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ABSTRACT 

EFFECTIVENESS OF SOCIAL MEDIA ANALYTICS ON DETECTING  
SERVICE QUALITY METRICS IN THE U.S. AIRLINE INDUSTRY 

 

Xin Tian 
Old Dominion University, 2018 

Director: Dr. Wu He 
 

During the past few decades, social media has provided a number of online tools 

that allow people to discuss anything freely, with an increase in mobile connectivity. 

More and more consumers are sharing their opinions online with others. Electronic Word 

of Mouth (eWOM) is the virtual communication in use; it plays an important role in 

customers’ buying decisions. Customers can choose to complain or to compliment 

services or products on their social media platforms, rather than to complete the survey 

offered by the providers of those services. Compared with the traditional survey, or with 

the air travel customer report published by U.S. Department of Transportation (DOT) 

each month, social media offers features that can spread information quickly and broadly. 

This dissertation offers a novel methodology that, by utilizing emotional sentiment 

analysis, can help the airline industry to improve its service quality. Longitudinal data, 

retrieved from Twitter, are collected from twelve U.S.-based airline companies, in order 

to represent airline companies in different levels and categories. The data covers three 

consecutive months in Quarter 2 of 2017. Applied alongside the service quality metrics of 

the airline industry, the benchmark datasets for each metric are created.  The purpose of 

this dissertation is to bridge the gap in traditional methodology for a service quality 

measurement in the airline industry and to demonstrate the way in which socialized 



 

textual data can measure the quality of the service offered by airline service providers. In 

addition, sentiment analysis is applied, in order to get the sentiment score of each tweet. 

Emotional lexicons are used to detect the emotion expressed by the tweet in two 

emotional dimensions: each tweet’s Valence and Arousal are calculated. Once the 

SERVQUAL model is applied and the keywords to find the corresponding social media 

data are created for each dimension, the results show that responsiveness, assurance, and 

reliability are positively correlated to the AQR score that measures the service quality of 

airline industry.  This study also finds that a large amount of negative social media data 

will negatively affect the AQR score. Finally, this study finds that the interaction of the 

sentiment score and the arousal score of textual social media data play the important role 

in predicting the service quality of the airline industry.  Finally, an opinion-oriented 

information system is proposed. In the last, this study provides theory verification of 

SERVQUAL.  

Keywords: social media, service quality, SERVQUAL, emotional sentiment, text 

mining, natural languages processing (NPL), airline, sentiment analysis, eWOM
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CHAPTER 

1 INTRODUCTION 

 

With the emergence of the social media online platform, more and more 

consumers and companies are communicating and sharing experiences and 

product/service reviews online.  Social media provides online tools and allows people to 

discuss anything freely, with the increase in mobile connectivity. According to research 

conducted by IBM Big Data, more than 2.5 quintillion bytes of data were generated daily 

in 2012 (Zikopoulos et al., 2012). Business analysis and big data mining were developed 

in order to extract insightful information from the collected massive data (He et al., 

2015).   In order to survive in the intense competition of today’s business world, business 

can be based not only on the competition of lower prices, but also on service quality 

delivery (Zeithaml, Parasuraman, & Malhotra, 2000). Hearing about superior service 

offered by businesses becomes more and more important for customers, since customer 

loyalty, satisfaction levels, word-of-mouth behavior, deal-seeking behavior, and 

customers’ behavioral intentions are highly affected by the perceived service quality of 

firms with which they do business (Park, Gretzel, & Sirakaya-Turk, 2007).  

In the traditional way, businesses, including airline companies, use conventional 

survey-based techniques to conduct the measurements of service quality and customer 

satisfaction. Those survey-based techniques are AHP, SERVQUAL, and SERVPREF.  

And the most important technique to study service quality is SERVQUAL. SERVQUAL 

has been verified by past literatures in Table 1. Tsaur, Chang, and Yen (2002) studied the 

service quality in the airline service industry, using fuzzy MCDM. Tsaur et al. (2002) 
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found that many intangible attributes are difficult to measure. A survey was conducted 

and, by applying AHP, Tsaur et al. found that the most critical aspects of service quality 

are tangible, and the least critical aspect is empathy, in airline service. In addition, Tasur 

et al. (2002) found, from survey results, that courtesy, safety, and comfort are the most 

important attributes. Another study performed about service quality in the airline industry 

identified several SERVQUAL and industry-based items that significantly influence 

consumers’ perceptions of overall service quality and their intention to re-patronize 

(Young, Cunningham, & Lee, 1994). In addition, the results suggest that the Air Travel 

Consumer Report has not been properly disseminated, nor has it been used by most 

consumers (Young, Cunningham, & Lee, 1994). However, survey-based methodology 

has its limitations, such as sample size, group of participants, and its need for 

respondents’ recall of past events. These limitations can constrain the scalability of the 

measurements of service quality. 

As increasing social media tools earn more usage and prevalence, an 

exponentially increasing number of customers are posting their life experiences 

(shopping, service, deal-seeking, and problem-solving experiences) on social media 

platforms like Facebook, Twitter, Blogs, YouTube, and review websites. Electronic 

Word of Mouth (eWOM) is the virtual communication that plays an important role in 

customers’ buying decisions; negative WOM has more impact on a variety of aspects of 

business than positive WOM (Park & Nicolau, 2015). Pan and Crotts (2012) define social 

media as “the digital version of word-of-mouth”, since social media “represents the 

materialization, storage, and retrieval of word-of-mouth content online.” Customers share 

their opinions, ideas, suggestions, and complaints freely on their social media platforms 
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via their online community. Microblogs, like Twitter, are especially popular tools. 

Because mobile applications allow people to post information everywhere at any time, 

Twitter has become a popular and convenient way for consumers to complain about their 

perceived service or about products. 

Rather than using a survey-based approach, consumer-generated social media 

content contains a variety of valuable pieces of information, like opinions, experiences, 

and viewpoints. The valuable information makes social media an important source to use 

in analyzing consumers’ decision-making about purchases. Compared to the traditional 

method of conducting a market survey and social media data analytics, Leung, Lee, and 

Law (2012) suggest that social media content analysis may be more trustworthy and more 

reliable than information provided by the marketing departments within a company. 

Social media has characteristics that include its ability to spread messages more quickly 

and broadly than the use of any other methods. Thus, examining social media content is 

becoming important to businesses who want to pursue superior service quality and gain 

competitive intelligence with improved market performance. Social media content 

analysis is required to understand consumers’ perceived service and to evaluate service 

quality. The trend is to analyze the massive amount of structured and unstructured data 

available from the social media platform.  Social media data posted by consumers about 

appointed businesses can be retrieved and analyzed by those businesses as well as by 

their rivals, in order to better understand service quality (Zikopoulos et al., 2012). 

Businesses can learn how to improve their service and their products in order to achieve a 

sustainable competitive advantage. Previous studies (Parasuraman, Zeithaml, & Berry, 

1988; Ramanathan & Karpuzcu, 2011) have already established multiple dimensions of 
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service quality. Specifically, for airline service quality, Young et al. (1994) measured the 

service quality of passenger airlines based on SERVQUAL and discussed it in a U.S. Air 

Travel Report released and published by Department of Transportation (DOT).  

This dissertation seeks to develop a framework that uses social media analytics 

(with an emphasis on emotional sentiment analysis) to help to study the service quality 

perceived by consumers in the airline industry. According to SERVQUAL, the service 

quality will be investigated based on a benchmark dataset for each dimension of service 

quality. Furthermore, emotional sentiment (Lexicon-based) analysis will be applied, in 

order to examine the tweets for each service quality dimension. Compared with the Air 

Travel Report published by the DOT, the effectiveness of a social media analysis of 

service quality will be inspected. Twelve U.S.-based commercial airline carriers (United 

Airlines, Southwest Airlines, Frontier Airlines, Alaska Airlines, Express Jet, SkyWest 

Airlines, Delta Airlines, American Airlines, Hawaiian Airlines, Spirit, Virgin America 

and JetBlue) were researched on Twitter for the second quarter of 2017. My research 

questions are as follows:  

What dimensions of airline service quality from textual social media data are 

associated with Airline Consumer Report by DOT?  

What is the effect of massive negative textual social media data on an airline 

carrier and its rivals? 

What is the pattern of emotional sentiment for each dimension of airline service 

quality?  

What is the relationship between textual social media data and the Airline 

Consumer Report by DOT? 
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CHAPTER 

2 MOTIVATIONS OF RESEARCH 

 

Since an airline’s service is highly related to its customer service, more and more 

customers are sharing their experiences on social media -- regardless of whether they had 

good or bad experiences with the airline. The most influential incident in the U.S. airline 

industry in the past five years happened in 2017. The United Express Flight 3411 

oversale incident occurred on April 9, 2017 at O’Hare International Airport. A passenger, 

Dr. David Dao, was forcibly removed from his seat by airport police officers after having 

boarded the fight (Wahba, 2017). This was among the most serious customer service 

incidents in the history of the airline industry, and the incident was widely spread and 

shared by tweets through Twitter from the consumers on the airplane. The tweets, along 

with the videos, were soon picked up by mainstream media agencies like CNN and BBC 

and received a huge amount of attention on that day. The consequence of this incident 

was predictable: the public relationship and stock price of United were affected, and 

consumers revealed widespread dissatisfaction on their social media platforms.  

On that day, over 60,000 tweets (retrieved from Twitter with “@united”) 

mentioned United Airlines and either discussed or commented on the incident. Many 

people expressed that they would boycott United Airlines or tried to find an alternative 

airline, if that was possible. Even more, customers who held the Chase United Credit 

Card destroyed the card and posted pictures on Twitter to boycott United Airlines. 

Tweets about this incident were retweeted and were commented upon much more 

frequently than regular tweets; consumers were influenced, and the plight of the man in 
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the video evoked sympathy. Obviously, the power of social media is strong, and those 

negative tweets set off a chain reaction about this incident. Competitor airlines (among 

them Southwest Airlines) also took advantage of the opportunity to gain more attention 

by persuading consumers about their better service and by offering promises about never 

overselling in the future (Wahba, 2017). Even beyond United Airlines, other airline 

carriers were affected after the incident. The number of tweets that mentioned airline 

carriers increased in the following days. Wong et al. (2017) studied the way in which the 

event gained traction on social media and found that mimesis behavior encourages 

homogeneous behavior and reactions during times of crisis.  

Luo (2007) reinforced that negative reviews or comments can be more powerful 

in decreasing sales than positive reviews can be in increasing sales (Chevalier & Mayzlin, 

2006). From this, we can note that social media can play an important role in 

contemporary business, particularly in bridging the gap of traditional research 

methodology for airline industry. Even though the DOT has the official data for all of the 

operational airline companies in the U.S., only reports with statistics for the two months 

prior to the current date can only be accessed on the DOT website. Due to this time lag, 

customers cannot get the real-time data for decision-making and airline companies cannot 

immediately respond to customers regarding the report provided by DOT in order to use 

it to improve their service quality or to maintain their customer relationship. This 

dissertation will introduce a novel methodology and will utilize emotional sentiment 

analysis to help the airline industry to improve its service quality and respond to a public 

crisis in a short time. Bowen and Headley (2017) published the Air Quality Rating 

(AQR) to measure the service quality of U.S. airline carriers. Alaska Airlines and Delta 



 7 

Airlines were announced as No.1 and 2 in the AQR report in 2017. However, the data 

used for generating the AQR report was mostly based on that of the 2016 U.S. Airline 

Consumer Travel Report published by DOT. Bowen and Headley (2017) reported that 

nine airline companies showed improvement in the AQR report during 2016.  In this 

study, all of the U.S.-based airline companies in the DOT airline consumer report are 

included: Southwest Airlines, Alaska Airlines, American Airlines, United Airlines, Delta, 

Express Jet, Hawaiian Airlines, Jetblue, Skywest, Spirit, Virgin America, and Frontier 

Airlines. The reason for choosing these companies is that each company can represent 

one type of airline carrier. For example, Southwest Airlines is known to be flexible by 

allowing passengers to choose their seats and by charging no baggage fee. Frontier 

Airlines, JetBlue, and Spirit are known by their cheap airfares; United Airlines, Delta, 

and American Airlines have the largest air route networks, and United Airlines suffered 

from the incident in April 2017; and Alaska Airlines is listed as No.1 in the AQR report 

for its excellent service. AQR has been cited to make an airline industry standard and to 

allow for a comparison of airline companies’ performance (Bowen & Headley, 2017). In 

order to calculate the AQR score, DOT data is used and is applied to the formula, based 

on the on-time rate (OT), denied boarding (DB), mishandled baggage (MB), and 

customer complaints (CC). Only the on-time rate has a positive impact; the other three 

have a negative impact on AQR. The formula to calculate the AQR is listed below: 

 

𝐴𝑄𝑅 =	 ('(.*+∗-.)'(0(.1+∗23)'(04.56∗73)'(04.84∗99)
((.*+'(.1+'4.56'4.84)

                              (1) 
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With its ability to measure service quality in the airline industry, AQR has been designed 

for the industry, and uses the data from DOT report. The results can be used by airline 

carriers, can help newly nominated airline services, and can assist DOT in modifying the 

rules. However, since the AQR is based on the Air Travel Report from DOT, the data in 

the report has at least a two-month time lag. Consumers cannot get real-time information 

when they need it to make purchase decisions, and airline companies are unable to 

improve their service right away. 

Sometimes, consumers have reported incidents on their social media platforms 

and this information has spread rapidly.  Then, airline companies can respond to it 

officially and can regain their reputations using social media tools. To monitor and 

analyze social media effectively, airline companies need to adapt multiple technologies 

and to hire data analysts and data scientists to mine tweets from Twitter, reviews on 

Tripadvisor.com, and comments from their websites and from other social media 

platforms. The most effective and feasible method is mining Twitter data, since Twitter 

has a lot of users and it provides an API to connect with the server and to retrieve the 

specific data. To better use these data, businesses can develop an information system to 

monitor their mentions on social media. For service companies, emotional sentiment and 

data mining can be applied to investigate service quality.  Since service quality is the 

backbone of business, the earlier that any negative issues are found, the easier it is to 

improve service quality. If the sentiment has changed considerably, an alert can be sent to 

the appropriate person and then the proper operations and responses can be performed. 

Businesses can then use this information system to improve their service quality, to 

monitor their market performance, and to adjust their marketing strategies.  
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CHAPTER 

3 LITERATURE REVIEW 

 Service quality assessment is an important area for multidisciplinary research.  

Operational management, marketing, and management information systems have had 

many research articles written about measuring service quality. Prior work about 

measuring quality has mainly focused on physical products and on tangible goods (Palese 

& Piccoli, 2016). In the late 20th century, the famous model -- SERVQUAL-- for 

measuring quality of service was proposed by Parasuranman et al. (1985, 1988). 

According to Parasuranman et al. (1985), service quality is hard to measure because of 

intangibility. Most research papers cover the application of SERVQUAL and its ability to 

conduct a survey to evaluate consumers’ perceived service. This method is feasible, but it 

is limited by the sample size, response rate, and reliability of the responses. With the 

emergence of social media and the prevalence of mobile platforms (mobile applications), 

socialized textual data has been found to be a boon to business. Customer experience is 

the basis for the effective measurement of service quality (Petter et al., 2012). Social 

media analysis provides the ability to retrieve socialized textual data and to analyze them 

through text mining, clustering, and sentiment analysis. Competition among airline 

carriers is becoming intense, and a competitive advantage can be discovered by airline 

carriers who take service quality into account. Most especially, with the emergence of 

technology and social media, airline carriers can now communicate with consumers in 

multiple ways: via online chat, Twitter, Facebook, official websites, phone calls, online 

surveys, and so on. Airline carriers may change their marketing strategies based on the 
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results of their social media analytics, and can gain a reputation from the opinions of their 

consumers.  

3.1 Service Quality in the Airline Industry 

Studies about service quality have been done since the 1980s (Grönroos, 1984; Rust 

& Oliver, 1994; Cronin, Brady, Thomas & Hult, 2000). As defined by Grönroos (1984), 

service quality is “the outcome of an evaluation process, where the consumer compares 

his expectations with the service he perceives he has received.” Grönroos suggested that, 

when considering service quality, technical quality, functional quality, and corporate 

image also must be considered. Further, other researchers have studied service quality 

and have suggested that customer satisfaction has a positive relationship with service 

quality (Mukherjee, Nath, & Pal, 2003; Ramanathan & Karpuzcu, 2011). Since service 

quality is highly related to customer satisfaction and firm performance, it is important for 

companies of the service industry to measure and to evaluate customer satisfaction. 

Sasser, Olsen, and Wyckoff (1978) mentioned, back in the ’70s, that service quality could 

be measured by materials, facilities, and personnel. From the 1980s until the 2010s, 

service quality measurement has been developing, and the research method has improved 

over these thirty years. In order to measure service quality accurately, the SERVQUAL 

model is the fundamental model for assessing service quality, since it compares expected 

service and perceived service from consumers (Parasuraman et al., 1985). Ten 

dimensions are covered in the SERVQUAL model: access, communication, competence, 

courtesy, credibility, responsiveness, security, tangibility, and understanding/knowing the 

customer.  
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Several years later, Parasuraman et al. (1988) refined the ten dimensions into five 

major dimensions: reliability, responsiveness, assurance, empathy, and tangibility. Martin 

(1986) argued that only two main dimensions should be assessed for service quality: 

service procedure and consumers’ conviviality. Martin (1986) considered the managerial 

portion and the communication with consumers. During the following twenty years, 

researchers expanded and modified the SERVQUAL five dimensions across different 

service industries. Ramanathan and Karpuzcu (2011), in their study, suggested using 

seven metrics to measure service quality: responsiveness, flexibility, availability, 

assurance, personnel contact quality, reliability, and tangibles (as shown in Figure 1). 

