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ABSTRACT

WATERSHED-SCALE HYBRID STOCHASTIC-DETERMINISTIC 
MODELING FRAMEWORK AND DIFFUSED SOURCES SUPERPOSITIONING

Ruby Juvah Damalie 
Old Dominion University, 2013 

Director: Dr. Jaewan Yoon

Predicting hydrologic system behavior is imperative to planning and management 

of water resources. The study developed an integrated hybrid stochastic and deterministic 

framework to improve prediction accuracy for overland flow and diffused sources in a 

watershed. The methodology includes sampling input parameters at system level and 

contribution of nonpoint source from hydrologically disconnected areas (heretofore 

referred to as system-level approach and superpositioning respectively). System-level 

approach includes the integration of a topography-based sampling grid generalized linear 

model developed by the study and Monte Carlo methods. The superpositioning method 

adopts in-stream water quality equation for overland flow pollution estimation.

The system-level approach was applied to the Patuxent watershed to determine 

runoff, phosphorus and total suspended solids using continuous rainfall. For overland 

flow, system-level approach (p-value of 0.68) was 0.51% off the observed flow compared 

with -21.9% for existing method (p-value of 0.11). Similarly for phosphorus, the model 

prediction deviated from the observed by 7% compared to that of the existing method 

which deviated by -32%. The results indicate that the system-level method is a better 

predictor for overland flow and nonpoint sources. In the superpositioning approach, 

phosphorus contributions were added to the system-level approach using an event 

rainfall. The prediction error reduced from 4.82% to -0.29% when the system-level



method was superpositioned with nonpoint source. Data from superpositioning analysis 

showed that including diffused sources contribution from hydrologically disconnected 

areas further improves the level of accuracy.

The study demonstrates that the framework reduces prediction error and has a high 

accuracy in reproducing watershed response. The hybrid methodology framework is 

superior to existing deterministic methods. Ultimately, this dissertation shows the 

potential of improving prediction accuracy of hydrologic systems by incorporating the 

strengths of both stochastic and deterministic models. The framework serves as a 

background for detailed applications for the developed models.
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1

CHAPTER 1 

INTRODUCTION

The interaction in surface water systems between land surface and atmosphere is an 

important piece of information for water resource engineers and managers. This is 

because the interaction influences the hydrologic response in the watershed. Hydrologic 

responses such as runoff and nonpoint source are random in nature and difficult to predict 

due to their constant interactions with natural and anthropogenic elements. Understanding 

and predicting these exchanges is important to agriculture (irrigation planning and 

vegetation and crop growth), natural hazards prevention and mitigation (floods, droughts, 

erosion, landslides), and water quality management (point and nonpoint source pollutants 

in catchment and stream waters) (Troch et al., 2003). Efficient management of the 

hydrologic response of a watershed is often implemented at a watershed scale. Hence, the 

need to understand the interaction between the watershed and stressors or triggering 

elements is important to ensure system’s reproducibility.

Predicting watershed system’s response is often accomplished through the use of 

models and/or intensive monitoring to gather adequate information. Monitoring is the 

most desirable, as it gives observers an actual snapshot of what is physically happening in 

the watershed. However, monitoring (1) could be very expensive, (2) often lacks baseline 

data with which results can be compared, (3) is impossible to monitor all aquatic systems 

at all sites (Albert, 2011), and (4) could lead to deficiency in the clear understanding of 

physical processes underlying the data (Niemi and Niemi, 1991). Though monitoring is 

an excellent option when available, statistical and deterministic hydrologic models have



been developed as alternatives to look at watershed processes where extensive long term 

monitoring is not feasible. Modeling tools provide a better understanding of the complex 

relationships between land use activities and hydrologic processes that occur within a 

watershed (Singh et al., 2005; Im et al., 2007). Such modeling approach can look at 

historical conditions in the same watersheds, or use reference watersheds for comparative 

approximation to establish subjugated characteristics.

Hydrologic models are mathematical expressions used to represent the response of 

a physical system that are both natural and anthropogenic in nature. They estimate 

hydrologic conditions over time and provide tangible approximations of the real world by 

simulating the movement of hydrologic processes and pollutants in manageable form. 

Hydrologic models can be classified as either stochastic or deterministic depending on 

the physical process defining the input data and the modeling process. Stochastic 

modeling allows the introduction of probabilities and likelihood in order to simulate 

systems that are subject to uncertainties. Examples of frequently used stochastic methods 

are Monte Carlo Method (Gardner, 1983; Huang and Lee, 2009), Latin Hypercube (LHC) 

(Benedetti et a l, 2011; Yeboah-Forson, 2007; Post et a l, 2008) and Markov Chain 

Monte Carlo (MCMC) (Kleidorfer et al., 2009; Kuczera et al., 2006; Vrugt et al., 2008). 

The synthesis of stochastic models is largely based on extensive data. However, 

predictions and extrapolations by stochastic models are impeded where data is sparse and 

contains high level of noise. The computation process of pure stochastic models could 

also be very complex.

Deterministic models, on the other hand, are built on assumptions and 

simplifications of complex system processes (Mix, 1994). They always produce precise



outputs through known relationships among states and events given the same set of inputs 

(Melone et a l, 2005). They are very straightforward in application but are deficient in 

accounting for system uncertainty. Deterministic models usually predict stable system 

behavior accurately where there is abundance of data. However, these models often fail 

to estimate the true system response and trends when there is variability in space and time 

within system couple with sparse data. This failure is due to the assumptions and 

simplifications in deterministic approaches for natural processes that vary in nature.

Evidently, combining the two models described produces a hybrid model which 

exploits the strengths of both deterministic and stochastic models. A hybrid model 

reduces computation complications associated with stochastic models and concurrently 

accounts for system uncertainties related to deterministic models. Vojinovic et al. (2003) 

highlights the significance of using a hybrid method for hydrologic prediction by 

showing its strong potentials for reducing stormwater quality prediction error and 

uncertainty inherent in deterministic models.

1.1 Problem Conceptualization

The hydrologic response of a watershed is erratic and random due to the continual 

interaction between the watershed and triggering elements or stressors. Modeling of such 

a watershed system without accounting for various degrees of uncertainties, often leads to 

erroneous predictions. Incorporating these uncertainties into models and quantifying their 

impact on a model’s output is desirable in hydrologic modeling and prediction (Post et 

al, 2008; Saltelli et a l, 2000; Zaehle et a l, 2005).

A vast wealth of studies has been done on uncertainty propagation on hydrologic 

predictions. Most of these studies focused on model parameterization which relates
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uncertainty to the model and assumes the input data is accurate (Vrugt et al, 2003; 

Moradkhani et al., 2005). Although uncertainty of a model by itself is important, studies 

by Smith and Hebbert (1979), Kuczera et al. (2006) Huang and Lee (2009) and 

Franceschini and Tsai (2010) showed the impact of parameter inputs uncertainty on 

hydrologic modeling. These studies defined uncertainty on weather elements (Kuczera et 

al. 2006; Franceschini and Tsai, 2010), infiltration (Smith and Hebbert, 1979) and 

Mannings roughness coefficient (Huang and Lee, 2009).

In contrast, little is known about how physiographic parameters such as infiltration, 

lower zone soil moisture, and surface roughness impact hydrologic prediction on a basin 

scale. Although Smith and Hebbert (1979) and Huang and Lee (2009) successfully 

investigated the effect of uncertainties in physiographic parameters, these models were 

limited to micro catchment scale. Field scale studies that are extrapolated to a watershed 

scale often leads to errors (Bloschl and Sivapalan, 1995). The reason is as spatial extent 

increases, the models assume homogeneity and may fail to capture the increasing level of 

heterogeneity imposed by the increasing scale (Jetten et al., 1999; Wood et al., 1988).

The need for a watershed-scale analysis requires further investigation to verify the 

implication of uncertainty on hydrologic prediction. Besides the issue of scale, it is 

evident that the impact of physiographic parameter on hydrologic prediction is not fully 

understood and entirely explored. Thus, this study introduces a hybrid modeling 

framework that can be used to understand the dynamics of uncertainty propagation from 

physiographic parameters at a watershed scale. This approach in theory would lead to 

reduce prediction error and enhance the understanding of their impact on hydrologic 

modeling.
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1.2 Research Objectives

The overall goal of this research is to develop a hybrid hydrologic modeling 

framework by interconnecting deterministic and stochastic methods for estimating 

overland flux and resultant loadings for water quality characterization. The goal would be 

achieved by using a hybrid model developed from stochastic methods and widely known 

deterministic hydrologic model. Other specific objectives of this dissertation are to:

1 Implement and verify a stochastic system-level Probability Density Function (PDF) 

based on sampling methodology for model parameterization with 

prior/posterior sensitivity analysis.

2 Develop and verify a methodology that connects stochastically estimated parameters 

into a deterministic computation engine.

3 Conceptualize and implement deterministic and stochastic methodologies to 

represent nonpoint source into the proposed hybrid hydrologic modeling framework 

by using method of superposition over time and space.

4 Compare hybrid hydrologic modeling framework, representing both point and 

nonpoint source loading influx and efflux to conventional methodologies.

1.3 Originality and Contribution

In-depth review of literature has shown that the subject of uncertainty at input data 

level relating to physiographical parameters has not been fully explored. The thesis 

bridges the gap by enhancing the understanding of uncertainty propagation from 

physiographic parameters and their effects on hydrologic prediction on a macro-scale. 

This is a novel approach for large watershed modeling. The study introduces a framework 

at system-level which combines both stochastic and deterministic model to investigate
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the propagation of uncertainties of physiographical parameters. The core of the study is 

the application of stochastic concepts, supplemented by the deterministic model as a 

computation engine for the hybrid modeling framework. The study argues that a system 

level approach to hydrologic modeling could significantly improve the reproducibility of 

outcomes and greatly reduce prediction error. The study also introduces a method that 

augments current exiting nonpoint source models to account for hydrologically 

disconnected areas. This approach is unique to this study especially for diffused source 

modeling.

The major contributions of this dissertation can be found in Chapters 3, 4 and 5 

which describe the modeling framework of hybrid model and its applications to Patuxent 

watershed in Maryland. The study enhances the understanding of uncertainty propagation 

from spatially variable and heterogeneous physiographical parameters. The work 

introduces a methodology framework on pre-evaluation of hydrologic model parameters 

that can significantly reduce model prediction errors. This dissertation overall, would 

augment the knowledge of overland hydrologic modeling and would enhance decision 

makers’ ability to make valid and more informed logical decisions in watershed 

management.

1.4 Chapter Structure

The dissertation is organized into six chapters. Problem conceptualization and key 

questions to be addressed are contained in Chapter 1 as introduction. In Chapter 2, 

relevant review of literature relating to the study is presented. This includes definitions 

and brief description of the hydrologic system, an overview of physiographic parameters 

relevant to the hydrologic modeling used in this study, data sources and impact of data
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inherent errors in hydrologic prediction. The key objectives of the dissertations are 

addressed in Chapters 3, 4 and 5. Summary and recommendations from the study are 

presented in Chapter 6.

Chapter 3 describes a detailed formulation of the framework including 

assumptions and concepts underlying the development of the model. A system-level 

approach which integrates stochastic and deterministic approaches to determine 

responses in a watershed to hydrologic processes are outline. The chapter also includes 

the integration of a generalized linear model and Monte Carlo method for input 

parameterization. The inputs are processed by computation engine (e.g. Hydrologic 

Simulation Program Fortran) to estimate overland flow and nonpoint source pollutants of 

orthophosphate (as phosphorous) and total suspended solids.

Application of the proposed hybrid modeling framework to the Patuxent watershed 

at a basin scale is presented in Chapter 4. The framework stochastically preprocessed 

some selected hydrologic data as input into a deterministic model to determine the 

hydrologic response to nonpoint source pollutant flux of phosphorus and total suspended 

solids in the watershed. Evidence from the case study indicates that prediction error 

reduces significantly for overland flow when compared to the conventional deterministic 

method. The hybrid modeling framework used in this study effectively captures the 

spatial and temporal characteristics inherent in natural systems.

Chapter 5 extends the methodology framework to areas within the watershed that 

are typically omitted in conventional modeling process presented in Chapter 4 due to 

delineation errors caused by segmental elevation ridges. As a result, the amount of NPS 

generated from these omitted areas is often unaccounted for. The method of



superpositioning was used to account for the total generation of NPS in the watershed. In 

this analysis the NPS loading at the outlet of the omitted area was superimposed on to the 

nonpoint source computed by the hybrid model to determine the overall response of the 

watershed to nonpoint sources propagation.
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CHAPTER 2 

REVIEW OF LITERATURE

A surface water system includes runoff, storage systems (ponds, lakes and 

reservoirs) and conveyance (rivers and streams) systems. Understanding these systems 

entails the knowledge of the hydrologic cycle and processes that take place within a 

watershed. Processes at the interface between land surface and atmosphere determine the 

redistribution of water on land surface and underneath (Troch et al., 2003). These 

watershed processes are driven by both climatic conditions and physiographic 

characteristics. The hydrologic response of a watershed to these processes varies spatially 

and temporally based on the spatial scale of the watershed. Ultimately, understanding the 

interrelationship between physiographic parameters and the hydrologic response of a 

watershed is essential to hydrology professionals towards efficient management of the 

water resources.

2.1 Surface Runoff and Diffused Source Characterization

Surface runoff is controlled by spatial and temporal characteristics of climatic 

patterns and the spatial variation of physiographic parameters. While the effect of climate 

is an important subject for discussion, this research focuses on the variability of 

physiographic parameters at a macroscale level. These physiographic parameters include 

geology, topography (relief, slope), vegetation type, landuse and soil type (Hundecha and 

Bardossy, 2004; Shi et al., 2007; Fohrer et al., 2005; Li et al., 2012). Runoffs are 

effective contributors of pollution to a body of water because they serve as the main 

transporter of pollutants on land (Barnes et al., 2001; Arnold Jr and Gibbons, 1996).
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Diffused sources (nonpoint source pollution) originate as the surface runoff generated 

from rainfall or snowmelt washes off buildup pollutants on land and transports them into 

a receiving body of water. The magnitude of nonpoint source generated is directly 

proportional to the runoff as low amount of surface runoff leads to relatively low amount 

of NPS effluent and vice versa (Luo et a l, 2006).

Nonpoint sources pollutants have intrinsic random nature because of surface runoff 

as a posterior to rainfall uncertainties (Fujiwara et a l, 1988). They have no specific outlet 

or discharge point but spread out over a large area (diffuse) as they enter a water body. 

The NPS effluents have no definite source but are closely linked to landuse types making 

them difficult to locate, characterize, control, and manage (Qin et a l, 2010; (Ribolzi et 

al., 2011; Nakane and Haidary, 2010; Broussard and Turner, 2009). Agricultural lands 

have been identified as the major contributor to NPS pollution. They contribute 

approximately 50% of pollution in lakes and 60% of pollution in rivers every year 

(USEPA, 1996). Urban and developed areas are also known to contribute significantly to 

NPS pollution (Carle et a l, 2005; Norman et a l, 2008). Effluents from urban areas 

constitute approximately 40% of pollution to waterbodies in the United States (USEPA, 

1996).

Thomann and Mueller (1987) classified nonpoint source pollution into two main 

categories, namely conservative and non-conservative. Conservative pollutants do not 

degenerate or transform but non-conservative pollutants undergo transformation during 

transport. Nonpoint source pollution can also be categorized into five major classes 

including pathogens, nutrients, toxic contaminants, debris, and sediment (USEPA, 1996). 

Pathogens are disease-causing organisms, and are hazardous to health. Nutrients, such as



phosphorous and nitrogen, stimulate the growth of algae, phytoplankton and other aquatic 

plants leading to eutrophication and depletion of oxygen in water body. Toxic 

contaminants, heavy metals and pesticides, are hazardous to all forms of life. Debris 

degrades the aesthetic quality of waterways and can also be hazardous to animals and 

humans. Sediments generally alter streamflow and decrease the availability of a healthy 

aquatic habitat, and are the leading cause of water degradation. Total suspended solids 

are the result of sediment erosion. They are composed of minerals and organic particles 

that remain suspended in water or sink slowly but easily get resuspended when agitated. 

They cause turbidity and cloudiness that reduce the level of light penetration in water.

2.2 Hydrologic Systems Characterization and Prediction

The hydrologic characteristics of watersheds are dynamic in nature. They exhibit 

spatial and temporal characteristics and phenomena due to extremities imposed by 

physiographic parameters within a watershed. These constraints are due to the 

heterogeneity and spatiotemporal characteristics of physical features found within a 

watershed that greatly influence the hydrologic response.

Characterizing hydrologic systems relies on the understanding of how the 

watershed responds to triggering elements and external stressors such as human 

intervention. Hydrologic systems can be characterized by (1) observing trends in data 

obtained from long term monitoring and or (2) using existing models. Monitoring is the 

most desirable, as it gives observers an actual snapshot of what is happening in the 

watershed at any that time. However, monitoring (1) could be very expensive, (2) could 

lack baseline data with which to compare results, (3) is impossible to monitor all aquatic 

systems at all sites (Albert, 2011), and (4) could lead to deficiency in the clear
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understanding of physical processes underlying the data (Niemi and Niemi, 1991). 

Though monitoring is an excellent option when available, statistical and deterministic 

hydrologic models have been developed as alternatives to look at watershed processes 

where long term monitoring is not feasible. Modeling tools can provide a better 

understanding of the complex relationships between land use activities and hydrologic 

processes that occur within a watershed (Singh et al., 2005; Im et al., 2007).

2.3 Hydrologic Input Parameters

Predicting the hydrologic response of a watershed depends mainly on the 

understanding of the interrelationship that exists between physiographic parameters and 

hydrologic processes. The hydrologic input parameters relating to physiographic features 

considered in this study are topography, surface roughness, infiltration, lower zone soil 

moisture, evapotranspiration and interception. Topography is the backbone to hydrologic 

modeling (Beven and Kirkby, 1979; O’Loughlin, 1981; O’Loughlin, 1986; MacMillan et 

al., 2004). It defines the effects of gravity on the movement of water in a watershed 

(Wolock and McCabe, 1995; Wu et al., 2008 and Sharif et al., 2010) and impacts every 

phase of the hydrologic system. Surface (Mannings) roughness coefficient is a function 

of soil conditions and land use (USEPA, 2000). In addition to topography and roughness, 

infiltration, a function of soil type (Dexter, 2004; Lipiec et a l, 2006), is crucial to 

determining soil moisture and the amount of runoff. Likewise, interception, a function of 

vegetation cover, is one of the important parameters in hydrologic processes (Savenije, 

2004) resulting from the interaction of rainfall with vegetation. This parameter 

contributes largely to the amount of runoff as it determines how much precipitation 

reaches the ground (Savenije, 2004; Gerrits et a l, 2010; De Groen and Savenije, 2006;
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Shachnovich et a l, 2008). The precipitation that reaches the ground influences the lower 

zone soil moisture. Another input factor important to watershed modeling is 

evapotranspiration (ET). It controls the soil moisture in the lower zone. Detail knowledge 

of these hydrologic input parameters in a watershed is essential to researchers, engineers 

and other water resources practitioner.

2.4 Classification of Hydrologic Models

Hydrologic models are mathematical expressions that are used to represent physical 

hydrologic conditions of a watershed over time. They help to evaluate “what i f ’ questions 

for better management of the system under study. Models are classified into various 

categories based on the type of modeling approach employed (Melone et al, 2005). They 

can be categorized as either stochastic or deterministic models depending on the input 

parameter specification and the modeling process. Other classifications include lumped 

or distributed, event-based or continuous, empirical, conceptual or physically-based and 

steady or unsteady flow.

