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ABSTRACT 

EFFICIENT STAND-ALONE GENERALIZED INVERSE ALGORITHMS AND 
SOFTWARE FOR ENGINEERING/SCIENCES APPLICATIONS: RESEARCH AND 

EDUCATION 

Subhash Chandra Bose S V Kadiam 
Old Dominion University, 2012 

Director: Dr. Due T Nguyen 

Efficient numerical procedures for finding the generalized (or pseudo) inverse of 

a general (square/rectangle, symmetrical/unsymmetrical, non-singular/singular, 

real/complex numbers) matrix and solving systems of Simultaneous Linear Equations 

(SLE) are formulated and explained. The developed procedures and its associated 

computer software (under MATLAB computer environment) have been based on "special 

Cholesky factorization schemes" (for a singular matrix), the generalized inverse of the 

matrix product, and were further enhanced by the Domain Decomposition (DD) 

formulation. 

Test matrices from different fields of applications have been chosen, tested and 

compared with other existing algorithms. The results of the numerical tests have 

indicated that the developed procedures are far more efficient than existing algorithms. 

Furthermore, an educational version of the generalized inverse algorithms and 

software for solving SLE has also been developed to run any FORTRAN and/or 'C' 

programs over the web. This developed technology and software is freely available and 

can run on any device with internet connectivity and browser capability. 
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1. INTRODUCTION 

In scientific computing, most computational time is spent on solving systems of 

Simultaneous Linear Equations (SLE) which can be represented in matrix notations as 

Ax = b (1.1) 

where A G R n x n  is a singular/non-singular matrix, and b is a given vector in R n .  For 

practical engineering/science applications, matrix A can be either sparse (for most cases), 

or dense (for some cases). Solving large scale system of SLE has been (and continues to 

be) a major challenging problem for many real-world engineering and science 

applications. 

The generalized (or pseudo) inverse of a matrix is an extension of the 

ordinary/regular square (non-singular) matrix inverse, which can be applied to any matrix 

(such as singular, rectangular, etc.). The generalized inverse has numerous important 

engineering and science applications. Over the past decades, generalized inverses of 

matrices and their applications have been investigated by many researchers [1-8]. 

1.1 Literature Survey 

Various methods have been proposed for finding the generalized inverse and its 

associated SLE. Xuzhou Chen et. al. [9] has proposed a method based on a finite 

recursive algorithm. The approach was based on the symmetric rank-one update. The 

algorithm proposed by Xuzhou Chen, however, was inefficient (in terms of 

computational time) and requires lot of computer memory. It has been shown that this 

algorithm [9] can be only effective for the computation of generalized inverse/Moore-
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Penrose inverse of rectangular matrices (with rows«cols or cols«rows) and is 

inefficient for square matrices. 

The most commonly implemented method in programming languages to compute 

generalized inverse (and its associated SLE) was based on Singular Value Decomposition 

(SVD) [3,10-11]. This method is numerically very stable, however, it is computationally 

expensive for practical applications. MATLAB [12] uses SVD to compute the 

pseudo/generalized inverse by invoking the built-in function pinvQ. It should be noted 

here that in finding the solution for SLE (with square/singular, or rectangular coefficient 

matrices), MATLAB and most (if not all) other researchers have computed the 

generalized inverse explicitly. Then, the solution can be found by a simple matrix times 

vector operation. 

Since the standard Eigen-value problems (of A xA H ,andA H  x A)  need to be 

solved in SVD, this method is computationally expensive. Despite of this fact, solving 

Eq. (1.1) by using SVD is still more efficient than Xuzhou Chen's proposed finite 

recursive algorithm [9]. 

In [6], an efficient algorithm for finding the generalized inverse of a (full rank) 

rectangular (or square) matrix has been proposed. However, this algorithm has not been 

able to handle the cases where the matrix has rank deficiency (such as a matrix which has 

some dependent rows and/or columns) 

Pierre Courrieu [13] has proposed an algorithm to explicitly compute the 

generalized inverse using full-rank Cholesky factorization on the coefficient matrix. His 

algorithm was based on a theorem to compute the generalized inverse of a product of two 
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matrices. Pierre Courrieu's algorithm has proven to be more efficient than finite recursive 

method [9] and SVD [10-11]. 

1.2 SVD and the Generalized Inverse 

A general (square or rectangular) matrix A E R n x n  can be decomposed as 

A = U7LV" 

where 

Z = a diagonal matrix (does NOT have to be a square matrix) 

(1.2) 

_ f l i j  =  0 . for i*  j  
~ l l 0 -  >  0,  for  i  =  j  (1.3) 

[U]and [V] = unitary matrices 

and = UT(for rea-l matrices)^ (1.4) 

Let A be a singular matrix of size m x n and let k be the rank of the matrix. 

Based on Eq. (1.2), one has 

A = UZV";  

r°i 

where I = 
<*2 

(1.5) with a 1> a o k> 0; 

and oi  = y jEigen  — Values  o f  A T A (orAA r )  

Note: Eigen-values ofAxA" and Eigen-values of A H  x A are the same. However, the 

Eigen-vectors ofAxA" and Eigen-vectors of AH x A are "NOT" the same. 

Then, the generalized inverse A+ of A is the n x m matrix and is given as 

A+=VZ+\Jh (1.6) 
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where 

E+ = j and E is the k x k diagonal matrix, with 

En = If1 for 1 < i < k 

More details about computing the SVD from a given matrix [i4] can be found in 

the Appendix A. 

1.3 Objective 

The main objective of this dissertation is to develop an efficient (in terms of 

computational time and computer memory requirement) generalized inverse formulation 

to solve SLE with full or deficient rank of the coefficient matrix. The coefficient matrix 

can be singular/non-singular, symmetric/unsymmetric, square/rectangular, and with 

real/complex numbers. The proposed generalized inverse procedures can also be 

integrated in to the Domain Decomposition (DD) formulation for solving general, large 

scale SLE commonly encountered in engineering/sciences applications. Due to popular 

MATLAB software, which is widely accepted by researchers and educators worldwide, 

the developed code from this work is written in MATLAB language and has the 

following capabilities/features: 

a) A stand-alone generalized inverse software to solve SLE 

b) A stand-alone DD generalized inverse software to solve SLE 

c) Utilizing sparse storage scheme (whenever possible) for storing data and solving SLE 

d) Developing user friendly interfaces to test new problems (including the numerical data 

downloaded from popular web sites [14-15]). 
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e) Additional wall-time reduction for DD generalized inverse solver can be 

realized/achieved by performing "parallel matrix times matrix" operations under 

MATLAB-MPI computer environment. 

f) Developing an "educational version" (written in FORTRAN language) of the software, 

which uses the generalized inverse for solving general SLE on the internet. 

In Chapter 2, some major algorithms for solving SLE by direct and iterative 

methods are reviewed. These methods are mainly designed for solving non-singular SLE. 

Simple/basic domain decomposition (DD) algorithms, using mixed direct-iterative 

solvers, are discussed in Chapter 3. Major works in this dissertation are presented in 

Chapter 4, where efficient "generalized (or pseudo-) inverse" algorithms are thoroughly 

explained with and without incorporating the DD formulation. The numerical 

performance of the proposed algorithms are conducted in Chapter 5, through extensive 

set of coefficient matrices (including rectangular, square, symmetrical, non-symmetrical, 

singular, non-singular matrices) obtained from well established/popular websites [14-15]. 

Detailed procedures for executing any FORTRAN code (such as the "educational 

version" of the developed generalized inverse code for solving SLE) on the internet are 

explained and demonstrated in Chapter 6. Basic/simple parallel MATLAB-MPI functions 

(including parallel matrix times matrix operations) are summarized in Chapter 7. Finally, 

conclusions and future research works are summarized in Chapter 8. 
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2. DIRECT AND ITERATIVE METHODS FOR SYSTEM OF NON-

SINGULAR SLE 

Many real life, practical problems in scientific computing require efficient 

solution of Simultaneous Linear Equations (SLE), which can be conveniently expressed 

in the matrix notation as 

Ax = b (2.1) 

In general, solutions for Eq. (2.1) can be classified into 2 categories: Direct and 

Iterative methods. In the subsequent sections, basic ideas behind these two types of 

solution approaches will be briefly summarized and discussed. 

2.1 Direct Methods for Solving SLE 

Depending on the nature of the coefficient matrix A, shown in Eq. (2.1), different 

direct methods/algorithms are available, such as: 

a) Cholesky algorithm [if matrix A is Symmetric Positive Definite (SPD)] 

b) LDLt algorithm [if matrix A is Symmetric, could be either positive or negative 

definite] 

c) LU decomposition algorithm [if matrix A is unsymmetric] 

2.1.1 Cholesky Method 

If the coefficient matrix A is Symmetric Positive Definite (SPD), then the 

following three step Cholesky algorithm can be used to obtain the solution for Eq. (2.1) 

Step I: Matrix Factorization Phase 



The coefficient matrix A is decomposed into 

[A]  =  [U] T U (2.2) 

where U is an n x n upper triangular matrix. For a general n x n SPD [A], the diagonal 

and off-diagonal terms of the factorized matrix U can be computed from the following 

formulas [3,10-11] 

uii  =  — ̂ ^(wfci)2  

and 

Aij  ~  Uir fUkj  
Uii

~ iT ull  

Note: Since the "square root" operation is required for computing the diagonal terms of 

U, positive definite is a requirement for matrix A to assure the number under the square 

root is positive. 

Step2: Forward solution phase 

Substituting Eq. (2.2) in Eq. (2.1) 

[U] T [U]{x)  = {b} (2.3) 

Let's define 

[f]W = (y) (2.4) 

Eq. (2.3) becomes 

UTCri = M (2.5) 

The intermediate unknown {y} can be easily solved from Eq. (2.5) and hence the name 

"forward solution". 

Step3: Backward solution phase 
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From Eq. (2.4), the unknown vector {*} can be effectively solved and hence the name 

"backward solution". 

The matrix factorization phase (step 1) is the most-time consuming part of solving 

SLE in the Cholesky algorithm. However, if the right-hand-side (RHS) vector {b}, shown 

in Eq. (2.1), becomes a matrix (with multiple columns), then the combined Forward and 

Backward solution time may become significant (as compared to the matrix factorization 

phase). As a general rule of thumb, computational time/effort for one matrix factorization 

is roughly equivalent to 20-25 times the efforts for one Forward and Backward solution 

phases. 

2.1.2 LDLt Method 

In many engineering and science applications, the coefficient matrix in Eq. (2.1) 

is symmetric, however it may not be positive definite. The coefficient matrix could be 

negative definite. In this case, LDLT algorithms can be used for solving Eq. (2.1), which 

also requires the following 3 computational steps 

Stepl: Matrix Factorization phase 

In Eq. (2.6), matrices [L] and [D] represent the lower triangular (with 1 on its diagonal) 

and diagonal matrices, respectively. 

Step2: Forward Solution and Diagonal Scaling phase 

Substituting Eq. (2.6) in Eq. (2.1), one gets 

M = [tHDpr (2.6) 

[i][D]WW = {6} (2.7) 
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Let's define 

I i f {x} = {y}  

\Du 0 0 ryii •Zi 
[D]{y}  = {z} ~ 0 D2 2 0 r2  = • *2 . 0 0 £>33 (y3. *3. 
or, yt = §^;for i = 1,2,3,...N 

Then Eq. (2.7) becomes: 

(2.8) 

(2.9) 

(2.10) 

1 0 0 Zl ( b i )  
[!]{*} = {b} L21 1 0 22 = \b2 

X31 L32 1. .*3. W3/ 

or, Zj — bj ]£fc=i for  i  1,2,3; ....N 

Step3: Backward Solution phase 

In this step, Eq. (2.8) can be effectively solved for the original unknown vector {*} 

(2.11) 

(2.12) 

1 L21 ^31 f'1) •yi 
= {y} <=> 0 1 ^32 N = y2 

.0 0 1 J Ua) y3. 
(2.13) 

or. , Xi=yi- Ik=i+1;/or i = N, N - 1,... 1 

2.1.3 LU Decomposition Method 

LU decomposition can be used to solve Eq. (2.1), when the coefficient matrix A is 

unsymmetric. 

Stepl: Factorization phase 

The coefficient matrix in Eq. (2.1) can be factorized as a product of two matrices 

A = L.U (2.14) 

where L is lower triangular (with values 1 on its diagonal) and U is upper triangular. 

For the case of 4 x 4 matrix A. Eq. (2.14) would look like 
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all a12 a13 a14 a21 a22 ®23 a24 a31 a32 a33 a34 a41 a42 a43 a44. 

1 0 0 0 
CC21 1 0 0 
a31 a32 1 0 
-a41 a42 a43 1. 

fill Pl2 Pl3 Pl4 

0 P22 P23 @24 

0 0 ^33 ^34 
0 0 0 /?44 J 

(2.15) 

Various tenns inside matrices [L] and [U] can be computed by equating both sides of Eq. 

(2.15). 

Step2: Forward solution phase 

Substituting Eq. (2.14) into Eq. (2.1), one obtains 

[L.U]x = b (2.16) 

Let us define 

[(/]{*} = y (2.17) 

Substituting Eq. (2.17) in Eq. (2.16), one gets 

[L]{y} = b (2.18) 

In this "forward solution" phase, Eq. (2.18) can be easily solved for the "intermediate" 

unknown vector {y}. 

Step3: Backward solution phase 

Solving the unknown vector {*} in Eq. (2.17) is called "backward solution" phase 

[U] {*} = y (2.17, repeated) 

While direct methods have offered advantages in terms of its robustness, 

accuracy, and reliability, etc., for large/sparse SLE (especially for 3-D problems), these 

direct methods may become excessively expensive. Furthermore, direct methods also 

have the following limitations: 

a) The amount of required computer memory can be high. 

b) The operation counts can be high, especially when many non-zero fill-in terms 

occurred during the factorization phase, even though reordering algorithms have 
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commonly used (to minimize the non-zero fill-in terms) prior to numerical factorization 

phase, and 

c) These methods have low degree of parallelism (or not easy to parallelize). 

The above-mentioned drawbacks have motivated researchers to investigate iterative 

methods as possible alternative choices. 

2.2 Iterative Methods for Solving SLE 

Iterative methods can be superior to direct methods in all the above mentioned 

three aspects. Some of the popular iterative methods are Conjugate Gradient (CG), Bi-

Conjugate Gradient (Bi-CG) with or without stabilizers [1, 3, 10], Generalized Minimal 

Residual (GMRES) [1, 3,10], etc. These methods (CG for symmetrical, while Bi-CG and 

GMRES for unsymmetrical systems of SLE) can lead to low memory requirement and 

make effectively use of parallelism. Most (if not all) existing iterative algorithms require 

"matrix times vector" and "dot product of 2 vectors" operations. For these reasons, 

iterative methods are much more easier to parallelize (for improving computational 

efficiency) as compared to direct methods. These advantages make iterative linear system 

solvers as attractive alternatives to direct methods, particularly for large (3-D) problems. 

Despite of these desirable features, iterative methods may also have difficulties for fast 

convergence (or even have divergence) to a specified (small) error tolerance etc..., unless 

these iterative methods were used in conjunction with "efficient preconditioned" 

algorithms [1-3,10-11] ! 
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2.2.1 Conjugate Gradient (CG) Algorithm with Preconditioner 

For systems of Symmetrical Positive Definite (SPD) SLE, the Preconditioned 

Conjugate Gradient (PCG) algorithms can be considered as the method of choice. PCG 

algorithms can be summarized in the following step-by-step numerical procedures [3, 10-

11], for solving Eq. (2.1) 

Eq. (2.1) can be re-casted as: 

PAPTP~Tx = Pb (2.19) 

Eq. (2.19) can be expressed in the following general form [1, 3,10-11]: 

where matrix 

[/T] = [P] x [j4] x [PT] = symmetrical matrix, and the right-hand-side vector {£>*) is 

defined as 

[A*]y = b* (2.20) 

{bl = [P] x {b} 

y = P~Tx (2.22) 

(2.21) 

and [P]= preconditioned matrix 

The step-by-step PCG algorithm is summarized in Fig. 2.1 
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Given the initial guessed vector 

Compute (or input) the preconditioned matrix [p] 

Compute r(0) = {Pb}~ \PAPrjx(0) 

Set = 0,p_i = 1 

Do i = 1,2,.. 

Pi-2 

ai=WW\ 

^) = ^-1)+aid(-i) 

Converge?? 

End do 

If converged, then set 

x=[jf* 

Figure 2.1 Preconditioned Conjugate Gradient Algorithm 
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2.2.2 GMRES Algorithm [1,3,10,16] 

For systems of "unsymmetrical" SLE, popular algorithms such as GMRES, Bi-

Conjugate Gradient (Bi-CG), Bi-Conjugate Gradient with Stabilizers (Bi-CG Stab) [1,3, 

10, 16] are recommended. For readers' convenience, a version of GMRES algorithms can 

be summarized in the following step-by-step numerical procedures [1, 3, 11], for solving 

[A']f = P 

r„ =b-Ax, 

' M, 
start 

for j=l:m 

w = AVj 

f o r  i - l : j  

w = w-iT(i,j)vI 

end 

w 

v' " "  K 
<tolerance Break 

end 

=[vi,v2,v3 v,+1] 

H = Vj A V} 

y = argiimi|l^+lr0 - •Hp|a 

x = x0 + V}y 

if |p4x-b\2 <tolerance SStop 

else x0 = x and goto start 

Figure 2.2 GMRES Algorithm 
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3. DOMAIN DECOMPOSITION SOLVER 

Domain decomposition [1-2, 4, 11, 16] algorithm is a powerful method for 

solving large scale system of equations arising from discretization of partial differential 

equations (PDE) in finite element procedures. The computational domain is decomposed 

into smaller sub-domains each of which is easier to solve. 

Domain decomposition (DD) is an application of the divide-and-conquer 

problem-solving strategy, which consists of expressing a large problem as a set of smaller 

sub-problems defined on sub-domains and provides a way to determine the solution of 

the original problem in terms of solutions to sub-problems. 