And Novack, Rinehart, and Langley (1994) argued that personnel of the company and the 

traits of executives can be used to measure service quality. Another aspect was proposed 

by Parasuraman et al. (1988), who said that customers’ opinions can strengthen the 

understanding and the measurement of service quality. According to previous research 

(Parasuraman, Zeithaml and Berry, 1988; Ramanathan and Karpuzcu, 2011), service 

quality metrics can be defined as follows: 

 

• Reliability: The ability to perform the promised service, both dependably and accurately 

• Responsiveness: Willingness to help customers and to provide prompt service 

• Flexibility: Flexibility to allow for different transaction options and methods 

• Availability: The availability of products in stock 

• Personnel Contact Quality: The knowledge and courtesy of employees, as well as their 

ability to ease communication with customers 
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• Tangibles: The appearance of the physical facilities, the equipment, the appearance of 

personnel, and the communication materials.  

• Assurance: The ability to convey trust and confidence to customers and to make them 

feel that they are receiving good service 

 

 
 
 

 
Figure 1.  Seven Metrics for Measuring Service Quality 

(Adapted by Ramanathan & Karpuzcu, 2011) 

 

 
 Ladhari (2009) reviewed most of the measurements of service quality and found 

that SERVQUAL is the most popular model, one that used by many researchers. 

SERVQUAL has better reliability and validity and can evaluate the service expectations 
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and perceptions of consumers (Parasuraman et al., 1988). In the past thirty years, prior 

research has applied SERVQUAL as the guideline and theoretical background, and then 

has developed survey questions to measure each dimension of service quality. To 

compare the expectations of customers and their perceptions after they received the 

service, researchers have researched the differences between expected service and 

perceived service across a number of service industries. Customer expectations and 

customer perceptions are the two essential parts of the SERVQUAL model.  

 The SERVQUAL model has been applied to evaluate service quality in a variety 

of industries, as among them education, banking, insurance, airline services, and health 

care. Table 1 shows SERVQUAL in different research contexts and in modified 

dimensions for evaluating service quality in different industries. Yang and Fang (2004) 

identified eight dimensions and sub-dimensions of online service quality. They are 

responsiveness, service reliability, ease of use, access, system reliability, timeliness, 

security, and competence. These eight dimensions derive from SERVQUAL; 

modifications were based on context. In another paper, El Saghier and Nathan (2013) 

found that only four dimensions (reliability, responsiveness, empathy, and assurance) can 

influence service quality in banking services. Bansal and Taylor (2015) examined 

switching intentions, service quality, and customer satisfaction, and argued that service 

quality is one antecedent to customer satisfaction, while service quality is the key for 

switching intentions. 
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TABLE 1 A BRIEF REVIEW OF THE DIMENSIONS OF SERVICE QUALITY 

Author(s) Dimensions Context 

Yang & Fang (2004) responsiveness, reliability, 

credibility, competence, 

access, courtesy, 

communication, 

information, 

responsiveness, and website 

design 

E-service 

Akbaba (2006) tangibles, adequacy in 

service supply, 

understanding and 

caring, assurance, and 

convenience 

Hotel industry 

Polyorat & Sophonsiri 

(2010) 

tangibles and empathy, 

reliabilities, responsiveness, 

and assurance 

Chain restaurant 

El Saghier and Nathan 

(2013) 

reliability, responsiveness, 

empathy, and assurance 

banking services 

Kitapci, Taylan Dortyol, 

Yaman & Gulmez (2013) 

empathy, tangibility, 

responsiveness, and 

assurance 

Supermarket 

Thaichon, Lobo, Prentice 

& Quach (2014) 

 

 

 

network quality, customer 

service and technical 

support, information 

quality, and security and 

privacy 

Internet service providers 

Saeedpoor et al. (2015) tangibility, reliability, 

knowledge and skill of staff 

in maintaining mutual trust 

Life insurance firms 
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between customers and 

service providers, 

willingness to deliver 

services in a timely manner 

and to help customers; 

empathy 

Ali, M., & Raza, S. A. 

(2017). 

 

compliance, assurance, 

reliability, tangibles, 

empathy, and 

responsiveness 

Service industry: Islamic 

bank 

 

 
 

To evaluate perceptions of airline service, prior studies were based on survey 

questions and on the SERVQUAL model. Ostrowski et al. (1993) examined the 

relationship between service quality and retained preference, which measured customer 

loyalty in the commercial airline industry. The data was collected from two air carriers; 

the researchers found a positive relationship between service quality and customer loyalty 

in the commercial airline industry. And AHP methodology was applied in measuring 

service quality in the airline industry by Tsaur et al. (2012). Applying the fuzzy set theory 

to evaluate the service quality of the airline, Tsaur et al. (2012) found that many 

intangible attributes are difficult to measure. Applying the AHP-based survey showed 

that the most concerning aspects of service quality are tangible, and that the least 

concerning aspect is empathy. Courtesy, safety, and comfort were the most concerning 

attributes for Tsaur et al. (2012).  Mazzeo (2003) also found that being on-time plays an 

important role in service quality in the airline industry; flight delays are significantly 

related to weather conditions, air congestion, and scheduling decisions (U.S.  Bureau of 
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Transportation Statistics, 2000). The time lag is an obvious issue when analyzing service 

quality in the airline industry. Consumers need a service quality model to evaluate the 

service quality, and two dependent variables – perceived service and expected service – 

are essential for measuring service quality (Grönroos, 1984). To maintain a business’ 

market share, Mazzeo (2003) also argued that when customers have more choices, 

companies have more incentive to improve service quality by offering lower prices and 

better service.  However, gathering the opinions of consumers is not easy. Surveys can be 

conducted with limited sample sizes, but the respondents may not represent all of the 

consumers. This dissertation will bridge the gap in the traditional survey method for 

service quality measurement in airline industry. 

Hussain et al. (2015) investigated the relationships among service quality, service 

provider image, customer expectations, perceived value, customer satisfaction, and brand 

loyalty in a Dubai-based airline. Questionnaires were conducted based on the 

SERVQUAL model and identified six dimensions: reliability, responsiveness, assurance, 

tangibility, security and safety, and communication. Another research paper regarding 

service quality in the airline industry was written by Tsaur et al. (2002), who established 

five aspects and fifteen service quality criteria. I will use both of these research papers to 

design the benchmark dataset for assessing service quality in the airline industry using 

social media data. Table 2 shows the six evaluation dimensions of airline service quality, 

as studied in this dissertation.  
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TABLE 2 SIX DIMENSIONS OF AIRLINE SERVICE QUALITY 

Dimensions of Service Quality Attributes and Key Words  

Responsiveness Willingness to help passengers; providing prompt 

service; keeping passengers informed about delivery 

of service; keeping passengers updated if any 

modified schedule; quickly response customer’s 

requirements. 

Assurance Providing service actively; language skill or 

translation help of crew members; pilots’ informative 

announcement in different contexts of culture; 

employee’s skillfulness; courtesy towards customers 

Tangibility Comfortable seats and the cleanliness of the cabin; 

cleanliness of the aircraft interior and exterior; variety 

of food, food service and food quality; on-board 

entertainment: movie and music; the appearance of 

the crew; complimentary pillow or blankets  

Reliability Efficiency of the check-in process, flight punctuality, 

timeliness (arrival in promised time), handling of 

missing luggage complaints.  

Security and Safety Personal safety; luggage safety; animal safety 

Communications communication between cabin crew and passengers; 

the ability to communicate with passengers in 

different languages; the communication between 

pilot and passengers; informative announcement 

during the flight. 

In this model, security and safety are the greatest and most important assets of the airline 

industry; all airline carriers are ensuring their passengers the required security and safety. 

Especially after the events of 9/11, passengers consider the most important factors -- 



 18 

security and safety -- before they make purchase decision or any travel decision. Since 

Tsaur et al. (2002) argued safety is one of the most concerned attributes, and I have 

included the security and safety as one metric of service quality.  Sum Chau and Kao 

(2009) point that communication plays an important role in service quality. They found 

communication style is critical for measuring service quality. This was confirmed by 

Hussain et al. (2015) and pilot’s informative announcement during the flight are 

important factors leading service quality.  

3.2 Social Media Analysis 

Since social media has massive consumer-generated content, mining social media 

data, in recent years, has become a highly economical and efficient way for businesses to 

understand consumer needs (Crotts, Mason, & Davis, 2009; Duan et al., 2013).  Big data 

technology enables organizations to conduct deep analyses of their business data to both 

measure and understand service quality. Bates et al. (2014) discussed six use cases that 

leverage big data analytics to identify and manage high-risk and high-cost patients. A 

recent study by Xiang, Schwartz, Gerdes, & Uysal (2015) used a text analytical approach 

to analyze a large quantity of consumer reviews extracted from Expedia.com and 

demonstrated the utility of big data analytics to better understand the relationship 

between hotel guests’ experience and satisfaction. Based on the SERVQUAL model and 

its variations, we can reasonably use big data technology to mine a large volume of social 

media data in order to potentially identify customer expectations for a service and the 

perceptions of those customers after they receive that service.   
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In this dissertation, I propose a framework for big social data comparative 

analytics (Figure 2) to help interested businesses to leverage big data solutions mine 

social media data in order to contextually compare the service quality among peers. The 

proposed framework adopts the seven service quality measurement metrics proposed by 

the five dimensions of service quality: reliability, responsiveness, empathy, assurance and 

tangibility (See Table 2). Prior studies found that customer experience or customer 

satisfaction can used to measure the perceived service quality and the expected service 

quality from customers.  In SERVQUAL model is not crucial for measuring service 

quality of the company (Taylor & Baker, 1994; Olorunniwo, Hsu, & Udo, 2006).  

 

 
 

Figure 2. A Proposed Framework for Using Social Media Analytics to Study Service 
Quality 
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In the proposed framework, big data technology is used as a solution to analyze 

social media data from targeted business and their peers, in order to visualize and 

benchmark comparisons among peers across different service quality measurement 

metrics that may impact customer satisfaction. Text classification algorithms can be used 

to mine consumer-generated social media content based on the specified service quality 

measurement metrics. Then, sentiment analysis, which is the computational detection and 

study of opinions, sentiments, emotions, and subjectivities in text, can be conducted on 

the texts associated with each metric in order to identify consumer perceptions (including 

expected and perceived), generating a score from -1 (the most negative opinion) to 1 (the 

most positive opinion). The overall sentiment score of Dimension i can be calculated 

using the following formula provided by Duan et al. (2013): 

 

                                              (2) 

where Npi denotes the number of positive sentences in Dimension i and Nni 

denotes the number of negative sentences in Dimension i. To make the process of 

conducting sentiment analysis easier, researchers can use existing popular sentiment 

analysis tools or services such as Lexalytics, SentiWordNet, SentiStrength, Social 

Mention, Trackur, Sysomos, and Viralheatto extract positive or negative sentiment scores 

from text (Pang & Lee, 2004). These sentiment analysis tools mainly rely on machine 

learning techniques such as Support Vector Machine (SVM), Naive Bayes, Maximum 

Entropy, and Matrix Factorization to classify texts into positive or negative categories, 

and they have been used in many studies in the sentiment analysis literature (Pang, Lee, 
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& Vaithyanathan, 2002; Li & Wu, 2010). In this dissertation, I will use Lexicon-based 

sentiment analysis rather than machine learning. The applications of sentiment analysis 

are powerful, and the results could be broad and valuable. Past research has found that a 

fluctuation in sentiment on social media has been identified to correlate with fluctuations 

in the stock market (Ranco et al., 2015). For example, the result of the presidential 

election can be predicted by gauging public opinion on social media when policy 

announcements are made. Wong et al. (2017) studied event-gained traction on social 

media and found that mimesis behavior encourages homogeneous behavior and reactions 

during the times of crisis. However, they do not consider the sentiment that is contained 

in the tweets and they do not examine the contribution of sentiment to information 

spread. Anitsal et al. (2017) investigated the top ten airline carriers in the U.S. using 

sentiment analysis and found that the customer relationship can be investigated in detail, 

and that Delta, Southwest, Alaska, and SkyWest Airlines have the most positive 

sentiments expressed about their cabin crews and their attitude to their passengers. 

Customer-employee collaboration in the co-creation of the airline service industry is vital 

to the success of airline companies. Waguespack and Rhoades (2014) argued that airline 

carriers have established a social media center in effort to avoid service quality failures, 

and that viral incidents can significantly affect publicity. In psychology, emotional 

sentiment has two major dimensions: Valence and Arousal (Mäntylä et al., 2016). 

Valence is the direction of the emotion, like positive and negative. The higher the 

Valence score, the more positive the emotion. Another dimension, Arousal, describes the 

intensity of emotion, or the psychological state of being reactive to stimuli. The Arousal 
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score will indicate the action of the increased alert and the readiness of responses 

(Preoţiuc-Pietro, 2016). Based on the prior literature, I offer the following hypothesis: 

Hypothesis: 

H1: Three dimensions (Responsiveness, Assurance, and Reliability) of service quality will 

be positively associated with score of AQR. 

H2: The sentiment analysis results of tweets will align with the DOT Air Travel Consumer 

Report.  

H3: The larger volume of negative social media data for the service quality dimension, the 

more complaints received and shown on the DOT Air Travel Consumer Report (lower 

AQR). 

H4: Emotional direction (valence) of textual social media data is correlated with AQR.  

H5: Emotional intensity (arousal) of textual social media data is correlated with AQR. 

H6: The higher score of interaction of valence and Arousal, the higher AQR.  

H7: The higher sentiment score and higher arousal, the higher AQR 

 

IBM, SAP, Oracle, and Microsoft are some of existing data analytic platforms. 

They can be integrated to store, manage, analyze, and compare data from different 

companies across numerous social media sources in order to generate detailed service 
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quality reports, for better understanding and suggestions. As they compare consumers’ 

expectations and perceptions of service quality for each business, the businesses generate 

a data analysis report containing concept maps, word clouds, and sentiment scores 

(positive and negative) for each service quality measurement metric, as well as a 

weighted score for the overall service quality of each business. Using such a report, I can 

then conduct a service quality comparison for different businesses against individual 

service quality metrics. Such comparisons are supported by advanced analytics, text 

mining, sentiment analysis, business intelligence, and contextual data generated from the 

big data. This proposed framework is especially applicable to assessing service quality 

for consumer service-oriented sectors such as retail, insurance services, financial 

services, healthcare, and e-business. Customer service is important to the companies in 

these sectors because it can help to differentiate a company from its competitors.  The 

proposed analysis is particularly relevant for very large businesses or for businesses with 

a large population of active social media users. Even when the user-generated content is 

small, companies can still do a manual analysis. However, if managers feel that they have 

too much social media data to analyze efficiently, they should consider a more automated 

analysis. My proposed framework, the social media analysis method and the proposed 

information system, will be helpful in this regard.  An information system will be 

proposed, as well.  
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CHAPTER  

4 DATA COLLECTION 

 

 4.1 Reported Data from the Department of Transportation (DOT) 

This paper will use the 2017 Air Consumer Report from U.S. Department of 

Transportation, from the 2nd quarter (April, May, June) to the 3rd quarter (July, August, 

September). Since the report was published two months later, some data should be 

collected in the later report. For example, the July report has the published data regarding 

May. 

Data included in the report are flight delays, mishandled baggage, oversales, 

consumer complaints, airline animal incident reports, and the customer service report to 

the Department of Homeland Security. All of the data are officially published in the 

airline consumer report. The report includes information from 12 U.S. carriers: Spirit, 

ExpressJet, JetBlue, SkyWest, Frontier, American, United, Virgin America, Alaska, 

Southwest, Delta, and Hawaiian. In this study, I will investigate all of the U.S.-based 

airline carriers in this dissertation and will focus on twelve U.S. based airline carriers: 

Alaska Airlines, the No.1 U.S. carrier (Bowen and Headley, 2017), United Airlines, 

Frontier, and Southwest Airlines. The report is divided into six sections: 

• Flight Delays 

• Mishandled Baggage 

• Oversales 
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• Consumer Complaints (flight problems, baggage, reservation/ticketing/boarding, 

customer service, fares, refunds, oversales, disability, discrimination, advertising, 

animals, other) 

• Customer Service Reports to the Transportation Security Administration 

• Airline Reports of the Loss, Injury, or Death of Animals During Air 

Transportation 

The sections that deal with flight delays, mishandled baggage, and oversales are 

based on data collected by the Department's Bureau of Transportation Statistics. The 

section that deals with consumer complaints is based on data compiled by the OAEP's 

Aviation Consumer Protection Division (ACPD). The section that deals with customer 

service reports to the Department of Homeland Security’s Transportation Security 

Administration (TSA) is based on data provided by TSA. The section that deals with 

animal incidents during air transport is based on reports required to be submitted by the 

airlines to the ACPD. Each section of the report is preceded by a brief explanation of how 

to read and understand the information provided. 