Stochastic models use probability distributions to represent their input parameters 

to produce a range of output parameters within a specified confidence interval (Melone et 

al, 2005; Obropta and Kardos, 2007). They simulate systems that are subject to 

uncertainties. Examples of frequently used methods includes the Monte Carlo Method 

(Gardner, 1983; Huang and Lee, 2009), Latin Hypercube (Benedetti et a l, 2011; Yeboah- 

Forson, 2007; ) and Markov Chain Monte Carlo (Kleidorfer et a l, 2009; Kuczera et a l, 

2006; Vrugt et a l, 2008). These methods involve random sampling from a distribution of 

inputs and successive model runs until a statistically significant distribution of outputs is 

obtained (Yeboah-Forson, 2007). The Monte Carlo method used in the development of



the modeling framework in Chapter 3, typically samples the probable values for each 

uncertain input parameter into ordered segments of equal probability covering each of its 

possible segments. The synthesis of stochastic models is largely based on extensive data. 

However, predictions and extrapolations are impeded when data is sparse and/or contains 

a high level of noise. They are also computationally complicated and exhaustive 

(Vojinovic et al., 2003). However, their conceptual framework makes it possible to 

describe heterogeneity where there are limited spatial or temporal details and are able to 

provide decision makers with the ability to determine uncertainty associated with 

predictions (Melone et al., 2005; (Zheng and Keller, 2008).

Deterministic models are mathematical models that always produce outputs solely 

through known or pre-defined relationships among states and events given the same set 

of inputs (Melone et al., 2005). They are built on assumptions and simplifications of 

complex system or processes. They predict very well with sparse data but often fail when 

variation in space and time exceed those assumptions and simplifications. Among the 

widely used deterministic models in watershed studies is the Hydrologic Simulation 

Program in Fortran (HSPF). The HSPF has been fully validated and shows good degrees 

of predictive accuracy (Bicknell et al., 1985; Laroche et al., 1996). Hydrology, nutrients, 

toxics, sediment and other water quality processes have been successful estimated with 

HSPF (Albert, 2011). In the development of the hybrid model used in this study, the 

HSPF is used as the computation engine to the stochastic model due to its input 

hierarchical structure. The use of HSPF in the hybrid modeling platform reduces the 

limitations associated with deterministic models.
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2.5 Hydrologic Data, Parameter Synthesis and Preprocessing

Data for hydrologic modeling are obtained from direct sources such as field data 

sampling and/or from governmental institutions such as the United States Geological 

Survey (USGS) National Resources and Conservation Service (NRCS) and the United 

States Environmental Protection Agency (USEPA). Obtaining the appropriate data for 

hydrologic modeling is a major challenge. The challenge is the result of data scarceness, 

non-ready-to-use data, non-usable formats and scale, and dissimilar dates. Such 

deficiencies often require the modeler to synthesize the required data from the available 

relevant data into a usable format and scale required by the model.

2.5.1 Current Techniques for Data Processing and Synthesis

Geographic information system (GIS) is an indispensable tool often used by 

hydrologists to process hydrologic input data. It has the ability to integrate spatial data 

with non-spatial attributes of a data. When applied to hydrologic systems, non-spatial, 

information can include description of soils, landuse, landcover, groundwater conditions 

as well as man-made systems (DeVantier and Feldman, 1993). The capabilities of GIS 

often used in hydrologic modeling include data acquisition, data processing, storage, 

data manipulation, and display of results (Al-Sabhan et al., 2003). Applications range 

from characterization of hydrologic tendencies to predict the response to hydrologic 

events (DeVantier and Feldman, 1993), mapping and visualization for hydrologic 

assessment (Robayo and Maidment, 2005), data parameterization for hydrologic models 

(Bhaskar et al., 1992; Olivera and Maidment, 1999).
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2.5.2 Errors in Hydrologic Data and Impact on Prediction

A major challenge facing hydrologic modeling is the propagation of error in 

hydrologic predictions. The prediction error arises from multiple sources of uncertainties 

which has been classified into natural variability and model related uncertainties (Tung 

and Yen, 2006). The inherent variability of natural systems is intrinsic and characteristic 

of the random phenomena exhibited in the input data.

Sources of input data uncertainties include measurement anomalies and limited 

availability of data (Crosetto et a l, 2000; Franceschini and Tsai, 2010), data incoherency 

and disjointedness due to dissimilar dates, inadequate definition of physical processes 

defining the data, inherent spatial and temporal randomness of variables (Franceschini 

and Tsai, 2010) and excessively coarse and fine scale (Crosetto et al., 2000). In addition 

simplification of input data during processing and synthesis also introduces data 

uncertainties. Uncertainties could also arise from the methods and tools used to describe 

and model the physical system (i.e., sampling techniques, data acquisition, data analysis 

and mathematical modeling). The ability to incorporate these uncertainties into a 

modeling process is key to reducing errors in hydrologic prediction.

Although several sources of uncertainty exist in hydrologic modeling, the context 

of this study is centered on spatial and temporal randomness of physiography. It must be 

stressed that the focus of this work will be on the impact of uncertainty inherent in input 

parameters. Therefore, the use of the deterministic computation engine for simulating the 

system behavior of overland flow and nonpoint source in this study is considered to be 

sufficiently accurate; its uncertainty (e.g., resulting from weak formulations or numerical 

impreciseness) is not subject to consideration.



2.6 Overview Hybrid Modeling on Watershed

Application of stochastic methods like Monte Carlo as a tool in hybrid hydrologic 

modeling has been around for decades dating back to the pioneering studies by Smith and 

Hebbert (1979). That study analyzed the effect of spatial variation of soil hydraulic 

conductivity on soil infiltration. Hybrid watershed modeling studies usually focus on 

physical characterization or parameterization of physical processes. Most of the current 

studies focused on model parameterization (Saltelli et al. 2004; Post et al. 2008) by 

relating uncertainty to the model inefficiency and assuming that the input data is accurate 

(Vrugt et al. 2003 and Moradkhani et al. 2005). However, a couple of recent hybrid 

modeling studies have shown that input data can have significant impact on model 

outcome (Kleidorfer et al., 2009; Huang and Lee, 2009; Franceschini and Tsai, 2010).

Although these studies did not consider basin wide watershed hybrid modeling or 

the full range of input parameter in this dissertation, these studies serve as motivation in 

the development of the present research. For example Huang and Lee (2009) investigated 

the impact of the spatial variation of surface roughness on flow hydrographs in a 

conceptual micro catchment. The study showed that the Monte Carlo roughness 

generated values produced peak flows when compared to the non-Monte-Carlo scenarios. 

They recommended that true watersheds may produce significantly different outcomes, 

and future studies should include the effect of other hydrologic parameters so as to assess 

the true effect of the roughness parameter. Similarly, Kleidorfer et al. (2009) integrated 

Monte Carlo methods with a stormwater model to analyze the impact of input data 

uncertainty on stormwater model parameters for two catchment areas of 89 and 38 

hectares in size. The study defined uncertainty on rainfall as random and systematic. The



authors conclude that systematic rainfall errors have significant impact on flow model 

parameters while pollution parameters are influenced by both systematic and random 

rainfall errors.

Franceschini and Tsai (2010) went a step further to combine a stochastic, modified 

Rosenblueth method with a deterministic model framework to quantify the overall 

variability of the model’s estimation of total polychlorinated biphenyls (PCB) 

concentration in a river. Their study showed that incorporating the uncertainty inherent 

input data into hybrid models lead to better prediction. However, this study, like those 

studies discussed above was performed on a mesoscale.

The scale of a model is an important subject in hydrologic modeling (Wood et al., 

1988; Bloschl and Sivapalan, 1995).The accuracy of models depends on the scale with 

which they are developed. Field scale models perform better at micro scale and large 

scale models perform better at meso and macro scale levels. This is because different set 

of physical laws dominates at each level of scale (Klemes,1983). Since planning and 

management of nonpoint source is efficiently implemented at a watershed level (Melone 

et al., 2005; Yuerekli et al., 2005), extrapolating a field scale model to a basin scale could 

lead to error (Bloschl and Sivapalan, 1995).

The current study fills the gap by presenting a methodology framework for 

predicting overland flow, phosphorous and total suspended solids at a basin (macro) 

scale. In addition to developing a basin wide framework, this study uses the key role of 

topography in hydrologic modeling to develop a generalized linear model (GLM) from 

which a probability density function was developed for sampling (the process is 

described into further details in chapter 3). The use of topography to develop a GLM for



stochastic sampling to the best knowledge of the author does not exist in any past or 

recent study. Also unique to the study is a method that augments existing nonpoint source 

modeling scheme for potential sources that are unaccounted for in typical hydrologic 

modeling procedure (the process is described into further details in Chapter 5).
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CHAPTER 3

CONCEPTUALIZATION AND DEVELOPMENT OF HYBRID MODELING
FRAMEWORK

3.1 Introduction

In water resources modeling, the key challenge is the ability to accurately predict 

the hydrologic response of the watershed. This is usually achieved by capturing the 

intrinsic properties of active hydrologic systems by reducing the uncertainties and error. 

Uncertainties are common in hydrologic systems that are highly variable in nature due to 

inconsistencies and heterogeneity caused by constant human intervention, natural 

disruptive patterns and evolutive of sudden processes (Salas, 1980). These intrinsic 

properties in hydrologic environments are defined by the population of its parameters. 

The population of system’s parameters is never truly known, however samples can be 

drawn from the system’s parameters through measurements and observations. In 

watershed studies, methods of inferring system behavior include (1) intensive monitoring 

of system performance, (2) using readily available system information with statistical 

concepts for modeling and (3) using existing stochastic hydrologic models.

Statistical sampling is a widely known concept employed in various researches 

fields such as studies in plants (Agarwal et al., 2013; Naithani et al., 2013), animals 

(Kidd et a l, 2007; Porter and Dooley Jr, 1993; Wegge et al., 2004) and microorganisms 

(Asta et al., 2002; Liski, 1995; Western and Grayson, 1998) to estimate the population of 

these systems from sampling. The sampling process usually involves random selection of 

datasets relating to a parameter in a system based on statistical approach. The principal 

advantages of this concept are inexpensive and faster data processing.
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Preprocessing input data is an important practice in hydrologic modeling as data is 

often acquired in the format not directly usable by a model. Although preprocessing of 

raw input data for hydrologic basin scale exists, the concept of statistical sampling of 

input data is not fully explored in hydrologic modeling. Current approaches to 

preprocessing input data are based on using GIS tools, expert guesses and or empirical 

formulae. These methods could introduce some degree of error into the preprocessed data 

and may lead to inaccurate representative of the system. Alternatively, statistical 

sampling techniques can be used to preprocess input data as a means to reduce prediction 

error in hydrologic models.

The statistical characteristics of a watershed can be expressed by system moments 

of mean, variance, skewness and kurtosis. For most probabilistic models, estimation of 

system’s mean and variance in particular is an important step towards stochastic 

modeling to define the likelihood of system response to probability density functions 

(PDFs). One of the goals of the modeling framework is to implement a PDF stochastic 

system-based sampling method to express key parameters in a watershed. 

Implementation and verification of such sampling methods could increase our 

understanding of hydrologic system behaviors and processes in model parameterization 

with prior/posterior sensitivity analysis. The realization of this goal includes (1) 

developing a generalized linear model to determine grids for sampling, (2) integration of 

the generalized linear model with Monte Carlo methods, and (3) selection of a 

deterministic computation engine.



3.2 System-Level Input Data Processing

3.2.1 Generalized Linear Model (GLM)

A generalized linear model, GLM, is part of statistical models that infers system 

response based on dependency components and inherent errors or residuals. It is based on 

the method of minimizing least squares of dependent variables (or system response upon 

trigger elements) and is an embodiment of both systematic and random errors that are 

usually assumed to be normally distributed (Olsson, 2002). Generalized linear models are 

used to predict expected values of unknown quantities given a set of observed values. 

They allow response variables to connect through link functions and also describe the 

scale of variance for each measurement through the predicted value.

In this methodology framework, a generalized linear model (GLM) was developed 

for determining an optimal grid or mesh size for sampling system parameters. A GLM is 

often developed by relating a set of observed dependent variable to independent 

variables. Consider a set of n observations with dependent variable, y* and m number of 

independent variables, xm where i = 1 ,2,..., n and m  = 1 ,2,.... For all the observations, 

the relationship between the independent and the dependent variables can be expressed



where Y is the dependent variable and xx to xm are vectors of the observation /?0 is 

unknown intercept, /?x to /?m are unknown coefficients and s is the error term and is 

assumed to be independent and normally distributed (NID) with a mean of zero and a 

unit variance. The GLM for the observation is expressed in the form:

?  = Po + + @2%2 + " ‘ + Pm%m (3-2)

? ~ N I D ( g , a 2) (3.3)

where ? is the response variable and is assumed to be normally distributed, to ^ m are 

the predictor variables, /?0 is the corrected intercept and f}x to f}m are the corrected 

coefficients. A GLM consists of three main components, (1) a random component 

(Equation 3.3) which specifies the conditional distribution of the response variable, 

? given the values of the explanatory variables in the model; ? is considered to belong to 

the Gaussian family (Nelder and Wedderburn, 1972), (2) a linear predictor that expresses 

the response variable as a function of regressors (Equation 3.2), and (3) a link function 

g(-), that transforms the expectation of the response variable, g = E(Y), to the linear 

predictor (Fox, 2008):

» 0 0  = (?) = h  + + A A  + - + ( 3 . 4 )

In this study, a GLM was developed using spatial characteristics of the watershed

to determine sampling grids and to capture the inherent characteristics of a domain 

without over- or under-discretizing a subcatchment in the watershed. The key 

independent variable central to the development of the GLM is topography. Topography



is the backbone to hydrologic modeling (Beven and Kirkby, 1979; O’Loughlin, 1981; 

O’Loughlin, 1986; MacMillan et a l , 2004) since it defines the effects of gravity on the 

movement of water in a watershed (Wu et al,  2008) that impacts every phase of the 

hydrologic system. For example, topography has been shown to affect the (1) overland 

sheet flow path that precipitation follows before it becomes streamflow (Sharif et al., 

2010; Wolock and McCabe, 1995; Wolock et a l, 1990), (2) the spatial distribution of soil 

moisture within a watershed (Vivoni et a l, 2008; Wilson et al., 2004; Burt and Butcher, 

1985), and (3) the chemical characteristics of streamflow (Andersson and Nyberg, 2008). 

Likewise, hydrology of upland forested areas (Beven and Kirkby, 1979; Agnew et al, 

2006; Riveros-Iregui and McGlynn, 2009), soil erosion (Finlayson et a l, 2002; 

Montgomery et al. (2001) and behavior of runoff (Meybeck et al., 2001,Weingartner et 

al, 2007 and Viviroli et al., 2007 ) are significantly impacted by topography. Hence it is 

evident from these and other studies that topography has an enormous impact on 

hydrologic prediction.

Although the above-mentioned studies emphasize the significant contribution of 

topography and its relationship to the hydrologic response of a watershed, none of the 

reported studies considered topography as a contributing variable in developing a GLM 

for estimating system characteristics. The method proposed in this study seeks to harness 

the critical role of topographic to develop a grid system based on a GLM. The GLM for 

expressing the dependent variable, grid size, is defined as a function of topography and 

the surface area of the subbasins within the watershed.

GSAMPLING =  f i ^ A R E A ' T) (3-5)
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where Gsampung is the grid size, SAREA is the areal extent of the subbasins in the 

watershed, and T is the topography. The observed data for the independent variables, 

topography and area of subbasins, was obtained for Patuxent watershed in Maryland 

(Figure 3-1), from the United States Geological Survey (USGS). The Patuxent watershed 

was chosen because it is often used as a model for testing environmental and 

management strategies without the sociopolitical complications associated with multi

state jurisdictional conflicts (Boynton et al., 1995) and is also an ideal site as it has nearly 

all the data required by this study. The data included a 30m National Elevation Dataset 

(NED) (http://ned.usgs.gov/), and hydrologic boundaries defined by USGS as hydrologic 

unit code (HUC) 8 and 12 (http://nhd.usgs.gov/). HUC8 is the watershed boundary for 

Patuxent and HUC 12 is a subbasins or sub-domains within the watershed.

A usual practice to developing a GLM is to use observed datasets to represent the 

dependent variable. In this study, obtaining observed data series for the grid size was not 

possible. Instead, the observed grid size was estimated empirically from assumptions 

deduced from the relationship between topography and the hydrologic response of the 

watershed as presented in the aforesaid studies. The assumptions include:

http://ned.usgs.gov/
http://nhd.usgs.gov/
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Figure 3-1: The Patuxent Watershed and Its Subbasins

(1) the topography of a domain is nonlinearly correlated with the heterogeneity 

and spatial variability of the domain’s physiographic characteristics.

(2) the unit mesh for sampling corresponds to each physiographic parameter and is 

inversely proportional to the local relief and directly proportional to extent area 

of the hydrologic domain.
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(3) the resulting mesh size is from a normally distributed population.

The concept of Chebyshev’s theorem was adopted to make sure that the total 

number of mesh units per domain (a subbasin in the watershed) is greater or equal to 30 

to ensure the normality required by the GLM model procedure. The Chebyshev's 

Theorem states that if a probability distribution has mean g and standard deviation a, the 

probability of obtaining a value that deviates from the mean by at least k standard 

deviations is at most 1 / k 2 i.e.,

PrQx - g \ > k a ) < ^  (3.6)

The empirical expression for determining the observed grid size is defined as:

GSAMPLING =  C ^ A R E A EleVRange (3.7)

where GSa m p u n g  i s  the mesh size, S AREA is the area extent of the subbasins in the 

watershed; the coefficient c ensures the implementation of Chebyshev's Theorem (it can 

be any constant to ensure the total number of grid size per domain is greater or equal to 

30, for this study, c has a value of 30), ElevRange is the difference between the 

maximum and minimum elevation of the subbasin. The area for each subbasin was 

determined using the geometry calculating tool in ArcGIS. The field calculator tool in 

ArcGIS was used with Equation 3.7 to compute the observed grid size empirically for 

each subbasin (Figure 3-2).
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Figure 3-2: GIS Layers for Developing Generalized Linear Model

A prerequisite to developing a generalized linear model is to ensure that the 

dependent variable, G SAm p lin g >  is normally distributed (Equation 3.3). A normality check 

for G SAM PLiNG in SAS (statistical analysis software, SAS Institute) gave a /7-value of 0.38 

indicating that the independent variable, the grid size, is normally distributed. Another
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prerequisite, central to develop a GLM model is to establish a test of hypothesis on the 

model validity. Test of hypothesis (confidence interval) is a statistical deduction criterion 

that provides sureness of a conclusion. In this study, the hypothesis was defined at a 

confidence interval of 95% or a level of significance (a) of 0.05. The hypothesis is 

expressed as:

Ho' P i = P i  =  = Pi =  0

Ha: at least one Pi ^  0 

where /? represents the constants and or coefficients in the equation, i represents the 

position of a particular constant or coefficient, H0 is the null and Ha is the alternate 

hypothesis. With the null hypothesis, the study assumes that all independent variables in 

resulting GLM do contribute to the dependent variable, Gsampung, while with the 

alternate hypothesis, the study assumes at least one independent variable contributes 

toward the dependent variable. GLM process will evaluate and drop any independent 

variables that do not contribute. In other words, independent variables with /7-values less 

than the level of significance are ones that actually contribute toward the dependent 

variable.

