correlates to significant events exhibited by the particle in each 

stage. The stages are categorized into the physical, physiochemical, or chemical. Each 

stage and significant event is marked to the time in seconds after the interaction o f  an 

atomic particle with water medium. Several timescales describing the interaction o f  an 

electron with water have been proposed by those identified in Table 1.2. Each author 

identified a unique time within each stage along with a description o f  their respective 

significant events. A  collective summary o f  these stage timescales along with their 

respective events was prepared and presented in Table 1.2.
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Table 1.2. Events occurring after excitation o f  an electron in water.

Event Time Stage 
(Sec.)________

Reference

Earliest discemable time based on 
Uncertainty Principle.

Ionization Event, Excitation e
H20  <-W V W  H20  V W W -» H20 + + e“

H* + *OH H2 + O*

Electron thermalized and hydrated 
“picosecond barrier”.

1 0 17 <D

1 0 -16 JO

13
o

1 0 - 15
* w

£
Ph

1 0

10

1 0

-1 4

-13

-12

o 'aq

<DCJ)a
cn
130

1  x, o o

(Mozumder, 1969) 

(Buxton ,2004) 

(Buxton, 2004)

(Buxton, 2004)

(Buxton, 2004)

(Buxton, 2004; 
Mozumder and 
Magee, 1975b)

Minimum time for diffusion controlled

l(T n

1 0 ” 10

' 1/1 

CLh
(Spinks and Woods,

reactions in the bulk o f  the liquid. 
Spur reaction complete. 1 0 “ 9

1964)
(Magee and

Track end (blob, short track) reactions 1 0 “ 8

Chatteijee, 1987) 
(Magee and

complete.
Formation o f  molecular products complete 1 0  7

Chatteijee, 1987) 
(Buxton, 2004)

eaq, H*, -OH, H2, H20 2, H30 +. 

Reaction time for radical with solute in

1 
1 

O 
O

<D
OGcd-4—>

GO (Spinks and Woods,
molar concentration. 13o 1964)
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Mozumder and Magee (1975a) identified an upper limit or boundary o f time 

measurement for these radiolytic events and the limit was determined to be bounded by 

the capability for real-time reaction measurement using photo-absorption technology. 

This limit is fixed by either the duration o f time that the energy is deposited by the 

ionizing particle or the transit time o f the analyzing light. When compared to the time for 

energy deposition, the analyzing light requires a longer time to transverse the sample and 

inevitably record the effects arising from the energy deposit and this occurs within a time

 12  to
spread o f  10 seconds or more. This 10 second range o f  event time is referred to as 

the picosecond barrier to real-time observations (Mozumder and Magee, 1975b). 

Recently, the use o f  asynchronous laser for the radiolytic study o f  eaq kinetics in water

has allowed real-time measurements closer to the picosecond barrier with measurements 

reported in the range from 100 ps to 10 ns (Bartels et al., 2000).

This research was performed predominantly in the chemical stage and this begins at a 

time with the completion o f free radical formation and corresponds to approximately 1 0 ~ 7 

seconds after the ionization event in water. To quantify the amount o f  free radicals 

formed in this time period, a yield is provided. The yield o f  these primary free radical 

species is represented by the yield (G) value. This value denotes the number o f  molecules 

changed for each 100 electron-volts (eV) o f energy adsorbed (1 eV = 1.6022 x  10 19 J). It 

has been well established that steady state radiolysis o f  water produces the free radical 

yield in pure water for a pH range from 3 to 11 as (Buxton, 2004):

H20  -W V W  [2.8]*OH + [0.62]*H +[2.8]eaq+ [0.47]H2+[0.73]H 2O2 +[2.8]H+ (1.1)
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where the (G) value is the yield o f  free radicals denoted in brackets with units o f  mol 

J” 1 x  10 7 (1 mol J 1 = 9.65 x  10 6 molecules (100 eV) ') (Buxton, 2004). Subsequent to

the formation o f these free radicals in pure water, the following radiolytic reactions along 

with their rate constants were well established and listed in Table 1.3. (Buxton et al., 

1988). The reactions and their respective rate constants identified in Table 1.3 were 

incorporated into this work.

Table 1.3. Known reactions in pure water resulting from radiolysis and the second-order
rate constant. (Continued on page 19)

Reaction Rate constant, k (M ' s 1)

Caq + h 2 o - » H* + OH” 1.9 X 101

Caq + Caq - > OH" + OH" +  h 2 5.0 x l O 9

Caq + H* — > h 2 + OH 2.5 x l O 10

Gaq + •OH - > OH" 3.0 x  1010

Caq + •O' - > OH" + OH 2.2 x l O 10

Gaq + H+ H* 2.3 x l O 10

Gaq + h 2 o 2 - > •OH + OH" 1.1 XlO10

Caq + h o 2" •OH + OH" + OH" 3.5 XlO9

Caq + 0 2 - > 0 2 ." 1.9 x  1010

Gaq + 0 2. - > 0 22" 1.3 X lO 10

H* + h 2 o - » h 2 + •OH 1 .0X 101
H- + H* - > h 2 7.8 XlO9
H« + •OH - > h 2 o 7.0 XlO9
H* + OH" Caq 2.2 XlO7

H* + h 2 o 2 h 2 o + •OH 9.0 XlO7
H* + o 2 h o 2 * 2.1 X lO 10
H» + h o 2. - > h 2 o 2 1.0 X lO 10
•OH + •OH - > h 2 o 2 5.5 XlO9
•OH + •O' HO2 2.0 X lO 10
•OH + h 2 H* + h 2 o 4.2 x  107
•OH + OH - > h 2 o + •O' 1.3 x  1010
•OH + h 2o 2 - > h o 2 + h 2 o 2.7 x  107
•OH + h o 2" - > OH" + h o 2 . 7.5 x  109
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Table 1.3. Known reactions in pure water resulting from radiolysis and the second-order
rate constant. (Continued from page 19)

__________________ Reaction__________________________ Rate constant, k (M~ s )

OH + h 2 o 2+ -» h 3o + + o2 1.2 x  IO10
OH + h o 2. -» h 2o + 02 6.0 XlO9
OH + o2.- -» 02 + OH' 8.0 x  109
O' + h 2o -> OH + •OH 1.8 x  106
O' + h 2 H* + 0H~ 8.0 x  107
0" + h 2o 2 -» O2 .- + h 2o 5.0 x  108
O' + h o 2” -» 02.' + OH 4.0 XlO8
O' + 02.' OH' + OH” + 0 2 6.0 x l O 8

1.3.1. Radiation

Two types o f  radioactive sources were applied during this research. Experiments were 

conducted with each and both had a specific purpose for their application to steady state 

radiolysis o f  an aqueous medium. The first source was the pulsed electron beam, 

originating from a high voltage LINAC producing a constant stream o f electrons. The 

LINAC was designed to produce a controlled pulse for radiolysis o f  water and in-tum 

generates the free radicals required for determination o f  the HNM rate constants. The 

second radiation source was the gamma particle emitted by a radioactive source. This 

source was contained in a lead-lined shielded cask and equipped with a trap door. The 

gamma irradiator was used for extended radiolysis o f  water and more specifically for the 

purpose o f decomposing HNMs to their parent ions for subsequent identification o f a 

mass balance as residual ions found remaining in solution. The gamma source was also 

used for the determination o f HNM dose rate constant (&d).

Pulse radiolysis is based on use o f  fast electrons. Electrons can originate from 

interaction o f x-rays or 7 -particles with matter or they can be generated by the LINAC.
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For the purposes o f  experimental research, the LINAC produces a coherent beam o f  

determinable size (5 mm wide field, 2.8 ns, and 4.4 Amps) (Whitham et al., 1995). Each 

pulse produces a uniform radiation dose and within each pulse a stream o f fast electrons 

at energies o f  up to 8  MeV is emitted (Whitham et al., 1995). These fast electrons were 

introduced into a sample o f water where their energy is dissipated into the matter 

resulting in excitation and ionization o f atoms (Swallow, 1973). The passage o f a fast 

electron close to an atom or molecule subjects it to an electric impulse. This passage 

excites or ionizes it, and eventually may cause electronic transitions involving their inner 

shells (Swallow, 1973). Fast electrons also interact with matter by the emission o f  

electromagnetic radiation (Cherenkov radiation) and through inelastic and elastic 

scattering (Spinks and Woods, 1964).

Pulse radiolysis experiments in this work incorporated the University o f Notre Dame 

Radiation Laboratory (NDRL) LINAC (Titan Corporation, Model TB-8/16-1S S-Band). 

The unit is suitable for absorption spectroscopy at 475 nm for hydroxyl radicals and 700 

nm for hydrated electrons. The unit is capable to produce from 2 ns to 1.5 second pulses 

o f 8  MeV electrons and generate free radicals at approximately 1 to 3 pM with each 

pulse. The range o f  pulse implemented during experimentation was from 0.5 to 50 ps. 

The LINAC system was designed to have high order o f  repeatable shot-to-shot radiation 

dose along with low pre- and post radiation. The system includes a 130 to 140 kV 

gridded electron gun and series o f  accurately aligned Helmholtz coils provided along the 

beam-line to transport the beam and provide a uniform beam diameter at the target area 

(Whitham et al., 1995), as graphically depicted in Figure 1.1 (Madden, 2004).
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The NDRL LINAC facility description (Schuler, 1996), equipment design and 

transient absorption detection system (Whitham et al., 1995), pulse radiolysis equipment 

and dosimetry are also described elsewhere (Asmus, 1984).

During LINAC experimentation, continuously stirred solutions were pumped through 

glass tubing to the silica irradiation (target) cell (1  cm sample volume) with pulses 

irradiating the solution for each experimental trace (Cooper et al., 2002a). The solution 

was transferred from a bottle to the LINAC by a peristaltic metering pump (Cole-Palmer, 

Masterflex Quiet Load™ Model 7521-40) with an average pump rate o f  1.0 mL s_1.

All pulse radiolysis solutions were ambient pH and sparged with high purity N 2O for 

hydroxyl radical experimentation and N 2 for hydrated electron, with all work performed 

at one atmosphere and ambient room temperature (22°C). Solutions for the hydroxyl 

radical study were saturated with N 2O to scavenge ejq • This N 2 O saturation provides a 

highly reactive chemical system comprised o f predominantly *OH radicals (Asmus, 1984; 

Janata and Schuler, 1982). Based on this scavenging o f eaq only, the *OH reactions can

be observed discretely. For the hydrated electron rate constant study, high purity nitrogen 

gas was applied. Degassing solutions with N 2 purges or removes oxygen and thereby 

reduces the potential for undesired contributing byproducts or reactants from other 

oxygenated reactants in solution. This de-oxygenated solution then allows discrete 

observation o f  the desired reaction o f  solute reacting with eaq (Buxton et al., 1988). No 

interferences can occur or be observed from the use o f  nitrogen in solution because 

elementary nitrogen has a negative electron affinity and w ill not react with eaq (Hart and 

Anbar, 1970).
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Measurement o f  the radiation (dosimetry) for pulse radiolysis experiments (LINAC) 

is the measure o f ionizing events occurring in the aqueous solution. Pulse radiolysis 

dosimetry was based on the standard reaction o f  0.01 M thiocyanate anions (SCN ) to 

(SCN)2 ’ in aqueous N 2 saturated solutions at 475 nm (Buxton and Stuart, 1995).

This study included 60Co gamma irradiation for long-term exposure (maximum 70 

minutes) o f  the HNM solute in water to ionizing (gamma) radiation. The radioactive 

decay o f  60Co to 59Co produces ionizing radiation with the release o f one beta particle at 

0.097 MeV, and two gamma particles with one at 1.17 MeV and the other at 1.33 MeV  

(Spinks and Woods, 1964). The half-life (P/2) o f  60Co was important to calibration 

calculations for the gamma experiments where tV2 (60Co) = 5.2714 years (Spinks and 

Woods, 1964). The beta particle does not affect the experiment because the particle is 

attenuated by the small thicknesses o f  sample container wall, distance from the source to 

the sample, and air. These physical shields prohibit any reaction or eliminate the effect 

from the beta particle on the water medium.

Gamma irradiation using 60Co for radiolysis o f  an aqueous solution was selected 

based on its unique radiation ionizing property with matter. The processes by which 

energy is transferred from radiation to material differ for electromagnetic radiation ( 7  and 

x-ray photons), charged particles (beams o f electrons) and positively charged particles 

(Woods, 1998). Low energy photons (below approximately 0.1 MeV for low atomic 

number or low Z-materials) eject an electron from an atom and are absorbed in the 

process, with the electron carrying o ff any photon energy in excess o f  the binding energy 

o f the electron in the atom as a photoelectric process (Woods, 1998).
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Woods (1998) identified that higher energy photons, about 0.1 to 10 MeV, use part 

o f their energy to eject an electron and then they are deflected or scattered with the 

remaining energy and then exhibit Compton scattering. Photons with energy greater than 

1.02 MeV can be absorbed in the vicinity o f  the atomic nucleus and give rise to an 

electron-electron pair and known as pair production. The positron eventually reacts with 

an electron to give two 7 -photons o f  energy at 0.51 MeV and this action describes the 

condition for annihilation radiation. At energies above about 10 MeV, photons may eject 

a proton or neutron from the nucleus o f  an atom as a photonuclear reaction. In this range, 

photonuclear reactions may induce radioactivity in the absorbing material. For this 

reason, x-ray radiation energies are normally limited to a maximum o f 5 MeV, and 

electron energies to a maximum o f  10 MeV (Woods, 1998).

The 60Co gamma irradiation o f  HNMs was used to study the effect o f  their 

degradation via free radical oxidation and reduction reactions in water. The experiment 

was designed to identify and quantify the remaining HNM mass o f  ions present after 

timed exposure and then apply the data in a mass balance analysis. In addition, radiolysis 

using the gamma irradiator allows for the determination o f  the total ionizing dose 

required for destruction o f  each o f  the HNMs to their parent ions. The point where this 

mineralization occurs, in terms o f radiation level, was significant to this study for the 

determination o f  the dose constant. The total radiation dose was measured in units o f gray 

(Gy). The Gy is defined as absorption o f  1.0 J kg-1  where 1.0 gray is equal to 100 rad.

Given a 60Co radioactive source, it was necessary to calculate the dose rate at the time 

o f the experiment. The dose rate at the time o f  the 60Co irradiation experimentation was 

calculated using the half-life (fi/2) equation:
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Y  _  x  x A  Days/ 365))/t%)j ( 1 2 )

where Tj (krad m in .1) is equal to the dose rate at the time o f experimentation on May 17, 

2004, with posted calibration dose rate (T0 = 12.8 krad min .-1  for January 1, 2004) 

determined by NDRL using Fricke dosimetry. The number o f  days between dates (A 

Days) for (Tj -  To) and tV2 (60Co) was known. The 60Co radiolysis experiments were 

performed using the NDRL (Shepherd, Model 109-68) irradiator with a calculated 

exposure rate o f  122 Gy min. 1 on May 17, 2004.

Environmental application o f ionizing radiation or experimental radiolysis requires a 

constraint in the level o f  nuclear particle energy applied to the target. Based on the 

particle’s energy level, the potential exists for activation o f an atomic nucleus with a 

photonuclear reaction in the nucleus o f  an atom. Photonuclear reactions will occur at 

particle energies greater than 10 MeV. At 10 MeV or greater, photonuclear reactions 

result when photons eject a proton or neutron from the nucleus o f  an atom (Spinks and 

Woods, 1964). This radiation chemistry work was performed at radiation energies well 

below the level o f  elemental activation for matter (10 MeV). Therefore, no change to the 

elemental state o f  matter or induced radioactivity can be possible.

1.3.2. Formation

Free radicals are formed in the process o f  energy deposition into the water medium at 

10 7 seconds after the interaction o f  a nuclear particle with water. The extent o f  the 

region bounded by this energy deposition event is defined by both a characterization o f  

the radiation interaction with water and its subsequent effect on the intra-molecular water 

reactions. This event characterization is primarily described in terms o f  the structure o f
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interaction o f  the radiation with the water, the energy lost by the ionizing particle to the 

water, and the free radicals produced within the event region. The introduction o f an 

electron into water loses its energy, becomes thermalized, and this translates to a 

hydrated electron (Draganic and Draganic, 1971). The intra-molecular reactions are 

described by the concentration or yield o f  free radicals formed and radical scavenging.

Mozumder and Magee (1975a) described the earliest time period for the interaction o f  

a radiation particle with water. Radiation induced reactions in water create localized 

event structures known as spurs. The driving condition for the formation and number o f  

these spurs includes the type o f radiation particle such as photons, gamma, or electrons. 

Other conditions that may influence the number o f spurs include the number o f  

disintegrations per unit o f  time or the decay rate o f  a radioactive material where gamma 

or photon particles are emitted from the nuclei o f  an atom. In the case o f  electrons, the 

number o f  electrons emitted to the water may also impact the number o f  spurs formed 

(Mozumder and Magee, 1975a).

Reducing the scope o f  consideration from the number o f  spurs formed to the 

proximity within a single spur’s event region, the free radicals formed within that spur 

affect the local reaction kinetics. These local reactions kinetics w ill include only the 

independent spur, the primary radicals formed, and include the intermediate chemical 

radicals formed within that spur (Mozumder and Magee, 1975a). Mozumder and Magee 

(1975a) described the condition where these chemical primaries and intermediates 

formed in one spur react completely with each other and with those radical constituents 

within the immediate medium before they can diffuse far enough away from the localized 

event region to encounter intermediates or primaries from another spur or track. This
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condition is required for the yield (G) o f  radicals to be independent o f  the dose rate and 

for continuous 60Co irradiation and this condition is referred to as the low background 

case (Mozumder and Magee, 1975a). The low background case describes the condition 

that concentrations o f  intermediates do not build up outside the tracks (Mozumder and 

Magee, 1975a). Given that the primary and intermediate radicals (*OH and eaq) are 

known from short-term observations, their various individual reactions can be determined 

(Mozumder and Magee, 1975a). With these known individual reactions for the low  

background case, the concentration o f  all primaries and intermediates in the track are then 

quantifiable at the initial time o f approximately 10 7 seconds. Therefore, the free radical 

concentrations (yield) identified in equation ( 1 .1 ) has been established and is based on the 

low background case as a condition to intra-spur kinetics (Mozumder and Magee, 1975a).

In liquid water, ionizing radiation w ill produce excited and ionized species (Spinks 

and Woods, 1964) and the yield o f  these products are attributed to the linear energy 

transfer (LET) and scavenger effects (Mozumder and Magee, 1975a). The number and 

extent o f  these resulting ionized species produced are a function o f the energy level o f  the 

particles interacting with the water and the transfer o f  that energy along the track o f  the 

electron as LET. The LET is also known as the stopping power o f  a medium toward a 

penetrating charged particle and is the energy loss suffered by the particle per unit length 

measured in units o f  electron volts per unit path length (Mozumder and Magee, 1975a).

Mozumder and Magee (1975a) identified that the energy loss was classified into three 

types o f  ionizing particle track structures known as spurs, blobs, and short tracks. The 

spur conforms to an energy deposition to the water between 6  to 100 eV and the event is 

complete at 10 9 seconds. The blob is responsible for energy deposition between 100 to
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500 eV, and the short track describes the energy deposited between 500 to 5000 eV. The 

structures are formed after the introduction o f a particle into water medium where blobs 

and short tracks are complete within 1CT8 seconds. O f these three track structures, the 

spurs represent the single structure where the very fast particles have successive energy 

losses and where they are separated by enough distance so that the physical and chemical 

processes develop occur (Mozumder and Magee, 1975a). The dissipation o f  the energy in 

water occurs at different levels for each o f the track structures. For example, a 1 MeV 

electron theoretically expends 65% o f  its energy to produce isolated spurs, 15% in blobs, 

and 20% in short tracks (Chatteijee, 1987). The value o f  this stopping power (LET) in 

these track structures are critical to the formation and concentration o f  free radicals, 

equation (1.1). As an example o f  the LET scale, typical values for LET vary from 1 for 

gamma particles to 100 keV ptm 1 for alpha particles (Kurucz et al., 1991). For radiation 

o f  equal energy expressed in eV, LET values increase in the order of: gamma and fast 

electrons, beta, and then alpha particles. The higher LET value for alpha particle spurs is 

attributed to the close proximity o f  their tracks, and results in a form o f  a continuous 

column in the liquid medium, whereas gamma particles can be over 1 0  4 cm apart 

(Mozumder and Magee, 1975a). Kurucz et al., 1991 described the net result o f  the energy 

dissipation as the production o f  ions, electronically excited atoms, and molecules along 

the path o f  the irradiation in water. The nature o f  the radiation w ill not influence the 

identity o f the species formed in the water medium but does influence local radical 

concentrations depending on the water medium. The different chemical effects are related 

to the density o f  reactive species produced along the track o f  the ionizing particles. In

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



30

radiation chemistry, ionizing radiation such as gamma particles and fast electrons as 

exhibited in this experiment are classified as low LET in water (Kurucz et al., 1991).