The report is usually issued during the second week of each month. Oversales are 

reported at a quarterly (rather than a monthly) rate, and the oversales figures may be 

slightly older than the other data, in certain months.  
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TABLE 3 DOT REPORT COMPLAINT CATEGORIES 

Flight Problems Cancellations, delays, or any other deviations from schedule, 

whether planned or unplanned. 

Oversales All bumping problems, whether or not the airline complied with 

DOT oversales regulations. 

Reservations, 

Ticketing, Boarding 

Airline or travel agent mistakes made in reservations and 

ticketing; problems in making reservations and in obtaining 

tickets, due to busy telephone lines or waiting in line, or delays 

in mailing tickets; problems boarding the aircraft (except 

oversales).  

Fares Incorrect or incomplete information about fares, discount fare 

conditions and availability, overcharges, fare increases, and 

level of fares in general. 

Refunds Problems in obtaining refunds for unused or lost tickets, fare 

adjustments, or bankruptcies. 

Baggage Claims for lost, damaged or delayed baggage, charges for 

excess baggage, carry-on problems, and difficulties with airline 

claims procedures. 

Customer Service Rude or unhelpful employees, inadequate meals or cabin 

service, treatment of delayed passengers. 

Disability Civil rights complaints by air travelers with disabilities. 

Advertising Advertising that is unfair, misleading, or offensive to 

consumers. 
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According to Airline Consumer Report published by the DOT for June, July, and 

August of 2017, I can derive the reported data of April, May, and June (Second Quarter) 

of 2017 for these criteria:  on-time rate, involuntary denied boarding (per 10,000 

passengers), mishandled baggage (per 1,000 passengers), and customer complaints (per 

100,000 passengers). Since denied boarding incidents are reported quarterly, the data that 

shows in the Table 4 is from 2017 August report. Involuntary denied boarding uses the 

same numbers for all three-consecutive months in Quarter 2 of 2017. Table 4 shows the 

reported data by the twelve airline carriers in this study, from April to June of 2017.   

 

 

 

 

Discrimination Civil rights complaints by air travelers (other than disability); 

for example, complaints based on race, national origin, religion, 

etc. 

Animals Loss, injury, or death of an animal during air transport provided 

by an air carrier. 

Other Frequent flyer, smoking, tour credit, cargo problems, security, 

airport facilities, claims for bodily injury, and other issues not 

classified above. 
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TABLE 4 DOT AIRLINE CONSUMER REPORT (APR - JUN 2017) 

 
 
 

Airline 
Carriers 

Month On-time  Involuntary 
Denied 
Boarding 

Mishandled 
Baggage 

Customer 
Complaints 

Alaska Apr 81.6% 0.42 1.41 1.00 
May 82.6% 0.42 1.60 0.44 
Jun 82.9% 0.42 1.85 0.47 

Frontier Apr 79.5% 0.49 2.31 2.42 
May 76.6% 0.49 2.57 3.01 
Jun 73.1% 0.49 2.39 1.86 

Southwest Apr 79.5% 0.64 2.43 0.50 
May 77.3% 0.64 2.90 0.59 
Jun 73.3% 0.64 3.35 0.50 

United Apr 81.9% 0.44 2.12 3.04 
May 82.3% 0.44 2.12 2.02 
Jun 79.4% 0.44 2.47 2.09 

Hawaiian Apr 88.8% 0.08 2.52 1.58 
 May 89.7% 0.08 3.00 1.05 
 Jun 90.4% 0.08 2.47 0.60 
SkyWest Apr 80.0% 0.26 3.03 0.81 
 May 82.4% 0.26 2.61 0.70 
 Jun 81.0% 0.26 3.08 0.47 
American Apr 78.7% 0.56 2.81 2.68 
 May 80.1% 0.56 2.56 2.15 
 Jun 73.2% 0.56 3.20 2.09 
Spirit Apr 77.0% 1.25 1.46 7.20 
 May 69.0% 1.25 1.65 11.39 
 Jun 68.3% 1.25 1.82 7.38 
ExpressJet Apr 75.7% 0.63 4.67 1.79 
 May 76.8% 0.63 3.45 1.18 
 Jun 75.1% 0.63 4.00 0.83 
VirginAmerica Apr 64.6% 0.53 1.42 2.94 
 May 58.7% 0.53 1.57 3.12 
 Jun 67.2% 0.53 1.73 2.70 
Delta Apr 76.9% 0.09 3.04 2.52 
 May 82.8% 0.09 1.67 1.21 
 Jun 82.8% 0.09 2.08 0.80 
JetBlue Apr 72.4% 0.04 1.50 1.19 
 May 67.2% 0.04 1.66 1.44 
 Jun 60.6% 0.04 1.65 1.27 
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In all three reports, the top four complaint categories are flight problems, 

baggage, reservation/ticketing/boarding problems, and customer service. Figure 3 

illustrates that Hawaiian has the highest on-time rate in the three consecutive months, 

while Virgin America has the lowest on-time rate in the first two months and the second 

lowest in the following month. The good weather may be the reason for the on-time rate. 

Since the flights do not be affected much by weather problems in Hawaii, that leads to 

the higher on-time rate than flights operated much in the East Coast. Overall on-time 

rates for all airline carriers show that the April has the better on-time rate than the other 

two months (averaging approximately 76%).  Regarding mishandled baggage, ExpressJet 

performed the worst in all three months; most airline carriers reported about 2.6 incidents 

of mishandled baggage per 1,000 passengers, with American Airlines and Southwest 

Airlines having the poorest performance in baggage handling (Figure 4).  Figure 5 shows 

that Spirit Airlines had the most complaints across the three months, followed by Virgin 

America, United, and Frontier. The rest of the airline carriers received few complaints.  
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Figure 3. On Time Rate in Quarter Two of 2017 

 

 
Figure 4. Mishandled Baggage Reports per 1,000 Passengers 
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Figure 5. Customer Complains Per 100,000 Passengers 

 
After applying the formula to calculate Airline Quality Ratings (AQR), the twelve 

airline carriers have the AQR showed in Table 5. Table 6 shows the number of 

enplanements (passengers who boarded on the plane) of each of the airline carriers over 

the three months, separately. Southwest Airlines (No.1), American Airlines (No.2), and 

Delta (No.3) carried the most passengers in this period. Virgin America and Hawaiian 

carried the least passengers compared to other airline carriers. Since Virgin America and 

Hawaiian have limited routes for customer to choose, the number of their scheduled 

flights is much lower than that of larger airlines.  
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TABLE 5 AQR SCORE FOR ALL AIRLINE CARRIERS FROM APR-JUN 2017 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Airline Carriers 

 AQR Score  

April May June 

Alaska -0.46 -0.38 -0.45 

Frontier -1.01 -1.24 -0.94 

Southwest -0.61 -0.81 -0.91 

United -1.10 -0.87 -0.98 

Hawaiian -0.85 -0.76 -0.53 

SkyWest -0.83 -0.65 -0.72 

American -1.20 -1.05 -1.21 

Spirit -1.89 -3.11 -2.25 

ExpressJet -1.47 -1.08 -1.14 

Virgin America -0.95 -1.07 -0.99 

Delta -1.22 -0.49 -0.50 

JetBlue -0.55 -0.57 -0.54 
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TABLE 6 NUMBER OF ENPLANEMENTS OF EACH AIRLINE CARRIERS 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2 Data from Social Media: Twitter 

 

Social media data (Twitter data) were collected regarding twelve U.S. carriers 

from Quarter 2, 2017 (April 1 to June 30). Twitter is one of most popular social media 

platforms; on it, consumers post their opinions, complaints, concerns, and compliments, 

rather than reporting them to the DOT website.  Twitter is the online social networking 

service that enables users to send and read short 140-character messages called “tweets.” 

Airline Carriers April May June 

Alaska 2,008,750 2,193,846 2,237,360 

Frontier 1,248,519 1,361,806 1,449,410 

Southwest 13,331,080 13,567,828 14,090,883 

United 6,734,304 7,214,180 7,715,405 

Hawaiian 819,181 883,544 931,026 

SkyWest 2,783,144 2,952,995 3,161,131 

American 10,070,814 10,637,844 10,762,186 

Spirit 1,813,630 1,888,028 1,916,923 

ExpressJet 1,324,149 1,361,065 1,369,080 

Virgin America 653,156 683,482 715,225 

Delta 9,953,754 11,122,894 11,330,703 

JetBlue 2,913,464 2,905,641 2,899,515 
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Only registered users can read and post tweets; unregistered visitors are not allowed to 

post tweets but can read others’ tweets. Hence, Twitter has become a popular public 

platform to mine the opinions of people all over the world and across all age categories.  

From this social media platform, one can not only find the number of complaints, 

concerns, opinions, and compliments; one can also reflect the content of those posts. It is 

not possible for consumers, even the airline companies, to know the details of the 

complaints in the DOT report. They cannot know the issues within the golden time frame 

in which they could solve the problem; the DOT report lags by several months after the 

dates when the issues occurred. The social media platform could be an alternative way to 

reflect any issues in more real time, and the airline companies can be aware of the 

problem within a reasonable time frame. One of the specialties of Twitter is a feature 

called “retweet”, which is not the same as “reply.” Users on Twitter who follow the 

person who posted the messages on Twitter can forward those same messages and/or 

their own opinions and post to Twitter again. Sometimes, this activity requires less than a 

minute, considering Twitter’s large number of users, and the fact that each user has lots 

of followers. The speed of spreading messages, then, is tremendous and quick. The 

majority of the U.S. airline carriers have official accounts on Twitter and Facebook. Their 

goal is to use social media as a marketing tool to improve their reputations or their 

impressions from consumers.  Table 7 shows when each airline joined Twitter and its 

official Twitter account name. Twitter also offers a feature that enables a business to 

monitor the posts from other users (customers). If the business has used this feature, it 

will show “Responsive 24/7” on the left hand of the Business’ Twitter home page. 
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Among the twelve airline carriers, United Airlines and Alaska Airlines are the only two 

to have utilized this feature to improve their communication with their customers. 

 

TABLE 7 DECRIPTION OF TWITTER DATA 

 

A Python program was written with the Twitter API to retrieve the tweets for the 

twelve airline companies from April 1st to June 30th, 2017. This program used the 

tweet.py to retrieve the old tweeter data. The data was saved in a JSON file with all 

useful information: username, posting date, geo-location, the number of retweets, and the 

number of favorites, hashtags, and permanent links. 

 

 

Airline Carrier Twitter Account Time to Join 

Twitter 

Responsive 24/7 

on Twitter 

Hawaiian Airlines @HawaiianAir April 2009 No 

United Airlines @United March 2011 Yes 

Alaska Airlines @AlaskaAir February 2008 Yes 

SkyWest Airlines @SkyWestAirlines January 2011 No 

Frontier Airlines @FlyFrontier March 2008 No 

Southwest Airlines @SouthwestAir July 2007 No 

American Airlines @AmericanAir March 2009 No 

Spirit Airlines @SpiritAirlines                    February 2009 No 

Delta Airlines                 @Delta May 2007 No 

ExpressJet Airlines @expressjet January 2012 No 

Virgin America @VirginAmerica January 2008 No 

JetBlue Airways @JetBlue May 2007 No 

To use this script, you can pass the following attributes: 
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To retrieve the old tweets about one particular screen name (such as United), the Python 

code was written like this:  

 

 

 

Each airline company in this study has an official Twitter account (see Table 7). The 

following screenshots (Figure 6) were taken on Jan. 18, 2018. On the main page, each 

airline carrier has some Twitter information: description of the airline company, the 

number of followers, the number of followings, the number of tweets, the total number of 

likes, the geo-location of the business, the data to join Twitter.  

 

    username: Username of a specific twitter account (without @) 

       since: The lower bound date (yyyy-mm-aa) 

       until: The upper bound date (yyyy-mm-aa) 

 querysearch: A query text to be matched 

        near: A reference location area from where tweets were generated 

      within: A distance radius from "near" location (e.g. 10mi) 

   maxtweets: The maximum number of tweets to retrieve 

   toptweets: Only the tweets provided as top tweets by Twitter (no parameters 

required) 

      output: A filename to export the results (default is "output.csv") 

# Get tweets by username and bound dates [united, '2015-09-10', '2015-09-12'] 

python Exporter.py --username "@united" --since 2015-09-10 --until 2015-09-12 



 37 

 

 



 38 

 

 

Figure 6. Screenshots of Airlines’ Twitter Account 

 

4.3 Searching Tweets 

Python code has been developed to retrieve old tweets from Twitter; the username 

and keywords can be specified, and it can set a maximum number of tweets, limit the 
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location, and set the time period. The program will save requested tweets in the CSV 

format after retrieval. For each airline company, I use “since” and “until” to limit the 

lower bound date and the upper bound date. The data is for three months and includes all 

of the tweets that mentioned each airline company, from Twitter users all over the world. 

There are many users who mentioned one of the airline companies. The tweets were 

collected from any users who mentioned one of the specific airline companies on Twitter 

during the specified periods. The original code examples for retrieving tweets are listed 

below (Figure 7): 

 

 

 

Table 8 shows the Twitter data for twelve airline carriers from April 1 until June 30, 

2017. Delta has the most mentioned tweets (363,775) from the largest number of unique 

users (127,902) on Twitter, while ExpressJet has the lowest number of mentions on 

Twitter, from 50 unique users. ExpressJet carried twice the passengers that Virgin 

America carried in the three-month period. However, ExpressJet only received 77 

mentions on Twitter in the three months. The reason might be that the customers who 

purchased the cheap airline tickets may not have a high expectation of service quality 

python Exporter.py --querysearch "@united" --since 2017-04-01 --until 2017-06-30  

 

python Exporter.py --querysearch "@AlaskaAir " --since 2017-04-01 --until 2017-06-30  

 

python Exporter.py --querysearch "@ SouthwestAir" --since 2017-04-01 --until 2017-06-30  

 

python Exporter.py --querysearch "@ FlyFrontier" --since 2017-04-01 --until 2017-06-30  

 

Figure 7.  Example Code to Retrieve Twitter Data 
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from ExpressJet. American Airlines received the most mentioned tweets from individual 

users (3.01 times per user).  

 

 

TABLE 8 THE DESCRIPTIVE DATA FOR THE FOUR AIRLINE CARRIERS  

(TWITTER DATA FROM APR.1 TO JUN. 30, 2017) 

  

Airline Carriers Number of Tweets from 

 Apr.1 to Jun. 30, 2017 

Number of 

Unique Users 

Average Tweets 

Per User 

United Airlines 283,045 151,135 1.87 

Alaska Airlines 42,126 15,486 2.72 

Southwest Airlines 111,584 46,341 2.41 

Frontier Airlines 8,341 4,941 1.69 

American Airlines 235,958 78,328 3.01 

Delta Airlines 363,755 127,902 2.84 

ExpressJet 77 50 1.54 

Hawaiian Airlines 4,745 2,219 2.14 

SkyWest Airlines 275 160 1.72 

Spirit 28,664 14,285 2.01 

JetBlue Airlines 74,490 26,833 2.78 

Virgin America 19,669 7,961 2.47 
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CHAPTER 

5 RESEARCH METHODOLOGY 

5.1 Preprocessing the Retrieved Twitter Data 

 

After three months of Twitter data for all twelve airline companies was retrieved, 

the data was saved in the CSV file. In order to process it easily, I  converted it from a 

CSV format into an Excel format. Now, I had 12 Excel files for each airline company in 

this study. In each Excel file, there are ten fields: username, date, retweets, favorites, text, 

geo, mentions, hashtags, id, and permalink. The username, or “screen name” is unique on 

Twitter. By username, all of the tweets (Twitter posts) posted by this user can be selected 

in the dataset. The date contains the date and time when the tweets were posted. Retweets 

shows the number of retweets of each tweet. Retweets are similar to the forward function 

in the email; if retweeted, other users will get the same tweet that is shown on the user’s 

Twitter account. Favorites shows the number of favorites, just as “like” does on 

Facebook. Text shows the textual message only. Geo is an optional field. It shows the 

geographical location of the users when they posted the tweets. Most of tweets don’t 

include the geo information, and, because the geo information is shared by the users 

when they posted the tweets, it is not mandatorily reported. Mentions may contain zero or 

multiple objects. If the users use “@” symbol followed by other usernames, the field of 

mentions will show the mentioned users, for example “@VirginAmerica.”Hashtag is the 

topic used by users who post the tweets. A hashtag typically begins with “#” and is 

followed by a topic. Sometimes, users post more than one hashtag, like 

“#VirginiaAmerica #PPC #marketing #paidads #paidadvertising.” The field of id 
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corresponds to the username, but in numerical format. Each Twitter user has unique 

username and id. Permalink is the permanent link that directs users to each specific tweet. 

For instance,  

https://twitter.com/helloreneerod/status/874494528396316672 

This link will direct you to the see the original post showed in Figure 8.  
 
 

 
Figure 8. Example of Original Twitter Post 

 
 
 Secondly, in order to be able to use the Twitter data to conduct the statistical 

analysis and sentiment analysis at a later time, I preprocessed the Twitter data. Since this 

study focuses on the service quality of airline industry, I would like to focus on the tweets 

posted from real customers, not from the airline staffs. The tweets posted by airline’s 

username (See Table 8) were removed. In addition, because some tweets do not reveal 

any useful information that can be used to measure the service quality of airlines, those 
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tweets were removed from the dataset.  If a tweet didn’t contain any words, or the tweet 

only contained one word, such as “Ok”, “thanks”, “hi”, “awesome”, or “yes”, it was 

removed. 