The goal of DD is to divide the original problem into sub-problems that can be 

solved independently. A critical issue in DD is to assure that the sub-problems preserve 

the solution to the original problem. 

Let us assume the system of linear algebraic equations 

where the matrix of system is K G Rnxn and vectors r G Rn,f G Rn. It is possible to split 

Eq. (3.1) into blocks (or sub-matrices) 

Kr = f (3.1) 

(3.2) 

Eq. (3.2) can be written as 

+ K12r™ = /(i) 

K21r™ + K22r™ = 

(3.3) 

(3.4) 

From Eq. (3.3), the vector can be expressed in the form 
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r{1> = - K12r<&) (3.5) 

Substituting Eq. (3.5) in Eq. (3.4) 

(K22 - K2sK^lK12)r<2'> = /<2> - K2lKrff<» (3.6) 

From Eq. (3.6) we can observe that the number of unknowns have been reduced 

as this matrix equation is only related to the unknown vector r^2\ 

The matrix (K22 — ^21^11^12) is often referred as the Schur's complement in 

the mathematical community. 

The basic ideas in DD solver is to solve for the unknown vector {r}, shown in Eq. 

(3.1), in the following 2 major steps: 

Step 1: The "boundary unknown" vector {r^} is solved from Eq. (3.6). Since the triple 

matrix products appeared in Eq. (3.6) is usually dense, and computationally expensive 

(because K12 is a matrix, and not a vector), iterative solver (which is based on matrix 

times vector operations) is usually recommended in this step. 

Step 2: The "interior unknown" vector {r^} is solved from Eq. (3.5). Since the 

coefficient matrix is usually sparse (and is a vector, not a matrix), direct solver 

(such as Cholesky, or LDLT, or LU algorithms) is strongly recommended. 
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4. GENERALIZED INVERSE ALGORITHMS FOR SINGULAR/NON-
SINGULAR, SQUARE/RECTANGULAR SYSTEM OF SLE 

In Chapter 2, various direct and iterative methods for solving square/non-singular 

system of SLE have been summarized. The (direct and iterative) methods described in 

Chapter 2 can be significantly enhanced/improved by the Domain Decomposition (DD) 

formulation [1-2, 11,16], described in Chapter 3. Domain decomposition formulation has 

been widely adopted, since it can take full advantage of "parallel processing" capability 

offered by most (if not all) today super-computers, and even to desktop/laptop computers, 

which have multiple processors. In this Chapter 4, however, the main focus is shifted into 

algorithms (numerical procedures) that can solve much more general classes of SLE, 

shown in Eq. (2.1), for which the coefficient matrix [j4] can be square/rectangular, non-

singular/singular, well-posed/illed condition. These desirable algorithms have been based 

on the so called Generalized (or Pseudo, or Moore-Penrose) inverse of a general matrix 

[5-9, 11-13, 17-18]. Furthermore, DD formulation will also be used in this chapter to 

further improve the numerical performance of the generalized inverse. 

4.1 Basic Conditions for the Generalized Inverse 

The Moore-Penrose inverse (or generalized inverse or pseudo inverse) of a m x n 

matrix K (not necessarily a square matrix) is the unique nxm matrix K+ which satisfies 

the following four conditions: 

1. General condition: KK+K = K, 

2. Reflexive condition: K+KK+ = K+, 

3. Normalized condition: (KK+)' = KK+, 
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4. Reverse normalized condition: (K+K)' = K+K 

4.2 Potential Engineering/Science Generalized Inverse Applications 

There are some applications that result in (or lead to) an inconsistent system of 

SLE. A solution may not exist in this case. However, we can consider to fit a vector x to 

a given inconsistent system. That is, we can define a least-squares error problem for 

finding x that minimizes the absolute error ||;4x — b\\2 which is equivalent to minimizing 

^ 2 
the summation of the square of the error \\Ax — b ||2> As should be obvious, such a 

solution vector x may not be unique, and it can be obtained/computed by x = A+b, where 

v4+is generalized (or pseudo-) inverse of A. 

It has been well documented in the literature that many real-life 

engineering/science/statistical applications can be efficiently solved by efficient 

computation of the generalized inverse in conjunction with SLE. In the following section, 

it can be shown that the popular "least square problem" can be formulated such that 

generalized inverse algorithms can be incorporated for obtaining the desired solution. 

4.3 Least Squares Curve Fitting Problem 

Let us assume we are given a set of data points (*i,yi), (x2,y2)> — (xn> yn)> and 

we wish to find parameters clt c2,... ck to be multiplied by the basis functions 0X, 02,.. 0k 

such that the scalar function 5, defined as 

5 = Z"=ik,|2 (4.1) 

is minimized, where the errors can be computed by 
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ex =ci<f>l(xl)+c2<f>2(xl)+ + cktf>k (x,) - yl 

e2 = c,0, (x2)+c2<f>2 (.x2)+ + ck<f>k {x2)-y2 
(4.2) 

= cA (*„ )+ c2<f>2 (xn)+ + ck<pk (x „)-y„ 

In Eq. (4.1), the scalar parameter S represents the "summation of the square of the 

errors". Ideally, we would like to set Eq. (4.1) to zero, i.e., each of the £,to be zero. 

Otherwise, we would like to minimize the scalar function S. If c and >>are the vectors 

(4.3) 

V V 
C2 and 

y2 

.Ck_ y». 

respectively, and A  is the n x k  matrix 

A = 

AM Ai x x )  A ( X J  

•ifa) AM AM 
(4.4) 

AM AM A(x„)_ 

Then, the Right-Hand-Side (or RHS) of Eq. (4.2) can also be written in the form 

r „ \ 

J nxk /*x 1 

y 2 

\ y » j  

(4.5) 

nxl 

Aix\) A(xx) A(xx) 

AM AM •••  AM  

.AM AM AM,  

The requirement S = 0 is equivalent to 

Ac = y (4.6) 

From Eq. (4.5), if n > k, we have an over-determined system of linear equations, 

since the number of equations is larger than that of the unknowns. It is generally not 

possible to find a solution to this system, but we may find c,,c2,..rt such that Ac is close 
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to y (in the least squares sense). If there is a solution c+of the least squares problem, then 

we write 

c+ = A*y (4.7) 

The matrix ^4+ is called the pseudo-inverse (or generalized inverse) of A. We 

know that when n-k and A is invertible (i.e., A has an inverse), then 

A+=A~1 (4.8) 

4.3.1 The Normal Equations [3,10,19] 

In order to minimize S, we must minimize 

Smin = Z I )+ C2^2 (*') + + fo)~ ?< T ^ 
i=l 

If we take for j = 1,2, A: the partial derivatives of 5 with respect to Cj and set them 

equal to zero, we will get the following normal equations 

2± [cA {x l)+c2</>2(x i)+ + ck0k{x,)-y, y>j (*,)=0 (4.10) 
m 

or, equivalently, 

Z  ( * , ) + ) +  + cJ* )]^y (*,)=Z (*< <4'11 > 
/-i i=i 

The above normal equations can also be expressed (in matrix notations) as 

ATAc = Ary (4.12) 

where the matrix A has the entries atj = (jc, ). 

As an example, let k = 4 and <j>j(x) = xJ~ l, where j = 1,2= 4 

Then, 



<*.(*)=1 

&(*)=* 

' * ) -*  

x)=x3 

and 

A = 

3\ 

1 X_ X!? X3 , » n n /  

21 

(4.13) 

'1 1 • •• r 

*1 *2 * •• *„ 

x2 • 2 JC2 A/t 
x3 • 2 / 

(4.14) 

so that 

» Z*/ Z*-2 Z*-n 

Z*« Z*.2 2>I Z*.4 

Z*.2 Z*,3 Z*<4 Z*.5 

Z*.3 Z*.4 Z*/ Z*f 

(4.15) 

where in the summations, i runs from 1 to n and 

ATy = 

Z* 

Z x&i 

X ft) 

(4.16) 

If the matrix ArAin Eq. (4.15) is invertible, then there is a solution to the least squares 

problem. 

We then have 
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c = (ATA)'lATy, (4.17) 

so that the pseudo-inverse A* (of the given matrix A, see Eqs. 4.6-4.7) is given by 

A+ =(ArA)~lAT (4.18) 

In subsequent sections, Eq. (4.18) can be generalized into the form shown in Eq. (4.27). 

4.4 Special Cholesky Algorithms for Factorizing a Singular Matrix 

The stiffness matrix of the "floating" sub-domain is singular due to the fact that 

there are not enough (support) constraints to prevent its rigid body motion. To facilitate 

the discussions, let's assume the "floating" sub-domain's stiffness matrix is given as: 

r 1 2 -3 2 -2 -3 —2i 
2 4 -6 4 -4 -6 -4 
-3 -6 9 -6 6 9 6 
2 4 -6 5 -1 -5 -7 
-2 -4 6 -1 13 9 -5 
-3 -6 9 -5 9 13 9 

L—2 -4 6 -7 -5 9 27^ 

(4.19) 

row2 = 2* row 1 (4.20) 

row3 = —3* rowl (4.21) 

row5 = — 8 * rowl + 3 * rowA (4.22) 

In Eq. (4.19), it can be observed that rows number 2, 3 and 5 are dependent rows 

(and columns). Thus, the above matrix is singular, and the regular/standard Cholesky 

factorization algorithms will not work. To facilitate the development of efficient 

"generalized inverse" algorithms (and its applications) in subsequent chapters, "special 
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Cholesky" factorization algorithm is needed. The "special Cholesky factorization" 

algorithm is essentially identical to the regular/standard one, with the following two 

modifications (or differences): 

(a) During the numerical factorization phase, if the dependent row(s) is/are detected, 

then these dependent row(s) is/are skipped! 

(b) Factorization of the current ith row, in general, will require the previously already 

factorized rows k = 1,2, — 1. However, if the previous kthtow was amongst 

the dependent row(s), then the contribution from this kthrow to this current ith 

row will be ignored. 

(c) Having obtained the "special Cholesky" factorized square matrix, those 

factorized/dependent rows will be deleted to obtain the so-called "truncated 

Cholesky factorized rectangular matrix (/*". 

Using MATLAB, the Eigen-values of matrix in Eq. (4.19) can be computed as: 

1 = {0.0000, 0.0000, 0.0000, 0.2372, 4.9375, 24.9641, 41.8612}7" 

Since there are 3 zero Eigen-values, it implies there are 3 rigid body modes (or 3 

dependent rows/columns) in Eq. (4.19) 

If row-by-row Cholesky factorization scheme is applied to Eq. (4.19), we will 

encounter that the factorized^ = 0 = u33 = u55, which indicated that row number 2, 3 and 

5 are dependent rows. Thus, if we set all factorized terms of rows number 2, 3 and 5 are 

zero, and "ignoring" these three rows in the factorization of subsequent rows, one obtains 

the following Cholesky factorized matrix [U] of a given matrix [Kfioat], shown in Eq. 

(4.19): 
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r1 2 -3 2 -2 -3 -2 
. 0 0 0 0 0 0 

0 0 0 0 0 
1 3 1 -3 

0 0 0 
1 7321 3.464 

1.4145 

Based on the above "special Cholesky factorization" algorithm, and using the 

7x7 singular matrix data as shown in Eq. (4.19), the "truncated Cholesky factorized 

matrix IT" (corresponding to the independent rows # 1, 4, 6, and 7) of the product 

[KfioatY * [Kfioat] can be obtained/computed as: 

For row #1 of the truncated 4x7 matrix U*: 

5.9160 11.8321 -17.7482 11.6631 -12.3392 -21.4669 -19.1004 

For row #4 of the truncated 4x7 matrix U*: 

0.0000 0.0000 0.0000 4.4689 13.4068 0.9781 -21.7565 

For row #6 of the truncated 4x7 matrix U*: 

0.0000 0.0000 0.0000 0.0000 0.0000 4.4960 10.0650 

For row #7 of the truncated 4x7 matrix U*: 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.7209 

4.5 Special LDLT Algorithms for Factorizing a Singular Matrix 

If the square/symmetrical/singular coefficient matrix is NOT positive definite, 

then the symmetrical, floating stiffness matrix (shown in Eq. 4.19) can be factorized by 

the familiar sparse LDlJ algorithms [11], with the following minor modifications: 

(a) Whenever a dependent ith row is encountered (such as the factorized uit =0), then 

the following things need be done: 
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(a.l) Recording the dependent row nnmber(s). For the data given by Eq. (4.19), 

the dependent rows are rows number 2, 3 and 5. 

(a.2) Set all the nonzero terms of the factorized ith row (of ZT) to be zero 

(a. 3) Set — = Du  = 0 
«« 

(b) Whenever an independent ith row is encountered, the factorized ith row will have 

contributions from all appropriated previously factorized rows. However, contributions 

from the previously factorized (dependent) rows will be ignored. 

(c) Finally, the truncated/rectangular LDlI factorized matrix U* can be obtained by 

deleting those dependent row(s) from the "special LDLT factorized" square matrix. 

As an example, the ( LDlI) factorized matrix (for the matrix data [Kfloat] shown 

in Eq. (4.19)) can be computed as 

rl 

[U] = 

2 
0 0 

0 

2 -2 

0 0 
0 
1 

0 
3 
0 

-3 —2] 
0 0 
0 0 
1 -3 
0 0 

0.333 2 
0.5J 

(4.23) 

7 
and the truncated factorized LDLT  matrix U* of the product [Kf l o a t]  * [tf/joat] can be 

obtained by deleting rows #2,3, and 5 of the above matrix U. 

A complete educational version of "special LDLT " software code (written in 

FORTRAN language) is listed/given in the Appendix B. 
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4.6 Efficient Generalized Inverse Algorithms 

Moore-Penrose inverse can be computed using Singular Value Decomposition 

(SVD) [10-13], Least Squares Method, QR factorizations, Finite Recursive Algorithm 

[9], etc. In this work, our numerical algorithms have been based on: 

(a) The "special Cholesky factorization" (for symmetrical/singular coefficient matrix) see 

section 4.4 and the Appendix C, and 

(b) The generalized inverse of a product of 2 matrices [5,13] 

and can be described in the following paragraphs. 

Consider Eq. (2.1) [G]x = b ,  with a square coefficient n x n  matrix, and let the 

rank be less than the size of the matrix (if ris the rank of the matrix, thenr < n). Let the 

s i z e  o f  t h e  k n o w n  r i g h t - h a n d - s i d e  v e c t o r  b  b e  n  x  1 .  C o n s i d e r  a  s y m m e t r i c  p o s i t i v e  n x n  

matrix G'G, with rank r < n (here, the matrix [G] plays the same role as matrix [j4] in 

Eq. (2.1)), then based on the theorem presented in [5, 13, 17-18], there exists a unique 

[A/] such that: 

G'G = M'M (4.24) 

In Eq. (4.24), matrices [C] and [G] have the dimensions nxm and mxn, 

respectively. 

M is the upper triangular (special) Cholesky factorized matrix and contains 

exactly n-r zero rows. Removing the zero rows from M, one obtains a rx/j (upper, 

rectangular) matrix L'. 

A m M'M = LL' (4.25) 
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In this work, the upper triangular (special) Cholesky factorized matrix [M] can be 

obtained by the regular/standard Cholesky factorization, with the following 

modifications: 

a) When the diagonal term of the current i'h row is very close to zero, then factorization 

of this dependent row is skipped. 

b) When the current ith row is factorized, all previous rows k = 1,2,..., i — lwere used 

except those dependent row(s). 

Consider the generalized inverse of a matrix product AB [5, 13,17-18] 

(.ABF = B'(A'ABB')+A' (4.26) 

From Eq. (4.26), if B = I then 

A+ =(A'A)+A' (4.27) 

Eq. (4.27) can be considered as a general version of the earlier Eq. (4.18). 

If B = A' and A is a n x r matrix of rank r, then one obtains from Eq. (4.26) 

(4.28) 

Let us consider regular inverse in Eq. (4.28) in place of generalized inverse 

(AA'Y = A(A'AA'A)''A' 

= A(A'A)~1(A'A)-1A' (4.29) 

Using Eq. (4.27), 

G+ =(G'GyG' (4.30) 

From Eqs. (4.24 - 4.25) and Eq. (4.29) one obtains, 

(<G'G)+ = (LL'Y = L{l'LY{L'LY'L' (4.31) 

Thus, Eq. (4.30) becomes 
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G+ = (iG'G)*G' = L{L'L)'X{L'L)-X L'G' (4.32) 

While MATLAB solution can be obtained by x = pinv(G)xb, implying the 

generalized inverse G+ [see Eq. 4.32] to be formed explicitly, our main idea is to solve 

SLE where Ms a known right-hand-side vector, as described in the next section. 

To facilitate the discussion of Generalized Inverse, and its usage for solving general 

systems of SLE, the following (small-scale) numerical examples are used: 

Example 4.1 

The coefficient matrix [G] is a rectangular (tall type) matrix, and the RHS vector 

{6} is a linear combinations of columns of [G]. 

