
Old Dominion University Old Dominion University

ODU Digital Commons ODU Digital Commons

Computer Science Theses & Dissertations Computer Science

Summer 2017

Multi-GPU Accelerated High-Fidelity Simulations of Beam-Beam Multi-GPU Accelerated High-Fidelity Simulations of Beam-Beam

Effects in Particle Colliders Effects in Particle Colliders

Naga Sai Ravi Teja Majeti
Old Dominion University, nmaje001@odu.edu

Follow this and additional works at: https://digitalcommons.odu.edu/computerscience_etds

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Majeti, Naga S.. "Multi-GPU Accelerated High-Fidelity Simulations of Beam-Beam Effects in Particle
Colliders" (2017). Master of Science (MS), Thesis, Computer Science, Old Dominion University, DOI:
10.25777/gam8-e879
https://digitalcommons.odu.edu/computerscience_etds/89

This Thesis is brought to you for free and open access by the Computer Science at ODU Digital Commons. It has
been accepted for inclusion in Computer Science Theses & Dissertations by an authorized administrator of ODU
Digital Commons. For more information, please contact digitalcommons@odu.edu.

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/computerscience_etds
https://digitalcommons.odu.edu/computerscience
https://digitalcommons.odu.edu/computerscience_etds?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds/89?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

MULTI-GPU ACCELERATED HIGH-FIDELITY

SIMULATIONS OF BEAM-BEAM EFFECTS IN PARTICLE

COLLIDERS

by

Naga Sai Ravi Teja Majeti

A Thesis submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

COMPUTER SCIENCE

OLD DOMINION UNIVERSITY
August 2017

 Approved by:

 Mohammad Zubair (Director)
	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

 Desh Ranjan (Co-Director)

 Balša Terzić (Co-Director)
	 	 	 	 	 	 	 	

	

	

	
	 	 i	

ABSTRACT

MULTI-GPU ACCELERATED HIGH-FIDELITY SIMULATIONS OF
BEAM-BEAM EFFECTS IN PARTICLE COLLIDERS

Naga Sai Ravi Teja Majeti
Old Dominion University, 2017
Director: Dr. Mohammad Zubair

Numerical simulation of beam-beam effects in particle colliders are crucial in

understanding and the design of future machines such as electron-ion colliders (JLEIC), linac-

ring machines (eRHIC) or LHeC. These simulations model the non-linear collision dynamics of

two counter rotating beams in particle colliders for millions of turns. In particular, at each turn,

the algorithm simulates the collision of two directed beams propagating at different speeds with

different number of bunches each. This leads to non-pair-wise collisions of beams with different

number of bunches that results in an increase in the computational load proportional to the

number of bunches in the beams. Simulating these collisions for millions of turns using

traditional CPUs is challenging due to the complexity in modeling non-linear dynamics of the

beams and the need to simulate collision of every bunch in a reasonable amount of time.

In this Thesis, we present a high-performance scalable implementation to simulate the

beam-beam effects in electron-ion colliders using a cluster of NVIDIA GPUs. The parallel

implementation is optimized to minimize the communication overhead and the performance

scales near linearly with number of GPUs. Further, the new code enables tracking and collision

of the beams for millions of turns, thereby making the previously inaccessible long-term

simulations tractable. As of now, there is no other code in existence that can accurately model

	

	

	
	 	 ii	

the single particle non-linear dynamics and the beam-beam effects at the same time for a large

enough number of turns required to verify the long-term stability of a collider.

	

	

	
	 	 iii	

ACKNOWLEDGMENTS

This work is funded by a grant from Jefferson National Laboratory. I must acknowledge

ODU ITS and Jefferson Laboratory for allowing me to access their computational resources.

	

	

	
	 	 iv	

Table of Contents

List of Figures ... v

List of Tables .. vii

Chapter Page

I. INTRODUCTION ... 1

II. BACKGROUND AND STATE OF ART ... 4
II.1 PHYSICAL PROBLEM ...4

II.1.1 Tracking ...4
II.1.2 Collision ..4

II.2 GPU ARCHITECTURE ...9

III. EXISTING SERIAL ALGORITHM .. 13

III.1 OUTLINE OF THE ALGORITHM ..13
III.2 TRACKING ALGORITHM ...15
III.3 COLLISION ALGORITHM ...16

IV. GPU IMPLEMENTATION ... 21

IV.1 PARALLEL ALGORITHM FOR TRACKING ...21
IV.2 PARALLEL ALGORITHM FOR COLLISION ...21

IV.2.1 Slicing in Parallel ...21
IV.2.2 Parallel Apply Kick ..25

V. MULTI-GPU IMPLEMENTATION ... 28

V.1 SCHEDULING BUNCHES ...32
V.2 COMMUNICATIONS USING MESSAGE PASSING INTERFACE (MPI)36

VI. RESULTS .. 39
VI.1 SINGLE-GPU PERFORMANCE ...39
VI.2 MULTI-GPU PERFORMANCE ..52

VII. CONCLUSION AND FUTURE WORK .. 60

VII.1 CONCLUSION ..60
VII.2 FUTURE WORK ...61

REFERENCES ... 62

VITA ... 64

	

	

	
	 	 v	

List of Figures

Figure Page

1. Figure 2.1 – Slicing .. 5

2. Figure 2.2 – Collisions .. 6

3. Figure 2.3 – CUDA Programming Model. ... 9

4. Figure 4.1 – Slicing-1 ... 22

5. Figure 4.2 – Slicing-2. .. 23

6. Figure 4.3 – Slicing-3. .. 24

7. Figure 4.4 – Slicing-4. .. 25

8. Figure 4.5 – Collision Traingle ... 25

9. Figure 5.1 – Setup of collider rings .. 28

10. Figure 5.2 – Schedule. .. 29

11. Figure 5.3 – Schedule of a single random ... 32

12. Figure 6.1 – Speedup behavior of the GPU implementation .. 41

13. Figure 6.2 – Execution time of Collide procedure .. 43

14. Figure 6.3 – Roofline model analysis for Compute-Kick .. 46

15. Figure 6.4 – Warp Divergence-1 .. 49

16. Figure 6.5 – Warp Divergence-2 .. 50

17. Figure 6.6 – Warp Divergence-3 .. 50

18. Figure 6.7 – Warp Divergence-4 .. 51

19. Figure 6.7 – Execution schedule ... 53

20. Figure 6.8 – Time slots-1 .. 53

21. Figure 6.9 – Time slots-2 .. 54

	

	

	
	 	 vi	

22. Figure 6.10 – Time Slots-3 ... 55

23. Figure 6.11 – Time Slots-4. .. 55

24. Figure 6.12 – Time Slots-5. .. 56

	

	

	
	 	 vii	

	List of Tables

Table Page

1. Table 5.1 - Distribution of Bunches on GPUs .. 32	

2. Table 6.1 - Single turn performance results .. 40	

3. Table 6.2 - Single turn performance of COLLIDE procedure. ... 44	

4. Table 6.3 – Performance results of Compute-Kick kernel ... 45	

5. Table 6.4 – Performance of Multi-GPU algorithm on a cluster of GPUs. 52	

6. Table 6.5 – Predictions-1 .. 57	

7. Table 6.6 – Predictions-2. ... 58	

	

	

	
	 	 1	

CHAPTER I

INTRODUCTION

 Future particle colliders such as the Jefferson Lab Electron-Ion Collider (JLEIC) [13],

linac-ring machines (eRHIC) [5] or LHeC [6] are particularly sensitive to beam-beam effects.

Their design, construction and operation costs routinely measure in billions of dollars. A non-

negligible portion of the cost can be reduced by optimization of the design and performance using

computer simulations. The long-term stability of the beams in the collider is the fundamental

criterion of the proper design and operation.

In order to simulate accurately the dynamics of the beams in a particle collider, it is

necessary to track and collide the beam particles for millions to billions of turns. These long-term

simulations are very time-consuming on a single processor system and need to be implemented on

the massively parallel computer architectures to reduce the simulation time from the order of

months or years to the order of days.

We choose a map-based tracking of the particle transport through the ring. Map

generation techniques in application to accelerator lattices are well developed and are available

in various codes. Therefore, we rely on existing tools and build upon the well-established

verified algorithms of COSY Infinity [7]. The beam-beam interaction requires solving the 3D

Poisson equation for each collision, which is computationally very expensive. The Poisson

equation can be directly solved via a number of standard techniques, including multi-grid,

conjugate gradient [16], or Fourier transform-based approach [10]. But, because of their higher

computational load, simulating long-term beam dynamics in colliders becomes difficult.

Therefore, we chose to invoke various approximations to alleviate the numerical load. One

	

	

	
	 	 2	

approximation is assuming that the beam distribution is Gaussian. Another is the Bassetti-

Erskine approximation [2] which further reduces the problem by assuming the interacting

bunches to be infinitesimally short.

There are two scenarios for this problem:

1 - When each collider ring has only one bunch in it. In this case, all the interactions

happening in this simulation are between these two bunches. For each interaction, we Track both

the beams and Collide them. A single turn involves a single interaction in this scenario.

2 - When two rings have different harmonic numbers, each bunch from the first ring will

interact with all the bunches present in the second ring. For example, when there are n-1 and n

bunches, there is a total of (n-1)n interactions between these bunches. A single turn involves n-1

interactions in this scenario. As there are different harmonic numbers in each ring, each bunch will

interact with a different bunch in each turn. So, it takes n turns until all the n-1 bunches from one

ring interact with all the n bunches from the other ring which sums up to a total of (n-1)n

interactions. In this thesis, one schedule completion of Multi-Bunch implementation refers to the

completion of n turns; in practice this schedule repeats from millions to billions number of times.

In this thesis, we propose a new, high-fidelity model for simulation of long-term beam-

beam dynamics. The proposed model is optimized to run efficiently on GPU platform which

gives us the chance to study efficiently and accurately the long-term dynamics in colliders. Our

implementation of the inherently parallelizable computations of beam tracking and collision on

GPUs leads to orders-of-magnitude reduction in computational time, thereby making the

previously inaccessible physics tractable. On the other hand, to simulate the interactions between

the multiple bunches we propose a scheduling algorithm to simulate the interactions between

	

	

	
	 	 3	

multiple bunches on a given number of GPUs. The algorithm is optimized to minimize the

communication overhead and the performance scales nearly linear with the number of GPUs.

The remainder of this paper is organized as follows. Chapter - 2 provides the background

of the physical problem, GPUs, and SIMD Challenges. In Chapter - 3 we outline the steps in

numerical simulation of beam-beam dynamics and describe the existing core algorithms for

Tracking and Collision. In Chapter - 4, we discuss the GPU implementation of Tracking and

Collision algorithms. In Chapter - 5, we discuss the scheduling algorithm used for simulating the

interactions between Multi-Bunch on multiple GPUs. Chapter - 6 presents the performance

results of the proposed parallel algorithms for Tracking and Collision on NVIDIA Tesla K40

GPU. Also, the results about the scaling of Multi-Bunch implementation on multiple GPUs are

also presented in this chapter. Finally, in Chapter - 7, we summarize our findings, conclude and

discuss the future work.

	

	

	
	 	 4	

CHAPTER II

BACKGROUND AND STATE OF ART

II.1 PHYSICAL PROBLEM

II.1.1 Tracking

Particle tracking for each of the six phase-space coordinates: 𝑥, a ≡ 𝑝2/𝑝4, 𝑏 ≡ 𝑝6/𝑝4, 𝑙

and 𝛿 is done using the equation

𝑥 = 	 𝑀(𝑥|𝛼𝛽𝛾𝜂𝜆𝜇)𝑥E𝑎G𝑦I𝑏J𝑙K𝛿LEGIJKL , (1)

where 𝑀(𝑥|𝛼𝛽𝛾𝜂𝜆𝜇) is a single turn map that is generated using a readily available

accelerator lattice design and tracking codes. 𝑥	and 𝑦 are the transverse particle positions, a and

𝑏 are the associated transverse momentum components 𝑝2 and 𝑝6, respectively, normalized to

the reference momentum 𝑝4, 𝑙 = 	−(𝑡 −	𝑡4)𝑣4𝛾4 and 𝛿 = (𝐾 −	𝐾4)/𝐾4. Here 𝑡, 𝐾, 𝑣4, 𝛾4 are

the time of the flight, kinetic energy, velocity and Lorentz factor, respectively. The subscript 0

indicates the reference value of the variable.