 Thirdly, I removed the keywords that were used to retrieve the Twitter data. I 

used “@VirginAmerica” to search, then show, tweets containing this keyword through 

the Excel file.  For example, the original tweet “@VirginAmerica some of the best 

customer service I have every had. companies could learn a lot from their operations”, 

were processed as “some of the best customer service I have every had. companies could 

learn a lot from their operations.” There are some typos in the tweets, but they are 

normal and frequently occur in textual data on social media platforms.  

 Fourthly, all the tweets (in text field of the Excel file) were converted to lower 

case. The reason is simple. It was used to match the words listed in the Lexicons database 

(all lower case). This is an essential step before I do the sentiment analysis.  In computer 

languages, lower case and upper case are different values. In order to compare words, 

they must in the same case, lower case or upper case. For example, if a tweet contains 

word “Great”, the sentiment score was calculated by the matching word in the Lexicons 

database. However, the Lexicons database only contains the word “great.” If this is the 

case, the sentiment score of this tweet will not be calculated correctly, and neither will 

the value of its valence or its arousal.  

 Finally, I needed to remove all of the meaningless information in the tweets. For 

example, “http” or “https” is always shown in tweets as the beginning of the URL. I 

would remove “https://” first, and then remove “http://”. The order is important here; if I 

removed http first, https will remain “s” in the text field.  “www” is another word that 
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needed to be removed. After that, I trimmed the white spaces in the tweets. The 

preprocessing workflow is illustrated in Figure 9.  

 

Figure 9. The Workflow of Processing the Twitter Data 

 
 After processing the Twitter data as shown in the steps in Figure 9, the final 

Twitter datasets could be described in Table 8. United Airlines was mentioned by the 

largest number of unique users (135,569 unique users). And American Airlines received 

the highest number of average tweets per user (2.09). This can be interpreted to show that 

the customers of American Airlines would like to communicate with the airline company 

on Twitter. The highest number of tweets was received by Delta Airlines; it was 

mentioned by Twitter users (or its customers) over 227,000 times during this period 

(April - June 2017).  
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TABLE 9 THE DESCRIPTIVE OF PROCESSED TWITTER DATA 

 

 

 

 

 

 

 

 

 

Airline Carriers Number of Tweets from 

 Apr.1 to Jun. 30, 2017 

Number of 

Unique Users 

Average Tweets 

Per User 

United Airlines 224,789 135,569 1.66 

Alaska Airlines 26,616 13,969 1.91 

Southwest Airlines 68,522 42,561 1.61 

Frontier Airlines 7,301 4,574 1.60 

American Airlines 150,454 72,071 2.09 

Delta Airlines 227,121 116,165 1.96 

ExpressJet 58 45 1.54 

Hawaiian Airlines 3,401 2,025 1.68 

SkyWest Airlines 231 141 1.64 

Spirit 23,045 13,095 1.76 

JetBlue Airlines 49,503 24,693 2.00 

Virgin America 11,817 7,270 1.63 



 46 

5.2 Text Mining and Supervised Classification by SERVQUAL Dimensions 

 

 Text mining has been used a lot in recent years by researchers and businesses. 

Text as input information can be retrieved from the Internet. For example, comments 

about products, reviews of a movie or a restaurant, complaints about customer services, 

discussions about a hot topic, can all be mined. Text mining was defined by Hearst 

(1999) as, “the most use of large online text collections to discover new facts and trends 

about the world itself.” Text mining has been investigated by multiple disciplines: 

linguistics, computer science, computational statistics, and information technology. 

Standard techniques in text mining are text classification, text clustering, word frequency 

and co-occurrence words, document summarization, and latent corpus analysis (Meyer, 

Hornik & Feinerer, 2008). R is a powerful text mining; it is an open source tool with lots 

of text mining packages. In particular, the tm package developed by Meyer et al. (2008) 

is the core for text mining. In order to do text mining, the dataset should be processed 

again to meet the requirements of creating the word corpus. All of the punctuation and 

stop words in English, and then the white spaces in the tweets must be removed. The 

following word frequency cloud (Figure 10) shows the frequency of the words used in the 

tweets for each airline company. The larger the word, the higher the frequency of this 

word’s mention in the Twitter data.  
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JetBlue 
 

SkyWest Airlines 

 

SouthWest Airlines 

 

Spirit 

 

United Airlines 

 

Virgin America 

Figure 10. Word Clouds of Tweets for Each Airline Carrier 
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As shown in Figure 10, the word clouds indicate the emphasis on specific words 

in the Twitter data for each airline companies. For example, Virgin America and Alaska 

Airlines received more positive words than others, like “thanks”, “like”, “love”, “great”, 

“best”, and so on. However, United Airlines received lots of negative words, like 

“never”, “dont”, and “cant.” If one looks at the tweets about Spirit Airlines, one can see 

that most of its tweeting customers complained about bad service, delayed flights, and 

cancelled flights. Text mining can initially check the most discussed topics on Twitter 

and can show the most frequent discussions through word clouds. 

 In Table 2, I have listed the six dimensions of Service Quality. In text mining, the 

technology named “supervised classification” can be used to classify the text into 

different categories. Supervised classification uses the Naïve Bayes theorem to classify 

the categories. I used this method to test the six dimensions of service quality.  In this 

study, three graduate students reviewed most of the Twitter data and picked up some key 

words that can represent the dimensions of service quality. The three graduate students 

were trained on a knowledge about airline service quality before they searched for the 

keywords from Twitter dataset. When they had completed the keywords, they shared the 

keywords with each other. To get the common sense of the keywords for each dimension, 

they exchanged their understanding of the attributes of dimensions and then finalized the 

keywords list, as shown in Table 10. 
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TABLE 10 KEY WORDS OF EACH DIMENSION OF SERVICE QUALITY 

Dimensions of Service Quality Key Words  

Responsiveness 

 

Nice, kind, call, phone, cell, reschedule, schedule, 

information, info, notify, handle, rude, counter agent, 

minor, unaccompanied, help, refund, track, prefer, 

hotel, helpful, wonderful, agent, gate, callback, 

support, website, site, love, great, app, club, status, 

mile, 1k, frequent, lounge, mvp, best, attentive 

Assurance 

 

translate, English, service, rude, customer service, 

manager, favorite, win, treat, landing, awesome, 

perfect, issue, solve, elevate points, care, remove, 

poor, behavior, thrown, dumped, drag, cost, change, 

culture, skill, courtesy, upgraded, upgrade, 

professionalism, complaint, refund, hotel, 

reimbursed, reimbursement 

Tangibility 

 

Food, beverage, drink, wine, clean, dirty, meal, 

choice, music, movie, comfortable, uncomfortable, 

pillow, blanket, repair, game, sit, water, amenity, 

cabin, crew, bathroom, seat, air conditioner, wifi, 

breakfast, dinner, window, aisle, staff, neck, body, 

wi-fi 

Reliability 

 

check in, delay, on time, luggage, miss, baggage, 

handle, depart, arrival, lost, mechanical, failure, bags, 

bag, checked, late, wait, hour, board, cancel, 

inconvenience, cancelled, delayed, departed, 

departure, arrivals, arrive, carry on 

Security and Safety 

 

safe, safety, safely, animal, cat, dog, cage, security, 

secure 
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Table 11 shows some tweet examples that are related to each dimension of service 

quality. These examples may have some overlaps across the different dimensions. Since 

customers may complain multiple issues in one tweet, it can be difficult to split the 

corresponding service quality in one tweet. This is the one of the limitations of this 

research. However, this limitation does not change the consequence of the service quality 

or the sentiment. In the Twitter dataset, many tweets discuss one major dimension of 

service quality, and the mood of this customer can be tested by sentiment analysis. Due to 

the large amount of data, scientists want to find a way to figure out the sentiment of the 

textual social media data. In this case, I used the open source packages in the R program 

to conduct the sentiment analysis. Three major packages are used: “sentimentr”, 

“ANEW” dictionary, and “NRC.” 

 

 

 

 

 

 

 

 

Communications 

 

open, foreigners, communicate, communication, talk, 

announcement, announce, attendants, attendant, 

pilot, contact, answer, response 
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TABLE 11 SERVICE QUALITY DIMENSION RELATED TO TWEETS 

Dimensions of 

Service Quality 

Tweets Examples 

Responsiveness 

 

• I love alaskaair left my wallet on the plane at O’Hare last 

night and their staff went above and beyond to find it. you 

guys rock. 

• many thanks to your pdx crew coming from lax. they had to 

deal with some awful folks & they handled it like champs. 

#iflyalaska 

• had a great flight as always and just wanted to say thanks 

you providing a way to see family at an affordable price 

• gonna make me miss my flight home? you pay for hotel 

• you can move your united status to alaska - do it! 

• on flight 380 from nashville to las vegas. dave was the best 

flight attendant i've ever had! so attentive 

Assurance 

 

• trying to convert elevate points. get world's most generic 

error message with no actual contact info!!  

• looks like this flight to sd is paaacked! hopefully i don't get 

thrown off.  

• we just got married and taking to our honeymoon! we got 

the special treatment!! thanks you so much dawn and linda 

from alaska 31 
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• I just experienced the perfect landing in by the captain of 

flight 2221. awesome job!!! 

• @delta $150 bucks each way for unaccompanied minor fee? 

whew! I guess we'll be flying alaska @$25 each way. thx 

#smarttravel 

Tangibility 

 

• cabin crew on flight 934 today was awesome. 

• in flight entertainment is awesome. 

Reliability 

 

• baggage handle destroyed 

• we're all ready to go now. it was more funny than an 

inconvenience and was handled well by the staff! 

• almost an hour and still no luggage. have a little pity on the 

weary travelers :-( 

• app says flight 975 arrived at 10:08. funny we're still taxiing 

for a gate. guess i'll get my baggage guarantee at 10:28 

Security and Safety 

 

• nice to visit family but even better to get home. safe travels 

• thank god great & safe flight to #seattle . special thanks to 

for making it a smooth one! 

• was there any explanation for why that happened? safe 

travels to you and the dog. 

• alaska airlines you just lost a customer. if you won't 

accommodate a service dog when the seat is paid for is 

ridiculous. cassius you rock. 
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5.3 Sentiment Analysis and Data Visualization 

 

Opinion mining and sentiment analysis contribute to the development of an 

opinion-oriented information system for service or products providing companies (Pang 

& Lee, 2008).  If service providing companies want to get feedback or opinions from 

customers, the traditional way is for them to conduct surveys and to distribute the surveys 

to the customers who have used the services in that company. However, a survey is not 

enough to get the customers’ feedback in this digital world, because a survey needs time 

to be collected and analyzed. The issues of service cannot be addressed by the company 

quickly. Fortunately, customers like to post their service experiences on social media 

platforms rather than completing a survey or complaining to the company directly. 

Twitter and Facebook are the two of the most popular social media platforms.  

Communications 

 

• thanks for the update - patiently waiting 

• gate agent at koa boarded me and walked up to the plane & 

pilot said no boarding. communicate people! 

• please figure out how to communicate better with your 

customers. need better planes and some kind of hotel options 

if no flights. 

• flight attendant made an announcement that we were clear 

to fly and continued boarding at 930ish. but pilots couldn't 

be found. 
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Twitter Sentiment Analysis is the process of determining the emotional tone 

behind a series of words. It is used to gain an understanding of the attitudes, opinions, 

and emotions expressed within an online mention. Having a solid understanding of 

current public sentiment can be a great tool for any business. When deciding if a new 

marketing campaign is being received warmly, or if a news release about the CEO is 

causing customers to become angry, the people in charge of handling a company’s public 

image need these answers quickly. And social media can deliver those answers quickly. 

One simple, yet effective, tool for testing the public waters is to run a sentiment analysis.  

There are many ways to do sentiment analysis. Many approaches use the same 

general idea. Here are the three steps to do the sentiment analysis: 

1. Create or find a list of words associated with strongly positive or negative 

sentiment.  

2. Count the number of positive and negative words in the text.  

3. Analyze the mix of positive to negative words. The use of many positive words 

and few negative words indicates a positive sentiment, while the use of many negative 

words and few positive words indicates a negative sentiment.  

To perform the sentiment analysis, download the positive and negative words and 

evaluate the tweets with those positive and negative lexicons. The list of positive words 

contains 2,003 words and the list of negative words contains 4,782 words (Hu & Liu, 

2004; Liu, Hu & Cheng, 2005).  These word lists include some misspelled words that are 

possible appear frequently in social media content.  

After having been run through the sentiment words lists, the tweets should be 

preprocessed before the sentiment scores can be calculated. First, the data must be 
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cleaned. This step involves the removal of stop words, all of the numbers, and all of the 

white spaces, and the conversion of all of the words or letters to the lower case.  

The first step, creating or finding a word list (also called a Lexicon), is generally 

the most time-consuming. In this study, I use the existing Lexicons and made some 

modifications to those Lexicons. For example, social media popular acronyms or slang 

are not included in the existing Lexicons. “omg”, “lol”, “thx”, and “wtf” are very 

common acronyms on social media platforms.  I included these types of words in the 

Lexicon for in this study. Researchers can edit the Lexicons when they study specific 

topics. However, some words have double emotional meaning. For instance, “sick" is an 

example of a word that can have positive or negative sentiment depending on what it's 

used to refer to. If you're discussing a pet store that sells a lot of sick animals, the 

sentiment is probably negative. On the other hand, if you're talking about a skateboarding 

instructor who taught you how to do a lot of sick flips, the sentiment is probably very 

positive. Sentiment analysis uses machine learning algorithms. In this research, R Studio 

was used to load the sentiment analysis packages and to analyze the processed tweets for 

all twelve of the airline companies.  

A sentiment analysis works like this: I first take a bunch of tweets about whatever 

I am looking for. I then parse those tweets out into their individual words, and then count 

the number of positive words and compare it to the number of negative words. I use the 

open source R program to calculate the sentiment score of the sentence from 

https://github.com/exploratory-io/exploratory_func. This function first maps the 

predefined sentiment type (positive or negative) or the value (how positive or how 

negative). And then it considers the intensity of the sentiment. If I am using the positive 
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or negative to determine the sentiment, it is not enough to learn the mood or emotion of 

the customers. For example, here are two tweets in the dataset: “I’m feeling so good!” 

and “I’m feeling much better!”  They are both positive. However, the two sentences 

express the intensity that influences the different results in emotion. “so” and “much” are 

the intensifiers in these sentences and score differently. In order to make sure of the 

accuracy of sentiment analysis, another popular package is used. Affective Norms of 

English Words (ANEW) dictionary has classified the words and has assigned them two 

elements to measure the emotions: Valence and Arousal (Russell, 1980). Emotions are a 

subjective thing, and while we can measure their magnitude to a certain degree by 

monitoring people’s physical response, it can be difficult to tell the difference between a 

“good” emotion and a “bad” one. For example, when people face the same problem, they 

can have very different emotions. Even if the directions of emotion are same, their level 

of physical response will be different. Valence is the direction of the emotion, and arousal 

is the level/amount of the physical response. Figure 12 illustrates the relationship 

between valence and arousal. For example, the positive words “happy” and “relax” have 

different arousal levels. “happy” has a higher arousal level than “relax.” We can tell the 

intensity of the sentiment using those words.  

Sentiment scores are calculated by the sum of positive minus negative, then they 

are divided by the number of words of the tweet.  So, the sentiment score ranges from -1 

to +1. Minus 1 means that the tweet is completely negative in sentiment, while positive 1 

means that this tweet is completely positive in sentiment. In this study, I used dictionary-

based methods, also called Lexicon, which all center around the determination of text T’s 
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average sentiment (referred as valence) with sentiment dictionary D through the equation 

(3): 

 

																															ℎ2. =
∑ <=(>)∙@A(>)BC=

∑ @ABC= (>)
= ∑ ℎ2(𝑤) ∙ 𝑝.(𝑤)>∈2                       (3) 

 

Where I denote each of the words in a given sentiment dictionary D as w, word sentiment 

scores as ℎ2(𝑤), word frequency as 𝑓.(𝑤), and normalized frequency of w in T as 

𝑃.(𝑤) = 𝑓.(𝑤)/∑ 𝑓.(𝑤)>∈2 . In this way, I can measure the sentiment of a text in a 

manner analogous to taking the temperature of a room. Analyzing individual word 

contribution is important to the tweets and this equation allows for a meaningful 

interpretation. For example,  

 

“funny that you tweeted this after a cancellation of a flight from dca > sfo because of 

lack of crew” 

Sentiment score: 0.01147079, Valence: 6.25, Arousal:7.92 

 

In this case, the tweet expressed a strong emotion. However, the valence score is a 

little bit higher (6.25 out of 9); it is not that accurate in this tweet. The sentiment score 

shows the neutral to positive sign. If we read this tweet, it should be a complaint about 

the flight cancellation. So, typically, we can think about it as a negative. Arousal can 

reveal strong emotional intensity. In addition to the sentiment score, marketers or 

business practitioners can also use arousal as a sign to determine whether the textual data 

should be flagged.   
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To calculate the valence and arousal score for the sentences or paragraphs, I use 

the ANEW dictionary and apply that into Python code.  First, the ANEW terms should be 

defined in a Python file with words, stem-words, average arousal score, and average 

valence score (Figure 11).  