In this example, we wish to solve for {*} from the SLE [G] * {x} = {b}, where the 

numerical values of the coefficient matrix [G], and the RHS vector {b} are given as [refer 

to Eq. (4.32)]: 

r 2 0 0 1 1 i 
- 1 0  0 - 2  - 1  
3 0 0 0 0 
0  1 2 - 3 1  
0 - 2 5 1  0  
1 -2 3 4 -1-1 

Using MATLAB built-in function, the rank of G can be computed as 

rank(jG) = 5 

fxl) r6 
c 

*2 
— D 

/L 
< *3[ = 

D 
i 

*4 
1 
A 

,xsJ *r 
L 6 

and GT *G 

-2 3 8 2 

9 -14 -13 3 
-14 38 11 -1 
-13 11 31 -4 

3 -1 -4 4 

Special Cholesky factor of GT * G 
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3.8729 -0.5163 0.7745 2.0655 0.5163 
0.0000 2.9552 -4.6020 -4.0380 1.1053 
0.0000 0.0000 4.0275 -2.2800 0.9154 
0.0000 0.0000 0.0000 2.2866 0.64909 
0.0000 0.0000 0.0000 0.0000 1.1189 

# of independent rows = 5 

Independent rows = 1 2 3 4 5 

Dependent row = 6 

Product of II * L 

r 20.4000 -12.8609 -1.1172 5.0584 0.5778] 
-12.8609 
-1.1172 
5.0584 
0.5778 

47.4396 
-8.3159 
-8.5160 
1.2368 

-8.3159 
22.2581 
-4.6195 
1.0243 

-8.5160 
-4.6195 
5.6500 
0.7263 

1.2368 
1.0243 
0.7263 
1.2520 

Regular Cholesky factorization of LT * L 

4.5166 -2.8474 -0.2473 1.1199 
0.0000 6.2714 -1.4383 -0.8494 
0.0000 0.0000 4.4864 -1.2402 
0.0000 0.0000 0.0000 1.4615 
0.0000 0.0000 0.0000 0.0000 

Generalized inverse of [G] 

r0.07957 
-0.4289 
-0.1342 
-0.0645 

0.0648 
-0.3494 
-0.0723 
-0.2377 

0.2930 
-0.1162 
-0.0308 
-0.1401 

0.0117 
0.9364 
0.3504 
0.1385 

0.1279 
0.2553 
0.3172 
0.8164 
0.6350 

-0.0206 
-0.8888 
-0.1133 
-0.2425 

L 0.4337 -0.2761 -0.2072 -0.2320 0.4060 

0.0265 
0.8570 
0.2885 
0.3118 

-0.5220J 

and the solution vector x is obtained as 

\ r2.oooo^ 
0.9999 

' ss < 0.9999 
0.9999 

J li.ooooJ 
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Example 4.2 

The coefficient matrix [G] is a square/singular matrix, and the RHS vector {b} is a 

random vector. 

r - 2 - 1 0  0  1  - l l  r 0 
4 -2 0 0 2 -2 *2 0 
0 0 1 2 0 2 *3 7 
0 0 -2 5 -1 1 X4 4 
13 0 11 3 *5 12 
Ll 1 0 2 5 7 J oc6J L23J 

Using MATLAB built-in function, the rank of G can be computed as 

ranfc(C)= 5 

22 -6 0 3 16 °1 
-6 15 0 5 3 21 
0 0 5 -8 2 0 
3 5 -8 34 6 26 

16 3 2 6 32 32 
0 21 0 26 32 68-1 

Special Cholesky factor of GT * G 

T4.6904 -1.2792 0.0000 0.6396 0.3411 0.0000 
0.0000 3.6556 0.0000 1.5915 2.0143 5.7445 
0.0000 0.0000 2.2360 -3.5777 0.8944 0.0000 
0.0000 0.0000 0.0000 4.2729 0.8921 3.9451 

1-0.0000 0.0000 0.0000 0.0000 3.8353 4.4086 

# of independent rows = 5 

Independent rows =1 2 3 4 5 

Dependent row = 6 

Product of ll * L 

35.6818 3.2129 0.7627 5.7764 13.0832] 
3.2129 52.9542 -3.8924 31.2607 33.0513 
0.7627 -3.8924 18.6000 -14.4892 3.4304 
5.7764 31.2607 -14.4892 34.6177 20.8144 

13.0832 33.0513 3.4304 20.8144 34.1462^ 

Regular Cholesky factorization of LL * L 
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r5.9734 0.5378 0.1276 0.9670 2.1902 
0.0000 7.2570 -0.5458 4.2359 4.3920 
0.0000 0.0000 4.2761 -2.8765 1.2974 
0.0000 0.0000 0.0000 2.7321 1.3996 

L0.0000 0.0000 0.0000 0.0000 2.5331-1 

Generalized inverse of [G] 

0.0749 0.1498 0.0823 -0.0161 0.1882 -0.0742] 
-0.0107 -0.0215 -0.1076 -5.146 x 10"3 0.3118 -0.0879 
0.0182 0.0364 0.5157 -0.1939 0.0305 -0.0980 
0.0151 0.0302 0.1518 0.1278 -7.108 x 10~4 -0.0271 
0.0150 0.0301 -0.1820 -3.678 x 10"3 -0.0793 0.1366 

-0.0242 -0.0485 0.0902 -0.0308 -0.0145 0.0761 

and the solution vector x is obtained as 

rl.0638^ 
*2 0.9459 
*3 0.9465 
X4 0.9423 
*S 0.9029 
lx6J ^2.0845^ 

Example 4.3 

The coefficient matrix [G] is a square/non-singular matrix, and the RHS vector 

{b} is a linear combination of columns of [G]. 

Using MATLAB built-in function, the rank of G can be computed as 

r a n k ( G ) =  6  

- 1 0  0  1  - I n  
r1 CM 1 

C
N

 1 

O
 

o
 

CM 1 *2 -2 
0 12 0 2 *3 5 
0  - 2  5 - 1  1  *4 3 
3  0  1 1 3  *5 9 
3  0  1 6  1 - 1  u:6J L12J 
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r22 -4 0 2 1 —6] 
-4 23 0 6 24 17 
0 0 5 -8 2 0 
2 6 -8 31 2 13 
1 24 2 2 43 11 

—6 17 0 13 11 20J 

Special Cholesky factor of G R  * G  

1-4.6904 -0.8528 
0.0000 4.7193 
0.0000 0.0000 
0.0000 0.0000 
0.0000 0.0000 
Lo.oooo 0.0000 

# of independent rows 

0.0000 0.4204 
0.0000 1.3483 
2.2360 -3.5777 
0.0000 4.0249 
0.0000 0.0000 
0.0000 0.0000 

6 

0.2132 -1.2792] 
5.1239 3.3709 
0.8944 0.0000 
-0.4472 2.2360 
3.9623 -1.2618 
0.0000 0.6384 

Independent rows = 1 2 3 4 5 6 

Dependent row = none 

Product oil! *L 

24.5909 -6.6695 -1.3348 -1.2395 2.4589 -0.81671 
-6.6695 61.7090 -0.2412 10.6735 16.0488 2.1522 
-1.3348 -0.2412 18.6000 -14.8000 3.5440 0.0000 
-1.2395 10.6735 -14.8000 21.4000 -4.5936 1.4276 
2.4589 16.0488 3.5440 -4.5936 17.2923 -0.8056 

L—0.8167 2.1522 0.0000 1.4276 -0.8056 0.4076 

Regular Cholesky factorization of LT * L 

[-4.9589 -1.3449 -0.2691 -0.2499 0.4958 -0.1646 
0.0000 7.7390 -0.0779 1.3356 2.1597 0.2494 
0.0000 0.0000 4.3036 -3.4303 0.8936 -5.78 x 10 
0.0000 0.0000 0.0000 2.7903 -1.5370 0.3703 
0.0000 0.0000 0.0000 0.0000 3.0365 -0.2266 

1-0.0000 0.0000 0.0000 0.0000 0.0000 0.36012 

Generalized inverse of [G] 
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-0.0396] 
0.4206 
-0.4444 
0.2777 
0.0000 
-0.5000-1 

and the solution vector x is obtained as 

rX\1 rl.0000^1 
*2 0.9999 
*3 0.9999 
*4 

• — < 

0.9999 
*5 1.0000 
bc6J Li.ooooJ 

0.2341 
-1.2817 
-1.2222 
-0.6388 
0.5000 

L 1.2500 

0.0972 
0.5694 
0.6111 
0.3194 

-0.2500 
-0.6250 

-0.0317 
-0.0634 
0.5555 
0.2222 
0.0000 
0.0000 

-0.0158 
-0.0317 
-0.2222 
0.1111 
0.0000 
0.0000 

0.1825 
-0.1349 
—0.4444 
-0.2777 
0.0000 
0.5000 

Example 4.4 

The coefficient matrix [G] is a square/singular matrix, and the RHS vector {b} is a 

random vector. 

2 -1 0 0 0 1 -in rXi> rli 
4 2 0 0 0 2 -2 *2 6 
0 0 1 2 -5 -3 6 *3 5 
0 0 -2 5 6 2 1 - X4 . = 3 
0 0 3 5 1 7 0 *5 9 
1 2 -3 6 -2 1 3 *6 9 
2 4 -6 12 -4 2 6 -1 LgJ 

Using MATLAB built-in function, the rank of G can be computed as 

rank(G) = 6 

r 25 16 -15 30 -10 15 5 i 
16 25 -30 60 -20 13 27 
-15 -30 59 -83 16 -1 -41 
30 60 -83 234 -35 69 107 

-10 -20 16 -35 82 24 -54 
-15 13 -1 69 24 72 -6 

L 5 27 -41 107 -54 -6 87 J 

Special Cholesky factor of GT * G 
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r5.0000 3.2000 -3.0000 6.0000 -2.0000 3.0000 1.0000 
0.0000 3.8418 -5.3099 10.6198 -3.5399 0.8849 -1.0933 
0.0000 0.0000 4.6695 -1.8438 -1.8838 2.7195 -1.0933 
0.0000 0.0000 0.0000 9.0454 1.2293 5.1535 3.6698 
0.0000 0.0000 0.0000 0.0000 7.7722 4.1069 -4.7144 

1-0.0000 0.0000 0.0000 0.0000 0.0000 3.3756 -3.2763-

# of independent rows = 6 

Independent rows =1 2 3 4 5 6 

Dependent row = 7 

Product of LT * L 

94.2400 
107.8723 
-14.2385 
70.9443 
-7.9381 
6.8505 

107.8723 
207.4266 
-42.0738 
119.0041 
-53.0841 
-17.3091 

-14.2385 
-42.0738 
37.3448 
-8.9911 
1.6820 
12.7625 

70.9443 
119.0041 
-8.9911 
123.3579 
13.4190 
5.3727 

-7.9381 
-53.0841 
1.6820 

13.4190 
99.5613 
29.3094 

6.8505 
-17.3091 
12.7625 
5.3727 
29.3094 
22.1291 

Regular Cholesky factorization of LT * L 

r9.7077 11.1120 -1.4667 7.3080 -0.8177 0.7056 
0.0000 9.1624 -2.8131 4.1252 -4.8019 -2.7449 
0.0000 0.0000 5.2229 2.55271 -2.4940 1.1632 
0.0000 0.0000 0.0000 0.81297 6.6882 1.2578 
0.0000 0.0000 0.0000 0.0000 4.9813 2.2468 
Lo.oooo 0.0000 0.0000 0.0000 0.0000 2.4723 

Generalized inverse of [G] 

r 0.2050 0.1624 0.1051 0.0748 -0.0440 -0.0119 -0.0239 
-0.4999 0.2500 0.0000 -1.0547 0.0000 0.0000 0.0000 
-0.1361 0.1144 0.1337 0.0393 0.0869 -0.0364 -0.0729 
0.0579 -0.0468 2.017 X 10"4 0.0254 0.0272 0.0151 0.0303 

-0.0938 0.0780 0.0410 0.1627 -0.0238 -0.0249 -0.0499 
0.0303 -0.0267 -0.0633 -0.0582 0.0895 8.3858 x 10"3 0.0167 

L—0.0596 0.0482 0.1468 0.0914 1.3269 X 10"3 -0.0156 -0.0312J 

and the solution vector x is obtained from Eq. (4.32) as 
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FXL} rl.2092"\ 
*2 1.0000 
*3 1.1341 
X4 Y = « 0.5089 
*5 0.1789 
*6 0.4105 
JC7J *•0.8290-' 

4.7 Mixed Direct-Iterative Generalized Inverse Algorithms for Solving SLE 

Instead of explicitly computing the generalized inverse from Eq. (4.32), which 

involves a lot of "matrix times matrix" operations, one can/should repeatedly use "matrix 

times vector" operations for improving its computational efficiency. Furthermore, it is 

noted that the "regular (not generalized) inverse" of the matrix product [V * L] should be 

replaced by the more efficient SLE, either by Direct or by Iterative algorithms. More 

details can be explained in the following sub-sections. 

4.7.1 Direct methods in Generalized Inverse for solving SLE 

Using the matrix-product operations in Eq. (4.32), one can compute the unknown 

solution vector x according to the following sequence of steps: 

From Eq. (2.1), with [>4] = [G], and from Eq. (4.32), 

;K = L(L'L)~l(L'L)~lL'G'b 

Let 

Minv = (L'Ly1 

Then one computes the following sequence of matrix times vector: 

tempo\ = G'xb 

tempo 3 = V x tempo1 
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tempo2 = Mirrv x tempob 

tempol = Minv x tempo! 

tempo2 = Lx tempol 

and the unknown solution vector x is stored in the temporary vector tempo2. 

4.7.2 Iterative Method in Generalized Inverse for solving SLE 

From Eq. (4.32), 

3c = L(L'L)-\L'Ly L'G'b 

Let 

Ml = (L'L) 

Then one computes the following sequence of matrix times vector: 

tempo \ = G'xb 

tempo3 = L'x tempol 

Using MATLAB built-in (Conjugate Gradient) function, one computes the following 

vectors: 

tempdl = cg{Ml,tempS) 

temp A = cg{M\, tempol) 

tempol = Lx tempol 

and the unknown solution vector x is stored in the temporary vector tempol. 

where eg is the Conjugate Gradient (iterative) Algorithm for solving SLE and the 

unknown solution vector x is stored in the temporary vector tempol. 
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Important Notes: 

(a) Inside the "generalized inverse" algorithms, one needs to find the "regular inverse" of 

the coefficient matrix (= V * L, in this case ). This "regular matrix inversion" should be 

equivalently solved by SLE, which can be done either by direct, or iterative solvers. 

(b) For certain large-scale (especially for 3-D) problems, iterative solver (with 

appropriated pre-conditioned strategies) can be a more preferable method of choice (as 

compared to the direct method), due to the following desirable features: 

• No fill-in terms occurred 

• Much easier to parallelize 

4.8 Domain Decomposition Generalized Inverse Solver 

The efficient generalized inverse algorithms discussed in sections 4.6 and 4.7 can 

be further improved by utilizing the Domain Decomposition (or DD) formulation. In 

Chapter 3, some key equations resulted from DD formulation have already been derived, 

based on the assumption that the coefficient of a square matrix is non-singular. 

In this section, let us consider the system of linear algebraic equations 

Kr = f (4.33) 

where the matrix of system is K e R"*" ( K can be either non-singular, or singular ) and 

vectors  reR" , f  eR" .  

Let the original domain be decomposed into m sub domains. The coefficient 

matrix can be represented in a special form as shown below 
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Kf '  o A:)'*1" f tfi ' l  w 
KP 

0 Af1 K\b] $ 

' 
K['b] m 

K\b,] K\bi) 
Af'1 • •• 4"' 

g[bb\ 
U»JJ 

From Eq. (4.34) the following notations are used 

AjJj', where j e {l,2- vectors of displacements of interior nodes on the j'h sub 

domain, 

- vector of boundary displacements, 

where j e  { l , 2 , . v e c t o r s  o f  i n t e r i o r  l o a d s  a c t i n g  o n  / A s u b  d o m a i n ,  

/[t] - vector of boundary loads on the boundaries. 

K^bb^ represents the summation of boundary stiffness matrices from all sub-domains. 

For "structural engineering" applications, and using DD formulation, Eq. (4.33) 

can be naturally expressed in the form as shown in Eq. (4.34). For general "field" 

problems (or mathematical problems), one usually starts with Eq. (4.33). For these 

problems, however, Nested Disection or METiS re-ordering algorithms [20-22] can be 

used to transform Eq. (4.33) into the form shown in Eq. (4.34). 

From Eq. (4.34), matrix contains contributions from "all" sub-domains and can be 

expressed as 

K { b b ]  =^Kf ]  (4.35) 

For symmetrical cases, and Kf'' are the transpose of each other. Vectors rjjf'can be 

expressed in the form 



39 

t l f 1  = W" r  W"'  -  K f ] >i"  ) (4.36) 

where j E {1,2,..., m}, and is a sub-set of the vector r^. 

Also, 

i(4'i)r'xf]V, =/„ (4.37) 
y=1 j j-1 

Eq. (4.37) is called the reduced system or resulting system. 

If the matrix K, shown in Eq. (4.33), is singular, we can apply the concept of 

generalized inverse to invert the (possible) singular coefficient matrix in Eq. (4.37) to 

find the unknown boundary displacement vector first, and then use them in 

computing the remaining unknown interior displacement vector r^, as shown in Eq. 

(4.36). 

For a typical j'h sub-domain j € {l,2,...,m}, one obtains 

= [ * < » > ] - '  • ( / , " » « )  < 4 - 3 8 >  
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5. ENGINEERING/SCIENCES NUMERICAL APPLICATIONS 

Based on the discussions presented in the previous chapters (chapters 1-4), a 

fairly extensive set of numerical examples are used in this chapter for validating the 

accuracy and evaluating the (computational time) performance of the proposed 

algorithms discussed in Chapter 4. Test examples to cover the cases where the 

known/given coefficient matrix in the SLE can be a square/rectangular, singular/non-

singular, symmetrical/non-symmetrical matrix, and the known/given right-hand-side (rhs) 

vector can be random vector, or it can be a linear combinations of columns of the 

coefficient matrix are all investigated in this chapter. 

