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Theoretical predictions of electromechanical deformation of cells subjected to high voltages
for membrane electroporation

R. P. Joshi, Q. Hu, and K. H. Schoenbach
Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, Virginia 23529-0246

H. P. Hjalmarson
Computational Biology and Materials Technology Department, Sandia National Laboratory, Albuquerque, New Mexic187185-
(Received 24 September 2001; published 25 January)2002

An electromechanical analysis based on thin-shell theory is presented to analyze cell shape changes in
response to external electric fields. This approach can be extended to include osmotic-pressure changes. Our
calculations demonstrate that at large fields, the spherical cell geometry can be significantly modified, and even
ellipsoidal forms would be inappropriate to account for the deformation. Values of the surface forces obtained
from our calculations are in very good agreement with the 1—-10 mN/m range for membrane rupture reported
in the literature. The results, in keeping with reports in the literature, demonstrate that the final shape depends
on membrane thickness. This has direct implications for tissues in which significant molecular restructuring
can occur. It is also shown that, at least for the smaller electric fields, both the cellular surface area and volume
change roughly in a quadratic manner with the electric field. Finally, it is shown that the bending moments are
generally quite small and can be neglected for a simpler analysis.

DOI: 10.1103/PhysRevE.65.021913 PACS nunier87.15.Aa, 87.50.Rr, 87.50a, 87.17.Aa

[. INTRODUCTION A necessary first step is the self-consistent electric-field cal-
culation at the cell membrane and its spatial dependence.
Electroporation is a well-known physical process in bio- This is important since the field magnitude controls the pore
logical cells[1-3]. It involves rapid structural rearrangement formation rate, the evolution of the pore distribution function
of the membrane, in response to an externally applied eledn “r space” as governed by the Smoluchowski equation
tric field. The field is not an ac excitation, and typically qua-[17,18], and ionic flow. However, electric fields are distorted
sistatic. The most prominent observable effect is a rapid inby the polarizability of the biological medium and influenced
crease in the electrical conductivity by several orders oby factors such as cellular size and geometric shape. For
magnitudd4]. This is attributed to the formation of aqueous example, cigar-shaped cells have a greater “field screening
pathways, or pores, in the lipid bilayer of the membrane. Theeffect” than spherically symmetric cellgl9]. As is well
opening of such channel®r more appropriately, transient known, biological cells can undergo pronounced changes in
aqueous porgsenables the transport of ions and water-geometry and sizE20-22 when subjected to external elec-
soluble species both into and out of individual cells. Elec-tric fields. The shape directly affects the electrical and me-
troporation can, therefore, be used to initiate large moleculachanical properties of cellssuch as capacitance and mem-
fluxes for purposes of introducing genetic material into cellsprane tension, respectivglyand dictates the location at
manipulation of cells and tissues, and other applications inmvhich electromagnetic boundary conditions have to be ap-
biotechnology[5-9. plied. Shape-related changes in the mechanical properties are
Electroporation has also been linked to the nonthermaknown to play an important part in physiology and cell biol-
killing of micro-organisms subjected to strong electric fieldsogy [23]. For example, the membrane elasticity determines
[10]. For this reason, it offers great potential for decontami-the flow properties of red blood cells, while shape-related
nation and the elimination of harmful micro-organisms andvariations in membrane tension can affect motility, control
biohazards. Traditionally, most electroporation studies havendo- and exocytosis and can even lead to extensive meta-
focused on relatively low external voltages applied over exbolic changeg24]. It therefore, becomes important to cor-
tended time periods ranging from several tens of microsecrectly account for the geometric changes and cellular defor-
onds to millisecond§l1]. Recently, work has focused on the mations. The push towards high electric fields makes this
use of much shorter pulsédurations well below the micro- germane issue even more important.
second range but with electric fields as high as 100 kV/icm  In general, there are two different mechanisms for volume
[12-15. There appear to be several fundamental advantagesd shape changes in cells upon the application of an exter-
in using short electric pulses for cellular manipulation. First,nal electric field. In one, excessive buildup of the potential
negligible thermal heating of the biological matter can be(due to redistribution of the internal cellular chargauses
expected to occur due to the short-time duration. Much lowemembrane perforations. lonic flows then lead to imbalances
energies are required for pulsed inputs, and yet large valugs the osmotic pressur25] and volume change results.
of the electric fields and peak powers can be obtajriédl Since this occurs after membrane perforation, a relative time
Also, pulsed fields afford a way by which the time scales cardelay is involved for this process. The studies by Hofa6i
easily be manipulated. using dark-field light microscopy on liposomes are typical
Given the utility, it becomes important to understand andexamples. The other mechanism is associated with changes
accurately analyze the field-assisted electroporation processtoduced by mechanical forces arising from the Maxwell
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stress tensof27]. This process occurs prior to membrane [
rupture or cellular material flows, and hence, must be taken ~— ____.._, 4
into account as an initial condition for electroporative analy- -
sis. Experimental observations of absorbance dichroism and 3
changes in optical scattering associated with vesicle defor- -7 #Ng Lo
mation of lipids are appropriate recent exampg2g]. Ng M