Within the region o f  the ionization event and the subsequent spur formation, free 

radicals are produced in combination or shared with a constituency o f  molecular products 

that will reduce the concentration o f  the free radicals (Spinks and Woods, 1964). These 

molecular products scavenge the free radicals into intermediate products, re-combine to 

form other complex molecular combinations, or experience geminate recombination 

(Spinks and Woods, 1964).

Spinks and Woods (1964) defined scavenging as a term given to a reagent that reacts 

rapidly with other species (primary products). Scavengers can be a reagent that may be 

deliberately applied to a radical reaction o f  a compound where it will react preferentially 

with the radicals. Preferential reactions will be at the expense o f  the normal radical 

reactions. In radiation-induced reactions in liquids, the reaction may take place either 

within spurs or close to the tracks o f  heavy particles, where the active intermediates are 

formed, or in the bulk o f  the medium where reactions are initiated by radicals which have 

diffused from the spur track zone. In the later case, the purpose for direct introduction o f  

a scavenger into the medium was to identify the radicals taking part in the reaction and to 

determine what part o f  the over-all reaction is due to scavengeable free radicals (Spinks 

and Woods, 1964).

Substances used as scavengers are either stable free radicals compounds which 

eliminate radicals by electron transfer reactions, or compounds which react to give 

relatively stable free radicals in place o f  the active radicals originally present (Draganic
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and Draganic, 1971). For example, this research used nitrous oxide as a scavenger for eaq 

to determine the rate constants for *OH reaction with HNMs.

1.3.3. Steady State Radiolysis

This experimentation applied steady state radiolysis using an electron beam and 60Co 

gamma irradiation, as low LET radiation. Steady state radiolysis o f  an aqueous system is 

the steady chemical yield and concentration o f  stable primary free radical products within 

that system when exposed to ionizing radiation. These primary free radicals are described 

with their indicated yield in equation ( 1 .1 ) for the reactions at 1 0  7 seconds after the 

ionizing event.

Within the event region o f  the spur, steady state radiolysis depends on several 

conditions and these include the dose rate, scavenger concentration, reaction rate with the 

radical observed (Draganic and Draganic, 1961), LET, density o f  the aqueous medium, 

and the condition that the concentration o f free radicals identified in equation ( 1 .1 ) was 

constant over the pH range from 3 to 11 (Buxton, 1987). Although the yield o f  these 

primary radicals were found to decrease over time as they reacted with scavengers 

(Schwarz, 1968), the steady state condition exists where intermediates are not in 

significant amount and the period leading to build-up or period post build-up was not 

considered (Wright, 2004).

The steady state condition and this research were premised on the radiolysis o f  pure 

water in which the only radical scavengers are the expected molecular decomposition 

products H2 , H2O2 , and O2 . Magee and Chatterjee (1987) identified that decomposition o f  

pure water may occur for low LET radiation (y  and e ). If the tracks produce more
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radicals (H, OH) than molecules (H2, H2O2), a chain back-reaction destroys the 

molecules (H2, H2O2) and limits their build-up. A steady state condition implies one 

where there is no net decomposition o f  free radicals. If the molecular yields are larger 

that the radical yields, as in the case o f  heavy particle (7 ) tracks, the back-reaction is not 

effective at first and a net decomposition o f  water occurs. In the case o f water under the 

influence o f  low LET radiation, very little water decomposes. In the early phase o f  a 

heavy particle (7 ) irradiation, some decomposition o f  water occurs as the stationary 

(steady) state is further into time (Magee and Chatteijee, 1987).

Properties such as pressure, temperature and concentration o f the solvent (water) were 

constant. Draganic and Draganic (1971) confirmed that no effects from pressure were 

known to be identified in the production o f  free radicals. However, in the case o f  the eaq >

the diffusion coefficient o f  reactants were noted to change under pressure (Hart and 

Anbar, 1970). Experiments conducted in this research were at atmospheric pressure and 

therefore pressure was o f  no consequence. Experiments were performed at 20°C. 

Draganic and Draganic (1961) and Meesungnoen et al. (2002) confirmed that water 

temperature exhibits no effect on measured yields o f  the primary products identified in 

equation (1.1) for temperature range from 2° to 65°C.

When dilute aqueous solutions are irradiated practically all the energy absorbed is 

deposited in water molecules and the observed chemical changes are brought about 

indirectly via the molecular and radical products. Direct action due to energy deposited 

directly in the solute is generally unimportant in dilute solutions with concentrations 

below about 0.1 M. At higher solute concentrations direct action may be significant and 

there is some evidence that excited water molecules may transfer energy directly to the
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solute (Spinks and Woods, 1964). All concentrations o f  solute in this research were 

below 0.1 M, therefore no direct action was considered applicable.

1.3.4. Free Radical Characteristics

O f the primary free radicals identified to be formed during steady state radiolysis, the 

hydroxyl radical and hydrated electron are significant to HNM degradation. These two 

free radicals represent the most reactive free radicals over the remaining others produced 

in the radiolysis o f  water with the hydroxyl radical providing oxidation reactions and the 

hydrated electron as the reducing species with each produced in nearly equal amounts 

(Mincher and Cooper, 2003). The hydroxyl radical oxidizes halide ions (Buxton, 1987) 

and has a standard reduction potential o f  1.89 V in neutral solution (Schwarz and 

Dodson, 1984). In strongly alkaline solutions OF! is rapidly converted to anionic form O 

where OH behaves as an electrophile and 0~ as a nucleophile. Both forms o f the radical 

can abstract H from C -H  bonds (Buxton, 1987). The hydrated electron is a powerful 

reducing agent and reacts rapidly, as a nucleophile with halides and nitro compounds 

(Buxton, 1987).

Reactions o f  the hydroxyl radical (*OH) with inorganic and organic compounds have 

been well documented (Buxton et al., 1988; Haag and Yao, 1992). The *OH radical can 

undergo several types o f  reactions with chemicals in aqueous solution, notably addition, 

hydrogen abstraction, and electron transfer. On addition o f  N 2O, elq is converted to OH 

(Buxton, 1987):

H 2O
eaq + N 20  -»  N 2 + O —> OH + OH (1.3)
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Addition reactions occur readily with aromatic and unsaturated aliphatic compounds to 

give hydroxylated radicals (Cooper et al., 2004):

*OH + CH2 =CH2 ->  HOCH2-CH2* (1.4)

Electron transfer need not always result in radical destruction. In aqueous solutions, 

electron transfer between halide ions and hydroxyl radicals gives halogen atoms (Spinks 

and Woods, 1964):

*OH + Br —» Br * + OfT (1.5)

Bromide ions are even more readily oxidized by hydroxyl radicals. In the presence o f  

air, the reactions taking place in neutral solutions, the typical reactions are (Spinks and 

Woods, 1964):

*OH + Br” B r*+  OH' (1.6)

H* + 0 2 - > H 20 ’ (1.7)

Br * + H20* H+ + Br' + 0 2 (1.8)

The hydrated electron (e aq) was postulated by Stien and Platzman in the early 1950’s

(Hart and Anbar, 1970). In 1952, Stein considered that the hydrated electron polarizes the 

water and creates a potential well (Hart and Anbar, 1970). The earliest time in the event o f  

an electron in water occurs at 1 0  16 seconds where the most probable energy o f  a spur in 

water is about 20 eV. At 10 12 seconds, the electron has become thermalized to an aqueous 

electron ( eaq) and local diffusion processes begin (Mozumder and Magee, 1975b). The eaq 

is a powerful reducing reagent with a standard-state cell potential (E°) o f  2.77 V as 

exemplified by the hydrated electron and hydrogen reaction ( eaq + H —>■ Vz H2) (Hart and

Anbar, 1970). The reaction o f eaq with organic and inorganic compounds has been studied
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extensively (Hart and Anbar, 1970; Bensasson et al., 1983). Hydrated electrons can be un­

reactive, slow reactive, or reactive to a variety o f compounds. Reaction o f eaq with 

halogenatated compounds occurs where there is detachment o f negative ions on 

monochloroacetic acids (Hart and Anbar, 1964):

ClCH2COOH + -> Cl” + CH2COOH (1.9)

The hydrated (solvated) electron produced in pulse radiolysis o f  nitrous oxide in 

aqueous solutions is scavenged with a bimolecular rate constant o f  kj =  9.1 x  109 M V 1 

according to (Janata and Schuler, 1982):

e'q + N 20  + H20  -> N 2 + OH” + -OH (1.10)

and produces oxidizing scavengers for removing oxygen.

Kinetic data for radiolytic reduction o f  brominated compounds has been

investigated and shown to provide the following reaction mechanism and their respective 

bimolecular rate constants for halogens such as bromate and bromide (Siddiqui et al.,

1996):

Br0 3 ~ to BrC>2 , (k  not reported) (1 .1 1)

e'q + B r 0 3 + 2H + B r02‘ + H20 ,  k - 3  x  109 M V 1 (1.12)

e'q + B r02‘ B r0 2 , Jt=l X 10 10 M ' V 1 (1.13)

Br02 toBrC f (1.14)

eaq + B r02 ->  BrO’ + 0 2“, k =  1 x  101 0 M_1s 1 (1.15)

eaq + BrO" ->  BrO , &= 1 x  1010 M V 1 (1.16)

and for

BrO toBr , (Not reported) (1-17)
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ê q + BrO -> Br~ + 0 ' ,  k = 2 x  101 0 M 'V 1 (1.18)

The most characteristic property o f  free radicals is the instability associated with the 

presence o f  an unpaired electron. Hydrated electron radicals (eaq) are often extremely 

reactive, reacting in such a manner that the odd electron is paired with a similar electron 

in another radical or eliminated by an electron-transfer reaction. Alternately, the radical 

may react so as to produce a second, more stable, free radical (Spinks and Woods, 1964).

There are seven factors that affect a radical’s reactivity and chemical stability, and 

these include (Spinks and Woods, 1964):

• The stability o f  an organic radical is increased when a hydrogen attached to the 

carbon atom carrying the free electron is replaced by any other atom or group,

• Radical stability increases in with the following molecular series as

primary (-C H 2*) < secondary (=  CH*) < tertiary ( = 0 ) ,

•  Radical stability is increased in the halogen series given by F < Cl < Br < I,

•  Selectivity: Cl is more selective in attack on substrate than H, but less than Br”,

•  Dissociation energies o f  the bonds broken and formed,

•  Reactivities o f  the attacking and displaced radicals, and

•  Polar effects

Free radicals formed during the radiolysis o f  water react with a chemical (R) as a 

solute in the following general free radical reactions (Buxton et al., 1988): 

ejq + R —» *R (dissociative electron attachment; electron addition) (1-19)

*0H + R  —> *R (hydrogen atom abstraction; electron abstraction; addition) (1.20)

*H + R  -»  *R (hydrogen atom abstraction; addition) (1-21)
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Oxygenated reactions occur along with primary free radicals in aqueous solutions and 

these lead to the formation o f peroxyl radicals. These peroxyl radicals are highly reactive 

and contribute to the overall reaction mechanism for the degradation o f  HNMs. Reaction 

o f oxygen to free radicals in radiation induced reactions results in stable peroxy radicals. 

Molecular oxygen as a diradical (*0— 0*) in recognition o f  its triplet ground state, the 

reaction can be identified by (Spinks and Woods, 1964):

r .  + . 0 — 0  ->  R— O— O  (1.22)

Peroxy radicals are influenced by halogen groups attached to the same carbon and are 

often unstable, breaking down with cleavage o f  bonds and the loss o f  the halogen. These 

peroxyl radical reactions may be slow as compared to other peroxyl reactions. For 

example, most carbon centered radicals react with molecular oxygen with rate constants 

which are close to the diffusion-controlled limit, equal to k = 2 -4  X 10 9 M 's x, to form 

peroxyl radicals, as described by the peroxylation reaction (Alfassi, 1997):

R + 0 2 - > R 0 2 (1.23)

Halogen atoms, particularly chlorine atoms, have been found to react very fast with 

R 0 2 radicals (k >10 10 cm 3 molecule 1 s ') i f  not scavenged by precursors. The principal 

product o f the CF atom reaction with perhalogenated peroxyl radicals is CIO, along with 

the corresponding oxyl radical (Lescluax, 1997). Chlorine atoms appear to be set free in 

the bimolecular decay o f  peroxyl radicals and exhibit C-Cl bond cleavage leading to the 

formation o f  phosgene with slow hydrolysis (9 s 1 at 25°C) and a precursor to C 0 2 (von 

Sonntag and Schuchmann, 1997). Coupling o f  *0H with »N02 generates almost equal 

amount o f peroxynitrite (ONOOH/ONOO ) and NC>3_ + H+ (Merenyi et al., 1999).
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When primary free radicals are formed in water, competing reactions and radicals 

then react either with the aqueous parent solute materials or other species present to give 

stable reaction byproducts or intermediates. Subsequent reactions o f  these byproducts 

with the reactive water radiolysis species can eventually degrade the parent material to its 

constituent ions and the final product such as CO2 can be formed. The destruction process 

is commonly referred to as mineralization (Neta et al., 1990).

1.4. Rate Constants

Chemical kinetics may be broadly defined as the study o f  systems whose chemical 

composition o f  energy distribution is changing with time. The study o f these systems in 

detail includes a series o f  reactions and this collection represents the mechanism o f  the 

reaction (Weston and Schwarz, 1972). Experimental rate laws often point to complex 

mechanisms as a sequence o f  elementary steps or two or more sequences in parallel. 

Complex environmental mechanisms may also introduce intermediate species (Stumm 

and Morgan, 1996). In radiation chemistry, the kinetics o f  formation and decay o f the 

various reactive species in a given irradiated medium (charged species, excited states, 

radicals) is partially interlinked and can be complex (Hummel, 1987).

This experimentation used pulse radiolysis to form both »OH and e aq as primary free 

radicals for the determination o f  rate constants in the destruction o f TCNM. In 

elucidation o f  the decay mechanism for a given reaction o f  e~aq with species o f  HNM

present in an aqueous solution, the reaction was described by a first-order reaction for 

species A reacting with species B (Hart and Anbar, 1970):

+ A ->  A -  (1.24)
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e ^ + B ^ B T  (1.25)

The case o f  a first-order reaction where A disappears by the combination process where

product B  is formed, allows a differential equation to be written for Ct as the

concentration at the time o f interest and Co is the initial concentration (Hart and Anbar, 

1970):

In—  ~[k A(A) + kB (B)] t (1.26)
Co

where (A) is concentration o f species A and (B) is concentration o f species B and kA and 

kB are first-order rate constants.

The optical density (OD) as measured in the absorption spectrophotometer o f  the 

LINAC can be translated by the molar extinction coefficient e( eaq),concentration (C) o f  

e~aq at time t, and the optical path length (d) by (Hart and Anbar, 1970):

OD = € ( eaq) C d  (1.27)

The ratio o f  the concentrations equals that o f  the optical densities (Hart and Anbar, 

1970):

C t (O D )t

C 0 (OD ) 0

Substituting, the derivation follows (Hart and Anbar, 1970):

(O D )t

(1.28)

In = - [ * A( A ) + * B(B )] f  (1.29)
(O D )(

From this equation, the rate constants may be then be derived from a linear plot o f  the 

first-order rate constants at each time increment (Hart and Anbar, 1970).
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The basis for kinetics measurement in pulse radiolysis (LINAC) was a measurement 

o f the change in voltage on a photomultiplier tube. When a solution o f  interest is 

irradiated, species are created that can absorb visible light at different wavelengths. When 

less light is transmitted through a crystal target cell, graphically represented in Figure 1.1, 

holding the irradiated solution, the electron current on the photomultiplier tube is 

correspondingly less. The absorbed light intensity (absorbance or optical density) drops 

with respect to the formation o f  transient species (Swallow, 1973) and the concentration 

o f  species created can then be calculated by the Lambert-Beer law (Draganic and 

Draganic, 1971).

When the formation o f  solutes can not be measured directly, as in the case o f  the 

reactions in this study for *OH and HNM, then competition kinetics were used. 

Competition kinetics was described by the general form o f the equation for primary 

radicals, R• interacting with solutes, S  and product, P  (Buxton et al., 1988):

R» +S, kl > P, (1.30)

k
R* +S2— P (1.31)

where R• represents the primary radical, so that if  Pi is the observable product, and 

and S2 are chosen so that there is a complete reaction, and [S ) ] /^ ]  is varied, but Y,h  [<$] 

kept constant so that G [«Sj] does not vary by the equation (Buxton et al., 1988):

= (1.32)
G( P,  ) k, [S,  ] •

then kj can be determined when k\ is known.

Conflicts with extraneous or competing reactions were avoided in experimentation. 

This was accomplished by sparging all solutions with pure form o f nitrous oxide or
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nitrogen gas during the pulsed irradiations (LINAC). High purity N 2O gas was applied 

for hydroxyl radical experimentation and N 2 gas for hydrated electron at atmospheric 

pressure. Solutions saturated with N 2O scavenge ê q and provides a highly reactive

chemical system comprised o f  predominantly *OH radicals (Janata and Schuler, 1982). 

Degassing solutions with N 2 purges or removes oxygen thereby reducing the potential for 

contribution from reactants other than the solute reacting withe^ (Buxton et al., 1988).

1.4.1. Mechanistic Approach for Study o f  Reaction o f HNMs with the Hydroxyl Radical 

The radical reaction rate constant for reaction o f  *OH with HNM was determined using 

pulse radiolysis and an aqueous solution o f  thiocyanate (SCN ) for use in competition 

kinetics based on the competing reactions:

The change in the visible light absorption or intensity was monitored for reactions o f  

(SCN V  at a wavelength o f  475 nm. These changes in light absorption values were 

recorded in a computer and the data was subsequently processed and provided as hard 

copy print.

The following method and analytical expression applies to competition kinetics study 

o f *OH reaction with HNMs (Buxton et al., 1988; Mezyk et al., 2004):

where [(SCNV ] 0 is the final yield o f  (SCNk' measured for only the 0.1 M SCN 

solution and [(SCN^’ ] is the reduced yield o f  this transient when HNM is present. The

•OH + HNM -> Products (1.33)

•OH + SCN- -W V W ^ OH” + (SCNV (1.34)

(1.35)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



42

ratio o f  [(SC N V  ]o / [(SCNV ] to the ratio o f  [HNM] / [SCN- ] should present a linear 

relation o f  slope £33 / ^34. Based on the established rate constant for hydroxyl radical 

reaction with SCN”, £34  = 1.1 X 1010 M- 1s-1  (Mezyk et al., 2004), the second-order rate 

constant (£33) for HNM may then be determined (Buxton et a l,  1988).

1.4.2. Mechanistic Approach for Study o f Reaction o f HNMs with the Hydrated 

Electron Radical

Hydrated electrons ( elq) generated by pulse radiolysis were introduced in N 2 saturated 

HNM solutions. These HNM solutions included tert-butyl alcohol (2-methyl-2 propanol, 

t-ButOH) to scavenge •OH radicals. In the ultra-violet to visible light range, only the 

very strong absorption o f  hydrated electrons will be observed with the hydrated electron 

decay dependent on the HNM concentration (Tobien et al., 2000). The decay o f the t- 

ButOH was proportional to the irradiated HNM and its concentration for a pseudo- 

second-order rate constant follows for the reaction

ejq +TCNM  ^  Products (1.36)

Typical kinetic data for hydrated electron reaction with HNMs were obtained using

direct observations at 700 nm and was obtained for three consecutive readings then 

averaged (Mezyk et al., 2004). The direct observations o f  were based on the optical 

absorption spectra for the free radicals (Hug, 1981).