5.1 Description of the Test Examples 

Test matrices are collected from Tim Davis Sparse Matrix Collection [14], 

University of Florida. Rank deficient (singular) matrices derived from various 

engineering and science applications such as Linear Programming, Combinatorial 

Problem, Directed Graph, Fluid Dynamics, Linear Programming, Chemical Process 

Simulations, Cell traffic matrices, etc. are included in Tables 5.1-5.4 
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SI. No Name Size Rank nnz Group Description 
1 lock_700 700x700 165 22,175 HB Finite Element 

Problem 
2 dwt 1005 1005x1005 995 8,621 HB Structural Problem 
3 bcspwr06 1454x1454 1446 5,300 HB Power network 

problem 
4 bcsstml3 2003x2003 1241 21,181 HB Symmetric Mass 

Matrix, Fluid Flow 
Generalized Eigen 

Values 
5 lock2232 2232x2232 368 80,352 HB Finite Element 

Problem 
6 cegb2802 2802x2802 289 277,362 HB Finite Element 

Problem 
Table 5.1: Symmetric Singular Test Matrices for ODU Generalized Inverse Solver 

SI. No Name Size Rank nnz Group Description 
1 tomo_900 900x900 893 35,598 Regtools 2-D tomography test 

problem 
2 GD00_c 638x638 300 1,041 Pajek 

network 
Directed Multigraph 

3 GD96_a 1096x1096 827 1,677 Pajek 
network 

Directed Multigraph 

4 ex 6 1651x1651 1650 49,062 FIDAP CFD 
5 CS_phd 1882x1882 705 1,740 Pajek 

network 
Directed Graph 

6 tomo_2500 2500x2500 2496 166,782 Regtools 2-D tomography test 
problem 

Table 5.2: Un-symmetrical Singular Test Matrices for ODU Generalized Inverse Solver 

SI. No Name Size Rank nnz Group Description 
1 D_6 970x435 339 6,491 JGD_SL6 Differentials of 

Voronoi complex of 
perfect forms 

2 mk9-b2 1260x378 343 3,780 JGDHomology Combinatorial 
problem 

3 n3c6-b3 1365x455 364 5,460 JGD_Homology Combinatorial 
problem 

4 Franzl 2240x768 755 5,120 JGD_Franz Combinatorial 
problem 

5 mkl0-b2 3150x630 586 9,450 JGD_Homology Simplical 
complexes 

6 n4c6-b3 5970x1330 1140 23,880 JGD_Homology Simplical 
complexes from 
Homology from 
Volkmar Welker 

Table 5.3: Rectangular Singular Test Matrices 
Generalized Inverse 

(Tall type: rows»cols) for ODU 
Solver 
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SI. No Name Size Rank nnz Group Description 
1 lpstandgub 361x1383 360 3,338 LPnetlib Linear 

Programming 
Problem 

2 lp_ship041 402x2166 360 6,380 LPnetlib Linear 
Programming 

Problem 
3 lp_ship08s 778x2467 712 7,194 LPnetlib Linear 

Programming 
Problem 

4 Trecl2 551x2726 550 151,219 JGD_Kocay combinatorial 
problem 

5 lp_ship081 778x4363 712 12,882 LPnetlib Linear 
Programming 

Problem 
6 lp_d6cube 415x6184 404 37,704 LPnetlib Linear 

Programming 
Problem 

Table 5.4: Rectangular Singular Test Matrices (Fat type: rows«cols) for ODU 
Generalized Inverse Solver 

5.2 Numerical Performance of ODU Generalized Inverse Solver 

Based on the detailed algorithms explained in Chapter 4, and using the rank-

deficient matrices as coefficient matrices described in section 5.1, the numerical 

performance of our proposed procedures [for solving SLE, shown in Eq. (4.33)] are 

evaluated in this section. The known RHS vector {b} can be random vector, or can be 

chosen such a way that the unknown solution vector {*} = {1,1, 

We also compared the performance of our algorithm with the efficient algorithm 

described in [13] and also with MATLAB built-in function pinvQ [12] for computing the 

generalized inverse explicitly. We use MATLAB version 7.6.0.324 (R2008a) on Intel 

Core 2 CPU, 2.13GHZ, 2GB RAM, Windows XP Professional SP3 for numerical 

comparisons. To be consistent and fair, sparse test matrices obtained from tables 5.1-5.4 

are converted to full matrices (in this section). 
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Tables 5.5 through 5.16 records the times (in seconds) taken by our proposed 

algorithm, the algorithm mentioned in [13] and MATLAB built-in function [12] pirtvQ. 

For our convenience, we represent our algorithm with ODU — ginverseQ, algorithm in 

[13] withgeninv and MATLAB built-in function with MATLAB-pirtvQ. In addition, 

we have also presented the error norm for all the test matrices. 

5.2.1 Direct Method in Generalized Inverse to Solve SLE with RHS Vector as 
Linear Combination of Columns of the Coefficient Matrix 

In this sub-section, the explicitly inverse of the matrix product[L' • L], shown in 

Eq. (4.32), is implemented by MATLAB built-in function inv(JL' * L), and the results are 

shown in Tables 5.5-5.12. 

SI. 
No 

Name Size Rank ODU - ginverse 

Error Norm 

geninv 

Error Norm 

MATLAB - pinvQ 

Error Norm 

1 lock_700 700x700 165 0.1514 
1.033x10* 

0.3446 
1.1399x1or6 

1.2967 
2.215x10" 

2 dwt_1005 1005x1005 995 2.6634 
7.1302^1 O9 

4.2889 
6.764x10* 

14.0320 
4.5736xlO'2 

3 bcspwr06 1454x1454 1446 8.5029 
1.477*10* 

13.3176 
1.829x10s 

40.3646 
2.7131 xio'2 

4 bcsstml3 2003x2003 1241 11.5997 
6.7629x1or9 

19.1901 
1.826x10s 

36.3413 
5.6493 xlO,} 

5 lock2232 2232x2232 368 5.5518 
7.9519xl0r9 

10.8755 
2.5797xlO? 

40.7582 
1.0761x10" 

6 cegb2802 2802x2802 289 8.9571 
9.7558x1(T9 

18.6816 
3.7220x107 

69.9847 
1.7532x10" 

Table 5.5: Computational Times (in seconds) for Symmetric Rank-Deficient Test 
Matrices with RHS Vector as Linear Combination of Columns of Coefficient Matrix 
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SI. No Name Size Rank ODU - g inverse 

Error Norm 

geninv 

Error Norm 

MATLAB - pinvQ 

Error Norm 

1 tomo_900 900x900 893 1.8545 
7.667*1(T9 

3.0092 
1.055 *70^ 

10.1396 
2.789x70-" 

2 GDOOc 638x638 300 0.1805 
7.909*10rn 

0.3961 
2.602X70-" 

1.8696 
5.704x70"" 

3 GD96_a 1096x1096 827 2.5991 
3.179 *i<r'3 

4.1606 
1.776x70"" 

7.3928 
3.148x70"" 

4 ex_6 1651x1651 1650 12.78109 
2.547 x/0"5 

19.9238 
0.00657 

44.6059 
4.6022x70"" 

5 CS_phd 1882x1882 705 8.5161 
7.724x70"" 

12.8672 
9.295 *1$'" 

41.8010 
2.707x70"" 

6 tomo_2500 2500x2500 2496 44.7203 
2.031 x70-7 

69.0133 
0.0002893 

221.6490 
2.8190 x70r'° 

Table 5.6: Computational Times (in seconds) for Non-Symmetric Rank-Deficient Test 
Matrices with RHS Vector as Linear Combination of Columns of Coefficient Matrix 

SI. 
No 

Name Size Rank ODU — ginverse 

Error Norm 

geninv 

Error Norm 

MATLAB — pinv 0 

Error Norm 
1 D_6 970x435 339 0.1347 

1.216x70"" 
0.2809 

1.333x70"" 
1.3240 

7.403 x 70"" 
2 mk9-b2 1260x378 343 0.1162 

5.950x70"" 
0.2478 

1.018x70"" 
0.6098 

1.681x70"" 
3 Franz1 2240x768 755 1.3077 

1.457x70"" 
2.3649 

1.290x70"" 
6.0490 

2.806x70"" 
4 mklO-

b2 
3150x630 586 0.8094 

1.599x70"" 
1.5776 

2.057x70"" 
3.2363 

2.573x70"" 
Table 5.7: Computational Times (in seconds) for Rectangular Rank-Deficient Test 

Matrices (Tall type: Rows»Cols) with RHS Vector as Linear Combination of Columns 
of Coefficient Matrix 

5/. 
No 

Name Size Rank ODU — ginverse 

Error Norm 

geninv 

Error Norm 

MATLAB -plnvO 

Error Norm 

1 lp_standgub 361x1383 360 0.1242 
6.321 x70"7 

0.4238 
6.387 x70"7 

1.0215 
3.579x70"" 

2 lp_ship041 402x2166 360 0.1760 
1.421 x70"" 

0.6712 
1.056x70"" 

1.3390 
1.851 x70"" 

3 lp_ship08s 778x2467 712 1.2747 
1.178x70"" 

3.4073 
1.052x70"" 

5.3489 
1.583 x7*T" 

4 lp_ship081 778x4363 712 1.5622 
2.955 x70-" 

5.2861 
1.517x70-" 

8.5278 
4.243 x70r" 

Table 5.8: Computational Times (in seconds) for Rectangular Rank-Deficient Test 
Matrices (Fat type: Rows«Cols) with RHS Vector as Linear Combination of Columns 

of Coefficient Matrix 
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5.2.2 Direct Method in Generalized Inverse to Solve SLE with Randomly Generated 
RHS Vector {1,2, ...,n}T. 

SI. 
No 

Name Size Rank ODU — ginverse 

Error Norm 

geninv 

Error Norm 

MATLAB - pinv0 

Error Norm 

1 lock_700 700x700 165 0.1483 
1495.46 

0.3423 
1495.46 

1.2948 
1495.46 

2 dwt_1005 1005x1005 995 2.6740 
295 

4.3156 
295 

14.0342 
295 

3 bcspwr06 1454x1454 1446 8.5747 
102.551 

13.3752 
102.551 

41.1197 
102.551 

4 bcsstml3 2003x2003 1241 11.7270 
29034.7 

19.3159 
29034.7 

36.3659 
29034.7 

5 lock2232 2232x2232 368 5.5934 
106.489 

10.9423 
106.489 

40.7723 
106.489 

6 cegb2802 2802x2802 289 9.1066 
28002 

18.7714 
28002 

69.7151 
28002 

Table 5.9: Computational Times (in seconds) for Symmetric Rank-Deficient Test 
Matrices with Randomly Generated RHS Vector 

SI. 
No 

Name Size Rank ODU — ginverse 

Error Norm 

geninv 

Error Norm 

MATLAB — pinv 0 

Error Norm 

1 tomo_900 900x900 893 1.8725 
669.871 

3.0287 
669.871 

10.0959 
669.871 

2 GD00_c 638x638 300 0.2012 
6204.66 

0.4092 
6204.66 

1.8748 
6204.66 

3 GD96_a 1096x1096 827 2.6079 
4821.7 

4.1399 
4821.7 

7.3863 
4821.7 

4 ex_6 1651x1651 1650 12.7676 
1682.04 

20.0046 
1682.04 

44.5628 
1682.04 

5 CS_phd 1882x1882 705 8.5641 
40498.9 

12.9633 
40498.9 

41.7883 
40498.9 

6 tomo_2500 2500x2500 2496 45.0147 
1561.25 

69.2692 
1561.25 

221.4820 
1561.25 

Table 5.10: Computational Times (in seconds) for Non-
Matrices with Randomly Generated 

Symmetric Rank-Deficient Test 
RHS Vector 
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SI. Name Size Rank ODU - g inverse geninv MATLAB - pinvQ 

No Error Norm Error Norm Error Norm 

1 D_6 970x435 339 0.1991 
14795 

0.3480 
14795 

1.3203 
14795 

2 mk9-b2 1260x378 343 0.1615 
6376.16 

0.2935 
6376.16 

0.6090 
6376.16 

3 Franz1 2240x768 755 1.2964 
37127.5 

2.3602 
37127.5 

6.0413 
37127.5 

4 mkl0-b2 3150x630 586 0.8063 
26222.6 

1.5845 
26222.6 

3.2379 
26222.6 

Table 5.11: Computational Times (in seconds) for Rectangular Rank-Deficient Test 
Matrices (Tall type: Rows»Cols) with Randomly Generated RHS Vector 

SI. Name Size Rank ODU — ginverse geninv MATLAB - pinvO 

No Error Norm Error Norm Error Norm 

1 lp_standgub 361x1383 360 0.1586 
2 

0.4580 
2 

1.0321 
2 

2 lp_ship041 402x2166 360 0.2250 
1508.7 

0.7126 
1508.7 

1.3383 
1508.7 

3 lp_ship08s 778x2467 712 1.2945 
833468 

3.3961 
833468 

5.3447 
833468 

5 lp_ship081 778x4363 712 1.5722 
3724.81 

5.2922 
3724.81 

8.5757 
3724.81 

Table 5.12: Computational Times (in seconds) for Rectangular Rank-Deficient Test 
Matrices (Fat type: Rows«Cols) with Randomly Generated RHS Vector 

5.2.3 Iterative Methods in Generalized Inverse to Solve SLE with Randomly 
Generated RHS vector 

In this sub-section, the explicit inverse of the matrix product [L' * L], shown in 

Eq. (4.32), is implemented by MATLAB built-in (Conjugate Gradient iterative solver), 

and the results are shown in Tables 5.13-5.16. 

Iterative solver used: Conjugate Gradient Algorithm 

Error tolerance used: 10 -7 
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SI. 
No 

Name Size Rank ODU - ginverse 
Iterative 

Error Norm 

ODU - ginverse 
direct 

Error Norm 

geninvQ 

Error Norm 

MATLAB pinv( 

Error Norm 

1 lock1074 1074x1074 155 0.5649 
47.5347 

0.4351 
47.5347 

1.0278 
47.5347 

4.1070 
47.5347 

2 lock2232 2232x2232 368 5.9314 
63.1189 

5.5499 
63.1189 

10.8729 
63.1189 

40.7251 
63.1189 

3 cegb2802 2802x2802 289 9.3092 
77.0117 

9.0585 
77.0117 

18.6983 
77.0117 

69.7249 
77.0117 

Table 5.13: Computational Times (in seconds) for Symmetric Rank-Deficient Test 
Matrices (Using Iterative Solver inside Generalized Inverse) with Randomly Generated 

RHS Vector 

SI. 
No 

Name Size Rank ODU 
- ginverse 
iterative 

Error Norm 

ODU 
- ginverse 

direct 

Error Norm 

geninvQ 

Error Norm 

MATLAB pinvO 

Error Norm 

1 GD00_c 638x638 300 0.2835 
46.1318 

0.2125 
46.1318 

0.4097 
46.1318 

1.8861 
46.1318 

2 GD96_a 1096x1096 827 2.7595 
28.0286 

2.6291 
28.0286 

4.1385 
28.0286 

7.3832 
28.0286 

3 CS_phd 1882x1882 705 8.5563 
96.906 

8.5541 
96.906 

12.9385 
96.906 

41.6813 
96.906 

Table 5.14: Computational Times (in seconds) for Non-Symmetric Rank-Deficient Test 
Matrices (Using Iterative Solver inside Generalized Inverse) with Randomly Generated 

RHS Vector 

SI. 
No 

Name Size Rank ODU 
— ginverse 
Iterative 

Error Norm 

ODU - ginverse 
direct 

Error Norm 

geninvQ 

Error Norm 

MATLAB pinvQ 

Error Norm 

1 mk9-b2 1260x378 343 0.1423 
43.7972 

0.1615 
43.7972 

0.2928 
43.7972 

0.6096 
43.7972 

2 Franz1 2240x768 755 1.2200 
84.9266 

1.3051 
84.9266 

2.3673 
84.9266 

6.0349 
84.9266 

3 n4c6-b3 5970x1330 1140 7.26591 
128.086 

7.8267 
128.086 

14.1278 
128.086 

25.7394 
128.086 

Table 5.15: Computational Times (in seconds) for Rectangular (Tall) Rank-Deficient 
Test Matrices (Using Iterative Solver inside Generalized Inverse) with Randomly 

Generated RHS Vector 
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SI. 
No 

Name Size Rank ODU 
— ginverse 
iterative 

Error Norm 

ODU 
— ginverse 

direct 

Error Norm 

geninv 0 

Error Norm 

MATLAB pinv( 

Error Norm 

1 lp_ship08s 778x2467 712 1.59103 
21.3141 

1.2930 
21.3141 

3.3817 
21.3141 

5.3262 
21.3141 

2 lp_ship081 778x4363 712 1.7496 
24.7184 

1.6065 
24.7184 

5.2864 
24.7184 

8.4837 
24.7184 

3 lp_d6cube 415x6184 404 0.5738 
10.7908 

0.46281 
10.7908 

2.1500 
10.7908 

4.1469 
10.7908 

Table 5.16: Computational Times (in seconds) for Rectangular (Fat) Rank-Deficient Test 
Matrices (Using Iterative Solver inside Generalized Inverse) with Randomly Generated 

RHS Vector 

Furthermore, graphical comparisons (in terms of the computational times) of ODU-

ginverse with other algorithms have been presented in Appendix E. 

5.3 Numerical Performance of ODU Generalized Inverse DD Solver 

As can be seen from the previous Section 5.2, our proposed implementation of the 

generalized inverse for solving SLE have shown "significant time reduction" as 

compared to MATLAB built-in function, and also compared to [13]. In this sub-section, 

however, we want to investigate the numerical performance of our proposed generalized 

inverse  wi th in  the  f rame work  of  DD formula t ion  ( for  so lv ing  sys tem of  [G]  #  {*}  =  {b} ,  

where the coefficient matrix [G] has the dimension m x n and can be either rectangular, 

or square/singular). 