II.1.2 Collision

Beam-beam effects are one of the most dominant effects limiting the luminosity in

electron-ion colliders [12]. The interaction between the two colliding beams (or a single particle

in the field of particle beam) is described by the Poisson equation:

∆∅ 𝒓 = 	− U
VW
𝜌 𝒓 , (2)

where 𝜌 is the charge distribution, ∅ the scalar potential, 𝜀4 the permittivity of free space and r the

vector containing spatial coordinates. Solving the Poisson equation can be done directly via a

number of techniques, including multigrid, conjugate gradient, or Fourier transform based

	

	

	
	 	 5	

approach. These methods provide the exact numerical solution to an arbitrary beam charge

distribution; however, their high computational cost makes them inadequate and inefficient for

simulating long-term beam dynamics in colliders.

Figure 2.1 - Particles (denoted with black circles) in a beam are partitioned into 𝑚	 = 	3 slices
along longitudinal direction, where 𝐿 is the maximum length of the beam, Δ is the width of each
slice and 𝑙]^_ is the longitudinal coordinate of the left most particle.

	

	

	
	 	 6	

Figure 2.2 - Collisions between two multi-sliced beams, starting at Position 1 and ending with
Position 2. After each line, all slices in both beams drift in the direction of the arrow by Δ/2, where
Δ is the width of each slice. Grey rectangles denote slices that are colliding at each time.

	

	

	
	 	 7	

In this thesis, we use Basetti-Erskine approximation [2] to model efficiently the beam-

beam interaction. Our approach assumes the interacting bunches to be infinitesimally short. The

finite bunch length is modeled by composing the beam of several infinitesimal slices. Each of these

slices can then be treated as an infinitesimally short bunch. Figure 2.1 explains the slicing process,

where the beam distribution is divides into 3 slices. 𝐿 is the total length of the beam, 𝑚 is the

number of slices, ∆	= 𝐿/𝑚 is the width of the individual slice, and the slice number of the particle

is 𝑆𝑙𝑖𝑐𝑒 = 	 (𝑙 − 	𝑙]^_)/∆	 . The collision between the two beams at the interaction point (IP) is

simulated by collisions of individual slices which is illustrated in the Figure 2.2 where each beam

is divides into 3 slices. Thus, when the beam is divided into m slices, it is evident from the figure-

collision that there is a total of m2 collisions between the slices of two beams. The collision between

any two slices with longitudinal positions 𝑧e and 𝑧foccurs at 𝑠 = 𝑆 𝑧e, 𝑧f ≡ (𝑧e −	𝑧f)/2,

taking into the account that the beam sizes are different from those at the IP (𝑠 = 0). The kicks

experienced by both beams can be calculated by:

 𝑥_jk± 		= 𝑥± ± 𝑆 𝑧e, 𝑧f 𝑓n
±, (3)

 𝑝2,_jk± = 𝑝2± − 𝑓n
±,

 𝑦_jk± 			= 𝑦± ± 𝑆 𝑧e, 𝑧f 𝑓o
±,

 𝑝6,_jk± = 𝑝6± − 𝑓o
±,

 𝑝p,_jk± = 	𝑝p± −
U
q
𝑓n
± 𝑝2± −

U
q
𝑓n
± − U

q
𝑓6± 𝑝6± −

U
q
𝑓o
± − 𝑔± ,

and

 𝑓n
± = _s

∓u∓v±
_∓I±

𝐹2 𝑋± − 𝑋∓, 𝑌± − 𝑌∓; 𝜎2∓ 𝑆 , 𝜎6∓ 𝑆 ,

 𝑓o
± = _s

∓u∓v±
_∓I±

𝐹6 𝑋± − 𝑋∓, 𝑌± − 𝑌∓; 𝜎2∓ 𝑆 , 𝜎6∓ 𝑆 , (4)

	

	

	
	 	 8	

 𝑔± = _s
∓u∓v±
_∓I±

[𝑅qq 0, 𝑧∗ 𝑔2 𝑋± − 𝑋∓, 𝑌± − 𝑌∓; 𝜎2± 𝑆 , 𝜎6± 𝑆

 +𝑅�� 0, 𝑧∗ 𝑔6 𝑋± − 𝑋∓, 𝑌± − 𝑌∓; 𝜎2± 𝑆 , 𝜎6± 𝑆]𝑆,

 𝑔2 𝑥, 𝑦, 𝜎2, 𝜎6 = − U
q ���f���

𝑥𝐹2 + 𝑦𝐹6 + 2
��
��
𝑒
f ��

����
e ��

���� − 1 ,

 𝑔6 𝑥, 𝑦, 𝜎2, 𝜎6 = − U
q ���f���

𝑥𝐹2 + 𝑦𝐹6 + 2
��
��
𝑒
f ��

����
e ��

���� − 1

where 𝑟f is the electron radius and, 𝑟e is the proton radius, 𝑛^f and 𝑛^e are the number of simulation

particles in the ith slice of the electron and proton beam, respectively, with which the slice

containing the particle being advanced is colliding, and 𝐹± is given below. The 𝜎,𝑠 are evaluated

at 𝑆 as, e.g., 𝜎2± 𝑆 = [(𝑋± − 𝑋±)q], where averages are evaluated at 𝑠 = 0. 𝑁± is the number

of electrons (−) and protons (+) in the actual beam bunches, and 𝑛± is the total number of

simulation particles in electrons (−) and protons (+) beam bunches.

 The flat beam approximation (𝜎2 > 𝜎6), denoted below by subscript f, is relaxed by

deriving generalized solutions for upright (𝜎2 < 𝜎6), given by subscript u, respectively.

 𝐸� 𝑥, 𝑦; 𝜎2, 𝜎6 ≡ q�
���f���

𝑤 2e^6

q ���f���
− 𝑒

f ��

����
e ��

���� 𝑤
��
��
2e^����

6

q ���f���
, (5)

	

	

	
	 	 9	

𝐸� 𝑥, 𝑦; 𝜎2, 𝜎6 ≡ 𝑖 q�
���f���

𝑤 6f^2

q ���f���
− 𝑒

f ��

����
e ��

���� 𝑤
��
��
6f^����

2

q ���f���
,

where

 𝐸 𝑥, 𝑦; 𝜎2, 𝜎6 ≡ 𝐹6 𝑥, 𝑦; 𝜎2, 𝜎6 + 𝑖𝐹2 𝑥, 𝑦; 𝜎2, 𝜎6 , (6)

and

 𝑤 𝑧 ≡ 𝑒fp� 1 + q^
�

𝑒��	𝑑𝜉p
4 = 𝑒fp�𝑒𝑟𝑓𝑐 −𝑖𝑧 , (7)

is the complex error function (also known as Faddeeva function), and erfc is the complementary

error function. Complex error function is implemented using the optimized algorithm reported in

[9].

II.2 GPU ARCHITECTURE

Figure 2.3 – CUDA Programming Model.

	

	

	
	 	 10	

At the hardware level, NVIDIA GPU architecture can be considered as an array of

multithreaded Streaming Multiprocessors (SMs) which are scalable. Each SM comprises of several

Streaming Processor (SP) cores, double-precision logic units (DP units), load/store units, special

function units (SFU) for transcendental instructions such as sin, cosine, reciprocal, and square root,

schedulers and instruction dispatch units, instruction cache, register file, on-chip shared-memory

and L1-cache, read-only cache, and texture units.

Each SP core is a fully pipelined integer arithmetic logic unit (ALU) and single-precision

floating point unit (FPU). Memory can be shared among all SMs as the GPUs support memory

sharing in the form of global, constant and texture memory. The global/texture memory are often

cached and use two-level caching system, where L1- cache is located within each SM, while the

L2-cache is located off-chip and is shared among all the SMs.

NVIDIA invented Compute Unified Device Architecture (CUDA) [1]. CUDA is a parallel

computing platform and programming model used to design parallel computations on NVIDIA

GPUs. Any application using CUDA will have an increased computing performance by using the

power of GPU. Two important components of CUDA programming are Device and Host. Device

is the GPU and Host is the CPU. Kernels are the functions where the logic for the actual

computation which is to be run in parallel resides. These kernels are launched by the Host and

executed on the Device by different parallel CUDA threads. The programmer or compiler

organizes these CUDA threads into one-dimensional, two-dimensional, or three-dimensional

block of threads, called a thread block where each thread within a thread block executes an instance

of the kernel. The size of the thread block varies from one generation of GPUs to another. The

thread blocks are combined into a one-dimensional, two-dimensional, or three-dimensional grid

of thread blocks as illustrated in the Figure 2.3a.

	

	

	
	 	 11	

The number of thread blocks in a grid is usually dictated by the size of the data being

processed or the number of processors in the system, which it can greatly exceed. The programmer

can write the code that may run on any number of cores as the thread blocks are executed

independently and can be scheduled in any order across any number of cores as illustrated in

CUDA C programming guide. During their execution, CUDA threads can access data from six

different memory sources: register memory, constant memory, shared memory, texture memory,

local memory, and global memory as illustrated in the Figure 2.3b.

Each thread has private register to hold frequently accessed data, which are not controlled

by the programmer. Each thread has private local memory that is used for register spills, function

calls, and automatic array variables. Each thread block has a private shared memory generally used

for inter-thread communication and is accessible by all the threads of a block with the same lifetime

as the block. The global, constant and texture memory can be accessed by all the threads and are

available across all the kernel launches through out the execution timeframe of the same

application.

When a kernel is compiled and ready to be executed, the thread blocks within the kernel

grid are scheduled either concurrently or sequentially on the available SMs as multiple thread

blocks can be executed concurrently on a single SM. As the thread blocks terminate at any given

time, new blocks are launched on the vacated SM.

A warp is a group of 32 parallel threads and the SM creates, manages, schedules and

executes threads in such groups. Even though the individual threads within the warp start their

execution from the same program address, they have their own program counter and register state

and hence free to branch and execute independently. All the threads within a warp may execute

	

	

	
	 	 12	

the same instruction at any given time and which is why SM is considered to be following SIMT

architecture to manage and execute hundreds of threads concurrently.

When all the 32 threads within a warp agree to the same control-flow or the same execution

path then the full warp efficiency is realized. Warp efficiency is the average percentage of active

threads in each executed warp. Often, data-dependent conditional branch causes threads within the

same warp to follow different execution paths which is called as branch divergence or control-

flow divergence which then prompts the warp to execute each branch path serially, disabling

threads that are not on that path. The threads converge back to the same execution path when all

the paths are complete.

Note: Branch divergence occurs only within a warp. Threads within different warps execute

independently regardless of whether they are following common or disjoint execution paths.

	

	

	
	 	 13	

CHAPTER III

EXISTING SERIAL ALGORITHM

In this chapter, we discuss the working of existing serial algorithm that was developed to

establish the proof-of-concept of beam-beam interactions in particle colliders using Bassetti-

Erskine approximation [2].

III.1 OUTLINE OF THE ALGORITHM

At the top-most level, numerical simulation of beam-beam effects consists of two major steps

- Tracking and Collision. These two steps are executed during each turn of the simulation, which

in practice, runs for millions to billions of turns to simulate long-term beam-beam dynamics in

particle colliders.

1. Tracking - The particles from the two input beams, e- and p-beam, are transported through

the ring to bring them to an interaction point using an arbitrary-map generated from readily

available accelerator lattice design and tracking codes (e.g. COSY Infinity [7]). This

requires solving Equation (1) for all particles in the two input beams.

2. Collision - The simulation of collision (or beam-beam interactions) between the two input

beams, e- and p-beam, consist of two consecutive steps.

a. Slicing - Each input beam is sliced into m equal parts along longitudinal

direction, as illustrated in Chapter 2. For example, Figure 2.1 illustrates the

slicing of a beam into three parts along longitudinal axis.

b. Apply Kick - The collision of two beams is simulated using slice-to-slice

interactions, where each slice from one beam collides with every other slice of

the other beam such that the order of collision captures the beams drift along

	

	

	
	 	 14	

the collider ring. For example, Figure 2.2 illustrates the collision of two beams

that is partitioned into three slices each, where particles from both the colliding

beams experience a total of three kicks (or beam-beam effects), one from each

slice of the counter-rotating beam. This kick computation between a pair of

colliding slices, which is the beam-beam effect of one slice on the other, is

calculated using Equations (3)-(7).