1.5. Halonitromethanes

The HNMs are a low molecular weight colorless liquid and hydrolyze very slowly. They 

are DBPs and currently unregulated in water (U.S. Environmental Protection Agency,
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1997). The most studied HNM was frequently found to be trichloronitromethane 

(TCNM). It was described as a strong irritant, possessed lacrimatory activity, and 

exposure o f  rats for possible carcinogenicity was inconclusive as the short survival time 

o f  the animals to TCNM did not permit conclusive evidence (U.S. Department o f  Health, 

Education and Welfare, 1978).

1.5.1. Formation o f HNMs

Chemical disinfectants (chlorine) applied at drinking water treatment facilities 

contributes to the formation o f disinfection-by-products known as halonitromethanes 

(HNMs) (Merlet et al., 1985; Thibaud et al., 1987; Richardson et al., 2000). HNMs are 

becoming the focus o f  new research for emerging contaminants to be studied 

(Richardson, 2003) and were identified as disinfection-by-products in drinking water 

treatment (U.S. Environmental Protection Agency, 1999). HNMs can also be formed by 

the reaction o f  ozone with high molecular nitrogenous organic compounds occurring in 

natural waters (Hoigne and Bader, 1988) and when pre-ozonation is followed by 

chloramines, the levels o f  HNMs can increase (Weinberg et al., 2002). The formation o f  

TCNM was found in pre-chlorinated waters. Its precursors include nitrite (Duguet et al., 

1984), bromide (Thibaud et al., 1988), and organic compounds such as humic acids, 

amino acids, and nitrophenols (Sayato et al., 1982).

1.5.2. Drinking Water HNM Disinfection-by-products

Becke et al. (1984) identified that trichloronitromethane (chloropicrin, TCNM) was 

formed by the chlorination o f  nitro-containing compounds, and later pre-ozonation was
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also attributed to its formation in water (Hoigne and Bader, 1988). As one o f  the HNMs, 

TCNM was identified frequently in the open literature as compared to the other HNMs. 

TCNM has been found in various locations throughout the world. A survey o f  the 

literature indicates that TCNM was found as a DBP in drinking water. The locations and 

range o f  concentrations where TCNM was found are presented in Table 1.4.

Table 1.4. Trichloronitromethane (Chloropicrin) found in drinking water.

Location Concentration 
Range, 

Min. to Max. 
(hg L”1)

Number o f  
Source Water 

Samples In 
Study

Reference

Australia <0.01 to 0.4 7 (Simpson and Hayes, 1998)

Canada <0 . 1 to 2.5 53 (Williams et al., 1997)

France 1 to 6 2 (Duguet et al., 1984)
<3 (Thibaud et al., 1987)

Greece 0 . 0 2 to 0 . 1 2 13 (Golfinopoulos et al., 2003)
ND to 0.26 15 (Kampioti and Stephanou, 2002)

Israel NR 1 (Richardson et al., 2003)

Japan 3.0 7 (Sayato et al., 1982)

Korea 0.03 to 2.31 15 (Shin et al., 1999)

Netherlands 0 . 0 1 to 3.0 2 0 (de Greef et al., 1980)

Switzerland 0.4 to 2 2 (Hoigne et al., 1988)
2 (a) to 6 (a)

U.S. ND to 0.05 1 0 (Keith eta l., 1976)
ND to 3 5 (Coleman et al., 1976)
ND to 3(b) 1 2 (Weinberg et al., 2002)
0.07 o p Li 'p' 4 (Jacangelo et al., 1989)

(a) Values increased when water was pre-ozonated.
^  Value reflects maximum for simulated distribution systems.

ND: Not Detected.
NR: Concentration value not reported.

TCNM has been investigated and applied as a commercial fungicide and fumigant 

(Thies and Nelson, 1982) and TCNM’s possible reductive analogue
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(dichloronitromethane) has been claimed to be identified in rain and snow in the northern 

hemisphere (Laniewski et al., 1998).

TCNM has also been identified throughout the world in waters from treatment 

facilities using chlorine and ozone as a disinfectant (Hoigne and Bader, 1988). The 

highest reported TCNM levels were observed where increased levels o f  natural organic 

matter was found in polluted rivers and used as drinking water source (Shin et al., 1999). 

Richardson et al. (1999) identified new brominated HNM DBPs where ozone was 

applied to drinking water, and then Weinberg et al. (2002) later found the occurrence o f  

HNMs in a nationwide survey o f  water treatment plants across the United Stated with the 

highest brominated HNM levels found at the sites surveyed using pre-ozonation 

(Weinberg et al., 2002; Richardson et al., 2002).

The emergence o f  HNMs as a DBP has only recently been identified as a concern in 

drinking water. Not since Sayato (1982) and Becke et al. (1984) identified TCNM as a 

DBP in water were these HNMs addressed in the open literature with respect to presence 

in drinking water. Subsequently, Richardson et al. (1999) identified bromonitromethane, 

dibromonitromethane, and tribromonitromethane, as HNMs and listed these compounds 

as an emerging DBP found in water. This was followed later by Weinberg et al. (2002) in 

the nationwide survey, and then by Plewa et al. (2004) where he performed quantitative 

comparative cytotoxicity and genotoxicity testing o f  HNMs.

1.5.3. Fate and Environmental Degradation o f HNMs

The fate and environmental degradation o f  HNMs were important criteria for 

understanding HNM decomposition kinetics and for elucidation o f  a possible degradation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



46

mechanism. A survey o f  the literature indicated that the fate and environmental 

degradation o f  TCNM was established previously by several types o f  mechanisms. These 

include photolysis, alkylation, chemical reduction, biodehalogenation, and ultrasonic 

degradation. Recognition o f  these mechanisms and degradation pathways provided some 

assistance in the development o f  a degradation mechanism established in this study.

Photolysis o f  HNMs, such as TCNM, produces phosgene (Moureu et al., 1950; 

Moilanen et al., 1978) and nitrosyl chloride (Wade et al., 2002). Exposure to a xenon 

light source, decomposed TCNM to carbon dioxide, (bicarbonate, carbonate), chloride, 

nitrate, and nitrite with a half-life o f 31.1 hours and in the absence o f  light, TCNM did 

not undergo hydrolysis (Wilhelm et al., 1996). The photolic ultra-violet (254 nm) half- 

life o f  TCNM was observed from 18 hours (Carter et al., 1997) to 20 days (Moilanen et

al., 1978) with the deference in owing to the type o f  light source. Two mechanistic

alternatives for degradation o f  TCNM by ultra-violet (254 nm) were suggested by Carter 

eta l. (1997):

CCI3NO2 + hv(+0 2) ->  CI2CO + C lN 0 (+ 0 2) (1.37)

C1NO + hv Cl* + NO, or (1.38)

CCI3NO2 + hv C13C* + N 0 2 (1.39)

As a measure o f  biological potency in the environment over time, TCNM was 

observed to provide a two fold reduction in nematode numbers and 1 0  fold reductions in 

the ratio o f total fungal to total bacterial biomass after a 9 to 12 month period after 

application to the area around stumps (Ingham and Thies, 1996).

Ferruginous soils injected with TCNM produced dichloronitromethane (DCNM) and 

chloronitromethane (CNM) (Cervini-Silva et al., 2001). Dehalogenation was also
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observed in Fe(II) containing soils with reduction o f TCNM to yield o f  80% DCNM and 

CNM within 30 minutes (Cervini-Silva et al., 2000). In organic soils, TCNM was 

reduced to bound residues by alkylation with the organic matter. Bound residues are 

defined as the fraction o f pesticide that is non-extractable upon exhaustive extraction (Xu 

et al., 2003). Where TCNM was used as a fumigant, the potential for leaching TCNM to 

groundwater was high because o f  TCNM’s natural stability in water, and field soils with 

low organic matter combined with limited microbial activity reduced the potential for its 

degradation (Guo et al., 2003). Biodehalogenation o f TCNM occurred via enzymatic 

reactions o f  the cytochrome P-450 system (Castro et al., 1985), microbial metabolism by 

Pseudomonas sp. (Castro et al., 1983), and by Strepomyces griseus cells containing 

cytochrome P-450soy (Sariasiani and Stahl, 1990).

O f particular interest in these mechanisms previously studied was the persistence o f  

TCNM in natural water indicating stability o f  the compound under dark condition. 

Further, the identification o f TCNM degradation to phosgene in one case, and 

dehalogenation o f  TCNM to DCNM and CNM in another, provided an understanding 

needed for investigation o f possible reaction pathways and consideration o f  initial 

reduction-oxidation processes. These processes were used as a starting point for 

derivation o f  a degradation mechanism approach used in this research.

1.6 . Research Goals

The goal o f  this research was to identify rate constants for each o f  nine 

halonitromethanes, develop a mechanism for HNM degradation, and confirm the reaction 

mechanism with a kinetic model using free radicals generated in water by low LET
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gamma and electrons. The results gained from this study o f  halonitromethanes 

degradation in water using free radical chemistry should ultimately provide many 

positive benefits. These benefits would be realized through improvements to water 

quality and result in an improvement to the quality o f life, health, safety and welfare for 

all, and the environment.

The research would also contribute to future applications o f  advanced oxidation 

processes, using free radical chemistry. These AOPs would provide an alternative 

treatment process capable for the total removal o f HNMs from drinking water with 

potentially no adverse impact to its quality. Overall, AOP free radical chemistry removal 

o f hazardous substances would provide an environmentally sustainable technological 

process for water treatment. This sustainability would be derived from several key factors 

including: the absence o f  the need to manufacture a bulk chemical for water treatment; 

the elimination o f  a continued supply o f  raw materials required in the bulk chemical’s 

manufacturing process; avoidance o f  pollution from the chemical’s manufacture, its 

derivatives, or processing; and elimination o f  the need for any bilk chemical delivery or 

storage. The free radical AOP process was considered as one that essentially required no 

special infrastructure at the point o f  application such as bulk mixing, chemical reservoir, 

or other support infrastructure such as day-tanks, pumps, and piping. Currently, there 

exists no information in the open literature related to the applied use o f  free radical 

chemistry in the field or study o f  HNMs in aqueous solution. Therefore, support in the 

form o f this research was necessary to provide kinetic and mechanistic information for 

the potential application o f free radical AOP elimination o f  HNMs in water.
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This research was structured to provide the needed data for application o f  free radical 

elimination o f HNMs in water. The data and information provided could be extrapolated 

to meet the needed engineering design criteria in support o f  the AOP treatment processes.

Determination o f  the rates, mechanism and kinetic modeling for free radical removal 

o f HNMs w ill provide substantive data and information contributing towards:

•  Evaluation o f alternative AOP treatment processes,

•  Process optimization for pilot and large scale applications,

• Engineering principals and data needed for AOP process application, and

• Equipment sizing.
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2. FREE RADICAL CHEMISTRY OF HALONITROMETHANES: RATE 

CONSTANTS FOR REDOX REACTION OF HYDROXYL RADICAL 

AND HYDRATED ELECTRON IN A PULSE RADIOLYSIS STUDY

2.1. Introduction

Halonitromethanes (HNMs) are soluble low-molecular weight compounds comprised o f  

three primary forms and they are chlorinated, brominated, and mixed halogenated 

analogues. These compounds all contain a nitro group that includes a carbon-halogen 

bond, and several HNMs contain hydrogen as a carbon-hydrogen bond. The basis o f  free 

radical chemistry is the production o f  the hydroxyl radical (*OH) and hydrated electron 

(eaq) f°r oxidation-reduction o f  HNM in aqueous solution and eliminate these bonds. 

Free radicals are formed in quantifiable yields by ionizing radiation (fast electrons). The 

use o f  free radical AOPs for elimination o f  HNMs in water necessitates an understanding 

o f the rate constant for the degradation reaction o f  HNM to the parent ions.

The purpose o f  this study was to determine the rate constants for the oxidative *OH 

hydroxyl radical and reductive eaq hydrated electron reaction for each o f the HNMs in

water. The means and equipment used for obtaining these rate constants were low LET 

electrons generated by a linear accelerator (LINAC) and transient absorption 

spectroscopy. Optical spectroscopy does not provide the means for investigating all the 

reactions occurring with the water matrix, however it does provide the basic tool for 

following the progress o f  free radical reactions taking place on the nanosecond and 

microsecond time scale (Hug, 1981).
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2.2. Methods and Materials

The LINAC was coupled with optical absorption spectroscopy using a high intensity Xe 

lamp (172 nm) for investigations in the visible and near UV range. The high intensity 

lamp was pulsed and appropriately shielded for protection o f  the crystal target cell. This 

shielding w ill preclude any potential photolysis o f  the compound under investigation. The 

light emitted through the target cell was converted into an electrical pulse by use o f  a 

photodetector (monochromator) and photomultiplier. Optical transients were recorded 

and plotted according to the optical absorption derived from radical reactions occurring in 

the target cell and the respective concentration o f  solute in solution upon exposure to 

ionizing radiation. The accelerator’s transient absorption spectroscopic detection system 

is capable o f  monitoring fast pulses o f  light with equipment connected to a computer for 

data acquisition and control o f  the LINAC. (Asmus, 1984)

Solutions o f  HNMs, Table 2.1 were prepared using nano-purified water (Millipore 

Milli-Q) with a resistivity > 1 8  Mil cm at 25°C (Myron L Company, Series 750 

Conductivity Monitor) and constantly illuminated by a mercury lamp source generating 

ultraviolet light to eliminate organic contaminant concentrations to maintain them below  

13 (iM as measured by an on-line TOC analyzer (Millipore TOC Monitor, Model A10, 

ANTEL). On May 17, 2004, the TOC analyzer reading was 23 ppb. All rate constant 

experiments were conducted at 20°C (ambient room temperature), one atmosphere, and

ambient pH.
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Table 2.1. Halonitromethane abbreviation, formula, and source.

Halonitromethane (Abbreviation) Formula Mfr.

Chloronitromethane (CNM) CH2C1N02 Helix

Dichloronitromethane (DCNM) c h c i 2n o 2 Helix

T richloronitromethane (TCNM) c c i 3n o 2 Aldrich

Bromonitromethane (BNM) CH2BrN02 Aldrich

Dibromonitromethane (DBNM) CHBr2N 0 2 Helix

Tribromonitromethane (TBNM) CBr3N 0 2 Helix

Bromochloronitromethane (BCNM) CHBrClN02 Helix

Bromodichloronitromethane (BDCNM) CBrCl2N 0 2 Helix

Dibromochloronitromethane (DBCNM) CBr2ClN02 Helix

The steady state radiolysis o f  water produces constant yield o f  free radical yields in 

the pH range from 3 to 11 for pure water as described in equation (1.1) where the yield 

value (G) is denoted in units o f  mol J 1 X 10 7 (Buxton, 2004), and represents low LET 

radiation with each o f the number o f  each species formed after radiolysis o f  water by fast 

electrons as condition for steady state irradiation.

The electron pulse radiolysis system (LINAC) was used for determination o f  

bimolecular rate constants. Dosimetry for pulse radiolysis was based on the oxidation o f  

1 . 0  x  10~2 M, KSCN solution at X = 472 nm, (Ge = 5.09 x  104) with doses o f  3 to 5 Gy per 

2 to 3 ns pulse, (Schuler et al., 1980) where G(X) (mol J_1) is defined as the number o f  

species produced or radiation chemical yield per 100 eV and e (m2 mol-1) as the molar 

absorption coefficient. (Buxton and Stuart, 1995; Mezyk et al., 2004) The initial
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concentration for each o f the respective HNMs was increased in a batch process and each 

batch flowed through the LINAC target cell. Solutions were continuously stirred and 

rigorously sparged with high purity N 2O for the O H  experiments. Solutions were 

pumped to the quartz target cell. For the determination o f the reaction rate o f  eaq with the 

HNMs, solutions were sparged with N 2 to remove the O2 . Removal o f  the O H  from 

solution was made possible by use o f  0.50 M tert-butanol as a scavenger (Mezyk et al., 

2004).

2.3. Rate Constants

The experimental work to determine the hydroxyl radical rate constant necessitated the 

isolation o f  the hydroxyl radical reaction with HNM. Aqueous solutions were pre­

saturated with N 2O, which quantitatively converts the eaq t° this radical (Buxton et al., 

1988):

eaq + N 20  + H20  -> N 2 + O H  + O H , * 7  = 9.1 X 109 M ls 1 (2.1)

In the kinetics experiments, the hydroxyl radical reaction with HNMs did not result in 

any transient absorbance over the range 250 to 800 nm. Therefore, it was necessary to 

use competition kinetics using SCN based on the reactions:

O H  + SCN + (SCN ) -»  OH + (SCN)2* , *3  = 1.1 x  1010 M ’s 1 (2.3)

•OH + HNM -»  Products (2 .2)

This can be rearranged to give the following expression:

[(SCN)r]0 1 | *2 [HNM]

[(SCN);-] *3 [SCN]
(2.4)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



54

where [(SCN)2* ] 0 is the final yield o f  (SCN)2* measured for only the SCN” solution, and 

[(SCN)2* ] is the yield o f  this transient when TCNM is added. Therefore a plot o f  

1/[(SCN)2*~] against the ratio [TCNM]/[SCN ] should give a straight line o f slope k3 / k3. 

From the known rate constant o f  k3 = 1.1 x  1010 M_1s_1, the k3 rate constant can then be 

calculated. (Asmus, 1984) The experimental data water obtained and the confidence limit 

for the each rate constant was calculated by:

Absorb. S j 

Avg. Absorb.

A2 ( 
+

Jn  V

Absorb. S x  

Avg. Absorb.
(2.5)

/n+1

where n is the data for initial concentration and n+ 1  was the next batch concentration o f  

TCNM. The data for ratio o f  [TCNM]/[SdST] and ratio o f  intensity was input into a 

linear curve fitting program (ORIGIN 7.5™) for plotting with the confidence limits 

identified as one standard deviation (Sx). The hydroxyl radical decay data is presented in 

Table 2.3 with the linear plotting data derived from the curve fitting program.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



R
eproduced 

with 
perm

ission 
of the 

copyright 
ow

ner. 
Further 

reproduction 
prohibited 

w
ithout 

perm
ission.

Table 2.2. Trichloronitromethane hydroxyl radical experimental data.

[TCNM]
Added

( x l ( T 4)

Nrml.
Dose, 
Volts 

( X  10"1)

Absorb.
Data

Absorb. 
( x  10-2)

Avg. 
Absorb. 
( x  10"2)

Absorb. 
(One Stnd. 

Dev.) 
( X  10 5)

[TCNM] / 
[SCN]

Ratio of 
Intensity

Confidence 
Limit, Sx

Linear Fit, 
[TCNM] / 

[SCN-]

Linear Fit, 
Ratio of 
Intensity

0 8.980 0.01322 1.472 -0.5 0.99966

9.360 0.0135 1.442 -0.07895 1.0016

9.370 0.0136 1.451 0.34211 1.00354

9.360 0.01384 1.479 1.461 17.0896 0 1.000 0.01654 0.76316 1.00549

1.236 9.080 0.01325 1.459 1.18421 1.00743

9.200 0.01321 1.436 1.60526 1.00937

9.330 0.01344 1.441 2.02632 1.01131

9.330 0.01333 1.429 1.441 13.0424 2.098 1.014 0.01479 2.44737 1.01325

2.626 8.950 0.01272 1.421 2.86842 1.01519

9.030 0.01289 1.427 3.28947 1.01714

9.070 0.01286 1.418 3.71053 1.01908

9.050 0.01312 1.450 1.429 14.3327 4.458 1.02 0.0141 4.13158 1.02102

4.200 8.860 0.0126 1.422 4.55263 1.02296

8.940 0.01262 1.412 4.97368 1.0249

8.980 0.01266 1.410 5.3474 1.02685

9.050 0.01273 1.407 1.413 6.7100 7.130 1.034 0.01262 5.81579 1.02879
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The rate constant was determined for each HNM reaction with the by directly

following the absorption at 700 nm. (Mezyk et al., 2004) These solutions were saturated 

with nitrogen gas, to remove dissolved oxygen. The solutions also contained 0.50 M tert- 

butanol to scavenge the hydroxyl radicals and hydrogen atoms into the less-reactive tert- 

butyl alcohol radical:

*OH/H* + (CH3)3COH H20 /H 2 + *CH2(CH3)2COH (2.5)

The decay o f the hydrated electron was pseudo-first-order at the higher 

concentrations o f  HNMs. The data for decay o f the hydrated electron was monitored 

directly and the rate constant and concentration was input into a linear curve fitting 

program (ORIGIN 7.5™) for plotting with the confidence limits identified as one 

standard deviation (Sx).  The hydrated electron decay data is presented in Table 2.3 with 

the linear plotting data derived from ORIGIN™ curve fitting program.