 

 

 

Figure 11. ANEW Terms Definition in Python Code 
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Second, I divide the tweet into individual terms and then I try to match the 

ANEW dictionary. If find that any words have matched, then I use the following 

procedure to calculate the arousal and valence score. Partial code written in Python is 

shown in Table 12.  

 

 

TABLE 12 PARTIAL PYTHON CODE TO CALCULATE VALENCE AND 

AROUSAL 
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Figure 12. Valence and Arousal Illustration 

 

 

In this study, I used three major Lexicons to calculate the sentiment for each 

tweet. The ANEW dictionary measured the valence and arousal for the tweets. To apply 

the ANEW dictionary, each tweet was given a score for valence and for arousal.  Both 

valence and arousal are positive scores. The higher the valence score, the more the 

positive direction of this tweet. The higher the arousal score, the more intensive the 

emotion expressed by the tweet.  
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The second Lexicon is Sent140Lex that was developed by National Research 

Council from Canada (NRC) and was created from the “sentiment140” corpus of tweets. 

It uses Pairwise Mutual Information with emoticons as positive and negative labels. The 

third Lexicon, EmoLex, was used to find emotion words like happy, sad, surprised, 

angry, and so on. EmoLex was developed by NRC and can calculate the sentiment of 

common words and phrases using Mechanical Turk.  

The third Lexicon, EmoLex, was created by experts from NRC of Canada, It uses 

the eight basic emotions (anger, fear, anticipation, trust, surprise, sadness, joy, and 

disgust) in psychology (Plutchik, 1962). Figure 13 illustrates the wheel of emotion in four 

opposing pairs: joy-sadness, anger-fear, trust-disgust, and anticipation-surprise.  EmoLex 

is a list of English words and also provides translations to other languages words 

including Spanish, Traditional Chinese, Simplified Chinese, Japanese, French, German, 

and Arabic (Mohammad & Turney, 2010; Mohammad & Turney, 2013). EmoLex can be 

used to identify emotions and sentiment, as well as to analyze hashtags, emoticons, and 

word-color associations. Matching the words in the lexicons can be used to analyze 

English texts, and then scientists can gather the emotional sentiment about textual data.  
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Figure 13.  Plutchik Wheel of Emotion (Plutchik, 1980) 

 
The way people use words conveys information about themselves and the 

situation or status they are in (Pennebaker et al, 2003). The words that people use are 

diagnostic of their mental, social, and physical appearance. Individuals’ choice of words 

can reveal their social status, age, sex, and motives (Pennebaker et al, 2003). In the digital 

era, people share their life experiences on social media platforms so frequently and this 

information is valuable to analyze the textual social media data. For example,  

 “I'm so excited. I just booked my tickets! #flyfrontier #frontierairlines 

#cheapairfare” 
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The above example shows the customer was excited to book an inexpensive fare 

from Frontier. Through emotional sentiment analysis, having matched the word list in the 

lexicons, the emotions “anticipation”, “joy”, “surprise” and “trust” were identified from 

this tweet. So, in most cases, emotional sentiment can be mixed in with a variety of basic 

emotions. Mixed emotions have been discussed intensively by psychologists (Aman & 

Szpakowicz, 2007). Sometimes, one positive word in joy and one negative word in fear 

can be uttered at the same time. For instance, if this is the the customer’s first time to take 

the plane, he or she will have mixed emotions. The customer may anticipate something in 

the brand-new experience, and may also fear the safety of air transportation. Such 

situations happens frequently in our lives, like the first time we go to school, the first time 

we shop online, the first time we get a job offer, and so on. People always express mixed 

emotions in those moments, and a sentiment score cannot detect the mixed emotion from 

textual data. So, I used the EmoLex to identify the emotional sentiment.  

Sentiment analysis is in demand because of its efficiency. Thousands of text 

documents or tweets can be processed for sentiment in seconds, compared to the hours it 

would take a team of people to manually complete this task. Because it is so efficient 

(with an 80% accuracy for English content) many businesses are adopting text and 

sentiment analysis and incorporating it into their processes.  

 

 

anger anticipation disgust fear joy sadness surprise trust 

0 1 0 0 1 0 1 1 
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5.4 Pearson Correlation and Multivariable Regression Model 

 

In order to test the relationship between social media Twitter data and DOT-

reported data, I used Pearson correlation to find the relationship between each service 

quality metric and AQR score. I tested the correlation between the AQR score and each 

dimension of service quality discussed in Chapter 3. The three dimensions 

(responsiveness, assurance, and reliability) of service quality were expected positively 

associated with AQR score. 

  The multivariable regression model was used to create a prediction model and to 

find which variables would play important role to the AQR score. To answer my research 

questions in Chapter 1, I tested the variables as discussed in Chapter 5.3 (sentiment 

analysis). Since AQR scores are calculated by the DOT monthly report, and it has a two 

month lag for customers and airline companies for decision making, I tested to see if 

social media data could be used to monitor airline service quality instead of having the 

airlines wait for the DOT report released two months later.  

The AQR score is the dependent variable that can be calculated by the data from 

DOT monthly report.  The independent variables come from social media data: the 

volume of tweets, the sentiment score, the 8-emotion sentiment score (joy, sadness, 

anger, fear, trust, disgust, anticipation, and surprise), the valence score, and the arousal 

score (using the ANEW dictionary, the scores range from 1 to 10). A higher valence 

score means a more positive response, and a higher arousal score means a more excited 

and more intense emotion.  
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In the regression mode, the control variables were introduced to control the model 

fit.  Since different airline companies use their social media marketing differently and 

since customer support varies, this may affect the number of followers on their social 

media platforms. The fewer followers means the fewer mentions on Twitter. The control 

variables are: the time that each airline company began to use Twitter, whether they have 

someone to respond 24/7 on Twitter (dummy variable), the number of followers of each 

airline for each month. Equation (3) shows the initial regression model: 

														AQR = 	α + 𝑋8𝛽8 + 𝑋6𝛽6 +	𝑋+𝛽+ + ⋯+	𝑋R𝛽R + 𝜀                       (3) 

In this study, I tested the effectiveness of multiple variables on the AQR score. I wanted 

to find out about the relationship between the sentiment indicators and the AQR score. 

The control variables were investigated as well, in order to determine the regression 

model fit. The dataset contained 12 U.S.-based airlines companies’ data for three 

consecutive months in 2017.  

 To examine the effectiveness of social media data analytics on service quality of 

airline industry, I specified the following empirical models:  

The first model (equation 4) was used to test the sentiment score’s effect on the 

AQR score. The sentiment score, the valence, and the arousal were used as independent 

variables to find the relationship between AQR score.  I expected that, the lower the 

sentiment scores of tweets, the more complaints would be listed in the DOT report; this 

would result in a lower AQR score.  

In the first model, AQR was monthly data and then the sentiment score could use the 

value of mean to represent the entire month. In terms of valence and arousal, these scores 

were highly dispersed in the dataset. Hence, I used the sum of the valence and the sum of 
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the arousal for each month to represent the valence and arousal for this month.  Equation 

(4) presents the first predicted model.  

 

AQR = f (constant, the volume of tweets, the average sentiment score, sum of valence, sum 

of arousal)                                                                                                                     (4) 

 

The explicit form of equation (4) is represented as follows: 

𝐴𝑄𝑅 =	𝛼1 +		𝛼8(𝑣𝑜𝑙𝑢𝑚𝑒	𝑜𝑓	𝑡𝑤𝑒𝑒𝑡𝑠) +	𝛼6(𝑎𝑣𝑒𝑟𝑎𝑔𝑒	𝑠𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡	𝑠𝑐𝑜𝑟𝑒) +

	𝛼+(	𝑣𝑎𝑙𝑒𝑛𝑐𝑒) +	𝛼c(𝑎𝑟𝑜𝑢𝑠𝑎𝑙) 	+ 𝜀                                                                              (5) 

 

 

In the next model, I would test the interaction of valence and arousal in the regression 

model. Since valence and arousal are the most critical dimensions of emotion-related 

behavior (Lang, 1995), Robinson, Storbeck, and Meier (2004) found that valence-arousal 

interactions had a significant effect on evaluation processing. The new model is shown in 

equation (6).  

 

AQR = f (constant, the volume of tweets, the average sentiment score, sum of valence, sum 

of arousal, valence * arousal)                                                                                         (6) 

 

The explicit form of equation (6) shows: 

𝐴𝑄𝑅 =	𝛼1 +	𝛼8(𝑣𝑜𝑙𝑢𝑚𝑒	𝑜𝑓	𝑡𝑤𝑒𝑒𝑡𝑠) +	𝛼6(𝑎𝑣𝑒𝑟𝑎𝑔𝑒	𝑠𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡	𝑠𝑐𝑜𝑟𝑒) +

	𝛼+(	𝑣𝑎𝑙𝑒𝑛𝑐𝑒) +	𝛼c(	𝑎𝑟𝑜𝑢𝑠𝑎𝑙) + 𝛼d(𝑣𝑎𝑙𝑒𝑛𝑐𝑒 ∗ 𝑎𝑟𝑜𝑢𝑠𝑎𝑙) + 	𝜀                                             (7) 
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If I considered all of datasets, I put all of the data into one dataset and annotated the 

airline carrier’s name on a new column. I was able to test the effectiveness of sentiment 

analysis on measuring service quality in the airline industry. I also needed take control 

variables into account.  I expected that I would find that the larger the volume of negative 

tweets, the lower the AQR score would be. In terms of valence and arousal, they were 

expected positively related to the AQR score. Equation (8) represents the model. 

 

AQR = f (constant, the volume of tweets, sentiment score)                (8) 

The explicit form of equation (8) shows: 

𝐴𝑄𝑅 =	𝛼1 +	𝛼8(𝑣𝑜𝑙𝑢𝑚𝑒	𝑜𝑓	𝑡𝑤𝑒𝑒𝑡𝑠) +	𝛼6(𝑎𝑣𝑒𝑟𝑎𝑔𝑒	𝑠𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡	𝑠𝑐𝑜𝑟𝑒) + 	𝜀          (9)                                                                

 

Next, having included all of the control variables in the model, the model is shown in 

equation (10). Control variables are the number of followers, the number of passengers, 

the number of schedule flights,  

 

AQR = f (constant, the volume of tweets, sentiment score, control variables)               (10) 

 

The explicit form of equation (10) shows: 

 

𝐴𝑄𝑅 =	𝛼1 +	𝛼8(𝑣𝑜𝑙𝑢𝑚𝑒	𝑜𝑓	𝑡𝑤𝑒𝑒𝑡𝑠) +	𝛼6(𝑎𝑣𝑒𝑟𝑎𝑔𝑒	𝑠𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡	𝑠𝑐𝑜𝑟𝑒) +

	𝛼+(𝑡𝑖𝑚𝑒	𝑡𝑜	𝑗𝑜𝑖𝑛	𝑇𝑤𝑖𝑡𝑡𝑒𝑟) +	𝛼c(𝑇𝑤𝑖𝑡𝑡𝑒𝑟	𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒	𝑓𝑒𝑎𝑡𝑢𝑟𝑒) +
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𝛼d(𝑡ℎ𝑒	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟𝑠) + 𝛼*(𝑡ℎ𝑒	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑝𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟𝑠) +

	𝛼4(𝑡ℎ𝑒	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑	𝑓𝑙𝑖𝑔ℎ𝑡𝑠)	+ 	𝜀                                                                              (11) 

 

To make the model more fit and more efficient, I introduced the control variables into the 

regression mode (shown in equation (12)).  

 

AQR = joy, sadness, anger, fear, trust, disgust, anticipation, and surprise 

f (constant, the volume of tweets, emotional sentiment score, control variables)         (12) 

 

𝐴𝑄𝑅 =	𝛼1 +	𝛼8(𝑣𝑜𝑙𝑢𝑚𝑒	𝑜𝑓	𝑡𝑤𝑒𝑒𝑡𝑠) +	𝛼6(𝑗𝑜𝑦) + 𝛼+(𝑠𝑎𝑑𝑛𝑒𝑠𝑠) +	𝛼c(𝑎𝑛𝑔𝑒𝑟) +

	𝛼d(𝑓𝑒𝑎𝑟)	+	𝛼*(𝑡𝑟𝑢𝑠𝑡)	+	𝛼4(𝑑𝑖𝑠𝑔𝑢𝑠𝑡) +	𝛼((𝑎𝑛𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑖𝑜𝑛) +	𝛼5(𝑠𝑢𝑟𝑝𝑟𝑖𝑠𝑒) +

	𝛼81(𝑡𝑖𝑚𝑒	𝑡𝑜	𝑗𝑜𝑖𝑛	𝑇𝑤𝑖𝑡𝑡𝑒𝑟) +	𝛼88(𝑇𝑤𝑖𝑡𝑡𝑒𝑟	𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒	𝑓𝑒𝑎𝑡𝑢𝑟𝑒) +

𝛼86(𝑡ℎ𝑒	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟𝑠) + 	𝜀                                                                         (13) 

 

Due to the big incident that occurred with United Airlines on April 2017, I was 

interested in looking at time as the variable in the regression model. I expected to find 

that big incidents or accidents cause a lot of negative discussions on social media 

platforms and may affect other competitors as well, for a short time after the incidents. 

The model is shown in equation (14).  

 

AQR = f (constant, the volume of tweets, emotional sentiment score, month, control 

variables)                                                                                                                         (14) 
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The explicit form of equation (14) above is represented as follows: 

 

𝐴𝑄𝑅 =	𝛼1 +	𝛼8(𝑣𝑜𝑙𝑢𝑚𝑒	𝑜𝑓	𝑡𝑤𝑒𝑒𝑡𝑠) +	𝛼6(𝑗𝑜𝑦) + 𝛼+(𝑠𝑎𝑑𝑛𝑒𝑠𝑠) +	𝛼c(𝑎𝑛𝑔𝑒𝑟) +

	𝛼d(𝑓𝑒𝑎𝑟)	+	𝛼*(𝑡𝑟𝑢𝑠𝑡)	+	𝛼4(𝑑𝑖𝑠𝑔𝑢𝑠𝑡) +	𝛼((𝑎𝑛𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑖𝑜𝑛) +	𝛼5(𝑠𝑢𝑟𝑝𝑟𝑖𝑠𝑒) +

	𝛼81(𝑡𝑖𝑚𝑒	𝑡𝑜	𝑗𝑜𝑖𝑛	𝑇𝑤𝑖𝑡𝑡𝑒𝑟) +	𝛼88(𝑇𝑤𝑖𝑡𝑡𝑒𝑟	𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒	𝑓𝑒𝑎𝑡𝑢𝑟𝑒) +

𝛼86(𝑡ℎ𝑒	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟𝑠) +	𝛼8+(𝑚𝑜𝑛𝑡ℎ) + 	𝜀                                                 (15)                                                                

 

I expected that the month would have influence on the AQR score, as well.  Since 

the Twitter data was collected for a three month period, and the United Airlines incident 

happened in early April of 2017, the volume and sentiment score should be expected to 

vary due to the different months. The big incident not only affected the perception of 

service quality for United Airlines, but it also affected the entire airline industry. The 

Twitter data was expected to have a similar pattern for the majority of the airline carriers 

over the three months.   
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CHAPTER 

6 RESULTS AND DISCUSSION 

In this chapter, I discuss the results for sentiment analysis, Pearson correlation 

analysis, and regression analysis. Data visualization is provided in Section 6.1. Pearson 

correlation is done in Section 6.2, followed by descriptive data from regression analysis 

in Section 6.3 and testing results of different regression models in Section 6.4.  

 

6.1 Data Visualization 

 

 In order to find the answers to my research questions, and to test the hypothesis, I 

used social media analysis to find the patterns or the trends of social media data during 

the research period. And then I had several numeric variables or columns in the final 

dataset for all U.S.-based airline companies: 8 columns of emotional signs (anger, 

anticipation, disgust, fear, joy, sadness, surprise, and trust), the volume of Tweets, the 

average sentiment score, the number of passengers, the number of scheduled flights, the 

number of months on Twitter, the number of followers on Twitter, whether they airline 

had an online response on Twitter, the sum of the valence score, and the sum of the 

arousal score. All the variables are numeric, and I used R to perform a quick analysis 

about the relationships and distances among them. This method helped me to discover an 

interesting relationship among some of the variables and may help me to exploit and 

build a better statistical model, later.  

 Other than looking for the correlations among the variables, I wanted to 

understand the distances among these numeric variables. I calculated the distances using 
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“Euclidean” distance that is a straight-line distance between two points presented in (q1, 

q2), and then the distance is calculated by the formula (16): 

 

𝑑(𝑝, 𝑞) = 	l(𝑞8 − 𝑝8)6 + (𝑞6 − 𝑝6)6                                  (16) 

 

 

 
 

Figure 14. Euclidean distance in R2 

 

 

Figure 15 illustrates that there are three clusters for all of the numeric variables. The 

number of passengers has the largest distances among other variables.  Other two major 

clusters are in green dots and orange dots. On one hand, the volume of tweets, arousal, 

and valence are in one cluster. They are close to each other. On the other hand, all of the 

variables related to emotional sentiment are close, with less distance.  
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Figure 15.  Map of Categories Based on Similarities 

 
 

Table 13 shows the top three shortest distance pairs of similarity of variables, with 

the value of distances between each pair. A smaller value of distance means that the pair 

is close to each other, and a larger value means that the pair is far away from each other. 