Algorithm 1 – 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏 𝐵𝑒𝑎𝑚 − 𝐵𝑒𝑎𝑚	(𝐸, 𝑃,𝑀j,𝑀�, 𝑑, 𝑡,𝑚)

1: 𝒇𝒐𝒓	𝑖	 = 	0	𝑡𝑜	𝑡	𝑑𝑜

2: 𝑇𝑟𝑎𝑐𝑘(𝐸,𝑀j, 𝑑)

3: 𝑇𝑟𝑎𝑐𝑘(𝑃,𝑀�, 𝑑)

4: 𝐶𝑜𝑙𝑙𝑖𝑑𝑒(𝐸, 𝑃,𝑚)

5: 𝒆𝒏𝒅	𝒇𝒐𝒓

6: 𝒆𝒏𝒅	𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏

The pseudo code for numerical simulation of the beam-beam effects is illustrated in

Algorithm 1. In this algorithm, each beam is represented as a list of particles, where each particle

is a six dimensional object denoting the six phase-space coordinates of that particular particle. The

map required to transport the particles through the collider ring is given as a list of 2D matrices,

where each matrix represents the 2D map along one of the six phase-space coordinates, and each

row of the matrix is a 7-tuple object, (α, β, γ, η, λ, µ, M(x|α β γ η λ µ)), denoting the variables with

same representation from Equation (1). The procedure 𝐵𝑒𝑎𝑚 − 𝐵𝑒𝑎𝑚 simulating the beam-beam

effects takes input 𝐸, 𝑃,𝑀j,𝑀�, 𝑑, 𝑡	and 𝑚, where 𝐸 and 𝑃 are the list containing particles from e-

beam and p-beam, respectively, 𝑀j and 𝑀� are the transport maps for e-beam and p-beam,

	

	

	
	 	 15	

respectively, 𝑑 is the dimension of particles in simulation space (in this case, we have six phase-

space coordinates i.e. 𝑑 = 6), 𝑡 is the number of turns required for the simulation, and 𝑚 is the

number of slices required for the collision step of the simulation. In this procedure, each iteration

of the for loop implements beam-beam effects for a single turn of the simulation, where particles

from each beam is first transported through the collider ring using the procedure 𝑇𝑟𝑎𝑐𝑘 on each

beam, and then the collision of the two beams are implemented using 𝐶𝑜𝑙𝑙𝑖𝑑𝑒 procedure. The

pseudocode for these two procedures are presented in Algorithms 2 and 4.

III.2 TRACKING ALGORITHM

 Algorithm 2 – 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏	𝑇𝑟𝑎𝑐𝑘	(𝐵,𝑀¥, 𝑑)

1: 𝒇𝒐𝒓	𝑖	 = 	0	𝑡𝑜	𝑑	– 	1	𝑑𝑜

2: 𝑀 ← 𝑀¥[𝑖]

3: 𝒇𝒐𝒓	𝑒𝑎𝑐ℎ	𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒	𝑝 ∈ 𝐵	𝒑𝒂𝒓𝒂𝒍𝒍𝒆𝒍	𝒅𝒐

4: 𝑝[𝑖] ← 𝐴𝑝𝑝𝑙𝑦 − 𝑀𝑎𝑝(𝑝,𝑀, 𝑑, 𝑖)

5: 𝒆𝒏𝒅	𝒇𝒐𝒓

6: 𝒆𝒏𝒅	𝒇𝒐𝒓

7: 𝒆𝒏𝒅	𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏

 Algorithm 3 – 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛	𝐴𝑝𝑝𝑙𝑦 − 𝑀𝑎𝑝(𝑝,𝑀, 𝑑, 𝑑𝑖𝑚)

1: 𝑥 ← 𝑝[𝑑𝑖𝑚]

2: 𝒇𝒐𝒓	𝑖	 = 	0	𝑡𝑜	𝑀. 𝑟𝑜𝑤𝑠	– 	1	𝒅𝒐

3: 𝑦 ← 𝑀[𝑖][𝑀. 𝑐𝑜𝑙𝑢𝑚𝑛𝑠	 − 	1]

4: 𝒇𝒐𝒓	𝑗	 = 	0	𝑡𝑜	𝑑	– 	1	𝒅𝒐

5: 𝑦 ← 𝑦. 𝑝[𝑖]𝑀[𝑖][𝑗]

	

	

	
	 	 16	

6: 𝒆𝒏𝒅	𝒇𝒐𝒓

7: 𝒙 ← 𝑥 + 𝑦

8: 𝒆𝒏𝒅	𝒇𝒐𝒓

9: 𝒓𝒆𝒕𝒖𝒓𝒏	𝒙

10: 𝒆𝒏𝒅	𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏

The procedure 𝑇𝑟𝑎𝑐𝑘	 𝐵,𝑀¥, 𝑑 in Algorithm 2 evaluates Equation (1) for all 𝑑-

dimensional particles in a input list 𝐵 using a transport map	𝑀¥. In particular, for each dimension

in the 𝑑-dimensional coordinate space of the particles, transport map of the corresponding

dimension is applied to all particles in the list 𝐵 using an auxiliary procedure	𝐴𝑝𝑝𝑙𝑦 − 𝑀𝑎𝑝, where

the procedure 𝐴𝑝𝑝𝑙𝑦 − 𝑀𝑎𝑝(𝑝,𝑀, 𝑑, 𝑑𝑖𝑚) called along a dimension 𝑑𝑖𝑚 for a particle 𝑝 returns

the updated value for 𝑝[𝑑𝑖𝑚] by evaluating Equation (1) using the transport map 𝑀. The pseudo

code for 𝐴𝑝𝑝𝑙𝑦 − 𝑀𝑎𝑝 and other auxiliary methods required in 𝐵𝑒𝑎𝑚 − 𝐵𝑒𝑎𝑚 procedure are

illustrated in Algorithm 3.

III.3 COLLISION ALGORITHM

 Algorithm 4 – 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏	𝐶𝑜𝑙𝑙𝑖𝑑𝑒	(𝐸, 𝑃,𝑚)

1: 𝑆j ← 𝑆𝑙𝑖𝑐𝑒(𝐸,𝑚)

2: 𝑆� ← 𝑆𝑙𝑖𝑐𝑒(𝑃,𝑚)

3: 𝒇𝒐𝒓	𝑖	 = 	1	𝑡𝑜	𝑚	𝒅𝒐

4: 𝒇𝒐𝒓	𝑗	 = 	0	𝑡𝑜	𝑖	– 	1	𝒑𝒂𝒓𝒂𝒍𝒍𝒆𝒍	𝒅𝒐

5: Let 𝑠 be the 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 − 𝑝𝑜𝑖𝑛𝑡 for 𝑆j[𝑗] and 𝑆�[𝑖	– 	𝑗	– 	1]

calculated as described in Chapter 2

6: 𝐴𝑝𝑝𝑙𝑦 − 𝐾𝑖𝑐𝑘(𝑆j[𝑗], 𝑆�[𝑖	– 	𝑗	– 	1], 𝑠)

	

	

	
	 	 17	

7: 𝒆𝒏𝒅	𝒇𝒐𝒓

8: 𝒆𝒏𝒅	𝒇𝒐𝒓

9: 𝒇𝒐𝒓	𝑖	 = 	𝑚	 + 	1	𝑡𝑜	2	 ∗ 	𝑚	– 	1	𝒅𝒐

10: 𝒇𝒐𝒓	𝑗	 = 	𝑖	– 	𝑚	𝑡𝑜	𝑚	– 	1	𝒑𝒂𝒓𝒂𝒍𝒍𝒆𝒍	𝒅𝒐

11: Let 𝑠 be the 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 − 𝑝𝑜𝑖𝑛𝑡 for 𝑆j[𝑗] and 𝑆�[𝑖	– 	𝑗	– 	1]

calculated as described in Chapter 2

12: 𝐴𝑝𝑝𝑙𝑦 − 𝐾𝑖𝑐𝑘(𝑆j[𝑗], 𝑆�[𝑖	– 	𝑗	– 	1], 𝑠)

13: 𝒆𝒏𝒅	𝒇𝒐𝒓

14: 𝒆𝒏𝒅	𝒇𝒐𝒓

15: 𝐸 ← 𝑀𝑒𝑟𝑔𝑒 − 𝑆𝑙𝑖𝑐𝑒𝑠(𝑆j,𝑚)

16: 𝑃 ← 𝑀𝑒𝑟𝑔𝑒 − 𝑆𝑙𝑖𝑐𝑒𝑠(𝑆�,𝑚)

17: 𝒆𝒏𝒅	𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏

 Algorithm 5 – 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏	𝑆𝑙𝑖𝑐𝑒(𝐵,𝑚)

1: let 𝑆[0	. . 𝑚 − 1]	be	a	new	array

2: 𝒇𝒐𝒓	𝑖	 = 	0	𝑡𝑜	𝑚	– 	1	𝒅𝒐

3: make 𝑆[𝑖] an empty list

4: 𝒆𝒏𝒅	𝒇𝒐𝒓

5: 𝒇𝒐𝒓	𝑒𝑎𝑐ℎ	𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 ∈ B 𝒑𝒂𝒓𝒂𝒍𝒍𝒆𝒍	𝒅𝒐

6: 𝑠𝑙𝑖𝑐𝑒 ← 𝐹𝑖𝑛𝑑 − 𝑆𝑙𝑖𝑐𝑒(𝐵, 𝑝,𝑚)

7: 𝐿𝑖𝑠𝑡 − 𝐼𝑛𝑠𝑒𝑟𝑡(𝑆[𝑠𝑙𝑖𝑐𝑒], 𝑝)

8: 𝒆𝒏𝒅	𝒇𝒐𝒓

9: 𝒓𝒆𝒕𝒖𝒓𝒏	𝑆

	

	

	
	 	 18	

10: 𝒆𝒏𝒅	𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏

11: 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏	𝐹𝑖𝑛𝑑 − 𝑆𝑙𝑖𝑐𝑒(𝐵, 𝑝,𝑚)

12: calculate and return the slice number to which 𝑝 belongs based on the geometry

along longitudinal direction

13: 𝒆𝒏𝒅	𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏

The collision between two counter-rotating beams is implemented in the procedure

𝐶𝑜𝑙𝑙𝑖𝑑𝑒	(𝐸, 𝑃,𝑚), where 𝐸 and 𝑃 represents the list of particles in the two colliding beams and 𝑚

is the number of slices required per beam. This procedure updates all the particles in 𝐸 and 𝑃 to

reflect the beam-beam interaction, and it works as follows. Line 1 and 2 divides the list of particles

in the input beams into 𝑚 slices (or sublists) using 𝑆𝑙𝑖𝑐𝑒 method on each beam 𝐸 and	𝑃. In

particular, procedure 𝑆𝑙𝑖𝑐𝑒(𝐵,𝑚) partitions the input list of particles 𝐵 into 𝑚 sublists based on

their corresponding slice number which is calculated using 𝐹𝑖𝑛𝑑 − 𝑆𝑙𝑖𝑐𝑒 method that implements

the slicing algorithm described in Chapter 2. Next, the 𝑓𝑜𝑟 loops in lines 3 - 14 calculates the

beam-beam effects (or kicks) for every pair of colliding slices, where the kick computation on all

particles in a pair of colliding slices is implemented using the procedure 𝐴𝑝𝑝𝑙𝑦 − 𝐾𝑖𝑐𝑘. The

procedure 𝐴𝑝𝑝𝑙𝑦 − 𝐾𝑖𝑐𝑘(𝑆j, 𝑆�, 𝑠) calculates the kick at a interaction point 𝑠 on all particles in

the input list 𝑆j and 𝑆�, where the interaction point is calculated as described in Section 2 and [15],

and then it updates all the particles in the input slice with the computed kick. The pseudo code for

𝐴𝑝𝑝𝑙𝑦 − 𝐾𝑖𝑐𝑘 is illustrated in Algorithm 6. Finally, in lines 15 and 16, particles from individual

slices are merged into a single list using the procedure 𝑀𝑒𝑟𝑔𝑒 − 𝑆𝑙𝑖𝑐𝑒𝑠 on 𝑆j and	𝑆�, respectively.

The 𝑀𝑒𝑟𝑔𝑒 − 𝑆𝑙𝑖𝑐𝑒𝑠 procedure returns a sorted list that is the merge of its input array of lists, and

the output from the two calls to this procedure is stored in the input lists, 𝐸 and 𝑃 respectively.

The updated particles in 𝐸 and 𝑃 are used for simulating the beam-beam effects in the next turn.