Table 2.3. Trichloronitromethane hydrated electron radical experimental data.

TCNM]
Added
;x io" 4)

Nrml. 
Dose, 
Volts 

(x  1 0 ')

Absorb.
Data

Absorb.
( X 1 0 3)

k'
( x  1 0  6)

Confidence 
Limit, S x

Linear 
Plot, k’
( x 1 0  4)

Linear
Plot,

[TCNM]
(mM)

0 0.1645 18400 -0.5 -0.896
1 .2 1 2 1.042 -0.00005 20.84 2.777 142000 -0 . 2 1 0 -0.279

1.044 0.00005 2 0 . 8 8 0.0078 0.337
1.033 0 . 0 0 0 2 2 4.695 0.3684 0.955

2.315 1.031 0.00079 1.305 5.224 58000 0.6578 1.572
1.035 0.00052 1.990 0.9473 2.189
1.041 0.00083 1.254 1.236 2.806
1.040 0.0007 1.486 1.526 3.423

3.268 1.026 0.00067 1.531 6.948 138000 1.815 4.040
1.035 0.00023 4.500 2.105 4.657
1.039 0.00048 2.165 2.394 5.275

4.348 1.015 -0 .0 0 0 1 1 -9.227 9.190 146000 2.684 5.892
1 .0 2 0 0.00047 2.170 2.973 6.509
1.025 0.00034 3.015 3.263 7.126
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The calculated rate constants for hydroxyl radical and hydrated electron reaction with 

the HNMs were calculated and presented in Table 2.4. Other attempts to measure rate 

constants for hydroxyl radical with HNMs in aqueous solution o f water were not found in 

the literature.

Table 2.4. Pseudo-second-order rate constants for reaction o f  hydrated electron and 
hydroxyl radical with halonitromethane compounds.

TT . . il Rate constant, k Rate constant, k
Halonitromethane .. „ TTeaQ reaction *OH reactionCompound âq

(M 'V 1)_________________(M ^s ')
chloronitromethane (3.01 ± 0 .1 0 ) X 1 0 10 (1.94 ± 0.13) X 1 0 8

dichloronitromethane (3.21 + 0 .0 1 ) X 1 0 10 (5.12 ± 0.51) X 1 0 8

trichloronitromethane (2.31 + 0.03) X 1 0 10 (4.84 ± 0.40) X 1 0 7

bromonitromethane (3.13 + 0.03) X 1 0 10 (8.36 + 0.49) X 1 0 7

dibromonitromethane (3.07 ± 0.09) X 1 0 10 (4.75 + 0.50) X 1 0 8

tribromonitromethane (2.29 ± 0.16) X 1 0 10 (3.25 + 0.34) X 1 0 8

bromochloronitromethane (2.93 + 0.03) X 1 0 10 (4.16 ± 0.48) X 1 0 8

bromodichloronitromethane (2 . 6 8 + 0.08) X 1 0 10 ( 1 . 0 2 ± 0.13) X 1 0 8

dibromochloronitromethane (2.95 + 0.13) X 1 0 10 (1.80 ± 0.13) X 1 0 8

2.4. Summary

The reduction by eIq o f  all HNMs was observed to be much faster than the oxidation 

reaction by *OH. For the case o f  brominated analog o f  HNM, bromonitromethane 

reduction by eaq was expected to produce the bromide ion, along with the corresponding 

carbon-centered radical:

ea„ + BrH2C N 0 2 ->  Br“ + H2*CN02 (2.6)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



58

The reaction o f eaq with TCNM, a chlorinated form o f HNM, proceeded forward as a

dissociative electron attachment. The reaction was considered to proceed via two main 

reaction pathways resulting in the formation o f two different carbon-centered radicals 

(Logager and Sehested, 1993a):

eaq +  CCI3NO2 ->  c r  +  •CCI2NO2 (2 .7)

e“q + CCI3NO2 -> N 0 2 + *CC13 (2.8)

Initial observation o f  the reaction rate constants and mass quantification results 

obtained from analysis o f  residual ions in solution suggests that the reaction o f  elq with

the mixed halogenated form o f halonitromethane, (bromochloronitromethane) proceeds 

by the following pathways:

+ CHBrClN02 ->  C f  + *CHBrN02 (2.9)

ê q + CHBrClN02 ->  Br' + •CHC1N02 (2.10)

ea"q + CHBrClN02 -»  N 0 2”+ ‘CHClBr (2.11)

The hydroxyl radical reaction with HNMs in aqueous solutions leads to electron 

transfer between halide ions and hydroxyl radical and gives halogen atoms according to 

(Spinks and Woods, 1964):

•OH + BrH2C N 0 2 ->  *BrH2C N 0 2 + OH” (2.12)

The slow rate o f  degradation exhibited by all o f  the HNMs with the hydroxyl radical 

within this study implied formation o f  oxy radicals o f  HNM and more particularly as a 

type o f  super-oxy reaction mechanism proposed by Asmus et al. (1964b).
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3. FREE RADICAL CHEMISTRY OF TRICHLORONITROMETHANE 

(CHLOROPICRIN): RATE CONSTANTS AND DEGRADATION 

MECHANISM BY OXIDATION-REDUCTION REACTIONS

3.1. Introduction

The objective o f  this study was to explore the utility o f  advanced oxidation/reduction 

processes for the treatment o f  trichloronitromethane (chloropicrin, TCNM) in water. O f 

particular interest were the reactions o f  the hydroxyl radical (*OH) and hydrated electrons 

(eaq)- The bimolecular reaction rate constants for degradation o f TCNM from *OH and 

ejq were determined using pulse radiolysis, while the destruction mechanism and mass

balances for the reactions were studied using 60Co y-radiation. To complete the study, a 

kinetic model was employed using MAKSIMA-CHEMIST and the results compared to 

experimental observations.

Disinfectants used in water treatment, such as chlorine, chloramines, and ozone, react 

with natural organic matter to form what are collectively referred to as disinfection-by- 

products such as TTHMs (Rook, 1974; Jacangelo et al., 1989) where they are regulated 

under the Safe Drinking Water Act (U.S. Environmental Protection Agency, 1997). One 

class o f  DBPs, not currently regulated, was the focus o f  recent reports and was identified 

as halonitromethanes (HNMs) (Richardson, 2003; Richardson et al., 2000; U.S. 

Environmental Protection Agency, 1999). The TCNM DBP was found to be the most 

common HNM in drinking water (Merlet et a l,  1985; Becke et al., 1984). When pre­

ozonation was followed by chloramination, the concentrations o f  HNMs were found to
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 2____________i
increase and TCNM was observed up to 1 .8 x 1 0  juM (3 jug L ) in U.S. drinking waters 

(Weinberg et al., 2002).

In addition to being found as a DBP in drinking water, TCNM has been studied for 

use as a component o f  multi-fumigant formulations (Spokas and Wang, 2003), 

bactericides (Malatesta et al., 1951), fumigants for pathogenic fungi on Douglas Fir trees 

(Thies and Nelson, 1982), a pre-plant soil herbicide for peppers (Gilreath and Santos, 

2004), an alternate fungicide to methyl bromide for tomatoes (Gullino et al., 2002), weed 

control for strawberries (Haara et al., 2003), and for weed and fungi control on tobacco 

crops (Csinos et al., 2002).

The LC50 o f TCNM was ranked second in lethality (0.49 juM) in the house fly o f  

eleven cyanohydrins tested and ninth most lethal (LC50 = 7.91 ju.M) for the lesser grain 

borer (Park et al., 2002). Data from its use as a World War I chemical agent suggested 

that an exposure o f  30 minutes at 0.8 mg L_1 or 10 minutes at 2.0 mg L_1 was lethal to 

humans (Selala et al., 1989). The TCNM DBP has been reported to be a potent 

mammalian cytotoxin and genotoxin and found 32.6 times more cytotoxic than 

dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA) (Plewa et al., 2004). Both 

DCAA and TCAA are included in the five regulated haloacetic acids (U.S. 

Environmental Protection Agency, 1997). TCNM is metabolized, in mammals, to

thiophosgene and it is acutely toxic (Sparks et al., 2000), while other studies indicated

 2
genotoxicity at 1.8 x 10 fiM (Giller et al., 1995). Bacterial mutagenicity studies 

indicated that TCNM, on addition o f  glutathione, was mutagenic but not toxic (Schneider 

et al., 1999).
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Limited studies have been reported for the treatment o f  TCNM in aqueous solutions. 

Ultrasound, 358 kHz, degraded 99% o f  a 10 /xM TCNM solution with recovery ratios for 

Cl" and inorganic nitrogen (as NO3 and NO2 ) at 72 ±1 % and 91 ±2%, respectively

(Zhang and Hua, 2000).

The objective o f  this study was to explore the utility o f  advanced oxidation processes 

for the treatment o f  TCNM in water. O f particular interest were the reactions o f  the 

hydroxyl radical (*OH) and hydrated electron (eaq) with TCNM. The bimolecular 

reaction rate constants for degradation o f  TCNM from *OH and eaq were determined 

using pulse radiolysis, while the destruction mechanism and mass balances for the 

reactions were studied using 60Co 7 -radiation. To complete the study, a kinetic model 

was employed using MAKSIMA-CHEMIST and the results compared to experimental 

observations.

3.2. Methods and Materials

Solutions o f  TCNM (CCI3NO2) were used as received from manufacturers identified in 

Table 2.1 and prepared using nano-pure (Millipore Milli-Q) filtered tap water with a 

resistivity ^ 8  MQcm at 25°C was constantly illuminated by a mercury lamp (UV 185 

nm and 254 nm) to eliminate microbes and maintain organic concentrations to a value 

below 13 jkM as measured by an on-line TOC analyzer.

The experimentation included investigation o f formate and oxalate as a byproduct o f  

irradiation. Standards o f  organic acids used in the gas chromatography and mass 

spectrometry were prepared from sodium formate (certified American Chemical Society, 

Fisher Scientific, Fair Lawn, NJ, Lot 986590) and oxalic acid disodium salt (Sigma, St.
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Louis, MO, Lot 41H0116). A 2,000 mg L 1 formate and a 1,000 mg L 1 oxalate stock 

solution were prepared. Standard concentrations consisted o f  200, 20, and 2 mg L 1 

formate, and 100, 10 and 1 mg L 1 oxalate. Standards contained both formate and 

oxalate. All standards were prepared in accordance with laboratory procedure. Blanks 

were also prepared from nano-pure water.

The radiolysis o f  water, for the pH range 3 to 11, can be described (Buxton, 2004) by 

equation (1.1). The linear accelerator (LINAC), electron pulse radiolysis system, at the 

U.S. Department o f  Energy Radiation Laboratory, University o f  Notre Dame was used 

during the experimentation. This accelerator and transient absorption spectroscopic

detection system has been described in detail elsewhere (Whitham et al., 1995).

 2
Dosimetry for pulse radiolysis was based on the oxidation o f  1.0 x 10 M KSCN 

solution at A =475 nm, (Ge = 5.09 x  104) with doses o f 3 to 5 Gy per 2 to 3 ns pulse (Mezyk 

et al., 2004).

The TCNM and reaction products exhibited no significant transient absorbance over 

the range 250 to 800 nm. Therefore, the hydroxyl radical rate constant determination 

required competition kinetics, based on the competing reactions:

•OH + TCNM -> Products (3.1)

•OH + SCN- (+ SCN”) —» OH” + (SCN)2*”, k2 = (1.1 x  1010) M 'V 1 (3.2)

The following analytical expression was then used:

[(SCN)r]0 = 1 + *,[TCNM]

[(SC N )H  £2 [SCN~]
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where a plot o f  1/[(SCN)2’~] with the ratio[TCNM]/[SCN ] gave a straight line o f  slope 

ki/k2 . Based on the rate constant for SCIST, ^  = 1-1 x  1 0 10 M " V  (Mezyk et al., 2004), the 

k\ rate constant was readily determined (Asmus, 1984).

Aqueous solutions were pre-saturated with N2O to isolate the reaction o f  the *OH 

with TCNM. This pre-saturation quantitatively converted the hydrated electron ( e^q) and

hydrogen atom (*H) to *OH with their respective rate constant identified (Buxton et al., 

1988):

eaq + N20  + H20  -> N 2 + OH- + *OH, k4= 9.1 x  109 M ^s ' 1 (3.4)

*H + N 20  —» »OH + N2, ks = 2 .\  X 106 M 'V 1 (3.5)

For the determination o f the reaction rate o f  TCNM and eaq > solutions were sparged 

with N 2 to remove the 0 2. To remove the *OH from solution tert-butanol in 0.50 M 

concentration was added as a scavenger. The effect o f the reactions by the eaq occurring

in solution resulted in the change o f  absorbance and these changes could be observed 

directly at 700 nm according to the reaction:

eaq + TCNM —» Products (3.6)

A 60Co 7 -irradiator (Shepherd, Model 109-68) was calibrated from a certified dose 

rate to be 122 Gy min .” 1 at the time o f  the experimentation and was used for all steady 

state studies. Experiments were performed using sealed 47 mL glass vials at ambient 

room temperature (20°C) with no head space. The TCNM solutions were irradiated at six 

doses, 1.2, 2.4, 3.6, 6.1, and 8.5 kGy including a zero dose blank, by varying the length o f  

time in the irradiator.
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The Fricke dosimeter was used to determine dose rate o f  the 60Co 7 -irradiator. The 

dose rate was 2.034 x 10 4 Mrad and was converted for use in the kinetic model to 

1.27 x  1019 eV L ' V 1.

Samples were analyzed using an ion chromatograph (Dionex DX-500) for the 

determination o f  CF and NO3 . The limit o f  detection o f  the method was 0.3 jtiM and 0.2 

fiM, for Cl and NO3 , respectively. The standard deviation analytical error for Cl and 

NO3 , was +0.02 and ±0.01 mM, respectively.

Concentrations o f organic acids were determined using a high-pressure liquid 

chromatograph (HPLC). All standards and blanks were prepared using > 1 8  MQcm at 

25°C nano-pure water. The limit o f  detection for formate and oxalate ions was 0.02 mM 

as the single standard deviation. The concentration o f TCNM in the samples was 

determined using GC/MS. The lower limit o f  detection using GC/MS was (1.8 ± 

0.2) X 10' 7 M for TCNM.

3.3. Results and Discussion

The kinetic data were obtained using absorption spectrometry at 475 nm for increasing 

TCNM concentrations and the results are graphically presented in Figure 3.1. The 

transformed kinetic data are graphically presented in Figure 3.2. From these data, the 

rate constant for the *OH reaction with TCNM was derived and found to be An = (4.84 + 

0.40) x  107 M_1s_1.

The reaction o f eaq with TCNM was determined using increasing concentrations o f  

TCNM as graphically represented in Figure 3.3. The bimolecular rate constant for the 

reaction o f eaq with TCNM was determined from a plot o f  at least three kinetic traces.
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The solid line in Figure 3.4 corresponds to a weighted linear fit with rate constant, k(, = 

(2.13 ± 0.03) x 1010 M_1s_1. The weighting corresponds to the Sx as applied in the 

ORIGIN™ graphing program.

15.0 

2  12.5
CO

CD 10.0

CO  7 5  
_Q
o  5.0 
</)
-9 2.5

0.0
12.510.02.5 5.0 7.50.0

Time (jus)

Figure 3.1. Typical kinetic plot o f  (SCN)2* formation for 
trichloronitromethane reaction with *OH. Plot for 475 nm and 
N 20 '  saturated 5.89 x  10 5 M KSCN solution containing zero 
(top curve), 1.24x 10 4 M (middle), and 4.20x  10 4 M (lower 
curve) trichloronitromethane at ambient pH and room temperature.
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Figure 3.2. Competition kinetics plot for «OH reaction with 
trichloronitromethane using SCN~ as a standard. Solid line is 
weighted linear fit, corresponding to a slope o f  0.0461 ± 
0.00038. This gives a second-order rate constant for 
trichloronitromethane reaction as k = (4.84 ± 0.40) x  107 M 's '.
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Figure 3.3. Typical kinetic decay profiles obtained for the 
hydrated electron absorbance o f  trichloronitromethane. Plot 
for 700 nm and electron pulse irradiated aqueous solution 
at ambient pH containing zero (□), 1 . 1 2  x  10 4 (O), 2.32 
x  10” 4 (A), and 4.35 X 10” 4 (V) M trichloronitromethane, 
respectively. Curves shown are the average o f  15 
individual pulses. Solid lines correspond to rate constant 
fitting with the pseudo-first-order values o f  1.71 X 105, 
2.64 x  106, 5.26 x  106, and 9.30 x  106 s_1, respectively.
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10.0
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[Trichloronitromethane] (mM)
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Figure 3.4. Second-order rate constant determination for 
the reaction o f  the hydrated electron with
trichloronitromethane. Single point error bars are one 
standard deviation, as determined from the average o f  at 
least three kinetic traces. Solid line corresponds to
weighted linear fit, giving k =  (2.13 ± 0.03) X 1010 M ' s ' .
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Steady state 60Co gamma irradiations were performed with an initial concentration o f  

1.13 mM TCNM in water with an estimated dissolved oxygen concentration o f

2.00 x 10 4  M as measured using the decomposition o f  oxygen by the hydrated electron in 

aqueous solution and the rate constant o f  k = 1.9 x  1010 M_1s_1. These experiments were 

conducted to determine the destruction o f  TCNM and the formation o f  reaction 

byproducts with increasing total dose to assist in elucidating a reaction mechanism. The 

degradation o f  TCNM, and the corresponding formation o f  chloride and nitrate ions were 

determined and summarized in Table 3.1. Assuming complete destruction, mass balance 

o f the chloride ion was nearly achieved at 92% recovery at a dose o f  8.5 kGy. There was 

no nitrite ion observed in the control or irradiated solutions. The nitrate ion was, at the 

highest dose, 79% o f  the initial TCNM-N. The irradiated samples were investigated for 

formate and oxalate as possible byproducts o f  the radiolysis. Oxalate and formate ions 

were below detection limits in all samples.

Table 3.1. Summary o f  residual ion results for 60Co irradiation o f TCNM solutions 
(1.13 mM) in pure water at doses up to 8.54 kGy.

Dose
(kGy)

[TCNM]
(mM)

[CF]
(mM)

[N O sl
(mM)

0 1.13 0 . 0 0 0 . 0 0

1 . 2 2 0.80 0.92 0.29
2.44 0.42 1.67 0.44
3.66 0.17 2.17 0.58
6 . 1 NM(a) 2.73 0.79
8.54 BMDL(b) 3.13 0.89

{a) Not measured.
(b) Below method detection limit.
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From observation o f the rate constant values for both hydroxyl radical and hydrated 

electron, it was apparent that reductive processes for the reaction with the eaq> were

primarily responsible for the destruction o f TCNM. The reaction o f the eaq with TCNM,

dissociative electron attachment, is expected to proceed via two main reaction pathways

resulting in the formation o f two different carbon-centered radicals (Hart and Anbar,

1970):

e (aq) + CCI3NO2 ->  Cl“ + .CCI2NO2 (3.7)

e“ (aq) + CCI3NO2 ->  N 0 2“ + *CC13 (3.8)

Based on the reaction o f eaq with tetranitromethane it is possible that a third reaction may 

lead to other products in this system (Asmus et al., 1964a; Rabani et al., 1965):

e'(aq) + CCI3NO2 ->  *N 02 + CC13“ (3.9)

In oxygenated solutions, carbon-centered radicals react with O2 to give peroxyl 

radicals (Hart and Anbar, 1970):

0 2 + •CC12N 0 2 •OOCCI2NO2 (3.10)

0 2 + *CCl3 ->  *OOCCl3, £11 = 3.3 x  109 M“1s '1 (Monig et al., 1983) (3.11)

Relatively few rate constants for this general reaction (equations 3.10 and 3.11) have 

been measured. Most o f  the values that have been determined are in the range (2 -  4) 

x  109 M_1s 1 (Neta et al., 1990).