The subject of cellular deformation is not new, and has y
been studied by several researchers in the past. For example, Neo,

Evans applied continuum mechanical deformation theory in
7\ , \\\r2
Nog+Njeds ~. _

the elastic limit for studying the problem of micropipette
aspiration29]. Their group assumed that the bending modu-
lus was negligible in comparison to the shear mod{i8g,

an approximation that was included in subsequent analyses Ng+Ngdo b

as well [31,32]. However, other treatments of membrane - /:
phenomena, such as the formation of teti@Bs34], spicules ‘*:?
[35], and undulatory excitatiori86] took the opposite view “~|.\:\d;¢
and emphasized bending stiffness of the membrane. Energy (a) | 7%

methods based on the principle of virtual work have also
been used to predict cellular deformatid@2,37—-39]. How- I

ever, approximations have been made to simplify the analy- T
sis. For example, it has often been assumed that the cellular e
shapes take on simple forms, such as ellipsoids of revolution ‘

[22,28,40,41]. However, as is well known, a wide variety of
shapes other than ellipsoids are possild8]. Others have
invoked conditions of either constant surface area or fixed
cell volume(incompressibility), or both, in their calculations
[22,23,29]which strictly are invalid for deformable bodies.
Finally, the electric energy in these calculations has often
been based on a simple thin-walled, spherical-cell geometry,
and typically ignore self-consistent analyses that could ac-
count for the role of geometric changes on the electric field,
and hence, the Maxwell tensor.

In this contribution, the issue of calculating cell deforma- (b)
tions self consistently due to the electromechanical forces is
revisited. Use of an energy-based virtual work formalism is
difficult for the treatment of dissipative forces and/or for
nonequilibrium situations. So here an approach based on
thin-shell theory[42,43] has been used, without applying
constraints on surface area or cell volume as has typically
been done in the past. Both the shear and bending moduli are
carefully included in these “small deformation” calculations.
The Love-Kirchhoff hypothesige.g.,[44]), which states that
“normals” to the center surface of a shell element remain
perpendicular when the surface undergoes curvature, is in-
voked. The present calculations demonstrate that both the
cellular surface area and volume change in response to an
externally applied electric field, and roughly have a quadratic
dependence. The angular distributions of the stress across the
cell membrane have been obtained. Based on this analysis,
the critical electric-field threshold for membrane rupture and
the elastic limit can be ascertained directly. Bending mo-
ments are shown to be small. Finally, deviations from an FIG. 1. Schematic of a typical thin shell element and the asso-
ellipsoidal shape are demonstrated, underscoring the incoeiated forces and moments) The forcesNy4, Ny, Ny; (b) Qy,
rectness of an assumed simple ellipsoidal shape. Q4. Pr: Py, Py; and(c) the momentdM »,, My, andM,.

(© KA

Il. MODEL DETAILS thickness of cell membranes is on the order of 5 nm, com-
pared to their radii of~1 um, the shell theory is quite ap-
propriate. The forces and moments acting on a typical shell
Our basic stress model is based on the classical smadllement are given in Fig. 1. Two meridians and two parallel
deformation theory of thin, elastic shel[¢2]. Since the circles, each indefinitely close together, have been shown.

A. Stress and deformation

021913-2
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Following the notation of Fluggé42], ¢ is the angle be- outside
tween a normal to the shell and its axis of revolution, while

¢ is the meridional angle. Alsd\, denotes the meridional

force per lengthN, the hoop force per length, arid,, the

shear. Furthermore in Fig. b,, ps, andp, are the exter- —
nally imposed stresséwhich could include internal osmotic
pressure), while is the distance from the axis of rotatian,
the radius of curvature, ang the distance of intersection of
the radius of curvature and the axis of revolution. In the
present contextp;, Py, andp, will be nonzero .due to t,he FIG. 2. Simple cellular geometry, showing axial symmetry, for
presence of the Maxwell stress tensor associated with thg, 4 calculations.

external field. It is assumed that the osmotic pressure contri-
butions top,, p,, andp, are negligible compared to the
Maxwell stress produced by the high electric fields. From the
geometry,r =r,sin(¢), while the elemental distance “ds”
along the meridian is given by: dg; d¢. Finally, M,

My, and M, are the bending moment&limensions of _
force), Whi|e(69 andQ,, are the transverse forces per length M 4}/dg=riM,cod$)=rr1Qy. (2c)
that arise from bending theory. At equilibrium, the balance ofT
all forces and moments yields the following six equations:

Z-axis

d{rN4}/dp—riNycod b)) —rQ,=—rrp,, (2a)

r1Ngysin(¢) +rN,+d{rQ/d¢=rrqp;, (2b)

he above three equations contain five unknowns, and need
to be supplemented by the stress-strain relationships. In the