5.3.1 Description of Test Problems for ODU Generalized Inverse DD Solver 

Test matrices are collected from Tim Davis Sparse Matrix Collection, University 

of Florida [14]. Rank deficient (singular) matrices derived from various engineering and 

science applications such as Linear Programming, Combinatorial Problem, Directed 

Graph, Fluid Dynamics, Linear Programming, Chemical Process Simulations, Cell traffic 

Matrices, etc. are included in Tables 5.17-5.18 
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SI. No Name Size Rank nnz Group Description/Kind 
1 GD98_c 112x112 100 336 Pajek Pajek network, 

undirected graph 
2 dwt 209 209x209 208 1,743 HB Structural Problem 
3 dwt 307 307x307 288 2,523 HB Structural Problem 

Table 5.17: Symmetric Singular est Matrices for ODU Generalized Inverse DD Solver 

SI No Name Size Rank nnz Group Description/Kind 
1 gentll3 113x113 107 655 HB Statistical/Mathematical 

Problem 
2 gre 216b 216x216 215 812 HB Directed Weight Graph 
3 GD00 a 352x352 178 458 Pajek Directed Graph 

Table 5.18: Un-Symmetrical Singular Test Matrices for ODU Generalized Inverse DD 
Solver 

5.3.2 Problem Formulation with Same Sub Matrix 

Let us construct a system matrix (Eq. (4.33)) in the form shown by Eq. (4.34). For 

the sake of discussion, let us consider 3 sub domains. The system matrix takes the 

following form 

*,* O O K;'s 

f r ' l  yr 

O K* O K'b r} /• 

O O K; K'b f3 

Kbl Kbi Kbi Kbb 
J J*;  K /b  > 

(5.1) 

A singular coefficient matrix is considered from the test matrix collection [14-15] as K".  

For simplicity/convenience, we also assume 

(a) K{' = K'l = K? = Kbb (5.2) 

(b) K,b = K'2b = K'b = Kbi = Kb' = Kbl = K" (5.3) 

The known right hand side (RHS) vector is chosen as factory, random column vector. 

Where factor is a user defined variable. The user can also specify the number of sub 

domains and, accordingly, the system matrix and the right hand side vector will be 

automatically generated. 



This section presents a comparison of numerical results (in terms of timings) of 

the developed Domain Decomposition generalized inverse formulations with other 

existing algorithms. MATLAB sparse storage scheme has been adopted on the input test 

matrices. 

SI. No nsu Size Rank O D U - D D  

Error Norm 

Original system 
ginverse MV 

Error Norm 

Original system 
genlnv 

Error Norm 

1 2 336x336 300 0.06130 
8.21375 

0.07158 
8.21375 

0.11555 
8.21375 

2 3 448x448 400 0.09911 
12.2835 

0.15793 
12.2835 

0.26940 
12.2835 

3 4 560x560 500 0.12202 
9.95631 

0.30984 
9.95631 

0.49831 
9.95631 

4 5 672x672 600 0.15667 
15.2519 

0.56595 
15.2519 

0.88289 
15.2519 

5 6 784x784 700 0.2000 
13.1714 

0.95323 
13.1714 

1.45982 
13.1714 

6 7 896x896 800 0.20218 
14.9267 

1.44812 
14.9267 

2.19521 
14.9267 

7 8 1008x1008 900 0.24897 
14.6983 

2.16118 
14.6983 

3.21151 
14.6983 

Table 5.19: Computational Times (in seconds) for Rank-Deficient Test Matrices with 
same Ku (GD98_c) Sub-Matrices using Domain Decomposition 

SI. No nsu Size Rank ODU - DD 

Error Norm 

Original system 
ginverse MV 

Error Norm 

Original system 
geninv 

Error Norm 
1 2 627x627 624 0.28611 

2.9162 
0.53233 
2.9162 

0.859960 
2.9162 

2 3 836x836 832 0.401712 
3.87701 

1.37505 
3.87701 

2.10186 
3.87701 

3 4 1045x1045 1040 0.53614 
2.0488 

2.98979 
2.0488 

4.44309 
2.0488 

4 5 1254x1254 1248 0.59997 
2.54757 

5.08382 
2.54757 

7.43006 
2.54757 

5 6 1463x1463 1456 0.71609 
1.06024 

8.2171 
1.06024 

12.06235 
1.06024 

6 7 1672x1672 1664 0.87530 
2.14487 

12.46184 
2.14487 

18.24484 
2.14487 

7 8 1881x1881 1872 1.00417 
8.99101 

18.2003 
8.99101 

25.81453 
8.99101 

Table 5.20: Computational Times (in seconds) for Rank-Deficient Test Matrices with 
same Kli (dwt_209) Sub-Matrices using Domain Decomposition 
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SI. nsu Size Rank O D U - D D  Original system Original system 

No 
nsu Size 

ginverse MV geninv 

Error Norm Error Norm Error Norm 

1 2 921x921 864 0.67732 1.70853 2.59315 
14.6443 14.6443 14.6443 

2 3 1228x1228 1152 1.0100 4.38649 6.43760 
12.991 12.991 12.991 

3 4 1535x1535 1440 1.2845 8.6928 12.76263 
11.2669 11.2669 11.2669 

4 5 1842x1842 1728 1.62886 15.2775 22.0046 
17.1461 17.1461 17.1461 

5 6 2149x2149 2016 1.96057 26.66948 35.4461 
17.6758 17.6758 17.6758 

6 7 2456x2456 2304 2.28013 36.77451 53.29277 
17.0915 17.0915 17.0915 

7 8 2763x2763 2592 2.70171 52.6385 75.09115 
21.1027 21.1027 21.1027 

Table 5.21: Computational Times (in seconds) for 
same KU (dwt_307) Sub-Matrices using 

Rank-Deficient Test Matrices with 
Domain Decomposition 

SI. nsu Size Rank O D U - D D  Original system Original system 

No ginverse MV geninv 

Error Norm Error Norm Error Norm 
1 2 339x339 321 0.075614 0.093916 0.14541 

4.83871 4.83871 4.83871 
2 3 452x452 428 0.010403 0.19469 0.305175 

7.01463 7.01463 7.01463 
3 4 565x565 535 0.134215 0.35666 0.575419 

9.03996 9.03996 9.03996 
4 5 678x678 642 0.166451 0.65779 1.03111 

10.8548 10.8548 10.8548 
5 6 791x791 749 0.20053 1.31634 1.89611 

10.1139 10.1139 10.1139 
6 7 904x904 856 0.224461 1.64580 2.46109 

10.1037 10.1037 10.1037 
7 8 1017x1017 963 0.30215 2.433860 3.65811 

8.71228 8.71228 8.71228 
Table 5.22: Computational Times (in seconds) for 

same KIL (gentl 13) Sub-Matrices using 
Rank-Deficient Test Matrices with 
Domain Decomposition 
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SI. nsu Size Rank O D U - D D  Original system Original system 

No ginverse MV gentnv 

Error Norm Error Norm Error Norm 

1 2 648x648 643 0.213104 0.48045 0.73973 
29.2826 29.2826 29.2826 

2 3 864x864 857 0.32912 1.17688 1.77665 
32.058 32.058 32.058 

3 4 1080x1080 1066 0.45151 2.500164 3.57136 
36.0931 36.0931 36.0931 

4 5 1296x1296 1279 0.53808 4.33999 6.28897 
40.1448 40.1448 40.1448 

5 6 1512x1512 1492 0.64925 7.19551 10.12725 
45.0203 45.0203 45.0203 

6 7 1728x1728 1705 0.699806 10.70643 15.20850 
44.2327 44.2327 44.2327 

7 8 1944x1944 1918 0.80099 16.44834 23.81176 
54.8367 54.8367 54.8367 

Table 5.23: Computational Times (in seconds) for Rank-Deficient Test Matrices with 
same Ka (gre_216b) Sub-Matrices using Domain Decomposition 

SI. 
No 

nsu Size Rank ODU - DD 

Error Norm 

Original system 
ginverse MV 

Error Norm 

Original system 
geninv 

Error Norm 

1 2 1056x1056 534 0.38620 
50.4652 

1.05101 
50.4652 

1.62067 
50.4652 

2 3 1408x1408 712 0.56582 
56.6697 

2.96705 
56.6697 

4.05349 
56.6697 

3 4 1760x1760 890 0.71932 
63.9613 

5.83588 
63.9613 

8.01557 
63.9613 

4 5 2112x2112 1068 0.888563 
69.849 

10.48973 
69.849 

14.15703 
69.849 

5 6 2464x2464 1246 1.16060 
79.2452 

16.4323 
79.2452 

22.84216 
79.2452 

6 7 2816x2816 1424 1.48376 
82.7129 

25.37213 
82.7129 

34.37000 
82.7129 

7 8 3168x3168 1602 1.69688 
85.8676 

36.3547 
85.8676 

49.16511 
85.8676 

Ta >le 5.2^ : Computational Times (in seconds) for Rank-Deficient Test Matrices with 
same K l i  (GD00_a) Sub-Matrices using Domain Decomposition 

5.33 Problem Formulation with Different Sub Matrix 

Let us construct a system matrix (Eq. (4.33)) in the form shown by Eq. (4.34). For 

the sake of discussion, let us consider 3 sub domains. The system matrix takes of the 

form 
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0 0 i r >)  7,p 

0 K; 0 zrib K2  
K 

f-

0 0 K'L KF F,3 

KB '  KB I  K bl KB B  J r 
U, <fi> > 

A singular coefficient matrix is considered from the test matrix collection [14-15] as K". 

For simplicity, we also assume 

(a) K" * K![ * K" 

(b) K" = K I B  = KB I  

(c) K" = K'B = KBI 

(d) K" = K I B  = KB L  

(e) K[' = KB B  

The known right hand side vector is chosen as 

fi = 1: m,fb = 1: m where [m, n] = size(K"). The user can also specify the number of 

sub domains and accordingly, the system matrix and the right hand side vector will be 

generated. 

Numerical results for these test cases are presented in Tables 5.25-5.27 

SI. nsu Size Rank ODU - DD Original system Original system 

No glnverse MV genlnv 

Error Norm Error Norm Error Norm 

1 9 1610x1610 1573 0.59484 10.75132 15.65746 
12.8452 12.8452 12.8452 

2 10 1771x1771 1725 0.65966 14.52799 21.00736 
J5.7321 15.7321 15.7321 

3 11 1932x1932 1876 0.71032 19.01395 26.94307 
18.9077 18.9077 18.9077 

Table 5.25: Computational Times (in seconds) for Rank-Deficient Test Matrices with 
different K11 (can_161) Sub-Matrices using Domain Decomposition 
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SI nsu Size Rank ODU - DD Original system Original system 

No 
nsu 

ginverse MV geninv 

Error Norm Error Norm Error Norm 

1 3 2800x2800 660 2.46978 10.66420 14.53973 
2990.92 2990.92 2990.92 

2 4 3500x3500 825 2.83254 22.08674 29.95532 
3343.95 3343.95 3343.95 

3 5 4200x4200 990 3.88394 37.47156 49.44602 
3663.12 3663.12 3663.12 

Table 5.26: Computational Times (in seconds) for Rank-Deficient Test Matrices with 
different Ku (lock_700) Sub-Matrices using Domain Decomposition 

SI. nsu Size Rank O D U - D D  Original system Original system 

No 
Size 

ginverse MV geninv 

Error Norm Error Norm Error Norm 

1 4 1445x1445 1438 1.23158 7.89617 11.5578 
2.73861 2.73861 2.73861 

2 5 1734x1734 1723 1.33245 14.00956 20.0745 
4.1833 4.1833 4.1833 

3 6 2023x2023 2007 1.55488 22.07078 31.8324 
5.91608 5.91608 5.91608 

Table 5.27: Computational Times (in seconds) for Rank-Deficient Test Matrices with 
different K" (mesh3el) Sub-Matrices using Domain Decomposition 

5.3.4 Problem Formulation with Same Sub-Matrices and RHS as Linear 
Combinations of Columns 

The known right hand side vector is chosen as Q + C2 + C3 H V Cn, where n 

is the number of columns, and C* (with i = 1,2,..., n) represents the ith column of the 

coefficient matrix [G] in the big matrix. 

Numerical results for the test cases are presented in Tables 5.28-5.30 



55 

SI. 
No 

nsu Size Rank ODU - DD 

5>,l 

Error Norm 

Original system 
ginverse MV 

Error Norm 

Original system 
genlnv 

Error Norm 

1 3 2800x2800 660 2.52323 
2764 

1.9738*10* 

10.26388 
2764 

5.0396*1 (X7 

14.11214 
2764 

0.00016343 
2 4 3500x3500 825 3.31814 

3455 
2.2792*1 Or6 

20.38195 
3455 

3.0938*1?7 

27.63699 
3455 

0.0001999 
3 5 4200x4200 990 4.04986 

4146 
2.5482x10* 

35.52977 
4146 

7.7514*10r7 

48.13018 
4146 

0.0002406 
Table 5.28: Computational Times (in seconds) for Rank-Deficient Test Matrices with 

same K11 (lock_700) Sub-Matrices and RHS as Linear Combinations of Columns 
Ci + C2 + C3 H h Cn using Domain Decomposition 

SI. 
No 

nsu Size Rank ODU - DD 

Zw 
Error Norm 

Original system 
ginverse MV 

Error Norm 

Original system 
geninv 

Error Norm 
1 3 1228x1228 1152 1.05252 

1228 
3.5175*1(T7 

4.20519 
1228 

2.2430x10s 

6.20720 
1228 

2.4071 *105 

2 4 1535x1535 1440 1.37372 
1535 

4.0617*107 

8.58372 
1535 

5.7408x10s 

12.5739 
1535 

3.1755* 10s 

3 5 1842x1842 1728 1.70161 
1842 

4.5413 *107 

14.99398 
1842 

4.0396x10s 

21.9261 
1842 

4.3923*10s 

Table 5.29: Computational Times (in seconds) for Rank-Deficient Test Matrices with 
same Ku (dwt_307) Sub-Matrices and RHS as Linear Combinations of Columns 

C\ + C2 + C3 H 1- Cn using Domain Decomposition 
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SI. 
No 

nsu Size Rank O D U - D D  

I1*'1 

Error Norm 

Original system 
ginverse MV 

gw 
Error Norm 

Original system 
geninv 

5V'1 

Error Norm 

1 5 2112x2112 1068 1.05579 
1164 

9.7350*1a13 

9.72518 
1164 

9.69202* Iff'2 

13.58581 
1164 

3.7717*1 ff" 
2 6 2464x2464 1246 1.21400 

1358 
1.0599* Iff'2 

15.7301 
1358 

1.0988*lff" 

21.73368 
1358 

5.7415* Iff" 
3 7 2816x2816 1424 1.42343 

1552 
1.3897* Iff12 

23.75027 
1552 

1.3625*1 ff" 

32.9830 
1552 

7.8649*1 ff" 
Table 5.30: Computational Times (in seconds) 

same KH (GD00_a) Sub-Matrices and RHS 
Ci + C2 + C3 + —h Cn using 

for Rank-Deficient Test 
as Linear Combinations 
Domain Decomposition 

Matrices with 
of Columns 

5.3.5 Problem Formulation with DifTerent Sub-Matrices and RHS as Linear 

Combinations of Columns 

The known right hand side vector is chosen asC l  + C 2  + C3 H 1- C n  where n is 

the number of columns and Q (with i = 1,2,..., n) represents the ith column of the 

coefficient matrix [G] in the big matrix. 

Numerical results for the test cases are presented in Tables 5.31-5.32 

SI. 
No 

nsu Size Rank ODU - DD 

Zw 
Error Norm 

Original system 
ginverse MV 

Z1*'1 

Error Norm 

Original system 
geninv 

2* 
Error Norm 

1 3 1228x1228 1152 1.04227 
1228 

3.9554* Iff7 

4.381476 
1228 

2.7835*lff* 

6.44660 
1228 

2.4688*1 ff5 

2 4 1535x1535 1439 1.39427 
1535 

4.2179*lff7 

8.91303 
1535 

5.0078* Iff8 

12.98718 
1535 

3.237* Iff5 

3 5 1842x1842 1725 1.64756 
1842 

4.42625* Iff7 

15.51327 
1842 

5.60808*10* 

22.31969 
1842 

4.6407* Iff5 

Table 5.31: Computational Times (in seconds) for Rank-Deficient Test Matrices with 
different Kli (dwt_307) Sub-Matrices and RHS as Linear Combinations of Columns 

C\ + C2 + C3 + —h Cn using Domain Decomposition 
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Si 
No 

nsu Size Rank ODU - DD 

Error Norm 

Original system 
ginverse MV 

Z1*'1 

Error Norm 

Original system 
geninv 

Error Norm 
1 15 1792x1792 1590 0.47628 

1791.76 
6.7768*1Or'2 

13.16311 
1791.76 

2.0569* Iff10 

19.00465 
1791.76 

1.4315* W9 

2 16 1904x1904 1686 0.52987 
1903.66 

7.9443*1 (T12 

15.83865 
1903.66 

2.9199*1 Or10 

22.6178 
1903.66 

7.944*10r'2 

3 17 2016x2016 1781 0.57382 
2015.52 

7.2594 *l(r'2 

18.88350 
2015.52 

3.3548* Iff'0 

26.91830 
2015.52 

2.16341* Iff9 

Table 5.32: Computational Times (in seconds) for Rank-Deficient Test Matrices with 
different Ku (GD98_c) Sub-Matrices and RHS as Linear Combinations of Columns 

Ci + C2 + C3 H I- C„ using Domain Decomposition 
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6. EDUCATIONAL GENERALIZED INVERSE SOFTWARE FOR 

INTERNET USERS 

Most of the currently available commercialized software (and/or freely available 

public source codes) for "large-scale" Engineering/Science computation has been written 

in either FORTRAN, C, or C++ languages. Legacy (commercialized) Finite Element 

Analysis (FEA) software, such as MSC-NASTRAN, SAP-2000, etc. have been written in 

FORTRAN language. While these languages are efficient for "number crunching", these 

FORTRAN/C/C++ software are NOT suitable for internet (educational) users. On the 

other hand, it is too time consuming if one has to re-write these (large) source codes in 

JAVA, or FLASH, etc... for internet/educational purposes. Based on our earlier research 

works [23], a general procedure for executing "any" FORTRAN software on the internet 

is explained and summarized in this chapter. More specifically, this chapter will explain 

how to use the developed FORTRAN generalized software. 