The anion, in equation (3.9) would react with 0 2:

0 2 + CCI3 ->  OOCCI3 (3.12)

The peroxy anion in equation (3.12) would be relatively unstable and probably 

spontaneously decomposes via an intramolecular reaction:
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ci c-^-o -------coci2 + ocr (3-13)

ci

where phosgene, COCI2 , is unstable in aqueous solution and hydrolyzes rapidly to CO2 

and HC1 (Mertens et a l ,  1994).

In general, peroxyl radicals are relatively unreactive in aqueous solution (von Sonntag 

and Schuchmann, 1997). However, it is well known that the »OOCCl3 may react via 

electron transfer with a suitable electron acceptor to give OOCCI3 , e.g., F  or aromatic 

thiols (Bonifacic et al., 1991; Simic and Hunter, 1986; Khaikin et al., 1995). In this 

relatively simple mechanistic solution it was not clear that such a reaction would occur. 

Another route that peroxyl radicals could take was to combine to form tetroxides (von 

Sonntag and Schuchmann, 1997). These tetroxides may then react as shown in equations

(3.14) through (3.17) inclusively:

 X------ ►  R20 0  + R2CHOH + 0 2 (3.15)

 X------►  2R20 0  + H20 2 (3.14)
R3C -------04— CR3

 ►  2R3CHC5 + 0 2 (3.16)

2k  + 0 2 + 2RCH=0 (3.17)

Because o f  the lack o f hydrogen atoms on the carbon o f  TCNM reactions (3.14) and

(3.15) was not possible and because this is a one-carbon compound reaction (3.17) can 

not proceed (von Sonntag and Schuchmann, 1997). Therefore, it appears that reaction

(3.16) is the likely pathway and would lead to the formation o f  two different alkoxy 

radicals that would undergo intra-molecular rearrangements:
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Phosgene is shown in both these reactions and represents an important pathway in the 

free radical mineralization o f TCNM.

The NO2 formed in equation (3.8) would rapidly react with *OH and presented here 

as the average o f  seven values (Logager and Sehested, 1993a; Barker et al., 1970; Treinin 

and Hayon, 1970; Buxton 1969; Adams et al., 1965; Adams and Boag, 1964):

•OH + N 0 2” *N02 + OH", k20 = 9.6 X 109 M_1s 1 (3.20)

The likely reaction o f the *N 02 would be with the *OH leading to the formation o f  

peroxynitrous acid (Logager and Sehested, 1993a; Logager and Sehested, 1993b; 

Merenyi et al., 1999)

•OH + «N02 -> ONOOH, fei = (4 .5  ± 1 .0 ) X 109 M"1s_1 (3.21)

ONOOH ^  w  ONOO- + H+ (3.22)

As these HNMs are inorganic acids and assuming all ambient pH conditions o f  the 

experimentation are acidic, the p K a was 6.5 to 6 .8 . Based on this condition, the solution 

would be mostly ONOOH (peroxynitrous acid) (Logager and Sehested, 1993a; Logager 

and Sehested, 1993b; Merenyi et al., 1999; Goldstein and Czapski, 1995; Pryor and
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Squadrito, 1995). The mechanism for the (acid) hydrolysis o f  the ONOOH has been 

determined (Merenyi et al., 1999; Pryor and Squadrito, 1995; Kissner et al., 1997) and 

reviewed in detail (Goldstein et al., 2005):

OHOON -> N 0 3" + H+ 70% (3.23)

OHOON -»  'NOz + O H  30% (3.24)

2 * N 0 2 + H20  -> N 0 3 + N 0 2“ + H+ (3.25)

N 0 2 + *OH ->  *N02 + OH', k2o = 9.6 X 109 M ' V 1 (3.20)

The net reaction for the above mechanism was:

ONOOH + H20  -> H+ + N 0 3 k26 = 1.25 ± 0.05 s' 1 (Merenyi et al., 1999;

Pryor and Squadrito, 1995; Kissner et al., 1997; Goldstein et al., 2005) (3.26)

All solutions in the experiment were unbuffered. Buffering would interfere with the 

results as it is generally known that with increasing radiation dose, the pH would have 

reduced (G) as identified in equation (3.1). Although at higher pH it was possible to have 

some N 0 2 formed, the lower the pH and thus the more complete the homolysis o f  

ONOOH leads to only N 0 3 (Kissner et al., 1997).

It is likely that the two radical products from equations (3.7) and (3.8) would also 

further react with *OH:

.CC12N 0 2 + *OH ->  H0CC12N 0 2 (3.27)

H0CC12N 0 2 ->  COCl2 + H+ + N 0 2“ (3.28)

•CC13 +  *OH - >  HOCCl3, k29 =  6.0 X 109 M ' V 1 (Monig etal., 1983) (3.29)

h o c c i 3 - »  coci2 +  h + +  cr (3.30)

The *C1 formed in the equation (3.19) might be expected to react as follows, where 

the forward and back reactions are summarized (McElroy et al., 1990; Klaning and
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Wolff, 1985; Cambron and Harris, 1995; Wu et al., 1980; Yu et al., 2004; Buxton et al.,

1998; Jayson et al., 1973):

eaq + *C1 —> Cl , (k not reported) (3.31)

•Cl + Cl” Cl2“«, h i  = (7.8 ± 0.8) X 109 M” 1 s_1 (Yu et al., 2004) (3.32)

k-32 = (5.7 ± 0.4) X 104 s' 1 (Yu et al., 2004) (-3.32)

Cl2 * + H20  *C10H + H + + C 1, yt3 3 < 1 0 0 s 1 (Yu et al., 2004) (3.33)

•Cl + -Cl ->  Cl2, h A = 8 . 8  X 107 M 'V 1 (McElroy et al., 1990;

W u eta l . ,  1980) (3.34)

•Cl + H20  <-> «C10H' + H+, k35 = (1.6 ± 0.2) X 105 s" 1 (Yu et al., 2004) (3.35)

k-35 = (2 . 6  ± 0 .6 ) x 1 0 10 M 'V 1 (Yu et al., 2004) (-3.35)

•C10H” <-» *OH + C r, h(, = (6.1 ± 0 .8 )x  109 s 1 (J a y s o n s al., 1973) (3.36)

k-36 = (4.3 ± 0.4) x  1 0 9 M 'V 1 (Jayson et al., 1973) (-3.36)

The reaction o f  the eaq and «C1 should proceed at diffusion controlled rates. The

measurement o f  this reaction has eluded investigations. A  rate o f  5 x  1010 M !s 1 was 

assumed for this reaction in the kinetic model. The rate o f  the radical-radical 

recombination o f  »C1 has been measured (McElroy et al., 1990; Wu et al., 1980) and has 

been determined a bimolecular reaction where the concentrations o f  the *C1 are relatively 

low. Therefore, it was not likely to be a major contributor to the loss o f  the «C1. The 

reaction (3.34) might then contribute towards a competition with reaction (3.32). The 

reaction o f the highly unstable •ClOH would proceed via hydrolysis, as identified in 

reaction (3.36) with the formation o f  *OH and Cl .

Initially the *OH reaction with the TCNM was ignored due to the relatively low  

reaction rate. It was possible to account for the disappearance o f  the TCNM, but it was
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determined that the model did not predict the appearance o f  either the Cl~ or NO3 with 

reasonable accuracy. It was well known from other chlorinated methanes that the only 

reaction o f  the »OH is a H abstraction such as the case o f  CHCI3 (Buxton et al., 1988). 

Emmi et al. (1985) substantiated this case for CH2CI2 , and CCI4 where there is no 

reaction. Two possible reactions were then conceived for TCNM:

TCNM + *OH ->  CCI3OH + *N 02 (3.37)

TCNM + »OH -»  *CC13 + ONOOH (3.38)

Reaction (3.37) does not seem likely as a candidate for primary reactivity because the 

•OH is an electrophile and would favor attack on the NO2 moiety as evidenced in reaction 

(3.38). Therefore, the following mechanism was proposed for this reaction:

Cl Cl

Cl- Cl C • + ONOOH (3.39)

OH Cl

Bimolecular reaction rates o f  the TCNM and the hydrogen atom (H*) were not 

evaluated. However, with a molecule such as TCNM, it was apparent that it could react to 

give the anions:

TCNM + H* -> •CCI2NO2 + H+ + Cl" (3.40)

TCNM + H* —» •CCh + H+ + N 0 2 (3.41)

An investigation was made to find a similar case for the reactivity o f  the hydroxyl

radical and the carbon centered halogenated compound. It was noted that the *OH is

generally unreactive with CCI4 . More importantly, it was found that the reaction o f  H* 

will react with CCI4 at rate constant ranging from 3.2 to 4.4 ( x  107) M 's" 1 and result in 

the liberation o f  a Cl” ion (Neta et al., 1971; Koester and Asmus, 1971). Recently, it was
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shown that H* reacted with dichloroethanes to give exclusively CF in aqueous solution 

(Pimblott et al., 2005). The precedence for reaction (3.41) was found in the reaction o f  

H* liberating the nitro-moiety in the reaction rate o f tetranitromethane at a range from 5.5 

to 26 ( X 108) M 's 1 (Rabani et al., 1965; Asmus et al., 1964a). Thus, a second reductive 

destruction pathway for the loss o f  TCNM by H’ was added to the reaction mechanism. 

These reactions (3.40) and (3.41) were added into the model at estimated rates o f

1.0 x lO 7 M '1s '1.

The mechanism described above for the destruction o f TCNM was coded into a 

kinetic computer model (MAKSEMA-CHEMIST) and used to simulate the 60Co 

irradiation (Carver et al., 1979; Gear, 1971; Schwarz, 1962). The program was based on 

classical stiff equations which follow fast reaction transients in small integration steps. 

The program utilizes Gear algorithms (Gear, 1971) to produce error controlled step size 

equations combined with order selection, and sparse algorithms for evaluation o f  the 

Jacobian matrix as the predictor corrector equation (Carter et al., 1979).

The initial computer simulations included q~ reactions with the TCNM, reactions

with O2 , and the reaction byproducts from reactions (3.7) through (3.36) in Table 3.2. 

This formulation was unable to account for the appearance o f  the Cl and NCF” with any 

accuracy. The reaction for the *OH with TCNM was included in the reaction 

mechanisms and the model over-predicted the removal o f  TCNM. It was found that the 

formation o f  the two anions, CF and NO3 fit the data much better than previous 

attempts. An intermediate reaction was added, equation (-3.38), to establish continuity o f  

the hydroxyl radical reaction with TCNM. In addition to the *OH, it was necessary to 

include a contribution o f the H*.
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Table 3.2. Linearized reaction mechanism for the free radical destruction o f  TCNM.
Rates identified by * are estimates based on model fit o f  the data from this study. (Continued on Page 78)

Eqn. Reactions k (L M~ V )  Reference

3.7 TCNM + âq •CC12N 0 2 + c r 1.07 x 1010 This work

3.8 TCNM + eaq •CC13 + N 0 2“ 1.07 x 1010 This work

3.9 TCNM + ®aq —> CC13“ + *N0 2 1 . 0 0  x 1 0 1 This work

*3.10 •CC12N 0 2 + 0 2 -» •00CC1N02 3.0 x 109 This work

3.11 •CCI3 + 0 2 -» •OOCC13 3.3 x 109 (Monig etal., 1983)

*3.12 CCI3- + 0 2 -> 'OOCC13 1 . 0  x 1 0 9 (Monig et al., 1983)

*3.13 OOCCI3 + COCl2 + o c r 1 0 6 (s-1) This work

*3.16 •OOCCI2NO2 + •OOCCI2NO2 2*0CC12N 0 2 + o 2 3.0 x 109 This work

*3.16 •OOCCI3 + •OOCCI3 -> 2*0CC13 + O2 3.0 x 109 This work

*3.18 •OCCI2NO2 + -> COCI2 + *N 02 1 0 6 (s-1) This work

*3.19 •OCCI3 + COCI2 + -Cl 1 0 6 (s_1) This work

COCI2 + h 2o -> C 0 2 + 2H+ + 2CL 9 (s '1) (Mertens et al., 1994)
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Table 3.2. Linearized reaction mechanism for the free radical destruction o f  TCNM.
Rates identified by * are estimates based on model fit o f  the data from this study. (Continued on Page 79)

Eqn. Reactions k (L M- 1s-1) Reference

3.20 •OH + N 0 2 OH~ + •N 0 2 9.6 x 109 (Logager and Sehested, 1993a)

(Barker et al,, 1970)

(Treinin and Hayon, 1970)

(Buxton, 1969)

(Adams et al., 1965)

3.21 •OH + •N 0 2 -» ONOOH 4.5 x 109 (Logager and Sehested, 1993 a)

(Logager and Sehested, 1993b)

(Merenyi et al., 1999)

3.26 ONOOH + h 2o — > H+ + N 0 3~ 1.25 (s '1) (Pryor and Squadrito,1995)

(Kissner et al., 1997)

(Goldstein et al., 2005)

*3.27 •CC12N 0 2 + •OH -> HOCCI2NO2 6 . 0  x 1 0 9 This work

*3.28 HOCCI2NO2 C0C12 + H+ + N 0 2' 1 . 0  x 1 0 6 (s '1) This work

3.29 •CCI3 + •OH CCI3OH 6 . 0  x 1 0 9 (Mertens et al., 1994)

3.30 CCI3OH -> COCI2 + H+ + Cl' 1 . 0  x 1 0 6 (s '1) (Mertens et al., 1994)
00
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Table 3.2. Linearized reaction mechanism for the free radical destruction o f  TCNM.
Rates identified by * are estimates based on model fit o f  the data from this study. (Continued from page 78)

Eqn. Reactions k (L M'V) Reference

3.31 eaq + •Cl -> c r 5.0 x 1010 (Buxton et al., 1988)

3.32 •Cl + c r -> Cl2"* 7.8 x 109 (Yu et al., 2004)

-3 .32 Cl2~* -> •Cl + Cl" 5.7 x 104 (s '1) (Yu et al., 2004)

3.33 Cl2'* + h 2o •ClOH” + H+ + Cl" < 1 0 0  (s '1) (Yu etal., 2004)

3.34 •Cl + •Cl Cl2 8 . 8  x 1 0 7 (McElroy, 1990)

3.35 •Cl + h 2o -> •ClOH" + H+ 1 . 6  x 1 0 5 (s '1) (Yu et al., 2004)

-3 .35 •ClOH' + H+ -> •Cl + h 2o 2 . 1  x 1 0 10 (Jayson et al., 1973)

3.36 •ClOH' + •OH —» c r 6 . 1  x 1 0 7 (Jayson et al., 1973)

-3 .36 •OH + c r •ClOH" 4.3 x 109 (Jayson et al., 1973)

3.38 TCNM + •OH -> Intermediate 4.84 x 107 This work

-3 .38 Intermediate + TCNM •OH 1 . 0  x 1 0 6 This work

*3.39 Intermediate + -> •CC13 + ONOOH 1 . 0  x 1 0 5 This work

*3.40 TCNM + H* ->• •CC12N 0 2 + H+ + Cl" 1 . 0  x 1 0 7 This work

*3.41 TCNM + H* -> •CCI3 + H+ + N 0 2- 1 . 0  x 1 0 7 This work
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With the addition o f  both the *OH and H*, the model over predicted the destruction o f  

TCNM. Changes were then made in the mechanism through sequential changes in the 

intermediate reaction rate constants. The estimated kinetic constants presented in Table 

3.2 resulted in no improvement to the model’s predictive capability for TCNM 

elimination. The model revealed that equation (3.9) was not important in describing the 

results and the reaction rate was reduced to essentially zero. It was reasoned that the 

addition o f  *OH to TCNM could lead to an intermediate that is stabilized prior to 

collapsing to products. If this intermediate does exist, then it could either proceed to the 

products indicated in equation (3.39), or go in the reverse direction to the starting 

reactants resulting in a partial equilibrium. Therefore, the equation was written in the 

model to provide for these two branches, the formation o f  the intermediate at the 

measured rate, with a ratio o f  1 0 : 1  o f the intermediate returning to the starting reactant k 

= 1 . 0  x  1 0 6 s ' 1 and going to products k = 1 . 0  x  1 0 5 s”1.

The MAKSIMA-CHEMIST model was revised to include the kinetic mechanism and 

the HNM rate constants determined in this study. The results o f  the kinetic model are 

presented in Table 3.3 along with the experimental results for comparison. The modeled 

TCNM mass production results ranged from 18.3% to 48.9% difference from 

experimental to model. The largest percent difference (48.9%) for TCNM ion production 

occurred at the higher applied dose. This larger difference was expected at the region o f  

highest dose and lower value o f  HNM concentration. The modeled chloride and nitrate 

ions production ranged from 3.3% to 36% difference from experimental to modeled 

results. The largest percent difference (36%) occurred for the production o f  ions (Cl and 

NO3 ) in the region where it was the smallest dose and highest concentration o f  HNM.
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The highest difference occurred where the mechanistic model simulation would exhibit 

the lowest numerical value for reactions indicating full mineralization at the highest 

radiation dose. It was believed that the overall success o f  the mechanism would be 

demonstrated for the initial reactions at the lowest dose. The lowest dose would 

contribute to the largest difference in results as the mechanism is highly sensitive to those 

intermediate reactions in the short exposure time periods. Based on the results obtained 

from the model for simulating the lowest dose and TCNM removal, the difference noted 

appeared to be reasonable and generally followed the TCNM degradation indicated by 

experimental results.

Table 3.3. Comparison o f  experimental and model results for 60Co irradiation o f  
TCNM solutions (1.13 mM) in pure water at doses up to 8.54 kGy.

Experimental Model

Dose
(kGy)

[TCNM]
(mM)

[C l]
(mM)

[N O al
(mM)

TCNM
(mM)

t e n
(mM)

[n o 3-]
(mM)

0 1.13 0.00 0.00 1.13 0.00 0.00
1.22 0.80 0.92 0.29 0.67 1.33 0.42
2.44 0.42 1.67 0.44 0.36 1.99 0.60
3.66 0.17 2.17 0.58 0.11 2.56 0.77
6.1 NM (a) 2.73 0.79 (c) 2.82 0.85
8.54 BMDL(b) 3.13 0.89 (C ) 2.82 0.85

(a) Not measured.
(b) Below method detection limit.

(c) Modeled data is below detection limit.

The results o f  the final kinetic model are presented graphically in Figure 3.5 and 

Figure 3.6 with the experimental results for comparison. The kinetic model closely 

follows the production o f  residual byproducts and TCNM degradation.
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0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

D ose (kGy)
Figure 3.5. Comparison o f  experimental (O ) and modeled (O ) data 

for 60Co irradiated trichloronitromethane. [TCNM ] 0 =1 .13 mM.
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Figure 3.6. Concentration o f  chloride ions from (□ ) experimental results, 
and (O )  model results; and nitrate ions (A ) experimental results, and (O ) 

model results; versus dose 60Co irradiation.
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3.4. Summary

The kinetic model over predicted the removal o f the TCNM and slightly under predicted 

the appearance o f  the two anion products, CF and NO3 . The kinetic model was a 

reasonable representation o f the experimental results for both the production o f  the 

residual ions in solution and for the degradation o f  TCNM. It was observed that the 

model overestimates the degradation o f  TCNM at lower dose owning to minor inaccuracy 

in the model. It also showed that both peroxynitrous acid and phosgene, potentially toxic 

byproducts, were formed but even with the high initial concentrations o f  TCNM (mM  

level o f  concentration), neither o f  these compounds were ever greater than 5 nM. At lease 

low concentrations, it would be difficult to ascertain their specific concentration. In 

addition, these byproducts would be found only at doses less than 3.66 kGy indicating a 

larger dose was to be eventually applied and their fate would be full elimination for 

ultimate TCNM mineralization at 6  kGy.
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4. THE FREE RADICAL CHEMISTRY OF BROMONITROMETHANE:

RATE CONSTANTS AND DEGRADATION MECHANISM BY 

OXIDATION-REDUCTION REACTIONS

4.1. Introduction

In the United States, all drinking water must be disinfected before it enters the water 

distribution system and is ultimately consumed by the general public. Common drinking 

water disinfectants include chlorine gas, ozone, chloramines, chlorine dioxide, sodium 

hypochlorite, or a combination o f  these. However, studies have found that using chlorine 

as a primary disinfectant may result in the production o f  multiple disinfection-by- 

products (DBPs), from the oxidation o f  dissolved organic matter (Rook, 1974; Krasner et 

al., 1996). The oxidation o f  waters with naturally occurring levels o f  bromide with ozone 

have been found to form brominated forms o f  DBPs (von Gunten and Hoigne, 1996) and 

these halogenated compounds are regulated by the U.S. Environmental Protection 

Agency with a maximum concentration for bromate o f  10 fig L 1 (U.S. Environmental 

Protection Agency, 1997).