GUNJI3 TN, IA0—1:Nycos#)—1Q,  SSSIC 1egme, I stesses can be reatd to e displace
=—111p,, (la)  [42]:
d{rN 4} dp+rid{NyHdo+r N,y cod ¢)—r1Q,sin(¢) Ny= (12K/t?)[{dv/dp+w}/r,
=—rrqPy, (1b) +v{v coq @) +wsin(d)}r], (3a)
riNgsin(¢) +rNy+r;dQy/do+d{rQ }/d¢=rrp;, N,= (12K/t?)[{v cog ¢)+w sin(¢)}r
1o + v{dv/dep+w}r,], (3b)

d{rM 4}/ dp+r,d{Mg4}/d6—rMycod p)=rr,Q,,
(1d) M 4= (K/r)[d({dw/d¢}/ry)/de

d{rM 4gt/dp+r1d{Mg}H/dO+r My, co8 ) =rr,Q,, + v{d[cog ¢){dw/d¢}/r]/do}], (3¢)

(1e)
M y= (K/r;)[cog ¢){dwid}/r ]+ v[d({dwidp}/ry)/d ],
M¢9/rl_M0¢/r2:N¢0_N9¢ (1f) (3d)

The current problem of interest, involves a determination ofwhereK is the flexural rigidity(i.e., bending stiffnessy, the

the equilibrium stresses and moments on cells subjected ®oisson’s ratiot the shell thickness assumed to be a con-
external electric, and the final deformed geometry undegtant, andw and v the displacements due to deformation
steady-state conditions. Here, there is an inherent axial synmajong the radial and angular directions. Equatit3es)—(3d)
metry along the direction of the applied electric field, and theinvolve the displacements andv that constitute two addi-
behavior along the two axes transverse to the applie@onal unknowns of the problem. Thus, the combined set of
electric-field direction, will be identical. Such axial symme- equations[2(a)-2(c)] and [3(a)}-3(d)] yield a system of

try will hold for spherical cells at all times, and ellipsoidal seven equations for the seven unknowns that can be solved.
(and othershapes in the steady state after the cells have had In general, a numerical computation is required for ob-
the time to reorient themselves in response to the externaining a solution to the above problem. However, analytical
field [45]. A sketch of the applied field and the geometric cellexpressions can be obtained under certain simplifying condi-
model is shown in Fig. 2. There is an inner region, the cellions. For example, consider the cadd,,~M,~Q,~0
membrane shell, and the outer region. Though a sphericalhich corresponds to neglecting the bending forces and mo-
geometry is shown for simplicity, the shapes could be differ-ments as has been proposed in the pagt-32. Assuming

ent, in general, with a symmetry perpendicular to the fieldthat the external stresses arise solely from the Maxwell stress
direction. For such axisymmetric cases, the derivatives withensor associated with the applied external figle., ignor-
respect to the anglédrop out, while the shearing forcek,,  ing internal cell pressure and polarization efféctthe

and N, the twisting momentsvl,, and M,,, and the  stressep, andp, for the axisymmetric cases take the fol-
transverse she&, all vanish. Also, the load componep}, lowing form:

is zero. Consequently, the following simpler set of equations

result: pr=0.5e[ k;1—ki2]E? cOg2¢p)=F cog2¢), (4a)

021913-3
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and

Py=—0.8eo[ k1 — k2 ]E? Sin(2¢)= —F sin(2¢),
(4b)

where E is the externally applied electric fieldk,,

PHYSICAL REVIEW B5 021913

B. Electric field analysis

In the above formulas, polarization effects were not con-
sidered and so the field was taken to equal the external elec-
tric field E given in terms of the factoF of Eq. (4a). How-
ever, given the presence of the cell and its membrane which

and k., the dielectric constants of the membrane and@re both polarizable materials, one needs to solve the Laplace

external medium, g the permittivity of free space
(=8.85x10 2 F/m), andF=0.5, [k;;—k,»] E2. Using
Eq. (4) in the equation set2)—(3) yields the following sim-
plifying solutions:

Ny(¢)=[F/{rsir’(¢)}]

X

¢
of rira[cog2¢*)cog ¢*)sin(¢*)

+sin(2¢*)sir(¢*)]de* |, (5a)
Ny(p)=rF cog2¢)—[r,/rIN, (5b)
v(g)= of¢[Q(<;/>*)/Sin(¢*)]d¢*, (50)
where
() ={t?/[12K(1=1*) THri[Ny($) — vNy(#)]
—T2[Ng($)—vNy($) ]}, (5d)
and
W( ) =ro{t?/[12K(1 = v*)I[Ny(¢) — ¥Ny( )]
—v(¢)cot ). (59

For an initial spherical shape;=r,=the radius ‘a,” and
the above simplifies to

N,(¢)=0.5aF; Ny(¢)=aF[0.5-2sirF(¢)], (6a)

v(¢)=—{Fa’t’[1K(1-v)]}sin(2¢),  (6b)
and
w(¢)={Fa?ty[12K(1—v?)]}[0.5— 2 sirf(¢)
—v/2+2(1+v)cog(d)]. (60)