	

	

	
	 	 19	

Algorithm	6	-	𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏 𝐴𝑝𝑝𝑙𝑦 − 𝐾𝑖𝑐𝑘(𝑆j, 𝑆�, 𝑠)

1. (𝑥j, 𝑦j, 𝜎2j, 𝜎6j) ← 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 − 𝑀𝑒𝑎𝑛 − 𝑆𝐷(𝑆𝑒, 𝑠)

2. (𝑥�, 𝑦�, 𝜎2
�, 𝜎6

�) ← 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 − 𝑀𝑒𝑎𝑛 − 𝑆𝐷(Sp, s)

3. 𝒇𝒐𝒓 each particle 𝑒 ∈ 𝑆𝑒 𝒑𝒂𝒓𝒂𝒍𝒍𝒆𝒍	𝒅𝒐

4. (𝐹2, 𝐹6) ← 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 − 𝐾𝑖𝑐𝑘(𝑒, 𝑥�,	𝑦�,𝜎2
�, 𝜎6

�)

5. 𝑒[0] ← 𝑒[0] − 𝑠 ∗ 𝐹𝑥

6. 𝑒[1] ← 𝑒[1] − 𝐹𝑥

7. 𝑒[2] ← 𝑒[2] − 𝑠 ∗ 𝐹𝑦

8. 𝑒[3] ← 𝑒[3] − 𝐹𝑦

9. 𝒆𝒏𝒅	𝒇𝒐𝒓

10. 𝒇𝒐𝒓 each particle 𝑝 ∈ 𝑆𝑝	𝒑𝒂𝒓𝒂𝒍𝒍𝒆𝒍	𝒅𝒐

11. (𝐹2, 𝐹6) ← 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 − 𝐾𝑖𝑐𝑘(𝑝, 𝑥j,	𝑦j,𝜎2j, 𝜎6j)

12. 𝑝[0] ← 𝑒 0 + 𝑠 ∗ 𝐹𝑥

13. 𝑝[1] ← 𝑝 1 + 𝐹𝑥

14. 𝑝[2] ← 𝑝 2 + 𝑠 ∗ 𝐹𝑦

15. 𝑝[3] ← 𝑝 3 + 𝐹𝑦

16. 𝒆𝒏𝒅	𝒇𝒐𝒓

17. 𝒆𝒏𝒅	𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏

18. 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏	𝑀𝑒𝑟𝑔𝑒 − 𝑆𝑙𝑖𝑐𝑒𝑠(𝑆,𝑚)

19. B ← ∅

20. 𝒇𝒐𝒓	𝑖	 = 	0	𝑡𝑜	𝑚	– 	1	𝒅𝒐

21. 𝐵 ← 𝑀𝑒𝑟𝑔𝑒 − 𝐿𝑖𝑠𝑡(𝐵, 𝑆[𝑖])

	

	

	
	 	 20	

22. 𝒆𝒏𝒅	𝒇𝒐𝒓

23. 𝒓𝒆𝒕𝒖𝒓𝒏	𝑩

24. 𝒆𝒏𝒅	𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏

The procedure 𝐴𝑝𝑝𝑙𝑦 − 𝐾𝑖𝑐𝑘(𝑆j, 𝑆�, 𝑠) is the heart of 𝐵𝑒𝑎𝑚 − 𝐵𝑒𝑎𝑚 algorithm, and it

works as follows. The two calls to 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 − 𝑀𝑒𝑎𝑛 − 𝑆𝐷	method calculates and returns the

mean and standard deviation along the first and third dimension for the particles in 𝑆j and 𝑆�,

respectively, where the two dimensions correspond to the transverse position of particles. Next,

for each particle 𝑒 in	𝑆j, the kick from all the particles in 𝑆� on a particle 𝑒 is calculated using the

procedure 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 − 𝐾𝑖𝑐𝑘, which takes input, a particle 𝑒, mean and standard deviation of the

particles in 𝑆�, and it returns a pair (𝐹2, 𝐹6). The output values, 𝐹2 and	𝐹6, represents the kick from

particles in 𝑆�	on	𝑒, and it is calculated using equations 3 to 7 (𝐹2	and 𝐹6 denotes the variables with

same notations from Chapter 2). These computed kicks are used to update the particles in 𝑆j in the

first 𝑓𝑜𝑟 loop. Similarly, in the next 𝑓𝑜𝑟 loop, kick on all the particles in 𝑆� due to the particles

from 𝑆j is calculated using the procedure 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 − 𝐾𝑖𝑐𝑘 and the output from this procedure is

used to update the particles in	𝑆�.

	

	

	
	 	 21	

CHAPTER IV

GPU IMPLEMENTATION

In this chapter, we discuss our GPU implementation of Single-Bunch beam-beam

simulation algorithm. We first present a brief overview of the existing GPU algorithm for Tracking

and then discuss the GPU algorithm for Collision in detail.

IV.1 PARALLEL ALGORITHM FOR TRACKING

In our implementation, the input lists of particles and the transport map are always stored

in the GPU memory. The procedure TRACK, which is highly data-parallel, is implemented on

GPU as an independent kernel where the computation of each particle is assigned to parallel

threads with one-to-one correspondence. In this kernel, transport map is stored in shared memory

and it is accessed efficiently to improve the memory performance.

IV.2 PARALLEL ALGORITHM FOR COLLISION

The essential routines for 𝐶𝑜𝑙𝑙𝑖𝑑𝑒 procedure such as 𝑆𝑙𝑖𝑐𝑒, 𝐴𝑝𝑝𝑙𝑦 − 𝐾𝑖𝑐𝑘, and 𝑀𝑒𝑟𝑔𝑒 −

𝑆𝑙𝑖𝑐𝑒𝑠 are implemented on GPU. The implementations of all the routines are discussed in the next

subsections.

IV.2.1 Slicing in Parallel

The Single-Threaded way of Slicing and Sorting the particles is to compute the slice

number of one particle at a time, store the slice numbers of each particle, and then sort them using

one of the popular sorting techniques according to their slice number. Although there are some

existing libraries for sorting on GPUs, as we have to sort the particles which has 6 dimensions,

	

	

	
	 	 22	

none of the libraries were compatible for integration into our implementation. So, we propose a

fast and efficient algorithm for Slicing and Sorting the particles of a Beam on GPU.

Figure 4.1 – Initial positions of all the particles and global counter stores particles size in each
slice. A new array is also initialized to store particles according to their slice number.

During this phase, a thread is assigned to each particle to calculate its slice number. Each

thread will find the slice number of the particle and increments the global counter to update the

count of particles in each slice. For example, in Figure 4.1 there are a total of 1000 particles in the

beam and the beam is to be divided into 3 slices. All the threads calculate their respective particle's

slice number and update the global counter. In this case, Slice-1(S1) has 150 particles, Slice-2(S2)

has 550 particles, and Slice-3(S3) has 300 particles. Then, an empty list is initialized and the spaces

for each slice are allocated separately as shown in the Figure 4.1.

	

	

	
	 	 23	

Figure 4.2 – First block accessing the global counter to write the particles in their allocated regions.

Next, a lead thread from each block examines the global slice count status and broadcasts

the status to all the particles. For example, in the Figure 4.2, a lead thread from the block (say

block-x) examines the status for all the slices and broadcasts the difference between the actual total

slice count and the current status. In this case, the difference is 0 as none of the blocks have started

sorting their particles according to their slice numbers. So, as there are 60 particles in block-x

which belongs to Slice-1 and the first 60 spaces are allocated to the particles belonging to Slice-1

in block-x. A similar procedure is followed for the particles in Slice-2 and Slice-3. After these

steps, the global slice count will be 90, 310, 170 respectively for Slice-1, 2, and 3.

	

	

	
	 	 24	

Figure 4.3 - Second block accessing the global counter to write the particles in their allocated
regions.

 Figure 4.3 illustrates the scenario when another block (say block-y) tries to access the

global slice count after block-x. Now the difference between actual total slice count and current

status is 60, 240, 330 respectively for Slice-1, 2, and 3. The number of particles in block-y which

belong to Slice-1, 2 and 3 are 40, 120 and 80 respectively. So the starting position for particles in

block-y that belong to Slice-1 will start from 61 in the area that is specially allocated for Slice-1

particles. Similarly, the starting positions for Slice-2 and 3 particles are 240 and 130 in their

respective allocations. Figure 4.4 illustrates the final positions of particles after slicing and sorting

them. In this way, all the particles belonging to the same slice are arranged consecutively which

	

	

	
	 	 25	

in turn directs the threads to perform a coalesced access memory access in 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 − 𝑀𝑒𝑎𝑛 −

𝑆𝐷 and 𝐴𝑝𝑝𝑙𝑦 − 𝐾𝑖𝑐𝑘 procedures.

Figure 4.4 – Final positions of particles after slicing and sorting.

IV.2.2 Parallel Apply Kick

Figure 4.5 – Triangle illustrating the slice-to-slice collisions that can happen in parallel at each
stage. In this example, each bunch has 5 slices.

Two main building blocks of 𝐴𝑝𝑝𝑙𝑦 − 𝐾𝑖𝑐𝑘 procedure are 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 − 𝑀𝑒𝑎𝑛 − 𝑆𝐷 and

𝐶𝑜𝑚𝑝𝑢𝑡𝑒 − 𝐾𝑖𝑐𝑘 routines. Figure 4.5 illustrates the slice-to-slice collision process when the beam

is divided into 5 slices. When the beam is divided into m slices, there will be a total of 2m - 1

stages of slice-to-slice collisions. So, here there are a total 9 stages of slice-to-slice collisions. At

each stage, the numbers represent the slices of e- and p-beam that are colliding with each other.

For example, in the Stage-2, 1st slice from e-beam is colliding with the 2nd slice of p-beam which

is represented as 12, and 2nd slice from e-beam is colliding with the 1st slice from p-beam. In

	

	

	
	 	 26	

stage-1 and stage-9, only one pair of slices are colliding with each other where as in all the other

stages there are more than one pair of slices that are colliding with each other. We first present the

brief outline of what is happening in the 𝐴𝑝𝑝𝑙𝑦 − 𝐾𝑖𝑐𝑘 procedure here. When a pair of slices are

colliding with each other, the procedure 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 − 𝑀𝑒𝑎𝑛 − 𝑆𝐷 is called on both the slices which

return mean and standard deviations of the slice in x and y directions. Next, the procedure

𝐶𝑜𝑚𝑝𝑢𝑡𝑒 − 𝐾𝑖𝑐𝑘 is called on all the particles of a slice to compute the kick of the opposite slices

on each particle and return the forces in x and y directions which are later applied on the particle

to get its updated dimensions.

Both routines, 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 − 𝑀𝑒𝑎𝑛 − 𝑆𝐷 and 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 − 𝐾𝑖𝑐𝑘 are implemented on GPU.

At first, we compute the mean and standard deviation (SD) of all the m slices and store them in

memory. The routine 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 − 𝑀𝑒𝑎𝑛 − 𝑆𝐷 is implemented using CUDA based Thrust Library

[3] which has powerful and efficient reduction operation implementations. Then at each stage of

slice-to-slice collision process, we pass those mean and SDs to the 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 − 𝐾𝑖𝑐𝑘 procedure

and calculate the updated mean and SDs of the slices at end of the 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 − 𝐾𝑖𝑐𝑘 procedure.

For example, during the Stage-1 the mean and SDs of 1e and 1p are passed to 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 − 𝐾𝑖𝑐𝑘

and at the end of the 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 − 𝐾𝑖𝑐𝑘 procedure we calculate the updated mean and SDs of 1e

and 1p and update them in the memory so that we retrieve the correct values of mean and SDs of

1e and 1p when they are participating in collision process again during Stage-2.

During Stage-2 to Stage-8, there are more than one pair of slices participating in the

collision process. The sequential way of doing all these pair-wise collisions in a stage is to process

each pair-wise collision one after the other. In our GPU implementation, we do all the pair-wise

collisions in parallel. We fire up the number of threads that are equal to the number of particles in

all the slices and all the thread call the 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 − 𝐾𝑖𝑐𝑘 procedure on their respective particles in

	

	

	
	 	 27	

parallel. The advantage of arranging all the particles that belong to the same slice comes into the

picture here. As the threads that belong to the same warp access the consecutive memory locations

all the memory requests of the threads are completed in at most two transactions.

	

	

	
	 	 28	

CHAPTER V

MULTI-GPU IMPLEMENTATION

 In this chapter, we present the algorithm for simulating the beam-beam effects in particle

colliders where each of the collider rings carry more than one bunch. We refer to the two types of

input beams in the following algorithm description as e-beam and p-beam.

Figure 5.1 – Setup of collider rings with 4p and 3e bunches. Number of e bunches is always one
less than number of p bunches.

	

	

	
	 	 29	

Figure 5.1 illustrates the setup of two collider rings which has three e-beam and four p-

beam bunches. It is to be noted that the number of e-beam bunches is always one less than p-beam

bunches. When there are 𝑛𝑏 p-beam bunches, there will be a total of 𝑛𝑏	(𝑛𝑏 − 1) bunch-to-bunch

interactions. The interaction between two bunches consists of two major steps - Tracking and

Collision as described in Chapter - 3.

Figure 5.2 illustrates the schedule that is repeated for two times for all the 𝑛𝑏(𝑛𝑏 − 1)

bunch-to-bunch interactions when 𝑛𝑏 = 4. During iteration – 1, at each turn every e-beam sees a

different p-beam and a single iteration is said to be completed after every e-beam sees every p-

beam and this also refers to completion of one schedule. Next, from iteration – 2, the same schedule

repeats.