One emerging class o f  DBPs is the brominated halonitromethanes (HNMs). These 

contaminant chemicals are produced when chlorine (Thibaud et al., 1988) or ozone 

(Hoigne and Bader, 1998; Richardson, 2003) are used at drinking water treatment 

facilities with source waters containing bromide and natural organic matter, and are o f  

major concern as they have been shown to be cytotoxic and genotoxic (Meier, 1988; 

Plewa et a l,  2000). Naturally occurring bromide in water reacts with ozone (Richardson 

et al., 2003) and produces brominated byproducts such as tribromonitromethane
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(bromopicrin) (U.S. Environmental Protection Agency, 1999). Other brominated forms o f  

HNMs (tribromonitromethane, dibromonitromethane, and bromodichloronitromethane) 

were found at 2.5, 1.5, and 0.7 jug L ', respectively, in finished water from a California 

drinking water treatment plant that used pre-ozonation and post-chlorine/chloramine 

disinfection on a high-bromide source water (0.14 mg L ') (Chen et al., 2002).

The purpose o f  this study was to assess the potential o f  free radical chemistry to 

degrade bromonitromethane (BNM) in water. To assure that any treatment by advanced 

oxidation processes (AOPs) occurs efficiently and quantitatively, a full understanding o f  

the radiation chemistry involved under the conditions o f  use was necessary. This in turn 

requires that absolute rate constants, and destruction mechanisms, are well understood. 

This study determined the rate constants for hydroxyl radical and hydrated electron 

reaction with HNM in water as well as steady state irradiation to identify and quantify the 

stable products o f  these reactions. Bromonitromethane (CH2BrN0 2 ) was obtained from 

Aldrich at 90% to 95% purity and re-purified using vacuum distillation to greater than 

99% purity as indicated by nuclear magnetic resonance spectroscopy.

Both the linear accelerator and 60Co 7 -irradiations produce *OH, eaq ? and »H as well 

as some molecular products according to equation (1.1) (Buxton, 2004) and considered as 

condition for steady state irradiation.

4.2. Rate Constant Determination

The determination o f the rate constant for reaction o f  eaq with BNM required isolation o f  

the hydroxyl radical reaction. Aqueous solutions were pre-saturated with N 20 ,  which 

quantitatively converts the solvated electron, eaq to this radical:
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ê q + N20  + H20  ->  N 2 + OH” + .OH (4.2)

at a fast rate constant o f  &2 = 9.1 x  109 M_1s_1 (Janata and Schuler, 1982). In the kinetics 

experiments, the hydroxyl radical reaction with bromonitromethane did not give any 

significant transient absorbance over the range 250 to 800 nm, and so this rate constant 

was determined using SCN competition kinetics based on the competing reactions:

•OH + BNM —» Products (4.3)

•OH + SCN” (+ SCN”) ->  OH" + (SCN)2*'  (4.4)

This competition can be analyzed to give the following expression:

[QSCAOrL .. t  , k 3 [ BNM]
[(SCTV);-] k4[SCN~]

where, [(SCN ) 2 ’” ] 0 is the final yield o f  (SCN)2’” measured for only the SCN” solution, 

and [(SCN)2’”] is the reduced yield o f  this transient when bromonitromethane is added. 

Therefore a plot o f  1/[(SCN)2’”] against the ratio [BNM]/[SCN”] should give a straight line 

o f slope £3 / £4 . From the known rate constant o f £ 4  = 1.05 x  1010 M”’s”' (Janata and 

Schuler, 1982), the £ 3  rate constant can then be calculated. Typical kinetic data obtained at 

475 nm are graphically presented in Figure 4.1.
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Figure 4.1. Competition kinetics plot for *OH reaction with 
bromonitromethane using SCIST as a standard. The solid line is a 
weighted linear fit, corresponding to a slope o f  0.00796 ± 
6.3 x  10~4. A second-order rate constant for bromonitromethane 
reaction was derived where, £ 3  = (8.36 ± 0.49) x  107 IVT's '.

The rate constant for the hydroxyl radical reaction with calculated to be A3  = (8.36 ± 

0.49) x  107 M_1s_1. No comparative rate constants for bromonitromethane could be found 

from a survey o f  the open literature.

The rate constant for bromonitromethane reaction with the hydrated electron rate 

constant was determined by directly following the absorption o f  the ejq at 700 nm (Janata 

and Schuler, 1982). These solutions were saturated with nitrogen gas, to remove 

dissolved oxygen, and also contained 0.50 M tert-butanol to scavenge the hydroxyl 

radicals and hydrogen atoms and convert these highly reactive radicals into the less- 

reactive tert-butyl alcohol radical, and thus isolating the reducing radical:

*OH/H* + (CH3)3COH -> H20 /H 2 + *CH2 (CH3)2COH (4.6)
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The decay o f  the hydrated electron was found to be first-order, and to be faster with 

higher concentrations o f  bromonitromethane. By fitting exponential decays to the 

pseudo-first-order kinetics, the kinetic data shown in Figure 4.2 were obtained. The 

fitted second-order rate constant gave a reaction rate constant for this reduction process 

o f k = (3.13 ± 0.03) x 1010 A f V 1.

20.0

16.0

CO

X

8.0

4.0

0.0
0.4 0.60.0 0.1 0.2 0.3 0.5

[Brom onitrom ethane] (mM)
Figure 4.2. Second-order rate constant for the reaction o f  
hydrated electron with bromonitromethane. Single-point error 
bars are one standard deviation, as determined from the average 
o f  at least three kinetic traces. Solid line indicates the weighted 
linear fit with rate constant o f  k =  (3.13 ± 0.03) x  1010 M 's '.

As observed by the comparison o f  the hydroxyl and hydrated radical rate constants, 

the reduction o f  this chemical by was much faster than its oxidation by *OH. This
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reduction is expected to produce the bromide ion, along with the corresponding carbon- 

centered radical and a nitrate ion by:

eaq + BrH2C N 0 2 ->  Br + H2*CN02 (4.7)

eaq + BrH2C N 0 2 -> BrH2C + N 0 2 (4.8)

To determine the ultimate chemical products produced in the radiolytic destruction o f  

bromonitromethane, steady state 60Co irradiations were performed in this study. These 

irradiations were conducted for various concentrations o f  bromonitromethane in aerated 

water with a dissolved oxygen concentration o f  2.00 x  10 4 M, ambient pH and room 

temperature. Under these conditions, destruction o f  this chemical occurred by both the 

oxidation and reduction pathways. Figure 4.3 shows that with increasing applied dose, 

the concentration o f  bromonitromethane decreased continuously to zero at a dose o f  

approximately 6  kGy as interpolated from the concentration-dose curve. This removal 

process was found to be approximately first-order as presented in Figure 4.2. Bromide 

and nitrate ions were produced concomitant with bromonitromethane removal. O f interest 

is the observation that the yields o f  these two ions are very similar and this observation is 

graphically depicted in Figure 4.3. The production o f  ions as shown in Figure 4.3 

indicates a suggested reaction mechanism releasing the halogen ion and nitrate ion 

according to equations (4.7) and (4.8).

The determination o f the rate constant and degradation mechanism was necessary for 

application o f  free radical AOP treatment o f  BNM. A plot o f  the BNM  concentration in 

the post irradiated solution o f water to the dose rate is graphically presented in Figure 4.4. 

This graph quantitatively provides the dose constant (kn) at 0.74 kGy 1 and was based on
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pure water at ambient room temperature. This dose constant can be applied to large scale 

electron beam for free radical AOP degradation o f  BNM.

to 0.6

o  0.4

OB-1

Dose (kGy)

Figure 4.3. Comparison o f irradiated bromonitromethane and byproducts 
o f irradiation. Bromonitromethane (♦ ) , and byproducts o f bromide ion 
(■), nitrate ion (A )  versus total dose. Dose rate o f  60Co at 122 Gy

min .” 1 at ambient pH.
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Figure 4.4. Steady state irradiated bromonitromethane 
concentration (O ) versus dose. Dose constant, ko =  0.74 kGy '.
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4.3. Mechanism

In aerated solution, this de-halogenated radical is expected to first react with dissolved 

oxygen:

H2*CN02 + 0 2(g)-> *00C H 2N 0 2 (4.7)

This peroxyl radical is not very reactive, its major fate is to dimerize:

2 *00C H 2N 0 2 0 2NCH20 0 0 0 C H 2N 0 2 (4.8)

The tetroxide formed as an intermediate and the suggested fate was to break into smaller, 

oxygen containing compounds that ultimately yields halogen ions and nitrate.

4.4. Summary

Absolute rate constants for the reaction o f  the hydroxyl radical and hydrated electron 

were determined for bromonitromethane in water, using electron pulse radiolysis and 

transient absorption spectroscopy. Values o f  hydrated electron rate constant, k = (3.13 ± 

0.03) x  1010 M-1s 1 and hydroxyl radical rate constant, k = (8.36 ± 0.49) x  107 M 's ', 

were measured. Steady state 60Co irradiations revealed that the radiolytic removal o f  

bromonitromethane was approximately first order, with concomitant formation o f  both 

the bromide and nitrate ions. The dose constant for radiolysis o f  BNM was identified and 

the data could be applied at large scale.
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5. OVERVIEW OF REACTION MECHANISMS AND KINETIC MODELING:

THE FREE RADICAL CHEMISTRY AND REACTION MECHANISMS 

FOR HALONITROMETHANES

5.1. Introduction

The effectiveness for free radical AOP treatment o f  DBP pollutants in water was based 

on an understanding o f  mechanisms and the reduction-oxidation reactions occurring in 

the water matrix. The free radical chemistry o f  hydroxyl radical and the aqueous electron 

has been investigated for elimination o f many types o f  pollutants and these studies 

provide favorable results indicating satisfactory removal o f  both organic and inorganic 

compounds (Cooper and Cadavid, 1993; Cooper et al., 1993; Cooper et al., 1996a; 

Cooper et al., 1996b; Cooper et al., 2001; Cooper et al., 2002a; Cooper et al., 2002b; 

Cooper et al., 2004). One DBP pollutant recently identified as a concern is the 

halogenated nitromethanes (HNMs). These HNMs are derived from chlorine, bromine, 

carbon-nitro based groups and are formed by the disinfection o f water using very strong 

oxidizing agents such as ozone, chlorine and chloramines. Nine HNM compounds were 

recently identified (Richardson et al., 1999) in drinking water as a DBP and are believed 

to be a health concern (Plewa et al., 2004).

Experimental investigations were performed to identify the efficacy for removal o f  

halonitromethanes from water using free radical chemistry under steady state irradiation 

conditions. The experimental work included four primary components and these must be 

satisfied prior to identification o f  the treatment parameters at large scale. The four 

research components included determination o f  rate constants for degradation o f  the
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HNMs using pulse radiolysis, identification and quantification o f  the residual byproducts 

produced by irradiation o f HNMs, elucidation o f a degradation mechanism, and 

confirmation o f the degradation mechanism by mass action kinetic computer modeling 

that incorporates both the rate constants and mechanism. Once the suitability for use o f  

free radical chemistry was confirmed, the data was evaluated to identify the general 

parameters for a large scale electron beam AOP treatment facility. Based on the 

experimental results obtained determined in the four research components, free radical 

AOP for elimination o f HNMs was determined viable.

This work summarizes previous HNM experimental work and presents data needed 

for sizing a large scale AOP electron beam facility. To fully explore use o f  AOP 

treatment for HNMs, an understanding and a measure o f  the magnitude for the large scale 

AOP was needed. This development required an understanding o f  the radiation dose 

needed for mineralization o f HNMs and the energy to attain this dose. The energy level 

was related to a unit energy cost expressed as electrical energy per order (EE/O). This 

large scale AOP treatment EE/O was exclusive o f  operation, maintenance, and support 

facilities as these parameters vary widely.

5.2. Rate Constant

Mineralization o f the molecular structure o f  compounds into their primary ionic 

components and to their most stable carbon based form as found in aqueous solution was 

the objective for application o f  free radicals to HNMs. Determination o f free radical rate 

constants for the hydroxyl radical and hydrated electron with HNM was essential towards 

the ultimate development o f  mechanism pathways leading to HNM mineralization.
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Based on the rate constants obtained in pulse radiolysis experiments, the free radicals met 

this objective to mineralize the HNM molecular compound and the experimental work 

provided a unique rate constant value for each HNM. All reactants were considered 

distributed homogeneously in the water medium. The rate constants were obtained for the 

reactants, *OH and e aq independently with HNM. Competition kinetics was applied for 

rate constant determination o f «OH with HNM and the reaction rate constants for eaq

reaction with HNMs were obtained by direct measurement o f  absorption. It was possible 

from this work to isolate a bimolecular reaction in each case and study the reaction as a 

single transient with itself (Matheson and Dorfman, 1969).

No HNM free radical rate constants could be found in the open literature. Other 

reported HNM rate constants that were found but not applicable to this work include 

those reported by Porter et al. (2000) for bromonitromethane at (pH 5.0) with k  = 0.0365 

M V 1 determined for the reaction with glucose oxidase substrate, and those rate 

constants identified by Carter et al. (1997) for atmospheric photodecomposition o f  

trichloronitromethane.

As a measure o f  comparison, the rate constants for these HNM reactions were found 

consistent with other rate constants o f  halogenated compounds in aqueous solution. A  

search o f the literature for analogous reactions showed that a decreased rate constant for 

fully halogenated compounds was observed in the hydrated electron reduction o f  chlorinated 

ethanes and methanes (Buxton et al., 1988). However, for both series o f  halogenated 

organic compounds, there was first a consistent increase in the measured rate constant with 

the number o f chlorine atoms. This was not the case for those observations made o f  the 

halonitromethanes in this study. The change in rate constant for the hydrated electron
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reaction with chloromethane 1.1 X 109 M-1s 1 (Balkas et al., 1970), dichloromethane 

5.45 x  109 IVT V  and 6.3 x  109 M_1s_1 (Balkas et al., 1972), and trichloromethane 

1.38 XlO10 M_y  (Tobien et al., 2000); 3.0 XlO10 M 'V  (Hart and Anbar, 1964) was 

fairly linear with number o f  chlorine atoms. This rate constant then drops by about 30% to 

50% for hydrated electron reaction with carbon tetrachloride and the rate constant values 

generally range from (1.3 to 2.4) x  1010 M_1s_1 (Buxton et a l, 1988).

The analogous literature data for the brominated compounds was much more scattered, 

with no consistent trends evident (Mezyk et al., 2005). No hydrated electron reaction rate 

constant for bromomethane or tetrabromomethane was found in the literature, and the value 

for dibromomethane 2.0 x  1010 M V 1 (Hayes et al., 1989) splits the two values reported for 

tribromomethane 1.0 x  1010 M_1s 1 (Lai and Mahal, 1992), and 2.6 x  1010 M_1s_1 (Tobien et 

al., 2000).

The literature data for the hydrated electron reaction with the mixed halogenated 

methanes such as bromodichloromethane 2.1 x  1010 M~’s 1 and chlorodibromomethane

2.0 x  1010 Mh s 1 (Tobien et al., 2000) suggests that the type o f  halogen substitution does 

not significantly affect the rate constant for this process. This condition was in agreement 

with the observed data for the HNMs. In addition, the analogous rate constants for 

nitromethane 2 .2 XlO 10 M_1s_1 (Wallace and Thomas, 1973) and tetranitromethane 

4.6 X 1010 M_1s_1 (Rabani et al., 1965) shows that the nitro group significantly activates this 

substituted methane, again consistent with the HNM rate constants being faster than the 

analogous halogenated methanes. The one available rate constant for the hydrated electron 

reaction with trichloroacetonitrile 3.2 x  1010 M ~V' (Lai et al., 1988) is similar to HNM
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values in this research, indicating the cyanide group also activates a substituted methane 

significantly (Mezyk et al., 2005).

The reaction o f  the hydrated electron with halogenated compounds was believed to 

exhibit release o f  a halogen in the free radical reaction. These typical reactions involving 

ê q and a release o f  a halogen ion were widely noted in the literature. Wu et al. (1980)

identified the release o f  the chloride ion by reaction o f the eaq with an aqueous halide 

solution at a bimolecular rate constant o f (1.49 to 7.12) x  10~4 s_1. The release o f  bromide 

ion by interaction o f  eaq was established by Siddiqui et al. (1996) in the reduction o f  

BrO at 2.0 x 10 s . Matheson et al. (1966) established the rate constant for reaction o f  

eaq with aqueous KBr solution with the release o f  Br2~ (1.3 ± 0.5) x  10~4 M~'s '. Lai et 

al. (1986) established a rate constant o f  2.8 x 10~4 s” 1 for the bromide radical release from 

1, 2-dibromoethane for the reaction with the eaq • These reactions indicated a cleavage o f

the halogen ion from the parent compound.

The reaction rate o f  the hydroxyl radical with halogenated compounds was notably 

slower when compared to eaq reactions. The HNM experiments were conducted at 

ambient pH with no buffering. One explanation for the slower hydroxyl reaction was the 

inability o f the radical to abstract ions from the HNM molecule. At the molecular level, 

no high potential valence sites predominate on HNM to initiate rapid degradation by the 

hydroxyl radical. This condition could change with lower pH o f the solution. Matheson et 

al. (1966) indicated that the interaction o f  the hydroxyl radical with bromine ion 

increases at low pH and decreases markedly at high pH. Therefore, the ambient pH 

condition o f  HNM solutions was not expected to markedly affect the brominated HNMs
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release o f  a Br from interaction with the hydroxyl radical. Upon release o f  the Br to 

solution, the ion was noted to involve additional intermediate steps as Zehavi and Rabani, 

(1972) reported that the reaction o f  Br in solution was not a simple electron transfer 

reaction, but transfers to an intermediate BrOH , and then another electron change, with a 

possible end point being a reversible reaction. Attempts were made in the mechanism to 

adjust the ion reaction mechanism to account for these intermediate steps and reversible 

reactions. These reversible reactions were subsequently removed from the model without 

affecting the results.

The second-order rate constants obtained for HNMs using pulse radiolysis methods 

clearly reflect continuity with similar published rate conditions for the *OH and e aq with 

halogenated and nitro-group compounds. These HNM rate constants were determined 

reasonable and suitable for further use and application in a kinetic model.

5.3. Mechanisms

Given the relatively simple molecular structure o f  the HNMs, the mechanism for their 

degradation by free radicals, *OH and e aq was unique and not straightforward. The free 

radical chemistry degradation o f  HNMs included multiple path reactions occurring both 

in series and in parallel whereby some or all o f  these reactions included reduction, 

oxidation, abstraction, electron exchange, reversible, and substitution reactions. The 

degradation o f trichloronitromethane included the formation o f  peroxyl radicals 

degrading intermediates to halogen ions, and nitrate products. Carbon centered halogen 

groups demerize to oxygenated radicals by several stepped reactions involving multiple 

oxidation reactions, electron abstraction reactions, and formation o f  peroxyl radicals.
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Although hydrogen rate constants were not known, hydrogen radical reactions were 

included and their rate constants were estimated.