For an ellipsoidal shape withd” being the semimajor axis
along the field direction, andb” the semiminor axes in the

two transverse direction@s has often been used in the lit-

eraturg, r, andr, take on the following expressions:
r.=(a%b)[{1+tarf(¢)}/{a?/b?>+tarf(¢)} 11> (7a)
and
r,={b/cod ¢)}[a*/b*+tart($)] °>. (7b)

Using Egs.(7a and(7b) into the equation séba—(5€) then
yields the complete solution for the ellipsoidal geometry.

equation to self-consistently determine the electric-field
value and its spatial characteristics for assessing the Maxwell
stress tensor. We first show this for a simple spherical-cell
geometry as given in the schematic of Fig. 2. Both the
spherical and ellipsoidal geometries lend themselves to ana-
lytical solutions, and hence, are chosen here as typical ex-
amples. Other simple geometries can also be analyzed nu-
merically. The inner region has radiug™and permittivity

ein- The applied electric-fiel&, was taken to be along the
axis. The cellular membrane of Fig. 2 has a thickness **
—a" ="t and permittivity & ,m, While the outer suspen-
sion region a permittivity ot,,. Due to azimuthal symme-
try, the potentials in the three regions, which must satisfy the
Laplace equation, can be expressed in terms of Legendre
polynomials as

Uin(r)=AgPo+ ArrP 1+ Apr?Pyt - =3 AjrP;,

(83
Umen 1) =2 _0[B;r'P;+C;P;/ri*1], (8b)

and
Uou(1)=—ForP1+3_0.D;P;/r1 "L, (80

whereU;,(r), Umen(r), andU,(r) are the potentials at the
inside, membrane, and outer regioRs,is thejth order Leg-
endre polynomial, and~, the externally applied electric
field. Also, A;, B, C;, andD; are the coefficients of the
Legendre series expansions that can be determined by apply-
ing matching boundary conditions at the interfaces of the
three regions. Invoking continuity in the potential and dis-
placement vector, then leads to the following boundary con-
ditions:

Upn(r=a)=Upefr=a), (9a)
Umend I =b)=Ug,{(r=>b), (9b)
Sin[auin(r)/&rﬂr:a:8men{0’)umem(r)/(9r]|r=a7 (90

and

8mer'r[‘9Umem(r)/&r:”r:b:Sout[‘?uout(r)/‘i’r]lr:b- (9d)

The neglect of conductivity terms in E¢9) above merits
clarification. The Maxwell tensor cell deformation calcula-
tions discussed here are important to simulate conditions
prior to membrane rupture and material outflows. Deforma-
tion and the buildup of internal stresses have to be taken into
account to mimic the initial phase for electroporative analy-
sis. Under these conditions, the conductivity of the cellular
system is small. Hence, the membrance conductivity is al-

021913-4
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most negligible and can be omitted. Straightforward, but te-

dious manipulation of Eq(9) yields the following expres-
sions for the potentials:

Uin(r)= Cl(r/a?’)cos{ ¢)[1+{28mem+ 8i}/{8mem_ 8in}’]a
(1039

Umen{r)=Cy cog ¢)[1/r%+ (r/ad)
X{28m9m+8i}/{8mem_8in}]a
Uou(r)=—Focog ¢)[r—b3r?]+{C;/r?}cog ¢)

X[1+ (b/a)S{zsmem+ Sin}/{gmem_ 8in}]v
(109

(10b)

where
C1=—3F e ou/[{Temem'@%} — 2& mem/ D3]+ {28 o/ b3}
X[1+ (b/a)®T], (100
and
T={2&mem® €int/{&mem— &in}- (10e

Consequently, the electric fields (r) and F 4(r) just out-
side the membrang.e., atr=b, ) are given as

F (r=b)=[3Fy+2(C,/b%{1+(b/a)%}]cog ¢)

=F, coq ¢), (10f)
F4(r=b)=[C1/b%Isin(¢)[ 1+ (b/a)>T]=F,sin(¢).
(109

For &in=emem= €out,» the above equations reduce td(r)
=—Fqr cos¢), F(r)=Fqcos(p), andF 4(r) = —Fqsin(¢).
While bothF(r=b) andF ,(r =b) retain the cosf) and

PHYSICAL REVIEW E 65021913

For an ellipsoidal geometr{a shape known to approxi-
mate many cells under deformatjpthe Laplace equation is
most easily solved by resorting to ellipsoidal coordinates. We
assume a prolate spheroid without loss in generality, with
semimajor axis &,” semiminor axes b,” and center at the
origin. The foci are taken to be along thelirection(parallel

to the appliedE field) at (0, 0,+L) with L=[a?—b?]°",

The eccentricity €" then is given by:e=L/a. The coordi-
natess, », ¢ for this system are defined in the usual manner
[46] with respect to the Cartesian coordinates as

z=Lsn, y=L[{s*~1H{1-7*}1*%sin(0),

x=L[{s*~1}{1-»*}]**cog 0), (129
ie.,
s=[{x2+y2+(z+L)20"°
+{x2+y2+(z—L)2199)/(2L) o=tan (y/x),
and
n=[C+y2+(z+1)2)0
—{x2+y?+(z—L)3%%/(2L). (12b