In developing the GLM, the topographical parameter is defined in two different 

forms, the elevation range (the maximum less the minimum elevation) and inverse of the 

elevation range. The aim is to determine which topographically defined parameter has a 

better goodness of fit. The resulting GLM would take the form:

G s a m p u n g  = a + k SAREA — m T  (3.8)

where Gs a m p u n g  is the mesh size, SAREA is the area extent of the hydrologic domain or a 

subbasin, T  is a topographical parameter (elevation range or inverse of elevation range)
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and a , k a n d m  are estimated generalized linear model coefficients,/?!. Equation 3.8 

produces two different equations depending on the topographical parameter used 

(Equation 3.9 and 3.10).

G s a m p l in g  = S a r e a  ~ m ElevRange (3.9)

G s a m p l in g  = a + k SAREA -  m fElevRange (3.10)

Equation 3.9 was developed using generalized linear model option and Equation

3.10 was created with stepwise regression option in SAS (statistical analysis software, 

SAS Institute). The study evaluates the resulting generalized linear model to select the 

best equation for determining the grid size

3.2.2 Evaluation and Validation of the Generalized Linear Model

The parameters in the generalized linear model (Equation 3.9 and 3.10) are shown 

in Table 3-1. Table 3-1 shows quantitative statistical measures for validating the 

individual equations and the performance of each constant or coefficient presented in the 

equations based on the level of significance (a = 0.05). Parameters that have /j-values 

greater than the value of alpha are dropped from the final GLM models. The coefficients 

presented in Equation 3.9 and 3.10 meet the deduction criteria for acceptance as

corresponding p -values are significant at a = 0.05. The p -value criteria served as a basis

to establish both equations as possible models for determining the size of a sampling grid.

Table 3-1: Constants and Coefficients of Generalized Linear Model

Constants/
coefficients

Equation 3.9 Equation 3.10
Value P value Value P value

A 43.339 <.0001 28.376 <.0001
kga 2.00 x 10** 0.0027 68.171 x 10*l° <.0001
m -807.07 x 10*4 <.0001 703.569 <.0001



Further statistical inferences of the equations are presented in Table 3-2. This 

includes f-statistics (F-value), p-value of f-statistics (Pr > F), RMSE, and coefficient of 

variation.

Table 3-2: Validation of Generalized Linear Model

Model Validation 
Parameters Equation 3.9 Equation 3.10

F Statistics 106.78 6075.33
p-value for F Statistics <.0001 <.0001
RMSE 0.923 0.129
Coefficient of Variation 0.075 0.079

F-statistical values are test statistics describing overall goodness of fit and validity 

of the GLM. Unlike the p-value for evaluating individual coefficients, the p-value for the 

f-statistics is for evaluating overall model-level validity. Thus significant p-values 

indicate a valid GLM model. The RMSE (root mean squared error) is the quantitative 

measure of the difference between the predicted and the observed value. It is defined as:

RMSE = i

where 0* is the observed value, P* is the predicted value and N is the number of 

observation. RMSE of zero indicates a perfect fit between the predicted and the observed. 

The coefficient of variation measures the dimensionless magnitude of variability (Abdi, 

2010). Considering the quantitative statistical measures presented in Table 3-2, Equation

3.10 is considered more appropriate in representing system-level variability and 

heterogeneity and the physical topography of the subbasins in the watershed

The preferred GLM (referred as GLM from now onwards) was used to determine 

the grid size for each HUC 12 to examine the distribution of the computed grid in the
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watershed. The process was carried out in the ArcGIS environment using the field 

calculator tool. The topography in the watershed was classified into low and high 

topographic gradients and matched with the spatial variation of the computed (optimal) 

grid size. The upper portion of the watershed with higher topographic gradient is 

associated with smaller optimal grid sampling sizes while the lower relief areas are 

associated with larger grid sampling sizes (Figure 3-3).

Grid Size (m) ■
33-37 

■ 1 3 7 - 4 3  ^
I Subbasin (HUC12) 
□□W atershed (HUC8)

Relief (m) \
j I 0 - 8 8 (Low) { 

^ ■ 8 8 - 1 7 4  (High)

Figure 3-3: Distribution of Grid Size across the Watershed

The relationship exiting between the distribution of the grid size and relief is shown 

in Figure 3-4.
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Figure 3-4: A Plot of Mesh Size versus Relief in the Patuxent Watershed

Evidence from the Figure 3-4 shows that the grid size is inversely proportional to 

the relief of the watershed and higher reliefs have smaller grid sizes as the GLM 

describes. The distribution of mesh unit sizes in the watershed according to the subbasins, 

HUC12 is shown in Figure 3-5.
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Figure 3-5: Mesh Unit Sizes for subbasins within the Patuxent Watershed

The plot shows that each subbasin has a unique mesh size. The relationship 

between the grid size and topography could have significant implications in hydrologic 

analysis. Areas with higher reliefs have complex and highly nonlinear hydrologic process
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compared to gentle sloping relief areas. This conclusion is indirectly demonstrated in 

studies that showed that reliefs are major contributors to erosion (Finlayson et a l, 2002; 

Montgomery et al. (2001), a correlation exists between sediment load and elevation 

(Milliman and Syvitski 1992; Hay 1987) and runoff increases with steep relief 

(Weingartner et al., 2007; Viviroli et al., 2007; Meybeck et al., 2001). Evidently, 

subbasins may exhibit localized topographical effect in the estimation of their hydrologic 

responses. This emphasizes the need to apply smaller grid to sample subbasins with 

higher reliefs as the spatial variability and heterogeneity in those areas are very 

prominent than subbasins with low lying areas.

3.2.3 Monte Carlo Sampling

Monte Carlo is a stochastic method and is based on probabilities and likelihood in 

representing system events and responses that are subject to uncertainties. It is widely 

used with applications ranging from engineering to zoology. Monte Carlo involves 

random sampling from a distribution of inputs and successive model runs until a 

statistically significant distribution of outputs is obtained (Yeboah-Forson, 2007). They 

can be used to solve problems with physical probabilistic structures, such as uncertainty 

propagation in models or solution of stochastic equations. Monte Carlo methods are also 

used in the solutions that can be modeled by a sequence of random steps that eventually 

converge to a desired solution (Beilin et al., 1994; Isukapalli, 1999). Boyle (1977) 

defined the general equation of Monte Carlo methods as:

9  = \ 9 ix) f {x)dx (3.11)
A

[ f ( x )dx  
JaA

(3.12)
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where g(jx) is an arbitrary function and f i x )  is a probability density function, §  is the 

expected mean. The probability density functions for normal and uniform distribution: 

Normal distribution:

f i x )
ayjln

_{xz]£  
e 2 a2 (3.13)

Uniform distribution:

f i x )  =

( 0 for x  < a >
1—  for a < x < b

b -  a
0 for x  > b

(3.14)

where g  is the mean, a is the standard deviation, a2 is the variance, a and b are the 

minimum and maximum values respectively. For n number of samples values, x t, the 

estimate of g  is obtained by:

§
n

i=i

n
l

o T = I i=i

(3.15)

(3.16)

where g  is the estimate of g, § is the standard deviation of the estimate, x  is the random 

variable, and A is the range of integration. Further description of the methodology, tools, 

and the applicability of the Monte Carlo methods can be found in Fishman (1996) and 

Kalos and Whitlock (2008). In Monte-Carlo modeling, samples are dawn randomly from 

larger sample size and repeatedly from probability distributions (e.g. uniform or normal) 

through simulation to achieve convergence. The number of simulations depends on the 

memory capacity of the computer and determines how extensively the parameter space is
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sampled (Sarrut and Guigues, 2008; Jiang et al., 2007; Landau and Binder, 2009). The 

variance reduces as the number of trials approaches infinity (Seydel, 2012).

The algorithm to Monte Carlo methods uses in this study follows the Post et al.

(2008) approach shown below:

1. definition of model variables (input factors) Xt used for the analysis

2. selection of ranges and the Probability Distribution Functions (PDF) for

each Xi

3. generation of samples within the PDFs (sampling)

4. evaluation of the model output for each element of the input factor sample 

In this study, the model variables are defined as Mannings roughness coefficient,

infiltration and lower zone soil moisture. The range of parameters was determined from 

the series of data sampled from the subbasin with the optimal grid. System representative 

values for these parameters were generated from the normal distribution defined as:

1 _ (*~K>2
/(* )  = — =  e 2 a* (3.17)

ay] In

where n, a  and a 2 are the mean, standard deviation and variance estimated using the 

sampling determined from GLM equation, and x is the model variable. The parameters 

were then used to determine overland flow and nonpoint source in Chapter 4.

3.2.4 Stochastic Input Data Parameterization

The system-level sampling approach (stochastic input data parameterization) 

includes the integration of the GLM (Equation 3.10) and standard Monte Carlo sampling 

to determine a lumped parameter value representative of the system. A schematic 

diagram of the process is shown in Figure 3-6.
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Figure 3-6: Schematic Representation of System Level Input Data Preprocessing

To determine the system-level parameter value, the GLM is first used to determine 

an optimal sampling grid size for the subbasin of interest. The grid is then used to create a 

sampling net or fishnet that is used to overlay the parameter of interest in the subbasin to 

estimate the mean and variance of the parameter. The estimated mean and variance are 

then used to initiate the sampling process in Monte Carlo. The Monte Carlo simulation 

runs repetitively till a convergence to the probability distribution is reached (Beilin et al., 

1994). The convergence criteria proposed by Beilin et al. (1994) is defined as:

S2Xn = (Xn -  Xn_xY  (3.18)

where Xn is the target sample moment at a point, and n is the sample size (the number of 

Monte Carlo Simulations). The simulation process reaches convergence when the spatial 

average of S2Xn over the whole computation domain vanishes (Beilin et al., 1994; Ballio 

and Guadagnini, 2004). The converged value is the system parameter value. The system
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parameter embodies all possible variations and heterogeneity associated with the 

parameter in the subbasin. The sampling process accounts for possible discrepancies that 

may arise due to measurement anomaly, inadequate definition of physical processes 

defining the data, data disjoint due to dissimilar dates of collection and other possible 

inherent errors; consequently, reducing the level of uncertainty. The application of this 

approach is presented in Chapter 4.

3.2.5 Investigation of Stochastic Input Data Parameterization

The study tested the stochastic input data parameterization (system-level parameter 

sampling) approach on five selected subbasins in the Patuxent watershed. The subbasins 

were selected based on relief criteria, maximum, 1st quartile, 2nd quartile and 3rd 

quartile. The aim was to test the applicability of the system sampling in estimating 

parameters for the subbasins selected. Each of these subbasins has multiple landuses 

(Figure 3-7). The landuse data used was extracted from the National Landcover Database 

(NLCD 2001) (http://www.mrlc.gov) obtained for the watershed from the United States 

Geological Survey (USGS).

http://www.mrlc.gov
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Figure 3-7: Landuse Types for the Selected Subbasins

Among the initial input parameters considered for sampling were Mannings 

roughness coefficient, infiltration and lower zone soil moisture. Lower zone soil moisture
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defines the amount moisture content in the lower zone of the soil. To simplify the 

investigation process, the study selected the Mannings coefficient as the primary 

hydrologic input parameter. Primary hydrologic parameters are parameters that are 

directly linked to physiographic parameters and do not have to undergo any further 

processing before input into a hydrologic model. Other hydrologic input parameters that 

needed further processing are considered as secondary parameters, for example 

infiltration, interception and storage as they are often expressed in terms of other primary 

parameters for a basin scale modeling. Mannings roughness coefficient is one of the key 

hydrologic parameters used in estimating overland and channel flow. The Mannings 

roughness coefficient is an empirical numeric value and is a function of surface 

conditions (USEPA, 2000). For overland flow, Mannings roughness coefficient is the 

function of landuse and soil type. Mannings roughness coefficient values for this study 

were adopted from a published tabulation by Kalyanapu et al. (2010). These values were 

computed from NLCD (National Landcover Database 2001) landuse data based on 

percentage impervious and coverage of the landuse types as described by Homer et al. 

(2007).
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Table 3-3: Mannings Roughness Coefficient Values for NLCD Landuse Data
(Kalyanapu et al. ,2010)

Code Landuse Published
21 developed open space 0.040
22 developed low intensity 0.068
23 developed medium intensity 0.068
24 developed high intensity 0.040
31 bareland 0.011
41 deciduous forest 0.360
42 evergreen forest 0.320
43 mixed forest 0.400
52 shrub 0.400
71 grassland/herbaceous 0.368
81 pasture/hay 0.325
90 woody wetland 0.086
95 emergent wetland herbaceous 0.183

Additional sources for Mannings roughness coefficients were obtained from 

published studies by Donigihan and Davis (1978), Engman (1986), Weltz et al. (1992), 

McCuen (1998) and Mays (1999).

To determine Mannings value for the selected subbasins, the spatial analyst tool 

was used compute the elevation range. The elevation range and surface area for each 

subbasin were then used as input to the GLM to compute the grid size. Each of the 

selected subbasins had a unique grid size. For each subbasin, the grid size was used to 

create a fishnet or a mesh in ArcGIS. The fishnet was then used to overlay the 

corresponding subbasin (Figure 3-8) to sample the Mannings roughness coefficient.
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Figure 3-8: A Sample of Grid Overlay Analysis for Statistical Sampling

Each grid unit within the net was matched with the landuse type directly 

underneath, and the corresponding Mannings value was identified from Table 3-3 and 

entered into the attribute table of the grid. The spatial analyst tool is then used to estimate 

mean and variance of Mannings roughness coefficient for each of the subbasins (Table 3- 

4).
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Table 3-4: Estimated System Moments for Selected Subbasins

Area Extent of 
Subbasin Area (m2) mean Variance

1st quartile 1080200 0.2592 0.0156
2nd quartile 16730100 0.1817 0.0191
3rd quartile 26800200 0.2153 0.0215
Maximum 80714700 0.2452 0.0212

The mean and the variance were then used with the Monte Carlo sampling method 

and simulated extensively to obtain the overall system parameter value. The resulting 

system level value for the Manning’s roughness parameter is presented in Table 3-5.

Table 3-5: Mannings Values Estimated from Classical and System-Level Approach

Area Extent of Subbasin Classical Method System-Level Approach
Composite Mean System Level Mean

1st quartile 0.2594 0.2167
2nd quartile 0.1823 0.1978
3rd quartile 0.2155 0.1876
Maximum 0.2452 0.2272

The purpose of selecting the subbasins on a quartile criterion was to examine how 

well parameters can be estimated using the system sampling method. The system-level 

sampling method was able to process the Mannings roughness coefficient was 

successfully for the selected subbasins. It is evident from the results that the system-level 

approach consistently underestimated for the 1st, 3rd and the 4th quartile but overestimated 

for the second quartile. To explain the cause of this discrepancy, the study compared the 

landuse data, NLCD, to a world Imagery map obtained from Environmental Systems 

Research Institute (ESRI) (http://www.arcgis.com/home/group.html) to visually 

investigate the distribution of landuse in the subbasin. The world imagery map has a 

better resolution (lm) than the NLCD (30m). The comparison is based on the assumption

http://www.arcgis.com/home/group.html
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that the world imagery map is accurate and has no inherent uncertainty. The comparison 

showed that most of the landuse types that were classified as residential for the NLCD 

landuse were vegetation when investigated in the world imagery map (Figure 3-9). The 

study attributes the inability for the NLCD to identify those vegetative areas to its 

resolution.

WHtsr
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Barren [____| Grassland

Deciduous Forest I I Pasture/Hay
Evergreen Forest H I  Cultivated Crops
Mixed Forest I 1 Woody Wetland
Shrub Wm Emergent Herbaceous Wetland

Figure 3-9: Landuse Comparison for the 2nd Quartile Subbasin

The Mannings roughness values for vegetation (e.g. forest, grassland) have higher 

values than residential areas (Table 3-3) thus, explaining the higher value for the 2nd 

quartile subbasin. The procedure was replicated to investigate the cause of 

underestimation for the remaining subbasins (1st, 3rd and the 4th). All the investigated
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subbasins showed similar trends in the comparison between the NLCD and the world 

imagery map. For the sake of brevity, the study presents only the comparison for the 1st 

quartile subbasin. The comparison showed that the world imagery map has more built or 

paved areas than portrayed by the NLCD (Figure 3-10).
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Figure 3-10: Landuse Comparison for the 1st Quartile Subbasin

Like the 2nd quartile subbasin, the NLCD was not able to capture the built areas 

because the areas are smaller than the resolution extent of the NLCD. Built areas usually 

have smaller Mannings roughness values (Table 3-3), hence explaining the cause of 

underestimation for the system-level value.
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The illustrations (Figures 3-9 and 3-10) show that, the system-level sampling is 

able to capture the variability and heterogeneity associated with the Mannings parameter 

in each of the selected subbasins. The traditional method was not able to capture the 

variability due to the resolution of the NLCD data. The study infers from Figures 3-9 and

3-10 that the system-level sampling is able parameterized the Mannings roughness 

parameter in the selected subbasins while accounting for every possible variation errors 

and uncertainty inherent in the data in the NLCD data.

3.3 Deterministic Computation Engine

Unlike stochastic models, deterministic models do not account for uncertainty. This 

deficiency is compounded by their tendency to overestimate or underestimate hydrologic 

predictions due to assumptions and simplifications underlying their development. For 

example, deterministic models such as the Hydrologic Simulation Program in Fortran 

(HSPF) perform reasonably well under steady-state conditions. However, under time- 

variant conditions the prediction error could be high when the system’s variability in 

space and time supersedes the assumptions and simplifications. For a calibrated HSPF 

model, the maximum acceptable prediction error is ±50% (Lumb et a l, 1994). This 

prediction error could be due to the inherent uncertainties present in input data sets, 

parameters and the assumptions underlying physical structure of the model. However, if 

the model is combined with stochastically preprocessed inputs, the magnitude of 

prediction error could be reduced. This is because stochastic methods reduce the level of 

uncertainty at the input and output levels of the model.
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3.3.1 Description of the Selected Computation Engine

The Hydrologic Simulation Program in Fortran (HSPF) (Brian et a l, 1997) is a 

comprehensive, conceptual, dynamic watershed-scale model which simulates hydrology 

and water quality constituents in a watershed (Singh et a l, 2005). It is widely known for 

watershed-scale hydrologic simulations (Albek et a l, 2004; Hayashi et a l, 2004). The 

model has been found to be successful in handling hydrologic and water quality problems 

such as streamflow, loadings of sediment, nutrients, and pesticides from agricultural 

lands (Bicknell et a l, 1985; Moore et a l, 1988; Chew et a l, 1991; Laroche et a l, 1996). 

The HSPF was purposefully designed for use in mixed agricultural and urban watersheds 

(Borah and Bera, 2003; Obropta and Kardos, 2007). It is also incorporated as a nonpoint- 

source model into USEPA’s Better Assessment Science Integrating Point and Nonpoint 

Sources (BASINS). BASINS is a comprehensive watershed tool which integrates 

hydrologic and hydraulic analysis tools on a GIS platform, and facilitates data input and 

other processes within a geographic information system (GIS) framework.