The nitro group within HNMs was particularly challenging for its mechanistic 

reaction. The HNM degradation was modeled to form peroxynitrite and these reactions 

were modeled in the mechanism to contribute towards the formation o f  NO3 . It was 

known that these peroxynitro-based radical compounds provided acidic type reactions 

within the water matrix (Goldstein et al., 2005). Similarity o f  this acidic condition was 

noted by Wagniere (1969) where the NO2 group in nitroalkanes exhibit pseudo-acid 

properties in water. The molecular properties o f  the nonbonding electrons in the nitro 

group oxygen pair were preserved. Cleavage o f  the nitro-group from the carbon was 

anticipated due to its bond length. Wagniere (1969) identified that tribromonitromethane 

has a C-N bond length o f  1.59 Angstroms.

Analysis o f  60Co irradiated samples was performed in an attempt to understand the 

degradation intermediates and irradiation byproducts in HNM mineralization. This data 

was used in the development o f  the degradation mechanism and confirmation o f  mass 

balance. In addition to Gas Chromatography/Mass Spectrometry (GC/MS), electrospray 

ionization/mass spectrometry (ESI/MS) was used in an attempt to identify intermediates 

and residual ions. A TOC analyzer (Shimadzu, Model 5000) was used in the attempt to 

identify carbon based intermediates and byproducts. It was determined that the ESI-MS 

was not successful for identification o f  ion byproducts. The ESI-MS results positively 

revealed that there was no oxalic acid and formic acid production as none could be 

detected. The TOC results obtained were inconclusive and therefore not used. Given the 

challenges experienced in the analytical work, GC/MS provided the ion mass for Cl”,
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Br~, NO 2 and NO3 . All parent ions were identified as residual except NO2 . No nitrite 

was identified as a residual ion in solution for any HNMs.

The approach for solving the mechanism included the development o f  pathways for 

formation o f  intermediates with their end-point adjusted towards achieving a mechanistic 

problem solution with the results optimized towards satisfying the final ionic mass 

balance. This effort included a stepped process and included selectively alternating 

suitable branching ratios and follow reaction pathways until the mechanism was 

complete. Branching ratios o f  the peroxynitrous reaction decay scheme and the addition 

o f a chloride decay scheme were adjusted and a ratio o f 1 0 : 1  ultimately provided 

reasonable results. It was recognized that a degradation mechanism scheme may include 

an environmentally sensitive compound such as the case for the formation o f  phosgene, 

nitrite, or nitrate. Formation o f phosgene was identified by Getoff (1997) for a 

degradation mechanism o f  chloroform. One o f  the pathways in the degradation scheme in 

this research reduced the parent compounds to phosgene. Based on the quantities o f  

HNM and the dose levels required for phosgene formation, it was concluded that there 

will be almost no discemable quantities o f  phosgene formed in HNM degradation. It was 

confirmed by kinetic modeling that if  phosgene was formed the relative mass generated 

in real world application would be far below a level o f  concern as further radiolysis 

would follow with its ultimate elimination. Using the mass recovery data and the 

degradation schemes, a mechanistic kinetic model was accomplished and found to work 

reasonably well.

The kinetic modeling study included use o f  a computer program (MAKSIMA- 

CHEMIST) developed by Carver et al. (1979). The program functions as a mass action
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kinetic computer model suitable for simulations on a personal computer. The kinetic 

computer model utilizes rate constants, degradation mechanism scheme, radiation dose 

rate, timing step, the standard hydrolysis reactions presented in Table 1.3, and the free 

radical yield concentrations identified in equation ( 1 .1 ) to solve for the residual 

concentration o f  the reactants. The modeling for TCNM included an input o f  80 chemical 

reactions and 57 reactants. All simulations were performed using pure water conditions. 

The mass action kinetic computer model results output were in units o f  molar 

concentration versus dose. These results were then input into a spreadsheet computer 

graphing program EXCEL® for visual interpretation. Comparisons o f model to 

experimental analytical results for TCNM indicated reasonable results.

Based on the kinetic model results for TCNM, the removal efficiency was calculated 

as a measure o f  the efficiency o f  HNM destruction by free radicals. The model results

_3
indicated results o f  >6 -Log removal at > 8  kGy with an initial concentration o f 1.13 x  10 

M. The MAKSIMA-CHEM1ST program was then revised to include a new concentration 

o f  HNM at 1.82 x  1(T8 M (3 fig L_1) to represent the concentration found in drinking 

water from the national survey conducted by Weinberg et al., (2002) for water plants 

using ozone treatment practices. Model prediction for removal o f  the lower HNM 

concentration was greater than 6 -Log removal at a radiation dose above 6  kGy. The 

results presented in Table 5.1 identify and compare the removal efficiency for TCNM 

with both experimental and computer model results.

In radiation chemistry study, the removal efficiency can be quantitatively described in 

terms o f a yield expressed as Go, in units o f  mol J_1 x  10~7. The Go value is the
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concentration o f solute removed by radiation dose. The Gd was determined by the 

following (Nickelsen et al., 2002):

D  6 .2 4 x io 19

where A R is the change in organic solute solution at a given dose, D  in units o f  kGy, 

6.24 x  1019 is the constant to convert kGy to 100 eV L_1, and Na is Avogadro’s number. 

Table 5.1 presents the Gp for the respective dose for both HNM concentrations and 

experimental and model results.

Table 5.1. Summary o f  removal efficiency and Go values (mol J 1 x  10 7) for initial 
trichloronitromethane concentration o f  1.13 X 10 3 M and 1.82 X 10 8 M (3 pg L_1).

[TCNM] = 
1.13 x  10~ 3 M

[TCNM] = 
1.82 X 10 8 M

Dose Experiment Experiment Computer Computer Computer Computer
(kGy) (% rmvl.) (G d)xIO ' 3 model model model model

(% rmvl.) (Gd) x 1 0 “ 3 (% rmvl.) (Gd) X 10~ 3

1 19.4 2 . 1 76.6 5.1
1 . 2 2 29.2 3.7
2 34.4 1.9 93.7 5.8
2.44 63.2 3.0
3 50.9 1.9 98.1 5.9
3.66 84.7 2 . 6

4 63.9 1 . 8 99.4 6.3
5 73.8 1 . 6 99.8 6 . 8

6 81 1.5 99.9 7.4
6 . 1 1 0 0 1 . 8

7 86.5 1.4 1 0 0 8

8 90.4 1 . 2 1 0 0 8.9
8.54 1 0 0 1.3
9 1 0 0 1 .1 1 0 0 9.7
1 0 1 0 0 1 1 0 0 10.5
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5.4. Dose Rate Constant

The dose rate constant (ku) provides a quantitative value for evaluating removal 

efficiency o f  HNMs in irradiated aqueous solution at different doses. The dose constant is 

the slope o f  the line obtained by plotting ln[HNM] versus dose, where [HNM] is the 

concentration o f  HNM in the post irradiated solution (Mak et al., 1996). The dose 

constant for TCNM is graphically represented in Figure 5.1 and presents the experimental 

results and kinetic computer model results. The graphical depiction indicates the dose 

required to obtain a desired concentration o f solute in solution.

DOSE (kGy)

0 1  2 3 4 5 6 7 8 9  10 11

/cd = 0.3153 
y = -0.3152x - 6.5884 

R2 = 0.9979

_ - 1 0

S'12
1  -14 

£ - 1 6  
-18 

-20 
-22 
-24 

-26 

-28 
-30

/cd = 0.5149 
y = -0.5149x - 6.6477 

R2 = 0.9654

/cd = 1.0258 
y = -1.0258x - 18.618 

R2 = 0.9955

Figure 5.1. Dose constant (kD) for trichloronitromethane at ambient pH at -j
different concentrations. Initial experimental concentration o f 1.13 x  10 
M (O) with kD = 0.5149 kGy-1, computer model simulation concentration 
(□) 1.13 x  10- 3  M with kD =0.3152 kGy-1, and computer model simulation 
concentration 1.82 X 10-8 M (3 jig L-1) with kD = 1.0258 k G y 1 (A).
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Both experimental and MAKSIMA-CHEMIST computer based results for the dose 

constant determination were in general agreement at the initial TCNM concentration o f  

1.13 x  10~ 3 M. Therefore, the TCNM degradation mechanism included in the model was 

considered suitable for extrapolation to lower trichloronitromethane concentration levels 

typically found in drinking water supplies. Based on the dose constant presented in 

Figure 5.1 and the removal efficiency (Table 5.1), a dose o f  greater than 6  kGy will 

exceed 6 -Log removal o f  [TCNM] = 1.82 x  10 8 M (3 jig L_1) in pure water. Using the 

dose rate constant, kD = 1.0258 kGy 1 ([TCNM] =3 jag L_1) or kD = 0.5149 kGy-1  

([TCNM] =1.13 x  10~3 M) (Figure 5.1), the dose required to remove 90%, and similarly 

99% o f pollutant is determined by (Mak et al., 1996):

In 10
D 0.90  -  ---------  ( 5 .2 )

t-. In 1 0 0
Do.99 -  --------  (5.3)

k  d

It was important to recognize that these removal efficiencies and dose constants are 

based on 60Co irradiation. These results can be used to describe the radiation level 

required for removal o f  TCNM in a large scale electron beam.

5.5. Simulation o f  Full Scale Electron Beam

The U.S. Food and Drug Administration (1997) approved the use o f  irradiation for foods 

as human food stuffs, with poultry at 3 kGy, 4.5 kGy for fresh meat, and 7 kGy for frozen 

meat because the primary necessity for food irradiation was the elimination o f  harmful 

bacteria. Electron beam treatment technology represents a state-of-the-art AOP treatment 

process and well known to be used for irradiation o f  mail and sterilization o f  medical
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supplies. Based on a search o f  the open literature, currently there are no known large 

scale water treatment facilities in operation using an electron beam AOP process.

Electron beam irradiation has been applied at large scale for the Miami-Dade Water 

and Sewer Authority’s Virginia Key Wastewater Treatment Plant in Miami, Florida and 

consisted o f  a 1.5 MeV, 75 kW electron accelerator and described by Kurucz et al. (1990) 

where the overall efficiency o f  the energy transfer was identified at approximately 65% 

(Kurucz et al., 1991; Kurucz et al., 1995; Kurucz et al., 2002). The efficiency o f an AOP 

treatment process must account for a number o f factors before the process was sized and 

an estimated energy value assigned. The efficiency considerations to be made for an AOP 

treatment o f  water at a large scale facility include the difference in the type o f  radiation 

applied during the bench scale testing, the level o f  treatment required for the pollutant to 

be removed, and electrical energy losses (Cooper and Tobien, 2001).

Kurucz et al. (2002) investigated the efficiency between bench scale gamma 

irradiation and electron beam radiation and a unique condition was found where gamma 

irradiation was more efficient for degradation o f organic compounds over the electron 

beam. Kurucz et al. (2002) also identified during a comparison study o f  60Co bench scale 

work and electron beam irradiations that the required dose for electron beam treatment 

ranged from 1.2 to 2.5 times the gamma bench scale study. These differences were 

described in this work as removal quality.

The difference in the removal quality for these two radiation types and their 

respective efficiencies for removal o f  HNMs in aqueous solutions were suggested to be 

derived from the likely occurrence that gamma particles are heavy and their energy 

transfer is larger for gamma particles when compared to electrons (Kurucz et al., 1991).
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The LET value for gamma (LET7  = 1 )  (Kurucz et al., 1991) is notably a larger value 

when compared to the electron, prior to the electron’s total thermalization and later 

hydration (LETe- = 0.24 at 1 MeV) (Spinks and Woods, 1964). Other likely cause for the 

difference in the removal quality is the density o f  gamma spur formation (Chatteijee, 

1987). Gamma formation o f  spurs in the water matrix is close together and they interact 

as they expand. The density o f  free radicals increases in the closer cores o f  these heavy 

particle spurs. This density for gamma is in contrast to electrons where the LET is smaller 

in comparison and their spurs are farther apart (Chatteijee, 1987).

In addition to LET differences and free radical density affecting the removal quality, 

a condition was believed to exist where heavy 7 -particles interact in the core o f  the water 

matrix with a high number o f events. This increase in the number o f  events corresponds 

to a reduction in the distance between these reactive zones o f  the spur thus allowing 

higher frequency and numbers o f  free radical formation to result in an increased number 

o f reactions before chain back reactions have time to occur (Magee and Chatteijee, 

1987). The limitation o f  diffusion control free radical reactions may be overcome by this 

higher radical flux. Steady state irradiation conditions may be considered when the flux is 

constant. An analogous condition was observed by Trumbore et al. (1988) for 

competition effects observed between the un-solvated electron and the solvated 

(hydrated) electron. Trumbore et al. (1988) identified the condition where the hydrated 

electron at low solute concentration was not large enough to compete effectively with 

reactions both in the spur and in the region o f  expanding spurs (high spur density region). 

These qualitative conditions were considered in the selection o f  a removal quality factor 

(Q/) at 2.0 for HNMs.
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Electrical energy losses can be accounted for systematically from the point o f  electron 

production to the target. Generally, the power transfer loss from the point where the 

electron is generated to the point o f  application was approximately 20% (Schuetz and 

Vroom, 1998). The power requirement or efficiency for production o f  ionizing electrons, 

losses from scattering at the window o f the beam accelerator, requirement for over­

scanning o f  the beam due to distance from the beam source to the edge o f the target area 

will total an additional amount o f  10% to 15% (Schuetz and Vroom, 1998).

The concentration o f the pollutant was a factor in the energy efficiency required for 

its removal from the water. The removal efficiency does not always follow the pattern 

established for HNMs (increasing dose and decreased concentration o f pollutant). Kurucz 

et al. (2 0 0 2 ) noted that low radiation dose may result in higher removal efficiency for 

some pollutants and in some cases a higher dose would be needed. Therefore, the 

radiation dose required for removal o f  each pollutant must be determined individually. 

Removal efficiency for HNMs follows the pattern o f increased removal efficiency with 

increase dose as was revealed in the molecular degradation o f high and low  

concentrations for TCNM indicated in Figure 5.1.

The electrical energy per order (EE/O) is unique to each pollutant and based on a 

logarithmic relationship between the change in pollutant concentration and the electron 

beam dose (Mincher and Cooper, 2003). The EE/O accurately compares AOP 

technologies for treatment efficiency and energy cost uniformly as the value was based 

on the definition o f  efficiency o f  kilowatt-hours o f  electricity required to reduce the 

concentration o f  a pollutant one order o f  magnitude (90% or D 0 .90) (Mincher and Cooper,
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2003). Smaller EE/O values are considered to indicate a more efficient process, because 

less energy would be required (Bolton et al., 1998).

Using the MAKSIMA-CHEMIST program and the kinetic mechanism, the 

degradation o f  TCNM was found to be described by first-order kinetics in terms o f  

TCNM concentration and presented in Figure 5.2 for [TCNM] = 1 .1 3 x 1 0  3 M and 

Figure 5.3 for [TCNM] = 1.82 x  10~8 M. The degradation rate constant determined for 

each concentration and the results will be applied in the determination o f  the EE/O 

(Bolton et al., 1998).

TIME (Min.)
60 700 10 20 30 40 50

- 0.5

y = -0.0525x + 0.1971 
R2 = 0.9979o

O

szoh-

- 2.5

- 3.5

Figure 5.2. Natural logarithm o f  the fraction o f  TCNM remaining 
as a function o f  time for [TCNM] = 1.13 x lO -3 M. Fraction 
remaining based on computer simulation where k = 0.0525 min.-1.
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TIME (Min.)
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Figure 5.3. Natural logarithm o f  the fraction o f TCNM remaining 
as a function o f  time for [TCNM] = 1 .82x  10 8 M. Fraction 
remaining based on computer simulation where k = 0.1795 min. l .
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The EE/O was determined for TCNM and presented in Table 5.2. For comparison, the 

D 0.9o and D 0.99 (dose required for 90% and 99% ETNM removal) was presented. HNM 

removal at a large scale facility would require inclusion o f both the D 0.99 and 

consideration for use o f  a removal quality factor (Q f = 2 .0 ). In addition, a safety factor o f

1 .1  should be added measure to account for unknowns.

The EE/O required to remove water with [TCNM] = 1.82 x  10- 8  M (3 [ig L ' ) was 

expressed in units o f  kWh/1000 Liters/order o f  magnitude (Bolton et al., 1998; Mincher 

and Cooper, 2003) where an electron beam unit at 150 kW suitable for 6  kGy at 2,200 

gpm (8,330 L min. ') (Pikaev, 1998). The EE/O calculated was also based on an 

extrapolation o f  60Co bench scale testing from a higher concentration to a lower modeled

 Q
concentration. The lower concentration 1.82 x  10 M would require an electron beam

unit at 65 kW suitable for 2 to 3 kGy at 2,200 gpm (8,330 L min.-1) (Pikaev, 1998). The

EE/O was determined by (Bolton et al., 1998; Mincher and Cooper, 2003):

EE/Q = 38.4 x Power(kWhrs) 4)

Volume (Liters) x k.

Table 5.2. Dose for 90% and 99% trichloronitromethane removal and equivalent energy
per order (EE/O) for pure water.

TCNM Concentration = 1 .1 3 x l0 -3 M 1 .82x  10 8 M

Dose (kGy) 90% Removal = 4.5 2

Dose (kGy) 99% Removal = 8.9 5

EE/O (kWh per order per m3) = 3.8 1.9

Price o f treatment is dependant upon several items in addition to the AOP equipment 

and these items vary widely based on facility parameters, location and the time when the
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treatment facility would be constructed (Zimek and Chmielewski, 1998). Pricing should 

include engineering cost, allowances for work performed at an existing facility versus 

new, pumping, piping, ancillary support equipment cost, market conditions that affect 

current interest rates, the size o f  the treatment facility, permitting costs, pilot plant study 

cost that has been found to be approximately 1 % o f the total project cost, land and 

easements, cost to bring electrical power to the site, site development, administration, 

staffing, and training, and replacement cost. Kurucz et al. (1995) found that an electron 

beam irradiation treatment system characterized as a 1.5 MeV, 50 mA producing 50 krad 

(0.5 kGy) at an interest rate o f  15% for 20 years operating for 8,000 hours per year 

treating 2,100 gallons per minute would cost approximately $0.76 per 1,000 gallons o f  

water in year 1995 dollars.

5.6. Summary

The study o f  free radical degradation o f  HNM was accomplished as four primary 

research components with the determination o f  the rate constants using pulse radiolysis 

performed first. The literature was surveyed to ascertain reasonableness o f  those 

experimentally obtained values and these rate constants were found satisfactory. The 

second research component included irradiation o f  HNMs using a 60Co gamma irradiator 

to mineralize the HNMs under varied gamma dose. The third component included an 

evaluation o f  HNMs to ascertain recovery o f  the degradation products and for mass 

balance. The mass recovery results are graphically presented by Figure 5.4 

chloronitromethane, Figure 5.5 dichloronitromethane, Figure 5.6 

dibromochloronitromethane, and Figure 5.7 bromodichloronitromethane.
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Figure 5.4. Mass recovery o f  chloronitromethane, CH2CINO2 . 
Chloride (O), nitrate (A), and CH2CINO2 ( ♦ ) .
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Figure 5.7. Mass recovery o f  bromodichloronitromethane, CBrChNCh. 
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The fourth component included a compilation o f  the experimental results and those 

results input into a mechanism developed for the HNM degradation. For TCNM, the 

model simulation results obtained were compared to the experimental mass recovered. 

The model indicated the production o f  chloride and nitrate ions in proportion to the 

experimental results. Irradiated solutions were analyzed for nitrite (NO2 ), however no 

nitrite was detected. Overall, the results were noted to be reasonable for the postulated 

degradation mechanism as evidenced by comparisons o f  the simulated mass recovery to 

experimental results.

The data obtained in these four experimental research components were then applied 

to large scale electron beam treatment o f  HNMs in water. The dose constant was 

identified for large and small concentration o f  HNM and the results indicated that 

increasing dose would degrade HNM. The dose constant (kD) for the following HNMs are 

graphically presented in Figure 5.8 for chloronitromethane, Figure 5.9 

dichloronitromethane, Figure 5.10 chlorodibromonitromethane, and Figure 5.11 

bromodichloronitromethane.