The ellipsoidal surface then corresponds to a constaatue
given by:s=g,=a/L. Due to angular symmetry, the poten-
tials in the three regions can be written as

Uoul(s, 7)=—FoLs7+AsQ(s),
Umenls,7)=—BFoLs7+CsQ(s),
Uin(s,7)=DFoLs 7,
with Q(s)=0.5¢Ln|(1+s)/(1-s)[—1,
(13b)

whereA, B, andC are constants to be determined from the

(133

sin(¢) angular dependence, respectively, their magnitudeQOU”dary conditions. Using the continuity of the potential

(ie., F, and F,) are altered by the presence of dielectric

materials. The resultant fiel&| is no longer thez axis (i.e.,
not at an anglep with respect to the normalinstead,|F|
=[F? cog(¢)+F3 sin(¢)1°5, while the anglex between the
resultant field |F| and the normal becomesa=tan !
[—tan(@)F,/F,]. Consequently, the expressions in E@.
get modified to the formp,=0.5¢,[k,1—k;»]|F|? cos(2v)
=F*cos(2y), and p,=—0.5q[K;1—k;,]|F|?sin(2a)=
—F* sin(2z). Under these conditions, Eg&a)—(5b) corre-
spondingly change to

Ny( ) =[F*/{rysirf(¢)}]

¢
X of riro[cog2a*)coq ¢*)sin( $*)
+sin(2a)sir?(¢*)]dé* |, (11a
Ny(p)=r,F* cog2a)—[r,/r1]Ny,
where a* =tan™ [ —tan(¢* )F 4 /F,]. (11b)

and displacement vector across the inner and outer mem-
brane(assumed to have constant thickness,); results in
the following solution:

Uouls,7)=—FoLsn+AsQ(s),
Unmen(s, 7) =An[sQ(s0)/s0+(S,/S,)
X{Q(s0)/s0—{dQ(s0)/ds}(&out/ Emem }]
+FoL 7l (S1/S:) (e out/ emeni—1) —s1,

(149

(14b
with
$,=0Q(s)—sQ(so)/se, S$,=Q(s0)/so—dQ(s,)/ds,
(140

Uin(s, 7)=Ans[Q(so)/so+(S3/S){Q(s0)/s0
—{dQ(so)/ds}(eout/emem ]+ Fols 7
X[(S3/S2)(&out! € mem—1) — 11, (149

with

021913-5
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S3=Q(s1)/s1—Q(so)/sy, s1=s,[1—tb/{a(a+b)}]. (14e)

In the aboves=s, represents the surface of the inner membrane, while the constéiris ‘as

FoL[Sx(&in—&mem + Sa(&ou Emem — €inSs(&out/ Emem— 1) ]

A= , 14f
Sz(sin_smem)Q(go)/go"'(Eins?»_Smems4){Q(§o)/§o_(sout/smem)dQ(go)/dg} (140
|
where cumvent the above difficulties, a slightly different approach
was used here for the self-consistent analysis. A coupled it-
S$;=dQ(s1)/ds—Q(so)/s,- (149)  erative procedure was followed. First, E¢8) and (3) were

solved for the applied electric-field valygee., without self-
consistent polarization correctiorns yield the deformed cell
shape. Next, this shape was parametrized into an “ellipsoi-
dal” form by a curve-fitting procedure that yielded the best-
fit values of the semimajor and semiminor axasand b,

The electric field normal to the outer ellipsoidal surface is
Fs(s, ), while F,(s, n) is orthogonal toF; and lies in
planes containing the axis. Expressions for these fields
from Eqgs.(13) are

a2 2_ _2y105 _ respectively. The equations for the electric-field distribution
Felso m=[so=Dl(so= 7)1 AFon = (A/L) for the ellipsoidal geometrjas given in Eqs(14) and(15)],
X[(Q(sq) +5,dQ(s,)/ds)]}, (15a) were then applied. This updated electric-field distribution
was used once again to yield a more realistic shape based on
Fo(so.m)=[(1—7)/(s5— 1) 1°TFoso—AQ(s,)/L]. Egs.(2) and(3), and the process iterated until convergence.

(15b)  Obviously, since the deformed cell shape can, in principle,
deviate appreciable from an ellipsoidal geometry at high
electric fields(E) or large membrane thickne&s values, the
simulations were carried out for relatively sma&l and t
magnitudes.

ll. RESULTS AND DISCUSSION Results for an initial spherical cell of thickness 2 nm hav-