The model requires input information on landuse, soil properties, sources of 

nitrogen and phosphorus, stream reach characteristics, precipitation time series, and other 

meteorological data such temperature, solar, radiation and potential evapotranspiration to 

simulate the hydrologic response of a watershed. The model has three main modules that 

help to simulate pervious land segments (PRLND), impervious land segments 

(IMPLND), and free-flowing reaches or mixed reservoirs (RCHRES). HSPF uses a 

storage routing technique (Brian et a l, 1997) to route water from one reach to the next 

during stream processes. The model is capable of simulating flow rates, sediment loads, 

nutrients and pesticide concentrations. A detailed description of the HSPF model and it
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capabilities are summarized in published works of Donigan et al (1984) and Bicknell et 

al. (1997), and results from various applications of HSPF modeling studies are 

documented (Mishra et a l, 2007; Singh et a l, 2005; Lopez et a l, 2012; Nasr et a l, 2007; 

Johnson et a l, 2003; Hayashi et a l, 2004; Saleh and Du, 2004; Singh et al., 2005; 

Laroche et al., 1996; Benham et al., 2005; Kim et al., 2007).

3.3.2 Hybrid Model Set-up

The system-level framework was set-up by combining the stochastic (system 

sampling) approach described above and a calibrated HSPF model. The HSPF model was 

calibrated and calibrated for hydrology and nutrients. The system-level model receives 

inputs preprocessed by the stochastic method and uses the deterministic engine for the 

computation of the watershed hydrologic response.

3.4 Model-Level Sensitivity Analysis

A significant task performed in all modeling exercises is sensitivity analysis. 

Sensitivity analysis is the study of uncertainty propagation in the output of the model and 

the rate of change of one parameter with respect another parameter (McCuen and Snyder, 

1986). Sensitivity of the model is computed as:

„ d0o f{F i +&Fi.FIU fl) - f ( F 1,F 2,...Fn)
s -JFt -  If, ( 3 ' 1 9 )

where S  is the sensitivity index, O is the model’s output and F is the input parameter. 

Equation 3.19 is expressed in two forms, absolute and relative sensitivities, depending on 

the application or intended use.

Absolute sensitivity



Relative sensitivity

d0o Ft

While absolute sensitivity is straightforward and easy to implement, it is neither invariant 

to the magnitude of the model output nor input and cannot be used to compare one input 

parameter to the other, it often used where hydrologic models become very complex and 

derivations are impossible to compute (McCuen and Snyder, 1986b). Relative sensitivity 

is invariant to the magnitude of the models output and input and provides valid means for 

comparing one input parameter to the other.

In this study model sensitivity of the system-level approach was assessed by 

investigating the influence of input parameters of the system-level model at macro level. 

Details of the application are shown in Chapters 4 and 5.

3.5 Overview of Methodology Framework

A methodology framework for predicting hydrologic responses at system level is 

proposed in this study. The approach is based on a hybrid stochastic method which 

combines a stochastic concept and a deterministic computation engine to estimate the 

overland flow, and nonpoint source as illustrated in Figure 3-11. Detailed methodology 

framework of the hybrid model can be found in appendix B.
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Figure 3-11: Schematic Representation of Hybrid Methodology Framework

The process involves three main phases: (1) data preprocessing at input level using 

stochastic concepts, (2) using deterministic model as a computation engine, and (3) 

model level sensitivity analysis. The data processing using stochastic concepts employs 

the use of the GLM (Equation 3.10) to estimate the system moments, mean and variance, 

of the parameter of interest in the domain being modeled. The estimated system moments 

are then used to initiate a Monte Carlo sampling to estimate system value for the 

parameter. The preprocessed values are then used as input into a deterministic 

computation engine to simulate the hydrologic response of the subbasin in a study 

watershed. In the third phase, the final output is assessed by examining the effect of other 

input parameters on the final outcome through sensitivity analysis. The three phase 

approach described here reduces the magnitude of uncertainty at the input data level prior 

to using the deterministic computation engine and also at the output level.



51

CHAPTER 4

THE HYDROLOGIC RESPONSE OF A WATERSHED: A CASE STUDY OF 
THE PATUXENT RIVER WATERSHED

4.1 Introduction

In this chapter, the methodology framework (system-level method) introduced in 

Chapter 3 is implemented and verified to determine the hydrologic response (overland 

flow, phosphorus and total suspended solids) for the Patuxent watershed. The hydrologic 

input parameters applied to this study are infiltration, Mannings roughness coefficient 

and lower zone soil moisture. Two other physiographic parameters, interception and 

evapotranspiration, were selected to access their impact on the overall outcome of the 

model. Detailed description of these parameters, their relationship with physiographic 

parameters, and their importance to hydrologic modeling are discussed in detail in 

Chapter 2.
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4.2 Study Setting
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Figure 4-1: The Patuxent River Watershed

The Patuxent River Watershed (Figure 4-1) is located in the state of Maryland, 

geographically positioned between Baltimore, and Washington, District of Columbia 

metropolitan areas and runs across 9 counties (Montgomery, Howard, Carroll, Frederick, 

Anne Arundel, Prince Georges, Charles, St. Marys, and Calvert). It is the largest



(Harman-Fetcho et al, 1999) and the longest river watershed in Maryland and cover 

about 10% of the state’s total area (MD, 2010). The total surface area is approximately 

871 mi2 of landmass, 55 mi2 of open tidal waters and 11 mi2 of tidal marshes (Walter et 

al., 2008), and drains into a 53 mi2 sub-estuary of the Chesapeake Bay (Boynton et al., 

1995). The Patuxent River watershed is the sixth largest of the tributary watersheds in the 

Chesapeake Bay (Costanza et al., 2002). The watershed is divided into two main regions, 

the piedmont physiographic (located in the upper portion of the watershed), which is 28% 

and the remaining being the coastal plain (Langland et al., 1995) (Figure 4-2).
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Figure 4-2: Extended Area of the Patuxent River Watershed

The Patuxent River Watershed was chosen for this case study primarily because of 

the availability of nearly all the data required by this study. Also this particular watershed 

is often used as a model for testing environmental and management strategies without the 

sociopolitical complications associated with multi-state jurisdictional conflicts (Boynton
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et a l, 1995). In addition the watershed has long history of monitoring to provide clear 

baseline for historical events. Finally the USEPA have identified this watershed as 

particularly prone to NPS which is a major interest in this study.

The Patuxent River headwaters are in the piedmont region (Figure 4.2), located 

between 78.18°W and 77.18°W, where Carroll, Montgomery, Howard, and Frederick 

meet. The river has three main tributaries, the Little Patuxent, the Middle Patuxent and 

the Western Branch along with several minor tributaries. The Middle Patuxent flows to 

join the Little Patuxent River on the boundary between Anne Arundel and Prince 

Georges counties. The middle Patuxent flows from the west through the Prince Georges 

County and joins the Patuxent River at the second major confluence around the border of 

Anne Arundel, Prince Georges.

The Patuxent River is narrow and covers approximately 62 mi northwest from its 

union with the mesohaline portion at the mouth of the Chesapeake Bay (Figure 4-1) 

(Harman-Fetcho et a l, 1999), where it enters the bay. The total length of the river and the 

estuary is approximately 106 mi long; the lower portion is approximately 59 mi from the 

mouth and is constantly under the effect of tides while the upper portion is narrow, 

approximately 164 ft to 984 ft wide, with an average depth of 3.6 ft (Waiter et a l, 2008).

The highest elevation in the watershed is 903 ft above the mean sea level. Annual 

freshwater in the watershed is approximately 3.0xlO11 ft3/yr. Two large reservoirs (the 

Triadelphia and the Rocky Gorge) and a number of water storage features including 

ponds, lakes, swamps and marshes and reservoirs are found in the watershed. These 

contribute significantly to the hydrologic characteristics of the watershed. The mean 

annual precipitation is 44 in (Dail et al, 1998) while the average annual temperature is
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54°F (NOAA, 1997). The soil in the watershed ranges from clay to sandy soils. Dail et al. 

(1998) showed that the soils in the southern part of the watershed range from poorly 

drained silty soils along the shoreline to easily erodible sandy and loamy soils upland. 

However, in the northern part of the Patuxent River Watershed the soils composed of 

well drained silty loamy soils.

Estimates of land cover in the watershed were determined from the National 

Landcover Database (NLCD, 2001) landuse with a resolution of a 30m x 30m grid 

obtained from the United States Geological Survey (USGS) website. According to NLCD 

2001, Land cover within the watershed is 39.9% forest (deciduous, evergreen, mixed), 

22% developed (comprising open space, low, medium and high intensities), 21.7% 

agricultural lands (pasture/hay, crops), 7.9% wetlands (woody, emergent herbaceous), 

5.7% water, 1.6% shrubland and 0.3% for grassland/herbaceous and barren. The main 

source of pollution in the Patuxent River watershed is non-point source which can be 

traced to development, agriculture and air deposition. The main pollutants impairing the 

water quality in the Patuxent watershed are phosphorous, nitrogen, sediment and bacteria 

level (Albert, 2011).

4.3 Data and Data Sources

Data obtained for the study includes stream network, topography soil, landuse 

types, water quality parameters, streamflow (Table 4-1). These were obtained from 

various governmental sites.
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Table 4-1: Data and Data Sources

Data Sources

Weather the National Climatic Data 
Center (NCDC)

Soil - The U.S. General Soil Map was 
developed by the National Cooperative 
Soil Survey and supersedes the State Soil 
Geographic (STATSGO) dataset

Natural Resources 
Conservation Service (NRCS)

Hydrography - The National Hydrography 
Dataset (NHD): watershed boundaries, 
rivers/streams, lakes/ponds/reservoirs, 
marshes/swamps, estuaries

the United States Geological 
Survey (USGS)

Elevation - The National Elevation Dataset 
(NED)

the United States Geological 
Survey (USGS)

Landuse types - The National Land Cover 
Database (NLCD) 2001

the United States Geological 
Survey (USGS)

Percentage impervious - The National 
Land Cover Database (NLCD) 2001

the United States Geological 
Survey (USGS)

Streamflow the United States Geological 
Survey (USGS)

Water quality parameters- orthophosphate 
as phosphorus and total suspended solids

the United States Geological 
Survey (USGS) and the United 
States Environmental 
Protection Agency (USEPA)

In addition to these sources, other hydrologic input parameters were obtained from 

published studies. Mannings roughness coefficient (Table 3-3) was taken from 

Kalyanapu et al. (2010). Kalyanapu et al. (2010) computed Mannings coefficient values 

for each NLCD landuse type using the percentage impervious and coverage 

specifications described by the data source. Finally, estimate for lower zone soil moisture 

for each landuse were extracted from published studies by Laroche et al. (1996) and 

Donigihan and Davis (1978). The lower zone soil moisture used in the study ranged from 

4 to 11 inches. Infiltration values were estimated in ArcGIS by using the STATSGO soil
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database, landuse types and infiltration values taken from USEPA (2000). For each 

landuse type in each subbasin, a value of infiltration is assigned based on guidance from 

USEPA (2000).

4.4 Pre-model Set-up

The Patuxent watershed was delineated into hydrologically connected subbasins 

and streams based on topography (National Elevation Dataset), existing stream network 

(National Hydrography Dataset) and watershed boundary. Delineated watershed was 

again subdivided to obtain outpour points that coincide with USGS streamflow and water 

quality gage stations that have up-to-date records (Figure 4-3). Specifically, USGS gage 

stations with up-to-date data in the watershed were selected for the study. This process is 

v e r y  i m p o r t a n t  a s  i t  a l l o w s  m o d e l ’s  o u t p u t  t o  b e  c o m p a r e d  w i t h  m e a s u r e d  s t r e a m f l o w  to  

assess the performance of the system-level model framework approach. The delineation 

gave a total of 117 subbasins and streams with two outpour points.

The delineation was performed using USEPA’s Better Assessment Science 

Integrating Point and Nonpoint Sources (BASINS) software. BASINS is a multipurpose 

environmental analysis system designed to help regional, state, and local agencies 

perform watershed and water quality-based studies. It integrates hydrologic models on 

one platform and offers GIS tools to perform several GIS operations. The key advantage 

of BASINS is that it prepares input data files for the integrated hydrological models.
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Figure 4-3: Delineated Subbasins and Streams

4.5 Methods and Procedures

Proposed hybrid modeling framework consist of three components; (1) microscale 

stochastic parameterization process at the subbasin-level, (2) mesoscale deterministic 

computational process at watershed segment-level, and (3) macroscale stochastic 

sensitivity process at watershed-level.

The generalized linear model (GLM) and Monte Carlo method described in 

Chapter 3 was employed to process input parameters. The GLM was used to estimate
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system moments of the selected set of parameters within the subbasin. The Monte Carlo 

method was applied to draw successive samples from a PDF of each parameter to 

determine a system-level value for that particular parameter in the subbasin. The process 

was repeated for all subbasins. The resultant system-level values were collected and used 

as model input to HSPF for further computation of overland flow and pollutants in the 

watershed.

In HSPF, the watershed is modeled as homogeneous hydrologic segments. This is 

done by dividing the watershed based on the number of precipitation stations. In this 

study, three stations with up-to-date precipitation data (Figure 4.3) in the watershed was 

used to segment the watershed into three hydrologically homogeneous segments (Figure

4-4).
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Figure 4-4: HSPF Model Segments

The stochastically processed infiltration, lower zone soil moisture and Mannings 

roughness coefficient were entered in HSPF to compute for overland flow phosphorus 

and total suspended solids. The results of the model were validated by testing the 

outcome at significance (a) level of 0.05 and with the Nash Sutcliffe efficiency (Nash and 

Sutcliffe, 1970). The coefficient of efficiency ( NSE) ranges from -1 to 1. Higher values 

indicating better agreement; 1 indicates a perfect fit with observed data and 0 is an 

indication that the model is predicting better than the average of the observations. The 

coefficient of efficiency is mathematically defined as:

Atrr, A Ta=i(Oi — S{)2
NSE = 1- lUot-oy ( 4 - X )
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where 0* is the ith observed value, 0  is the mean of the observed values 5* is the ith 

simulated value, and N is the number of events modeled. The prediction error of the 

classical and the system-level method is computed as:

, N Simulated -  Observed
Prediction error (%) = ---------—--------- :-------- x 100 (4.2)

Observed

In order to determine the macro-scale stochastic sensitivity of the whole watershed, 

a model-level posterior sensitivity analysis was performed on the model results using 

absolute model sensitivity (Equation 3.20). This was done by selecting other 

physiographic hydrologic input parameters that might impact the simulated results. The 

parameters selected were interception and evapotranspiration. Interception relates to 

vegetation type while landuse and evapotranspiration relates to vegetation type and root 

depth. The purpose was to investigate (1) the response of the system-level approach to 

other input parameters of the deterministic engine and to (2) determine if these 

parameters should be considered in future system-level preprocessing of input 

parameters.

Upper and lower bounds for the parameters were selected from the deterministic 

model to carry out the model level sensitivity. The lower and the upper bound selected 

from the model values were set at 25th and 75th percentiles. The purpose was to prevent 

any possible form of extreme skewness in the generated data. For each parameter 

considered, a series of values were stochastically generated within the specified bounds 

and at different positions from Monte Carlo (minimum, 25 percentile, 50 percentile, 75 

percentile and maximum). The model runs were then evaluated for overland flow and 

nonpoint source pollutants.
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4.6 Results

4.6.1 Overland Flow

The overland flow from the Patuxent watershed over a four-year period (1998 -  

2001) was modeled for segments 1 and 2 using stochastically parameterized input data at 

system-level. The results of the simulation are shown Figure 4-5 for model segment 1 

which is the upper headwater portion of the watershed.
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Figure 4-5: Overland Flow Prediction for Segment 1

The observed flow for segment 1 ranged from a low of 10 cfs in May 1999 to a 

high of 3600 cfs in June 1998. Evidence from the Figure 4-5 indicates that flow varies 

significantly depending on the season by exhibiting peak values mostly in summer and 

low values in the winter. Both the system-level and the classical (or conventional) 

methods generally predicted the behavior of the observed flow. For example, in January 

2001, the observed flow was 980 cfs while the system-level and the classical methods 

were 982 and 990, respectively. Also in May 1999, the observed value was 745 cfs while
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that of system-level and classical methods were 760 and 775 respectively. The results 

generally show that, the classical approach over-predicts for most months (where peak 

observed flow is recorded) when compared to the system-level approach which 

underestimated for most of the months. For example, in October 1999, the simulated flow 

for the classical method was 3250 cfs, while that of the system-level and the observed 

were 2200 cfs and 1500 cfs, respectively. Similarly, in April 2001, the simulated flow for 

the classical approach was 1755 cfs, while that for the system-level and the observed was 

1550 cfs and 1510 cfs, respectively. The results also show that, the system-level method 

coincides with the observed flow in most of the months. This is evident for months like 

September 2000, February 1999, and July 2001. The results show that the system-level 

approach is a better predictor of the overland flow than the classical method.
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Figure 4-6: Overland Flow Prediction for Segment 2

The observed flow for segment 2 was generally higher than the observed flow for 

segment 1. The observed flow for segment 2 for the four year period ranged from a low of



1 cfs in May of 1999 to maximum peak of 10000 cfs in July, 1998. Evidence from the 

Figure 4-6 indicate that flow varies significantly with seasonal variations. The flow is at 

its peak in the summer and lowest in the winter. Like segment 1 of the watershed, both 

the system-level and the classical predicted the behavior of the observed flow pattern. 

The classical method consistently over predicted the flow for most months, except those 

months in 1998. For example, in May 1999, the observed flow was 1000 cfs, the system- 

level was 1600 cfs while that for the classical was 2000 cfs. Also, in April 2000, the 

observed flow was 4700 cfs, the system-level was 4500 cfs while that for the classical 

was 6100 cfs. Unlike the classical method, the system-level approach evens out the 

amount of overestimation and underestimation throughout the simulation period. For 

instance, there was underestimation in February 2001 and overestimation in April 2001. 

Overall, results for segment 2 show that the system-level approach is a better predictor 

for overland flow than the classical approach. Model estimates from both methods were 

quantified statistically for high flow, low flows, summer and total seasonal flows for both 

model segments (Table 4-2).
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Table 4-2: Statistical Validation for Predicted Overland Flow. Negative values 
imply under prediction and non-negative values indicate over prediction

PREDICTION ERROR
Classical (%) System-Level (%)

SEGMENT 1
total runoff 21.9 -0.51
Seasonal flows 22 -0.45
Summer flows 68.6 28.3
10% high flows -17.7 -8.3
50% low flows 30.3 0.6

SEGMENT 2
total runoff -27.9 -1.98
Seasonal flows 28.3 -2.34
Summer flow 59 26.01
10% high flows 7 -0.18
50% low flows 23.4 1.75

Table 4-2 compares the prediction error (Equation 4.2) of the classical approach to 

the system-level method. Evidence from the table shows that the classical method in 

segment 1 and 2 consistently overestimated for all the flow components except for low 

flows in segment 1 and summer and high flows in segment 2. Where the classical method 

over- or under-predicts, the system-level approach showed a reduction in prediction error. 

For example, in segment 1, the classical approach over-estimated high flows by 30.3% 

while the system-level approach over-estimated by 0.6%. Similarly, in segment 2, the 

classical approach under-estimated total runoff by 27.9% while system-level approach 

underestimated by 1.98%. The results show that the system-level approach reduced the 

prediction error significantly for overland flow in the study area.