As Table 13 shows, the average sentiment score is very close to the online response 

(Distance = 2.365). 

Then, we can assume that the sentiment score would be correlated to the online 

response feature on Twitter. But we are not sure of the positive or negative relationship 

between the two variables. Another two pairs of variables are AQR with average 

sentiment score, and AQR with online response. So, if the airline companies used an 

online response, then AQR should be infected by this. The sentiment score was related to 

AQR, as I had predicted. And it looks as if the other emotional sentiment indicators are 

far away from the AQR score in the distance analysis.  
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TABLE 13 SIMILAR PAIRS WITH DISTANCES 

 
 
 

 After I analyzed the distance among all the numeric variables, I ran the overall 

sentiment analysis for all airline companies during the three month period. In the 

following figures, all of the airline companies’ Twitter data are shown in volume and in 

sentiment scores. I then put them into three categories: large airline carriers, cheap airline 

carriers, and other airline carriers. “Large airline carriers” comprises those that carry the 

largest number of passengers, including four airline companies: United Airlines, 

Southwest Airlines, American Airlines, and Delta Airlines. “Cheap airline carriers” 

means that the air fares on those are cheaper than on other major airlines. This category 

includes JetBlue, Spirit and Frontier. Those airline carriers always have their air fare 

deals online. For example, Frontier Airlines offers one-way air ticket for only $20 from 

ATL (Atlanta airport) to Orlando, FL. “Other airline carriers” include Hawaiian Airlines, 

Alaska Airlines, SkyWest Airlines and Virgin America. These airline carriers mostly 

have limited routes compared with the large airline carriers and the cheap airline carriers. 

Hawaiian Airlines mainly offers roundtrip fares from the U.S. mainland to Hawaii, and 

Alaska Airlines offers roundtrip fares from the U.S. Mainland to Alaska, as well as 

roundtrip fares among major cities in west coast in the U.S.  Table 14 shows the trend of 
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sentiment score and the trend of volume of tweets for each airline carrier in the three 

consecutive months.  

 

 
TABLE 14 OVERALL VOLUMES AND MEAN OF SENTIMENT SCORE FOR 

EACH AIRLINE CARRIERS IN THREE MONTHS 

Overall Volume of Tweets Overall Mean of Sentiment Score 

 
Alaska Airlines 

 
Alaska Airlines 

 
 

American Airlines 

 
 

American Airlines 
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Delta Airlines 

 
Delta Airlines 

 
ExpressJet 

 
ExpressJet 

 
Frontier Airlines 

 
Frontier Airlines 
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Hawaiian Airlines 

 
Hawaiian Airlines 

 
JetBlue 

 
JetBlue 

 
Skywest Airlines 

 
Skywest Airlines 
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Southwest Airlines 

 
Southwest Airlines 

 
Spirit Airlines 

 
Spirit Airlines 

 
United Airlines 

 
United Airlines 
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VirginAmerica 

 
VirginAmerica 

 
 
 From Table 14, we can see that United Airlines and Delta Airlines received the 

most tweets each day. If we look at the volume of the tweets, most of the airline carriers 

received a high volume of tweets during the period from Apr. 9 to Apr. 12. Since United 

Airlines had the critical incident on Apr. 9, and news of it was spread widely on social 

media, many people discussed and mentioned the incident on social media and expressed 

their indignant emotion and anger towards United Airlines. Southwest Airlines has a 

much lower volume of tweets compared to the large airline carriers and the other airline 

carriers. Due to the size of airline companies and limited airline routes, Spirit and 

SkyWest Airlines received only fewer than 100 mentioned tweets per day.  

When we look at the mean of the sentiment score for each airline, surprisingly, 

Alaska Airlines, Southwest Airlines, and Virgin America scored all positive sentiments 

during the period. Customers were satisfied as they perceived the service of these airline 

carriers. Compared to the DOT report, this is consistent with the results of sentiment 

analysis. The impactful incident resulted in a tremendous drop in sentiment score (the 

lowest sentiment score during the study period), as shown in the mean of the sentiment 

score of United Airlines. Compared to other airline carriers in the same time frame (Apr. 
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9 to Apr. 11), several airlines showed a lower sentiment score than at a normal time. 

Customers expressed their worries about the service quality and lost confidence in the 

perceived services by airline carriers. 

 There was a chain reaction after the United Airlines incident. The smaller issues 

met by other airlines could be amplified by customers during this especially hard time, 

even though these issues might have been tolerated by customers during a normal time. 

However, the competitors took advantage of this incident to draw more customers’ 

attention and to offer good service in order to improve service quality. Spirit Airlines had 

a hard time during this study period and scored lots of negative sentiment.  And the result 

is not surprising: Spirit received the lowest score on AQR. That means that Spirit 

received the most complaints, baggage mishandling, and involuntary denied boarding. 

Spirit is one of the cheap fare airline carriers, and it may sacrifice its maintenance time 

and its on-time rate to lower the cost of its operations. The problem will be there, and 

customers who choose the lowest fare should have an expectation that they will receive 

lower service quality, but they still complain about that, especially when the cancellation 

issue ruins the customers’ vacations and any safety and security issues that occur during 

the flights are complained about on Twitter.  

In the next section, the descriptive statistics of all of the variables are presented. 

Before I analyzed the data and performed the regression analysis, all the variables should 

be checked to avoid endogeneity problems. I checked for auto-correlated errors, 

simultaneous causality, and omitted variables. Hence, I needed include all of the possible 

control variables in the regression model to predict the service quality of airline carriers.  
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6.2 Descriptive Statistics 

 Table 15 presents descriptive statistics of all of the variables in this study, 

including the dependent variable: the AQR score, independent variables, and a set of 

control variables in proposed models in Chapter 5. There are 36 observations for three 

months of data for 12 airline carriers. The sentiment score was calculated by average of 

the sentiment score for one month. There are eight emotional sentiments, and each one 

was the sum of all of the numbers for all the tweets in one month. The same method was 

used to calculate the monthly arousal and valence value. Since not all of the tweets 

matched words in the ANEW dictionary, this shows that the larger the level of arousal, 

the more excited or angry customers. Months on Twitter is the indicator that shows the 

number of months since the airline carriers opened their official accounts on Twitter. If 

the airline carrier has 24/7 online response on Twitter, then I used a dummy variable to 

represent it on the dataset. Twitter followers could be another control variable in the 

model. The number of followers is shown by 1000; 36 means 36K (36,000 followers). 

Other control variables, like the number of passengers and the scheduled flights may 

affect the customers’ use of Twitter to complain the perceived service quality of the 

airline carriers. Different months are coded as 1, 2, and 3 to represent April, May, and 

June 2017.  
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TABLE 15 DESCRIPTIVE STATISTICS OF ALL VARIABLES 

Variables Min Max Mean Std. Deviation 

AQR -3.11 -0.380 -0.9853 0.55148 

Volume of Tweets 7 144939 21785.33 31912.341 

Average Sentiment Score -0.026 0.148 0.046 0.043 

Anger 1 43493 4907.61 8425.617 

Anticipation 4 47999 7483.42 10870.964 

Disgust 1 33243 3794.56 6487.302 

Fear 4 53495 5964.06 10261.335 

Joy 3 29815 5112.58 7022.114 

Sadness 4 43351 5686.86 9020.981 

Surprise 1 24555 3551.28 5271.454 

Trust 6 67179 9193.25 14078.762 

Sum of Valence 15 118636.98 21074.838 29113.552 

Sum of Arousal 17.5 127637.64 21858.771 30472.918 

Control Variables     

Passengers 653156 14090883 4694609.58 4460462.60 

Scheduled Flights 198 3965 1374.75 1173.339 

Months on Twitter 63 121 99.62 18.652 

Twitter Followers (x1000) 2.5 2019.00 764.181 754.284 

Online Response on Twitter 

(dummy variable) 

0 1 0.17 0.378 
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 Table 15 shows the statistical data of all the variables. The mean of AQR is  

-0.9853, with the standard deviation of 0.55148, the minimum value is -3.11, and the 

maximum value is -0.380. The average sentiment score has a mean of 0.046 with the 

standard deviation of 0.043; the minimum value is -0.026, and the maximum value is 

0.148. This result indicates that the average sentiment score for a month on each of the 

airline carriers on Twitter will be around neutral. Looking at the sentiment score of entire 

month would dilute the impact of the sentiment score on the service quality of the airline. 

So, in the prior Chapter 6.1, I present the daily changes of average sentiment scores for 

each airline carrier on its Twitter data.  The mean of the volume of tweets is 21785.33, 

with the standard deviation of 31912.341. The mean of the sum of valence is 21074.838, 

with the standard deviation of 29113.552. The mean of the sum of arousal is 127637.64, 

with the standard deviation of 21858.771. All of the eight emotional sentiment variables 

vary in both mean and standard deviation. The large standard deviation in those eight 

emotional sentiment indicators indicates that some airline carriers were mentioned much 

less than others.  

In the next section, I will perform both the Pearson correlation analysis between 

the AQR and the six dimensions of service quality and an ANOVA test to check the 

difference among the three months.  

 

6.3 Pearson Correlation Analysis 

 Pearson correlation is the method used to measure two or more variables that are 

related to each other. To test whether the sentiment of Twitter aligns with the AQR score 

that used the DOT’s reported data, I used Pearson correlation Analysis to test the 
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relationship between the six dimensions of service quality and the AQR scores. Next, I 

present the results of the Pearson correlation Analysis.  

 I considered the key words of each of the six dimensions of service quality in 

airline industry, and I then saved all of the data to the SQL server database and applied 

the query to select all of the tweets in each dimensional category. Each airline carrier had 

six sub-datasets for each dimension of service quality. To do the Pearson correlation 

analysis, I consolidated the same dimension for all the twelve airline carriers into one 

data file. Now,I had six data sets for all the dimensions of service quality. In the data set, 

there were five columns: volume of tweets, average of sentiment score, sum of valence, 

sum of arousal, and AQR score.  

 Table 16 provides the results of the Pearson correlation of the variables of 

dimension - assurance. The AQR score was positively correlated to the average of 

sentiment score at a significance level of 0.05. This could be interpreted to show that the 

sentiment score of dimension-assurance is positively correlated with the AQR score (r = 

0.241 weak - moderate relationship).  Looking at other variables, I found that valence and 

arousal were highly correlated at a significance level of 0.01. This result did not surprise 

me, since valence and arousal can be highly correlated in the sentiment analysis and with 

the defined scores in the ANEW dictionary. Another finding is that the volume of tweets 

about assurance was negatively correlated with valence and arousal, at a significance 

level of 0.01.  That means that the more the tweets discussed assurance of service quality, 

the more negative the sentiment (lower valence) and the higher the arousal score, with a 

strong intensity of emotion.  
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TABLE 16 PEARSON CORRELATION - DIMENSION TYPE: ASSURANCE 

 1 2 3 4 5 

1 Volume of Tweets 1.000     

2 Average of Sentiment Score -0.242 1.000    

3 Valence -0.993** -0.226 1.000   

4 Arousal -0.995** -0.228 1.000** 1.000  

5 AQR -0.036 0.241* 0.064 0.062 1.000 

*. Correlation is significant at the 0.05 level (2-tailed) 

**. Correlation is significant at the 0.01 level (2-tailed) 

 

 In Table 17, the second dimension, communication, is examined. Looking at the 

AQR first, I found that the average of sentiment score is positively correlated with AQR 

score (r = 0.412) at a significance level of 0.05, when people discussed communication 

issues of service quality in the airline industry. And valence and arousal were highly 

correlated with each other in this dimension, as well. The volume of tweets that 

mentioned communication problems was negatively correlated with arousal and valence, 

at a significance level of 0.05. If more tweets about communication were received on 

Twitter, there would be a higher chance to get the negative sentiment with complains of 

service quality.   
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TABLE 17 PEARSON CORRELATION - DIMENSION TYPE: COMMUNICATION 

 1 2 3 4 5 

1 Volume of Tweets 1.000     

2 Average of Sentiment Score -0.302 1.000    

3 Valence -0.994** -0.276 1.000   

4 Arousal -0.995** -0.278 1.000** 1.000  

5 AQR -0.009 0.412* 0.019 0.019 1.000 

*. Correlation is significant at the 0.05 level (2-tailed) 

**. Correlation is significant at the 0.01 level (2-tailed) 

 

Regarding reliability of service quality, Table 18 shows that the AQR score is 

positively correlated to the average of sentiment score (r = 0.293 weak relationship) at a 

significance level of 0.10 (p-value is 0.083). Interestingly, the more the tweets discussed 

reliability, the more positive the sentiment, with a strong intensity of emotion. Customers 

consider reliability as an important indicator of service quality and feel happy and 

confident to fly with the airline carriers.  
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TABLE 18 PEARSON CORRELATION - DIMENSION TYPE: RELIABILITY 

 1 2 3 4 5 

1 Volume of Tweets 1.000     

2 Average of Sentiment Score 0.099 1.000    

3 Valence 0.994** 0.106 1.000   

4 Arousal 0.995** 0.105 1.000** 1.000  

5 AQR 0.005 0.293† 0.019 0.018 1.000 

†. Correlation is significant at the 0.10 level (2-tailed) 

*. Correlation is significant at the 0.05 level (2-tailed) 

**. Correlation is significant at the 0.01 level (2-tailed) 

 

 Responsiveness is another dimension of service quality. Table 19 shows the 

Pearson correlation results for this dimension. The AQR score was strongly and 

positively correlated with the sentiment score (r = 0.518) at significance level of 0.01. 

The volume of tweets was negatively correlated with the average of sentiment score at a 

significance level of 0.05. When customers posted tweets about responsiveness, the more 

tweets, the lower the sentiment score that the airline received. Valence and Arousal were 

still positively correlated to the volume of tweets, at a significance level of 0.05.   That 

means that the more tweets about responsiveness, the more intensive emotions were 

expressed by the customers. In addition, the direction of valence was different from the 

average sentiment score, in this case. I cannot say which one is more accurate, but the 

level of arousal might explain the intensity of emotions and the trends of the emotions of 

customers.  
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TABLE 19 PEARSON CORRELATION - DIMENSION TYPE: RESPONSIVENESS 

 1 2 3 4 5 

1 Volume of Tweets 1.000     

2 Average of Sentiment Score -0.399* 1.000    

3 Valence 0.993** -0.373* 1.000   

4 Arousal 0.996** -0.385* 0.998** 1.000  

5 AQR 0.053 0.518** 0.077 0.083 1.000 

*. Correlation is significant at the 0.05 level (2-tailed) 

**. Correlation is significant at the 0.01 level (2-tailed) 

 

 Security and safety are important to airline carriers. Customers should have 

confidence and should feel peaceful about taking flights with the airline carriers. Other 

dimensions of service quality are considered less important than security and safety. 

Table 20 shows that the AQR score is positively correlated to the sentiment score of the 

tweets (r = 0.375 moderate relationship) in this dimension. If the sentiment score is lower 

than normal, that means that customers are worried about the safety of their flights.  So, 

monitoring the sentiment score of Twitter data can be used to find the potential risk of 

safety issues. The earlier the airline carriers find out this information, the higher their 

chance to avoid any fatal incidents. For example, the airline carriers might schedule the 

maintenance of their aircrafts more frequently after getting an alert from social media 

data.  
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TABLE 20 PEARSON CORRELATION - DIMENSION TYPE: SECURITY AND 

SAFETY 

 1 2 3 4 5 

1 Volume of Tweets 1.000     

2 Average of Sentiment Score -0.236 1.000    

3 Valence 0.985** -0.220 1.000   

4 Arousal 0.988** -0.222 0.999** 1.000  

5 AQR 0.055 0.375* 0.080 0.077 1.000 

*. Correlation is significant at the 0.05 level (2-tailed) 

**. Correlation is significant at the 0.01 level (2-tailed) 

 

 In terms of tangibility, this dimension may not be as important as other five 

dimensions from customers’ perspective, as shown in Table 21. Since the AQR score 

doesn’t have a significant relationship with any variables (sentiment score, volume of 

tweets, valence and arousal), the tangibility may be not suitable to monitor the service 

quality of the airline industry on social media.  
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TABLE 21 PEARSON CORRELATION - DIMENSION TYPE: TANGIBILITY 

 1 2 3 4 5 

1 Volume of Tweets 1.000     

2 Average of Sentiment Score -0.185 1.000    

3 Valence 0.991** -0.173 1.000   

4 Arousal 0.992** -0.175 1.000** 1.000  

5 AQR 0.077 0.203 0.080 0.113 1.000 

*. Correlation is significant at the 0.05 level (2-tailed) 

**. Correlation is significant at the 0.01 level (2-tailed) 

 

 The relationships among all of the six dimensions of service quality and AQR 

were tested by Pearson correlation analysis. Tables 16 to 21 show the results of the 

correlation. Except for tangibility, the average sentiment score of other dimensions were 

correlated with the AQR score. Three dimensions especially - responsiveness, assurance 

and reliability - were positively associated with the AQR score at a significance level of 

0.05, 0.05, 0.10 respectively. Hence, H1 was supported.  Sentiment scores were highly 

correlated to the AQR, then H2 was supported too. Using a sentiment score of tweets, one 

can estimate the number of complaints on the DOT Air Travel Consumer Report. 