Numerical calculations based on the equations of the pre'pg a 1 um radius(typical of E. coli cells, for examplejn

vious section were performed to determined the effect o esponse to various elgctric—field values are given in Fig. 3.
external electric fields on cellular shape changes. A list 0 'e.ld ma}gmtqdes ranging from 070 kvicm were used. The
parameters used in the computations are given in Table I. F ro1ssons ratiov was taken FO. be 0.2. The_: stead_y-state de-
accuracy the full stress theofy.e., Egs.(2) and (3)] was ormed cell shapes fqr ppsmvxe andy var!ables in thex
used without neglecting the bending forces and moments. ﬁo plane, are shown in F'.g' 3. Dueto the mhergnt symmgtry
fourth-order Runge-Kutta method was used to numericall;f)f. the problem, only the first quadrant is speCIfl_ed for sim-
solve the resulting coupled differential equations. For selip"c'ty‘ The shape c.hange's frgm a perfect cwclgllﬁr
consistency, the electric fields at the surface for each ge fOV’C”_’* to ellipsoidal W'th. Increasing eccentricity - at
metrical shape had to be computed. This, in theory, can b igher fields. The cor_resp_ondmg fqrces per lendii(¢)
accomplished by applying boundary conditi¢gsy. (9)], and andN,(¢) are shown in Fig. 4 for fields of 20, 50, and 70
solving for all the Legendre-polynomial coefficients. How-
ever, such a procedure presents two practical difficulties.
First, for successful numerical solution, a finite set of differ-  ~ 0.97
ence equations is needed. This implies having to invoke ad- §
ditional (perhaps arbitrarygonditions on the infinite Leg- §
E
(23

For a spherical geometrg— b, and soL—0, s,— yield-
ing Fs=Fqcos(@), andF ,= —Fgsin(¢).

1.0+

endre series for closure. Second, evaluation of the normal
derivativegas in Egs. 9(c}(9d), for example ind radius of 2
curvaturde.g.,r; in Egs.(2) and(3)]is “noisy” and leads to 3 05
inaccuracies in numerical implementations. In order to cir- g’o.4-

< -1 — -_—
TABLE |. Parameters used for the simulations. 3 0.3 Eext = 0 kV/em v \
Soodl-"- Eext = 20 kV/icm \ \
B — - —Eext = 50 kV/cm 1 : \
Parameter Source Value D 014 | — —Eeq=70kvVicm ‘| \ \
1
k., (FmY Ref.[18] 80x8.85X10™ 12 00— 1.(') —
-1 — 12 . . . . 3 . . .
kez (F m™5) Ref.[18] 2x8.85x10 Distance Along Z axis (micrometer)
a(m) Ref.[15] 1x10°8
t (m) Ref. [15] (3-5)x10°° FIG. 3. Calculated equilibrium cell shapes along ykeplane in
K J) Ref.[54] 5x 1020 response to applied electric fields of 0, 20, 50, and 70 kV/cm. Po-

larization effects were ignored.
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10
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54 —— e N — - = = E=50kV/cm, t=5nm
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E I~ o
pd -5 \. ~
E NS K= -
2 -104 N\ ~ A
P4 . ~ - N .
o —_
S -154 [——N¢.E =20 kVicm \\ AN
< - = =Ng,E =20 kV/icm . X \
£ 204 |--—Ng.E = 50 kviem N \ N
— — Ng,E =50 kV/cm '~ : \
25|+ * = Ng,E=70kVicm e | 1
— — - Ng,E = 70 kV/em i \
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0O 10 20 30 40 50 60 70 80 90 0.0 0.5 1.0 1.5 2.0 2.5

Angle in Degrees Distance Along Z axis (micrometer)

FIG. 4. Corresponding forces per lengtty(#) andN,(¢) for

e FIG. 5. Deformed cell shape results for various membrane
applied fields of 0, 20, 50, and 70 kV/cm.

thicknesses and applied fields of 20 kV/cm and 50 kV/cm.

kV/icm. The magnitudes range from 0 to about 25 mN/m.
The values oN 4 are positive, independent of the angle, andbecomes evident that deviations from a simple geometry are
increase with field. This implies thét,, produces a constant indeed possible, and that the ellipsoidal form often used in
tension across the membrane. PlotNgf ¢) show positive ~ Previous work may not be the most accurate representation.
magnitudes for angles below 30°, and become progressivel§ may also be mentioned that in actual practice, a slight
negative reaching a maximum along the equatorial planechange in the membrane thickness is likely during cellular
The signs are simply the result of the chosgudirection as ~ deformation process. For example, a net expansion of the
depicted in Fig. 1. At low angle$i.e., close to the semi- surface area would give rise to a marginal decrease in the
major axis), positi\/d\] 6)( ¢) denotes a state of tension with membrane thickness “t.” Based on the results of Flg 5, such
component roughly transverse to tkeaxis. The negative @ “second-order” effect on t” would work to slightly di-
values neakp~90°, for example, signifies a transverge., ~ Minish the overall deformation.