The model results for the classical and the system-level approach were further 

validated using p -value and the Nash and Sutcliffe efficiency values (Equation 4.1). In 

segment 1, the p -value and Nash and Sutcliffe efficiency for the system-level approach
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are 0.68 and 0.33 while that for the classical method are 0.11 and 0.12 respectively. In

segment 2, the /7-value and Nash and Sutcliffe efficiency are 0.45 and 0.25 for system- 

level approach while that for the classical method are 0.03 and 0.15 respectively. The 

statistical validation shows that the system-level method is robust and is more effective in 

representing the system characteristics.

4.6.2 Phosphorus

Results presented here are based on a two and half years of observed data (01/1998 

to 08/2000) as data from 08/2000 to 12/2001 were missing Phosphorus as orthophosphate 

concentration was modeled for segments 1 and 2. Estimated orthophosphate 

concentration indicated that the system-level approach performed exceedingly robust 

compared to classical model of segments 1 and segment 2 (Figure 4-7).

3
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Time (Monthly)

Figure 4-7: Orthophosphate Prediction for Segment 1



68

In the segment 1 of the watershed, the observed orthophosphate for the two and 

half year period ranged from a low of 0.19 pg/L in July of 1999 to a maximum peak of 

2.45 pg/L in December, 1998. Orthophosphate production from the watershed was 

generally nominal except in the summer and the fall seasons. Evidence from Figure 4-7 

shows that the system-level predicted closely to the observed value. The classical method 

registered severe localized deviations since the spikes for the simulated orthophosphate 

do not coincide with observed data. This is typified in June 1998 and 1999 where peaked 

prediction of classical approach was 0.95 pg/L and 1.59 pg/L respectively compared with 

approximately 0.35 pg/L and 0.2 pg/L predicted by the system-level and the observed. 

The results generally show that, the system-level approach predicts the system response 

to orthophosphate production for segment 1 better than the classical approach as the 

system-level was able to reproduce the peaks and lows and other variations exhibited by 

the observed data. Interestingly both methods consistently underestimated the simulated 

orthophosphate in segment 2 (Figure 4-8).
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Figure 4-8: Orthophosphate Prediction for Segment 2

Like segment 1, the system-level approach produced strong consistency in the trend 

and showed the same patterns for localized spikes and depression values similar to the 

observed. This trend is evident in months like October 1998, September 1999, and June 

2000. In general, the system-level is able to capture and reproduce system trend and 

variation in both peaks and lows. Statistical evaluation for classical and system-level 

model performance including the p-value, Nash and Sutcliffe efficiency (Equation 4.1) 

and prediction error are summarized in Table 4-3.
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Table 4-3: Statistical Validation for Predicted Orthophosphate

Parameter Classical System-level

SEGMENT 1
NSE -0.182 0.989
Prediction Error (%) 32 -7
p - v a l u e 0.02 0.53

SEGMENT2
NSE 0.33 0.64
Prediction Error (%) -33 -21
/7 - v a lu e 0.04 0.052

In segment 1, the system-level approach has a Nash and Sutcliffe efficiency of 

0.989, under predicted by 7% and is significant at a p -value of 0.53. The classical 

approach, however, has a low Nash and Sutcliffe efficiency value of -0.182, over 

estimated by 32% and is has insignificant at a p-value of 0.02. Similarly in segment 2, the 

system-level approach has a Nash and Sutcliffe efficiency value of 0.64, underestimated 

by 21% and is significant at a /7-value of 0.052. The classical approach has a Nash and 

Sutcliffe efficiency value of 0.33, over estimates by 33% and is insignificant at a /7-value 

of 0.04. Nash and Sutcliffe efficiency values range from minus infinity to 1; values close 

to one indicate a better fit (Nash and Sutcliffe, 1970). The results show that the system- 

level approach is superior to the classical method for predicting orthophosphate in the 

watershed.

4.6.3 Total Suspended Solids

Results presented here are based on a two and half years of observed data (01/1998 

to 08/2000) as data from 08/2000 to 12/2001 were missing. The observed total suspended



(TSS) for segment 1 for the two and half year period ranged from a low of 49 mg/L in 

June 1999 to maximum peak of 1120 mg/L in Augustl999 (Figure 4-9).
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Figure 4-9: Total Suspended Solids Prediction for Segment 1

Evidence from the Figure 4-9 indicates that the observed TSS is generally nominal 

but shows seasonal variations throughout the year. Both the system-level and the classical 

approach predicted a similar pattern as that of the observed TSS. The system-level 

consistently under predicted the TSS concentration through the simulation period while 

the classical method over predicted for most months. For example, in July 2000, the 

observed was 590 mg/L, the system-level approach was 400 mg/L while that for the 

classical was 760 mg/L. Similarly, for in September 1998, the observed was llOmg/L, 

the system-level approach was 60 mg/L while that for the classical approach was 220 

mg/L. Also, in September, 1999, the observed 1000 mg/L, the system-level approach was 

750 mg/L while that for the classical 1375 mg/L. Although, the system-level consistently 

under-predicted, it is able to capture all the system patterns of peaks and lows and other



72

variations shown by the observed TSS (Figure 4-9) better than the classical approach. 

Evidence can be seen from April to July 1999.

Segment 2 follows a similar trend of prediction observed in the estimates for 

segment 1 (Figure 4-9). The observed TSS for segment 2 ranged from a low of 25 mg/L 

in October 1998 to high peak of 1350 mg/L in August 1999 (Figure 4-10).
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Figure 4-10: Total Suspended Solids Prediction for Segment 2

Unlike segment 1, the system-level estimated close to the observed in most 

months throughout the year. For example, in January 1999, the system-level and classical 

simulated values coincided with the observed values. In other months like September 

1999, the system-level approach under predicted (observed value = 1380 mg/L, system- 

level =1150 mg/L, classical approach = 1378 mg/L). Interestingly, the character trait of 

prediction exhibited by the system-level method (under-estimates and precise-estimates) 

is also detected with the classical method as it over predicted and predicted well in most
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months throughout the simulation period. Hence, Figure 4-10 alone does not provide 

good evidence to conclude that both conventional and system-level approaches are robust 

in case of predicting TSS characteristics. Comparative statistics for TSS including the p- 

value, Nash and Sutcliffe efficiency and prediction error were used to investigate the 

performance of the two methods (Table 4-4).

Table 4-4: Statistical Validation for Predicted Total Suspended Solids

Parameter Classical System-level

SEGMENT 1

NSE 0.65 0.77
Prediction Error (%) 2 i i i 4̂ O

/7-value 0.051 0.15

SEGMENT2

NSE 0.95 0.96
Prediction Error (%) 5 9
p-value 0.69 0.59

Evidence in Table 4-4 shows that the system-level approach consistently 

underestimated while the classical method overestimated for TSS. The p -values for the 

system-level approach for all the segments are significant (0.15 and 0.59) at the level of 

significance (a  = 0.05) while that for the classical method are significant for segment 1 

(0.043) and significant for segment 2 (0.69). The Nash and Sutcliffe efficiency values are 

marginally different for both methods (Table 4-4); however, the values to the system- 

level approach are consistently higher that for the classical method. The results show that 

the system-level approach is robust that the classical method as the approach showed 

consistency in prediction throughout the watershed
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4.6.4 Macro-Level Model Sensitivity

Macro-level stochastic model sensitivity for the system-level approach was 

analyzed to evaluate the magnitude of changes in system response and reproducibility 

upon posterior variation of additional model parameters. Parameters considered 

interception and evapotranspiration are known to have significant impact on overland 

flow. The general definition for sensitivity is described in Chapter 3 (section 3.3).

The model level sensitivity for the system-level approach is presented for overland 

flow for model segments in Figures 4-11 and 4-12. The figures show that the sensitivity 

of the overland flow increases with increasing parameter values. The sensitivity to 

interception varies between -1 and 1 while that for evapotranspiration is between -5 and 2 

for segment 1 and -9 and 2 for segment 2. Evidence from both Figures 4-11 and 4-12 

shows that a mild gradient in interception does not incur a significant change in the 

simulated overland flow. The sensitivity varied between -1 and 1 for both model 

segments. However, a smaller increment in evapotranspiration could cause significant 

change in the resulting runoff.
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Figure 4-11: Model Level Sensitivity for Overland Flow in Segment 1
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Figure 4-12: Model Level Sensitivity for Overland Flow in Segment 2

The sensitivity of orthophosphate to changes in evapotranspiration and interception 

is presented in Figures 4-13 and 4-14 for segment 1 and segment 2 respectively.
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Figure 4-13: Model Level Sensitivity for Orthophosphate in Segment 1
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Figure 4-14: Model Level Sensitivity for Orthophosphate in Segment 2

The Figures show the sensitivity of the simulated orthophosphate relates inversely 

to increasing parameter values. The behavior of orthophosphate is similar the sensitivity 

of overland flow. For example a small increase in interception does not incur a 

substantial change in the simulated orthophosphate. However, a minor rise in 

evapotranspiration could cause significant change in the resulting orthophosphate. This 

trend can be seen in the total suspended solids in Figures 4-15 and 4-16 for segment 1 

and segment 2 respectively.
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Figure 4-15: Model Level Sensitivity for Total Suspended Solids in Segment 1
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Figure 4-16: Model Level Sensitivity for Total Suspended Solids in Segment 2

The data indicate that overflow, orthophosphate and TSS prediction the sensitivity 

response to evapotranspiration is more acute than that of interception parameter.

4.7 Discussion

The key objective for this chapter is to implement and verify the methodology 

framework in the determination of overland and nonpoint source for the Patuxent 

watershed. The system-level approach was successfully implemented and verified. 

Overall, the system-level approach proved to be a better estimator of the hydrologic 

response of the watershed than the classical method.

4.7.1 Overland Flow

The system-level approach predicted the overland flow for both model segments 

with accuracy and significantly reduced the errors associated with the classical model. 

The prediction error ranged from -8.3% to 28.3% for segment 1 and -2.34% to 26.01% 

for segment 2 compared to the classical method which ranged from -17.7% to 68.6% for 

segment 1 and -27.9% to 59% for segment 2. The highest prediction error for both model
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segments was observed during the summer months. This is attributed to the temporal and 

ephemeral characteristics inherent in the watershed. The /7-values for segment 1 were 

0.68 and 0.11 for the system-level and the classical approach respectively while that for 

segment 2 were 0.45 and 0.03 for the system-level and the classical approach 

correspondingly. The Nash and Sutcliffe efficiency values for segment 1 were 0.33 and 

0.12 the system-level and the classical approach respectively while that for segment 2 

were 0.25 and 0.15 for the system-level and the classical approach, correspondingly. The 

significance of the overland flow at /7-values greater the level of significance (a = 0.05) 

indicate that the system-level approach is better to predicting overland flow in the 

Patuxent watershed.

Such significant improvement in prediction accuracy is attributed to the approach 

employed by system-level method, the hybrid stochastic-deterministic modeling 

framework, to estimate hydrologic input parameters that truly represent the watershed at 

its system level. The hybrid stochastic-deterministic modeling framework parameterizes 

input data from the system’s own inherent characteristics that also reduce uncertainty in 

the prediction processes. The findings (Table 4-2) support and confirm that the system- 

level method truly accounts for uncertainty and reduces prediction error as evident in the 

overland flow estimate results.

4.7.2 Nonpoint Source

Overall, the system-level approach successfully predicted orthophosphate 

concentration for both model segments representing the watershed as illustrated in 

Figures 4-7, 4-8 and Table 4-3. In comparison with the observed data, the system-level 

approach proved to be a better estimator for orthophosphate concentration in the
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watershed than the classical method. In model segment 1 the prediction error for the 

system-level method was -7% significant at a p-value of 0.53 while that for the classical 

method was 32% with a p-vale of 0.02. The system-level approach also showed a higher 

Nash and Sutcliffe efficiency value (0.989) than the classical method (-0.18). The 

prediction error in segment 2 was -21% significant at a p -value of 0.052 and -33% with a 

p-value of 0.04 for the system-level and the classical approach respectively. Segment 2 

also showed higher Nash and Sutcliffe values for the system-level approach (0.64) and a 

lower value for the classical approach (0.33). Values of Nash and Sutcliffe efficiency 

range from minus infinity to 1; values close to one indicate a good fit between the 

observed and the model while negative values show a very poor model (Nash and 

Sutcliffe, 1970). The higher values for the Nash and Sutcliffe efficiency confirm that the 

system-level approach is a better predictor of orthophosphate for the watershed than the 

classical approach. Evidence from Figures 4-7 and 4-8 confirms that the system-level 

approach is more suitable to reproduce the patterns in amplitude of the observed data than 

the classical method. The study attributes this finding to the inherent abilities of the 

systems-level approach to estimating input data that represents true system behavior 

rather than using moments from sample-level variations often associated with classical 

approach. Another plausible attribution could relate to the prediction accuracy of 

overland flow. Luo et al (2006) and Jiang et al. (2010) pointed out that the amount of 

nonpoint source generated directly relates to magnitude of surface runoff. Hence better 

prediction of overland flow could lead to improved prediction of nonpoint sources.

System-level approach performed in a robust manner for estimating total suspended 

solids (TSS). Table 4-4 shows that the Nash and Sutcliffe efficiency for the system-level



method (0.77) was marginally higher than the classical approach (0.65) for model 

segment 1 but for segment 2, the values for both methods, system-level (0.96) and 

classical method (0.95), were practically equivalent. However, comparing the 

performance of the classical method to the system-level approach, the system-level is 

significant at /7-values greater that the level of significance (a = 0.05) and is consistent 

throughout the watershed. The consistency in the /7-values and the Nash and Sutcliffe 

efficiency values confirms the system-level method as a robust for the prediction of total 

suspended solids in the watershed

In general, the system-level approach exhibited a robust reproducibility for 

system’s inherent characteristics in estimating the nonpoint source pollutants. The 

system-level approach estimated the watershed’s response to orthophosphate (as 

phosphorus) concentration very closely and for total suspended solids.

4.7.3 Macro-Level Model Sensitivity

Model level sensitivity of overland flow, TSS and orthophosphate is presented for 

model segment 1 and model segment 2 for the hydrologic input parameters, interception 

and evapotranspiration. In both segment, small changes in interception parameter would 

not have any significant change on the resulting flow, orthophosphate and TSS. However, 

a slight increase in the evapotranspiration parameter would cause significant change in 

the simulated overland flow, orthophosphate and total suspended solids. It is 

recommended to include these parameters in hydrologic input parameterization prior to 

hydrologic modeling in future system-level approach applications.
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4.8 Summary and Conclusion

The chapter successfully implemented and verified the methodology framework 

presented in Chapter 3. The methodology was applied to the Patuxent watershed to 

reproduce the hydrologic response of the watershed in terms of overland flow and 

nonpoint source (phosphorus and total suspended solids).

The results for the overland flow, phosphorus and total suspended solids were 

compared to that of the classical method (current method) to assess the prediction 

accuracy of the system-level approach. The findings of the study show that the system- 

level method significantly reduces prediction error and truly replicates the hydrologic 

response of the watershed for overland flow and orthophosphate (as phosphorus) and 

total suspended solids. Based on the findings, the study deduces that the system-level 

approach is capable of reproducing system’s responses for flow and nonpoint source 

pollutants. The study draws on the fact that evapotranspiration is very sensitive to the 

system-level input data processing and should be included in future system-level 

processing prior to hydrologic modeling.

The system-level approach is accurate in predicting the hydrologic response of the 

watershed. This method can be easily replicated in other watersheds. The study shows 

that the proposed hybrid methodology framework reduces uncertainties inherent in input 

datasets and improves prediction by using system’s own intrinsic characteristics. 

Ultimately, the study concludes that the methodology framework can be used to 

parameterized input datasets to account for uncertainty and to reduce error associated 

with hydrologic predictions.
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CHAPTERS 

NONPOINT SOURCE SUPERPOSITIONING

5.1 Introduction

An essential phenomenon underlying the total response of a hydrologic domain is 

the connectivity and contribution of every spatial unit located within the watershed. 

Omission of a spatial unit as a result of inherent data inaccuracy could lead to erroneous 

prediction of a watershed true response to hydrologic processes. Therefore including 

every spatial unit of a watershed in the modeling process involves the identification and 

consistent classification of model boundaries. This ensures that the entire spatial extent of 

a hydrologic domain is truly represented.

Delineation of a watershed is based on topographic gradients which define the 

direction of flow. During delineation, digital terrain analysis algorithms often require 

minimal extent of topographical heterogeneity (Krause and Bronstert, 2005). Where 

topographic gradients are too small, a topographical discrepancy may occur. This may 

lead to hydrologic disconnection of spatial units that are located in the topographic 

inconsistent areas. The resolution of the elevation data is a key factor to determining 

minimum gradient (Wise, 2000). Thus higher resolutions are associated with better 

delineation accuracy and vice versa. This phenomenon is very common with floodplains, 

low lying environment and flat areas where topography is almost homogeneous (Krause 

and Bronstert, 2005). The effect is more pronounced on basin-wide scale as such areas 

require high resolution data. A common resulting consequence of this delineation



anomaly includes misrepresentation or misalignment of flow paths and spatial extent of 

the delineated boundaries.

Hydrologic models respond only to spatial units that are hydrologically connected 

as they are designed to follow the path of water flow. This phenomenon could result in 

the approximation of total response to nonpoint sources of the watershed being 

represented by the model. Current approach to hydrologic modeling overlooks possible 

existence of topographical discrepancies and assumes delineation is accurate. Although 

such an oversight and assumption could simplify the modeling process, the outcome of 

the simulation could be heavily plagued with error if the delineated watershed contains 

multiple counts of the aforementioned discrepancies.

This chapter proposes a framework that accounts for nonpoint sources contribution 

from the hydrologically disconnected spatial units of the watershed. The framework 

would help to accurately determine the total response of a watershed to pollution arising 

from diffused sources. The goal is to conceptualize a methodology that incorporates 

nonpoint source into the proposed hybrid hydrologic modeling framework by using 

method of superposition over time and space. The chapter also examines the response of 

nonpoint (diffused) sources contributed from the hydrologically disconnected areas to 

storm events. The intent is to define criteria on when to ignore/include nonpoint source 

contribution from the hydrologically disconnected areas. The realization of the above 

goals include to (1) develop and modify existing mathematical expressions for estimating 

overland diffused sources, (2) identify hydrologically disconnected areas (disconnected 

areas) within the watershed, (3) estimate nonpoint source contribution from the 

disconnected areas and superimpose on the nonpoint source estimated from the system-
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level approach in Chapter 4, and (5) characterize the response of the nonpoint source 

from disconnected areas to storm events.

5.2 Mathematical Formulation

Mass loading relating to nonpoint sources varies with respect to location and time; 

hence, are classified as continuous or instantaneous depending on the duration. 

Instantaneous loadings are over a very short time period (Thomann and Mueller, 1987). 

Continuous loadings introduce pollutants to a receiving body of water for extended 

period of time (Runkel and Bencala, 1995). In this study the concept of continuous 

loading is extended to the characteristics of estimating nonpoint source contributions 

coming from the disconnected area. The analogy is based on the ephemeral features and 

the extended period of loading during the duration of overland flow. The concept of 

pollutant mass loading, overland flow routing and advection and diffusion are combined 

to derive mathematical equations that estimate the amount of nonpoint source generated 

from hydrologically disconnected areas. Details of the interrelationship between this 

parameters and their derivation from first principles are presented in appendix A. In 

general, pollution mass loading is the product of the flow rate and the concentration of 

the pollutant. It is expressed mathematically as:

W = QC (5.1)

where W  mass loading, Q is the flow rate and C is the concentration of the effluent. For 

overland nonpoint (diffused) sources, Q is the overland flow rate and C is the 

concentration resulting from the washoff of pollutants during runoff.