Figure 5.2 – Schedule repeated for two iterations for 3e and 4p bunches. A schedule has 4 turns
which is equal to number of p bunches.

	

	

	
	 	 30	

Sequential Algorithm

Algorithm 7 - function 𝐵𝑒𝑎𝑚 − 𝐵𝑒𝑎𝑚(𝐵j, 𝐵�,𝑀j,𝑀�, 𝑑, 𝑡,𝑚, 𝑛𝑏)

1. 𝑒_𝑏𝑢𝑛𝑐ℎ_𝑛𝑢𝑚	 = 0, 𝑝_𝑏𝑢𝑛𝑐ℎ_𝑛𝑢𝑚	 = 1

2. 𝒘𝒉𝒊𝒍𝒆	𝑖	 < 	𝑡:

3. 𝒇𝒐𝒓	𝑖	 = 	0	𝑡𝑜	𝑛𝑏	 ∗ 	 (𝑛𝑏	 − 	1)	𝒅𝒐

4. 𝑰𝒇	(𝑒_𝑏𝑢𝑛𝑐ℎ_𝑛𝑢𝑚	 >= 	𝑛𝑏	 − 	1):

5. 𝑒_𝑏𝑢𝑛𝑐ℎ_𝑛𝑢𝑚	 = 	0

6. 𝑖 = 𝑖 + 1

7. 𝑰𝒇	(𝑝_𝑏𝑢𝑛𝑐ℎ_𝑛𝑢𝑚	 >= 	𝑛𝑏):	

8. 												𝑝_𝑏𝑢𝑛𝑐ℎ_𝑛𝑢𝑚	 = 	0	

9. 𝑇𝑟𝑎𝑐𝑘	(𝐵j	[𝑒_𝑏𝑢𝑛𝑐ℎ_𝑛𝑢𝑚],𝑀j, 𝑑)

10. 𝑇𝑟𝑎𝑐𝑘	(𝐵�	[𝑝_𝑏𝑢𝑛𝑐ℎ_𝑛𝑢𝑚],𝑀�, 𝑑)

11. 𝐶𝑜𝑙𝑙𝑖𝑑𝑒	(𝐵j	[𝑒_𝑏𝑢𝑛𝑐ℎ_𝑛𝑢𝑚], 𝐵�	[𝑝_𝑏𝑢𝑛𝑐ℎ_𝑛𝑢𝑚],𝑚)	

12. 𝑒_𝑏𝑢𝑛𝑐ℎ_𝑛𝑢𝑚 + +, 𝑝_𝑏𝑢𝑛𝑐ℎ_𝑛𝑢𝑚 + +	

13. 𝒆𝒏𝒅	𝒇𝒐𝒓	

14. 𝒆𝒏𝒅	𝒘𝒉𝒊𝒍𝒆	

15. 𝒆𝒏𝒅	𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏

Algorithm - 7 illustrates the pseudo code for the simulation of beam-beam effects when

there are multiple bunches. This simulation is driven by the procedure 𝐵𝑒𝑎𝑚 − 𝐵𝑒𝑎𝑚 which takes

(𝐵j, 𝐵�,𝑀j,𝑀�, 𝑑, 𝑡,𝑚, 𝑛𝑏) as inputs. Here 𝐵j and 𝐵� are the lists of lists where the outer lists

represent the bunches and the inner lists represent the particles in a bunch. As described in Chapter

3, each particle is a six-dimensional object denoting the six phase-space coordinates of that

particular particle, 𝑀j and 𝑀� are the transport of maps of e- and p-beams respectively, 𝑑 is the

	

	

	
	 	 31	

dimension of the particles, 𝑡 is the number of turns required for the simulation which should be

the multiple of 𝑛𝑏, and 𝑚 is the number of slices required for the collision step of the simulation.

The schedule given above is implemented sequentially using the 𝑓𝑜𝑟 − 𝑙𝑜𝑜𝑝 in this procedure by

passing the respective e- and p-beams to the Track and Collide procedures and their working is

described in Chapter 3.

Multi-GPU Approach

The set of interactions happening within each turn of the schedule are independent of each

other and the interactions happening in different turns are dependent on each other. For example,

in Figure – 5.2, the interaction (1,1) of Turn – 2 cannot happen until interaction (1,2) of Turn-1

finishes, as both the e-beams are same here. So the idea is to simulate all the interactions in a single

turn simultaneously on a cluster of GPUs. The pair of beams interacting at each turn is different

from the previous iteration. The naive way of running all these turns on multiple GPUs is to move

the bunches between GPUs for each turn and perform the simulations. We propose an algorithm

where the bunch is stored on a particular GPU throughout the simulation without further moving

the bunch data between GPUs for each turn. Once the GPU for all the bunches is decided, during

the phase of beam-beam interaction we only move the parameters between the GPUs that are

required to apply the interaction effects on the bunches. A robust scheduling algorithm is necessary

to schedule all the interactions on the GPUs in a turn without any delay and make neither of the

beams wait for the parameters from the opposite GPU. Table – 5.1 depicts the GPU assignment

and Figure – 5.3 illustrates the scheduling algorithm for a single turn when there are 6 GPUs and

15 bunches.

	

	

	
	 	 32	

Table 5.1 - Distribution of Bunches on GPUs (6 GPUs, 15 Bunches).

V.1 SCHEDULING BUNCHES

Figure 5.3 – Schedule of a single random turn when there are 15 bunches, and the execution
schedule formed by the scheduling algorithm using the Current Turn Schedule.

The first step of this scheduling is to logically divide all the interactions in a turn according

to the GPU where the e-beam is stored. For example, (1, 2, 3) e-beams are kept in the same logical

GPU	1 1 2 3
GPU	2 4 5 6
GPU	3 7 8 9
GPU	4 10 11
GPU	5 12 13
GPU	6 14 15

	

	

	
	 	 33	

partition (lg) as they are all stored in the same GPU. This division remains constant all over the

simulation as the order of the e-beams is same for every turn. As there is a maximum of 3 beams

stored in a GPU, this turn is scheduled to finish the execution in 3 steps because a GPU can process

only one interaction at a given time. The execution schedule in the Figure-schedule illustrates the

order in which all the interactions in the turn are executed in three steps. At each step, a GPU

selects a set of e- and p-beams in an order of from a lg for execution. For example, during step –

1, GPU – 2 scans line-1 of lg-2 (as e-beams that belong to GPU – 2 are present in lg-2 in any given

turn) and selects 4th e-beam for execution. Next, it scans line-1 of each lg and selects 5th p-beam

from lg-6 as it belongs to GPU – 2. The multi-GPU algorithm is capable of halting the execution

of one or both the beams for that particular step. The symbol '-' indicates that the particular beam

slot for the GPU is empty during that step. There are two possible reasons for that:

Reason: 1. During step - 1, there are two p-beams (1, 3) that appear in line-1 in their logical

partition and they belong to the same GPU (GPU - 1). Due to this reason, only one of the beam

will be scheduled to execute on GPU - 1 for that particular step. In this case, p-beam - 1 is selected

for execution during step - 1, and p-beam - 3 is scheduled to execute in step - 2. Because of this

the execution for e-beam - 12 which is interacting with p-beam - 3 is also scheduled to execute in

step - 2 which is why the e-beam slot for GPU - 5 is empty. The p-beam slot for GPU - 6 is empty

as none of the logical partitions have p-beam that belongs to this GPU that appears in line-1.

Reason: 2. All the GPUs have finished the execution of their e- and p-beams for that

particular turn. For example, GPU - 4 has completed the execution of all of its e- and p-beams.

The bi-directional arrows in each step indicate the GPUs that are communicating with each

other to execute that respective interaction. For example, during Step - 1, GPU - 2 and GPU - 4

are communicating with each other to execute the interaction 4 - 10 which appears in line-1 of lg-

	

	

	
	 	 34	

2. Once this execution schedule shown in Figure – 5.3 is formed, the Track and Collide procedures

for e- and p-beams are executed on the GPUs according to the execution schedule.

Algorithm 8 – function 𝐵𝑒𝑎𝑚 − 𝐵𝑒𝑎𝑚 −

𝑀𝑢𝑙𝑡𝑖𝐺𝑃𝑈(𝐵j, 𝐵�,𝑀j,𝑀�, 𝑑, 𝑡,𝑚, 𝑛¥, 𝐺𝑃𝑈𝑜𝑓𝐵𝑒𝑎𝑚,𝑀𝑎𝑥𝐵𝑢𝑛𝑐ℎ𝐺𝑃𝑈, 𝑛𝑢𝑚𝐺𝑃𝑈)

1. 𝒘𝒉𝒊𝒍𝒆	𝑖	 = 	1	𝑡𝑜	𝑡:

2. 𝑡𝑜𝑡𝑎𝑙_𝑖𝑗	 = 	0

3. 𝒇𝒐𝒓	𝑖	 = 	1	𝑡𝑜	𝑛𝑏	𝒅𝒐

4. 𝒇𝒐𝒓	𝑗	 = 	1	𝑡𝑜	𝑛𝑏 	− 	1	𝒅𝒐

5. 𝑐𝑢𝑟_𝑒_𝑠𝑐ℎ𝑑[𝑗] 	= 	𝑒_𝑠𝑐ℎ[𝑡𝑜𝑡𝑎𝑙_𝑖𝑗]

6. 𝑐𝑢𝑟_𝑝_𝑠𝑐ℎ𝑑[𝑗] 	= 	𝑝_𝑠𝑐ℎ[𝑡𝑜𝑡𝑎𝑙_𝑖𝑗]

7. 𝑡𝑜𝑡𝑎𝑙_𝑖𝑗	 = 	𝑡𝑜𝑡𝑎𝑙_𝑖𝑗	 + 	1

8. 𝒆𝒏𝒅	𝒇𝒐𝒓

9. 𝒇𝒐𝒓	𝑔𝑝𝑢	 = 	1	𝑡𝑜	𝑛𝑢𝑚𝐺𝑃𝑈	𝒑𝒂𝒓𝒂𝒍𝒍𝒆𝒍	𝒅𝒐

10. 𝒇𝒐𝒓	𝑠𝑡𝑒𝑝	 = 	1	𝑡𝑜	𝑀𝑎𝑥𝐵𝑢𝑛𝑐ℎ𝐺𝑃𝑈[𝑔𝑝𝑢]	𝒅𝒐

11. 𝒊𝒇	𝑠𝑡𝑒𝑝	! = 	1

12. 𝑒_𝑏, 𝑜𝑝𝑝_𝑝_𝑏 ← pop any remained e-bunch and its opposite p-bunch in line-

(step-1) from division-GPU of 𝑐𝑢𝑟_𝑒_𝑠𝑐ℎ𝑑

13. 𝒆𝒍𝒔𝒆

14. 𝑒_𝑏, 𝑜𝑝𝑝_𝑝_𝑏 ← pop e-bunch and its opposite p-bunch in line-step from any

division-GPU of 𝑐𝑢𝑟_𝑒_𝑠𝑐ℎ𝑑

15. 𝒊𝒇	𝑠𝑡𝑒𝑝	! = 	1

16. 𝑝_𝑏, 𝑜𝑝𝑝_𝑒_𝑏 ← pop any remained p-bunch and its opposite e-bunch in line-

(step-1) from division-GPU of 𝑐𝑢𝑟_𝑝_𝑠𝑐ℎ𝑑

	

	

	
	 	 35	

17. 𝒆𝒍𝒔𝒆

18. 𝑝_𝑏, 𝑜𝑝𝑝_𝑒_𝑏 ← pop p-bunch and its opposite e-bunch in line-step from any

division-GPU of 𝑐𝑢𝑟_𝑝_𝑠𝑐ℎ𝑑

19. 𝑇𝑟𝑎𝑐𝑘(𝐵j[𝑒_𝑏],𝑀j, 𝑑)

20. 𝑇𝑟𝑎𝑐𝑘(𝐵�[𝑝_𝑏],𝑀�, 𝑑)

21. 𝐶𝑜𝑙𝑙𝑖𝑑𝑒(𝐵j[𝑒_𝑏], 𝐵�[𝑝_𝑏], 𝐺𝑃𝑈𝑜𝑓𝐵𝑒𝑎𝑚[𝑜𝑝𝑝_𝑒_𝑏], 𝐺𝑃𝑈𝑜𝑓𝐵𝑒𝑎𝑚[𝑜𝑝𝑝_𝑝_𝑏])

22. 𝒆𝒏𝒅	𝒇𝒐𝒓

23. 𝒆𝒏𝒅	𝒇𝒐𝒓

24. 𝒆𝒏𝒅	𝒇𝒐𝒓

25. 𝒆𝒏𝒅	𝒘𝒉𝒊𝒍𝒆

26. 𝒆𝒏𝒅	𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏

Algorithm - 8 illustrates the Multi-GPU version of 𝐵𝑒𝑎𝑚 − 𝐵𝑒𝑎𝑚 algorithm that includes

the scheduling algorithm and the execution of 𝑇𝑟𝑎𝑐𝑘 and 𝐶𝑜𝑙𝑙𝑖𝑑𝑒 functions after the formation of

execution schedule for each step. Here 𝐺𝑃𝑈𝑜𝑓𝐵𝑒𝑎𝑚 is list of list where the outer list represents

each GPU and the inner list represents the bunches store in that particular GPU, 𝑀𝑎𝑥𝐵𝑢𝑛𝑐ℎ𝐺𝑃𝑈

is the maximum out of count of bunches stored in each GPU, and 𝑛𝑢𝑚𝐺𝑃𝑈 is the number of GPUs

in a cluster. At first the current turn schedule is formed using the for-loop in the lines 4-10. At each

step, every GPU will extract the bunch numbers of e and p from the current turn schedule and

executes the 𝑇𝑟𝑎𝑐𝑘 and 𝐶𝑜𝑙𝑙𝑖𝑑𝑒 functions, and the algorithmic steps related to this are described

from lines 9-23. The 𝑇𝑟𝑎𝑐𝑘 procedure is independent and does not need any communication from

other GPUs. Hence the implementation of 𝑇𝑟𝑎𝑐𝑘 procedure is same as described in Chapter - 3.