X-Z p|ane)compression in response to the tension |ny|rB Deviations in the electric-field distribution due to the
p|ane_ AS reported in the |iteratuté_7], the typ|Ca| tension presence of the dielectric media, are discussed next. The field
for membrane rupture is in the range 1-10 mN/m. Our refrofile for the component§, andE, are shown in Fig. 6 for
sults are thus in very good agreement, and show that for 1 um radius spherical cell subjected to an external 20
app“ed electric fields of 50 kV/cm and higher, one can eX_kV/Cm field was used, with relative permittivities of 81 and
pect membrane rupture simply based on electromechanicdl respectively, for the membrane and surrounding media.
considerations. The exact value will obviously depend on théue to induced charges on the dielectric spherical mem-
r|g|d|ty parameteK and the Poisson’s ratio, but the mag- brane, the electric-field IineEz deviate from their parallel
nitudes as predicted by this simply analysis should roughlyrientation and tend to cluster at the cell. Consequently, the
remain valid.

The deformed cell shape strongly depends on the cell 25
characteristics. Changes in the rigidity parameter or the
membrane thickness alter the force distributions, and hence,
affect the overall shape. Calculated results of the deformed
geometry for a Lm radius starting from an unstressed
spherical cell are given in Fig. 5. The membrane thickness
ranged from 2—-5 nm and various electric fields were used.
The curves of Fig. 5 show very clearly that besides applied
electric fields, the deformation is controlled by the mem-

Electric Field (kV/cm)

brane thickness, and increases with”“As the thickness 57

changes from 2 to 5 nm, the geometry is modified from -104 Ez
spherical to ellipsoidal and then begins to assume a “peanut” 1454 -~ -Ey
shape(or discocyte transformatiof88]). Based on the trend

evident in Fig. 5, one could qualitatively predict an eventual -20 T T T T T 1 T

shift towards a “dumbbell” geometry at higher fields, or 00 10 20 30 40 50 60 70 80 90

. " L Angle in Degrees
thicker membranes, or under conditions of a smaller rigidity 9 9

parameter, or with a larger Poisson’s ratio. Such calculations FIG. 6. Electric-field profiles just outside agm radius spheri-

for strongly deformed shapes, however, have not been showgal cell in response to an external 20 kV/cm field. The relative
here since the perturbative theory used in this analysis coulgermittivities for the membrane and surrounding media were set at
be called into question for large deformations. In any case, i81 and 2, respectively.
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3.5 0.18
-—-=M Surface Area /)

304 |—Q 0.16+ |- — - Cell Volume ’
E 0.144
v 2.5+
2 $0.12-
= <
5 204 S 0.10-
5 E
E 1.5 §0.081
pd [&3
@ & 0.061
S 1.0
=~ .04 1
o 0

054 0.02-

ooOFH— 71—t T r—rrT 0.00 T v T T

0 10 20 30 40 50 60 70 80 90 0 5 10 15 20 25
Angle in Degrees Electric Field (kV/cm)

FIG. 7. The bending momend ,(¢) and associated transverse ~ FIG. 8. Calculated variations in the cellular surface area and
force Q4(¢) for applied field of 20 kV/cm for an initial 5 nm volume with applied electric field for an initial zm cell radius and
spheroid. 5 nm membrane thickness.

S . . This is in keeping with some recent optical scattering experi-
radial field increases with the largest change from the z%ental datizg].gl]'he exact magnitudez, however, are subject

kV/cnljvarI]ue a;_thle pole which f(:(l)lrrespondmeF ?] AS 8X- 1 the inaccuracies and uncertainty of the material parameters
pected, the radial component falls to zero at the equatorigl,, .y, 4 the rigidityK and Poisson’s rati@. Hence, the data

plane which corresponds %=90°. Due to the field distor- ¢ £y g qoes not lend itself to a direct comparison with

tion, the resultant field is no longer solely along theirec- o, horimental data. However, the general electric-field-
tion, but instead hag a smal, component(largest at¢ dependent trend predicted here has been shown to be accu-
=45°) and a deviation about the 20 kv/cm level By,. 540 A second point about Fig. 8 is that the change in cell
I\_/Iore_ S|gn|f|can_tly, the transve_rse cpmpo_nent with pOIarlza'volume is larger than the corresponding areal variation. This
tion is §ma||er(|.e., Iegs Tegatlv_e\)vruch will lead to a de- g tg pe expected as the volume scales more rapidly than the
crease in the equatorial “flattening.” _ _ surface area, at least for the simple ellipsoidal shapes. At
Finally, self-consistent numerical simulations were Car”e‘jhigher electric fields beyond the 25 kV/cm value shown in
out to evaluate the field-dependent changes in the cell volgig “g it is conceivable that the areal variations become

ume and surface area. The rationale for this calculation Warger as the cell changes from an ellipsoidal to a “peanut-

the following: From an experimental stand.point,_ observa-diSCOCyte geometry” as shown in Fig. 5 for the 50 kv/cm
tions of absorbance dichroism and changes in optical scattefi|q