Consider the elemental volume in Figure 5-1 as a catchment in a watershed. The 

mass of pollutant loading leaving and entering can be described using the conservation of



85

mass or mass balance. The mass balance accounts for all fluxes entering and leaving the 

control volume.

Win

Q i n C ,

wout

Qout out

Figure 5-1: Mass Balance for an Elemental Volume

A Q C  —  QinCin Qout^out ( 5 - 2 )

The classical advection-dispersion for defining the transport and fate of pollutant in 

Figure 5-1 can be described by Equation 5.3.

dC dC d2C 
l i ~  ~ U dx + E ~dx2 ~ kC

(5.3)

Equation 5.3 is the classical advection-dispersion equation used in quality 

modeling. Equation 5.3 is often used for in-stream pollutant routing where the variable C 

is the concentration for point sources. Nonpoint sources pollutants are subsequently 

added as contributing sources. In this context, Equation 5.3 is adapted to estimate 

nonpoint source pollutants overland. The Equation describes the spatial and temporal 

variation of overland nonpoint sources pollution transport over time and space. In this 

study, the durational characteristic of continuous loading is extended to the temporal 

characteristics of surface runoff. For a storm duration (t) overland flow begins at time, 

t  =  0 and ends at time t>  r. Consequently, the mass loading begins at time, t = 0 and 

ends at time t  > r. The solution to Equation 5.3 for time variable nonpoint source loading 

can be obtained by using the boundary conditions:
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C(x, 0) = 0 fo r  x > 0 

C(0, t) = C0 fo r  t > t > 0 

C(x,t) = 0 fo r  t > r 

C(po,t) = 0 f o r  t > 0 

The solution to Equation 5.3 in the final form is given by O’Loughlin and Bowmer 

(1975) and Runkel (1996).

O’Loughlin and Bowmer (1975):

CoC(x,t)

Runkel (1996):

efrc^-
x -  Utr\  vxjx_n  

2yfEi !
efrc  ^

x  +  utrx  
2yfEt )

(5.4)

Ux 
+ e2E(1+r) \efrc{-

f  r  (x -  U tr\  r  (x  -  U(t -  r ) r \ lr C ( w ) " e / r C  [ 24EfTr)  J J
f x  + u ( t - r ) r \
I  2 J E ( t  -  r) )

x + u t r \
2yfEt /  e^ rC{ 2yjE(t -  t )

r  = 1 + 4
kE
W

w

c° =  ? (5.6)

where C is the concentration of the pollutant, x  is distance traveled, r  is the rainfall 

duration, t  is the time, C0 is the initial concentration, U is the advection coefficient (mean 

velocity) and E is the longitudinal dispersion coefficient. The solution during the 

rainfall, t  < r  is given in Equation 5.4 and that after the rainfall, t  > r  is given by 

Equation 5.5. A combination of Equations 5.4 and 5.5 superpositions nonpoint loading 

over time and space during and after a rainfall event.
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5.3 Methods and Procedures

The equations 5.1 -  5.6 are applied in this section to estimate mass load generated 

during overland flow from areas that are hydrologically disconnected from the modeled 

watershed.

5.3.1 Hydrologically Disconnected Areas

This section describes the process of identifying areas that are hydrologically 

disconnected in the hydrologic model. The delineated watershed in Chapter 4 was 

examined to identify the areas that are hydrologically disconnected as a result of 

topographical discrepancy. Two of such areas were identified in the watershed. The 

landuse types associated with these areas were identified to be emergent herbaceous 

wetlands or marshes (Figure 5.2).
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Figure 5-2: Hydrologically Disconnected Areas

Geographic Information System techniques were used for the identification 

process. The study performed an overlay analysis using multiple layers consisting of 

hillshade, slope, aspect, subbasins, streams and NHD stream to locate areas within the 

watershed that have discontinuous flow paths. The hillshade served as a terrain or relief 

feature, the slope was used to identify areas with successive low gradient towards 

downstream while aspect was used to detect the pattern of flow.

5.3.2 Estimation of Nonpoint Source from Disconnected Areas

This section describes the process of applying the equations 5.4 and 5.5 to estimate 

amount of mass load generated during overland flow for the disconnected areas identified 

in section 5.3.1. These areas will be superpositioned onto the system-level approach to
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predict the overall response to nonpoint source in the watershed. Equation 5.5 was used 

to determine the concentration during the storm while Equation 5.4 was used to compute 

the lingering concentration after the storm. The equations require inputs such as initial 

concentration, duration of rainfall, simulation time period, decay rate, longitudinal 

dispersion coefficient, mean velocity and distance traveled by the diffused source. Input 

variables such as the length, area, slope and surface roughness was determined using GIS 

tools. The initial concentration was obtained by using published areal loading (mass per 

unit area) for phosphorus for the Patuxent (Boynton et al., 1995) and the Equation 5.6. 

The volumetric flow (Q) rate in Equation 5.6 was determined using the rational method:

where a  is the runoff coefficient, i is the rainfall intensity (precipitation) and A is the 

surficial of the marsh. The runoff coefficient for the marsh areas was obtained by using a 

relationship between runoff coefficient and imperviousness (Schueler and Yousef, 1994, 

Wright et al, 2006). A six day precipitation event was obtained from a nearby station in 

the watershed. The precipitation days were selected such that they have zero precipitation 

days preceding and succeeding the rainfall events. Other required inputs such as reaction 

rate constant for phosphorus was obtained from Bowie et al. (1985) while dispersion 

coefficient for wetlands was determined from the Kadlec (1994). The dispersion 

coefficient was expressed as:

where E is longitudinal dispersion coefficient; L is length of wetland and U is velocity. 

Velocity was calculated by using Mannings equation and assuming that the overland flow

Q -  aiA (5.7)

E
(5.8)
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is a rectangular channel with infinite width and shallow depth (Chapra, 1997; Akan and 

Houghtalen, 2003; Ponce, 1989).

u=IrV3JT0
n

Ac b.h
R = T = b + 2h

As b -> oo 

R = h

U  =  ± h V 3 JS~0 (5.9)

where U is the velocity, R is the hydraulic radius, n is the Mannings coefficient, S0 is the 

slope of the marsh, Ac is the cross-sectional area, P is the wetted perimeter, b is the flow 

width and h is the flow depth. The assumptions governing the computation process 

described above include: (1) the landuses found within the disconnected areas are 

homogeneous; (2) the rainfall duration is equal to the time of concentration resulting in 

peak discharge, and (3) internal reactions within the marsh are not considered. 

Assumptions 1 and 2 meet the criteria for using the rational method

5.3.3 Nonpoint Source Superpositioning

The temporal variation of phosphorus concentration at the exit of the marsh was 

determined for simulation ten days with precipitation beginning on day 2 and ending on 

day 8 (Figure 5-3). Day 1 and days 8-10 had no precipitation while days 2 to 7 had 

precipitation continuously. The computed concentration (Equations 5.4 and 5.5) at the 

outlet of the disconnected area was superpositioned onto the system-level model in
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Chapter 4. Details of the methodology framework for nonpoint source superpositioning 

can be found in appendix B.
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Figure 5-3: A Six-Day Precipitation Event

5.3.4 Nonpoint Source Characterization

Nonpoint sources are known to exhibit spatial and temporal characteristics 

(Thomann and Mueller, 1987; Fujiwara et al., 1988). Jiang et al. (2010) and Luo et al. 

(2006) showed that the amount of nonpoint source generated directly relates to the 

magnitude of overland flow. This study examines the response of the nonpoint from the 

hydrologically-disconnected area to different storm events. The characteristics are 

defined in terms of magnitude and spatial and temporal characteristics.

The rainfall intensity duration frequency (IDF) was used for this purpose. Rainfall 

intensity duration frequency curves are precipitation patterns used as input into 

hydrologic models to estimate runoff from a watershed (Chow et al., 1988) or for design 

purposes in hydrologic engineering (Levy and McCuen, 1999). The storm events include 

different storms durations (6, 12, 24 and 48 hours) at different return periods (2, 5, 10,

1 2 3 4 5 6 7 8 9
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and 25 years). The IDFs were determined using the rainfall frequency atlas map,

Technical Paper No. 40 (Hershfield, 1961) and Technical Paper No. 49 (Miller, 1964).

The atlas maps are isohyet charts covering different parts of the United States. To

determine rainfall intensity, rainfall depths (Figure 5-4) for the study area were

determined from the atlas at the specified return periods and storm durations and then 

converted into rainfall intensities values (Figure 5-5) by dividing the rainfall depth by the 

corresponding storm duration.
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Figure 5-4: Rainfall Depths Extracted from Atlas Maps
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Figure 5-5: Rainfall Intensity Duration Frequency Curve

Characterization of the diffused source in terms of magnitude was defined as 

overland flow rate, concentration and mass loading. For each return period and storm 

duration, the corresponding rainfall intensity was used with the rational method (Equation 

5.7) to determine the volumetric flow rate. The concentration of phosphorus was then 

determined using Equation 5.6. Equations 5.4 and 5.5 were used to determine the 

concentration. The mass loading was determined using Equation 5.1.

The spatial and temporal variation of the diffused source was investigated for 12 

hour storm duration for a 2 year return period. To determine the spatial variation, the 

study divided the volumetric flow rate by the total length of the disconnected area to 

obtain a unit flow rate (q0). The length of the marsh was then divided into a n number of 

segments (5) along the length of the marsh. A schematic representation is shown in 

Figure 5.6.
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Figure 5-6: Schematic Diagram for Computing Spatial Distribution of Runoff

For each segment, the volumetric flow rate is defined as

Qn = % n l

_ Q
q° ~ T

where I is the length from the entry boundary, n is the position of the segment form 

upstream and q0 is the unit flow rate, Qt is the flow rate at a certain length from the entry 

boundary and Q is the flow rate computed with Equation 5.7. Equations 5.4 and 5.5 are 

then used to compute the concentration and Equation 5.1 was used to determine the mass 

load for each segment.

5.4 Model Sensitivity

In this study two different sensitivity analyses were performed: (1) sensitivity of 

the superpositioned system-level to physiographic related input parameters and (2)
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sensitivity of the nonpoint source generated from the disconnected areas to storm events. 

Absolute sensitivity (Equation 3.20) was used to assess response of the system-level 

approach with superpositioned nonpoint due to the level of complexity of interconnected 

equations. Relative sensitivity (Equation 3.21) was used for the nonpoint source 

generated from the disconnected areas.

5.4.1 Sensitivity of System-Level Superpositioned Model

This section uses sensitivity analysis to gain insight into the dynamics of the 

system-level approach superpositioned with nonpoint by investigating its response to 

other physiographic input parameters that were not processed at system-level. The 

parameters considered were interception and evapotranspiration. To measure the 

sensitivity, bounds for the parameters mentioned above were selected from their 

respective range of values represented in the deterministic computation engine. The 

bounds were set at 25 and 75 percentile and a standard Monte Carlo was used to generate 

series of input data sets for the analysis. The purpose for selecting bounds at 25 and 75 

percentile was to prevent any possible forms of bias that may result from high or low 

values. The Monte Carlo method considers each model input parameter to be a random 

variable with a probability density function (PDF) (Loague and Corwin, 1996). The 

extent of sensitivity was carried out by changing separately each model parameter and 

measuring the response of the model (Costanza et al., 2002; Arhonditsis et al, 2000).

5.4.2 Nonpoint Source Sensitivity to Storm Events

This section uses relative sensitivity approach to investigate the response of the 

nonpoint source generated for the disconnected area to various storm events. Studies such



as Jiang et al. (2010); Luo et al. (2006) have shown that, the generation of nonpoint 

sources relates directly to the magnitude of overland flow. The study investigates the 

response of nonpoint source generated from the hydrologically-disconnected areas in the 

watershed to different rainfall events for different storm durations (6, 12, 24 and 48 

hours) at different return periods (2, 5, 10 and 25 years). The sensitivity was determined 

using basic equations governing the generation of NPS in the disconnected area and 

expressing them in terms of the sensitivity index:

where Q is the volumetric flow rate obtained from the rational method, A is the surficial 

area, a is the runoff coefficient, i is the intensity, W is the mass load, C is the 

concentration, h is the flow depth, and t is the duration. Relative sensitivity with respect 

to intensity can be expressed using Equation 3.21 as

Flow rate:

Q = aiA ( 5 .1 3 )

Loading:

W = QC ( 5 .1 4 )

Intensity:

( 5 .1 5 )

dW i
Rintensity ~  ~ j ~ - - ( 5 .1 6 )

Using the equations 5.13 to 5.15
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as

The relative sensitivity with respect to the intensity is described as

Rintensity ~ CaA. — (5.17)w

Relative sensitivity with respect to duration can be expressed using Equation 3.21

dW t
Rintensity ~  (5.18)

Using the equations 5.13 to 5.15

dW _  dW dQ di 
dt dQ ' di ’ dt

dW h
——  = CaA. — -  
dt t 2

The relative sensitivity with respect to the duration is described as

CaAh t
Rduration =  p  ■“  ( 5 . 1 9 )

CaAh t
Rduration =  ^2 ' ̂  (5.20)

5.5 Results

5.5.1 Nonpoint Source Superpositioning

The amount of nonpoint source generated was successfully determined for the 

disconnected area for ten simulation days for a six-day precipitation event.
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Figure 5-7: A Six-Day Precipitation Event

Loading began on day 2 and ended on day 8 (Figure 5-8) of the precipitation days. 

Day 2 corresponds with the day precipitation began and day 8 corresponds with a day 

after the precipitation ends (Figure 5-7).
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Figure 5-8: A Ten-Day Phosphorus Simulation

Figure 5-8 shows concentration of the phosphorus at different times scales at the 

outlet of the disconnected area. Evidence from the graph shows the limb of the 

pollutograph (Figure 5-8) rises with the rising limb of the hyetograph (Figure 5-7) to
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peak, remains in equilibrium and then recedes as the hyetograph recedes. Consequently, 

the concentration increased from 0 mg/L to a peak of 0.14 mg/L on day 2, remained 

constant throughout the duration of the rainfall and reduces to 0 mg/L at the end of the 

rainfall. The transport process began on day 2 and ended on day 8, 12 hours after the 

storm duration. The study attributes the continuous contribution after the storm duration 

to the continuous outflow of the runoff from the watershed as the transport of the 

phosphorus depends on the overland flow. Overall, the result demonstrates that nonpoint 

source exhibits ephemeral characteristics and varies over time and space.

The phosphorus concentration at the outlet of the disconnected area was to 

superposition the system-level model (from Chapter 4) in order to determine the overall 

response of the segment to phosphorus loading. Results are shown in Figure 5-9.
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Figure 5-9: Nonpoint Source Superpositioning



100

Evidence from the graph show that the observed orthophosphate increased from 

0.05 pg/L on day 1 to a peak of 0.3 pg/L on day 3 and receded to 0 pg/L on day 11. 

Similarly, the simulated phosphorus exhibited similar characteristics on the same days. 

However, the system-level approach without superpositioning (no superpositioning) and 

with superpositioning (superpositioning) overestimated on days 1 and 2 but 

underestimated consistently after day 2 onwards. Similar characteristics were shown by 

the classical approach. For example, on day 8, the observed phosphorus was 0.027 pg/L 

while the system-level method with super-positioning was 0.027 pg/L, the system-level 

approach without superpositioning was 0.020 pg/L and that for the classical approach 

was 0.011 pg/L on the same day. Although the system-level with superpositioning, the 

system-level without superpositioning and the classical approach appears to follow 

similar pattern, the system-level with superpositioning and the system-level without 

superpositioning matches the observed closely better than the classical approach. The 

results emphasize the conclusion drawn in the preceding chapter (Chapter 4) that the 

system level approach is a better replicator of system’s response than the classical 

approach.

Figure 5-9 also compared the system-level with superpositioning to system-level 

without superpositioning. Results show that both methods matched each other from day 1 

to day 2 but differed from day 3 to the end of the simulation period. The difference is due 

to the inclusion of the nonpoint source from the disconnected area which began on day 2 

(Figure 5-9). The contribution of the external nonpoint source can be clearly seen on day 

3 to 10 (Figure 5-9). Evidence show that the system-level with superpositioning estimates 

closer to the observed than the system-level without superpositioning. Table 5-1 shows
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the prediction error and the Wilcoxon Rank /7-value associated with each of the methods 

presented in Figure 5-9.

Table 5-1: Statistical Validation for Predicted Nonpoint Source

System-level with 
Superpositioning

System-level without 
Superpositioning Classical

Prediction error 
(%)

0.29 -4.82 -20.55

/7-value 0.954 0.583 0.194

Results in the Table above shows that the error of prediction for system-level with 

superpositioning approach is 0.29% while that of system-level without superpositioning 

and classical method are -4.82% and -20.55% respectively. Although, the system-level 

with superpositioning approach overestimates, the degree of error associated with 

estimation is less compared with that of the system-level without superpositioning. A 

Wilcoxon Rank Sum (Mann Whitney) test showed that all the three methods are 

significant at p -values (Table 5-1) greater than the level of significance (alpha = 0.05) 

None of the three methods could be rejected as each of the methods are significant at the 

required level of significance; however, the superpositioned-nonpoint-source-system- 

level model is superior to estimating system-level approach considering the prediction 

error and the performance shown in Figure 5-9.

5.5.2 Nonpoint Source Characterization

The nonpoint source characterization in terms of magnitude is presented for storm 

events at different return periods (2, 5, 10 and 25 years) and durations (6, 12, 24 and 48 

hours). The hydrologic response in terms of flow rate is shown below in Figure 5-10.
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Figure 5-10: Hydrologic Response to Overland Flow

Results from Figure 5-10 shows that the flow rate increases for all return periods 

with decreasing duration. For the same return period and different durations, flow rate is 

maximum at lowest duration but reduces to minimum as the duration increases. For 

example, for a 25 year return period, the flow rate was approximately 6000 m3/day but as 

the duration increases the flow rate reduces gradually to 1000 m3/day in 48 hours. For 

different return periods but the same duration, the flow rate increases with increasing 

return period. In general, the lower the storm duration, the higher the flow rate for same 

return period, and the higher the return period the higher the peak flow rate for the same 

storm duration. This phenomenon is attributed to the relationship between flow depth, 

rainfall intensity and duration as storms with long durations have higher flow depths and 

smaller intensities than those with shorter durations.



The corresponding concentration at different return periods for different durations 

is present in Figure 5-11. The concentration presented here is the maximum concentration 

for each return period occurring at the outlet of the marsh.
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Figure 5-11: Hydrologic Response to Phosphorus Concentration

The results in Figure 5-11 show that, concentration is at its lowest for smaller 

durations but increases for all return periods as the duration of the storm increases. For 

example, at a 6 -hour duration of rainfall, the concentration was low at 0.1 mg/L and 0.15 

mg/L for 25 and 2 year return periods respectively; this increases as the storm duration 

increases to 48 hours at 0.5 mg/L and 0.9 mg/L for 25 and 2 year respectively. For the 

same return period but different storm durations, the concentration increases 

progressively with increase in storm duration. For different return periods but the same 

duration, concentration reduces with increasing return period; for example, for a 1 2 -hour 

duration rainfall for different return periods, the concentration recorded was 0.3, 0.25,
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0.17 and 0.15 mg/L for a 2, 5, 10 and 25 year return periods respectively. In general, the 

higher the storm duration, the higher the concentration for the same return periods, and 

the higher the return period the lower the concentration for the same storm duration.