The 𝐶𝑜𝑙𝑙𝑖𝑑𝑒 procedure has three auxiliary procedures called 𝑆𝑙𝑖𝑐𝑒, 𝐴𝑝𝑝𝑙𝑦 − 𝐾𝑖𝑐𝑘,𝑀𝑒𝑟𝑔𝑒, out of

which the 𝑆𝑙𝑖𝑐𝑒 and 𝑀𝑒𝑟𝑔𝑒 procedures does not need any communication from other GPUs and

	

	

	
	 	 36	

their implementation remains same as described in Chapter - 3. Also, the execution flow and

parallelism of for-loops calling the procedure 𝐴𝑝𝑝𝑙𝑦 − 𝐾𝑖𝑐𝑘 remains the same. As a refresher, the

for-loops in the 𝐶𝑜𝑙𝑙𝑖𝑑𝑒 procedure calculates the beam-beam effects (or kicks) for every pair of

colliding slices, where the kick computation on all particles in a pair of colliding slices is

implemented using the procedure 𝐴𝑝𝑝𝑙𝑦 − 𝐾𝑖𝑐𝑘.

V.2 COMMUNICATIONS USING MESSAGE PASSING INTERFACE

(MPI)

For our multi-bunch algorithm to simulate multi-bunch collisions, we used MPI [18] to

exchange the messages between the GPUs

Algorithm 9 - function 𝐴𝑝𝑝𝑙𝑦 − 𝐾𝑖𝑐𝑘(𝑆j, 𝑆�, 𝑠, 𝑜𝑝𝑝_𝑒𝐺𝑃𝑈, 𝑜𝑝𝑝_𝑝𝐺𝑃𝑈)

25. (𝑥j, 𝑦j, 𝜎2j, 𝜎6j) ← 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 − 𝑀𝑒𝑎𝑛 − 𝑆𝐷(𝑆𝑒, 𝑠)

26. (𝑥�, 𝑦�, 𝜎2
�, 𝜎6

�) ← 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 − 𝑀𝑒𝑎𝑛 − 𝑆𝐷(Sp, s)

27. Send (𝑥j, 𝑦j, 𝜎2j, 𝜎6j) to 𝑜𝑝𝑝_𝑝𝐺𝑃𝑈

28. Send (𝑥�, 𝑦�, 𝜎2
�, 𝜎6

�) to 𝑜𝑝𝑝_𝑒𝐺𝑃𝑈

29. Receive (𝑥v¿ÀÁj , 𝑦v¿ÀÁj , 𝜎2_v¿ÀÁj , 𝜎6_v¿ÀÁj) from 𝑜𝑝𝑝_𝑒𝐺𝑃𝑈

30. Receive (𝑥v¿ÀÁj , 𝑦v¿ÀÁj , 𝜎2_v¿ÀÁj , 𝜎6_v¿ÀÁj)	from 𝑜𝑝𝑝_𝑝𝐺𝑃𝑈

31. 𝒇𝒐𝒓 each particle 𝑒 ∈ 𝑆𝑒 𝒑𝒂𝒓𝒂𝒍𝒍𝒆𝒍	𝒅𝒐

32. (𝐹2, 𝐹6) ← 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 − 𝐾𝑖𝑐𝑘(𝑒, 𝑥v¿ÀÁ
� , 𝑦v¿ÀÁ

� , 𝜎2_v¿ÀÁ
� , 𝜎6_v¿ÀÁ

�)

33. 𝑒[0] ← 𝑒[0] − 𝑠 ∗ 𝐹𝑥

34. 𝑒[1] ← 𝑒[1] − 𝐹𝑥

35. 𝑒[2] ← 𝑒[2] − 𝑠 ∗ 𝐹𝑦

36. 𝑒[3] ← 𝑒[3] − 𝐹𝑦

	

	

	
	 	 37	

37. 𝒆𝒏𝒅	𝒇𝒐𝒓

38. 𝒇𝒐𝒓 each particle 𝑝 ∈ 𝑆𝑝	𝒑𝒂𝒓𝒂𝒍𝒍𝒆𝒍	𝒅𝒐

39. (𝐹2, 𝐹6) ← 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 − 𝐾𝑖𝑐𝑘(𝑝, 𝑥v¿ÀÁj , 𝑦v¿ÀÁj , 𝜎2_v¿ÀÁj , 𝜎6_v¿ÀÁj)

40. 𝑝[0] ← 𝑒 0 + 𝑠 ∗ 𝐹𝑥

41. 𝑝[1] ← 𝑝 1 + 𝐹𝑥

42. 𝑝[2] ← 𝑝 2 + 𝑠 ∗ 𝐹𝑦

43. 𝑝[3] ← 𝑝 3 + 𝐹𝑦

44. 𝒆𝒏𝒅	𝒇𝒐𝒓

45. 𝒆𝒏𝒅	𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏

The procedure 𝐴𝑝𝑝𝑙𝑦 − 𝐾𝑖𝑐𝑘(𝑆j, 𝑆�, 𝑠, 𝑜𝑝𝑝_𝑒𝐺𝑃𝑈, 𝑜𝑝𝑝_𝑝𝐺𝑃𝑈)	which is the heart of 𝐵𝑒𝑎𝑚 −

𝐵𝑒𝑎𝑚 algorithm is dependent on the communication from other GPUs. 𝑆j and 𝑆� are the slices of

e- and p-beam respectively, 𝑠 is the interaction point of both the slices, 𝑜𝑝𝑝_𝑒𝐺𝑃𝑈 and 𝑜𝑝𝑝_𝑝𝐺𝑃𝑈

are the GPUs that the particular GPU has to communicate with to receive the mean and standard

deviations of opposite e- and p-beams. The modified algorithm of 𝐴𝑝𝑝𝑙𝑦 − 𝐾𝑖𝑐𝑘 is described in

Algorithm 9. Initially, the procedure 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 − 𝑀𝑒𝑎𝑛 − 𝑆𝐷 is called to calculate the mean and

standard deviations of both e- and p-beam along the first and third dimensions of the particles in

𝑆j and 𝑆�. Then these calculated mean and standard deviations are sent to the respective GPUs

where the colliding e- and p-beams are stored. In the next step the GPU receives the mean and

standard deviations of colliding e- and p-beams from the same set of GPUs to which it sent the

parameters earlier. Then, for each particle 𝑒 belongs to 𝑆j, the kick from all the particles in the

colliding slice of the p-beam which is potentially residing on the other GPU is calculated using the

procedure 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 − 𝐾𝑖𝑐𝑘. This procedure takes 𝑥v¿ÀÁ
� , 𝑦v¿ÀÁ

� , 𝜎2_v¿ÀÁ
� , 𝜎6_v¿ÀÁ

� as inputs and

	

	

	
	 	 38	

returns a pair (𝐹𝑥, 𝐹𝑦). The output values 𝐹𝑥 and 𝐹𝑦 represents the kick from particles in the slice

of the opposite colliding p-beam and it is calculated using Equations (3) to (7) described in Chapter

- 2. These computed kicks are used to update the particles in 𝑆j using the first for loop. Similarly,

in the next for loop, kick on all the particles in 𝑆� due to the particles in the slice of the colliding

e-beam which is potentially residing on other GPU is computed using the 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 − 𝐾𝑖𝑐𝑘

procedure and the output from this procedure is used to update all the particles in 𝑆�.

	

	

	
	 	 39	

CHAPTER VI

RESULTS

In this chapter, we discuss the performance of both the implementations. It is to be noted

that the Single-GPU implementation is only for Single Bunch simulations on a single GPU and

the Multi-GPU implementation is only for Multi-Bunch simulations on Multiple GPUs.

We used NVIDIA Tesla K40 GPUs to run the simulations using Single-Bunch and Multi-

Bunch algorithms. Each GPU on a cluster is hosted on a standalone desktop machine with NVIDIA

Tesla K40 GPU hosted on a multi-core CPU platform with two Intel® Xeon® E5-2630 v4

processors, where each E5-2630 v4 processor consist of 10 cores, making a total of 20 CPU cores

for the multi-core platform. The Tesla K40 used in this study is a GK110B GPU-processor based

on the popular Kepler microarchitecture [8]. The GK110B processor in K40 offers 12 GB of

GDDR5 on-board memory with a peak memory bandwidth of 288 GB/sec, and it contains 15

streaming multiprocessors (SMs) each with 192 single-precision CUDA cores and 64 double-

precision units clocked at 745 MHz. These cores in SMs collectively delivers a peak floating-point

performance of 4.29 Tflops and 1.43 Tflops in single-precision and double-precision, respectively.

We use double-precision for all the floating-point arithmetic in our implementation of beam-beam

effects simulation. The results reported in this Chapter illustrates the performance for a single turn

of the simulation that is averaged over multiple turns of the entire beam-beam dynamics

simulation, which in practice runs for millions to billions of turns.

VI.1 SINGLE-GPU PERFORMANCE

The performance of our parallel implementation of 𝐵𝑒𝑎𝑚 − 𝐵𝑒𝑎𝑚 procedure on a single

GPU is evaluated against an existing out-of-the-box code that was developed to establish the proof-

	

	

	
	 	 40	

of-concept of beam-beam interactions in particle colliders using Bassetti-Erskine approximation

[11] [15]. It is important to note that this sequential simulation code is a single threaded

implementation, and it is not optimized to take advantage of the multiple cores of CPU

architectures. In order to establish a fair comparison, we used OpenMP to develop a naively

parallel implementation of this sequential code that uses all the cores of the underlying multi-core

CPU architecture and delivers near-linear speedup in the number of cores used. We use this multi-

core implementation on 20 CPU cores, along with the sequential implementation on a single CPU

core to analyze the performance of our parallel implementation on K40 GPU.

Table 6.1 - Single turn performance results of sequential (on a single CPU core), multi-core CPU
(on 20 CPU cores), and GPU implementation (on K40 GPU) of beam-beam dynamics simulation

that is averaged over multiple turns for varying number of particles with the number of slices
fixed to 𝑚	 = 	6.

Table 6.1 illustrates the single turn performance results of sequential (on a single CPU

core), multi-core CPU (on 20 CPU cores), and GPU implementation (on K40 GPU) of the 𝐵𝑒𝑎𝑚 −

𝐵𝑒𝑎𝑚 procedure for varying number of particles with the number of slices fixed to m=6. The

tracking time reported in Table 6.1 is the combined execution time of the two 𝑇𝑟𝑎𝑐𝑘 calls in

𝐵𝑒𝑎𝑚 − 𝐵𝑒𝑎𝑚 procedure, and the collision time is the execution time of the 𝐶𝑜𝑙𝑙𝑖𝑑𝑒 procedure.

The results indicate that depending on the number of particles, parallel implementation of beam-

beam effects on GPU achieves two to three orders of magnitude speedup when compared against

the non-optimized sequential simulation. This speedup behavior is also illustrated in Figure 6.1

with a blue colored plot. On the other hand, GPU implementation achieves two orders-of-

magnitude speedup when compared against the multi-core CPU implementation.