6.1 Description for Executing FORTRAN Software on the Internet 

Since the 1960's, scientific programs have been developed in FORTRAN for the 

solution of various structural, environmental, mathematical, chemical, etc. problems. 

With the growing popularity and possibilities of the internet, web-based learning 

is becoming more and more popular these days. The new trend focuses on developing 

more effective learning methods for large pre-existing scientific languages like 

FORTRAN, C etc. In this chapter, a web-based environment is utilized as a means to 

introduce numerical methods concepts in civil engineering and other related fields of 

engineering. Software development and implementation is presented, including detailed 



descriptions of the techniques employed to link software written in high level computer 

languages, such as C and FORTRAN, to a web-based, user friendly interface for both 

input and output. 

Web-based instruction systems represent a developing branch of computer-aided 

instruction. This type of educational information emphasizes the use of the web for 

transfer of educational information, and may be considered as a replacement to traditional 

delivery methods of lectures and textbooks. 

The motivation for developing this educational software is the challenges faced 

while developing a 3-D truss analysis module in FLASH Actionscript language [24]. 

Initially, a web-based module was developed by converting 3-D truss analysis 

FORTRAN code to FLASH Actionscript language. This module analyzes a 3-D truss 

with the user specified input data. This module needs to re-write the entire FORTRAN 

code to a different language (in this case FLASH Actionscript). This process is not only 

time consuming; it requires a good knowledge of the other programming language 

(FLASH Actionscript). Fig. 6.1 shows a sample of the developed web based 3D truss 

module and can be found at http://www.lions.odu.edu/~skadi002/3d/. This emerged as 

one of the many situations where developed FORTRAN computer programs are no 

longer available for the public use (easy use) and are still considered to be valuable 

source of both research and educational material. A better and convenient way to interact 

the FORTRAN programs directly from the server is in needed to serve the purpose. 

http://www.lions.odu.edu/~skadi002/3d/


TU eat vim* Favorite Took H^> 

Specify units: [»Wr ̂ Qtf f<yoniwtqn Jj 

No. of Joints» I 4 I 

Figure 6.1: Online 3-D Truss Analysis. 
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6.2 Client Server Interface 

Web application software is an application that uses a web browser as a client. 

Commonly used web browsers are Internet explorer, Mozilla Firefox, Google Chrome, 

Apple Safari, etc. A client is a system that accesses a remote service on another computer 

commonly known as a server. 

Web applications commonly use a combination of server-side scripting languages 

like PHP, ASP, etc., and client-side languages like HTML, PHP, JAVA, etc. In the 

developed software, PHP [25] is used as both client side and server side technologies. 

In Fig. 6.2 client can be any one of desktop, laptop, Mac PC or PDA with browser 

capabilities and an internet connection. The UNIX server is a machine where the 

compiled FORTRAN programs are stored. 

Laptop 

Mac OS 

m Desktop 

Client Web Server 

Figure 6.2: Client-Server Interface 
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63 Detailed Step-by-Step Procedures 

Input and output interfaces are made user-friendly to attract users' attention, and 

guide them into use of the software in an efficient manner. 

(a) The user references http://www.lions.odu.edu/~skadi002/work/ as URL which directs 

to a webpage containing number of educational applications. The user has a choice to 

select from various FORTRAN applications. 

(b) For the sake of discussion, let us assume the user has interest in solving SLE (singular 

coefficient matrix) using generalized inverse. After clicking the appropriate link, the 

browser directs to a new webpage containing the description and usage of the application 

(see Fig. 6.3). 

(c) The user clicks the "New" button to enter the input data in the textbox provided. It is a 

hypertext preprocessor (PHP) form that is interpreted by the browser to allow the user to 

enter the input data (see Fig 6.4). 

(d) A sample/demo input data is provided in the input page so that the user can prepare in 

the specified fashion. Well documented instructions are provided for the users to prepare 

the input data to the application. 

(e) Once the input data has been entered in the text box, the user hits the "Click here to 

submit input file" button which is located below the input textbox. 

(f) At this point the input data has been sent to the FORTRAN program. The user clicks 

the "EXECUTE" button to execute/run the application. 

(g) The output of the application is instantly seen on the same webpage (see Fig. 6.5) 
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6.4 Demonstrated Examples 

In this section, various examples including the one explained in section 6.3 have 

been demonstrated. Below are the descriptions of the applications. 

6.4.1 Solving system of Simultaneous Linear Equations using Generalized Inverse 

Algorithms 

This application solves SLE of singular coefficient matrix using Generalized 

inverse algorithms. Fig. 6.3 shows a screenshot of the application homepage. The input 

data page with the sample of how input data page is prepared/entered is shown in Fig. 

6.4. The output of the application is shown in Fig. 6.5. 

Figure 6.3 Sample of Generalized Inverse Home Page 



64 

Figure 6.4 Generalized Inverse Input Page 



Figure 6.5 Generalized Inverse Output Page 



66 

6.4.2 Solving System of Simultaneous Linear Equations using LU Decomposition 

Algorithms 

This application solves SLE of non-singular coefficient matrix using LU 

decomposition algorithms. Fig. 6.6 shows a screenshot of the application homepage. The 

input data page with the sample of how input data page is prepared is shown in Fig. 6.7. 

The output of the application is shown in Fig. 6.8. 

Figure 6.6: Sample of LU Decomposition Home Page. 



9.2307E+05 0 0 
3.4619E+05 -4.2857E+07 i.WlltOS 
-0.15384 «.S 0.15384 

0 4.28S7E+07 -
3.6057E+05 

•7.887E+03 

Figure 6.7: LU Decomposition Input Page 
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Figure 6.8: LU Decomposition Output Page 
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6.4.3 Solving System of Simultaneous Linear Equations using LU Decompositions 

Algorithms on Portable Devices 

Nowadays, most of the portable devices such as smart phones, tablet PCs, 

personal digital assistants (PDA), e-book readers, etc., have internet browsing 

capabilities. The developed application can be accessed on the above said portable 

devices. One such example is shown in Fig. 6.9. In this example, the developed 

educational software is accessed on I-Phone. 

www.ttons.odu.sdu/-t... C Google www.Uons.odu.edu/-s... C I Googie 

Figure 6.9: I-Phone Homepage, Input Data and Output Data. 

http://www.ttons.odu.sdu/-t
http://www.Uons.odu.edu/-s
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7. MATLAB - MPI BUILT-IN FUNCTIONS FOR PARALLEL 

COMPUTING APPLICATIONS 

7.1 Introduction 

Matlab (MATrix LABoratory) is a tool to do numerical computations, solve 

engineering and sciences applications, display 2D and 3D graphical information, 

algorithm development, simulation, etc. It is a high-level scientific and engineering 

programming environment which provides many useful capabilities and has an extensive 

library of built-in functions. 

Message Passing Interface (MPI) is widely used in large scale (intensive 

numerical) computations. This is especially true for "generalized inverse" computer 

implementation, where as matrix times matrix and/or Cholesky factorization operations 

were required. MPI is a library of functions/routines that can be used to create parallel 

programs in scientific languages such as FORTRAN, C, C++, etc. 

Similar to traditional Message Passing Interface (MPI), MatlabMPI developed in 

Lincoln Laboratory, MIT, allows any Matlab programs to run in parallel. MatlabMPI 

implements the widely used MPI "look and feel" on the top of standard Matlab file 

input/output, resulting in Matlab implementation of MPI. 

MatlabMPI can be downloaded into user's local ZORKA account from 

http://www.lI.mit.edu/mission/isr/matlabmpi/matlabmpi.html 
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7.2 MatlabMPI Functions 

Some basic, most often used MatlabMPI built-in functions are briefly discussed below: 

a. Junction MPIInit 

This function is called at the start of an MPI program. It also initializes MPI in Matlab 

environment. 

Example: 

MPIInit; 

b. function NP = MPI_Comm_size(comm) 

This function returns the numbers of processors in the communicator. The "comm" in 

this function is an MPI communicator which is typically a copy of 

MPI_COMM_ WORLD. 

Example: 

NP = MPICommsize(comm) 

c. function my ID = MPICommrank(comm) 

This function returns the rank (or processor ID #) of the current processor. 

Example: 

my_ID = MPICommrank(comm) 

d. function MPI_Send(dest, tag, comm,varargin) 

This function sends variable to a destination. It sends message containing variables to a 

specified destination with a given tag. The argument "dest" contains processor ID #, 

"tag" can be an any integer and "varargin" represents variable argument inputs. 

Example: 

MPI_Send (dest,tag,comm,data 1 ,data2,data3,..) 
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e. function varargout = MPI_Recv(source,tag,comm) 

This function receives a message from a specified source processor with a given tag and 

returns the output variable(s). 

Example: 

[varl,var2,var3,...] = MPI_Recv(source,tag,comm) 

/ function MPI AbortQ 

This function will abort any currently running MatlabMPI sessions by looking for 

leftover Matlab jobs and killing them. 

g. function MPI FinalizeQ 

This function is the last statement indicating the end of a MatlabMPI program. 

h. function MPI_Run(m Jile,n_proc,machines) 

This function runs a Matlab file by name "mfile" on multiple processors. It also runs 

"n_proc" number of copies of m file on machines. To run on multiple processors, the 

argument "machines" are to be designated with "machine 1, machine2,.. 

Example: 

MPI_Run('examplel \2,{}); for the case a single node (with 2 processors) is used. 

MPI_Run('example2',4,{zorkal, zorka2}); for the case multiple nodes (assuming zorkal 

and zorka2 are both available) are used. 

The above discussed functions are used within traditional Matlab source code to run in 

parallel environment. In addition to the MPI functions, Matlab uses other built-in 

functions to perform various operations/tasks. Some of the additional functions are 

discussed below: 
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i. function evalO 

This function execute string with Matlab expression and is also used with MPI_Run. 

Example: 

eval(MPI_Run(' example 1' ,2, {})) 

j. function dispQ 

This function displays an array without printing the array name. It can also be used to 

display a string or a text inside the Matlab code. 

Example: 

disp(['Examplel from rank: ',num2str(my_rank)]); 

If the rank is 0 (master processor), the output appears on the screen. And if the rank is 

more than 0, i.e 1,2,3..., the output prints to the corresponding file. 

k. function MPI_Bcast(source,tag,comm,varargin) 

This function broadcasts the variable(s) to all processors. 

Example: 

[varl, var2,..] = MPIJBcast(source,tag,comm,datal,data2,..) 

7.3 Example 1: Display Rank of Processors 

In this example, a simple MatlabMPI source code to print/display rank of 

different processors is shown below. 

% MPI INITIALIZE 

MPIInit; 

% MPI COMMUNICATOR 

coram = MPICOMMWORLD; 
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% GET SIZE OR NUMBER OF PROCESSORS IN THE COMMUNICATOR 

NP = MPI_Comm_size(comm) 

% GET RANK (or ID #) OF CURRENT PROCESSOR 

myrank = MPICommrank(comm) 

% DISPLAY RANK OF EACH PROCESSOR 

disp(['Hello Message from rank:num2str(my_rank)]); 

% FINALIZE Matlab MPI 

MPIFinalize; 

% DISPLAY SUCCESS MESSAGE 

disp('Success'); 

Let the file name for this MatlabMPI application be examplel.m. In order to run 

in parallel environment, type the following statements in Matlab command prompt. 

% ADDING PATH TO THE MatlabMPI SOURCE DIRECTORY TO INVOKE MPI 

FUNCTIONS. 

addpath /local/MatlabMPI/src 

% examplel.m IS A MatlabMPI APPLICATION CODE WHICH NEEDS TO EXIST IN 

THE SAME WORKING DIRECTORY AS THE OTHER MPI FUNCTIONS. IN THIS 

CASE WE ARE USING 4 PROCESSORS. 

eval(MPI_Run('example 1 ',4, {})); 

% ONCE THE DESIRED OUTPUT IS OBTAINED/PRINTED, THE FUNCTION 

MatMPIDeleteall HAS TO BE INVOKED. THIS FUNCTION DELETES 

LEFTOVER MatlabMPI FILES FROM THE PREVIOUS RUN. THIS FUNCTION IS 

ALSO INVOKED BEFORE THE START OF A NEW MatlabMPI APPLICATION. 
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MatMPI_Delete_all; 

7.4 Example 2: Matrix-Matrix Multiplication 

The MatlabMPI source code for matrix-matrix multiplication (dense format) can 

be found in Appendix D. 

Below are the time results for matrix times matrix multiplication (size = 1000). 

Sl.No Number of Processors (NP) Time (seconds) 

1 2 39.4087 

2 4 15.7884 

3 6 11.7958 

4 8 9.5475 

5 10 8.3805 

6 12 7.5807 

Table 7.1 Time Results (in seconds) for Matrix-Matrix Mu tiplication using MatlabMPI 
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MatlabMPI Time Results for Matrix Times Matrix Multiplication (size-1000 
40 

35 

30 

• 20 

15 

10 

5 
2 3 

Number of Processors 

Figure 7.1 Graphical Representation of Time Results (in seconds) for Matrix-Matrix 
Multiplication using MatlabMPI 
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8. CONCLUSIONS AND FUTURE WORKS 

In this dissertation, various efficient algorithms for solving SLE with full rank or 

rank deficient have been reviewed, proposed and tested. These algorithms were based on 

efficient generalized inverse algorithms, which had also been incorporated into the DD 

formulation. Users are provided the options of incorporating either direct, or iterative 

solvers into the developed DD generalized inverse formulation. Extensive numerical 

results have been used to evaluate the performance (in terms of numerical accuracy, 

calculated error norm, CPU/wall-clock time) of the proposed procedures. The developed 

numerical procedures can be applied to solve "general" SLE (in the form [£]{*} = {£>}, 

where the coefficient matrix [G] could be square/rectangular, 

symmetrical/unsymmetrical, non-singular/singular). Numerical results have shown that 

the proposed algorithms are highly efficient as compared to existing algorithms [6, 9, 13] 

(including the popular MATLAB built-in function pinv(G) * b) [12]. Further reduction 

in wall-time can also be realized/achieved by taking advantages of "parallel matrix times 

matrix operations" under MATLAB-MPI computer environment [26]. 

Furthermore, this dissertation has also contributed the "educational value" to the 

educational communities, by providing the tools/technologies to execute any existing 

FORTRAN code for internet users, without requiring them to download any 

(commercial) software on their desktop/laptop computers. The only requirement for the 

users to use/learn/execute our FORTRAN-web application is to have access to the 

internet, which is readily available not only in every home, but also in most public places 

(such as in the airports, hotels, universities, restaurants, etc.). 
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Extensions to this current work may include a variation of DD formulation 

proposed in [4], parallel implementation of the proposed DD generalized inverse solver, 

and incorporating METiS [20] reordering algorithm for automatically partitioned a given 

coefficient matrix into diagonal blocks, in such a way to minimize the total number of 

boundary (interface) nodes, etc. 
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APPENDIX A 

SINGULAR VALUE DECOMPOSITION (SVD) AND THE 
GENERALIZED INVERSE 

Example A1 

Given ^ = g] (A.1) 

Stepl: Compute AAH = AAT = J g *] = [» $ <A.2> 

Also: AAH = (UZV")(VZHUH) = UX2UH 

Similarly, A" A = VlzVH 

Also compute AHA = ATA = g *] g *] = g° (A.3) 

Step2: Compute the standard Eigen-solution individually for AATand A7A 

Using MATLAB built-in function "eig Eigen-values and the corresponding Eigen

vectors for AAT are given as 

[ul,lambal] = eig(AA7) 

,f1 f—0.8944 0.44721 ,A 
Ul = I 0.4472 0.894J = " (A4) 

lambdal = ® ] (A.5) 

Also, for AT A 

[u2,lamba2] = eig (A7A) 

„9 _ [-0.8321 0.55471 _ „ ,A ,* 
"2 ~ l 0.5547 0.8321-1 = V (A'6) 

lambda! £] (A.7) 
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From the above equations, we can observe that Eigen-values in both the cases are the 

same, but their corresponding Eigen-vectors are different. 

Also, a = Vlambdal = lambda2 

Computing a = lambda! = lambdal = [jj ^ 

From Eqs. (A.4, A.7 and A.8), the SVD of Eq. (A.l) can be obtained as 

A _ ijyu _ [—0.8944 0.44721 [0 0 1 [-0.8321 0.55471 
L 0.4472 0.8944J lo V65J i 0.5547 0.832lJ 

The generalized inverse A+ of Eq. (A.l) is computed as 

A+= VZ+U" 

where E+ = 

Hence, 

A 

0 
l 

V65. 

+ = [-0.8321 0.55471 f° 
1 0.5547 0.8321J [0 

0 
i 

V65. 

—0.8944 0.44721 
4472 0.8944J 

f-G 
I 0. 