ing can be made, and these effects are associated with vari-
ability in cell surface area. It is, therefore possible to
guantitatively observe and monitor areal changes and gauge
the dependence on applied electric field through optical mea- A self-consistent model analysis of cellular deformation
surements. Analysis of such field-dependent variations Iand Shape Change in response to an apphed quasistatic elec-
thus a meaningful first step towards comparisons with extric field has been carried out. Such calculations would have
periments, and for data interpretation. direct applications to cellular electroporation, and provide an
Figure 7 shows the bending momevt,(¢) and associ- important step in the self-consistent evaluation of the electric
ated transverse ford@4(¢) for an applied field of 20 kV/cm  field at the cell membrane. Accuracy in the electric-field val-
for an initial 5 nm sphere. As seen from the curve, the magues is important, since the field magnitude and distribution
nitude of M 4(¢) is negligibly small and has a nearly con- controls the pore formation rate, the evolution of the pore
stant value of about 810 '? Newtons. The curve for distribution function in “r space” as governed by the Smolu-
M(¢) was nearly identical to that df1 4(¢), and so has chowski equation, and ionic flow. As the fields are distorted
not been shown separately in the figure. Th,(¢) by the polarizability of the biological medium and influenced
~M () condition obtained here is in keeping with a pre- by factors such as cellular size and geometric shape, an elec-
vious result reported by Pamplona and Calladi#8]. The tromechanical analysis becomes necessary. Besides, experi-
angular dependence & ,(¢) from Fig. 7 is seen to be mental verification of such changes in cell shape could be
symmetric about$p=45°, and also has a relatively small probed through methods such as time domain dielectric spec-
value. Thus, compared to bol,(¢) andNy(¢), the vari-  troscopy [49] or microwave energy-loss measurements.
ablesQ (), My(¢), andM ,(¢) can all be neglected as These techniques accurately sample dynamic properties such
has been done in the past. Finally, Fig. 8 shows the fractionas the dielectric permittivity, conductance, and capacitance
change in the cellular surface area and volume as a functioof cells in suspension. The parameters are all governed by
of the applied electric field. Two points are evident from thethe cell geometry and shape. For example, on the basis of the
results. First, both curves exhibit a rough quadratic behavioMaxwell-Garnet theory50,51], the collective dielectric be-

IV. SUMMARY AND CONCLUSIONS
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havior has been shown to depend on cell geonié&®), and  and restructuring can occur upon the application of an elec-
could be extracted as a fitting parameter. tric field. (iv) Values of the surface forces obtained in the
In this paper, the issue of calculating cell deformationspresent calculations were in remarkably good agreement
self-consistently due to the electromechanical forces wawith the 1-10 mN/m range for membrane rupture that has
presented. Instead of an energy-based virtual work formalPeen reported in the literatufd7]. This lends validity and
ism, a first-principles approach based on thin-shell theongredence to the present pape It was also shown that, at
was used. The difficulty with the virtual work method is that least for the smaller electric fields, both _the cellular surface
it does not lend itself to nonequilibrium analyses, or the in-2r€@ and volume would change roughly in a quadratic man-
clusion of dissipative forces. An approach based on force anfi€ With electric field.(vi) Finally, it was shown that the
moment calculations has the advantage that it can potentiall§€Nding moments are generally quite small and can be ne-
be extended to include dynamical analysis and temporal r lected for a simpler anaIyS|_s. . .
sponse. In this formulation, both the shear and bendin% The pre_sent paper lends |ts_elf to t|me-de_pender_1t analysis
moduli were carefully included, and the Love-Kirchhoff hy- pon the |ncllu3|on of appropriate acceleration tel(lmea.r
pothesis used. Unlike most previous reports, assumptio nd angularin the fqrce _and moment balance equations.
such as constant surface area or cell volume have not be rlpus, for examplg, situations such as cellular reorientation
used. The present calculations demonstrated the followin arallel to an applle_d field could be analyzed. This t_echnlque
features:(i) At low values of the applied electric fieldss ould also be applied to c_e_lls that had a nonspherical shape
was commonly the case in the pashe deformed cells can under ur)perturbed c_ondmonse.g., bIOOd. cells AISOZ
roughly be approximated by an ellipsoidal shafi. How- changes in the ogmotlc pressure could be mclude'd by incor-
ever, for much larger field magnitudes, as have recently be orating a dy”ar.”'ca' aspect 1o the, py, anc_ip(, variables.
used[12-15, the deformations would be fairly significant bviously, for high-frequency temporal variations or ac ex-

and the cell geometry would no longer be described accﬁations' the inclusion of Maxwell equations and Maxwell-

rately by ellipsoidal shapes. For example, at fields on th agner polarizatior{53] would be needed. Such analyses

order of 50 kV/cm, a “peanut-shaped” geometry was shownWiII be presented elsewhere.

to result. The possibility of such discocytes had been pre-
dicted by Deuling and Helfrich38]. (iii) The results here
also demonstrated that the final shape depends on the mem-The authors would like to thank S. BeebgeVMS), L.
brane thickness. In general, it was argued that with decrea®ouglas Frink(Sandia National Laboratoyyand W. Kras-
ing thickness, deviations from the unstressed shape would Bwska(Duke University for useful discussions. This work
less severe. This has direct implications for cells, tissues, antas sponsored in part by the Air Force Office of Scientific
lipid bilayers in which significant molecular reorientation ResearciNo. F49620-01-1-0506
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