	

	

	
	 	 41	

Figure 6.1 - Speedup behavior of the GPU implementation compared against the multi-core CPU
implementation (on 20 CPU cores) for different number of slices with varying number of particles.

Figure 6.1 shows the simulation speedup behavior of the GPU implementation for different

number of slices with varying number of particles. From Figure 6.1 and Table 6.1, we notice that

speedup of the GPU implementation increases near linearly up to one million particles and it

saturates beyond that. This behavior is independent of the number of slices considered in the

simulation. The reason for this behavior is that amount of thread-level parallelism offered by the

GPU implementation and the device utilization has a linear dependence on the number of particles

in the simulation. In other words, fewer number of particles per beam leads to a underutilized GPU

which results in poor to suboptimal performance, and the device utilization (or occupancy) grows

near linearly with the number of particles which leads to a proportional increase in the

performance. The current implementations on K40 GPU achieves full occupancy at approximately

one million particles, and any increase in the input size beyond this point results in a serialized

execution on the GPU, thereby deviating from the linear speedup growth. Note that the point of

	

	

	
	 	 42	

saturation for a given implementation depends on the GPU and it often varies with each target

architecture.

Tracking Performance

The split execution time in Table 6.1 shows that tracking in the GPU implementation is

two to three orders of magnitude faster than the sequential implementation, and it is two orders of

magnitude faster than the multi-core CPU implementation. The main reason for such a large

performance gain is that the parallel implementation on GPU is highly optimized to take advantage

of the data parallel nature of 𝑇𝑟𝑎𝑐𝑘 procedure, whereas sequential and multi-core implementation

is a proof-of-concept code that is not optimized for performance. In particular, data parallelism in

𝑇𝑟𝑎𝑐𝑘 procedure is exploited in the GPU implementation by mapping the computation of particles

to parallel threads with one-to-one correspondence such that it minimizes both branch and memory

divergence on GPUs, which leads to the effective utilization of GPU resources. In addition, data

reuse is maximized by using shared memory to store the shared transport map. These performance

optimizations together with the massive parallelism offered by the GPU architectures results in the

large performance gain.

	

	

	
	 	 43	

Collision Performance

Figure 6.2 - Execution time of 𝐶𝑜𝑙𝑙𝑖𝑑𝑒 procedure in sequential (on a single CPU core), multi-core
CPU (on 20 CPU cores), and GPU (on Tesla K40) implementation for varying number of particles
with the number of slices fixed to m = 6.

Figure 6.2 illustrates the execution time of the 𝐶𝑜𝑙𝑙𝑖𝑑𝑒 procedure in both sequential and

GPU implementations from Table 6.1 for varying number of particles. We notice that the collision

time in the sequential implementation is proportional to the number of particles in the simulation,

in other words, collision time in sequential code grows linearly with the input size. This behavior

of the sequential code is expected, as the number of operations (floating-point and integer)

involved in the 𝐶𝑜𝑙𝑙𝑖𝑑𝑒 procedure is proportional to the number of particles. On the other hand,

collision time in the GPU implementation exhibits a non-linear behavior with the number of

particles. The reason for this behavior is that the GPU implementation simulates the collision

between two input beams by executing a slice-to-slice collision on a subset of slices at a given

time, where the number of threads, operations and data parallelism used on GPU is proportional

to the number of particles involved in the current set of colliding slices. This number typically

	

	

	
	 	 44	

depends on the particle distribution, and it varies from slice to slice and from turn to turn. As a

result, when there are fewer number of particles in the colliding slices, it leads to a underutilized

GPU, and the utilization improves as the number of particles increase. For example, for collision

in Figure 2.2 each row represents the collision on a subset of slices that is executed on GPU in

parallel where the performance depends on the number of particles involved in each row. It is

evident from figure that the number of particles participating in the collision increases from the

top to the center, and then decreases from the center to the bottom. In other words, occupancy and

device utilization starts with a minimum value at the top row and increases as we move to the

center row, and then it starts to decrease from the center to the bottom row. This variation in the

utilization results in the non-linear increase in the execution time on GPU.

Table 6.2 - Single turn performance of the sequential, multi-core CPU, and GPU implementation
of COLLIDE procedure in the beam-beam effects simulation for different input configurations.

Table 6.2 illustrates single turn performance of the sequential (on a single CPU core),

multi-core CPU (on 20 CPU cores), and GPU implementation (on K40 GPU) of 𝐶𝑜𝑙𝑙𝑖𝑑𝑒 procedure

in the beam-beam effects simulation for different input configurations. The results indicate that,

depending on the number of particles and slices, GPU implementation of 𝐶𝑜𝑙𝑙𝑖𝑑𝑒 procedure

delivers a speedup gain of up to 98X and 11X when compared to non-optimized sequential and

multi-core CPU implementation, respectively.

	

	

	
	 	 45	

Table 6.3 – Performance results of 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 − 𝐾𝑖𝑐𝑘 kernel with and without maximum registers
per thread limitation.

Table – 6.3 illustrates the performance of 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 − 𝐾𝑖𝑐𝑘 Kernel on NVIDIA Tesla K40

GPU for a different number of input particles and with/without the maxregcount option given

during compilation. In NVIDIA CUDA Compiler, using the maxregcount option we can limit the

number of registers used by a thread to a particular number. These performance metrics are

extracted from NVIDIA Profiler.

	

	

	
	 	 46	

Analysis Using Roofline Model

Figure 6.3 – Roofline model analysis for 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 − 𝐾𝑖𝑐𝑘 kernel on NVIDIA Tesla K40 GPU.

Figure 6.3 shows the Roofline model for K40 GPU. The graph is on a log-log scale. The

y-axis is attainable double-precision floating-point performance in units of Gflops/Sec, and the x-

axis is arithmetic intensity, varying from 0.125 Flops/DRAM byte-accessed to 32 Flops/DRAM

byte-accessed. The system being modeled has a peak double precision floating-point performance

of 1.4 Tflops/sec and peak memory bandwidth of BWTheoretical-Peak = 288 GB/Sec from hardware

specifications. The black solid line in Figure 2 indicates the bandwidth ceiling for BWTheoretical-Peak.

However, the peak theoretical bandwidth is often unachievable in practice. So, in order to analyze

the performance more accurately, we measure the experimental memory bandwidth using the

benchmarks from NVIDIA's official SDK [19]. Experimental memory bandwidth for K40 is

calculated to be BWExperimental-Peak = 200 GB/sec, and its bandwidth ceiling in roofline model is

	

	

	
	 	 47	

shown using the blue solid line plot. The black vertical line indicates the theoretical arithmetic

intensity of 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 − 𝐾𝑖𝑐𝑘 kernel.

The theoretical arithmetic intensity of the kernel is around 17 Flops/byte. This indicates

that Collision is a compute bound kernel. This is because only the dimensions of the particles,

Mean and Standard Deviation of the opposite slice are loaded from the memory in the beginning

of the kernel and later there are no other memory accesses performed in between the computations.

Our implementation has achieved a performance of around 210 GFlops/sec. This poor performance

of the kernel is because of the local memory overhead and Warp Divergence happening inside the

kernel. In addition to these two metrics all the other metrics from Table 6.3 are discussed below.

Occupancy

We notice that when maxregcount option is disabled, the number of registers used by each thread

are 82 where as the ideal number lies around 32 for K40 GPU. Due to this excessive use of

registers, each SM is limited to executing a lower number of blocks simultaneously resulting in

low occupancy of GPU. Because of this, the kernel is able to achieve a peak occupancy of only

0.3 and a peak arithmetic intensity of 0.68. When the number of registers used by each thread are

limited to 48, the kernel has achieved a peak occupancy of 0.62 and a peak arithmetic intensity of

1.05. Also, we observe that occupancy of the kernel increases with increase in a number of input

particles. Hence, occupancy is one of the major contributors of kernel’s performance.

	

	

	
	 	 48	

Local Memory Overhead

We notice that when the maxregcount option is disabled, there is no local memory

overhead. But, when we limit the number of registers per thread to 48, SM runs out registers and

starts spilling into Local memory resulting in increased memory traffic. Even though the kernel

time here is less when compared to the kernel time for which the maxregcount option is disabled,

the local memory overhead remains one of the main factors of the kernel’s poor performance in

this case.

Control-Flow Divergence

Table 6.3 illustrates the Warp Execution Efficiency for different input configurations. We

observe that the Warp Execution Efficiency remains constant and is only 40%. The reason for this

poor efficiency is, that we used an existing algorithm for the complex error function in our GPU

implementation. We extracted some information from NVIDIA Profiler that shows the information

about the divergence happening inside the error function. We see that in Figure 6.4 at line 1195

and 1196 of Collide.cu file which has the source code of 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 − 𝐾𝑖𝑐𝑘 kernel, 100% of the

threads are executing the error function (WOFZ). Then, in Figure 6.5, inside the error function, at

line 49, we observe that 96% of threads are active, and in Figure 6.6 at line 60, out of that 96%,

only 57% of threads are executing the for-loop. Later, in Figure 6.7, the else condition at line 73

is executed by remaining 4% of threads and all the other 96% of threads are inactive during this

time. As the computations inside the error function are the major contributors for the overall

computations inside the 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 − 𝐾𝑖𝑐𝑘 kernel, the Control-Flow Divergence inside the error

function is one of the main reasons for the poor kernel performance.

	

	

	
	 	 49	

	
Figure 6.4 – All the threads are calling error function (WOFZ) at lines 1195 and 1196.

	
	

	

	

	
	 	 50	

	
Figure 6.5 – 4% of inactive threads at line 49.

	

	
Figure 6.6 – Out of 96% active threads, 43% of threads are inactive inside the for-loop.

	

	

	
	 	 51	

	
Figure 6.7 – 92% of threads are inactive at line 73.

Memory Performance

The threads inside the 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 − 𝐾𝑖𝑐𝑘 kernel access the global memory only once during

the beginning to fetch the particle information. Except these, there are no other global memory

fetches performed by the threads inside the kernel. The initial fetches from global memory are

perfectly coalesced because of which we observe a global load efficiency of 88% from Table 6.3.

Also, the ideal number of global transactions per request is 2 for 8-byte words and we achieved

1.42 which is much closer to the ideal value. This shows that the kernel performs very well in

terms of accessing global memory efficiently and is one of the positive contributors for kernel’s

performance.

From the above analysis, it is clear that the performance of the kernel is limited by the

number of registers that each thread is using inside the kernel. Limiting the number of registers

	

	

	
	 	 52	

increases the occupancy decreasing the time taken by the kernel. But, as SM runs out of registers

and spills the variables into local memory, the traffic created due to the local memory access

remains one of the limiting factors of kernel’s performance. In addition to the Local Memory

overhead, Control-Flow-Divergence also remains as the limiting factor of kernel performance.

VI.2 MULTI-GPU PERFORMANCE

We performed experiments on Multiple-GPUs to see how the Multi-Bunch simulation code

scales with the number of GPUs on a cluster. Table – 6.4 illustrates the performance of Multi-GPU

algorithm when the number of GPUs and bunches are increased in the powers of 2. All the

performance results reported for Multi-GPU algorithm are for one iteration / single schedule, 100K

Particles per Bunch, and 3 Slices. We observe that except for a small number of bunches, the

Multi-GPU algorithm scales nearly linearly with the number of GPUs. The reasons for the non-

linear behavior for a smaller number of bunches and near linear behavior for higher bunch numbers

are discussed below.

Table 6.4 – Performance of Multi-GPU algorithm on a cluster of GPUs. GPUs and bunches are
increased in powers of 2.

	

	

	
	 	 53	

Figure 6.7 – Execution schedule formed by the scheduling algorithm when there are 2 GPUs and
4 Bunches (3e bunches, 4p bunches).

Figure 6.8 – Time slots required to complete all the interactions of a schedule on a Single GPU
when there are 3e and 4p bunches.

Reason 1 - The number of time slots required to complete the interactions does not linearly

decrease with the number of GPUs. For example, in Figure - 6.8 shows the number of time slots

and the total time required to complete all the interactions on a Single GPU when there are 4

bunches. When there are 4 bunches, there is a total of 12 interactions in a schedule. Assuming that

the total time taken to complete an interaction on a single GPU when both e- and p-beams are

active is 't', it takes a total time of 12t to complete a single schedule on a single GPU.

	

	

	
	 	 54	

Figure 6.9 - Time slots required to complete all the interactions of a schedule on two GPUs when
there are 3e and 4p bunches.