A+ _ [0.0308 0.06151 
10.0462 0.0923J 

(A.8) 

(A.9) 

(A. 10) 

(A. 11) 

(A. 12) 

(A. 13) 

The result obtained in Eq. (A. 13) has been checked with MATLAB generalized inverse 

function pinvQ and same result is obtained. 
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APPENDIX B 

AN EDUCATIONAL FORTRAN SOURCE CODE OF "SPECIAL LDlI" 
ALGORITHM FOR FACTORIZATION OF 

SINGULAR/SQUARE/SYMMETRICAL COEFFICIENT MATRIX 

c 
Implicit real* 8 (a-h, o-z) 

c 
c  —  . . .  
c 
c Remarks: 
c (a) Identifying which are dependent rows of a "floating" substructure 
c (b) Factorizing (by LDLjranspose) of a floating substructure stiffness 
c Whenever a dependent row is encountered during LDL factored 
c process, then we just: 
c [1] set all factorized values of the dependent row to be ZEROES 
c [2] ignore the dependent row(s) in all future faztorized rows 
c (c) [K "float"] = [K11] [K12] 
c [K21] [K22] 
c where [K11 ] = full rank ( =non-singular) 
c (d) The LDL_transpose of [K11 ] can be obtained by taking the results 
c of part (b) and deleting the dependent rows/columns 
c Author(s) : Prof. Due T. Nguyen 
c Version: 04-30-2004 (EDUCATIONAL purpose, LDL/FULL matrix is 
assumed) 
c Stored at: cd ~/cee/* odu* clas * /generalizedinver sebyldl. f 
c 
c — 
c 

dimension u(99,99), idepenrows(99), tempo 1(99) 
c 

iexample=l ! can be 1, or 2, or 3 
c 

if (iexample . eq. 1) n-3 
c 
if (iexample . eq. 2) n=12 
c 

if (iexample . eq. 3) n=7 
c 

do 1 i=l,n 
do 2 j=l,n 
u(ij)=0 

2 continue 
1 continue 



if (iexample . eq. 1) then 

u(l,l)=2. ! non-singular 
u(l,l)=l. ! singular 
u(l,2)=-l. 
u(2,2)= 2. 
u(2,3)=-l. 
u(3,3)= 1. 

elseif (iexample . eq. 2) then 

u(l,l)= 1.88*10**5 
u(l,2)= -4.91*10**4 
u(l,3)= -1.389*10**5 
u(l,7)=-4.91*10**4 
u(l,8)= 4.91*10**4 

u(2,2)= 1.88*10**5 
u(2,6)=-1.389* 10**5 
u(2,7)= 4.91 *10**4 
u(2,8)=-4.91 *10**4 

u(3,3)= 1.88*10**5 
u(3,4)= 4.91 *10**4 
u(3,5)=-4.91 *10**4 
u(3,6)=-4.91 *10**4 

u(4,4)= 1.88*10**5 
u(4,5)= -4.91*10**4 
u(4,6)= -4.91*10**4 
u(4,8)= -1.389*10**5 

u(5,5)= 2.371*10**5 
u(5,7)=-1.389*10**5 
u(5,ll)=-4.91*10**4 
u(5,12)= 4.91*10**4 

u(6,6)= 3.76* 10**5 
u(6,10)=-1.389*10**5 
u(6,ll)= 4.91*10**4 
u(6,12)= -4.91*10**4 

u(7,7)= 2.371*10**5 
u(7,9)=-4.91 *10**4 
u(7,10)= -4.91*10**4 
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u(8,8)= 3.76* 10**5 
u(8,9)= -4.91*10**4 
u(8,10)=-4.91*10**4 
u(8,12)=-1.389*10**5 

u(9,9)= 1.88*10**5 
u(9,10)= 4.91*10**4 
u(9,ll)=-1.389*10**5 

u(10,10)= 1.88*10**5 

u(l 1,11)= 1.88*10**5 
u(l 1,12)=-4.91*10**4 

u(12,12)= 1.88*10**5 

elseif (iexample . eq. 3) then 

u(l,l)=l. 
u(l,2)= 2. 
u(l,3)= -3. 
u(l,4)=2. 
u(l,5)= -2. 
u(l,6)=-3. 
u(l,7)= -2. 

u(2,2)= 4. 
u(2,3)= -6. 
u(2,4)=4. 
u(2,5)=-4. 
u(2,6)= -6. 
u(2,7)= -4. 

u(3,3)=9. 
u(3,4)=-6. 
u(3,5)= 6. 
u(3,6)=9. 
u(3,7)=6. 

u(4,4)= 5. 
u(4,5)=-l. 
u(4,6)= -5. 
u(4,7)=-7. 

u(5,5)= 13. 
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u(5,6)= 9. 
u(5,7)= -5. 

c 
u(6,6)= 13. 
u(6,7)= 9. 

u(7,7)= 27. 
Endif 

c 
do 4 i=l,n 
do 5 j=l,n 
uO,i)=u(ij) 

5 continue 
4 continue 
c 
call generalized_inverse_ldl (n, u, idependrows, ndependrows) 
c 

write(6,*) '# dependent rows = ',ndependrows 
if (ndependrows .ge. 1) then 
write(6,*)4 dependent rows = ' ,(idependrows(i) ,i=l, ndependrows) 
endif 

c write(6,*) ' LDL factorized u(-, -) =', ((u(ij) j=i,n) ,i=l,n) 
c extracting & writing the LDL factorized of full rank of [K11 ] 
c by deleting the dependent row(s) /column(s) of [u] 

do 52 i=l,n 
iskiprow=0 

do 53 j—1, ndependrows 
if (idependrows(j) .eq. i) iskiprow=l 

53 continue 
if (iskiprow .eq. 1) go to 52 

icount=0 
do 54 j=i,n 
iskipcol=0 

do 55 k=l,ndependrows 
if (idepenrows(k) .eq. 0) iskipcol=l 

55 continue 
if (iskipcol .eq. 0) then 
icount=icount+l 
tempo 1 (icount)=u(i j) 
endif 

54 continue 
write(6,*) 'LDL of [K11] =' ,(tempol(k) ,k=l,icount) 

52 continue 
c 
stop 

end 
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c 
C%%%%%%%0/o%0/o%%0/o%0/o%0/o%0/o0/o0/o%%0/o0/o%0/o%0/o0/o%%%%0/o0/o%0/o%0/o0/o0/o 

c 
subroutine generalizedinverseldl (n, u, idependrows, ndependrows) 
Implicit red* 8 (a-h, o-z) 
dimension u(99,*), idepenrows(*) 

c 
c • - • • 
c 
c Remarks: 
c (a) Identifying which are dependent rows of a "floating" substructure 
c (b) Factorizing (by LDL_transpose) of a floating substructure stiffiiess 

Whenever a dependent row is encountered during LDL factored 
c process, then we just: 
c [ 1 ] set all factorized values of the dependent row to be ZEROES 
c [2] ignore the dependent row(s) in all future faztorized rows 
c (c) [K "float"] = [K11] [K12] 
c [K21] [K22] 
c where [K11] = full rank (=non-singular ) 
c (d) The LDLtranspose of [K11] can be obtained by taking the results 

of part (b) and deleting the dependent rows/columns 
c Author(s) : Prof. Due T. Nguyen 
c Version: 04-30-2004 
c Stored at: cd ~/cee/*odu*clas */generalized_inverse_by_ldl. f 
c 
c •• • — — - - - —- —===== 

c 
eps=0.0000000001 

do 11 i=2,n 
do 22 k=l,i-l 
if (dabs( u(k,k)) .It. eps) go to 22 ! check for "previous" 

c ! dependent row(s) 
xmult=u(k,i) /u(k,k) 

do 33 j=i,n 
u(ij)=u(ij) -xmult*u(kj) 

33 continue 
u(k,i)=xmult 

22 continue 
c 
C — 
c 
c to zero out entire dependent row 

if (dabs( u(i,i) ) .It. eps) then 
write(6,*) 'dependent row # i, u(i,i) = ' ,i ,u(i,i) 
ndependrows= ndependrows+1 
idependrows(ndependrows)= i 
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do 42 j=i,n 
42 u(ij)=0. 

do 44 k=l ,i-l 
44 u(k,i)=0. 

endif 
c 
c 
c 
11 continue 
c 
return 

end 
c 
c%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

L D L_t factorized of the "full rank" sub-matrix [K11] of Example 3 

dependent row # i, u(i,i) = 2 0.0E+0 
dependent row # i, u(i,i) = 3 0.0E+0 
dependent row # i, u(i,i) = 5 0.0E+0 
# dependent rows = 3 
d e p e n d e n t  r o w s  = 2 3 5  

LDL of [Kll] = 1.0 2.0 -3.0 -2.0 
LDL of [Kll] = 1.0 1.0 -3.0 
LDL of [Kll] = 3.0 2.0 
LDL of [Kll] = 2.0 

IH H I I I I I I I II I I I I II I l-l •+++++++++++++1 I I I I I I I I I I I II I I I I I II I 

L D L_t factorized of the "full rank" sub-matrix [K11] of Example 2 

dependent row # i, u(i,i) = 10 -8.731149137020111E-11 
dependent row # i, u(i,i) = 11 -5.820766091346741E-11 
dependent row # i, u(i,i) = 12 -2.9103830456733703E-11 
# dependent rows = 3 
dependent rows = 10 11 12 
LDL of [Kll] = 188000.0 -0.26117002127659574 -0.7388297872340426 0.0E+0 
0.0E+0 0.0E+0 -0.26117002127659574 0.26117002127659574 0.0E+0 
LDL of [Kll] = 175176.54255319148 -0.2070856178827499 0.0E+0 0.0E+0 
-0.7929143821172502 0.2070856178827499 -0.2070856178827499 0.0E+0 
LDL of [Kll] = 77864.19232391396 0.6305851063829787 -0.6305851063829787 
-1.0 -0.36941489361702123 0.36941489361702123 O.OE+O 
LDL of [Kll] = 157038.27127659574 -0.11550223476828982 0.0E+0 
0.11550223476828982 -1.0 0.0E+0 
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LDL of [Kll] = 204043.26040931543 -0.24063524519998494 -
0.7593647548000151 0.0E+0 0.0E+0 
LDL of [Kll] = 176184.80946068066 -0.211623292466662 -
2.0648651936724454E-17 0.0E+0 
LDL of [Kll] = 78494.47532361932 0.6255217300016221 -0.6255217300016221 
LDL of [Kll] = 157286.88305692037 -0.11690029517761087 
LDL of [Kll] = 155137.45100017014 

I  I  l  I  I  I  I  I  I  I  I  I l  I I  I  I  I  I  l  l  I l l i  l  l  l  l  l  I  I  I  I  i  I  l  M  I  l  I  I  I  I  I  I  I  I  I  I  I  I  I  I  I  l  I  I  I  I  l  I  
L D L_t factorized of the "fixll rank" sub-matrix [K11] of Example 1 (singular case) 

dependent row # i, u(i,i) - 3 0.0E+0 
# dependent rows = 1 
dependent rows = 3 

LDL of [Kll] = 1.0 -1.0 
LDL of [Kll] = 1.0 

I  I  I I  I  I  I  I  I  I  I  I  I  I  I  I  I  I  I  I  I  I  I  I  I  I  I  I  I  I  I  I  I  I  I  I  I  I  I I  I  I  I  I  I  I  I I I  I  I  M  I I  I  I  I I I  I  I  I  

L D L_t factorized of the "full rank" sub-matrix [K11] of Example 1 (non-singular case) 
# dependent rows = 0 

LDL of [Kll] = 2.0 -0.5 0.0E+0 
LDL of [Kll] = 1.5 -0.6666666666666666 
LDL of [Kll] = 0.33333333333333337 

i i i i li i M i i i i i I-I i i i i i i i i i i i i i i i i i i i i i i i i i i i i i II i i i i i i i i i i i i i i i i 
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APPENDIX C 

A COMPLETE LISTING OF AN EDUCATIONAL FORTRAN SOURCE 
CODE OF "CHOLESKY GENERALIZED INVERSE" ALGORITHMS 

FOR SLE 

implicit real*8(a-h,o-z) 
reed tar(2) 
integer r, ractual 

Remarks: 
(a) Identifying which are dependent rows of a "floating" substructure 
(b) Factorizing (by cholesky) of floating substructure stiffness 

Whenever a dependent row is encountered during cholesky factored process, 
then we just: 
[1] set all factorized values of the dependent row to be ZEROES 
[2] ignore the dependent row(s) in all future factorized rows 

(c) [K "float"] = [K11] [K12] 
[K21] [K22] 

where [K11] = full rank ( = non-singular) 
= {K "float"] with deleting the dependent rows/columns 

(d) The u_transpose * U of [K11] can be obtained by taking the results 
of part (b) and deleting the dependent rows/columns 

.Authors): Prof. Due T. Nguyen 

.Version: 02-11-2012 (EDUCATIONAL purpose,LDL/FULL matrix is assumed) 

.Stored at: cd ~/cee/*odu*clas*/generalized_inverse_by_cholesky.f 

.Notes: Prof. Due Nguyen's "generalized cholesky" code has been correctly 
verified for AT LEAST 7-8 different examples 
[see generalize* cholesky *.dat; and see out 1-keep] 

dimension u(1999,1999),idependrows(1999),tempo1(1999), 
$ am_inv(1999,1999), tempo2(1999) 
dimension ut(1999,1999), am(1999,1999), amt(1999,1999), 

$ g(1999,1999), gt(1999,1999) 
dimension itempol(1999), rhs(1999) 

call pierrotime(tl) 

write(6,*)' ' 
write(6,*)' = 
write(6,*) 'today date: 04-23-2012; Prof. Due T. Nguyen' 
write(6,*) '• •• • • • • — 
write(6,*)' 

maxnrl = 1999 
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maxncl=1999 
maxnc2 = 1999 

c 
c input (or randomly generate rectangular/square matrix [G] of dimension mxn 
c where we assume/prefer m > n 
c 

read(5,*) m, n, iautodata, irankn, iaxeqb 
write(6,*) 'user input: m,n,iautodata,irankn,iaxeqb =' 
write(6,*) m,n,iautodata,irankn,iaxeqb 
write(6,*)' 

c 
c read user's input matrix data 
c 

if (iautodata .eq. 0) then 
do 32 i=l, m 
read(5,*) (g(ij), j=l,n) 

32 continue 
c 
c user's input rhs vector {rhs} nxl 
c 

read^,*) (rhs(i), i=l,m) 
c 
c randomly generated input matrix data 
c 

elseif (iautodata .eq. 1) then 
ndependcols = n - irankn 
icount = 0 
idum=0 
do 61 j=l,n 
if (j .LE. irankn) then 
irandomcol = irand(l, n) 

c write(6,*) 'irandomcol =', irandomcol 
do 60 i=l, m 
g(ij) = drand(idum) * lOOOO.dO 

60 continue 
elseif (j .GT. irankn) then 
do 66 i=l, m 
g(i j) = O.dO 

66 continue 
endif 

61 continue 
c 
c generated rhs vector {rhs} nxl, such that solution vector = {1, 1,..., 1} 
c 

do 67 i=l, n 
tempol(i) = l.dO 

67 continue 
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call mtimesv(g, tempol, rhs, maxnrl, maxncl, m, n) 
endif 

c 
write(6,*) 'user input, or randomly generated matrix G mxn =1 

do 63 i=l, m 
write(6,*) (g(ij), j=l,n) 

63 continue 
write(6,*)' 1 

c 
write(6,*) 'user input: right-hand-side (rhs) vector mxl =' 
do 92 i=l, m 
write(6,*) 'rhs(-) = *,rhs(i) 

92 continue 
write(6,*) * 

c 
c 

call transpose(g, gt, maxnrl, maxncl, m, n) 
c 
c 

if (m .ge. n) then 
call mtimesm(gt, g, am, maxnrl, maxncl, maxnc2, n, m, n) ! compute G' * G 
neq = n 

c 
write(6,*) 'print [am] = G transpose * G =' 
do 72 i=l,n 
write(6,*) (am(ij)j=l,n) 

72 continue 
write(6,*)' 

c 
elseif (m .It. n) then 
call mtimesm(g, gt, am, maxnrl, maxncl, maxnc2, m, n, m) ! compute G * G1 

neq = m 
c 

write(6,*) 'print [am] = G * G_transpose =' 
do 73 i=l,m 
write(6,*) (am(ij)j=l,m) 

73 continue 
write(6,*)' ' 

c 
endif 

c 
c 
c 

call generalized_inverse_cholesky(neq,am,idependrows, 
$ ndependrows,r, maxnrl, independrows, itempol) 



write(6,*) 'special cholesky factor of Gt*G, or G*Gt ' 
do 22 i=l, r 
write(6,*) (am(ij), j=l,neq ) 

22 continue 

write(6,*) '# independent rows = '.independrows 
write(6,*)' 1 

if (independrows .ge. 1) then 
write(6,*) 'independent rows = ',(itempol(i),i=l, independrows) 
endif 

* 

call transpose(am, amt, maxnrl, maxncl, r, neq) 
call mtimesm(am, amt, u, maxnrl, maxncl, maxnc2, r, neq, r) ! compute L' * 
nactual = r 
call generalized_inverse_cholesky(nactual,u,idependrows, 

$ ndependrows,ractual, maxnrl, independrows, itempol) 

write(6,*) 'regular cholesky factorization of M*Mt1 

write(6,*) 'M = factorized of Gt*G, or G*Gt with deleted rows' 
write(6,*) '# dependent rows = ndependrows = ',ndependrows 
write(6,*)' 

if (iaxeqb .eq. 0) then ! find generalized inverse explicitly 

; find the actual inverse of [u] !! 
% 

do 43 irow = 1, nactual 
do 42 i—1, nactual 
tempo l(i) = O.dO 

42 continue 
tempol(irow) = l.dO 
call fbe_cholesky(nactual, u, tempo 1, maxnrl) 

do 44 i=l, nactual 
am_inv(i,irow) = tempo l(i) 

> write(6,*) 'i=row#, irow=col#, am_inv(-,-) = ',i,irow,tempol(i) 
44 continue 

43 continue 

; applying the French's generalized inverse formula 
« 

if (m .ge. n) then 
call mtimesm(amt, am inv, u, maxnrl, maxncl, maxnc2, neq, 

$ nactual, nactual) ! compute L * [am inv] 



call mtimesm(u, aminv, ut, maxnrl, maxncl, maxnc2, neq, 
$ nactual, nactual) ! compute L * [am inv] * [am inv] 
call mtimesm(ut, am, u, maxnrl, maxncl, maxnc2, neq, 

$ nactual, neq) ! compute L * [am inv] * [am inv] * L' 
call mtimesm(u, gt, ut, maxnrl, maxncl, maxnc2, neq, 

$ neq, m ) ! compute L * [am inv] * [am_inv] * L' * G' 
write(6,*) 'generalized inverse of [G] =' 
do 52 i=l, neq 
write(6,*) (ut(ij), j=l ,m) 

52 continue 

elseif (m .It. n) then 
call mtimesm(gt, amt, u, maxnrl, maxncl, maxnc2, n, m, 

$ nactual) ! compute G' * L 
call mtimesm(u, am inv, ut, maxnrl, maxncl, maxnc2, n, 