 

6.4 OLS Regression Models 

 Figure 16 shows the correlation matrix and the different colors show the 

correlations among all of the variables for all of the airline carriers in the model. In detail, 
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the Table shows the positive relationship related to the dependent variable, AQR score. 

Obviously, as seen in Table 14, the highest positive correlationship was the average 

sentiment score in a month.  The variables that most positively correlated with the AQR 

score are the average sentiment score (r = 0.494), the number of months on Twitter (r = 

0.243), and whether the airline carriers have 24/7 responses on Twitter (r = 0.235). In 

addition, the number of followers on Twitter was relatively highly correlated with the AQR, 

with r = 0.318. The more Twitter followers of airline companies, the more accurate the 

prediction of the service quality that was reflected on the AQR score. Of the other eight 

emotional variables, only six of them (fear, sadness, trust, disgust, surprise, and joy) were 

positively related to the AQR score.  So, the most tweets expressing those six emotions 

resulted in the AQR score. When analyzing the emotional sentiment, business practitioner 

should focus on the six emotions. If the emotional score changed a lot, the airline carrier 

should be aware of the service quality and should read the tweets in detail to improve their 

service quality. In this way, airline companies can avoid big incidents in the market and 

can also mitigate their influence on the public. 
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Figure 16.  Correlation Matrix 
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TABLE 22  POSITIVE CORRELATION RELATED AQR SCORE 

 
 

 

6.4.1 Sentiment Score and AQR 

 In this section, I report the results of having used OLS regression to examine the 

relationship between AQR and sentiment score. The regression results are reported in 

Table 23. To measure the service quality of airline industry, the dependent variable is the 

AQR score that is calculated by the formula using the data from DOT monthly report. In 

column 1, I wanted to test whether the volume of tweets would affect the AQR. The 

volume of tweets was converted to natural logarithm as log (volume). Other variables 

were included as control variables, such as the characteristics of the airline carrier and the 

characteristics of their Twitter account. The number of passengers and the number of 
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scheduled flights are the characteristics of the airline carrier. I used a natural logarithm to 

convert these two variables, as well. They were converted to Log (passengers) and 

Log(flights). The number of Twitter followers, months on the Twitter (from the account 

creation), and whether using online response features on Twitter were the characteristics 

of Twitter account of each airline carrier. In this model, the R squared value was 0.389,  

and the p-value was .019, which is less than .05. That means that 38.9% can be explained 

by this model; this model is statistically significantly in predicting airline service quality - 

AQR score. The coefficient of log (volume of tweets) was -1.20 and the p-value is .402 

which is not statistically significant.  Only two variables - months on Twitter and online 

response feature on Twitter - had a p-value less than 0.1 and 0.05, respectively. 

However, in this model, I found two high variance inflation factors (VIF). Since the 

suggested threshold of multicollinearity problem is 10 (by Gefen, Straub, and Boudreau, 

2000), the number of passengers (VIF: 25.234) and the number of scheduled flights (VIF: 

25.214) were not tolerant in this model. They had the multicollinearity problems. If I 

included both of them in the regression model, it became problematic. Hence, I decided 

to eliminate the number of scheduled flights and keep the number of passengers, in this 

model.  

Column 2 in Table 23 shows the model without variable - the number of 

scheduled flights. The VIFs in the second model were not over 3.5, which is acceptable; 

this indicates that the model doesn't have multicollinearity problem. The largest VIF was 

3.214 of the number of followers on Twitter. In the second model in Column 2, the R 

squared value was 0.335 and the p-value was .025, which is less than 5%. That means 

that this model can explain 33.5% and is statistically significant at a level of 5%. After 
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removing the scheduled flights in the model, I found that the coefficient of log (volume 

of tweets) was - 0.272 with a p-value of .018 (significant at the level of 5%). So, I could 

interpret that when the log (volume of tweets) increased by 1, then AQR would be 

negatively affected by that and decrease 0.272. In addition, the coefficient of online 

response feature on Twitter was 0.775 with a p-value of 0.006 (significant at the 1% 

level). Using the online response feature on Twitter will significantly improve the service 

quality of the airline carrier. This feature enables communication with customers on 

social media and leaves the responses on the airline’s official Twitter account. This 

interaction can be read by other customers and can significantly benefit the airline’s 

service quality. I would recommend all the airline carriers who would like to improve 

their service quality take advantage of this impressive feature on Twitter. Attracting more 

followers on Twitter may help to improve theAQR score in this case (p-value is .049). 

Because the coefficient of the number of followers is fairly small, it may not have a 

strong association with AQR, but it is still helpful for an airline to attract more followers 

on Twitter.  

Next, I would like to find the association between the sentiment score and AQR. 

To check whether social media data can be used to measure service quality as DOT 

consumer reports do, the monthly data of Twitter was used to calculate the mean of the 

sentiment score that represents the monthly sentiment score for each airline carrier. 

Column 3 of Table 23 represents that the R squared value was 0.500 of this model with p-

value 0.001 (significant at level of 5%). That means that this model can explain 50% and 

is a statistically significantly predictor of the AQR score. The coefficient of the average 

sentiment score was 7.349, and the p-value is .000, which is significant at a 1% level. The 
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sentiment score was positively and highly associated to AQR. This can be interpreted in 

this way: when the sentiment score increases by 1, the AQR will increase 7.349. The 

sentiment score can be used to measure the service quality and to predict the AQR score. 

The online response feature also significantly impacted the AQR, with a coefficient 0.443 

at a significant level of 5%. This indicates that the sentiment score of tweets aligned with 

the DOT Air Travel Consumer Report. Hence, H2 was supported.  

In addition, I wanted to test the hypothesis about whether the larger amount of 

negative social media data about the airline companies would result in more complaints 

on the DOT report with the lower AQR score. Column 4 in Table 23 presents the 

relationship between the AQR and the interaction of average sentiment score and the 

volume of tweets. The R square was .511 with a p-value of 0.000, which is less than 1%. 

That means that this model had a better explanation when considering the interaction of 

the sentiment score and the volume of tweets. If the product of the sentiment score and 

the volume of tweets increases by 1, the AQR will increase 2.538 (p-value is .000, which 

is a 1% level of significance).  Hence, the larger number of tweets with negative 

sentiment score can be used to predict the AQR score. It can be interpreted that the 

service quality can be measured by the number of negative tweets.  It is easy to monitor 

the sentiment score by using R or Python; airline companies can react quickly and can 

mitigate the influences of any negative news. Thus, H3 was supported.  

As shown in Table 23, I found that the number of passengers or the number of 

scheduled flights did not impact on AQR score. The online response feature on Twitter 

can be used by airline companies to improve their service quality. Analyzing the 
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sentiment score and the volume of tweets was enough to measure the service quality of 

the airline industry and to predict the AQR score and complaints on DOT report.  
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TABLE 23 REGRESSION MODELS RESULTS (VOLUME, SENTIMENT SCORE 

AND AQR) 

Dependent Variable AQR 

(1) 

AQR 

(2) 

AQR 

(3) 

AQR 

(4) 

(Constant) 3.091 -.841 -2.247 -1.409 

Log (Volume of Tweets) -1.20 

(-.253) 

-.272 * 

(-.572) 

  

Average Sentiment Score   7.349** 

(.579) 

 

Log (Volume of Tweets) * 

Average Sentiment Score 

   2.538** 

(.622) 

Log (The number of 

passengers) 

-1.507 

(-1.183) 

-.092 

(-.072) 

.020 

(.016) 

.017 

(.014) 

Log (The number of 

scheduled flights) 

1.396 

(1.121) 

   

Months on Twitter .016 * 

(.552) 

-.010 

(.335) 

.005 

(.186) 

-.002 

(-.078) 

Twitter Followers .0002 

(.392) 

.0002 * 

(.545) 

.0002 

(.300) 

.0002 

(.268) 

Twitter Online Response .822 ** 

(.563) 

.775 ** 

(.531) 

.433* 

(.297) 

.229 

(.157) 

R-squared .389 .335 .500 .511 

Adjust R-squared .262 .224 .416 .429 

Standard deviation (in parentheses)  

*. Significance at the 5% level  

**. Significance at the 1% level  

***. Significance at the 0.1% level 
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6.4.2 Emotional Sentiment (eight basic emotions) and AQR 

I tried to determine whether the eight basic emotions would affect the AQR score 

independently. However, the model did not significantly predict the AQR score, with a p-

value of 0.520. All of the variables of the eight emotional sentiments were not 

statistically significantly, associated with AQR.  Unfortunately, the eight emotions of the 

sentiment score did not have an impact on AQR, in this case. Hence, I did not test the 

measurement of service quality using eight emotional sentiment analyses.  

 

6.4.3 Valence/Arousal and AQR 

 Next, I wanted to use valence and arousal to check whether social media data 

associated with AQR. AQR was still a dependent variable. The valence and the level of 

arousal were calculated based on monthly tweets. The sum of valence of each month of 

each airline carrier was calculated and was then converted to natural logarithm as log 

(sum of valence). The same method was applied to calculate arousal, as log (sum of 

arousal). In Table 24, Column 1 presents the regression model, with valence and arousal 

as independent variables. The R squared value was 0.409 at a significant level of 5% (p-

value is .012). That means that this model was statistically significant to explain 40.9% of 

the relationship among those variables. Except for the number of passengers, other 

variables were significant at a level of 5% (valence, arousal, months on Twitter, the 

number of followers on Twitter) and 1% (Twitter online response). Even though this 

model could explain the prediction of service quality in airline industry, I found that it 

also had the multicollinearity problem. Since valence and arousal words came from the 

ANEW dictionary, when I calculated those two values, it showed the extent to which they 
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correlated with each other. So, this model needs improvement; I decided to keep arousal 

as the independent variable. Because valence is somewhat similar as sentiment score to 

show positive and negative sentiment, I introduced the sentiment score into the model to 

replace the valence in the model shown in Column 4.  

 Column 2 is the model without valence. Having an R squared value 0.310 and 

being statistically significant at a level of 5% (p-value is .040), this model can explain 

31%. If the log (sum of arousal) increases by 1, the AQR score will decrease 0.261. As 

we know, the arousal represents the intensity of emotion. If tweets were detected that had 

a high arousal score, airline companies could know the service failure in a short time and 

could fix this in a timely manner. It also indicates that the negative tweets with a higher 

arousal score will lead to a lower AQR score. Hence, business practitioners can use the 

two variables to predict the service quality and, perhaps, service failure.  H5 was 

supported. 

 In order to test H4, I needed to introduce valence, but not include arousal in this 

model. Column 3 shows the model with the R squared 0.318 and significance at a level of 

5% (p-value is .035). The Log (sum of valence) was statistically significant at a 5% level 

(p-value is .019) in this model with a coefficient of -0.274. This can be interpreted in this 

way: when the valence increases by 1, the AQR score will decrease -0.274. This result is 

not what was expected, but it shows the association between valence and AQR. I 

expected that they would be positively related to each other. Another explanation could 

be that the more customers that use higher valence words, the lower the service quality 

they received. Sometimes, customers may express sarcasm on Twitter and result in a 

special relationship. Hence, H4 is partially supported. The interaction of valence and 
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arousal could not be used as one variable in the model due to multicollinearity issue, so 

H6 is not supported.  

 After introducing sentiment score in the model, as shown in Column 4 in Table 

24, I found that arousal was not statistically significant (p-value is .948) - only the 

sentiment score with a coefficient of 7.409 at a level of 1% (p-value .002). Other 

variables were not significantly affected by the AQR. So, this model did not well predict 

service quality in the airline industry. The next step is to investigate the interaction of the 

sentiment score and the arousal score. The results of the model are shown in Column 5 in 

Table 24.  

 In the Column 5 model, we can see that the interaction of the sentiment score and 

the level of arousal seemed significantly important to predict the AQR score (coefficient 

was 2.467 and p-value was .000). That means that, when the interaction of the sentiment 

score and the arousal increased by 1, the AQR will increase 2.467. This positive 

relationship was expected and H7 is supported. Other variables were not important 

factors in predicting the AQR score. This finding can benefit the airline industry as they 

monitor their service quality. Since they can only focus on the sentiment score and the 

arousal score, it is not necessary to monitor the other variables listed in this study. The 

model had R squared at 0.514 and was significant at a level of 1% (p-value is .000).  

Compared to other models in this study, the model in Table 24, Column 5 had the best fit 

to predict the service quality.  51.4% is explained by this model. That means the 

interaction of the sentiment score and the arousal had a moderate effect on AQR score. 

That is acceptable, because there are so many other outside factors for the service quality 

of airline industry. For example, the following factors could affect the service quality in 
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the airline industry:  the flight time, the length of a flight, a weather problem, the specific 

route, the food on board, and so on. Using social media data analysis can benefit the 

service industry to detect any service failure immediately and to help them to fix the 

problem in a short time.  
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 TABLE 24 REGRESSION MODELS RESULTS (VALENCE, AROUSAL, AND AQR) 

Dependent Variable AQR 

(1) 

AQR 

(2) 

AQR 

(3) 

AQR 

(4) 

AQR 

(5) 

(Constant) -1.923 -1.634 -1.643 -2.488 -1.871 

Average Sentiment Score    7.409** 

(.584) 

 

Log (Sum of Valence) 

 

-6.626* 

(-13.346) 

 -.274* 

(-.553) 

  

 

Log (Sum of Arousal)  

 

6.237* 

(12.602) 

-.261* 

(-.528) 

 .008 

(.016) 

 

Average Sentiment Score* 

Log (Sum of Arousal)  

    2.467*** 

(4.560) 

Log (The number of 

passengers) 

.037 

(.029) 

.064 

(.052) 

.065 

(.052) 

.093 

(.074) 

.122 

(.098) 

Months on Twitter .016* 

(.552) 

.010 

(.353) 

.011 

(.367) 

.007 

(.220) 

.000 

(.008) 

Twitter Followers .0002* 

(.604) 

.0002 

(.425) 

.0002 

(.437) 

.0002 

(.242) 

.000 

(.199) 

Twitter Online Response .835** 

(.572) 

.732** 

(.502) 

.746** 

(.511) 

.425 

(.291) 

.245 

(.168) 

R-squared .409 .310 .318 .502 .514 

Adjust R-squared .287 .195 .204 .339 .433 

Standard deviation (in parentheses)  

*. Significance at the 5% level  

**. Significance at the 1% level  

***. Significance at the 0.1% level 
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 The three months of Twitter data could not be tested the differences in SPSS. 

Since the model was not valid if I chose to see the time effect during this period.  Thus, 

the equation (15), proposed in Chapter 5, is not valid.  

Finally, I used the variable importance method (random forest) to double-check 

the regression models above. Figure 17 shows all of the variables with relative 

importance to the AQR score. Obviously, the average sentiment score had the highest 

importance to AQR, followed by emotion: disgust, the number of scheduled flights, 

months on Twitter (airline carrier official account), the number of passengers, and 

emotion: fear.  This important variable test indicates that simply getting the sentiment 

score of tweets is good enough for predicting service quality in the airline industry. Since 

the sentiment score is aligned with AQR score that is generated from the DOT consumer 

report, researchers and marketers in the airline industry can get an alert about service 

quality in a short time. They don’t have to wait to see the DOT consumer report, two 

months later. Another interesting finding is that the number of scheduled flights and the 

number of passengers also affect the AQR score. That means that more consumers use 

social media tools to complain about the experiences they have met aboard airline 

carriers. Most complaints have the three expressed emotions that are important to AQR: 

disgust, fear, and anger. In terms of valence and arousal, valence seems more important 

than arousal to the AQR score. Looking only at arousal may not contribute to a strong 

prediction about service quality in the airline industry.  
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Figure 17.  Variable Importance Test Results 

 

  



 106 

CHAPTER 

7 PROPOSED BUSINESS ANALYTICS FRAME WORK FOR SERVICE 

INDUSTRY 

Pang and Lee (2008) pointed out the challenges and opportunities engendered by 

the growing popularity of opinion-rich resources, such as online comments, blogs, social 

media platforms, and online forums. By investigating the value of those unstructured 

data, businesses are able to gather competitive intelligence and improve their products 

and services in a short time. In order to actively use information technology to seek and 

retrieve the data and to understand consumer’s opinions, computational treatment of 

subjective texts like reviews, comments, and opinions have suddenly erupted in the past 

ten years (Pang and Lee, 2008). With sentiment analysis, the information system could be 

developed for information retrieval, opinion mining, and sentiment analysis. This new 

system can provide data visualization and immediate responses to negative comments, 

and can reduce the risk of public crisis. Business practices use the opinion-oriented 

information system to make decisions and to improve their products and services. 