Figure - 6.9 shows the number of time slots and the total time required to complete all the

interaction on 2 GPUs when there are 4 bunches. Now each GPU has to handle the work of 2 e-

beams and 2 p-beams. If we look at Figure - 6.7 which is execution schedule formed, at first GPU

1 will handle the execution of the beams 1e and 2p and at the same time, GPU 2 will handle the

execution of the beams 3e and 4p. As shown in Figure - 6.9, the time taken for these two

interactions which are occurring in parallel is t. Now, for the interaction (2e, 3p), GPU 1 will

handle the execution of 2e and GPU 2 will handle the execution of 3p. As the GPUs here are not

handling the execution of both e- and p-beams, the time required here is only t/2 as shown in Figure

- 6.9. Also, as both the beams are residing on different GPUs, there is an extra time taken to

exchange the parameters between the GPUs which is called the communication time c. So the total

time taken here is t/2 + c/2. In a similar way, both GPUs will execute all the interactions according

to the execution schedule and the total time taken for all these interactions is 7t + 3c. Here, we

observe that even though we have 2 GPUs, the execution time is not exactly half of the total time

taken when we have only 1 GPU because of the dependency on previous turn which is indeed the

nature of the problem.

Reason 2 - Most of the times, a GPU has to communicate with other GPUs to get the

parameters needed for applying effects on the beam. For example, in figure 6.9, during the 1st time

	

	

	
	 	 55	

slot of Turn-3, GPU 1 and GPU 2 are communicating with each other to send and receive the

parameters needed to apply effects on their respective beams. Hence, there is an extra overhead

added in the form of communication time which is the reason for near-linear speed up of Multi-

GPU algorithm.

Reason 3 - The computations performed in the error function are different for each particle.

Hence a GPU might have to wait for the other GPU until it finishes the execution of error function

and send the required messages.

Timelines similar to Fig - 6.8, 6.9 are shown in the Figures - 6.10, 6.11, 6.12, but only for

a single and random turn when there are 8 Bunches and the figures are for 1, 2, 4 GPUs

respectively. From these Timelines, we observe that the time taken for single turn scales nearly

linear with the number of GPUs.

Figure 6.10 - Time slots and total time required to complete all the interactions of a single turn on
a single GPU when there are 7e and 8p bunches.

Figure 6.11 - Time slots and total time required to complete all the interactions of a single turn on
2 GPUs when there are 7e and 8p bunches.

	

	

	
	 	 56	

Figure 6.12 - Time slots and total time required to complete all the interactions of a single turn on
4 GPUs when there are 7e and 8p bunches.

Time Slots

For any given number of bunches 𝑛¥ and given number of GPUs 𝑔, the number of time

slots required to complete the schedule can be calculated by the equation,

𝑇𝑖𝑚𝑒	𝑠𝑙𝑜𝑡𝑠	 = 𝑛¥(𝑛¥/𝑔) for 𝑛𝑏 > 1

 𝑇𝑖𝑚𝑒	𝑠𝑙𝑜𝑡𝑠	 = 𝑛¥((𝑛¥ − 1)/𝑔) for 𝑛𝑏 = 1 (8)

where 𝑛¥/𝑔 is the number of timeslots required to complete a single turn and 𝑛¥ is the number of

turns required to complete a schedule/one-iteration. It is to be noted that the number of turns

required to complete an iteration is always equal to number of p bunches (as e bunches are always

𝑛¥ − 1).

Communications between GPUs

When there are 𝑔 GPUs and 𝑛¥ bunches (𝑛¥ − 1 e-bunches, 𝑛¥ p-bunches), each of the

𝑛¥ − 1 e-bunches will interact with all the 𝑛¥ p-bunches. Each GPU has 𝑛¥/𝑔	(𝑛¥ >> 𝑔) bunches

stored in it. So as each bunch has to interact with all the other bunches, a GPU has to communicate

𝑛¥	– (𝑛¥/𝑔) times to execute all the interactions related to that particular bunch. In the same way,

for all the bunches stored on a GPU, it has to communicate (𝑛¥/𝑔)(𝑛¥ 	−	𝑛¥/𝑔) times with other

GPUs to execute all the interactions that are stored on it. On the whole, when all the GPUs are

	

	

	
	 	 57	

considered, a total of 𝑛¥(𝑛¥ 	−	𝑛¥/𝑔) communications are required in a schedule / one-iteration.

But, as all the interactions in a particular time slot are happening in parallel, the communications

required during the interactions in a time slot also happen in parallel. In a particular time slot, we

observe that (refer to Figure 6.7) either all or none of the GPUs communicate with other GPUs to

execute the interaction. Hence the number of communications (ignoring the communications

happening in parallel) are less than the number of time slots required to execute a schedule and we

observe the ratio of the number of time slots to communications is always equal to 𝑔/(𝑔 − 1).

Hence the number of communications (ignoring the communications happening in parallel)

required to execute the schedule / one-iteration is given by

𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠	𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 = 𝑛¥q(𝑔 − 1)/	𝑔q (9)

Predicting the time required for given number of GPUs and Bunches

The time taken by the Multi-GPU algorithm for given number of bunches 𝑛¥	(> 1) and

GPUs 𝑔 is resolved by the Equation 10 which is the addition of time(𝑡) required by all the time

slots (Equation – 8) and the time(𝑐) required for all the communications (Equation – 9).

𝑇𝑜𝑡𝑎𝑙	𝑇𝑖𝑚𝑒(𝑇_Ä) =
_Ä�

Å
(𝑡 + ÅfU

Å
𝑐) (10)

Table 6.5 – Comparison between Actual time taken on 7 GPUs and the predicted time on 7 GPUs
when there are bunches that are multiples of 7.

Table 6.5 illustrates the comparison between the actual timings and the predicted timings

(using equation 6.3) of the Multi-GPU algorithm. For these predictions, we have taken bunches in

the multiples of 7 and fixed the number of GPUs to 7. We observe that the predicted timings are

almost closer to the actual timings. The error between those two timings is mainly because the

	

	

	
	 	 58	

computations inside the error function are different for different particles. So the time taken by

each collision is not exactly the same. But while predicting these timings we assumed a fixed

time	(𝑡) of 22.5 msec for each interaction on Tesla K40 Architecture. Also, according to our

experiments, the average time taken (𝑐) for each communication is 1.2 msec which also often

varies in practice depending on the distance between the nodes in cluster. But to predict the timings

more accurately, we used Least Squares method to find the best fit of 𝑐 for a given number of

nodes on a cluster. In this way, by knowing the average time taken (𝑡) for an Interaction on a

particular GPU, we can calculate the communication time for any cluster size to predict the total

time taken taken for a given number of bunches more accurately.

When we apply the Least Squares method to Equation 10 and apply differentiation on it

with respect to 𝑐, we get the equation below which we can use to find 𝑐.

2(𝐴_Ä_Ä − 𝐵_Ä𝑐)(−𝐵_Ä) = 0 (11)

where 𝐴_Ä = 𝑇_Ä −
_Ä�

Å
𝑡 and 𝐵_Ä =

_Ä� ÅfU
Å�

𝑐

When we substitute the bunch numbers (𝑛¥)	from 7 to 56 in the multiples of 7, we get the 𝑐 = 1.66

msec as the best fit of communication time. Below are the predicted results when the inputs to the

equation 10 are 𝑡 = 22.5 msec and 𝑐 = 1.66 msec.

Table 6.6 – Comparison between Actual time taken on 7 GPUs and the predicted time using Least
Squares method on 7 GPUs when there are bunches that are multiples of 7.

Hence, when we have a new cluster setup potentially with different GPU architecture. We

first calculate the time taken (𝑡) for an interaction for that particular input configuration and then

	

	

	
	 	 59	

run some experiments with different bunch numbers (𝑛¥) to find out the best fit of communication

time (𝑐) for Equation 11.

	

	

	
	 	 60	

CHAPTER VII

CONCLUSION AND FUTURE WORK

VII.1 CONCLUSION

We presented a high-fidelity, high-performance parallel model for simulation of beam-

beam effects in particle colliders using GPUs. This pioneering implementation on modern GPU

architectures results in orders-of-magnitude speedup over its serial version, thereby bringing the

previously intractable physics within reach for the first time. The parallel implementation of this

simulation model on NVIDIA Tesla K40 GPU outperforms the non-optimized sequential

simulation and it delivers as much as three orders-of-magnitude reduction in computation time.

The development of this advanced new simulation tool will enable carrying out a truly long-term

simulations spanning 400 million turns, which in case of the proposed electron-ion collider JLEIC

is on the order of an hour of machine operation. This will facilitate fine tuning the collider

parameters for more efficient operations which will lead to substantial savings in the design and

operation of these expensive machines. Below is the summary of our contributions in this thesis.

• Implemented the simulation algorithm for beam-beam effects when the particles collider

carries one or more bunches.

• Achieved an overall speedup of around 880X with our GPU implementation of Single-

Bunch beam-beam simulations when compared to the existing sequential implementation.

• Implemented a Multi-GPU algorithm for Multi-Bunch beam-beam simulations with a

minimal data movement between the GPUs.

• Our Multi-GPU implementation of Multi-Bunch beam-beam simulations achieved a nearly

linear speedup with number of GPUs on a cluster.

	

	

	
	 	 61	

VII.2 FUTURE WORK

In the Future, we plan to address the following:

• Analyze the computations happening inside the error function.

• Reduce the control-flow divergence occurring inside the error function.

• Minimize the local memory overhead by reducing the register usage.

• Use OpenMP to taken advantage of Multiple Cores present in the same node to

parallelize the CPU computations between kernels.

	

	

	
	 	 62	

REFERENCES

[1] NVIDA “Cuda Programming Guide”. Available via http://docs.nvidia.com/cuda/cuda-c-

programming-guide.

[2] Bassetti, M., and G. Erskine. 1980. Technical report, CERN Report No. CERN-ISR-

TH/80-06.

[3] Bell, N., and J. Hoberock. Thrust library for GPUs. Available via

http://docs.nvidia.com/cuda/.

[4] Furman, M. 1991. In Particle Accelerator Conference, pp. 422.

[5] Harrison, M., T. Ludlam, and S. Ozak. 2003. Nuclear Instruments and Methods in

Physics Research Section A vol. 499, pp. 235–244.

[6] J. L. Abelleira Fernandez et al. 2012. Journal of Physics vol. G 39 (075001).

[7] Makino, K., and M. Berz. 2002. Nuclear Instrumentation and Methods in Physics

Research Section A vol.427, pp. 338.

[8] NVIDIA. Next Generation CUDA Compute Architecture: Kepler GK110. Available via

https://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-

Whitepaper.pdf.

[9] Poppe, G. P. M., and C. M. J. Wijers. 1990. ACM Transactions on Mathematical

Software (TOMS) vol. 16,pp. 38–46.

[10] Qiang, J., R. Ryne, and M. Furman. 2002. Physical Review Special Topics -

Accelerators and Beams vol. 5 (104402).

[11] Roblin, Y., V. Morozov, B. Terzić, M. Aturban, D. Ranjan, and M. Zubair. 2013. In 4th

International Particle Accelerator Conference (IPAC), pp. 1064 – 1066.

[12] S. Abeyratne et al. 2012. arXiv:1209.0757.

	

	

	
	 	 63	

[13] S. Abeyratne et al. 2015. arXiv:1504.07961.

[14] Schulte, D. 1996. Ph.D. thesis, University of Hamburg. TESLA-97-08.

[15] Terzić, B., A. Godunov, K. Arumugam, D. Ranjan, and M. Zubair. 2015. In 12th

International Computational Accelerator Physics Conference (ICAP’15), pp. 40–43.

[16] Terzić, B., I. Pogorelov, and C. Bohn. 2007. Physical Review Special Topics -

Accelerators and Beams vol.10 (034201).

[17] Yokoya, K., and H. Koiso. 1990. Particle Accelerators vol. 27, pp. 181.

[18] MPICH. Available via https://www.mpich.org/

[19] NVIDIA, “CUDA Bandwidth Test.” [Online]. Available:
http://docs.nvidia.com/cuda/cuda-samples/#bandwidth-test

	

	

	
	 	 64	

VITA

Naga Sai Ravi Teja Majeti

Department of Computer Science

Old Dominion University

Norfolk, VA 23529

EDUCATION
M.S. in Computer Science, Old Dominion University, 2017

B.Tech. in Electrical and Electronics Engineering, JNTU Kakinada, India, 2012

EMPLOYMENT
Jan 2016 – May 2017 Graduate Research Assistant

 Old Dominion University, Norfolk, VA, USA.

Aug 2015 – Dec 2015 Graduate Teaching Assistant

 Old Dominion University, Norfolk, VA, USA.

Jan 2013 – July 2015 Assistant Systems Engineer

 Tata Consultancy Services, Bangalore, KA, India.

	Multi-GPU Accelerated High-Fidelity Simulations of Beam-Beam Effects in Particle Colliders
	Recommended Citation

	Microsoft Word - Draft_Final.docx