The removal quality and safety factors were addressed to identify requirement for 

large scale AOP. In addition to the energy cost identified as EE/O, a price for free radical 

AOP treatment using 65 kW electron beam was estimated at $0.51 per 1,000 gallons o f  

water for a 2.5 MGD water plant operating 14 hours per day in year 2005 dollars.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



In 
[C

NM
] 

(M
)

117

Dose (kGy)
0 1 2 3 4 5 6 7 8 9

y = -0.4374x-6.7733 

R2 = 0.9872

-10

-12

-14

Figure 5.8. Dose constant (Ap) =  0.437 kGy 1 for logarithm 
chloronitromethane concentration (O)versus dose in pure water.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



In 
[D

CN
M

] 
(M

)

118

Dose (kGy)

0 1 2 3 4 5 6 7 8 9

y = -0.8286X - 6.2073 
R 2 = 0.9505

-10

-12

-14

-16

Figure 5.9. Dose constant (Ap) = 0.829 kGy 1 for logarithm 
dichloronitromethane concentration (O)versus dose in pure water.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



In 
[C

DB
NM

] 
(M

)

119

Dose (kGy)

0 1 2 3 4 5 6 7 8 9

y = -0.5806x - 6.4728 
R2 = 0.9582

-10

-12

-14

Figure 5.10. Dose constant (&d) = 0.581 kGy 1 for logarithm 
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6 . SUMMARY

Drinking water professionals possess a continuous need to explore advanced treatment 

options for elimination o f  pollutants and disinfection-by-products found in drinking 

water. Drinking water disinfectants have been in use for a long time as a means for 

protecting the public health from microbial pathogens, however studies have shown that 

disinfection-by-products have been found (Rook, 1974). As a result o f  this use, DBP 

reduction or elimination has been identified necessary to maintain the public’s health, 

safety, and welfare. Each treatment option for removal o f  these DBPs must be 

understood and well developed prior to acceptance for use with the public’s drinking 

water.

The purpose o f  this study was to assess the potential for use o f  free radical Advanced 

Oxidation Processes (AOPs) in the degradation o f  halonitromethanes (HNMs) in water. 

The results obtained from this study will assist with an understanding for use o f  free 

radicals in the removal o f  these HNMs. Further, this research was designed to acquire the 

data needed for understanding free radical destruction o f  HNMs. The HNM destruction 

method included the use o f  hydroxyl radical and hydrated electron applied in an aqueous 

solution and the results were satisfactory.

Two primary goals were initially identified and subsequently accomplished in this 

research. They were to ascertain the efficacy o f  free radicals for destruction o f  

halonitromethanes and the identification o f  implications for water treatment using free 

radical AOP. The first goal identified was achieved by satisfactory identification o f  rate 

constants for halonitromethane compounds and their degradation byproducts. A kinetic
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mechanism for the degradation reactions was established and then confirmed by kinetic 

computer model simulation. The results o f  this research indicated that free radicals, *OH 

and eijq were found reasonable for the removal o f HNMs in aqueous solution. The

accomplishment o f  the second goal was substantiated by identification o f removal 

efficiencies for different HNM concentrations in solution, their dose rate constants, 

removal quality factor, and the electrical energy per order (EE/O).

The research provided a unique contribution o f data and information required for 

treatment o f  water. Prior to this research, there were no known free radical kinetic or 

mechanistic data for halonitromethane degradation in water. These research results 

should support scientists and engineers with the kinetic information needed for removal 

o f  HNMs in aqueous solutions.

The HNMs represent DBPs that will not be eliminated by current conventional water 

treatment processes. Given that the use o f  ozone in the treatment o f  water continues along 

with the use o f  chlorine and chloramines, free radical AOP may provide an alternative 

method for removal o f HNMs from water. The free radical AOP could provide a 

sustainable treatment process with potentially no adverse impact to water quality. 

Overall, free radical AOP was considered a viable process for degradation o f  HNMs in 

water.
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A. COMPUTER PROGRAMS FOR KINETIC ANALYSIS

A. 1. Mass Action Kinetic Simulation

Upon completion o f  the research to determine the rate constants for HNM destruction in 

water exposed to pulse radiolysis (LINAC) and the quantification o f the ion mass 

produced as a result o f  steady state irradiation by 60Co, a kinetic model was prepared to 

simulate the chemical reactions. The kinetic model included a series o f chemical 

reactions to simulate HNMs destruction in water upon exposure to ionizing radiation. A  

computer program was then used for study o f water radiolysis and the destruction o f the 

HNMs. The mechanism was coded into the kinetic computer model. Initially the 

computer model was used to simulate the degradation mechanism using the derived rate 

constants. The mechanistic model results were then compared to experimental results at 

level o f HNM the concentration as used in experimentation. The model was then revised 

to incorporate a lower concentration o f  HNMs to replicate the concentration o f HNM as 

found in drinking water. Based on the dose constant (&D) results for lower concentrations 

an estimate o f  the EE/O was made.

Three mass action kinetic computer models have been identified in the industry and 

open literature where they were designed for modeling kinetic reactions in the radiolysis 

o f water. These include MAKSIMA-CHEMIST, FACSIMILI™, and CHEMSIMUL™. 

Both FACSIMILI™ and CHEMSIMUL™ can be commercially purchased and are 

supported by their developers. MAKSIMA-CHEMIST was developed by Carver et al. 

(1979), Atomic Energy o f  Canada Limited and is no longer supported.
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Simulations were performed to compute the mass action kinetics o f  simultaneous 

chemical reactions. The kinetic computer program will accommodate 200 chemical 

reactions and up to 60 reactants. The computational analysis used in the program was 

prepared by Carver et al. (1979) based on radiation chemistry kinetics by Schwarz (1962) 

and differential equation algorithms by Gear (1971).

The MAKSIMA-CHEMIST kinetic computer model included rate constants from 

radiolysis o f  water identified in Table 1.3 (Buxton et al., 1988) and those HNM rate 

constants derived from experimentation. The model also included the concentration o f  

radicals as identified in equation (1.1), radiation dose (eV L 1 s '), time o f  radiation 

exposure in seconds, concentration for each o f  the solutes in moles, the reaction rate 

constant in units o f  s 1 or M 's ', and the ionic charge.

The model output provides the concentration o f  all the reactants as function o f  both 

dose and the time step. The relative error in the model predictions is comparable to the

number o f  accurate significant figures in the results (10~5) (Carver et al., 1979) and the

relative error o f  the input data.

The model is based on reaction o f chemicals in a given first or second-order reaction. 

From independent reactions (A .l) and (A.2) with rates constants k\ and ki (Carver et al., 

1979):

A~ +BC  - - -> AB + C  (A-1)

2 A B  ^ — > A iB i (A.2)

Reaction (A .l) removes A  and BC from the system to form AB and C at a rate

according to (A.3) (Carver et al., 1979):

Rx = k d A - ] [ B C ]  (A.3)
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The total net rate o f  formation o f AB from (A .l) and (A.2) (Carver et al., 1979):

— [AB] = k x [ A] [ BC] - k i [ AB] 2 (A.4)
dt

Instantaneous formation is given by (Carver et al., 1979):

[ A ]  =  [ ^ ] 0 + j ( | [ ^ 5 ])A (A -5)

Summarizing equations (A .l) through (A.4) gives (Carver et al., 1979):

v a A  + v b ^  + v c C ^ v d D + i>e E + v f F  (A-6 )

where v are integers, removes negative reagents A, B, and C from the system to form

positive products D, E, and F and a rate according to (Carver et al., 1979):

R, = ± k ,  [ A f * [ B } » ‘ [C]Vc =  ±  k, U l x , ]  J ( A .7 )

where k\ is the rate constant. In m reactions and p  species, the time derivative for the

concentration o f  species xg would give (Carver et al., 1979):

d [ Xg] ™ m Pi  r 21„
 = I  v XfT R i=  X  ±ki O  n  '-x i j zJ x i j  (A .8 )dt  i= l x g t i = l x g . j = i J J \ >

The elements o f  the Jacobian matrix follows and is used in the predictor-corrector 

equation (Carver et al., 1979):

a  d[X r ] 

d[xr] dt
.u x

i = i

X
(u

ri
x - i )

ri
Pin

7=1 
^  r

V
x i j  (A.9)
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Analytic expression for the Jacobian matrix is by equation (A.9) and automatic 

solution o f  differential equations with criterion for order o f  approximation (Gear, 1971). 

Problems encountered in the solution include an expression for derivatives (rate equation) 

where they are nonlinear, and they must be done numerically (Carver et al., 1979). As 

nonlinearity increases small errors will amplify and the individual reaction rates may 

differ by orders o f  magnitude. The resolution is by use stiff equation integration. These 

stiff equations allow for follow fast transients and small integrations where they rapidly 

increase their time step when initial transients have died out (Carver et al., 1979). Carver 

et al. (1979) identified that the backward differencing method for stiff differential 

equations effectively avoids the stability constraint on integration by implementation o f a 

stepwise method. This was accomplished by use o f  the Gear (1971) algorithm that 

effectively combined this integration with an effective error controlled step size and order 

selection (Carver et al., 1979).
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B. ANALYTICAL METHODS

Precaution was made to secure HNM samples and extreme care was used when sealing 

and storing samples to assure they are upright and caps were screwed tight. Samples were 

stored in chilled storage. It was noted that HNMs will not tolerate long periods o f  storage 

as they w ill evaporate. Caution should be used for handling HNMs and strict safety 

procedures must be used. These compounds are an irritant, toxic, and possibly 

carcinogenic.

Analytical methods conformed to applicable procedures for the equipment and 

laboratory equipment use was within date o f  last calibration. Generally, calibrations were 

provided with sample blanks and control samples were applied. Analytical methods 

applied in this research are identified in Table B .l. A detailed description o f  the methods 

and procedures follows.

Table B .l. Analytical Methods

Item Parameter Method

1 Purity o f  Sample Distillation Nuclear Magnetic Resonance

2 HNM residual in the 60Co irradiated samples Gas Chromatography/ Mass 
Spectrometry

3 Determination o f samples anion (chloride, 
bromide, nitrate, nitrite) concentrations in the 
60Co irradiated samples

Ion Chromatography

4 Intermediate and Final Compound 
Identification in the 60Co irradiated samples, 
oxalic acid and formic acid

High Performance Liquid 
Chromatography
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B .l. Nuclear Magnetic Resonance

A Bruker™ Nuclear Magnetic Resonance (NMR) instrument incorporated use o f  a 400 

MHz radio frequency generator. It was designed to pulse the sample and then record the 

signal given o ff by the relaxing nuclei. The data obtained was then mathematically 

treated by Fourier-Transform in an integral digital analyzer. The data was then analyzed 

to provide information about the molecule under study. The principal o f  operation was 

based on the condition where non-identical nuclei exist in different chemical 

environments, and therefore resonate at different frequencies. The peaks o f  NMR spectra 

indicate when a particular nuclei o f  the molecule was in resonance. The data was then 

interpolated by computer and the digital results, as percentage o f  purity, were provided.

B.2. Gas Chromatography Mass Spectrometry

Gas Chromatography Mass Spectrometry (GC/MS) was used to determine the amount o f  

residual halonitromethane remaining in solution after 7 -irradiation. Aqueous solutions o f  

60Co irradiated and control treatments (1 mL) were fortified with an appropriate amount 

o f an internal standard (1 ,3  dichloropropane) and liquid-liquid extracted against 1 mL o f  

MTBE by using an orbital shaker. Upon separation o f the organic phases, 500 uL o f the 

MTBE extracts were recovered from the vial and placed into a glass insert. After addition 

o f a recovery standard the samples were run on a GC/MS (Finnigan, DSQ Utra-Trace™). 

The system was equipped with a 30 meter x  0.25 mm x  0.25 micron capillary column 

(Model DB5-MS). Helium was used as a carrier gas at a flow o f 1.0 mL min. 1 and 

compounds were eluted from the column by ramping the oven from 45° to 150°C at 15°C 

per minute (Chen et al., 2002). Care was exercised to not exceed temperature limits for
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halonitromethane volatilization. All compounds were quantitated under electron impact 

ionization (70 eV) in selected ion mode (SIM) with a minimum o f three diagnostic ions. 

A six point calibration curve (0 to 100 ppm) was used to quantitate the HNMs 

using internal standard method. Calibration curves used for the GC/MS to determine the 

concentration o f HNMs are presented in Figure B .l.

12

X  F
10

F _ y= 1.7743X-0.0951 
R2 = 0.998

8
y = 2 .0482x-0.1985 

E = R2 = 0.996
CO

6
D _ y = 3 .144x-0.2586 

R2 = 0.995
CO

cl 4CO ^
y=  1.4978x-0.0853 
R2 = 0.996

2
B= y=  1.1566X- 0.1254 

R2 = 0.997
0

y = 1.6258x-0.1359 
R2 = 0.998

■2
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Amount Ratios

Figure B .l. Calibration curves for GC/MS. Chlorodibromonitromethane (A), 
chloronitromethane (B), trichloronitromethane (C), bromochloronitromethane 

(D), dichloronitromethane (E), bromnitromethane (F).

The minimum level o f  detection for the GC/MC was estimated by investigation o f  the 

lowest calibration solution (0 . 1  ppm) and the results obtained from a calculated ratio o f  

signal to noise (S/N). The integral GC/MS software was used to calculate the height o f  

the peak for the HNM and automatically divide this peak height number by the height o f
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the average noise to the side o f the peak. The lowest sensitivity is based on a minimum 

signal to noise ratio to detect a peak. This method applied uses a basis for discrimination 

o f  the condition that the signal has to be significantly different that the noise (one 

standard deviation). The S/N ratios were calculated for each o f  the triplicates o f  the 0.1 

ppm HNM solutions. The S/N values, which ranged between 800 to 8000 depending on 

the analyte, were then used to back calculate the concentrations in units o f ppm and 

produce a S/N o f 10. The minimum detection level (MDL) for each o f the HNMs is 

presented in Table B.2. Based on this method, the overall MDL for all HNMs was 

approximately 0.03 ppm.

Table B.2. Minimum Level o f  Detection for GC/MS

Compound Minimum Detection 
Level (ppm)

RSD for n=3 
(%)

chloronitromethane 0 . 0 2 1 1 1

dichloronitromethane 0.003 5
trichloronitromethane 0.025 4
bromonitromethane 0.005 1 2

bromodichloromethane 0.004 5
chlorodibromonitromethane 0.009 6

B.3. High Performance Liquid Chromatography

The High Performance Liquid Chromatography (HPLC) system was used in the analysis 

o f samples for oxalic acid and formic acid concentrations. The HPLC (Hitachi, San Jose, 

CA) system was equipped with a computer interface (Model D-6000) and ultra-violet 

detector (Model L-4000H) set at 210 nm. Eluant as 0.1% H3PO4 was pumped (L-6200A  

Intelligent Pump™) at 0.5 mL per minute and the configuration incorporated use o f  an 

autosampler (AS-4000 Intelligent™). The system was controlled by the equipment
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manufactures computer software (Hitachi D-6000 HPLC Manager™, Version 2, Revision 

10). Organic acids were separated using a column (Supelco, Supelcogel™ C-610H) 

operated at 30°C. A guard column (Supelcogel™ H) and a 50 mm column packed with 

Amberlyst 15 resin beads were also used. Samples were filtered and placed in 2 mL 

vials. Reagents used for HPLC analysis include standards that were prepared for organic 

acid analysis using sodium formate (certified by American Chemical Society, Fisher 

Scientific, Fair Lawn, NJ, Lot 986590) and oxalic acid disodium salt by (Sigma, St. 

Louis, MO, Lot 41H0116). A  2000 ppm formate and a 1000 ppm oxalate stock solution 

were prepared. Standard concentrations consisted o f  200 ppm, 20 ppm, and 2 ppm 

formate, and 100 ppm, 10 ppm, and 1 ppm oxalate. Standards contained both formate 

and oxalate. All standards were prepared using nano-pure water with resistivity ^18- 

MO cm at 25°C. A  blank was also run and prepared from >18 MO cm at 25°C nano-pure 

water. Limit o f  detection was approximately 0.02 mM. The calibration standard data for 

the HPLC is presented in Table B.3.

Table B.3. HPLC standard data for oxalic acid and formic acid

Standard
(ppm)

Oxalic Acid 
(area response)

Formic Acid 
(area response)

Blank 0 0

2 0 124843 4244
2 0 128578 4149

1 0 0 409125 48076
1 0 0 430677 50747
2 0 0 854903 106339
2 0 0 885587 111057

Notes:
1. Linear regression analysis o f the oxalic acid standard yields the 

line equation y = 4146x + 30043 for R2 =0.9955
2. Linear regression analysis o f the formic acid standard yields the 

line equation y = 581.07x - 7878.6 R2 = 0.9985
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B.4. Ion Chromatography

Ion chromatography (IC) for the determination o f anion (chloride, bromide, nitrate, and 

nitrite) concentrations in the 60Co irradiated samples was performed on an ion 

chromatograph (Dionex, Sunnyvale, CA, USA DX-500™). Components o f  the Dionex 

system consisted o f  a gradient pump (Model GP50), an electrochemical detector (Model 

ED40), and a thermal compartment (Model AS50). Samples were loaded using a 

Rheodyne, Cotati, CA, USA six-port valve (Model 9750E-033). A  25 pU loop made 

from polyether ether ketone (PEEK) tubing was fitted to the six-port valve. Data 

acquisition and instrument control chromatography were performed using a personal 

computer with the equipment manufacture’s software (Dionex, PeakNet™ Version 5.2).

A  Dionex eluent generator (Model EG40) was used and equipped with a cartridge 

(Model EGC II-KOH), suitable for producing potassium hydroxide eluents. A  Dionex 

(AS 17 IonPac™) analytical column 4 x 2 5 0  mm was used to perform ionic separations. 

A guard column (Model AG 17) 4 x 5 0  mm was also present. Eluent concentrations 

through the columns as a function o f  runtime were: 0 to 3 minutes at 10 mM, 3 to 5 

minutes at 10 to 15 mM, 5 to 8  minutes at 15 to 25 mM, 8  to 12 minutes at 25 to 30 mM, 

and 12 to 15 minutes at the 10 mM concentration. Eluted peaks were integrated and 

anion concentrations were calculated from standard curves. Each o f  the original 

irradiated samples and blank samples (time = 0) were analyzed in triplicate. Quality 

control standards were run before and after each eight hour day and interspersed every 

1 0 th sample during the run.

Chemicals, solutions and samples were prepared and diluted using Class A  

volumetric glassware and >18 M ficm  at 25°C nano-pure water. Standards were prepared
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using a Dionex seven anion standard. The original concentration o f anions in the 

standard were; 20 mg L_1 fluoride, 30 mg L_1 chloride, 100 mg L 1 nitrite, 100 mg L 1 

bromide, 100 mg L_1 nitrate, 150 mg L_1 phosphate, and 150 mg L_1 sulfate. Dilutions o f  

the original standard were prepared using serial dilution techniques. The IC calibration 

standard data for is presented in Table B.4 and Table B.5. Minimum level o f  detection 

was identified as 1 ppm.

Table B.4. Ion chromatography standard data for Cl and NO 3

Standard
(ppm)

c r
(microSiemens/m)

N ( V
(microSiemens/m)

Blank 0.0037 0.009
1 0.2178 0.1219
5.0521 1.1445 0.6513

10.0715 2.2952 1.329
20.2674 4.641 2.7217

Notes:
1. Linear regression analysis of the CL standard yields the line

equation y = 0.2296x -  0.0143 for R2 =1
2. Linear regression analysis of the N()3 standard yields the

line equation y = 0.1352x -  0.024 for R2 = 0.9999

Table B.5. Ion chromatography standard data for Br and NO 2

Standard
(PPm)

Br
(microSiemens/m)

N 0 2

(microSiemens/m)
Blank 0 . 0 0 0 0 . 0 0 0

1 . 0 0 0 0.096 0.161
5.052 0.512 0.841

10.072 1.030 1.661
20.267 2.086 3.258

Notes:
1. Linear regression analysis of the Br standard yields the line

equation y = 0.1033x -  0.0088 for R2 =1
2. Linear regression analysis of the N 0 2” standard yields the

line equation y = 0.1603x -  0.0215 for R2 = 0.9998
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