 In this case, the airline industry indeed needs such an opinion-oriented information 

system to monitor the quality of their service to the public. The following steps and 

technologies can be used for creating the system. The entire system could be integrated, 

with all of its features, into one piece. Then, each step can be connected to the others, 

automatically. All of the data retrieved from social media should be saved in a CSV file 

and then saved to the database for later processing. A script language can be used to create 

the opinion-oriented system, to mitigate the work load for the employees and to provide 

the ultimate support from computing 24/7.  Keywords can be created for each dimension, 
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in order to track service quality; they can be saved into different tables in a database. And 

then all of the sentiment analysis and statistical analysis can be performed, in order to 

support business decision making. The concrete steps are listed below: 

 

 

1. Use Python code using Twitter API to get the tweets for one’s own company or for 

competitors  

2. Gather all of the tweets or parts of tweets from past time or real time. The company 

can limit the tweets to specified numbers 

3. Use the sentiment analysis packages of R to get the sentiment score and the emotion 

for each tweet  

4. Apply the proposed service quality index  

5. Save all of the tweets and the sentiment scores to Microsoft SQL Server Databases 

6. Manipulate the data and find the pattern of the current data 

7. Visualize the date, create report (weekly, monthly, quarterly, annual), respond to the 

public 

8. Make decisions, adjust business strategy, respond to public if necessary. 

 

Table 18 illustrates the conceptual layer of the opinion-oriented information 

system proposed by this study. With this information system, businesses in service 

industries can have analyze results every day to help them to better understand and 

connect to their customers. When something goes wrong, the system will send an alert to 

the proper departments and will direct them to perform some actions, depending on the 
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type of alert. This information system has good scalability due to its expandable ability. 

This system should be able to monitor multiple popular social media platforms, such as 

Twitter, Facebook, and Instagram. When retrieving social media data from those social 

media platforms, Python can be used to connect the API provided by the social media or 

to web-scrap the social media data. In addition, the keywords in each dimension of 

service quality can be modified at any time. Since more customers will use social media 

platform to communicate and stay tuned with businesses, the keywords may be changed 

by time. More Internet slang is likely to emerge in the future. For example, “LOL” means 

“laugh out loud”; it is a popular element of Internet slang. And “bump” is always used in 

the forums that move the posts or comments to the top on the first page. “Troll” is 

another word in Internet slang that used a lot today. “Trolls” are the people who want to 

take pleasure from starting disagreements and angering other people online. “I can’t 

even” is another way to say, “I’m speechless.” This phrase is used when you have no 

words to express to respond to incredible or unbelievable things. There is much more 

slang that is used on the Internet today, and there is likely to be more and more in the 

future. Thus, updating the keywords for each dimension of service quality will be 

necessary.   
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Figure 18.  Conceptual Layer of Opinion-Oriented Information System 
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CHAPTER 

8 RESEARCH LIMITATIONS  

 

 This study is limited in several ways. First, this study uses only one social media 

platform to test the effectiveness of social media data analysis. Some other popular social 

media websites such as Google+, Facebook, and Instagram are not included in the data 

set. And the social media data was retrieved from Twitter for consecutive three months in 

2017. The results from this study may not fully reveal and explain the effectiveness of 

social media analysis to test the service quality. As the service industry has the 

characteristic of peak season, the results of this study may not explain the situation from 

off season.  

 Second, the six dimensions of service quality use defined keywords in this study. 

The keywords may not 100% accurate for each dimension. Due to it was generated by 

three graduate students, the keywords may have differences by other researchers. The 

ANEW dictionary should be updated accordingly because the more slangs are emerging 

out in recent years. 

Third, Sentiment analysis was based on Lexicons. The dictionary-based “bag-of-

words” approaches suffer from various drawbacks. Sentiment analysis are applied the 

Lexicons and words may be evaluated out of context or with the wrong sense. Another 

limitation is the language. I analyze the English tweets only from Twitter. But there are 

many other languages are used in the Twitter and other social media platform. It is better 

to include other languages in the dataset and do the same sentiment analysis on them. To 

do this, businesses in service industry can use social media to predict their perceived 
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service quality by customers. And the tweets are relative short and contain a few words in 

one post. This may also limit the results. Sriram, Fuhry, Demir, Ferhatosmanoglu & 

Demirbas (2010) state that using authors’ information and other features like the number 

of followings, the number of followers will achieve higher quality of sentiment analysis. 
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CHAPTER 

9 CONCLUSION AND FUTURE RESEARCH 

9.1 Conclusion 

 The purpose of this study is to determine the effectiveness of social media 

analysis in detecting service quality in the airline industry. Having applied the 

SERVQUAL model and having adapted the model to propose the six dimensions of 

service quality in the airline industry, I used the social media data from Twitter to gather 

the tweets from three months in 2017, and then pre-processed and analyzed the sentiment 

after the data collection.  

I cleaned the data, using several methods in this study, and removed all of the data 

that were not related to customers’ comments. A word cloud from text mining was used 

to find the frequency of words used for each airline company. A word cloud is more 

intuitive and is considered to be more attractive by non-researchers and business 

practices.  

I found that the overall volumes and mean of sentiment score showed different 

trends, from Table 14. In terms of valence and arousal, the six dimensions were tested by 

Pearson correlations. Responsiveness, assurance, and reliability were the top three, and 

were highly correlated to the AQR score. In these regression models, the sentiment score 

aligned with the DOT data on report. And the sentiment score and arousal interactions 

offered the best independent variable and the best model fit, as shown in Table 14.  

Sentiment score and emotional sentiment change were found to be consistent with the 

conclusion made by Wahba (2017). Negative sentiment could have a short-term effect on 

company’s market value, but in the long run, may not have influence. Analyzing the 
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social media data also can avoid the huge incident affects in public relationship. Business 

practitioners should put more investments in the digital marketing, data analysis and hire 

more professionals to assist top managers in the companies to make the right decision in 

a timely manner.  This study also provides verification of SERVQUAL model in airline 

industry.  

 

9.2 Future Research 

 

There are many possibilities to extend the research in this dissertation. First, 

future research can consider multiple social media platforms to check the service quality 

for any businesses in the service industry. For example, the Internet provider that offers 

Internet and cable services to the customers could use social media analysis to predict and 

measure their service quality. Government can also use social media analysis to 

determine its citizens’ opinions and to improve its service by simplifying processes.   

Comparing different categories, i.e., which category has the average higher speed 

of retweet, as well as the number of retweets, can be investigated. Retweet is the feature 

on Twitter that allows users to share the original post on their own post. It is possible to 

get the first retweet time on the Twitter dataset and to find how long it was retweeted on 

Twitter, and to find the top five or top ten users who mentioned the airline carriers’ name 

frequently, and then get the related information on Twitter, such as the number of their 

followers or the number of their followings.  

In terms of sentiment analysis, I am also interested in analyzing emotions from 

images posted by customers. As we know, pictures can be included to users’ social media 
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profiles or posts. A study of these will be helpful to improving service quality in 

business. Then, even more resources from other media can be applied. For example, it 

might be helpful to extract data from newspapers as another source, and, if possible, to 

include more languages: Korean, Russian, Japanese, and Mandarin are the best choices.  

Fake comments are another issue; it is necessary to detect sarcasm in tweets. 

Sarcasm is not easy to detect. It may need more time to configure out after the algorithm 

is released, to make it capable of detecting sarcasm in tweets.  

And remove these fake comments before we process the data. Researchers could 

be able to use the same methodology to analyze data from social media to measure 

service quality for all the service providers in multiple industries.   

AQR is calculated by using the report data from DOT. It only can be calculated 

by month. In the future, if there are official data about the daily performance of airline 

carriers, the dependent variable should be more suitable than AQR.  

And more, social media data is powerful, and it can be related to many elements 

in the business world. For example, ranks, reputations, ratings, revenue, stock price, sales 

and so on. I will include Bloomberg data as variables in the future research and social 

media data is expected to impact the business in different aspects.  
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APPENDICES 

APPENDIX A: RETRIEVE OLD TWEETS FROM TWITTER API CODE 

def main(argv): 

 if len(argv) == 0: 

  print('You must pass some parameters. Use \"-h\" to help.') 

  return 

 if len(argv) == 1 and argv[0] == '-h': 

  f = open('exporter_help_text.txt', 'r') 

  print (f.read()) 

  f.close() 

  return 

 try: 

  opts, args = getopt.getopt(argv, "", ("username=", "near=", "within=", 

"since=", "until=", "querysearch=", "toptweets", "maxtweets=", "output=")) 

  tweetCriteria = got.manager.TweetCriteria() 

  outputFileName = "output.csv" 

  for opt,arg in opts: 

   if opt == '--username': 

    tweetCriteria.username = arg 

   elif opt == '--since': 

    tweetCriteria.since = arg 

   elif opt == '--until': 

    tweetCriteria.until = arg 
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   elif opt == '--querysearch': 

    tweetCriteria.querySearch = arg 

   elif opt == '--toptweets': 

    tweetCriteria.topTweets = True 

   elif opt == '--maxtweets': 

    tweetCriteria.maxTweets = int(arg)  

   elif opt == '--near': 

    tweetCriteria.near = '"' + arg + '"'  

   elif opt == '--within': 

    tweetCriteria.within = '"' + arg + '"' 

   elif opt == '--within': 

    tweetCriteria.within = '"' + arg + '"' 

   elif opt == '--output': 

    outputFileName = arg    

  outputFile = codecs.open(outputFileName, "w+", "utf-8") 

 

 outputFile.write('username;date;retweets;favorites;text;geo;mentions;hashtags;id;

permalink') 

  print('Searching tweets...\n') 

  def receiveBuffer(tweets): 

   for t in tweets: 



 117 

   

 outputFile.write(('\n%s;%s;%d;%d;"%s";%s;%s;%s;"%s";%s' % (t.username, 

t.date.strftime("%Y-%m-%d %H:%M"), t.retweets, t.favorites, t.text, t.geo, t.mentions, 

t.hashtags, t.id, t.permalink))) 

   outputFile.flush(); 

   print ('More %d saved on file...\n' % len(tweets)) 

 

  got.manager.TweetManager.getTweets(tweetCriteria, receiveBuffer) 

 except arg: 

  print('Arguments parser error, try -h' + arg) 

 finally: 

  outputFile.close() 

  print('Done. Output file generated "%s".' % outputFileName) 
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APPENDIX B: SENTIMENT ANALYSIS CODE IN R 

> pos = scan('positive-words.txt', what='character', comment.char=';') 

Read 2006 items 

> neg= scan('negative-words.txt', what='character', comment.char=';') 

Read 4783 items 

#Adding words to positive and negative databases 

pos = c(pos, 'Congrats', 'prizes', 'prize', 'thanks', 'thnx', 'Grt', 'gr8', 'plz', 'trending', 

'recovering', 'brainstorm', 'leader') 

neg = c(neg, 'Fight', 'fighting', 'wtf', 'arrest', 'no', 'not', 'fight') 

#Score Sentiment 

score.sentiment = function(tweets, pos.words, neg.words)   

{ 

  require(plyr) 

  require(stringr) 

  scores = laply(tweets, function(tweet, pos.words, neg.words) {   

    tweet = gsub('https://','',tweet) # removes https:// 

    tweet = gsub('http://','',tweet) # removes http:// 

    tweet=gsub('[^[:graph:]]', ' ',tweet) ## removes graphic characters  

    #like emoticons  

    tweet = gsub('[[:punct:]]', '', tweet) # removes punctuation  

    tweet = gsub('[[:cntrl:]]', '', tweet) # removes control characters 

    tweet = gsub('\\d+', '', tweet) # removes numbers 

    tweet=str_replace_all(tweet,"[^[:graph:]]", " ")  
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    tweet = tolower(tweet) # makes all letters lowercase 

    word.list = str_split(tweet, '\\s+') # splits the tweets by word in a list  

    words = unlist(word.list) # turns the list into vector 

    words.matches = match(words,words) 

    pos.matches = match(words, pos.words) ## returns matching  

    #values for words from list  

    neg.matches = match(words, neg.words)  

    pos.matches = !is.na(pos.matches) ## converts matching values to true of false 

    neg.matches = !is.na(neg.matches) 

    words.matches =!is.na(words.matches) 

     

    score = (sum(pos.matches) - sum(neg.matches))/(sum(words.matches)) # true and false 

are  

    #treated as 1 and 0 so they can be added    #Sentiment scores are calculated by the sum 

of positive minus negative, then divided by the number of words of tweet. 

    return(score) 

  }, pos.words, neg.words ) 

  scores.df = data.frame(score=scores, text=tweets) 

  return(scores.df) 

} 
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APPENDIX C:  EMOTICONS WITH SENTIMENT 

:-) :) :o) :] :3 :c) :> =] 8) =) :} :^) Positive 

:D C: Extremely-Positive 

:-D :D 8D xD XD =D =3 <=3 <=8 Extremely-Positive 

<=3 <=8 8===D 8===B Negative 

--!-- Negative 

:-( :( :c :< :[ :{ Negative 

D: D8 D; D= DX v.v Extremely-Negative 

:-9 Negative 

;-) ;) *) ;] ;D Positive 

:-P :P XP :-p :p =p :-Þ :Þ :-b :b Positive 

:-O :O O_O o_o 8O OwO O-O 0_o O_o O3O o0o ;o_o; o...o 0w0 Positive 

c.c C.C Negative 

:-/ :/ :\ =/ =\ :S Negative 

:| Neutral 

d:-) qB-) Positive 

:)~ :-)>.... Neutral 

:-X :X :-# :# Positive 

O:-) 0:3 O:) Negative 

 :'( ;*( T_T TT_TT T.T Q.Q Q_Q ;_; Negative 

:-* :* Positive 

^o) Negative 

>:) >;) >:-) Neutral 
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B) B-) 8) 8-) Neutral 

^>.>^ ^<.<^ ^>_>^ ^<_<^ Negative 

D:< >:( D-:< >:-( :-@[1] ;( `_´ D< Negative 

<3 <333 Positive 

</3 Negative 

=^_^= =>.>= =<_<= =>.<= Positive 

\,,/ \m/ Extremely-Positive 

\m/\>.</\m/ Extremely-Positive 

\o/ Extremely-Positive 

\o o/ Positive 

d'-' d'_' d'-'b d'_'b Positive 

o/\o Positive 

:& Extremely-Negative 

:u Neutral 

@}-;-'--- Positive 

3:00 Positive 

=]:-)= Neutral 

d^_^b d-_-b Positive 

(^_^) (^-^) (^ ^) (^.^) Positive 

(~_^) (^_~) ~.^ ^.~ Positive 

(>_<) (>.<) Negative 

(>_>) (¬_¬) Negative 

(-_-) Negative 
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(^o^) Positive 

(^3^) Positive 

(^_^') ^_^_^') ^^" ^^^_.^') ^^_^^; ^&^^.^;& ^^^; ^^^7 Negative 

d(>w<)b Extremely-Positive 

q(;^;)p Extremely-Negative 

9(x.x)9 (;.;)9 Negative 

(._.) (,_,) Negative 

［(－－)］ZZzzz... Neutral 

(X_X) x_x Negative 

^///^ >///< >///> o///o -///- =///= Positive 

_|_ (-.-) _|_ t(>.<t) Negative 

(V)!_!(V) Neutral 

ʘ‿ʘ Extremely-Positive 

\m/*.*\m/ Extremely-Positive 

O?O Negative 

&_& Positive 

0-0 Positive 

(^^^) Negative 

(\_/) Positive 

B) Positive 

B( Negative 

X3 Extremely-Positive 

:3 Positive 
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x_O O_x Negative 

O|¯|_ orz Positive 

m(_ _)m Positive 

∧＿∧ Neutral 

∧∧ Positive 
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APPENDIX D: TEXT MINING IN R 

Packages Used in This Study 

• twitteR: Provides an interface to the Twitter web API 

• stringr: String operations in R 

• ROAuth: Provides an interface to the OAuth 1.0 specification allowing users to 

authenticate via OAuth to the server of their choice. 

• RCurl: Provides functions to allow one to compose general HTTP requests 

and provides convenient functions to fetch URIs, get & post forms, etc. and process the 

results returned by the Web server. 

• ggplot2: An implementation of the grammar of graphics in R. It combines the 

advantages of both base and lattice graphics: conditioning and shared axes are 

handled automatically, and you can still build up a plot step by step from multiple 

data sources. 

• reshape: Flexibly restructure and aggregate data using just two functions: 

melt and cast 

• tm: A framework for text mining applications within R. 

• RJSONIO: This is a package that allows conversion to and from data in 

Javascript object notation (JSON) format. This allows R objects to be inserted 

into Javascript/ECMAScript/ActionScript code and allows R programmers to 

read and convert JSON content to R objects 

• wordcloud: visual representation in the form of word cloud where size of the 

word is proportional to the frequency of words used in the tweets 

• gridExtra: Provides a number of user-level functions to work with "grid" 
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graphics, notably to arrange multiple grid-based plots on a page, and draw 

tables. 

• plyr: Tools for Splitting, Applying and Combining Data 

• syuzhet: this package helps to extract sentiment and sentiment-derived plot arcs 

from text using three popular sentiment lexicons: AFINN, BING, NRC 

• sentiment: classifies the emotions of text 

• sentimentr: calculate text polarity sentiment at the sentence level and optionally 

aggregate by rows or grouping variable(s) 

• RColorBrewer:  color schemes for the plots and word cloud 

• e1071: Functions for latent class analysis, short time Fourier transform, fuzzy 

clustering, support vector machines, shortest path computation, bagged clustering, 

naive Bayes classifier 

• SparseM: Some basic linear algebra functionality for sparse matrices is provided: 

including Cholesky decomposition and backsolving as well as standard R 

subsetting and Kronecker products. 
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