$ nactual, nactual) ! compute G' * L * [am_inv] 
call mtimesm(ut, aminv, u, maxnrl, maxncl, maxnc2, n, 

$ nactual, nactual) ! compute G' * L * [am inv] * [am inv] 
call mtimesm(u, am, ut, maxnrl, maxncl, maxnc2, n, 

$ nactual, neq) ! compute G' * L * [am_inv] * [am inv] * 

write(6,*) 'generalized inverse of [G] =' 
do 54 i=l, n 
write(6,*) (ut(ij), j=l,m) 

54 continue 
write(6,*)' 
endif 

.solution of [G ] {x} = {rhs} 
mxnnxl mxl 

.thus, {x} = [G+] * {rhs} 
nxl nxm mxl 

call mtimesv(ut, rhs, tempo 1, maxnrl, maxncl, n, m) 

elseif (iaxeqb .eq. 1) then ! AVOID computing generalized inverse explicitly 

if (m .ge. n) then 
.compute [G'] * {rhs}; with results stored in {tempo 1} 
call mtimesv(gt, rhs, tempo 1, maxnrl, maxncl, n, m) 
write(6,*) 'Gt * rhs = tempo 1 =',(tempol(i),i=l,n) 
.compute [L'] * {tempo 1}; with results stored in {tempo2} 
call mtimesv(am, tempo 1, tempo2, maxnrl, maxncl, nactual, n) 
write(6,*) 'Gt * rhs = tempo2 = ',(tempo2(i),i=l,n) 
.now, doing forward & backward solutions, stored the results in {tempo2} 
call fbecholesky (nactual, u, tempo2, maxnrl) 
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c now, doing forward & backward solutions AGAIN, stored the results in {tempo2} 
call fbe_cholesky(nactual, u, tempo2, maxnrl) 

c finally, compute [L] * {tempo2} = same as compute [G+] * {rhs} !! 
call mtimesv(amt, tempo2, tempo 1, maxnrl, maxncl, n, nactual) 

elseif (m .It. n) then 
c compute [L'] * {rhs}; with results stored in {tempol} 

call mtimesv(am, rhs, tempol, maxnrl, maxncl, nactual, n) 
c now, doing forward & backward solutions, stored the results in {tempol} 

call fbe_cholesky(nactual, u, tempol, maxnrl) 
c now, doing forward & backward solutions AGAIN, stored the results in {tempol} 

call fbe_cholesky(nactual, u, tempol, maxnrl) 
c compute [L] * {tempol}; with results stored in {tempo2} 

call mtimesv(amt, tempol, tempo2, maxnrl, maxncl, n, nactual) 
c finally, compute [G'] * {tempo2} = same as compute [G+] * {rhs} !! 

call mtimesv(gt, tempo2, tempol, maxnrl, maxncl, n, m) 
endif 
endif 

c 
c output unknown solution vector {x} with 3 numbers: 
c smallest (dabs{x}), biggest (dabs{x}), sum (dabs{x}) 
c 

abssmallest = 10**8 
abs_biggest = O.dO 
sumabs = O.dO 

write(6,*) 'solution vector {x} = pinv(G) * {rhs} is ...' 
do 102 i=l, n 
aa = dabs( tempo l(i)) 
bb - tempo l(i) 
write(6,*) 'i, x(i) = ',i, bb 
if (aa .LT. abs smallest) abs smallest = aa 
if (aa .GT. absbiggest) absbiggest = aa 
sumabs = sumabs + aa 

102 continue 
write(6,*)' ' 

write(6,*) 'abs smallest, abs biggest, sum abs =' 
write(6,*) abs smallest, abs_biggest, sum_abs 
write(6,*) * 

c 
c output absolute and relative error norm 
c 

call error_norm(g,tempol,rhs,maxnrl,maxncl ,m,n,abserr,relerr, 
$ tempo2) 

write(6,*) 'abserr, relerr = ',abserr, relerr 
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c 
call pierrotime(t2) 

timeatoz = t2 - tl 

write(6,*) ' timeatoz =timeatoz 
write(6,*)' 

c 
c 

stop 
end 

c%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
subroutine generalized_inverse_cholesky(n,u,idependrows, 

$ ndependrows,r, maxnrl, independrows, independentrows) 
implicit real*8(a-h,o-z) 
integer r, ractual 
dimension u(maxnrl ,*),idependrows(*),independentrows(*) 

c 111 ' - - - : — 

c Remarks: 
c (a) Identifying which are dependent rows of a "floating" substructure 
c (b) Factorizing (by cholesky) of floating substructure stiffness 
c Whenever a dependent row is encountered during cholesky process, 
c then we just: 
c [1] set all factorized values of the dependent row to be ZEROES 
c [2] ignore the dependent row(s) in all future factorized rows 
c (c) [K "float"] = [K11] [K12] 
c [K21] [K22] 
c where [Kll] = full rank ( = non-singular) 
c = {K "float"] with deleting the dependent rows/columns 
c (d) The U transpose * U of [K11] can be obtained by taking the results 
c of part (b) and deleting the dependent rows/columns 
c Authors): Prof. Due T. Nguyen 
c Version: 02-11-2012 
c Stored at: cd ~/cee/*odu*clas*/generalized_inverse_by_ldl.f 
c " | 

c 
c write(6,*) 'check point #01' 

eps=0.0000000001 
ndependrows = 0 
independrows - 0 

c 
r = 0 

do 11 ir = 1, n 



c write(6,*)' ir, r =ir, r 

do 12 icol=ir, n 
sum = u(ir, icol) 

do 13 iprevrow=l, r-1 
sum = sum - u(iprevrow,ir) * u(iprevrow,icol) 

13 continue 

c write(6,*) 'check point #02' 

if (ir .eq. icol) then 
: cholesky factorized diagonal terms of row # ir 

: write(6,*) 'check point #03' 

if (sum .gt. eps) then 
u(r,ir)=dsqrt(sum) 

: write(6,*)' u(r,ir) = \u(r,ir) 
independrows = independrows + 1 
independentrows(independrows) = ir 

: write(6,*) 'check point #04' 
else 
ndependrows = ndependrows + 1 

: idependrows(ndependrows) = ir 
: write^,*) 'sum, u(r,ir) = diag term are ... ',sum,u(r,ir) 

r = r -1 
; write(6,*)' ir, r =', ir, r 
: write(6,*) 'check point #05' 

go to 11 
endif 

else 
; cholesky factorized off-diagonal terms of row # ir 
j write(6,*) 'check point #06' 

u(r,icol) = sum/u(r,ir) 
endif 

> 

12 continue 

11 continue 

: all lower triangular of cholesky factorized [U] are set to zero 
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do 22 ir=l, r 
independr = independentrows(ir) 
do 23 icol=l, independr-l 

23 u(ir,icol)=0.d0 
22 continue 

c 
c write(6,*) 'ndependrows =', ndependrows 
c write(6,*) 'dependent rows = ',(idependrows(i), i=l,ndependrows) 
c 

return 
end 

C%%%%%%%0/o%0/o%%0/o%0/o0/o%%%0/o%%%%%%0/o0/o0/o0/o0/o%%0/o0/o0/o%0/o0/o%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%% 
subroutine transpose(a, at, maxnrl, maxncl, nrl, ncl) 
implicit real* 8(a-h,o-z) 
dimension a(maxnrl,*), at(maxncl,*) 

c 
do 1 i=l, nrl 
do 2 j=l, ncl 
atO,i) = a(ij) 

2 continue 
1 continue 

return 
end 

c%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%% 

subroutine mtimesm(a, b, c, maxnrl, maxncl, maxnc2, nrl,ncl,nc2) 
implicit real* 8(a-h,o-z) 
dimension a(maxnrl,*), b(maxncl,*), c(maxnrl,*) 

c 
do 1 j=l, nc2 
do2i=l,nrl 
c(i j) = O.dO 
do 3 k=l,ncl 
c(ij) = c(ij) + a(i,k) * b(kj) 

3 continue 
2 continue 
1 continue 

return 
end 

c%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%% 

subroutine fbe_cholesky(n, u, rhs, maxnrl) 
implicit real*8(a-h, o-z) 

c 
dimension u(maxnrl,*), rhs(*) 
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c 
c forward cholesky solution 
c 

do 1 j = 1, n 
sum = rhs(j) 
do 2 i=l,j-1 
sum = sum - u(i j) * rhs(i) 

2 continue 
rhs(j) = sum/u(j j) 

1 continue 
c 
c backward cholesky solution 
c 

do 4 j=n, 1,-1 
sum = rhs(j) 
do 5 i=j+l, n 
sum = sum - u(j,i) * rhs(i) 

5 continue 
rhs(j) = sum/u(j j) 

4 continue 
c 

return 
end 

C%%%%%0/o%%%0/o0/o0/o0/o0/o0/o0/o%%0/o0/o%0/o%%%0/o%0/o%0/o0/o0/o%0/o0/o0/o0/o%%0/o%% 

%%%%%%%%%%%%%%%%%%%%%%%%% 

subroutine mtimesv(g, tempo 1, rhs, maxnrl, maxncl, m, n) 
implicit real*8(a-h,o-z) 

c 
dimension g(maxnrl,*), tempol(*), rhs(*) 

c 
do 1 i—1, m 
sum = O.dO 
do2j=l, n 
sum = sum + g(ij) * tempo l(j) 

2 continue 
rhs(i) = sum 

1 continue 
c 

return 
end 

c%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%% 

subroutine error_norm(a,x,b,maxnrl,maxncl ,nr 1 ,nc 1 ,abserr,relerr, 
$ tempo 1) 
implicit real*8(a-h,o-z) 
dimension a(maxnrl,*), x(*), b(*), tempo 1(*) 

c 
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call mtimesv(a, x, tempo 1, maxnrl, maxncl, nrl, ncl) 
c 

abserr = O.dO 
relerr = O.dO 

c 
do 1 i=l, nrl 
x(i) = tempo l(i) - b(i) 
abserr = abserr + x(i)**2 
relerr = relerr + b(i)**2 

1 continue 

abserr = dabs(abserr) 
relerr = dabs(relerr) 
relerr = abserr/relerr 

c 
return 
end 

c%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%% 

subroutine pierrotime (time) 
real tar(2) 
real* 8 time 

c 
c purpose: 
c This routine returns the user + system execution time 
c The argument tar returns user time in the first element and 
c system time in the second element. The function value is the 
c sum of user and system time. This value approximates the 
c program's elapsed time on a quiet system. 
c 
c Uncomment for your corresponding platform 
c 
c Note: On the SGI the resolution of etime is 1/HZ 
c 
c Output 
c time: user+sytem executime time 
c 

c SUN -Solaris 
time=etime(tar) 

c HP-HPUX 
c time=etime_(tar) !f90 
c time=etime_(tar) !f77 

c COMPAQ - alpha 



102 

c time=etime(tar) 

c CRAY 
c time=tsecndO 

c IBM 
c time=0.01 *mclock() 

c SGI origin 
c time=etime(tar) 

return 
end 

C%%%0/o%%%%%%%%0/o%%%%0/o%0/o%%%0/o0/o0/o%0/o%0/o%%0/o%%%%0/o%%0/o% 

%%%%%%% 

C.l: A Complete Input File of an Educational FORTRAN Source Code of "Generalized 
Inverse" Algorithms 

For SLE 

7 7 0 4 1 

l.dO 2.d0 -3.d0 2.d0 -2.d0 -3 .dO -2.dO 
2.d0 4.d0 -6.d0 4.d0 -4.dO -6.d0 -4.d0 
-3.d0 -6.d0 9.d0 -6.d0 6.dO 9.d0 6.d0 
2.dO 4.d0 -6.d0 5.d0 -l.dO -5.dO -7.d0 
-2.d0 -4.d0 6.d0 -l.dO 13.dO 9.d0 -5 .dO 
-3.d0 -6.d0 9.d0 -5.dO 9.d0 13.d0 9.d0 
-2.d0 -4.d0 6.d0 -7.d0 -5.dO 9.d0 27.dO 
-2.d0 -4.d0 6.d0 -7.d0 -5.dO 9.d0 27.d0 

Note: MATLAB solution = (0,0,0,0,0,0,1) = satisfy SLE 

C.2: A Complete Output File of an Educational FORTRAN Source Code of "Generalized 
Inverse" Algorithms 

For SLE 

today date: 04-23-2012; Prof. Due T. Nguyen 

user input: m,n,iautodata,irankn,iaxeqb = 
7 7 0 4  1  
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user input, or randomly generated matrix G mxn = 
1.02.0 -3.0 2.0-2.0 -3.0-2.0 
2.0 4.0 -6.0 4.0 -4.0 -6.0 -4.0 
-3.0 -6.0 9.0 -6.0 6.0 9.0 6.0 
2.0 4.0-6.0 5.0-1.0 -5.0 -7.0 
-2.0 -4.0 6.0-1.0 13.0 9.0 -5.0 
-3.0 -6.0 9.0 -5.0 9.0 13.0 9.0 
-2.0 -4.0 6.0 -7.0 -5.0 9.0 27.0 

user input: right-hand-side (rhs) vector mxl = 
rhs(-) = -2.0 
rhs(-) = -4.0 
rhs(-)= 6.0 
rhs(-) = -7.0 
rhs(-) = -5.0 
rhs(-) = 9.0 
rhs(-) = 27.0 

print [am] = G transpose * G = 
35.0 70.0 -105.0 69.0 -73.0 -127.0 -113.0 
70.0 140.0 -210.0 138.0 -146.0 -254.0 -226.0 
-105.0 -210.0 315.0 -207.0 219.0 381.0 339.0 
69.0 138.0 -207.0 156.0 -84.0 -246.0 -320.0 
-73.0 -146.0 219.0 -84.0 332.0 278.0 -56.0 
-127.0 -254.0 381.0 -246.0 278.0 482.0 434.0 
-113.0 -226.0 339.0 -320.0 -56.0 434.0 940.0 

special cholesky factor of Gt*G, or G*Gt 
5.916079783099616 11.832159566199232 -17.74823934929885 11.663128715253528 
-12.339252119036342 -21.46691807010432 -19.100486156864473 
0.0E+0 0.0E+0 O.OE+O 4.468940430507951 13.406821291523839 

0.9781800942313469 
-21.756515429211084 
0.0E+0 0.0E+0 O.OE+O 0.0E+0 0.0E+0 4.496064087029694 10.065074253426936 
0.0E+0 O.OE+O O.OE+O O.OE+O O.OE+O O.OE+O 0.7209335773362233 
# independent rows = 4 

independent rows =14 6 7 
regular cholesky factorization of M*Mt 
M = factorized of Gt*G, or G*Gt with deleted rows 
# dependent rows = ndependrows = 0 

solution vector {x} =pinv(G) * {rhs} is ... 
1, x(i) = 1 1.6874571068360796E-13 
i, x(i) = 2 3.3749142136721593E-13 
i, x(i) = 3 -5.06237132050824E-13 



i, x(i) = 4 -2.8787848147707946E-13 
i, x(i) = 5 -2.2136011299001E-12 
i, x(i) = 6 2.915937886998499E-12 
i, x(i) = 7 0.9999999999987078 

abs_smallest, abs biggest, sum_abs = 
1.6874571068360796E-13 0.9999999999987078 1.0000000000051376 

abserr, relerr = 8.793202261721907E-25 9.354470491193518E-28 
time a to z= 9.539998136460781E-4 
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APPENDIX D 

MatlabMPI SOURCE CODE FOR MATRIX-MATRIX 
MULTIPLICATION (MATRIX IN DENSE FORMAT) 

%Initialize MPI 
MPIInit; 

%Create communicator 
comm = MPICOMMWORLD; 

%Get Size and Rank 
commsize = MPI_Comm_size(comm); %num tasks 
myrank = MPI Comm rank(comm); %taskid 

nn = 1000; % Matrix size 

%tStart = tic; 

% Master Processor task 
if (my_rank=0) 

% a = 10*rand(nn); 
% b = 10*rand(nn); 

for i = 1: nn 
for j = l:nn 

a(ij) = (i-l)+0-l); 
end 

end 
a; 

for i = 1: nn 
for j = l:nn 

b(ij) = (i+l)*(j+l); 
end 

end 
b; 

Z = zeros(nn); 
tStart = tic; 

domains = comm size-l; % numworkers 



%divide matrix "b" to parts (domains) 
len = floor(length(b)/domains); 
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for i = l:domains-l 

MPI_Send(i,l,comm,a(:,:),b(:,((i-l)*len)+l:i,,[len)) %send parts of matrices to slaves 
sent_part = sprintf('%g', i) 
i; 
dispC***"**'); 

end 

MPI_Send(domains, l,comm,a(:,:),b(:,((domains-l)*len)+l:length(b))); %last part to 
slave 

disp('last part sent'); 
dispC*** ****'); 

for i = 1 :domains 
Z = MPI_Recv(i,100,comm); 
Z; 
size(Z); 
recv = sprintf('%g\ i); 

end 

end %end master 

if my_rank > 0 %slave 

[matrix_a matrixb] = MPI_Recv(0,l,comm); 

%Computation 

[ra ca] = size(matrix_a); 
[rb cb] = size(matrixb); 

for k = 1: cb 
for i = 1 :ra 

c(i,k) = 0; 
for j = l:ca 

c(i,k) = c(i,k) + matrix_a(i j) * matrix_b(j,k); 
end 

end 
end 
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Z = c; 

MPI_Send(0,100,comm,Z); 
exit; 

end %slave 

MPIFinalize; 
tElapsed = toc(tStart) 
disp('Success'); 
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APPENDIX E 

GRAPHICAL COMPARISONS (IN TERMS OF COMPUTATIONAL 
TIMES) OF ODU-GINVERSE WITH OTHER ALGORITHMS 

In this appendix, we graphically compare the computational times of ODU-
ginverse with other existing algorithms. The description of the test problems can be found 
in section 5. 
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