The mass loading for the hydrologically disconnected area is shown in Figure 5-
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Figure 5-12: Hydrologic Response to Phosphorus Mass Loading

Figure 5-12 shows that the mass load increases for all return periods up to 12 hours 

and then maintains equilibrium after 12 hours. For example, for a 5-yr return period, the 

mass load spikes from 560 g/day at a 6 hour duration to 587 g/day at 12 hours and 

remained constant at 585 g/day even though the duration kept increasing. All the return 

periods exhibit similar trends. Unlike the concentration, the mass loading increases as the 

return period increase. For example, for a 12-hour storm duration, the mass load 

generated was 585, 587, 589, and 590 g/day for 2, 5, 10 and 25 year return periods.
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However, as the return period increases, the difference in magnitude between the mass 

loads produced becomes very insignificant. Also, smaller return periods are quicker to 

spike at durations up to 12 hours than higher return periods.

The spatial variation of the diffused source along the length of the marsh (location 

0 m to 1740 m, Figure 5.6) for a 12- hour duration is presented in Figure 5-13.
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Figure 5-13: Spatial Variation of Diffused Sources

The results show the spatial characteristics of the phosphorus pollutant as it travels 

from location 0 m (entry boundary of the marsh) to location 1740 m (outlet). The Figure 

shows the relationship between the flow rate, the concentration and the mass load. 

Evidence shows that at 0 m, phosphorus concentration was at 0 mg/L the concentration 

surges to a peak of 3.0 mg/L at 174 m downstream. The increasing trend reverses 

gradually with increasing distance from the peak value (3.0 mg/L) to 0.3 mg/L at the 

outlet, 1740m downstream from location 0 m. The mass load for the phosphorus also
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began the transport process at location 0m with an initial value at 0 kg/day. Like the 

concentration, it also experiences a sharp rise from 0 kg/day to a peak value of 0.5 kg/day 

at location 174 m downstream, it then stays in equilibrium with increasing distance until 

it exits the domain outlet, located 1740 m downstream. The Figure also shows the spatial 

and temporal variation of the overland flow with location. The overland flow is at its 

lowest at location 0 m and maximum at the outlet (location 1740 m). The progressive of 

the flow rate along the length of the disconnected area (Figure 5.13) is attributed to the 

cumulative of spatial locations in the area.

The temporal variation for the phosphorus concentration at location 500 m and 

1740 m (outlet) (corresponding to the locations in Figure 5-13) is presented in Figure 5- 

14.
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The results show the ephemeral or temporal characteristics of the phosphorus 

pollutant at two locations, 500m and 1740 m, downstream of location 0 m (Figure 5-13). 

Evidence from the graph shows both spatial locations exhibit similar ephemeral 

characteristics as limb of the pollutograph for both locations rises and falls. At location 

500 m, the concentration rose sharply from 0 mg/L at time 0 hours to 0.98 mg/L at time 3 

hours into the storm duration, maintains equilibrium up to 12 hours (end of storm 

duration) and then drops sharply to 0 mg/L at 15 hours (3 hours after the storm). At 

location 1740 m (outlet), concentration was at 0 mg/L at time 0 hours; it then rises gently 

to a peak of 0.3 mg/L at time 6 hours into the storm, remains constant up to the end of the 

storm and then recedes gently from 12 hours (the time at which the rain stops) to a value 

of 0 mg/L at time 21 hours (9 hours after the rain).

5.5.3 Sensitivity of System-Level Superpositioned Model

The runs for each series of input parameter generated from the Monte Carlo runs 

are presented in Figure 5-15 for interception and Figure 5-16 for evapotranspiration.
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Figure 5-15: Response of Superpositioned Model to Variations in Interception
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Figure 5-16: Response of Superpositioned Model to Variations in 
Evapotranspiration

Figures 5-15 and 5-16 demonstrate how the inherent uncertainty in the interception 

and the evapotranspiration individually affects the model’s outcome. The results compare 

the baseline model with outputs obtained from the series of input data generated from 

Monte Carlo simulation. The trend line describes the steepness or gradient of the 

distribution of the outputs from Monte Carlo runs. The response of the model to variation 

in the interception parameter shows a steeper gradient (0.079) than that of the 

evapotranspiration parameter (0.0005). The corresponding absolute sensitivity to the 

results presented in Figures 5-15 and 5-16 is shown in Figure 5-17



109

3.96

gradient = 0.025

gradient = 0.005 3.93

.a
<D 3.92

* Interception 
Evapotranspiration

—  Linear (Interception)
—  Linear (Evapotranspiration)

3.91
-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6

Change in Parameter (%)

Figure 5-17: Sensitivity of Superpositioned Model to Interception and 
Evapotranspiration

The absolute sensitivity of the model to variations in the interception and the 

evapotranspiration parameter is presented in percentages so as to enable comparison 

between the two input parameters. The result shows the percentage variation for each of 

the parameters and the corresponding percentage change in the model’s outcome. The 

gradient of model’s response to the interception parameter was higher than that for the 

evapotranspiration parameter. The model is more responsive to smaller changes in the 

interception parameter than the evapotranspiration parameter. Smaller increment in the 

interception parameter would cause significant change in the model’s outcome.

5.5.4 Sensitivity of Nonpoint source to Storm Events

The relative sensitivity of the mass loading to different intensities for all the storm 

events (2,5,10,25 years) at 6,12,24 and 48 hour duration is shown in Figure 5-18
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Figure 5-18: Sensitivity of Diffused Sources to Rainfall Intensity

The Figure 5-18 shows the sensitivity of nonpoint source mass loading in the 

disconnected area to variations in intensity for different storm durations. The curves 

represent relative sensitivity at 6 hours, 12 hours, 24 hours and 48 hours. Relative 

sensitivity was between 0.987 and 1.1 with intensity varying between 0.1 to 0.8 inches 

for all storm durations. The storm duration with the greatest variation in sensitivity was 6 

hours, followed by 12 hours with 48 hours having the least variation in sensitivity. The 

curves suggest that a 6 hour duration of rainfall with intensities has the most significant 

impact on mass loading.

The sensitivity of the mass load to variations in storm duration for return periods is 

shown in Figure 5-19.
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Figure 5-19: Sensitivity of Diffused Sources to Storm Duration

The curves represent relative sensitivity at 2 year return period, 5 year return 

period, 10 year return period and 25 year return period. The sensitivity curve for the 2 

year return period shows the greatest variation, succeeded by 5 year return period with 

the 48 year return period having the least variation. The curves suggest that a 2 year 

return period with duration of rainfall between 5 hours and 15 hours has the most 

significant impact on mass loading.

5.6 Discussion

The key objective for this chapter is to develop an approach to estimate overall 

response of a watershed to nonpoint source through the superpositioning of nonpoint 

source contribution from hydrologically disconnected areas in the Patuxent watershed. 

The method was successfully applied to predict orthophosphate pollution in the Patuxent 

watershed. Overall, the approach proved to be a better estimator of the response to
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orthophosphate pollution in the watershed than the system-level approach only and the 

classical method. The study also examined the response of nonpoint (diffused) source 

from the disconnected area to storm events and investigated the spatiotemporal 

characteristics of the diffused source.

5.6.1 Nonpoint Source Superpositioning

Concentration for phosphorus was estimated during a six day rainfall event. 

Concentration was found to increase from 0 mg/L on day 1 (precipitation day 0) to peak 

on day 2 (precipitation day 1), remained in equilibrium and receded to 0 mg/L on day 8 

(12 hours after the storm). Overall, the range of phosphorus concentration estimated for 

the marsh was 0 mg/L to 0.14 mg/L. The range is in agreement with that recorded by 

Makepeace et al. (1995) and Lee and Bang (2000) for storm water quality. The study 

attributes the rise to peak and staying in equilibrium to the ephemeral characteristics of 

the overland flow (Fujiwara et a l, 1988; Luo et al., 2006; Jiang et al, 2010) as the 

generation and the transport of diffused sources relies solely on rainfall runoff. Overall, 

the findings show that, nonpoint source inherits and exhibits temporal characteristic of 

rainfall runoff (Fujiwara et a l, 1988).

The system-level approach was super-positioned with the estimated overland 

phosphorous concentration to simulate orthophosphate for the watershed. The resulting 

orthophosphate concentration was predicted within reasonable accuracy. It ranged from 0 

pg/L on the days of no precipitation to 0.3 pg/L within days of precipitation (Figure 5-9). 

The simulated result was compared with results from the system level method without 

superpositioning and the classical method (Figure 5-9). The outcome of the comparison 

showed that the system-level with nonpoint source superpositioning matches the
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observed better than the other methods. The prediction error for the system-level 

approach with the super-positioned nonpoint sources was 0.29% (significant at a /7-value 

of 0.954) while prediction error for the system-level approach without superpositioning 

and the classical method were -4.82% and -20.55 with /7-values 0.58 and 0.19 

respectively. None of the three methods could be rejected; however, based on the low 

prediction error for the system-level with superpositioning, the study concludes that the 

system-level approach with nonpoint source superpositioning is superior and a better 

approach to estimating the overall system’s response to nonpoint source pollution.

5.6.2 Nonpoint Source Characterization

The hydrologic response to diffused sources in terms of magnitude was 

successfully characterized for the hydrologically-disconnected area. The response 

variables determined were flow rate, concentration and mass loading. The variables were 

determined for storm event at 2, 5, 10, and 25 year return periods at 6, 12, 24 and 48 hour 

storm durations.

For the overland flow, the results generally showed that (1) flow rate increases with 

decreasing storm durations for the same return period, and (2) flow rate increase with 

increasing return period for the same storm duration. This phenomenon is attributed to 

the relationship between the flow depth, rainfall intensity and duration and the 

assumptions underlying the rational method. These are explained in details in Akan and 

Houghtalen (2003). The higher flow rates for smaller storm durations are explained by 

the decreasing of rainfall intensity for increasing storm durations. Thus for the same 

return period, smaller durations have higher rainfall intensity than higher durations. The 

phenomenon is also explained by effect of the time of concentration. Time of
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concentration is the time required for a stormwater to flow from the hydrologically most 

remote point in a basin to the outlet. It represents the hydrologic response time of the 

basin. All storm durations are assumed to have the same time of concentration; hence, a 

storm event whose duration equals the time of concentration would produce a higher flow 

rate.

For concentration, the results showed that (1) increasing the storm duration 

produces higher concentration for the same return period and (2) increasing the return 

periods decreases the concentration for the same storm duration. Case 1 agrees with Luo 

et al. (2006) and Jiang et al. (2010). These studies pointed out that the amount of 

nonpoint depends greatly on the magnitude of runoff. In case 2 where the concentration 

decreases with increasing return period is attributed to the effect of “the first flush of 

stormwater runoff’ and runoff volume. The first flush of stormwater runoff assumes the 

first part of runoff is most polluted (Deletic, 1998). This concept is often applied in 

stormwater sampling as stormwater samples are usually measured within 1 to 2 hours 

into the rainfall duration (Zou and Christensen, 2010). Studies have shown that, during 

the first flush, a significant amount of pollutant is washed off into an initial percentage of 

generated runoff volume. For example, 80% of pollutant is transferred to the first 30% of 

runoff volume (Saget et al., 1996; Kim et al, 2005) and 80% of pollutant is transferred to 

the first 25% of runoff volume (Vorreiter and Hickey, 1994). For different return periods 

but the same duration, runoff volume increases with increasing return period. Hence 

smaller return periods will have higher concentration than storms with higher return 

periods.
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The estimated concentration values ranged from 0 mg/L to 0.95 mg/L. The range 

agrees with the range values found in literature (Maristany and Bartel, 1989; Athayde, 

1984; Line et al., 2002). The normal values are within the range of 0 to 0.7 mg/L (Taebi 

and Droste, 2004; McLeod et al., 2006). The higher values for concentration (greater than 

0.7 mg/L) are related to storm durations greater than 24 hours.

The results presented for the mass load generally shows that (1) smaller return 

periods generate smaller mass load and higher return period higher mass load, (2) smaller 

return periods rises to peak faster for shorter durations, and (3) all return periods reach a 

state of equilibrium after 12 hours. The study attributes the first finding to the magnitude 

of volumetric flow (Luo et al., 2006; Jiang et al., 2010) as these studies demonstrated the 

amount nonpoint source generated relates directly the magnitude of runoff. The second 

finding is attributed to the described effect of first flush of stormwater runoff. Higher 

return periods will have higher runoff volumes hence lower concentration while smaller 

return period will have smaller runoff volumes hence higher concentration. This 

phenomenon could be the likely cause of the quick rise in the mass load observed for the 

2 and the 5 year return periods. For the third finding, the study could not find any 

plausible cause or other explanation other than assuming that the loading capacity of the 

marsh considered in this study has reached a state of saturation for all storm durations 

and return periods after 12 hours. However, the cause of the equilibrium and the plausible 

explanation given is subject to further investigation, which is beyond the scope of this 

study.

The spatial characteristics of the nonpoint source were shown to vary for all 

locations along the length of disconnected area. The temporal variation was also shown
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for two locations along the length of the disconnected area. The results showed that 

nonpoint source vary in space and time, thus confirming Thomann and Mueller (1987) 

and Fujiwara et al. (1988) that nonpoint sources exhibit ephemeral characteristics.

5.6.3 Sensitivity of System-Level Superpositioned Model

The response of the system-level superpositioned with nonpoint source- to 

variations in interception and evapotranspiration was successfully analyzed using 

sensitivity analysis. The results suggest that the system-level superpositioned- with 

nonpoint- source is more sensitive to variations in interception than the 

evapotranspiration parameter. The findings contradict most published sensitivity studies 

such as Rouse (2000), Domec et al. (2012), Bryant et al. (2005) and Dadaser-Celik et al. 

(2006) as these studies have established that wetlands are most sensitive to 

evapotranspiration. Only a few studies like Miller (2002) mentioned that wetlands are 

moderately sensitive to the interception parameter. This finding for a marsh area is 

unusual as wetland lands in hydrology are often identified with evapotranspiration (or 

evaporation).

The study attributes this anomaly to the sensitivity of the hydrologic section of the 

system-level model being carried over and argues although the magnitude of diffuse 

depend on the magnitude of runoff, diffused do not directly relate to the physiographic 

parameters. The physiographical parameters play key roles in determining the amount of 

runoff. When the runoff is created, these parameters have little or no effect on the 

transport process which relates directly to the generation and the driving of the nonpoint 

source. This finding stresses the need to precede every nonpoint source modeling with a 

hydrologic (overland flow) that has already accounted for possible uncertainty that might
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be associated with its candidate parameters. It is recommended to include the interception 

parameter in hydrologic input parameterization (described in Chapter 3) prior to 

hydrologic modeling in the future for nonpoint source superpositioning applications.

5.6.4 Nonpoint Source Sensitivity to Storm Events

The relative sensitivity analysis for the nonpoint source was successfully 

implemented. Results show that the nonpoint source generated from the disconnected 

area is sensitive to both intensity and duration. For different intensities, the nonpoint 

source was found to be more sensitive to 6 hours for all return periods with intensity 

variation between 0.4 and 0.8 inches. The 6 hours was succeeded by 12 hours which had 

intensities varying between 0.2 and 0.4 inches. The duration with least or insignificant 

impact was the 48 hour duration. For different storm durations, the nonpoint source 

generation was much sensitive to shorter return period than with longer return periods. A 

2 year return period has greater impact on the generation of nonpoint source than a 25 

year return period. Overall, nonpoint source is sensitive lower return period and shorter 

durations.

5.7 Implications to Water Quality Modeling

Water quality is a mathematical representation of real world phenomenon. A model 

that incorporates every possible variation inherent in a physical system to predict 

hydrologic response variables for a watershed or any domain of interest is desirable. This 

chapter provided the basis for augmenting existing nonpoint source models with potential 

sources that are unaccounted for. Equations 5.4 and 5.5 were successfully applied in this 

chapter to account for sources unaccounted for in the system-level method in Chapter 4.
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The approach performed reasonably well as it was able further improve prediction 

accuracy. Based on the findings of this study, equations 5.4 and 5.5 can be used to 

augment existing nonpoint source models to determine the overall response to nonpoint 

source pollution.

The findings on the sensitivity analysis to storm events imply that whenever a 

storm event similar to 2 and 5 year return periods at durations up to 12 occurs in a 

watershed, this methodology in this chapter can be used to estimate nonpoint source from 

hydrologically disconnected areas. The estimated nonpoint source can be superpositioned 

onto an existing hydrologic model to determine the overall response of the watershed. 

Neglecting this fact may result in a significant error in prediction if multiple disconnected 

areas exist in the watershed.

5.8 Summary and Conclusion

Equations to predict the spatial and temporal variation was successfully developed 

and applied to augment the model in Chapter 4 in order to determine the overall response 

of the watershed to nonpoint source. Areas defined by the study as hydrologically 

disconnected from the model in Chapter 4 were identified and the equations were used to 

determine the amount of nonpoint source generated for superpositioning. Results show 

that superpositioning nonpoint source contribution from areas not accounted for by 

hydrological models reduces prediction error.

The equations were also used to investigate the response of the nonpoint generated 

from the disconnected areas to different storm events. The finding of the study indicates 

that flow rate is higher for higher return periods for the same storm duration and also 

higher smaller durations for the same return period. Concentration was found to increase
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with storm duration for all return periods. However, smaller return periods tend be much 

higher in concentration than higher return periods. The mass load was also found to be 

higher for higher return periods for the same duration. However, it was found that smaller 

return period with duration less than 12 hours have the tendency of spiking up faster than 

higher return periods. The study also investigated the spatial and temporal characteristics 

of the nonpoint source from the disconnected area. The result confirmed that diffused 

(nonpoint) sources vary in space and time.

A sensitivity analysis showed that the system-level model superpositioned with 

nonpoint source is sensitive to the interception parameter. The study classified this 

finding as unusual as marshes (emergent wetlands) are expected to be sensitive the 

evapotranspiration parameter. The finding was attributed to the sensitivity of the 

hydrologic section of the system-level model (Chapter 4) being carried over. Also a 

sensitivity analysis on the response of nonpoint source to different storm events show 

that, smaller return periods and smaller durations have the greatest impact on nonpoint 

source generation. Hence, when storm events similar to the 2 and 5 year return periods at 

durations up to 12 occur at a watershed, the methodology described in this chapter can be 

used. The methodology will help estimate nonpoint source from hydrologically 

disconnected areas which can be superpositioned onto an existing hydrological model to 

determine the overall response of the watershed. Overlooking this finding could result in 

a significant prediction error.
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CHAPTER 6

SUMMARY, CONTRIBUTIONS, AND FUTURE WORK

Predicting system’s response to hydrologic processes is fundamental to 

hydrologic modeling. However, the accuracy of prediction is often plagued by error due 

to various forms of inherent uncertainty associated with input data of the physical system 

being modeled. These uncertainties arise from sources such as mis-interpretation of 

system characteristics, measurement error, data unavailability and processing or synthesis 

technique. This study presents a hybrid methodology framework which integrates 

stochastic and deterministic methods at system-level to improve prediction accuracy of 

system’s responses. Improving system’s respond accuracy would help in the overall 

protection and management of these vital water resources.

This chapter reviews the methodology framework set-up in Chapter 3 and 

highlights the findings for the applications found in Chapter 4 and 5. The main findings 

and conclusions for each of the objectives mentioned in section 1.2 of the dissertation are 

individually summarized (section 6.1), and later integrated within a broader context 

(Section 6.2) of the overall study. Also, a brief discussion on the significance of the study 

to predicting systems response, contribution to the field of hydrologic modeling and 

recommendations for future research are presented in Section 6.3, Section 6.4, and 

Section 6.5 respectively.

6.1 Summary of Conclusions

In Chapter 3, the study presented a methodology that integrates stochastic and 

deterministic methods to reproduce the true response of systems to hydrologic processes.
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Proposed hybrid modeling framework consists of three components; (1) microscale 

stochastic parameterization process at the subbasin-level, (2) mesoscale deterministic 

computational process at watershed segment-level, and (3) macroscale stochastic 

sensitivity process at whole watershed scale.

Microscale stochastic portion involves the use of a GLM and Monte Carlo 

sampling to preprocess hydrologic input parameters at system-level. The GLM developed 

in this study requires topography and surficial area as input to determine sampling grid 

resolution and estimating system moments. The system moments were used to 

stochastically draw series of samples in the form of probability density functions (PDFs) 

from the population of the parameter being preprocessed. An overall lumped parameter 

value representation of the watershed is then estimated from generated samples. This 

system-level preprocessing of parameter is underlain by the assumption that, the resulting 

lumped parameter value embodies every possible variation that can occur in the 

watershed.

The mesoscale deterministic computational process includes the selection of a 

computation engine to serve as a carrier for the stochastically prepared input data. For 

this study, a calibrated Hydrologic Simulation Program in Fortran (HSPF) was selected 

for computation. The final stage of the methodology framework is a macroscale 

stochastic posterior sensitivity process. The process consisted of a model level sensitivity 

where other class of system parameters that were not processed during the microscale 

stochastic pre-parameterization stage were investigated to assess their impact on the 

model outcome.
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Chapter 4 verifies and implements the methodology framework presented in 

Chapter 3 to the study a watershed. The Patuxent watershed in Maryland was chosen for 

analysis of overland flow and diffused (nonpoint) sources -  orthophosphate and total 

suspended solids. Comparative analysis on prediction effectiveness and efficiency 

between the proposed (system-level approach) and the conventional (classical approach) 

were also made. The input parameters preprocessed were focused on physiographic 

parameters of the physical system being modeled. This includes surface roughness, 

infiltration and lower zone soil moisture. Model level stochastic posterior sensitivity 

analysis was performed on interception and the evapotranspiration parameters. Compared 

to the observed field data, the system-level approach predicted with improved accuracy 

than the classical approach for overland flow. In both the high flowing northern segment 

and the low flowing southern segment of the watershed the system-level approach 

prediction was more accurate for overland flow. The prediction error in general for the 

system-level approach ranged from -28.3% to 8.3% while that for the classical approach 

varied from of -68% to 17%.

Unlike the classical approach, the system-level approach showed systematic 

similarity in the prediction trend throughout the watershed, an indication of better 

reproducibility of natural system behavior. For system-level approach predicted the 

orthophosphate with a robustness evidence by high Nash and Sutcliffe values ranging 

from 0.64 to 0.989 while that by the classical approach was -0.18 to 0.33. For the total 

suspended solids, the magnitude Nash and Sutcliffe for both methods were approximately 

the same. The range of Nash and Sutcliffe efficiency values ranged from 0.77 to 0.96 for 

the system-level approach while that for the classical was from 0.65 to 0.95. However,
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the results for the system-level approach was significant at p -values greater than the level 

of significance (a = 0.05) while that for the classical approach was insignificant for the 

watershed through the watershed The trend in nonpoint source prediction was consistent 

throughout the watershed for orthophosphate and the total suspended solids.

The model level sensitivity showed that the overland flow in the watershed is very 

sensitive to small variations in the evapotranspiration parameter. For the nonpoint 

sources, the orthophosphate and total suspended solids also showed similar trend of 

sensitivity as that of the overland flow throughout the watershed. The system-level 

approach facilitates significant improvements in predictive accuracy and reproducing 

system’s responses in overland flow and dissolved pollutants compared to the classical 

approach used commonly hydrologic modeling practices.

In Chapter 5, a methodology for improving the prediction of diffused (nonpoint) 

sources through the method superpositioning was presented. The method augments 

existing nonpoint source models to account for potential sources coming from 

hydrologically disconnected areas. Superpositioning method in theory should lead to 

improvement in overall system’s response to nonpoint sources. However this approach is 

not employed in hydrologic models due to its complexity.

The study adapted and modified existing concepts of mathematical models for 

water bodies to estimate overland pollutant efflux from areas that are hydrologically 

disconnected, i.e., island, as a result topographic segmentation. The methodology was 

successfully applied to hydrologically disconnected areas found in the watershed through 

superpositioning onto the system-level method. The prediction error for the system-level 

method reduced from 4.82% to -0.29% for nonpoint source when the method
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superposition was employed. The chapter also determined the watershed response for 

various storm events in the hydrologically disconnected catchment. Among the key 

findings is that flow rate decreased with increasing storm duration for the same return 

period. Also, concentration increased proportionally with increasing duration for all 

storms but decreased with increasing return period for the same duration, indicating that 

smaller return periods produce higher concentrations than higher return period. The mass 

loading increased with duration and with return period. Results for the mass loading also 

showed that shorter durations and shorter return periods are quicker to arrive at the peak 

concentration. Findings also confirmed that nonpoint sources vary in space and time

A sensitivity analysis was performed for the system-level approach with 

superpositioned nonpoint source. The model was found to be very sensitive to small 

variations in the interception parameter. Also, the nonpoint source from the 

hydrologically disconnected area was found to be very sensitive to shorter storm 

durations and shorter return periods. The study results demonstrated that incorporating 

those hydrologically disconnected areas into modeling improves the overall response of 

the watershed as these areas may contribute significantly to nonpoint source pollution.

6.2 General Conclusions

Considering the current levels of error associated with most hydrologic 

predictions that are often the consequence of uncertainties inherent in hydrologic input 

data. The study argued that reproducing a system based on its true characteristics could 

improve prediction. A methodology framework which integrates stochastic and 

deterministic concepts based on system’s principles was conceptualized and 

superpositions nonpoint source contributions from hydrologically disconnected areas was
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verified and implemented. The methodology was successfully applied to predict a 

system’s response to hydrologic processes in the Patuxent watershed. The focus of the 

study employing this approach was to reduce prediction errors. The findings presented in 

the preceding sections clearly demonstrated that the approach of using system-level 

characteristics significantly reduces model prediction errors associated with current 

methods and improves reproducibility described in the hydrologic response of the system 

being modeled.

6.3 Significance and Contribution to Hydrology

This dissertation provides baseline for hydrologic modeling at system-level by 

presenting a methodology framework that integrates stochastic and deterministic methods 

to improve prediction accuracy. The method estimates input parameters at system-level 

and superpositions diffused sources from hydrologically disconnected areas to account 

for overall systems response. The results of the study (Chapters 4 and 5) confirm the 

pivotal role of system characteristics in determining prediction accuracy especially for 

response variables such as overland flow and diffused sources. Chapter 4 which verified 

and implemented the system-level approach showed that the methodology framework 

reduces prediction error for overland flow and nonpoint source pollutants.

Chapter 5 further provided an approach and a basis for augmenting existing 

nonpoint source modeling scheme for potential sources that are unaccounted for in 

typical hydrologic modeling processes. The chapter also provided criteria on when it is 

important to ignore potential nonpoint sources for hydrologically disconnected areas. 

This information would be useful for water resources engineers to improve prediction 

accuracy and lead to effective management of watershed.



The successful integration of stochastic and deterministic methods to improve 

hydrologic prediction is the ultimate dream in the field of hydrology. This dissertation 

makes significant contribution to the field by estimating hydrologic input parameters at 

system-level and superpositioning of contributions from hydrologically disconnected 

areas often ignored by models. The study modifies the concept of in stream pollutant 

transport for application to diffused sources (Chapter 5). The dissertation shows that 

system characteristics can be used to accurately and quantitatively improve prediction 

accuracy. In general, the undertaken research improves our knowledge and understanding 

of hydrologic prediction at system-level.

6.4 Future Research

Modeling of a coastal basin requires the integration of a watershed model to in- 

stream model. The methodology framework in this study was developed for determining 

the hydrologic response of a watershed to overland processes. However, controlling 

pollution at a basin scale would require the integration of both overland and in-stream 

processes for efficient planning and management. Hence additional studies on in-stream 

processes need to be conducted. The study recommends the integration of overland and 

in-stream model like the Water Quality Analysis Simulation Program (WASP) to 

understand and capture the full extent of system’s response in a watershed.
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APPENDIXES

APPENDIX A

MATHEMATICAL FORMULATION FOR ESTIMATING 
NONPOINT POLLUTION OVERLAND

Mass loading is the product of the flow rate and the concentration of the pollutant. 
It is expressed as:

Mass Loading, W = QC (Eq. 1)

where W [MT'1], Q is the flow rate [L3T''], C is the concentration of the effluent [ML'3], 
T is time and L is length. For overland nonpoint (diffused) sourcesQ is the overland flow 
rate [L3T''], C is the concentration [ML'3] resulting from the washoff of pollutants during 
runoff.

Overland flow Routing
In hydrologic modeling, the movement of water on land is often represented by 

using the saint Venant kinematic equation. The Saint Venant equation the resultant of 
continuity (conservation of mass) and momentum equations that assumes flow to be one
dimensional.

Continuity equation: 
dQ dA
&  +  ¥  - qLAT (Eq- 2)

ftLAT =  i ~  f

Momentum equation:
1 dQ 1 d /Q2\  dy ,
A-*+AMAj + ga ;-g(s“- Sf) = 0 (Eq-3)

where A is the cross-sectional area of the flow, y is the flow depth, g is acceleration of 
gravity, x is distance, S0 is bottom slope, Sf is friction slope, f is infiltration, i is rainfall 
intensity, and t is time. The first term in equation 1 describes the behavior of flow in the 
x direction, the 2nd describes the rate change of the flow’s cross-sectional area with 
respect to time and the last term refers to the net inflow. In equation 3, the first, second 
and third are respectively known as the local acceleration, convective acceleration and 
pressure force respectively while the fourth term is the product of the force of gravity and 
the friction force ( S0 = Sf). Simplifying equation 3 by dropping the pressure force and 
the acceleration terms and equation 2 by neglecting lateral inflows leads to the saint 
Venant kinematic wave equation, expressed as:



The solution to the pair of equations, equation 4 and 5, is often approximated using 
the Mannings equation for channel flow.

Mannings equation:

Q =  ^AR2/3S00-5 (Eq.6)
11 A 

R = P
A = by (for rectangular channels)

P = b + 2y

where n is the Mannings coefficient, R is the hydraulic radius, P is the wetted perimeter, 
A is the cross-sectional area of the channel, b is the width of the channel, y is the flow 
depth, and k is a conversion factor: 1 for SI units and 1.489 for English units. Equation 6 
can be re-written as:

AR2' 3 =

v, 3 / s

A = ( i ^ - p 2 / 3 j  - Q3/S

which can be re-written as:
A =  a Qm (Eq.7)

where
/  \  3 /5

a = ( i ^ 3 p 2 / 3 j  CEq- 8)

m = -  (Eq.9)

Overland flows are characterized with shallow flow depths and infinite widths, 
hence can be considered as wide rectangular channels with a flat bottom (Akan and 
Houghtalen, 2003). For wide rectangular channel with shallow depths and much wider
widths, the hydraulic radius, R is equal to the flow depth, y and equation 8 can be
simplified as:

•v 3 /5

rs .b 2/3J  (Eq.10)

Assuming a is constant, differentiating equation 7 becomes:
dA m -id Q
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Substituting equation 11 into equation 4 yields: 
dQ . dQ

0 (Eq. 12)

The only unknown variable in equation 11 is the overland flow rate, Q. It can be 
easily solved using numerical and other available methods.

Pollutant Mass Loading
Consider a catchment as an elemental volume (Figure 5-1). The mass of pollutant 

loading leaving and entering can be described using the conservation of mass or mass 
balance. The mass balance takes account for all fluxes entering and leaving the control 
volume.

m
wout

Q . cout out

A Q C  —  Q i n Q n  Q o u t ^ o u t  ( E q *  1 3 )

where AW is accumulation, defined as the rate of change of mass with respect to time 
within the unit volume, Q is the overland flow rate and C is the concentration of the 
nonpoint source pollutant mass.

Equation 13 can be written as:
AC

~  Q i n Q n  —  Q o u t Q i u t  ( E q .  1 4 )

V
AQ = — 

x At

where V is volume. The mass loading can also be defined in terms of flux. Flux is the 
amount pollutant mass generated per unit area. Flux is expresses as:

W QC
J = j = j - = U C  (Eq. 15)

QC
I = \  = uc (Eq. 16)

Expressing equation 14 can be expressed in terms flux:
AC dC

V A t = V d t =  I l A  ~ h  ( E q - 1 7 ) 1
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d)
h  =  Il+Ax = I i + ^ Ax

where ^  and J2 are fluxes entering and leaving the elemental volume (Figure 5-1). 
During the course of overland flow, the physical processes that influence the transport 
and fate of the pollutant mass are advection and dispersion. Advection describes the 
downstream movement of the pollutant at mean flow velocity (Runkel and Bencala, 
1995) while dispersion defines the turbulence of the flow, the mixing and spread of the 
pollutant as it travels downstream (Runkel and Bencala, 1995; Liu et al., 2003). The 
fluxes, Jjand J2 expressed in terms of the transport mechanisms, advection and 
dispersion.

Advection:
Fluxes due to advection are defined as the product of the velocity the concentration 

of the pollutant. From equation 15,

The advective flux entering the unit volume is defined as:
Jladvect.cn = ^  (Eq. 18)

The advective flux leaving the unit volume is defined as:
d]

J2advection Jl+Ax II ~E

I w „ o n  =  U C i  +  U ^ A X  ( E q .  1 9 )

Dispersion:
Fluxes due to dispersion in water quality modeling are defined based on the Fick’s 

Law of diffusion. The Fick’s Law of diffusion states that the mass flux due to molecular 
diffusion is proportional to the concentration gradient. The Fick’s Law of diffusion:

d cdispersive flux = —E —
ox

where E is the longitudinal dispersion coefficient.

The dispersive flux entering the unit volume is expressed as:

l l d u p n t t .  =  - E ( E<) - 2 0 )

The dispersive flux leaving the unit volume is expressed as:
d[

Ĵ dlspersion Jl+Ax Jl “E

J2d.spers.on = (E<F21)

Substituting equation 18,19,20 and 21 into equation 17 reads: 
dC r I

^  [ Jladvect.on̂  Jld.spers.on̂ J

[ J2advectlon^ J^dlsperslon^] (Eq- 2 2 )



Dividing each term by AAx yields:
ac ac a2c
a T - u a ;  + E a ?  ^

During the overland flow and the pollutant transport process, pollutants may 
undergo decay due to chemical reactions or degradation. Such phenomena can be 
incorporated into equation 24 to account for the fate of pollutant loading overland. The 
assumption often employed in water quality modeling for such phenomena is the first- 
order reaction law. It states that, the rate of loss of a substance is directly proportional to 
the concentration at any time, t. It is expressed as:

ac
—  = - k C  (Eq. 25)

where k is the reaction constant or decay rate [T'1]. For conservative pollutants, k = 0
Using the boundary conditions,

C =  C0 at tim e t =  0

Equation 25 can be written as:
InC -  lnC0 =  - k t  

C =  C0e -kt

Equation defines the exponential depletion or decay of the pollutant.
Substituting equation 25 into equation 24 yields:

ac ac a2c
a t = - u ax + E ax2 - k c  (*■•“ )

Equation 26 is the classical advection-dispersion equation used in quality modeling. 
Equation 26 is often used for in-stream pollutant routing where the variable C is the 
concentration for point sources. Nonpoint sources pollutants are subsequently added on 
as contributing sources. In this context, equation 26 is adapted to estimate nonpoint 
source pollutants overland. The equation describes the spatial and temporal variation of 
overland nonpoint sources pollution transport over time and space.

The spatial and temporal characteristics of diffused sources can be classified as 
continuous or instantaneous loading depending on the duration. Instantaneous loadings 
are over a very short time period (Thomann and Mueller, 1987) while continuous loading 
introduce pollutants to a receiving body of water for extended period of time (Runkel and 
Bencala, 1995) an example is continuous loading from waste water treatment plant into a 
body of water.

In this study, the durational characteristics of continuous loading are extended to 
the temporal characteristics of surface runoff. For a storm duration, t ,  overland flow 
begins at time, t = 0 and ends at time t > x. Consequently, the mass loading begins at
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time, t = 0 and ends at time t > x. The solution to equation 26 for time variable nonpoint 
source loading can be obtained by using the boundary conditions:

C(x, 0) = 0 for x > 0 
C(0, t) = C0 for x > t > 0 
C(x,t) = 0 for t > x 
C(oo, t) = 0 for t > 0

The solution in the final form is given by O’Loughlin and Bowmer (1975) and 
Runkel (1996).

O’Loughlin and Bowmer (1975):

C(x,t) = y  

Runkel (1996):

^ n - n  / x - U t r \  n  /x  +  U tr \ ie efrc(ivr)+e2E efrc(ijr)l (Eq-27)2 i/E t /  V 2VEt

CfcO 4{>-n [,hg) - efrc(î g§f)]
. /X + Utr

+  e2E(1+r) lefrc
/x + u tr \  
V 2-v/Et /2VEt 

z2
2^/E(t — x)

efrc (Eq. 28)

r  =
N

kE
1 +  4 —  

U2
W

c 0 =  y  (Eq-29)
where C is the concentration of the pollutant, xis distance traveled, x is the rainfall 
duration, t is the time, C0 is the initial concentration, U is the advection coefficient (mean 
velocity) and E is the longitudinal dispersion coefficient. The solution during the rainfall, 
t  <  x is given in equation 27 and after the rainfall, t  > x is given by equation 28. A 
combination of equation 27 and 28 superpositions nonpoint loading over time and space 
during and after a rainfall event.
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APPENDIX A

MAIN MODELING FRAMEWORK
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Component 1-1: Generalized Linear Model (GLM) Development

4-

EMPIRICAL EQUATION (Equation 3.7)

GLM

INDEPENDENT VARIABLE

ELEVATION RANGE 
ElevRange

SURFACE AREA OF SUBBASINS 
$ a r e a

DEPENDENT VARIABLE, SAMPLING GRID SIZE
GSAMPLIN G

ASSUMPTIONS 
DEDUCED FROM 

PUBLISHED 
LITERATURE ON 
THE EFFECTS OF 

TOPOGRAPHY

The topography of a domain is nonlinearly 
correlated with the heterogeneity and spatial 
variability of the domain’s physiographic 
characteristics.
The grid size for sampling corresponds to each 
physiographic parameter and is inversely 
proportional to the local relief and directly 
proportional to extent area of the hydrologic 
domain.
The resulting grid size is from a normally 
distributed oooulation.

Assumptions

Component 2: Nonpoint Source from Hydrologically Disconnected Regions
Overland Flow
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COEFFICIENT I
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